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Preface

This volume contains the invited and contributed papers presented at the 10th

International Symposium on Automated Technology for Verification and Anal-
ysis (ATVA 2012), held at Thiruvananthapuram (Trivandrum), India, during
October 3–6, 2012. Over the last decade, ATVA has established itself as a pre-
mier venue for researchers and practitioners working on both theoretical and
practical aspects of automated analysis, verification and synthesis of computing
systems. The conference has also historically provided a forum for interaction
between the regional and international research communities working in these
areas. The rich legacy of ATVA continued this year as well, resulting in a very
strong technical programme.

We received a total of 80 regular submissions and 9 tool submissions, exclud-
ing those that were incomplete, outside the scope of the conference, or concur-
rently submitted elsewhere. The submissions came from 20 different countries
spanning 4 continents. Each submission was reviewed by at least 4, and in some
cases even 6, reviewers. The Programme Committee sought the help of 145 ex-
ternal expert reviewers for detailed evaluations of the submissions. This was
followed by two and a half weeks of extensive and spirited discussions among the
members of the Programme Committee, based on which 25 regular papers and
4 tool papers were finally accepted.

The conference was privileged to have three distinguished computer scientists
as invited speakers. Sharad Malik (Princeton University, USA), Andreas Podelski
(University of Freiburg, Germany) and P.S. Thiagarajan (National University
of Singapore, Singapore) readily agreed to give tutorials and invited talks at
the conference. We thank all of them for enriching the conference with their
participation.

It has been an absolute pleasure working with 35 distinguished colleagues
from 16 countries as part of the Programme Committee. We thank all of them for
helping spread the call for papers, providing detailed reviews for the submissions,
participating in the online discussions with tremendous energy and enthusiasm,
providing critical comments and useful suggestions whenever needed, and for
everything else that helped shape the strong technical programme that we finally
arrived at.

We thank the Steering Committee of ATVA for giving us the opportunity to
host this conference in India for the first time. We also thank members of the
Steering Committee for providing guidance on various aspects of planning of the
conference.

The Organizing Committee of the conference put in several months of hard
work to ensure that every aspect of the organization of the conference was at-
tended to in detail. We thank all members of the Organizing Committee for
their dedication to the success of the conference. Kumar Madhukar helped with



VI Preface

several logistical aspects, including designing and maintaining the conference
webpage, creating posters and handling email enquiries. We thank him for his
contribution to the success of the conference. We also thank S. Ramesh, General
Chair of the conference, for providing helpful guidance whenever it was needed.

From the time we drafted the proposal for hosting ATVA 2012 in India, Tata
Consultancy Services has been unwavering in its support to the Indian Associ-
ation for Research in Computing Science (IARCS) for making the conference a
success. The helping hand lent by Tata Consultancy Services in every aspect of
planning and organizing the conference deserves special mention. R. Venkatesh
played a crucial role in our interactions with Tata Consultancy Services. We
thank him for his special efforts in this regard.

A conference like ATVA cannot succeed without significant financial help
from various agencies. We thank IARCS, Tata Consultancy Services, Microsoft
Research India, Special Interest Group in Software Engineering of the Computer
Society of India, and Corporate Research Technologies of Siemens Technology
and Services Pvt. Ltd. for providing sponsorship to make the conference a suc-
cess.

Finally, we thank the Easychair team for providing us with an excellent paper
and review management system that made the entire process of reviewing and
compiling the proceedings smooth. We also thank Springer for publishing the
proceedings as a volume in the series Lecture Notes in Computer Science, and
for all the editorial help rendered by them in compiling the proceedings.

October 2012 Supratik Chakraborty
Madhavan Mukund
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Rümmer, Philipp
Saha, Diptikalyan
Samanta, Roopsha
Sampath,

Prahladavaradan
Sankaranarayanan,

Sriram
Sankur, Ocan
Sarangi, Smruti
Schnoebelen, Philippe
Seth, Anil
Shaikh, Siraj A.
Sharma, Arpit
Sproston, Jeremy
Sridhar, Nigamanth
Stigge, Martin

Stolz, Volker
Subotic, Pavle
Sureka, Ashish
Suresh, S.P.
Tabatabaeipour, Seyed

Mojtaba
Teige, Tino
Ummels, Michael
Val, Celina Gomes Do
Van Breugel, Franck
Vaswani, Kapil
Vighio, Saleem
Von Essen, Christian
Vorobyov, Kostyantyn
Wang, Bow-Yaw
Wang, Linzhang
Wang, Shaohui
Wang, Shuling
West, Andrew
Wies, Thomas
Wisniewski, Rafael
Wu, Jung-Hsuan
Yang, Shun-Ching
Yu, Fang
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Verification of Computer Switching Networks:

An Overview

Shuyuan Zhang1, Sharad Malik1, and Rick McGeer2

1 Department of Electrical Engineering, Princeton University, Princeton, NJ
{shuyuanz,sharad}@princeton.edu

2 HP Laboratory, Palo Alto, CA
rick.mcgeer@hp.com

Abstract. Formal verification has seen much success in several domains
of hardware and software design. For example, in hardware verification
there has been much work in the verification of microprocessors (e.g. [1])
and memory systems (e.g. [2]). Similarly, software verification has seen
success in device-drivers (e.g. [3]) and concurrent software (e.g. [4]).
The area of network verification, which consists of both hardware and
software components, has received relatively less attention. Traditionally,
the focus in this domain has been on performance and security, with less
emphasis on functional correctness. However, increasing complexity is
resulting in increasing functional failures and thus prompting interest in
verification of key correctness properties. This paper reviews the formal
verification techniques that have been used here thus far, with the goal of
understanding the characteristics of the problem domain that are helpful
for each of the techniques, as well as those that pose specific challenges.
Finally, it highlights some interesting research challenges that need to be
addressed in this important emerging domain.

1 Introduction

Today’s computer networks have become extremely large and complicated. The
increased scale is observed in datacenters, as well as enterprise networks which
can have hundreds of thousands of networking devices. The increased complex-
ity is due to multiple kinds of networking devices (routers, switches, Network
Address Translators or NATs, firewalls) that need to work together to execute
the diverse network functions such as routing, access control, encryption and
network address translation. Some of these devices need to support multiple
protocols to make the network safer and faster. Further, the implementations of
the protocols and network devices differ across vendors. Thus, it is non-trivial
to make the system work correctly and efficiently.

One of the difficulties in managing such a complex system is the correct config-
uration of the network devices. Misconfiguration of the network counts for more
than half of network downtime [5]. The misconfiguration bugs result in different
kinds of network errors, among which are reachability failures, forwarding loops,
blackholes, access control failures, and isolation guarantee failures. These errors

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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can violate the security requirements, fail the correct delivery of packets, and
degrade the efficiency and performance of the network. Thus, it becomes critical
that we can detect network errors and verify network properties as we run and
maintain the network system.

Recent years have seen the application of formal verification techniques in net-
work configuration verification. These attempts span a range of techniques, from
graph-based analysis [6] to the use of various verification engines such as ternary
symbolic simulation [7], model checking [8,9] and propositional logic property
checking [10]. In this paper we provide a review of these techniques, including
our recent work on using propositional property checking [11,12] with the goal
of understanding the characteristics of the problem domain that are helpful for
each of the techniques, as well as those that pose specific challenges. Finally, it
highlights some interesting research challenges that need to be addressed in this
important emerging domain.

This paper is organized as follows. Section 2 provides some general back-
ground for the problem domain. The next two sections provide an overview of
the two main classes of approaches, based on finite-state machine verification
and Boolean satisfiability. Finally, Section 5 discusses some directions for future
work in this domain.

2 Network Systems and Properties: Background

2.1 Network System States

The network systems we consider are packet switching networks. The network
components can be a variety of devices such as routers, switches, bridges, Net-
work Address Translators (NAT), firewalls, and even OpenFlow switches [13].
These devices are connected by links. In this paper, we refer to these devices
as middleboxes or simply switches. Figure 1 provides an illustrative sketch of
a network comprising of switches connected by links. The switches process the
packets and the links transfer them between switches. The processing can vary
depending on the switch, e.g. a firewall decides which packets are allowed to
go through and which are blocked based on a set of rules. A router decides
which of its output ports (and thus the link connected to that port) an incoming
packet should be routed to based on its routing table. The flow of packets is
referred to as the network traffic. Each packet consists of a header and a pay-
load. The header captures the information needed to process the packets, e.g.
source/destination addresses and the time-to-live field which indicates how long
the packet may continue to stay in the network. The header may be modified as
a packet is processed by a switch. The payload contains the application data.

Historically, networking traffic is thought of as operating on two levels or
planes. In general, these refer to classes of message exchanged between switches.
In classic networking, switching/routing decisions are made by switches indi-
vidually, on the basis of information captured in a number of on-switch data
structures, known as the forwarding information base (FIB) and the routing in-
formation base (RIB). The FIB and the RIB are updated regularly by the switch
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Fig. 1. Sketch of a Packet Switching Network

or router on the basis of messages received in the course of its operation. See,
for example [14], among many others.

– The Forwarding Data Plane consists of application traffic, and is simply
passed by the switch on the appropriate port as directed by the FIB and the
RIB, with appropriate rewrites to the various header fields.

– The Control Plane consists of traffic used by the network to compute infor-
mation in the RIB and the FIB. Classic examples of messages exchanged on
the forwarding plane compute shortest paths to specific destinations, deter-
mine the location of devices with specific Media Access Control (MAC) or
Internet Protocol (IP) addresses, and explicit control messages sent between
devices on the network and from external control sources. Examples of the
latter are Border Gateway Protocol [15] messages, which concern the han-
dling of packets destined for locations outside the local area network and
Simple Network Management Protocol [16]message.

The network states we are interested in here are the forwarding/blocking rules
extracted from Routing Information Base (RIB) and Forwarding Information
Base (FIB) in routers, Access Control List (ACL) in firewalls, and Forwarding
Table in switches. We define the switch state as the collection of all the RIBs,
FIBs, ACLs, forwarding tables, configuration policies stored in the switch at a
single instance of time (see Figure 2). The network state is the collection of the
switch states in all switches. These rules comprising the switch state usually have
two fields, one matching field which specifies the packet header information for
packets which should be processed using this rule, and one action field, which
specifies what actions will be taken on the matching packets, i.e. how the packet
is to be processed. This varies with the switch, e.g. a firewall rule will indicate
if the matching packet should be dropped or allowed, a router will decide which
output port (and connected link) a matching packet should be forwarded to. A
payload of a packet is typically not considered in the rule matching as it does
not determine the packet processing. The action field can be forwarding actions
such as: blocking the packet, forwarding the packet to specific ports, flooding the
packet (forwarding a copy to all but the incoming port), forwarding the packet
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Fig. 2. The Switch State

to the incoming port, rewriting rules which rewrite some of the header fields of
the packet (as in NATs), and packet encapsulation which includes an existing
packet header in a new header (used for network security).

These network states we focus on here are completely static. They are snap-
shots of dynamic networks at a single instant in time and do not change during
verification. Gude argued that changes in the network rules are on the order of
tens of events per second for a network with thousands of hosts while packets
arrive on the order of millions of arrivals per second for a 10Gbps link [17]. As
network rule updates are much slower than the packet arrival rate, the network
can be largely regarded as a static system. Consequently, we assume that the
network system is stateless as it is completely fixed during verification and no
packet can modify the network state. While some verification techniques con-
sider dynamic system states such as the graph-based analysis by Xie et al. [6],
the focus of this paper is on formal verification techniques that consider a single
snapshot of the network system state. . We note that there has been recent work
on safe update protocols for OpenFlow networks, which aim to ensure that ver-
ification certificates given by static techniques are not invalidated by network
updates [18,19,20].

2.2 Network Properties

In this paper, the properties of interest are those related to functional correct-
ness. We do not study properties related to speed metrics such as congestion,
latency, and bandwidth. The following properties have been the subject of in-
terest in the various verification efforts.

Reachability. Reachability is concerned with whether the network always suc-
cessfully delivers packets to the intended end hosts. There are various flavors of
reachability. A loosely defined reachability property can be that a packet P can
get to the end host A. Although it specifies that the packet will reach A, it does
not specify whether a copy of the packet may also get to other hosts. A stricter
definition of reachability requires that P will always go to A and nowhere else.

Forwarding Loop. A network is said to have a forwarding loop if the same
packet returns to a location that it has visited before. Again, there are several
flavors of this property, e.g. returning to the same location with exactly the
same header, or returning to the same location with a possibly different header.
The former case indicates the presence of an infinite loop, since this packet
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will repeatedly return to this location. The latter case may also be undesirable
since there is usually no reason for a packet to return to the same location. The
classic defense against forwarding loops is the Time-To-Live field in the packet
header, which sets the maximum hop count for a packet: each switch decrements
the TTL field, and discards those whose TTL reaches zero. While TTL fields
preserve network resources against infinite loops, TTL discards still represent a
forwarding bug that a verification system must diagnose.

Packet Destination Control. Another class of properties specifies details of
fine-grained packet handling. Examples include requiring that packets of a spe-
cific class be dropped -blacklisting, or requiring some packets to traverse specific
devices or edges - waypointing. Blacklisting often arises in security applications,
and waypointing in audit requirements.

Slice Isolation.Multi-tenant networks must be able to guarantee that mutually-
untrusting users are guaranteed privacy. A virtual, isolated private network in
a shared network is referred to as a slice of the network [21,7]. Slice isolation
specifies that it is impossible for one slice to eavesdrop or interfere with another.

2.3 OpenFlow and Stateless Networking

The recent rise in interest in network verification [7,11] has been due to the
introduction of the OpenFlow protocol [13,22,23,24,25,26,27,28]. OpenFlow cen-
tralizes the control plane into a centralized controller. In the OpenFlow protocol,
the various control plane sensing and command messages become controller in-
puts and the various routing tables to the switches are controller outputs. An
important implication of this change to centralized control is that while a dis-
tributed control plane may result in non-deterministic ordering of network state
updates, a centralized controller will result in deterministic network state up-
dates thus making it easier to reason about system states and enabling analysis
of a single snapshot of the system state.

Verification of the controller,which in its most general sense is Turing-complete,
remains undecidable. However, the output of the controller is another matter. It
was observed in [11,12] that this could be transformed into a graph of state-free,
combinational logic elements. Though the graph is cyclic, by a technique of un-
rolling the graph in time, an acyclic graph can be derived. An acyclic graph of
state-free, combinational logic elements is a simple logic network; its verification
isNP-complete, and in fact [11,12] demonstrated that network verification prob-
lems could be transformed into satisfiability problems on logic networks.

The recognition that OpenFlow offered a logic abstraction of the network
dovetailed with an emerging literature on declarative, state-free network specifi-
cation [29,30,31]. FML [30] explicitly coupled a formal verification procedure to
a formal declarative specification of network behavior. The class of specifications
anticipated by [30] was relatively weak however; FML specifications were verifi-
able in poly-time, indicating either weak verification or limited specification.
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3 Finite-State Machine Based Approaches

Three techniques borrowing heavily from the ideas of Finite-State Machine
(FSM) verification were recently proposed: [7,8,9,19]. All three treat the packet
as a finite state machine. The state is the tuple (h, p) where h is the packet
header and p is its location. The transition function is encapsulated in the rules
of the network devices. The initial state of the packet is an arbitrary function of
the header bits and location, as required by the specific verification obligation;
a completely unspecified initial state is possible. All possible evolutions of this
state graph are enumerated by symbolically propagating the packet through the
network, with the header bits set as necessary for each possible propagation.

The techniques vary in the structures and methods used to propagate
packets, the domain of the transfer functions, and the representation of the ver-
ification obligation. [7] permits arbitrary functions of the header bits, and rep-
resents them as Boolean functions in sum-of-products form (disjunctive-normal
form or DNF). [19] specifies network properties using Computation Tree Logic
(CTL) [32], and uses model checking with NuSMV [33] to verify them. [8,9]
use a similar formulation of network states, but explicitly build Binary Decision
Diagrams (BDDs) for the network states and verify them using SMV [34,35].

When the set of all possible state vectors have been enumerated, i.e. a fixed
point is reached, the iteration ceases and the set of reached states examined to
determine if an undesirable state (bad combination of header bits and location)
has been reached. The Header Space Analysis (HSA) approach [7] refers to the
Boolean space of header bits as the Header Space; the Network Space is the space
of the tuples (h, p). The packet location is an integer encoded as a Boolean in
the usual fashion.

The behavior of each network device, including packet forwarding by routers
and switches, packet header modification by NATs, and packet blockage by fire-
walls, is modeled as a transfer function over the Network Space. This function
takes the current packet state as input, and outputs the possible new states,
(h′, p′), where h′ is the new header and p′ is the new location, exactly modeling
the action of the network device. In general, the function is non-deterministic,
even given a fully-specified network state, e.g., a multicast packet will have mul-
tiple new locations.

The Network Transfer Function is simply the disjunction of all the device
transfer functions. Let (h, p) be the packet state. The Network Transfer Function
Ψ is

Ψ(h, p) =

⎧⎨⎩
T1(h, p) if p ∈ switch1
... ...
Tn(h, p) if p ∈ switchn

If two devices are physically connected to each other, the outgoing packets from
one device will directly reach the incoming port of the other. To represent this
direct connection, the Topology Transfer Function Γ defined as

Γ (h, p) =

{
(h, p∗) if p connected to p∗

(h,NULL) if p is not connected
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Here NULL refers to a dummy port.
The joint use of network transfer function and topology transfer function is

used to emulate the propagation of packets through the network. Let function
Φ = Ψ(Γ (.)) and recursively applying function Φ to packet (h, p) for k times
or Φk(h, p) simply gives us the packet headers and locations after the network
processes the original packet (h, p) for k hops.

Both [8,9] and [19] use formulations equivalent to [7]. [8,9] represent the
explicit transition relation T (current,next) as a BDD, using only a small sub-
set of the header bits as packet state: source and destination IP address. Here
current and next are the current and next values of the packet state respec-
tively. Matching rules are implemented in strict priority: if rule Ci and rule Cj

for j > i both match packet header h, then Ci matches and Cj is discarded. The
exact match function for Ci is then effectively (¬C1 ∧¬C2 ∧ ...∧¬Ci−1 ∧Ci). If
Ci matches h then the packet state changes from (h, p) to the next state (h’, p’)
based on the action of rule Ci. The transition relation is simply the disjunction
of these selections over all the devices in the network. This formulation of the
transition relation can be easily modified to accommodate more header bits in
the matching rules, and non-strict priority among matching functions. [19] for-
mulates the network transfer function as a NuSMV program in CTL, and uses
NuSMV to represent the network states and perform the standard analyses.

Since [7] does not use an available verifier, this is the only system which explic-
itly employs a specific propagation and solution technique. As mentioned above,
transition functions, reachable states, and verification properties are expressed
as Boolean functions in DNF over the network space; the state reachability it-
eration is performed by propagating the reached states through the transfer
function until a fixpoint is reached, a technique known as Ternary Symbolic
Simulation [36].

3.1 Property Checking

Reachability Analysis. Network reachability for location a is obtained by
setting the initial state to dest ip = a, then performing the classic reachable-
states iteration. Reachable states with a location set to an internal device are
discarded, and the remaining reachable states must all have location = a.

To check the reachability between switch a and switch b, [7] first enumerates
all the paths that connect a and b. T (.) is iteratively applied to the packet for
every switch along the path. Then reachability from a to b is defined as

Ra→b =
⋃

a→b paths

{Tn(Γ (Tn−1(...(Γ (T1(h, p))...))}

where h is the header space, p is a port of a, and Ti(.) (i ∈ [1, n]) is the transfer
function of switch Si along the path a→ S1 → ...→ Sn−1 → Sn → b. Ra→b are
the final packets that will end up in b.

Forwarding Loop. Forwarding loops occur when a packet transits the same
switch twice. Ternary symbolic simulation [7] checks for forwarding loops by
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manually injecting the whole header space into one of the ports and propagating
through the network until every packet either 1) gets out of the network; 2)
returns to a port already visited; or 3) returns to the port that the original
header space is injected to. To incorporate the packet history, [7] extends the
original packet state with the visit history of the switches a packet has passed
through. If case 3) occurs, it has found a generic forwarding loop and it ignores
case 2) to avoid finding the same loop.

[19] and [8,9] use explicit model checking, and formulate the forwarding loop
condition as the following temporal logic formula for the underlying verifier:
(loc = a1) ∧ EX(EF(loc = a1)). This captures the property that the same
packet gets back to switch a1 twice.

Packet Destination Control. Reitblatt proposed using CTL to check whether
a packet can get out of the network, get dropped, go through certain switches, or
never pass through certain links [19]. Al-Shaer’smodel can also verify those proper-
ties. All of these are easily verified through the reachable-states iteration; a packet
being dropped is signified by simply assigning a new location for dropped packets.

Slice Isolation. A slice of a network or distributed system is an isolated virtual
network; in the case of a network, it refers to the ability of two or more inde-
pendent users to write non-conflicting rules for packet destinations. Though the
two users share the network substrate, each directs its own packets individually.
In HSA or the model checking based approaches, the slices are isolated if the
rules in each slice are written over disjoint network spaces. If T1(x, y), T2(x, y)
are the transition relations for the two slices, the isolation condition is simply

(∃yT1(x, y)) ∩ (∃y)T2(x, y)) = ∅

3.2 Discussion

When the notation and terminology of [7] is translated into conventional terms,
it is apparent that the method is simply checking safety properties of finite-state
machines, using state propagation based upon symbolic simulation of implicants.
This is nothing more than the familiar reachable-states iteration:

Rn(x) = Rn−1(x) ∪ ∃y[T (y, x) ∩Rn−1(y)]

iterated to the fixpoint R∗ = Rn = Rn−1, and the verification step is simply to
apply the appropriate safety check:

R∗(x) ∩ F (x) = ∅

where F (x) represents the collection of bad states. The forwarding loop verifica-
tion procedure detailed above could be done far more efficiently than is described
in [7], using the insights gained by recognizing the isomorphism with finite-state
machine traversal. The question of whether a forwarding loop exists is essentially
a question of whether the location bits in the packet state are repeated. With
the symbolic ternary simulation of HSA with a DNF representation, and writing
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the state vector as xHxL, where xH are the values of the header bits and xL the
values of the location bits, the new implicants introduced into Rn are

∃y [T (y, xHxL) ∩Rn−1(y)]

The location bits are repeated if and only if the following condition holds:

(∃xHRn−1(xHxL)) ∩ (∃yxH [T (y, xHxL) ∩Rn−1(y)]) 	= ∅

This is clearly a polynomial computation (satisfiability and existential quantifica-
tion for DNF is trivial, and it can be shown [37] that ∃yxH [T (y, xHxL)∩Rn−1(y)]
is bounded above by the size of T (y, xHxL), as is Rn−1(xHxL)). Of course, the
size of T (y, xHxL) may be exponential in the size of the network.

The isomorphism of the approach of [7] to the finite-state-machine verification
method of [38] is striking: the same representation is used for the reachable
state set, and the same algorithm is used for the iteration. [7] reports good
experimental results on real networks; in contrast, researchers in verification
have long since abandoned symbolic simulation of finite-state machines using
DNF to represent state sets, because the size of the state sets explodes rapidly.
The success of [7] suggests that the FSMs derived from networks are quite well-
behaved under ternary symbolic simulation using DNF. A variety of theoretical
and empirical observations support this view. In particular:

– FSMs derived from networks are, in practice, shallow. In [11], it was
observed that a primary goal in network design is that packets traverse the
network in as few hops as possible, and in particular do not traverse the
same device twice. Bugs can occur – that is why a primary verification task
is detecting forwarding loops – but there are a variety of safeguards built in
to ensure this property. Chief among them is the Time-To-Live field in the
packet header, which enforces a maximum hop count for a packet.

– The network transition function is small compared to transition
functions for computational FSMs. Computational FSMs are typically
expressed as the tensor product of component FSMs: because of the com-
binatorial properties of the tensor product, the resulting FSM transition
function grows larger very rapidly. However, the network transition function
in DNF is the disjunction of the transition functions of the component de-
vices; disjunctions of sum of products forms grow the like the sum of the
sizes of the component functions.

– The network transition functions rely on relatively few header bits.
In principle, network devices may switch a packet on a large subset of the
header bits. The Open Flow 1.1 specification identifies 15 separate fields as
possibilities for switching. In practice, rules use a small subset of the header
bits, for technological reasons. There is a high premium on making routing
decisions using the “fast path” of network devices, which uses specialized
hardware resources for matching. These resources generally offer only exact
matches on specific field values, or matching on prefixes of field values, or
single matches on hash functions. Ternary Content-Addressable Memories
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(TCAMs) offer general matching, but these are expensive; so, typically, small
TCAMs are used to buttress large, cheap, exact-match memories, which work
off a few common fields: layer-2 and layer-3 addresses, source and destination
port number, VLAN, protocol, type of service. Rule designers know this, and
so they tend to craft rules which match on specific, fully-specified field values
and prefixes of fields. It can be shown [37] that functions of this form grow
slowly under various compositions, which offers a heuristic argument for the
observed slow growth of network transition functions and reachable states.

– The network transition relation is close to the network transition
function in size. [37] showed that the depth of an FSM was bounded
above by the DNF size of its transition relation, as were the DNF sizes of its
reachable states function R∗. The characteristic function of the transition
relation of an FSM is given by T (x, y) = 1 iff y = F (x), where F (x) is the
transition function. Usually, the transition relation is very large compared to
the transition function, since equality across input and output fields results
in a long list of enumerated implicants. However, if fields are either absent or
fully specified – in other words, if implicants are all minterms over a suitably
chosen subspace – then the transition relation is not much larger than the
transition function, and the bounds given by [37] become relevant. That
this property holds is suggested by the technological bias to minterm-heavy
rulesets discussed above.

The methods of both [19] and [8,9] are isomorphic in formulation to the method
of [7]; the only difference is the structures used to represent the state sets, the
transition relations, and the verification obligations. [7] used a DNF representa-
tion; [8,9] used Binary Decision Diagrams; [19] relied on the internal structures
of NuSMV. All three methods showed experimental success. In fact, each clas-
sic technique from the formal verification literature performed better on these
examples than in verification of general hardware or software systems. We con-
jecture that this is due to the rulesets that network administrators write; as [37]
observed, these rulesets have properties that lead to small BDDs and DNFs.

In sum, though [7] [19] [8,9] model the network verification problem as P-
Space complete FSM verification problems, as the network state is fixed, in
practice it is an NP-complete problem, with constraints that force the instances
to be particularly easy to solve. In view of these, the superior results of weak
techniques in this domain are explicable, though it is possible/likely that the use
of stronger techniques would yield better results.

4 Boolean Satisfiability Based Approaches

Every form of verification discussed above expresses network properties as logic
formulae, and uses the standard techniques of formal verification to solve them.
One fundamental property of switching networks is bidirectionality: if there is
a connection between port i and port j on a network device, data flows both
from i to j and j to i. Dealing with cyclic graphs is therefore a core issue in
network verification. In the methods of Section 3, this was done by modeling
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packet traversal of networks as the evolution of a finite state machine: transit of
the packet from place to place (potentially with concomitant rewrite of header
bits) was modeled as a change in state of the FSM. The negative aspect of this
approach is that FSM verification is a P-space complete problem.

When a finite state machine is known to be loop-free (evolution of the machine
results in a fixed point of the state in a bounded number of iterations), then the
FSM is isomorphic to a combinational logic network, polynomially related to the
original FSM. Verifying combinational logic networks is far easier than verify-
ing FSMs: combinational logic verification problems all reduce to satisfiability
problems which are NP-complete.

The technique which transforms a cyclic into an acyclic combinational network
is loop unrolling, which in the case of a network is termed unrolling in time [11].
This technique, used in [11][10], assumes that verification issues concern the
transit of a single packet [11] (this was also the fundamental implicit assumption
underlying the various formulations in Section 3). In it, each network device at
time t forwards a packet to a neighbor device at time t + 1. Here, “time” is in
fact hop count, instead of real time. The resulting graph is acyclic. The transfer
functions at each device are precisely the transfer functions given in the finite
state machine formulations; however, in this technique, rather than modifying
the state vector they simply are connected to the appropriate successor nodes
in the next time slot. [11] makes the unrolling in time explicit; [10] implicitly
does this by formulating verification properties as a two-dimensional matrix of
functions, where the columns are logic functions at the switches, the rows are
times or levels, and all connections go from level i to i+ 1.

Mai’s system, Anteater, has some similarities with Xie’s static reachability
analysis. Both [10] and [11] argue that the fundamental verification problem
in networking is reachability; all other problems can be phrased as minor vari-
ants of reachability. Indeed, the principal difference is that while [6] represented
properties as explicit sets of packets, [10][11] represent the set as characteristic
functions. Verification of reachability, forwarding loop and packet destination
control is isomorphic, once the appropriate translation is made between sets of
packets and characteristic functions. [11] is essentially simply a thorough analy-
sis of a method identical to [10], and heuristic arguments which suggest that the
resulting satisfiability instances will be easy to solve. [12] provides additional
detail including techniques for compact representation that minimize the un-
rolling needed and detailed property specification that permits for a rich set of
properties. The methods of [10][11][12] are simply combinational versions of the
stateful methods of Section 3.

In order to represent the transfer function of the network as a whole, the
network function at each switch is realized as a logic network. There are two
fundamental actions: transport of the input from port i to port j, and deter-
mining the values of the header bits on port j. The former is computed from
the propagation rules of the switch; simultaneously, the output bits on port j as
determined by the input bits on port i are computed. The propagation functions
are then used to select the appropriate values of the input port.



12 S. Zhang, S. Malik, and R. McGeer

4.1 Property Specification and Verification

Reachability. Reachability of switch s from a in t + 1 hops is determined by
dynamic programming in the obvious way as the conjunction of the reachability
of each neighbor u of s from a in t hops with the propagation function from u

to s, and the disjunction of these functions over all neighbors. Endpoints b are
simply terminal cases of this function. Formally, if P (a, u, t) is the propagation
function indicating that u is reachable from a in t hops, and p(u, s) is the switch
transfer function indicating that s is reachable from u, we have

P (a, s, t+ 1) =
∨
u

P (a, u, t) ∧ p(u, s)

Forwarding Loop. Two sorts of forwarding loops are of interest. In one re-
strictive case, a packet cannot traverse a switch twice at different times. This is
encapsulated as P (s, s, t) ≡ 0 for each t, s. The second case incorporates packet
header information: one cannot traverse the same switch with the same values.
This adds additional constraints on the packet header values.

Packet Destination Control. Packet destination control is written simply as a
function of the reachability propagation functions, e.g.packet blacklisting checks
that a packet cannot exit the network, i.e. it must be dropped by the network.

Slice Isolation. Slice isolation is worth a separate discussion, because it is time-
invariant and does not rely on network unrolling. At each switch, the propagation
functions written by each user must be disjoint; since this is time-invariant, it is
easily checked for each switch in isolation.

4.2 Discussion

Much of the discussion of finite-state machine based approaches apply here as
well. Fundamentally, FSM based approaches iteratively construct a logic function
by composition, and test the resulting logic function for satisfiability; different
verification obligations lead to different functions. When an FSM is isomorphic
to a combinational logic function, as the global transition functions on switching
networks generally are, the FSM-based approaches essentially build up the same
logic network as would be found directly by calculation. As a result, in practice
the FSM and combinational logic based approaches will wind up doing the same
calculation over mathematically-equivalent objects; all that differs is the data
structures used to represent these objects and the calculation techniques.

A thorough analysis and discussion of this single underlying object can be
found in [11]. The analysis of the underlying functions in the Boolean space
strongly suggested that the resulting underlying functions are amenable to the
standard techniques of logic verfication, specifically ternary symbolic simulation,
model checking, and propositional logic verification using SAT.

The approach in [11] dispenses with much of the complexity of other ap-
proaches, which maintain additional structures and information for various cal-
culations. For example, [10] maintains a switch history list for each packet, and
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uses this to check for forwarding loops. This is something which is calculated
directly by the pure-functional approach. There may be advantages in either
practical computational efficiency or in computing side propositions in the con-
struction and maintenance of side data structures: for example, keeping track of
the actual path traversed by a packet. This can be done by the pure-functional
approach, but it is awkward.

This pure-functional approach is under development and test; if succesful and
practical, it opens up a rich new domain for future directions in verification and
switching research,

5 Conclusions and Future Directions

This paper makes a case that FSM and SAT based techniques can be successfully
deployed for the verification of static snapshots of computer switching networks.
The techniques that we have covered have been shown to be useful for practical
sized networks. Specifically, the HSA method has been deployed for the verifica-
tion of the Stanford backbone network [7]. The success of the FSM method is,
in part, due to the small size of the packet state and the small depth of its state
space. It is unclear if state instrumentation to encode more complex properties
will retain these favorable characteristics. Increasing the number of state-bits
will push the capacity limits of both BDD and SAT based model checkers. With
the SAT-based propositional logic verification approach, as long as the properties
can be expressed as propositional logic formulas, the size of the property formula
is relatively small compared to the network state formula. Thus, its scalability
is less dependent on the type of property being checked.

These initial results are based on modest sized systems. However, overall, both
FSM and SAT based approaches will need to be tested for larger scale systems,
e.g. entire datacenters or large scale enterprise networks. This will likely need
development of new ideas in their solutions, or at the least adaptation of scaling
techniques used in other domains. For example, large datacenters are likely to
have symmetry in their structure. This may enable the use of parametric model
checking techniques [39], or symmetry reduction in model-checking [40] and SAT-
based techniques [41]. Their application will open up new challenges.

A further, more ambitious, goal is to use the verification techniques as a core
for network synthesis. Logic synthesis techniques have been used successfully for
synthesis of the rules for a single switch [42]. The basic technique for checking
the equivalence of two firewalls has been used to formulate the problem of the
synthesis of optimal firewalls [12]. Synthesis, of course, is of greater complexity
than verification, and the optimal firewall synthesis problem is formulated as a
Quantifed Boolean Formula (QBF) Satisfiability problem. Besides the increased
theoretical complexity of QBF, practical QBF solvers have only shown limited
success. Thus, the practical success of such synthesis formulations is not clear.
However, high-quality synthesis can have tremendous benefits, both in improving
network performance, as well as reducing design complexity.

Finally, this paper has focused on stateless switching networks. While this fo-
cus is well justified, including the network state transitions, for example through
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the specification of an OpenFlow controller that sets the switch rules, will allow
for full system verification. This will involve interesting modeling of the allow-
able network state transitions. Critical to this is careful choice of models for the
specification of OpenFlow controllers. Many current controller implementation
methods (e.g. Nox[17], Floodlight[43]) are Turing-complete: while these models
offer computational power, verification certificates that can be offered are very
weak. Computational power and verifiability are competing qualities. As a re-
sult, in any field of computation, one wants the weakest computational model
that will accomplish the task. Some controller specification methods are written
over weak computational models (e.g., [30]); others such as [44] offer some possi-
bility of strong verification, by restricting the domain of discourse of potentially
powerful computational elements.

In conclusion, this paper highlights an important emerging verification do-
main that can benefit from the advances in formal verification, discusses initial
successes of both FSM and SAT based approaches and highlights important
areas of work for extending the impact of formal verification in this domain.
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1 Introduction

The modeling and analysis of probabilistic dynamical systems is becoming a central
topic in the formal methods community. Usually, Markov chains of various kinds serve
as the core mathematical formalism in these studies. However, in many of these set-
tings, the probabilistic graphical model called dynamic Bayesian networks (DBNs) [4]
can be a more appropriate model to work with. This is so since a DBN is often a factored
and succinct representation of an underlying Markov chain. Our goal here is to describe
DBNs from this standpoint. After introducing the basic formalism, we discuss inferenc-
ing algorithms for DBNs. We then consider a simple probabilistic temporal logic and
the associated model checking problem for DBNs with a finite time horizon. Finally,
we describe how DBNs can be used to study the behavior of biochemical networks.

2 Dynamic Bayesian Networks

There are many variants of DBNs with differing modeling capabilities. We shall begin
with the simplest version in order to highlight the main features of a DBN.

A DBN D has an associated set of system variables X = {X1, X2, . . . , Xn} each
taking values from a finite domain V . It also has a discrete time domain T = {0, 1, . . .}
associated with it. Often T will be a finite set. The structure of D consists of an acyclic
directed graph GD = (N,E) with N = X × T . Thus there will be one node of the
form Xt

i for each t ∈ T and each i ∈ {1, 2, . . . , n}. The node Xt
i is to be viewed

as a random variable that records the value assumed by the variable Xi at time t. The
edge relation is derived by fixing the parenthood relation PA : X → 2X over the
system variables. Intuitively, PA(Xi) is the set of system variables whose values at
time t -probabilistically- influence the value assumed by Xi at time t+ 1. This crucial
structural information is to be obtained from the application at hand and will often be
readily available.

The map PA will in turn induce the map Pa : N → 2N given by: Pa(Xt
i ) = 0 if

t = 0. For t > 0, Xt′
j ∈ Pa(Xt

i ) iff t′ = t − 1 and Xj ∈ PA(Xi). The edge relation

E is then given by: (Xt′
j , X

t
i ) ∈ E iffXt′

j ∈ Pa(Xt
i ).

The dynamics of D is specified locally by assigning a conditional probability table
(CPT) Ct

i to each node Xt
i . Suppose Pa(Xt

i ) = {Xt−1
j1
, Xt−1

j2
, . . . , Xt−1

jm
}. Then an
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entry in Ct
i will be of the form: Ct

i (xi | xj1 , xj2 , xjm) = p. It says if the system
is in a state at t − 1 in which Xjl = xjl for 1 ≤ l ≤ m, then the probability of
Xi = xi being the case at t is p. As might be expected, it is required that

∑
xi∈V C

t
i (xi |

xj1 , xj2 , xjm) = 1 for each (xj1 , xj2 , . . . , xjm) ∈ V m.
For the simple version of a DBN that we are considering, the CPTs of a system

variable are assumed to be time invariant. In other words, for each i and each t, t′ ∈ T
we will have Ct

i (xi | xj1 , xj2 , xjm) = Ct′
i (xi | xj1 , xj2 , xjm). Consequently one can

specify both the structure and the local dynamics in terms of two adjacent slices. This
so called “2-Time slice Bayesian network” (“2-TBN”) representation of DBNs is quite
standard [4]. An example of such a DBN but which have “unrolled” for illustration is
shown in Fig.1.
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Fig. 1. Example of a DBN

Suppose T = N, the set of non-negative integers. Then the global dynamics of D
can be described by a Markov chain. To bring this out, we first define î = {j | Xj ∈
PA(Xi)} to capture PA in terms of the corresponding indices. We let sI will denote
a vector of values over the index set I ⊆ {1, 2, . . . , n}. It will be viewed as a map
sI : I → V . We will denote sI(i) (with i ∈ I) as sI,i or just si if I is clear from the
context. If I is the full index set {1, 2, . . . , n}, we will simply write s.

The Markov chainMD induced by D can now be defined via:
MD : V n × V n → [0, 1] where for each s, s′ ∈ V n we haveMD(s, s′) =

∏
pi where

pi = Ci(s′i | sî) for each i. It is easy to check thatMD is indeed a Markov chain.
We note that MD has potentially Kn states and K2n transitions where K = |V |.

In contrast, the size of D is essentially determined by the CPTs and their description
will be at most of size n ·Kd where d = max{|PA(Xi)|}1≤i≤n. Often d will be much
smaller than n. In this sense the DBN is a succinct and factored representation of a large
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underlying Markov chain. Equally important, in many applications the transition prob-
abilities of the chain may be obscure and inaccessible while the parenthood relationship
between the variables as well as the CPT entries are easily identifiable.

In case T = {0, 1, . . . , T } is a finite set, the global dynamics of D can still be be
specified as a Markov chain MD . Its set of states will be V n × T and its transition
relation given by:
(i)MD((s, t), (s′, t′)) = 0 if t′ 	= t+1 or t = t′ = T and s 	= s′ (ii)MD((s, T ), (s, T )) =
1 for every s ∈ V n. (iii)MD((s, t), (s′, t + 1)) =

∏
pi if t < T with pi = Ci(s′i | ŝi)

for each i.
Thus every state of the form (s, t) with t < T will be a transient state while every

state of the form (s, T ) will be an absorbing state.
There many variants of DBNs. Firstly, there could be dependencies between nodes

belonging to the same time slice as shown in Fig 2(a). Secondly there could be depen-
dencies across non-adjacent time-slices as shown in Fig 2(b). Some of the variables may
be continuously valued. Yet another variation is where the CPTs for a system variable
are time variant. In this case one must explicitly specify the CPT for each node instead
of using a 2-TBN presentation. Last but not least, many of the state variable may be un-
observable. The state of the system at any time point will be recorded as the values of the
observable nodes. Apart from the CPTs specifying the local dynamics over the system
variables, there will also be a probabilistic description of how the value of an observable
variable is determined at a time point in terms of the values of its parent unobservable
nodes. In fact it is this variant of a DBN that is typically used in AI applications [4]. We
will however avoid this complication here. In what follows we will assume our DBNs
to be as described above except that we will allow the CPTs corresponding each system
variable to be time variant while the time domain is assumed to be finite.
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Fig. 2. Variants of DBNs

3 Probabilistic Inferencing Methods

The probability distributionP (Xt
1, X

t
2, . . . , X

t
n) describes the possible states of the sys-

tem at time t. In other words, P (Xt = x) is the probability that the system will reach
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the state x at t. Starting from P (X0) at time 0, given by P (X0 = x) =
∏

i C
0
i (xi),

one would like to compute P (Xt
1, . . . , X

t
n) for a given t. As before, we will use î =

{j | Xj ∈ PA(Xi)} to capture the set of indices of the parents ofXi and Vî will denote
the tuple of values defined by î.

We can use the CPTs to inductively compute this:

P (Xt = x) =
∑
u

P (Xt−1 = u)
(∏

i

Ct
i (xi | uî)

)
(1)

with u ranging over V n.
Since |V | = K , the number of possible states at t is Kn. Hence explicitly comput-

ing and maintaining the probability distributions is feasible only if n is small or if the
underlying graph of the DBN falls apart into many disjoint components. Neither restric-
tion is realistic and hence one needs approximate ways to maintain P (Xt) compactly
and compute it efficiently.

In fact, in most applications what one is interested in is the computation of the
marginal distribution M t

i of variable Xi. We shall view M t
i to be a map M t

i : V →
[0, 1] satisfying

∑
v∈V M

t
i (v) = 1. Intuitively,M t

i (v) is the probability ofXi assuming
the value v at time t. It is given by:M t

i (v) =
∑

x,x(i)=v P(Xt
j = x(j) | 1 ≤ j ≤ n).

Two interesting algorithms have been proposed for computing and maintaining these
marginal probability distributions approximately [5,6]. Such approximate distributions
are usually called belief states and denoted by B, Bt etc. In Boyen-Koller algorithm
(BK, for short) [5], a belief state is maintained compactly as a product of the probability
distributions of independent clusters of variables. This belief state is then propagated
exactly at each step through the CPTs. Then the new belief state is compacted again
into a product of the probability distributions of the clusters. Consequently the exact
propagation step of the algorithm can become infeasible for large clusters. To get around
this, the factored frontier algorithm (FF, for short) maintains a belief state as a product
of the marginal distributions of the individual variables.

FF computes inductively a sequence Bt of marginals as:

– B0
i (v) = C

0
i (v),

– Bt
i(v) =

∑
u∈Vî

[
∏

j∈îB
t−1
j (uj)]C

t
i (v | u).

Both BK and FF algorithm can sometimes incur significant errors due to way they
maintain and propagate the global probability distributions. To handle this the hybrid
factored frontier algorithm (HFF, for short) was proposed in [7]. HFF attempts to re-
duce the error made by FF by maintaining the current belief state as a hybrid entity; for
a small number of global states called spikes, their current probabilities are maintained.
The probability distribution over the remaining states is represented, as in FF, as a prod-
uct of the marginal probability distributions. HFF has been shown [7] to be scalable and
efficient with reduced errors. It may be viewed as a parametrized extension to FF where
σ, the number of spikes to be maintained is the parameter. When σ = 0 we get FF
whereas σ =| V n | corresponds to the exact inferencing algorithm. It turns out that that
additional complexity of HFF (over that of FF) is only quadratic in σ and the accuracy
increases monotonically as σ increases.
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4 Probabilistic Model Checking on the DBNs

DBNs can be subjected to probabilistic model checking [8,9,10]. To illustrate this, we
shall describe a simple probabilistic temporal logic and construct an approximate model
checking procedure based on FF.

In our temporal logic, the atomic propositions will be of the form (i, v)#r with
# ∈ {≤,≥} and r is a rational number in [0, 1]. The proposition (i, v) ≥ r, if asserted
at time point t, says thatM t

i (v) ≥ r; similarly for (i, v) ≤ r.
The formulas of our logic termed PBL (probabilistic bounded LTL) is then given

by: (i) Every atomic proposition is a formula. (ii) If ϕ and ϕ′ are formulas then so
are ∼ ϕ and ϕ ∨ ϕ′. (iii) If ϕ and ϕ′ are formulas then so are O(ϕ) and ϕUϕ′. Thus
probability enters the logic solely at the level of atomic propositions.

The derived propositional connectives such as ∧,⊃,≡ etc. and the temporal connec-
tives F (“sometime from now”) and G (“always from now”) are defined in the usual
way.

We assume we are dealing with a DBN D whose time domain is {0, 1, . . . , T } and
whose CPTs for each system variable can vary over time. The formulas are interpreted
over the sequence of marginal probability distribution vectors σ = s0s1 . . . sT generated
by D. In other words, for 0 ≤ t ≤ T , st = (M t

1,M
t
2, . . . ,M

t
n). Consequently st(i) =

M t
i for 1 ≤ i ≤ n. We also let σ(t) = st for 0 ≤ t ≤ T . We now define the notion of

σ(t) |= ϕ inductively:

– σ(t) |= (i, v) ≥ r iffM t
i (v) ≥ r. Similarly

σ(t) |= (i, v) ≤ r iffM t
i (v) ≤ r.

– The propositional connectives∼ and ∨ are interpreted in the usual way.
– σ(t) |= O(ϕ) iff σ(t+ 1) |= ϕ.
– σ(t) |= ϕUϕ′ iff there exists t ≤ t′ ≤ T such that σ(t′) |= ϕ′ and for every t′′ with
t ≤ t′′ < t′, σ(t′′) |= ϕ.

We say that the DBN D meets the specification ϕ and this is denoted as D |= ϕ iff
σ(0) |= ϕ. The model checking problem is, given D and ϕ, to determine whether or
not D |= ϕ. To solve this problem, we begin by letting SF (ϕ) denote the set of sub-
formulas of ϕ. Since ϕ will remain fixed we will write below SF instead of SF (ϕ).

The main step is to construct a labeling function st which assigns to each formula
ϕ′ ∈ SF a subset of {s0, s1, . . . , sT } denoted st(ϕ′). After the labeling process is com-
plete, we declareD |= ϕ just in case s0 ∈ st(ϕ). Starting with the atomic propositions,
the labeling algorithm goes through members of SF in ascending order in terms of their
structural complexity. Thus ϕ′ will be treated before∼ ϕ′ is treated and both ϕ′ and ϕ′′

will be treated before ϕ′Uϕ′′ is treated and so on.
Let ϕ′ ∈ SF (ϕ). Then:

– If ϕ′ = A -where A is an atomic proposition- then st ∈ st(A) iff σ(t) |= A.
We run the DBN inference algorithm (say, FF) to determine this. In other words,
st ∈ st(A) iff Bt

i(v) ≥ r where A = (i, v) ≥ r and Bt
i is the marginal distribution

of Xt
i computed by the inference algorithm. Similarly st ∈ st(A) iff Bt

i(v) ≤ r in
case A = (i, v) ≤ r.

– If ϕ′ = ∼ ϕ′′ then st ∈ st(ϕ′) iff st 	∈ st(ϕ′′).
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– If ϕ′ = ϕ1 ∨ ϕ2 then st ∈ st(ϕ′) iff st ∈ st(ϕ1) or st ∈ st(ϕ2).
– Suppose ϕ′ = O(ϕ′′). Then sT 	∈ st(ϕ′). Further, for 0 ≤ t < T , st ∈ st(ϕ′) iff

st+1 ∈ st(ϕ′′).
– Suppose ϕ′ = ϕ1U ϕ2. Then we decide whether or not st ∈ st(ϕ′) by starting with
t = T and then treating decreasing values of t. Firstly sT ∈ st(ϕ′) iff sT ∈ st(ϕ2).
Next suppose t < T and we have already decided whether or not st′ ∈ st(ϕ′) for
t < t′ ≤ T . Then st ∈ st(ϕ′) iff st ∈ st(ϕ2) or st ∈ st(ϕ1) and st+1 ∈ st(ϕ′).

ϕ′ = F(ϕ′′) and ϕ′ = G(ϕ′′) can be handled directly. As in the case of U, we start with
t = T and consider decreasing values of t:

– Suppose ϕ′ = F(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For t < T , st ∈ st(ϕ′)
iff st ∈ st(ϕ′′) or st+1 ∈ st(ϕ′).

– Suppose ϕ′ = G(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For t < T , st ∈ st(ϕ′)
iff st ∈ st(ϕ′′) and st+1 ∈ st(ϕ′).

Due to the fact the model checking procedure just needs to treat one model which is a
finite sequence, it is a very simple procedure. Its time complexity is linear in the size of
the formula ϕ.

5 An Application: DBN Approximations of the ODEs Based
Dynamics of Biopathways

Biological pathways are usually described by a network of biochemical reactions. The
dynamics of these reaction networks can be modeled and analyzed as a set of Ordinary
Differential Equations (ODEs); one equation of the form dy

dt = f(y, r) for each molec-
ular species y, with f describing the kinetics of the reactions that produce and consume
y, while y is the set (vector) of molecular species taking part in these reactions and r
are the rate constants associated with these reactions. These ODEs will be nonlinear
due to the kinetic laws governing the reactions and high-dimensional due to the large
number of molecular agents involved in the pathway. Hence closed form solutions will
not be obtainable. Further many of the rate constants appearing in the ODEs will be
unknown. As a result, one must resort to large scale numerical simulations to perform
analysis tasks such as parameter estimation and sensitivity analysis. In addition, only
a limited amount of noisy data of limited precision will be available for carrying out
model calibration (i.e. parameter estimation) and model validation. Guided by these
considerations a method for approximating the ODE dynamics of biological pathways
as a DBN was developed in [11].

The first step in this approximation procedure is to discretize the time domain. For
biopathways, experimental data will be available only for a few time points with the
value measured at the final time point typically signifying the steady state value. Hence
we assume the dynamics is of interest only for discrete time points and, furthermore,
only up to a maximal time point. We denote these time points as {0, 1, . . . , T }. Next we
assume that the values of the variables can be observed with only finite precision and
accordingly partition the range of each variable yi of the ODE into a set of intervals Ii
(Ij). The initial values as well as the parameters of the ODE system are assumed to be
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Fig. 3. (a) The enzyme catalytic reaction network. (b) The ODE model. (c) The DBN
approximation.

distributions (usually uniform) over certain intervals. We then sample the initial states of
the system many times [11] and generate a trajectory by numerical integration for each
sampled initial state. The resulting set of trajectories is then treated as an approximation
of the dynamics of ODE system.

Unknown rate constants are handled as additional variables. We assume that the min-
imum and maximum values of these unknown rate constant variables are known. We
then partition these ranges of values also into a finite numbers of intervals, and fix a
uniform distribution over all the intervals. For each such variable rj we add the equa-
tion drj

dt = 0 to the system of ODEs. This will reflect the fact that once the initial value
of a rate constant has been sampled, this value will not change during the process of
generating a trajectory. Naturally, different trajectories can have different initial values.

A key idea is to compactly store the generated set of trajectories as a DBN. This is
achieved by exploiting the network structure and by simple counting. First we specify
one random variable Yi for each variable yi of the ODE model

For each unknown rate constant rj , we add one random variableRj . The node Y t−1
k

will be in Pa(Y t
i ) iff k = i or yk appears in the equation for yi. Further, the nodeRt−1

j

will be in Pa(Y t
i ) iff rj appears in the equation for yi. On the other hand Rt−1

j will be
the only parent of the node Rt

j .
Suppose Pa(Y t

i ) = {Zt−1
1 , Zt−1

2 , . . . , Zt−1
k }. Then a CPT entry of the form Ct

i (I |
I1, I2, . . . , Ik) = p says that p is the probability of the value of yi falling in the interval
I at time t, given that the value of Zj was in Ij for 1 ≤ j ≤ k. The probability p is
calculated through simple counting. SupposeN is the number of generated trajectories.
We record, for how many of these trajectories, the value of Zj falls in the interval Ij si-
multaneously for each j ∈ {1, 2, . . . , k}. Suppose this number is J . We then determine
for how many of these J trajectories, the value of Yi falls in the interval I at time t. If
this number is J ′ then p is set to be J′

J .
If rj is an unknown rate constant, in the CPT of Rt

j we will have P (Rt
j = I |

Rt−1
j = I ′) = 1 if I = I ′ and P (Rt

j = I | Rt−1
j = I ′) = 0 otherwise. This

is because the sampled initial value of rj does not change during numerical integra-
tion. Suppose rj appears on the right hand side of the equation for yi and Pa(Y t

i ) =
{Zt−1

1 , Zt−1
2 , . . . , Zt−1

� } with Zt−1
� = Rt−1

j . Then for each choice of interval values

for nodes other than Rt−1
j in Pa(Y t

i ) and for each choice of interval value Î for rj
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there will be an entry in the CPT of Y t
i of the form P (yti = I | Zt−1

1 = I1, Z
t−1
2 =

I2, . . . , R
t−1
j = Î) = p. This is so since we will sample for all possible initial interval

values for rj . In this sense the CPTs record the approximated dynamics for all possible
combinations of interval values for the unknown rate constants. The main ideas of this
construction are illustrated in Fig.3. In this example we have assumed that r3 is the only
unknown rate constant.

After building this DBN, we use a Bayesian inference based technique to perform
parameter estimation to complete the construction of the model (the details can be found
in [11]). This will result in a calibrated DBN in which each unknown rate constant will
have a specific interval value assigned to it. The one time cost of constructing the DBN
can be easily recovered through the substantial gains obtained in doing parameter es-
timation and sensitivity analysis [11]. This method can cope with large biochemical
networks with many unknown parameters. It has been used to uncover new biologi-
cal facts about the complement system [12] where the starting point was a ODE based
model with 71 unknown parameters. We have shown in [8] how a GPU based imple-
mentation of the approximation procedure can considerably extend the scalability of
this approach. We have also shown how interesting properties of the dynamics of bio-
logical systems can be verified via probabilistic model checking along the lines sketched
in the previous section (using FF).

6 Conclusion

Dynamic Bayesian networks are a formalism for representing complex stochastic dy-
namical systems in a compact and natural way. Their exact analysis is difficult. However
efficient approximate inferencing algorithms are available using which one can also
construct -approximate- probabilistic model checking procedures. We feel that they can
play an important role in the modeling and analysis of biochemical networks. Our own
work in which we have used DBNs to approximate the ODEs based dynamics of sig-
naling paths supports this. A new avenue to explore in this connection will be to extract
DBN models of biochemical networks from descriptions based on rule based languages
such as kappa [13] and Bionetgen [14] as well as the chemical master equation [15].
In these formalism the underlying dynamic model is a Continuous Time Markov chain
(CTMC). However the structure and locality of the interactions in the biochemical net-
work under study should readily lend itself to a semantics based on DBNs. Finally,
verification methods for DBNs based on Bayesian statistical model checking [16] are
worth exploring further.
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a−→ ϕ′

if the Hoare triple {ϕ}a{ϕ′} is valid. The resulting interpolant automa-
ton recognizes a language over the alphabet of statements. The language
is a set of correct traces, i.e., traces that obey the given correctness speci-
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Abstract. Traditional automata accept or reject their input, and are therefore
Boolean. Lattice automata generalize the traditional setting and map words to
values taken from a lattice. In particular, in a fully-ordered lattice, the elements
are 0, 1, . . . , n − 1, ordered by the standard ≤ order. Lattice automata, and in
particular lattice automata defined with respect to fully-ordered lattices, have in-
teresting theoretical properties as well as applications in formal methods. Mini-
mal deterministic automata capture the combinatorial nature and complexity of a
formal language. Deterministic automata have many applications in practice.

In [13], we studied minimization of deterministic lattice automata. We proved
that the problem is in general NP-complete, yet can be solved in polynomial time
in the case the lattices are fully-ordered. The multi-valued setting makes it possi-
ble to combine reasoning about lattice automata with approximation. An approx-
imating automaton may map a word to a range of values that are close enough,
under some pre-defined distance metric, to its exact value. We study the problem
of finding minimal approximating deterministic lattice automata defined with re-
spect to fully-ordered lattices. We consider approximation by absolute distance,
where an exact value x can be mapped to values in the range [x − t, x + t], for
an approximation factor t, as well as approximation by separation, where values
are mapped into t classes. We prove that in both cases the problem is in general
NP-complete, but point to special cases that can be solved in polynomial time.

1 Introduction

Novel applications of automata theory are based on weighted automata, which map an
input word to a value from a semi-ring over a large domain [22,8]. The semi-ring used in
the automata is often a finite distributive lattice. A lattice 〈A,≤〉 is a partially ordered
set in which every two elements a, b ∈ A have a least upper bound (a join b) and a
greatest lower bound (a meet b). In particular, in a fully-ordered lattice (a.k.a. linearly-
or totally-ordered lattice: one in which a ≤ b or b ≤ a for all elements a and b in the
lattice), join and meet correspond to max and min, respectively.

For example (see Figure 1), in the abstraction application, researchers use the lattice
L3 of three fully-ordered values [3,23], as well as its generalization to Ln [7]. In query
checking [6], the lattice elements are sets of formulas, ordered by the inclusion order,
as in L2{a,b,c} [4]. When reasoning about inconsistent viewpoints, each viewpoint is
Boolean, and their composition gives rise to products of the Boolean lattice, as in L2,2
[9,14]. In addition, when specifying prioritized properties of systems, one uses lattices

� Supported in part by the Israeli Ministry of Science and Technology.
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Fig. 1. Some lattices

in order to specify the priorities [1]. Finally, LTL has been extended to latticed LTL
(LLTL, for short), where the atomic propositions can take lattice values. The semantics
of LLTL is defined with respect to multi-valued Kripke structures and it can specify
their quantitative properties [7,16].

In a nondeterministic lattice automaton on finite words (LNFA, for short) [16], each
transition is associated with a transition value, which is a lattice element (intuitively
indicating the truth of the statement “the transition exists”), and each state is associated
with an initial value and an acceptance value, indicating the truth of the statements “the
state is initial/accepting”, respectively. Each run r of an LNFA A has a value, which
is the meet of the values of all the components of r: the initial value of the first state,
the transition value of all the transitions taken along r, and the acceptance value of the
last state. The value of a word w is then the join of the values of all the runs of A on
w. Accordingly, an LNFA A over an alphabet Σ and lattice L induces an L-language
L(A) : Σ∗ → L. Note that traditional finite automata (NFAs) can be viewed as a
special case of LNFAs over the lattice L2. In a deterministic lattice automaton on finite
words (LDFA, for short), at most one state has an initial value that is not ⊥ (the least
lattice element), and for every state q and letter σ, at most one state q′ is such that the
value of the transition from q on σ to q′ is not⊥. Thus, an LDFAA has at most one run
whose value is not ⊥ on each input word. The value of this run is the value of the word
in the language of A.

For example, the LDFA A in Figure 2 is over the alphabet Σ = {a, b, c,#} and
the lattice L = 〈{0, 1, 2, 3},≤〉. All states have acceptance value 3, and this is also the
initial value of the single initial state. The L-language of A is L : Σ∗ → L such that
L(ε) = 3, L(a) = 3, L(a ·#) = 1, L(b) = 1, L(b ·#) = 1, L(c) = 3, L(c ·#) = 2,
and L(w) = 0 for all other w ∈ Σ∗.
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c, 3

a, 3

c, 3

b, 1

b, 1

A1 :A :

3

3

3
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Fig. 2. A fully-ordered LDFA with two different minimal LDFAs
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Minimal deterministic automata capture the combinatorial nature and complexity
of formal languages. Beyond this theoretical importance, deterministic automata have
many applications in practice. They are used in run-time monitoring, pattern recogni-
tion, and modeling systems. Thus, the minimization problem for deterministic automata
is of great interest, both theoretically and in practice. For traditional Boolean automata
on finite words, a minimization algorithm, based on the Myhill-Nerode right congru-
ence on the set of words, generates in polynomial time a canonical minimal determin-
istic automaton [19,20]. A polynomial algorithm based on a right congruence is known
also for deterministic weighted automata over the tropical semi-ring [18].

In [13], we studied the minimization problem for LDFAs. We showed that it is im-
possible to define a right congruence in the context of latticed languages, and that no
canonical minimal LDFA exists. The difficulty is demonstrated in the LDFA A in Fig-
ure 2. It is not hard to see that both A1 and A2, which are not isomorphic, are minimal
LDFAs equivalent to A. The lack of a right congruence makes the minimization prob-
lem much more complicated than in the Boolean setting, and in fact also than in the
setting of the tropical semi-ring. It is shown in [13] that the minimization problem for
LDFAs is NP-complete in general. As good news, it is also shown in [13] that even
though it is impossible to define a right congruence even when the LDFA is defined
with respect to a fully-ordered lattice (indeed, the LDFA in Figure 2 is defined with
respect to L4), it is possible to minimize such LDFAs in polynomial time.

The multi-valued setting makes it possible to combine reasoning about weighted and
lattice automata with approximation. In this context, an approximating LDFA may map
a word to a range of values that are close enough, under some pre-defined distance
metric, to its exact value.

Approximations are widely used in computer science in cases where finding an ex-
act solution is impossible or too complex. In the context of automata, approximation
is used already in the Boolean setting: DFAs are used in order to approximate regular
[24] and non-regular [10] languages. Applications of approximating DFAs include net-
work security pattern matching, where one-sided errors are acceptable, and abstraction-
refinement methods in formal methods, where DFAs that over- and under-approximate
the concrete language of the system or the specification are used [17]. In the weighted
setting, researchers used approximating automata in order to cope with the fact that
not all weighted automata can be determinized [2,5]. For example, [2] introduces t-
determinization: given a weighted automaton A and an approximation factor t > 1,
constructs a deterministic weighted automaton A′ such that for all words w ∈ Σ∗,
it holds that L(A)(w) ≤ L(A′)(w) ≤ t · L(A)(w). Approximation not only makes
determinization possible but also leads to automata that are significantly smaller [2,5].

In this paper we study the approximation of lattice automata and the problem of
finding minimal approximating LDFAs. We focus on LDFAs defined with respect to
fully-ordered lattices. While it is possible to define distance metrics also in the setting
of partially-ordered lattices, for example by using lattice chains, we find the notion of
approximation cleaner in the setting of fully-ordered lattices. Also, since the minimiza-
tion problem for LDFAs over partially ordered lattices is NP-hard already without ap-
proximations, we cannot expect the problem of finding a minimal approximating LDFA
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to be easier. Finally, as we discuss below, applications of approximated minimization
exist already for fully-ordered lattices.

In fully-ordered lattices, there is a natural way to define the distance between two
lattice elements: finite fully-ordered lattices are all isomorphic to Ln, for some n ≥ 1,
and we define the distance between two elements a and b in the lattice to be |a−b|.1 We
refer to approximations with respect to this metric as distance approximations: Consider
an integer n ≥ 1, an approximation factor 0 ≤ t ≤ n − 1, and two LDFAs A and A′

over Ln. We say that A′ t-approximates A iff for all words w ∈ Σ∗ we have that
|L(A′)(w) − L(A)(w)| ≤ t. That is, A′ t-approximates A if it maps every word w
to a value whose distance from L(A)(w) is at most t. We first show that the problem
of deciding whether A′ t-approximates A is NLOGSPACE-complete. We then turn to
the problem of finding a minimal LDFA that t-approximates a given LDFA. We study
the corresponding decision problem, and then conclude about the search problem. It
follows from [13] that the special case of finding a minimal 0-approximating LDFA can
be solved in polynomial time. We show that when 1 ≤ t ≤ �n2 �− 1, the problem is NP-
complete, and in fact is even inapproximable. On the other hand, for �n2 � ≤ t ≤ n− 1,
the problem can be solved in constant time (simply since a t-approximating LDFA of
size one always exists).

A different natural way to define approximations in a fully-ordered lattice involves
the introduction of separators. Formally, a t-separation of Ln, for 1 ≤ t ≤ n, is a
partition P = {P0,P1, . . . ,Pt−1} of {0, 1, . . . , n − 1} such that all the sets in the
partition are not empty and contain only successive elements. An approximation by
t-separation maps a set of successive values to a single value. Formally, consider an
integer n ≥ 1, an approxomation factor 1 ≤ t ≤ n, an LDFA A over Ln and an LDFA
A′ overLt. We say thatA′ t-separatesA iff there is a t-separationP ofLn such that for
all words w ∈ Σ∗ we have that L(A′)(w) = i iff L(A)(w) ∈ Pi. For example, when
n = 10 and P = {{0}, {1}, {2, . . . , 9}}, the LDFA A′ may agree with A on all words
that are mapped to 0 and 1, and map to 2 all words that are mapped byA to {2, . . . , 9}.
We first show that the problem of deciding whether A′ t-separates A according to a
given t-separation is NLOGSPACE-complete. We then turn to the problem of finding
a minimal LDFA that t-separates a given LDFA. We show that the problem can be
solved in polynomial time for a fixed t, and is NP-complete when t is a parameter to
the problem.

Beyond the theoretical motivation for studying minimization of approximating LD-
FAs with respect to the two distance metrics, both metrics are useful in practice. Recall
the use of fully-ordered lattices in the specification of prioritized properties of systems
[1]. Consider an LDFA over Ln that corresponds to the specification. Assume that the
(Boolean) language of all words that are assigned some value i has a large Myhill-
Nerod index, thus a DFA for it, and hence also the LDFA, is big. It is often possible
to approximate the assignment of priorities so that “problematic” values are no longer
problematic and an LDFA for the specification is much smaller. Using the distance met-
ric, the approximation may map a value x to values in [x − t, x + t]. Such a metric is

1 Another popular isomorphic lattice uses the range 0, . . . , 1, with the elements being
0, 1

n
, 2
n
, . . .. We find it simpler to work with Ln. Clearly, our results can be easily adjusted

to all fully-order lattices.
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useful when we tolerate a change of order between the prioritized properties but want
to limit the range in which priorities are changed. Using separators, the approximation
is not restricted to a certain range, but bounds the number of classes to which succes-
sive priorities can be mapped. Such a metric is useful when we care about the order of
the prioritized properties and do not care about their values. As another example, recall
the application of the three-value lattice L3 in abstraction. A 2-separation of L3 corre-
sponds to either an under-approximation of the concrete system, in case the “unknown”
value is grouped with “false”, or to an over-approximation, in case “unknown” value
is grouped with “true”. Finally, both types of approximation may be useful when using
LDFAs for the specification of quantitative properties.

Due to lack of space, some proofs are omitted in this version and can be found in the
full version, in the authors’ home pages.

2 Fully-Ordered Lattices and Lattice Automata

Let 〈A,≤〉 be a partially ordered set, and let P be a subset ofA. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A,≤〉 is a lattice if for every two elements a, b ∈ A both
the least upper bound and the greatest lower bound of {a, b} exist, in which case they
are denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. For an integer n ≥ 1,
let [n] = {0, 1, . . . , n− 1}. The fully-ordered lattice (a.k.a. linearly- or totally-ordered
lattice) with n elements is Ln = 〈[n],≤〉, where ≤ is the usual “less than” relation,
thus 0 ≤ 1 ≤ · · · ≤ n− 1. For a set P ⊆ [n] of elements, the least upper bound of P ,
namely the join of the elements in P , is maxP . The greatest lower bound of P , namely
the meet of the elements in P , is minP . In particular, the meet and join of [n] are 0 and
n− 1, also referred to as ⊥ and �, respectively.

Consider a lattice L = 〈A,≤〉. For a set X of elements, an L-set overX is a function
S : X → A assigning to each element of X a value in A. It is convenient to think about
S(x) as the truth value of the statement “x is in S”. We say that an L-set S is Boolean
if S(x) ∈ {�,⊥} for all x ∈ X . In particular, all L2-sets are Boolean.

Consider a lattice L = 〈A,≤〉 and an alphabet Σ. An L-language is an L-set over
Σ∗. Thus, an L-language L : Σ∗ → A assigns a value in A to each word overΣ.

A deterministic lattice automaton on finite words (LDFA) isA = 〈L, Σ,Q,Q0, δ, F 〉,
where L is a lattice, Σ is an alphabet, Q is a finite set of states, Q0 ∈ LQ is an L-set
of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation, and F ∈ LQ is an L-set of
accepting states. The fact that A is deterministic is reflected in two conditions on Q0

and δ. First, there is exactly one state q ∈ Q, called the initial state of A, such that
Q0(q) 	= ⊥. In addition, for every state q ∈ Q and letter σ ∈ Σ, there is at most
one state q′ ∈ Q, called the σ-destination of q, such that δ(q, σ, q′) 	= ⊥. The run of an
LDFA on a wordw = σ1 ·σ2 · · ·σl is a sequence r = q0, . . . , ql of l+1 states, where q0
is the initial state ofA, and for all 1 ≤ i ≤ l it holds that qi is the σi-destination of qi−1.
The value of w is val(w) = Q0(q0)∧

∧l
i=1 δ(qi−1, σi, qi)∧F (ql). The L-language of

A, denoted L(A), maps each word w to the value of its run in A. Note that since A is
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deterministic, it has at most one run on w whose value is not ⊥. In the special case of
a lattice automaton over Ln, the value of the run is simply the minimal value appearing
in the run. An LDFA is simple if Q0 and δ are Boolean. An example of an LDFA over
a fully-ordered lattice can be found in Figure 2.

Note that traditional deterministic automata over finite words (DFA, for short) cor-
respond to LDFA over the lattice L2. Indeed, over L2, a word is mapped by L(A) to
the value � iff the run on it uses only transitions with value � and its final state has
acceptance value�.

Analyzing the size of A, one can refer to |L|, |Q|, and |δ|. Since the emphasize in
this paper is on the size of the state space, we use |A| to refer to the size of its state
space.

3 Approximation by Distances

In this section we study the problem of approximating LDFAs over fully-ordered lat-
tices using the natural distance metric, in which the distance between two elements a
and b is |a− b|. We first formally define approximation with respect to this metric.

Definition 1. Consider an integer n ≥ 1, an approximation factor 0 ≤ t ≤ n − 1,
and two LDFAs A and A′ over Ln. We say that A′ t-approximates A iff for all words
w ∈ Σ∗ we have that |L(A′)(w) − L(A)(w)| ≤ t.

Example 1. Figure 3 depicts an LDFA A over the lattice L7 and the alphabet Σ =
{a1, . . . , a6,#}. It also depicts an LDFA A′ that 1-approximates A. One can see that
A′ agrees with A on the values of the words ε, a1, . . . , a6, a2#, a5#, while the values
of the words a1#, a3#, a4#, a6# differs by 1. All other words are mapped by bothA
and A′ to 0. The approximation enables A′ to merge the upper and lower three states
that are reachable in one transition in A.

Theorem 1. Let n ≥ 1 and t ≥ 0. Given two LDFAs A and A′ over Ln, deciding
whetherA′ t-approximatesA is NLOGSPACE-complete.

Proof. We start with the upper bound and rely on the fact that co-NLOGSPACE =
NLOGSPACE [15]. To decide whetherA′ does not t-approximateA, it is enough to find
a wordw ∈ Σ∗ such that |L(A′)(w)−L(A)(w)| > t. In the full version we show that if
such a word exists, then there also exists a word of size at most n2|A′||A| satisfying this
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6
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Fig. 3. An LDFA with a 1-approximation of it
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condition2. Consequently, one can guess a word of size at most n2|A′||A|, compute its
value on bothA andA′ in logarithmic space, and return thatA′ does not t-approximate
A iff |L(A′)(w)−L(A)(w)| > t. Finally, the lower bound is by an easy reduction from
the reachability problem in directed graphs. ��

Approximation can lead to a significant reduction in the size of the automata. Formally,
for all t ≥ 1 there is a family of LDFAs for which t-approximation allows for an
exponential reduction in the state space whereas (t − 1)-approximation allows no re-
duction. To see this, note that applying 1-approximation on languages overL2 results in
an LDFA with one state, no matter how complicated the original automaton was. This
trivial example can be naturally extended to all t ≥ 1 by considering lattices over [n]
and Ln-languages that map the accepted and non-accepted words to two lattice values
l and l′, respectively, such that |l − l′| = t.

Motivated by the importance of generating small automata, our goal is to find an
LDFA A′ with a minimal number of states that t-approximates a given LDFA A. We
show that the problem is trivial when t is large enough. For the non-trivial interesting
case where t is small with respect to the lattice, the problem becomes much more com-
plicated, and we prove that it is NP-complete. However, for t = 0, where the problem
coincides with minimization, it gets back to the easy side and can be solved in polyno-
mial time [13].

Consider the corresponding decision problem: APRXLDFA={〈A, n, t, k〉 : A is an
LDFA overLn with a t-approximatingA′ overLn such that |A′| ≤ k}. As we shall see,
the complexity of APRXLDFA depends on the relation between n and t. We therefore
study also the family of problems (n, t)-APRXLDFA, in which n and t are not parame-
ters and rather are fixed. That is, (n, t)-APRXLDFA={〈A, k〉 : A is an LDFA over Ln
with a t-approximatingA′ over Ln such that |A′| ≤ k}.

Theorem 2. Let n ≥ 1. The problem (n, t)-APRXLDFA:

– [13] Can be solved in polynomial time for t = 0.
– Is NP-complete for 1 ≤ t ≤ �n2 � − 1.
– Can be solved in constant time for t ≥ �n2 �.

Proof. We start with the second case. For the upper bound, givenA and k, a witness for
their membership in (n, t)-APRXLDFA is an LDFAA′ as required. Assuming k ≤ |A|
(otherwise, 〈A, k〉 clearly belongs to (n, t)-APRXLDFA), the size of A′ is linear in the
input. By Theorem 1, we can verify that A′ t-approximatesA in polynomial time.

For the lower bound, we show a polynomial-time reduction from the Minimal Au-
tomaton Identification problem (MAI, for short), proved to be NP-complete in [12]. The
MAI problem refers to the minimal DFA whose language agrees with a set of observa-
tions.3 Formally, let Σ be an alphabet of size two. A data is a set D = {(w1, y1), . . . ,
(wn, yn)}, where for all 1 ≤ i ≤ n, we have that wi ∈ Σ∗ and yi ∈ {0, 1}, and
wi 	= wj for all 1 ≤ i 	= j ≤ n. A DFA A agrees with D iff L(A)(wi) = yi for all

2 In fact, one can prove that there exists such a word of size at most |A′||A|, but this is not
required for our purpose.

3 The result in [12] is stated by means of Mealy machines. It can, however, be easily adapted to
DFAs.
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1 ≤ i ≤ n. Then, MAI = {〈D, k〉 : D is data, and there is a DFA A with |A| ≤ k that
agrees with D}.

We now turn to describe the reduction, starting with the case n is even and t = n
2 −1.

Note that for t to be at least 1, it must be that n ≥ 4. Given an input 〈D, k〉 for MAI,
let Σ be the alphabet and let D = {(w1, y1), . . . , (wm, ym)}. We construct an LDFA
A = 〈Ln, Q,Σ, δ,Q0, F 〉 as described below.

– The states Q are defined as follows. Let P be the set of all prefixes of the words
w1, . . . , wm. Each prefix w ∈ P induces a state qw. Note that prefixes that are
common to more than one word contribute one element to P , and therefore induce
one state in Q. In addition, there is a state qsink .

– For all w ∈ P and σ ∈ Σ, if wσ ∈ P , then δ(qw, σ, qwσ) = �; Otherwise,
δ(qw, σ, qsink) = �. In addition, δ(qsink, σ, qsink) = � for all σ ∈ Σ.

– Q0(qε) = �, and Q0(q) = ⊥ for all other states q ∈ Q.
– The acceptance values are defined as follows. Consider first the states{qw1, . . . , qwm}

corresponding to the words appearing in D. For all 1 ≤ i ≤ m, if yi = 1, then
F (qwi) = �; Otherwise, F (qwi) = ⊥. For all other q ∈ Q, we define F (q) = n

2 .

Note thatA is deterministic. Also, since the components ofA are all of size polynomial
in the dataD, the reduction is polynomial.

Example 2. Let n = 4. Figure 4 depicts the LDFA AD corresponding to the data D =
{(aa, 1), (aab, 0), (ab, 0), (bba, 1), (bbb, 0)} over Σ = {a, b}. All transitions described
in the figure have the value�. The states with acceptance value� correspond to words
w ∈ {a, b}∗ such that (w, 1) ∈ D, and symmetrically, the states with acceptance value
⊥ correspond to words w ∈ {a, b}∗ such that (w, 0) ∈ D. The states with acceptance
value of 2 on the left correspond to the strict prefixes of the words in D. Finally, the
rightmost state is qsink , and its acceptance value is also 2.

Intuitively, the goal of A is to keep the information stored in D in a way that would
enable to restore it from an LDFA that t-approximatesA. By mapping to 0 and n−1 and
defining t to be strictly smaller than n

2 , we ensure that the t-approximating LDFAs do
not mix up words that are mapped in D to different values. This way, we can associate
a t-approximationA′ of A with a DFA B that agrees with D and vice versa.
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a, b
�

⊥
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�
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⊥ a, b

a

�

Fig. 4. The LDFA AD induced by the data D
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In the full version we prove formally that 〈D, k〉 ∈ MAI iff 〈A, k〉 ∈ (n, t)-
APRXLDFA. That is, there exists a DFA B with |B| ≤ k that agrees with D iff there
exists a t-approximatingA′ for A with |A′| ≤ k.

Now, recall that the reduction above assumes that n is even and t = n
2 −1. Hence, we

still have to show that (n, t)-APRXLDFA is NP-hard for all n ≥ 1 and 1 ≤ t ≤ �n2 �−1.
Let n ≥ 1 and 1 ≤ t ≤ �n2 � − 1. Since 2t + 2 is even and t = 2t+2

2 − 1, the
reduction above shows that (2t+ 2, t)-APRXLDFA is NP-hard. In the full version, we
show a polynomial-time reduction from (2t+2, t)-APRXLDFA to (n, t)-APRXLDFA,
and conclude that (n, t)-APRXLDFA is NP-hard for all n ≥ 1 and 1 ≤ t ≤ �n2 � − 1.

We now turn to the third part of the theorem. Let t ≥ �n2 �. A constant time algorithm
that is given 〈A, k〉 and decides whether 〈A, k〉 ∈ (n, t)-APRXLDFA can simply return
“yes” for all inputs. In the full version we prove correctness by showing that every
LDFA A over Ln has a t-approximatingA′ of size one. ��

Going back to the problem APRXLDFA, we can now reduce (n, t)-APRXLDFA to
APRXLDFA for some fixed n ≥ 1 and 1 ≤ t ≤�n2 � − 1. By the second part of
Theorem 2, we conclude with the following.

Theorem 3. APRXLDFA is NP-complete.

Remark 1. By Theorem 3, it is unlikely that there can ever be an efficient exact algo-
rithm for APRXLDFA. A natural question to ask is whether the problem can be effi-
ciently approximated. In [21], the authors show that the MAI problem, from which we
have reduced, cannot be approximated within any polynomial. That is, assuming P	=
NP, there does not exist a polynomial time algorithm that on a data inputD can always
return a DFA of size at most polynomially larger than opt, where opt is the smallest
DFA that agrees with D. Therefore, the reduction described in the proof of Theorem 2
in fact gives a stronger result: APRXLDFA is inapproximable.

Theorems 2 and 3 study the complexity of deciding whether there is a t-approximating
LDFA of size at most k. Below we discuss the corresponding search problem, of con-
structing a minimal LDFA. Consider the three cases stated in Theorem 2. For t = 0,
the approximation problem coincides with minimization, and there is an algorithm gen-
erating a minimal LDFA in polynomial time [13]. For 1 ≤ t ≤ �n2 � − 1, we can first
perform a binary search to find the minimal k, and then verify a guessed LDFA of size
k. Therefore, the problem of constructing a minimal LDFA belongs to the class FNP
(of problems where the goal is to return a witness in an NP decision problem). Finally,
for �n2 � ≤ t, we have seen that a t-approximating LDFA can map all words to the value
�n2 �, and a minimal one can do it with a single state.

4 Approximation by Separation

Approximation by distance poses a uniform requirement on the elements of the lat-
tice. In this section we introduce and study another natural metric, based on lattice
separation.
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Definition 2. Let n ≥ 1 and 1 ≤ t ≤ n. A t-separation of Ln is a partition P =
{P0,P1, . . . ,Pt−1} of [n] into t non-empty sets such that each set contains only suc-
cessive elements.

Definition 3. Consider an integer n ≥ 1, an approximation factor 1 ≤ t ≤ n, an
LDFA A over Ln and an LDFA A′ over Lt. We say that A′ t-separatesA iff there is a
t-separation P of Ln such that for all words w ∈ Σ∗ we have that L(A′)(w) = i iff
L(A)(w) ∈ Pi.

Intuitively, an approximation by t-separation maps a set of successive values to a single
value. One can see that the quality of the approximation improves as t grows. Indeed,
for t = 1 we have only one set containing all elements, allowing us to map all words
to the same value. On the other hand, when t = n, each element constitutes a singleton
set, and L(A′) = L(A).

Example 3. Figure 5 depicts an LDFA A over the lattice L7 and the alphabet Σ =
{a1, . . . , a6,#}. The LDFA A′ over L3 3-separatesA with respect to the 3-separation
P0 = {0, 1, 2, 3, 4},P1 = {5}, andP2 = {6}. One can see that the words ε, a1, . . . , a6,
and a6# are mapped by A to 6 and by A′ to 2, and that the word a5# is mapped by
A to 5 and by A′ to 1. All other words are mapped by A to values taken from the set
{0, 1, 2, 3, 4}, and by A′ to 0.
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a2, 2

a3, 2

a4, 2

6

6

6

6

6

6

6

6 2 2

2

26 2

A′:

Fig. 5. An LDFA A with a 3-separating LDFA A′

Theorem 4. Let n ≥ 1 and 1 ≤ t ≤ n. Given an LDFA A over Ln, an LDFA A′ over
Lt, and a t-separation P = {P0, . . . ,Pt−1} of Ln, deciding whetherA′ t-separatesA
with respect to P is NLOGSPACE-complete.

The proof of Theorem 4 uses the same considerations as in Theorem 1, and can be
found in the full version.

We now turn to consider the problem of finding a minimal t-separating LDFA. As
we have seen in Section 1, there are practical situations in which the input includes a
specific t-separation of Ln, and the goal is to find a minimalA′ that t-separatesA with
respect to that separation. We show below that in such a case the problem can be solved
in polynomial time.

Theorem 5. Let n ≥ 1 and 1 ≤ t ≤ n. Given an LDFA A over Ln and a t-separation
P = {P0, . . . ,Pt−1} of Ln, constructing a minimal LDFA A′ over Lt that t-separates
A with respect to P can be done in polynomial time.
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Proof. Let B be the LDFA over Lt obtained from A by replacing each value j ∈ [n]
appearing in A by the value i ∈ [t] for which j ∈ Pi. Let A′ be a minimal LDFA
equivalent to B. By [13], A′ can be constructed in time polynomial in B, which can
clearly be constructed in time polynomial in A. We claim that A′ is a minimal LDFA
that t-separatesA with respect to P .

We first show that for all w ∈ Σ∗, we have that L(A′)(w) = i iff L(A)(w) ∈ Pi.
Since L(A′) = L(B), it is enough to show that for all w ∈ Σ∗ we haveL(B)(w) = i iff
L(A)(w) ∈ Pi. Let w ∈ Σ∗. It holds that L(A)(w) ∈ Pi iff at least one of the values
read along the run ofA on w belong to Pi, and the other values belong to Pi, . . . ,Pt−1.
This holds iff at least one of the values read along the run of B on w equals to i, and the
other values are in {i, . . . , t− 1}. Finally, this holds iff L(B)(w) = i.

The fact that A′ has a minimal number of states follows from the correctness of the
minimization algorithm, and from the fact that all LDFAs that t-separateAwith respect
to a specific t-separation have the same language. ��

We now turn to consider the case where the user does not provide a specific t-separation.
That is, we are given an LDFA A over Ln and t ≥ 1, and we seek an LDFA A′

with a minimal number of states that t-separates A. For example, as discussed in Sec-
tion 1, when the user does not care about the way priorities are grouped, or, in the
case of abstraction, when the user hesitates between working with an over- or an under-
approximation, the t-separation is not given. Consider the corresponding decision prob-
lem SEPLDFA={〈A, n, t, k〉 : A is an LDFA over Ln with a t-separating A′ over Lt
such that |A′| ≤ k}. As in Section 3, we study also the family of problems (n, t)-
SEPLDFA, in which n and t are not parameters and rather are fixed. That is, (n, t)-
SEPLDFA={〈A, k〉 : A is an LDFA over Ln with a t-separating A′ over Lt such that
|A′| ≤ k}.

Theorem 6. For all n ≥ 1 and t ≥ 1, the problem (n, t)-SEPLDFA can be solved in
polynomial time.

Proof. For fixed n ≥ 1 and t ≥ 1, there is a fixed number of possible t-separations of
Ln. Therefore, one can go over all t-separations, construct for each the corresponding
minimal LDFA and return“yes” iff one of them has at most k states. By Theorem 5,
each check, and therefore also the whole procedure, can be done in polynomial time.��

It is not hard to see that the algorithm above shows that the problem stays solvable in
polynomial time also when n is not fixed and is a parameter to the problem. We now
turn to study the problem SEPLDFA, in which n and t are parameters, and show that
this problem is NP-complete. In Section 3, the NP-hardness of APRXLDFA follows
directly from the hardness of (n, t)-APRXLDFA for 1 ≤ t ≤ �n2 � − 1. Here, however,
the problem (n, t)-SEPLDFA can be solved in polynomial time for all n ≥ 1 and t ≥ 1,
so the fact that n and t are parameters is crucial.

Theorem 7. The problem SEPLDFA is NP-complete.

Proof. As in the case of (n, t)-APRXLDFA, membership in NP follows directly from
Theorem 4.
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For the lower bound, we show a polynomial time reduction from the NP-complete
Maximum-Bisection problem on regular graphs (MBRG, for short) [11]. The Maximum
Bisection of a graph G = 〈V,E〉, for V of an even size, is a partition of V into two
equally sized sets that maximizes the number of edges between those sets. For regular
graphs, in which all vertices have the same degree, the problem coincides with the
problem of finding T ⊆ V such that |T | = |V |

2 and e(T ) is minimal, where e(T ) is
the number of edges among the vertices of T . Formally, e(T ) = |E ∩ (T × T )|. The
corresponding decision problem can therefore be formulated as MBRG = {〈G, k〉 :
G = 〈V,E〉 is an undirected regular graph with an even number of vertices, such that
there is a set T ⊆ V with |T | = |V |

2 and e(T ) ≤ k}.
For technical convenience, instead of reducing the MBRG problem to SEPLDFA

directly, we go through the following variant of the problem: MBRG′ = {〈G, v, k〉 :
G = 〈V,E〉 is an undirected graph with an odd number of vertices, the vertex v touches
all other vertices, and there is a set T ⊆ V with |T | = |V |−1

2 , v 	∈ T , and e(T ) ≤ k}.
In the full version, we describe an easy polynomial-time reduction from MBRG to
MBRG′, proving that it is NP-hard.

We now turn to describe the reduction from MBRG′ to SEPLDFA. Let 〈G, v, k〉 be
an input to MBRG′, where G = 〈V,E〉 is such that V = {v1, . . . , vn, v} and E =
{e1, . . . , em}. Note that n = |V | − 1 and m = |E|. We construct an LDFA A =
〈Ln+1, Σ,Q, δ,Q0, F 〉, where:

– Σ = {a1, . . . , am, b1, . . . , bn, c1, . . . , cn}. Thus, each edge ei ∈ E induces a letter
ai, and each vertex vi ∈ V \ {v} induces two letters, bi and ci.

– Q = {q1, . . . , qm, q11 , q21 , q12 , q22 , . . . , q1n, q2n, qinit , qfin}. Thus, each edge ei ∈ E
induces a state qi, and each vertex vi ∈ V \ {v} induces two states q1i and q2i . In
addition there are two states qinit and qfin .

– The transition relation is defined as follows.
• For all 1 ≤ i ≤ m, we have δ(qinit , ai, qi) = �.
• For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, if ei touches vj , then δ(qi, bj , q1j ) = �,

otherwise δ(qi, bj, q2j ) = �.
• For all 1 ≤ j ≤ n, we have δ(q2j , bj, q

1
j ) = δ(q

1
j , bj, q

1
j ) = �.

• For all 1 ≤ j ≤ n, we have δ(q1j , cj , qfin) = δ(q
2
j , cj , qfin) = �.

• For all other q, q′ ∈ Q and σ ∈ Σ, we have δ(q, σ, q′) = ⊥.
– Q0(qinit ) = �, and Q0(q) = ⊥ for all other q ∈ Q.
– For all 1 ≤ j ≤ n, we have F (q1j ) = j and F (q2j ) = j − 1. For all other q ∈ Q, we

have F (q) = �.

Note that A is indeed deterministic, and has m + 2n + 2 states. Also, since the com-
ponents of A are all of size polynomial in the input graph, the reduction is polynomial.
We refer to the states qi as “the left column” and to the states q1j and q2j as “the right
column” (see Figure 6).

Example 4. Figure 6 depicts a graph G and its induced LDFA AG. All transitions de-
scribed in the figure have the value �. Due to space and clarity considerations, accep-
tance values have been omitted, as they are � for all states except for the states on the
right column, where F (q1j ) = j and F (q2j ) = j − 1 for all 1 ≤ j ≤ 4. Also, we do not
draw all edges in the middle, but a symbolic sample that demonstrates the idea.
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Fig. 6. A graph G and its induced LDFA AG

The idea behind the reduction is as follows. Let t = n
2 + 1. A subset T ⊆ V with

|T | = |V |−1
2 induces a t-separation P of Ln+1 in which j− 1 and j are not in the same

set iff vj ∈ T . That is, P separates the lattice on the indices of the vertices of T . The
LDFAA is constructed so that the size of the minimal LDFAA′ that t-separatesAwith
respect to P depends on e(T ). In order to see the dependency, consider the equivalence
relation ∼T⊆ E × E, where e1 ∼T e2 iff e1 and e2 agree on touching the vertices of
T . That is, for all v ∈ T both e1 and e2 touch v or none of them does. We argue that
the number of states in the left column of A′ depends on e(T ), and the number of all
other states does not depend on e(T ). To see this, consider first the right column ofA′.
It is possible to merge the states q1j and q2j of A into one state q1,2j in A′ iff j − 1 and j
are not separated in P , iff vj 	∈ T . Therefore, the number of states in that column in A′

depends only on |T |, and does not depend on e(T ). As for the left column, it is possible
to merge states associated with edges in the same equivalence class of∼T . Indeed, since
equivalent edges agree on touching the vertices of T , the states associated with them
in A agree on out-going transitions: for j such that vj ∈ T , transitions leaving with
the letter bj lead to the same state q1j or q2j already in A. For j such that vj 	∈ T , the
two possible destination states q1j and q2j have already been merged inA′, so transitions

on bj can all reach the same merged state q1,2j . Hence, the number of states on the left
column in A′ is equal to the number of equivalence classes. Finally, since each edge
that touches two vertices of T induces an equivalence class of its own, the number of
states in the left column depends on e(T ).

Formalizing the above intuitive explanation requires much care. For example, we
should justify the fact that A′ indeed maintains the left/right column structure. In the
full version, we formally prove that there is a set T ⊆ V such that |T | = n

2 , v 	∈ T ,
and e(T ) ≤ k iff there exists an LDFA A′ over Lt with at most k + 2n+ 3 states that
t-separatesA, for t = n

2 + 1. ��

We note that although the SEPLDFA problem is generally NP-hard when n and t are
given as parameters, there are still cases of parameters for which the problem can be
solved in polynomial time. For example, consider the family of pairs 〈n, t〉 such that
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t = n − c, for a fixed c ≥ 0. The number of possible t-separations in these cases is
fixed, so one can apply the same considerations as in Theorem 6 and solve the problem
in polynomial time. Also, as in the case of t-approximation, the problem of returning the
minimal LDFA that t-separates a given LDFA, for parameters t and n is in FNP. Finally,
comparing Theorems 5 and 7 we get that the computational bottleneck of SEPLDFA is
the need to find a good t-separation. Once such a separation is given, finding a minimal
LDFA can be done in polynomial time.

5 Discussion

We studied the problem of finding a minimal LDFA that approximates a given LDFA
defined with respect to a fully-ordered lattice. We showed that the complexity of the
problem depends on the relation between the lattice size and the approximation factor
and also depends on whether we view them as fixed.

Our complexity results may remind the reader of classic NP-complete problems, like
vertex cover, where the goal is to decide the existence of some object (“the witness”)
of a certain size k. Typically, the existence of the required object can be decided in
polynomial time for a fixed k, while the problem is NP-complete when k is a parameter
to the problem. Despite of this resemblance, our setting here is very different, and the
NP-hardness proofs are quite challenging. To see the difference, note that the factors we
fix in (n, t)-APRXLDFA and (n, t)-SEPLDFA do not include the size of the witness!
The latter is k, which is part of the input. Another difficulty we face follows from the
fact that, unlike in classic combinatorial problems, where, say, the vertices in the graph
are not ordered, here we have no symmetry between the elements. For example, when
an LDFA reads a lattice value that is greater than the values read already, the accumu-
lated value is not affected. On the other hand, reading a value that is smaller affects
the accumulated value. Coping with non-symmetry involves the design of languages
that take into an account the order induced by the lattice, making our reductions com-
plicated. The complication is reflected also in the fact that when t = 0, it is possible
to use this non-symmetry and come up with a polynomial algorithm. Finally, note that
our “fixed-parameter” variants fix both n and t, and still (n, t)-APRXLDFA is NP-hard
when 1 ≤ t ≤ �n2 � − 1. It is not hard to see that our bounds and proofs stay valid
also for the t-APRXLDFA and t-SEPLDFA variants, when only t is fixed. In particular,
t-SEPLDFA can be solved in polynomial time.

As discussed in Section 1, distance metrics can be defined also for partially-ordered
lattices. In our future work we plan to study minimization of approximating LDFAs de-
fined with respect to such lattices. Working with partially-ordered lattices, more factors
are added to the pictures. For example, we may look for possible linearizations of the
partial order for approximation of fully-ordered lattices by partially-ordered ones.
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Tight Bounds for the Determinisation
and Complementation of Generalised Büchi Automata


Sven Schewe and Thomas Varghese

University of Liverpool

Abstract. Generalised Büchi automata are Büchi automata with multiple accept-
ing sets. They form a class of automata that naturally occurs, e.g., in the trans-
lation from LTL to ω-automata. In this paper, we extend current determinisation
techniques for Büchi automata to generalised Büchi automata and prove that our
determinisation is optimal. We show how our optimal determinisation technique
can be used as a foundation for complementation and establish that the result-
ing complementation is tight. Moreover, we show how this connects the optimal
determinisation and complementation techniques for ordinary Büchi automata.

1 Introduction

While finite automata over infinite words were first introduced in Büchi’s decidability
proof for the monadic second-order logic of one successor (S1S) [1], they are most
widely used in model checking, realisability checking, and synthesis procedures for
linear time temporal logic (LTL) [11].

Büchi automata are an adaptation of finite automata to languages over infinite words.
They differ from finite automata only with respect to their acceptance condition: while
finite runs of finite automata are accepting if a final state is visited at the end of the run,
an infinite run of a Büchi automaton is accepting if a final state is visited (or a final tran-
sition is taken) infinitely many times. Although this might seem to suggest that automata
manipulations for Büchi automata are equally simple as those for finite automata, this
is unfortunately not the case. In particular, Büchi automata are not closed under deter-
minisation. While a simple subset construction suffices to efficiently determinise finite
automata [13], deterministic Büchi automata are strictly less expressive than nonde-
terministic Büchi automata. For example, deterministic Büchi (or generalised Büchi)
automata cannot recognise the simple ω-regular language that consists of all infinite
words that contain only finitely many a’s.

Determinisation therefore requires automata with more involved acceptance mecha-
nisms [14,9,10,4,17], such as Muller’s subset condition [8], Rabin’s pairs condition [12]
or its dual, the Streett condition [19], or the parity condition. Also, an nΩ(n) lower bound
for the determinisation of Büchi automata has been established [20] even if we allow
for Muller objectives, which implies that a simple subset construction cannot suffice.

Rabin’s extension of the correspondence between automata and monadic logic to
the case of trees [12] built on McNaughton’s doubly exponential determinisation
construction [8], and Muller and Schupp’s [9] efficient nondeterminisation technique
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for alternating tree automata is closely linked to the determinisation of nondeterminis-
tic word automata. Safra was the first to introduce singly-exponential determinisation
constructions for Büchi [14] and Streett [15] automata and current determinisation tech-
niques [10,17] build on Safra’s work. For instance, Schewe’s determinisation technique
for Büchi automata [17] builds on Safra’s [14] and Piterman’s [10] determinisation pro-
cedures using a separation of concern, where the main acceptance mechanism, repre-
sented by history trees, is separated from the formal acceptance condition, e.g., a Rabin
or parity condition. History trees can be seen as a simplification of Safra trees [14].
In a nutshell, they represent a family of breakpoint constructions; sufficiently many to
identify an accepting run, and sufficiently few to be concise.

The standard translation from LTL to ω-automata [3] goes to generalised Büchi
automata, which have multiple accepting sets and require that a final state from each
accepting set is visited infinitely many time. There are several ways to determinise a
generalised Büchi automaton with n states and k accepting sets. One could start with
translating the resulting generalised Büchi automaton first to an ordinary nondetermin-
istic Büchi automaton with nk states and a single accepting set, resulting in a determin-
isation complexity of roughly (nk)O(nk) states, or one could treat it as a Streett automa-
ton, which is equally expensive and has a more complex determinisation construction.

Schewe’s determinisation procedure [17] proves to be an easy target for generalisa-
tion, because it separates the acceptance mechanism from the accepting condition. To
extend this technique from ordinary to generalised Büchi, it suffices to apply a round-
robin approach to all breakpoints under consideration. That is, each subset is enriched
by a natural number identifying the accepting set, for which we currently seek for the
following breakpoint. Each time a breakpoint is reached, we turn to the next accept-
ing set. Note that this algorithm is a generalisation in the narrower sense: in case that
there is exactly one accepting set, it behaves exactly as the determinisation procedure
for Büchi automata in [17]. An algorithm to determinise generalised Büchi automata
to deterministic parity automata using this method was used in [5], similarly extending
Piterman’s construction [10,7].

Using the current techniques and bounds for the determinisation of these automata
[10,17,7], we find that for a nondeterministic generalised Büchi automaton with n states
and k accepting sets, we get a deterministic Rabin automaton with ghistk(n) states and
2n−1 Rabin pairs. The function ghistk(n) is approximately (1.65n)n for k = 1, (3.13n)n

for k = 2, and (4.62n)n for k = 3, and converges against (1.47kn)n for large k. These
bounds can also be used to establish smaller maximal sizes of minimal models, which
is useful for Safraless determinisation procedures [6,18,5]. It would be simple to extend
the transformation to deterministic parity automata from [17] to obtain an automaton
with O(n!2 2k) states and 2n+ 1 priorities. In this sense, the difference between deter-
minising Büchi and generalised Büchi is negligible if k is small compared to n.

Colcombet and Zdanowski [2] showed that Schewe’s determinisation procedure for
Büchi automata is optimal. Our extension of this lower bound to generalised Büchi
automata generalises their techniques, showing that the determinisation is optimal.

We also discuss a bridge between optimal determinisation and tight complementa-
tion. We show how the nondeterministic power of an automaton can be exploited by
using a more concise data structure compared to determinisation (flat trees instead of
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general ones). This bridge again results in a generalisation of the Büchi complementa-
tion procedure discussed in [16] in the narrower sense: for one accepting set, the result-
ing automata coincide. We also provide a matching lower bound: we show for alphabets
Lk

n that the size of a generalised Büchi automaton that recognises the complement of a
full generalised Büchi automaton with n states and k accepting sets must be larger than
|Lk

n|, while the ordinary Büchi automaton we construct is smaller than |Lk+1
n+1|. For large

k – that is, if k is not small compared to n – |Lk
n| is approximately

(
kn
e

)n
. This improves

significantly over the
(
Ω(nk)

)n bound established by Yan [20].

2 Nondeterministic and Deterministic Automata

Nondeterministic Rabin automata are used to represent ω-regular languages L ⊆ Σω =
ω→ Σ over a finite alphabet Σ. In this paper, we use automata with trace based accep-
tance mechanisms. We denote {1,2, . . . ,k} by [k].

A nondeterministic Rabin automaton with k accepting pairs is a quintuple A =
(Σ,Q, I,T,{(Ai,Ri) | i ∈ [k]}), consisting of a finite alphabet Σ, a finite set Q of states
with a non-empty subset I ⊆Q of initial states, a set T ⊆ Q×Σ×Q of transitions from
states through input letters to successor states, and a finite family {(Ai,Ri) ∈ 2T × 2T |
i ∈ [k]} of Rabin pairs.

Nondeterministic Rabin automata are interpreted over infinite sequences α : ω→ Σ
of input letters. An infinite sequence ρ : ω→ Q of states of A is called a run of A
on an input word α if the first letter ρ(0) ∈ I of ρ is an initial state, and if, for all
i ∈ ω,

(
ρ(i),α(i),ρ(i+ 1)

)
∈ T is a transition. For a run ρ of a word α, we denote with

ρ : i �→
(
ρ(i),α(i),ρ(i+ 1)

)
the transitions of ρ.

A run ρ : ω→ Q is accepting if, for some index i ∈ [k], some transition t ∈ Ai in the
accepting set Ai of the Rabin pair (Ai,Ri), but no transition t ′ ∈ Ri from the rejecting set
Ri of this Rabin pair appears infinitely often in the transitions of ρ, ρ. (∃i ∈ [k]. inf (ρ)∩
Ai 	= /0∧ inf (ρ)∩Ri = /0 for inf (ρ) = {t ∈ T | ∀i ∈ ω ∃ j > i such that ρ( j) = t}). A
word α : ω→ Σ is accepted by A if A has an accepting run on α, and the set L(A) =
{α ∈ Σω | α is accepted by A} of words accepted by A is called its language.

For technical convenience we also allow for finite runs q0q1q2 . . .qn with T ∩{qn}×
{α(n)}×Q = /0. Naturally, no finite run satisfies the Rabin condition. Finite runs are
rejecting, and have no influence on the language of an automaton.

Two particularly simple types of Rabin automata are of special interest: generalised
Büchi, and Büchi automata. Büchi automata are Rabin automata with a single accepting
pair (F, /0) with an empty set of rejecting transitions. The transitions in F are tradition-
ally called final, and Büchi automata are denoted A = (Σ,Q, I,T,F).

Generalised Büchi automata, denoted A = (Σ,Q, I,T,{Fi | i ∈ [k]}), have a family of
accepting (or: final) sets. A run ρ of a generalised Büchi automaton is accepting if it
contains infinitely many transitions from all final sets (∀i ∈ [k]. inf (ρ)∩Fi 	= /0).

Let δ : (q,σ) �→ {q′ ∈ Q | (q,σ,q′) ∈ T} denote the successor function for a set
of transitions. A Rabin, Büchi, or generalised Büchi automaton is called deterministic
if δ is deterministic (∀(q,σ) ∈ Q× Σ. |δ(q,σ)| ≤ 1) and I = {q0} is singleton. We
denote deterministic automata as (Σ,Q,q0,δ′,Γ), where Γ is the acceptance condition,
and δ′ : Q×Σ→ Q is the partial function that is undefined in the preimage of /0 for δ
and otherwise satisfies δ(q,σ) = {δ′(g,σ)}.
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3 Determinisation

The determinisation construction described in this section is a generalisation of
Schewe’s construction for nondeterministic Büchi automata [17], which in turn is a
variation of Safra’s [14]. We first define the structure that captures the acceptance mech-
anism of our deterministic Rabin automaton.

Ordered trees. We call a tree T ⊆ N∗ an ordered tree if it satisfies the following con-
straints, and use the following terms:

– every element v ∈ T is called a node,
– if a node v = n1 . . .n jn j+1 ∈ T is in T , then v′ = n1 . . .n j is also in T ,

v′ is called the predecessor of v, denoted pred(v) (pred(ε) is undefined),
– the empty sequence ε ∈ T , called the root, is in T , and
– if a node v = n1 . . .n j is in T , then v′ = n1 . . .n j−1i is also in T for 0< i< j;

we call v′ an older sibling of v (and v a younger sibling of v′), and denote the set of
older siblings of v by os(v).

Thus, ordered trees are non-empty and closed under predecessors and older siblings.

Generalised history tree. A generalised history tree G over Q for k accepting sets is a
triple G = (T , l,h) such that:

– T is an ordered tree,
– l : T → 2Q � { /0} is a labelling function such that
• l(v)� l(pred(v)) holds for all ε 	= v ∈ T ,
• the intersection of the labels of two siblings is disjoint

(∀v,v′ ∈ T . v 	= v′ ∧pred(v) = pred(v′)⇒ l(v)∩ l(v′) = /0), and
• the union of the labels of all siblings is strictly contained in the label of their

predecessor (∀v ∈ T ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′)⇒ q /∈ l(v′)), and
– h : T → [k] is a function that labels every node with a natural number from [k].

We call Fh(v) the active accepting set of v.

For a generalised history tree G = (T , l,h), (T , l) is the history tree introduced in [17].
Generalised history trees are enriched by the second labelling function, h, that is used
to relate nodes with a particular accepting set.

3.1 Determinisation Construction

Let A = (Σ,Q, I,T,{Fi | i ∈ [k]}) be a generalised Büchi automaton with |Q|= n states
and k accepting sets. We will construct an equivalent deterministic Rabin automaton
D = (Σ,D,d0,δ,{(Ai,Ri) | i ∈ J}).

[17] separates the transition mechanism from the acceptance condition. We follow
the same procedure and describe the transition mechanism below.

– D is the set of generalised history trees over Q.
– d0 is the generalised history tree ({ε}, l : ε �→ I,h : ε �→ 1).
– J is the set of nodes that occur in some ordered tree of size n.
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– For every tree d ∈ D and letter σ ∈ Σ, the transition d′ = δ(d,σ) is the result of the
following sequence of transformations:
1. Raw update of l. We update l to the function l1 by assigning, for all v ∈ T ,

l1 : v �→ {q ∈ Q | ∃q′ ∈ l(v). (q′,σ,q) ∈ T}, i.e., to the σ successors of l(v).
2. Sprouting new children. For every node v ∈ d with c children, we sprout a new

child vc. Let Tn be the tree of new children. Then we define, for all v in Tn, l1 :
v �→

{
q ∈ Q | ∃q′ ∈ l

(
pred(v)

)
. (q′,σ,q) ∈ fh(pred(v))

}
, i.e., to the σ successors

of the active accepting sets of their parents, and extend h to T ′n = T ∪ Tn by
h : v �→ 1 for all v ∈ Tn

3. Stealing of labels. We obtain a function l2 from l1 by removing, for every node
v with label l(v) = Q′ and all states q ∈ Q′, q from the labels of all younger
siblings of v and all of their descendants.

4. Accepting and removing. We denote with Tr ⊆ T ′n the set of all nodes v whose
label l2(v) is now equal to the union of the labels of its children. We obtain T ′
from T ′n by removing all descendants of nodes in Tr, and restrict the domain of
l2 and h accordingly. (The resulting tree T ′ may no longer be ordered.)
Nodes in T ′ ∩Tr are called accepting. We obtain h1 from h by choosing h : v �→
h(v)+ 1 for accepting nodes v with h(k) 	= k, h1 : v �→ 1 for accepting nodes v
with h(k) = k, and h1 : v �→ h(v) for all non-accepting nodes.
The transition is in Av iff v is accepting.

5. Renaming and rejecting. To repair the orderedness, we call ‖v‖= |os(v)∩T ′|
the number of (still existing) older siblings of v, and map v = n1 . . .n j to
v′ = ‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . .‖v‖, denoted rename(v).
We update a triple (T ′, l2,h1) from the previous step to d′ =(
rename(T ′), l′,h′

)
with l′ : rename(v) �→ l2(v) and h′ : rename(v) �→ h1(v).

We call a node v ∈ T ′ ∩T stable if v = rename(v), and we call all nodes in J
rejecting if they are not stable. The transition is in Rv iff v is rejecting.

3.2 Correctness

In order to establish the correctness of our determinisation construction, we need to
prove that L(A) = L(D), that is, we need to ascertain that the ω-language accepted
by the nondeterministic generalised Büchi automaton is equivalent to the ω-language
accepted by the deterministic Rabin automaton.

Theorem 1 (L(D)⊆ L(A)). Given that there is a node v ∈ d (where d is a generalised
history tree) which is eventually always stable and always eventually accepting for an
ω-word α, then there is an accepting run of A on α.

Notation. For an ω-word α and j ≥ i, we denote with α[i, j[ the word
α(i)α(i+ 1)α(i+ 2) . . .α( j− 1). We denote with Q1 →α Q2 for a finite word α =
α1 . . .α j−1 that there is, for all q j ∈ Q2 a sequence q1 . . .q j with q1 ∈ Q1 and
(qi,αi,qi+1) ∈ T for all 1 ≤ i < j. If, for all q j ∈ Q2, there is such a sequence that
contains a transition in Fa, we write Q1⇒α

a Q2.

Proof. Let α ∈ L(D). Then there is a v that is eventually always stable and always
eventually accepting in the run ρD of D on α. We pick such a v.

Let i0 < i1 < i2 < .. . be an infinite ascending chain of indices such that
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– v is stable for all transitions (d j,α( j),d j+1) with j ≥ i0, and
– the chain i0< i1< i2< .. . contains exactly those indices i≥ i0 such that (di−1,α(i−

1),di) is accepting; this implies that h is updated exactly at these indices.

Let di = (Ti, li,hi) for all i ∈ ω. By construction, we have

– I→α[0,i0[ li0(v), and

– li j (v)⇒
α[i j ,i j+1[

hi j
li j+1(v).

Exploiting König’s lemma, this provides us with the existence of a run of A on α that
visits all accepting sets Fi of A infinitely many times. (Note that the value of h is circu-
lating in the successive sequences of the run.) This run is accepting, and α therefore in
the language of A . ��

Theorem 2 (L(A)⊆ L(D)). Given that there is an accepting run of A , there is a node
which is eventually always stable and always eventually accepting.

Notation. For a state q of A and a generalised history tree d = (T , l,h), we call a node
a host node of q, denoted host(q,d), if q ∈ l(v) but not in l(vc) for any child vc of v.

Proof. We fix an accepting run ρ = q0q1 . . . of A on an input word α, and let ρD =
d0d1 . . . be the run of D on α. We then define the related sequence of host nodes ϑ =
v0v1v2 . . . = host(q0,d0)host(q1,d1)host(q2,d2) . . .. Let l be the shortest length |vi| of
these nodes that occurs infinitely many times.

We follow the run and see that the initial sequence of length l of the nodes in ϑ
eventually stabilises. Let i0 < i1 < i2 < .. . be an infinite ascending chain of indices
such that the length |v j| ≥ l of the j-th node is not smaller than l for all j≥ i0, and equal
to l = |vi| for all indices i ∈ {i0, i1, i2, . . .} in this chain. This implies that vi0 ,vi1 ,vi2 , . . .
is a descending chain when the single nodes vi are compared by lexicographic order. As
the domain is finite, almost all elements of the descending chain are equal, say vi := π.
In particular, π is eventually always stable.

Let us assume for the sake of contradiction, that this stable prefix π is accepting only
finitely many times. We choose an index i from the chain i0 < i1 < i2 < .. . such that π
is stable for all j ≥ i. (Note that π is the host of qi for di, and q j ∈ l j(π) holds for all
j ≥ i.)

As ρ is accepting, there is a smallest index j> i such that (q j−1,α( j−1),q j)∈Fhi(π).
Now, as π is not accepting, qi must henceforth be in the label of a child of π, which
contradicts the assumption that infinitely many nodes in ϑ have length |π|.

Thus, π is eventually always stable and always eventually accepting. ��

Corollary 1 (L(A) = L(D)). The deterministic Rabin automaton generated by our de-
terminisation procedure is language equivalent to the original generalised Büchi au-
tomaton.

4 Complementation

In this section we connect determinisation and complementation. In order to construct
a concise data structure for complementation, we first show that we can cut acceptance
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into two phases: a finite phase where we track only the reachable states, and an infinite
phase where we also track acceptance. We then use this simple observation to devise an
abstract complementation procedure, and then suggest a succinct data structure for it.

We first argue that acceptance of a word α ·α′ with α ∈ Σ∗ and α′ ∈ Σω depends only
on α′ and the states reachable through α.

Lemma 1. If I→α Q⇔ I→β Q then α ·α′ ∈ L(A)⇔ β ·α′ ∈ L(A).

Proof. It is easy to see how an accepting run of A on α · α′ can be turned into an
accepting run on β ·α′, and vice versa. ��

This provides us with the following abstract description of a nondeterministic accep-
tance mechanism for the complement language of A .

1. When reading an ω-word α, we first keep track of the reachable states R for a finite
amount of time. (subset construction)

2. Eventually, we swap to a tree that consists only of nodes that are henceforth stable,
and that are the only nodes that are henceforth stable, such that none of these nodes
is henceforth accepting.

3. We verify the property described in (2).

Lemma 2. The abstract decision procedure accepts an input word iff it is rejected by
the deterministic Rabin automaton D.

Proof. The ‘only if’ direction follows directly from the previous lemma.
For the ‘if’ direction, we can guess a point i in the run of D on α where all eventually

stable nodes are introduced and stable, and none of them is henceforth accepting. We
claim that we can simply guess this point of time, but instead of going to the respective
generalised tree di = (T , l,h), we go to d′i = (T ′, l′,h′), where T ′ is the restriction of T
to the henceforth stable states, and l′ and h′ are the restrictions of l and h to T ′. (Note
that the subtree of henceforth stable nodes is always ordered.)

Clearly, all nodes in T ′ are stable, and none of them are accepting in the future. It
remains to show that none of their descendants is stable. Assume one of the children
a node v ∈ T ′ spawns eventually is stable. We now consider a part of the ‘run’ of
our mechanism starting at i, d′id

′
i+1d′i+2 . . .. Invoking König’s Lemma, we get a run

ρ = q0q1 . . . such that, for some j> i and for all m> j, some v j = host(q j,d′j), which is
a true descendant of v, is the host of q j. Using a simple inductive argument that exploits
that v is henceforth stable but not accepting, this implies for the run ρ = d0d1 . . . that,
for the same j > i and for all m> j, some v′j = host(q j,d′j), which is a true descendant
of v, is a host of q j. This implies in turn that some descendant of v is eventually stable
and thus leads to a contradiction. ��

We call an ordered tree flat if it contains only nodes of length ≤ 1.

Lemma 3. We can restrict the choice in (2) to flat trees.

Proof. If we rearrange the nodes in T following the “stealing and hosting order”, that
is, mapping a node v with length ≥ 1 to a smaller node v′ with length ≥ 1 if either v′ is
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an ancestor of v or an initial sequence of v is an older sibling of an initial sequence of v′.
This describes a unique bijection b : T → F , where F is the flat tree with |T | = |F |,
and we choose d′i = (F , l′ : b(v) �→ l(pred(b(v)))∪ l(v)� l(pred(v)),h′ : b(v) �→ h(v))
instead of di = (T , l,h). (The complicated looking l′ : b(v) �→ l(pred(b(v)))∪ l(v)�
l(pred(v)) just means v = host(q,di)⇔ b(v) = host(q,d′i), that is, the hosts are moved,
not the full label.)

It is easy to see that, if we compare two runs starting in di and d′i on any word, they
keep this relation. ��

To obtain a succinct data structure for the second phase of the run, we do not follow the
precise development of the individual new children of the henceforth stable nodes, but
rather follow simple subset constructions. One subset that is kept for all stable nodes
is the union of the nodes of its children. Note that, to keep track of this union, it is
not necessary to keep track of the distribution of these sets to the different children (let
alone their descendants).

To check that all children spawned at a particular point j in a run will eventually be
deleted, one can keep track of an additional subset: the union of all labels of nodes of
children that already existed in j. If this subset runs empty, then all of these children
have been removed. Vice versa, if all of these children are removed, then this subset
runs empty.

Note that these subsets are, in contrast to the nodes in the flat generalised history
tree, not numbered. For efficiency, note that it suffices to use the second subset for only
one of the nodes in the flat trees at a time, changing this node in a round robin fashion.

Theorem 3. The algorithm outlined above describes a nondeterministic Büchi automa-
ton that recognises the complement of the language of A .

The trees and sets we need can be encoded using the following data structure. We first
enrich the set of states by a fresh marker m, used to mark the extra subset for new
children in the stable node under consideration, to Qm = Q∪ {m}. We then add the
normal subsets that capture the label of all children as a child of each stable state as
a single child of this state. For a single stable state that we currently track, we add a
(possibly second and then younger) child for new children. The labelling is as described
above, except that m is added to the label for new children (which otherwise might be
empty) and its ancestors.

We can now choose h : v→ k+1 for all non-stable nodes v in this tree. As this naming
convention clearly identifies these nodes, we can represent the tree as a flat tree.

4.1 Complexity of Complementing Generalised Büchi Automata

In this section, we establish lower bounds for the complementation of generalised Büchi
automata and show that the construction we outlined tightly meets these lower bounds.
Our lower bound proof builds on full automata. A generalised Büchi automaton Bk

n =
(Σ,Q, I,T,{Fi | i ∈ [k]}) is called full if

– Σk
n = 2Q×[k+1]×Q, |Q|= n, and I = Q,

– T = {(q,σ,q′) | ∃i ∈ [k+ 1]. (q, i,q′) ∈ σ}, and
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– Fi = {(q,σ,q′) | (q, i,q′) ∈ σ}.

As each generalised Büchi automaton with n states and k accepting sets can be viewed
as a language restriction (by alphabet projection) of a full automaton, full automata are
useful tools in establishing lower bounds. We show that, for each Bk

n , there is a family
of Lk

n ⊆ Σk
n such that aω is not in the language of Bk

n for any a ∈ Lk
n, and each nonde-

terministic generalised Büchi automaton that recognises the complement language of
Bk

n must have at least |Lk
n| states. The size of this alphabet is such that the size of Bk

n is
between |Lk

n| and |Lk+1
n+1|, which provides us with tight bounds for the complementation

of generalised Büchi automata.
Let us first define the letters in Lk

n. We call a function f : Q→N full if its domain is [n]
for some n. Let f be a full function with domain [n] then we call a function f# : [n]→ [k]
a k-numbering of f . We denote by enc( f , f#) the letter encoding a function f with k-
numbering f# as the letter that satisfies

– (p,enc( f , f#),q) ∈ T iff f (q)≤ f (p), and
– (p,enc( f , f#),q) ∈ Fb iff either f (q)< f (p) or ( f (p) = f (q) and f#

(
f (p)

)
	= b).

Obviously, if two full functions f ,g with respective k-numberings f#,g# encode the
same letter enc( f , f#) = enc(g,g#), then they are equal. First, we note that the word aω

is not in the language of Bk
n .

Lemma 4. Let f be a full function, f# be a k-numbering of f , and let a be the letter
encoded by f and f#. Then aω is rejected by Bk

n .

Proof. Assume, for contradiction, that there is an accepting run ρ of Bk
n on aω. By the

definition of an encoding, the sequence fi = f (ρi) is monotonously decreasing. It will
therefore stabilise eventually, say at j. (I.e., ∀l ≥ j. f (ρl) = f (ρ j).) By the definition
of accepting transitions for encoded letters there will henceforth be no more transition
from the final transitions Ff#( f j). � ��

We now define Lk
n = {enc( f , f#) | f is full and f# is a k-numbering of f}.

Theorem 4. A generalised Büchi automaton C k
n that recognises the complement lan-

guage of Bk
n has at least |Lk

n| states.

Proof. The previous lemma establishes that aω is accepted by C k
n . We choose accepting

runs ρa with infinity set Ia for each letter a ∈ Lk
n, and show by contradiction that Ia and

Ib are disjoint for two different letters a,b ∈ Lk
n.

Assume that this is not the case for two different letters a and b. It is then simple
to infer from their accepting runs ρa and ρb natural numbers l,m,n,a ∈ N such that
ρ = ρa[0, l](ρb[a,a+m]ρa[l, l + n])ω is accepting. Then w = al(bman)ω is accepted by
C k

n , as ρ is a run of w. We lead this to a contradiction by showing that w is in the
language of Bk

n .
We have a = enc( f , f#) 	= b = enc(g,g#). Let us first assume f = g. Then f# 	= g#,

and we can first choose an i with f#(i) 	= g#(i) and then a q with f (q) = i. It is now
simple to construct an accepting run with trace qω for Bk

n for w. �
Let us now assume f 	= g. We then set i to the minimal number such that f and g

differ in i ( f−1(i) 	= g−1(d), where −1 denotes the preimage of i. W.l.o.g., we assume
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f−1(i)\g−1(i) 	= /0. We choose a q∈ f−1(i)\g−1(i). It is now again simple to construct
an accepting run with trace qω for Bk

n for w. �
This closes the case distinction and provides the main contradiction. ��

The only thing that remains to be shown is tightness. But there is obviously an injection
from the flat trees described at the end of the complementation (plus the subsets) of an
automaton with n states and k accepting pairs into Lk+1

n+1. This provides:

Theorem 5. |Lk+1
n+1|> |Bk

n |.

This provides bounds which are tight in k and n with a negligible margin of 1. For large
k, the size |Lk

n| can be approximated by
(

kn
e

)n
: It is not hard to show that the size of Lk

n
is dominated by encodings that refer to functions from [n] onto [n], and the number of
these encodings is n!kn. (E.g., |Ln

n|< (e− 1)n!nn.)
Our conjecture is that the construction is tight at least in n. The reason for this as-

sumption is that the increment in n stems from the round robin construction that keeps
track of the stable node under consideration, while the alphabet Lk

n refers to the far more
restricted case that stable states never spawn new children, rather than merely requiring
that none of the children spawned is henceforth stable.

5 Optimality of Our Determinisation Construction

Colcombet and Zdanowski have shown that the determinisation technique we use (and
used in [17]) is optimal for the case of determinising Büchi automata. Their proof is by
reducing the resulting deterministic Rabin automaton to a game and citing the mem-
ory required for the winner of the game to establish a lower bound on the size of the
deterministic Rabin automaton [2]. In this section, we extend their result to the case
of generalised Büchi automata. We show that the function ghistk(n), that maps n to
the number of generalised history trees for k accepting sets—and hence to the number
of states of the resulting deterministic Rabin automaton obtained by our determinisa-
tion construction—is also a lower bound for the number of states needed for language
equivalent deterministic Rabin automata.

5.1 Games

We follow the conventions defined in [2]. A two player game is a tuple G= (V,E,L,W ),
where V is a set of states of the game, which is partitioned into V0 and V1, states for the
two players, Player 0 and Player 1 respectively, E ∈V ×L×V is the transition relation
and W ∈ Lω is the winning condition. We require that, for every v∈V , there exists some
state v′ ∈ V such that (v,a,v′) ∈ E is a transition from the location v to v′. We say that
(v,a,v′) produces the letter a.

A play of the game G is a maximal sequence of locations p = (v0,a0,v1,a1 . . .) such
that, for all i≥ 0, we have (vi,ai,vi+1)∈ E . Let pL =(a0a1 . . .) be the sequence of letters
generated by the play p. Player 0 wins the play p if pL ∈W . Player 1 wins otherwise.
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A strategy for player X is a function that specifies how the player should play de-
pending on the history of transitions. A strategy for player X is a function σ map-
ping finite sequences (v0,a0, . . . ,an−1,vn) into E . A play p is compatible with a strat-
egy σ for player 0 if, for all prefixes (v0,a0, . . . ,vn−1,an−1,vn) of p, σ(v0, . . .vn−1) =
(vn−1,an−1,vn) if vn−1 ∈ V0. A strategy σ for player 0 is a winning strategy if player 0
wins every play compatible with σ. Strategies for player 1 are defined similarly, with
V1 instead of V0.

A strategy with memory of size m for player 0 is a tuple (M,update,choice, init),
where M is a set of size m, called the memory, update is a mapping from M×E to
M, choice is a mapping from V0×M to E , and init ∈ M. Player X wins a game with
memory of size m if she has a winning strategy with memory of size m. When we have
a strategy with memory of size 1, we call it a positional strategy.

A game G is called a Rabin game if the winning condition W is described by a Rabin
condition over the transitions of this game. For every Rabin game, player 0 can win
using a positional strategy [21].

Finite games of infinite duration can effectively be reduced to deterministic automata
and vice-versa. Given a deterministic Rabin automaton D with n states that accepts the
language W of a generalised Büchi automaton A , and a game with winning condition
W , one can construct the product of the automaton D with the game, and derive a game
with the Rabin condition as the winning condition of the game. It is obvious that such
a game (with its Rabin condition) admits positional strategies and that the deterministic
Rabin automaton maintains the memory for a strategy in the original game with the
generalised Büchi winning condition.

Lemma 5. [2] If player 0 wins a game with the winning condition W (the generalised
Büchi condition) while requiring memory of size n, then every deterministic Rabin au-
tomaton that is language equivalent to W has at least n states.

5.2 Proving a Lower Bound

Lemma 5 provides a viable argument to prove a lower bound on the determinisation
of generalised Büchi automata. For this, we use the full automata introduced in the
previous section.

Closely following Colcombet & Zdanowski’s proof [2], we use Bk
n = (Σ,Q, I,T,{Fi |

i∈ [k]}). To prove our lower bound, we first restrict ourselves to a constant set of reach-
able states. We then proceed by proving a (tight) bound within this restricted scenario.
Finally, we extend this lower bound to the general case.

Restricting the set of reachable states. We define the set of states reachable by a word
u, Reach(u) by induction. Obviously, Reach(ε) = Q. For v ∈ Σ∗ and a ∈ Σ, we define
Reach(va) as follows: for all q ∈ Q and q′ ∈ Q, q′ ∈ Reach(va) iff q ∈ Reach(v) and
there is a transition (q, i,q′)∈ a. Let ΣS be the set of letters a∈ Σ such that Reach(a) = S
and Reach(v) = S implies Reach(va) = S. Let L(Bk

S) be L(Bk
n)∩ΣS

ω.
Each generalised history tree d ∈ D maintains the set of states reachable by the gen-

eralised Büchi automaton at the current position of the input word in the label l(ε) of its
root. Thus, if we restrict ourselves to a set of states S ⊆ Q, it is enough if we consider
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the set of generalised history trees DS, which contain the states S ⊆ Q in the labels of
their root ε. The runs of the deterministic Rabin automaton Dk

n , which we get when
determinising Bk

n , on an ω-word α ∈ ΣS
ω, is therefore a sequence in DS

ω.

A game to prove tightness. In this restricted context, we define a game G such that
player 0 wins G, requiring at least memory |DS|, which will in turn establish that any
deterministic Rabin automaton accepting L(Bk

S) has at least |DS| states.
We define the game G with the winning condition L(Bk

S). Formally, G= (V,E,L,W )
where V is the set of states of the game partitioned into V0 and V1, the states for players
0 and 1 respectively. V0 is a singleton set {v0} and V1 consists of the initial state of the
game vin and one position vd for each generalised history tree d ∈ DS. The labelling
function L is the alphabet Σ+

S . The winning condition W is L(Bk
S). The game transitions

E are as follows:

– (vin,u,v0) ∈ E for all u ∈ Σ+
S ,

– (v0, idS,vd) ∈ E for each generalised history tree d, where
idS = {(q,k+ 1,q) | q ∈ S} is the input letter that maintains all trees in DS,

– (vd ,u,v0) ∈ E for each generalised history tree d ∈ DS and word u ∈ Σ+
S if u is

profitable for d. We call u profitable if there is a v in the ordered tree of d such that
• v is stable throughout the sequence of a run of Dk

n starting in d when u is read,
and
• v is accepting for some transition in the sequence.

Player 0 has a simple winning strategy in this game. It suffices if player 0 keeps track
of the current state of Dk

n when following the ω-word produced in this game. When it
is her turn and the run is in state d, then she plays to vd . This way, player 1 is forced
to play only profitable words, which leads to a minimum node that is always eventually
profitable, and hence to acceptance [2].

Lemma 6. Player 0 has a winning strategy in the game G.

Modified game to prove memory lower bound. We define a modified game Gmod by
removing one of player 1’s game states vd , thereby denying player 0 the corresponding
move. This is the only difference to the game G. This lemma is the technical core of the
proof requiring an analysis of the differences between two trees.

Lemma 7. Let d 	= d′ be generalised history trees in DS. There exists a word u such
that

– (vd′ ,u,v0) is a move in Gmod,
– d→u d,
– u is not profitable for d.

Proof. We distinguish two cases. First, we assume that d = (T , l,h) and d′ = (T , l,h′).
This is the easy part: we can simply use a node v ∈ T such that h(v) 	= h′(v), but this
does not hold for any descendant of v. We then choose Q′ = {q ∈ S | v = host(q,d)} to
be the set of nodes hosted by v. (Note that these are the same for d and d′.)
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In this case, we can simply play the one letter word α = idS∪{(q,h′(v),q) | q ∈Q′},
which satisfies all the properties from above: clearly the transition is profitable for vd′

(as v is accepting in the respective transition d′ →α d′′) whereas d →α d holds while
none of the nodes of T is accepting.

Now we assume that d = (T , l,h) and d′ = (T ′, l′,h′) with (T ′, l′) 	= (T , l). But
for this case, we can almost use the same strategy for choosing a finite word u as for
ordinary history trees [2]. The extra challenge is that, when reconstructing d, it is not
enough to spawn a new child, we also have to update h, which can be done using a
sequence of letters like the letter α from above after reconstructing a node v. ��

With the help of this lemma, we can prove the following.

Lemma 8. For every d ∈DS, player 1 has a winning strategy in Gmod.

A winning strategy for player 1 is as follows. From vin, player 1 plays a word u such
that d0 →u d, where d0 is the initial state of the deterministic Rabin automaton. A
good response from player 0 would be to move to vd . But vd has been removed and
player 0 has to move to a different game state, say vd′ for some d′ 	= d. Player 1 responds
according to Lemma 7. Using this strategy, player 1 ensures that, when the play gets
infinite, there is no node that is always eventually accepting and the deterministic Rabin
automaton D does not accept this word. Hence, u /∈ L(Bk

S) and player 1 wins.

Corollary 2. Player 0 has no winning strategy with memory |DS|− 1 in the game G.

If player 0 had a winning strategy with memory |DS|− 1, then there would be a game
state vd which is never visited by this strategy. But this would also mean that player 0
can win Gmod with this strategy, which contradicts Lemma 8. Using Lemma 5, we now
obtain:

Theorem 6. Every deterministic Rabin automaton that accepts L(Bk
S) has size at least

|DS|.

Extending the lower bound to the unrestricted case. We have proven a lower bound
for the case where we restricted the set of reachable states. We now extend our result
to the general case. We do this by decomposing the deterministic Rabin automaton
accepting L(Bk

n) into disjoint sets of states. Such a decomposition is feasible due to the
following lemma.

Lemma 9. [2] Let D be the deterministic Rabin automaton accepting L(Bk
n) with tran-

sition function δ and initial state d0. If δ(d0,u) = δ(d0,v), then Reach(u) =Reach(v).

The above lemma describes the scenario where we restricted the set of reachable states,
considering only the set of generalised history trees DS. The automaton D restricted to
DS can be seen as a Rabin automaton which accepts L(Bk

n) with restriction to letters in
ΣS. Because the sets DS are disjoint, we have

ghistk(n) = |D|= ∑
S⊆Q

|DS|.
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Theorem 7. Every deterministic Rabin automaton accepting L(Bk
n) has size at least

ghistk(n).

ghistk can be estimated in a similar way as the number of history trees for the determin-
isation of Büchi automata [17], as generalised history trees are, just like history trees,
ordered trees with further functions on the set of nodes of the tree. Using the functions
from [17] ghistk(n) ∈ supx>0 O

(
m(x) · kβ(x) ·4β(x)), providing

(1.65n)n, for k = 1, (3.13n)n for k = 2, and (4.62n)n for k = 3.

This value converges against
(1.47kn)n

for large k.
Note that, when the generalised Büchi automaton we start with has exactly one ac-

cepting set, our bound construction coincides with [17].
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cessing Letters 109, 941–945 (2009)

8. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Informa-
tion and Control 9(5), 521–530 (1966)

9. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-
tomata: new results and new proofs of the theorems of Rabin, McNaughton and Safra. The-
oretical Computer Science 141(1-2), 69–107 (1995)
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Abstract. We present a novel canonical automaton model for languages
over infinite data domains, that is suitable for specifying the behavior of
services, protocol components, interfaces, etc. The model is based on reg-
ister automata. A major contribution is a construction of succinct canon-
ical register automata, which is parameterized on the set of relations by
which elements in the data domain can be compared. We also present
a Myhill Nerode-like theorem, from which minimal canonical automata
can be constructed. This canonical form is as expressive as general de-
terministic register automata, but much better suited for modeling in
practice since we lift many of the restrictions on the way variables can
be accesed and stored: this allows our automata to be significantly more
succinct than previously proposed canonical forms. Key to the canoni-
cal form is a symbolic treatment of data languages, which allows us to
construct minimal representations whenever the set of relations can be
equipped with a so-called branching framework.

1 Introduction

Our aim is to develop automata formalisms that can be used for systems speci-
fication, verification, testing, and modeling. It is crucial to be able to model not
only control, but also data aspects of a system’s behavior, and express relations
between data values and how they affect control flow. For example, we may want
to express that a password entered matches a previously registered one, that a
sequence number is in some interval, or that a user identity can be found in some
specific group.

There are many kinds of automata augmented with data, for example timed
automata [1], counter automata, data-independent transition systems [15], and
different kinds of register automata. Many of these types of automata have long
been used for specification, verification, and testing (e.g., [18]). In our context,
register automata is a very interesting formalism [3,13,7]. A register automaton
has a finite set of registers (or state variables) and processes input symbols using
a predefined set of operations (tests and updates) over input data and registers.

� Supported in part by the European FP7 project CONNECT (IST 231167).

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 57–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



58 S. Cassel et al.

Modeling and reasoning about systems becomes significantly easier if au-
tomata can be transformed into a canonical form: this is exploited in equivalence
and refinement checking, e.g., through (bi)simulation based criteria [14,17], and
in automata learning (aka regular inference) [2,9,19]. There are standard algo-
rithms for minimization of finite automata, based on the Myhill-Nerode theo-
rem [11,16], but it has proven difficult to carry over such constructions to au-
tomata models over infinite alphabets, including timed automata [21].

More recently, canonical automata based on extensions of the Myhill-Nerode
theorem have been proposed for languages in which data values can be compared
for equality [8,3,6], and also for inequality when the data domain has a total order
(in [3,6]). In these works, canonicity is obtained at the price of rather strict
restrictions on how data is stored in variables and which guards may be used in
transitions: two variables may not store the same data value, and in the ordered
case each state enforces a fixed ordering between its variables. These restrictions
often cause a blow-up in the number of states, since they require testing and
encoding accidental as well as essential1 relations between data values in a word.
For instance, a cross-product of two independent automata, representing, e.g.,
the interleaving of two independent languages, will result in a blow-up due to
the recording of accidental relations between data values of the two languages.

In [7], we presented a succinct canonical automaton model, based on a Myhill-
Nerode characterization, for languages where data is compared for equality.
Our model does not require different variables to store different values, and
allows representing only essential relations between data values. Our approach
results in register automata that are minimal in a certain class, and that can
be exponentially more succinct than similar, previously proposed automata for-
malisms [8,3,6]. We have also exploited our model for active learning of data
languages [12].

In this paper, we extend our canonical automaton model of [7] to data do-
mains where data values can be compared using an arbitrary set of relations.
We consider data languages that are able to distinguish words by comparing
data values using only the relations in this set, and propose a form of RA that
accept such languages. To achieve succinctness, our construction must be able to
filter out unnecessary tests between data values, and also produce the weakest
possible guards that still make the necessary distinctions between data words.
It is a challenge to achieve such succinctness while maintaining canonicity. We
approach it by using a symbolic representation of data languages in the form
of decision-tree-like structures, called constraint decision trees. Constraint de-
cision trees have superficial similarities with decision diagrams or BDDs, but
since relations on the data domain typically impose asymmetries in the tree,
we cannot use the minimization techniques for BDDs. Instead, we introduce a
signature-specific branching framework that may restrict the allowable guards,
and also allows us to compare branches in the tree in order to filter out unneces-
sary guards. Under some conditions on the branching framework, we obtain the
nontrivial result that our decision trees are minimal.

1 By essential relation, we mean a test which is necessary for recognizing the language.
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As an illustration, if our data domain is equipped with tests for equality and
(ordered) inequality, then after processing three data values (say, d1, d2, d3), it
may be that the only essential test between a fourth value d4 and these three is
whether d4 ≤ d1 or not (i.e., all other comparisons not essential for determining
whether the data word is accepted). In previous automaton proposals, this would
typically result in 7 different cases, representing all possible outcomes of testing
d4 against the three previous values. In our proposal, however, we take into
account whether comparisons are essential or not, resulting in only 2 cases.

Related work. An early work on generalizing regular languages to infinite al-
phabets is due to Kaminski and Francez [13], who introduced finite memory
automata (FMA) that recognize languages with infinite input alphabets. Since
then, a number of formalisms have been suggested (pebble automata, data au-
tomata, . . . ) that accept different flavors of data languages (see [20,5,4] for an
overview). Many of these formalisms recognize data languages that are invariant
under permutations on the data domain, corresponding to the ability to test for
equality on the data domain. Much of the work focuses on non-deterministic
automata and are concerned with closedness properties and expressiveness re-
sults of data languages. A model that represents relations between data values
without using registers or variables is proposed by Grumberg et al. [10].

Our interest lies in canonical deterministic RAs that can be used to model
the behavior of protocols or (restricted) programs. Kaminski and Francez [8],
Benedikt et al. [3], and Bojanczyk et al. [6] all present Myhill-Nerode theorems
for data languages with equality tests. Canonicity is achieved by restricting how
state variables are stored, which prompted us to propose a more succinct con-
struction in [7].

There are a few extensions of Myhill-Nerode theorems to more general sets
of relations between data values. Benedikt et al. [3] and Bojanczyk et al. [6]
consider the case where the data domain is equipped with a total order. They
present canonical automata, in which stored variables must be known to obey
a total order, and in which guards must be as tight as possible (we term such
automata complete): such restrictions may lead to unintuitive and significant
blow-ups in the number of control locations.

Organization. In the next section we provide a motivating example, and intro-
duce the register automaton model as a basis for representing data languages.
In Section 3, we introduce a succinct representation of data languages, which
suppresses non-essential tests, in the form of a decision tree-like structure called
constraint decision trees (CDTs). Based on this representation, in Section 4 we
define a Nerode congruence, and show that it characterizes minimal canonical
forms of deterministic RAs. We also discuss the effects of restricting the RA in
different ways. Conclusions are provided in Section 5.

2 Data Languages and Register Automata

In this section, we introduce data languages. Data languages can be seen as
languages over finite alphabets augmented with data. A data symbol is of the
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form α(d) where each α is an action and each d is a data value from some
(possibly infinite) domain. A data word is a sequence of data symbols, and a
data language is a set of data words.

We will consider data languages that can be recognized by comparing data
values using relations from a given set R of binary relations. For example, if
the set R of binary relations includes only the equality relation, this means that
data languages will be closed under permutations on the data domain.

A register automaton (RA) is an automaton model capable of recognizing a
data language. It reads data values as input and has registers (or variables) for
storing them. When reading a data value, a register automaton can compare it
to one or more variables in order to determine, e.g., its next transition. In the
following sections, we will describe a register automaton model that recognizes
data languages parameterized on a set of binary relations.

Example. Let R = {<,=} and let data values be rational numbers. Consider
the data language L2, consisting of data words where the last data value is
the second-largest one in the entire data word. (Whenever the largest data value
occurs several times, we call a data value second-largest if it is equal to the largest
data value.) This language contains, for example, the data words α(3) α(4) α(4)
and α(9) α(1) α(4) α(2) α(8). In the first case, the last data value is equal to the
largest data value in the word. In the second case, the last data value is smaller
than the largest data value in the word.

A register automaton (A2) that recognizes L2 is shown in Figure 1. (For
brevity, we have omitted the actions in the figure.) The A2 automaton has three
locations, each with a set of associated variables. Accepting locations are de-
noted by two concentric circles, and the initial location is marked by an arrow.
Arcs represent transitions, and they are labeled with guards and variable as-
signments. Informally, at each transition, a new data value, represented by the
formal parameter p, is read by the automaton and compared to the existing loca-
tion variables (using the guards). Depending on the outcome of the comparison,
variables may be assigned new values, either the current data value or the value
of another variable.

l0 l1

{x1}

l2 {x1, x2} l3 {x1,x2}
x1 :=p

x1<p
x2 :=x1, x1 :=p x1<p

x2 :=x1, x1 :=p

p≤x1

x2 :=p, x1 :=x1

x2≤p≤x1

x2 :=p, x1 :=x1

x2≤p≤x1

x2 :=p, x1 :=x1

p<x2

x2 :=x2, x1 :=x1

x1<p

x2 :=x1, x1 :=p

p<x2

x2 :=x2, x1 :=x1

Fig. 1. Running example: the A2 automaton
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The second-largest data value seen so far is always kept in the variable x2
and the largest data value seen so far in the variable x1. Thus after having read
the first two data values in any data word, the automaton will have reached
a ’steady-state’ where both variables x1 and x2 have stored data values, and
any new data values are compared to these. The automaton will then alternate
between locations l2 and l3 until the end of the data word is reached. This is
because whenever a new data value is read by the automaton, it needs only
distinguish between three cases: p is smaller than x2, p is larger than x1, or
x2≤p≤x1 in order to determine whether to transition to the accepting location
l2 or the rejecting location l3. ��

2.1 Data Languages

Assume an unbounded domain D of data values, and a set R of binary relations
on D. Assume a set of actions, each with an arity that determines how many
parameters it takes from the domain D. In this paper, we assume that all actions
have arity 1; it is straightforward to extend the results to the general case.

A data symbol is a term of form α(d), where α is an action and d is a data
value from the domain D. A data word is a sequence of data symbols. Two
data words wd = α1(d1) . . . αn(dn) and w′

d = α1(c1) . . . αn(cn), are equivalent,
denoted wd ≈R w

′
d, if di R di′ ↔ ci R ci′ whenever R ∈ R, for 1 ≤ i, i′ ≤ n and

1 ≤ i ≤ nj, 1 ≤ i′ ≤ nj′ . Intuitively, wd and w′
d are equivalent if they have the

same sequences of actions and they cannot be distinguished by the relations in
R. A data language is a set L of data words, which respects R in the sense that
wd ≈R w

′
d implies wd ∈ L ↔ w′

d ∈ L. We will often represent a data language
as a mapping from the set of data words to {+,−}, where + stands for accept
and − for reject.

2.2 Register Automata

Assume a set of formal parameters, ranged over by p1, p2, . . ., and a finite set of
variables (or registers), ranged over by x1, x2, . . ..

A parameterized symbol is a term of form α(p), where α is an action and p is a
formal parameter. A parameterized word is a sequence of parameterized symbols
in which all formal parameters are distinct, i.e., we assume a (re)naming scheme
that avoids clashes. A guard is a conjunction of negated and unnegated relations
(from R) between formal parameters or variables.

Definition 1 (RA). A register automaton (RA) is a tuple A = (L, l0, X, T, λ),
where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X maps each location l ∈ L to a finite set X(l) of variables, where X(l0) is

the empty set,
– T is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where
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• l is a source location,
• l′ is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X(l), and
• π (the assignment) is a mapping from X(l′) to X(l)∪ p (intuitively, the
variable x ∈ X(l′) is assigned the value of π(x)), and

– λ : L �→ {+,−} maps each location to either + (accept) or − (reject),

such that for any location l and actionα, the disjunction of all guards g in transitions
〈l, α(p), g, π, l′〉 ∈ T is equivalent to true i.e., A is completely specified. ��

Semantics of a register automaton. A register automaton A classifies data words
as either accepted or rejected. A standard way to describe how this is done is to
define a state of A as consisting of a location and an assignment to the variables
of that location. Then, one can describe how A processes a data word symbol by
symbol: on each data symbol, A finds a transition with a guard that is satisfied
by the parameters of the symbol and the current assignment to variables; this
transition determines a next location and an assignment to the variables of the
new location. When the last symbol has been processed, the word is accepted if
an accepting location has been reached, otherwise the word is rejected. We omit
a more formal account.

An RA is determinate (called a DRA) if no data word can be processed in
two different ways to reach both accepting and rejecting locations. A data word
is accepted (rejected) by a DRA A if processing the word reaches an accepting
(rejecting) location. We define A(wd) to be + (−) if the data word wd is accepted
(rejected) by A. The language recognized by A is the set of data words that it
accepts.

3 Symbolic Representation of Data Languages

A given data language may be accepted by many different DRAs. In order to
obtain a succinct, canonical form of DRAs, we will in this section define a canon-
ical representation of data languages; in the next section we will describe how
to derive canonical DRAs from this representation.

We first introduce a symbolic representation for sets of data words, called
constrained words. These can also be regarded as representing runs of a reg-
ister automaton. We can then use sets of constrained words, together with a
classification of these words as “accepted” or “rejected”, as a representation of
data languages. Such classified sets will be called constraint decision trees. We
establish, as a central result (in Theorem 1), that any data language can be
represented by a minimal set of constrained words, corresponding to a mini-
mal constraint decision tree. This minimal set will correspond to the set of runs
of our canonical automaton, and will serve several purposes during automata
construction:

– it will allow us to keep only the essential relations between data values and
filter out inessential (accidental) relations between data values,
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– from it, we can derive the parameters an automaton must store in variables
after processing a data word, and

– we can transform parts of it directly into transitions when constructing a
canonical DRA.

Constrained words. A parameterized word w = α1(p1) · · ·αk(pk) is a data word
where concrete data values are replaced by formal parameters. We let parameters
be indexed 1 · · · |w|, where |w| is the number of formal parameters in w, i.e., the
sequence of parameters is p1 · · · p|w|. A literal is of the form pi R pj or ¬(pi R pj),
where pi and pj are formal parameters andR ∈ R. A constraint φ is a conjunction
of literals. We say that a constraint φ is weaker than a constraint φ′, and that φ′

is stronger than φ if φ′ implies φ. A constrained word is a pair 〈w, φ〉 consisting
of a parameterized word w and a constraint φ over the formal parameters of w.
If l is a literal of form pi R pj or ¬(pi R pj), then the level of l in w is the
maximum of i and j. A constraint φ is k-level in w if it contains only literals of
level k in w, and it is ≤ k-level in w if it contains only literals of level ≤ k in w.
Let φw|k denote the conjunction of all k-level literals in 〈w, φ〉. Similarly, define
φw|<k as the conjunction of all literals of φ of level smaller than k in w. Define
φw|≤k, φ

w|>k, and φ
w|≥k analogously.

A constraint φ is a k-atom if all its literals are of level at most k, and φ implies
either pi R pj or ¬(pi R pj) for any R ∈ R whenever i, j ≤ k. Intuitively, an
atom is a maximal consistent constraint, i.e., it cannot be more specified without
becoming inconsistent. A constrained word 〈w, φ〉 is an atom if φ is a |w|-atom.

A data word wd satisfies a constrained word 〈w, φ〉, denoted wd |= 〈w, φ〉, if w
and wd have the same sequence of actions, and the data values in wd satisfy φ in
the obvious way.

Example. Let w = α1(p1) α2(p2) α3(p3) be a parameterized word, and let
φ = p1≤p3≤p2 . Then 〈w, φ〉 is a constrained word. Let wd = α1(3) α2(7) α3(4)
be a data word. Then wd |= 〈w, φ〉, and that 〈w, φ〉 is an atom. ��

3.1 Constraint Decision Trees

We will now introduce constraint decision trees, and how they recognize data
languages. Let a k-branching be a set of k-level constraints whose disjunction is
equivalent to true. Let φ be a ≤ (k − 1)-level constraint. A k-level constraint ψ
is φ-admissible (or admissible after φ) if φ implies (φ∧∃pk ψ), i.e., if ψ does not
add any additional constraint between the parameters of φ. A k-branching Ψ is
φ-admissible if each k-level constraint in Ψ is φ-admissible.

A set Φ of constrained words is prefix-closed if 〈wv, φ〉 ∈ Φ implies
〈w, φwv|≤|w|〉 ∈ Φ. A set Φ is extension-closed if for any 〈w, φ〉 ∈ Φ and any
action α, the set of (|w|+1)-level constraints ψ such that 〈wα(p|w|+1), φ∧ψ〉 ∈ Φ
forms a φ-admissible (|w| + 1)-branching.

Definition 2 (CDT). A constraint decision tree (CDT) T is a pair
〈Dom(T ), λT 〉 where Dom(T ) is a non-empty prefix-closed and extension-closed
set of constrained words, and λT : Dom(T ) �→ {+,−} is a mapping from
Dom(T ) to {+,−}. ��



64 S. Cassel et al.

A CDT T is determinate (called a DCDT) if λT (〈w, φ〉) = λT (〈w, φ′〉) when-
ever wd |= 〈w, φ〉 and wd |= 〈w, φ′〉 for some data word wd. It is complete if all
constrained words in Dom(T ) are atoms.

A DCDT defines a language λT defined by λT (wd) = λT (〈w, φ〉) whenever
wd |= 〈w, φ〉. Intuitively, a CDT can be thought of as a set of runs of a register
automaton. Each constrained word 〈w, φ〉 represents a path through the automa-
ton: the parameterized word w is the sequence of actions and formal parameters,
and φ is the conjunction of all guards that are tested along the path. A design
constraint for our canonical automaton model is that all essential tests concern-
ing the relationship between a parameter pi and previously received parameters
(i.e., parameters pj with j < i) should be performed when pi is processed. This
is reflected in the property of admissibility, which intuitively means that a guard
should not retroactively constrain the relation between previously received pa-
rameters. The property of extension-closed implies that the CDT is completely
specified in the sense that it can classify any data word as accepted or rejected.

In the following, we will show that for each language L, we can construct
a canonical CDT that faithfully represents L, and which is also minimal under
some restrictions. We will first try to provide some intuition for our construction.

Constructing a canonical DCDT. A first attempt at constructing a canonical
DCDT T could be to simply include all atoms in the domain Dom(T ), thus
resulting in a complete DCDT. This DCDT will surely be able to correctly
classify a data language, but it will typically be prohibitively large. We need
to find ways to reduce the size of the CDT while still rendering it capable to
correctly classify the language it represents.

Example. Let D be the set of rational numbers, and let R = {<,=}. Assume
that T is a complete DCDT. The constrained words in Dom(T ) of the form
〈a(p1)b(p2)c(p3), φ〉 would then be such that φ specifies some total order between
p1, p2, p3. The question is then whether we actually need a total order between
the parameters in order to correctly classify the data language represented by
T . Perhaps this language is insensitive to the ordering between p2 and p3, or it
simply does not distinguish the case p2<p3 from p2=p3. We would like the CDT
to reflect this by replacing atoms by weaker constrained words. A constrained
word is weaker than an atom if the atom implies the constrained word. This
means that a constrained word can be used to represent several atoms, i.e., we
can ’merge’ the atoms.

Two atoms can be represented by the same constraint if any constraint that
is admissible after the one atom is also admissible after the second atom (and
vice versa), and their classifications (accept/reject) match. However, sometimes
we want to merge atoms that do not fulfill these conditions. Consider the atoms
p1<p2∧p2<p3 and p1<p2∧p2=p3. We can not add the same set of constraints
after both atoms; for instance, the 4-level constraint p2<p4∧p4<p3 is admissible
after the atom p1<p2 ∧ p2<p3, but not after p1<p2 ∧ p2=p3.

We can solve this problem by introducing an ordering #φ between extensions
of an atom. We then try to use the #φ-smaller extension to classify the larger
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extension. This can be done if the classifications match and the resulting con-
straints are admissible. In the above example, p2 < p3 and p2 = p3 extend the
atom p1 < p2. If we order them as p2 < p3 #φ p2 = p3, we can check if the
classification of the extensions of p1<p2 ∧ p2 = p3 matches the classification of
the extensions of p1 < p2 ∧ p2 < p3. If they do, we can merge the atoms into
p1<p2 ∧ p2≤p3. ��

3.2 Branching Frameworks

Let us now describe the structure that must be predefined in order to define a
canonical DCDT. We assume that the set R of binary relations on D is fixed.

Let φ be a k−1-constraint. A guard hierarchy for φ is a set P of φ-admissible
k-level constraints, in which the set of maximally strong (wrp. to implication)
constraints ψ (called atomic branches of P) are such that φ∧ψ is an atom, and
such that the set of atomic branches of P forms a φ-admissible k-branching.

Definition 3 (Branching framework). A branching framework is a mapping
M which to each k−1-atom φ assigns a pair 〈P ,#φ〉, where P is a guard hierarchy
for φ, and #φ is a partial order on the atomic branches of P. ��

Intuitively, the elements of P are the possible k-level constraints that test the
next parameter that follows after φ in a CDT. The atomic branches represent the
“most constrained” k-level constraints that completely characterize how the next
parameter pk is related to previous parameters p1, . . . , pk−1. Note that different
guards or atomic branches need not be mutually exclusive.

For any k-level constraint g in P , define the support of g after φ, denoted
suppφ(g), as the set of atomic branches ψ ∈ P such that (φ∧ψ) implies (φ∧ g).
Since the set of atomic branches forms a k-branching, it follows that any element
g in P represents the set of atomic branches in suppφ(g) in the sense that

(φ ∧ g)↔ (φ ∧
∨

ψ∈suppφ(g)

ψ) .

Definition 4. A branching framework M is adequate if whenever M(φ) =
〈P ,#φ〉, then

– for each constraint g in P, the set suppφ(g) contains a unique minimal (wrp.
to #φ) atomic branch, called the principal atomic branch of g, and

– Whenever two constraints g, g′ in P have the same principal atomic branch,
then g ∨ g′ is in P. ��

The concept of principal atomic branch can be extended from k-constraints to
arbitrary constrained words as follows. For a CDT T , an adequate branching
frameworkM, and any constrained word 〈w, φ〉, define the principal atom of φ
inductively, as follows:

– The principal atom of the empty constraint true over the empty sequence of
parameters is true
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– If φ is a constraint over p1, . . . , pk, let φ
′ be the principal atom of φw|≤k−1,

let ψ be φw|k, and letM(φ′) be 〈P ,#φ〉. Then the principal atom of φ over
p1, . . . , pk is the atom φ′ ∧ ψ′, where ψ′ is the principal atomic branch of ψ.

The branching framework determines what kinds of constraints we allow in the
CDT. For example, if we are dealing with data values that are rational numbers
and subject to some order <, we might allow constraints to specify intervals
(such as p2 < p4 < p1). Whenever we can extend a constraint φ by some other
constraint g, we must also be able to extend the principal atom of φ by g, i.e.,
the constraints φ and g must be compatible.

Example. Consider the case where R is {=}. We can obtain the model in our
previous work [7], by a branching framework which assigns to a ≤ (k − 1)-atom
φ stating that the parameters p1, . . . , pk−1 are all different, the pair 〈P ,#φ〉,
where

– P consists of all conjunctions of subsets of the literals p1 	=pk, · · · , pk−1 	=pk
(of these, only the maximal one is an atom), as well as the k−1 constraints
of form pi=pk for i = 1, . . . , k−1, and

– (p1 	= pk ∧ · · · ∧ pk−1 	= pk) #φ pi = pk for i = 1, . . . , k−1, but pi = pk and
pj=pk are not ordered for i 	=j.

Consequently, each k-level constraint with nontrivial support will have p1 	=
pk ∧ · · · ∧ pk−1 	=pk as principal atomic branch. ��

Example. Let us next consider the case where D is the set of rational numbers,
and R is {<,=} (it is important not to let D be some set of integers, since
that case is more complicated). An atom φ over p1, . . . , pk−1 will specify some
order between p1, . . . , pk−1, for example p1 < · · · < pk−1. A suitable branching
framework will assign to a ≤ (k − 1)-atom φ the pair 〈P ,#φ〉, where

– Ψ contains all possible non-empty intervals between to parameters pi, pj
with 1 ≤ i ≤ j ≤ k, e.g., p2 ≤ pk < p5, or (some degenerate cases) pk = pi,
or pk<p1, or pk−1<pk. Among these, only the minimal intervals are atoms.

– The relation #φ will then be the smallest transitive relation that fulfills the
following conditions:

• pi<pk<pi+1 #φ pi−1<pk<pi (for i = 2, . . . , k−2), and
p1<pk<p2 #φ pk<p1, and
pk−1<pk #φ pk−2<pk<pk−1,

• pi−1<pk<pi #φ pk=pi (for i = 2, . . . , k−1), and
pk<p1 #φ pk=p1.

��

Definition 5. Let T be a CDT, and let M be an adequate branching frame-
work. Then T is an M-CDT if for any 〈w, φ〉 ∈ Dom(T ) with φ′ being the
principal atom of φ, it is the case that whenever ψ is a |w| + 1-level constraint
with 〈wα(p|w|+1), φ ∧ ψ〉 ∈ Dom(T ), then ψ ∈ P , where 〈P ,#φ〉 =M(φ′) ��
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3.3 Minimal Constraint Decision Trees

We will now show how to obtain a minimal constraint decision tree for a data
language.

Theorem 1 (Minimal DCDT). LetM be an adequate branching framework.
Then for any data language L, there is a unique minimalM-DCDT T such that
L = λT . ��

By minimal, we mean that if T ′ is any otherM-DCDT with L = λT ′ , then any
constrained word in Dom(T ′) is contained in a constrained word in Dom(T ).
Intuitively, this means that Dom(T ) uses the weakest possible constraints that
are necessary in order to be able to correctly recognize the language L. We
will sometimes use the term L-essential (constrained) words (or just L-essential
words) for members of Dom(T ) where T is the minimal DCDT with L = λT .

Proof. (Sketch.) We prove Theorem 1 by construction. The minimal DCDT for L
is constructed starting from the #φ-minimal atoms that serve as the leaf nodes.
Atoms are merged to form guards in a bottom-up fashion. This is only possible if
we assume a bounded length of words that are classified by L. We will therefore
assume a maximal length n of data words and construct a minimal “truncated”
DCDT Tn, which correctly classifies data words of length at most n. We can
then show that Tn “grows monotonically” with increasing n, so that T can be
taken as a limit of the trees Tn.

Example. We will now describe how to construct the canonical CDT for our
running example L2. Recall that a branching framework assigns a set of partially
ordered branches to each atom. The partial order determines in what order we
will add branches as guards in the minimal CDT, and also which branches can
be merged to form guards. We will consider atoms of increasing k-level. At
each level, we will construct the subtree (set of constraints) of each atomφ in
increasing #φ-order. We will then check if any of the atoms can be merged. At
the leaf level in the tree, atoms can be merged if they have the same classification.
For reasons of brevity, we will here only consider words of length 3 at most.

In the L2 example, the 1-level atom is true. We generate the set of 2-level
atomic branches, ordered as p1<p2 #∅ p2<p1 #∅ p1=p2.

We apply the branching framework to the smallest branch p1<p2, and obtain
the set of 3-level atomic branches after p1<p2, ordered as {p2<p3 #(p1<p2)

p1<p3<p2 #(p1<p2) p3=p2, p1<p3<p2 #(p1<p2) p3<p1 #(p1<p2) p3=p1}.
The smallest branch is p2<p3, which is a rejecting leaf. We construct the first
3-level L2-essential constrained word as p2<p3.

The next smallest branch is p1<p3<p2 which is accepted. It can be merged
with the larger branches p1=p3 and p2=p3, since they are both also accepting.
(Because we are at the leaf level in the tree, this is sufficient to determine whether
branches can be merged.) We thus construct the second 3-level L2-essential con-
straint as p1 ≤ p3 ≤ p2. The only branch left is now p3<p1, which will become
the third L2-essential constraint.
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There are no more 3-level branches to classify, so we go back to level 2. Since
we have already constructed the subtree after p1<p2, we proceed to construct
the subtree after the next smallest 2-level branch, p2<p1 in the same manner.
This results in the L2-essential constraints p2 ≤ p3 ≤ p1, p3<p2 and p1<p3.

The last remaining 2-level branch is p1=p2. We construct the subtree, result-
ing in the constraints p1=p2=p3, p3<p1=p2 and p1=p2<p3. It is possible to
use the subtree after p2<p1 to classify the constraints after p1= p2, so we can
merge these atoms into p2≤p1.

We obtain the set of L2-essential constrained words of length 3 as
{〈w, p3<p2≤p1〉, 〈w, p2≤p3≤p1〉, 〈w, p2≤p1<p3〉, 〈w, p3<p1<p2〉,
〈w, p1≤p3≤p2〉, 〈w, p1<p2<p3〉} where w = α(p1)α(p2)α(p3).

The L2-essential constrained words directly correspond to paths in the A2 au-
tomaton in Figure 1. For example, the path l0 → l1 → l3 → l3 corresponds to
the constrained word 〈w, p3 < p1 < p2〉. Since A2 always stores the largest data
value seen so far in the variable x1 and the second-largest seen so far in x2, this
path requires variables to be reassigned. The variable x1 will first store the first
data value. Then, because the second data value is larger than the first, x1 will be
re-assigned the second data value (and the first data value will be moved to x2).

4 Nerode Congruence

We will now define a Nerode-like congruence on constrained words. As in the
classical Nerode congruence for regular languages, we will define constrained
words to be equivalent if their suffixes are equivalent.

In order to describe how to fold a constraint decision tree into a register
automaton, we need to decide which parameters to store as variables in the
automaton. We associate a set of memorable parameters with each constrained
word. These are the parameters that occur in the word and are needed in some
guard in some of its suffixes. When the CDT is folded into a register automa-
ton, the memorable parameters of a node will become location variables at the
location that corresponds to that particular node.

Let us first define how a constrained word can be split into a prefix and a
suffix. Consider a constrained word 〈w, φ〉, where the parameterized word w is a
concatenation uv, and u has k parameters. We can make a corresponding split
of φ as φw|≤k ∧ φw|>k. Then 〈u, φw|≤k〉 (the prefix) is a constrained word, but
〈v, φw|>k〉 (the suffix) is in general not, since φw|>k refers to parameters that
are not in v. We therefore define a 〈u, φ〉-suffix as a tuple 〈v, ψ〉, where ψ is a
constraint over parameters of u and v, in which each literal contains at least one
parameter from v, and such that 〈uv, φ∧ψ〉 (which we often denote 〈u, φ〉; 〈v, ψ〉)
is a constrained word.

Definition 6 (Memorable). Let L be a data language, let M be an ade-
quate branching framework, and let T be the minimal M-DCDT recognizing L.
The L-memorable parameters of a constrained word 〈w, φ〉 ∈ Dom(T ), denoted
memL(〈w, φ〉), is the set of parameters in w that occur in some 〈w, φ〉-suffix
〈v, ψ〉 such that 〈w, φ〉; 〈v, ψ〉 ∈ Dom(T ). ��



A Succinct Canonical Register Automaton Model 69

In order for our canonical form to capture exactly the causal relations between
parameters, we will allow memorable parameters to be permuted. when compar-
ing words. Two words will be considered equivalent if they require equivalent
parameters to be stored, independent of their ordering or their names.

Definition 7 (Nerode congruence). Let L be a data language, and let T
be the minimal DCDT recognizing L. We define the equivalence ≡L on con-
strained words by 〈w, φ〉 ≡L 〈w′, φ′〉 if there is a bijection γ : memL(〈w, φ〉) �→
memL(〈w′, φ′〉) such that

– 〈v, ψ〉 is a 〈w, φ〉-suffix such that 〈wv, φ ∧ ψ〉 ∈ Dom(T ) iff 〈v, γ(ψ)〉 is
a 〈w′, φ′〉-suffix such that 〈w′v, φ′ ∧ γ(ψ)〉 ∈ Dom(T ), and then

– L(〈wv, φ ∧ ψ〉) = L(〈w′v, φ′ ∧ γ(ψ)〉),

where γ(ψ) is obtained from ψ by replacing all parameters in memL(〈w, φ〉) by
their image under γ.

Intuitively, two constrained words are equivalent if they induce the same resid-
ual languages modulo a remapping of their memorable parameters. The equiv-
alence ≡L is also a congruence in the following sense. If 〈w, φ〉 ≡L 〈w′, φ′〉 is
established by the bijection γ : memL(〈w, φ〉) �→ memL(〈w′, φ′〉), then for any
memL(〈w, φ〉)-suffix 〈v, ψ〉 we have 〈w, φ〉; 〈v, ψ〉 ≡L 〈w′, φ′〉; 〈v, γ(ψ)〉.

By using the Nerode congruence, we can ’fold’ a constraint decision tree into
a register automaton, mapping constrained words that are equivalent by this
congruence to the same location.

We are now able to relate our Nerode congruence to DRAs.

Theorem 2 (Myhill-Nerode). A data language L is recognizable by a DRA
iff the equivalence ≡L on L-essential words has finite index.

Proof. (Sketch.) We will not detail the extension of the Myhill-Nerode theorem
here, but refer to the version stated in [7]For the if-direction, we construct a
DRA from a congruence. The locations of the resulting DRA will be given by
the finitely many equivalence classes of the Nerode relation on essential words.
Transitions will be extracted from the representative words in each equivalence
class. Location variables will be given by the memorable parameters of the rep-
resentative words. For the only-if direction, we assume any DRA that accepts
L. The proof idea then is to show that two L-essential constrained words cor-
responding to sequences of transitions that lead to the same location are also
equivalent w.r.t. ≡L, i.e., that one location of a DRA cannot represent more
than one class of ≡L. This can be shown using congruence properties. ��

Let us now reconsider our running example. In general, many different register
automata can be constructed that accept some given data language – for exam-
ple, one that simply stores each new data value in a location variable, regardless
of whether or not it will be referenced later. This leads to an unnecessary blowup
in the number of location variables. Another automaton might only store data
values that will be referenced later, but perform all possible tests on newly re-
ceived data values. Such an automaton would distinguish between the two cases
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x2 ≤ p < x1 and x2 = p < x1 in the self-loop at location l2 in the automaton of
Figure 1. In general, canonical models are easier to define if strong restrictions
are imposed on their form. In previous proposals, typical such restrictions in-
clude to maintain a priori relations between stored variables (e.g., that x2 < x1),
or that guards always be as strong as possible (thus duplicating the self-loop at
location l2). In this paper, we have lifted several such restrictions, while still
producing canonical automata.

Example. Consider the A2 automaton in Figure 1. Here, the locations l2 and
l3 both have two location variables x1 and x2. The variable x1 always stores
the largest data value seen so far, and the variable x2 stores the second-largest
data value seen so far. There is no uniqueness restriction on the variables, so it
may well be that x1 and x2 store equal data values. Imposing the uniqueness
restriction on the location variables of this automaton will lead to l2 and l3
being duplicated. The automaton will thus have two accepting states and two
rejecting, depending on whether the two largest data values seen so far are equal
or not. (The ’initial’ state l0 has no location variables; l1 only has one location
variable, and they will both stay that way.) ��

5 Conclusions and Future Work

In this paper, we have presented a succinct canonical register automaton model
for data languages, in which data values can be compared by an arbitrary given
set of relations. This construction consistently and significantly generalizes our
previous work [7], which considered only the equality relation. Our construction
gives rise to automata that are often considerably more succinct than those of
previous proposals.

The main technical contribution of the paper is the symbolic treatment of
data languages using branching frameworks to organizate relations on the data
domain canonically. This allows us to extend our ideas from [7] resulting in a
Myhill Nerode-like theorem for this larger class of data languages.

Our immediate plans are to use these results to derive canonical models of
realistic protocols, services, and interfaces, as well as generalizing Angluin-style
active learning to this class of systems.
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Abstract. We present Rabinizer, a tool for translating formulae of the
fragment of linear temporal logic with the operators F (eventually) and
G (globally) into deterministic Rabin automata. Contrary to tools like
ltl2dstar, which translate the formula into a Büchi automaton and apply
Safra’s determinization procedure, Rabinizer uses a direct construction
based on the logical structure of the formulae. We describe a number of
optimizations of the basic procedure, crucial for the good performance
of Rabinizer, and present an experimental comparison.

1 Introduction

The automata-theoretic approach to model checking is one of the most important
successes of theoretical computer science in the last decades. It has led to many
tools of industrial strength, like Holzmann’s SPIN. In its linear-time version, the
approach translates the negation of a specification, formalized as a formula of
Linear Time Temporal logic (LTL), into a non-deterministic ω-automaton ac-
cepting the possible behaviours of the system that violate the specification. Then
the product of the automaton with the state space of the system is constructed,
and the resulting ω-automaton is checked for emptiness. Since the state space
can be very large (medium-size systems can easily have tens of millions of states)
and the size of a product of automata is equal to the product of their sizes, it is
crucial to transform the formula into a small ω-automaton: saving one state in
the ω-automaton may amount to saving tens of millions of states in the product.
For this reason, cutting down the number of states has been studied in large
depth, and very efficient tools like LTL2BA [4] have been developed.

In recent years the theory of the automata-theoretic approach has been suc-
cessfully extended to probabilistic systems and to synthesis problems. However,
these applications pose a new challenge: they require to translate formulas into
deterministic ω-automata (loosely speaking, the applications require a game-
theoretical setting with 11/2 or 2 players, whose arenas are only closed under
product with deterministic automata) [3]. For this, deterministic Rabin, Streett,
or parity automata can be used. The standard approach is to first transform LTL
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formulae into non-deterministic Büchi automata and then translate these into
deterministic Rabin automata by means of Safra’s construction [10]. (The deter-
minization procedure of Muller-Schupp is known to produce larger automata [1].)
In particular, this is the procedure followed by ltl2dstar [5], the tool used in
PRISM [8], the leading probabilistic model checker. However, the approach has
two disadvantages: first, since Safra’s construction is not tailored for Büchi au-
tomata derived from LTL formulae, it often produces (much) larger automata
than necessary; second, there are no efficient ways to minimize Rabin automata.

We have recently presented a procedure to directly transform LTL formu-
lae into deterministic automata [7]. The procedure, currently applicable to the
(F,G)-fragment of the logic, heavily exploits formula structure to yield much
smaller automata for important formulae, in particular for formulae describing
fairness. For instance, a conjunction of three fairness constraints requiring more
than one million states with ltl2dstar only required 1560 states in [7].

While the experiments of [7] are promising, they were conducted using a
primitive implementation. In this paper we report on subsequent work that has
transformed the prototype of [7] into Rabinizer, a tool incorporating several
non-trivial optimizations, and mature enough to be offered to the community.
For example, for the formula above, Rabinizer returns an automaton with only
462 states.

2 Rabinizer and Optimizations

We assume the reader is familiar with LTL and ω-automata. The idea of the
construction of [7] is the following. The states of the Rabin automaton consist
of two components. The first component is the LTL formula that, loosely speak-
ing, remains to be satisfied. For example, if a state has ϕ = Fa ∧ Gb as first
component, then reading the label {a, b} leads to another state with Gb as first
component. The second component remembers the last label read (one-step his-
tory). To see why this is necessary, observe that for ϕ = GFa the first component
of all states is the same. The second component allows one to check whether a
is read infinitely often. Finally, while the Rabin acceptance condition is a dis-
junction of Rabin pairs, the construction yields a disjunction of conjunctions of
Rabin pairs, cf. e.g. ϕ = GFa ∧ GFb, and so in a final step the “generalized
Rabin” automaton is expanded into a Rabin automaton.

The only optimizations of implementation used for the experiments of [7] are
the following. Firstly, only the reachable state space is constructed. Secondly,
the one-step history only records letters appearing in the first component of
each state. Thirdly, a simple subsumption of generalized Rabin conditions is
considered and the stronger (redundant) conditions are removed. Nevertheless,
no algorithm to do this has been presented and manual computation had to be
done to obtain the optimized results.

Rabinizer is a mature implementation of the procedure of [7] with several ad-
ditional non-trivial optimizations. Rabinizer is written in Java, and uses BDDs
to construct the state space of the automata and generate Rabin pairs. While
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for “easy” formulas ltl2dstar would often generate slightly smaller automata
than the implementation of [7], Rabinizer only generates a larger automaton
in 1 out of 27 benchmarks. Moreover, for “difficult” formulas, Rabinizer con-
siderably outperforms the previous implementation. We list the most important
optimizations performed.

– The evolution of the first component containing the formula to be satisfied
has been altered. In the original approach, in order to obtain the acceptance
condition easily, not all known information has been reflected immediately
in the state space thus resulting in redundant “intermediate” states.

– The generalized Rabin condition is now subject to several optimizations.
Firstly, conjunctions of “compatible” Rabin pairs are merged into single
pairs thus reducing the blowup from generalized Rabin to Rabin automa-
ton. Secondly, some subformulae, such as outer F subformulae, are no more
considered in the acceptance condition generation.

– The one-step history now does not contain full information about the let-
ters, but only equivalence classes of letters. The quotienting is done in the
coarsest way to still reflect the acceptance condition. A simple example is a
formula ϕ = GF(a ∨ b) where we only distinguish between reading any of
{{a}, {b}, {a, b}} and reading ∅.

– The blow-up of the generalized Rabin automaton into a Rabin automaton
has been improved. Namely, the copies of the original automaton are now
quotiented one by one according to the criterion above, but only the con-
juncts corresponding to a particular copy are taken into account. Thus we
obtain smaller (and different) copies.
Further, linking of the copies is now made more efficient. Namely, the final
states in all but one copy have been removed completely.

– No special state is dedicated to be initial without any other use. Although
this results only in a decrease by one, it plays a role in tiny automata.

For further details, correctness proofs, and a detailed input/output description,
see Rabinizer’s web page http://www.model.in.tum.de/tools/rabinizer/.

3 Experimental Results

The following table shows the results on formulae from BEEM (BEnchmarks
for Explicit Model checkers)[9] and formulae from [11] on which ltl2dstar was
originally tested [6]. In both cases, we only take formulae of the (F,G)-fragment.
In the first case this is 11 out of 21, in the second 12 out of 28. There is a slight
overlap between the two sets. Further, we add conjunctions of strong fairness
conditions and a few other formulae.

For each formula ϕ, we give the size of the Rabin automaton generated by
ltl2dstar (using the recommended configuration with LTL2BA), the prototype
of [7], and Rabinizer. For reader’s convenience, we also include the size of non-
deterministic Büchi automata generated by LTL2BA [4] and its recent improve-
ment LTL3BA [2] whenever they differ. The last two columns state the number of
Rabin pairs for automata generated by ltl2dstar and Rabinizer, respectively.
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In all the cases but one, Rabinizer generates automata of the same size as
ltl2dstar or often considerably smaller. Further, while in some cases Rabinizer
generates one additional pair, it generates less pairs when the number of pairs
is high. Runtimes have not been included, as Rabinizer transforms all formulae
within a second except for the conjunction of three fairness constraints. This
one took 13 seconds on an Intel i7 with 8 GB RAM, whereas ltl2dstar crashes
here and needs more than one day on a machine with 64 GB of RAM.

Formula ltl2dstar [7] Rabinizer LTL2(3)BA ∗-pairs R-pairs
G(a ∨ Fb) 4 5 4 2 1 2
FGa ∨ FGb ∨ GFc 8 9 8 6 3 3
F(a ∨ b) 2 4 2 2 1 1
GF(a ∨ b) 2 3 2 2 1 1
G(a ∨ Fa) 4 3 2 2 1 2
G(a ∨ b ∨ c) 3 4 2 1 1 1
G(a ∨ F(b ∨ c)) 4 5 4 2 1 2
Fa ∨Gb 4 7 3 4 2 2
G(a ∨ F(b ∧ c)) 4 5 4 5 (2) 1 2
FGa ∨ GFb 4 5 4 5 2 2
GF(a ∨ b) ∧ GF(b ∨ c) 7 10 3 3 2 1

(FFa ∧ G¬a) ∨ (GG¬a ∧ Fa)1 1 4 1 1 0 0
GFa ∧ FGb 3 5 3 3 1 1
(GFa ∧ FGb) ∨ (FG¬a ∧ GF¬b) 5 5 4 7 2 2
FGa ∧ GFa 2 3 2 2 (3) 1 1
G(Fa ∧ Fb) 5 10 3 3 1 1
Fa ∧ F¬a 4 8 4 4 1 1
(G(b ∨ GFa) ∧ G(c ∨ GF¬a)) ∨ Gb ∨ Gc 13 36 18 11 3 4
(G(b ∨ FGa) ∧ G(c ∨ FG¬a)) ∨ Gb ∨ Gc 14 18 6 12 (8) 4 3
(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 7 18 5 15 (10) 1 2
(F(b ∧GFa) ∨ F(c ∧ GF¬a)) ∧ Fb ∧ Fc 7 18 5 13 (10) 2 2
(GFa → GFb) 4 5 4 5 2 2
(GFa → GFb) ∧ (GFc → GFd) 11324 34 18 14 8 4∧3

i=1(GFai → GFbi) 1 304 707 1 560 462 40 10 8
GF(Fa ∨ GFb ∨ FG(a ∨ b)) 14 5 4 25 (6) 4 3
FG(Fa ∨ GFb ∨ FG(a ∨ b)) 145 5 4 24 (6) 9 3
FG(Fa ∨ GFb ∨ FG(a ∨ b) ∨ FGb) 181 5 4 24 (6) 9 3
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7. Křet́ınský, J., Esparza, J.: Deterministic Automata for the (F,G)-Fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.ltl2dstar.de/
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Abstract. We study two unary fragments of the well-known metric interval tem-
poral logic MITL[UI ,SI ] that was originally proposed by Alur and Henzinger, and
we pin down their expressiveness as well as satisfaction complexities. We show
that MITL[F∞,P∞] which has unary modalities with only lower-bound constraints
is (surprisingly) expressively complete for Partially Ordered 2-Way Deterministic
Timed Automata (po2DTA) and the reduction from logic to automaton gives us its
NP-complete satisfiability. We also show that the fragment MITL[Fb,Pb] having
unary modalities with only bounded intervals has NEXPTIME-complete satisfia-
bility. But strangely, MITL[Fb,Pb] is strictly less expressive than MITL[F∞,P∞].
We provide a comprehensive picture of the decidability and expressiveness of
various unary fragments of MITL.

1 Introduction

Metric Temporal Logic MTL[UI,SI] is a well established logic for specifying quantita-
tive properties of timed behaviors in real-time. In this logic, the temporal modalities UI

and SI are time constrained by a time interval I. A formula φUIψ holds at a position i
provided there exists a strictly later position j where ψ holds and φ must hold for all
in between positions. Moreover the “time distance” between j and i must be in the in-
terval I. Interval I = 〈l,u〉 has integer valued endpoints and it can be open, closed, half
open, or singular (i.e. [c,c]). It can even be unbounded, i.e. of the form 〈l,∞). Unary
modalities FIφ and PIφ can be defined as (true)UIφ and (true)SIφ, respectively. Unfor-
tunately, satisfiability of MTL[UI,SI] formulae and their model checking (against timed
automata) are both undecidable in general [AH93, Hen91].

In their seminal paper [AFH96], the authors proposed the sub logic MITL[UI ,SI ] hav-
ing only non-punctual (or non-singular) intervals. Alur and Henzinger [AFH96,AH92]
showed that the logic MITL[UI ,SI] has EXPSPACE-complete satisfiability1. In another
significant paper [BMOW08], Bouyer et al showed that sublogic of MTL[UI,SI ] with
only bounded intervals, denoted MTL[Ub,Sb], also has EXPSPACE-complete satisfia-
bility. These results are practically significant since many real time properties can be
stated with bounded or non-punctual interval constraints.

In quest for more efficiently decidable timed logics, Alur and Henzinger considered
the fragment MITL[U0,∞,S0,∞] consisting only of “one-sided” intervals, and showed that
it has PSPACE-complete satisfiability. Here, allowed intervals are of the form [0,u〉 or

1 This assumes that the time constants occurring in the formula are written in binary. We follow
the same convention throughout this paper.

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 77–91, 2012.
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〈l,∞) thereby enforcing either an upper bound or a lower bound time constraint in each
modality.

Several real-time properties of systems may be specified by using the unary future
and past modalities alone. In the untimed case of finite words, the unary fragment
of logic LTL[U,S] has a special position: the unary temporal logic LTL[F,P] has NP-
complete satisfiability [EVW02] and it expresses exactly the unambiguous star-free
languages which are characterized by Partially ordered 2-Way Deterministic Finite Au-
tomata (po2dfa) [STV01].

Inspired by the above, in this paper, we investigate several “unary” fragments of
MITL[UI ,SI ] and we pin down their exact decision complexities as well as expressive
powers. In this paper, we confine ourselves to point-wise MITL with finite strictly mono-
tonic time, i.e. the models are finite timed words where no two letters have the same time
stamp.

As our main results, we identify two fragments of unary logic MITL[FI ,PI ] for which
a remarkable drop in complexity of checking satisfiability is observed, and we study
their automata as well as expressive powers. These fragments are as follows.

– Logic MITL[F∞,P∞] embodying only unary “lower-bound” interval constraints of
the form F〈l,∞) and P〈l,∞). We show that satisfiability of this logic is NP-complete.

– Logic MITL[Fb,Pb] having only unary modalities F〈l,u〉 and P〈l,u〉 with bounded and
non-singular interval constraints where (u 	= ∞). We show that satisfiability of this
logic is NEXPTIME-complete.

In both cases, an automata theoretic decision procedure is given as a language preserv-
ing reduction from the logic to Partially Ordered 2-Way Deterministic Timed Automata
(po2DTA). These automata are a subclass of the 2Way Deterministic Timed Automata
2DTA of Alur and Henzinger [AH92] and they incorporate the notion of partial-ordering
of states. They define a subclass of timed regular languages called unambiguous timed
regular languages (TUL) (see [PS10]). po2DTA have several attractive features: they
are boolean closed (with linear blowup only) and their non-emptiness checking is NP-
complete. The properties of po2DTA together with our reductions give the requisite de-
cision procedures for satisfiability checking of logics MITL[F∞,P∞] and MITL[Fb,Pb].

The reduction from MITL[F∞,P∞] to po2DTA uses a nice optimization which be-
comes possible in this sublogic: truth of a formula at any point can be determined as a
simple condition between times of first and last occurrences of its modal subformulas
and current time. A much more sophisticated but related optimization is required for
the logic MITL[Fb,Pb] with both upper and lower bound constraints: truth of a formula
at any point in a unit interval can be related to the times of first and last occurrences
of its immediate modal subformulas in some “related” unit intervals. The result is an
inductive bottom up evaluation of the first and last occurrences of subformulas which is
carried out in successive passes of the two way deterministic timed automaton.

For both the logics, we show that our decision procedures are optimal. We also ver-
ify that the logic MITL[FI ] consisting only of the unary future fragment of MITL[UI ,SI ]
already exhibits EXPSPACE-complete satisfiability. Moreover, the unary future frag-
ment MITL[F0] with only upper bound constraints has PSPACE-complete satisfiability,
whereas MITL[F∞,P∞] with only lower bound constraints has NP-complete
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satisfiability. A comprehensive picture of decision complexities of fragments of
MITL[FI ,PI] is obtained and summarized in Figure 1.

We also study the expressive powers of logics MITL[F∞,P∞] and MITL[Fb,Pb]. We
establish that MITL[F∞,P∞] is expressively complete for po2DTA, and hence it can
define all unambiguous timed regular languages (TUL). This is quite surprising as
po2DTA include guards with simultaneous upper and lower bound constraints as well
as punctual constraints, albeit only occurring deterministically. Expressing these in
MITL[F∞,P∞], which has only lower bound constraints, is tricky. We remark that
MITL[F∞,P∞] ≡ po2DTA is a rare instance of a precise logic automaton connection
within the MTL[UI,SI ] family of timed logics.

We also establish that MITL[F∞,P∞] is strictly more expressive than the bounded
unary logic MITL[Fb,Pb]. Combining these results with decision complexities, we con-
clude that MITL[Fb,Pb], although less expressive, is exponentially more succinct as
compared to the logic MITL[F∞,P∞]. Completing the picture, we show that, for expres-
siveness, MITL[Fb,Pb] � MITL[F∞,P∞] � MITL[F0,∞,P0,∞] � MITL[FI ,PI]. For each
logic, we give a sample property that cannot be expressed in the contained logic (see
Figure 2). The inexpressibility of these properties in lower logics are proved using an
EF theorem for MTL formulated earlier [PS11].

NP-complete

PSPACE-complete

NEXPTIME-complete

EXPSPACE-complete

MITL[F∞,P∞]

MITL[F∞]

TTL[Xθ,Yθ]

MITL[F0]

MITL[F0,∞,P0,∞]
MITL[U0,∞,S0,∞]

MITL[Fb]
MITL[Fb,Pb]

MTL[Ub,Sb] MITL[FI ]

MITL[FI ,PI ]

MITL[UI ,SI ]

MITL[U∞,S∞]

Fig. 1. Unary MITL: fragments with satisfiability complexities. Arrows indicate syntactic inclu-
sion. The boxed logics are the two main fragments studied in this paper.

2 Preliminaries

Let R and N be the set of real and natural numbers and let R0 be the set of non-negative
reals. An interval is a convex subset of R, bounded by non-negative integer constants
or ∞. The left and right ends of an interval may be open ( “(” or “)” ) or closed ( “[”
or “]” ). We denote by 〈x,y〉 a generic interval whose ends may be open or closed. An
interval is said to be bounded if it doesn’t extend to infinity. It is said to be singular if it
is of the form [c,c] for some constant c, and non-singular otherwise.
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MITL[FI ,PI ]

L1

MITL[F0,∞,P0,∞]

L2

po2DTA≡ TTL[Xθ,Yθ] ≡MITL[F∞,P∞]

L3

MITL[Fb,Pb]

L4

L1 = F(0,∞)[a∧F(1,2)c]

L2 = F(0,∞)[a∧F[0,2]c]

L3 = F(0,∞)[a∧F(2,∞)c]

L4 = F(0,1)[a∧F(1,2)c]

Fig. 2. Expressiveness of Unary MITL fragments

Let Σ be a finite alphabet. A finite timed word (TW) over Σ is a finite sequence ρ =
(σ1,τ1), · · · (σn,τn) of event-timestamp pairs, such that the sequence of real timestamps
is strictly increasing: ∀i < n . τi < τi+1. This gives strictly monotonic timed words.
The length of a TW ρ, is denoted by #ρ, and dom(ρ) = {1, ...#ρ}. For convenience,
we assume that τ1 = 0. Let T Σ∗ be the set of strictly monotonic timed words over the
alphabet Σ.

2.1 Unary MITL and Its Fragments

MITL[UI ,SI ] is the non-punctual fragment of Metric Temporal logic, in which tim-
ing constraints are expressed as non-singular intervals with integral bounds. Let a ∈ Σ
and I be a non-singular interval with non-negative integer bounds or ∞. The syntax of
MITL[UI ,SI ] formulas is given by

φ := a | φUIφ | φSIφ | ¬φ | φ∨φ

We shall consider the models to be finite timed words with strictly monotonic time
(point-wise semantics). Consider a timed word ρ = (σ1,τ1), ...(σ#ρ,τ#ρ). The boolean
operations have their usual meaning. ρ, i |= a iff σi = a. The semantics of modal formu-
las is defined inductively by the following rules:

ρ, i |= φ1UIφ2 iff ∃ j > i . ρ, j |= φ2 and τ j− τi ∈ I
and ∀i< k < j, ρ,k |= φ1

ρ, i |= φ1SIφ2 iff ∃ j < i . ρ, j |= φ2 and τi− τ j ∈ I
and ∀ j < k < i, ρ,k |= φ1

The unary modalities may be derived as (future) Fφ1 :=�Uφ1 and (past) Pφ1 :=�Sφ1.

Unary sublogics The logic MITL[FI ,PI ] is the unary sublogic of MITL[UI ,SI ], which is
confined to the unary future and past modalities alone. Some fragments of MITL[FI ,PI ]
that we shall consider in this paper are as follows. See Figure 2 for examples.

– MITL[F0,∞,P0,∞]allows only interval constraints of the form [0,u〉 or 〈l,∞). Thus,
each modality enforces either an upper bound or a lower bound constraint.

– MITL[Fb,Pb] is MITL[FI ,PI ] with the added restriction that all interval constraints
are bounded intervals of the form 〈l,u〉 with u 	= ∞.
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– MITL[F∞,P∞] is the fragment of MITL[FI ,PI ] where all interval constraints are
“lower bound” constraints of the form 〈l,∞).

– MITL[F0,P0] is the fragment in which all interval constraints (whether bounded or
unbounded) are “upper bound” constraints of the form [0,u〉.

– MITL[FI ], MITL[F0,∞], MITL[Fb], MITL[F∞] and MITL[F0] are the corresponding
future-only fragments.

Size of MITL[FI,PI ] formulas Consider any MITL[FI ,PI ] formula φ, represented as a
DAG. Let n be the number of modal operators in the DAG of φ. Let k be the product
of all constants that occur in φ. Then, the modal-DAG size l of φ whose constants
are presented in some logarithmic encoding (e.g., binary) is within constant factors of
(n+ logk).

Definition 1. (Normal Form for MITL[FI ,PI ]) Let B({ψi}) denote a boolean combi-
nation of formulas from finite set {ψi}. Then a normal form formula φ is given by

φ :=
∨

a∈Σ
(a∧B({ψi}))

where each ψi is a modal formula of the form:
ψ := FI(φ) | PI(φ)
where each φ is also in normal form.

A subformula φ in normal form is said to be an F-type modal argument (or modarg in
brief) if it occurs within an F-modality (as FI(φ)). It is a P-type modarg if it occurs as
PI(φ). Each ψi is said to be a modal sub formula.

Proposition 1. Every MITL[FI ,PI ] formula ζ may be expressed as an equivalent nor-
mal form formula φ of modal-DAG size linear in the modal-DAG size of ζ.

Proof. Given ζ, consider the equivalent formula ζ∧ ∨
a∈Σ

a. Transform this formula in

disjunctive normal form treating modal subformulas as atomic. Now apply reductions
such as a∧b∧B(ψi) ≡ ⊥ (if a 	= b) and a∧B(ψi) otherwise. The resulting formula
is equivalent to ζ. Note that DNF representation does not increase the modal-DAG size
of the formula. Apply the same reduction to modargs recursively. ��

2.2 po2DTA

Alur and Henzinger [AH92] introduced 2-way deterministic timed automata (2DTA)
over timed words. These timed automata have a head which may move in either direc-
tion and are equipped with a finite set of clocks (or registers). In each transition a subset
of these clocks can be reset to the value of the time stamp at which the transition is
taken (current timestamp). The clocks retain their value till reset (thus they are more
like registers).

In [PS10], we defined a special class of 2DTA called Partially-ordered 2-way Deter-
ministic Timed Automata (po2DTA). The only loops allowed in the transition graph of
these automata are self-loops. This condition naturally defines a partial order on the set
of states (hence the name). Another restriction is that clock resets may occur only on
progress edges. po2DTA are formally defined below.
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Let C be a finite set of clocks. A guard g is a timing constraint on the clock values
and has the form:

g := g1∧g2 | x−T ≈ c | T − x≈ c where≈∈ {<,≤,>,≥,=} and c ∈N.2

Here, T denotes the current time value. Let GC be the set of all guards over C. A clock
valuation is a function which assigns to each clock a non-negative real number. Let
ν,τ |= g denote that a valuation ν satisfies the guard g when T is assigned a real value
τ. If ν is a clock valuation and x ∈C, let ν′ = ν⊗ (x→ τ) denote a valuation such that
∀y∈C . y 	= x⇒ ν′(y) = ν(y) and ν′(x) = τ. Two guards g1 and g2 are said to be disjoint
if for all valuations ν and all reals r, we have ν,r |= ¬(g1∧g2). A special valuation νinit

maps all clocks to 0.
Two-way automata “detect” the ends of a word, by appending the word with special

end-markers on either side. Hence, if ρ = (σ1,τ1)...(σn,τn) then the run of a po2DTA
is defined on a timed word ρ′ = (�,0)(σ1,τ1)...(σn,τn),(�,τn).

Definition 2 (Syntax of po2DTA). Fix an alphabet Σ and let Σ′ = Σ∪{�,�}. Let C be
a finite set of clocks. A po2DTA over alphabet Σ is a tuple M = (Q,≤,δ,s, t,r,C) where
(Q,≤) is a partially ordered and finite set of states such that r, t are the only minimal
elements and s is the only maximal element. Here, s is the initial state, t the accept
state and r the reject state. The set Q \ {t,r} is partitioned into Ql and Qr (making
the head move resp. left and the right on transitions leading into them) with s ∈ Qr.
The progress transition function is a partial function δ : ((Ql ∪Qr)×Σ′ ×GC)→ Q×
2C) which specifies the progress transitions of the automaton, such that if δ(q,a,g) =
(q′,R) then q′ < q and R ∈ 2C is the subset of clocks that is reset to the current
time stamp. Every state q in Q \ {t,r} has a default “else” self-loop transition which
is taken in all such configurations for which no progress transition is enabled. Hence,
the automaton continues to loop in a given state q and scan the timed word in a single
direction (depending on whether q ∈ Ql or Qr), until one of the progress transitions is
taken. Note that there are no transitions from the terminal states (r and t).

The transition function satisfies the following conditions. Let δ(q,a,g) = (q′,X).

– If a = � then q′ ∈ Ql and if a = � then q ∈ Qr. This prevents the head from falling
off the end-markers.

– (Determinism) For all q∈Q and a∈Σ′, if there exist distinct transitions δ(q,a,g1)=
(q1,X1) and δ(q,a,g2) = (q2,X2), then g1 and g2 are disjoint (as defined below).

Definition 3 (Run). Let ρ = (σ1,τ1),(σ2,τ2)...(σm,τm) be a given timed word. The
configuration of a po2DTA at any instant is given by (q,ν, l) where q is the current
state, the current value of the clocks is given by the valuation function ν and the current
head position is l ∈ dom(ρ′). In this configuration, the head reads the letter σl and the
time stamp τl .

The run of a po2DTA on the timed word ρ with and starting head position k ∈
dom(ρ′) and starting valuation ν is the (unique) sequence of configurations (q1,ν1, l1)
· · · (qn,νn, ln) such that

2 Note that the guards x−T ≈ c and T − x ≈ c implicitly include the conditions x−T ≥ 0 and
T −x ≥ 0 respectively.
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– Initialization: q1 = s, l1 = k and ν1 = ν. The automaton always starts in the initial
state s.

– If the automaton is in a configuration (qi,νi, li) and there exists a (unique) transition
δ(qi,a,g) = (p,X) such that σli = a and νi,τli |= g. Then,
• qi+1 = p
• νi+1(x) = τli for all clocks x ∈ X, and νi+1(x) = νi(x) otherwise.
• li+1 = li− 1 if p ∈Ql, li+1 = li + 1 if p ∈Qr and li+1 = li if p ∈ {t,r}

– If the automaton is in a configuration (qi,νi, li) and there does not exist a transition
δ(qi,a,g) such that σli = a and νi,τli |= g. Then,
• qi+1 = qi

• νi+1(x) = νi(x) for all clocks x ∈C and
• li+1 = li− 1 if p ∈Ql and li+1 = li + 1 if p ∈ Qr

– Termination: qn ∈ {t,r}. The run is accepting if qn = t and rejecting if qn = r.

Let FA be a function such that FA(ρ,ν, i) gives the final configuration (qn,νn, ln) of the
unique run of A on ρ starting with the configuration (s,ν, i). The language accepted by
an automaton A is given by L(A) = {ρ | FA(ρ,νinit ,1) = (t,ν′, i), for some i,ν′}.

Example 1. Figure 3 shows an example po2DTA. This automaton accepts timed words
with the following property: There is b in the interval [1,2] and c occurs before it.
Moreover, if j is the position of the first b in the interval [1,2] then there is a c exactly
at the timestamp τ j− 1.

→ ← t r

else

b, T ∈ x+[1,2]

x := T

else

c,(T = x−1)

�

Fig. 3. Example of po2DTA

Properties of po2DTA
Since the automaton is deterministic and two way, complementation and other boolean
operations on these automata may be achieved with only a linear blow up in the size
of the automaton. (Intersection and union are achieved by sequentially running the two
component automata one after the other with a backward scan to the start position in-
between.) Given po2DTA with n states and kmax being the largest constant in the guards,
it can be shown that the size (length) of its smallest word (model) is polynomial in n, the
largest timestamp in the model is linear in (n− 1)(kmax+ 1) and each timestamp in the
model has a fractional part which is a multiple of 1/n. Hence, assuming binary encoding
of timestamps, the size of this small model is polynomial in the size of the automaton.
Hence, non-emptiness of a po2DTA may be checked with NP-complete complexity.
(See [PS10] ).
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3 From MITL[FI,PI]-Fragments to po2DTA

In their seminal paper [AH92], Alur and Henzinger reduced the checking of satisfiabil-
ity of MITL[UI,SI ] to non-emptiness of Reversal-bounded 2-way deterministic timed
automata (RB2DTA). They asserted EXPSPACE decision complexity for MITL[UI ,SI ]
by this method. In this section, we explore reductions from some fragments of Unary
MITL to po2DTA. A powerful optimization becomes possible when dealing with the
unary sublogics MITL[Fb,Pb] and MITL[F∞,P∞]. The truth of a modal formula MIφ for
a time point τi in an interval I can be reduced to a simple condition involving time dif-
ferences between τi and the times of first and last occurrence of φ within some related
intervals. We introduce some notation below.

Marking timed words with first and last φ-positions. Consider a formula φ in normal
form, a timed word ρ ∈ T Σ∗ and an interval I. Let Idxφ

I (ρ) = {i ∈ dom(ρ) | ρ, i |=
φ∧ τi ∈ I}. Given set S of positions in ρ let min(S) and max(S) denote the smallest
and largest positions in S, with the convention that min( /0) = #ρ and max( /0) = 1. Let
F φ

I (ρ) = τ
min(Idxφ

I (ρ))
and Lφ

I (ρ) = τ
max(Idxφ

I (ρ))
denote the times of first and last occur-

rence of φ within interval I in word ρ. If the subscript I is omitted, it is assumed to be
the default interval [0,∞).

3.1 From MITL[F∞,P∞] to po2DTA

Fix an MITL[F∞,P∞] formula Φ in normal form. We shall construct a language- equiv-
alent po2DTA AΦ by an inductive bottom-up construction. But first we assert an impor-
tant property on which our automaton construction is based. Its proof is straightforward,
and given in the full version of the paper.

Lemma 1. Given a timed word ρ and i ∈ dom(ρ),

1. ρ, i |= F[l,∞)φ iff τi ≤ (Lφ(ρ)− l)∧ τi < Lφ(ρ)
2. ρ, i |= F(l,∞)φ iff τi < (Lφ(ρ)− l)
3. ρ, i |= P[l,∞)φ iff τi ≥ (F φ(ρ)+ l)∧ τi > F φ(ρ)
4. ρ, i |= P(l,∞)φ iff τi > (F φ(ρ)+ l)

The above lemma shows that truth of F〈l,∞)φ (P〈l,∞)φ) at a position can be determined
by knowing the value of Lφ(ρ) (respectively, F φ(ρ)). Hence, for each F-type modarg φ
of Φ, we introduce a clock yφ to freeze the value Lφ(ρ) and P-type modarg φ of Φ, we
introduce a clock xφ to freeze the value F φ(ρ).

Now we give the inductive step of automaton construction. Consider an F-type
modarg φ. The automaton A(φ) is as shown in Figure 4. If φ = ∨a∈Σ (a ∧Ba({ψi})),
then for the clock yφ, and a ∈ Σ, we derive the guard G(yφ,a) which is the guard on
the transition labelled by a in A(φ), and which resets yφ. This is given by G(c,a) =
Ba(cond(ψi)). To define cond(ψi), let variable T denote the time stamp of current
position. Then, the condition for checking truth of a modal subformula ψ is a direct
encoding of the conditions in lemma 1 and is given in the table in figure 4. It is now
straightforward to see that A(φ) clocks exactly the last position in the word, where φ
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ψ cond(ψ)
F[l,∞)φ T ≤ (yφ− l) ∧ T < yφ

F(l,∞)φ T < (yφ− l)
P[l,∞)φ T ≥ (xφ + l) ∧ T > xφ

P(l,∞)φ T > (xφ + l)

→ ← t

else

�

else a j, G(xφ,a j) , yφ := T

a1, G(xφ,a1) , yφ := T

�

Fig. 4. Table for cond(ψ) and automaton A(φ) for an F-type φ

holds. A symmetrical construction can be given for P-type modarg φ. The following
lemma states its key property which is obvious from the construction. Hence we omit
its proof.

Lemma 2. Given a modarg φ and any timed word ρ, let ν0 be a valuation where
ν0(xδ) = F δ(ρ) and ν0(yδ) = Lδ(ρ) for each modarg subformula δ of φ, and ν0(xφ) =
τ#ρ and ν0(yφ) = 0. If ν is the clock valuation at the end of the run of A(φ) starting with
ν0, then ν(xδ) = ν0(xδ), ν(yδ) = ν0(yδ) for each δ, and additionally,

– if φ is F modarg then ν(yφ) = Lφ(ρ).
– if φ is P modarg then ν(xφ) = F φ(ρ).

Theorem 1. For any MITL[F∞,P∞] formula Φ, there is a language-equivalent po2DTA
A(Φ) whose size is linear in the modal-DAG size of the formula. Hence, satisfiability
of MITL[F∞,P∞] is in NP. ��

Proof. Firstly, assume that Φ is in the normal form as described in Definition 1. Note
that reduction to normal form results in a linear blow-up in the modal-DAG size of the
formula (Proposition 1). The construction of the complete automaton A(Φ) is as fol-
lows. In an initial pass, all the xφ clocks are set to τ#ρ. Then, the component automata
A(φ) for clocking modargs (φ) are composed in sequence with innermost modargs be-
ing evaluated first. This bottom-up construction, gives us the initial-valuation conditions
at every level of induction, as required in Lemma 2. Finally, the validity of Φ at the first
position may be checked.

This construction, gives a language-equivalent po2DTA whose number of states is
linear in the number of nodes in the DAG of Φ and the largest constant in the guards
of A(Φ) is equal to the largest constant in the interval constraints of Φ. Hence we can
conclude that satisfiability of MITL[F∞,P∞] formulas is decidable in NP-time. ��

3.2 From po2DTA to MITL[F∞,P∞]

Theorem 2. Given a po2DTA A , we may derive an equivalent MITL[F∞,P∞] formula
φA such that L(A) = L(φA)

Here, we shall illustrate the reduction of po2DTA to MITL[F∞,P∞] by giving a lan-
guage equivalent MITL[F∞,P∞] formula for the po2DTA in Example 1. This po2DTA
first scans in the forward direction and clocks the first b in the time interval [1,2] (this is
a bounded constraint), and then checks if there is a c exactly 1 time unit to its past by a
backward scan (this is a punctual constraint). The automaton contains guards with both
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upper and lower bound constraints as well as a punctual constraints. It is critical for our
reduction that the progress transitions are satisfied at unique positions in the word. The
detailed translation is given in the full version of the paper.

Consider the following MITL[F∞,P∞] formulas. Define At f irst := ¬P� as the for-
mula which holds only at the first position in the word.

φ1 := b ∧P[1,∞)At f irst ∧¬P(2,∞)At f irst
φ2 := φ1∧¬P(0,∞)φ1

Φ := F[0,∞)[φ2∧P[1,∞)(c∧¬F(1,∞)φ2) ]

The formula φ1 holds at any b within the time interval [1,2]. The formula φ2 holds at
the unique first b in [1,2]. The formula Φ holds at the initial position in a word iff the
first b in [1,2] has a c exactly 1 time unit behind it. Note that the correctness of Φ
relies on the uniqueness of the position where φ2 holds. It is now easy to verify that
the MITL[F∞,P∞] formula Φ exactly accepts the timed words that are accepted by the
po2DTA in example 1.

3.3 Embedding MITL[Fb,Pb] into po2DTA

We show a language-preserving conversion of an MITL[Fb,Pb] formula to a language-
equivalent po2DTA.

Consider an MITL[Fb,Pb] formula Φ in the normal form. We can inductively relate
the truth of a subformula ψ = F〈l,l+1〉φ or P〈l,l+1〉φ within a unit interval [r,r+1) to the

values F φ
I (ρ) and Lφ

I (ρ) of its sub-formula φ for suitable unit-length intervals I, by the
following lemma3.

Lemma 3. Given a timed word ρ and integers r, l and i ∈ dom(ρ) with τi ∈ [r,r+1) we
have:

– ρ, i |= F〈al,l+1〉bφ iff

• (1a) τi < Lφ
[r+l,r+l+1)(ρ) ∧ τi ∈ [r,(Lφ

[r+l,r+l+1)(ρ)− l)〉a OR

• (1b) τi < Lφ
[r+l+1,r+l+2)(ρ) ∧ τi ∈ 〈b(F φ

[r+l+1,r+l+2)(ρ)− (l+ 1)),(r+ 1))

– ρ, i |= P〈al,l+1〉bφ iff

• (2a) τi > F φ
[r−l−1,r−l)(ρ) ∧ τi ∈ [r,(Lφ

[r−l−1,r−l)(ρ)+ l+ 1)〉b OR

• (2b) τi > F φ
[r−l,r−l+1)(ρ) ∧ τi ∈ 〈a(F φ

[r−l,r−l+1)(ρ)+ l),(r+ 1))

Proof. This lemma may be verified using the figure 5. We give proof for F〈al,l+1〉bφ (let
ψ = F〈al,l+1〉bφ) omitting the symmetric case of P〈al,l+1〉bφ. Fix a timed word ρ.

Case 1: (1a) holds. (We must show that ρ, i |= ψ). Since conjunct 1 holds, clearly
Idxφ

[r+l,r+1+1) 	= /0 and it has max element j such that τ j = Lφ
[r+l,r+l+1)(ρ) and ρ, j |= φ

3 We shall use convention 〈al,u〉b to denote generic interval which can be open, closed or half
open. Moreover, we use subscripts a,b fix the openness/closedness and give generic conditions
such as 〈a2,3〉b+2 = 〈a4,5〉b. This instantiates to (2,3)+2 = (4,5) and (2,3]+2 = (4,5] and
[2,3)+2 = [4,5) and [2,3]+2 = [4,5]. Interval [r,r) is empty.



The Unary Fragments of Metric Interval Temporal Logic 87

and i < j. Also, by second conjunct of (1a) τi ∈ [r,τ j− l〉a. Hence, by examination of
Figure 5, τi ∈ τ j−〈al, l + 1〉b and hence ρ, i |= ψ.

Case 2: (1b) holds. (We must show that ρ, i |= ψ). Since conjunct 1 holds, clearly
Idxφ

[r+l+1,r+1+2) 	= /0 and it has min element j such that τ j = F φ
[r+l+1,r+l+2)(ρ) and

ρ, j |= φ. Also, by second conjunct of (2a) τi ∈ 〈bτ j − (l + 1),(r + 1)). Hence, i < j
and by examination of Figure 5,τi ∈ τ j−〈al, l + 1〉b and hence ρ, i |= ψ.

Case 3: ρ, i |= ψ and first conjunct of (1b) does not hold. (We must show that (1a)
holds.) Since τi 	< Lφ

[r+l+1,r+l+2)(ρ) we have Idxφ
[r+l+1,r+l+2)(ρ) = /0.

Since ρ, i |= ψ, for some τi ∈ [r,r+ 1) there is τ j > τi s.t. ρ, j |= φ and r+ l ≤ τ j <

r+ l + 1 as well as τ j ∈ τi + 〈al, l + 1〉b, and τ j ≤ Lφ
[l+r,l+r+1)(ρ). Hence, we have τi ∈

Lφ
[l+r,l+r+1)(ρ)−〈al, l + 1〉b which from Figure 5 give us that τi ∈ [r,Lφ

[l+r,l+r+1)(ρ)−
l〉a. Also, τi < Lφ

[l+r,l+r+1)(ρ). Hence (1a) holds.

Case 4: ρ, i |= ψ and first conjunct of (1b) holds but the second conjunct of (1b) does
not hold. (We must show that (1a) holds.) As ρ, i |= ψ, for some τi ∈ [r,r+ 1) there is
τ j > τi s.t. τ j ∈ τi + 〈al, l + 1〉b and ρ, j |= φ.

Since τi < Lφ
[r+l+1,r+l+2)(ρ) we have Idxφ

[r+l+1,r+l+2)(ρ) 	= /0. However, second con-

junct of (1b) does not hold. Hence, τi <b F φ
[r+l+1,r+l+2)(ρ)− (l + 1). By examina-

tion of Figure 5, we conclude that Idxφ
[r+l,r+1+1) 	= /0 and τ j ≤ Lφ

[r+l,r+l+1)(ρ). Hence,

τ j− l ≤ Lφ
[r+l,r+l+1)(ρ)− l. This gives us that τi ∈ [r,τ j− l〉a (see Figure 5). Thus, (1a)

holds. ��

I I I I I
r r+1 r+ l r+ l +1 r+ l +2

(y− l)

x− (l +1)

y

x

Lφ
r+l F φ

r+l+1

ψ ψ
〈b 〉a 〈b 〉a

¬ψ
¬φ

Fig. 5. Case of ψ := F〈al,l+1〉b φ

From Lemma 3, we can see that in order to determine the truth of a formula of the form
ψ = F〈l,l+1〉φ at any time stamp in [r,r + 1), it is sufficient to clock the first and last
occurrences of φ in the intervals [r+ l,r+ l + 1) and [r+ l + 1,r+ l + 2). Similarly, in
order to determine the truth of a formula of the form ψ = P〈l,l+1〉φ at any time stamp
in [r,r + 1), it is sufficient to clock the first and last occurrences of φ in the intervals
[r− l,r− l + 1) and [r− l− 1,r− l).

The automaton A(Φ) is constructed in an inductive, bottom-up manner as follows. For
every modarg φ of Φ, we first inductively evaluate the set of unit intervals within which
its truth must be evaluated. Each such requirement is denoted by a tuple (φ, [r,r + 1)).
This is formalized as a closure set of a subformula wrt an interval. For an interval I, let
spl(I) denote a partition set of I, into unit length intervals. For example, if I = (3,6] then
spl(I) = {(3,4), [4,5), [5,6]}. The closure set may be built using the following rules.
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← → → ← t

else

�

else

�

a1, G(Ba1({ψi}))

xφ
[r,r+1) := T

xφ
[r,r+1) := T

a j, G(Baj ({ψi}))

�

a1, G(Ba1({ψi}))

yφ
[r,r+1) := T

else

�

else

yφ
[r,r+1) := T

a j, G(Baj ({ψi}))

Fig. 6. Automaton A(φ, [r,r+1))

– Cl(φ, [r,r+ 1)) = {(φ, [r,r+ 1))}∪ j Cl(ψ j , [r,r+ 1)),
where {ψ j} is the set of immediate modal subformulas of φ.

– Cl(FIφ, [r,r+ 1)) = ∪〈l,l+1〉∈spl(I)Cl(F〈l,l+1〉, [r,r+ 1))
– Cl(PIφ, [r,r+ 1)) = ∪〈l,l+1〉∈spl(I)Cl(P〈l,l+1〉, [r,r+ 1))
– Cl(F〈l,l+1〉φ, [r,r+ 1)) =Cl(φ, [r+ l,r+ l + 1))∪Cl(φ, [r+ l+ 1,r+ l+ 2))
– Cl(P〈l,l+1〉φ, [r,r+ 1)) =Cl(φ, [r− l− 1,r− l))∪Cl(φ, [r− l,r− l+ 1))

Define strict closure SCl(φ, [r,r+1)) =Cl(φ, [r,r+1))\{(φ, [r,r+1))}. The following
lemma states the key property of A(φ, [r,r+ 1)).

Table 1.

ψ cond(ψ, [r,r+1))

F〈al,l+1〉b δ T < yδ
[r+l,r+l+1) ∧ T ∈ [r,(yδ

[r+l,r+l+1)− l)〉b ∨
T < yδ

[r+l+1,r+l+2) ∧ T ∈ 〈a(xδ
[r+l+1,r+l+2)− (l +1)),(r+1))

P〈al,l+1〉b δ T > xδ
[r−l−1,r−l) ∧ T ∈ [r,(yδ

[r−l−1,r−l) + l +1)〉a ∨
T > xδ

[r−l,r−l+1) ∧ T ∈ 〈b(xδ
[r−l,r−l+1) + l),(r+1))

FI(δ)
∨
〈l,l+1〉∈spl(I)(cond(F〈l,l+1〉δ, [r,r+1)))

PI(δ)
∨
〈l,l+1〉∈spl(I)(cond(P〈l,l+1〉δ, [r,r+1)))

Lemma 4. For any modarg φ in normal form, timed word ρ and integer r, we construct
an automaton A(φ, [r,r+1)) such that, if the initial clock valuation is ν0, with ν0(xδ

I ) =

F δ
I (ρ) and ν0(yδ

I ) = Lδ
I (ρ) for all (δ, I) ∈ SCl(φ, [r,r + 1)) and ν0(x

φ
[r,r+1)) = #ρ and

ν0(y
φ
[r,r+1)) = 0, then the automaton A(φ, [r,r+ 1)) will accept ρ and terminate with a

valuation ν such that

– ν(xφ
[r,r+1)) = F φ

[r,r+1)(ρ)

– ν(yφ
[r,r+1)) = Lφ

[r,r+1)(ρ) and
– ν(c) = ν0(c), for all other clocks.

Proof (sketch). The automaton A(φ, [r,r + 1)) is given in Figure 6. For each (δ, I) ∈
SCl(φ, [r,r + 1)), A(φ, [r,r + 1) uses the clock values of xδ

I and yδ
I in its guards, and it

resets the clocks xφ
[r,r+1) and yφ

[r,r+1).
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For every ψ, which is an immediate modal subformula of φ, we derive
cond(ψ, [r,r+1)) as given in Table 1. The first two rows in Table 1 are directly adapted
from Lemma 3. The last two rows, may be easily inferred from the semantics of
MITL[Fb,Pb]. Hence, we may infer that ∀i ∈ dom(ρ) if τi ∈ [r,r + 1) then ν0,τi |=
cond(ψ,r) iff ρ, i |=ψ. Now, if φ=

∨
a∈Σ

(a∧Ba(ψi)), then the guard on the transitions la-

belled by a, which reset xφ
[r,r+1) and yφ

[r,r+1) (as in figure 6) is given by G(φ, [r,r+1),a) =

Ba(cond(ψi, [r,r+1))). It is straightforward to see that ∀i∈ dom(ρ) if τi ∈ [r,r+1) and
σi = a then ν0,τi |= G(φ, [r,r+1),a) iff ρ, i |= φ. By observing the po2DTA in figure 6,
we can infer that it clocks the first and last φ-positions in the unit interval [r,r+1), and
respectively assigns it to xφ

[r,r+1) and yφ
[r,r+1).

��

Theorem 3. Given any MITL[Fb,Pb] formula Φ, we may construct a po2DTA which
is language-equivalent to Φ. Satisfiability of MITL[Fb,Pb] formulas is decidable in
NEXPTIME-time.

Proof. Firstly, Φ is reduced to the normal form, as described in section 2.1. The au-
tomaton is given by AΦ = Areset ;Ainduct ;Acheck

4. While Areset makes a pass to the end
of the word and resets all xδ

I (for all (δ, I) ∈ Cl(Φ, [0,1))) to the value τ#ρ, Ainduct se-
quentially composes A(δ, I) in a bottom-up sequence. This ensures that the conditions
for the initial valuation of each of the component automata, as required in lemma 4,
are satisfied. Finally, Acheck checks if the clock value xΦ

[0,1) = 0, thereby checking the
validity of Φ at the first position in the word.

Complexity: Assuming DAG representation of the formula, reduction to normal form
only gives a linear blow up in size of the DAG. Observe that the Cl(ψ, [r,r + 1)) for
ψ = FI(φ) or PI(φ) contains m+ 1 number of elements of the form φ, [k,k+ 1), where
m is the length of the interval I. Hence, if interval constraints are encoded in binary, it is
easy to see that the size of Cl(Φ, [0,1)) is O(2l), where l is the modal DAG-size of Φ.
Since each A(φ, [r,r+1)) has a constant number of states, we may infer that the number
of states in A(Φ) is O(2l). Since the non-emptiness of a po2dfa may be decided with
NP-complete complexity, we conclude that satisfiability of a MITL[Fb,Pb] formula is
decidable with NEXPTIME complexity. ��

4 Expressiveness and Decision Complexities

Figure 1 depicts the satisfaction complexities of various unary sublogics of MITL that
are studied in this paper.

Theorem 4. [Lower Bounds]

– Satisfiability of MITL[FI ] (and hence MITL[FI ,PI ]) is EXPSPACE-hard.
– Satisfiability of MITL[Fb] (and henceMITL[Fb,Pb]) is NEXPTIME-hard.
– Satisfiability of MITL[F0] (and hence also MITL[F0,∞] and MITL[F0,∞,P0,∞]) is

PSPACE-hard.
4 The operator “;” denotes sequential composition of po2DTA.
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Proof. We use tiling problems ( [Boa97], [Für83]) of suitable complexities and reduce
their instances to formulas of the corresponding unary MITL fragment, such that solv-
ability of the instance reduces to satisfiability of the formula. The detailed reductions
are quite routine and omitted. They may be found in the full version.

The relative expressiveness of the fragments of Unary MITL[FI ,PI ] is given in Theorem
5 and is depicted in Figure 2. The figure also indicates the languages considered to
separate the logics expressively.

Theorem 5. [Expressiveness]
MITL[Fb,Pb]� MITL[F∞,P∞]� MITL[F0,∞,P0,∞]� MITL[FI,PI ]

Proof. The formal proofs of separations between MITL[Fb,Pb] and MITL[F∞,P∞], and
MITL[F0,∞,P0,∞] and MITL[FI ,PI ] are given in the full version. They use the technique
of EF-games for MTL, which was introduced in [PS11].

We shall now prove that MITL[F∞,P∞] � MITL[F0,∞,P0,∞]. Logic MITL[F∞,P∞] is
a syntactic fragment of MITL[F0,∞,P0,∞]. We shall now show that it is strictly less ex-
pressive than MITL[F0,∞,P0,∞] by showing that there is no po2DTA which accepts the
language given by the formula φ := F[0,∞)(a∧ F[0,2)c). The proof relies on the idea
that since a po2DTA may be normalized to one that has a bounded number of clocks
(bounded by the number of progress edges), and every edge may reset a clock at most
once on a given run, the po2DTA cannot “check” every a for its matching c in a timed
word which has sufficiently many ac pairs.

Assuming to contrary, let A be a po2DTA with m number of progress edges , such
that L(φ) = L(A). Now consider the word ρ consisting of the event sequence (ac)4m+1

where the xth ac pair gives the timed subword (a,3x)(c,3x+ 2.5). Thus, each c is 2.5
units away from the preceding a. Hence, ρ 	∈ L(φ). Consider the run of A over ρ. There
are a maximum number of m clocks in A that are reset, in the run over ρ.

By a counting argument, there are at least m+ 1 (possibly overlapping but distinct)
subwords of ρ of the form acacac, none of whose elements have been “clocked” by A .
Call each such subword a group. Enumerate the groups sequentially. Let v j be a word
identical to ρ except that the jth group is altered, such that its middle c is shifted by 0.7
t.u. to the left, so that v j satisfies the property required in φ. Note that there are at least
m+ 1 such distinct v j’s and for all j, v j ∈ L(φ).

Claim: Given a v j, if there exists a progress edge e of A such that in the run of A on
v j, e is enabled on the altered c, then for all k 	= j, e is not enabled on the altered c of
vk. (This is because, due to determinism, the altered c in v j must satisfy a guard which
neither of its two surrounding c’s in its group can satisfy).
From the above claim, we know that the m clocks in A , may be clocked on at most m
of the altered words v j. However, the family {v j} has at least m+ 1 members. Hence,
there exists a k such that the altered c of vk, (and the kth group) is not reachable by ψ in
ρ or any of the {v j}. Hence w |= ψ iff vk |= ψ. But this is a contradiction as ρ /∈ L(φ)
and vk ∈ L(φ) with L(φ) = L(ψ).

Therefore, there is no po2DTA which can express the language L(φ). ��
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2 Verimag, Université Joseph Fourier/CNRS, Gières, France
3 Austrian Institute of Technology, Vienna, Austria

4 Department of Computer Engineering, Vienna, University of Technology, Austria
5 Department of Computer Science, Stony Brook University, USA

Abstract. We present Time-Frequency Logic (TFL), a new specification
formalism for real-valued signals that combines temporal logic proper-
ties in the time domain with frequency-domain properties. We provide
a property checking framework for this formalism and illustrate its ex-
pressive power in defining and recognizing properties of musical pieces.
Like hybrid automata and their analysis techniques, the TFL formalism
is a contribution to a unified systems theory for hybrid systems.

1 Introduction

The exportation of Temporal Logic (TL) from philosophy [31,32] to systems
design [28,29] is considered a turning point in formal verification [33], putting
the focus on the ongoing input-output behavior of a reactive system [14] rather
than on the final output of a complex program. While reactive systems might
be a concept worth distinguishing in Computer Science, in other domains such
as Control, Signal Processing and Circuit Design, being reactive is the rule, not
the exception. Such systems are viewed by designers as networks of transducers
(block diagrams) communicating continuously via signals : functions from Time
to some domain, such as the Reals. This is the world view underlying data-flow
languages and frameworks such as Lustre [2], Signal [1], Simulink1 and Ptolemy
[27], as well as transistor-level circuit simulators.

TL provides a convenient framework for writing in a compact and formal
way specifications that the system under design should satisfy. It was initially
intended to evaluate clean and well-defined sequences of states and events as
found in digital systems. In the last couple of years, it has been extended to the
specification of properties of real-valued signals defined over dense time [19,21]
and applied to diverse domains ranging from analog circuits [17] to biochemical
reactions [6]. The logic STL (signal temporal logic) allows designers to speak
of properties related to the order of discrete events and the temporal distance
between them, where “events” correspond to changes in the satisfaction of some

1 http://www.mathworks.com/tagteam/43815_9320v06_Simulink7_v7.pdf
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predicate (e.g., threshold crossing) over the real variables. Traditional perfor-
mance measures used to evaluate signals are more continuous and “event-free”,
for example, averaged/discounted integrals of some variables over time, and the
added expressivity is an important contribution to the emergence of a hybrid
Systems Theory.

One of the technical and cultural impediments to the adoption of STL, es-
pecially in analog circuits (its original motivating domain), was its purely time-
domain nature; i.e., it did not lend itself to frequency-domain analysis. This kind
of analysis is based on the Fourier spectrum of the signal which in many engineer-
ing applications is more important than the properties of the signal itself; i.e., its
properties in the time domain, which STL is intended to express. One reason for
this bias is that real-life analog signals are accompanied by omnipresent noise,
i.e., random perturbations of the desired signal. This is conveniently dealt with
in the frequency domain via filtering. Typically, the noise component of a signal
populates a range of frequencies different from the range of the signal of interest.
If we keep only the latter, then the amplitude of the noise is strongly reduced.
More generally, an analog signal is usually a composition of multiple sources,
and the first purpose of signal processing is the separation of these sources. In
the frequency domain, this is done by simple operations such as thresholding
or filtering the range of frequencies of interest, assuming that each source has a
range clearly distinct from the ranges of others.

Source separation, noise removal and signal filtering are fundamental oper-
ations which are time-invariant. They affect the signal in the same way from
time t = −∞ to t = ∞. Since the Fourier transform (FT) is defined over this
unbounded time-interval, it is appropriate for these operations. However, when
it comes to characterize bounded or local-time intervals, the FT becomes cum-
bersome in practice, as its definition aggregates for each frequency of interest
all values along the duration of the signal. This observation naturally led to the
search for proper time-frequency analysis techniques, beginning from straight-
forward extensions of FT (such as the Short Time Fourier Transform (STFT)
[10]) and culminating with the sophisticated and versatile family of Wavelet
transforms [22]. Time-frequency analysis as a branch of Signal Processing have
seen contributions of tremendous importance. To name only one, modern com-
pression algorithms at the root of Jpeg, Mpeg, etc, file formats are all based on
wavelet theory.

In this paper, we complement this evolution toward a fusion of time-domain
and frequency-domain analysis by proposing a unified logical formalism for ex-
pressing hybrid (time-frequency) properties of signals. Some preliminary work in
this direction is reported in [3] in which the author describes “envelope” predi-
cates over the Fourier coefficients in the context of hybrid systems verification.
However they use the standard Fourier transform, thus not treating the tighter
coupling of time and frequency domains that we investigate here. Attempts have
been done in the past to apply time-frequency analysis as a design methodology
to different application domains. In the context of analog circuits, time-frequency
analysis was used to study dynamic current supplies, oscillators, leapfrog and
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state variable filters etc. In the bio-medical domain time-frequency analysis was
applied to detect anomalous ECG signals. We observed that the common dis-
advantage of these techniques is the lack of a formalism to express complex
temporal patterns of frequency responses and a suitable machinery to automat-
ically detect them. Our formalism, which we call Time-Frequency Logic (TFL),
is implemented in a generic monitoring framework, part of the tool Breach [5].

A somewhat related work is Functional reactive programming (FRP) [16], a
paradigm for high-level declarative programming of hybrid systems, instanti-
ated with the Yampa language which was used to program industrial-strength
mobile robots [26] but also to synthesize music [11]. Although it shares similar
concepts with our work (signal transformers), FRP as a programming paradigm
remains complementary to TFL, which is a specification formalism supporting,
in particular, acausality and non-determinism.

The rest of the paper is organized as follows. Section 2 gives a short introduc-
tion to STL. Section 3 is a crash course on Fourier analysis.2 Section 4 explains
time-frequency analysis and how it is integrated in the TFL monitoring frame-
work, while Section 5 demonstrates TFL’s applicability to Music.

2 Signal Temporal Logic

We present STL in a manner that makes it closer to the world of Control and
Signal Processing. Rather than taking the logic as a primary object and put all
the numerical predicates and functions as part of domain-specific signature (as
in [21]), we take a general framework of a data-flow network (as has been done in
[4]) and add the temporal operators (until and since) as a special type of signal
transducers. This approach is also close to [24], where AMS-LTL is extended
with auxiliary functions that allow to embed arbitrary signal transducers in the
body of property specifications.

This style of presentation is facilitated by a somewhat non-orthodox way of
defining the semantics of temporal logic using temporal testers [18,30,23]. This
approach has already been applied to STL monitoring [19,21] and to translating
the MITL logic into timed automata [20]. An STL formula ϕ is viewed as a net-
work of signal operators (transducers), starting with the raw signals x (sequences
of atomic propositions in the discrete case), and culminating in a top-level signal
ϕ,3 whose value at t represents the satisfaction of the top-level formula at time
t: ϕ[t] = 1 iff (x, t) |= ϕ. Each sub-formula of the form ϕ = f(ϕ1, ϕ2) is thus
associated with a signal transducer realizing f , whose inputs are the satisfaction
signals of ϕ1 and ϕ2. The whole apparatus for monitoring the satisfaction of a
formula by a signal can thus be viewed as a network of operators working on
signals of two major types: numerical (raw signals and those obtained by nu-
merical operations on them) and Boolean (satisfaction signals of sub-formulae).

2 We recommend [15] as a first reading for computer scientists.
3 We make a compromise between the conventions of Logic and those of other less
formal domains by writing abusively ϕ for both the formula and its satisfaction
signal and will do the same for variables x and their associated raw signals.
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We assume signals defined as functions from Time T to some domain D. The
range T of the signal can be finite [0, r], infinite [0,∞] or bi-infinite [−∞,∞] and
we will make distinctions only when needed.

Definition 1 (Signal Operator). A signal operator is a mapping f : (T →
D1)→ (T → D2), where D1 and D2 are, respectively, the domains of the input
and output signals.

The domains D1 and D2 define the type of the operators, and we always assume
that the arguments of these operators match the type. We assume that all op-
erators are (approximately) computable so that given some representation of a
signal x, it is possible to produce a representation y = f(x).

Definition 2 (Operator Classification). Let f be a signal operator and let
y = f(x). We say that f is

– Pointwise (memoryless) if it is a lifting to signals of a function f : D1 → D2,
that is, ∀t y[t] = f(x[t]);

– Causal if, for every t, y[t] is computed based on at most x[0], . . . , x[t];
– Acausal (otherwise)

The causal operators are, for example, past temporal operators, back-shifts, or
integrals over temporal windows that extend backwards. The advantage of such
operators is that they can be naturally monitored online, which is particularly
important for monitoring real systems rather than simulatedmodels. The acausal
operators are the future temporal operators and other operators that depend on
values in temporal windows that extend beyond the current point in time.

Definition 3 (Temporal Operators). Let ϕ1 and ϕ2 be two Boolean signals
and let a, b be two positive numbers satisfying a ≤ b. Then ψ1 = ϕ1 U[a,b]ϕ2 (ϕ1

until ϕ2) are the signals satisfying4

(x, t) |= ϕ1 U[a,b]ϕ2 if
∃t′ ∈ t⊕ [a, b] (x, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (x, t′′) |= ϕ1[t

′′])
(1)

Recalling that over the Booleans, ∧ and ∨ coincide with min and max, (1) is
equivalent to:

ψ1[t] = maxt′∈t⊕[a,b]min(ϕ2[t
′], mint′′∈[t,t′] ϕ1[t

′′]) (2)

The derived operator ♦[a,b]ϕ = true U[a,b]ϕ (eventually ϕ) is true at t when ϕ[t′]
holds in some t′ ∈ t⊕ [a, b], while �[a,b]ϕ = ¬♦[a,b]¬ϕ (always ϕ) requires ϕ to
hold throughout the interval t⊕ [a, b]. The untimed until, U = U[0,∞] does not
pose any metric constraints on the timing of the future occurrence of ϕ2.

Let us assume a set x1, . . . , xm of variables and a family F of signal operators
including

4 Expression t⊕ [a, b] denotes the interval [t+ a, t+ b].
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– Pointwise operators that realize standard arithmetical and logical operators
such as +, ·, min, max, ∧, ¬, = and <;

– Other useful operators such as integral, convolution, etc.
– As many instances as needed of U[a,b].

Definition 4 (STL Syntax). The syntax of an STL formula is defined induc-
tively as

– An atomic formula is any variable xi or any rational constant c;
– If ϕ is a formula, so is any f(ϕ) for any operator f ∈ F compatible with the

type of ϕ.
– If ϕ1 and ϕ2 are formulae, so is any f(ϕ1, ϕ2) for any operator f ∈ F

compatible with the types of ϕ1 and ϕ2.

The semantics of an STL formula ϕ relative to a raw signal x = (x1, . . . , xm)
is immediate; that is, the semantics of x is the signal x and the semantics of
a constant is the constant signal c. Then the semantics of f(ϕ) or f(ϕ1, ϕ2) is
obtained by applying the operator f to the semantics of ϕ or ϕ1 and ϕ2.

The work in [19,21] shows that given an STL formula ϕ and a signal x, there is
an algorithm that can check whether x satisfies ϕ by computing the satisfaction
signals of all sub-formulae. The algorithm works on the parse tree of ϕ, scanning
the raw signals and propagating values upwards in the tree as well as backwards
and forward in time until the satisfaction of all sub-formulae are computed,
including ϕ[0]. The tool AMT [25] realizing this algorithm solves various practical
problems that we do not discuss here such as the interpretation of STL over
signals of finite duration, bridging the gap between ideal mathematical signals
defined over R and actual signals given by a finite sequence of sampled values,
combining online and offline monitoring, etc. A quantitative semantics for STL
has been presented in [7], which returns as output positive or negative numbers
indicating how robustly the property is satisfied or violated. These numbers
are propagated naturally using a real-valued version of (2). The Breach tool [5]
implements monitoring for this semantics.

3 Frequency Analysis in a Nutshell

The essence of frequency analysis [8] is that a signal can be transformed into
an alternative representation consisting of a weighted sum of basic elementary
signals, namely, sinusoids of various frequencies and phases. E.g., the signal x
of Fig. 1 can be written as x = x1 + x2 + x3 with xi[t] = bi sin 2πωit, where
bi is the amplitude/coefficient of the sinusoid of frequency ωi. Thus, the signal
is transformed from a time-domain representation x : T → D to a function
x̂ mapping frequencies to their coefficients. Many standard signal-processing
operations are best defined as manipulating these coefficients. E.g., if we nullify
b3, we remove the high-frequency component of x to obtain signal x̃, which can
be viewed as removing noise from x (Fig. 1).
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Fig. 1. Fourier transform of a sum of sinusoids and filtering the highest frequency

More formally, on any interval of size T0 = 1/ω0, a signal x can be decomposed
into a Fourier series :

x[t] =
a0
2

+
+∞∑
k=0

ak cos(2πωkt) + bk sin(2πωkt) with ωk = kω0.

This can be written more concisely using Euler’s formula eix = cos(x)+ i sin(x):

x[t] =

+∞∑
k=−∞

cke
2iπkω0t (3)

Coefficients {ck, k ∈ Z} provide a discrete spectrum for x on [0, T0]. The Fourier
transform maps x on the whole time domain to a continuous spectrum {cω, ω ∈
R} containing all real frequencies. The inverse Fourier transform (IFT), which
recovers x from its spectrum, can be written as:

x[t] =

∫ +∞

−∞
cωe

2πiωtdω, where cω = x̂(ω) =

∫ +∞

−∞
x[t]e−2iπωtdt. (4)

which can be seen as a generalization of the Fourier series (3). In practice,
the coefficients cω are computed for a finite discrete set of frequencies using
the FFT algorithm (Fast Fourier Transform [9]), but in the following, we keep
the presentation in the continuous domain. This is in the spirit of STL, whose
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semantics is defined relative to dense-time signals, leaving to the monitoring
algorithm the burden of dealing with time-discretization, interpolation, etc.

As mentioned previously, a convenient interpretation of the FT and its inverse
is that of a decomposition of x into a sum of sinusoidal components, taking the
family of functions φω : t→ e2πiωt as elementary “blocks” for the decomposition.
With this notation, the IFT (4) becomes x[t] =

∫ +∞
−∞ cω φω[t]dω. However, the

use of φω as an elementary analysis block has the drawback that its definition
involves the values of x for all times t. Thus, finding a subset of frequencies or
some transformation of x̂ that affects a precise time interval for x is not trivial.
This motivated the search for other transforms using analysis functions that
have a localization both in frequency and in time.

4 Combining Time and Frequency Properties

The Short-Time Fourier Transform (STFT). In the theory of signal pro-
cessing, the extension of classical frequency analysis to a combined time-frequency
analysis is realized by replacing the analysis function φω[t] = e

2πiωt used in the
FT with some other analysis function φω,τ such that the new transform involves
the values of x not only around a specific frequency ω but also around a given
time τ (see, e.g., Chapter 4 of [22]). The short-time or windowed Fourier trans-
form (STFT), first introduced by Gabor [10], uses a straightforward definition of
such an analysis function. It consists of the product of φω and a window function
g[t− τ ] whose purpose is simply to filter the values of x outside a neighborhood
of τ by forcing them to be 0. It can be as simple as the rectangular function of
length L > 0:

gL[t] =

{
1/L if t ∈ [−L

2 ,
L
2 ],

0 else.
(5)

but other functions with better properties such as the Hanning or Gaussian win-
dow functions are usually preferred [22]. They satisfy the normalization property∫ +∞
−∞ g[t]dt = 1. In the following we assume that g has the form (5) and that the
only parameter varying is its length L.

Having chosen a window function gL, the new analysis function for the STFT
is defined as the product φω,τ [t] = φω[t]gL[t − τ ] of φω and the translation of
gL around τ . Consequently, the STFT of x in (ω, τ), denoted x̂L(ω, τ), defines
a two-dimensional spectrum {cω,τ : (ω, τ) ∈ R2}. As with the IFT (4), x can
be recovered from its spectrum and the analysis function φω,τ using the inverse
form of the STFT :

x[t] =

∫ +∞

−∞

∫ +∞

−∞
cω,τφω,τ [t]dωdτ (6)

For a given pair (ω, τ) of frequency and time, the coefficient cω,τ , i.e., the STFT
of x in (ω, τ), is given by

cω,τ = x̂L(ω, τ) =

∫ +∞

−∞
x[t]gL(t− τ)e−2iπωtdt. (7)
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In practice, it can be computed with a straightforward extension of the FFT
algorithm, using a sliding window and multiplying x by the gL window function.
The STFT can be visualized as a spectrogram, which plots the norms (or more
commonly the squared norm) of the coefficients cω,τ as a surface above the time-
frequency plane (ω, τ) as illustrated in Fig. 2. There are inherent limitations
(Heisenberg Uncertainty Principle) concerning the trade-offs between precision
in frequency and precision in time. They are explained in the appendix.

Defining Time-Frequency Predicates. The STFT of a signal x thus defines
a two dimensional operator taking time and frequency as arguments. By con-
sidering the frequency as a parameter, we obtain a family of signal operators
{fL,ω} such that y = fL,ω(x) if y[t] = x̂L(ω, t). In other words, fL,ω(x) is the
projection of the L-spectrogram of x on frequency ω. It yields a spectral signal
which tracks the evolution of the STFT coefficient at ω over time.
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Fig. 2. Signal x[t] in (a) is composed of different sinusoids at different times. A simple
FT (b’) exhibit peaks at frequencies 10, 20 and 40 without information about when
they occur, whereas the spectrogram in (b) provide this information. We can see, e.g.,
that the frequency ω0 =10 occurs at two distinct time intervals. In (c), a slice of the
STFT at ω = ω0 provides a signal that takes higher values at times when ω0 is in the
spectrum of x. Using a simple threshold, it then defines a predicate for the detection
of frequency ω0 along the time axis.
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Our logic, time-frequency logic (TFL) is obtained by adding the operators
{fL,ω} to STL. A spectral signal y = fL,ω(x), like any other signal, can partic-
ipate in any TFL formula as an argument to predicates and arithmetic expres-
sions. The monitoring machinery is similar to that of STL except for the fact
that the raw signals x are pre-processed to yield the spectrogram from which
spectral signals y are extracted. This can be done before the monitoring process
starts or be integrated in an online procedure as in [21] where segments of y are
computed incrementally upon the arrival of segments of x.

On Window Functions and Time-Frequency Resolution. To be able to
detect the occurrence of a frequency ω at a given time τ , we would need a spec-
trogram representing a perfect matching between ω and τ for the signal x, i.e.,
that |cω,τ | be non-zero if and only if x contains a component of frequency ω at
time τ . Unfortunately, such ideal mapping cannot be obtained. To begin with, it
is intuitively clear that low frequencies require an amount of time at least larger
than the corresponding periods to be detectable. Moreover, there is an obvious
technical limitation related to the sampling rate of x and the discretization of
the FT by the FFT algorithm. But even if we ignore discretization errors and
assume that we work in an ideal, continuous domain, there is a fundamental
limitation of the time-frequency resolution than can be achieved, related to the
Uncertainty Principle of Heisenberg. We sketch its development next (a thorough
explanation is provided in [22]) since it provides a practical method for choos-
ing the appropriate window function g for a desired accuracy of time-frequency
detection with the STFT. The idea is as follows: assume a hypothetical signal
x with an energy concentrated exactly at the time τ0 and frequency ω0. Then
the STFT of x using a window function g will “spread” the concentrated energy
of x in a box (so called an Heisenberg box [22]) in the time-frequency domain
which has dimensions στ (g)× σω(g) given by

σ2τ (g) =

∫ +∞

−∞
t2g(t)2dt and σ2ω(g) =

∫ +∞

−∞
ν2ĝ(ν)2dν (8)

The Uncertainty Principle asserts that the area of this box satisfies στσω ≥ 1
2 .

It means that we cannot increase the accuracy in frequency detection without
altering precision in time. The values of στ (g) and σω(g) can be easily estimated
from the above formulae and can be used to optimize the trade-off between time
and frequency detection. For instance, one has to make sure that the distance
of two frequencies of interest is not small with respect to σω(g).

5 Music

As observed in [10], human acoustic perception is a prime example of analyzing
signals based on a combination of time and frequency features. In this section,
we illustrate the applicability of TFL in formalizing and recognizing melodies
starting with the basic task of note detection.



On Temporal Logic and Signal Processing 101

A note is characterized by a strong component at a fundamental frequency,
or pitch ω. To obtain a note detection predicate, we thus define a spectral op-
erator, pitchω, such that pitchω(x)[t] is the amplitude of frequency ω in signal
x around time t. This operator must be able to tolerate small pitch variations
while discriminating a note from its two closest neighboring notes, with pitches
ω1 = 2−

1
12ω and ω2 = 2

1
12ω. Thus, pitch is defined as the STFT pitchω(x)[t] =

x̂L(ω, t), where the size L of the window function is chosen to achieve the required
time-frequency resolution (see Section 4). Using pitchω, a predicate detecting,
e.g., the note A with pitch ωA = 440Hz can be: μA = pitchωA

(x) > θ. The only
parameter which remains to be fixed is the threshold θ. It determines the robust-
ness of the predicate to variations in volume, pitch or duration. If θ is large, it
will be more sensitive to such variations, increasing the chance of false negative.
Conversely, if it is small, it will tolerate more pitch variation but increase the
chance of false positive, e.g., by recognising a wrong note. Fig. 3 displays the
result of applying the pitch function to the detection of an F.

Fig. 3. Note detection: a) The STFT produced by the note F for its nominal frequency
and the frequencies of its closest notes E and FS; b) Max amplitudes in time for the
note F of a range of frequencies around its nominal frequency; c) The predicate μF is
satisfied by the signal and the predicates μFS and μE are not.

Specifying Melodies. Music notation provides means to specify both the du-
ration of a note and the pace of a piece, also called tempo. Tempo is expressed
in units of beats per minute (bpm). The piece in Fig. 4 has a pace of 120 bpm.
This means that an eighth note (F, G), a quarter note (E, A, B), a half note
(D), and a whole note (C) have durations, respectively, of 0.25, 0.5, 1 and 2
seconds. The pause between G and A is one second long. In our experiments,
we have generated, using a MIDI Player, two different signals that correspond
to the performance of this melody by a violin and by an organ; see Fig. 4. We
then checked three properties on both signals. The first two properties are: C is
played for two seconds: �[0,2]μC , and D is played for one second: �[0,1]μD. As
one can see from the corresponding satisfaction signals in Fig. 4, the first holds at
the beginning of the signal and the second holds at the beginning of the second
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Fig. 4. Note and melody detection in violin and organ performances

note. The property �[0,2]μC ∧�[2,3]μD specifies the beginning of the melody and
is found to hold at time zero. The last property ignores duration and specifies
that the order of the notes corresponds to a diatonic scale of seven notes with a
pause (expressed using a time domain predicate of the form |x[t]| ≤ ε for some
threshold) between G and A: μC U μD U μE U μF U μG U σ U μA U μB.

Recognizing a Blues Melody. For the last experiment, we tested our frame-
work by trying to verify that a guitar melody, (imperfectly) played and recorded
by one of the authors, was indeed a Blues melody. To do this, we built a
formula based on the fact that standard blues is characterized by a 12-bar
structure (a bar being basically four beats). In the key of E, it is as follows:
E E E E | A A E E | B A E E. Note that a bar in E does not mean that we
play four beats of E notes in a row. There can be different notes, but the overall
bar should sound like a melody in the key of E. If we assumed that in a bar of E
there should be at least one E note played, and similarly for A and B, it would
be easy to write a formula that directly translates the above structure. However,
this would be too strict in transcribing the above blues pattern for the blues
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line that we recorded. Indeed, our melody does not have an E in the fourth bar.
Instead, we verified a simpler (but definitely bluesy) formula which looks for a
starting E, an A in bars 5-6, and the so-called “turn-around” (the sequence B
A E) in bars 9-11: ϕblues = μE ∧♦[5b,6b]μA ∧♦[8b,9b](μB ∧♦[b,2b]μA ∧♦[2b,3b]μE).
Our results are presented in Figure 5. The signal was recorded at 44 kHz for a
length of 1320960 samples. The formula takes 6.9 s to be evaluated on a laptop
with a Core i7 processor and 8 GB of memory.
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Fig. 5. Formula ϕblues is the conjunction of μE (top, with signal), ♦[4b,6b]μA (middle),
and ♦[8b,9b](μB ∧♦[b,2b]μA∧♦[2b,3b]μE) (bottom). Since the three formulae are satisfied
at the time of the first E, ϕblues is satisfied by our recording.

Implementation. We implemented the function pitch in Matlab and de-
fined STL formulae using the Breach tool [5] (examples available at http://

www-verimag.imag.fr/~donze/breach music example.html). Breach imple-
ments the full STL syntax (Boolean and temporal operators) on top of STL
predicates of the form μ = f(x, p) > θ, where f is some signal operator and
p is a parameter vector. The function f can be an arithmetic expression such
as 2 ∗ x[t] + p or a routine implemented separately and available in the Matlab
environment, such as the pitchω routine or any other implementation of spectral
operators fL,ω. This makes the implementation of TFL straightforward in the
Breach framework.

6 Discussion

We have presented TFL, a specification formalism for time and frequency prop-
erties of signals, supported by a monitoring algorithm implemented in the Breach

http://www-verimag.imag.fr/~donze/breach_music_example.html
http://www-verimag.imag.fr/~donze/breach_music_example.html


104 A. Donzé et al.

tool, and showed it in action on real acoustic signals. We believe that the expres-
sivity added by the temporal operators can lead to new ways to specify music
and, in particular, will allow us to define formulae that can quantify the amount
of deviation of a performance from the “nominal” melody. Combining our for-
malism with complementary learning machinery (such as hidden Markov models,
used in speech recognition), one could automatically “tune” note predicates to
a given performance.

Although Music can definitely benefit from TFL, it is not necessarily the
primary application domain we have in mind for this formalism. The conver-
gence of technologies, where a typical system-on-a-chip features digital and ana-
log components, including radio transmitters, likewise requires a convergence of
modeling and analysis techniques used by the different engineering communities
involved, and TFL is a step in this direction. Other extensions include the use
of the more versatile Wavelet Transform for time-frequency analysis and the ex-
tension of the logic to spatially extended phenomena such as wave propagation
in the spirit of [12,13], where dynamic cardiac conditions are specified and de-
tected. Also note that the spectrogram is a two-dimensional entity indexed by
both time and frequency, and that TFL is currently biased toward time. It would
be interesting to explore a specification formalisms that can alternate more freely
between temporal, frequential and spatial operators. On the engineering applica-
tion side, we intend to apply the logic to specifying and monitoring the behavior
of analog circuits.
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Abstract. Unsatisfiability proofs find many applications in verification.
Today, many SAT solvers are capable of producing resolution proofs of
unsatisfiability. For efficiency smaller proofs are preferred over bigger
ones. The solvers apply proof reduction methods to remove redundant
parts of the proofs while and after generating the proofs. One method of
reducing resolution proofs is redundant resolution reduction, i.e., remov-
ing repeated pivots in the paths of resolution proofs (aka Pivot recycle).
The known single pass algorithm only tries to remove redundancies in
the parts of the proof that are trees. In this paper, we present three mod-
ifications to improve the algorithm such that the redundancies can be
found in the parts of the proofs that are DAGs. The first modified algo-
rithm covers greater number of redundancies as compared to the known
algorithm without incurring any additional cost. The second modified al-
gorithm covers even greater number of the redundancies but it may have
longer run times. Our third modified algorithm is parametrized and can
trade off between run times and the coverage of the redundancies. We
have implemented our algorithms in OpenSMT and applied them on
unsatisfiability proofs of 198 examples from plain MUS track of SAT11
competition. The first and second algorithm additionally remove 0.89%
and 10.57% of clauses respectively as compared to the original algorithm.
For certain value of the parameter, the third algorithm removes almost
as many clauses as the second algorithm but is significantly faster.

1 Introduction

An unsatisfiability proof is a series of applications of proof rules on an input
formula to deduce false. Unsatisfiability proofs for a Boolean formula can find
many applications in verification. For instance, one application is automatic
learning of abstractions for unbounded model checking by analyzing proofs of
program safety for bounded steps [14,13,10]. We can also learn unsatisfiable cores
from unsatisfiability proofs, which are useful in locating errors in inconsistent
specifications [22]. These proofs can be used by higher order theorem provers as
sub-proofs of another proof [4].

One of the most widely used proof rules for Boolean formulas is the resolution
rule, i.e., if a∨b and ¬a∨c holds then we can deduce b∨c. In the application of the
rule, a is known as pivot. A resolution proof is generated by applying resolution
rule on the clauses of an unsatisfiable Boolean formula to deduce false. Modern
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SAT solvers (Boolean satisfiability checkers) implement some variation of DPLL
that is enhanced with conflict driven clause learning [20,19]. Without incurring
large additional cost on the solvers, we can generate a resolution proof from a
run of the solvers on an unsatisfiable formula [23].

Due to the nature of the algorithms employed by SAT solvers, a generated
resolution proof may contain redundant parts and a strictly smaller resolution
proof can be obtained. Applications of the resolution proofs are sensitive to
the proof size. Since minimizing resolution proofs is a hard problem [17], there
has been significant interest in finding low complexity algorithms that partially
minimize the resolution proofs generated by SAT solvers.

In [3], two low complexity algorithms for optimizing the proofs are presented.
Our work is focused on one of the two, namely Recycle-Pivots. Lets consider
a resolution step that produces a clause using some pivot p. The resolution step
is called redundant if each deduction sequence from the clause to false contains
a resolution step with the pivot p. A redundant resolution can easily be removed
by local modifications in the proof structure. After removing the redundant
resolution step, a strictly smaller proof is obtained. Detecting and removing all
such redundancies is hard. Recycle-Pivots is a single pass algorithm that
partially removes redundant resolutions. From each clause, the algorithm starts
from the clause and follows the deduction sequences to find equal pivots. The
algorithm stops looking for equal pivots if it reaches to a clause that is used to
deduce more than one clause.

In this paper, we present three algorithms that are improved versions of
Recycle-Pivots. For the first algorithm, we observe that each literal from
a clause must appear as a pivot somewhere in all the deduction sequences from
the clause to false. Therefore, we can extend search of equal pivots among the
literals from the stopping clause without incurring additional cost. For the sec-
ond algorithm, we observe that the condition for the redundant resolutions can
be defined recursively over the resolution proof structure. This observation leads
to a single pass algorithm that covers even more redundancies but it requires an
expensive operation at each clause in a proof. Note that the second algorithm
does not remove all such redundancies because the removal of a redundancy may
lead to exposure of more. Our third algorithm is parametrized. This algorithm
applies the expensive second algorithm only for the clauses that are used to
derive a number of clauses smaller than the parameter. The other clauses are
handled as in the first algorithm. The parametrization reduces run time for the
third algorithm but also reduces the coverage of the redundancy detection.

We have implemented our algorithms in OpenSMT [5] and applied them on
unsatisfiable proofs of 198 examples from plain MUS track of SAT11 competition.
The original algorithm removes 11.97% of clauses in the proofs of the examples.
The first and the second algorithm remove 12.86% and 22.54% of the clauses
respectively. The third algorithm removes almost as many clauses as the second
algorithm in lesser time for the parameter value as low as 10. We also observe
similar pattern in reduction of the unsatisfiable cores of the examples.
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Related Work: Two kinds of methods have been proposed in the literature for
the resolution proof minimization. The first kind of methods interact with the
SAT solver for proof reduction. In [23], a reduced proof is obtained by iteratively
calling a SAT solver on the unsatisfiable core in the proof obtained from the last
iteration. These iterations run until a fixed point is reached. Subsequently, many
methods were developed to obtain minimal/minimum satisfiability core with the
help of a SAT solver [12,16,11,6,15,8,9]. Their objectives were not necessarily to
obtain a smaller proof but very often a consequence of a smaller unsatisfiable
core is a smaller proof. The second kind of methods operate independently from
the SAT solver and post-process the resolution proofs. The methods in [21,2]
analyzes conflict graphs in the SAT solver (without re-running the solver) to
find shared proof structures and attempts to obtain shared sub-proofs among
the resolution proofs of the learned clauses. In [1], a method is presented that
minimizes a resolution proof by heuristically reordering resolution steps using
‘linking graph’ between literals. In [18], the resolution proof rewriting rules [7]
are iteratively applied to reorder resolution steps locally ([1] does it in a global
context) and it is expected to expose some redundancies, which are removed by
applying Recycle-Pivots after each iteration. This paper only aims to find
algorithms that significantly minimize the proofs within low cost. Indeed, many
of the above methods achieve more minimization as compare to our algorithms
but with higher costs.

This paper is organized as follows. In section 2, we present our notation and
the earlier known algorithm. In sections 3, 4, and 5, we present our three algo-
rithms. In section 6, we discuss their complexities. We present our experimental
results in section 7 and conclude in section 8. In appendix A, we present the
proof of correctness of our algorithms.

2 Preliminaries

In this section, we will present our notation and one of the proof reduction
algorithms presented in [3].

Conjunctive Normal Form(CNF): In the following, we will use a, b, c, . . .
to denote Boolean variables. A literal is a Boolean variable or its negation. We
will use p, q, r, s... to denote literals. Let s be a literal. If s = ¬a then let ¬s = a.
Let var(s) be the Boolean variable in s. A clause is a set of literals. A clause is
interpreted as disjunction of its literals. Naturally, empty clause denotes false .
We will use A,B,C, ... to denote clauses. Let C and D be clauses. We assume
for each Boolean variable b, {b,¬b} � C. Let C ∨D denote union of the clauses,
and let s∨C denote {s}∨C. A CNF formula is a set of clauses. A CNF formula
is interpreted as conjunction of its clauses. We will use P,Q,R, ... to denote
CNF formulas. Let P be a CNF formula. Let Atoms(P ) be the set of Boolean
variables that appear in P . Let Lit(P ) = {a,¬a|a ∈ Atoms(P )}. P is satisfiable
if there exist a map f : Atoms(P ) → {0, 1} such that for each clause C ∈ P ,
there is s ∈ C for which if s = a then f(a) = 1 and if s = ¬a then f(a) = 0. P
is unsatisfiable if no such map exists.
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Resolution Proof: A resolution proof is obtained by applying the resolution
rule to an unsatisfiable CNF formula. The resolution rule states that clauses a∨C
and ¬a ∨D imply clause C ∨D. a ∨ C and ¬a ∨D are the antecedent clauses.
C ∨D is the deduced clause and a is the pivot. Let C ∨D = Res(a∨C,¬a∨D, a)
if for each Boolean variable b, {b,¬b} � C ∨D. We say a is the resolving literal
between the clauses a ∨C and C ∨D. Symmetrically, ¬a is the resolving literal
between ¬a∨D and C∨D. Resolution is known to be sound and complete proof
system for CNF formulas. In particular, a CNF formula is unsatisfiable if and
only if we can deduce empty clause by applying a series of resolutions on the
clauses of the the formula. The following is a definition of a labelled DAG that
records the series of applications of the resolution rule.

Definition 1 (Resolution proof). A resolution proof P is a labeled DAG
(V, L,R, cl, piv, v0), where V is a set of nodes, L and R are maps from nodes to
their parent nodes, cl is a map from nodes to clauses, piv is a map from nodes to
pivot variables, and v0 ∈ V is the sink node. P satisfies the following conditions:

(1) V is divided into leaf and internal nodes.
(2) A leaf node v has no parents, i.e., L(v) = R(v) = ⊥ and piv(v) = ⊥.
(3) An internal node v has exactly a pair of parents L(v) and R(v) such that

cl(v) = Res(cl(L(v)), cl(R(v)), piv(v)).
(4) v0 is not a parent of any other node and cl(v0) = ∅.

P is derived from unsatisfiable CNF formula P if for each leaf v ∈ V , cl(v) ∈ P .
Let Lit(P) = Lit({cl(v)|v ∈ V }). Let children(v) = {v′ ∈ V |v = L(v′) ∨ v =
R(v′)}. If v′ ∈ children(v) then let rlit(v, v′) be the resolving literal between v
and v′, i.e., if v = L(v′) then rlit(v, v′) = piv(v′) else rlit(v, v′) = ¬piv(v′).

Since we will be dealing with the algorithms that modify resolution proofs, we
may refer to a resolution proof that satisfies all the conditions except the third.
We will call such an object as proof DAG.

Proof Reduction: The resolution proofs obtained from SAT solvers may have
redundant parts, which can be partially removed during the post-processing
using low complexity algorithms. We focus on such an algorithm introduced
in [3], namely Recycle-Pivots. The observation behind the algorithm is that
if there is a node v ∈ V such that each path from v to v0 contains a node v′

such that piv(v) = piv(v′) then the resolution at node v is redundant. v can
be removed using an inexpensive transformation of the resolution proof. The
transformed resolution proof is a strictly smaller than the original resolution
proof. We will call this minimization redundant pivot reduction.

In figure 1, we present an algorithm RmRedundancies, which is a reproduc-
tion of Recycle-Pivots from [3]. RmRedundancies takes a resolution proof
P as input and only removes the redundancies in parts of P that are trees.
This algorithm traverses P twice using two algorithms, namely RmPivots and
RestoreResTree. RmPivots detects and flags the redundant clauses in tree
like parts of resolution.RestoreResTree traverses the flagged resolution proof
and removes the redundant clauses using appropriate transformations.



Improved Single Pass Algorithms for Resolution Proof Reduction 111

global variables
(V,L,R, cl, piv, v0) : resolution proof visited : V → B = λx.false

fun RmRedundancies(P)
begin
(V,L, R, cl, piv, v0) := P
RmPivots(v0, ∅)
visited := λx.false
v0 := RestoreResTree(v0)

end
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fun RmPivots(v: node, D: literals)
begin
if visited(v) then return
visited(v) := true
if piv(v) = ⊥ then return
if |children(v)| > 1 then D := ∅
if piv(v) ∈ D then
R(v) := ⊥
RmPivots(L(v), D)

elsif ¬piv(v) ∈ D then
L(v) := ⊥
RmPivots(R(v),D)

else
RmPivots(L(v), D ∪ {piv(v)})
RmPivots(R(v),D∪{¬piv(v)})

end
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fun RestoreResTree(v: node)
begin
if visited(v) then return v
visited(v) := true
if piv(v) = ⊥ then return v
if L(v) = ⊥ then

v′ := RestoreResTree(R(v))
elsif R(v) = ⊥ then

v′ := RestoreResTree(L(v))
else

vl := RestoreResTree(L(v))
vr := RestoreResTree(R(v))
match (piv(v) ∈ cl(vl),¬piv(v)∈cl(vr))with
| (true , true) -> v′ := v
| (true , false) -> v′ := vr
| (false, ) -> v′ := vl

if v = v′ then
cl(v) := Res(vl, vr, piv(v))

else
for each u : v = L(u) do L(u) := v′ done
for each u : v = R(u) do R(u) := v′ done

return v′

end

Fig. 1. RmRedundancies, a dual pass resolution proof reduction algorithm from [3]

RmPivots recursively traverses the proof DAG in depth first manner.
RmPivots takes a node v as the first input argument. At line 1-2 using map
visited, it ensures that v is visited only once. At line 3, if v is a leaf then the
algorithm returns. The algorithm also takes a set of literals D as the second
input argument. D is a subset of the resolving literals that have appeared along
the path using which DFS has reached v via the recursive calls at lines 7, 10,
12, and 13. At line 4, D is assigned empty set if v has multiple children. Conse-
quently, D contains only the resolving literals that appeared after the last node
with multiple children was visited. At line 5 and 8, if piv(v) or ¬piv(v) is found
in D, then we have detected a redundant resolution step. The algorithm flags
the detected redundant clause by removing one of the parent relations at lines 6
or 9. This modification in parent relations violates the conditions of a resolution
proof.

After running RmPivots, RmRedundancies calls RestoreResTree to
remove the flagged clauses. RestoreResTree traverses the proof DAG in the
order of parents first. RestoreResTree takes a node v as input and returns a
node v′ that has a valid sub-proof (line 15–16) and replaces v in the resolution
proof (line 17–20). If v is a flagged node then v′ is the node that also replaces
the remaining parent of v (line 4–6). If v was originally not flagged then it may
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1 : ∅

2 : c 3 : ¬c

4 : a ∨ c 5 : ¬a ∨ c

6 : b ∨ c 7 : ¬b ∨ a

8 : a ∨ b 9 : ¬a ∨ c

(a)

1 : ∅

2 : c 3 : ¬c

4 : a ∨ c 5 : ¬a ∨ c

6 : b ∨ c 7 : ¬b ∨ a

8 : a ∨ b ⊥

(b)

1 : ∅

2 : c 3 : ¬c

4 : a 5 : ¬a ∨ c

7 : ¬b ∨ a8 : a ∨ b

(c)

Fig. 2. Each node is labelled with a clause and assigned a number as a node id. The
left parent corresponds to L parent and the right parent corresponds to R parent. The
pivot used for producing a node can be inferred by looking at the clauses of the node
and its parents. (a) An example resolution proof with a redundant resolution at node
6. (b) A proof DAG obtained after running RmPivots. (c) A resolution proof obtained
after running RmRedundancies.

happen that one of its new parents vl and vr may not contain the literals corre-
sponding to piv(v) (line 9–12). In this case, v is treated as a flagged node(line
13–14). Please look in [3] for more detailed description of RestoreResTree.

Example 1. Consider the node 6 of the resolution proof presented in figure 2(a).
The resolution at node 6 is redundant because the path from 6 to sink node 1
contains node 2 and both nodes 6 and 2 have pivot a. RmPivots will reach to
node 6 with D = {a, b, c}. Therefore, R(6) will be assigned ⊥. In figure 2(b), we
show a proof DAG obtained after running RmPivots. The subsequent run of
RestoreResTree produces a resolution proof shown in figure 2(c).

For efficiency, RmPivots not so eagerly flags clauses for removal. In the follow-
ing three sections, we will present three new algorithms to replace RmPivots

that will detect more redundancies without adding much additional cost.
RestoreResTree is general enough such that in all the three following al-
gorithms it will be able to subsequently restore the resolution proof.

3 Using Literals of Clauses for Redundancy Detection

In this section, we will present our first modification in RmPivots that leads to
detection of more redundant resolutions without additional cost.

For each node v ∈ V , we observe that each literal in cl(v) has to act as a
resolving literal in some resolution step along each path to the sink v0 because
cl(v0) is empty and a literal is removed in the descendants only by some resolu-
tion (Lemma 1 in appendix A). Now consider a run of RmPivots that reaches to
a node v that has multiple children. At this point of execution, RmPivots resets
parameter D to empty set. Due to the above observation, we are not required
to fully reset D and can safely reset D to cl(v).
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fun RmPivots*(v: node, D: literals)
begin
if visited(v) then return
visited(v) := true
if piv(v) = ⊥ then return
if |children(v)| > 1 then D := cl(v)
if piv(v) ∈ D then
R(v) := ⊥
RmPivots*(L(v), D)

elsif ¬piv(v) ∈ D then
L(v) := ⊥
RmPivots*(R(v),D)

else
RmPivots*(L(v), D ∪ {piv(v)})
RmPivots*(R(v),D ∪ {¬piv(v)})

end

Fig. 3. RmPivots*, our first improved
version of RmPivots

In figure 3, we present our first algo-
rithm RmPivots* which is a modified
version of RmPivots. The only modifi-
cation is at line 4 that changes the reset
operation. This modification does not re-
quire any changes in RestoreResTree.

Example 2. Consider the resolution proof
presented in figure 4(a). The resolution at
node 7 is redundant but RmPivots will
fail to remove it because node 5 has mul-
tiple descendants and the algorithm will
not look further. In RmPivots*, the lit-
erals of cl(5) are added in D therefore our
modification enables it to detect the re-
dundancy and remove it. The minimized
proof is presented in figure 4(b).

4 All Path Redundancy Detection

In this section, we present our second modification in function RmPivots that
considers all paths from a node to the sink to find the redundancies. This mod-
ification leads to even greater coverage in a single pass of a resolution proof but
it may lead to a longer run time.

In the second modification, we additionally compute a set of literals, which
we call the expansion set, for each node to guide the removal of redundant
resolutions. For a node v ∈ V , the expansion set ρ(v) is the largest set of literals
such that if some proof transformation among ancestors of v leads to appearance
of literals from ρ(v) in cl(v) then the resolution proof remains valid. Due to the

1 : ∅

2 : c 3 : ¬c

4 : a ∨ c 5 : ¬a6 : a ∨ ¬c

7 : b 8 : ¬b ∨ ¬a

9 : a ∨ b 10 : ¬a ∨ b

(a)

1 : ∅

2 : c 3 : ¬c

4 : a ∨ c 5 : ¬a6 : a ∨ ¬c

8 : ¬b ∨ ¬a9 : ¬a ∨ b

(b)

Fig. 4. (a) An example of resolution proof on which RmPivots fails to detect the
redundancy at node 7. (b) Minimized form of the example.
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global variables
ρ : V → literal set := (λx.Lit(P))[v0 �→ ∅] k : integer (parameter)
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fun all-RMPivots(v: node)
begin
if visited(v) ∨ piv(v) = ⊥ ∨
∃v′ ∈ children(v).¬visited(v′)

then
return

visited(v) := true
for each v′ ∈ children(v) do
ρ(v) := ρ(v) ∩ (ρ(v′) ∪ {rlit(v, v′)})

done
vL := L(v)
vR := R(v)
if piv(v) ∈ ρ(v) then R(v) := ⊥
if ¬piv(v) ∈ ρ(v) then L(v) := ⊥
all-RMPivots(vL)
all-RMPivots(vR)

end
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fun k-RMPivots(v: node)
begin
if visited(v) ∨ piv(v) = ⊥ ∨
∃v′ ∈ children(v).¬visited(v′)

then
return

visited(v) := true
if children(v) ≥ k then
ρ(v) := cl(v)

else
for each v′ ∈ children(v) do
ρ(v) := ρ(v) ∩ (ρ(v′) ∪ {rlit(v, v′)})

done
vL := L(v)
vR := R(v)
if piv(v) ∈ ρ(v) then R(v) := ⊥
if ¬piv(v) ∈ ρ(v) then L(v) := ⊥
k-RMPivots(vL)
k-RMPivots(vR)

end

Fig. 5. all-RMPivots and k-RMPivots are our second and third modified algo-
rithms respectively. Each can replace RmPivots. To find redundant resolutions, all-
RMPivots considers all the paths from a node to the sink. Depending on the parameter
k, k-RMPivots only considers the paths that contain nodes with less than k children.

definition, ρ(v) is a subset of the resolving literals that appear in all the paths
from v to v0. We cannot add all the resolving literals that appear in the paths
in ρ(v) because of the following reason. In a path from v to v0, if literals s and
¬s both appear as resolving literals then only the one that appears nearest to
v can be added to ρ(v). Otherwise, an expansion allowed by ρ(v) may lead to
the internal clauses that have both s and ¬s. If there are two paths in which s
and ¬s occur in opposite orders then none of them can be added to ρ(v). The
following equation recursively defines the expansion set for each node.

ρ(v) =

⎧⎨⎩
∅ if v = v0⋂
v′∈children(v)

ρ(v′) ∪ {rlit(v, v′)} \ {¬rlit(v, v′)} otherwise. (1)

To understand the above equation, for each v′ ∈ children(v) lets assume we have
the expansion set ρ(v′). All the paths from v to v0 that goes via v′ must have
seen resolving literals ρ(v′)∪{rlit(v, v′)}. If ¬rlit(v, v′) appears in ρ(v′) then we
need to remove it as noted earlier. Therefore, ρ(v) is the intersection of these
resolving literal sets corresponding to the children of v. If piv(v) or ¬piv(v) is
in ρ(v) then ρ(v) allows removal of the resolution step at v.
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1 : ∅

2 : b 3 : ¬b

4 : d ∨ b 5 : ¬d ∨ b

6 : a 7 : ¬a ∨ b ∨ ¬d8 : ¬a ∨ b ∨ d

9 : c 10 : ¬c ∨ a

11 : b ∨ a 12 : ¬b ∨ ¬c

(a)

1 : ∅

2 : b 3 : ¬b

4 : d ∨ b 5 : ¬d ∨ b

11 : b ∨ a 7 : ¬a ∨ b ∨ ¬d8 : ¬a ∨ b ∨ d

(b)

Fig. 6. (a) An example of resolution proof on which RmPivots* fails to detect the re-
dundancy at node 10. (b) Minimized form of the example obtained by all-RMPivots.

In figure 5, we present the second modified algorithm all-RMPivots that
implements the above computation of ρ and flags the resolution steps accord-
ingly. The algorithm can replace RmPivots without any changes in Restor-

eResTree. In this presentation of the algorithm, we assume that initially all
nodes of V are reachable from v0. Initially, the global variable ρ maps v0 to
∅ and rest of the nodes to all literals appear in P . We initialize ρ in this way
because if a node that eventually becomes unreachable from v0 and has parents
that are reachable from v0 then we can consistently compute ρ for the parents.
all-RMPivots takes a node v as input and decides to visit the node now or
not. The condition at line 1 ensures that each node is visited only if it is an
internal node, only once, and if its parents are already visited. all-RMPivots

traverses P in the reverse topological order. During the visit of v, the loop at
line 6 computes ρ(v) slightly differently from the recursive equation (1). Subse-
quently at lines 11–12, the algorithm drops the parent relations if ρ(v) contains
piv(v) or ¬piv(v). The algorithm does not remove ¬rlit(v, v′) from ρ(v′) at line
7 as per the equation (1) because ρ(v′) cannot contain ¬rlit(v, v′). That is the
case because, during the earlier visit to v′, if ρ(v′) contained ¬rlit(v, v′) then
the edge between v′ and v must have been removed. At lines 13–14, a recursive
call even for an ex-parent is made because if there were other children of the
ex-parent and all of whom have been visited earlier then the ex-parent must
be waiting to be visited. Due to the initialization of ρ, if children(v) is empty
then both the if-conditions at lines 11–12 are true and both the parent relations
are removed. Therefore, if a node eventually becomes unreachable from the sink
then the node also becomes isolated. Since removal of a redundancy may expose
more redundancies, the algorithm removes the redundancies partially.

Example 3. Consider the resolution proof presented in figure 6(a). The resolution
at node 10 is redundant because the pivot of node 10 is variable b and literal
b appears as a resolving literal on both the paths from node 10 to node 1.
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RmPivots* fails to detect it because node 6 has multiple descendants and cl(6)
does not contain b. all-RMPivots computes the following values for map ρ.

ρ(2) = {b} ρ(4) = {d, b} ρ(5) = {¬d, b} ρ(6) = {a, b} ρ(10) = {a, b,¬c}

Since b ∈ ρ(10), all-RMPivots detects the redundancy. In figure 6(b), the
minimized proof that is obtained after consecutive run of all-RMPivots and
RestoreResTree is presented.

5 Redundancy Detection up to k Children

In this section, we present our third algorithm that only considers a fraction of
paths from a node to the sink to find the redundancies. The fraction is deter-
mined by a parameter k. This algorithm only considers the paths that contain
nodes with less than k children. In the following equation, we present a modified
definition of the expansion set that implements the restriction.

ρ(v) =

⎧⎪⎪⎨⎪⎪⎩
∅ if v = v0
cl(v) if |children(v)| ≥ k⋂
v′∈children(v)

ρ(v′) ∪ {rlit(v, v′)} \ {¬rlit(v, v′)} otherwise.

If a node v has more than or equal to k children then the above equation under-
approximates the expansion set by equating it to cl(v). This modification may
decrease the cost of computation of the expansion sets but may also lead to fewer
redundancy detection.

In figure 5, we also present our third algorithm k-RMPivots using the
above definition of expansion set. k-RMPivots is a modified version of
all-RMPivots. At line 6, this algorithm introduces an if-condition that checks
if the node v has more than or equal to k children. If the condition holds than
the algorithm inexpensively computes ρ(v). Otherwise, this algorithm operates
as all-RMPivots.

6 Complexity

RmPivots* visits each node of the input resolution proof only once. The worst
case cost of visiting each node for RmPivots* is O(log(|Lit(P)|)) because of
the find and insert operations on D. Therefore, the complexity of RmPivots*

is O(|V |log(|Lit(P)|)).
all-RMPivots, and k-RMPivots also visit each node of the input res-

olution proof only once. For each visited node, all-RMPivots iterates over
children and applies the intersection operation. Since total number of edges in a
resolution proof are less than twice the number of the nodes in the proof, the total
number of intersection operation is linearly bounded. In worst case, each inter-
section may cost as much as the total number of literals in the resolution proofs.
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Algorithms avg. % reduction avg. % reduction
in proof size in unsat core size time(s)

RmPivots 11.97 0.98 1753
RmPivots* 12.86 1.10 1772
k-RMPivots with k = 5 19.60 2.13 2284
k-RMPivots with k = 10 21.14 2.41 2599
k-RMPivots with k = 20 21.90 2.67 2855
all-RMPivots 22.54 2.93 5000

Fig. 7. We applied our algorithms to the resolution proofs obtained by OpenSMT for
198 examples from plain MUS track of SAT11 competition. The proofs in total contain
144,981,587 nodes.

Algorithms avg. % reduction avg. % reduction
in proof size in unsat core size time(s)

RmPivots 6.35 1.52 17.2
RmPivots* 6.69 1.69 18.0
k-RMPivots with k = 5 10.10 2.76 24.1
k-RMPivots with k = 10 10.43 2.88 27.8
k-RMPivots with k = 20 10.54 2.90 31.7
all-RMPivots 10.58 2.91 51.3

Fig. 8. We also applied our algorithms to the resolution proofs obtained by OpenSMT

for 132 examples from SMTLIB. The proofs in total contain 13,629,927 nodes.

Therefore, The worst case average cost of visiting each node for all-RMPivots

is O(|Lit(P)|). k-RMPivots has worst case complexity as all-RMPivots. The
complexities of all-RMPivots and k-RMPivots are O(|V ||Lit(P)|).

Since the number of literals are usually small compare to the number of nodes,
we observe in experiments that although the intersections are expensive but the
run times do not grow quadratically as number of nodes increases.

7 Experiments

We implemented our algorithmswithin an open source SMT solverOpenSMT [5].
We applied our algorithms to the resolution proofs obtained by OpenSMT for
198 unsatisfiable examples from plain MUS track of SAT11 competition. We se-
lected an example if a proof is obtained with in 100 seconds using default options
of OpenSMT and has resolution proof larger than 100 nodes.1 These examples
in total contain 144,981,587 nodes in the resolution proofs. The largest proof con-
tains 9,489,571 nodes. In figure 7, we present the results of the experiments. We
applied k-RMPivots with three values of k: 5, 10, and 20. The original algo-
rithmRmPivots removes 11.97% of nodes in the proofs of the examples.RmPiv-

ots* and all-RMPivots additionally removes 0.89% and 10.57% of nodes

1 Please find detailed results at http://www.ist.ac.at/~agupta/sat12/index.html

http://www.ist.ac.at/~agupta/sat12/index.html
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(a) (b)

(c) (d)

Fig. 9. (a) Run times of RmPivots vs. number of nodes in the proofs. The dotted
line in the plot denotes a linear growth. (b) Ratio of the run times of all-RMPivots

and RmPivots vs. number of nodes in the proofs. (c) Ratio of the run times of k-

RMPivots with k = 10 and RmPivots vs. number of nodes in the proofs. (d) Ratio of
reduction in the proofs by all-RMPivots and k-RMPivots with k = 10 vs. number
of nodes in the proofs. For these plots, we only used the examples from the earlier
benchmarks that have more than 10000 nodes.

respectively. Even for small values of k, k-RMPivots reduces the proofs about
as much as all-RMPivots, but within significantly less run times. We observe
the similar pattern in reduction of the unsat cores.

The run time of RmPivots* is almost equal to RmPivots as expected. Due
to the costly computations of the intersections of sets of literals, all-RMPivots

shows significantly increased run time as compared to RmPivots. k-RMPivots

provides a parameter that allows one to achieve the proof reduction almost as
much as all-RMPivots and within the run times almost as less asRmPivots*.

We also selected 132 unsatisfiable examples from smtlib benchmarks in the
theory of QF UF to test the performance of our algorithms in another setting.1

These examples in total produce 13,629,927 nodes in the resolution proofs. The
largest proof in the examples contains 275,786 nodes. In figure 8, we present the
results of applying our three algorithms to the examples. We observe the similar
pattern in the results as observed in previous example set.

We note that the % of proof reduction may vary a lot for individual examples
(from 0% to 48%).1 We also observe that the two example sets have different
absolute % reduction in proof sizes.
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In figure 9, we plotted the relative performances of RmPivots, all-

RMPivots, and k-RMPivots with k = 10 for the individual examples with
proof sizes greater than 10000 nodes. In figure 9(a), we plot the run times of
RmPivots verses the proof sizes. The dotted line in the plot denotes a linear
growth. We observe that the run times grow non-linearly but for the most exam-
ples the run times are close to the linear line. In figure 9(b), we observe that the
ratios of the run times of all-RMPivots and RmPivots have increasing trend
with the increasing proof sizes, which follows from the difference in their com-
plexities. In figure 9(c), we observe that the ratios of run times of k-RMPivots

with k = 10 and RmPivots are fairly constant across the different proof sizes,
which is the result of the heuristic. In figure 9(d), we observe that the ratios of
the reductions in the proofs by all-RMPivots and k-RMPivots with k = 10
remain below 1.1 for most of the examples.

8 Conclusion

We presented three new single pass algorithms that can find redundant res-
olutions even in the resolution proofs that have DAG form, without causing
significantly large run times. Since these algorithms do not try to escape a local
minimum, the improvements in reductions due to these algorithms are limited.
For an analogy, we can compare these algorithms with compiler optimizations in
which an efficient and less compressing algorithm is always welcomed as compare
to an expensive and more compressing algorithm.

These algorithms can be further harnessed by placing them in the iterative
algorithm of [18]. We leave that for future work. We specially note that the addi-
tional rules (other than A1 and A2) for restructuring a resolution proof presented
in [18] become redundant if applied in combination with our algorithms.
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A Proof of Correctness and Complexity

In this section, we will present proof of correctness of our modifications. We
need to define some notation first. Let (V, L,R, cl, piv, v0) be a proof DAG.
Let ρ be defined by the recursive equation 1. Let clρ(v) = cl(v) ∪ ρ(v). Let
Res∗(C,D, a) = (C \ {a}) ∨ (D \ {¬a}).

In the following definition, we will define an invariant for the input of Restor-

eResTree. We will show that RmPivots* and all-RMPivots transforms the
input resolution proof into a proof DAG that satisfies the invariant.

Definition 2 (Restorable property). The proof DAG (V, L,R, cl, piv, v0) is
restorable if each internal node v ∈ V satisfies the following conditions.
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(1) L(v) 	= ⊥ ∨R(v) 	= ⊥
(2) if L(v) = ⊥ ∨R(v) = ⊥ then

(3) clρ(v) ⊇

⎧⎨⎩
clρ(L(v)) if R(v) = ⊥
clρ(R(v)) if L(v) = ⊥
Res∗(clρ(L(v)), clρ(R(v)), piv(v)) otherwise

Theorem 1. If a proof DAG is restartable then RestoreResTree transforms
the proof DAG into a resolution proof.

We will not provide a proof for the above theorem. Please look in [3] for the
proof. To prove the correctness, we will prove that during the runs of both the
algorithms maintain the following invariant.

Definition 3 (Invariant). A proof DAG (V, L,R, cl, piv, v0) satisfies this in-
variant if each reachable from sink and internal node v ∈ V satisfies the following
conditions.

(1) L(v) 	= ⊥ ∨R(v) 	= ⊥
(2) if R(v) 	= ⊥ ∧ L(v) 	= ⊥ then cl(v) = Res(cl(L(v)), cl(R(v)), piv(v))
(3) if R(v) = ⊥ then cl(v) ·∪{piv(v)} ⊇ cl(R(v)) and piv(v) ∈ ρ(v)
(4) if L(v) = ⊥ then cl(v) ·∪{¬piv(v)} ⊇ cl(L(v)) and ¬piv(v) ∈ ρ(v)
where, ·∪ is disjoint union.

It can be easily checked that the invariant is a stronger property than then the
restorable property. Since both RmPivots* and all-RMPivots only remove
edges from a proof DAG, conditions 1 and 2 of the invariant will be true trivially.
Further, first half of 3 and 4 are also true trivially. To show validity of the rest
of the conditions that we need to prove the following lemma.

Lemma 1. If the proof DAG satisfies the invariant then for each v ∈ V , cl(v) ⊆
ρ(v).

Proof. We prove it by induction over the height of the proof DAG starting from
sink node. The base case at sink node is trivially true. By induction hypothesis,
for a node v ∈ V , lets assume for each v′ ∈ children(v), cl(v′) ⊆ ρ(v′). Let
v = L(v′) and the proof for the other case is similar. Due to condition (2) and
(3) of the invariant, cl(v) ⊆ ρ(v′) ∪ {piv(v′)}. Due to definition of ρ, we can
derive cl(v) ⊆ ρ(v). ��
Theorem 2. RmPivots* maintains the invariant.

Proof. The theorem is due to the previous lemma and the correctness proof of
Recycle-Pivots from [3]. ��
Theorem 3. all-RMPivots maintains the invariant.

Proof. all-RMPivots traverses the proof DAG in reverse topological order.
Therefore, a node is visited only when all the ancestors of the node has been
visited. The computed value of ρ for the node will not be changed due to future
changes since all the future change will not happen with in the ancestors of the
node. Hence by construction, the second half of the third and fourth conditions
will be satisfied. ��
The above theorems are sufficient to prove the correctness of our algorithms.
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Abstract. In classical LTL model checking, both the system and the specifica-
tion are over a finite set of atomic propositions. We present a natural extension
of this model, in which the atomic propositions are parameterized by variables
ranging over some (possibly infinite) domain. For example, by parameterizing
the atomic propositions send and receive by a variable x ranging over possi-
ble messages, the specification G(send .x → Freceive .x) specifies that not only
each send signal is followed by a receive signal, but also that the content of the
received message agrees with the content of the one sent.

Our extended setting consists of Variable LTL (VLTL) – a specification for-
malism that extends LTL with atomic propositions parameterized by variables,
and abstract systems – systems in which atomic propositions may be parameter-
ized by variables. We study the model-checking problem in this setting. We show
that while the general setting is undecidable, some useful special cases are de-
cidable. In particular, for fragments of VLTL that restrict the quantification over
the variables, the model checking is PSPACE-complete, and thus is not harder
than the LTL model checking problem. The latter result conveys the strength and
advantage of our setting.

1 Introduction

In model checking, we verify that a system has a desired behavior by checking that a
mathematical model of the system satisfies a formal specification of the desired behav-
ior. Traditionally, the system is modeled by a Kripke structure – a finite-state system
whose states are labeled by a finite set of atomic propositions. The specification is a
temporal-logic formula over the same set of atomic propositions [4].

The complexity of model checking depends on the sizes of the system and the spec-
ification [15,12]. One source for these sizes being huge is a large or even infinite data
domain over which the system, and often also the specification, need to be defined. An-
other source for the large sizes are systems composed of many components, such as
underlying processes or communication channels, whose number may not be known in
advance. In both cases, desired specifications might be inexpressible and model check-
ing intractable.

In this work we propose a novel approach for model checking systems and spec-
ifications that suffer from the size problem described above. We do so by extending
both the specification formalism and the system model with atomic propositions that
are parameterized by variables ranging over some (possibly infinite) domain.
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Let us start with a short description of the specification formalism. We introduce
and study the linear temporal logic Variable LTL (VLTL, for short). VLTL has the
syntax of LTL except that atomic propositions may be parameterized with variables
over some finite or infinite domain. The variables can be quantified and assignments to
them can be constrained by a set of inequalities. VLTL formulas are interpreted with
respect to all assignments to the variables that respect the inequalities. For example, the
VLTL formula ψ = ∀x.G(send.x→ Freceive.x) states that whenever a message with
content d, taken from the domain, is sent, then a message with content d is eventually
received. Note that if the domain of messages is infinite or unknown in advance, then ψ
does not have an equivalent LTL formula.

In order to see the usefulness of VLTL, consider the LTL specification G(req →
Fgrant), stating that every request is eventually granted. We may wish to parameter-
ize the req and grant by atomic propositions with the id of the process that invokes
the request. In LTL this can only be done by having a new set of atomic proposi-
tions req1, grant1, . . . , reqn, grantn, where n is the number of processes. This both
blows-up the specification and requires the specifier to know the number of processes
in advance. Instead, in VLTL we parameterize the atomic propositions by a variable
x ranging over the ids of the processes. Since it is natural to require that the property
holds for every assignment to x, we quantify it universally, thus obtaining the formula
ψ = ∀x;G(req.x → Fgrant .x).1 Note that the negation of ψ quantifies x existentially,
thus ¬ψ = ∃x;F(req.x ∧G¬grant .x). Beyond the use of existential quantification for
identifying counterexamples as above, such quantification is useful by itself. For exam-
ple, the formula ∃x.GF¬idle .x states that in each computation, there exists at least one
process that is not idle infinitely often.

Next, consider the formula θ = ∀x1; ∀x2;G((¬send.x2)Usend.x1)→ ((¬rec.x2)
Urec.x1), stating that messages are received in the order in which they are sent. To
convey this, the values assigned to x1 and x2 should be different. This is handled by
the set of inequalities that VLTL formulas include. When interpreting a formula, we
consider only assignments that respect the set of inequalities. In the example above, the
VLTL formula 〈θ, x1 	= x2〉 specifies that θ holds for every assignment in which the
variables x1 and x2 are assigned different values.

As another example, consider a system with transactions interleaved in a single com-
putation [17]. Each transaction has an id, yet the range of ids is not known in advance.
We may wish to refer to the sequence of events associated with one transaction. For
instance, when x stands for a transaction id, then ∀x;G(req.x → Fgrant .x) states that
whenever a request is raised in a transaction, it is eventually granted in the same trans-
action. Alternatively, we may wish to specify that a request is granted only in a different
transaction. In this case we may write 〈ϕ, x1 	= x2〉, where ϕ = ∀x1; ∀x2;G(req.x1 →
((¬grant.x1)Ugrant .x2 )).

Thus, as demonstrated above, VLTL formulas are able to compactly express spec-
ifications over a large, possibly infinite domain, which would otherwise be inexpress-
ible by LTL or lead to extremely large formulas. Moreover, VLTL is able to express

1 Note that unlike the standard way of augmenting temporal logic with quantification [13,16],
here the variables do not range over the set of atomic propositions but rather over the domain
of their parameters.
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properties for domains whose size is unknown in advance (e.g., number of different
messages, number of different channels).

We now turn to describe in detail the way we model systems. We distinguish be-
tween concrete models, in which atomic propositions are parameterized with values
from the domain, and abstract models, in which the atomic propositions are parameter-
ized with variables. For instance, in a concrete model, the proposition send .3 stands for
the atomic proposition send that carries the value 3. In an abstract model, the propo-
sition send .x indicates that send carries the value assigned to x. Assignments to vari-
ables are fixed along a computation, except when the system resets their value. More
precisely, in every transition of the system, a subset of the variables is reset, meaning
that these variables can change their value in the next step of the run2. Also, as with
VLTL, the model includes a set of inequalities over the variables.

The concrete computations of an abstract system are obtained from system paths by
assigning values to the occurrences of the variables in a way that respects the set of
inequalities, and is consistent with the resetting along the path. That is, the value as-
signed to a variable may change only when a transition in which the variable is reset
is taken. Note that a path of an abstract system may induce infinitely many different
concrete computations of the abstract system, formed by different assignments to the
occurrences of the variables. Thus, abstract systems offer a compact and simple repre-
sentation of infinite-state systems in which the control is finite and the source of infinity
is data that may be infinite or unknown in advance.

As a simple example, consider the abstract system in Figure 1. It describes a simple
stop-and-wait communication protocol. Once a message x is sent, the system waits for
an ack with identical content, confirming the arrival of the message. When this happens,
the content of the message is reset and a new cycle starts. If a timeout occurs, the same
message is sent. Note that if the message domain is infinite, standard finite systems
cannot describe this protocol, as it involves a comparison of the content of the message
in different steps of the protocol. More complex communication protocols, in which
several send-receive processes can run simulateously (e.g., sliding windows), can be
modeled by an abstract system with several variables, one for every process.

idle send.x
set_timer wait

ack.x

timeout

reset.x

Fig. 1. A simple abstract system for the stop and wait protocol

We study the model-checking problem for VLTL with respect to concrete and ab-
stract systems. We also consider two natural fragments of VLTL: ∀-VLTL and ∃-VLTL,
containing only ∀ and ∃ quantifiers, respectively.

2 Despite some similarity in their general description and use of resets, abstract systems have
no direct relation to timed automata [22]. In abstract systems, the variables and resets are over
domain values rather than clocks ranging over the reals.
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We start with VLTL model checking of concrete systems. We show that given a
concrete system and a VLTL formula, it is possible to reduce the infinite domain to a
finite one, and reduce the problem to LTL model checking. The reduction involves an
LTL formula that is exponential in the VLTL formula, and we prove that the problem is
indeed EXPSPACE-complete. Hardness in EXPSPACE applies already for the fragment
of ∃-VLTL. As good news, for the fragment of ∀-VLTL, a similar procedure runs in
PSPACE, and the problem is PSPACE-complete in the size of the formula, as for LTL.
We also consider the model-checking for a single concrete computation and show that
it is PSPACE-complete.

We proceed to show that for abstract systems the model-checking problem is in gen-
eral undecidable. Here too, undecidability applies already for the fragment of ∃-VLTL.
Our undecidability proof is by a reduction from Post’s Correspondence Problem, fol-
lowing the lines of the reduction in [14], showing that the universality problem for reg-
ister automata is undecidable. On the other hand, for systems with no resetting, model
checking is EXPSPACE-complete, and thus is not harder than model checking of con-
crete systems. Moreover, for the fragment of ∀-VLTL, the model-checking problem
for abstract systems is PSPACE-complete, and thus is not harder than the LTL model-
checking problem. This latter result conveys the strength and advantage of our model:
abstract systems are able to accurately describe infinite state systems; ∀-VLTL formu-
las are able to express rich behaviors that are inexpressible by LTL, and may refer to
infinitely many values. Yet, surprisingly, model checking in that setting is not harder
than that of LTL.

Related Work. Researchers have studied several classes of infinite-state systems, gen-
erally differing in the source of infinity. For systems with a finite control and infinite (or
very large) data, researchers have developed heuristics such as data abstraction [3,6].
Data abstractions are applied in order to construct a finite model and a simplified speci-
fication, and are based on mapping the large data domain into a finite and small number
of classes. Our approach, on the other hand, has the abstraction built in the system, and
is also part of the specification formalism. Finite control is used also in work on hybrid
systems [10] and systems with an unbounded memory (e.g., pushdown systems [7]),
where the underlying setting is very different from the one studied here. Closer to our
abstract systems are some of the approaches to handle systems having an unbounded
number of components (e.g., parameterized systems [8]). The solutions in these cases
are tailored for the setting in which the parameter is the number of components, and
cannot be applied, say, for parameterizing data.

Several extensions of LTL for handling infinite-state or parameterized systems have
been suggested and studied. A general such extension, with a setting similar to that
presented in this paper, is first-order LTL. First-order temporal logics are used for spec-
ifying and reasoning about temporal databases [19]. The work focuses on finding de-
cidable fragments of the logic, its expressive power and axiomatization (c.f., [21]).

In [2,8], the authors studied an extension of temporal logic in which atomic propo-
sitions are parameterized with a variable that ranges over the set of processes ids. In
[20], the authors study a restricted fragment of first-order temporal logic that is suit-
able for verifying parameterized systems. Again, these works are tailored for the set-
ting of parameterized systems, and are also restricted to systems in which (almost) all
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components are identical. VLTL is much richer, already in the context of parameterized
systems. For example, it can refer to both sender id and message content. In [5], the
authors introduced Constraint LTL, in which atomic propositions may be constraints
like x < y, and formulas are interpreted over sequences of assignments of variables to
values in N or Z. Thus, like our approach, Constraint LTL enables the specification to
capture all assignments to the variable. Unlike our approach, the domain is restricted to
numerical values. In [11], the author extends LTL with the freeze quantifier, which is
used for storing values from an infinite domain in a register. As discussed in our earlier
work [9], the variable-based formalism is cleaner than the register-based one, and it nat-
urally extends traditional LTL. In addition, our extension allows variables in both the
system and the specification. Finally, unlike existing work, as well as work on first order
LTL, in our setting a parameterized atomic proposition may hold with several different
parameter values in the same point in time.

In [9], we introduced VNFAs – nondeterministic finite automata augmented by vari-
ables. VNFAs can recognize languages over infinite alphabets. As in VLTL, the idea is
simple and is based on labeling some of the transitions of the automaton by variables
that range over some infinite domain. In [1], a similar use of variables was studied for
finite alphabets, allowing a compact representation of regular expressions. There, the
authors considered two semantics; in the “possibility” semantics, the language of an
expression over variables is the union of all regular languages obtained by assignments
to the variables, and in the “certainty” semantics, the language is the intersection of
all such languages. Note that in VLTL, it is possible to mix universal and existential
quantification of variables.

2 VLTL: LTL with Variables

Linear temporal logic (LTL) is a formalism for specifying on-going behaviors of reac-
tive systems. We model a finite-state system by a Kripke structure K = 〈P, S, I, R, L〉,
where P is a set of atomic propositions, S is a finite set of states, I ⊆ S is a set of
initial states, R ⊆ S × S is a total transitions relation, and L : S → 2P is a labeling
function. We then say that K is over P . A path inK is an infinite sequence s0, s1, s2 . . .
of states such that s0 ∈ I and 〈si, si+1〉 ∈ R for every i ≥ 0. A computation of K is an
infinite word π = π0π1 . . . over 2P such that there exists a path s0, s1, s2 . . . in K with
πi = L(si) for all i ≥ 0. We denote by πi the suffix πiπi+1, . . . of π.

We assume that the reader is familiar with the syntax and semantics of LTL. For a
Kripke structure K and an LTL formula ϕ, we say that K satisfies ϕ, denoted K |= ϕ,
if for every computation π ofK, it holds that π |= ϕ. The model-checking problem is to
decide, given K and ϕ, whether K |= ϕ.

The logic VLTL extends LTL by allowing some of the atomic propositions to be
parameterized by variables that can take values from a finite or infinite domain. Con-
sider a finite set P of atomic propositions, a finite or infinite domain D, a finite set T
of parameterized atomic propositions, and a finite set X of variables. In VLTL, the
propositions in T are parameterized by variables in X that range over D. A VLTL for-
mula also contains guards, in the form of inequalities over X , which restrict the set of
possible assignments to the variables.
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We now define VLTL formally. An unrestricted VLTL formula over P , T , andX is a
formula ψ of the form Q1x1;Q2x2; · · ·Qkxk; θ, where Qi ∈ {∃, ∀}, xi ∈ X , and θ is
an LTL formula over P ∪T ∪ (T ×X). Variables that appear in θ and are not quantified
are free. If θ has no free variables, then ψ is closed. We say that a parameterized atomic
proposition a ∈ T is primitive in θ if there is an occurrence of a in θ that is not param-
eterized by a variable. An inequality set overX is a set E ⊆ {xi 	= xj | xi, xj ∈ X}.

A VLTL formula over P , T , and X is a pair ϕ = 〈ψ,E〉 where ψ is an unrestricted
VLTL formula over P , T , and X , and E is an inequality set over X . The notions of
closed formulas, and of a primitive parametric atomic proposition are lifted from ψ to
ϕ. That is, ϕ is closed if ψ is closed, and a is primitive in ϕ if it is primitive in ψ.

We consider two fragments of VLTL. The logic ∃-VLTL is the fragment of VLTL in
which Qi = ∃ for all 1 ≤ i ≤ k. Dually, ∀-VLTL is the fragment of VLTL in which
only the ∀ quantifier is allowed.

We define the semantics for VLTL with respect to both concrete computations –
infinite words over the alphabet 2P∪(T×D), and abstract computations, defined later in
this section. A position in a concrete computation is a letter σ ∈ 2P∪(T×D). For a ∈ T ,
we say that σ satisfies a, denoted σ |= a, if there exists d ∈ D such that a.d ∈ σ. Thus,
a primitive a ∈ T is satisfied by assignments in which a holds with at least one value.

We say that a partial function f : X → D respects E if for every xi 	= xj in E, it
holds that f(xi) 	= f(xj).

Consider a concrete computation π, a VLTL formula ϕ = 〈ψ,E〉, with ψ =
Q1x1;Q2x2; . . . ;Qnxn; θ, and a partial function f : X → D that assigns values to
all the free variables in ψ and respects E. We use π |=f ψ to denote that π satisfies ψ
under the function f . The satisfaction relation is defined as follows.

– If n = 0 (that is, ψ = θ has no quantification and all its variables are free), then
the formula ψf obtained from ψ by replacing, for every x, every occurrence of a.x
with a.f(x), is an LTL formula over P ∪T ∪ (T ×D). Then, π |=f ϕ iff f respects
E and π |= ψf .

– If Q1 = ∃ (that is, ψ = ∃x1;Q2x2; . . . ;Qnxn; θ), then π |=f ϕ iff there exists
d ∈ D such that f [x1 ← d] respects E and π |=f [x1←d] Q2x2; . . . ;Qnxn; θ.

– If Q1 = ∀ (that is, ψ = ∀x1;Q2x2; . . . ;Qnxn; θ), then π |=f ϕ iff for all d ∈ D
such that f [x1 ← d] respects E, we have that π |=f [x1←d] Q2x2; . . . ;Qnxn; θ.

Example 1. Consider the concrete computation

π = {send.1}{send.2}{rec.2}{rec.1}ω

and the VLTL formula 〈∃x; θ, ∅〉, where θ = G(send.x → Xrec.x). Then for the
function f(x) = 2, we have that θf = G(send.2 → Xrec.2), and since π |= θf , it
holds that π |= 〈∃x; θ, ∅〉.

Next, consider the VLTL formula 〈∀x; θ, ∅〉. Then for the function g(x) = 1, we
have that π � θg , and therefore π � 〈∀x; θ, ∅〉.

Similarly to first order logic, when the formula ψ is closed, the satisfaction of E does
not depend on the function f , and we use the notation |=.

The extension of the definition to concrete systems (rather than computations) is
similar to that of LTL: For a Kripke structure K over P ∪ (T ×D) and a closed VLTL
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formulaϕ = 〈ψ,E〉, we say thatK satisfies ϕ, denotedK |= ϕ, if for every computation
π of K, it holds that π |= 〈ψ,E〉.

We now define abstract systems, whose computations may contain infinitely many
values. An abstract system over P , T ∪ {reset} and X is a pair 〈K, E〉, where K is
a Kripke structure over P ∪ (T × X) with a labeling L′ : R → 2{reset}×X for the
transitions, and E is an inequality set overX . Intuitively, a system variable is assigned
values throughout a computation of the system. If the computation traverses a transition
labeled by reset .x, then x can be assigned a new value, that will remain unchanged at
least until the next traversal of reset .x. Also, if xi 	= xj ∈ E, then the values that are
assigned to xi and xj in a given point in the computation must be different.

An abstract computation of 〈K, E〉 is a pair 〈ρ,E〉, where ρ is an infinite word
ρ0ρ

′
0ρ1ρ

′
1 · · · over P ∪ ((T ∪ {reset})×X) such that there exists a path s0, s1, . . . in

K such that for every i ≥ 0, it holds that L(si) = ρi, and L′(〈si, si+1〉) = ρ′i.
A concrete computation is obtained from an abstract computation by assigning val-

ues from D to the variables in X as described next.
Consider an abstract computation 〈ρ,E〉 over P , T ∪ {reset} and X , where ρ =

ρ0ρ
′
0ρ1ρ

′
1 · · · and a concrete computation π = π0, π1, . . . over P , T andD. We say that

π is a concretization of 〈ρ,E〉 if π is obtained from ρ0ρ1ρ2 · · · by substituting every
occurrence of x ∈ X by a value in D, according to the following rules.

– For every two consecutive occurrences of reset .x in ρ′i and ρ′j , the values assigned
to occurrences of x in ρi+1(x), ρi+2(x) . . . ρj(x) are identical.

– For every xi 	= xj ∈ E, for every position ρk that contains occurrences of xi and
xj , these occurrences are assigned different values in πi.

If π is a concretization of 〈ρ,E〉, then we say that 〈ρ,E〉 is an abstraction of π. Note
that 〈ρ,E〉 may have infinitely many concretizations.

Notice that for a domainD, an abstract system 〈K, E〉 represents a (possibly infinite)
concrete system over P ∪ (T × D) whose computations are exactly all concretizations
(w.r.t.D) of every abstract computation of 〈K, E〉.
Example 2. Consider the abstract system 〈K, ∅〉, where K, appearing in Figure 2, de-
scribes a protocol for two processes, a and b, that use a printer that may print a single
job at a time. A token is passed around. The atomic propositions ta and tb are valid
when processes a and b hold the token, respectively. The parameterized atomic propo-
sitions ra, rb, and p are parameterized by x1 and x2, which can get values from the
range of file names. The proposition ra.x1 is valid when process a requests to print x1,
and similarly for rb.x2 and process b. Once a file is printed, the variable that maintains
the file is reset.

Consider the path s1s2(s3s4s5s6)ω of K. It induces the abstract computation
〈ρ, ∅〉, where ρ =

{ta}∅{ta, ra.x1}∅({ta, ra.x1, rb.x2}∅{p.x1, rb.x2}{reset .x1}
{tb, ra.x1, rb.x2}∅{p.x2, ra.x1}{reset .x2})ω

An example for a concretization of 〈ρ, ∅〉 is

{ta}{ta, ra.doc1}{ta, ra.doc1, rb.data.txt}{p.doc1, rb.data.txt}
{tb, ra.doc2, rb.data.txt}{p.data.txt, ra.doc2}{ta, ra.doc2, rb.vltl.pdf} . . .
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Fig. 2. The abstract system K

We now describe the second semantics of VLTL, for abstract computations. Consider
a set X ′ of variables, an abstract computation 〈ρ,E′〉 over P ∪ ((T ∪ {reset})×X ′),
and a closed VLTL formula ϕ = 〈ψ,E〉 over P ∪ T ∪ (T ×X).3 We say that 〈ρ,E′〉
satisfies ϕ, denoted 〈ρ,E′〉 |= ϕ, if for every concretization π of 〈ρ,E′〉, it holds that
π |= ϕ. Note that ρ and ψ are defined over different sets of variables, that are not related
to each other.

Example 3. Consider the abstract system 〈K, ∅〉 and the abstract computation 〈ρ, ∅〉 of
Example 2.

Consider the formula ϕ = 〈∀z1; ∀z2;G((ra.z1 ∧ ta) → ((¬p.z2)Up.z1)), {z1 	=
z2}〉 overP , T , andX = {z1, z2}. In every concretizationπ of 〈ρ, ∅〉, whenever process
a requests to print a document d and holds the token, then the next job that is printed is
d, and no other job d′ gets printed before that. This holds for all values d and d′ such
that d 	= d′, and therefore, 〈ρ, ∅〉 |= ϕ.

For an abstract system 〈K, E′〉 and a closed VLTL formula 〈ψ,E〉, we say that 〈K, E′〉
satisfies 〈ψ,E〉, denoted 〈K, E′〉 |= 〈ψ,E〉, if for every abstract computation 〈ρ,E′〉
of K, it holds that 〈ρ,E′〉 |= 〈ψ,E〉.

3 Model Checking of Concrete Systems

In this section we present a model-checking algorithm for finite concrete systems and
discuss the complexity of the model-checking problem for the fragments of VLTL. We
show that the general case is EXPSPACE-complete, but is PSPACE-complete for the
fragment of ∀-VLTL and for single computations. Thus, the problem for these latter
cases is not more complex than LTL model checking.

3 An abstract computation represents infinitely many concrete computations. For every such
computation, a different function may be needed in order to satisfy the formula. Therefore,
the definition does not involve a specific function from the variables to the values, and so only
closed formulas are considered.
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The model-checking procedure we present for concrete systems reduces the model-
checking problem for VLTL to the model-checking problem for LTL. The key to this
procedure is the observation that different values that do not appear in a given com-
putation behave similarly when assigned to a formula variable. Thus, it is sufficient to
consider the finite set of values that do appear in the concrete system K, plus one ad-
ditional value for every quantifier to represent the values that do not appear in K. This
means that in case of a very large, or even infinite, domain, we can check the set of
assignments over a finite domain instead, resulting in a finite procedure.

We say that a concrete computation π and a VLTL formula ϕ do not distinguish
between two values d1, d2 ∈ D with respect to the variable x and a partial function
f : X → D if π |=f [x←d1] ϕ iff π |=f [x←d2] ϕ.

Lemma 1. Let π be a concrete computation and let ϕ be a VLTL formula over P , T
and X . Then, for every x ∈ X , every function f : X → D, and every two values d1
and d2 that do not appear in π, it holds that π and ϕ do not distinguish between d1 and
d2 with respect to x and f .

We now use Lemma 1 in order to reduce the VLTL model-checking problem for con-
crete systems to the LTL model-checking problem. We describe two algorithms. The
first algorithm, ModelCheck, gets as input a single computation and a VLTL formula
and decides whether the computation satisfies the formula. The second is based on a
transformation of a given VLTL formula to an LTL formula such that the system satis-
fies the VLTL formula iff it satisfies the LTL formula. The idea behind both algorithms
is the same – an inductive valuation of the formula, either (the first algorithm) by re-
cursively trying possible assignments to the variables, or (the second algorithm) by
encoding the various possible assignments using conjunctions and disjunctions in LTL.
In both cases, Lemma 1 implies that the number of calls needed in the recursion or the
number of conjuncts or disjuncts in the translation is finite.

Let us describe the first algorithm in more detail. Consider a computation π in the
concrete system. Recall that such a system is a finite state system, and therefore π
contains finitely many values from D. Let A be the set of values that appear in π.
Consider a VLTL formula ϕ = 〈ψ,E〉 and a partial function f : X → D that respects
E. Let B = Image(f).

Intuitively, each recursive call of the algorithm evaluates ϕ with a different assign-
ment to the variables. Lemma 1 enables checking assignments over a finite set of values
instead of the entire domain. For every quantifier, a new value is added to this set, ini-
tially assigned A ∪ B. According to Lemma 1, a value that is not in π and is different
from every other value that has been added to the set can represent every other such
value. Hence, these values are enough to cover the entire domain.4 For the ∀ quantifier,
we require that every respecting assignment leads to satisfaction. For the ∃ quantifier,
we require that at least one respecting assignment leads to satisfaction.

Since different computations of a concrete system may satisfy the formula with dif-
ferent assignments to the same variable, ModelCheck, which checks the entire system
against a single assignment, cannot be applied for checking concrete systems instead

4 Note that we assume that D is sufficiently large to supply additional new values whenever the
algorithm needs them. Our algorithms can be modified to account also for a small D.
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of computations. It can, however, be used to model check single paths in PSPACE. We
assume, as usual for such a case, that this path is a lasso. Since we can easily reduce the
problem of TQBF to model checking of a single path, a matching lower bound follows.

Theorem 1. Let π be a lasso-shaped concrete computation, let ϕ = 〈ψ,E〉 be a VLTL
formula over P ∪ T ∪ (T ×X), and let f : X → D be a partial function that respects
E. Then deciding whether π |=f 〈ψ,E〉 is PSPACE-complete.

Proof: For the upper bound, using Lemma 1 we can show that forB = Image(f) and
forA, the finite set of values that occur in π, it holds that ModelCheck(π, 〈ψ,E〉, f, A∪
B) returns true iff π |=f 〈ψ,E〉. This procedure involves repeated runs of LTL model
checking for π and a formula of the same size as ψ. Since each such run can be per-
formed in PSPACE (in fact, in polynomial time), the entire procedure is run in PSPACE.

The lower bound is shown by a reduction from TQBF, the problem of deciding
whether a closed quantified Boolean formula is valid, which is known to be PSPACE-
complete. Given a quantified Boolean formula ψ, consider the single-state system K
labeled a.d, where a is a parameterized atomic proposition, and d is some value, and
the VLTL formula 〈ψ′, ∅〉 obtained form ψ by replacing every variable x in ψ with a.x.
Then, every truth assignment f to the variables of ψ is mapped to an assignment f ′ to
the variables in ψ′, where assigning true to x in f is equivalent to assigning d to x in
f ′, and assigning false to x in f is equivalent to assigning d′ 	= d to x in f ′. It can be
shown that f |= ψ iff K |=f ′ 〈ψ′, ∅〉. Since ψ is closed, and therefore does not depend
on f , showing this suffices.

The second algorithm, VLTLtoLTL, translates the VLTL formula into an LTL formula,
based on the values and the assignments of the given system K and function f . As
in ModelCheck, a new value is added to a set C′ that is maintained by the procedure
(initially set toA∪B, whereA is the set of values inM , andB = Image(f)) for every
quantifier in the formula. This time, every ∀ quantifier is translated to a conjunction of
all of the recursively constructed formulas for these assignments, and every ∃ quantifier
is translated to a disjunction.

Hence, the formula that is constructed by VLTLtoLTL contains every LTL formula
that is checked by ModelCheck, and the conjunctions and disjunctions of VLTLtoLTL
match the logical checks that are performed by ModelCheck.

VLTLtoLTL can then be used to model check entire concrete systems (in which case
the formula is closed, and the initial function is ∅). While this leads to an exponen-
tially large formula, this is the best that can be done, as we can show that the model
checking problem for concrete systems is EXPSPACE complete, by a reduction from
the acceptance problem for EXPSPACE Turing machines.

Theorem 2. LetK be a concrete system over P ∪T×D and let ϕ = 〈ψ,E〉 be a closed
VLTL formula over P ∪ T ∪ (T ×X). Then deciding whether K |= ϕ is EXPSPACE-
complete.

Proof: For the upper bound, using Lemma 1 we can show that for B = Image(f)
and for A, the finite set of values that occur in K, it holds that K |=f 〈ψ,E〉 iff K |=
VLTLtoLTL(〈ψ,E〉, f, A ∪ B). The run VLTLtoLTL(〈ψ,E〉, f, A ∪ B) produces an
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LTL formula whose size is exponential in the size of A ∪ B and X . Since LTL model
checking can be performed in PSPACE, checking K |= VLTLtoLTL(〈ψ,E〉, f, A ∪
B) can be performed in EXPSPACE. Notice that if ϕ is closed, model checking is
performed by using VLTLtoLTL(〈ψ,E〉, ∅, A ∪B).

The lower bound is shown by a reduction from the acceptance problem for Turing
machines that run in EXPSPACE. We sketch the proof. We define an encoding of runs
of the Turing machine on a given input. For a Turing machine T and an input ā, we
construct a system K whose computations include all encodings of potential runs of T
on ā. We construct a VLTL formulaϕ that specifies computations that are not encodings
of accepting runs of T on ā. Then, there exists an accepting run of T on ā iff K � ϕ.

The formula we construct for the lower bound in the proof of Theorem 2 is in ∃-VLTL,
and so the model-checking problem is EXPSPACE-complete already for this fragment
of VLTL. However, a simple variant of ModelCheck can be used for ∀-VLTL. Together
with the PSPACE lower bound for LTL model checking, we have the following.

Theorem 3. The model-checking problem for ∀-VLTL and concrete systems is
PSPACE-complete.

4 Model Checking of Abstract Systems

In this section we consider the VLTL model-checking problem for abstract systems.
We begin by showing that the problem is undecidable, by proving undecidability for
the fragment of ∃-VLTL. Then, we show that for certain abstract systems, as well as for
∀-VLTL, model checking is not more difficult than for concrete systems.

Theorem 4. The model-checking problem for ∃-VLTL is undecidable.

Proof: We sketch the proof, which is by reduction from Post’s Correspondence Prob-
lem (PCP). A similar reduction is shown in [14]. An instance of PCP are two sets
{u1, u2, . . . un} and {v1, v2, . . . vn} of finite words over {a, b}, and the problem is to
decide whether there exists a concatenation u = ui1ui2 · · ·uik of words of the first set
that is identical to a concatenation v = vi1vi2 · · · vik of words of the second set.

We describe an encoding of a correct solution to a PCP instance given an input. For
an instance I of PCP, we construct an abstract system K whose computations include
all possible encodings of solutions to I , and an ∃-VLTL formula ϕ that specifies com-
putations that are not legal encodings to a solution to I . Then, we have that I has a
solution iff K � ϕ.

We now show that the VLTL model-checking problem for abstract systems is decidable
for certain classes of systems. For the rest of the section, we consider abstract systems
and abstract computations over P , T ∪ {reset}, and X ′, and closed VLTL formulas
over P , T , andX . We first introduce some terms.

We say that 〈K, E′〉 is bounded if there is no occurrence of reset in K. This means
that the value of the variables does not change throughout a computation of the system.
We say that 〈K, E′〉 is strict if E′ = {x′i 	= x′j |x′i, x′j , i 	= j ∈ X ′}. Notice that a
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concrete computation in a bounded and strict system is obtained by an injection to the
system variables.

We begin by showing that the model-checking problem for bounded systems is es-
sentially equivalent to the model-checking problem for concrete systems.

Theorem 5. The model-checking problem for bounded abstract systems is EXPSPACE-
complete for VLTL, and PSPACE-complete for ∀-VLTL.

Proof: Let 〈K, E′〉 be a bounded abstract system, and let 〈ψ,E〉 be a VLTL formula.
We first prove the upper bounds for the case the system is both bounded and strict.

Intuitively, assigning different values to the variables of a bounded and strict system
results in a concrete system that satisfies the same set of formulas.

Formally, let f : X ′ → D be an arbitrary injection, and letKf be the concrete system
that is obtained from 〈K, E′〉 by substituting every occurrence of x ∈ X ′ with f(x).
We can show that 〈K, E′〉 |= 〈ψ,E〉 iff Kf |= 〈ψ,E〉.

We now turn to the general case of bounded systems, and reduce it to the case the
systems are both bounded and strict. A set of bounded and strict abstract systems is
obtained from 〈K, E′〉 as follows. Consider the inequality setE′. Every possible setting
of it induces a strict and bounded system: for every inequality x1 	= x2 that is missing
from E′, both options of x1 	= x2 and x1 = x2 are checked. For the former, a copy
with x1 	= x2 in the inequality set is constructed. For the latter, a copy with a new single
variable replacing x1 and x2 is constructed. Then, we have that 〈K, E′〉 |= 〈ψ,E〉 iff
every system in this set satisfies 〈ψ,E〉.

More specifically, consider a function h : X ′ → Z that respects E′, where Z is
a new set of variables of size |X ′|. For every such h, an abstract system 〈Kh, E′h〉 is
obtained from 〈K, E′〉 by substituting every occurrence of x ∈ X ′ with h(x′), and by
setting E′ to be the full inequality set. Then for x1, x2 ∈ X ′, having h(x1) 	= h(x2)
is equivalent to setting x1 	= x2, and h(x1) = h(x2) is equivalent to setting x1 = x2.
Every computation of 〈K, E′〉 is a computation of 〈Kh, E′h〉 for some h, and vise versa.

Then, we have that 〈K, E′〉does not satisfy 〈ψ,E〉 iff there exists a function h such
that 〈Kh, E′h〉 does not satisfy 〈ψ,E〉. Therefore, the model-checking problem for
bounded systems can be solved by guessing an appropriate function h, constructing,
in linear time, a single copy of 〈Kh, E′h〉, and checking whether 〈Kh, E′h〉 � 〈ψ,E〉.
This procedure is then performed in PSPACE in the size of the system and the formula.5

For the lower bounds, we reduce from the model-checking problem for concrete
systems. Given a concrete system M and a VLTL formula 〈ψ,E〉, we construct in
linear time a bounded (in fact, also strict) abstract system 〈M′, E′〉 by substituting
every value d that occurs inM by the same unique variable xd, and by setting E′ to be
the full inequality set. By a proof similar proof to the upper bound, we can show that
〈M′, E′〉 |= 〈ψ,E〉 iffM |= 〈ψ,E〉.

Next, we show that the model-checking problem for abstract systems and ∀-VLTL for-
mulas is, surprisingly, not more complex than the model-checking problem for LTL.

5 For LTL, model checking is PSPACE-hard only in the size of the formula. For a fixed formula,
LTL model checking can be performed in NLOGSPACE.
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We do this by proving that this problem can be reduced to the model-checking problem
for bounded abstract systems.

The following lemma shows that for a given assignment to the formula variables, the
values in a concrete computation that are not assigned to any formula variable can be
replaced with other such values without affecting the satisfiability.

Lemma 2. Let 〈ψ,E〉 be a VLTL formula such that ψ is unquantified, and let f : X →
D be a function that respects E. Let π and τ be two concretizations of some abstract
computation that agree on all values in Image(f). Then π |=f 〈ψ,E〉 iff τ |=f 〈ψ,E〉.
We now show that in order to check whether an abstract computation ρ satisfies a ∀-
VLTL formula ϕ, it is enough to check that every concretization of ρ that contains a
bounded number of values satisfies ϕ.

Lemma 3. Let 〈ρ,E′〉 be an abstract computation, and let 〈ψ,E〉 be a closed ∀-VLTL
formula. Let Cρ be the set of concretizations of 〈ρ,E′〉 that contains at most |X ′|+ |X |
different values. Then, 〈ρ,E′〉 |= 〈ψ,E〉 iff for every π ∈ Cρ, it holds that π |= 〈ψ,E〉.

Proof: For the first direction, a computation in Cρ is also a concretization of ρ.
For the second direction, suppose that for every τ ∈ Cρ, it holds that τ |= 〈ψ,E〉.

Assume by way of contradiction that there exists a concretization π of 〈ρ,E′〉 such
that π � 〈ψ,E〉. Since ψ = ∀x1; . . . ∀xk; θ, this means that there exists a function
f : X → D such that f respects E and π � θf .

If π contains at most |X ′| + |X | different values, then it is also in Cρ. Therefore, π
contains more than |X ′|+ |X | different values. We show that there exists τ ∈ Cρ such
that τ � 〈ψ,E〉.

Let a1, a2, . . . ak be the values that are assigned to the variables of X by f . Let
b1, b2, . . . bk′ , where k′ = |X ′|, be values different from the a values.

Let π′ be the concrete computation obtained from ρ by assigning a1, a2, . . . ak to the
same occurrences of variables of X ′ that are assigned these values in π, and assigning
every other occurrence of xi ∈ X ′ the same value bi.

According to Lemma 2, we have that π′ � θf . By the way we have constructed π′, we
have that π′ is also a concretization of 〈ρ,E′〉, and that π′ contains at most |X ′| + |X |
different values. Therefore, it is also in Cρ, a contradiction.

Finally, we employ Lemma 3 in order to construct a model-checking procedure for
∀-VLTL, which runs in polynomial space.

Theorem 6. The model-checking problem for ∀-VLTL and abstract systems is
PSPACE-complete.

Proof: The lower bound follows from the lower bound for LTL model checking.
Let 〈K, E′〉 be an abstract system over P , T ∪ {reset}, and X ′, where |X ′| = k′,

and let 〈ψ,E〉 be a closed ∀-VLTL formula over k variables. Intuitively, we construct
from 〈K, E′〉 a bounded system that contains exactly all computations of 〈K, E′〉 that
contain at most k + k′ different values.

Let λ be a set of new variables of size k + k′. Let h : λ → X ′ be an onto function.
Intuitively, the function h partitions the variables of λ so that each set in the partition
replaces a variable in X ′ in the construction.
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Let Γh = {{ξ1, ξ2 . . . ξk′}|ξi ∈ λ, h(ξi) = xi, 1 ≤ i ≤ k′}.
For Δ ⊆ Γh, let KΔ be the bounded system that is obtained from K as follows. For

every set Γ ∈ Δ, let KΓ be the system obtained from K by replacing every occurrence
of xi with ξi for every 1 ≤ i ≤ k′, and by removing every occurrence of reset . Then,
in KΓ every variable x in K is replaced with some variable ξ such that h(ξ) = x.

Let R be the set of transitions of K. For every 〈q, s〉 ∈ R, we add a transition from
a copy of q in KΓ to the copies of s in every KΓ ′ such that Γ ′ and Γ agree on all
variables in λ to which h assigns variables that are not reset in 〈q, s〉. Intuitively, a reset
of a variable x is in a transition in K corresponds to switching from one variable in λ
representing x to another.

Let EΔ = {ξi 	= ξj |h(ξi) 	= h(ξj) ∈ E′, and ξi, ξj ∈ Γ for some Γ ∈ Δ}. Then
EΔ is the inequality set induced by E′ in KΔ.

Note that KΔ models a copy of the system in which every occurrence of xi between
two consecutive resets is replaced by some variable in h−1(xi). Also, for ξi and ξj
such that h(xi) 	= h(xj), if ξi, ξj are not in the same set in Δ, then they do not appear
together in the same copy, and therefore are allowed to take the same value, even if
h(ξi) 	= h(ξj) ∈ E.

Then, every abstract computation ρ of 〈K, E′〉 is replaced with a set of bounded
computations over k + k′ variables, whose set of concretizations is exactly the set of
concretizations of ρ that contain at most k + k′ different values.

According to Lemma 3, we have that 〈K, E′〉 |= 〈ψ,E〉 iff for every h, and for every
Δ ⊆ Γh, it holds that 〈KΔ, EΔ〉 |= 〈ψ,E〉.

A nondeterministic procedure that runs in polynomial space guesses a function f :
X → D and a function g : λ→ D, whereD ⊂ D is some arbitrary set of size 2k+ k′.
It follows from the proof of Theorem 5 and from Theorem 3 that a domain of the size
ofD is sufficient.

Next, in a procedure similar to the automata-theoretic approach to LTL model check-
ing [18], the procedure constructs a violating path in the nondeterministic Büchi au-
tomaton A¬θf that accepts exactly all computations that violate θf , constructs KΔg

on the fly, and guesses a violating path that is accepted by both A¬θf and KΔg . While
guessing a violating path inKΔg, the procedure must make sure that every state respects
E′, that is, there exist no ξi and ξj such that h(ξi) 	= h(ξj) ∈ E′, and g(ξi) = g(ξj),
and both ξi and ξj are in the same state along the path. Since the information needed to
guess a path in bothA¬θf and KΔg is polyomial, we have that the entire procedure can
be performed in PSPACE in the size of the formula and of the system.

5 Conclusions

We presented a simple, general, and natural extension to LTL and Kripke structures.
Our extension allows to augment atomic propositions with variables that range over
some (possibly infinite) domain. In VLTL, our extension of LTL, the extension enables
the specification to refer to the domain values. In abstract systems, our extension of
Kripke structures, the extension enables a compact description of infinite and complex
concrete systems whose control is finite, and for which the source of infinity is the data.

We studied the model-checking problem in this setting, for both finite concrete sys-
tems and for abstract systems. We presented a model-checking procedure for VLTL
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and concrete systems. We showed that the general problem is EXPSPACE-complete for
concrete systems and undecidable for abstract systems. As good news, we showed that
even for abstract systems, the model-checking problem for the rich fragment of ∀-VLTL
is not only decidable, but is of the same complexity as LTL model checking.
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Abstract. In this paper we propose a new method for reachability anal-
ysis of the class of discrete-time polynomial dynamical systems. Our work
is based on the approach combining the use of template polyhedra and
optimization [25,7]. These problems are non-convex and are therefore
generally difficult to solve exactly. Using the Bernstein form of polynomi-
als, we define a set of equivalent problems which can be relaxed to linear
programs. Unlike using affine lower-bound functions in [7], in this work
we use piecewise affine lower-bound functions, which allows us to obtain
more accurate approximations. In addition, we show that these bounds
can be improved by increasing artificially the degree of the polynomi-
als. This new method allows us to compute more accurately guaranteed
over-approximations of the reachable sets of discrete-time polynomial
dynamical systems. We also show different ways to choose suitable poly-
hedral templates. Finally, we show the merits of our approach on several
examples.

1 Introduction

Reachability analysis has been a major research issue in the field of hybrid
systems for more than a decade. Spectacular progress has been made over the
past few years for a class of hybrid systems where the continuous dynamics
can be described by affine differential equations [10,12,18,9]. However, dealing
efficiently with systems with nonlinear dynamics remains a challenging problem
that needs to be addressed. Besides, reachability analysis of non linear dynamical
systems is also motivated by its numerous potential applications, in particular
in systems biology [11,5,29].

In this paper, we present a new method for reachability analysis of a class
of discrete-time nonlinear systems defined by polynomial maps. We follow the
approach proposed in [25,7] which, by using template polyhedra, reduces the
problem of reachability analysis to a set of optimization problems involving poly-
nomials over bounded polyhedra. These are generally non-convex optimization
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problems and hence it is hard to solve them exactly. However, computing lower
bounds of the solutions of these optimization problems is actually sufficient to
obtain guaranteed over-approximations of the reachable sets that are usually
needed for safety verification. Unlike using affine lower-bound functions in [5], in
this work we use piecewise affine lower-bound functions, which allows us to ob-
tain more accurate approximations. To this end, we essentially use the Bernstein
expansions of polynomials and their properties to build linear programming re-
laxations of the original optimization problems. This can be roughly described
as follows. First, by writing polynomials in the Bernstein basis we define a set of
equivalent problems. Then, using properties of Bernstein polynomials, we show
that good lower bounds of the optimal value of these problems can be computed
efficiently using linear programming. This provides us with an elegant approach
to reachability analysis of polynomial systems.

The rest of the paper is organized as follows. In Section 2, we show a tech-
nique for computing a lower bound of a non convex optimization problem where
the cost function is a multivariate polynomial and the constraints are given by
a bounded polyhedron included in the unit box. We then present a result which
allows us to improve the accuracy of our lower bounds and a comparison with
other relaxation methods. In Section 3, we show that reachability analysis of
polynomial dynamical systems can be handled by optimizing multivariate poly-
nomials on bounded polyhedra, and this will be used to compute guaranteed
over-approximations of the reachable set. The choice of the templates, the com-
plexity of the whole approach and a comparison with other related approach are
also discussed. Finally, in Section 4, we show some experimental results including
the application of our approach to reachability analysis of biological systems.

2 Optimization of Polynomials Using Linear
Programming

In the following, we consider the problem of computing a guaranteed lower bound
of the following optimization problem:

minimize � · g(y)
over y ∈ [0, 1]n,
subject to Ay ≤ b.

(1)

where � ∈ Rn, g : Rn → Rn is a polynomial map, A ∈ Rn×m and b ∈ Rm.
Let y1, . . . , yn denote the components of y ∈ [0, 1]n and δ1, . . . , δn denote the

degrees of g in y1, . . . , yn. Let Δ = (δ1, . . . , δn); for I = (i1, . . . , in) ∈ Nn, we
write I ≤ Δ if ij ≤ δj for all j ∈ {1, . . . , n}. Also, let |I| = i1 + · · · + in and
for y ∈ Rn, yI = yi11 . . . y

in
n . Then, the polynomial map g can be written in the

form:
g(y) =

∑
I≤Δ

gIy
I where gI ∈ Rn, ∀I ≤ Δ.

Let δmax = max{|I|, such that I ≤ Δ and gI 	= 0}.
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2.1 Using the Bernstein Form

The main theoretical ingredient of our approach is the Bernstein expansion of
polynomials [2,3]. The polynomial map g in its Bernstein form is given by:

g(y) =
∑
I≤Δ

hIBΔ,I(y) where hI ∈ Rn, ∀I ≤ Δ (2)

and the Bernstein polynomials are defined for I ≤ Δ as follows:

BΔ,I(y) = βδ1,i1(y1) . . . βδn,in(yn)

with for j = 1, . . . n, ij = 0, . . . , δj : βδj ,ij (yj) =

(
δj
ij

)
y
ij
j (1 − yj)δj−ij .

The coefficients hI of g in the Bernstein basis can be evaluated explicitly from
the coefficients gI of g in the canonical basis using the following explicit formula:
for all I ≤ Δ,

hI =
∑
J≤I

(
i1
j1

)
. . .

(
in
jn

)
(
δ1
j1

)
. . .

(
δn
jn

)gJ . (3)

We also propose an alternative approach for computing the coefficients hI using
the interpolation at the points J

Δ′ = ( j1δ1 , . . . ,
jn
δn
) for J ≤ Δ:∑

I≤Δ

hIBΔ,I(
J
Δ ) = g( J

Δ )

Let us denote BΔ the matrix whose lines are indexed by J ≤ Δ and columns
are indexed by I ≤ Δ with coefficients BΔ,I(

J
Δ ). Let h be the matrix whose

lines indexed by I ≤ Δ are h�I and g the matrix whose lines indexed by J ≤ Δ
are g( J

Δ)�.Then, the previous equation under matricial form can be written as
BΔh = g. From standard polynomial interpolation theory, the matrix BΔ is
invertible and the Bernstein coefficients are given by

h = B−1
Δ g. (4)

For determining a linear programming relaxation of (1), the most useful prop-
erties of the Bernstein polynomials are the following:

Proposition 1. The Bernstein polynomials satisfy the following properties:

1. For all y ∈ Rn,
∑

I≤ΔBΔ,I(y) = 1 and
∑

I≤Δ
I
ΔBΔ,I(y) = y.

2. For all y ∈ [0, 1]n, 0 ≤ BΔ,I(y) ≤ BΔ,I(
I
Δ )

where BΔ,I(
I
Δ) =

∏j=n
j=1

(
δj
ij

)
i
ij
j (δj−ij)

δj−ij

δ
δj
j

.
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2.2 Linear Programming Relaxation

We can use the previous proposition to derive a linear programming relaxation
of the problem (1):

Proposition 2. Let p∗ be the optimal value of the linear program:

minimize
∑

I≤Δ(� · hI)zI
over zI ∈ R, I ≤ Δ,
subject to 0 ≤ zI ≤ BΔ,I(

I
Δ), I ≤ Δ,∑

I≤Δ zI = 1,∑
I≤Δ(A I

Δ )zI ≤ b.

(5)

Then, p∗ ≤ p∗ where p∗ is the optimal value of problem (1).

Proof. Using the Bernstein expansion (2) of g and the first property in Propo-
sition 1, we can rewrite the problem (1) under the form

minimize
∑

I≤Δ(� · hI)BΔ,I(y)

over y ∈ [0, 1]n,
subject to

∑
I≤Δ(A

I
Δ)BΔ,I(y) ≤ b.

Then, let y∗ be the optimum of the problem (1), and let zI = BΔ,I(y
∗) for all

I ≤ Δ. It is clear from Proposition 1 that these satisfy the constraints of (5),
therefore the optimal value of (5) is necessary smaller than that of (1). �
Now we will show how to improve the precision at the expense of an increase in
computational cost. The linear program (5) is a relaxation of the optimization
problem (1). Then, the lower bound p∗ on the optimal value p∗ is generally not
tight. We first remark that g can be seen as a higher order polynomial, possibly
by adding monomials of higher degree with zero coefficients.

In the following, g is considered as a polynomial with degreesK = (k1, . . . , kn)
where Δ ≤ K, then g can be written in the Bernstein form:

g(y) =
∑
I≤K

hKI BK,I(y),

We will use the following result [19]:

Proposition 3. For I ≤ K,

‖hKI − g( I
K )‖ = O( 1

k1
+ · · ·+ 1

kn
).

Now let p∗
K

be the optimal value of the linear program (5) with degreesK instead
of Δ. We want to determine the limit of p∗

K
when all the ki go to infinity.

Let c∗K(y) be the optimal value of the linear program:

minimize
∑

I≤K(� · hKI )zI
over zI ∈ R, I ≤ K,
subject to 0 ≤ zI ≤ BK,I(

I
K ), I ≤ K,∑

I≤K zI = 1,

y =
∑

I≤K
I
K zI

(6)
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Then,
p∗
K

= min
y∈[0,1]n

Ay≤b

c∗K(y) ≤ p∗.

Now let C(� · g) be the convex hull of the function � · g taken over the set [0, 1]n

(see e.g. [13]). Formally, C(� · g) is a convex function over [0, 1]n such that for all
y ∈ [0, 1]n, C(�·g)(y) ≤ �·g(y) and for all functions h convex over [0, 1]n and such
that for all y ∈ [0, 1]n, h(y) ≤ g(y), then for all y ∈ [0, 1]n, h(y) ≤ C(� · g)(y). In
other words, C(� · g)(y) is the largest function convex over [0, 1]n bounding � · g
from below. In particular, if � · g is convex then C(� · g) = � · g. Now, let p∗C be
the optimal value of the following optimization problem

minimize C(� · g)(y)
over y ∈ [0, 1]n,
subject to Ay ≤ b.

It is clear that p∗C ≤ p∗ with equality if � · g is convex. We can now state the
main result of the section:

Proposition 4. For all K ≥ Δ, p∗
K
≤ p∗C and

|p∗
K
− p∗C | = O( 1

k1
+ · · ·+ 1

kn
).

Proof. It is not hard to show that c∗K is convex over [0, 1]n and under-estimates
� · g. Then, by definition of the convex hull of a function we have: cK

∗(y) ≤
C(� · g)(y) for all y ∈ [0, 1]n. This gives directly that p∗

K
≤ p∗C .

Now let y ∈ [0, 1]n, and let zI
∗ , I ≤ K be an optimal solution of (6), then

we have:

c∗K(y) =
∑
I≤K

(� · hKI )zI
∗ and y =

∑
I≤K

zI
∗ I

K
.

Using properties of the convex hull of a function we have:

C(� · g)(y) = C(� · g)
(∑

I≤K
I
K zI

∗
)

≤
∑
I≤K

C(� · g)
(

I
K

)
zI

∗ ≤
∑
I≤K

� · g
(

I
K

)
zI

∗.

It follows that:

0 ≤ C(� · g)(y)− c∗K(y) ≤
∑
I≤K

[� · g( I
K )− � · hKI ]zI

∗,

Finally, using Proposition 3 we have for y ∈ [0, 1]n:

0 ≤ C(� · g)(y)− c∗K(y) ≤ O( 1
k1

+ · · ·+ 1
kl
)

which yields |p∗
K
− p∗C | = O( 1

k1
+ · · ·+ 1

kn
). �

In other words, when we artificially increase the degrees of the polynomial g,
we improve the computed lower bound. However, we cannot do better than p∗C
which is the optimal value of a convexified version of problem (1). We remark
that if the function � · g is convex then we can approach the optimal value p∗

arbitrarily close.
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2.3 Related Work in Linear Relaxations

Our method of using the Bernstein form to replace expensive polynomial pro-
gramming by linear programming is close to the one proposed in [7]. As men-
tioned earlier, the main improvement over this work is that our method uses a
piecewise affine lower-bound function (the function c∗K(y) defined in (6)) which
is more accurate than a single affine lower bound function used in [7]. Moreover,
our approach allows us to work directly with arbitrary polyhedral domains, while
the Bernstein form in [7] works only for the unit box and this requires rectangular
approximations that introduce additional error.

Let us now briefly discuss the complexity of our method and compare it
with existing relaxation methods. In fact, the linear program (5) has polynomial
complexity in its number of decision variables which is NΔ = (δ1+1)×· · ·×(δn+
1). However, it should be noted that NΔ = O(δmax

n) which is exponential in the
dimension n of the state space. Another known relaxation method which uses also
linear programming is the reformulation-linearization-technique method (RLT)
introduced by Sherali in [26,27]. The linear program given by this method is in
fact a linearized version of the problem (1) by adding new variables where the
constraints are given by exploiting all possible products of the original ones with
respect to a fixed degree δ. In general, its number of decision variables is the
same comparing to our method but the number constraints is much greater. We
should mention that thanks to Bernstein properties our method can be more
precise.
Also, one could use a method based on semi-definite programming and the theory
of moments [17]. It should be noticed that the size of the semi-definite programs
that need to be solved would be similar to the size of the linear program we solve.
The quality of the lower bound obtained by semi-definite programming would
certainly be better and it has been showed that an asymptotic convergence to
the optimal value can be obtained; however, the approach would require more
computational resources.

3 Reachability Analysis of Polynomial Dynamical
Systems

Let us consider a disrete-time dynamical system of the following form:

xk+1 = f(xk), k ∈ N, xk ∈ Rn, x0 ∈ X0 (7)

where f : Rn → Rn is a polynomial map with degrees Δ = (δ1, . . . , δn) and X0

is a bounded polyhedron in Rn. In this paper, we are concerned with bounded-
time reachability analysis of system (7). This consists in computing the sequence
Xk ⊆ Rn of reachable sets at time k of the system up to some time K ∈ N. It is
straightforward to verify that this sequence satisfies the following induction rela-
tion Xk+1 = f(Xk). It should be noticed that even though the first element X0

is a polyhedron, in general the other elements of the sequence are not. Actually,
they are generally not even convex.
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In this work, we over-approximate these sets using bounded polyhedra Xk.
Such a sequence can clearly be computed inductively by setting X0 = X0 and
by ensuring that for all k = 0, . . . ,K − 1, f(Xk) ⊆ Xk+1. Hence, we first focus
on the computation of a polyhedral over-approximation Xk+1 of the image of a
bounded polyhedron Xk by a polynomial map f .

Now, the problem we address is stated as follows: given a polyhedron Xk,
we want to compute Xk+1 such that f(Xk) ⊆ Xk+1. In the following we pro-
pose a solution to this problem based on the use of template polyhedra and
optimization.

3.1 Template Polyhedra

To represent Xk+1, we use a template polyhedron. A template is a set of linear
functions over x ∈ Rn. We denote a template by a matrix A ∈ Rm×n, given such
a template A and a coefficient vector b ∈ Rm, we define the template polyhedron

Poly(A, b) = {x ∈ Rn| Ax ≤ b}

where the inequality is to be understood component-wise. By varying the value
of b, we obtain a family of template polyhedra corresponding to the template
A. Essentially, the template A defines the directions of the faces and the vector
b define their positions. The advantage of using template polyhedra over gen-
eral convex polyhedra is that the Boolean operations (union, intersection) and
common geometric operations can be performed more efficiently. Indeed, such
operations are crucial for most verification procedures based on reachable set
computations.

In the following, we assume that Xk+1 is a bounded polyhedron with a given
template Ak+1 ∈ Rm×n. We add the subscript k + 1 to emphasize that the
template may not be the same for all the polyhedra Xk+1, k = 0, . . . ,K − 1.
Then,

Xk+1 = Poly(Ak+1, bk+1)

where the vector bk+1 ∈ Rm needs to be determined at each iteration. The choice
of the templates Ak+1 will be discussed later in Section 3.3.

From the previous discussion, it appears that the computation of the set
Xk+1 reduces to determining values for the vectors bk+1. Let bk+1,i denote the
i-th element of these vectors; and Ak+1,i denote the i-th line of matrices Ak+1 .

Lemma 1. If for all i = 1, . . . ,m

−bk+1,i ≤ min
x∈Xk

−Ak+1,if(x) (8)

then f(Xk) ⊆ Xk+1 where Xk+1 = Poly(Ak+1, bk+1)

Proof. Let y ∈ f(Xk). For i = 1, . . . ,m, it is clear that we have

Ak+1,iy ≤ max
x∈Xk

Ak+1,if(x).

Then, by remarking that maxx∈Xk
Ak+1,if(x) = −minx∈Xk

−Ak+1,if(x) and
by (8) we obtain Ak+1,iy ≤ bk+1,i. �
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Let us remark that the computation of the minimal values in equations (8) in-
volves optimizing a generally non-convex multi-variable polynomial function on
a bounded polyhedron. This is a difficult problem in general; however Lemma 1
shows that the computation of a lower bound for the minimal values is sufficient
to obtain an over-approximation of f(Xk). Thus, we can see that the computa-
tion of Xk+1 can be done by computing guaranteed lower bounds on the optimal
values of minimization problems involving multi-variable polynomial functions
on a bounded polyhedron. A solution to this problem, based on linear program-
ming, is proposed in the previous section when x ∈ [0, 1]n. We will see how this
result can be adapted to our reachability problem.

3.2 Reachability Algorithm

According to the previous discussion, in each step k ∈ N we have to compute a
lower bound of the value

pk+1,i
∗ = min

x∈Xk

−Ak+1,i · f(x) for all i = 1, . . . ,m.

For doing so, we will propose an algorithm with essentially three steps: in the
first one we compute a bounding parallelotope that will be necessary for the
second step. The second one will consist in a change of variable allowing us to
recast our optimization problem on the form of the one given by (1). In the last
step, lower bound will be obtained using the linear program given by Proposi-
tion 2 and then an over approximation of the reachable set is computed.

Step 1: Bounding Parallelotope Computation
As Xk is a bounded polyhedron of Rn we can write it in the form Xk∩Qk where
Qk is its bounding parallelotope given by Qk = Poly(C̃k, d̃k) with

C̃k =

[
Ck

−Ck

]
, d̃k =

[
dk
−dk

]
.

Ck ∈ Rn×n is an invertible matrix, dk ∈ Rn and dk ∈ Rn. We assume that the
matrix direction Ck is given as an input (a method describing its computation
will be given later) and we compute the component dk,i and dk,i, i = 1, . . . n of

the vector position d̃k as optimal solutions of the following linear programs :

dk,i = max
x∈Xk

Ck,i · x and dk,i = max
x∈Xk

−Ck,i · x ∀i = 1, . . . n

Step 2: Change of Variable
Now, let’s proceed to the following change of variable x = qk(y) where the affine
map qk : Rn → Rn is given by

qk(y) = Ck
−1Dky + Ck

−1dk

whereDk is the diagonal matrix with entries dk,i−dk,i. The change of variable qk
essentially maps the unit cube [0, 1]n to Qk. This change of variable is the main
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reason for definingXk as the intersection of a polyhedron and a parallelotope.We
then define the polynomial map gk as gk(y) = f(qk(y)). Finally, let A

′
k ∈ Rn×m

and b′k ∈ Rm be given by

A′
k = AkCk

−1Dk, b
′
k = bk −ACk

−1d.

Remark 1. It is clear that gk is a polynomial map. As for the degrees Δ′ =
(δ′1, . . . , δ

′
n) of gk in the variables y1, . . . , yn, we shall discuss two different cases

depending on the nature of parallelotope Qk. If Qk is an axis-aligned box (i.e.
if Ck is a diagonal matrix), then the degrees of gk are the same as f : Δ′ = Δ.
This is not the case in general, when Qk is not axis-aligned; in that case, the
change of variable generally increases the degrees of the polynomial and gk can
be regarded as a polynomial of degrees Δ′ = (δmax, . . . , δmax).

Step 3: Solving the Optimization Problem
After the change of variable we easily find the equivalent optimization problem:

minimize −Ak+1,i · gk(y)
over y ∈ [0, 1]n,
subject to A′

ky ≤ b′k.

Then, thanks to Proposition 2, a lower bound −bk+1,i can be found.
The reachable set at the step k + 1 will be Xk+1 = Poly(Ak+1, bk+1).

3.3 Choice of the Templates

In this section, we discuss the choice of the templates Ak for the polyhedra Xk

and Ck for the parallelotope Qk used to over-approximate the reachable sets.

Dynamical Templates for Polyhedra Xk

Let us consider the template Ak for the polyhedronXk = {x ∈ Rn| Ak · x ≤ bk} .
We propose a method which involves determining dynamical templates based on
the dynamics of the system.

In the next iteration, we want to compute a new template Ak+1 that reflects
as much as possible the changes of the shape of Xk under the polynomial f . For
that purpose, we use a local linear approximation of the dynamics of the poly-
nomial dynamical system (7) given by the first order Taylor expansion around
the centroid x∗k of the last computed polyhedron Xk:

f(x) ≈ Lk(x) = f(x
∗
k) + J(x

∗
k)(x − x∗k)

where J is the Jacobian matrix of the function f . Let us denote Fk = J(x∗k) and
hk = f(x∗k)−J(x∗k)x∗k, then in a neighborhood of x∗k the nonlinear dynamics can
be roughly approximated by xk+1 = Fkxk + hk. Assuming that Fk is invertible,
this gives xk = F−1

k xk+1 − F−1
k hk. Transposing the constraints on xk given by

Xk to xk+1, we obtain

AkF
−1
k xk+1 ≤ bk +AkF

−1
k hk
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Then, it appears that a reasonable template for Xk+1 should be Ak+1 = AkF
−1
k .

This new template Ak+1 can then be used in next iteration for the computation
of the polyhedron Xk+1 using the method described in the previous section. Let
us remark that this choice implies that our reachability algorithm is exact if f
is an affine map.

Dynamical Templates for Parallelotope Qk

It can be useful in some cases to take static axis aligned boxes for Qk (i.e. Ck is
the identity matrix for all k = 0, . . . ,K). This allows us to preserve the degrees
of the polynomials when making the change of basis. However, as explained be-
fore, using static templates may produce increasingly large approximation errors.
Similar to the polyhedra Xk, the accuracy will be better if we use dynamical
templates which take in consideration the dynamic of the system (essentially the
rotation effects).

We should mention that the image of an oriented rectangular box Qk by
the linear map Fk is not necessarily an oriented rectangular box so we can
not use directly the matrix F−1

k computed previously. To solve this problem
we will use an popular technique in interval analysis [22] based on the QR-
Decomposition of matrices. Essentially, Fk will be written as the product of
two matrices Fk = QkRk where Qk is an orthogonal matrix and R is an upper
triangular one. Then, to choose the template Ck+1 of the next oriented box
Qk+1, we apply our rotation transformation matrix Qk to the given rectangular
box Qk which is equivalent to choose the template Ck+1 = CkQ

�
k . Of course,

in that case, we will deal with non-aligned-axis boxes which can cause higher
degrees for our polynomial but the approximation will be less conservative than
using static templates for Qk.

3.4 Computation Cost and Related Work

We have presented two approaches to compute the Bernstein form of the polyno-
mial after a change of variable: either we compute explicitly the change of variable
and then use equation (3) or we proceed by using equation (4). Both methods have
polynomial time and space complexity inNΔ′ = (δ′1+1)×· · ·× (δ′n+1). The size
of the matrixBΔ′ introduced in the interpolationmethod is (δ′1+1)×· · ·×(δ′n+1).
Let us remark that in the context of reachability analysis, the inverse matrix B−1

Δ′

has to be computed only once and can be used in each iteration to compute Bern-
stein coefficients by a simple matrix vector product operation.

In fact, we shall see from numerical experiments that both methods have their
advantages depending on the form of the parallelotope Q. If Q is an axis-aligned
box, we have already seen that the change of variable does not increase the
degrees of the polynomial. So, the matrix BΔ′ has a reasonnable size and the
computation of the coefficients hI using equation (4) is generally more efficient.
If Q is a general parallelotope, then BΔ′ might be much larger. In that case,
since several coefficients fI of the polynomial f might actually be zero, it will
be more efficient to compute explicitly the change of variable and use equation
(3) to determine the coefficients hI .
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Then, as we mentioned before, the linear program has polynomial complexity
in its number of decision variables which is also NΔ′ . Therefore, the complexity
of the overall procedure is polynomial in NΔ′ , and so is the complexity of the
reachability procedure described in Lemma 1.

Finally, following the discussion in Remark 1, we would like to highlight that
NΔ′ might be much smaller when the parallelotope Q is an axis-aligned box.
Indeed, in that case NΔ′ = (δ1 + 1)× · · · × (δn + 1) whereas in the general case
we have NΔ′ = (δmax+1)n. This point might be taken into consideration in the
reachability algorithm when choosing the template for parallelotopes Qk+1.

One could also use interval analysis [14] for computing the reachable sets of
polynomial systems. However, these methods are generally used with rectangular
domains. Moreover, our approach obtains enclosures that are always finer than
those obtained using Bernstein coefficients and it has been shown that these are
generally more accurate than those computed using interval arithmetics [20]. In-
terval analysis methods can be improved using preconditionning techniques (see
e.g.[22]), however these can also be used in our approach as shown in the previ-
ous section.
Also, a popular approach for nonlinear systems is to characterize reachable sets
using Hamilton-Jacobi formulation [21], and then solve the resulting partial dif-
ferential equations which requires expensive computations. Recent results of this
approach can be seen in [15]. Another approach is based on a discretization of the
state-space for abstraction (see e.g [28,16]) and approximation especially using
linearization (see e.g [1,6]). For the particular class of polynomial systems,direct
methods for reachability analysis [4,7] without state-space discretization has
been proposed . The improvement over [7] has also been discussed in Section 2.2.

Concerning set representation, the work presented in this paper draws inspi-
ration from the approach using template polyhedra [25]. In the hybrid systems
verification, polynomial optimization can also be used to compute barrier cer-
tificates [24,25], and algebraic properties of polynomials are used to compute
polynomial invariants [28] and to study computability issues of the image com-
putation in [23].

4 Experimental Results

We implemented our reachability computation method and tested it on various
examples. To solve linear programs, we use the publicly available lp solve library.

4.1 FitzHugh-Nagumo Neuron Model

The first example we studied is a discrete time version of the FitzHugh-Nagumo
model [8] which is a polynomial dynamical system modelling the electrical ac-
tivity of a neuron:{

x1(k + 1) = x1(k) + h
(
(x1(k)− x1(k)

3

3 − x2(k) + I
)

x2(k + 1) = x2(k) + h (0.08(x1(k) + 0.7− 0.8x2(k)))
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Fig. 1. Reachability computation for the FitzHugh-Nagumo neuron model using static
(left) and dynamical (right) template polyhedra Xk with static bounding boxes

where the model parameter I is equal to 7
8 and the time step h = 0.05. This

system is known to have a limit cycle.
Figure 1 shows two reachable set evolutions where the initial set is a regular

octagon included in the bounding box [0.9, 1.1]× [2.4, 2.6]. The figure on the left
was computed using static templates for polyhedra Xk where dynamical tem-
plates are used for the figure on the right. In both cases, we use axis-aligned
boxes for Qk. For a better readability, the reachable sets are plotted once every
5 steps. We observed a limit cycle after 1000 iterations. The computation time is
1.16 seconds using a static template and 1.22 seconds using the dynamical tem-
plates. We can see from the figure a significant precision improvement obtained
by using dynamical templates, at little additional cost.

4.2 Prey Predator Model and Performance Evaluation

Now we consider the generalized Lotka-Volterra equations modelling the dynam-
ics of the population of n biological species known as the prey predator model.
Its equations are given by ẋi = xi(ri +Aix) where i ∈ {1, 2, . . . , n}, ri is the ith
elements of a vector r ∈ Rn and Ai is the i

th line of a matrix A ∈ Rn×n.
We performed reachable set computation for an Euler discretized Lotka-

Voltera system for the case n = 2:{
x1(k + 1) = x1(k) + h(0.1x1 − 0.01x1x2)
x2(k + 1) = x2(k) + h(−0.05x2 + 0.001x1x2)

Figure 2 shows the cyclic behavior of the reachable set analysis computed using
a discretization time h = 0.3 with an initial box included in [49, 51] × [14, 16]
during 700 iterations. The figure on the left was computed in 1.87 seconds using
dynamical template polyhedra and bounding boxes aligned with axis. The other
one was computed in 3.46 seconds using dynamical templates and oriented boxes.
A significant gain of precision using the oriented box can be observed however
the computation time is almost double.



Reachability Analysis of Polynomial Systems 149

Fig. 2. Reachability computation for a 2 dimensional predator-prey model using dy-
namical template polyhedra Xk with axis aligned (left) and oriented (right) bounding
boxes

We also evaluated the performance of our method using two ways of comput-
ing the Bernstein coefficients (explicitly and by interpolation) with recursively
generated n-dimensional Lotka-Volterra equations given by:⎧⎨⎩

x1(k + 1) = x1(k) + h (x1(k)(1 − x2(k) + xn(k)))
xi(k + 1) = xi(k) + h (xi(k)(−1− xi+1(k) + xi−1(k)))
xn(k + 1) = xn(k) + h (xn(k)(−1− x0(k) + xn−1(k)))

where i ∈ {2, . . . , n − 1}. We used axis aligned bounding boxes to make the
change of variable. (see tables 1).

Table 1. Computation time for one reachable set computation iteration for some
generated Lotka-Voltera systems

dim explicit interpol B−1
Δ′

2 0.00235 0.00221 0.00001
3 0.00536 0.00484 0.00004
4 0.01112 0.01008 0.00008
5 0.02612 0.02124 0.00052
6 0.068 0.0499 0.0016

dim explicit interpol B−1
Δ′

7 0.1905 0.1274 0.0099
8 0.5682 0.3674 0.0494
9 1.935 1.265 0.266
10 6.392 4.441 1.623
11 21.98 16.03 10.36

We observe that the interpolation method provides more effective results than
the explicit computation of Bernstein coefficient but requires to compute the
matrix B−1

Δ′ before starting the analysis. A similar evaluation was done using
oriented boxes but the results show that this method is not tractable over 4
dimension due to the degree elevation of polynomials by the change of variable
when we don’t use axis-aligned boxes.
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5 Conclusion

In this paper we proposed an approach for computing reachable sets of poly-
nomial dynamical systems. This approach combines optimization and set repre-
sentation using template polyhedra. The novelty of our results lies in a efficient
method for relaxing a polynomial optimization problem to a linear programming
problem. On the other hand, by exploiting the evolution of the system we pro-
posed a way to determine templates dynamically so that the reachable sets can
be approximated more accurately. The approach was implemented and our ex-
perimental results are promising, compared to the existing results (see e.g. [7]).
We intend to continue this work in a number of directions. One direction involves
an extension of the approach to systems with parameters and uncertain inputs.
Additionally, the evolution of templates can be estimated locally around each
facet rather than globally at the centroid of a template polyhedron.
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9. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

10. Girard, A., Le Guernic, C., Maler, O.: Efficient Computation of Reachable Sets of
Linear Time-Invariant Systems with Inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

11. Halasz, A., Kumar, V., Imielinski, M., Belta, C., Sokolsky, O., Pathak, S., Rubin,
H.: Analysis of lactose metabolism in e.coli using reachability analysis of hybrid
systems. IET Systems Biology 1(2), 130–148 (2007)

12. Han, Z., Krogh, B.H.: Reachability Analysis of Large-Scale Affine Systems Using
Low-Dimensional Polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006)



Reachability Analysis of Polynomial Systems 151

13. Horst, R., Tuy, H.: Global optimazation: Deterministic approaches, 2nd edn.
Springer (1993)

14. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer
(2001)

15. Kaynama, S., Oishi, M., Mitchell, I., Dumont, G.A.: The continual reachability set
and its computation using maximal reachability techniques. In: CDC (2011)

16. Kloetzer, M., Belta, C.: Reachability Analysis of Multi-affine Systems. In: Hes-
panha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer,
Heidelberg (2006)

17. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM Journal of Optimization 11(3), 796–817 (2001)

18. Le Guernic, C., Girard, A.: Reachability Analysis of Hybrid Systems Using Support
Functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–
554. Springer, Heidelberg (2009)

19. Lin, Q., Rokne, J.G.: Interval approxiamtions of higher order to the ranges of
functions. Computers Math 31, 101–109 (1996)

20. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval
methods for plotting algebraic curves. Computer Aided Geometric Design (19),
553–587 (2002)

21. Mitchell, I., Tomlin, C.J.: Level Set Methods for Computation in Hybrid Systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323.
Springer, Heidelberg (2000)

22. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computa-
tion (105), 21–68 (1999)

23. Platzer, A., Clarke, E.M.: The Image Computation Problem in Hybrid Systems
Model Checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007)

24. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochas-
tic safety verification using barrier certificates. IEEE Transactions on Automatic
Control 52(8), 1415–1429 (2007)

25. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic Model Checking of Hy-
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Abstract. We address the model checking problem of omega-regular
linear-time properties for shared memory concurrent programs modeled
as multi-pushdown systems. We consider here boolean programs with a
finite number of threads and recursive procedures. It is well-known that
the model checking problem is undecidable for this class of programs.
In this paper, we investigate the decidability and the complexity of this
problem under the assumption of scope-boundedness defined recently by
La Torre and Napoli in [24]. A computation is scope-bounded if each
pair of call and return events of a procedure executed by some thread
must be separated by a bounded number of context-switches of that
thread. The concept of scope-bounding generalizes the one of context-
bounding [31] since it allows an unbounded number of context switches.
Moreover, while context-bounding is adequate for reasoning about safety
properties, scope-bounding is more suitable for reasoning about liveness
properties that must be checked over infinite computations. It has been
shown in [24] that the reachability problem for multi-pushdown systems
under scope-bounding is PSPACE-complete. We prove in this paper that
model-checking linear-time properties under scope-bounding is also de-
cidable and is EXPTIME-complete.

1 Introduction

The behaviors of concurrent programs are in general extremely intricate due to
the tremendous amount of interactions between their parallel components. This
complexity leads to subtle bugs, erroneous behaviors that are hard to predict
and to reproduce. Therefore, it is very important to investigate the issue of
providing rigorous and automated verification techniques to help programmers
in this difficult task. However, the verification problem of concurrent programs is
a highly challenging problem both from theoretical and practical point of view.
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In this paper we consider the class of shared memory concurrent programs.
More precisely, we consider programs having a finite (fixed) number of threads
running in parallel and sharing a finite number of variables; each thread being
a sequential process that may have (potentially recursive) procedure calls. It is
well-known that, even when the manipulated data are booleans, these concurrent
programs are Turing powerful [32]. In fact, it is easy to see that boolean multi-
threaded programs can be translated quite naturally to multi-pushdown systems
(MPDS), and vice-versa, where a MPDS is a finite control-state machine that
has several stacks. (A 1-stack MPDS is a plain pushdown system, while already
a 2-stack MPDS is a Turing-powerful model.) Intuitively, the control-states cor-
respond to the configurations of the shared memory while the stacks are used to
represent the local call stacks of each thread.

Since all verification problems for (boolean)multi-threaded programs are unde-
cidable in general, many works have addressed the issue of identifying reasonable
assumptions on their behaviors that lead either to (1) decidable classes of models
corresponding to significant classes of programs [12,33,20,8,9], or to (2) decidable
analysis allowing the efficient detection of bugs in concurrent programs encoun-
tered in practice (e.g. [31,17,13]). In the seminal paper [31], context-bounding has
been proposed as a relevant concept for detecting safety bugs in shared memory
multi-threaded programs, and it has been shown in a series of subsequent works
that this concept leads indeed to efficient analysis for these programs [29,27,23,21].

However, besides safety, it is crucial to ensure for concurrent programs ter-
mination of certain computation phases (typically computations resulting from
retrying mechanisms that are used for ensuring mutual exclusion and absence of
interference), and liveness properties in general, such as response properties (i.e.,
an action by some process is eventually followed by some action by the same or
some other process) or persistence properties (i.e., after the occurrence of some
event, the program eventually reaches some state from which some property is
permanently satisfied).

Then, one interesting question is what would be a suitable concept for restrict-
ing the behaviors of multi-threaded programs when reasoning about liveness
properties, and more generally about any omega-regular property expressible in
a linear-time temporal logic such as LTL or by a Büchi automaton?

bool g;

proc Thread1 ()
while g do

g := false;
return

proc Thread2 ()
while !g do

g := true;
return

Fig. 1. A non-terminating
program [6]

In fact, while context-bounding is useful for de-
tecting safety bugs for which it is sufficient to
consider finite computations, this concept is not
appropriate for reasoning about liveness properties
for which it is necessary to consider infinite behav-
iors. The reason is that, roughly speaking, context-
bounding does not give a chance for every thread to
be executed infinitely often, since bounding the num-
ber of context-switches necessarily implies that after
some point all threads except one must be ignored
while the chosen one remains active forever. For in-
stance, in the program of Figure 1, we can not detect
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the presence of a non-terminating execution under the context-bounding policy.
In that respect, the concept of scope-bounding introduced in [24] is more suitable
for reasoning about liveness since it allows behaviors with unbounded context-
switches between threads. Informally, scope-bounding means that each pair of
call and return events of a procedure executed by some thread must be separated
by a bounded number of context-switches of that thread. This means that each
symbol that is stored in a stack can leave the stack only within a bounded num-
ber of context switches. Actually, we adopt in this paper a slightly different, but
equivalent w.r.t. model checking, definition which consists in considering that
useless symbols that would stay in the bottom of the stacks forever are actually
never pushed in the stacks. This implies that as long as a thread remains active,
it has to empty its stack repeatedly after at most eachK context-switches, where
K is the considered bound on the scope; e.g., the non-terminating execution of
the program in Figure 1 requires a scope-bound of size at most 1. Interestingly, it
has been shown that the state reachability problem under scope-bounding is de-
cidable (and PSPACE-complete) [24]. Then, natural questions are (1) whether
model checking linear-time properties under scope-bounding is decidable, and
(2) what is the complexity of this problem?

The contribution of this paper is the proof that model-checking omega-regular
properties for MPDS’s under scope bounding is decidable and EXPTIME-
complete. To establish this result, we show that it is possible to reduce the
considered problem to the emptiness problem of a Büchi (single-stack) push-
down system. Let us give briefly the intuition behind our proof. First, let us
assume that we are given an MPDS M and, following the standard automata-
based model-checking approach, that we are also given a Büchi automaton B
corresponding to the complement (negation) of the specification (a formula of
LTL). Then, our problem is to check whether in the product ofM with B, there
is an infinite computation satisfying the scope bounding requirement and visiting
infinitely often some accepting state of B.

The basic idea of our reduction is to reason in a compositional way about
thread interfaces corresponding to the states that are visible at context-switch
points. We show that, when all threads are active infinitely often, the interface
of each thread can be defined by a finite-state automaton, and then our problem
can be reduced to a repeated state reachability problem in the composition of
these interface automata. In general, to capture also the case where after some
point all thread except one may be stopped, we need to reason about interfaces
as above for the finite prefix where all threads are active, and then simulate
with a single-stack pushdown automaton the rest of the infinite computation
corresponding to the execution of the only thread that remains active.

To build automata recognizing thread interfaces, the basic ingredient is the
summarization, for each thread, of computation segments relating two successive
configurations where the stack of that thread is empty. Let us call such a compu-
tation segment a cluster. Scope-boundedness imposes that the thread must have
a bounded number of context-switches in each cluster. These context-switches al-
low jumps in the control states, i.e., the computation of the thread is a sequence
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of computation segments going from a control state q1 to another state q′1, then
jumping to state q2 (assuming that some other threads will bring the control from
q′1 to q2) and going to another state q′2, and so on. Therefore, given a boundK on
the scope, the summary of a cluster is defined to be the set of all finite sequences
of triples of the form (q1, f1, q

′
1)(q2, f2, q

′
2) · · · (qk, fk, q′k), called cluster interfaces,

where k ≤ K, the qi and q
′
i are control states in the product ofM and B, and the

fi’s are booleans informing about whether a repeated state ofB has been encoun-
tered in the computation segment from qi to q

′
i. Clearly, a cluster summary is a

finite set since interfaces have a bounded size. We show that it is possible to com-
pute this set by solving reachability queries in a pushdown system. Then, the idea
is to build for each thread an interface automaton that recognizes all the possible
repetitions of its cluster interfaces and to put them together so that only consis-
tent interleavings of these stack-wise interfaces are recognized.

Related Work: As mentioned earlier, context-bounding has been introduced by
Qadeer and Rehof in [31] for detecting safety bugs in shared memory concurrent
programs. Several extensions of context-bounding to other classes of programs
and efficient procedures for context-bounded analysis have been proposed in
[14,15,27,3,21,23,22,4,5]. Other bounding concepts allowing for larger/incompa-
rable coverage of the explored behaviors have been proposed in [20,18,17,13,24].
In particular, scope-bounding has been introduced by La Torre and Napoli
in [24].

In this line of work, the focus has been on checking safety properties. In [5] the
model checking problem of ordered multi-pushdown systems (OMPDS) is shown
to be decidable and 2ETIME-complete. It is not clear how this decidability
result is related to the one we prove in this paper. Simulating scope-bounded
computations using the order restriction on stacks does not seem to be possible.
Moreover, the complexity of the model checking problem for OMPDS is clearly
higher than for scope-bounded MPDS which, as shown here, is the same as for
(single-stack) pushdown systems.

A procedure for detecting termination bugs using repeated context-bounded
reachability has been proposed in [6]. The idea there is to focus on checking the
existence of (fair) context-bounded ultimately periodic non-terminating compu-
tations, i.e., infinite computations of the form uvω where u and v are finite
computation segments with a bounded number of context-switches. The model-
checking algorithms we give in this paper are more general than the procedure
in [6] since context-bounded clearly scope-bounded and ω-regular behaviors are
more general than ultimately periodic computations.

La Torre and Parlato have proved in [26] that the satisfiability of MSO
over finite computations of multi-pushdown systems is decidable under scope-
bounding. The proof is by showing that the graphs of each of such computations
(seen as a multi-nested word) have a bounded tree-width. This result implies that
model checking regular properties (over finite-computations) for these systems
is decidable. However, as the satisfiability problem of MSO is nonelementary,
the result in [26] does not provide a practical algorithm for the model checking
problem as we do.
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Recently, independently and simultaneously, La Torre and Napoli have estab-
lished in [25] the EXPTIME-completeness of model checking MPDS’s against
MultiCaRet, an extension of the CaRet logic [1] which is itself an extension of
LTL from words to nested words. The class of properties expressible in Mul-
tiCaRet is incomparable with the class of ω-regular properties. Although the
approach adopted in [25] is technically different from ours, yet the essence of the
proof is close to the one provided here.

2 Preliminaries

In this section, we fix some basic definitions and notations. We assume here that
the reader is familiar with language and automata theory in general.

Notations: Let N denote the non-negative integers, and Nω denote the set N∪{ω}
(ω represents the first limit ordinal). For every i, j ∈ Nω such that i ≤ j, we use
[i..j] to denote the set {k ∈ Nω | i ≤ k ≤ j}.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σω) the set of all finite
(resp. infinite) words over Σ, and by ε the empty word. Let u be a word over Σ.
The length of u is denoted by |u|; we assume that |ε| = 0 and |u| = ω if u ∈ Σω.
For every j ∈ [1..|u|], we use u(j) to denote the jth letter of u.

Let S be a set of (possibly infinite) words over the alphabet Σ and let w ∈ Σ∗

be a word. We define w.S = {w.u | u ∈ S}. We define the shuffle over two words
inductively as ��(ε, w) = ��(w, ε) = {w} and ��(a.u′, b.v′) = a.(��(u′, b.v′) ∪
b.(��(a.u′, v′). Given two sets (possibly infinite) of words S1 and S2 (over Σ),
we define shuffle over these sets as ��(S1, S2) =

⋃
u∈S1,v∈S2

��(u, v). The shuffle
operator for multiple sets can be extended analogously.

Finite-State Automata: A finite-state automaton is a tuple A= (Q,Σ,Δ, I, F )
where: (1) Q is the finite non-empty set of states, (2) Σ is the input alphabet,
(3) Δ ⊆ (Q × (Σ ∪ {ε})× Q) is the transition relation, (4) I ⊆ Q is the set of
initial states, and (5) F ⊆ Q is the set of final states. The language of finite
words accepted (or recognized) by A is denoted by L(A). We may also interpret
the set F as a Büchi acceptance condition, and we denote by Lω(A) the language
of infinite words accepted by A. The size of A is defined by |A| = (|Q|+ |Σ|).

Context-Free Grammars: A context-free grammar (CFG) G is a tuple
(X , Σ,R, S) where X is a finite non-empty set of variables (or nonterminals),
Σ is an alphabet of terminals, R ⊆

(
X × (X 2 ∪ Σ)

)
∪ (S × {ε}) a finite set of

productions (the production (X,w) may also be denoted by X → w), and S ∈ X
is a starting variable. The size of G is defined by |G| = (|X |+ |Σ|). Observe that
the form of the productions is restricted, but it has been shown in [28] that
every CFG can be transformed, in polynomial time, into an equivalent grammar
of this form.

Given strings u, v ∈ (Σ ∪ X )∗ we say u ⇒G v if there exists a production
(X,w) ∈ R and some words y, z ∈ (Σ ∪ X )∗ such that u = yXz and v = ywz.
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We use ⇒∗
G for the reflexive transitive closure of ⇒. We define the context-free

language generated by L(G) as {w ∈ Σ∗ | S ⇒∗
G w}.

Let k ∈ N. A derivation α given by α
def
= α0 ⇒G α1 ⇒G · · · ⇒G αn is k-

bounded if |αi| ≤ k for all i ∈ [1..n]. We denote by L(k)(G) the subset of L(G)
such that for every w ∈ L(k)(G) there exists a k bounded derivation S ⇒∗

G w.
We call L(k)(G) the k-bounded approximation of L(G).

Lemma 1. Given a context-free grammar G and k ∈ N, then it is possible to
construct a finite state automaton A s.t. L(A) = L(k)(G), with |A| = O(|G|k).

Pushdown Automata: A pushdown automaton is defined by a tuple P =
(Q,Σ, Γ,Δ, I, F ) where: (1) Q is the finite non-empty set of states, (2) Σ is
the input alphabet, (3) Γ is the stack alphabet, (4) Δ is the finite set of transi-
tion rules of the form (q, u)

a−→(q′, u′) where q, q′ ∈ Q, a ∈ Σ ∪ {ε}, u, u′ ∈ Γ ∗

such that |u|+ |u′| ≤ 1, (5) I ⊆ Q is the set of initial states, and (6) F ⊆ Q is
the set of final states. The size of P is defined by |P| = (|Q|+ |Σ|+ |Γ |)

A configuration of P is a tuple (q, σ, w) where q ∈ Q is the current state,
σ ∈ Σ∗ is the input word, and w ∈ Γ ∗ is the stack content. We define the
binary relation⇒P between configurations as follows: (q, aσ, uw)⇒P (q′, σ, u′w)
iff (q, u)

a−→(q′, u′). The transition relation ⇒∗
P is the reflexive transitive closure

of the binary relation ⇒P.
The language accepted by P is defined by the set of finite words L(P) = {σ ∈

Σ∗ | (qinit, σ, ε) ⇒∗
P (qfinal, ε, ε)} where qinit ∈ I and qfinal ∈ F . L(P) is a context-

free language, and conversely, every context-free language can be defined as the
language of some pushdown automaton. In fact, it is well-known that for every
pushdown automaton P, it is possible to construct, in polynomial time in the
size of P, a context-free grammar G such that L(G) = L(P) [19].

Similar to the case of finite state automata, even for pushdown automata
we can interpret the acceptance set F as a Büchi acceptance condition and we
denote by Lω(P) the language of infinite words accepted by P.

3 Multi-Pushdown Systems

Multi-pushdown systems (or MPDS for short) are generalizations of pushdown
systems with multiple stacks. The kinds of transitions performed by an MPDS
are: (i) pushing a symbol into one stack, (ii) popping a symbol from one stack, or
(iii) an internal action that changes its states while leaving the stacks unchanged.

Definition 2 (Multi-PushDown Systems). A multi-pushdown system
(MPDS) is a tuple M= (n,Q, Γ,Δ, qinit) where n ≥ 1 is the number of stacks,
Q is the finite set of states, Γ is the stack alphabet, Δ ⊆

(
Q × [1..n] × Q

)
∪(

Q × [1..n]×Q× Γ
)
∪
(
Q × [1..n]× Γ ×Q

)
is the transition relation, and qinit

is the initial state. The size ofM is defined by |M| = (|n|+ |Q|+ |Γ |).
Let q, q′ ∈ Q be two states, γ ∈ Γ a stack symbol, and i ∈ [1..n] a stack index.
A transition of the form (q, i, q′) is an internal operation of the i-th stack that
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moves the state from q to q′ while keeping the stack contents unchanged. A
transition of the form (q, i, q′, γ) corresponds to a push operation that changes
the state from q to q′ and adds the symbol γ to the top of the i-th stack ofM.
Finally, a transition of the form (q, i, γ, q′) corresponds to a pop operation that
moves the state from q to q′ while removing γ from the i-th stack ofM.

A configuration ofM is a (n+ 1)-tuple c = (q, w1, . . . , wn) where q ∈ Q is a
state and for every i ∈ [1..n], wi ∈ Γ ∗ is the content of the i-th stack ofM. We
use State(c) and Stacki(c), with 1 ≤ i ≤ n, to denote the state q and the stack
content wi respectively. The initial configuration cinit is (qinit, ε, · · · , ε). The set
of all configurations ofM is denoted by Conf (M).

We define the transition relation −→M on the set of configurations as follows.
For configurations c = (q, w1, . . . , wn) and c

′ = (q′, w′
1, . . . , w

′
n) and a transition

t ∈ Δ , we write c
t−→M c′ iff one of the following properties is satisfied:

– Internal operation: t = (q, i, q′) for some i ∈ [1..n] and w′
j = wj for all

j ∈ [1..n].

– Push operation: t = (q, i, q′, γ) for some γ ∈ Γ and i ∈ [1..n], w′
i = γ · wi,

and w′
j = wj for all j ∈ ([1..n] \ {i}).

– Pop operation: t = (q, i, γ, q′) for some γ ∈ Γ and i ∈ [1..n], wi = γ · w′
i,

and w′
j = wj for all j ∈ ([1..n] \ {i}).

A computation π ofM from a configuration c is a (possibly infinite) sequence

of the form c0t1c1t2 · · · such that c0 = c and ci−1
ti−−→ ci for all 1 ≤ i ≤

|t1t2 · · · |. We use conf (π), state(π), and trace(π) to denote the sequences c0c1 · · · ,
State(c0)State(c1) · · · , and t1t2 · · · respectively.

Given a finite computation π1 = c0t1c1t2c2 · · · tmcm and a (possibly infi-
nite) computation π2 = cm+1tm+2cm+2tm+3 · · · , π1 and π2 are said to be
compatible if cm = cm+1. Then, we write π1 • π2 to denote the computation
π

def
= c0t1c1t2c2 · · · tmcmtm+2cm+2tm+3 · · · .
In general, multi-pushdown systems are Turing powerful resulting in the un-

decidability of all basic decision problems [32]. However, it is possible to obtain
decidability for some problems, such a control state reachability, by restricting
the allowed set of behaviours [31,20,2,16,24]. We are concerned with the bounded-
scope restriction introduced in [24] and we describe this next.

Contexts: A context of a stack i ∈ [1..n] is a computation of the form π =
c0t1c1t2 · · · in which tj ∈ Δi

def
=

(
Q × {i} × Q

)
∪

(
Q × {i} × Q × Γ

)
∪(

Q × {i} × Γ × Q
)
for all j ∈ [1..|trace(π)|]. We define initial (π) to be

the configuration at the beginning of π (i.e., initial (π) = c0). Furthermore,
for any finite context π = c0t1c1t2 · · · tmcm, we use target(π) to denote the
configuration at the end of the context π (i.e., target(π) = cm).

Context Decomposition: Every computation can be seen as the concatena-
tion of a sequence of contexts π1 • π2 • . . .. In particular, every computation
π can be written uniquely as a sequence π1 • π2 • . . . such that for all i, πi
and πi+1 are not contexts of the same stack. We refer to this as the context
decomposition of π.
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For every i ∈ [1..n] and two contexts π1 and π2, we write π1•iπ2 to denote
that Stack i(initial (π2)) = Stack i(target(π1)). This notation is extended in
the straightforward manner to sequence of contexts. Observe that if π =
π1 • π2 • . . ., and each πi is a context and if i1 < i2 < . . . are all the indices
j such that πj is a context of the stack i then, πi1 •i πi2 •i . . ..

Cluster: A cluster ρ of a stack i ∈ [1..n] of size j ∈ N is a sequence of finite
contexts π1 •i π2 •i · · · •i πj of the stack i such that Stack i(initial (π1)) =
Stack i(target(πj)) = ε (i.e., the stack i at the beginning of the context π1
and at the end of the context πj is empty).

Context-bounded Computations: Given k ∈ N, a computation π =
c0t1c1t2 · · · is said to be k context-bounded if it has a context decompo-
sition π1, π2, . . . , πl consisting of at most k contexts (i.e. l ≤ k). Thus in
a context-bounded computation the number of switches between stacks is
bounded by (k − 1).

Scope-Bounded Computations: Intuitively, in a scope bounded computa-
tion, any value that is pushed in a stack i is removed within k contexts in-
volving this stack i. Equivalently, if we consider a point in the computation
where a stack is empty (this for instance is true at the initial configuration),
and if there are at least k contexts involving this stack after this point, then
this stack empties within these k contexts of this stack. We require that in
any infinite scope-bounded run one of two things must happen – either there
are infinitely many context switches and thus the contexts belonging to each
stack is just a concatenation of clusters of size ≤ k or it has only a finite
number of context switches, with the last context being an infinite context
and in this case we require that the contexts belonging to all the other stacks
is just a concatenation of clusters. (Our definition is a bit stronger than re-
quired in the second case, but it makes the presentation simpler without
any loss of generality, see the discussion below.) The formal definition is as
follows:

Let π be an infinite computation. We say that it is k-scope-bounded if
it can be written as a concatenation π1 • π2 • . . . of contexts (observe that
for all j, πj and πj+1 could be contexts of the same stack) in such a way
that if σi = π

i
i1
•i πii2 •i π

i
i3
•i · · · (with i1 < i2 < i3 < · · · ) is the maximal

sub-sequence of contexts in π belonging to the stack i ∈ [1..n], then, one of
the following cases holds:
– There is a (possibly infinite) sequence ρi = ρ

i
1 •i ρi2 •i · · · , for each i ∈

[1..n], of clusters of size at most k such that σi = ρi for all i ∈ [1..n].
Moreover, there is at least two distinct indices i1, i2 ∈ [1..n] such that
σi1 and σi2 are infinite (and all the stacks for which σi is finite are empty
beyond a point).

– There is an index i ∈ [1..n], a finite sequence ρj = ρj1 •i ρ
j
2 •i · · · of

clusters of size at most k for all j ∈ [1..n], and a finite sequence σ′i =
π′1 •i π′2 •i · · · •i π′� of contexts, with π′� is an infinite context and � < k,
such that σi = ρi •i σ′i and σr = ρr for all r ∈ ([1..n] \ {i}). This
corresponds to the case where beyond some point all stacks except i are
empty and there is a final infinite context involving the stack i.
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Observe that we adopt in this paper a slightly different definition of scope-
bounded computations than the one given in [24,26] where each symbol that is
stored in a stack can be only popped iff it has been pushed within a bounded
number of context switches performed by this stack. In our definition, we consider
that a stack symbol that will never be popped in the context of [24,26] will not
be pushed in our case. Thus, each pushed symbol in to the stack should be
removed within k context-switches performed by this stack. Furthermore, we
can easily show that the linear-time model checking problem for MPDS under
scope-bounding w.r.t. the definition given in [24,26] can be easily reduced, in
linear time, to the same problem for MPDS under scope-bounding w.r.t. the
definition considered in this paper.

Moreover, in our definition, we consider that each finite “stack computation”
consists of a finite sequence of clusters. This is only done for the purpose of
simplifying the presentation and our results can be easily extended to the general
case where each finite stack computation is a sequence of clusters followed by at
most k contexts.

4 Scope-Bounded Repeated Reachability for MPDS

We present in this section a procedure for solving the repeated reachability
problem for MPDS under scope-bounding. Let k ∈ N be a natural number.
The k-scope bounded repeated reachability problem is to determine for any given
MPDS M = (n,Q, Γ,Δ, qinit) and a set of states F ⊆ Q, whether there is an
infinite k-scope-bounded computation ofM starting at the initial configuration
that visits some state in F infinitely often (where a computation π = c0t1c1t2 · · ·
visits a state q infinitely often if and only if for every j ∈ N there is an index
� > j such that State(c�) = q.) In the following, we show that this problem can
be reduced to the emptiness problem for Büchi pushdown automata.

Theorem 3. Let k ∈ N be a natural number, M= (n,Q, Γ,Δ, qinit) an MPDS,
and F ⊆ Q a set of states. Then it is possible to construct a Büchi pushdown
automaton P such thatM has a k-scope bounded computation that visits infinitely
often a state in F if and only if the language Lω(P) is not empty. Moreover, the
size of P is O(|F |(k|M|)dkn) for some constant d.

To prove Theorem 3, we assume w.l.o.g. that F contains a single state qfinal. The
key idea behind the proof is the following: Pick any scope-bounded computation
and fix a stack i. This stack starts as empty and repeatedly turns empty (we deal
with the case where some stack has an infinite context later). We summarize the
execution pertaining to this stack, between two consecutive points where it is
empty, as a sequence of triples of the form (q1, f1, q

′
1)(q2, f2, q

′
2) . . . (ql, fl, q

′
l) for

some l < k. This represents an execution where the MPDS executed a context
of stack i starting at state q1 to reach q′1 with a stack content, say γ1, at which
point a context-switch occurred. At the next context involving stack i, it resumed
at state q2 (and stack content γ1) and switched context at the state q′2 and so on
and eventually the l-th context involving stack i reached a state q′l with the empty
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stack. The fi component records if that context involved visits the state qfinal. A
full computation can be summarized w.r.t. to the stack i as a sequence of such
summaries. We then show that using standard ideas from pushdown automata
and CFGs we can compute an over-approximation of the set of summaries of each
stack arising from executions of the MPDS. It is an over-approximation as it is
done without verifying whether the gaps from q′1 to q2, q

′
2 to q3 and so on, can be

filled out by a real execution involving the other stacks in a scope boundedmanner.
We then show that we may put together these over-approximations and in doing
check for consistency across stacks and hence produce only combined summaries
(for all stacks) that arise from real scope-bounded computations. The case where
there is a final infinite context is solved similarly, except that the summarization
is broken up into two parts, an initial part computed using ideas described above
and the last part is the execution of a single stack pushdown system.

Before we present the details, we introduce some notations and definitions
that will be useful. For any finite context π = c0t1c1t2 · · · tmcm, we can associate
a tuple Interface(π) = (q, f, q′) of the pair of states encountered at the beginning
and end of the context π (i.e., q = State(c0) and q

′ = State(cm) ), and a flag f
indicating if the final state qfinal was encountered along the context π (i.e., f = 1
if there is an index r ∈ [1..m] such that State(cr) = qfinal, otherwise f = 0).

For any given infinite context π = c0t1c1t2 · · · , we define Interface(π) as the
sequence of tuple of the form (q1, f1, q

′
1)(q2, f2, q

′
2) · · · such that for every j ∈ N,

we have State(cj) = qj+1, State(cj+1) = q
′
j+1, and if qj = qfinal then fj+1 = 1,

otherwise fj+1 = 0.
Let ρ = π1 •i π2 •i · · · be a sequence of contexts for some i ∈ [1..n], then

we can extend the definition of context interfaces to sequence of contexts as
follows: Interface(ρ) = Interface(π1)Interface(π2) · · · . The function Interface is
also extended in straightforward manner to clusters and sequences of clusters
and contexts.

Let w = (q1, f1, q
′
1)(q2, f2, q

′
2) · · · be an infinite word over the interface al-

phabet Q × {0, 1} × Q. The word (or interface) w is said to be well-formed if
q1 = qinit and q

′
j = qj+1 for all j > 1. Moreover, the interface w visits the state

qfinal infinitely often if for every natural number j ∈ N, there is a natural number
i > j such that fi = 1.

Let ρ be a k-scope bounded computation that visits the state qfinal infinitely
often. We can assume that ρ is of the form π1 • π2 • π3 • · · · where each πj , with
j ∈ N, is a stack context. Furthermore, we assume w.l.o.g. that, if at all, only the
first stack can have an infinite context in π. Then, let σi = π

i
i1
•i πii2 •i π

i
i3
•i · · ·

(with i1 < i2 < i3 < · · · ) be the maximal sub-sequence of contexts in π belonging
to the stack i ∈ [1..n].

For any stack i ∈ [2..n], we recall that σi is a sequence of clusters ρi1 •i ρi2 •i
ρi3 •i · · · . Moreover, there is a sequence of clusters ρ1 = ρ11 •1 ρ12 •1 · · · such that
σ1 is one of the following forms: (1) σ1 = ρ1 and each σi (with i > 1) can be
an infinite sequence, or (2) all σi (with i > 1) are finite and there is a finite
sequence σ′1 = π′1 •1 π′2 •1 · · · •1 π′� of contexts, with π′� is an infinite context and
� < k, such that σ1 = ρ1 •1 σ′1.
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Case 1: Let us consider the case where σ1 = ρ1. For every stack i ∈ [1..n], we asso-
ciate the interface Interface(σi) to the sequence σi. Then, it is easy to see that, in
this case, there is a well-formed word in ��({Interface(σ1)}, . . . , {Interface(σn)})
which visits qfinal infinitely often.

Case 2: Let us consider the case where σ1 = ρ1•1σ′1. Then, there is a finite word
w in ��({Interface(ρ1 •1π′1 •1 · · · •1π′�−1)}, {Interface(σ2)}, . . . , {Interface(σn)})
such that w ·Interface(π′�) is well-formed and visits the state qfinal infinitely often.

In general, we can show:

Lemma 4. M has a k-scope bounded computation that visits infinitely often the
state qfinal if and only if one of the following two cases holds:

– For every stack i ∈ [1..n], there is a (possibly infinite) sequence σi
of clusters of the stack i such that there is a well-formed word in
��({Interface(σ1)}, . . . , {Interface(σn)}) which visits qfinal infinitely often.

– There is a finite sequence σi of clusters of the stack i for all i ∈
[1..n], a finite sequence of clusters ρ1 of the first stack, and a finite se-
quence σ′1 = π′1 •1 π′2 •1 · · · •1 π′� of contexts, with π′� an infinite con-
text and � < k, s.t. there is a finite word w in ��({Interface(ρ1 •1
π′1 •1 · · · •1 π′�−1)}, {Interface(σ2)}, . . . , {Interface(σn)}) such that the word(
w · Interface(π′�)

)
is well-formed and visits qfinal infinitely often.

Now, we can show that checking both of these two cases can be reduced to the
emptiness problem for Büchi (pushdown) automata whose size is O((k|M|)dkn)
for some constant d. In fact, this is an immediate consequence of the two following
lemmas. Lemma 5 refers to the first case of Lemma 4 and shows that this case
can be reduced to the emptiness problem of a Büchi automata.

Lemma 5. The problem of checking whether there is a sequence σi of clus-
ters of the stack i for all i ∈ [1..n] such that there is a well-formed word in
��({Interface(σ1)}, . . . , {Interface(σn)}) which visits qfinal infinitely often can
be reduced to the emptiness problem for a Büchi automaton whose size is
O((k|M|)dk) for some constant d.

Proof (sketch). First of all, the set Lk
i (M) of all the finite words of the form

Interface(ρ) where ρ is a cluster of size at most k of a stack i ∈ [1..n] can be seen
as the language of a pushdown automaton Pi. This is a finite language of words
of length ≤ k and hence regular, but by suitably modifying the given MPDS we
can construct an explicit pushdown automaton recognizing these words. More-
over the size of Pi is polynomial in k|M|. Now, we can use Lemma 1 and the
equivalence between context-free grammars and pushdown automata [28,19],
to show that it is possible to construct a finite state automaton Ai such that
L(Ai) = L

k
i (M), where in the worst case the size of Ai is O((k|M|)dk) for some

constant d. As an immediate consequence of this result, we can show that the
set of possible interfaces generated by a sequence of clusters of the stack i can be
characterized by a Büchi automaton Bi (constructed by a special concatenation
operation of the finite state automaton Ai). Observe that the size of the Büchi
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automaton Bi is O((k|M|)dk) for some constant d. Finally, we can use standard
automata construction, to show that we can construct a Büchi automaton B that
accepts all the well-formed words in ��({Interface(σ1)}, . . . , {Interface(σn)}), by
ensuring that adjacent letters in the shuffle being generated are compatible, and
also verify that the resulting sequence visits qfinal infinitely often. Moreover, the
size of B is akin to the size of the product of B1, . . . ,Bn and thus is O((k|M|)dkn)
for some constant d. ��

The following Lemma shows that the second case of Lemma 4 can be reduced
to the emptiness problem of a Büchi pushdown automata.

Lemma 6. The problem of checking whether there are finite sequences σi of
clusters for each stack i with i ∈ [2..n], a finite sequence ρ1 of clusters of
the first stack, and a finite sequence σ′1 = π′1 •1 π′2 •1 · · · •1 π′� of contexts,
with π′� an infinite context and � < k, such that there is a finite word w in
��({Interface(ρ1•1π′1•1 · · ·•1π′�−1)}, {Interface(σ2)}, . . . , {Interface(σn)}) such
that w · Interface(π′�) is well-formed and visits infinitely often the state qfinal can
be reduced to the emptiness problem for a Büchi pushdown automaton whose size
is O((k|M|)dkn) for some constant d.

Proof (sketch). As in the proof of Lemma 5 , it is possible to construct a
finite state automaton Ai accepting exactly all the finite words of the form
Interface(ρ), where ρ is a cluster of size at most k of the stack i ∈ [1..n]. Ob-
serve that the size of Ai is O((k|M|)dk) for some constant d. On the other hand,
we can construct a Büchi pushdown automaton P1 accepting the set of infi-
nite words of the form Interface(π′1 •1 π′2 •1 · · · •1 π′�), where π′1 •1 · · · •1 π′�
is a sequence of contexts of the first stack such that π′� is an infinite context
and � < k. Observe that the size of such a Büchi pushdown automaton P1 is
polynomial in k|M|. Finally, we can use standard automaton constructions, to
show that we can construct a Büchi pushdown P that accepts all the well-formed
words of the form w · Interface(π′�) visiting the state qfinal infinitely often where
w ∈ ��({Interface(ρ1 •1π′1 •1 · · ·•1π′�−1)}, {Interface(σ2)}, . . . , {Interface(σn)})
Moreover, P can be constructed from P1 and A2, . . . , An such that the size of P
is O((k|M|)dkn) for some constant d. ��

5 Scope-Bounded Model Checking for MPDS

We consider in this section the linear-time model checking problem for MPDS’s
under scope-bounding. We consider that we are given ω-regular properties ex-
pressed in linear-time propositional temporal logic (LTL) [30] or in the linear-
time propositional μ-calculus [34]. Let us fix a set of atomic propositions Prop,
and let k ∈ N be a natural number. The k-scope bounded model-checking prob-
lem is the following: Given a formula ϕ (in LTL or in the linear-time μ-calculus)
with atomic propositions from Prop, and a MPDS M= (n,Q, Γ,Δ, qinit) along
with a labeling function Λ : Q → 2Prop associating to each state q ∈ Q the
set of atomic propositions that are true in it, check whether all infinite k-scope-
bounded computations ofM from the initial configuration cinit satisfy ϕ.
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To solve this problem, we adopt an automata-based approach similar to the
one used in [11,10] to solve the analogous problem for pushdown systems. We
construct a Büchi automaton B¬ϕ over the alphabet 2Prop accepting the nega-
tion of ϕ [36,35]. Then, we compute the product of the MPDSM and the Büchi
automaton B¬ϕ to obtain a MPDSM¬ϕ with a Büchi accepting set of states F
and leaving us with the task if any of its its k-scope bounded runs is accept-
ing. We can then reduce our model-checking problem to the k-scope bounded
repeated reachability problem for MPDSs, which, by Theorem 3, can be solved.

Theorem 7. The problem of scope-bounded model checking ω-regular properties
of multi-pushdown systems is EXPTIME-complete.

The lower bound of Theorem 7 follows immediately from the fact that the model-
checking problem for LTL and linear time μ-calculus for pushdown systems (i.e.,
MPDS with only one stack) are EXPTIME-complete [10].

For the upper bound, it is well known that, given a MPDSMand an ω-regular
formula ϕ, it is possible to construct a MPDSM′ and a set of repeating states
F of M′ such that the problem of scope-bounded model checking of M w.r.t.
the formula ϕ is reducible to the k-scope-bounded repeated state reachability
problem of a MPDSM′ w.r.t. F . Moreover, the size ofM′ and F is exponential
in the size of ϕ and polynomial in the size ofM and k. Applying Theorem 3 to
the MPDSM′ and F , we obtain our complexity result.

6 Conclusion

We have shown that model checking linear-time properties (expressed as for-
mulas of LTL or the linear-time propositional mu-calculus) for multithreaded
programs with recursive procedures is decidable under scope-bounding, and fur-
thermore, we have established that this problem is EXPTIME-complete. There-
fore, model-checking of multithreaded programs with recursive procedures un-
der scope-bounding is as hard as the same problem for (single-stack) pushdown
systems. Our algorithm is in fact based on a reduction using a compositional
reasoning about interfaces of threads at context-switch points, to a repeated
reachability problem in a pushdown system.

Notice that, concerning the problem of checking whether a MPDS has a com-
putation recognized by a given Büchi automaton (i.e., the emptiness of the in-
tersection between MPDSs and Büchi automata), it is possible to use the same
techniques we develop in this paper to show that it is PSPACE-complete. So,
if we are given directly the automaton of the complement of the specification,
we can check if the system has no bad scope-bounded behaviors in PSPACE.
(Again, this is similar to the case of single-stack pushdown systems.)

Surprisingly, these positive results for linear time model-checking don’t seem
to carry over to branching-time properties [7].

Future work includes implementing our construction and using it in the veri-
fication of various kinds of properties, including termination and typical liveness
properties such as response and persistence properties, over nontrivial examples
of concurrent programs.
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Ahmed Bouajjani1, Cezara Drăgoi2, Constantin Enea1, and Mihaela Sighireanu1

1 Univ Paris Diderot, Sorbonne Paris Cité, LIAFA CNRS UMR 7089, France
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Abstract. We propose a logic-based framework for automated reasoning about
sequential programs manipulating singly-linked lists and arrays with unbounded
data. We introduce the logic SLAD, which allows combining shape constraints,
written in a fragment of Separation Logic, with data and size constraints. We ad-
dress the problem of checking the entailment between SLAD formulas, which is
crucial in performing pre-post condition reasoning. Although this problem is un-
decidable in general for SLAD, we propose a sound and powerful procedure that
is able to solve this problem for a large class of formulas, beyond the capabilities
of existing techniques and tools. We prove that this procedure is complete, i.e.,
it is actually a decision procedure for this problem, for an important fragment
of SLAD including known decidable logics. We implemented this procedure and
shown its preciseness and its efficiency on a significant benchmark of formulas.

1 Introduction

Programs can manipulate dynamic data structures carrying data over infinite domains.
Reasoning about the behaviors of such programs is a challenging problem due to the
difficulty of representing (potentially infinite) sets of configurations, and of manipulat-
ing these representations for the analysis of the execution of program statements. For
instance, pre/post-condition reasoning (checking the validity of Hoare triples) requires
being able, given pre- and post-conditions φ and ψ, and a program statement τ, (1) to
compute the strongest post-condition of executing τ starting from φ, denoted post(τ,φ),
and (2) to check that it entails ψ. Moreover, showing that τ is executable starting from φ
amounts in checking that post(τ,φ) is satisfiable (i.e., corresponds to a nonempty set of
configurations). Therefore, an important issue is to investigate logic-based formalisms
where pre/post conditions are expressible for the class of programs under interest, and
for which it is possible to compute effectively (strongest) post-conditions, and to check
satisfiability and entailment. (Notice that both of these problems have to be considered
since it is not required that the logic is closed under negation.)

In this paper, we propose such a framework for the case of programs manipulating
singly-linked lists and arrays with data. Several works have addressed this issue, propos-
ing various decidable logics for reasoning about programs with data structures, e.g.
[4,8,9,13,14,15,17]. Some of these logics [1,3,2,9,17] focus mainly on shape constraints
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assuming a bounded data domain, e.g. the Separation logic fragment in [3,9] for which
the entailment problem has a polynomial time complexity. The works in [4,8,13,14,15]
focus on reasoning about programs manipulating data structures with unbounded data.
They introduce decidability results concerning the satisfiability problem for logics that
describe the shape and the data of heap configurations. The formulas in these logics
have a quantifier prefix of the form ∃∗∀∗. They are different w.r.t. the type of the vari-
ables which are quantified or the basic predicates which are allowed. The validity of an
entailment φ1⇒ φ2 is reduced to the unsatisfiability of φ1∧¬φ2. It can be performed
only between boolean combinations of formulas with quantifier prefixes ∃∗ or ∀∗.

We define a logic, called SLAD, allowing to express the specifications of all common
programs manipulating lists and arrays. This logic combines shape constraints, writ-
ten in Separation Logic [17], and universally-quantified first-order formulas expressing
constraints on the size and the values of the data sequences associated with arrays or
sharing-free list segments in the heap. The logic is parametrized by a logic on data; for
simplicity, we suppose that data is of integer type and that the logic on data is Pres-
burger arithmetics. The Separation logic formulas are in a fragment that extends the
one in [3,9] with existential quantification and disjunction. Existential quantification is
useful to describe for instance lasso-shaped lists, and disjunction is crucial for speci-
fications that involve data. For example, the post-condition of a loop that searches an
integer val in a list pointed to by x, where the variable xi is used to traverse the list,
states that: either val is not in the list, e.g., xi = NULL, or val is in the list and xi points to
the corresponding element, e.g., xi 	= NULL, xi is reachable from x, and xi−→data = val.

In general, SLAD formulas have quantifier prefixes of the form ∃∗∀∗ (e.g., the for-
mula in Fig.1 that describes a sorted lasso-shaped list). The validity of entailments
between such formulas can not be reduced to the satisfiability of an ∃∗∀∗ formula and
thus, it can not be decided using approaches like in [4,8,13,14,15]. Also, in many cases,
relevant program assertions are beyond the identified decidable fragments (e.g., rela-
tions between the values of the data fields and the size of the allocated list). We define
a procedure for checking entailments between SLAD formulas, which exploits their
syntax. The entailment between shape constraints is checked using a slightly modified
version of the decision procedure for Separation Logic in [9]. If this entailment holds,
the procedure reduces the entailment between the data constraints to the validity of a
formula in the data logic. The novelty of this procedure is that (1) it does not reduce
entailment checking in SLAD to satisfiability checking in the same logic, (2) it is ap-
plied to ∃∗∀∗ formulas, and (3) it is sound when applied to any SLAD formulas and
complete for a relevant fragment of SLAD. Note that the same procedure is also a sound
decision procedure for unsatisfiability. The fragment of SLAD, called SLAD≤, for which
the unsatisfiability check is complete includes for instance, the logic APF [8] and the
restriction of LISBQ [14] to singly-linked lists. The decision procedure for SLAD≤ has
the same complexity as the decision procedures in [8,14] (NP-complete, if we fix the
number of universal quantifiers). The entailment problems for which our procedure is
complete consider SLAD≤ formulas (satisfying some syntactic restrictions) and are be-
yond the scope of all existing decision procedures that we are aware of.

Besides decidability results, we show that our approach deals efficiently with a vari-
ety of examples, including programs whose specifications are given by SLAD formulas
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that are not in SLAD≤ and which can’t be handled by existing tools. This is an important
feature of our approach: it provides uniform and efficient techniques that are applicable
to a large class of formulas, and that are complete for a significant set of formulas.

For the simplicity of the exposition, we begin by defining SLD, a logic on singly-
linked lists, and then, in Section 6, we define its extension to arrays, SLAD.

2 Logic SLD, a Logic for Programs with Singly-Linked Lists

We introduce hereafter the class of programs with singly-linked lists considered in this
paper and the syntax of Singly-linked list with Data Logic (SLD, for short), a logic
to describe sets of program configurations (we relegate the definition of the formal
semantics to the long version [5]). Then, we introduce fragments of SLD relevant for
the results presented in the following sections. Finally, we give the properties of SLD
relevant for program verification. In the following, PVar and DVar are disjoint sets of
pointer resp. integer program variables. NULL is a distinguished pointer variable in PVar.

2.1 Programs with Singly-Linked Lists

We consider sequential programs manipulating singly-linked lists of the same type, i.e.,
pointer to a record called list formed of one recursive pointer field next and one data
field data of integer type. However, the results presented in this paper work also for
lists with multiple data fields of different types. As usual, the allocated memory (heap) is
represented by a directed labeled graph where nodes represent list cells and edges repre-
sent values of the field next. The constant NULL is represented by a distinguished node
� with no output edge. Nodes are labeled with values of the field data and pointer vari-
ables. For example, Fig. 1(a) represents a heap containing a lasso-shaped list pointed
to by x. Formally, a program configuration consists of a directed graph representing the
heap and a valuation of the integer program variables in DVar.

Definition 1 (Program configuration). A program configuration is a tuple H =
(V,En, �P, �D,D), where (1) V is a finite set of nodes containing a distinguished node
�, (2) En : V ⇀ V is a partial function s.t. En(�) is undefined, (3) �P : PVar ⇀ V is
a partial function labeling nodes with pointer variables such that �P(NULL) = �, (4)
�D : (V \ {�})→ Z is a function labeling nodes with integers, and (5) D : DVar→ Z is
a valuation of the integer variables. �

Definition 2 (Simple/Crucial node). A node labeled with a pointer variable or which
has at least 2 predecessors is called crucial. Otherwise, it’s called a simple node. �

For example, in the program configuration from Fig. 1(a) (DVar is empty) the circled
nodes are crucial nodes and the other nodes are simple.

2.2 Syntax of SLD

The main features of SLD are introduced through an example. (A detailed presentation
of SLD is given [5]). The heap in Fig. 1(a) consists of a lasso shaped list whose cyclic
part is equal in size and values of the data fields to the non-cyclic part. The data in the
cyclic part is strictly sorted. These properties are expressed in SLD as follows:
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2
x

4 6 2

4

6

H :

(a)

ϕ1
S := ls(n,m)∗ls(m,m)∧ x(n)

ϕ2
S := ls(u,v)∗ls(v,w)∧ x(u)

(b)

n
x

mS1 :

u
x

v wS2 :

(c)

h h h

ϕ1
D := dt(n) = dt(m)∧len(n) = len(m)

∧∀y,y′.
(

0< y< len(n)∧0< y′ < len(m)∧ y = y′︸ ︷︷ ︸
Gm,n(y,y′)

)
⇒ n[y] = m[y′] list equality

∧∀y1,y2. 0< y1 < y2 < len(m)︸ ︷︷ ︸
Gm(y1,y2)

⇒ dt(n) = dt(m)< m[y1]< m[y2] strict sortedness

ϕ2
D := ∀y1,y2. 0< y1 < y2 < len(v)⇒ dt(v)≤ v[y1]≤ v[y2]︸ ︷︷ ︸

sorted(v)

sortedness

(d)

Fig. 1. A program configuration (a) specified by two SLD formulas ϕ1 := ∃n,m.
(
ϕ1

S ∧ϕ1
D

)
and

ϕ2 :=∃u,v,w.
(
ϕ2

S∧ϕ2
D

)
given in (b) and (d) such that ϕ1 *ϕ2. In (c), S1 and S2 are homomorphic

SL-graphs representing the SLD graph formulas ϕ1
S resp. ϕ2

S.

Shape Formulas: The shape of the heap is characterized using the formula ϕ1
S in

Fig. 1(b), written in a fragment of Separation logic (SL) [17], where (1) n and m are
node variables interpreted as nodes in the heap, (2) ls(n,m) denotes a possibly-empty
path between the nodes denoted by n and m; such a path is called a list segment, (3)
the separating conjunction ∗ expresses the fact that the two list segments are disjoint
except for their end nodes, and (4) x(n) says that the pointer variable x labels n.

Let NVar be a set of node variables interpreted as nodes in program configurations.
The syntax of shape formulas is given in Fig. 2. The node � is represented by a constant
with the same name in the syntax. For simplicity, we consider the intuitionistic model
of Separation logic [17]: if a formula is true on a graph then it remains true for any
extension of that graph with more nodes. Our techniques can be adapted to work also
for the non-intuitionistic model. Inequalities are important to express properties like list
disjointness. For example, the formula ls(n,u)∗ls(m,v)∧ x(n)∧ z(m) has as model a
heap with only one list when m,u,v are interpreted in the same node, while ls(n,u) ∗
ls(m,v)∧ x(n)∧ z(m)∧ n 	= m∧ u 	= v specifies models that contain two disjoint lists.

The restriction Det from Fig. 2 and the omission of the “points to” predicate u �→ v
from Separation logic [9] (which denotes the fact that v is the successor of the node u)
are adopted only for simplicity.

x ∈ PVar program pointer variables n,m ∈ NVar node variables
u,v ∈ NVar∪{�} node variables or �

ϕE ::= ls(n,u) | ϕE ∗ϕE

ϕP ::= x(u) | m 	= u | ϕP∧ϕP

ϕS ::= ϕE ∧ϕP, where ϕE satisfies Det

Det : “ϕE does not contain two predicates
ls(n,u) and ls(n,v)

where n,u,v are pairwise distinct.”

Fig. 2. Syntax of shape formulas
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To simplify the presentation, a shape formula is represented by an SL-graph, which is a
slight adaptation of the notion introduced in [9]. Each node of an SL-graph corresponds
to a node variable, each edge corresponds to an ls predicate, and nodes are labeled
by pointer variables. For example, the graphs S1 and S2 in Fig. 1(c) are the SL-graphs
associated to the formulas ϕ1

S resp. ϕ2
S in Fig. 1(b).

Definition 3 (SL-graphs). The SL-graph associated to a shape formula ϕS is either
⊥ or a graph S = (N ∪ {�},E�, �P,Ed), where N is the set of node variables in ϕS,
E� : N ⇀ N ∪{�} defines a set of directed edges by E�(n) = m iff ls(n,m) appears in
ϕS, �P : PVar⇀ N ∪{�} is defined by �P(x) = u iff x(u) appears in ϕS, and Ed ⊆ N×N
is a disequality relation which defines a set of undirected edges such that (n,u) ∈ Ed iff
n 	= u appears in ϕS. A path in an SL-graph is formed only of directed edges.

The SL-graph⊥ represents unsatisfiable shape formulas for which an SL-graph can not
be built. For an SL-graph S 	= ⊥, we use superscripts to denote their components, e.g.,
ES
� , and we note NS

+ for NS ∪{�}. Also, VarsS(n) denotes the set of pointer variables
labeling n, {x ∈ PVar | �SP(x) = n}, and Vars(S) denotes the set of pointer variables in
S, dom(�P). The notions of simple and crucial node are defined similarly for SL-graphs.

Sequence Formulas: Consider again the formula ϕ1
S in Fig. 1(b). The size and the data

values of the list segments specified by ϕ1
S are characterized by ϕ1

D in Fig. 1(d), which is
a first-order formula over integer sequences. The equality between the list segments cor-
responding to ls(n,m) and ls(m,m) is stated using (1) len(n)= len(m), where len(n)
(len(m)) denotes the length, i.e., the number of edges, of the list segment associated to
ls(n,m) (ls(m,m)), (2) dt(n) = dt(m), where dt(n) represents the integer labeling the
node n, and (3) a universally quantified formula of the form ∀y. G(y)⇒U(y), where
the variables in the set y, called position variables, are interpreted as integers and n[y]
is interpreted as the integer labeling the node at distance y from n.

For every predicate ls(n,m) we call integer sequence associated with n, for short
sequence of n, the element of Z∗ obtained by concatenating the integers labeling all
the nodes except the last one (i.e., the one represented by m) in the list segment cor-
responding to ls(n,m). A term n[y] appears in U(y) only if the guard G(y) contains
the constraint 0 < y < len(n). This restriction is used to avoid undefined terms. (For

N∪{n,ny} ⊆ NVar node variables d ∈ DVar integer variable
y∪{y} ⊆ Pos position variables k ∈ Z integer constant

Position terms: E-terms: U-terms:
p ::= k | y | len(n) | p+ p e ::= k | d | dt(n) | len(n) | e+e t ::= e | y | n[y] | t + t

Existential constraints: E ::= e≤ e′ | ¬E | E ∧E | ∃d. E, where e and e′ are E-terms

Constraints on positions: C ::= p≤ p′ | ¬C |C∧C where p and p′ are position terms

Guards: G(y) ::= C∧∧y∈y 0< y< len(ny),

Data properties: U(y) ::= t ≤ t ′ | ¬U |U ∧U | ∃d.U, where t and t ′ are U-terms

containing position variables from y

Sequence formulas: ϕD ::= E | ∀y. G(y)⇒U(y) | ϕD ∧ϕD

Fig. 3. Syntax of sequence formulas
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instance, if the length of the list segment starting in n equals 2 then the term n[y] with
y interpreted as 3 is undefined.) The strict sortedness is specified using a universal for-
mula of the same form. Intuitively, U(y) constrains the integers labeling a set of nodes
determined by the guard G(y). A formula ρ = ∀y. G(y)⇒ U(y) is called a guarded
formula and G(y) is the guard of ρ. The syntax of sequence formulas is given in Fig. 3.

SLD Formulas: A formula in SLD is a disjunction of formulas of the form ∃N1. (ϕ1
S∧

ϕ1
D) ∗ · · · ∗ ∃Nk. (ϕk

S ∧ϕk
D), where each Ni is the set of all node variables in ϕi

S (which
include all the node variables in ϕi

D). Note that such a formula is equivalent to ∃N1 ∪
·· ·∪Nk. (ϕ1

S ∗ · · · ∗ϕk
S∧ϕ1

D∧·· · ∧ϕk
D). W.l.o.g, in the following, we will consider only

SLD formulas which are disjunctions of formulas of the form ∃N. ϕS∧ϕD.
The set of program configurations which are models of a formula ψ is denoted [ψ].

2.3 Fragments of SLD

Succinct SLD Formulas: An SLD formula ψ is succinct if every SL-graph associated
to a disjunct of ψ has no simple nodes. For example, ϕ1 := ∃n,m. ϕ1

S ∧ϕ1
D in Fig. 1 is

succinct, but the formula ϕ5 whose SL-graph is given in the top of Fig. 4 is not succinct.

SLD≤ Formulas: A guard G(y) is called a ≤-guard if it has the following syntax:∧
1≤ j≤q

p j ≤ p′j ∧
∧
y∈y

0< y< len(ny), (i)

where p j and p′j are either position variables or position terms that do not contain
position variables. That is, a ≤-guard contains only inequalities of the form y1 ≤ y2,
y1≤ p, p≤ y1, or p≤ p′, where y1,y2 ∈Pos and p, p′ are position terms without position
variables. Thus, a ≤-guard can define only ordering or equality constraints between
positions variables in one or several sequences; it can not define, e.g., the successor
relation between positions variables. The fragment SLD≤ is the set of all SLD formulas
ψ such that for any sub-formula ∀y. G(y)⇒U(y) of ϕ, (1) G(y) is a ≤-guard and (2)
any occurrence of a position variable y in U(y) belongs to a term n[y] with n ∈ NVar.

2.4 Closure under Post Image Computation

For any program statement St and any set of program configurations H, post(St,H)
denotes the postcondition operator. The closure of SLD under the computation of the
strongest postcondition w.r.t. basic statements (which don’t contain “while” loops and
deallocation statements) is stated in the following theorem (the proof is given in [5]).

Theorem 1. Let St be a basic statement and ψ an SLD formula. Then, post(St, [ψ])
is SLD-definable and it can be computed in linear time. Moreover, if ψ is an SLD≤
formula then post(St, [ψ]) is SLD≤-definable and it can be computed in linear time.

3 Checking Entailments between SLD Formulas

For any ψ1 and ψ2 two SLD formulas, ψ1 semantically entails ψ2 (denoted ψ1 * ψ2) iff
[ψ1]⊆ [ψ2]. The following result states that checking the semantic entailment between
SLD formulas is undecidable. It is implied by the fact that even the satisfiability problem
for SLD is undecidable (by a reduction to the halting problem of 2-counter machines).
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Theorem 2. The satisfiability problem for SLD is undecidable. The problem of check-
ing the semantic entailment between (succinct) SLD formulas is also undecidable.

We present a procedure for checking entailments between SLD formulas, called simple
syntactic entailment and denoted#S, which in general is only sound.

Checking Entailments of Shape Formulas: For SLD formulas without data constraints
(i.e., disjunctions of shape formulas), the simple syntactic entailment is a slight extension
to disjunctions and existential quantification of the decision procedure for Separation
logic introduced in [9]. Thus, given two shape formulas ϕ and ϕ′, ϕ #S ϕ′ iff the SL-
graph of ϕ is⊥ or there exists an homomorphism from the SL-graph of ϕ′ to the SL-graph
of ϕ. This homomorphism preserves the labeling with program variables, the edges that
denote inequalities, and it maps edges of ϕ′ to (possibly empty paths) of ϕ such that any
two disjoint edges of ϕ′ are mapped to two disjoint paths of ϕ. For example, the dotted
edges Fig. 1(c) represent the homomorphism h which proves that∃n,m.ϕ1

S *∃u,v,w.ϕ2
S.

This holds because v is not required to be different from w. We have that ϕ * ϕ′ iff
ϕ#S ϕ′. Formally, the homomorphism between SL-graphs is defined as follows:

Definition 4 (Homomorphic shape formulas). Given two SL-graphs S1 and S2, S1 is
homomorphic to S2, denoted by S1 �→h S2, if S1 = S2 = ⊥ or there exists a function
h : NS1

+ → NS2
+ , called homomorphism, such that: (1) h(�) = �; (2) for any n ∈ NS1

+ ,

VarsS1(n)⊆VarsS2(h(n)); (3) for any e = (n,u) ∈ ES1
� , there is a (possibly empty) path

πe in S2 starting in h(n) and ending in h(u); (4) for any two distinct edges e1 = (n,u) ∈
ES1
� and e2 = (m,v) ∈ ES1

� (m,v), the corresponding paths πe1 and πe2 associated by h

in S2 don’t share any edge; (5) for any e = (n,u) ∈ ES1
d , (h(n),h(u)) ∈ ES2

d . �

For any two SLD formulas ψ and ψ′, which are disjunctions of shape formulas, ψ#S ψ′
iff for any disjunct ϕ of ψ there exists a disjunct ϕ′ of ψ′ such that ϕ #S ϕ′. One can
prove that #S is sound, i.e., for any ψ and ψ′, if ψ#S ψ′ then ψ * ψ′.

Adding Data Constraints: For SLD formulas with data constraints, the definition of
the simple syntactic entailment is guided by the syntax of SLD. We illustrate it on the
formulas from Fig. 1(b),(d). First, the procedure checks if the simple syntactic en-
tailment holds between the SL-formulas ϕ1

S and ϕ2
S. Then, because the homomorphism

in Fig. 1(c) maps every edge in S2 to an edge in S1, it checks that ϕ1
D entails ϕ2

D[h],
where ϕ2

D[h] is obtained from ϕ2
D by applying the substitution [u �→ n,v �→ m,w �→ m]

defined by the homomorphism h (if the homomorphism h does not satisfy this condi-
tion then the simple syntactic entailment does not hold). The entailment between two
sequence formulas ϕD and ϕ′D is reduced to the entailment in the logic on data by
checking that for any guarded formula ∀y. G(y)⇒U ′(y) in ϕ′D there exists a guarded
formula ∀y. G(y)⇒U(y) in ϕD such that U(y)⇒ U ′(y). This entailment check be-
tween sequence formulas is also denoted by #S. In Fig. 1(d), this test is satisfied for
the guarded formula in ϕ2

D[h] by the last guarded formula in ϕ1
D (i.e., strict sortedness

implies sortedness). This procedure is efficient because it requires no transformation on
the input formulas and the decision procedure on data is applied on small instances and
a number of times which is linear in the size of the input formulas.

The simple syntactic entailment for disjunctions of formulas of the form ∃N. ϕS∧ϕD

is defined as in the case of disjunctions of shape formulas. Clearly, #S is only sound.
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In the following, we will introduce a more precise procedure for checking entailments
between SLD formulas, denoted # and called syntactic entailment. The presentation is
done in two steps depending on the class of homomorphisms discovered while proving
the entailment between shape formulas. First, we will consider edge homomorphisms,
that map edges of an SL-graph to edges of another SL-graph (i.e., for any edge (u,v),
(h(u),h(v)) is an edge) and then, we will consider the case of arbitrary homomorphisms.

4 Syntactic Entailment w.r.t. Edge Homomorphisms

The simple syntactic entailment fails to prove some relevant entailments encountered
in practice, e.g, the equality of two lists pointed to by x and z, resp., and the fact that the
list pointed to by z is sorted implies that the list pointed to by x is also sorted:

∃n,m. (ls(n, �)∗ls(m, �)∧x(n)∧z(m)∧ϕ1
D) * ∃u.

(
ls(u, �)∧x(u)∧sorted(u)

)
. (ii)

Above, ϕ1
D is the formula in Fig. 1(c) and the entailment between the shape formulas is

proven by the homomorphism h defined by h(u) = n. Checking the entailment between
ϕ1

D and sorted(u)[h] fails because the sets of guards in the two formulas are different.
More precisely, ϕ1

D does not contain a guarded formula of the form ∀y1,y2.Gn(y1,y2)⇒
U , where Gn(y1,y2) := 0< y1 < y2 < len(n).

Saturation Procedure: The problem is that SLD does not have a normal form in the
sense that the same property can be expressed using SLD formulas over different sets
of guards. In our example, one can add to ϕ1

D the guarded formula ρ := ∀y1,y2. 0 <
y1 < y2 < len(n)⇒ dt(n) < n[y1] < n[y2] while preserving the same set of models.
Adding this guarded formula makes explicit the constraints on the integer values in the
list segment starting in n, which are otherwise implicit in ϕ1

D. If all constraints were
explicit then, the simple syntactic entailment would succeed in proving the entailment.

Based on these remarks, we extend the simple syntactic entailment such that be-
fore applying the syntactic check between two sequence formulas ϕD and ϕ′D presented
above, we apply a saturation procedure to the SLD formula in the left hand side of
the entailment, called saturate. This procedure makes explicit in ϕD all the prop-
erties expressed with guards that appear in ϕ′D. For example, by applying this proce-
dure the formula ρ is added to ϕ1. More precisely, we add to ϕD a trivial formula
∀y. G(y)⇒ true, for every guard in ϕ′D, and then, we call saturate which strength-
ens every guarded formula in ϕD. Roughly, the strengthening of ∀y. G(y)⇒ UG(y)
relies on the following principle: to find a formula U such that G⇒ U is implied by
E ∧ (G1 ⇒U1)∧ . . .∧ (Gk ⇒Uk), one has to find a (negation-free) boolean combina-
tion C[G1, . . . ,Gk] of G1,. . .,Gk such that (E ∧G)⇒ C[G1, . . . ,Gk], and then set U to
C[U1, . . . ,Uk]. This principle is extended to boolean combinations of guards where some
position variables are existentially-quantified (see [5] for more details). Going back to
the example in (ii), we add to ϕ1

D the formula ρ0 := ∀y1,y2. Gn(y1,y2)⇒ true. Then,
following the principle described above, we have that(
len(n) = len(m)∧Gn(y1,y2)

)
⇒∃y′1,y′2.

(
Gm(y

′
1,y
′
2)∧Gm,n(y1,y

′
1)∧Gm,n(y2,y

′
2)
)
,

where Gm and Gm,n are the guards from ϕ1
D given in Fig. 1(d). Therefore, the right part

of the implication in ρ0 can be replaced by
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∃y′1,y′2.
(
dt(n) = dt(m)< m[y′1]< m[y′2]∧m[y′1] = n[y1]∧m[y′2] = n[y2]

)
,

which is equivalent to the right hand side of ρ, dt(n)< n[y1]< n[y2].

Correctness and Precision Results: The next result shows that the saturation proce-
dure returns a formula equivalent to the input one and that, for the fragment SLD≤ of
SLD, saturate computes the strongest guarded formulas which are implied by the in-
put formula. The precision result holds because for the class of ≤-guards, it suffices to
reason only with representatives for the set of tuples of positions satisfying some guard.

Theorem 3. Let ϕ = ∃N. ϕS ∧ ϕD be a disjunction-free SLD formula. Then,
saturate(ϕ) is equivalent to ϕ and saturate(ϕ) #S ϕ. Moreover, for any SLD≤ for-
mula ϕ, saturate(ϕ) = ∃N. ϕS∧ϕ′D such that the following hold:

– the existential constraint of ϕ′D, E ′, is the strongest existential constraint such that
ϕ * (∃N. ϕS∧E ′), and

– for any guard G(y) in ϕD, ϕ′D contains the strongest universal formula of the form
∀y. G(y)⇒U(y) such that ϕ * (∃N. ϕS∧∀y. G(y)⇒U(y)). �

This procedure will be used to define a sound and complete decision procedure for
the satisfiability of SLD≤ and a sound and complete decision procedure for checking
entailments between formulas in a fragment of SLD≤ (see Th. 6 for more details).

5 Syntactic Entailment w.r.t Arbitrary Homomorphisms

Suppose that we want to check the entailment between two SLD formulas ϕ = ∃N. ϕS∧
ϕD and ϕ′ = ∃N′. ϕ′S ∧ ϕ′D and that h is an homomorphism that is a witness for the
fact that ϕS * ϕ′S. If h is not an edge homomorphism then, when proving the entailment
between ϕD and ϕ′D[h], one encounters two difficulties: (1) edges of ϕ′S mapped to nodes
of ϕS (i.e., edges (u,v) such that h(u) = h(v)) and (2) edges of ϕ′S mapped to paths in
ϕS containing at least two edges (i.e., edges (u,v) such that the nodes h(u) and h(v) are
connected by a path of length at least 2).

Procedure split: In the first case, the edges of ϕ′S mapped to nodes of ϕS pose the
following problem: the sequence formula ϕ′D[h] may contain guarded formulas that
describe list segments that don’t have a correspondent in ϕD. For example, let

ϕ3 := ∃n. x(n) ∧ dt(n) = 3 and
ϕ4 := ∃u,v. ls(u,v)∧ x(u)∧ dt(u)≥ 2∧∀y. 0< y< len(u)⇒ u[y]≥ 1

Note that ϕ3 * ϕ4 and that there exists an homomorphism h between the shape formula
of ϕ4 and the shape formula of ϕ3 given by h(u) = h(v) = n. In order to be able to
use the same approach as before (i.e., applying saturate on ϕ3 and then checking
the entailment between guarded formulas with similar guards), we define a procedure
split that transforms the formula ϕ3 such that the homomorphism h becomes injective.
That is, split transforms ϕ3 into:

ϕ3 := ∃n,nn. x(n)∧ls(n,nn)∧dt(n) = 3∧len(n) = 0,

where the new node variable nn is added such that h′(u) = n and h′(v) = nn is an
injective homomorphism. Note that the two formulas ϕ3 and ϕ3 are equivalent. Now, as
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described in the previous section, we can add the trivial formula ∀y. 0< y< len(n)⇒
true to ϕ3 and then apply saturate, which strengthens it into ∀y. 0 < y < len(n)⇒
false because the list segment starting in n is empty. Now, dt(n) = 3⇒ dt(n)≥ 2 and
false⇒ n[y]≥ 1 which is enough to prove that ϕ3 * ϕ4.

If the SL-graph of ϕS and ϕ′S do not contain cycles then split returns a triple
(ϕ,h′,ϕ′). The formula ϕ is obtained by (1) adding to ϕS a new node variable de-
noted nn for every two node variables n and m in ϕ′S such that h(n) = h(m), (2)
placing nn between h(n) and its successor in ϕS (i.e., ls(h(n),x) is replaced by
ls(h(n),nn) ∗ ls(nn,x)) (3) substituting h(n) with nn in the sequence formula ϕD (in
this way, all constraints on h(n) are transferred to the node nn) (4) adding the constraint
that the length of the list segment starting in h(n) is 0. The homomorphism h′ is injec-
tive and it is defined like h except for n and m where h′(n) = h(n) and h′(m) = nn. In
the general case, split(ϕ,h,ϕ′) returns a set of triples (ϕ,h′,ϕ′) with h′ an injective
homomorphism between the shape formula of ϕ′ and the shape formula of ϕ (ϕ is an
over-approximation of ϕ and ϕ′ is an under-approximation of ϕ′). We have that ϕ * ϕ′
iff ϕ * ϕ′, for some triple (ϕ,h,ϕ′) ∈ split(ϕ,h,ϕ′) (see [5] for a complete definition
of split).

Procedure fold: The second case is illustrated on the entailment ϕ5 * ϕ6, where

ϕ5 := ∃n,m, p.
(
ϕ5

S∧ sorted(n)∧ sorted(m)∧ ∀y. 0< y< len(n)⇒ n[y]≤ dt(m)
)

ϕ6 := ∃u,v.
(
ϕ6

S∧ sorted(u)
)

and the graph formulas ϕ5
S and ϕ6

S are given by the SL-graphs S5 and S6 in Fig. 4.

n
x

m p
z

S5 :

u
x

v
z

S6 :

h h

Fig. 4.

The homomorphism h from S6 to S5 defined by h(u) = n
and h(v) = p maps the edge (u,v) to the path (n,m),(m, p).
Intuitively, the entailment ϕ5 * ϕ6 holds because, in any model
of ϕ5, the concatenation between the sequence of integers in
the list segment from n to m and the sequence of integers in the
list segment from m to p is sorted (i.e., it satisfies the property
of the list segment from u to v in ϕ6.)

Let ϕ = ∃N. ϕS∧ϕD and ϕ′ = ∃N′. ϕ′S∧ϕ′D be two SLD for-
mulas and h an homomorphism from ϕ′S to ϕS that maps edges

of ϕ′S to non-empty paths of ϕS. We denote by ϕ′D�h� the sequence formula obtained
from ϕ′D by (1) substituting u by h(u) in all terms except for len(u) and (2) substituting

len(u) by ∑
(n,m)∈

−−−−−→
h(u),h(v)

len(n) with v being the successor of u in ϕ′S and
−−−−−−−→
(h(u),h(v))

the path between h(u) and h(v) in the SL-graph of ϕS. For example, sorted(u)�h� is the
formula:

sorted(n+m) := ∀y1,y2. 0< y1 < y2 < len(n)+len(m)︸ ︷︷ ︸
Gn+m(y1,y2)

⇒ dt(n)≤ n[y1]≤ n[y2].

Remark that the substitution of len(u) by len(n) + len(m) makes the formula
sorted(u)�h� contain properties of concatenations of list segments.

Note that the entailment ϕ * ϕ′ holds if ϕD entails ϕ′D�h�. For example, ϕ5 * ϕ6 holds
because the sequence formula of ϕ5, denoted ϕ5

D, entails sorted(u)�h�.
The difficulty in proving the entailment between ϕ5

D and sorted(n+m) is that ϕ5
D

does not contain a guarded formula having as guard 0< y1 < y2 < len(n)+len(m). In
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the following, we describe a procedure called fold which computes properties of such
concatenations of list segments. In this particular case, we add to ϕ5

D the trivial formula
∀y1,y2. 0 < y1 < y2 < len(n)+ len(m)⇒ true which is strengthened by fold into a
formula equivalent to sorted(n+m).

For every G(y) as above, fold begins by computing a set of auxiliary guards, one
for every way of placing positions that satisfy G(y) on the list segments that are con-
catenated. Then, for every such satisfiable guard G′(y′), it calls the saturation procedure
saturate to compute a guarded formula of the form ∀y′. G′(y′)⇒U ′(y′) implied by
ϕ. Finally, it defines U(y) as the disjunction of all formulas which are in the right hand
side of a guarded formula computed in the previous step (see [5] for more details).

We exemplify the procedure fold on the formula ϕ5
D ∧ ∀y1,y2. 0 < y1 < y2 <

len(n)+ len(m)⇒ true involved in proving the entailment ϕ5 * ϕ6 above. A value
for y1 or y2 that satisfies the constraints in Gn+m(y1,y2), i.e. it is a position between 1
and len(n)+len(m)−1 on the list starting in n, can either correspond to (1) a position
on the sequence associated with the list segment ls(n,m) (when it is less than len(n))
or to (2) the first element of the sequence associated with the list segment ls(m, p)
(when it equals len(n)) or to (3) a position on the tail of the sequence associated with
the list segment ls(m, p) (when it is greater than len(n)). In each case, an auxiliary
guard is computed by adding some constraints to Gn+m(y1,y2) and by substituting the
variables y1 and y2 as follows. If yi is considered to be a position on the tail of some
list segment α then the constraint 0 < yi < len(α) is added to Gn+m(y1,y2) and yi is
substituted by yi +∑ j len(n j), where n j are all the list segments from n to the prede-
cessor of α. Concretely, if yi corresponds to a position on the tail of the list segment
ls(n,m) then 0< yi < len(n) is added to Gn+m(y1,y2) and yi remains unchanged. If yi

corresponds to a position on the tail of the list segment ls(m, p) then 0< yi < len(m)
is added to Gn+m(y1,y2) and yi is substituted by yi + len(n). If yi is considered to be
the first element of the list segment ls(m, p) then it is substituted by the exact value of
this position, i.e. len(n). Below, we consider three cases and give the auxiliary guard
computed in each case:

“y1 is the first element of πm,p”, “y2 is a position on the tail of πm,p”
0< len(n)< y2 +len(n)< len(n)+len(m)∧0< y2 < len(m)

≡ 0< y2 < len(m)

“y1 is a position on the tail of πn,m”, “y2 is a position on the tail of πm,p”
0< y1 < y2 +len(n)< len(n)+len(m)∧0< y1 < len(n)∧0< y2 < len(m)

≡ 0< y1 < len(n)∧0< y2 < len(m)

“y1 is a position on the tail of πm,p”, “y2 is the first element of πm,p”
0< y1 +len(n)< len(n)< len(n)+len(m)∧0< y1 < len(m)

≡ f alse

Notice that the third situation is not possible and it corresponds to an unsatisfiable guard
which will be ignored in the following. The procedure saturate infers from ϕ5

D the
following properties: γ1 := ∀y2. 0< y2 < len(m)⇒ dt(n)≤ dt(m)≤ m[y2] and γ2 :=
∀y1,y2. (0 < y1 < len(n)∧ 0 < y2 < len(m))⇒ dt(n) ≤ dt(n) ≤ n[y1] ≤ m[y2]. The
other possible cases for the placement of the positions denoted by y1 and y2 are handled
in a similar manner.
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The right parts of all the generated guarded formulas are “normalized” such that
they characterize the terms n[y1] and n[y2], where y1 and y2 satisfy the constraints in
Gn+m(y1,y2). For example, in the right part of γ1, dt(m) is substituted by n[y1] (because
y1 was considered to be the first element of the list segment starting in m) and m[y2] is
substituted by n[y2] (because y2 was considered to be a position on the tail of the list
segment starting in m) and in the right part of γ2, n[y1] remains unchanged and m[y2]
is substituted by n[y2]. The procedure fold returns ∀y1,y2. Gn+m(y1,y2)⇒U(y1,y2),
where U(y1,y2) is the disjunction of all the obtained formulas. In this case, U(y1,y2) is
equivalent to dt(n)≤ n[y1]≤ n[y2].

Syntactic Entailment: Given two SLD formulas ψ and ψ′, the syntactic entailment
ψ # ψ′ is defined as follows: for any disjunct ϕ of ψ there exists a disjunct ϕ′ of ψ′
such that ϕ# ϕ′ holds, where the relation # is defined in Fig. 5.

Correctness and Precision Results: The following theorem gives precision and cor-
rectness results for fold. The precision result is implied by the precision of saturate
for SLD≤ formulas.

Theorem 4. Let ϕ = ∃N. ϕS ∧ϕD be a disjunction-free SLD formula. Then, fold(ϕ)
is equivalent to ϕ and fold(ϕ) #S ϕ. Moreover, for any SLD≤ formula ϕ, fold(ϕ) =
∃N. ϕS∧ϕ′D such that for any guard G(y) in ϕD, which describes concatenations of list
segments, ϕ′D contains the strongest universal formula of the form ∀y. G(y)⇒ U(y)
such that ϕ * (∃N. ϕS∧∀y. G(y)⇒U(y)).

The correctness result for fold and saturate implies that# is sound. Next, we identify
entailment problems ψ1 *ψ2, where ψ1 and ψ2 belong to SLD≤, for which the procedure
# is complete. Roughly, we impose restrictions on ψ1 and ψ2 such that a disjunction-free
SLD formula in ψ1 may entail at most one disjunct in ψ2. For example, we require that
ψ2 is unambiguous. An SLD formula ψ is called unambiguous if for any disjunct ϕ of ψ,
the SL-graph of ϕ contains an undirected (inequality) edge between every two nodes.

Theorem 5 (Soundness). Let ψ1 and ψ2 be SLD formulas. If ψ1 # ψ2 then ψ1 * ψ2.

Theorem 6 (Completeness). Let ψ1 and ψ2 be two SLD≤ formulas. If ψ1 is unambigu-
ous, ψ2 is succinct, and for every disjunct ϕ1 of ψ1 there exists at most one disjunct ϕ2

of ψ2 homomorphic to ϕ1 then ψ1 * ψ2 implies saturate(ψ1)# ψ2.

ALGORITHM Syntactic entailment ϕ# ϕ′

Require: ϕ := ∃N. ϕS ∧ϕD, ϕ′ := ∃N′. ϕ′S ∧ϕ′D
1: choose h an homomorphism from ϕ′S to ϕS

2: choose (ϕ,h,ϕ′) in split(ϕ,h,ϕ′)
3: add to ϕ missing guards from ϕ′�h�
4: ϕ1 := fold(ϕ)
5: ϕ2 := saturate(ϕ1)

6: check ϕ2
D #S ϕ′D, where ϕ2

D and ϕ′D is the
sequence formula of ϕ2 and ϕ′, respectively.

Fig. 5

The procedure saturate can
also be used to check satisfiability
of SLD formulas. Notice that an SLD
formula ϕ := ∃N. ϕS∧ϕD is unsatis-
fiable iff either the SL-graph of ϕS

is ⊥ or the sequence formula ϕD

is unsatisfiable. The latter condition
means that the strongest existential
constraint E s.t. ϕ * ∃N. (ϕS ∧E) is
equivalent to false.

Theorem 7. An SLD formula ψ is
unsatisfiable iff for any disjunct ϕ of

ψ either the SL-graph of ϕ is ⊥ or the existential constraint E of saturate(ϕ) is un-
satisfiable.
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We give in [5] an extension of these results to more general SLD formulas that contain
guarded formulas describing concatenations of list segments.

6 Logic SLAD, Extension of SLD with Arrays

The class of programs considered in Section 2 can be extended to manipulate, besides
lists, a fixed set of arrays. We consider that the arrays are not overlapping (e.g., like in
Java), and that they are manipulated by operations like allocation, read/write an element,
and read the length. A configuration of such programs is also represented by a directed
graph and a valuation for the integer program variables. For lack of space, we present
here the main ideas of this extension, a detailed presentation of is provided in [5].

Let AVar be a set of array variables, disjoint from the sets PVar and DVar. Also,
let IVar be the set of integer program variables in DVar used in order to access array
elements. A variable in IVar is called an index variable. The syntax of shape formulas
in SLAD is the one given in Fig. 2 for SLD; only sequence formulas are specifying array
properties. The syntax of sequence formulas in SLAD extends the one given in Fig. 3
by allowing the following new terms and guards:

Position terms: E-terms: U-terms: Guards:
p ::= ... | i e ::= ... | a[p] t ::= ... | a[y] G(y) ::=C∧∧y∈y 0< y< �(y)

i ∈ IVar a,ay ∈ AVar �(y) ::= len(ny) | len(ay)

The definition of the SLAD guards includes constraints on position variables y ∈ y used
with arrays. The same condition for U-terms n[y] is applied to terms a[y]: they appear
in U(y) only if the guard includes the constraint 0< y< len(ay).

The procedure for checking the syntactic entailment ϕ1 # ϕ2 between two
disjunction-free formulas ϕ1,ϕ2 ∈ SLAD translates ϕ1 and ϕ2 into equivalent SLD for-
mulas and then, it applies the syntactic entailment for SLD defined in Fig. 5. Roughly,
the translation procedure applied on an SLAD formula ϕ adds to the shape formula
the list segments corresponding to array variables used in the sequence formula, and
it soundly translates the terms and guards over arrays into terms and guards over lists.
The resulting SLD formula ϕ is equivalent to ϕ and of size polynomial in the size of ϕ.

The fragment SLAD≤ of SLAD is defined similarly to the fragment SLD≤ of SLD (the
only difference is that, for any guarded formula ∀y. G(y)⇒U(y), any occurrence of a
position variable y in U(y) belongs to a term of the form n[y] or a[y]). The following
results are straightforward consequences of Th. 6.

Corollary 1. Let ψ1,ψ2 be two formulas in SLAD. If ψ1 # ψ2 then ψ1 * ψ2. Moreover,
if ψ1,ψ2 are SLAD≤ formulas satisfying the restrictions in Th. 6, then ψ1 * ψ2 implies
saturate(ψ1)# ψ2.

Corollary 2. Checking the semantic entailment ψ1 * ψ2, where ψ1 and ψ2 are two
SLAD≤ formulas satisfying the restrictions in Th. 6, is decidable. Also, checking the
satisfiability of an SLAD≤ formula is decidable. If we consider SLAD≤ formulas with a
fixed number of universal quantifiers s.t. the logic on data is quantifier-free Presburger
arithmetics then the two problems are NP-complete.
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7 Experimental Results

We have implemented in CELIA [6] the algorithm# and the postcondition operator for
SLAD, and we have applied the tool to the verification of a significant set of programs
manipulating lists and arrays. These programs need invariants and pre/post conditions
beyond the decidable fragment SLAD≤. For example, we have verified a C library im-
plementing sets of integers using strictly sorted lists (procedures/clients of the library
are named setlist-* in Tab. 1). The guarded formulas used by the specifications of this
library need guards of the form y2 = y1 + 1 or y1 < y2 which are not ≤-guards. The
verification of the clients is done in a modular way by applying an extension for SLAD
of the frame rule from Separation logic.

The verification tool extends the implementation of the abstract domain of uni-
versal formulas defined in [6] to which we have added the procedures saturate,
split, fold, and the computation of SL-graph homomorphism. The decision pro-
cedures # and saturate are also available in an independent tool SLAD whose in-
put are formulas in the SMTLIB2 format. Table 1 provides the characteristics and
the experimental results obtained (on a Pentium 4 Xeon at 4 GHz) for an illustra-
tive sample of the verified programs. The full list of verified programs is available at
www.liafa.jussieu.fr/celia/verif/.

Table 1. Experimental results. Size of formulas n∨× m∀means n disjuncts (i.e., shape formulas)
with at most m guarded formulas per disjunct. copyAddV creates a list from an input list with
all data increased by some data parameter. initSeq initializes data in a list with consecutive
values starting from some data parameter. initFibo initializes data in a list with the Fibonacci
sequence. setlist-* are procedures/clients of a library implementing sets as strictly sorted lists.
svcomp-list-prop is an example from the SV-COMP competition. array2list creates a list
from an array.

Program pre-cond inv post(inv) post-cond Verif.
size logic size logic size logic size logic time

copyaddV 1∨× 0∀ SLD≤ 3∨× 1∀ SLD≤ 2∨× 1∀ SLD≤ 1∨× 1∀ SLD≤ < 1s

initSeq 1∨× 0∀ SLD≤ 3∨× 1∀ SLD 2∨× 1∀ SLD 1∨× 1∀ SLD < 1s

initFibo 1∨× 0∀ SLD≤ 3∨× 2∀ SLD 4∨× 2∀ SLD 1∨× 1∀ SLD≤ < 1s

setlist-contains 1∨× 2∀ SLD 3∨× 4∀ SLD 4∨× 4∀ SLD 2∨× 3∀ SLD < 1s

setlist-add 1∨× 2∀ SLD 3∨× 7∀ SLD 4∨× 7∀ SLD 1∨× 1∀ SLD < 1s

setlist-union 1∨× 4∀ SLD 4∨× 13∀ SLD 5∨× 13∀ SLD 1∨× 6∀ SLD < 2s

setlist-intersect 1∨× 4∀ SLD 3∨× 13∀ SLD 4∨× 13∀ SLD 1∨× 6∀ SLD < 2s

setlist-client 0∨× 0∀ SLD 2∨× 2∀ SLD 3∨× 2∀ SLD 1∨× 2∀ SLD < 1s

svcomp-list-prop 1∨× 0∀ SLD≤ 3∨× 2∀ SLD 4∨× 2∀ SLD 1∨× 1∀ SLD < 1s

array2list 1∨× 0∀ SLAD≤ 2∨× 1∀ SLAD≤ 2∨× 1∀ SLAD≤ 1∨× 1∀ SLAD≤ < 1s

array-insertsort 1∨× 4∀ SLAD≤ 3∨× 5∀ SLAD≤ 2∨× 5∀ SLAD≤ 1∨× 4∀ SLAD≤ < 3s

8 Related Work and Conclusions

Various frameworks have been developed for the verification of programs based on
logics for reasoning about data structures, e.g., [1,4,6,7,8,9,12,13,14,15,16,17,18].
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Decidable Logics for Unbounded Data Domains: Several works have addressed the
issue of reasoning about programs manipulating data structures with unbounded data,
e.g. [4,8,13,14,15,19]. The logics in [8,13] allow to reason about arrays and they are
fragments of SLAD (see [5]). The fragment SLAD≤, for which the satisfiability problem
is decidable, includes the Array Property Fragment [8] when defined over finite arrays
but, it is incomparable to the logic LIA [13].

The logics in [4,14] to reason about composite data structures are more expressive
concerning the shape constraints but they are less expressive than SLAD when restricted
to heaps formed of singly-linked lists and arrays. The restriction of LISBQ [14] to
this class of heaps is included in SLAD≤ but, the similar restriction of CSL [4] is not
included in SLAD≤; the latter does not permit guards that contain strict inequalities. The
decidable fragment of STRAND [15] can describe other recursive data structures than
lists but, its restriction to lists is incomparable to SLD: it does not include properties on
data expressed using the immediate successor relation between nodes in the lists.

Sound Decision Procedures: Decision procedures which are sound but, in general,
not complete, have been proposed in [11,16,10,18]. The work in [18] targets functional
programs and it is not appropriate for imperative programs that mutate the heap.

The framework in [16] considers recursive programs on trees and it defines a sound
decision procedure for proving Hoare triples. The validity of the Hoare triple is reduced
through some abstraction mechanism to the validity of a formula in a decidable logic. In
this paper, we describe a sound procedure for checking entailments between formulas
in SLAD, which is independent of the fact that these entailments are obtained from some
Hoare triples. Moreover, SLAD is incomparable to the logic used in [16].

Current state of the art SMT solvers do not include a theory for lists having the
same expressiveness as SLD. For arrays, most of the SMT solvers deal with formulas in
the Array Property Fragment [8]. However, they may prove entailments between array
properties in SLAD but not in SLAD≤ by using heuristics for quantifier instantiation, see
e.g. Z3 [11,10]. Our entailment procedure, which is based on the saturation procedure
saturate, is more powerful because it is independent of the type of constraints that
appear in the right hand side of the guarded formulas. The heuristics used in Z3 work
well when the entailment can be proved using some boolean abstraction of the formulas
or when the right hand side of the guarded formulas contains only equalities.

In our previous work [6,7], we introduced a logic on lists called SL3, which is in-
cluded in SLAD. In SL3, data properties are also described by universal implications
∀y. G(y)⇒U(y) but the guard G(y) is not as expressive as in SLAD. Any two node
variables in an SL3 formula denote distinct vertices in the heap. This can lead to an
exponential blow-up for the size of the formulas which implies a blow-up in the com-
plexity of the decision procedure. Checking an entailment between SL3 formulas is
reduced to the abstract analysis of a program that traverses the allocated lists and thus,
it is impossible to characterize its preciseness using completeness results.

Conclusions: We have defined an approach for checking entailment and satisfiability
of formulas on lists and arrays with data. Our approach deals with complex assertions
that are beyond the reach of existing techniques and decision procedures. Although
we have considered only programs with singly-linked lists and arrays, our techniques
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can be extended to other classes of data structures (doubly-linked lists, trees) using
appropriate embeddings of heap graphs into finite abstract graphs.
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Abstract. Many programs operate on data structures whose models are
sequences, such as arrays, lists, and queues. When specifying and verifying func-
tional properties of such programs, it is convenient to use an assertion language
and a reasoning engine that incorporate sequences natively. This paper presents
qfis, a program verifier geared to sequence-manipulating programs. qfis is a
command-line tool that inputs annotated programs, generates the verification con-
ditions that establish their correctness, tries to discharge them by calls to the SMT-
solver CVC3, and reports the outcome back to the user. qfis can be used directly
or as a back-end of more complex programming languages.

1 Overview

Many programs use data structures whose functional properties are expressible in terms
of sequences of values from a certain domain. For example, lists, queues, and stacks are
all modeled by sequences accessed according to specific patterns. To specify and reason
about such programs, it is convenient to use first-order languages that support sequences
natively, and that are amenable to automated reasoning.

In previous work [2], we introduced a first-order theory of integer sequences Tseq(Z)

whose quantifier-free fragment is decidable. Tseq(Z) also includes Presburger arithmetic
on sequence elements, and it is sufficiently expressive to specify several functional
properties of sequence-manipulating programs. The present paper describes qfis, an
automated verifier for programs annotated with Tseq(Z) formulas. qfis inputs programs
written in a simple imperative Algol-like procedural language, supporting integers and
sequences as primitive types. Each routine may include a functional specification in the
form of pre- and postcondition, written in a logic language including native functions
and predicates on sequences—such as the concatenation and length functions.

The overall usage of qfis is similar to that of general-purpose program verifiers such
as Dafny [3] or Why [4]. First, the user writes the program as a collection of routines
with pre- and postconditions. Whenever useful, she also provides a collection of logic
axioms (also expressed in the theory of integer sequences Tseq(Z)) that define the se-
mantics of predicates mentioned in the specification. For example, when proving the
correctness of a sorting algorithm, it is customary to introduce a predicate sorted?(X)
with the expected meaning. When called on the input file, qfis generates the verification
conditions (VC): a set of first-order formulas whose validity entails the correctness of
the program with respect to its specification. qfis encodes the VC in the input language

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 183–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of the SMT-solver CVC3 [1], and calls the solver to discharge the VC. Then, qfis fil-
ters back CVC3’s output and reports the outcome to the user. In case of unsuccessful
verification, qfis points to specific annotations in the input program that could not be
verified. Figure 1 shows a screenshot of qfis, with the input program displayed in the
editor on the left, and the verifier’s output in the shell on the right.

qfis is written in Eiffel, distributed under GPL, and available for download at:

http://se.inf.ethz.ch/people/furia/software/qfis.html

The download page includes pre-compiled binaries for Linux; the source code for com-
pilation; a user manual with installation instructions and a tutorial examples; a demo
video; a collection of annotated example programs; and a syntax-highlighting GTK
source-view specification of its input language (used in Figure 1).

Fig. 1. qfis verifying routine tail

2 Using qfis

qfis’s input language features sequences as a primitive type; unlike other verifiers that
also support sequence types (e.g. Dafny [3]), qfis’s sequences are usable in both speci-
fication and imperative constructs.

2.1 Input Language

qfis inputs text files containing a collection of routines (functions and procedures) and
declarations of global variables (accessible from any routine), predicates (usable in an-
notations), and axioms (defining the semantics of user-defined predicates). For example:

1 routine tail (A: SEQUENCE): (B: SEQUENCE)
2 require |A| > 0
3 do B := A+2:0,
4 ensure
5 len: |B| = |A| − 1
6 snd: B[1] = A[2]
7 end

is a partially-specified function tail that returns the input sequence without the first
element (line 3, i.e., from the second element to the last one). tail’s precondition (line 2)
requires that the input sequence A has positive length; the postcondition has two clauses

http://se.inf.ethz.ch/people/furia/software/qfis.html
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(lines 5 and 6) that assert that the returned sequence B has one less element than A, and
that B’s first element equals A’s second element.

qfis annotations include axioms, pre- and postconditions (require, ensure), inter-
mediate assertions (assert, assume), loop invariants (invariant), and frame clauses
(modify) to specify the effect of routines on global variables. The assertions themselves
share the same language of Boolean expressions also usable in imperative statements.
It is very similar to the quantifier-free fragment of the theory Tseq(Z) with some re-
strictions (for performance in the current implementation) but also some additions. In
particular, it includes element (A[3]) and range (A+2:5,) selection, sequence length
(|A|), concatenation (A ◦B) and sequence equality (A

.
=B), as well as full integer arith-

metic among sequence elements and lengths. Postconditions may also include the old
keyword to refer to the values of global variables before invocation of the current rou-
tine. Axioms may also include arbitrary quantifiers (forall, exist) to define predicate
semantics. To simplify typing and declarations, qfis assumes different identifier styles
according to the type: integer identifiers start with lowercase letters, sequence identifiers
with uppercase letters, Boolean and predicate identifiers end with “?”, and assertion la-
bels start with an underscore.

2.2 Verification Condition Generation

Given a collection of annotated input routines, qfis generates verification conditions
by weakest precondition calculation (performed by visiting the AST of the input). The
backward propagated assertions hold references to their source line numbers in the input
program; this information is used when some VC cannot be discharged, to trace back
the error to the location in the source. For example, the backward substitution of tail’s
postcondition clause len determines the VC |A| >0 =⇒|A+2:0,| = |A| − 1, which
can be proven valid.

Similarly to other program provers, qfis performs modular reasoning: the semantics
of a call to some routine foo within another routine is entirely determined by foo’s
precondition P , postcondition Q, and frame F : check that P holds before the call
(assert P); nondeterministically assign values to variables in foo’s frame (and argu-
ments) havoc F; constrain the nondeterministic assignment to satisfy Q (assume Q).

2.3 SMT Encoding

qfis does not implement the decision procedure for the quantifier-free fragment of
Tseq(Z) presented in [2], but it directly encodes the VC in the input language of the
SMT-solver CVC3. This design choice provides overall more flexibility and a more ro-
bust implementation, relying on a carefully engineered tool such as CVC3. The input
language is deliberately relaxed to include undecidable components (full-fledged inte-
ger arithmetic and unrestricted quantifiers in axioms), but this is not much of a problem
in practice thanks to the powerful instantiation heuristics provided by SMT-solvers—as
long as the departure from the basic decidable kernel is reasonably restricted.

The translation of VC to CVC3 uses a list DATATYPE definition to encode se-
quences. A set of standard axioms provides an axiomatization of the concatenation
function cat applied on lists; for example, an axiom asserts that nil is the neutral element
of the concatenation function cat with formulas such as cat (x, nil ) = x.



186 C.A. Furia

The CVC3 encoding of expressions involving element selection and subranges uses
unrolled definitions that are handled efficiently by the reasoning engine.

3 Examples

Table 1 lists 11 programs verified using qfis with CVC3 2.2 as back-end, running on a
GNU/Linux Ubuntu box (kernel 2.6.32) with an Intel Quad-Core2 CPU at 2.40 GhZ
with 4 GB of RAM. For each program, the table shows the number of routines in
the input file (# R), the number of user-defined predicates and specification functions
(# P), of user-written axioms (# A), the total lines of the input (# L), and the real time
(in seconds) taken by verification, including both the VC generation and the call to
CVC3. All the programs are included in the qfis distribution.

The most complex program is the second version of merge sort, which required an
increase of the standard timeout of 10 seconds (per VC, before the SMT solver gives up
proving validity). tail is the very simple program of Section 2.1, and it is also the only
program where verification fails (as shown in Figure 1); qfis reports that it cannot verify
the postcondition clause snd: B[1] = A[2]: in fact, if A has only one element (which is
possible, because the precondition only requires that it is not empty), A[2] is undefined.

Table 1. Programs verified with qfis

PROGRAM # R # P # A # L TIME [S]
binary search 2 3 11 87 3.1
linear search 1 3 5 41 2.3

linked list 15 4 6 208 15.6
merge sort (v. 1) 1 1 4 49 12.3
merge sort (v. 2) 2 1 4 67 31.0

quick sort 2 3 11 87 6.8
reversal 1 1 2 24 4.0

stack reversal 1 2 4 37 5.5
sum & max (v. 1) 3 2 8 83 6.8
sum & max (v. 2) 1 2 9 52 3.8

tail 1 0 0 11 2.2
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Abstract. We present Counterexample-Guided Accelerated Abstraction Refine-
ment (CEGAAR), a new algorithm for verifying infinite-state transition systems.
CEGAAR combines interpolation-based predicate discovery in counterexample-
guided predicate abstraction with acceleration technique for computing the tran-
sitive closure of loops. CEGAAR applies acceleration to dynamically discovered
looping patterns in the unfolding of the transition system, and combines over-
approximation with underapproximation. It constructs inductive invariants that
rule out an infinite family of spurious counterexamples, alleviating the prob-
lem of divergence in predicate abstraction without losing its adaptive nature.
We present theoretical and experimental justification for the effectiveness of
CEGAAR, showing that inductive interpolants can be computed from classical
Craig interpolants and transitive closures of loops. We present an implementation
of CEGAAR that verifies integer transition systems. We show that the result-
ing implementation robustly handles a number of difficult transition systems that
cannot be handled using interpolation-based predicate abstraction or acceleration
alone.

1 Introduction

This paper contributes to the fundamental problem of precise reachability analysis for
infinite-state systems. Predicate abstraction using interpolation has emerged as an effec-
tive technique in this domain. The underlying idea is to verify a program by reasoning
about its abstraction that is easier to analyse, and is defined with respect to a set of
predicates [17]. The set of predicates is refined to achieve the precision needed to prove
the absence or the presence of errors. A key difficulty in this approach is to automat-
ically find predicates to make the abstraction sufficiently precise [2]. A breakthrough
technique is to generate predicates based on Craig interpolants [13] derived from the
proof of unfeasibility of a spurious trace [19].

While empirically successful on a variety of domains, abstraction refinement us-
ing interpolants suffers from the unpredictability of interpolants computed by provers,
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which can cause the verification process to diverge and never discover a sufficient set
of predicates (even in case such predicates exist). The failure of such a refinement ap-
proach manifests in a sequence of predicates that rule out longer and longer counterex-
amples, but still fail to discover inductive invariants.

Following another direction, researchers have been making continuous progress on
techniques for computing the transitive closure of useful classes of relations on inte-
gers [7, 10, 14]. These acceleration techniques can compute closed form representation
of certain classes of loops using Presburger arithmetic.

A key contribution of this paper is an algorithmic solution to apply these specialized
analyses for particular classes of loops to rule out an infinite family of counterexamples
during predicate abstraction refinement. An essential ingredient of this approach are
interpolants that not only rule out one path, but are also inductive with respect to loops
along this path. We observe that we can start from any interpolant for a path that goes
through a loop in the control-flow graph, and apply a postcondition (or, equivalently a
weakest precondition) with respect to the transitive closure of the loop (computed using
acceleration) to generalize the interpolant and make it inductive. Unlike previous the-
oretical proposals [12], our method treats interpolant generation and transitive closure
computation as black boxes: we can start from any interpolants and strengthen it using
any loop acceleration. We call the resulting technique Counterexample-Guided Accel-
erated Abstraction Refinement, or CEGAAR for short. Our experience indicates that
CEGAAR works well in practice.

Motivating Example. To illustrate the power of the technique that we propose, con-
sider the example in Figure 1. The example is smaller than the examples we consider
in our evaluation (Section 6), but already illustrates the difficulty of applying existing
methods.

Note that the innermost loop requires a very expressive logic to describe its closed
form, so that standard techniques for computing exact transitive closure of loops do not
apply. In particular, the acceleration technique does not apply to the innermost loop,
and the presence of the innermost loop prevents the application of acceleration to the
outer loop. On the other hand, predicate abstraction with interpolation refinement also
fails to solve this example. Namely, it enters a very long refinement loop, considering

int x,y;
x = 1000; y = 0;
while(x > 0){

x−−;
while(*) {

y = 2*(x + y);
}
y = y + 2;

}
assert(y != 47 && x == 0);

0

1 2

e

x′ = 1000∧ y′ = 0

x> 0∧ x′ = x−1

y′ = y+2

¬(x> 0)∧¬(y 	= 47∧ x = 0)

y′=2(x+y)∧ x′=x

(a) (b)

Fig. 1. Example Program and its Control Flow Graph with Large Block Encoding
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increasingly longer spurious paths with CFG node sequences of the form 0(12)i1e, for
0 ≤ i < 1000. The crux of the problem is that the refinement eliminates each of these
paths one by one, constructing too specific interpolants.

Our combined CEGAAR approach succeeds in proving the assertion of this program
by deriving the loop invariant y%2 == 0∧ x ≥ 0. Namely, once predicate abstraction
considers a path where the CFG node 1 repeats (such as 0121e), it applies acceleration
to this path. CEGAAR then uses the accelerated path to construct an inductive inter-
polant, which eliminates an infinite family of spurious paths. This provides predicate
abstraction with a crucial predicate y%2 = 0, which enables further progress, leading
to the discovery of the predicate x ≥ 0. Together, these predicates allow predicate ab-
straction to construct the invariant that proves program safety. Note that this particular
example focuses on proving the absence of errors, but our experience suggests that CE-
GAAR can, in many cases, find long counterexamples faster than standard predicate
abstraction.

Related Work. Predicate abstraction has proved is a rich and fruitful direction in auto-
mated verification of detailed properties of infinite-state systems [17, 19]. The pioneer-
ing work in [3] is, to the best of our knowledge, the first to propose a solution to the
divergence problem in predicate abstraction. More recently, sufficient conditions to en-
force convergence of refinement in predicate abstraction are given in [2], but it remains
difficult to enforce them in practice. A promising direction for ensuring completeness
with respect to a language of invariants is parameterizing the syntactic complexity of
predicates discovered by an interpolating split prover [21]. Because it has the flavor of
invariant enumeration, the feasibility of this approach in practice remains to be further
understood.

To alleviate relatively weak guarantees of refinement in predicate abstraction in prac-
tice, researchers introduced path invariants [5] that rule out a family of counterexam-
ples at once using constraint-based analysis. Our CEGAAR approach is similar in the
spirit, but uses acceleration [7, 10, 14] instead of constraint-based analysis, and there-
fore has complementary strengths. Acceleration naturally generates precise disjunctive
invariants, needed in many practical examples, while constraint-based invariant gen-
eration [5] resorts to an ad-hoc unfolding of the path program to generate disjunctive
invariants. Acceleration can also infer expressive predicates, in particular modulo con-
straints, which are relevant for purposes such as proving memory address alignment.

The idea of generalizing spurious error traces was introduced also in [18], by extend-
ing an infeasible trace, labeled with interpolants, into a finite interpolant automaton. The
method of [18] exploits the fact that some interpolants obtained from the infeasibility
proof happen to be inductive w.r.t. loops in the program. In our case, given a spuri-
ous trace that iterates through a program loop, we compute the needed inductive inter-
polants, combining interpolation with acceleration. The method that is probably closest
to CEGAAR is proposed in [12]. In this work the authors define inductive interpolants
and prove the existence of effectivelly computable inductive interpolants for a class of
affine loops, called poly-bounded. The approach is, however, limited to programs with
one poly-bounded affine loop, for which initial and error states are specified. We only
consider loops that are more restricted than the poly-bounded ones, namely loops for
which transitive closures are Presburger definable. On the other hand, our method is
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more general in that it does not restrict the number of loops occurring in the path pro-
gram, and benefits from regarding both interpolation and transitive closure computation
as black boxes. The ability to compute closed forms of certain loops is also exploited
in algebraic approaches [6]. These approaches can also naturally be generalized to per-
form useful over-approximation [1] and under-approximation.

2 Preliminaries

Let x = {x1, . . . ,xn} be a set of variables ranging over integer numbers, and x′ be the
set {x′1, . . . ,x′n}. A predicate is a first-order arithmetic formula P. By FV (P) we de-
note the set of free variables in P, i.e. variables not bound by a quantifier. By writ-
ing P(x) we intend that FV (P) ⊆ x. We write ⊥ and � for the boolean constants
false and true. A linear term t over a set of variables in x is a linear combination
of the form a0 +∑n

i=1 aixi, where a0,a1, . . . ,an ∈ Z. An atomic proposition is a pred-
icate of the form t ≤ 0, where t is a linear term. Presburger arithmetic is the first-
order logic over propositions t ≤ 0; Presburger arithmetic has quantifier elimination
and is decidable.For simplicity we consider only formulas in Presburger arithmetic
in this paper. A valuation of x is a function ν : x−→Z. If ν is a valuation of x, we
denote by ν |= P the fact that the formula obtained by replacing each occurrence
of xi with ν(xi) is valid. Similarly, an arithmetic formula R(x,x′) defining a relation
R ⊆ Zn×Zn is evaluated referring to two valuations ν1,ν2; the satisfaction relation is
denoted ν1,ν2 |= R. The composition of two relations R1,R2 ∈ Zn×Zn is denoted by
R1 ◦R2 = {(u,v) ∈ Zn×Zn | ∃t ∈ Zn . (u, t) ∈ R1 and (t,v) ∈ R2}. Let ε be the iden-
tity relation {(u,u) | u ∈ Zn×Zn}. We define R0 = ε and Ri = Ri−1 ◦R, for any i > 0.
With these notations, R+ =

⋃∞
i=1 Ri denotes the transitive closure of R, and R∗ = R+∪ε

denotes the reflexive and transitive closure of R. We sometimes use the same symbols
to denote a relation and its defining formula. For a set of n-tuples S ⊆ Zn and a rela-
tion R ⊆ Zn×Zn, let post(S,R) = {v ∈ Zn | ∃u ∈ S . (u,v) ∈ R} denote the strongest
postcondition of S via R, and wpre(S,R) = {u ∈ Zn | ∀v . (u,v) ∈ R→ v ∈ S} denote
the weakest precondition of S with respect to R. We use post and wpre for sets and
relations, as well as for logical formulae defining them.

We represent programs as control flow graphs. A control flow graph (CFG) is a tuple
G = 〈x,Q,−→, I,E〉 where x = {x1, . . . ,xn} is a set of variables, Q is a set of control

states, −→ is a set of edges of the form q
R−→q′, labeled with arithmetic formulae defining

relations R(x,x′), and I,E ⊆Q are sets of initial and error states, respectively. A path in
G is a sequence θ : q1

R1−→q2
R2−→q3 . . .qn−1

Rn−1−−−→qn, where q1,q2, . . . ,qn ∈Q and qi
Ri−→qi+1

is an edge in G, for each i = 1, . . . ,n− 1. We assume without loss of generality that all
variables in x∪ x′ appear free in each relation labeling an edge of G1. We denote the
relation R1 ◦R2 ◦ . . . ◦Rn−1 by ρ(θ) and assume that the set of free variables of ρ(θ)
is x∪ x′. The path θ is said to be a cycle if q1 = qn, and a trace if q1 ∈ I. The path θ
is said to be feasible if and only if there exist valuations ν1, . . . ,νn : x→ Z such that
νi,νi+1 |= Ri, for all i = 1, . . . ,n− 1. A control state is said to be reachable in G if it
occurs on a feasible trace.

1 For variables that are not modified by a transition, this can be achieved by introducing an
explicit update x′ = x.
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Acceleration. The goal of acceleration is, given a relation R in a fragment of integer
arithmetic, to compute its reflexive and transitive closure, R∗. In general, defining R∗

in a decidable fragment of integer arithmetic is not possible, even when R is definable
in a decidable fragment such as, e.g. Presburger arithmetic. In this work we consider
two fragments of arithmetic in which transitive closures of relations are Presburger
definable.

An octagonal relation is a relation defined by a constraint of the form ±x± y ≤ c,
where x and y range over the set x∪x′, and c is an integer constant. The transitive closure
of an octagonal relation has been shown to be Presburger definable and effectively com-
putable [10]. A linear affine relation is a relation of the form R (x,x′)≡Cx≥ d ∧ x′ =
Ax+b, where A ∈ Zn×n, C ∈ Zp×n are matrices and b ∈ Zn, d ∈ Zp. R is said to have
the finite monoid property if and only if the set {Ai | i≥ 0} is finite. It is known that the
finite monoid condition is decidable [7], and moreover that the transitive closure of a
finite monoid affine relation is Presburger definable and effectively computable [7, 14].

Predicate Abstraction. Informally, predicate abstraction computes an overapproxi-
mation of the transition system generated by a program and verifies whether an error
state is reachable in the abstract system. If no error occurs in the abstract system, the
algorithm reports that the original system is safe. Otherwise, if a path to an error state
(counterexample) has been found in the abstract system, the corresponding concrete
path is checked. If this latter path corresponds to a real execution of the system, then a
real error has been found. Otherwise, the abstraction is refined in order to exclude the
counterexample, and the procedure continues.

Given a CFG G = 〈x,Q,−→, I,E〉, and a (possibly infinite) set of predicates P , an
abstract reachability tree (ART) for G is a tuple T = 〈S,π,r,e〉 where S ⊆ Q× 2P\{⊥}

is a set of nodes (notice that for no node 〈q,Φ〉 in T we may have ⊥ ∈Φ), π : Q→ 2P

is a mapping associating control states with sets of predicates, i ∈ I×{�} is the root
node, e⊆ S× S is a tree-structured edge relation:

– all nodes in S are reachable from the root r
– for all n,m, p ∈ S, e(n, p)∧ e(m, p)⇒ n = m

– e(〈q1,Φ1〉,〈q2,Φ2〉) ⇒ q1
R−→q2 and Φ2 = {P ∈ π(q2) | post(

∧
Φ1,R)→ P}

We say that an ART node 〈q1,Φ1〉 is subsumed by another node 〈q2,Φ2〉 if and only if
q1 = q2 and

∧
Φ1→

∧
Φ2. It is usually considered that no node in an ART is subsumed

by another node, from the same ART.
It can be easily checked that each path σ : r = 〈q1,Φ1〉,〈q2,Φ2〉, . . . ,〈qk,Φk〉, starting

from the root in T , can be mapped into a trace θ : q1
R1−→q2 . . .qk−1

Rk−1−−−→qk of G, such
that post(�,ρ(θ))→∧

Φk. We say that θ is a concretization of σ, or that σ concretizes
to θ. A path in an ART is said to be spurious if none of its concretizations is feasible.

3 Interpolation-Based Abstraction Refinement

By refinement we understand the process of enriching the predicate mapping π of an
ART T = 〈S,π,r,e〉 with new predicates. The goal of refinement is to prevent spurious
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counterexamples (paths to an error state) from appearing in the ART. To this end, an
effective technique used in many predicate abstraction tools is that of interpolation.

Given an unsatisfiable conjunction A∧B, an interpolant I is a formula using the com-
mon variables of A and B, such that A→ I is valid and I∧B is unsatisfiable. Intuitively,
I is the explanation behind the unsatisfiability of A∧B. Below we introduce a slightly
more general definition of a trace interpolant.

Definition 1 ( [21]). Let G = 〈x,Q,−→, I,E〉 be a CFG and

θ : q1
R1−→q2

R2−→q3 . . .qn−1
Rn−1−−−→qn

be an infeasible trace of G. An interpolant for θ is a sequence of predicates 〈I1, I2, . . . , In〉
with free variables in x, such that: I1 = �, In = ⊥, and for all i = 1, . . . ,n − 1,
post(Ii,Ri)→ Ii+1.

Interpolants exist for many theories, including all theories with quantifier elimination,
and thus for Presburger arithmetic. Moreover, a trace is infeasible if and only if it has an
interpolant. Including any interpolant of an infeasible trace into the predicate mapping
of an ART suffices to eliminate any abstraction of the trace from the ART. We can thus
refine the ART and exclude an infeasible trace by including the interpolant that proves
the infeasibility of the trace.

Note that the refinement technique using Definition 1 only guarantees that one spu-
rious counterexample is eliminated from the ART with each refinement step. This fact
hinders the efficiency of predicate abstraction tools, which must rely on the ability of
theorem provers to produce interpolants that are general enough to eliminate more than
one spurious counterexample at the time. The following is a stronger notion of an inter-
polant, which ensures generality with respect to an infinite family of counterexamples.

Definition 2 ( [12], Def. 2.4). Given a CFG G, a trace scheme in G is a sequence:

ξ : q0
Q1−→

L1
�
q1

Q2−→ . . . Qn−1−−−→
Ln−1
�

qn−1
Qn−→

Ln
�
qn

Qn+1−−−→qn+1 (1)

where q0 ∈ I and:

– Qi = ρ(θi), for some non-cyclic paths θi of G, from qi−1 to qi

– Li =
∨ki

j=1 ρ(λi j), for some cycles λi j of G, from qi to qi

Intuitivelly, a trace scheme represents an infinite regular set of traces in G. The trace
scheme is said to be feasible if and only if at least one trace of G of the form
θ1;λ1i1 . . .λ1i j1

;θ2; . . . ;θn;λnin . . .λni jn
;θn+1 is feasible.

The trace scheme is said to be bounded if ki = 1, for all i = 1,2, . . . ,n. A bounded2

trace scheme is a regular language of traces, of the form σ1 ·λ∗1 · . . . ·σn ·λ∗n ·σn+1, where
σi are acyclic paths, and λi are cycles of G.

Definition 3 ( [12], Def. 2.5). Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infea-
sible trace scheme of the form (1). An interpolant for ξ is a sequence of predicates
〈I0, I1, I2, . . . , In, In+1〉, with free variables in x, such that:

2 This term is used in analogy with the notion of bounded languages [16].
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1. I0 =� and In+1 =⊥
2. post(Ii,Qi+1)→ Ii+1, for all i = 0,1, . . . ,n
3. post(Ii,Li)→ Ii, for all i = 1,2, . . . ,n

The main difference with Definition 1 is the third requirement, namely that each inter-
polant predicate (except for the first and the last one) must be inductive with respect to
the corresponding loop relation. It is easy to see that each of the two sequences:

〈�, post(�,Q1 ◦L∗1), . . . , post(�,Q1 ◦L∗1 ◦Q2 ◦ . . .Qn ◦L∗n)〉 (2)

〈wpre(⊥,Q1 ◦L∗1 ◦Q2 ◦ . . .Qn ◦L∗n), . . . , wpre(⊥,Qn ◦L∗n), ⊥〉 (3)

are interpolants for ξ, provided that ξ is infeasible (Lemma 2.6 in [12]). Just as for
finite trace interpolants, the existence of an inductive interpolant suffices to prove the
infeasibility of the entire trace scheme.

Lemma 4. Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infeasible trace scheme of G
of the form (1). If T = 〈S,π,r,e〉 is an ART for G, such that there exists an interpolant
〈Ii ∈ π(qi)〉n+1

i=0 for ξ, then no path in T concretizes to a trace in ξ.

4 Counterexample-Guided Accelerated Abstraction Refinement

This section presents the CEGAAR algorithm for predicate abstraction with interpolant-
based accelerated abstraction refinement. Since computing the interpolant of a trace
scheme is typically more expensive than computing the interpolant of a finite coun-
terexample, we apply acceleration in a demand-driven fashion. The main idea of the
algorithm is to accelerate only those counterexamples in which some cycle repeats a
certain number of times. For example, if the abstract state exploration has already ruled
out the spurious counterexamples σ · τ, σ · λ · τ and σ · λ · λ · τ, when it sees next the
spurious counterexample σ ·λ ·λ ·λ · τ, it will accelerate it into σ ·λ∗ · τ, and rule out all
traces which comply to this scheme. The maximum number of cycles that are allowed
to occur in the acyclic part of an error trace, before computing the transitive closure, is
called the delay, and is a parameter of the algorithm (here the delay was 2). A smaller
delay results in a more aggressive acceleration strategy, whereas setting the delay to
infinity is equivalent to performing predicate abstraction without acceleration.

The main procedure is CONSTRUCTART which builds an ART for a given CFG,
and an abstraction of the set of initial values (Fig. 2). CONSTRUCTART is a worklist
algorithm that expands the ART according to a certain exploration strategy (depth-first,
breadth-first, etc.) determined by the type of the structure used as a worklist. We assume
without loss of generality that the CFG has exactly one initial vertex Init. The CON-
STRUCTART procedure starts with Init and expands the tree according to the definition
of the ART (lines 11 and 12). New ART nodes are constructed using NEWARTNODE,
which receives a CFG state and a set of predicates as arguments. The algorithm back-
tracks from expanding the ART when either the current node contains ⊥ in its set of
predicates, or it is subsumed by another node in the ART (line 13). In the algorithm
(Fig. 2), we denote logical entailment by φ * ψ in order to avoid confusion.
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1 input CFG G = 〈x,Q,−→,{Init},E〉
2 output ART T = 〈S,π,Root,e〉
3 WorkList = [], S,π,e = /0, Root = nil
4 def ConstructART(Init, initialAbstraction) {
5 node = newARTnode(Init, initialAbstraction)
6 if (Root = nil) Root = node
7 WorkList.add(〈Init,node〉)
8 while (!(WorkList.empty)) {
9 〈nextCFGvertex,nextARTnode〉= WorkList.remove()

10 for (child = children(nextCFGVertex)) {
11 Let R be such that nextCFGvertex

R−→child in G
12 Φ = {p ∈ π(child) | POST(

∧
nextART node.abstraction,R) * p}

13 if (⊥∈Φ or
(
∃ an ART node〈child,Ψ〉 . ∧Φ * Ψ

)
)

14 continue
15 node = newART node(child,Φ)
16 S = S∪{node}
17 e = e∪{(nextART node,node)}
18 if (child ∈ Eand checkRefineError(node))
19 report ‘‘ERROR’’
20 WorkList.add(〈child,node〉)
21 WorkList.removeAll(nodes from WorkList subsumed by node) }}}

Fig. 2. The CEGAAR algorithm (a) - High-Level Structure

The refinement step is performed by the CHECKREFINEERROR function (Fig. 3).
This function returns true if and only if a feasible error trace has been detected; oth-
erwise, further predicates are generated to refine the abstraction. First, a minimal in-
feasible ART path to node is determined (line 4). This path is generalized into a trace
scheme (line 6). The generalization function FOLD takes Path and the delay parame-
ter δ as input and produces a trace scheme which contains Path. The FOLD function
creates a trace scheme of the form (1) out of the spurious path given as argument. The
spurious path is traversed and control states are recorded in a list. When we encounter
a control state which is already in the list, we identified an elementary cycle λ. If the
current trace scheme ends with at least δ occurrences of λ, where δ ∈ N∞ is the delay
parameter, then λ is added as a loop to the trace scheme, provided that its transitive
closure can be effectivelly computed. For efficiency reasons, we syntactically check the
relation on the loop, namely we check whether the relation is syntactically compliant
to the definition of octagonal relations. Notice that a relation can be definable by an
octagonal constraint even if it is not a conjunction of octagonal constraints, i.e. it may
contain redundant atomic propositions which are not of this form. Once the folded trace
scheme is obtained, there are three possibilities:

1. If the trace scheme is not bounded (the test on line 7 passes), we compute a bounded
overapproximation of it, in an attempt to prove its infeasibility (line 8). If the test
on line 9 succeeds, the original trace scheme is proved to be infeasible and the ART
is refined using the interpolants for the overapproximated trace scheme.
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languagelanguage
1 def checkRefineError(node): Boolean {
2 traceScheme = []
3 while (the ART path Root−→·· ·−→node is spurious) {
4 Let Path = 〈q1,Φ1〉−→ . . .−→〈qn,Φn〉 be the (unique) minimal ART path with
5 pivot = 〈q1,Φ1〉 and 〈qn,Φn〉= node such that the CFG path q1−→·· ·−→qn is infeasible
6 newScheme = Fold(Path,delay)
7 if (!isBounded(newScheme)) {
8 absScheme =Concat(Overapprox(newScheme), traceScheme)
9 if (interpolateRefine(absScheme, pivot) return false

10 else newScheme =Underapprox(newScheme,Path)}
11 traceScheme =Concat(newScheme, traceScheme)
12 if (interpolateRefine(traceScheme, pivot) return false
13 node = Path.head}
14 return true }

Fig. 3. The CEGAAR algorithm (b) - Accelerated Refinement

2. Else, if the overapproximation was found to be feasible, it could be the case that
the abstraction of the scheme introduced a spurious error trace. In this case, we
compute a bounded underapproximation of the trace scheme, which contains the
initial infeasible path, and replace the current trace scheme with it (line 10). The
only requirement we impose on the UNDERAPPROX function is that the returned
bounded trace scheme contains Path, and is a subset of newScheme.

3. Finally, if the trace scheme is bounded (either because the test on line 7 failed, or
because the folded path was replaced by a bounded underapproximation on line
10) and also infeasible (the test on line 12 passes) then the ART is refined with the
interpolants computed for the scheme. If, on the other hand, the scheme is feasible,
we continue searching for an infeasible trace scheme starting from the head of Path
upwards (line 13).

Example Let θ : q1
P−→q2

Q−→q2
R−→q1

P−→q2
R−→q1 be a path. The result of applying FOLD

to this path is the trace scheme ξ shown in the left half of Fig. 4. Notice that this path
scheme is not bounded, due to the presence of two loops starting and ending with q2. A
possible bounded underapproximation of ξ, containing the original path θ, is shown in
the right half of Fig. 4. ��

The iteration stops either when a refinement is possible (lines 9, 12), in which case
CHECKREFINEERROR returns false, or when the search reaches the root of the ART
and the trace scheme is feasible, in which case CHECKREFINEERROR returns true (line

q1
P−→

Q
�
q2

R−→ q1

P ↑↓ R

q1

q1
P−→

Q
�
q2

ε−→ q2
R−→ q1

P ↑↓ R

q1

Fig. 4. Underapproximation of unbounded trace schemes. ε stands for the identity relation.
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languagelanguage
1 def InterpolateRefine(traceScheme, Pivot) : Boolean {
2 metaTrace = TransitiveClosure(traceScheme)
3 interpolant = InterpolatingProverCall(metaTrace)
4 if (interpolant = /0) return false
5 I = AccelerateInterpolant(interpolant)
6 for (ψ ∈ I) {
7 let v be the CFG vertex corresponding to ψ
8 π = π[v← (π(v)∪ψ)]
9 }

10 ConstructART(Pivot,Pivot.abstraction)
11 return true }

Fig. 5. The Interpolation Function

14) and the main algorithm in Figure 2 reports a true counterexample. Notice that, since
we update node to the head of Path (line 13), the position of node is moved upwards
in the ART. Since this cannot happen indefinitely, the main loop (lines 3-13) of the
CHECKREFINEERROR is bound to terminate.

The INTERPOLATEREFINE function is used to compute the interpolant of the trace
scheme, update the predicate mapping π of the ART, and reconstruct the subtree of the
ART whose root is the first node on Path (this is usually called the pivot node). The IN-
TERPOLATEREFINE (Fig. 5) function returns true if and only if its argument represents
an infeasible trace scheme. In this case, new predicates, obtained from the interpolant
of the trace scheme, are added to the nodes of the ART. This function uses internally the
TRANSITIVECLOSURE procedure (line 2) in order to generate the meta-trace scheme
(5). The ACCELERATEINTERPOLANT function (line 5) computes the interpolant for the
trace scheme, from the resulting meta-trace scheme. Notice that the refinement algo-
rithm is recursive, as CONSTRUCTART calls CHECKREFINEERROR (line 18), which in
turn calls INTERPOLATEREFINE (lines 9,12), which calls back CONSTRUCTART (line
10). Our procedure is sound, in the sense that whenever function CONSTRUCTART ter-
minates with a non-error result, the input program does not contain any reachable error
states. Vice versa, if a program contains a reachable error state, CONSTRUCTART is
guaranteed to eventually discover a feasible path to this state, since the use of a work
list ensures fairness when exploring ARTs.

5 Computing Accelerated Interpolants

This section describes a method of refining an ART by excluding an infinite family of
infeasible traces at once. Our method combines interpolation with acceleration in a way
which is oblivious of the particular method used to compute interpolants. For instance,
it is possible to combine proof-based [23] or constraint-based [26] interpolation with
acceleration, whenever computing the precise transitive closure of a loop is possible.
In cases when the precise computation fails, we may resort to both over- and under-
approximation of the transitive closure. In both cases, the accelerated interpolants are at
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least as general (and many times more general) than the classical interpolants extracted
from a finite counterexample trace.

5.1 Precise Acceleration of Bounded Trace Schemes

We consider first the case of bounded trace schemes of the form (1), where the control
states q1, . . . ,qn belong to some cycles labeled with relations L1, . . . ,Ln. Under some
restrictions on the syntax of the relations labeling the cycles Li, the reflexive transitive
closures L∗i are effectively computable using acceleration algorithms [7, 9, 14]. Among
the known classes of relations for which acceleration is possible we consider: octago-
nal relations and finite monoid affine transformations. These are all conjunctive linear
relations. We consider in the following that all cycle relations Li belong to one of these
classes. Under this restriction, any infeasible bounded trace scheme has an effectivelly
computable interpolant of one of the forms (2),(3).

However, there are two problems with applying definitions (2),(3) in order to obtain
interpolants of trace schemes. On one hand, relational composition typically requires
expensive quantifier eliminations. The standard proof-based interpolation techniques
(e.g. [23]) overcome this problem by extracting the interpolants directly from the proof
of infeasibility of the trace. Alternatively, constraint-based interpolation [26] reduce
the interpolant computation to a Linear Programming problem, which can be solved
by efficient algorithms. Both methods apply, however, only to finite traces, and not to
infinite sets of traces defined as trace schemes. Another, more important, problem is
related to the sizes of the interpolant predicates from (2), (3) compared to the sizes of
interpolant predicates obtained by proof-theoretic methods (e.g. [22]), as the following
example shows.

Example Let R(x,y,x′,y′) : x′ = x+ 1∧ y′ = y+ 1 and φ(x,y, . . .), ψ(x,y, . . .) be some
complex Presburger arithmetic formulae. The trace scheme:

q0
z=0∧z′=z∧φ−−−−−−−→

z′ = z+2∧R
�
q1

z=5∧ψ−−−−→q2 (4)

is infeasible, because z remains even, so it cannot become equal 5. One simple inter-
polant for this trace scheme has at program point q1 the formula z%2 = 0. On the other
hand, the strongest interpolant has (z = 0∧ z′ = x∧φ)◦ (z′ = z+2∧R)∗ at q1, which is
typically a much larger formula, because of the complex formula φ. Note however that
φ and R do not mention z, so they are irrelevant. ��

To construct useful interpolants instead of the strongest or the weakest ones, we
therefore proceed as follows. Let ξ be a bounded trace scheme of the form (1). For each
control loop qi

Ri−→qi of ξ, we define the corresponding meta-transition q′i
R∗i−→q′′i labeled

with the reflexive and transitive closure of Ri. Intuitively, firing the meta-transition has
the same effect as iterating the loop an arbitrary number of times. We first replace each
loop of ξ by the corresponding meta-transition. The result is the meta-trace:

ξ : q0
Q1−→q′1

L∗1−→q′′1
Q2−→q′2 . . . q′′n−1

Qn−→q′n
L∗n−→q′′n

Qn+1−−−→qn+1 (5)

Since we supposed that ξ is an infeasible trace scheme, the (equivalent) finite meta-
trace ξ is infeasible as well, and it has an interpolant Iξ = 〈�, I

′
1, I
′′
1 , I
′
2, I
′′
2 , . . . , I

′
n, I
′′
n ,⊥〉



198 H. Hojjat et al.

in the sense of Definition 1. This interpolant is not an interpolant of the trace scheme
ξ, in the sense of Definition 3. In particular, none of I′i , I

′′
i is guaranteed to be inductive

with respect to the loop relations Li. To define compact inductive interpolants based on
Iξ and the transitive closures L∗i , we consider the following sequences:

I post
ξ = 〈�, post(I′1,L

∗
1), post(I′2,L

∗
2), . . . , post(I′n,L

∗
n),⊥〉

I wpre
ξ = 〈�,wpre(I′′1 ,L

∗
1),wpre(I′′2 ,L

∗
2), . . . ,wpre(I′′n ,L

∗
n),⊥〉

The following lemma proves the correctness of this approach.

Lemma 5. Let G = 〈x,Q,−→, I,E〉 be a CFG and ξ be an infeasible trace scheme of the
form (1). Then I post

ξ and I wpre
ξ are interpolants for ξ, and moreover I wpre

ξi
→ I post

ξi
, for

all i = 1,2, . . . ,n.

Notice that computing I post
ξ and I wpre

ξ requires n relational compositions, which is,
in principle, just as expensive as computing directly one of the extremal interpolants
(2),(3). However, by re-using the meta-trace interpolants, one potentially avoids the
worst-case combinatorial explosion in the size of the formulae, which occurs when
using (2), (3) directly.

Example. Let us consider again the trace scheme (4). The corresponding infeasible
finite trace ξ is:

q0
z=0∧z′=z∧φ−−−−−−−→q′1

∃k≥0 . z′=z+2k ∧ x′=x+k ∧ y′=y+k−−−−−−−−−−−−−−−−−−−−−→q′′1
z=5∧ψ−−−−→q2

A possible interpolant for this trace is 〈�,z = 0,∃k ≥ 0 . z = 2k,⊥〉. An inductive
interpolant for the trace scheme, derived from it, is I post

ξ = 〈�, post(z = 0,∃k ≥ 0.z′ =

z+ 2k∧ x′ = x+ k∧ y′ = y+ k),⊥〉= 〈�, z%2 = 0, ⊥〉. ��

5.2 Bounded Overapproximations of Trace Schemes

Consider a trace scheme (1), not necessarily bounded, where the transitive closures of
the relations Li labeling the loops are not computable by any available acceleration
method [7, 9, 14]. One alternative is to find abstractions L�i of the loop relations, i.e.

relations L�i ← Li, for which transitive closures are computable. If the new abstract trace
remains infeasible, it is possible to compute an interpolant for it, which is an interpolant
for the original trace scheme. However, replacing the relations Li with their abstractions
L�i may turn an infeasible trace scheme into a feasible one, where the traces introduced
by abstraction are spurious. In this case, we give up the overapproximation, and turn to
the underapproximation technique described in the next section.

The overapproximation method computes an interpolant for a trace scheme ξ of the
form (1) under the assumption that the abstract trace scheme:

ξ� : q0
Q1−→

L�1
�
q1

Q2−→ . . . Qn−1−−−→
L�n−1
�

qn−1
Qn−→

L�n
�
qn

Qn+1−−−→qn+1 (6)



Accelerating Interpolants 199

is infeasible. In this case one can effectivelly compute the interpolants I post
ξ� and I wpre

ξ� ,
since the transitive closures of the abstract relations labeling the loops are computable
by acceleration. The following lemma proves that, under certain conditions, computing
an interpolant for the abstraction of a trace scheme is sound.

Lemma 6. Let G be a CFG and ξ be a trace scheme (1) such that the abstract trace
scheme ξ� (6) is infeasible. Then the interpolants I post

ξ� and I wpre
ξ� for ξ� are also inter-

polants for ξ.

5.3 Bounded Underapproximations of Trace Schemes

Let ξ be a trace scheme of the form (1), where each relation Li labeling a loop is a
disjunction Li1 ∨ . . .∨Liki of relations for which the transitive closures are effectively
computable and Presburger definable. A bounded underapproximation scheme of a trace
scheme ξ is obtained by replacing each loop qi

Li−→qi in ξ by a bounded trace scheme of
the form:

Li1
�

q1
i

ε−→
Li2
�

q2
i

ε−→ . . .

Liki
�

qki
i

where ε denotes the identity relation. Let us denote3 the result of this replacement by
ξ�. It is manifest that the set of traces ξ� is included in ξ.

Since we assumed that the reflexive and transitive closures L∗i j are effectivelly com-

putable and Presburger definable, the feasibility of ξ� is a decidable problem. If ξ� is
found to be feasible, this points to a real error trace in the system. On the other hand, if
ξ� is found to be infeasible, let Iξ� = 〈�, I1

1 , . . . , I
k1
1 , . . . , I

1
n , . . . , I

kn
n ,⊥〉 be an interpolant

for ξ�. A refinement scheme using this interpolant associates the predicates {I1
i , . . . , I

ki
i }

with the control state qi from the original CFG. As the following lemma shows, this
guarantees that any trace that follows the pattern of ξ� is excluded from the ART, en-
suring that a refinement of the ART using a suitable underapproximation (that includes
a spurious counterexample) is guaranteed to make progress.

Lemma 7. Let G = 〈x,Q,−→, I,E〉 be a CFG, ξ be an infeasible trace scheme of G (1)
and ξ� a bounded underapproximation of ξ. If T = 〈S,π,r,e〉 is an ART for G, such that
{I1

i , . . . , I
ki
i } ⊆ π(qi), then no path in T concretizes to a trace in ξ�.

Notice that a refinement scheme based on underapproximation guarantees the exclu-
sion of those traces from the chosen underapproximation trace scheme, and not of all
traces from the original trace scheme. Since a trace scheme is typically obtained from
a finite counterexample, an underapproximation-based refinement still guarantees that
the particular counterexample is excluded from further searches. In other words, using
underapproximation is still better than the classical refinement method, since it can po-
tentially exclude an entire family of counterexamples (including the one generating the
underapproximation) at once.

3 The choice of the name depends on the ordering of particular paths Li1,Li2, . . . ,Liki
, however

we shall denote any such choice in the same way, in order to keep the notation simple.
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6 Experimental Results

We have implemented CEGAAR by building on the predicate abstraction engine Eldar-
ica4 [20], the FLATA verifier5 [20] based on acceleration, and the Princess interpolating
theorem prover [11, 25]. Tables in Figure 6 compares the performance of the Flata, El-
darica, static acceleration and CEGAAR on a number of benchmarks (the platorm used
for experiments is Intel® Core™2 Duo CPU P8700, 2.53GHz with 4GB of RAM).

Model
Time [s]

F. E. S. D.
(a) Examples from [21]
anubhav (C) 0.8 3.0 4.0 3.1
copy1 (E) 2.0 7.2 5.8 5.9
cousot (C) 0.6 - 6.2 5.9
loop1 (E) 1.7 7.1 5.2 5.4
loop (E) 1.8 5.9 4.8 5.4
scan (E) 3.3 - 5.1 5.0
string concat1 (E) 5.3 - 10.1 7.3
string concat (E) 4.9 - 7.0 7.5
string copy (E) 4.6 - 6.3 5.7
substring1 (E) 0.6 9.4 18.2 8.3
substring (E) 2.1 3.3 6.3 3.5
(b) Verification conditions
for array programs [9]
rotation vc.1 (C) 0.6 2.0 9.5 2.0
rotation vc.2 (C) 1.6 2.2 18.5 2.2
rotation vc.3 (C) 1.2 0.3 18.3 0.3
rotation vc.1 (E) 1.1 1.3 10.2 1.3
split vc.1 (C) 3.9 3.7 91.1 3.6
split vc.2 (C) 3.0 2.3 74.1 2.2
split vc.3 (C) 3.3 0.6 75.0 0.6
split vc.1 (E) 28.5 2.3 185.6 2.4

Model
Time [s]

F. E. S. D.
(c) Examples from [24]
boustrophedon (C) - - - 14.4
gopan (C) 0.4 - - 6.4
halbwachs (C) - - 7.3 7.0
rate limiter (C) 31.7 6.1 8.1 5.5
(d) Examples from L2CA [8]
bubblesort (E) 14.9 9.9 9.5 9.3
insdel (E) 0.1 1.3 2.5 1.4
insertsort (E) 2.0 4.2 5.0 4.0
listcounter (C) 0.3 - 1.9 3.7
listcounter (E) 0.3 1.4 1.6 1.4
listreversal (C) 4.5 3.0 6.0 3.3
listreversal (E) 0.8 2.7 8.1 2.8
mergesort (E) 1.2 7.7 21.3 7.4
selectionsort (E) 1.5 8.1 13.7 7.7
(e) NECLA benchmarks
inf1 (E) 0.2 2.0 2.0 2.0
inf4 (E) 0.9 3.7 3.7 3.7
inf6 (C) 0.1 2.0 2.0 2.0
inf8 (C) 0.3 3.6 3.4 3.9

Model
Time [s]
F. E. S. D.

(f) Examples from [15]
h1 (E) - 5.1 5.6 5.1
h1.optim (E) 0.8 2.9 5.5 2.9
h1h2 (E) - 9.4 10.1 12.2
h1h2.optim (E) 1.1 3.3 4.4 3.4
simple (E) - 6.4 7.0 8.4
simple.optim (E) 0.8 3.0 5.1 2.9
test0 (C) - 23.0 23.4 29.2
test0.optim (C) 0.3 3.2 5.4 3.2
test0 (E) - 5.4 5.9 5.7
test0.optim (E) 0.6 3.0 5.8 2.9
test1.optim (C) 0.9 4.7 5.9 7.8
test1.optim (E) 1.5 4.4 5.9 4.7
test2 1.optim (E) 1.6 5.2 5.5 5.6
test2 2.optim (E) 2.9 4.6 5.9 4.6
test2.optim (C) 6.4 27.2 30.1 30.0
wrpc.manual (C) 0.6 1.2 1.4 1.2
wrpc (E) - 7.9 8.4 8.2
wrpc.optim (E) - 5.1 8.5 5.2
(g) VHDL models from [27]
counter (C) 0.1 1.6 1.6 1.6
register (C) 0.2 1.1 1.1 1.1
synlifo (C) 16.6 22.1 21.4 22.0

Fig. 6. Benchmarks for Flata, Eldarica without acceleration, Eldarica with acceleration of loops
at the CFG level (Static) and CEGAAR (Dynamic acceleration). The letter after the model name
distinguishes Correct from models with a reachable Error state. Items with “-” led to a timeout
for the respective approach.

The benchmarks are all in the Numerical Transition Systems format6 (NTS). We
have considered seven sets of examples, extracted automatically from different sources:
(a) C programs with arrays provided as examples of divergence in predicate abstrac-
tion [21], (b) verification conditions for programs with arrays, expressed in the SIL
logic of [9] and translated to NTS, (c) small C programs with challenging loops, (d)
NTS extracted from programs with singly-linked lists by the L2CA tool [8], (e) C pro-
grams provided as benchmarks in the NECLA static analysis suite, (f) C programs with
asynchronous procedure calls translated into NTS using the approach of [15] (the ex-
amples with extension .optim are obtained via an optimized translation method [Pierre
Ganty, personal communication], and (g) models extracted from VHDL models of cir-
cuits following the method of [27]. The benchmarks are available from the home page
of our tool. The results on this benchmark set suggest that we have arrived at a fully
automated verifier that is robust in verifying automatically generated integer programs

4 http://lara.epfl.ch/w/eldarica
5 http://www-verimag.imag.fr/FLATA.html
6 http://richmodels.epfl.ch/ntscomp_ntslib

http://lara.epfl.ch/w/eldarica
http://www-verimag.imag.fr/FLATA.html
http://richmodels.epfl.ch/ntscomp_ntslib
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with a variety of looping control structure patterns. An important question we explored
is the importance of dynamic application of acceleration, as well as of overapproxima-
tion and underapproximation. We therefore also implemented static acceleration [12],
a lightweight acceleration technique generalizing large block encoding (LBE) [4] with
transitive closures. It simplifies the control flow graph prior to predicate abstraction.
In some cases, such as mergesort from the (d) benchmarks and split vc.1 from (b)
benchmarks, the acceleration overhead does not pay off. The problem is that static ac-
celeration tries to accelerate every loop in the CFG rather than accelerating the loops
occurring on spurious paths leading to error. Acceleration of inessential loops gener-
ates large formulas as the result of combining loops and composition of paths during
large block encoding. The CEGAAR algorithm is the only approach that could handle
all of our benchmarks. There are cases in which the Flata tool outperforms CEGAAR
such as test2.optim from (f) benchmarks. We attribute this deficiency to the nature of
predicate abstraction, which tries to discover the required predicates by several steps of
refinement. In the verification of benchmarks, acceleration was exact 11 times in total.
In 30 case the over-approximation of the loops was successful, and in 15 cases over-
approximation failed, so the tool resorted to under-approximation. This suggests that
all techniques that we presented are essential to obtain an effective verifier.

7 Conclusions

We have presented CEGAAR, a new automated verification algorithm for integer pro-
grams. The algorithm combines two cutting-edge analysis techniques: interpolation-
based abstraction refinement and acceleration of loops. We have implemented CE-
GAAR and presented experimental results, showing that CEGAAR handles robustly
a number of examples that cannot be handled by predicate abstraction or acceleration
alone. Because many classes of systems translate into integer programs, our advance
contributes to automated verification of infinite-state systems in general.
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Abstract. This paper presents FunFrog, a tool that implements a function sum-
marization approach for software bounded model checking. It uses interpolation-
based function summaries as over-approximation of function calls. In every
successful verification run, FunFrog generates function summaries of the analyzed
program functions and reuses them to reduce the complexity of the successive
verification. To prevent reporting spurious errors, the tool incorporates a counter-
example-guided refinement loop. Experimental evaluation demonstrates compet-
itiveness of FunFrog with respect to state-of-the-art software model checkers.

1 Introduction

Bounded model checkers (BMC) [1] search for errors in a program within the given
bound on the maximal number of loop iterations and recursion depth. Typically, the
check is repeated for different properties to be verified and thus large amount of the
work is repeated. This raises a problem of constructing an incremental model checker.
In this paper, we present a tool, FunFrog, that serves this goal. From a successful ver-
ification run, FunFrog extracts function summaries using Craig interpolation [3]. The
summaries are then used to represent the functions in subsequent verification runs, when
the same code is analyzed again (e.g., with respect to different properties). Significant
time savings can be achieved by reusing summaries between the verification runs.

To be able to use interpolation for function summarization, FunFrog converts the
unwound program into a partitioned bounded model checking (PBMC) formula. For
each function to be summarized, this formula is partitioned into two parts. The first part
symbolically encodes the function itself and all its callee functions. The second part
encodes the remaining functions, i.e., the calling context of the function. Given the two
parts, a Craig interpolant that constitutes the function summary is then computed. Our
function summaries are over-approximations of the actual behavior of the functions. As
a result, spurious errors may occur due to a too coarse over-approximation. To discard
spurious errors, FunFrog implements a counterexample-guided refinement loop.

The paper provides an architectural description of the tool implementing the function
summarization approach to bounded model checking and discusses the tool usage and
experimentation on various benchmarks1.

� This work is partially supported by the European Community under the call FP7-ICT-2009-5
— project PINCETTE 257647.

1 Further details on interpolation-based function summarization can be found in [4].
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Fig. 1. FunFrog architecture overview

2 Tool Architecture

The architecture of FunFrog is depicted in Fig. 1. The tool takes a C program and uses
the parser for pre-processing. The parser produces an intermediate code representation,
which is then used for encoding into a PBMC formula by PBMC encoder. Encod-
ing is achieved using symbolic execution, which unwinds the program and prepares its
static single assignment (SSA) form, SSA slicing that removes the SSA steps irrele-
vant to the property, and SAT flattening that produces the final formula by encoding it
into propositional logic. FunFrog loads function summaries from a persistent storage
and attempts to use them during encoding as over-approximations of the corresponding
program functions. The tool passes the resulting formula to a solver. If the formula is
unsatisfiable, the program is safe and FunFrog uses interpolation to generate new func-
tion summaries and stores them for use in later runs. In case of a satisfiable formula,
FunFrog asks refiner whether a refinement is necessary. If so, FunFrog continues by
precisely encoding the functions identified by the refiner. If a refinement is not neces-
sary (i.e., no summarized function call influences the property along the counterexam-
ple), the counterexample is real, and the program is proven unsafe. In the following, we
describe each step of FunFrog in more detail.

Parsing. As the first step, the source codes are parsed and transformed into a goto-
program, where the complicated conditional statements and loops are simplified using
only guards and goto statements. For this purpose, FunFrog uses goto-cc2 , i.e., a
parser specifically designed to produce intermediate representation suitable for formal
verification. Other tools from the CProver2 framework can be used to alter this repre-
sentation. For example, goto-instrument injects additional assertions (e.g., array
bound tests) to be checked during analysis.

Symbolic execution. In order to unwind the program, the intermediate representation is
symbolically executed tracking the number of iterations of loops. The result of this step
is the SSA form of the unwound program, i.e., a form where every variable is assigned
at most once. This is achieved by adding version numbers to the variables. In FunFrog,

2 http://www.cprover.org/

http://www.cprover.org/
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this step is also influenced by the choice of an initial substitution scenario. Intuitively,
it defines how different functions should be encoded (e.g., using precise encoding or
using a summary).

Slicing. After the symbolic execution step, slicing is performed on the resulting SSA
form. It uses dependency analysis in order to figure out which variables and instruc-
tions are relevant for the property being analyzed. The dependency analysis also takes
summaries into account. Whenever an output variable of a function is not constrained
by a function summary, its dependencies need not be propagated and a more aggressive
slicing is achieved.

SAT flattening. When the SSA form is pruned, the PBMC formula is created by flatten-
ing into propositional logic. The choice of using SAT allows for bit-precise reasoning.
However, in principle, the SAT flattening step could be substituted by encoding into a
suitable SMT theory that supports interpolation.

Solving. The PBMC formula is passed to a SAT solver to decide its satisfiability. Fun-
Frog uses OpenSMT [2] in the SAT solver mode for both satisfiability checks and as an
interpolating engine. Certain performance penalties follow from the additional book-
keeping in order to produce a proof of unsatisfiability used for interpolation.

Summaries extraction. When the PBMC formula is unsatisfiable, FunFrog extracts
function summaries using interpolation using the proof of unsatisfiability. The extracted
summaries are serialized in a persistent storage so that they are available for other Fun-
Frog runs. In this step, FunFrog also compares the new summaries with any existing
summaries for the same function and the same bound, and keeps the more precise
(tighter over-approximation) one.

Refiner. The refiner is used to identify and to mark summaries directly involved in
the error trace. We call this strategy CEG (counterexample-guided). Alternatively, the
refiner can avoid identification of summaries in the error trace and can mark all sum-
maries for refinement (greedy strategy). In other words, greedy strategy falls back to
the standard BMC, when the summaries are not strong enough to prove the property.

3 Tool Usage

When running FunFrog, the user can choose the preferred initial substitution scenario,
a refinement strategy and whether summaries optimization and slicing should be per-
formed. The user can also specify the unwinding bound; the overall bound as well as
bounds for particular loops. The input code is expected to contain user provided asser-
tions to be checked for violations. The user can choose which assertion(s) should be
checked by FunFrog. Linux binaries of FunFrog as well as the benchmarks used for
evaluation are available online for other researchers3. The webpage also contains a tu-
torial explaining how to use FunFrog and explanation of the most important parameters.

Experiments. In order to evaluate FunFrog, we compared it with other state-of-the-art
C-model checkers CBMC (v4.0), SATABS (v3.0 with Cadence SMV v10-11-02p46),

3 www.verify.inf.usi.ch/funfrog

www.verify.inf.usi.ch/funfrog
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Table 1. Verification times [s] of FunFrog, CBMC, SATABS, and CPAchecker, where ‘∞’ is a
timeout (1h), ‘×’ - bug in safe code, ‘†’ - other failure (We notified the tool authors about the
issues), number of lines of code, preprocessed code instructions in goto-cc, function calls, and
assertions.
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floppy 10288 2164 227 8 0 4.80 0.07 6.05 2.94 0.57 14.54 19.59 918.25 383.97
kbfiltr 12247 1052 64 8 0 1.72 0.01 2.38 0.23 0.15 4.60 5.33 91.37 †
diskperf 6324 2037 182 5 0 2.41 0.01 2.31 0.42 0.36 5.60 21.42 146.82 259.26
no_sprintf 178 68 6 2 0 0.01 0.00 0.03 0.03 0.01 0.08 0.01 125.69 2.96
gd_simp 207 82 4 5 0 0.03 0.00 0.07 0.05 0.01 0.17 0.03 ∞ ×
do_loop 126 176 12 7 3 7.74 2.66 2.58 2.29 0.11 15.78 19.52 ∞ ×
goldbach 268 344 22 6 0 0.41 0.00 1.53 2.03 0.78 5.78 15.44 ∞ †

and CPAchecker (v1.1). CBMC and FunFrog are BMC tools, provided with the same
bound. We evaluated all tools (with default options) on both real-life industrial bench-
marks (including Windows device drivers) and on smaller crafted examples designed to
stress-test the implementation of our tool and verified them for user defined assertions
(separate run for each assertion). The assertions held, so FunFrog had the opportunity
to extract and reuse function summaries.

Table 1 reports the running times of all the tools4. In case of FunFrog, the summaries
were generated after the first run (for the first assertion in each group) and reused in the
consecutive runs (for the rest of (#asserts - 1) assertions). To demonstrate the perfor-
mance of FunFrog, the running times of different phases of its algorithm were summed
across all runs for the same benchmark. Note that the time spent in counterexample
analysis (i.e., the only computation, needed for refinement) is negligible, and thus not
reported in a separate column, but still included to the total.

As expected, FunFrog was outperformed by CBMC on the smaller examples with-
out many function calls, but FunFrog’s running times were still very competitive. On
majority of the larger benchmarks, FunFrog outperformed all the other tools. These
benchmarks feature large number of function calls so FunFrog benefited from function
summarization.
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Abstract. Synthesis of correct by design systems from specification has
recently attracted much attention. The theoretical results imply that this
problem is highly intractable, e.g., synthesizing a system is 2EXPTIME-
complete for an LTL specification and EXPTIME-complete for CTL.
An argument in favor of synthesis is that the temporal specification is
highly compact, and the complexity reflects the large size of the system
constructed. A careful observation reveals that the size of the system
is presented in such arguments as the size of its state space. This view
is a bit biased, in the sense that the state space can be exponentially
larger than the size of a reasonable implementation such as a circuit or a
program. Although this alternative measure of the size of the synthesized
system is more intuitive (e.g., this is the standard way model checking
problems are measured), research on synthesis has so far stayed with
measuring the system in terms of the explicit state space. This raises the
question of whether or not there exists a small bound on the circuits or
programs. In this paper, we show that this is the case if, and only if,
PSPACE = EXPTIME.

1 Introduction

Synthesis of reactive systems is a research direction inspired by Church’s prob-
lem [1]. It focuses on systems that receive a constant stream of inputs from an
environment, and must, for each input, produce some output. Specifically, we
are given a logical specification that dictates how the system must react to the
inputs, and we must construct a system that satisfies the specification for all
possible inputs that the environment could provide.

While the verification [2,6] (the validation or refutation of the correctness of
such a system) has gained many algorithmic solutions and various successful
tools, the synthesis problem [3,4,5,13,17] has had fewer results. One of the main
problems is the complexity of the synthesis problem. A classical result by Pnueli
and Rosner [14] shows that synthesis of a system from an LTL specification is
2EXPTIME-complete. It was later shown by Kupferman and Vardi that syn-
thesis for CTL specifications is EXPTIME-complete [9]. A counter argument

� This work was supported by the Engineering and Physical Science Research Council
grant EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’ and a
short visit grant ‘Circuit Complexity for Synthesis’ within the framework of the ESF
activity ‘Games for Design and Verification’. A full version of this paper is available
at http://arxiv.org/abs/1202.5449
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against the claim that synthesis has prohibitive high complexity is that the size
of the system produced by the synthesis procedure is typically large. Some con-
crete examples [8] show that the size of the system synthesized may need to be
doubly exponentially larger than the LTL specification. This, in fact, shows that
LTL specifications are a very compact representation of a system, rather than
simply a formalism that is intrinsically hard for synthesis.

As we are interested in the relationship between the specification and the
synthesized system, a question arises with respect to the nature of the system
representation. The classical synthesis problem regards the system as a transition
system with an explicit state space, and the size of this system is the number
of states and transitions. This is, to some extent, a biased measure, as other
system representations, such as programs or circuits with memory, often have
a much more concise representation: it is often possible to produce a circuit or
program that is exponentially smaller than the corresponding transition system.
For example, it is easy to produce a small program that implements an n bit
binary counter, but a corresponding transition system requires 2n distinct states
to implement the same counter. We ask the question of what is the size of the
minimal system representation in terms of the specification?

We look at specifications given in CTL, LTL, or as an automaton, and study
the relative synthesized system complexity. We choose to represent our systems
as online Turing machines with a bounded storage tape. This is because there ex-
ist straightforward translations between online Turing machines and the natural
representations of a system, such as programs and circuits, with comparable re-
presentation size. The online Turing machine uses a read-only input tape to read
the next input, a write-only output tape to write the corresponding output, and
its storage tape to serve as the memory required to compute the corresponding
output for the current input.

The binary-counter example mentioned above showed that there are instances
in which an online Turing machine model of the specification is exponentially
smaller than a transition system model of that formula. In this paper we ask: is
this always the case? More precisely, for every CTL formula φ, does there always
exist an online Turing machine M that models φ, where the amount of space
required to describeM is polynomial in φ? We call machines with this property
small. Our answer to this problem is the following:

Every CTL formula has a small online Turing machine model (or no
model at all) if, and only if, PSPACE = EXPTIME.

This result can be read in two ways. One point of view is that, since PSPACE
is widely believed to be a proper subset of EXPTIME, the “if” direction of
our result implies that it is unlikely that every CTL formula has a small online
Turing machine model. However, there is an opposing point of view. It is widely
believed that finding a proof that PSPACE 	= EXPTIME is an extremely difficult
problem. The “only if” direction of our result implies that, if we can find a family
of CTL formulas that provably requires super-polynomial sized online Turing
machine models, then we have provided a proof that PSPACE 	= EXPTIME.
If it is difficult to find a proof that PSPACE 	= EXPTIME, then it must also
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be difficult to find such CTL formulas. This indicates that most CTL formulas,
particularly those that are likely to arise in practice, might have small online
Turing machine models.

Using an online Turing machine raises the issue of the time needed to respond
to an input. In principle, a polynomially-sized online Turing machine can take
exponential time to respond to each input. A small model may, therefore, take
exponential time in the size of the CTL formula to produce each output. This
leads to the second question that we address in this paper: for CTL, does there
always exist a small online Turing machine model that is fast? The model is fast
if it always responds to each input in polynomial time. Again, our result is to
link this question to an open problem in complexity theory:

Every CTL formula has a small and fast (or no) online Turing machine
model if, and only if, EXPTIME ⊆ P/poly.

P/poly is the class of problems solvable by a polynomial-time Turing machine
with an advice function that provides advice strings of polynomial size. It has
been shown that if EXPTIME ⊆ P/poly, then the polynomial time hierarchy
collapses to the second level, and that EXPTIME itself would be contained in
the polynomial time hierarchy [7].

Once again, this result can be read in two ways. Since many people believe
that the polynomial hierarchy is strict, the “if” direction of our result implies
that it is unlikely that all CTL formulas have small and fast models. On the
other hand, the “only if” direction of the proof implies that finding a family of
CTL formulas that do not have small and fast online Turing machine models
is as hard as proving that EXPTIME is not contained in P/poly. As before, if
finding a proof that EXPTIME � P/poly is a difficult problem, then finding
CTL formulas that do not have small and fast models must also be a difficult
problem. This indicates that the CTL formulas that arise in practice might have
small and fast models.

We also replicate these results for specifications given by Co-Büchi automata,
which then allows us to give results for LTL specifications.

2 Preliminaries

2.1 CTL Formulas

Given a finite set Π of atomic propositions, the syntax of a CTL formula is
defined as follows:

φ ::= p | ¬φ | φ ∨ φ | Aψ | Eψ,
ψ ::= Xφ | φ U φ,

where p ∈ Π . For each CTL formula φ we define |φ| to give the length of φ.
Let T = (V,E) be an infinite directed tree, with all edges pointing away from

the root. Let l : V → 2Π be a labelling function. The semantics of CTL are
defined as follows. For each v ∈ V we have:
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– v |= p if and only if p ∈ l(v).
– v |= ¬φ if and only if v 	|= φ.
– v |= φ ∨ ψ if and only if either v |= φ or v |= ψ.
– v |= Aψ if and only if for all paths π starting at v we have π |= ψ.
– v |= Eψ if and only if there exists a path π starting at v with π |= ψ.

Let π = v1, v2, . . . be an infinite path in T . We have:

– π |= Xψ if and only if v2 |= ψ.
– π |= φ U ψ if and only if there exists i ∈ N such that vi |= ψ and for all j in

the range 1 ≤ j < i we have vj |= φ.

The pair (T, l), where T is a tree and l is a labelling function, is a model of φ if
and only if r |= φ, where r ∈ V is the root of the tree. If (T, l) is a model of φ,
then we write T, l |= φ.

2.2 Mealy Machines

The synthesis problem is to construct a model that satisfies the given specifi-
cation. We will give two possible formulations for a model. Traditionally, the
synthesis problem asks us to construct a model in the form of a transition sys-
tem. We will represent these transition systems as Mealy machines, which we
will define in this section. In a later section we will give online Turing machines
as an alternative, and potentially more succinct, model of a specification.

A Mealy machine is a tuple T = (S,ΣI , ΣO, τ, l, start, input). The set S is a
finite set of states, and the state start ∈ S is the starting state. The set ΣI gives
an input alphabet, and the set ΣO gives an output alphabet. The transition
function τ : S × ΣI → S gives, for each state and input letter, an outgoing
transition. The function l : S × ΣI → ΣO is a labelling function, which assigns
an output letter for each transition. The letter input ∈ ΣI gives an initial input
letter for the machine.

Suppose that φ is a CTL formula that uses ΠI as a set input propositions,
and ΠO as a set of output propositions. Let T = (S, 2ΠI , 2ΠO , τ, l, start, input)
be a Mealy machine that uses sets of these propositions as input and output
alphabets. A sequence of states π = s0, s1, s2, . . . is an infinite path in T if
s0 = start, and if, for each i, there is a letter σi ∈ ΣI such that τ(si, σi) = si+1.
We define ωi to be the set of input and output propositions at position i in
the path, that is we define ωi = σi ∪ l(si, σi), where we take σ0 = input. Then,
for each infinite path π, we define the word σ(π) = ω0, ω1, ω2 . . . to give the
sequence of joint inputs and outputs along the path π. Furthermore, let (T, l) be
the infinite tree corresponding to the set of words σ(π), over all possible infinite
paths π. We say that T is a model of φ if T, l |= φ. Given a CTL formula φ and
a Mealy machine T , the CTL model checking problem is to decide whether T is
a model of φ.

Theorem 1 ([11]). Given a Mealy machine T and a CTL-formula φ, the CTL
model checking problem can be solved in space polynomial in |φ| · log |T |.
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Given a CTL formula φ, the CTL synthesis problem is to decide whether there
exists a Mealy machine that is a model of φ. This problem is known to be
EXPTIME-complete.

Theorem 2 ([9]). The CTL synthesis problem is EXPTIME-complete.

2.3 Tree Automata

Universal Co-Büchi tree automata will play a fundamental role in the proofs
given in subsequent sections, because we will translate each CTL formula φ into
a universal Co-Büchi tree automaton U(φ). The automaton will accept Mealy
machines, and the language of the tree automaton will be exactly the set of
models accepted by φ. We will then use these automata to obtain our main
results.

A universal Co-Büchi tree automaton is A = (S,ΣI , ΣO, start, δ, F ), where S
denotes a finite set of states, ΣI is a finite input alphabet, ΣO is a finite output
alphabet, start ∈ S is an initial state, δ is a transition function, F ⊆ S is a set
of final states. The transition function δ : S×ΣO → 2S×ΣI maps a state and an
output letter to a set of pairs, where each pair consists of a successor state and
an input letter.

The automaton accepts Mealy machines that use ΣI and ΣO as their input
and output alphabets, and the acceptance mechanism is defined in terms of
run graphs. We define a run graph of a universal Co-Büchi tree automaton A =
(SA, ΣI , ΣO, startA, δ, FA) on a Mealy machine T = (ST , ΣI , ΣO, τ, lT , startT ) to
be a minimal directed graph G = (V,E) that satisfies the following constraints:

– The vertices of G satisfy V ⊆ SA × ST .
– The pair of initial states (startA, startT ) is contained in V .
– Suppose that for a vertex (q, t) ∈ V , we have that (q′, σI) ∈ δ(q, lT (σI , t)) for

some input letter σI . An edge from (q, t) to (q′, τ(t, σI)) must be contained
in E.

A run graph is accepting if every infinite path v1, v2, v3, · · · ∈ V ω contains only
finitely many states in FA. A Mealy machine T is accepted by A if it has an
accepting run graph. The set of Mealy machines accepted by A is called its
language, and is denoted by L(A). The automaton is empty if, and only if, its
language is empty.

A universal Co-Büchi tree automaton is called a safety tree automaton if
F = ∅. Therefore, for safety automata, we have that every run graph is accepting,
and we drop the F = ∅ from the tuple defining the automaton. A universal Co-
Büchi tree automaton is deterministic if |δ(s, σO))| = 1, for all states s, and
output letters σO.

2.4 Online Turing Machines

We use online Turing machines as a formalisation of a concise model. An online
Turing machine has three tapes: an infinite input tape, an infinite output tape,
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and a storage tape of bounded size. The input tape is read only, and the output
tape is write only. Each time that a symbol is read from the input tape, the
machine may spend time performing computation on the storage tape, before
eventually writing a symbol to the output tape.

We can now define the synthesis problem for online Turing machines. Let φ
be a CTL formula defined using ΠI and ΠO, as the sets of input, and output,
propositions, respectively. We consider online Turing machines that use 2ΠI as
the input tape alphabet, and 2ΠO as the output alphabet. Online Turing ma-
chines are required, after receiving an input symbol, to produce an output before
the next input symbol can be read. Therefore, if we consider the set of all possi-
ble input words that could be placed on the input tape, then the set of possible
outputs made by the online Turing machine forms a tree. If this tree is a model
of φ, then we say that the online Turing machine is a model of φ.

Given a CTL formula φ, we say that an online Turing machineM is a small
model of φ if:

– M is a model of φ,
– the storage tape ofM has length polynomial in |φ|, and
– the discrete control (i.e. the action table) ofM has size polynomial in |φ|.

For this reason, we define |M| to be size of the discrete control ofM plus the
length of the storage tape ofM. Note that a small online Turing machine may
take an exponential number of steps to produce an output for a given input. We
say that an online Turing machine is a fast model of φ if, for all inputs, it always
responds to each input in time polynomial in |φ|.

3 Small Models Imply PSPACE = EXPTIME

In this section we show that, if every satisfiable CTL formula φ has a small
online Turing machine model, then PSPACE = EXPTIME. Our approach is to
guess a polynomially sized online Turing machine M, and then to use model
checking to verify whetherM is a model of φ. Since our assumption guarantees
that we only need to guess polynomially sized online Turing machines, this gives
a NPSPACE = PSPACE algorithm for solving the CTL synthesis problem. Our
proof then follows from the fact that CTL synthesis is EXPTIME-complete.

To begin, we show how model checking can be applied to an online Turing
machine. To do this, we first unravel the online Turing machine to a Mealy
machine.

Lemma 3. For each CTL formula φ, and each online Turing machine M that
is a model of φ, there exists a Mealy machine T (M), which uses the same input
and output alphabet, such that T (M) is a model of φ.

The size of T (M) is exponential in the size ofM, because the number of storage
tape configurations ofM grows exponentially with the length of the tape. How-
ever, this is not a problem because there exists a deterministic Turing machine
that outputs T (M), while using only O(|M|) space.
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Lemma 4. There is a deterministic Turing machine that outputs T (M), while
using O(|M|) space.

Since the model checking procedure given in Theorem 1 uses polylogarithmic
space, when it is applied to T (M), it will use space polynomial in |M|. Now,
using standard techniques to compose space bounded Turing machines (see [12,
Proposition 8.2], for example), we can compose the deterministic Turing ma-
chine given by Lemma 4 with the model checking procedure given in Theorem 1
to produce a deterministic Turing machine that uses polynomial space in |M|.
Hence, we have shown that each online Turing machineM can be model checked
against φ in space polynomial in |M|. Since Theorem 2 implies that CTL syn-
thesis is EXPTIME-complete, we have the following theorem.

Theorem 5. If every satisfiable CTL formula φ has an online Turing machine
M model, where |M| is polynomial in φ, then PSPACE = EXPTIME.

4 PSPACE = EXPTIME Implies Small Models

In this section we show the opposite direction of the result given in Section 3.
We show that if PSPACE = EXPTIME, then, for every CTL formula φ that
has a model, there exists a polynomially sized online Turing machine that is a
model of φ. We start our proof of this result with a translation from CTL to
universal Co-Büchi tree automata. In [9] it was shown that every CTL formula
φ can be translated to an alternating Co-Büchi tree automaton A(φ), whose
language is the models of φ. Using standard techniques [10,15], we can translate
this alternating tree automaton A(φ) through a universal tree automaton U(φ)
with the same states to a safety automaton F(φ). Both transformations preserve
emptiness, and it is simple to obtain a model for A(φ) from a model of F(φ).

One complication of the first transformation is that the output alphabet of
U(φ) is not 2ΠO . This is because the reduction to universal tree automata aug-
ments each output letter with additional information, which is used by U(φ) to
resolve the nondeterministic choices made by A(φ). Hence, each output letter of
U(φ) contains an actual output σO ∈ 2ΠO , along with some extra information,
which can be encoded in polynomially many bits in the length of φ.

Let T = (S,ΣI , ΣO, τ, lT , start, input) be a Mealy machine, where each output
σO ∈ ΣO contains some element a ∈ 2ΠO with a ⊆ σO. We define T � ΠO to be
a modified version of T that only produces outputs from the set 2ΠO . Formally,
we define T � ΠO to be the Mealy machine T ′ = (S,ΣI , 2

ΠO , τ, lT ′ , start, input)
where, if lT (s, σI) = σO, then we define lT ′(s, σI) = σO ∩ 2ΠO for all s ∈ S.

Lemma 6. Let φ be a CTL formula, which is defined over the set ΠI of input
propositions, and the set ΠO of output propositions. We can construct a universal
Co-Büchi tree automaton U(φ) = (S,ΣI , ΣO, start, δ, F, input) such that:

– For every model T ∈ L(U(φ)), we have that T � 2ΠO is a model of φ.
– For every model T ′ of φ there is a model T ∈ L(U(φ)) with T � 2ΠO = T ′.
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– The size of the set S is polynomial in |φ|.
– Each letter in ΣI and ΣO can be stored in space polynomial in |φ|.
– The transition function δ can be computed in time polynomial in |φ|.
– The state start can be computed in polynomial time.

The techniques used in [16] show how the automaton given by Lemma 6 can be
translated into a safety tree automaton F(φ) such that the two automata are
emptiness equivalent.

Lemma 7 ([16]). Given the universal Co-Büchi tree automaton U(φ), whose
state space is SU , we can construct a deterministic safety tree automaton F(φ) =
(S,ΣI , ΣO, start, δ, input) such that:

– If L(U(φ)) is not empty, then L(F(φ)) is not empty. Moreover, if T is in
L(F(φ)), then T � 2ΠO is a model of φ.

– Each state in S can be stored in space polynomial in |SU |.
– The transition function δ can be computed in time polynomial in |SU |.
– Each letter in ΣI and ΣO can be stored in space polynomial in |SU |.
– The state start can be computed in time polynomial in |SU |.

We will use the safety automaton F(φ) given by Lemma 7 to construct a poly-
nomially sized model of φ. This may seem counter intuitive, because the number
of states in F(φ) may be exponential in φ. However, we do not need to build
F(φ). Instead our model will solve language emptiness queries for F(φ).

For each state s ∈ S in F(φ), we define Fs(φ) to be the automaton F(φ)
with starting state s. The emptiness problem takes a CTL formula φ and a state
of F(φ), and requires us to decide whether L(Fs(φ)) = ∅. Note that the input
has polynomial size in |φ|. We first argue that this problem can be solved in
exponential time. To do this, we just construct Fs(φ). Since Fs(φ) can have at
most exponentially many states in |φ|, and the language emptiness problem for
safety automata can be solved in polynomial time, we have that our emptiness
problem lies in EXPTIME.

Lemma 8. For every CTL formula φ, and every state s in F(φ) we can decide
whether L(Fs(φ)) = ∅ in exponential time.

The algorithm that we construct for Lemma 8 uses exponential time and expo-
nential space. However, our key observation is that, under the assumption that
PSPACE=EXPTIME,Lemma8 implies that theremust exist an algorithm for the
emptiness problem that uses polynomial space. We will use this fact to construct
M(φ), which is a polynomially sized online Turing machine that models φ.

Let φ be a CTL formula that over the set ΠI ∪ΠO of propositions. Suppose
that φ has a model, and that F(φ) = (S,ΣI , ΣO, start, δ, F, input). The machine
M(φ) always maintains a current state s ∈ S, which is initially set so that
s = start. Lemma 7 implies that s can be stored in polynomial space, and that
setting s = start can be done in polynomial time, and hence polynomial space.

Every time thatM(φ) reads a new input letter σI ∈ 2ΠI from the input tape,
the following procedure is executed. The machine loops through each possible
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output letter σO ∈ ΣO and checks whether there is a pair (s′, σ′I) ∈ δ(s, σO) such
that L(Fs′(φ)) 	= ∅. When an output symbol σO and state s′ with this property
are found, then the machine outputs σO ∩ 2ΠO , moves to the state s′, and reads
the next input letter.

The fact that a suitable pair σO and s′ always exists can be proved by a simple
inductive argument, which starts with the fact that L(F start(φ)) 	= ∅, and uses
the fact that we always pick a successor that satisfies the non-emptiness check.
Moreover, it can be seen that M(φ) is in fact simulating some Mealy machine
T that is contained in L(F(φ)). Therefore, by Lemma 6, we have thatM(φ) is
a model of φ.

The important part of our proof is that, if PSPACE = EXPTIME, then this
procedure can be performed in polynomial space. Since each letter in ΣO can
be stored in polynomial space, we can iterate through all letters in ΣO while
using only polynomial space. By Lemma 8, the check L(Fs′(φ)) 	= ∅ can be
performed in exponential time, and hence, using our assumption that PSPACE
= EXPTIME, there must exist a polynomial space algorithm that performs
this check. Therefore, we have constructed an online Turing machine that uses
polynomial space and models φ. Thus, we have shown the following theorem.

Theorem 9. Let φ be a CTL formula that has a model. If PSPACE = EXP-
TIME then there is an online Turing machine M that models φ, where |M| is
polynomial in φ.

Theorem 9 is not constructive. However, if a polynomially sized online Turing
machine that models φ exists, then we can always find it in PSPACE by guessing
the machine, and then model checking it.

5 Small and Fast Models Imply EXPTIME ⊆ P/poly

In this section we show that, if all satisfiable CTL formulas have a polynomially
sized model that responds to all inputs within polynomial time, then EXPTIME
⊆ P/poly, where P/poly is the is the class of problems solvable by a polynomial-
time Turing machine with an advice function that, for each input length, provides
a polynomially sized advice string.

Let Ab be an alternating Turing machine with a tape of length b that is writ-
ten in binary. Since the machine is alternating, its state space Q must be split
into Q∀, which is the set of universal states, and Q∃, which is the set of existen-
tial states. The first step of our proof is to construct a CTL formula φb, such
that all models of φb are forced to simulate Ab. The formula will use a set of
input propositions ΠI such that |ΠI | = b. This therefore gives us enough input
propositions to encode a tape configuration of Ab. The set of output proposi-
tions will allow us to encode a configuration of Ab. More precisely, the output
propositions use:

– b propositions to encode the current contents of the tape,
– log2(b) propositions to encode the current position of the tape head, and
– log2(Q) propositions to encode q, which is the current state of the machine.
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Our goal is to simulate Ab. The environment, which is responsible for providing
the input in each step, will perform the following tasks in our simulation. In the
first step, the environment will provide an initial tape configuration for Ab. In
each subsequent step, the environment will resolve the nondeterminism, which
means that it will choose the specific existential or universal successor for the
current configuration. In response to these inputs, our CTL formula will require
that the model should faithfully simulate Ab. That is, it should start from the
specified initial tape, and then always follow the existential and universal choices
made by the environment. It is not difficult to write down a CTL formula that
specifies these requirements.

In addition to the above requirements, we also want our model to predict
whether Ab halts. To achieve this we add the following output propositions:

– Let C = |Q| ·2b ·b be the total number of configurations that Ab can be in. If
the machine halts, it halts within C steps (avoiding cycles). We add log(C)
propositions to encode a counter c for the number of simulated steps.

– We add a proposition h, and we will require that h correctly predicts whether
Ab halts from the current configuration.

The counter c can easily be enforced by a CTL formula. To implement h, we
will add the following constraints to our CTL formula:

– If q is an accepting state, then h must be true.
– If c has reached its maximum value, then h must be false.
– If q is non-accepting and c has not reached its maximum value then:
• If q is an existential state, then h↔ EXh.
• If q is a universal state, then h↔ AXh.

These conditions ensure that, whenever the machine is in an existential state,
there must be at least one successor state from which Ab halts, and whenever
the machine is in a universal state, Ab must halt from all successors. We will
use φb to denote the CTL formula that we have outlined.

Suppose that there is an online Turing machineM model of φb that is both
small and fast. We argue that, if this assumption holds, then we can construct
a polynomial time Turing machine T that solves the halting problem for Ab.
Suppose that we want to decide whether Ab halts on the input word I. The
machine T does the following:

– It begins by giving I toM as the first input letter.
– It then proceeds by simulatingM until the first output letter is produced.
– Finally, it reads the value of h from the output letter, and then outputs it

as the answer to the halting problem for Ab.

By construction, we know that h correctly predicts whether Ab halts on I. There-
fore, this algorithm is correct. SinceM is both small and fast, we have that T
is a polynomial time Turing machine. Thus, we have the following lemma.

Lemma 10. If φb has an online Turing machine model that is small and fast,
then there is a polynomial-size polynomial-time Turing machine that decides the
halting problem for Ab.
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We now use Lemma 10 to prove the main result of this section: if every CTL
formula has a small and fast model, then EXPTIME ⊆ P/poly. We will do this
by showing that there is a P/poly algorithm for solving an EXPTIME-hard
problem.

We begin by defining our EXPTIME-hard problem. We define the problem
HALT-IN-SPACE as follows. Let U be a universal1 alternating Turing machine.
We assume that U uses space polynomial in the amount of space used by the
machine that is simulated. The inputs to our problem are:

– An input word I for U .
– A sequence of blank symbols B, where |B| = poly(|I|).

Given these inputs, HALT-IN-SPACE requires us to decide whether U halts when it
is restricted to use a tape of size |I|+|B|. Since B can only ever add a polynomial
amount of extra space, it is apparent that this problem is APSPACE-hard, and
therefore EXPTIME-hard.

Lemma 11. HALT-IN-SPACE is EXPTIME-hard.

A P/poly algorithm consists of two parts: a polynomial-time Turing machine T ,
and a polynomially-sized advice function f . The advice function maps the length
of the input of T to a polynomially-sized advice string. At the start of its compu-
tation, the polynomial-time Turing machine T is permitted to read f(i), where i
is the length of input, and use the resulting advice string to aid in its computa-
tion. A problem lies in P/poly if there exists a machine T and advice function f
that decide that problem.

We now provide a P/poly algorithm for HALT-IN-SPACE.We begin by defining
the advice function f . Let Ub be the machine U , when it is restricted to only
use the first b symbols on its tape. By Lemma 10, there exists a polynomial-size
polynomial-time deterministic Turing machine Tb that solves the halting problem
for Ub. We define f(b) to give Tb. Since Tb can be described in polynomial space,
the advice function f gives polynomial size advice strings.

The second step is to give a polynomial-time algorithm that uses f to solve
HALT-IN-SPACE. The algorithm begins by obtaining Ti+b = f(|I| + |B|) from
the advice function. It then simulates Ti+b on the input word I, and outputs
the answer computed by Ti+b. By construction, this algorithm takes polynomial
time, and correctly solves HALT-IN-SPACE. Therefore, we have shown that an
EXPTIME-hard problem lies in P/poly, which gives the main theorem of this
section.

Theorem 12. If every satisfiable CTL formula has a polynomially sized on-
line Turing machine model that responds to all inputs in polynomial time, then
EXPTIME ⊆ P/poly.

1 Here, the word “universal” means an alternating Turing machine that is capable of
simulating all alternating Turing machines.
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6 EXPTIME ⊆ P/poly Implies Small and Fast Models

Let φ be a CTL formula that has a model. In this section we show that if
EXPTIME ⊆ P/poly, then there always exists an polynomially sized online
Turing machine that is a model of φ, that also responds to every input within a
polynomial number of steps.

The proof of this result closely follows the proof given in Section 4. In that
proof, we looped through every possible output letter and solved an instance of
the emptiness problem. This was sufficient, because we can loop through every
output letter in polynomial space. However, when we wish to construct a fast
model, this approach does not work, because looping through all possible output
letters can take exponential time.

For this reason, we introduce a slightly modified version of the emptiness
problem, which we call the partial letter emptiness problem. The inputs to our
problem will be a CTL formula φ, a state s, an input letter σI ∈ 2ΠI of F(φ),
an integer l, and a bit string w of length l. Given these inputs, the problem is
to determine whether there is a letter σO ∈ ΣO such that:

– the first l bits of σO are w, and
– there exists (s′, σI) ∈ δ(s, σO) such that L(Fs′ (φ)) 	= ∅.

Lemma 7 implies that the input size of this problem is polynomial in |φ|. In fact, if
the CTL formula φ is fixed, then Lemma 7 implies that all other input parameters
have bounded size. For a fixed formula φ, let (φ, s, σI , l, w) be the input of the
partial letter emptiness problem that requires the longest representation. We
pad the representation of all other inputs so that they have the same length as
(φ, s, σI , l, w).

Next, we show how our assumption that EXPTIME ⊆ P/poly allows us to
argue that partial letter emptiness problem lies in P/poly. Note that the partial
letter emptiness problem can be solved in exponential time, simply by looping
through all possible letters in σO ∈ ΣO, checking whether the first n bits of σO
are w, and then applying the algorithm of Lemma 8. Also note that our padding
of inputs does not affect this complexity. Therefore, the partial letter emptiness
problem lies in EXPTIME, and our assumption then implies that it also lies in
P/poly.

Let T and f be the polynomial time Turing machine and advice function that
witness the inclusion in P/poly. Our padding ensures that we have, for each CTL
formula φ, a unique advice string in f that is used by T to solve all partial letter
emptiness problems for φ. Hence, if we append this advice string to the storage
tape of T , then we can construct a polynomial time Turing machine (with no
advice function) that solves all instances of the partial letter emptiness problem
that depend on φ. Therefore, we have shown the following lemma.

Lemma 13. If EXPTIME ⊆ P/poly then, for each CTL formula φ, there is
a polynomial time Turing machine that solves all instances of the partial letter
emptiness problem that involve φ.
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The construction of an online Turing machine that models φ is then the same as
the one that was provided in Section 4, except that we use the polynomial time
Turing machine from Lemma 13 to solve the partial letter emptiness problem in
each step. More precisely, we iteratively solve |σO| instances of the partial letter
emptiness problem to find the appropriate output letter σO in each step. Since
the size of σO is polynomial in |φ|, this can obviously be achieved in polynomial
time. Moreover, our online Turing machine still obviously uses only polynomial
space. Thus, we have established the main result of this section.

Theorem 14. Let φ be a CTL formula that has a model. If EXPTIME ⊆ P/poly
then there is a polynomially sized online Turing machine M that models φ that
responds to every input after a polynomial number of steps.

7 LTL Specifications

In this section we extend our results to LTL. Since LTL specifications can be
translated into universal Co-Büchi tree automata [10], our approach is to first
extend our results so that they apply directly to universal Co-Büchi tree au-
tomata, and then to use this intermediate step to obtain our final results for
LTL.

We start with universal Co-Büchi tree automata. Recall that the arguments
in Sections 4 and 6 start with a CTL formula, translate the formula into a
universal Co-Büchi tree automaton, and then provide proofs that deal only with
the resulting automaton. Reusing the proofs from these sections immediately
gives the following two properties.

Theorem 15. Let U be a universal Co-Büchi tree (or safety word) automaton
that accepts Mealy machines.

1. If PSPACE = EXPTIME then there is an online Turing machine M with
T (M) ∈ L(U), where |M| is polynomial in the states and a representation
of the transition function of U .

2. If EXPTIME ⊆ P/poly then there is a polynomially-sized online Turing ma-
chine M with T (M) ∈ L(U), which responds to every input after a polyno-
mial number of steps.

The other two results can be generalized using slight alterations of our existing
techniques. An analogue of the result in Section 3 can be obtained by using the
fact that checking whether online Turing machineM is accepted by a universal
Co-Büchi tree automaton U can be done in inO

(
(log |U|+log |T (M)|)2

)
time [18,

Theorem 3.2]. For the result in Section 5, we can obtain an analogue by using a
very similar proof. The key difference is in Lemma 10, where we must show that
there is universal Co-Büchi tree automaton with the same properties as φb. The
construction of a suitable universal Co-Büchi tree automaton appears in the full
version of the paper. Thus, we obtain the other two directions.

Theorem 16. Let U be a universal safety word (or universal Co-Büchi tree)
automaton that accepts Mealy machines.
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1. If there is always an online Turing machine M in the language of U , where
|M| has polynomial size in the states of U , then PSPACE=EXPTIME.

2. If there is always an online Turing machine M in the language of U , where
|M| has polynomial size in the states of U , which also responds to every
input after polynomially many steps, then EXPTIME ⊆ P/poly.

Now we move on to consider LTL specifications. For LTL, the situation is more
complicated, because the translation from LTL formulas to universal Co-Büchi
tree automata does not give the properties used in Lemma 6.

Theorem 17. [10] Given an LTL formula φ, we can construct a universal Co-
Büchi tree automaton Uφ with 2O(|φ|) states that accepts a Mealy machine T if,
and only if, T is a model of φ.

Note that this translation gives a universal Co-Büchi tree automaton that has
exponentially many states in |φ|. Unfortunately, this leads to less clean results
for LTL. For the results in Sections 3 and 4, we have the following analogues.

Theorem 18. We have both of the following:

1. If every LTL formula φ has an online Turing machine modelM, where |M|
is exponential in |φ|, then EXPSPACE = 2EXPTIME.

2. If PSPACE = EXPTIME, then every LTL formula has an exponentially
sized online Turing machine model.

The first of these two claims is easy to prove: we can guess an exponentially
sized online Turing machine, and then model check it. For the second claim, we
simply apply Theorem 15.

In fact, we can prove a stronger statement for the second part of Theorem 18.
QPSPACE is the set of problems that can be solved in O(2(log nd)

c

) space for
some constant c. We claim that if EXPTIME ⊆ QPSPACE, then, for every LTL
formula φ, there is an exponentially sized online Turing machineM that models
φ. This is because, in the proofs given in Section 4, if we have an algorithm that
solves the emptiness problem in QPSPACE, then the online Turing machine that
we construct will still run in exponential time in the formula.

We can also prove one of the two results regarding small and fast online Turing
machines. The following result is implied by Theorem 15.

Theorem 19. If EXPTIME ⊆ P/poly then every LTL formula has an exponen-
tially sized online Turing machine model, which responds to every input after an
exponential number of steps.

We can strengthen this result to “If all EXPTIME problems are polylogspace
reducible to P/poly then every LTL formula has an exponentially sized on-
line Turing machine model, which responds to every input after an exponential
number of steps” with the same reason we used for strengthening the previous
theorem: in the proofs given in Section 4, if we have an algorithm that solves the
emptiness problem in QPTIME using an advice tape of quasi-polynomial size,



222 J. Fearnley, D. Peled, and S. Schewe

then the online Turing machine that we construct will still run in exponential
time in the formula.

However, we cannot prove the opposite direction. This is because the proof
used in Theorem 16 would now produce an exponential time Turing machine
with an advice function that gives exponentially sized advice strings. Therefore,
we cannot draw any conclusions about the class P/poly.
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Abstract. We consider the problem of controller synthesis under imper-
fect information in a setting where there is a set of available observable
predicates equipped with a cost function. The problem that we address
is the computation of a subset of predicates sufficient for control and
whose cost is minimal. Our solution avoids a full exploration of all possi-
ble subsets of predicates and reuses some information between different
iterations. We apply our approach to timed systems. We have developed
a tool prototype and analyze the performance of our optimization algo-
rithm on two case studies.

1 Introduction

Timed automata by Alur and Dill [2] is one of the most popular formalism for
the modeling of real-time systems. One of the applications of Timed Automata
is controller synthesis, i.e. the automatic synthesis of a controller strategy that
forces a system to satisfy a given specification. For timed systems, the controller
synthesis problem has been first solved in [18] and progress on the algorithm
obtained in [9] has made possible the application on examples of a practical
interest. This algorithm has been implemented in the Uppaal-Tiga tool [3],
and applied to several case studies [1,10,11,20].

The algorithm of [9] assumes that the controller has perfect information about
the evolution of the system during its execution. However, in practice, it is com-
mon that the controller acquires information about the state of the system via
a finite set of sensors each of them having only a finite precision. This motivates
to study imperfect information games.

The first theoretical results on imperfect information games have been ob-
tained in [22], followed by algorithmic progresses and additional theoretical
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results in [21], as well as application to timed games in [6,8]. This paper ex-
tends the framework of [8] and so we consider the notion of stuttering-invariant
observation-based strategies where the controller makes choice of actions only
when changes in its observation occur. The observations are defined by the val-
ues of a finite set of observable state predicates. Observable predicates correspond,
for example, to information that can be obtained through sensors by the con-
troller. In [8], a symbolic algorithm for computing observation-based strategies
for a fixed set of observable predicates is proposed, and this algorithm has been
implemented in Uppaal-Tiga.

In the current paper, we further develop the approach of [8] and consider a set
of available observation predicates equipped with a cost function. Our objective
is to synthesize a winning strategy that uses a subset of the available observable
predicates with a minimal cost. Clearly, this can be useful in the design process
when we need to select sensors to build a controller.

Our algorithm works by iteratively picking different subsets of the set of the
available observable predicates, solving the game for these sets of predicates
and finally finding the controllable combination with the minimal cost. Our
algorithm avoids the exploration of all possible combinations by taking into
account the inclusion-set relations between different sets of observable predicates
and monotonic properties of the underlying games. Additionally, for efficiency
reasons, our algorithm reuses, when solving the game for a new set of observation
predicates, information computed on previous sets whenever possible.

Related Works. Several works in the literature consider the synthesis of con-
trollers along with some notion of optimality [5,7,4,12,16,23,13,19] but they con-
sider the minimization of a cost along the execution of the system while our aim
is to minimize a static property of the controller: the cost of observable predi-
cates on which its winning strategy is built. The closest to our work is [13] where
the authors consider the related but different problem of turning on and off sen-
sors during the execution in order to minimize energy consumption. In [15], the
authors consider games with perfect information but the discovery of interesting
predicates to establish controllability. In [14] this idea is extended to games with
imperfect information. In those two works the set of predicates is not fixed a
priori, there is no cost involved and the problems that they consider are unde-
cidable. In [19], a related technique is used: a hierarchy on different levels of
abstraction is considered, which allows to use analysis done on coarser abstrac-
tions to reduce the state space to be explored for more precise abstractions.

Structure of the Paper. In section 2, we define a notion of labeled transition
systems that serves as the underlying formalism for defining the semantics of the
two-player safety games. In the same section we define imperfect information
games and show the reduction of [22] of these games to the games with complete
information. Then in section 3 we define timed game automata, that we use as a
modeling formalism. In section 4, we state the cost-optimal controller synthesis
problem and show that a natural extension of this problem (that considers a
simple infinite set of observation predicates) is undecidable. In section 5, we
propose an algorithm and in section 6, we present two case studies.
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2 Games with Incomplete Information

2.1 Labeled Transition Systems

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) A is a tuple (S, sinit, Σ,→) where:

– S is a (possibly infinite) set of states,
– sinit ∈ S is the initial state,
– Σ is the set of actions,
– →⊆ S ×Σ × S is a transition relation, we write s1

a−→ s2 if (s1, a, s2) ∈→.

W.l.o.g. we assume that a transition relation is total, i.e. for all states s ∈ S
and actions a ∈ Σ, there exists s′ ∈ S such that s

a−→ s′.

A run of a LTS is a finite or infinite sequence of states r = (s0, s1, . . . , sn, . . . )

such that si
ai−→ si+1 for some action ai ∈ Σ. ri denotes the prefix run of r

ending at si. We denote by Runs(A) the set of all finite runs of the LTS A and
by Runsω(A) the set of all infinite runs of the LTS A.

A state predicate is a characteristic function ϕ : S → {0, 1}. We write s |= ϕ
iff ϕ(s) = 1.

We use LTS as arenas for games: at each round of the game Player I (Con-
troller) chooses an action a ∈ Σ, and Player II (Environment) resolves the
nondeterminism by choosing a transition labeled with a. Starting from the state
sinit, the two players play for an infinite number of rounds, and this interaction
produces an infinite run that we call the outcome of the game. The objective
of Player I is to keep the game in states that satisfy a state predicate ϕ, this
predicate typically models the safe states of the system.

More formally, Player I plays according to a strategy λ (of Player I) which is
a mapping from the set of finite runs to the set of actions, i.e. λ : Runs(A)→ Σ.
We say that an infinite run r = (s0, s1, s2, . . . , sn, . . . ) ∈ Runsω(A) is consistent
with the strategy λ, if for all 0 ≤ i, there exists a transition si

λ(ri)−−−→ si+1. We
denote by Outcome(A, λ) all the infinite runs in A that are consistent with λ
and start in sinit. An infinite run (s0, s1, . . . , sn, . . . ) satisfies a state predicate
ϕ if for all i ≥ 0, si |= ϕ. A (perfect information) safety game between Player
I and Player II is defined by a pair (A,ϕ), where A is an LTS and ϕ is a state
predicate that we call a safety state predicate. The safety game problem asks to
determine, given a game (A,ϕ), if there exists a strategy λ for Player I such that
all the infinite runs in Outcome(A, λ) satisfy ϕ.

2.2 Observation-Based Stuttering-Invariant Strategies

In the imperfect information setting, Player I observes the state of the game
using a set of observable predicates obs = {ϕ1, ϕ2, . . . , ϕm}. An observation is a
valuation for the predicates in obs, i.e. in a state s, Player I is given the subset
of observable predicates that are satisfied in that state. This is defined by the
function γobs:

γobs(s) ≡ {ϕ ∈ obs | s |= ϕ}
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We extend the function γobs to sets of states that satisfy the same set of
observation predicates. So, if all the elements of some set of states v ⊆ S satisfy
the same set of observable predicates o (i.e. ∀s ∈ v · γobs(s) = o), then we let
γobs(v) = o.

In a game with imperfect information, Player I has to play according to obser-
vation based stuttering invariant strategies (OBSI strategies for short). Initially,
and whenever the current observation of the system state changes, Player I pro-
poses some action a ∈ Σ and this intuitively means that he wants to play the
action a whenever this action is enabled in the system. Player I is not allowed
to change his choice as long as the current observation remains the same.

An Imperfect Information Safety Game (IISG) is defined by a triple (A,ϕ, obs).
Consider a run r = (s0, s1, . . . , sn), and its prefix r′ that contains all the

elements but the last one (i.e. r = r′ · sn). A stuttering-free projection r ↓ obs
of a run r over a set of predicates obs is a sequence, defined by the following
inductive rules:

– if r is a singleton (i.e. n = 0), then r ↓ obs = γobs(s0)
– else if n > 0 and γobs(sn−1) = γobs(sn), then r ↓ obs = r′ ↓ obs
– else if n > 0 and γobs(sn−1) 	= γobs(sn), then r ↓ obs = r′ ↓ obs · γobs(sn)

Definition 2. [8] A strategy λ is called obs-Observation Based Stuttering In-
variant (obs-OBSI) if for any two runs r′ and r′′ such that r′ ↓ obs = r′′ ↓ obs,
the values of λ on r′ and r′′ coincide, i.e. λ(r′) = λ(r′′).

We say that Player I wins in IISG (A,ϕ, obs), if there exists a obs-OBSI strategy
λ for Player I such that all the infinite runs in Outcome(A, λ) satisfy ϕ.

2.3 Knowledge Games

The solution of a IISG (A,ϕ, obs) can be reduced to the solution of a perfect
information safety game (G,ψ), whose states are sets of states in A and represent
the knowledge (beliefs) of Player I about the current possible states of A.

We assume that ϕ ∈ obs, i.e. the safety state predicate is observable for Player
I. This is a reasonable assumption since Player I should be able to know whether
he loses the game or not.

Consider an LTS A = (S, sinit, Σ,→). We say that a transition s1
a−→ s2 in A

is obs-visible, if the states s1 and s2 have different observations (i.e. γobs(s1) 	=
γobs(s2)), otherwise we call this transition to be obs-invisible. Let v ⊆ S be a
knowledge (belief) of Player I inA, i.e. it is some set of states that satisfy the same
observation. The set Postobs(v, a) contains all the states that are accessible from
the states of v by a finite sequence of a-labeled obs-invisible transitions followed
by an a-labeled obs-visible transition. More formally, Postobs(v, a) contains all

the states s′, such that there exists a run s1
a−→ s2

a−→ . . .
a−→ sn and s1 ∈ v,

sn = s′, γobs(si) = γobs(s) for all 1 ≤ i < n, and γobs(sn) 	= γobs(s).
The set Postobs(v, a) contains all the states that are visible for Player I after he

continuously offers to play action a from some state in v. Player I can distinguish
the states s1 and s2 from Postobs(v, a) iff they have different observations, i.e.
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γobs(s1) 	= γobs(s2). In other words, the set {Postobs(v, a)∩γ−1
obs(o) | o ∈ P(obs)}\

{∅} consists of all the beliefs that Player I might have after he plays the a action
from the knowledge set v1.

A game can diverge in the current observation after playing some action. To
capture this we define the boolean function Sinkobs(v, a) whose value is true iff
there exists an infinite run (s0, s1, . . . , sn, . . . ) ∈ Runs(A) such that s0 ∈ v and

for each i ≥ 0 we have si
a−→ si+1 and γobs(si) = γobs(s0).

Definition 3. We say, that a game (G,ψ) is the knowledge game for (A,ϕ, obs),
if G = (V, vinit, Σ,→g) is an LTS and

– V = {v ∈ P(S) | ∀s1, s2 ∈ v · γobs(s1) = γobs(s2)} \ {∅} is the set of all the
beliefs of Player I in A,

– vinit = {sinit} is the initial game state,

– →g represents the game transition relation; a transition v1
a−→g v2 exists iff:

• v2 = Postobs(v1, a) ∩ γ−1
obs(o) and v2 	= ∅ for some o ⊆ obs, or

• Sinkobs(v1, a) is true and v2 = v1.
– v |= ψ iff ϕ ∈ γobs(v).

Theorem 1 ([8]). Player I wins in a IISG (A,ϕ, obs) iff he has a winning
strategy in the safety game (G,ψ) which is the knowledge game for (A,ϕ, obs).

This theorem gives us the algorithm of solution of a IISG for the case when the
knowledge games for it is finite and can be automatically constructed.

3 Timed Game Automata

The knowledge game (G,ψ) for (A,ϕ, obs) is finite when the source game A is
finite [22]. The converse is not true and there are higher level formalisms that can
induce infinite games for which knowledge games are still finite and can be au-
tomatically constructed. One of such formalisms is Timed Game Automata [17],
that we use as a modeling formalism and that has been proved in [8] to have
finite state knowledge games.

Let X be a finite set of real-valued variables called clocks. We denote by C(X)
the set of constraints ψ generated by the grammar: ψ ::= x ∼ k | x−y ∼ k | ψ∧ψ
where k ∈ IN, x, y ∈ X and ∼∈ {<,≤,=, >,≥}. B(X) is the set of constraints
generated by the following grammar: ψ ::= � | k1 ≤ x < k2 | ψ ∧ ψ where
k, k1, k2 ∈ IN, k1 < k2, x ∈ X , and � is the boolean constant true.

A valuation of the clocks in X is a mapping X �→ R≥0. For Y ⊆ X , we denote
by v[Y ] the valuation assigning 0 (respectively, v(x)) for any x ∈ Y (respectively,
x ∈ X \ Y ). We also use the notation 0 for the valuation that assigns 0 to each
clock from X .

1 The powerset P(S) is equal to the set of all subsets of S
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Definition 4 (Timed Game Automata). A Timed Game Automaton (TGA)
is a tuple (L, linit, X,E,Σc, Σu, I) where:

– L is a finite set of locations,
– linit ∈ L is the initial location,
– X is a finite set of real-valued clocks,
– Σc and Σu are finite the sets of controllable and uncontrollable actions (of

Player I and Player II, correspondingly),
– E ⊆ (L× B(X)×Σc × 2X × L) ∪ (L× C(X)×Σu × 2X × L) is partitioned

into controllable and uncontrollable transitions2,
– I : L→ B(X) associates to each location its invariant.

We first briefly recall the non-game semantics of TGA, that is the semantics of
Timed Automata (TA) [2]. A state of TA (and TGA) is a pair (l, v) of a location
l ∈ L and a valuation v over the clocks in X . An automaton can do two types
of transitions, that are defined by the relation ↪→:

– a delay (l, v)
t
↪−→ (l, v′) for some t ∈ R>0, v

′ = v + t and v′ |= I(l), i.e. to
stay in the same location while the invariant of this location is satisfied, and
during this delay all the clocks grow with the same rate, and

– a discrete transition (l, v)
a
↪−→ (l′, v′) if there is an element (l, g, a, Y, l′) ∈ E,

v |= g and v′ = v[Y ], i.e. to go to another location l′ with resetting the clocks
from Y , if the guard g and the invariant of the target location l′ are satisfied.

In the remainder of this section, we define the game semantics of TGA. As in
[8], for TGA, we let observable predicates be of the form (K,ψ), where K ⊆ L
and ψ ∈ B(X). We say that a state (l, v) satisfies (K,ψ) iff l ∈ K and v |= ψ.

Intuitively, whenever the current observation of the system state changes,
Player I proposes a controllable action a ∈ Σc and as long as the observation
does not change Player II has to play this action when it is enabled, and otherwise
he can play any uncontrollable actions or do time delay. Player I can also propose
a special action skip, that means that he lets Player II play any uncontrollable
actions and do time delay. Any time delay should be stopped as soon as the
current observation is changed, thus giving a possibility for Player I to choose
another action to play.

Formally, the semantics of TGA is defined by the following definition:

Definition 5. The semantics of TGA (L, linit, X,E,Σc, Σu, I) with the set of
observable predicates obs is defined as the LTS (S, sinit, Σc ∪ {skip},→), where
S = L × RX

≥0, sinit = (linit,0) and the transition relation is: (↪→ denotes the
non-game semantics of M)

– s
skip−−−→ s′ exists, iff s

au
↪−→ s′ for some au ∈ Σu, or there exists a delay

s
t
↪−→ s′ for some t ∈ R>0 and any smaller delay doesn’t change the current

observation (i.e. if s
t′
↪−→ s′′ and 0 ≤ t′ < t then γobs(s) = γobs(s′′)).

2 We follow the definition of [8] that also assumes that the guards of the controllable
transitions should be of the form k1 ≤ x < k2. This allowsus touse the results from that
paper. In particular,weuseurgent semantics for the controllable transitions, i.e. for any
controllable transition there is an exact moment in time when it becomes enabled.



Controllers with Minimal Observation Power 229

– for a ∈ Σc, s
a−→ s′ exists, iff:

• a is enabled in s and there exists a discrete transition s
a
↪−→ s′, or

• a is not enabled in s, but there exists a discrete transition s
au
↪−→ s′ for

some au ∈ Σu, or

• there exists a delay s
t
↪−→ s′ for some t ∈ R>0, and for any smaller

delay s
t′
↪−→ s′′ (where 0 ≤ t′ < t) the observation is not changed, i.e.

γobs(s) = γobs(s
′′), and action a is not enabled in s′′.

For a given TGAM , set of observable predicates obs and a safety state-predicate
ϕ (that can be again of the form (K,ψ)), we say that Player I wins in the
Imperfect Information Safety Timed Game (IISTG) (M,ϕ, obs) iff he wins in
the IISG (A,ϕ, obs), where A defines the semantics for M and obs.

The problem of solution of IISTG is decidable since the knowledge games
are finite for TGA [8]. The paper [8] proposes a symbolic Difference Bounded
Matrices (DBM)-based procedure to construct them.

4 Problem Statement

Consider that several observable predicates are available, with assigned costs,
and we look for a set of observable predicates allowing controllability and whose
cost is minimal. This is formalized in the next definition:

Definition 6. Consider a TGA M , a finite set of available observable pred-
icates Obs over M , a safety observable predicate ϕ ∈ Obs and a monotonic
with respect to set inclusion function ω : P(Obs) → R≥0. The optimization
problem for (M,ϕ,Obs, ω) consists in computing a set of observable predicates
obs ⊆ Obs such that Player I wins in the Imperfect Information Safety Timed
Game (M,ϕ, obs) and ω(obs) is minimal.

We present in the next section our algorithm to compute a solution to the opti-
mization problem. In this paper, we restrict our attention to finite sets of avail-
able predicates. We justify this restriction by the following undecidability result:
considering a reasonable infinite set of observation predicates, the easier problem
of the existence of a set of predicates allowing controllability is undecidable:

Theorem 2. Consider a TGA M with clocks X, and an (infinite) set of avail-
able predicates Obs = {x < 1

q | x ∈ X, q ∈ N, q ≥ 1} and the safety objective ϕ.
Determining whether there exists a finite set of predicates obs ⊂ Obs such that
Player I wins in IISTG (M,ϕ, obs) is undecidable.

5 The Algorithm

The naive algorithm is to iterate through all the possible solutions P(Obs), for
each obs ∈ P(Obs) solve IISTG (M,ϕ, obs) via the reduction to the finite-state
knowledge games, and finally pick a solution with the minimal cost.

In section 5.1 we propose the more efficient algorithm that avoids exploring
all the possible solutions from P(Obs). Additionally, in sections 5.2 we describe
the optimization that reuses the information between different iterations.
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Algorithm 1. Lattice-based algorithm

//input: TGA M , a set of observable predicates Obs, a safety predicate ϕ
//output: a solution with a minimal cost
function Optimize(M,ϕ,Obs, ω):
1. candidates := P(Obs) // initially, candidates contains all subsets of Obs
2. best candidate := None
3. while candidates �= ∅:
4. pick obs ∈ candidates
5. if Solve(M,ϕ, obs):
6. best candidate := obs
7. candidates = candidates \ {c : c ∈ P(Obs) ∧ ω(c) ≥ ω(obs)}
8. else:
9. candidates = candidates \ {c : c ∈ P(Obs) ∧ c ⊆ obs}
10. return best candidate

5.1 Basic Exploration Algorithm

Consider, that we already solved the game for the observable predicates sets
obs1, obs2, . . . , obsn and obtained the results r1, r2, . . . , rn, where ri is either true
or false, depending on whether Player I wins in IISTG (M,ϕ, obsi) or not.

From now on we don’t have to consider any set of observable predicates with a
cost larger or equal to the cost of the optimal solution found so far. Additionally,
if we know, that Player I loses for the set of observable predicates obsi (i.e. ri =
false), then we can conclude that he also loses for any coarser set of observable
predicates obs ⊂ obsi (since in this case Player I has less observation power).
Therefore we don’t have to consider such obs as a solution to our optimization
problem. This can be formalized by the following definition:

Definition 7. A sequence (obs1, r1), (obs2, r2) . . . (obsn, rn) is called a
non-redundant sequence of solutions for a set of available observable predicates
Obs and cost function ω, if for any 1 ≤ i ≤ n we have obsi ⊆ Obs, ri ∈
{true, false}, and for any j < i we have:

– ω(obsj) > ω(obsi) if rj = true,
– obsi 	⊆ obsj, otherwise.

Algorithm 1 solves the optimization problem by iteratively solving the game
for different sets of observable predicates so that the resulting sequence of so-
lutions is non-redundant. The procedure Solve(M,ϕ, obs) uses the knowledge
game-reduction technique described in section 2. The algorithm updates the set
candidates after each iteration and when the algorithm finishes, the best candidate
variable contains a reference to the solution with the minimal cost.

Algorithm 1 doesn’t state, in which order we should navigate through the set
of candidates. We propose the following heuristics:

– cheap first (and expensive first) — pick any element from the candidates
with the maximal (or minimal) cost,
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a) b) c)

d)

Fig. 1. a) The original LTS A and two observable predicates ϕ1 and ϕ2, b) the knowl-
edge game Gf for A with observable predicates {ϕ1, ϕ2}, c) the knowledge game G1

c for
A with observable predicates {ϕ1}, d) the knowledge game G2

c for Gf with observable
predicates {ϕ1}

– random — pick a random element from the candidates,
– midpoint — pick any element, that will allow us to eliminate as many ele-

ments from the candidates set as it is possible. In other words, we pick an
element that maximizes the value of
min(|{c : c ∈ candidates∧w(c) ≥ w(obs)}|, |{c : c ∈ candidates∧ c ⊆ obs}|).

Algorithm 1 doesn’t specify how we store the set of possible solutions candidates.
An explicit way (i.e. store all elements) is expensive, because the candidates set
initially contains 2|Obs| elements. However, an efficient procedure for obtaining
a next candidate may not exist as a consequence of the following theorem:

Theorem 3. Let seqn = (obs1, r1), (obs2, r2), . . . , (obsn, rn) be a non-redundant
sequence of solutions for some set Obs and cost function ω : P(Obs) → R≥0.
Consider that the value of ω can be computed in polynomial time. Then the
problem of determining whether there exists a one-element extension
seqn+1 = (obs1, r1), (obs2, r2), . . . , (obsn, rn), (obsn+1, rn+1) of seq that is still
non-redundant for Obs and ω is NP-complete.

5.2 State Space Reusage from Finer Observations

Intuitively, if we have already solved a knowledge game (Gf , ψf ) for a set obsf of
observable predicates, then we can view a knowledge game (Gc, ψc) associated
with a coarser set of observable predicates obsc ⊂ obsf as an imperfect infor-
mation game with respect to (Gf , ψf ). Thus we can solve the knowledge game
for obs without exploring the state space of the TGA M and therefore without
using the expensive DBM operations. Moreover, we can build another game on
top of Gc (for an observable predicates set that is coarser than obs) and thus
construct a “Russian nesting doll” of games. This is an important contribution
of our paper, since this construction can be applied not only to Timed Games,
but also to any modeling formalism that have finite knowledge games.
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The state space reusage method is demonstrated on a simple LTS A at Fig. 1.
Suppose, that we already built the knowledge game Gf for the observable pred-
icates {ϕ1, ϕ2}. Now, if we want to build a knowledge game for {ϕ1}, we can do
that in two ways. First, we can build it from scratch based on the state space of
A, and the resulting knowledge game G1

c is given at subfigure c. Alternatively,
we can build the knowledge game G2

c on the top of Gf (see subfigure d). The
states of G1

c are sets of states of A and the states of G2
c are sets of sets of states

of A. The games G2
c and G1

c are bisimilar, thus Player I wins in G1
c iff he wins

in G2
c (for any safety predicate). The latter is true for any LTS A, that is stated

by the following theorem and corollary:

Theorem 4. Suppose that obsc ⊂ obsf , (Gf , ψf ) is the knowledge game for
(A,ϕ, obsf ), (G

1
c , ψ

1
c ) is the knowledge game for (A,ϕ, obsc) and (G2

c , ψ
2
c ) is the

knowledge game for (Gf , ψf , obsc). Then the relation R = {(v, v′)|v =
⋃

s′∈v′ s′}
between the states of G1

c and G2
c is a bisimulation.

Corollary 1. Player I wins in (G1
c , ψ

1
c ) iff Player I wins in (G2

c , ψ
2
c ).

This reusage method is also correct for the case when an input model is defined
as a TGA (since we can apply the theorem to the underlying LTS).

Implementation. Our Python prototype implementation of this algorithm (see
https://launchpad.net/pytigaminobs) explicitly stores the set of candidates
and uses the on-the-fly DBM-based algorithm of [8] for the construction and
solution of knowledge games for IISTG (the algorithm stops early when it detects
that the initial state is losing).

6 Case Studies

We applied our implementation to two case studies.
The first is a “Train-Gate Control”, where two trains tracks merge together on

a bridge and the goal of the controller is to prevent their collision. The trains can
arrive in any order (or don’t arrive at all), thus the challenge for the controller
is to handle all possible cases.

The second is “Light and Heavy boxes”, where a box is being processed on
the conveyor in several steps, and the goal of the controller is to move the box to
the next step within some time bound after it has been processed at the current
step.

6.1 Train-Gate Control

The model of a single (first) train is depicted at Fig. 2. There are two semaphore
lights before the bridge on each track. A train passes the distance between
semaphores within 1 to 2 time units. A controller can switch the semaphores
to red (actions stop1 and stop2 depending on the track number), and to green
(actions go1 and go2). These semaphores are intended to prevent the trains from

https://launchpad.net/pytigaminobs
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stop1go1stop1

x1:=0,
pos1:=2

go1

x1:=0,
pos1:=1

x1:=0

x1<=2

x1<=2x1<=2

PASSED

STOPPED STOPPED

x1:=0x1==0 x1==0

x1>=1
critical−=1x1>=1 critical+=1,

x1:=0,
pos1:=3

x1>=1

Fig. 2. A model of a single train

colliding on the bridge. When the red signal is illuminated, a train will stop at
the next semaphore and wait for the green signal.

It is possible to mount sensors on the semaphores, and these sensors will detect
if a train approaches the semaphore. This is modeled with observable predicates
(pos1 ≥ 1), (pos2 ≥ 1), (pos1 ≥ 2) and (pos2 ≥ 2).

The controller has a discrete timer that is modeled using the clock y. At any
time this clock can be reset by the controller (action reset). There is an available
observable predicate (y < 2) that becomes false when the value of y reaches 2.
This allows the controller to measure time with a precision 2 by resetting y each
time this predicate becomes false and counting the number of such resets.

The integer variable critical contains the number of trains that are currently
on the bridge. The safety property is that no more than one train can be at the
critical section (bridge) at the same time and the trains should not be stopped
for more than 2 time units:

(critical < 2)∧((Train1.STOPPED)→ (x1 ≤ 2))∧((Train2.STOPPED)→ (x2 ≤ 2))

The optimal controller uses the following set of observable predicates: (pos1 ≥ 2),
(pos2 ≥ 2) and (y < 2). Such a controller waits until the second (in time) train
comes to the second semaphore, then pauses this train and lets it go after 2 time
units.

Figure 3a reports the time needed to find this solution for different param-
eters of the algorithm. Figure 3b contains the average number of iterations of

exploration order expensive first cheap first midpoint random

state space reusage with without with without with without with without

minimum 10m 1h03m 50m 49m 24m 41m 10m 48m

maximum 11m 1h36m 1h30m 1h34m 55m 1h36m 1h26m 1h44m

average 10m 1h18m 1h0m 1h12m 33m 1h03m 37m 1h05m

(a) Running time (the average is computer on 10 runs)

exploration order expensive first cheap first midpoint random

without state space reusage 1 21.69 5.27 6.17

with state space reusage 7.1 0 2.7 3.46

(b) The average number of iterations

Fig. 3. Results for the Train-Gate model
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Algorithm 1 (i.e. game checks for different sets of observable predicates). You
can see that it requires only a fraction of the total number of all possible solu-
tions 25 = 32. Additionally, the state space reusage heuristic allows to improve
the performance, especially for the “expensive first” exploration order. For this
model the most efficient way to solve the optimization problem is to first solve
the game with all the available predicates being observed, and then always reuse
the state space of this knowledge game. The numbers of 0 and 1 at Figure 3b
reflect that we don’t reuse the state space exactly once for the “expensive first”
order, and we never reuse the state space for the “cheap first” exploration order.

The game size ranges from 5 states for the game when only the safety state
predicate is observable to 9202 for the case when all the available predicates are
observable. The number of the symbolic states of TGA (i.e. different pairs of
reachable locations and DBMs that form the states of a knowledge game) ranges
from 1297 to 31171, correspondingly.

6.2 Light and Heavy Boxes

Consider a conveyor belt on which Light and Heavy boxes can be put. A box is
processed in n steps (n is a parameter of the model), and the processing at each
step takes from 1 to 2 time units for the Light boxes, and from 4 to 5 time units
for the Heavy boxes. The goal of the controller is to move a box to the next step
(by rotating the conveyor, with an action move) within 3 time units after the
box has been processed at the current step. At the last step the controller should
remove (action remove) the box from the conveyor within 3 time units. If the
controller rotates the conveyor too early (before the box has been processed),
too late (after more than 3 time units), or does not move it at all, then the
Controller loses (similar is true for the removing of the box at the last step).
Additionally, the controller should not rotate the conveyor when there is no box
on it, and should not try to remove the box when the box is not at the last step.
Our model is depicted at Fig. 4, and the goal of the controller is to avoid the
BAD location.

remove

remove

remove

remove
move
pos+=1
x:=0

remove

pos+=1
x:=0

remove

pos:=−1

move

move

move
pos<n

x>=1 pos<n

x>=3

x>=3

BAD

x>=4

x<=5

x<=2
pos:=−1

pos:=0
x:=0

heavy:=true
pos:=−1

pos:=0
x:=0

pos<n

x:=0

heavy:=false
pos:=−1

x:=0

pos==n

pos<n pos==n

Fig. 4. Light and heavy boxes model
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00m:00s

01m:00s

02m:00s

03m:00s

04m:00s

05m:00s

06m:00s

07m:00s

08m:00s

09m:00s

 2  3  4  5  6  7  8  9

expensive first (with SSR)
expensive first (without SSR)

random (with SSR)
random (without SSR)

midpoint (with SSR)
midpoint (without SSR)

cheap first

Fig. 5. Average running time (SSR states for State Space Reusage)

A box can arrive on the conveyor at any time, and there is an observable
predicate (pos = 0) with cost 1 which becomes true when the box is put on
the conveyor. Additionally, there is predicate (heavy = true) with cost 1 that
becomes true if a heavy box arrives. The model is cyclic, i.e. another box can be
put on the conveyor after the previous box has been removed from it.

As in the Traingate model, the controller can measure time using a special
clock y. We assume that a controller can measure time with different granularity,
and more precise clocks cost more. We model this by having three available
observable predicates: (y < 1) with cost 3, (y < 2) with cost 2, and (y < 3) with
cost 1.

A naive controller works with the observable predicates {(heavy = true),
(pos = 0), (y < 1)}, resets the clock y each time a new box is arrived, and then
move it to the next step (remove after the last iteration) each 2 time units if
the box is light and 5 time units if the box is heavy. However, it is not necessary
to use the expensive (y < 1) observable predicate, since a controller can move a
box after each 3 (6 for heavy box) time units, thus the time granularity of 3 is
enough and there is a controller that uses the observable predicates {(heavy =
true), (pos = 0), (y < 3)}. Our implementation detects such an optimal solution,
and Fig. 5 demonstrates an average time needed to compute this solution for
different numbers of box processing steps n. You can see that the state space
reusage heuristics improves the performance of the algorithm.

The game size for this model ranges from 4 knowledge game states and 51
symbolic NTA states when there are 2 processing steps and only safety predicate
is observable to 6417 knowledge game states and 15554 symbolic NTA states for
9 processing steps and when all the available predicate are observable.

7 Conclusions

In this paper we have developed, implemented and evaluated an algorithm for the
cost-optimal controller synthesis for timed systems, where the cost of a controller
is defined by its observation power.
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Our important contributions are two optimizations: the one that helps to
avoid exploration of all possible solutions and the one that allows to reuse the
state space and solve the imperfect information games on top of each other. Our
experiments showed that these optimizations allow to improve the performance
of the algorithm.

In the future, we plan to apply our method to other modeling formalisms that
have finite state knowledge games.
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Abstract. Many of today’s software systems are built using distributed
services, which evolve in different organizations. In order to facilitate
their integration, it is necessary to provide a contract that the services
participating in a composition should adhere to. A contract specifies
interactions among a set of services from a global point of view. One
important problem in a top-down development process is figuring out
whether such a contract can be implemented by a set of services, ob-
tained by projection and communicating via message passing. It was
only recently shown, that this problem, known as realizability, is decid-
able if asynchronous communication (communication via FIFO buffers)
is considered. It can be verified using the synchronizability property. If
the system is not synchronizable, the system is not realizable either. In
this paper, we propose a new, automatic approach, which enforces both
synchronizability and realizability by generating local monitors through
successive equivalence checks and refinement.

1 Introduction

Many software systems are now built using independently developed services,
which are mostly geographically and organizationally distributed. The specifi-
cation and analysis of interactions among such distributed systems is a major
concern for ensuring their correctness and reliability. In order to simplify the con-
struction of these systems, their design often relies on a contract, which describes
from a global point of view the admissible interaction sequences exchanged be-
tween the participants. In the area of Service Oriented Computing (SOC), this
contract is called choreography and the participants are called peers. The peers
correspond to a distributed implementation of this choreography, and can be
derived by projection, i.e., by projecting the choreography specification to each
peer by ignoring the messages that are not sent or received by that peer. A
crucial question in this context is to check whether the peers behave exactly
as required in the choreography. This property is called realizability [10,1] and
particularly matters when the system is developed following a top-down devel-
opment process.

Figure 1 presents a simple example of choreography involving three peers
(identified using 1, 2, and 3), which exchange three messages in sequence (a be-
tween 1 and 2, b between 2 and 3, and c between 1 and 2) and loops. On the right

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 238–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Choreography, Peers, Realizability

hand side of Figure 1, we give the projection obtained from this choreography,
where question marks correspond to receptions and exclamation marks to emis-
sions. Realizability aims at checking whether the distributed implementation
respects the ordering constraints specified in the global choreography.

Most distributed systems interact asynchronously where messages are sent
and received through unbounded FIFO buffers. In this context, checking the re-
alizability is a very difficult issue, because the distributed version of the system
can generate infinite state spaces. This is the case of the distributed system given
in Figure 1 for instance where peer 1 can infinitely send messages. Whether re-
alizability is decidable was an open problem for several years. However, it was
recently shown that it is decidable, verifying the synchronizability property [3].
A set of peers is synchronizable if and only if the system behavior, considering
the send messages, preserves the same message sequences under synchronous
and 1-bounded asynchronous communication. If a set of peers is synchronizable,
one can check if it conforms to a choreography specification. If the system is not
synchronizable then it is also not realizable. Both synchronizability and realiz-
ability checking involves finite state spaces and can be verified using equivalence
checking techniques. The system described in Figure 1 is not synchronizable for
example, because peer 1 can send a and c in sequence in the asynchronous sys-
tem, whereas b occurs before c in the synchronous system as specified in the
choreography.

Although this result is a significant step forward for formally analysing chore-
ographies, there are still open issues that deserve to be studied. One of them
arises when the realizability check returns false, due to one (or several) message
exchange(s) violating the choreography ordering constraints. In this situation,
there is no established solution for enforcing realizability and the designer is
supposed to patch the choreography manually. However, correcting ordering is-
sues may be a real burden for a designer, who just wants that the distributed
implementation of his/her system behaves as specified in the choreography. This
means that we need a way to control the distributed system to make it respect
the global requirements. It is worth observing that, in this paper, when we refer
to a problem in the choreography, this will always be an issue in the order of
messages. Finding bugs (other than ordering issues) in choreographies can be
achieved using existing verification tools.

In this paper, we propose a new approach, which identifies all problems which
prevent synchronizability and realizability of a choreography, and provides a
possible solution to enforce them. To do so, we generate monitors, which act as
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local controllers interacting with their peer and the rest of the system in order
to make the peers respect the choreography requirements. These monitors are
obtained by first generating the set of distributed peers by projection from the
choreography specification. Then, we check in sequence the system synchroniz-
ability and realizability using equivalence checking. If one of these properties
is violated, we exploit the generated counterexample to augment the monitors
with a new synchronization message. Monitors are obtained through an iterative
process, automatically refining their behaviors. The successive addition of these
messages will finally enforce both synchronizability and realizability.

Our approach can be automated using any existing verification toolbox han-
dling Labeled Transition Systems and providing an equivalence checker.We chose
to encode choreographies into the value-passing process algebra LNT [6], one of
the input languages of the CADP verification toolbox [12]. By doing so, we reuse
existing state space exploration tools for generating peers and distributed sys-
tems, and equivalence checking techniques for verifying synchronizability and
realizability. The process is fully supported (no human intervention) by calling
various tools, some we reused from CADP, others we implemented ourselves, e.g.,
for automating the iterative part of the process. We have validated our approach
on hundreds of examples, some of them borrowed from real-world scenarios found
in the literature.

Our monitor synthesis solution presents several advantages compared to ex-
isting results. Our approach goes beyond realizability checking by enforcing the
system to respect the choreography. It is non-intrusive (peers are not modified or
extended) and preserves the system parallelism by generating distributed moni-
tors. It finds all problems in the choreography which prevent its realizability and
suggests a distributed, implementable way to fix it. This is helpful in Service Ori-
ented Computing or Component Based Software Engineering where black-box
components are assumed. In the Web service domain, BPEL wrappers [2] can be
automatically generated from our monitor models for controlling the distributed
peers. In domains where the direct usage of the monitors is not an accept-
able solution, the generated synchronization messages can serve to augment the
choreography and provide a suggestion of how to fix it manually.

2 Background

We use conversation protocols [10] as choreography specification language in
this paper. A conversation protocol is a low-level formal model, which can be
computed from other existing specification formalisms such as collaboration di-
agrams [4], BPMN 2.0 choreographies [19], Singularity channels [22], or Message
Sequence Charts (MSC) [1].

A conversation protocol is a Labeled Transition System (LTS) specifying the
desired set of interactions from a global point of view. Each transition speci-
fies an interaction between two peers Psender, Preceiver on a specific message m.
A conversation protocol makes explicit the execution order of interactions. Se-
quence, choice, and loops are modeled using a sequence of transitions, several
transitions going out from the same state and a cycle in the LTS, respectively.
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Definition 1 (Conversation protocol). A conversation protocol CP for a
set of peers {P1, . . . ,Pn} is an LTS CP = (SCP , s

0
CP , LCP , TCP) where SCP is

a finite set of states and s0CP ∈ SCP is the initial state; LCP is a set of labels
where a label l ∈ LCP is a tuple mPi,Pj such that Pi and Pj are the sending and
receiving peers, respectively, Pi 	= Pj, and m is a message on which those peers
interact; finally, TCP ⊆ SCP ×LCP ×SCP is the transition relation. We require
that each message has a unique sender and receiver: ∀mPi,Pj ,m′P′

i,P′
j ∈ LCP :

m = m′ =⇒ Pi = P ′
i ∧ Pj = P ′

j.

In the remainder of this paper, we denote a transition t ∈ TCP as s
mPi,Pj

−−−−−→ s′

where s and s′ are source and target states and mPi,Pj is the transition label.
We use LTSs for specifying the peer interaction model. This behavioral model

defines the order in which the peer messages are executed. A label is a tuple
(m, d) where m is the message name and d stands for the communication direc-
tion (either an emission ! or a reception ?). The set of messages in one peer LTS
constitutes the peer alphabet.

Definition 2 (Peer). A peer is an LTS P = (S, s0, Σ, T ) where S is a finite set
of states, s0 ∈ S is the initial state, Σ = Σ! ∪Σ? is a finite alphabet partitioned
into a set of send and receive messages, and T ⊆ S × Σ × S is a transition
relation. We write m! for a message m ∈ Σ! and m? for m ∈ Σ?.

Peers are obtained by projection from a conversation protocol. After the projec-
tion they are determinized and minimized using standard algorithms [14], which
is possible as the number of states and messages is finite.

Definition 3 (Projection). Peer LTSs Pi = (Si, s
0
i , Σi, Ti) are obtained by

replacing in CP = (SCP , s
0
CP , LCP , TCP) each label mPj ,Pk ∈ LCP with m! if

j = i, with m? if k = i, and with τ (internal action) otherwise; and finally
removing the τ-transitions by applying standard minimization algorithms [14].

The synchronous composite system corresponds to the distributed system com-
puted over a set of peers communicating synchronously. In this context, a com-
munication between two peers holds if and only if both agree on a synchroniza-
tion label, i.e., if one peer is in a state in which a message can be sent, then the
other peer must be in a state in which that message can be received.

Definition 4 (Synchronous System). Given a set of peers {P1, . . . ,Pn} with
Pi = (Si, s

0
i , Σi, Ti), the synchronous system (P1 | . . . | Pn) is the LTS

(S, s0, Σ, T ) where:
– S = S1 × . . .× Sn
– s0 ∈ S such that s0 = (s01, . . . , s

0
n)

– Σ = ∪iΣi

– T ⊆ S ×Σ × S, and for s = (s1, . . . , sn) ∈ S and s′ = (s′1, . . . , s
′
n) ∈ S

(interact) s
m−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j where ∃ si m!−−→ s′i ∈

Ti, and sj
m?−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n}, k 	= i ∧ k 	= j ⇒ s′k = sk
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In the asynchronous composite system, the peers communicate with each other
asynchronously through FIFO buffers, i.e., each peer Pi is equipped with a k-
bounded message buffer Qk

i . If k is not made explicit, noted Qi, it means that
k = ∞ and stands for unbounded buffers. A peer can either send a message
m ∈ Σ! to the tail of the receiver buffer Qj at any state where this send message
is available, or read a message m ∈ Σ? from its buffer Qi if the message is
available at the buffer head.

Definition 5 (Asynchronous System). Given a set of peers {P1, . . . ,Pn}
with Pi = (Si, s

0
i , Σi, Ti), and Qi being its associated buffer, the asynchronous

system ((P1, Q1) || . . . || (Pn, Qn)) is the LTS (S, s0, Σ, T ) defined as follows:
– S ⊆ S1 ×Q1 × . . .× Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?

i )∗
– s0 ∈ S such that s0 = (s01, ∅, . . . , s0n, ∅)
– Σ = ∪iΣi

– T ⊆ S ×Σ × S,
and for s = (s1, Q1, . . . , sn, Qn) ∈ S and s′ = (s′1, Q

′
1, . . . s

′
n, Q

′
n) ∈ S

(send) s
m!−−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j , (i) si

m!−−→ s′i ∈ Ti,
(ii) Q′

j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 	= j ⇒ Q′
k = Qk, and (iv) ∀k ∈

{1, . . . , n} : k 	= i⇒ s′k = sk

(read) s
m?−−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′

i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k 	= i⇒ Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} : k 	=
i⇒ s′k = sk

A system is synchronizable [11,3] when its behavior remains the same under
both synchronous and asynchronous communication semantics. This is checked
by bounding buffers to k = 1 and comparing interactions in the synchronous
system with send messages in the asynchronous system.

Definition 6 (Synchronizability). Given a set of peers {P1, . . . ,Pn}, the syn-
chronous system (P1 | . . . | Pn) = (Ss, s

0
s, Ls, Ts), and the 1-bounded asyn-

chronous system ((P1, Q
1
1) || . . . || (Pn, Q

1
n)) = (Sa, s

0
a, La, Ta), two states r ∈ Ss

and s ∈ Sa are synchronizable if there exists a relation R such that R(r, s) and:

– for each r
m−→ r′ ∈ Ts, there exists s

m!−−→ s′ ∈ Ta, such that R(r′, s′);

– for each s
m!−−→ s′ ∈ Ta, there exists r

m−→ r′ ∈ Ts, such that R(r′, s′);

– for each s
m?−−→ s′ ∈ Ta, R(r, s′).

The set of peers is synchronizable if R(s0s, s
0
a).

The approach presented in [3] proposes a sufficient and necessary condition show-
ing that the realizability of conversation protocols is decidable.

Definition 7 (Realizability). A conversation protocol CP is realizable if and
only if (i) the peers computed by projection from this protocol are synchronizable,
(ii) the 1-bounded system resulting from the peer composition is well-formed, and
(iii) the synchronous version of the distributed system {P1, . . . ,Pn} is equivalent
to CP.
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Well-formedness states that whenever the i-th peer buffer Qi is non-empty, the
system can eventually move to a state where Qi is empty. For every synchroniz-
able set of peers, if the peers are deterministic, i.e., for every state, the possible
send messages are unique, well-formedness is implied.

Both synchronizability and realizability properties are checked automatically
using equivalence checking (weak trace equivalence in [3,17]). This check requires
the modification of the asynchronous system for hiding receptions (m? � τ),
renaming emissions into interactions (m!�m), and removing τ -transitions using
standard minimization techniques.

Running Example. For illustration purposes we specify the use of an applica-
tion in the cloud. This system involves four peers: a client (cl), a Web interface
(int), a software application (appli), and a database (db). We show first a conver-
sation protocol (Figure 2) describing the requirements that the designer expects
from the composition-to-be. The conversation protocol starts with a login in-
teraction (connect) between the client and the interface, followed by the setup
of the application triggered by the interface (setup). Then, the client can access
and use the application as far as necessary (access). Finally, the client decides to
logout from the interface (logout) and the application stores some information
(start/end time, used resources, etc.) into a database (log).

Fig. 2. Running Example: Choreography Specification

Figure 3 shows the four peers obtained by projection. This set of peers seems
to respect the behavior specified in the conversation protocol, yet this is difficult
to be sure using only visual analysis, even for such a simple example. In addition,
as the choreography involves looping behavior, it is hard to know whether the
resulting distributed system is bounded and finite, which would allow its formal
analysis using existing verification techniques. Actually, this set of peers is not
synchronizable (and therefore not realizable), because the trace of send messages
“connect, access” is present in the 1-bounded asynchronous system, but is not
present in the synchronous system. Synchronous communication enforces the
sequence “connect, setup, access” as specified in the choreography, whereas in
the asynchronous system peer cl can send connect! and access! in sequence.

In the rest of this paper, we propose an automated technique to identify all
problematic messages in a choreography. Our approach augments the system
with new participants and interactions in order to restore the correct message
sequences as specified in the global contract.
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Fig. 3. Peer Projection

3 Counterexample Guided Realizability Enforcement

In our approach, we augment each peer by an accompanying monitor, which
observes the behavior of the peer, and if necessary, controls the send messages
according to the temporal ordering of the global specification. Adding moni-
tors guarantees that the local behavior of the peers is not changed at all. The
monitors locally receive the messages sent by their peer and relay them later
after synchronization with the other monitors. They are refined by an iterative
process, when it terminates the choreography is realized by the set of peers and
monitors.

3.1 Monitors

A monitor interacts with its corresponding peer, with the other monitors and
with receiving peers (via their buffers in the asynchronous system). The interac-
tion with other monitors is done via synchronization messages, either incoming
synchronizations of the form m← for the synchronized monitor or outgoing syn-
chronizations of the form m→, initiated by the synchronizing monitor. We call a
message synchronized if there exists a synchronization message which delays it.

The monitor interacts with its corresponding peer over the send messages.
The monitor locally receives the message from the peer. If the message needs
to be synchronized, it first waits for the incoming synchronization message and
then relays the message to the receiver, otherwise it relays the message directly
to its receiver. If required, it will emit an outgoing synchronization message
afterwards.

Definition 8 (Monitor). A monitor is an LTS M = (S, s0, Σ, T ) where S is

a finite set of states, s0 is the initial state, Σ = Σ! ∪ Σ? ∪ Σ← ∪ Σ→is a finite
alphabet partitioned into sets of sending, locally receiving, incoming and outgoing
synchronization messages and T ⊆ S ×Σ × S is a transition relation.

The synchronous parallel composition of the peers and their monitors describes
the system where all participants interact using synchronous communication.

Definition 9 (Monitored Synchronous System). Given a set of peers {P1,
. . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti) and a set of monitors {M1, . . . ,Mn} withMi =

(Si, s0i , Σi, Ti), the monitored synchronous system ((P1,M1) | . . . | (Pn,Mn)) is
the LTS SS ′ = (S, s0, Σ, T ) where:
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– S = S1 × S1 × . . .× Sn × Sn
– s0 ∈ S such that s0 = (s01, s

0
1 . . . , s

0
n, s

0
n)

– Σ = ∪iΣi

– T ⊆ S×Σ×S, for s = (s1, s1 . . . , sn, sn) ∈ S and s′ = (s′1, s
′
n . . . , s

′
n, s

′
n) ∈ S

(send) s
τ−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
i where ∃ si m!−−→ s′i ∈ Ti,

and si
m?−−→ s′i ∈ Ti such that ∀k ∈ {1, . . . , n}, k 	= i⇒ s′k = sk ∧ s′k = sk

(interact) s
m−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j where ∃ si m!−−→ s′i ∈

Ti, and sj
m?−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n} : (k 	= j ⇒ s′k = sk) ∧ (k 	=

i⇒ s′k = sk)

(sync) s
τ−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ→

i ∩ Σ←
j where si

m→
−−→ s′i ∈ Ti

and sj
m←
−−→ s′j ∈ Tj and ∀k ∈ {1, . . . , n} : s′k = sk∧(k 	= i∧k 	= j ⇒ s′k = sk)

and finally removing the τ-transitions.

In the monitored asynchronous system, each pair (Pi, Qi) is composed with the
LTS of its monitor Mi. The asynchronous behavior of the peers and monitors
corresponds to the distributed system where the sending peers communicate
with their monitors, which relay the messages to the buffers of the receiving
peers. This is shown in Figure 4 for two peers. The remote interactions between
the monitors, local interactions between peers and their buffers or between peers
and their monitors are marked with dashed lines. They are not observable from
an external point of view. The visible interactions are the messages sent from
one peer to the other. These are relayed by the monitor of the sending peer and
are stored in the buffer of the receiving peer.

Definition 10 (Monitored Asynchronous System). Given a set of peers
{P1, . . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti), Qi its associated buffer and a set of cor-

responding monitors {M1, . . . ,Mn} with Mi = (Si, s0i , Σi, Ti), the asynchronous
system ((P1,M1, Q1) || . . . || (Pn,Mn, Qn)) is the LTS AS ′ = (S, s0, Σ, T )
where:
– S ⊆ S1 × S1 ×Q1 × . . .× Sn × Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?

i )∗
– s0 ∈ S such that s0 = (s01, s

0
1, ∅, . . . , s0n, s0n, ∅)

– Σ = ∪iΣi

– T ⊆ S ×Σ × S, and for
s = (s1, s1, Q1, . . . , sn, sn, Qn) ∈ S and s′ = (s′1, s

′
1, Q

′
1, . . . s

′
n, s

′
n, Q

′
n) ∈ S

Peer1

Buffer1

Monitor1 Buffer2

Peer2

Monitor2

read

read

send relay

sync

relay
send

Fig. 4. Interactions in the Monitored Asynchronous System
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(send) s
τ−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
i , (i) si

m!−−→ s′i ∈ Ti and

si
m?−−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} : Q′

k = Qk, and (iii) ∀k ∈ {1, . . . , n} :
k 	= i⇒ s′k = sk and s′k = sk

(relay) s
m!−−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ?

j ∩ Σ!
i, (i) si

m!−−→ s′i ∈ Ti,
(ii) Q′

j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 	= j ⇒ Q′
k = Qk, (iv) ∀k ∈

{1, . . . , n} : s′k = sk, and (v) ∀k ∈ {1, . . . , n} : k 	= i⇒ s′k = sk

(read) s
m?−−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′

i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k 	= i ⇒ Q′

k = Qk, (iv) ∀k ∈ {1, . . . , n} : k 	= i⇒
s′k = sk, and (v) ∀k ∈ {1, . . . , n} : s′k = sk

(sync) s
τ−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ→

i ∩Σ←
j , (i) si

m→
−−→ s′i ∈ Ti and

sj
m←
−−→ s′j ∈ Tj, (ii) ∀k ∈ {1, . . . , n} : s′k = sk, (iii) ∀k ∈ {1, . . . , n} : Q′

k =

Qk, and (iv) ∀k ∈ {1, . . . , n} : k 	= i, j ⇒ s′k = sk
and finally removing the τ-transitions.

Using Def. 9 and 10, synchronizability and realizability are checked as follows: For
synchronizability, we check the equivalence between the monitored synchronous
and monitored asynchronous system with 1-bounded buffers. For realizability
we check the equivalence between the monitored synchronous system and the
choreography.

3.2 Iterative Construction of the Monitors

We use an iterative approach to identify all the problematic messages in a chore-
ography. At each iteration an equivalence check is conducted. If the check fails,
its result is analyzed to decide which synchronization message must be added to
the choreography. This results in the extended conversation protocol (ECP).

Definition 11 (Extended Conversation Protocol). An extended conversa-
tion protocol ECP for a set of peers {P1, . . . ,Pn} and corresponding set of mon-
itors {M1, . . . ,Mn} is an LTS (SECP, s

0
ECP, LECP ∪ L+

ECP, TECP) where SECP,
s0ECP, LECP are defined analogous to Def. 1; a synchronization label l ∈ L+

ECP

is a tuple syncMj ,Mk where Mj and Mk are the synchronizing and synchronized
monitor (j 	= k); finally, TECP ⊆ SECP×(LECP∪L+

ECP)×SECP is the transition
relation.

The extended conversation protocol is augmented iteratively with synchroniza-
tion messages until the choreography becomes realizable. This works for all non-
faulty choreographies. Those which involve divergent choices are considered as
faulty [22]. Realizability cannot be enforced in that case, as it is impossible to
control divergent choices in a distributed system without changing the local be-
havior of the peers. Faulty choreographies are identified beforehand by detecting
non-confluent diamonds of interactions in the conversation protocol using the
executable temporal logic (XTL) [13].

The complete approach to enforce realizability of a choreography is shown as
activity diagram in Figure 5. In a first step, we discard faulty choreographies.
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Then, we project the peers and start with the synchronizability check. At each
iteration, the equivalence between the monitored synchronous and the 1-bounded
monitored asynchronous system is checked. If this check fails, we analyze the
counterexample, identify the problematic message, and augment the ECP with
the necessary synchronization message. The synchronizability loop of the activity
is executed as long as the system is not synchronizable. When the choreography
is finally synchronizable, we proceed with the realizability check of the activity.
Here, we check the equivalence between the monitored synchronous system and
the original CP. The analysis of the counterexamples and the introduction of the
synchronization messages is done as before, and we continue the activity until
the realizability check succeeds.

project CP
onto peers

check
synchronizability

check
realizability

read counterexample
extract sync message

add sync
message to ECP

[else]

check non-
faulty CP

[else]

[ok]

[realizable]

read counterexample
extract sync message

add sync
message to ECP

[else]
start

Synchronizability Check Realizability Check

exit

[synchronizable]

monitor
generation

monitor
generation

Fig. 5. Approach Overview

Now, we explain how we augment the ECP with synchronization messages
for the monitors. If the equivalence check does not succeed in iteration k, a
counterexample is returned. This is a finite trace, whose prefix is contained in
both systems, but the sending of the last message m′ is only possible in one of
them. Therefore the sending of this messagem′ must be controlled by a monitor,
in order to adhere to the specification. To do so, we introduce synchronization
messages into ECPk as follows:

1. Locate in ECPk the message m′, its sending peer Pi and the states s∗, s∗
′

for which there exists s∗
m′Pi,P−−−−→ s∗′ ∈ TECPk

2. Add a new state snew to the set of states SECPk+1

3. Replace each s∗
mPi,Pl−−−−→ s∗′ ∈ TECPk

with snew
mPi,Pl−−−−−→ s∗′

(with snew
mPi,Pl−−−−−→

snew if s∗ = s∗
′
) in TECPk+1

4. For every incoming transition to s∗, s
m

Pj ,Pj′
−−−−−→ s∗ ∈ TECPk

, add a new

transition s∗
sync

Pj ,Pi

m′−−−−−−→ snew to TECPk+1
(for Mj to Mi, where syncm′ is a

new name) and add the synchronization message sync
Pj ,Pi

m′ to L+
ECPk+1
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After each iteration, we derive the monitors from the extended conversation
protocol. This can be achieved by using a process similar to the peer projection.

Definition 12 (Monitor Projection). Monitor LTSs Mi = (Si, s0i , Σi, Ti)
are obtained by replacing in ECP = (SECP, s

0
ECP, LECP ∪ L+

ECP, TECP) each

transition s
mPj,Pk

−−−−−→ s′ (i) with a sequence of transitions s
m?−−→ s∗, s∗

m!−−→ s′

if m 	∈ L+
ECP and Pj = Pi, (ii) with a sequence of transitions s

m′?−−→ s∗,

s∗
sync←

m′−−−−→ s∗
′
, s∗

′ m′!−−→ s′ if m = syncm′ ∈ L+
ECP and Pk = Pi, (iii) with

s
sync→

m′−−−−−→ s′ if m = syncm′ ∈ L+
ECP and Pj = Pi, and (iv) with τ otherwise;

adding the new states s∗, s∗
′
to Si, and finally removing the τ-transitions.

Note that this projection does result in a correct monitor, but not necessarily
in the most permissive one. Due to the lack of space, we do not give its formal
definition here. Intuitively, we use an additional state machine composed with
the monitor. This creates all possible interleavings of the monitor behavior and
of the outgoing synchronization messages.

The iterative extension of the conversation protocol is guaranteed to termi-
nate after a finite number of steps and to result in a realizable choreography.
We must omit the proofs here, but the basic argument is as follows: the number
of messages that may be synchronized is bounded and no message can be syn-
chronized more than once; the equivalence checks assure that we find the right
message to synchronize.

Complexity. In theory it can be necessary to synchronize every message m ∈
LCP of the conversation protocol. As the parallel composition and equivalence
checks have a worst case complexity exponential in the number of peers #P ,
the worst case complexity of our approach is O(|LCP| · |SCP|#P). Nevertheless,
our experience showed that this is unlikely in practical cases. Most often the
number of additional synchronization messages is rather small and compositional
verification techniques help to reduce the complexity of the parallel composition
(for experimental details see Section 4).

Running Example.We illustrate the construction of the most permissive mon-
itors for the example choreography shown in section 2, which is is not synchro-
nizable. The message sequence “connect, access” is possible in the asynchronous
system, but not in the synchronous one. The message access can only be sent
from cl to appli after setup, therefore it must be deferred to be sent after that.
To do so, we add a synchronization message for access to the choreography. This
synchronization message is emitted by the monitor for int, who is the sender of
the message setup. The left hand side of Figure 6 shows the extended conversa-
tion protocol with the first synchronization message.

The right hand side of Figure 6 shows the monitor for the peer int. In the ini-
tial state it accepts the message sent by its peer (setup?). It relays this message to
its receiver (setup!) and sends an outgoing synchronization message (sync→access)
afterwards. What may seem counter-intuitive is the possibility of the message se-
quence “setup?, setup!, setup?, setup!” followed by two synchronization messages.
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connect

access
cl,int

setup
int,appli

cl,appli

log
appli,db

logout
cl,int

sync
int,cl

access

setup!

sync

setup!setup?
access

sync
access

setup?

sync
access

Fig. 6. After First Iteration

This is the result of constructing the most permissive monitor. As the peer is
not blocked after it sends the first message, it may proceed to send it again. The
monitor can relay both these messages. Nevertheless, after it relays the second
one without an outgoing synchronization message, both must be synchronized,
as synchronization messages are not buffered.

After the introduction of the first synchronization message, the choreography
is synchronizable but not realizable. The equivalence check returns the coun-
terexample “connect, setup, log”, but logout must always precede log. A second
synchronization message is therefore introduced right after the logout message.
It is exchanged between the monitors for the peer cl (who sends logout) and for
the peer appli. The left hand side of Figure 7 shows the monitor for appli after
the second iteration. It accepts the local emission of the log message from its
peer, waits for the incoming synchronization message, and then relays log.

Still, the choreography is not realizable in this form. The next counterexample
is “connect, setup, logout, connect”, i.e., the peer cl starts a new connection
attempt, before the log message is sent to db. A third synchronization message
is introduced directly after log, between the monitor for appli and the monitor
for cl. The right hand side of Figure 7 shows the monitor for appli after the
third iteration. After the integration of the three synchronization messages, the
choreography is finally both synchronizable and realizable.

log?

sync

log!

log

log!log?

log!
log?

sync
connect

sync
log

sync
log

sync
connect

sync
connect

sync
connect

Fig. 7. Iterative Monitor Construction for Peer appli

4 Tool Support

Implementation. Our approach is tool-independent; every formal verification
tool for equivalence checking of LTSs is usable. To automate the process, we
chose the formal language LOTOS NT (LNT) [6]. It enables the description of
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concurrent processes, communicating via messages. It is fully integrated into
CADP [12], which includes efficient methods for minimization under different
equivalence relations, equivalence and model checking. The encoding into LNT
also permits to analyze choreographies for bugs (other than message ordering
issues) using CADP tools, e.g., temporal properties expressed in MCL [16].

The conversation protocol, peers, monitors are encoded via the state machine
pattern as LNT processes. We exploit the parallel composition operator of LNT
to construct the most permissive monitors with all possible interleavings of the
synchronization messages. The buffer behaviors are also encoded using LNT
processes; the buffer operations are specified as LNT data types. The projection
from the ECP onto the distributed peers is realized using label hiding and LTS
reduction. The parallel composition of the FIFO buffers, peers and monitors,
as well as of the monitored peers is done using the parallel composition and
rendez-vous synchronization of LNT.

Experiments. We developed a test case generator, which we used to gener-
ate hundreds of conversation protocols with varying parameters, e.g., number of
peers, states and transitions. Our database of examples also includes 65 chore-
ographies taken from the literature, as well as variants of them.

Table 1 shows the results for some of the experiments we conducted. For
each example it shows the number of peers involved, the number of transitions
and states in the choreography, and the number of additional synchronization
messages. The fifth column shows the number of states and transitions of the
largest intermediate LTS while creating the monitored asynchronous system.
We use compositional verification, in particular smart parallel composition [8],
where reductions are applied during the parallel composition and a composition
sequence is decided heuristically. The final column shows the time for the longest
iteration as well as the overall time for all computations and checks on a 3 Ghz
Xeon CPU with 12 Gbyte RAM.

The number of peers has a significant influence on the state space of the
intermediate LTSs, more so than the number of transitions, e.g., see examples
cp0031 and cp0032. The asynchronous behavior of many peers with only few
messages generates many possible interleavings, while the behavior of few peers
but more messages generally creates much less. This is the case, e.g., in cp0153,
which has a small number of peers, but a higher number of transitions, yet the
intermediate state space of the LTS is rather small.

Table 1. Experimental Results

example |peers| |T |/|S| |sync| parallel time
composition max / total

cp0121 3 12 / 8 0 355 / 931 - / 54s
cp0016 3 4 / 3 1 121 / 337 46s / 1m 31s
cp0063 4 5 / 4 3 337 / 988 58s / 3m 54s
cp0153 3 29 / 16 5 15,182 / 59,033 53s / 7m 03s
cp0031 7 11 / 11 6 158,741 / 853,559 5m 47s / 19m 31s
cp0032 9 11 / 12 5 105,598 / 856,617 25m 53s / 1h 25m 10s
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5 Related Work

There exists much work on the verification of realizability, e.g., [10,1,4,21,15,3],
but none provides a solution if the choreography is not realizable. Let us focus
on related approaches, which propose solutions for ensuring realizability of a
choreography. In [5], the authors identify three principles for global descriptions
under which they define a sound and complete end-point projection, i.e., the
generation of distributed processes from the choreography description. If these
rules are respected, the distributed system obtained by projection will behave
exactly as specified in the choreography. The same approach is chosen for BPMN
2.0 choreographies [18]. In [20], the authors propose to modify their choreogra-
phy language to include new constructs (dominated choice and loop). During
projection of these new operators, some communication is added to make the
peers respect the choreography specification. However, these solutions prevent
the designer from specifying what (s)he wants to, and complicates the design
by obliging the designer to make explicit extra-constraints in the specification,
e.g., by associating dominant roles to certain peers. In [9], the authors propose a
Petri Net-based formalism for choreographies and algorithms to check realizabil-
ity and local enforceability. A choreography is locally enforceable if interacting
peers are able to satisfy a subset of the requirements of the choreography. To en-
sure this, some message exchanges in the distributed system are disabled. In [21],
the authors propose automated techniques to check the realizability of collabo-
ration diagrams for different communication models. In case of non-realizability
messages are added directly to the peers to enforce realizability. Collaboration
diagrams are much less expressive than conversation protocols, as choices and
loops cannot be specified, except for repetition of the same interaction.

Beyond advocating a solution for enforcing realizability, our contribution dif-
fers from these related works as follows. We focus on asynchronous communica-
tion and choreographies involving loops that may result in infinite state spaces.
Our approach is non-intrusive; we do not add any constraints on the choreogra-
phy language or specification, and the designer neither has to modify the original
choreography specification, nor the peer models. Instead, we generate local mon-
itors that preserve the system parallelism and control the peer behaviors to make
them respect the choreography requirements.

The technique we rely on here shares some similarities with counterexample-
guided abstraction refinement (CEGAR) [7]. In CEGAR, an abstract system
is analyzed for temporal logic properties. If a property holds, the abstraction
mechanism guarantees that the property also holds in the concrete design. If the
property does not hold, the reason may be a too coarse approximation by the
abstraction. In this case, the counterexample generated by the model checker, is
used to refine the system to a finer abstraction and the process is iterated.

To the best of our knowledge, our approach is the first application of equiva-
lence checking for a technique inspired from CEGAR. Moreover, our contribution
goes beyond CEGAR related approaches, because we do not only automatically
find problems in the model, but also offer a fix for (all of) them. Our approach
allows to solve a problem, namely automatically fixing message ordering issues



252 M. Güdemann, G. Salaün, and M. Ouederni

in a distributed system modeled using global contracts, for which no solution
has been yet suggested.

6 Conclusion

In this paper, we have presented a new solution to identify all necessary changes
to choreographies and synthesize distributed, local monitors which enforce re-
alizability. Our approach is directly applicable to all notations which are trans-
formable into conversation protocols. This is the case for most existing languages
such as BPMN 2.0, collaboration diagrams, WS-CDL, Singularity channels, and
MSC. We generate the monitors in successive iterations by checking both the
synchronizability and realizability properties on the distributed system obtained
by projection from the choreography specification. If one of these two properties
is not satisfied, we use the counterexample resulting from this check to extend
the monitors with additional synchronization messages. When both properties
are finally ensured, we know that the system is bounded, synchronizable, and
realizable. This assures the correct behavior of the distributed system according
to the choreography, without making any change in the services themselves. Our
main perspective aims at working with models closer to implementations that
consider not only message passing communications, but also data exchanged be-
tween peers. This impacts choreography semantics and raises new issues such as
dead code detection.

Acknowledgements. The authors would like to thank Samik Basu, Tevfik Bul-
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of this paper.
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Abstract. Assertions are a powerful and widely used debugging tool in
sequential programs, but are ineffective at detecting concurrency bugs.
We recently introduced parallel assertions which solve this problem by
providing programmers with a simple and powerful tool to find bugs
in parallel programs. However, while modern computer hardware im-
plements weak memory models, the sequentially consistent semantics of
parallel assertions prevents these assertions from detecting some feasible
bugs. We present a formal semantics for parallel assertions that accounts
for the effects of weak memory models. This new formal semantics allows
us to prove the correctness of two key optimizations which significantly
increase the speed of a runtime assertion checker on a set of PARSEC
benchmarks. We discuss the probe effect caused by checking these asser-
tions at runtime, and show how our new semantics allows the detection
of bugs that were undetectable in the previous semantics.

1 Introduction

Assertions are a powerful and widely used debugging tool. They allow program-
mers to state their expectations about program executions, and provide a mecha-
nism to indicate when these expectations are violated. However, while assertions
have proven to be a valuable tool for debugging sequential programs, they have
fundamental limitations that restrict their utility in parallel programs.

If a programmer asserts a property φ in a sequential program, he can safely
assume that the code after the assertion executes in an environment in which φ
is true. In a parallel program, however, other threads can interfere and invalidate
the property φ. The programmer wants to state “while this code is executing, φ
must hold”, but only has a way to say “before this code executes, φ holds”.

Parallel Assertions [13] provide an elegant solution to this problem. Instead of
evaluating an assertion at a single point in time, a parallel assertion is associated
with a syntactic scope, delineated with the keywords thru and passert(φ). The
assertion φ must hold at all times between the begin and end of the scope.

Atomicity violations and order violations comprise the majority of concur-
rency bugs [11]. These bugs have the same ultimate cause: a read or a write was
issued by a thread at a time when it should not have been able to interfere. In
order to allow the specification of such non-interference properties, we allow par-
allel assertions to refer to memory accesses by means of the operators LocalWrite

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 254–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Parallel Assertions for Architectures with Weak Memory Models 255

LW(x), RemoteWrite RW(x), LocalRead LR(x), RemoteRead RR(x), which in-
dicate whether a given variable is read or written by a local or remote thread. The
history operator HasOccurred (HO) allows the programmer to make assertions
about a (limited) history of the execution. The assertion if Fig. 1, for example,

thru{
. . . ; x = 1; . . .

} passert(! RR(x)||HO(LW(x))

Fig. 1. A simple assertion

checks whether the variable x is initialised
by the local thread before it is read by any
remote thread. These features make par-
allel assertions highly expressive, allowing
them to capture 14 out of 17 real world
bugs from the University of Michigan bug
bench [17].

We recently presented a runtime checker for parallel assertions [12]. This work,
however, is limited by the fact that the semantics of parallel assertions in [13]
is based on a sequentially consistent (SC) memory model. Modern processor
architectures do not satisfy this requirement, and enforcing SC on a weaker
memory model using fences slows down the execution and effectively masks bugs.

Contributions: We present a formal operational semantics for parallel asser-
tions that accounts for the effects of weak memory models (§2, §3). This model
enables two key optimisations (event filtering and relaxed timing) which we
present and prove correct in (§4). We discuss the impact of fences in our model
in (§5). We implemented a run-time checker for weak memory systems, and show
the significant (order 2×) speedups enabled by our optimisations (§6).

2 Observing Program Executions

The evaluation of an assertion is based on the observation of an execution of the
program under test. An execution is characterised by a series of events (discussed
in §2.1) and the order in which they are observed (§2.2).

2.1 Program Events

A parallel program comprises a set of threads, each of which generates a series of
observable events. Events are generated by instructions executed by the proces-
sor, and each instruction may result in a number of events. The execution of the
assignment x:=y+z, for instance, may give rise to two read and one write events.
We intentionally base the specification of our assertion language on program
events rather than on the instructions of the underlying programming language.
The rationale for this decision is that the C++ standard [7] does not provide
a semantics for programs with race conditions. In practice, though, a compiler
would still generate assembly code (albeit with a compiler-specific behaviour) for
such a program. It is exactly in such corner cases that parallel assertions enabling
the programmer to debug the flawed program are particularly valuable.

We use E to denote the set of all observable program events. Formally, an
event is a tuple comprising a unique identifier uid, the thread identifier tid of the
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thread that generated the event, the type of the event, and any data associated
with that particular type of event. We distinguish the following types of events:

Memory events M are physical memory accesses, such as reads and writes. A
memory event is a tuple 〈uid, tid, type, �, v〉, where uid, tid ∈ N are unique iden-
tifiers, type ∈ {READ,WRITE} represents the direction of the access, � is the
memory location accessed, and v ∈ V (where V is a set of values) is the value read
or written. We use Wtid � v to denote the write access 〈uid, tid,WRITE, �, v〉 and
Rtid � to denote a read access 〈uid, tid,READ, �, v〉 when uid (and v, respectively)
is not relevant in the given context.

Fence (barrier) events F affect the legal orderings in an execution by enforcing
ordering constraints on memory operations issued before and after the fence
instruction (c.f. §2.2). A fence event is a tuple comprising a unique identifier
uid, a thread identifier tid, an architecture dependent fence-type type, and an
optional (architecture-dependent) set of ordering constraints (c.f. §5).

Scope events S are generated upon entry or exit of a syntactic assertion scope.
A scope entry event is a tuple 〈uid, tid,ENTRY, φuid〉, where φuid is an assertion
(defined in §3.1). A scope exit event is a tuple 〈uid, tid,EXIT, uidENTRY〉, where
uidENTRY represents the unique entry event corresponding to the scope exit.

We use skip to denote events that are irrelevant for assertion evaluation.

2.2 Observation Order for Threads

An observation of a program execution is a sequence of program events. From the
viewpoint of a thread Pn, each event occurs at a particular point in time (which
determines its location in the sequence). In general, there is no global notion of
time, and therefore two threads may disagree on the order in which they observe
events. Note that we do not distinguish between “thread-local” and “global”
events — conceptually, a thread observes all events in some order, though in
practice it is typically infeasible (and unnecessary) to record all observations.

The following definition (borrowed from [6] and consistent with [1]) determines
what constitutes an observation of a memory event — from the point of view of
a given thread — in terms of the local time of that thread.

Definition 1 (Observability). A read or write event is observed when the
respective memory access takes effect from the point of view of the observer:
– A write to a location in memory is said to be observed by an observer Pn

when a subsequent read of the location by Pn would return the value written
by the write.

– A read of a location in memory is said to be observed by an observer Pn
when a subsequent write to the location by Pn would have no effect on the
value returned by the read.1

Fence events have no side effect on the execution other than the constraints they
impose on the ordering of events (c.f. §3 and §5). Accordingly, when a fence event

1 This definition is not cyclic, since a read observation is defined in terms of the
potential effect of a write rather than in terms of the observation of a write.
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is observed is architecture-dependent and determined by the respective ordering
constraints. Therefore, we do not provide a general definition.

Scope events are only visible to the thread which generates them (see §3).
Since they are side-effect free, we assume they are observed by Pn at the point
in time when they are generated.

Observations induce a per-thread total order of events, reflecting the order in
which they became visible to a particular thread Pn. We represent this order

using an irreflexive transitive relation
obsn−−−→ : E × E. For every pair of events

e1, e2 and thread Pn, there is a thread-local observation edge e1
obsn−−−→e2 iff e1

is before e2 in this total order, i.e., the thread observes e1 before e2. We use

e1
obsn−−−→× e2 to abbreviate ¬(e1

obsn−−−→e2) (which implies e2
obsn−−−→e1 for e1 	= e2).

Note that since
obsn−−−→ is irreflexive (i.e., ei

obsn−−−→× ei) and transitive, cycles are
not allowed. Accordingly, executions characterised by a cyclic ordering relation

are infeasible. While the definition of
obsn−−−→ does not impose any further re-

striction on executions, the program structure imposes certain restrictions as
to the order in which events are generated; the thread executing x:=y+z, for
example, has to perform reads from y and z before it can issue a write to x.

We refer to these (thread-local) constraints as the program order
pon−−→ : E × E.

W1 x 1po
1

po
1

R1 x R1 x
po

1 po
1W1 y 2

The program order of a thread Pn enforces that certain

events are observed in a specific order, i.e., e1
pon−−→e2 ⇒

e1
obsn−−−→e2. The relation

pon−−→ corresponds to
po−→ in [2] and

to the sequenced-before relation of [4] and is determined by
the semantics of the language. The diagram to the right,
for instance, shows the program order derived from the
code fragment x=1; y=x+x in the C++ language [7].

In addition to the restrictions imposed by the semantics of the program-
ming language, we require that events are not reordered across assertion scope
boundaries. For events ebef and eaft generated by instructions before and after
the beginning of a scope, respectively, and the corresponding scope entry event

eentry, we impose ebef
pon−−→eentry

pon−−→eaft (and similarly for the end of the scope).

We emphasise that the relation
obsn−−−→ does not impose ordering constraints on

other threads, i.e.,
obsn−−−→ is not global in the sense that

(
∃n . ei

obsn−−−→ej
)
does

not imply
(
∀n . ei

obsn−−−→ej
)
.

The underlying memory model, however, may impose ordering constraints
across threads. A common assumption is that the memory model guarantees
memory coherence in that for each location, there is a global total order over
the writes to that location (c.f. [2]):(
∃n . 〈uid1, tid1,WRITE, �, v1〉

obsn−−−→〈uid2, tid2,WRITE, �, v2〉
)

⇒
(
∀n . 〈uid1, tid1,WRITE, �, v1〉

obsn−−−→〈uid2, tid2,WRITE, �, v2〉
)

(1)
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Fig. 2. P1 and P3 observing (a) two instances of W2x or (b) R2x and R2y

Example 1 (Memory Coherence). Fig. 2(a) depicts an execution invalidated by
the coherence constraint (1). Threads P1 and P3 observe the write eventsW2 x 1

and W2 x 2 in opposite order. By transitivity, W2 x 2
obs3−−−→W2 x 1 follows from

W2 x 2
obs3−−−→R3 x

obs3−−−→W2 x 1. Similarly, W2 x 1
obs1−−−→R1 x

obs1−−−→W2 x 2 implies that

W2 x 1
obs1−−−→W2 x 2, andW2 x 2

obs1−−−→W2 x 1 follows from (1) andW2 x 2
obs3−−−→W2 x 1.

This contradicts W2 x 1
obs1−−−→W2 x 2. �

The coherence constraint (1) also implies that the observation orders for reads
of the same location are consistent for all threads. There is, however, no such
constraint for write (or read) accesses to different locations. Fig. 2(b), for in-
stance, depicts a valid execution in which the threads P1 and P3 observe two
subsequent reads from x and y in opposite order. We point out that this does
not contradict the definition in [2, §2.4] that “a read is globally performed as
soon as it is performed.” This apparent discrepancy stems from the fact that [2]
defines when read events are performed (“the point when the value of the read
is determined” [2, §2.3]) whereas we define when they are observed : it is possible
to conceive a cache hierarchy in which thread Pn has already observed a read
while thread Pm may still influence its outcome, i.e., according to Definition 1,
a read can be observed before it is actually performed.

3 Operational Semantics of Parallel Assertions

Parallel assertions are evaluated over a given thread’s observation of the program
state and execution history. We provide the syntax and semantics of assertions
in §3.1, and subsequently cover executions in §3.2.

3.1 Structural Operational Semantics for Assertions

Each scope event e ∈ S has a unique identifier uid and an assertion expression
φuid ∈ AExpr, where AExpr is the set of all side-effect-free C++ expressions
(defined in [7, §A.4]) augmented with a number of operators (described be-
low). Table 1 shows the (simplified) syntax of assertions in AExpr. We hide
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Table 1. Simplified syntax of assertion expressions

assertion ::= HO (assertion) |
LR (lvalue) | LW (lvalue) | RR (lvalue) | RW (lvalue) |
assertion infix-op asssertion | unary-op assertion | rvalue | lvalue

the complexity of C++ expressions by omitting details about unary and binary
operations (unary-op and infix-op), operator precedence, and type correctness.

In accordance with the C++ standard [7, §3.10], the non-terminal lvalue rep-
resents an expression that “designates [. . . ] an object,” and an rvalue is “a value
that is not associated with an object.” As in §2.1, we use v ∈ V to refer to
rvalues and � ∈ L to refer to lvalues. The access operators LR, LW, RR, and
RW in Table 1 take a single lvalue as a parameter and check for the occurrence
of a memory access to the respective object (c.f. §1). The operator HO takes an
assertion as a parameter and returns a Boolean indicating whether this asser-
tion evaluated to true at some point in the respective scope. The use of these
operators is demonstrated in Fig. 1 and [13].

We use lvalues(expr) ⊆ L to denote the set of memory locations (lvalues, re-
spectively) referenced by expr ∈ AExpr outside an access operator. The operator
lvalues is defined inductively as follows:
– If lvalues(expr) = L, then lvalues(HO(expr)) = lvalues(unary-op expr) = L.
– Similarly, lvalues(expr1 infix-op expr2) = lvalues(expr1) ∪ lvalues(expr2).
– If expr ∈ {LR(�),LW(�),RR(�),RW(�)} , � ∈ L, then lvalues(expr) = ∅.
– Finally, lvalues(�) = {�} for � ∈ L and lvalues(v) = ∅ for v ∈ V.
Similarly, accessops(expr) ⊆ AExpr is the set of all sub-expressions of expr ∈

AExpr of the form LR(�), LW(�), RR(�), or RW(�) (where � ∈ L). Intuitively,
lvalues(expr) represents all memory locations whose value is relevant to the eval-
uation of expr, and accessops(expr) represents all access events in an expression.

An assertion set α is a set of tagged assertion expressions uid : expr (where
expr ∈ AExpr). Each set α can be partitioned into sets α|uid, which denotes the
restriction of α to elements tagged with uid. The set α|uid itself is inductively
defined for each uid as the smallest set satisfying the following rules:
– The assertion uid :φuid as well as its negation uid : (¬φuid) are in α|uid.
– If uid : (¬expr) ∈ α|uid, then uid :expr ∈ α|uid.
– If uid : (expr1 bop expr2) ∈ α|uid, then uid :expr1 and uid :expr2 are in α|uid.
– If uid : (HO(expr)) ∈ α|uid, then uid :expr ∈ α|uid

Here, expr, expr1, expr2 ∈ AExpr and bop represents the Boolean connectives
supported by the programming language (e.g., ∧ or ∨). Intuitively, α|uid contains
the assertion φuid and its negation ¬φuid, as well as all sub-expressions of φuid.
A denotes the set of all conceivable assertion sets.

Example 2. The assertion set α for ! RR(x)||HO(LW(x)) (from Fig. 1) com-
prises the original assertion as well as the elements uid : !(! RR(x)||HO(LW(x))),
uid : ! RR(x), uid :RR(x), uid :HO(LW(x)), and uid :LW(x). �
A state σ is a finite mapping from locations L to values V. S denotes the set of
all conceivable states, and σ[� �→ v] denotes the state that maps � ∈ L to v ∈ V
and all other locations �′ 	= � to σ[�′]. For a given set of locations L ⊆ L the
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projection σ|L of σ to L is the state that maps locations � ∈ L to σ[�] and is
undefined for all other locations.

A history χ is a tuple 〈δ, θ〉2 of sets of assertion expressions which represents
past evaluations of assertions by recording assertion expressions that evaluate
to true at some point during the execution. χ.δ (of type AExpr) represents the
immediate past reflecting only the most recent event. χ.θ is an assertion set
representing the distant past, cumulating all tagged assertions that evaluated to
true at some point in the past of the current execution trace. H denotes the set
of all conceivable histories.

A configuration κ is a tuple 〈σ, χ, α〉 comprising a state σ ∈ S, a history
χ ∈ H, and an assertion set α ∈ A. C denotes the set of all configurations.

Evaluating Assertions. Assertions are evaluated over a given configuration. We
introduce a reduction relation→a⊆ C×(N×AExpr)×(N×AExpr) for assertions.
We use (→a)

∗ to denote the reflexive transitive closure of →a.

1. Assertion expressions (or sub-expressions) that do not contain the operators
LR, LW, RR, RW, and HO are evaluated over σ according to the semantics
of the C++ language. Therefore, 〈σ, χ, α〉 * uid : expr →a uid : v if expr
evaluates to v ∈ V in state σ.

2. Expressions involving the access operators LR, LW, RR, or RW are evaluated
according to the immediate history χ.δ:

expr ∈ χ.δ
〈σ, χ, α〉 * uid :expr→a uid :T

expr ∈
{
LR(�), LW(�),
RR(�), RW(�)

}
(2)

and similarly 〈σ, χ, α〉 * uid :expr→a uid :F if expr 	∈ χ.δ.
3. The operator HO maps its parameter expr to true if expr evaluates to true

in the current configuration, or if expr was true at some point in the past.

〈σ, χ, α〉 * uid :expr (→a)
∗ uid :T

〈σ, χ, α〉 * uid :HO(expr)→a uid :T
(3)

〈σ, χ, α〉 * uid :expr (→a)
∗ uid :F

〈σ, χ, α〉 * uid :HO(expr)→a uid :b
b

def
=

{
T if ((uid :expr) ∈ χ.θ)
F otherwise

(4)

Note that the parameters of HO must not be reduced by →a or evaluated
over σ unless this step yields T. This is necessary to avoid mixing values of
σ and values of past states during the evaluation.

Example 3. The configuration κ
def
= 〈σ, 〈{LR(x)}, {uid : LW(x)}〉, α〉 (with α as

in Example 2) reflects a recent read access as well as a previous write access to
x by the asserting thread. Thus, →a yields T for HO(LW(x)) (by rule 4, since
κ * uid : LW(x) →a uid : F and uid : LW(x) ∈ χ.θ) and !F for ! RR(x) (since
RR(x) 	∈ χ.δ). The assertion ! RR(x)||HO(LW(x)) does not fail at this point. �
2 Our notation is inspired by the Dirac delta function δ and the Heaviside function θ.
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〈(Wtid � v) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ[� �→ v], 〈{LW(�)}, χ′.θ〉, α〉〉 tid = n (6)

〈(Rtid �) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈{LR(�)}, χ′.θ〉, α〉〉 tid = n (7)

〈(Wtid � v) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ[� �→ v], 〈{RW(�)}, χ′.θ〉, α〉〉 tid �= n (8)

〈(Rtid �) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈{RR(�)}, χ′.θ〉, α〉〉 tid �= n (9)

Fig. 3. Reduction rules for read and write accesses

3.2 Operational Semantics for Events

Given a set of events E, its Kleene closure E∗ is the set of all sequences of events
in E, including the empty sequence ε. We use the ML-like notation :: for sequence
concatenation. An execution of a thread with tid = n is a sequence ex ∈ E∗ of

events such that for every sub-sequence ei :: ei+1 of ex we have ei
obsn−−−→ei+1 .

The semantics of an execution is determined by the (reflexive) reduction relation
→⊆ (E∗×C)×(E∗×C) which characterises the impact of events on configurations.
In the following, we define this reduction relation → based on →a.

A common side effect of all events is the modification of the history. Let
〈σ, χ, α〉 be the current configuration and let χ and χ′ denote the history before
and after an event, respectively. For all events, χ′.θ is χ.θ augmented with all
assertion expressions in α that evaluate to true in the previous configuration:

χ′.θ
def
= χ.θ ∪ {(uid :expr) ∈ α | 〈σ, χ, α〉 * (uid :expr) (→a)

∗ uid :T} (5)

The reduction rules presented in the following refer to χ′.θ as defined in (5).
From now on, we use n to denote the identifier of the current (asserting) thread.

1. Fig. 3 shows the reduction rules for memory events. We distinguish between
events generated by thread n and events generated by other threads in order
to determine their effect on the immediate past χ.δ.

2. Fig. 4 shows the reduction rules for scope events. Upon entry of a scope, the
respective assertion is added to the assertion set. Note that Rule (11) does
not allow us to exit a scope if the corresponding assertion (identified by eid)
failed. Finally, a thread only observes the scope events generated by itself.

3. Skip and fence events modify the history in accordance with (5). In addition,
the memory model (see §5) may impose ordering constraints on fence events.

〈ei :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α〉〉
ei ∈ (F ∪ {skip}) (12)
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〈〈uid, tid,ENTRY, φuid〉 :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α ∪ α|uid〉〉
tid = n

(10)

(eid :¬φeid) �∈ χ.θ ∧ 〈σ, χ, α〉 � eid :φeid (→a)
∗ eid :T

〈〈uid, tid,EXIT, eid〉 :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α \ α|eid〉〉 tid = n (11)

Fig. 4. Reduction rules for scope events

Assertion Failures. In case of a failure of an active assertion φuid, the configu-
ration can be reduced to a (canonical) error configuration error. We allow this
rule to be applied non-deterministically at any point after an assertion failure
(but at latest upon exit of the corresponding scope, see Rule (11)). This leaves
some freedom for the implementation as to when a failed assertion is reported.

(uid :¬φuid) ∈ χ.θ ∨ (uid :φuid) ∈ α ∧ κ * (uid :φuid) (→a)
∗ (uid :F)

〈ex, κ〉 → error
(13)

Example 4. Consider an execution Wn x 1 :: Rtid x (where tid 	= n) starting in

the configuration κ
def
= 〈σ, 〈{LR(x)}, {uid : LW(x)}〉, α〉 introduced in Exam-

ple 3. By rule 6, we derive 〈Rtid x, 〈σ[x �→ 1], 〈{LW(x)}, {uid :LW(x)}, α〉〉 from
〈Wn x 1 :: Rtid x, κ〉. Note that uid : LR(x) is not added to χ′.θ by rule 5, since
it is not an element of the assertion set α. �

4 Optimisations

In this section, we formally prove that only a fraction of the events in an ex-
ecution is necessary to evaluate an assertion. Since logging information can be
expensive, there is a significant optimisation opportunity in filtering the execu-
tions before they are evaluated. In particular, this means that throughout a scope
we can dismiss the events that are irrelevant to the corresponding assertion, as
long as assertion failures are preserved:

Definition 2. Let ex1, ex2 ∈ E∗ be two executions delimited by a scope with
assertion φuid that contains no other scope events. Then, ex1 and ex2 are parallel
assertion equivalent with respect to φuid iff in all configurations 〈σ, χ, α|uid〉 it
holds that (〈ex1, 〈σ, χ, α|uid〉〉 (→)∗ error)⇔ (〈ex2, 〈σ, χ, α|uid〉〉 (→)∗ error).

Nested Assertion Scopes. For the purpose of checking whether a specific assertion
φuid is violated by an execution, we can treat other scope events similar to skip.
Scope events occurring in threads other than the current one have no impact
on the evaluation of φuid (c.f. Rules 10, 11). A nested scope event only affects
the execution if its respective assertion fails. Therefore, it is legal to process
assertion scopes independently as long as we report the first assertion that fails
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(upon exit of the corresponding scope). This allows us to define parallel assertion
equivalence (Definition 2) with respect to a single parallel assertion.

In the following, we formally define the projection of configurations and execu-
tions to a given assertion and prove that projection preserves assertion failures.

Definition 3. We define the projection of a configuration 〈σ, χ, α〉 to a given

assertion φuid as 〈σ, χ, α〉|φuid

def
= 〈σ|lvalues(φuid), 〈χ.δ ∩ accessops(φuid), χ.θ〉, α〉.

Theorem 1. Projecting a configuration 〈σ, χ, α〉 to an assertion φuid has no
impact on the evaluation of φuid:

∀κ ∈ C . ∀expr1 ∈ α|uid, expr2 ∈ AExpr .

(κ * expr1 (→a)
∗ expr2)⇔ (κ|φuid

* expr1 (→a)
∗ expr2)

Proof. By induction on the structure and height of derivations generated by the
reduction rules in §3.1.

Definition 4. The projection of an execution ex ∈ E∗ to an assertion φuid is

defined inductively by ε|φuid

def
= ε and (e :: ex)|φuid

def
= e|φuid

:: (ex|φuid
), where

e|φuid

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e if (e =Wtid � v)∧⎛⎜⎝ (� ∈ lvalues(φuid)) ∨
(tid = n ∧ LW(�) ∈ accessops(φuid)) ∨
(tid 	= n ∧ RW(�) ∈ accessops(φuid))

⎞⎟⎠
or (e = Rtid �v)∧(

(tid = n ∧ LR(�) ∈ accessops(φuid)) ∨
(tid 	= n ∧ RR(�) ∈ accessops(φuid))

)
skip otherwise

Theorem 2. Let ex ∈ E∗ be an execution that is delimited by a scope associated
with φuid and does not contain any other assertion scopes. Then ex and ex|φuid

are parallel assertion equivalent with respect to the assertion φuid.

The proof of Theorem 2, led by induction over the length of ex, shows that events
can be treated as skip as long they have no impact on the evaluation of φuid (in
accordance with Theorem 1).

Theorems 1 and 2 enable the following optimisation. For each scope instance,
no events need to be logged before its respective entry event. Upon reaching
a scope entry event with assertion φuid, our implementation records only the
relevant fraction σ|φuid

of the state. After that, it is sufficient to log all events
e|φuid

(in observation order) until the corresponding scope exit event is reached.

Relaxed Order Observations. Under certain conditions it is sufficient to approxi-

mate the observation order
obsn−−−→ by a partial order. In particular, we show that

for a certain class of assertions all that matters is the order of events with respect
to the scope events S.
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Theorem 3. Let ex be an execution that is delimited by a scope associated with
φuid and does not contain any other assertion scopes, and let π(ex) be an arbi-
trary permutation of ex. If one of the following conditions holds for φuid, then
ex and π(ex) are parallel assertion equivalent with respect to φuid:

i φuid does not contain the operator HO and lvalues(φuid) = ∅.
ii φuid does not contain the operator HO, lvalues(φuid) = {�} (for some � ∈ L),

and accessops(φuid) = ∅.

Proof. We prove that the order of the sequence is irrelevant by showing that the
following logical equivalence holds:

(〈ex, 〈σ, χ, α|uid〉〉 (→)∗ error) ⇔
∃e ∈ ex . ∀〈σ′, χ′, α|uid〉 . 〈e :: ε, 〈σ′, χ′, α|uid〉〉 (→)∗ error

Note that the implication holds trivially in one direction (⇐). For the other direc-
tion, we need to show that φuid does not depend on the configuration before the
execution of e ∈ ex. Let 〈σ′′, χ′′, α|uid〉 be the configuration after the execution
of e. By Theorem 1 we have 〈σ′′, χ′′, α|uid〉 (→a)

∗ error if 〈σ′′, χ′′, α|uid〉|φuid
(→a

)∗ error. In case (i), the domain of σ|φuid
is empty and φuid refers only to χ′′.δ.

In case (ii), σ|φuid
is only defined for �, and χ′′.δ ∩ accessops(φuid) = ∅. Accord-

ingly, φuid depends on only a single item in the configuration, which can only be
updated atomically by the events in ex.

The conditions for φuid in Theorem 3 are not tight. Other criteria (based on
partial order reduction, for instance) may allow for more aggressive optimisa-
tions. Note that in the most extreme case — if we can establish statically that
the assertion holds — it is not necessary to log any events at all. In general, an
approach based in this insight is obviously impractical. However, since observing
events and orderings between events is expensive, an improved relaxation func-
tion which limits the number of required observations can significantly reduce
the work required by the checker.

5 Memory Models and Fences

On a platform that guarantees sequential consistency (SC) the operations of
each individual thread are globally observed in a sequential order consistent with
the program order. For performance reasons, modern processors do not provide
such a guarantee. They do, however, provide fence instructions, which enable
the programmer (or compiler) to enforce a global ordering between events.

Different platforms provide different types of fences, and their semantics de-
pends on the specific architecture (c.f. [2,6]). In general, we distinguish between
non-cumulative and cumulative fences. Intuitively, non-cumulative fences pre-
vent thread-local reordering of events across the fence event. Cumulative barri-
ers also affect the order of events of other threads (e.g., by flushing store buffers
or caches). One non-cumulative fence operations is mfence on Intel processors:
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it “guarantees that every load and store instruction that precedes in program or-
der the mfence instruction is globally visible before any load or store instruction
that follows the mfence instruction is globally visible.” [1, pg. 4-23]3

Formally, two memory events e1, e2 ∈ M occurring before and after an mfence

event in program order, respectively, will be observed in this order by all threads:

∃n .
(
e1

pon−−→mfence
pon−−→e2

)
⇒ ∀n . e1

obsn−−−→e2 (14)

The hwsync instruction of the Power architecture provides a similar guarantee,
but is also cumulative in the sense that it separates the memory events observed
by the thread before and after executing hwsync.

Example 5. The assertion in the program in Fig. 5 holds on any platform that
guarantees sequential consistency, but may fail on a platform that permits re-
ordering of write events (as shown in the diagram in Fig. 5). A fence between
the events W1 x 1 and W1 y 1 (indicated by a dashed arrow) rules out the failing
execution and restores sequential consistency for this program. �
The side effect described in Example 5 is not always desirable. If the fence
instruction is part of the instrumentation code required to log the write events,
then this modification effectively eliminates an erroneous execution. Logging
mechanisms requiring stronger guarantees (as provided by the atomic compare-
and-swap instruction lock cmpxchg on Intel architectures, for instance, which
is frequently used to implement locks) exacerbate the probe effect.

A complete formalisation of fences exceeds the scope of our paper; we refer the
reader to [2] instead. The following section presents our implementation, which
makes use of fences, and discusses their side effects.

6 Implementation

We implemented a runtime checker for parallel assertions called passert [12]
as an extension of the LLVM compiler [9]. During compilation, passert instru-
ments read and write accesses in a program annotated with assertions with calls
to logging functions. The log is then analysed for assertion violations by a checker
(either during or after the execution).

The instrumentation results in a number of side effects. Firstly, logging events
takes time, and hence changes the timing behaviour of the program under test.
More subtly, the instrumentation adds locks and fences which may rule out exe-
cutions that are otherwise legal the underlying memory model. In the following,
we discuss two key optimisations that dramatically reduced these effects based
on the results from §4.
Filtering Optimisation. To counteract the probe effect, we implemented an event
filter that conservatively approximates the set of events required by Theorem 2.

Firstly, we use an alias analysis to narrow down which memory locations may
affect the evaluation of an assertion, which significantly reduces the number of

3 The concept of global visibility coincides with our notion of observability.
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P1 P2

thru {
x = 1;

y = 1;

} passert(!RW(x) &&

!RW(y) &&

!RW(z) );

if (y && !x)

z = 1;

P1 P2

W1x1

W1y1

R2x0

R2y1

W2z1

obs2

obs2 p
o
2

p
o
2

Fig. 5. Restoring sequential consistency using fences (x and y are initially 0)

Fig. 6. Runtime overhead for PARSEC benchmarks

instructions that need to be instrumented and therefore eliminates the associated
side effect. Secondly, we use dynamic filtering to determine at runtime which
locations are not referenced by any live assertions, and hence need not be logged.
This further reduces – but does not entirely eliminate – the probe effect.

Filtering effectively enables runtime checking. Before this optimisation, most
instrumented programs simply ran out of memory, while all our benchmarks
completed successfully after filtering.
Time-stamping Mechanisms. Assertion evaluation requires recording the timing
of remote events relative to the asserting thread. For events generated by different
threads this requires a certain amount of synchronisation. Our implementation
uses a global time-stamp for this purpose.

A time-stamping mechanism must correctly associate events with timestamps
reflecting the observation order. In a weak memory model, this may need to be
enforced through the use of locks and memory fences. Consequently, stronger
ordering requirements exacerbate the probe effect, which in turn may rule out
otherwise legal executions. In Fig. 5, for example, a time-stamping mechanism
inserting a fence between W1 x 1 and W1 y 1 effectively prevents reordering of
these events, thus hiding the bug (as explained in Example 5).

By Theorem 3, the order of events within a scope can be safely ignored in
certain cases (such as the program in Example 5). Our experience suggests that
this relaxation is admissible for many assertions: previous work [12] showed that
of the 14 out of 17 real world bugs presented in [17] can be captured using
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parallel assertions; all of those assertions are amenable to relaxed timing. This
observation led us to implement two different time-stamping mechanisms:
– Strict time-stamping uses locks to guarantee that a shared counter is incre-

mented atomically with the execution of an event, hence providing a total
order over all time-stamped events.

– Smeared time-stamps yield a partial order sufficiently accurate to evaluate
the assertions characterised in Theorem 3. Scope events atomically increment
a global counter. All other events e are logged using a preceding and a

successive read to the global counter ts. Rtid ts
potid−−−→e potid−−−→Rtid ts is enforced

using (non-cumulative) fences if necessary, thus avoiding the use of locks.
Smeared time-stamping is sufficient to determine whether an event happened
within a certain scope. A potentially ambiguity may arise in the rare case that
different time-stamps are recorded before and after the event. If this difference
affects the correctness of an assertion, we report a potential error (though we
have not observed this in practice).

In order to measure the run-time overhead, we evaluated the runtime overhead
of passert by annotating a set of PARSEC benchmarks with parallel assertions.
We did not discover any new bugs in this widely used benchmark suite. Strict
timing had an overhead of 6.6×, which can be reduced to 3.5× through the use
of smeared timestamps (Fig. 6).

7 Related Work

A number different assertion formalisms for parallel programs have been pro-
posed and implemented. JMPaX [14], for instance, checks linear temporal logic
properties for Java programs. Phalanx [15] allows the checking of expressive
heap assertions in Java programs. SharC [3] enables the static and dynamic
verification of rules for sharing individual objects in C. These formalisms ad-
dress different properties than parallel assertions — a more detailed discussion
is given in [13], where we initially introduced parallel assertions.

There is a wide variety of work on debugging programs in the presence of
weak memory models. One approach is to minimize the probe effect through
hardware based logging. [16] allows the observation of events with minimal (2%)
perturbation to the program execution on both TSO(x86) and SC systems. Pre-
dictive analyses (e.g. [5]), on the other hand, enable the prediction of possible
assertion violations in a weak memory model based on an SC execution. Trace
based analysis can also be used to automatically fix bugs. Liu et al. [10], for
example, provide a formal semantics for LLVM bytecode under weak memory
models, and show how to add fences to prevent erroneous traces. A model checker
can exhaustively explore all possible interleavings under a given memory model
for all possible inputs (e.g. [8]), and hence capture all bugs albeit at a high
computational cost. All of these techniques are orthogonal to our work. Parallel
assertions could be implemented as an extension to any of these systems.
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8 Conclusion

We provide a formal definition of parallel assertions, a novel assertion language
for detecting intricate concurrency bugs, and an operational semantics enabling
their evaluation on architectures with weak memory models. Unlike the original
semantics [13], which assumes sequential consistency, our new semantics is less
restrictive and enables the detection of a highly relevant class of bugs introduced
by the complexity of modern multi-processor architectures. Secondly, our novel
semantics enables two key optimisations which, as demonstrated in §6, are crucial
to making run-time checking of parallel assertions feasible.

Acknowledgements. The authors thank Lennart Beringer and the anonymous
reviewers for their helpful suggestions and comments.
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Abstract. This paper presents CNDFS, a tight integration of two earlier multi-
core nested depth-first search (NDFS) algorithms for LTL model checking.
CNDFS combines the different strengths and avoids some weaknesses of its pre-
decessors. We compare CNDFS to an earlier ad-hoc combination of those two al-
gorithms and show several benefits: It has shorter and simpler code and a simpler
correctness proof. It exhibits more robust performance with similar scalability,
while at the same time reducing memory requirements.

The algorithm has been implemented in the multi-core backend of the
LTSMIN model checker, which is now benchmarked for the first time on a 48 core
machine (previously 16). The experiments demonstrate better scalability than
other parallel LTL model checking algorithms, but we also investigate appar-
ent bottlenecks. Finally, we noticed that the multi-core NDFS algorithms pro-
duce shorter counterexamples, surprisingly often shorter than their BFS-based
counterparts.

1 Introduction

Model checking is a resource demanding task that can be performed by a systematic ex-
ploration of a huge directed graph representing the dynamic behaviour of the analysed
system. Although memory is usually the major bottleneck, execution times can also
often exceed acceptable limits. For instance the exploration of a 109 states graph at a
high exploration rate of 105 states per second would take more than a day. This remains
acceptable but becomes problematic when increasing the number of system configu-
rations and properties analysed. Hence, model checking has gained a renewed interest
with the advent of multi-core architectures that can help tackle this time explosion.

Some properties like safety properties rely on a complete enumeration of system
states and can thus be easily parallelised since they do not ask for a specific search or-
der. However, the problem is harder when it comes to the verification of Linear Time
temporal Logic (LTL) properties. LTL model checking can be reduced to a cycle detec-
tion problem and state-of-the-art algorithms [8,9,11] proceed depth-first since cycles are
more easily discovered using this search order. However, this characteristic also makes
them unsuitable for parallel architectures since DFS is inherently sequential [20].

One approach to address this issue is to sacrifice the optimal linear complexity pro-
vided by DFS algorithms and switch to BFS-like algorithms, which are highly scalable
both theoretically and experimentally. We compare our approach to the best representa-
tive of that family. More recently, two algorithms (LNDFS from [13] and ENDFS from
[10]) adapted the well known Nested DFS (NDFS) algorithm [8] to multi-core architec-
tures. They share the principle of launching multiple instances of NDFS that synchronise

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 269–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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themselves to avoid useless state revisits. Although they are heuristic algorithms in the
sense that, in the worst case, they reduce to spawn multiple unsynchronised instances
of NDFS, the experiments reported in [13,14] show good practical speedups.

The contribution of this paper is an improvement to both the LNDFS and ENDFS

algorithms, called CNDFS. This new algorithm is both much simpler and uses less
memory, making it more compatible with lossy compression techniques such as tree
compression [17] that can compress large states down to two integers. We also pursue a
thorough experimental evaluation of this algorithm on the models of the BEEM database
[18] with an implementation of this algorithm on top of the LTSMIN toolset [16]. The
outcome of these experiments is threefold. Firstly, CNDFS exhibits a similar speedup
to its predecessors, but achieves this more robustly, with smoother speedup lines, while
using less memory. Second, it combines nicely with heuristics limiting the amount of
redundant work performed by individual threads. Finally, in the presence of bugs, it re-
ports counterexamples that are usually much shorter than those reported by NDFS and,
more importantly, this length tends to decrease as more working threads get involved
in the verification. This property is quite appreciable from a user perspective as it eases
the task of error correction.

The outline of this paper is the following. In Section 2 we formally express the LTL
model checking problem and review existing (sequential and parallel) algorithms that
address it. CNDFS, our new algorithm, is introduced and formally proven in Section 3.
Our experimental evaluation of this algorithm is summarised in Section 4. Finally, Sec-
tion 5 concludes our paper and explores some research perspectives to this work.

2 Background

We give in this section the few ingredients that are required for the understanding of
this paper and briefly review existing works in the field of explicit parallel LTL model
checking based on the automata theoretic approach.

2.1 The Automata Theoretic Approach to LTL Model Checking

LTL model checking is usually performed following the automata-based approach orig-
inating from [22] that proceeds in several steps. In this paper we focus only on the last
step of the process that can be reduced to a graph problem: given a graph representing
the synchronised product of the Büchi property automaton and the state space of the
system, find a cycle containing an accepting state. Any such identified cycle determines
an infinite execution of the system violating the LTL formula. In this paper we will only
reason on automaton graphs that result from the product of a Büchi property automaton
and a system graph describing the dynamic behaviour of the modelled system.

Definition 1 (Automaton graph). An automaton graph is a tuple G = (S ,T ,A ,s0),
where S is a finite set of states; T ⊆ S × S is a set of transitions; A ⊆ S is the set of
accepting states; and s0 ∈ S is an initial state.

Notations. Let (S ,T ,A ,s0) be an automaton graph. For s ∈ S the set of its successor
states is denoted by succ(s) = {s′ ∈ S | (s,s′)∈ T }. (s,s′)∈ T is also denoted by s→ s′.
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s→+ s′ (s→∗ s′) denotes the (reflexive) transitive closure of T , i.e. the fact that s′ is
reachable from s. A path is a state sequence s1, . . . ,sn with si→ si+1, ∀i∈{1, . . . ,n−1},
a cycle is a path s1, . . . ,sn with s1 = sn and a cycle C ≡ s1, . . . ,sn is an accepting cycle
if C∩A 	= /0. An accepting run is an accepting cycle reachable from the initial state:
s0, . . . ,si, . . . ,sn where si = sn. The LTL model checking problem consists of finding
an accepting run in an automaton graph. An LTL model checking algorithm proceeds
on-the-fly if it can report an accepting run without visiting all transitions.

2.2 Sequential LTL Model Checking Algorithms

Alg. 1 NDFS [8] as presented in [21].
1: dfsBlue(s0)
2: procedure dfsBlue(s) is
3: s.cyan := true
4: for all s′ in succ(s) do
5: if ¬s′.blue then dfsBlue(s′)
6: if s ∈ A then dfsRed(s)
7: s.cyan := false
8: s.blue := true
9: procedure dfsRed(s) is

10: s.red := true
11: for all s′ in succ(s) do
12: if s′.cyan then exit(cycle)
13: if ¬s′.red then dfsRed(s′)

NDFS [8] was the first LTL model
checking algorithm proposed. It en-
joys several nice properties: an optimal
linear complexity, the on-the-fly discov-
ery of accepting cycles and a low mem-
ory consumption (2 bits per state). Two
variations of Tarjan’s algorithm for SCC
decomposition [9,11] have also been
proposed with similar characteristics but
we focus here on NDFS as our new algo-
rithm is a direct descendant of this one.

The pseudo-code of this algorithm is
given by Alg. 1. The algorithm performs
a first level DFS (the blue DFS) to dis-
cover accepting states. When such a state is backtracked from, a second level DFS (the
red DFS) is launched to see whether this accepting state (now called the seed) is reach-
able from itself and is thus part of an accepting cycle. It is sufficient to find a path back
to the stack of the blue DFS [21], hence the cyan colour in Alg. 1. Correctness depends
on the fact that different invocations of the red DFS happen in post-order. The algorithm
works in linear time: each state is visited at most twice, since the result of a red DFS
can be reused in subsequent red DFSs; states retain their red colour.

2.3 Parallel LTL Model Checking Algorithms for Shared-Memory Architectures

In the field of parallel LTL model checking, the first algorithms designed targeted dis-
tributed memory architectures like clusters of machines. This family of algorithms in-
cludes MAP [6], OWCTY [7] and BLEDGE [2]. It is however well known that this kind
of message passing algorithm can be easily ported to shared-memory architectures like
multi-core computers although the specificities of these architectures must be consid-
ered to achieve good scalability [4]. Their common characteristic is to rely on some
form of breadth-first search (BFS) of the graph that has the advantage of being easily
parallelised, unlike depth-first search (DFS) [20]. They hence deliver excellent speed-
ups but sacrifice optimality and the ability to report accepting cycles on-the-fly. A com-
bination of OWCTY and MAP (OWCTY+MAP [3]) restores “on-the-flyness”, is linear-
time for the class of weak LTL properties, and maintains scalability.
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SWARM verification [12] consists of spawning multiple unsynchronised instances of
NDFS each exploring the graph in a random way. Accepting cycles are expected to be
reported faster thanks to randomised parallel search, but in the absence of such cycles
parallelisation does not help. This pragmatic strategy however targets graphs that are too
large in any case to be explored in reasonable time. The purpose is then to maximise
the graph coverage in a given time frame and thereby increase confidence in the model.

Two recent multi-core algorithms follow the principle of the SWARM technique but
deviate from it in that working threads executing NDFS are synchronised through the
sharing of some state attributes. In the first one, LNDFS [13], workers share the outcome
of the red (nested) search which can then also be used to prune the blue search. Since
the blue flags are not shared among threads, the red searches are still invoked in the
appropriate DFS postorder. The ENDFS algorithm [10] also allows the sharing of blue
flags, but a sequential emergency procedure is triggered if the appropriate invocation
order of the red DFS is not respected. Moreover, to maintain correctness, information
on a red DFS in progress cannot be transmitted in “real time” to other threads: the states
visited by a red DFS are only marked globally red after it has returned.

A thorough experimental comparison of ENDFS and LNDFS [14] led to the main
conclusion that ENDFS and LNDFS complement each other on a variety of models:
the larger amount of information shared by ENDFS can potentially yield a better work
distribution, but LNDFS is to be preferred when ENDFS threads often launch unfruitful
emergency procedures. Since this emergency procedure launches the sequential NDFS

algorithm, large portions of the graph may then be revisited, in the worst case by all
workers. Hence, a combination of ENDFS and LNDFS was proposed [14] to remedy
the downsides of the two algorithms. The principle of that parallel algorithm (called
NMCNDFS) is to run ENDFS but replace its sequential emergency procedure by a par-
allel LNDFS. Experiments show that this combination pays off: NMCNDFS is always
at least as fast as ENDFS or LNDFS.

While NMCNDFS combines the strengths of both earlier algorithms in terms of
performance, it also conjoins their memory usage. LNDFS requires 2P+ log2(P)+ 1
bits per state (2 local colours for all P workers, a synchronisation counter and a global
red bit) and ENDFS 4P+ 3 (2 local colours plus another 2 for the repair procedure and
3 global bits: {dangerous,red,blue}). Next to more than doubling the memory usage,
the conglomerated algorithm is long and complex.

3 A New Combination of Multi-Core NDFS

To mitigate the downsides of NMCNDFS, we present a new algorithm, CNDFS, shown
in Alg. 2. Like the previous multi-core algorithms, it is based on the principle of SWARM

worker threads (indicated by subscript p here), sharing information via colours stored in
the visited states, here: blue and red. After randomly (shuffleblue

p ) visiting all successors
(l.13–l.15), a state is marked blue at l.16 (meaning “globally visited”) and causing the
(other) blue DFS workers to lose the strict postorder property.

If the state s is accepting, as usual, a red DFS is launched at l.19 to find a cycle.
At this point, state s is called “the seed”. All states visited by dfsRedp are collected
in Rp. If no cycle is found in the red DFS, we can prove that none exists for the seed
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Alg. 2 CNDFS, a new multi-core algorithm for LTL model checking

1: procedure mcNdfs(s0,P) is
2: dfsBlue1(s0) || . . . || dfsBlueP(s0)
3: report no-cycle
4: procedure dfsRedp(s) is
5: Rp := Rp ∪{s}
6: for all s′ in shufflered

p (succ(s)) do
7: if s′.cyan[p] then
8: report cycle and terminate
9: if s′ 	∈ Rp ∧¬s′.red then

10: dfsRedp(s′)

11: procedure dfsBluep(s) is
12: s.cyan[p] := true
13: for all s′ in shuffleblue

p (succ(s)) do
14: if ¬s′.cyan[p]∧¬s′.blue then
15: dfsBluep(s′)
16: s.blue := true
17: if s ∈ A then
18: Rp := /0
19: dfsRedp(s)
20: await ∀s′ ∈ Rp ∩A : s 	= s′ ⇒ s′.red
21: for all s′ in Rp do s′.red := true
22: s.cyan[p] := false

(Prop. 1). Still, because the red DFS was not necessarily called in postorder, other (non-
seed, non-red) accepting states may be encountered for which we know nothing, except
the fact that they are out of order and reachable from the seed. These are handled after
completion of the red DFS at l.20 by simply waiting for them to become red.

Our proof shows that in this scenario there is always another worker which can colour
such a state red (Prop. 3). The intuition behind this is that there has to be another worker
to cause the out-of-order red search in the first place (by colouring blue) and, in the sec-
ond place, this worker can continue its execution because cyclic waiting configurations
can only happen for accepting cycles. These accepting cycles would however be en-
countered first, causing termination and a cycle report (l.8). After completion of the
waiting procedure, CNDFS marks all states in Rp globally red, pruning other red DFSs.

The crude waiting strategy requires some justification. After reassessing the ingredi-
ents of LNDFS and ENDFS, we found that ENDFS is most effective at parallelising the
blue DFS. This is absolutely necessary since the number of blue states (all reachable
states) typically exceeds the number of red states (visited by the red DFS). In ENDFS,
however, sharing the blue colour often led to the expensive (memory and performance
wise) sequential repair procedure [10]. We were unable to construct a correct algorithm
that colours both blue and red while backtracking from the respective DFS procedures.
Therefore, we now want to investigate whether the intermediate solution, using a wait
statement as a compromise, leaves enough parallelism to maintain scalability.

CNDFS only uses N+2 bits per state plus the sizes of R. In the theoretical worst case
(an accepting initial state), each worker p could collect all states in Rp. In our vast set
of experiments (cf. Sec. 4), however, we found that the set rarely contains more than
one state and never more than thousands, which is still negligible compared to |S |. Our
experiments also confirmed that memory usage is close to the expected amount.

Correctness Proving correctness comprises two parts: proving the consistency of the
algorithm, i.e. CNDFS reports a cycle iff an accepting cycle is reachable from s0, and
termination. The former turned out to be easier than for our previous parallel NDFS

algorithms. The wait condition in combination with the late red colouring forces the
accepting states to be processed in postorder. Stated differently: a worker makes the ef-
fects of its dfsRedp(s) globally visible (via the red colouring), only after all smaller
(in postorder) accepting states t have been processed by some dfsRedp′(t). This is
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expressed by Lemma 3. In Theorem 1, we finally show that, if the algorithm terminates
without reporting a cycle, all accepting states must be red and consequently cannot lie
on a cycle. Proof of termination was already discussed briefly and is detailed in Prop. 3.

In the following proofs, the graph colouring and the process counter of Alg. 2 are
viewed as state properties of the execution. When writing dfsBluep(s)@19, we refer to
the point in the execution at which a worker p is about to call dfsRed on a state s at l.19,
within the execution of dfsBluep(s). Graph colourings are denoted as follows: s ∈ Red
means that the red flag of s is set to true and similarly s ∈ Blue means that the blue
flag is set. For local flags we use s ∈ Cyanp. Also, we use the modal operator s ∈ �X ,
to express ∀s′ ∈ succ(s):s′ ∈ X . We show that our propositions hold in the initial state
(∀s ∈ S : s 	∈ Red∧ s 	∈ Blue∧∀p ∈ {1 . . .P} : s 	∈ Cyanp) and inductively that they are
maintained by execution of each statement in the algorithm, considering only lines that
can influence the truth value of the proposition. Here an important assumption is that
all lines of Alg. 2 are executed atomically.

Lemma 1. Red states have red successors: Red ⊆�Red.

Proof. Initially, there are no red states, hence the lemma holds.
States are coloured red when dfsBluep@21 and are never uncoloured red. The set of

states Rp that is coloured at l.21 contains all states reachable from the seed s, but not yet
red, since dfsRedp(s) performed a DFS from s over all non-red states. For the red states
reachable from s, the induction hypothesis can be applied, hence there are no non-red
states reachable from s that are not in Rp. ��

Lemma 2. At l.20, the set Rp invariably contains (1) the seed s, (2) all non-red states
reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s)@20⇒ (s ∈Rp∧ (∀s′ 	∈ Red : s→∗ s′ ⇒ s′ ∈Rp)∧ (∀s′′ ∈Rp⇒ s→∗ s′′)).

Proof. At l.5, we have s ∈ Rp. For the rest, see proof of Lemma 1. ��

Lemma 3. The only accepting state that can be coloured red at l.21 (for the first time)
is the current seed s itself: dfsBluep(s)@21⇒ (Rp∩A)\Red ⊆ {s}.

Proof. Assume dfsBluep(s)@21 and ∃a ∈ (A \ {s}) : a ∈ Rp. We show that a ∈ Red.
By Lemma 2, Rp contains at least s and the non-red states reachable from s. After

l.20, all non-seed accepting states in Rp are red: (Rp ∩ (A \ {s})) ⊆ Red. Since, a ∈
Rp∩ (A \ {s}), we have: a ∈ Red. ��

Proposition 1. The initial invocation of dfsRedp(s) at l.19 of Alg. 2 reports a cycle if
and only if the seed s belongs to a cycle.

Proof. ⇔ is split into two cases: Case ⇒: Every state s′ ∈ Cyanp can reach the seed
from dfsBluep(s)@19 by properties of the DFS stack. Similarly, when dfsRedp(s

′′)@8,
s′′ is reachable from the seed s. Therefore, there is a cycle: s′′ → s′ →∗ s→∗ s′′.

Case⇐: assume dfsRedp(s) at l.19 finishes normally (without cycle report), while s
lies on a cycle C. We show this leads to a contradiction. Since dfsRed avoids only red
states (l.9), there would have to be some r ∈C∩Red obstructing the search. The state
r can only be coloured red at l.21 by a worker. W.l.o.g. we investigate the first worker
dfsRedp′ to have coloured r red. p′ started for an s′ ∈ A (dfsBluep′(s

′)@l.19).
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Since r is not yet red, by Lemma 1 C ∩ Red = /0. Before r is coloured red, it is
first stored in Rp′ . By Lemma 2, we also have C ⊆ Rp′ . Either s′ ∈ C, then the cycle
through s′ would have been detected since s′ ∈ Cyanp′ . Or else s′ 	∈C, and then we have
{s} ⊆ (Rp′ \Red) when dfsBluep′(s

′)@21, contradicting Lemma 3. ��

Proposition 2. Red states never lie on an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.
When dfsBluep(s)@21, the set of states Rp is coloured red. The only accepting state

to be colored red is the seed s (Lemma 3). By Prop. 1, this state s does not lie on an
accepting cycle. Hence, Prop. 2 is preserved. ��

Lemma 4. Blue states have blue or cyan successors: Blue⊆⋃
p�(Blue∪Cyanp).

Proof. Initially there are no blue states, hence the lemma holds.
Only at l.16, states are coloured blue, after each successor t has been skipped at l.14

(t ∈ Cyan∪Blue), or processed by dfsBluep at l.15 (leading to t ∈ Blue). States can be
uncoloured cyan (l.22), but only after they have been coloured blue (l.16). ��

Lemma 5. A blue accepting state, that is not also Cyanp for some worker p, must be
red: ∀a ∈ (Blue∩A) : (∀p ∈ {1 . . .P} : a 	∈ Cyanp)⇒ a ∈ Red.

Proof. Assume s ∈ (A ∩Blue) and ∀p ∈ {1 . . .P} : s 	∈ Cyanp. We show that s ∈ Red.
State s can only be coloured blue when dfsBluep(s)@16. There, it still retains its

cyan colouring from l.12, it only loses this colour at l.22. But, since s ∈ A , l.21 was
reached and there a ∈ Rp by Lemma 2. Hence, s ∈ Red at l.22. ��

Proposition 3. Algorithm 1 always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and
blue states. So eventually a cycle (l.8) or no cycle is reported (l.3). However, progress
may also halt due to the wait statement at l.20. We now assume towards a contradiction
that a worker p is waiting indefinitely for a state a∈A to become red: dfsBluep(s)@20,
s 	= a and a ∈ Rp. We will show that either a will be coloured red eventually, or a cycle
would have been detected, contradicting the assumption that p keeps waiting.

By Lemma 2, a is reachable from s: s→+ a. And by l.16, s ∈ Blue. Induction on the
path s→∗ a, using Lemma 4, tells us that: either all states are blue (1) or there is a cyan
state on this path (2):

1. a ∈ Blue∧∀p ∈ {1 . . .P} : a 	∈ Cyanp: by Lemma 5, a ∈ Red, which contradicts the
assumption that p is waiting for a to become red.

2. ∃c ∈ Cyanp′ : s→+ c→∗ a, then depending on the identity of worker p′, we have:

A) p = p′: but then dfsRedp(s) would have terminated on cycle detection (C ≡
s→+ c→+ s), except when dfsRedp did not reach c in presence of a red state
lying on C. However, this would contradict Prop. 2.

B) p 	= p′: we show that either p′ is executing or going to execute dfsRedp′(a).
To eventually colour state a red, worker p′ must not end up itself in a waiting
state: dfsBluep′(a

′)@20. First, consider the case a′ 	= a. We also have a′ ∈Rp: If
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a′ ∈ Red, then by Prop. 2 all its reachable states are red and it cannot be waiting
for a non-red reachable accepting state (Lemma 2). Therefore, a′ 	∈ Red and
since also s→+ c→∗ a′ (stack Cyanp), we have: a′ ∈Rp (Lemma 2). Therefore,
we can assume w.l.o.g. that a = a′ and only consider dfsBluep′(a)@20. We can
repeat the reasoning process of this proof, with p ≡ p′ and s ≡ a. But since
there are finitely many workers, the chain of processes waiting for each other
eventually terminates, except the hypothetical configuration of a cyclic waiting
dependency, which we consider finally.

To exclude cyclic dependencies, assume n ≥ 2 workers are simultaneously waiting
for each other’s seed to be coloured red at l.20. We have: dfsBlue1(s1)@20∧ . . .∧
dfsBluen(sn)@20∧s2 ∈R1∧. . .∧s1 ∈Rn. This is only possible if s1→+ sn∧. . .∧sn→+

s1, hence there is a cycle: s1 →+ . . .→+ sn →+ s1. However, this contradicts that the
red DFSs (which terminate anyway) would have detected this cycle (Prop. 1). ��

Theorem 1. Alg. 2 reports an accepting cycle if and only if one is reachable from s0.

Proof. By Prop. 3, the algorithm is guaranteed to terminate with some report, forming
the basis for two cases: Case⇒: dfsRedp(s)@8 implies a cycle (Prop. 1).

Case ⇐: At l.3, we have s0 ∈ Blue and Cyan = /0 by properties of DFS. Now, by
Lemma 4, we have: ∀s ∈ G : s0→∗ s⇒ s ∈ Blue. Hence, all reachable accepting states
must be red by Lemma 5 and do not lie on cycles by Prop. 2. ��

4 Experimental Evaluation

Our previously reported experiments [15,14,13] were performed on 16-core machines.
Meanwhile, in accordance with Moore’s law applied to parallelism, we obtained ac-
cess to a 48-core machine (a four-way AMD OpteronTM 6168). The added parallelism
puts extra stress on the scalability of our algorithms and therefore also forces a repeat
of some of our previous reachability experiments [15]. We investigated the cause for
the performance difference between various algorithms: NMCNDFS [14], CNDFS (this
paper), OWCTY+MAP [5] (the best representant of parallel BFS-based algorithms [13])
and reachability from [15]. Work duplication due to overlapping stacks can cause slow-
downs for all multi-core NDFS variants, as can long await cycles in CNDFS. We intro-
duced counters to measure and study these effects. Initially, we focus on models without
cycles, the hardest case for these algorithms. Later we move on to show that CNDFS ex-
hibits the same on-the-fly performance as existing multi-core NDFS variants [14].

We have used models from the BEEM database [18].1 From each type of model, we
selected the variants with more than 9 million states. Our CNDFS algorithm is imple-
mented in the multi-core backend of the LTSMIN model checking tool set [16], based
on a dedicated scalable lock-free hash table and an off-the-shelf load balancer [15].
For a fair comparison with previous algorithms, we also implemented some NDFS opti-
mizations [13, Sec. 4.4], all-red and early cycle detection. All-red colours a state s red,
if all its successors are red after l.15 of Alg. 2; correctness follows from Prop. 2. Early
cycle detection detects certain accepting cycles already in the blue search.

1 All results are available at http://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/.

http://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/
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LTSMIN 1.92 was compiled with GCC 4.4.2 (with optimisation -O2) and ran with:
dve22lts-mc --threads=N -s28 --state=table --strategy=name, where name
can be cndfs or endfs,lndfs, representing the different algorithms [14]. We used Di-
VinE 2.5.2 [5] as OWCTY+MAP implementation, compiled and run with equivalent pa-
rameters. Since LTSMIN reuses its next-state function, both tools are comparable [15].

4.1 Models without Accepting Cycles

In [14], we showed that NMCNDFS was the best scaling LTL model checking algo-
rithm on 16 core machines. Hence, we started comparing plain CNDFS and NMCNDFS.
Table 1 shows the average runtime of both algorithms over five runs on all benchmarks,
for 1, 8, 16 and 48 cores. The performance of CNDFS is on par with that of NMCNDFS,
which is impressive considering the crude waiting strategy of the algorithm.

We confirmed that the time spent at the await statement (l.20 in Alg. 2) is indeed
less than 0.01 sec on runs with 48 cores for all models in the BEEM database. This is
caused by the all-red extension, which greatly reduces work in the red DFS. Without
all-red, we observed high waiting times causing speeddowns with more than 8 cores.

Additionally, we made a comparison of absolute speedups so as to investigate the
properties of the different algorithms (Fig. 1–6). For CNDFS and NMCNDFS, we in-
cluded the standard deviation of the 5 runs as error bars. As the base case for the speedup
of the LTL algorithms we used CNDFS: Sn = T CNDFS

1 /T algo
n , for reachability we used

its own base case. We included reachability from [15] to serve as a reference point for
CNDFS. We were primarily interested to see whether the scalability of CNDFS keeps
up with our parallel reachability implementation. After all, sequential NDFS visits each
state at most twice; once in the blue DFS and possibly once in the red DFS.

Table 1. Runtimes (sec) with NMCNDFS and CNDFS for all models

States
NMCNDFS CNDFS

1 8 16 48 1 8 16 48
anderson.6.prop2 2.9E+7 144.0 46.5 31.3 23.7 146.6 47.2 31.7 23.6
anderson.6.prop4 3.6E+7 172.9 54.1 35.8 27.1 172.9 54.3 36.2 27.3
bakery.9.prop2 1.1E+8 378.9 62.4 35.5 18.9 368.9 64.6 36.9 19.9
bopdp.4.prop3 2.4E+7 74.7 11.1 6.4 3.3 74.9 11.0 6.4 3.3
elevator.5.prop3 2.1E+8 1,387.0 272.7 154.6 67.3 1,390.8 273.3 154.2 71.2
elevator2.3.prop4 1.5E+7 134.6 25.7 15.5 8.7 136.9 25.5 15.8 8.7
lamport.7.prop4 7.4E+7 299.2 61.9 35.5 23.5 297.7 60.8 35.9 22.9
leader election.6.prop2 3.6E+7 1,495.2 189.5 194.5 31.9 1,501.9 190.1 94.5 32.2
leader filters.6.prop2 2.1E+8 444.2 59.5 30.4 12.4 439.0 59.5 31.0 12.8
leader filters.7.prop2 2.6E+7 73.5 9.7 6.4 2.3 73.3 9.4 5.0 2.3
lup.4.prop2 9.1E+6 19.6 4.7 2.9 2.2 19.5 4.7 2.9 2.1
mcs.5.prop4 1.2E+8 538.3 147.0 89.9 58.2 540.3 146.5 90.2 57.1
peterson.5.prop4 2.6E+8 1,186.0 229.4 135.3 84.9 1,146.5 226.2 133.0 83.6
rether.7.prop5 9.5E+6 43.0 6.2 3.8 2.7 43.6 6.3 3.9 2.6
synapse.7.prop3 1.5E+7 37.3 5.6 3.3 2.0 37.1 5.5 3.3 1.9

2 http://fmt.cs.utwente.nl/tools/ltsmin/ LTSmin version 2.0.

http://fmt.cs.utwente.nl/tools/ltsmin/
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Fig. 1. Speedups of anderson.6.prop4 Fig. 2. Speedups of bobp.4.prop3

Fig. 3. Speedups of elevator.5.prop3 Fig. 4. Speedups of leader flt.6.prop2

Fig. 5. Speedups of rether.7.prop5 Fig. 6. Speedups of synapse.7.prop3
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We notice that NMCNDFS and CNDFS are always faster than OWCTY+MAP. The
error bars show less robust runtimes for NMCNDFS as they fluctuate greatly (e.g.
leader filters). Upon investigation it turned out that NMCNDFS sometimes
launches a repair search even though we also fitted its ENDFS search with all-red.
When only few workers enter this repair search, it cannot be parallelized. In these cases,
CNDFS turns to waiting, a much better strategy, since in total it waits less than 0.01 sec.
Also, reachability scales sometimes twice as good as CNDFS; anderson even scales 5
times better.

We investigated why the speedup of CNDFS differs from reachability. We measured
the total amount of work performed by all workers. In particular, we counted for each
benchmark the state count |G |, and the numbers Bn and Rn, the total number of blue and
red colourings in a run with n cores. Next, we estimate the duplicate work compared
to reachability as Dn := (Rn + Bn)/|G |. We view the reachability speedups Sreach

n as
ideal (under the plausible assumption that maximal speedup is limited mostly by the
memory bandwidth). Hence we can calculate the expected speedup Ealg

n := Sreach
n /Dalg

n

for alg ∈ {fsh,cndfs} where fsh is CNDFS with heuristics (see below).
Table 2 compares these estimated speedups E48 with the actual speedups S48. Note

that the estimated speedups for CNDFS Ecndfs
48 correspond nicely with the measured

speedups Scndfs
48 for many benchmarks. Hence, we conclude that the variation in speedup

is mainly caused by the degree of work duplication.
To combat work duplication, we reuse the “fresh successor heuristics” [14]. If possi-

ble, this randomly selects a successor that has not yet been visited before. It is available
in the LTSMIN toolset (--permutation=dynamic). As a consequence, workers tend to
be directed towards different regions of the state space, reducing work duplication.

These results are also shown in Table 2: Dfsh
48 , Efsh

48 and Sfsh
48 together with the mea-

sured amount of blue and red colourings: Bfsh
48 and Rfsh

48 . The heuristic approach shows
quite some improvement, sometimes halving work duplication and doubling speedup

Table 2. Expected and actual speedups for CNDFS according to speedup model

|G | Bfsh
48 Rfsh

48 Sreach
48 Dfsh

48 Efsh
48 Sfsh

48 Dcndfs
48 Ecndfs

48 Scndfs
48

anderson.6.prop2 3E+7 1E+8 4E+3 30.6 3.6 8.6 6.4 4.7 6.6 4.6
anderson.6.prop4 4E+7 1E+8 3E+3 31.9 3.1 10.2 6.4 4.0 8.0 5.0
bakery.9.prop2 1E+8 2E+8 4E+5 28.0 1.4 20.5 19.2 1.6 17.2 14.3
bopdp.4.prop3 2E+7 3E+7 6E+5 26.2 1.3 20.0 22.8 1.8 14.6 15.5
elevator.5.prop3 2E+8 4E+8 2E+3 39.5 1.9 21.0 19.5 3.2 12.5 9.0
elevator2.3.prop4 1E+7 3E+7 2E+6 33.2 2.0 16.3 15.8 5.3 6.3 8.0
lamport.7.prop4 7E+7 1E+8 6E+4 30.5 1.7 17.6 13.3 1.9 15.8 10.4
leader el.6.prop2 4E+7 4E+7 4E+4 40.5 1.0 40.4 46.6 1.0 40.3 39.5
leader filt.6.prop2 2E+8 2E+8 7E+5 31.9 1.0 31.6 34.4 1.0 30.7 29.9
leader filt.7.prop2 3E+7 3E+7 1E+5 27.6 1.0 27.4 31.9 1.0 26.9 27.8
lup.4.prop2 9E+6 2E+7 4E+3 17.7 2.5 7.1 9.7 4.6 3.8 6.3
mcs.5.prop4 1E+8 3E+8 1E+4 34.4 2.2 15.7 9.5 2.7 12.6 7.3
peterson.5.prop4 3E+8 4E+8 8E+5 34.1 1.6 20.9 13.9 1.9 18.3 11.0
rether.7.prop5 1E+7 2E+7 1E+5 22.3 1.9 11.9 16.5 2.4 9.2 14.3
synapse.7.prop3 2E+7 2E+7 1E+2 20.4 1.1 17.9 19.2 1.2 17.0 18.6
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(see elevator). Still we see duplications as high as 3.6 (see anderson). Note that the
earlier speedups in Fig. 1–6 already include the benchmarks with this heuristic.

Fig. 7. Work duplication per core per model

We expect that in the near future, the
number of cores in many-core systems
will still grow. Will this increase work
duplication and put a limit on speedup
of CNDFS? To give an indication, we
plotted the increase of work duplica-
tion with a growing number of cores
with fresh successor heuristics (Fig. 7).
The increase is sub-linear, so we ex-
pect that speedups will be maintained
on larger many-core systems with sim-
ilar architecture and scaling bandwidth
characteristics.

Finally, we note that the size of the
input has a small yet significant effect on the amount of work duplication; models with
higher state count have less duplication.

4.2 Models with Accepting Cycles

In [14], we experimented thoroughly to investigate the “on-the-flyness” of SWARM

NDFS and LNDFS. We noticed that the benefits of independent SWARM verification
is limited, on average only yielding a speedup of 2-8 on 16 core machines. LNDFS

however yielded speedups from 4 to 14. Combined with the fresh successor heuristic

Table 3. On-the-fly behavior of parallel LTL algorithms

1 core 48 core OWCTY+MAP

NDFS LNDFS CNDFS 1 core 48 core

model R
an

d.

R
an

d.

F
sh

R
an

d.

F
sh

.

S
ta

ti
c

R
an

d.

Runtimes (sec)

anderson.8.prop3 36.4 4.0 1.2 4.1 0.2 2858.8 1433.2
bakery.7.prop3 3.2 0.4 0.2 0.3 0.2 2.2 5.2
bakery.8.prop4 15.7 0.6 0.3 0.6 0.3 73.4 14.3
elevator2.3.prop3 8.4 1.4 0.2 1.4 0.2 432.3 192.5
extinction.4.prop2 2.2 0.1 0.1 0.1 0.1 1.8 1.7
peterson.6.prop4 29.1 0.6 0.5 0.9 0.5 668.4 705.7
szymanski.5.prop4 1.7 1.4 0.1 1.3 0.2 2.1 376.4

Speedups

anderson.8.prop3 9.1 31.1 8.8 175.0 2.0
bakery.7.prop3 8.7 18.3 10.9 21.2 0.4
bakery.8.prop4 28.3 51.1 26.2 48.9 5.1
elevator2.3.prop3 6.0 51.5 5.9 52.1 2.2
extinction.4.prop2 30.4 32.1 18.5 28.8 1.0
peterson.6.prop4 46.1 59.8 33.0 62.4 0.9
szymanski.5.prop4 1.2 12.0 1.3 10.9 0.0
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speedups became often superlinear. This is not surprising [19], because we verified that
in those cases there are many cycles, distributed evenly over the state space.

We performed the same experiments again with CNDFS on a 48 core machine. The
results in Table 3 show that CNDFS exhibits the same desirable on-the-fly behaviour as
LNDFS, scaling up to 48 cores. We conclude that our new multi-core CNDFS algorithm
scales well also for models with bugs.

For completeness, we also included the runtimes and speedups with OWCTY+MAP in
the table. While the heuristic on-the-fly behavior seems to work well for some models,
for others it does not. It must however be mentioned that the on-the-fly capabilities
of this algorithm have recently been improved by changing its exploration order to be
more DFS-like [1]. In [1], performance is reported on par with the LNDFS algorithm.
Unfortunately, we do not have the means (a GPGPU) to reproduce any results here.

4.3 Counterexample Length

Lengthy counterexamples are hard to study even with good model checking tools.
Therefore, finding short counterexamples is quite an important property of model check-
ing algorithms. Strict BFS algorithms deliver minimal counterexamples, while DFS al-
gorithms can yield very long ones. Once the strict BFS/DFS order is loosened, these
properties can be expected to fade. This is exactly what both OWCTY+MAP and CNDFS

do. We studied the length of the counterexamples that these algorithms produce.
For this purpose, 45 models with counterexamples were selected from the BEEM

database, all algorithms run 5 times, and computed the average counterexample length
and standard deviation. The results are summarised in scatter plots with bars repre-
senting the standard deviation. Fig. 8 compares randomised sequential NDFS (vertical
axis) against sequential OWCTY+MAP (horizontal axis). Fig. 9 compares the results of
CNDFS with fresh successor heuristic (fsh) against OWCTY+MAP on 48 cores.

In the sequential case, most bars are above the equilibrium so, as expected, NDFS

produces long counterexamples of variable size compared to OWCTY+MAP (which we
could not randomise). The parallelism of a 48 core run, however, greatly stabilises and

Fig. 8. NDFS vs OWCTY+MAP (1 core) Fig. 9. Fsh vs OWCTY+MAP (48 cores)
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reduces counterexample lengths for CNDFS, while the randomness added by parallelism
introduces variable results for OWCTY+MAP (horizontal bars). In many cases, CNDFS

counterexamples become shorter than those of OWCTY+MAP, a surprising result con-
sidering the BFS-like order of this algorithm. The one extreme outlier in this case is the
plc.4 model. All our NDFS algorithms consistently find a counterexample of length
216, while OWCTY+MAP finds one of length 2!

5 Conclusion

We presented CNDFS, a new multi-core NDFS algorithm. It can detect accepting cycles
on-the-fly, and its worst case execution time is linear in the size of the input graph. We
showed that CNDFS is considerably simpler than its predecessor NMCNDFS, because
of the deep integration of ENDFS and LNDFS. Experiments show that CNDFS delivers
performance and scalability similar to its predecessors, but achieves this more robustly.
Hence CNDFS is currently the fastest multi-core LTL model checking algorithm in prac-
tice. Moreover, CNDFS halves the memory requirements per state per worker thread; an
important factor since the total number of cores keeps growing.

Experiments revealed that the main bottleneck for perfect scalability of CNDFS is
currently the work duplication due to overlapping stacks. Forcing workers to favour
“fresh” successor states already decreases duplication. The same experiments indicate
that work duplication grows only linearly in the number of cores, and decreases for
larger input sizes. From this we conjecture that CNDFS will scale even beyond 48 cores.

CNDFS shares global information only during or even after backtracking, which
leads to potential work duplication. In the worst case, every worker could visit the whole
graph, blocking any speedup. During our extensive experiments with the entire BEEM

database we have not found such cases. However, we did observe work duplication of
factor 3 on 48 cores, so there is room for improvement.

Designing a provably scalable, linear-time algorithm remains an open question. Such
an algorithm should cause negligible duplicate work and avoid synchronisation by await
statements. So far, we have not been able to come up with a correct algorithm without
await statements or a repair procedure. An improvement might be to invent a smart
work stealing scheme, in which workers can cooperate instead of waiting.

Finally, we demonstrated that counterexamples in CNDFS become shorter with more
parallelism, even shorter than counterexamples in parallel BFS-based OWCTY+MAP.
This is an interesting and desirable property for a model checking algorithm. It is in-
triguing that our parallel DFS based algorithm shows good scalability and short coun-
terexamples, usually attributed to BFS algorithms, while still maintaining the linear-
time and on-the-fly properties expected from a DFS algorithm.

References
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Abstract. We propose a parallel algorithm for local, on the fly, model
checking of a fragment of CTL that is well-suited for modern, multi-
core architectures. This model-checking algorithm benefits from a paral-
lel state space construction algorithm, which we described in a previous
work, and shares the same basic set of principles: there are no assump-
tions on the models that can be analyzed; no restrictions on the way
states are distributed; and no restrictions on the way work is shared
among processors. We evaluate the performance of different versions of
our algorithm and compare our results with those obtained using other
parallel model checking tools. One of the most novel contributions of this
work is to study a space-efficient variant for CTL model-checking that
does not require to store the whole transition graph but that operates,
instead, on a reverse spanning tree.

1 Introduction

Several model-checking methods address the state-explosion problem from a
purely algorithmic perspective, for instance with the use of abstractions on the
set of states (such as stubborn sets or symmetries) or symbolic techniques. De-
spite the fact that considerable progress has been made at the theoretical level,
there are still classes of systems that cannot benefit from these advanced meth-
ods, like for example models that rely on real time constraints or on dynamic
priorities. In this case, it is interesting to take advantage of the computation
power—and increased amount of primary memory—provided by multi-processor
and multi-core computers in order to handle very large state spaces.

In this paper, we propose a parallel algorithm for local, on the fly, model
checking of a fragment of CTL that is well-suited for modern, multi-core archi-
tectures. We target shared-memory computers with a moderate number of cores
(say 4 to 64) operating on a large shared memory space (typically from 16GB
to 1TB of RAM). This description fits many available mid-range servers, but is
also quite close to tomorrow’s mainstream desktop computers.

Our model-checking algorithm takes advantage of a parallel state space con-
struction algorithm defined in previous work [11] and shares the same principles.
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First, we make no specific assumptions on the models that can be analyzed (we
only assume that we know how to compute the successors of a given state and
test them for equality). Second, we put no restrictions on the way states are
distributed: in our solution, every process keeps a local share of the global state
space and we do not rely on an a-priori static partition of the states. Finally,
we put no restrictions on the way work is shared among processors; this means
that our algorithm plays nicely with traditional work-sharing techniques, such
as work-stealing or stack-slicing.

In this paper, we extend this state space construction algorithm by adding
model checking capabilities. While the leading parallel model-checking tools are
based on LTL model-checking, (see Sect. 5) we advocate the use of CTL. The
choice of CTL derives from a number of desirable properties that we want for
our parallel algorithm.

First, it must take advantage of parallelism and be compatible with our paral-
lel state space generator. For this reason, the logic should preferably be branch-
ing time rather than linear time since model checking algorithms for linear time
logics are strongly tied to depth-first-search (dfs) exploration techniques; and
that dfs algorithms are “inherently sequential” (they belong to the class of P-
complete problems [8,3]). Parallel techniques for LTL model checking have been
quite investigated however [1,6] so we will compare our approach with these.

Secondly, we want an on-the-fly algorithm; only states essential for answer-
ing the model-checking problem should be enumerated. For this reason, model
checking should be local rather than global; properties will be interpreted at the
initial state rather than at all states.

Next, because the full state space may have to be enumerated (e.g. when
checking a property that is true), we want it to be space-efficient. Hence, we
shall accept that a small amount of information is recomputed every time it is
needed rather than kept in storage.

For all these reasons, we decided to select a fragment of Computation Tree
Logic (CTL) with state subformulas restricted to atomic propositions. This
fragment strictly includes the logic used by popular tools like Uppaal. Though
obviously less expressive than CTL, it implements a good trade-off between
expressiveness and cost of verification when used to check large state spaces.
While not yet implemented in our tool, it is possible to adapt our algorithm to
model-check full CTL; more expressive logics will be considered in further work.

Contributions. We follow the classical approach of Clarke and Emerson [2] for
CTL model-checking. During model-checking, we label each state of the system
with the subformulas that are true at this given state. Labels are computed
iteratively until we reach a fix-point, that is until we cannot add new labels. We
consider two variants of this algorithm that differ by the amount of information
on the transition relation that is stored. Both variants have two passes: a forward
pass performs a constrained exploration of the state graph in which we start
labeling each state with local information; a second, backward pass, propagates
information towards the root of the state graph and checks if the resulting graph
admits an infinite path.
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In the first version of the algorithm, that we call RG (for reverse graph), we as-
sume that, for every reachable state, we have a constant time access to the list of all
its “parents”. In other words, we store the reverse transition relation of the state
space.AlgorithmRG is simply a parallel version of the algorithm in [2] that uses our
parallel state space constructionmethod.Our experimental results show that, even
with this simple approach, we obtain a very good parallel implementation (that is
with a good speedup) and a very good model-checking tool (that is with a good
execution time when compared with other tools on a similar setup).

In the second version, we assume that we have direct access to only one of the
parents, meaning that we may have to recompute some transitions dynamically.
We call this second version RPG, for reverse parental graph. The advantage of
the RPG version is to save memory space. Indeed, if we use the symbol S to
denote the number of reachable states, the RG algorithm has a space complexity
in the order of O(S2) in the worst-case, while it is of the order of O(S) for the
RPG version. We show, in our benchmarks, that the RPG version allows bigger
examples to be computed without sacrificing execution time.

Outline of the paper. In the next section, we summarize the parallel state space
generation algorithm [11] that is used in our work. The model checking algo-
rithms are defined in Sect. 3 using pseudo-code, while our parallel implementa-
tion is described in Sect. 4. Before concluding, we discuss the related work and
compare our performances with the DiVinE[1] tool, a state of the art parallel
model checker for LTL.

2 Parallel State Space Generation

State space generation is often a preliminary step for model checking behavioral
formulas. This is a very basic operation: take a state that has not been explored;
compute its successors and check if they have already been found before; iterate
until there are no more new states to explore. Hence, a key point for performance
is to use an efficient data structure for storing the set of generated states and
for testing membership in this set. In [11], we propose an algorithm for parallel
state space construction based on an original concurrent data structure, called
a localization table (LT ), that aims at improving spatial and temporal balance.

This approach is close in spirit to algorithms based on distributed hash tables,
with the distinction that states are dynamically assigned to processors; i.e. we
do not rely on an a-priori static partition of the state space. In our solution,
every process keeps a share of the global state space in a local data structure.
Data distribution and coordination between processes is made through the LT ,
that is a lockless, thread-safe data structure. The localization table is used to
dynamically assign newly discovered states and can be queried to return the
identity of the processor that owns a given state. With this approach, we are able
to consolidate a network of local state repositories into an (abstract) distributed
one without sacrificing memory affinity—data that are “logically connected”
and physically close to each other—and without incurring performance costs
associated to the use of locks to ensure data consistency.
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The performance of our state space construction algorithm was evaluated on
different benchmarks and compared with the results obtained using other solu-
tions proposed in the literature. A first implementation of our algorithm showed
promising results as we observed performances that are consistently better—
both in terms of absolute speedup and memory footprint—than other parallel
algorithms. For example, this algorithm does consistently better than algorithms
based on the use of static partitioning or a similar approach based on the concur-
rent hash map implementation provided in the Intel Threading Building Blocks
(TBB) library.

State space generation has a direct impact on the performance of the model-
checking algorithm. For one thing, state space generation alone is enough to
model-check reachability properties (of the form A�(φ)). Moreover, for more
complicated properties (see our benchmark results in Sect. 4), the time needed
to explore the state space still makes up a big part of the model checking time.

3 Parallel Model Checking for a CTL Fragment

We build our model checking algorithm on top of the parallel state space gen-
eration algorithm of [11], described in the previous section. Our other design
choices follow from our goal to target models with very large state spaces. More
particularly, we choose to restrict ourselves to a fragment of CTL and to disal-
low the nesting of operators; that is, every subformula—denoted φ, ψ, . . .—is a
(boolean composition of) atomic propositions.

The logic used for model-checking essentially relies on three operators: Exist
Until (EU), E (ψ ∪ φ), that is true if there exists a trace (a path) in the state
space such that ψ has to hold until, at some position, φ holds; Always Until
(AU), A (ψ ∪ φ), that is true if the “until condition” holds on every trace; and
finally the leadsto formula, ψ � φ, that is true if, for every trace, whenever ψ
holds then necessarily φ will hold later. The last property can be expressed as
A�(¬ψ∨A�(φ)) in CTL. From the interpretation given in Table 1, we see that
these operators define an expressive fragment of CTL (and also LTL).

Model-checking procedures for these operators will be described in Sections 3.2
to 3.4. In our implementation, we consider two variants—RG and RPG—of the
algorithms. Both versions are based on two elementary phases: (1) a forward
constrained exploration of the state graph using the state space construction
discussed in Sect 2; followed by (2) a backward traversal and label propagation
phase ensuring that the resulting graph is acyclic.

The backward traversal phase is only needed for AU and leadsto formulas,
since checking EU formulas amounts to performing a constrained exploration of
the state space (for instance, the formula A�(φ) is true if no state satisfies ¬φ,
which can be checked during the exploration phase). Consequently, our algorithm
is not completely on-the-fly for these cases because the presence of a cycle is
detected after the (constrained) state space is constructed, delaying the discovery
of an invalid path. The last column of Table 1 indicates, for each formula, whether
the backward phase is necessary.
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Formulas Interpretation in CTL Forward Backward

E (ψ ∪ φ) E (ψ ∪ φ) x

A (ψ ∪ φ) A (ψ ∪ φ) x x

E�(φ) E (True ∪ φ) x

A�(φ) A (True ∪ φ) x x

E�(φ) ¬A�(¬φ) x x

A�(φ) ¬E�(¬φ) x

ψ � φ A�(¬ψ ∨ A�φ) x x

A�A�(φ) true � φ x x

Fig. 1. List of Supported Formulas

3.1 Concepts and Notations

We assume that we perform model-checking on a Kripke System KS(S,R, s0).
We will use, interchangeably, the notation KS for the Kripke structure (S,R, s0)
and G for the directed graph G(S,R), also called the state graph. In the RPG
version of our algorithm, we make use of the Parental Graph of a Kripke System,
that is a reverse spanning tree of the (currently computed) state graph.

Definition 1 (Parental Graph). The directed graph, PG(Vp, Ep), is a parental
graph of G(V,E) if: (1) PG if a subgraph of G that has the same vertices, that
is Vp = V and Ep ⊆ E, and (2) for every vertex v ∈ V , if v is not the root of G
then v has an in-degree of one in PG.

A simple way to obtain a parental graph, PG, when exploring the state graph,
G, is to keep for every state, s, a vertex to the state in G that was used to
generate s (and forget the others). The parental graph has nice properties. If
PG is a parental graph of G and G is acyclic then so is PG. Moreover, the set
of leaves of PG subsumes that of G; a leaf of G is necessarily a leaf of PG.

In the remainder of the text, the expression |S| is used to denote the cardinal-
ity of S (the number of reachable states), while |R| is the number of transitions.
We assume that every state s ∈ S is labeled with a value, denoted suc(s), that
records the out-degree of s in KS . The value of suc(s) is set during the forward
exploration phase. Initially, suc(s) is the cardinality of the set of successors of s
in KS , that is suc(s) = |{s′ | s R s′}|. We decrement this label during the back-
ward traversal of the state graph; when the value of suc(s) reaches zero, we say
that s is cleared from the state graph. In our pseudo-code, we use the expression
suc(s).dec() to decrement the value of the label suc for the state s in KS , and
the expression suc(s).set(i) to set the label of s to some integer value i.

When we deal with the reverse parental graph version of our algorithm, we
assume that we implicitly work with one particular parental graph of KS , de-
noted PKS . In this case, we assume that every state s ∈ S is also labeled with
a value, denoted sons(s), that records the out-degree of s in KS . We also label
each state s ∈ S with a state, denoted father(s), that is the (unique) predecessor
of s in PKS . (The label father(s) makes sense only if s is not the initial state,
s0, of KS .) Initially, the value of sons(s) is set to zero. The label will be incre-
mented during the forward exploration, when we build PKS (that is, we select
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the transitions from KS that will be stored in PKS). This operation is denoted
sons(s).inc() in our pseudo-code. We will decrement the value of sons(s) during
the backward traversal phase.

3.2 Checking EU Properties

Checking EU properties for the initial state is standard, except that we perform
the forward phase concurrently, on all states; this can be done on the fly in a
single, forward pass. To check the formula E (ψ ∪ φ), we explore the state space
stopping along a path when a state is found such that (1) φ holds, or (2) ¬ψ∧¬φ
holds. In the first case, the algorithm reports success. In the second case the path
cannot lead to a state making the property true; exploration continues over the
set of open paths until (1) or (2) holds. The property is false if (1) never holds
or true otherwise. The check function is the same for the two versions of our
algorithm, whether based on the reverse graph or the reverse parental graph
data structure.

1 function BOOL check a (ψ : pred , φ : pred , s0 : s t a t e )
2 Stack A ← new Stack (∅) ;
3 // Start with the forward exploration
4 i f f o rward check a (ψ , φ , s0 , A) then // If all forward constraints are

respected
5 return backward check a (s0 , A) //start the backward phase
6 else return FALSE // We found a problem during the forward exploration

Listing 1.1. Algorithm for the formula A (ψ ∪ φ)—function check a

3.3 Checking AU Properties

For checking the formula A (ψ∪φ), as for EU properties, we stop exploring a path
when we find a state such that (1) φ holds or (2) ¬ψ∧¬φ holds. If an occurrence
of case (2) is found, we know at once that the property is false. Otherwise, we
start the backward traversal phase in order to detect cycles. Indeed, the property
A (ψ ∪ φ) is false if there is an infinite path of states (starting from s0) that all
obey ψ. We call this second phase the clearing phase, because it consists of
recursively removing leaf nodes from the graph. This process ends either when
the only remaining state is the initial state (meaning that the property is true),
or when no states with out-degree zero can be found (in which case we know
that there is a cycle). The validity of this method follows from the fact that a
finite Directed Acyclic Graph (DAG) has at least one leaf.

We give the pseudo-code for checking A (ψ ∪φ) in Listing 1.1. The inputs are
the atomic properties ψ and φ and the initial state s0. The algorithm makes use
of a stack A to collect the states at which φ holds during the forward explo-
ration phase. The procedure uses two auxiliary functions, forward check a and
backward check a, that depends on the version of the algorithm. We start by
defining these helper functions for the Reverse Graph version.

Algorithm for the Reverse Graph version (RG). We give the pseudo-code for the
function forward check a (for the RG version) in Listing 1.2. The last parameter
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of this function, A, is a stack that is used to collect the leaf nodes of the state
graph, that is the states where φ holds. These states are the starting points in
our backward traversal of the graph.

During the forward exploration phase (function forward check a) each state
s is labelled with its number of successors in the initial state graph (the Kripke
structure). During the backward traversal phase (function backward check a),
this label is decremented each time a successor of s is removed; decrementations
are done in parallel. Intuitively, a state can be removed as soon as it is cleared.We
never actually remove a state from the graph. Instead, when a processor changes
the label of a state s to 0, we also decrement the labels of all the parents of
s in the graph. This motivates the choice to store the reverse of the transition
function in the data structure.

In the function backward check a, see Listing 1.2, we start by clearing all the
states in A which are, by construction, the states s such that suc(s) is nil. When
a state is cleared, we decrement the labels of all its parents (suc(s′).dec()) and
check which ones can be cleared (suc(s′) == 0). The algorithm stops if the initial
state, s0, can be cleared or if there are no more states to update.

1 function BOOL forward check a (ψ : pred , φ : pred , s0 : s tate , A: Stack )
2 Set S ← new Set (s0 ) ; Stack W ←new Stack (s0 ) ;
3 while (W i s not empty) do
4 s ← W. pop ( ) ;
5 i f ( s � φ) then
6 suc ( s ) . s e t ( 0 ) ; // We clear state s from KS
7 A. push ( s )
8 e l s i f ( s � ψ ) then // We tag s with its number of successors
9 suc ( s ) . s e t (number o f s u c c e s s o r s o f s in KS) ;

10 i f ( suc ( s ) = 0) // Check if s is not a dead state
11 return FALSE
12 f o ra l l s ’ su c c e s so r o f s in KS do // and continue the exploration
13 i f ( s ’ /∈ S) then
14 S ← S ∪ {s ’} ; // s’ is a new state
15 W. push ( s ’ )
16 else return FALSE
17 return TRUE
18
19 function BOOL backward check a (s0 : s tate , A : Stack )
20 while (A i s not empty) do
21 s ← A. pop ( ) ;
22 i f ( s = s0 ) then // The property is true if
23 return TRUE // we reach the initial state
24 f o ra l l s ’ parent o f s in KS do // Otherwise we check if the
25 suc ( s ’ ) . dec ( ) ; // predecessors of s can be cleared
26 i f ( suc ( s ’ ) = 0) then A. push ( s ’ )
27 return FALSE

Listing 1.2. Forward and backward exploration for A (ψ ∪ φ) with Reverse Graph

Algorithm for the Reverse Parental Graph version (RPG). The function for the
RPG version is only slightly more complicated, because we need to recompute
some successors in the transition relation: we can only access one of the par-
ents of a state in constant time (which we call the father of the state). The
pseudo-code for the forward exploration phase (function forward check a) is
essentially the same as in Listing 1.2; this is why it is omitted here. Com-
pared to the RG version, we only need to add two additional statements when
adding a new state (around line 14 in Listing 1.2): assuming that the state s
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is generated from a state s′, we set the value of the father for the newly gen-
erated state (father(s).set(s′)) and increment the number of sons of the father
sons(s).inc()). This information is used during the backward traversal to track
non cleared leaves.

We give the pseudo-code for the backward traversal phase in Listing 1.3.
During this phase, we follow the parental graph structure to “propagate” the
cleared states toward the root of the state graph. The algorithm alternates be-
tween two behaviors, clearing and collecting. The clearing behavior is similar to
the pseudo-code for the RG algorithm, with the difference that we decrement
only the father of a state and not all the predecessors. When there are no more
labels to decrement—and if the root state is not yet cleared—the algorithm
starts looking for states that can be cleared. For this, we test all the states s
such that sons(s) == 0; that is, such that all the sons of s have been cleared
(in the parental graph). In this case, to check if s can be cleared, we have to re-
compute all its successors in KS and check whether they have also been cleared
(if their suc label is zero).

1 function BOOL backward check a (s0 : s tate , A : Stack )
2 over ← FALSE
3 while ( not over )
4 while (A i s not empty) do
5 //Clearing
6 s ← A. pop ( ) ;
7 i f ( s = s0 ) then // The property is true if
8 return TRUE // we reach the initial state
9 s ’ ← f a t h e r ( s ) ; // Otherwise we check if

10 sons ( s ’ ) . dec ( ) ; // the father of s can be cleared
11 suc ( s ’ ) . dec ( ) ;
12 i f ( suc ( s ’ ) = 0) then A. push ( s ’ )
13 //Collecting: if we have no more states to clear in A we try to find
14 // candidates among the states with no children in PKS
15 f o ra l l s such that sons ( s ) = 0 and suc ( s ) �= 0 in KS do
16 i f t e s t ( s ) then
17 suc ( s ) . s e t ( 0 ) ;
18 A. push ( s )
19 i f (A i s empty) then
20 over ← TRUE //No good candidate was found, end backward search
21 return FALSE
22
23 function BOOL t e s t ( s : s t a t e )
24 f o ra l l s ’ su c c e s so r o f s in KS do
25 i f suc ( s ’ ) �= 0 then
26 return FALSE // at least one successor is not cleared
27 return TRUE

Listing 1.3. Backward exploration for A (ψ ∪ φ) with Reverse Parental Graph

The advantage of this strategy is that we do not have to consider all the states
in the graph but just a subset of them. Indeed, we know that if KS is a acyclic
(is a DAG) then PG has at least one leaf that is also a leaf in G [9]. Hence, this
subset is enough to test the presence of a cycle. Conversely, the drawback of this
approach is that we may try to clear the same vertex several times, which may
be time consuming.
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3.4 Checking Leadsto Properties

To check the formula ψ � φ, we need to prove that no cycle can be reached
from a state where ψ holds, without first reaching a state where φ holds. Indeed,
otherwise, we can find an infinite path where

a

b b

DAG

a

b b

DAG

Fig. 2. Formula a � b.

φ never holds after an occurrence of ψ. Fig-
ure 2 shows an example of graph for which
the formula is valid.

This observation underlines the link be-
tween checking the formula ψ � φ locally—
for the initial state—and checking the valid-
ity of A�(φ) globally—at every state where
ψ holds. As a consequence, we can use an
approach similar to the one used for AU prop-
erties in the previous section. The main dif-
ference is that, instead of clearing the initial
state, we have to clear all the states where
ψ holds. Hence, the pseudo-code for the lead-
sto formulas is similar to that of AU formulas
(this is why it is omitted here), the main difference is in the termination condi-
tion: the function returns true if all the states where ψ holds are cleared.

3.5 Correctness and Complexity of Our Algorithms

Proofs of correctness (termination, completeness and soundness) and a precise
study of the complexity of our algorithms can be found in [9]. We just discuss
here the worst-case complexity in the sequential case, and for formulas A (ψ∪φ).
The results for this case can be generalized to our whole logic. (Inside asymptotic
notations, we use the symbols S and R when we really mean |S| and |R|.)

The algorithm given in Sect. 3.3 may inspect every state in the Kripke Struc-
ture KS and, for every transition, it may update one label. Therefore, its worst-
case time complexity is in the order of O(S + R) for the RG algorithm. The
complexity is higher in the RPG version since, for each altered state, we may
have to recompute the successors for all the reachable states s such that sons(s)
is nil. Hence, solving a simple recurrence, we can prove that the time complex-
ity is in the order of O(S · (R − S)) for the RPG version. Since the number of
transitions in KS is bounded by |S|2, we obtain a complexity in the order of
O(S2) for the RG version and of O(S3) for the RPG variant. Concerning the
space complexity, the RPG version is in the order of O(S), while the RG version
is linear in the size of the graph, that is in the order of O(S +R) (or O(S2)).

We show in our experiments that the decision to favor “space-efficiency” (in
the case of the RPG version) is quite interesting. In particular, on some ex-
amples, the RPG version may run faster than the RG version because it needs
to “write less information” in main memory, an effect that is not visible if we
only look at the theoretical complexity. More importantly, memory is one of the
key resources used during model-checking. Indeed, it is common to exhaust the
available memory during verification.
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4 Implementation and Experimental Results

In the code presented in Sect. 3, no underlying computational model was make
precise. The code can be easily adapted to a Parallel RAM model, following a
Single Program Multiple Data (SPMD) programming style. In this section, we
discuss the details surrounding the parallel implementation of our algorithms,
then report on a set of experiments performed to evaluate their effectiveness.

4.1 Parallel Implementation of our Algorithm

In a SPMD context, all processing units will execute the same functions (those in
Listings 1.1–1.3). Following this approach, both the (forward) exploration phase
and the (backward) cycle detection phase are easily parallelized. For the model-
checking functions themselves—for instance check a—we only need to synchro-
nize the termination of the forward exploration with the start of the backward
label propagation. At each point, a processing unit can terminate the model-
checking process if it can prove (or disprove) the validity of the formula before
the end of the exploration phase. Actually, most of the burden of parallelizing our
algorithm is hidden inside the use of our specialized, lock-free data structures.

We consider a shared memory architecture where all processing units share the
state space (using the mixed approach presented in [11]) and where the working
stacks are partially distributed (such as the stacks W and A used in our pseudo-
code). For most of our pseudo-code, it is enough to rely on atomic compare and
swap primitives to protect from parallel data races and other synchronization
issues; typically, compare-and-swap primitives will be used when we need to
test the value of a label or when we need to update the label of a state (for
instance with expressions like sons(s).dec()). Together with the compare-and-
swap primitive, we use our combination of distributed, local hash tables with a
concurrent localization table to store and manage the state space.

For the RG version of the algorithm, we can ensure the consistency of our
algorithm by protecting all the operations that manipulate a state label. (We
made sure, in our pseudo-code, that every operation only affects one state at
a time.) The parallel version of RPG is a bit more involved. This problem is
related to the behavior of the collecting operations of the backward exploration
(see the comment on line 14 of Listing 1.3)—and in particular the function test—
that needs to check all the successors of a state to see if they are cleared. First,
this code is not atomic and it is not practical to put it inside a critical section
(it would require a mutex for every state). If two processors collect the same
state, then the father of this state could be decremented twice, during the clear-
ing operations. Second, collecting must be performed after all processors have
finished the clearing operations, otherwise the algorithm may end prematurely
(see [9] for a complete explanation.) We solve the concurrency issues for the RPG
version through the synchronization of all processors before both clearing and
collecting. Then, we take advantage of our distributed local state repositories to
avoid problems due to concurrent access; each processor can perform the collect-
ing operations only over the states that it owns. Finally, we use a work-stealing
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strategy (see [11]) to balance the work-load between the different phases of our
algorithm; for instance, whenever a thread has no more states to clear, it tries
to “steal” non-cleared states from other processors.

4.2 Experimental Results

We have implemented the parallel versions of our model-checking algorithm and
evaluated their performances on several benchmarks. Experimental results pre-
sented in this section were obtained on a Sun Fire X4600 M2 server configured
with 8 dual core opteron processors and 208GB of RAM memory, running the
Solaris 10 operating system. (The complete set of experiments can be found
in [9].) We give results obtained on 8 classical models, including a Token Ring
protocol and the Peg-Solitaire board-game, with a mix of valid and invalid prop-
erties. We experimented with all the formulas: reachability (E�φ), safety (A�φ
and E�φ), liveness (A�φ) and leadsto (ψ � φ).

Speedup Analysis: We study the relative speedup and the execution time for
our algorithms. In addition, we also give the separate speedup obtained in each
phase of the algorithm—during the exploration (forward) and cycle detection
(backward) phases—in order to better analyze the advantages of our approach.

Figure 3 shows speedup analysis for the RPG version of our algorithm. We
only show the results for two models—a Token Ring with 22 bases (TK22) and a
Solitaire game with 33 pegs—since they are representative of the results obtained
with our complete benchmark. These models have different execution profiles
which impacts significantly the overall performance. The main difference is the
time spent in the backward traversal phase. Figure 4 shows a series of bar charts
putting in evidence the time required for each phase of the algorithm (exploration
and cycle detection). In addition, we compare our approach (RG and RPG) with
a third algorithm (NO GRAPH) that uses the same code as RG but recomputes
predecessor states instead of storing them (this is possible only because, for this
particular benchmark, we know how to compute the predecessors of a state). We
have observed two main categories of behaviors in this analysis.

negligible backward traversal: the time spent in the backward exploration
phase is negligible compared to the overall execution time (e.g. model TK22
in Fig. 3, 4). This is the case, for instance, if the property is false and the
cycle detection phase terminates early. In this category of experiments, there
are no significant differences between RG and RPG, mainly because the gain
in performance during the forward exploration phase outweighs the extra work
performed during the cycle detection phase;

complete backward traversal: the cycle detection phase needs to run through
all the state space (e.g. model SOLITAIRE in Fig. 3, 4). We observe a significant
difference in performance between the RG and RPG versions in this case. The
extra work performed by the RPG version becomes the dominant factor.

These experiments confirm that RPG is a good choice when we are limited by
the memory space: although it may require more computations (in our examples,
we may loose a factor of 5 in execution time), it can be applied on models that



An Experiment on Parallel Model Checking of a CTL Fragment 295

a) Speedup b) Execution Time

Fig. 3. Speedup and execution time analysis for Token Ring and Solitaire models
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Fig. 4. Comparison with a Standard Algorithm

are not tractable with the RG version because of the space needed to store the
transitions. For instance, for the Peg Solitaire model with 37 pegs (that has 3.109

states and 3.1010 transitions), the RPG only needs 15GB of memory while, with
the RG version, we would need 240GB of memory just to store the transitions.

5 Related Work and Comparisons with Other Tools

Several works address the problem of designing efficient, parallel model-checking
algorithms. Most of the proposals follow an “automata-theoretic approach” for
LTL model checking. In this context, the difficulty is to adapt the cycle detection
algorithms (Tarjan or Nested-DFS), which are inherently sequential. Two works
stand out: one with a mature implementation, DiVinE [1], with the owcty +
map algorithm; another with a prototype, named LTSmin, with the mc-ndfs
algorithm [6]. They mostly differ by the algorithm used to detect cycles.

DiVinE combines two algorithms, owcty and map, that result in “a parallel
on-the-fly linear algorithm for model checking weak LTL properties” (weak LTL
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properties are those expressible by an automata that has no cycle with both
accepting and no-accepting states on its path). If the LTL property does not
meet this requirement, the algorithm complexity may be quadratic. The multi-
core nested DFS (mc-ndfs) algorithm [6] is a recent extension of the swarm [4]
distributed algorithm to a multi-core setting. The authors in [6] propose a multi-
core version with the distinction that the storage state space is shared among
all workers in conjunction with some synchronization mechanisms for the nested
search. Even if, in the worst-case, all the processors may duplicate the same work,
this approach has a linear complexity (given a fixed number of processors).

In contrast with the number of solutions proposed for parallel LTL model
checking, just two specifically target CTL model checking on shared memory
machines: Inggs and Barringer work [5] supports CTL∗, while the work of van
de Pol and Weber [7] supports the μ-calculus.

Comparison with DiVinE. We now compare our algorithms with DiVinE [1],
which is the state of the art tool for parallel model checking of LTL. The results
given here have been obtained with DiVinE 2.5.2, considering only the best
results given by the owcty or map, separately. This benchmark (experimental
data and examples are available in report [10]) is based on the set of models
borrowed from DiVinE on which, for a broader comparison, we check both valid
and non valid properties. Figure 5 shows the exact set of models and formulas
that are used. All experiments were carried out using 16 cores and with an
initial hash table sized enough to store all states. The DiVinE experiments were
executed with flag (-n) to remove counter-example generation.

Figure 6 shows for each model the execution time (T.) in seconds and the
memory peak (M.) (in GB). Figure 7 summarizes these results using the nor-
malized weighted sum of the memory footprint and the execution time, separated
for valid and non valid formulas.

Algorithms owcty and map show better overall results when the formula is
not valid (FALSE). By contrast, reverse holds the best execution time when the
formula is valid. Regarding the RPG version of our algorithm, our results show
that it holds the best memory footprint among all results, it uses on average
2 to 4 times less memory than map and owcty when the formula is valid. In
addition, regardless of its “cubic” worst-case complexity, it shows good results
when compared to map and owcty. For instance, it is able to verify a valid
formula on average using 4 times less memory than owcty with a limited slow-
down (≈ 1.8 times slower).

To conclude, for the set of models and formulas used in this benchmark, both
RPG and RG delivered good results when compared to DiVinE. For instance, RG
has a better performance in both time and memory usage when compared with
DiVinE (map and owtcy). Finally, RPG proved to be the most space conscious
algorithm—the one to choose for the biggest models—without sacrificing too
much the execution time.
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Model Formula Results

Anderson (AN)
18· 106 states

F1:(-cs_0) ==> (cs_0) false
F2:A[]<>(cs_0 or ... or cs_n) true

Lamport (LA)
38· 106 states.

F1:(wait_0 and (- cs_0)) ==> (cs_0) false
F2:(- cs_0) ==> (cs_0) false
F3:A[]<>(cs_0 or ... or cs_n) true

Rether (RE)
4· 106 states

F1:A[]<>(nrt_0) true
F2:A[]<>(rt_0) false

Szymanski (SZY)
2· 106 states .

F1:(wait_0 and (- cs_0)) ==> (cs_0) false
F2:(- cs_0) ==> (cs_0) false
F3:A[]<>(cs_0 or ... or cs_0) true

Fig. 5. Formulas and Models for our Comparison

M Formula
owcty map reverse (RG) parental (RPG)

T.(s) M.(Gb) T.(s) M.(Gb) T.(s) M.(Gb) T.(s) M.(Gb)

AN
F1: false 61.3 3.3 110.2 5.5 28.8 2.8 94.4 1.8
F2: true 79.5 7.4 110.5 4.8 26.4 2.9 50.4 1.8

LA
F1: false 1.6 1.1 1.4 1.1 42.4 5.1 74.2 3.3
F2: false 1.4 1.1 1.7 1.2 47.6 5.6 327.2 3.6
F3: true 153.6 14.1 282.8 12.1 51.0 5.6 370.4 3.7

RE
F1: true 12.0 1.8 20.1 1.3 5.0 0.7 12.0 0.6
F2: false 13.2 1.8 1.2 0.3 3.4 0.7 7.8 0.6

SZY
F1: false 8.5 0.9 7.0 0.5 2.2 0.3 1.4 0.2
F2: false 9.8 0.9 6.6 .5 4.2 0.3 39.6 0.3
F3: true 9.0 0.9 24.7 0.6 3.8 0.3 32.8 0.3

Fig. 6. Table of results
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Fig. 7. Comparison with divine (reverse = RG, parental = RPG)

6 Conclusion

We have described ongoing works concerning parallel (enumerative)
model-checking algorithms for finite state systems. We define two versions of a
new model checking algorithm that support an expressive fragment of both CTL
and LTL. These algorithms are based on the standard, semantic model-checking
algorithm for CTL but specifically target parallel, shared memory machines. Our
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two versions differ by the amount of information they need to store: a Reverse
Graph (RG) version that explicitly stores the complete transition relation in
memory, and a Reverse Parental Graph (RPG) that relies on a spanning tree.

We use the reverse parental graph structure as a means to fight the state
explosion problem. In this respect, this approach has a similar impact—on the
space—than algorithmic techniques like sleep sets (used with partial-order meth-
ods), but with the difference that we do not take into account the structure of
the model. Moreover, our approach is effective regardless of the formalism used
to model the system. For instance, it is particularly useful in cases where it is
not possible to compute the “inverse” of the transition relation.

Our prototype implementation shows promising results for both the RG and
RPG versions of the algorithm. The choice of a “labeling algorithm” based on the
out-degree number has proved to be a good match for shared memory machines
and a work stealing strategy; we consistently obtained speedups close to linear
with an average efficiency of 75%. Our experimental results also showed that the
RPG version is able to outperform the RG version for some categories of models.

Using our work, one can easily obtain a parallel algorithm for checking any
CTL formula Φ by running one instance of our algorithms (for the AU and EU
formulas) for each subformula of Φ. But this approach, as such, is too naive. For
future works, we are considering improvements of our algorithms that support
full CTL formulas without having to manage several copies of our labels (sons
and suc) in parallel, which could have an adverse effect on memory consumption.
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Abstract. Predicate abstraction has proven powerful in the analysis of
very large probabilistic systems, but has thus far been limited to the
analysis of systems with a fixed number of distinct transition probabil-
ities. This excludes a large variety of potential analysis cases, ranging
from sensor networks to biochemical systems. In these systems, transi-
tion probabilities are often given as a function of state variables—leading
to an arbitrary number of different probabilities.

This paper overcomes this shortcoming. It extends existing abstrac-
tion techniques to handle such variable probabilities. We first identify the
most precise abstraction in this setting, the best transformer. For practi-
cality purposes, we then devise another type of abstraction, mapping on
extensions of constraint or interval Markov chains, which is less precise
but better applicable in practice. Refinement techniques are employed
in case a given abstraction yields too imprecise results. We demonstrate
the practical applicability of our method on two case studies.

1 Introduction

Many systems, including network protocols, manufacturing systems and biologi-
cal systems are characterised by random phenomena which can be modeled using
probabilities. Since these system are distributed, they are inherently concurrent.
Markov decision processes (MDPs) are often used as a semantic foundation in this
context, because they account for both nondeterminism (used to model concur-
rency) andprobabilism.Typically, one is interested in computing (maximal ormin-
imal) reachability probabilities, e.g., the chance of having delivered three messages
after ten transmission attempts, under best-case and worst-case assumptions con-
cerning the environment. For finite MDPs, these probabilities can be computed by
linear optimisation or using numerical techniques such as value iteration [6]. The
latter is done e.g., in the popular probabilisticmodel checkerPrism [13]. However,
this approach suffers from the state explosion problem, even more than in non-
probabilistic model checking, due to expensive numerical computations.

Abstraction-refinement methods have gained popularity as approaches to alle-
viate this problem. Early approaches (e.g. [1,3]) were restricted to finite models,
since they unfold the state space of the model under analysis. More recently,
symbolic abstractions that operate at the source-code level were introduced to

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 300–316, 2012.
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support infinite or very large models. Predicate abstraction and counterexample-
guided abstraction refinement (CEGAR) have been proposed [8] and imple-
mented in the verification tool Pass [7] for concurrent probabilistic programs.
Building on seminal work on game-based abstraction [14], abstraction refine-
ment has also been applied to sequential probabilistic programs [11], probabilis-
tic timed automata [15] and finite-state concurrent probabilistic programs [12].

There is one disturbing limitation to the otherwise promising techniques based
on symbolic abstraction, which is common to all works in this field [8,14,11,15,12].
Namely, so far, the analysis is limited tomodels with a fixed set of transition proba-
bilities, and effectively cannot handle probabilities expressed in terms of arithmetic
expressions that involve program variables. For instance, it is not possible to have
transition probabilities 1

n and 1 − 1
n where n is an integer variable. Such variable

probabilities induce a potentially unbounded number of transition probabilities
corresponding to the underlying variable domain. Previous symbolic-abstraction
techniques [14,19] produce intractably large, or even infinite abstract models in
presence of variable probabilities, while existing interval abstractions of transition
probabilities [9] only apply to finite explicit-state models [4,10].

However, variable probabilities naturally arise in most biological systems, in
wireless sensor networks, manufacturing systems and many other application
contexts. For instance, protocol standards such as IETF RFC 3927 (Zeroconf),
or IEEE 802.11e (QoS for WLAN) make extensive use of random selections which
are based on the value of certain state variables. With the further advancement of
self-stabilising, self-healing, self-supportive or energy-harvesting systems, the use
of situation-specific random sampling is likely to be the rule, not the exception.
Guarantees for such systems are probabilistic in nature, but are only possible if
such randomisation mechanisms are supported by analysis tools. This is what
this paper aims to achieve for probabilistic abstraction refinement. We develop
theory and tools for the automatic analysis of concurrent probabilistic systems
with variable probabilistic selections. We introduce novel abstractions and re-
finement procedures for probabilistic programs based on probabilistic games.

To handle variable probabilities, our new abstractions explicitly summarise
transition probabilities, which is more challenging than both (interval) abstrac-
tion of explicit-state models and non-variable symbolic abstraction, because com-
puting abstract transition probabilites requires reasoning over the arithmetic
theory of the program. We solve this problem by using optimisation techniques
and explore the trade-off between precision versus performance by applying op-
timisation at different stages. Our symbolic abstraction retains the symbolic
representation of transition probabilities, as in the program. While this is very
precise, the analysis involves a costly fixed-point iteration with nested linear
optimisation problems. We therefore develop an alternative interval abstraction
technique, computing a probabilistic game with transition probabilities given
as intervals, which may be less precise but requires to only solve an optimi-
sation problem once. A prototype of the interval abstraction with abstraction
refinement has been implemented in Pass and has been successfully applied to
a number of non-trivial case studies.
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Outline. In Section 2, we discuss probabilistic programs and their semantics.
In Section 3, we introduce an abstract game model to safely overapproximate
properties of the semantics. Computing abstractions in practice is treated in
Section 4. Automatic refinement is discussed in Section 5. Experiments follow
in Section 6 and Section 7 concludes the paper. An extended version containing
the proofs and covering also abstractions for models in which the size of the
probability distributions can be variable can be found at [5].

2 Preliminaries

Let S be a set. A probability distribution over S is a function μ : S → [0, 1] with∑
s∈S μ(s) = 1. The support of μ is given by Supp(μ) = {s ∈ S | μ(s) > 0}.

We denote the set of all probability distributions over a given set S by Distr(S).
The domain of a partial function f : A ⇀ B is Dom(f) ⊆ A.
Definition 1. A probabilistic automaton is a tuple (S, I,Act , δ) where

– S is a set of states of which I ⊆ S with I 	= ∅ is the set of initial states,
– Act is a set of actions, and
– δ : (S ×Act)⇀ Distr(S) is the transition function.

We denote by en(s) ⊆ Act the actions that are enabled in s, i.e. α ∈ en(s) iff
δ(s, α) is defined. We require that en(s) 	= ∅ for all s ∈ S. Any automaton that
does not satisfy this condition can be modified by introducing self-loops in the
deadlock states. Intuitively, in each state s, we choose an action α ∈ en(s). In
turn, the probability distribution μ = δ(s, α) provides a probabilistic choice over
the states reached in the next step.

Definition 2. A probabilistic program is a tuple P = (X, Dom, I, C) where

– X = {x1, . . . , xn} is a set of program variables; for each variable xi ∈ X, we
denote by Dom(xi) the (possibly infinite) variable domain so that the state

space of the program is the set Dom(X)
def
= Dom(x1)× · · · × Dom(xn),

– I ⊆ Dom(X) with I 	= ∅ is an expression characterising the set of initial
states,

– C is a set of guarded commands of the form c = (g→ p1 : u1+. . .+pm : um)
with a guard expression g ⊆ Dom(X) and probabilistic choices 1 ≤ i ≤ m; each
choice i comes with a weight function pi and an update function ui:
• update function ui : Dom(X)→ Dom(X) assigns a successor to each state,
• weight function pi : Dom(X)→ [0, 1] assigns a weight to each state #–x , such
that the weights sum to one:

∑
1≤i≤m pi(

#–x ) = 1.
We require that

⋃
c∈C gc = Dom(X).

Definition 3. The semantics sem(P) of a probabilistic program P = (X, Dom, I, C)

is the probabilistic automaton (S, I, C, δ)with S
def
= Dom(X). The transition function

is defined on pairs of states s and commands c which can be executed in s, i.e.,

Dom(δ)
def
= {(s, c) ∈ S × C | c = (g → p1 : u1 + . . . + pm : um) ∧ s ∈ g}, and

the corresponding distribution is defined by the probabilistic choices, i.e., for each

s′ ∈ S it is δ(s, c)(s′)
def
=

∑
1≤i≤m,

ui(s)=s′
pi(s) for c = (g→ p1 : u1+ . . .+pm : um) ∈ C.
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The guarded-command language in Definition 2 forms the core language of the
probabilistic model checker Prism [13], for which a vast collection of case studies
exists, many of which feature variable probabilities. However, previous predicate
abstraction techniques for probabilistic programs did not fully support variable
probabilities. The probability associated with a probabilistic choice had to be a
constant. To a limited degree, variable probabilities could be encoded by creating
a copy of the same command for each induced distribution. However, variable
probabilities may induce infinitely many distributions, as illustrated by the fol-
lowing Example 1. Even if the number of distributions is finite, the encoding
creates extra work for the abstraction procedure with each copy of a command.

Example 1. Consider the program (X, Dom, I, C) in Fig. 1. The program contains
two variables, s and x where Dom(s) = {0, 1, 2, 3} and Dom(x) = N. We have
I = {0} × N. For command b = (g → p1 : u1 + p2 : u2) we have g = {1} × N,
p1(s, x) = 9x−8

16x , p2(s, x) = 7x+8
16x , u1(s, x) = (2, x) and u2(s, x) = (3, x). The

other commands are formalised likewise.
This program could not have been handled by the previous approach, as

command b would have to be encoded by a countably infinite number of guarded
commands. Even if the domain of variable x was finite, the number of transition
probabilities in the abstraction would have at least the size of the domain Dom(x).

s : [0..3]; x : [1.. inf);

[a] s=0 -> (s’=1) & (x ’=1);

[b] s=1 -> ((9x-8)/(16x)):(s’=2)

+ ((7x+8)/(16x)):(s ’=3);

[c] s=1 -> 1 : (x’=x+1);

i n i t s=0 endinit

Fig. 1. Example for a probabilistic program

Probabilistic Reachability. Gi-
ven the automata semantics M =
(S, I,Act , δ) of a probabilistic pro-
gram, we are interested in the prob-
ability to reach a set of goal states
F ⊆ S. This probability depends
on the resolution of nondetermin-
ism in the automaton, i.e. choosing
an action at a given state. A particular resolution of nondeterminism is a func-
tion from paths to a distribution over actions, and induces a probability measure
over a set of paths. We are interested in the minimal and maximal probabilities
to reach a set of goal states F , particularly starting in an initial state.

Reachability probabilities can be expressed and computed in terms of func-
tions from states to probabilities ν : S → [0, 1]. We call these functions valuations
and denote by Asg(S) the set of all valuations for S.

The set Asg(S) forms a complete lattice with the pointwise order ≤, i.e. for
each pair ν1, ν2 ∈ Asg(S) we let ν1 ≤ ν2 def⇐⇒ ∀s ∈ S. ν1(s) ≤ ν2(s). We call a
monotone function f : Asg(S)→ Asg(S) a valuation transformer. As valuations
form a complete lattice, each transformer has a least (and a greatest) fixed point
lfp≤ f (gfp≤ f ).

Definition 4. Given a probabilistic automatonM = (S, I,Act , δ) and a set of
goal states F ⊆ S, the + valuation transformer is the function pre+M,F : Asg(S)→
Asg(S). For ν ∈ Asg(S) and s ∈ S it is pre+M,F (ν)(s)

def
= 1 for s ∈ F and otherwise

pre+M,F (ν)(s)
def
= sup

α∈en(s)

∑
s′∈S

δ(s, α)(s′) · ν(s′).
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The− valuation transformer is defined accordingly using the infimum. By p•M,F
def
=

lfp≤ pre•M,F for • ∈ {+,−} we describe the least fixed points of these operators.

The maximal (minimal) reachability probability equals p+M,F (p−M,F ). This al-
lows to use an iterative algorithm to compute concrete probabilities in finite

models [6]: We let ν0(s)
def
= 0 and νi+1(s)

def
= pre+M,F (ν

i)(s) for i ≥ 0. The se-

quence νi converges to the fixed point. We can thus use νn as an approximation
for the fixed point, where n is chosen according to the precision to be obtained.

0, 1

0, 2

. . .

1, 1 1, 2 1, 3 1, 4. . .

. . .

. . .

. . .

. . .2, 1 3, 1 2, 2 3, 2 2, 3 3, 3

a 1

a
1 b

1
16

15
16

b
5
16

11
16

b
19
48

29
48

c 1 c 1 c 1

Fig. 2. Probabilistic automata semantics of the probabilistic program in Fig. 1

Example 2. Fig. 2 shows a fraction of the infinite semantics of the program of
Fig. 1, where we mark states of the goal set F = {(s, x) ∈ Dom(X) | s = 2}. The
supremum probability to reach F is 9

16 : After an initial transition to state (1, 1)
by command a, in each state (1, x) one can decide to either move to state (1, x)
with certainty or to move to F with probability 9x−8

16x . It is limx→∞
9x−8
16x = 9

16 ,
which means that by first executing a sufficiently long sequence of command c,
one can reach F with a probability arbitrary close to 9

16 .

Abstract Interpretation. Variable probabilities induce models with un-
bounded numbers of transition probabilities. This asks for abstraction techniques
that extend the existing frameworks [14,19]. In this section, we revisit the formal
framework [19] to reason about abstractions for probabilistic programs building
on the theory of abstract interpretation. We begin by introducing an abstract
state space which partitions1 the concrete state space.

Definition 5. Given a probabilistic automaton (S, I,Act , δ), an abstract state
space is a finite partition A = {z1, . . . , zn} of S, i.e., for all 1 ≤ i ≤ n it is
zi ⊆ S, for all 1 ≤ j ≤ n with i 	= j we have zi ∩ zj = ∅, and S =

⋃
i∈{1,...,n} zi.

For z ∈ A and s1, s2 ∈ z we need to have en(s1) = en(s2). For the analysis with
a goal set F , we require that for all z ∈ A either z ∩ F = ∅ or z ⊆ F .

When we go from the domain Asg(S) to Asg(A), we summarise states and
probabilities. Assume we already have a concrete valuation and want to compute
an abstraction in Asg(A) that represents a lower bound. The valuation we choose

1 In the definition, we require that for a given abstract state all contained concrete
states are able to perform the same set of commands. This assumption is not strictly
needed but used to simplify notations later on, and because it is fulfilled automati-
cally by our implementation of the abstraction methods.



Variable Probabilistic Abstraction Refinement 305

maps a given abstract state z to the lower bound (infimum) of the probabilities
over all states s ∈ z contained in z. This is captured by the function αl:

αl : Asg(S)→ Asg(A), ν �→ ν� where ν�(z) def
= inf

s∈z
ν(s) for all z ∈ A.

The upper-bound abstraction function αu is defined analogously with the differ-

ence that ν is mapped to ν�(z)
def
= sups∈z ν(s) for all z ∈ A.

The abstraction functions have a counterpart, the concretisation function γ.
It maps an abstract valuation back to a concrete one in the obvious way:

γ : Asg(A)→ Asg(S), ν� �→ ν where ν(s)
def
= ν�(z) for all s ∈ S with s ∈ z.

Intuitively, our choice of pairs (αl, γ) and (αu, γ) defines a way to map a valuation
to “a lower resolution” and back—preserving either lower or upper bounds. The
following theorem establishes that this mapping is canonical yielding the most
precise mapping that still guarantees correct bounds. Precisely this notion is
captured by the well-established concept of a Galois connection:

Proposition 1 (Galois Connections [18]). Let αl, αu, and γ be as defined
above. The pair (αl, γ) is a Galois connection between the domains (Asg(S),≥)
and (Asg(A),≥), and (αu, γ) is a Galois connection between the two domains
(Asg(S),≤) and (Asg(A),≤).

Notably we have two Galois connections depending on whether we are aiming
for lower bounds or for upper bounds. The order on the domains is an approx-
imation order in the following sense: Lower bounds are expressed in the domain
(Asg(S),≥). Because a lower bound ismore precise than another one if it is greater,
the order for lower bounds is the point-wise ordering≥. Conversely, smaller upper
bounds are more precise, therefore the order for upper bounds is ≤.

To obtain a working analysis on the abstract domain, we additionally require
an abstract transformer with type Asg(A)→ Asg(A), so that the concrete fixed-
point computation of transformer pre•M,F : Asg(S) → Asg(S) can be replaced
by an abstract fixed-point computation. Due to the complex interplay between
non-determinism and probability, it is not immediately clear what is the best
choice. Thankfully abstract interpretation provides canonical and most precise
abstract transformers defined in terms of function composition: αl ◦ pre•M,F ◦ γ
for the lower bound and αu ◦ pre•M,F ◦ γ for the upper bound [19].

While abstract interpretation specifies desirable abstract transformers, prob-
abilistic games provide a representation for them, which stands out from other
abstract models in that it admits computing effective lower and upper bounds
on reachability probabilities [14]. In the next section, we discuss such games.

3 Probabilistic Games

In this section, we discuss several variants of turn-based probabilistic games,
which are needed to obtain abstractions of probabilistic programs with variable
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probabilities. We begin by introducing probabilistic games which extend prob-
abilistic automata by introducing a second instance of nondeterministic choice.
The two kinds of nondeterminism are resolved by two players. The basic defini-
tion of a probabilistic game is as follows:

Definition 6. A probabilistic two-player game is a tuple (S, I,Act1,Act2, δ)
where

– S is a set of states of which I ⊆ S with I 	= ∅ is the set of initial states,
– for i = 1, 2, it is Act i the set of player-i actions, and
– δ : (S ×Act1 ×Act2)⇀ Distr(S) provides the transition function.

Similarly to probabilistic automata, we introduce the notion of enabled actions.
We have α1 ∈ en1(s) ⊆ Act1 if there exist α2 ∈ Act2 such that δ(s, α1, α2) is
defined and we have α2 ∈ en2(s, α1) ⊆ Act2 if δ(s, α1, α2) is defined. We also
require en1(s) 	= ∅ for all s ∈ S and en2(s, α1) 	= ∅ if α1 ∈ en1(s). In state s of
a probabilistic game (S, I,Act1,Act2, δ), the first player chooses an action α1 ∈
en1(s). Afterwards, the second player chooses an action α2 ∈ en2(s, α1). From
this, we obtain a distribution μ = δ(s, α1, α2) which probabilistically determines
the next state of the game.

We can define valuation transformers for probabilistic games, similar to those
of probabilistic automata. As there are now two types of nondeterminism to be
resolved, there are more possible resolutions, and thus valuation transformers.

Definition 7. Given a probabilistic two-player game M = (S, I,Act1,Act2, δ)
and a set of goal states F ⊆ S, the +,− valuation transformer is the function

pre+,−
M,F : Asg(S)→ Asg(S). For ν ∈ Asg(S) and s ∈ S it is pre+,−

M,F (ν)(s)
def
= 1

for s ∈ F and otherwise

pre+,−
M,F (ν)(s)

def
= sup

α1∈en1(s)

inf
α2∈en2(s,α1)

∑
s′∈S

δ(s, α1, α2)(s
′) · ν(s′).

Other transformers are defined accordingly. By p•1,•2

M,F = lfp≤ pre•1,•2 we denote
the least fixed points of these operators.

Similar solution techniques as for probabilistic automata exist [6].

Definition 8. Let A be an abstract state space of S and let μ ∈ Distr(S) be
a distribution. By liftA(μ) : A → [0, 1] we denote the lifting of μ where, for

z ∈ A, we have liftA(μ)(z)
def
=

∑
s∈z μ(s). The lifting liftA(g) : Act ⇀ Distr(A)

of a partial function g : Act ⇀ Distr(S) is defined such that liftA(g)(α)
def
=

liftA(g(α)) for all valid α ∈ Act.
For a probabilistic automaton (S, I,Act , δ) and an abstract state space A,

we define Valid(z)
def
= {liftA(δ(s, ·)) | s ∈ z} for all z ∈ A. The game-based

abstraction is then the probabilistic game (A, I,Act1,Act2, δ′) where
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– I def
= {z ∈ A | I ∩ z 	= ∅},

– Act1
def
= {f : Act ⇀ Distr(A) | ∃z ∈ A. f ∈ Valid(z)},

– Act2
def
= {α ∈ Act | ∃z ∈ A. ∃f ∈ Valid(z). α ∈ Dom(f)},

– δ′(z, f, α)
def
=

{
f(α) ; z ∈ A, f ∈ Valid(z), α ∈ Dom(f)

undefined ; otherwise.

Definition 7 defines abstract reachability probabilities of probabilistic games.
Previously [19], we had shown how this is possible for the restricted setting of
static transition probabilities. Maximisation and minimisation at Act1-choices
exactly capture the lower-bound and upper-bound abstraction function, while
Act2-choices capture nondeterministic choices of the original model.

Here we extend this result to variable probabilities, which is possible as the
property relies on characteristics of the Galois connection that have been es-
tablished in Proposition 1. The following theorem states in more detail how the
specific lower and upper bounds can be obtained from the game. Furthermore, it
shows that the valuation transformer of Definition 7 is most precise, i.e., among
the abstract transformers Asg(A) → Asg(A) it gives the most precise abstract
transformer that approximates the original probabilistic automaton.

Theorem 1. Let M = (S, I,Act , δ) be a probabilistic automaton and let M′ =
(A, I,Act1,Act2, δ′) be a game-based abstraction of M. Let F ′ = {z ∈ A |
z ∩ F 	= ∅}. Then, for • ∈ {+,−}, for z ∈ A and s ∈ z, we have:

pre−,•
M′,F ′ = (αl ◦ pre•M,F ◦ γ) and pre+,•

M′,F ′ = (αu ◦ pre•M,F ◦ γ)

where pre−,•
M′,F ′ and pre+,•

M′,F ′ are the valuation transformers defined by the game.

Corollary 1. LetM = (S, I,Act , δ) be a probabilistic automaton and letM′ =
(A, I,Act1,Act2, δ′) be a game-based abstraction of M. Let F ′ = {z ∈ A |
z ∩ F 	= ∅}. Then, for • ∈ {+,−}, for z ∈ A and s ∈ z, we have

p−,•
M′,F ′(z) ≤ p•M,F (s) ≤ p

+,•
M′,F ′(z).

Example 3. In Fig. 3, we abstract the semantics of the program in Fig. 1 to a
probabilistic game with four abstract states. Each of them subsumes the concrete
states with the same value of s. Small circles correspond to choices of Act1,
whereas small squares correspond to choices of Act2. Because of the infinite
number of distributions, the abstraction is infinitely large.

As seen in Example 3, abstractions of probabilistic programs might still be infi-
nite. The abstraction is guaranteed to be finite, only if probabilities are constants,
i.e., do not depend on the program variables. The infiniteness of the game-based
abstraction in Definition 8 lies in the number of player choices Act1 and Act2.
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Fig. 3. Game-based abstraction of
the semantics in Fig. 2 of the prob-
abilistic program in Fig. 1

The key idea is to make the sets Act1 and
Act2 finite, and move the infiniteness to the
level of distributions. This is realised by gen-
eralising the transition function δ : (S×Act1×
Act2) ⇀ Distr(S) to return a set of distribu-
tions rather than a single distribution. The set
of distributions, in turn, can then be repre-
sented symbolically, for instance by intervals.
The player that controls the abstraction is in
charge of picking a distribution, as the differ-
ent distributions arise from summarising dif-
ferent states. The underlying abstract model
is defined as follows:

Definition 9. A constraint Markov game is a tuple (S, I,Act1,Act2, δ) where
S, I, Act1 and Act2 are as in Definition 6 and the transition function is of the

form δ : (S ×Act1 ×Act2)⇀ C(N× S) where C(A)
def
= 2Distr(A) \ ∅.

As in probabilistic two-player games, the two players choose their valid ac-
tions. However, after the first choice of player 2, there is an additional choice
of this player on a distribution function μ ∈ δ(s, α1, α2). This distribution is
of Distr(N × S), where the number N will be used to later on distinguish be-
tween different branches of a guarded command leading to the same abstract
state. Constraint Markov games are a special case of probabilistic two-player
games—as the choice of both α2 and the distribution is controlled by player 2.

Definition 10. Given a constraint Markov game M = (S, I,Act1,Act2, δ) and
a set of goal states F ⊆ S, the +,− valuation transformer is defined as the func-

tion pre+,−
M,F : Asg(S)→ Asg(S). For ν ∈ Asg(S) and s ∈ S it is pre+,−

M,F (ν)(s)
def
=

1 for s ∈ F and otherwise

pre+,−
M,F (ν)(s)

def
= sup

α1∈en1(s)

inf
α2∈en2(s,α1)

inf
μ∈δ(s,α1,α2)

∑
i∈N

∑
s′∈S

μ(i, s′) · ν(s′).

Other transformers are defined accordingly. By p•1,•2

M,F
def
= lfp≤ pre•1,•2 we denote

the least fixed points of these operators.

We define a specific form of constraint Markov games.

Definition 11. An interval assignment over a set A is a function ι : A →
([0, 1]× [0, 1]). The set of all interval assignments over A is denoted by I(A). An
interval assignment ι : A → ([0, 1] × [0, 1]) represents the set Distr(ι) of valid
distributions of ι, where μ ∈ Distr(ι) iff μ ∈ Distr(A) and for all a ∈ A if
ι(a) = (l, u) then μ(a) ∈ [l, u]. We identify ι and Distr(ι) and write μ ∈ ι if
μ ∈ Distr(ι)

An interval Markov game is a tuple (S, I,Act1,Act2, δ) where S, I, Act1 and
Act2 are as in Definition 6 and the transition function is of the form δ : (S ×
Act1 ×Act2)⇀ I(N× S).
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Note that interval Markov games are special constraint Markov games and thus
the definitions of the valuation transformers pre−,−

M,F , pre
+,−
M,F , . . . : Asg(S) →

Asg(S) remain as for general constraint Markov games.
We will later on consider both abstractions using interval as well as general

constraint Markov games. The interval Markov game abstraction will be coarser,
but easier to compute than a constraint Markov game abstraction on the same
abstract state space.

4 Computing Abstractions

In this section, we discuss how to obtain abstractions of probabilistic programs.
Let (X, Dom, I, C) be a program. A predicate is a subset pred ⊆ Dom(X) of the

state space, which can be represented as a Boolean expression over program
variables. A predicate set is a finite set of predicates Pred = {pred1, . . . , predn}.
Let F be a set of goal states. We require that I, F ∈ Pred and that for each
c = (g → p1 : u1 + . . . + pm : um) ∈ C it is g ∈ Pred. By v1 · · · vn, with vi ∈
{0, 1}, we denote the abstract state

⋂
1≤i≤n f(vi, predi), where f(0, A) denotes

the complement of the set A and f(1, A) denotes A itself.
In the following, we will assume that predicates are described using a linear

theory, which ensures that optimisation problems over the predicate theory re-
main tractable. Assuming that we already have computed a predicate set, the
definition below shows how to obtain a constraint Markov game abstraction. As
in menu-based abstraction [19] the first player has to choose a command that
is enable in one of the concrete states. The same holds for constraint Markov
game abstraction. However, while in menu-based abstraction the second player
chooses a possible concretisation for this command, player two makes two choices
in a constraint Markov game abstraction: first, it picks a valid branching struc-
ture without considering the probabilities (represented by the function f) and,
second, it chooses a valid assignment for the probabilities (represented by δ′).

Definition 12. Given a probabilistic program (X, Dom, I, C) with a predicate set
Pred = {pred1, . . . , predn}, the constraint Markov game abstraction is defined as
(A, I,Act1,Act2, δ′) where
– A def

= {v1 · · · vn | (v1, . . . , vn) ∈ {0, 1}n ∧ v1 · · · vn 	= ∅},
– I def

= {v1 · · · vn | v1 · · · vn ∈ A ∧ vi = 1 for predi = I},
– Act1

def
= C,

– Act2
def
= {(c, f) | c=(g→ p1 : u1 + . . .+ pm : um) ∈ Act1 ∧ f : {1, . . . ,m} →

A},
– Valid(v1 · · · vn) = {c | c ∈ Act1 ∧ ∃i ∈ {1 . . . n}. predi = g ∧ vi = 1},
– Valid(z, c)

def
= {(c, f) | (c, f) ∈ Act2 ∧ ∃s ∈ z. ∀i ∈ {1 . . .m}. ui(s) ∈ f(i)},

– for z ∈ A, α1 = c ∈ Valid(z), α2 = (c, f) ∈ Valid(z, α1) let

δ′(z, α1, α2)
def
= {μ | ∃s ∈ wp(z, c, f). ∀i ∈ {1 . . .m}. μ(i, f(i)) = pi(s)}

– δ′(z, ·, ·) is undefined if no such α1, α2 exist.

Here, wp(z, c, f)
def
= {s ∈ z | ∀i, 1 ≤ i ≤ m. ui(s) ∈ f(i)} for c ∈ Act1.
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Fig. 4. Constraint Markov
game abstraction of the
probabilistic program of Fig. 1

The set A = wp(z, c, f) can be efficiently com-
puted and represented [19]. To be able to ap-
ply value iteration, we need to handle the sets
δ′(z, α1, α2) symbolically. For z ∈ A, α1 =
c = (g → p1 : u1 + . . . + pm : um) ∈
Valid(z) and α2 = (c, f) ∈ Valid(z, α1), the
part infμ∈δ(s,α2,α2)

∑
i∈N

∑
s′∈S μ(i, s

′) · ν(s′) of
Definition 10 can be rewritten as infx∈AB(x)

with B(x)
def
=

∑
z′∈A

∑
1≤i≤m,

z′=f(i)

pi(x)·ν(z′). In case

all pi are fractions of linear functions over the program variables, i.e. there are
ai, bi ∈ R such that pi(x1, . . . , xn) = a0+a1x1+...+anxn

b0+b1x1+...+bnxn
and the denominator is

always positive, B(x) can be written as a
b where a and b are linear in the vari-

ables of X. In turn, this optimisation problem can be handled by mixed integer
quadratic programming [16]. We can ignore the restriction that the program
variables are integers to obtain a quadratic program in which all variables are
reals. The correctness property stated later will then still hold, but we will obtain
a coarser overapproximation. Another way to compute the bounds is to specify
some probability bound to hold and then to prove or to disprove it using a con-
straint solver. The bounds can then be refined as far as necessary by decreasing
(increasing) the upper (lower) bound, in a similar way as a binary search. Notice
however that a value iteration using this model will still be quite costly, because
we have to solve optimisation problems for each state in each step of the value
iteration algorithm.

Example 4. In Fig. 4 we show the constraint Markov game abstraction of the
semantics of the program in Fig. 1. We used the predicates pred1 = (s = 0),
pred2 = (s = 1), pred3 = (s = 2), which induce the same state space as for
the game-based abstraction of Fig. 3. We have M = {μ ∈ Distr(A) | ∃x ∈
N ∩ [1,∞). μ(001) = 9x−8

16x ∧ μ(000) =
7x+8
16x }. We can obtain the bound [ 1

16 ,
9
16 ]

for the maximal reachability probability.

We define another abstraction, based on interval Markov games. This new ab-
straction reduces the information contained in each abstract state in order to
reduce the computation and memory complexity. The reduction of information
comes at the cost of introducing distributions that are not present in the original
model. Roughly, the abstraction consist in maintaining the branching structure
of distributions as in the previous abstraction except for the probabilities. Only
upper and lower bounds are maintained.

Definition 13. Given a probabilistic program (X, Dom, I, C) with a predicate set
Pred = {pred1, . . . , predn}, the interval Markov game abstraction is the tuple
(A, I,Act1,Act2, δ′) where A, I, Act1, Act2 and Valid(·) are as in Definition 12
and for z ∈ A, α1 = c, α2 = (c, f) ∈ Valid(z, α1) and z′ ∈ A, with
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M(z, α1, α2)
def
= {μ | ∃s ∈ wp(z, c, f). ∀i ∈ {1 . . .m}. μ(i, f(i)) = pi(s)}

we let δ′(z, α1, α2)(i, z
′)

def
=

(
inf

μ∈M(z,α1,α2)
μ(i, z′), sup

μ∈M(z,α1,α2)

μ(i, z′)

)
,

and δ′(z, ·, ·) is undefined if no such α1, α2 exist.

100 010

001 000

a 1

b

[ 1
16
, 9
16
] [ 7

16
, 15
16
]

c 1

Fig. 5. Interval Markov game
abstraction of the probabilistic
program of Fig. 1

All ingredients of an interval Markov game
abstraction are finite. The lower bound of
δ′(z, c, (c, f))(i, z′) can be expressed using state
variables as infs∈wp(z,c,f) pi(s), and correspond-
ingly for the upper one. Thus, as for constraint
Markov games, we have to solve optimisation
problems. In contrast to the previous abstrac-
tion, optimisation problems are simpler. In ad-
dition, we have to compute the interval bounds
only once and thus do not have to solve an opti-
misation problem in each step of the value itera-
tion. Instead, we use an adaption of an existing algorithm for interval Markov
chains [10] to compute these values: The optimisation over the interval part is
described in the literature [10]. The optimisations over the other part of the
player-2 choices and for the player-1 choices is simple, because there are only
finitely many choices.

Example 5. Fig. 5 shows an interval Markov game abstraction of the program
in Fig. 1. We choose the same predicates as in Example 4. In this example, we
obtain the same bound [ 1

16 ,
9
16 ] for the maximal reachability probability.

Theorem 2. Consider a probabilistic program P = (X, Dom, I, C) and a con-
straint or interval Markov game abstraction M = (A, I,Act1,Act2, δ′) of P,
and let F ⊆ Dom(X) be a set of goal states. Let F ′ = {z ∈ A | z ∩ F 	= ∅}. Then
for • ∈ {+,−}, for z ∈ A and s ∈ z it is

p•,−M,F ′(z) ≤ p•sem(P),F (s) ≤ p
•,+
M,F ′(z).

5 Abstraction Refinement

In Section 4, we discussed how to compute an abstraction for a probabilistic pro-
gram, given a fixed set of predicates. However, the probability bounds computed
by a given abstraction might be too coarse. This section describes an abstrac-
tion refinement technique to obtain tighter probability bounds, which introduces
additional predicates, to separate concrete states with a behaviour too different
to be subsumed. In the following, we focus on bounds for maximal reachability
probability, as the approach is analogous for the minimal case.
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Definition 14. A player-1 strategy for a constraint or interval Markov game
M = (S, I,Act1,Act2, δ) is a function σ1 : S → Act1 such that σ1(s) ∈ en1(s)
for each state s ∈ S. A player-2 action strategy is a function σ2 : (S ×Act1)⇀
Act2 that is defined for all (s, α1) ∈ S × Act1 such that α1 ∈ en(s). We require
that σ2(s, α1) ∈ en2(s, α1). A player-2 constraint strategy is a function σ2′ : (S×
Act1×Act2)⇀ Distr(N×S) which is defined for all (s, α1, α2) ∈ S×Act1×Act2
for which δ(s, α1, α2) is defined. We require that σ2′(s, α1, α2) ∈ δ(s, α1, α2). By
Σ1

M we denote the set of all player-1 strategies ofM, by Σ2
M all player-2 action

strategies and by Σ2′
M all player-2 constraint strategies.

Definition 15. For F ⊆ S and ν ∈ Asg(S), let pre
σ1,σ2,σ2′
M,F : Asg(S)→ Asg(S)

be defined such that pre
σ1,σ2,σ2′
M,F (ν)(s)

def
= 1 if s ∈ F and otherwise we have

pre
σ1,σ2,σ2′
M,F (ν)(s)

def
=

∑
s′∈S

∑
i∈N
δσ1,σ2,σ2′ (s)(i, s′) · ν(s′). There, δσ1,σ2,σ2′ is

the natural composition of the strategies σ1, σ2 and σ2′ . Also, let p
σ1,σ2,σ2′
M,F be

the least fixed point of pre
σ1,σ2,σ2′
M,F .

An optimal +,− player-1 strategy σ1,+,−
M,F is an element of

arg max
σ1∈Σ1

M
min

σ2∈Σ2
M

min
σ2′∈Σ2′

M
p
σ1,σ2,σ2′
M,F

and likewise the optimal player-2 strategies and the other cases (as the order of
min and max does not play a role), where the infimum and supremum are to be
understood componentwise.

As constraint and interval Markov games are special cases of Markov games,
optimal values p•1,•2 can be obtained by corresponding optimal strategies σ1,•1 ,
σ2,•2 ,σ2

′,•2 [6]. In the above we assume compactness of the sets δ(s, α1, α2). For
interval Markov games, this assumption holds automatically.

When considering pairs of optimal strategies σ1,+,−
M,F , σ1,+,+

M,F for player 1 against
different objectives of player 2 we assume that their decisions agree if possi-
ble [18]. We make a corresponding assumption for player 2. Based on it we define
predicates called splitters that remove the choices that make the strategies differ
from the abstract model.

Definition 16. Let (A, I,Act1,Act2, δ′) be a constraint or interval Markov game
abstraction of a probabilistic program (X, Dom, I, C), z ∈ A and a command c ∈ C

with (c, f−)
def
= σ2,+,−

M,F (z, c) 	= σ2,+,+
M,F (z, c)

def
= (c, f+). The wp-based splitter of

(z, c) is {wp(z, c, f−),wp(z, c, f+)}.

For models with constant probabilities, wp-based splitting has been described
before [19]. It was enough to guarantee progress of the refinement approach since
δ′(z, α1, α2) was a singleton. We introduce a new complementary method to split
abstract states when the imprecision is due to the constraint optimisation.

Definition 17. Let (A, I,Act1,Act2, δ′) be a constraint or interval Markov game
abstraction of a probabilistic program (X, Dom, I, C), z ∈ A, a command c ∈ C and
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f : {1, . . . ,m} → A with μ−
def
= σ2

′,+,−
M,F (z, c, (c, f)) 	= σ2

′,+,+
M,F (z, c, (c, f))

def
= μ+.

The constraint-based splitter of (z, c, f) is {{s∈S | pimax(s)≤
U+(imax)+U−(imax)

2 }}
where U•(i)

def
=

∑
z∈A μ

•(i, z) and imax
def
= argmaxi∈N |U+(i)− U−(i)|.

To refine, we choose some splitters and add them to the set of predicates.
Afterwards, we recompute a refined version of the abstraction with the new
predicate set. There are some heuristics [19] to choose splitters that are likely to
improve the bounds.
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Fig. 6. Refinements of the model of Fig. 5

Example 6. Consider the interval Markov game abstraction in Fig. 5. There is
no splitter based on wp. Notice that this implies that if we had constant pi, we
would have already an abstraction yielding exact reachability bounds. We can
however obtain the predicate pred4 equivalent to (x ≤ 2) from a splitter based
on the imprecision of the interval [ 1

16 ,
9
16 ]. Adding it leads to the model depicted

in Fig. 6 (a). We do not get an improvement of the reachability bounds directly.
However, we can now obtain a wp-based splitter from state 0101 and command
c with predicates pred5 = (s = 1 ∧ x ≤ 1) and pred6 = (s = 1 ∧ x 	≤ 1). The
refinement in part (b) yields the improved bound [ 1948 ,

9
16 ].

6 Experiments

We implemented the abstraction and refinement methods described in this paper
in our tool Pass [7]. Empirical evaluations of the techniques have been carried
out on two different case studies with varying parameters and properties. The
first case study corresponds to the von Neumann NAND multiplexer [17] which
is used to construct reliable devices from unreliable gates. The second case study
is based on the Rubinstein’s Alternating Offers Protocol [2]. For both cases, we
ran the abstraction refinement loop until precise bounds were achieved. Some
characteristic observations for these experiments are summarised in Table 1.
Column total states contains the numbers of reachable states as reported
by Prism. Column abs states lists the numbers of abstract states handled
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Table 1. Empirical results

Model param property total states abs states preds ref (int ref) time

NAND

20/3

p0

78322

45496 107 21 1m30s
p4 61644 132 10 1m10s
p8 70968 129 17 7m49s

p12 70968 135 23 9m32s
p20 45496 136 52 16m05s

20 / 9

p0

308162

45469 112 28 1m59s
p4 61644 121 13 (5) 5m24s
p8 70968 122 29 13m31s

p12 70968 138 15 13m10s
p20 45469 117 34 8m7s

Alternating Offers

K 1 / 8

pval

504 101 87 6 16s
K 2 / 8 504 108 90 15 (9) 32s

Cinc 10 / 100 922 351 85 16 (9) 22s
Cinc 100 / 10 504 101 94 17 (4) 24s

T 2000 3848 133 68 4 6s
B RP 5000 ? 351 90 21 (11) 22s

in the final Pass refinement step, i.e. when the precise bound was obtained.
Column preds refers to the total number of predicates used to construct the
final abstraction. Column ref reports the total number of refinement steps, and
column int ref refers to the number of refinement steps in which our new
refinement approach for intervals was used. Column time reports the total time
spent until Pass built a precise abstraction. As can be seen, the abstract state
numbers are generally below the total state numbers, and the time consumptions
are acceptable, in view of the overall work carried out. In the last model Prism
was not able to build the model due to memory exhaustion. The problem seems to
be the large amount of terminal nodes introduced due to variable probabilities
in conjunction with the construction of the transition matrix for the possible
state space. In the NAND case study most of the time in Pass was spent on
internal BDD garbage collection and node creation. This is rooted in the lack of
automatic reordering of variables after each refinement step. In our experiments
we have observed that the number of abstract states in the final refinement step
is in the order of the number of states with non-trivial probability (/∈ {0, 1}) in
the original model. Considerably smaller state spaces can be obtained if one does
not run the refinement loop until an exact probability results, but only until a
safe bound is established.

7 Conclusion

We have introduced new abstraction and refinement methods for probabilistic
systems with variable probabilities, which, unlike previous symbolic abstractions,
explicitly abstract transition probabilities. While our current experimental re-
sults are already very promising, being able to deal with variable probabilities,
opens up a whole spectrum of potential applications and case studies, which we
would like to study, ranging from sensor network protocols to biochemical reac-
tion cascades. The experiments also provide directions for further performance
improvements of the prototype implementation in this direction.

The presented abstractions extend menu-based abstraction [19], which is dis-
tinct from the game-based abstraction defined in [14]. We conjecture that our
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notion of interval abstraction could be fruitfully combined with the latter. How-
ever, the challenge would be to prevent a combinatorial explosion that results
from keeping track of the interaction of different concurrent commands, and
resulting interval bounds – a problem that does not occur with the present ab-
straction.
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Abstract. Multi-objective probabilistic model checking provides a way
to verify several, possibly conflicting, quantitative properties of a stochas-
tic system. It has useful applications in controller synthesis and composi-
tional probabilistic verification. However, existing methods are based on
linear programming, which limits the scale of systems that can be anal-
ysed and makes verification of time-bounded properties very difficult.
We present a novel approach that addresses both of these shortcomings,
based on the generation of successive approximations of the Pareto curve
for a multi-objective model checking problem. We illustrate dramatic im-
provements in efficiency on a large set of benchmarks and show how the
ability to visualise Pareto curves significantly enhances the quality of
results obtained from current probabilistic verification tools.

1 Introduction

Probabilistic model checking is an automated technique for verifying systems
that exhibit stochastic behaviour. This arises due to, for example, failures in
physical components, unreliable communication media or randomisation. Sys-
tems are typically modelled as Markov chains or Markov decision processes
(MDPs), and probabilistic temporal logics are used to specify quantitative prop-
erties to be verified such as “the probability of a message packet being lost is
less than 0.05” or “the expected energy consumption is at most 100 mJ”.

It is often necessary to incorporate nondeterminism into system models, to
represent, for example, the actions of an external controller or the order in which
a scheduler chooses to interleave system components running in parallel. In these
cases, systems are usually modelled as MDPs. Each possible way of resolving
the nondeterminism in an MDP is represented by an adversary (also known as
a strategy or policy). Properties to be verified against the MDP quantify over
its adversaries, e.g., “the probability of a message packet being lost is less than
0.05 for all possible adversaries”. It is also common to use numerical queries,
e.g., “what is the maximum expected energy consumption?”.

Model checking reduces to an optimisation problem, namely determining the
maximum (or minimum) probability (or expected cost/reward) achievable by any
adversary. For the most common classes of property (the probability of reaching
a set of target states or the expected cumulated reward), model checking can
be reduced to solving a linear programming (LP) problem. In practice, however,
most probabilistic verification tools use (approximate) iterative numerical meth-
ods, such as value iteration [19], since they scale to much larger systems and are

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 317–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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amenable to symbolic (BDD-based) implementations. Value iteration can also
be used for time-bounded (finite-horizon) properties, which is impractical with
LP. Another alternative is policy iteration, but this is also impractical for time-
bounded properties, and preliminary investigations in [10] showed no particular
improvement over value iteration in the context of probabilistic verification.

There has recently been increased interest in multi-objective probabilistic
model checking for MDPs [5,9,11,4], which can be used to analyse trade-offs
between several, possibly conflicting, quantitative properties. Consider, for ex-
ample, two events of interest, A and B, and let pσA and pσB be the probability that
each occurs under an adversary σ of an MDP. In this paper, we study several
kinds of multi-objective properties. Achievability queries ask, e.g., “is there an
adversary σ satisfying the predicate ψ = pσA�x∧pσB�y?” and numerical queries
ask, e.g., “what is maximum value of x such that ψ is achievable?”. We also
consider the Pareto curve of undominated solution points: for this example, the
set of pairs (x, y) such that ψ is achievable but any increase in either x or y
would necessitate a decrease in the other.

Multi-objective techniques have natural applications to controller synthesis
for MDPs (e.g., “how can we maximise the probability of successful message
transmission, whilst keeping the expected energy usage below 100 mJ?”). They
also form the basis of recent compositional verification techniques [15], which
decompose model checking into separate tasks for each system component using
assume-guarantee reasoning (e.g., “what is the maximum probability of a global
system error, under the assumption that component 1 fails with probability at
most 0.02?”). This approach has been successfully used to verify probabilistic
systems too large to analyse without compositional techniques.

Existing multi-objective model checking methods [5,9,11,4] rely on a reduc-
tion to LP. The linear program solved, although of a rather different form to the
standard (single objective) case, is still linear in the size of the MDP, yielding
polynomial time complexity. As discussed above, though, LP-based probabilis-
tic verification has several important weaknesses. In this paper, we present a
novel approach to multi-objective model checking of probabilistic reachability
and expected total reward properties. Our method is based on the generation
of successive, increasingly precise approximations to the Pareto curve by opti-
mising weighted sums of objectives using value iteration. On a large selection of
benchmarks, we demonstrate the following benefits:

(i) dramatic improvements in run-time efficiency, by factors of up to 150;

(ii) significant scalability improvements: over an order of magnitude model size;

(iii) the usefulness of visualising Pareto curves for verification problems;

(iv) solution of time-bounded probabilistic reachability and cumulative reward.

The last of these also paves the way for the development of multi-objective
techniques for richer, timed classes of models such as continuous-time MDPs.

An extended version of this paper, including proofs, is also available [12].

Related work. Multi-objective optimisation has been extensively studied in ar-
eas such as operations research, economics and stochastic control [6], including
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its application to MDPs [1]. Many general approaches exist, based on, for exam-
ple, normalising multiple objectives into a single weighted objective; constrained
approaches optimising one objective while bounding the others; heuristic search
using, e.g., evolutionary algorithms [7]; application of satisfiability/constraint
solvers [17]; and stochastic search with restarts [16]. Several methods, including
e.g. [16], iterate over weighted sums of objectives, as we do; the main difference is
that our approach is tailored to the convex, linear problems derived from MDPs.

Multi-objective optimisation is routinely used in areas such as embedded sys-
tems design and a variety of general-purpose optimisation tools exist, e.g., PISA
[2], ModeFRONTIER and libraries for MATLAB. Such tools tend to be targeted
at much more complex (e.g., non-convex and non-linear) design spaces than the
ones that we focus on in this paper. They are also typically used for static design
problems, rather than our dynamic models of system behaviour.

A rigorous complexity analysis of multi-objective optimisation, in particular
for approximating Pareto curves, was undertaken in the influential work of [18].
More recently [8], some of these results were improved for the simpler case of
convex multi-objective problems but no practical investigations are undertaken.

Most relevant to the current work is the application of multi-objective optimi-
sation to probabilistic verification [5,9,11,4]. In [5,9,4], discounted total reward,
probabilistic ω-regular and long-run average properties are studied, respectively.
In each case, algorithms are given using a reduction to LP, also showing the
existence of methods to approximate Pareto curves using the results of [18], but
implementations are not considered. The work of [11] adds expected total reward
properties and provides an implementation, based on LP. As discussed above, the
performance and scalability of our approach is significantly better, as we show in
Section 5. None of the above consider time-bounded properties. In principle, for
discrete-time models like MDPs, these can be reduced to unbounded properties
using a finite counter but this is generally impractical in terms of scalability.

2 Background

Geometry. For a vector x ∈ Rn, we use xi to denote its i-th component and
say x is a weight vector if xi � 0 for all i and

∑n
i=1 xi = 1. The Euclidean

inner product of x,y ∈ Rn is defined as x · y =
∑n

i=1 xi · yi. For a set of vectors

X = {x1, . . .xk} ⊆ Rn, a convex combination is
∑k

j=1 wj · xj for some weight

vector w ∈ Rk. We use down(X) to denote the downward closure of the convex
hull of X , i.e. the set of vectors z ∈ Rn that satisfy z � y for some convex
combination y of X . Given a convex set Y , we say that a point y ∈ Y is on the
boundary of Y if, for any ε > 0, there is a point z 	∈ Y such that the Euclidean
distance between y and z is at most ε. From the separating hyperplane and
supporting hyperplane theorems, we have the following.

Proposition 1 ([3]). Let Y⊆Rn be a downward closed set of points. For any
p ∈ Rn not in Y , there is a weight vector w ∈ Rn such that w·p > w·y for all
y ∈ Y . Also, for any q on the boundary of Y , there is a weight vector w ∈ Rn

such that w·q � w·y for all y ∈ Y . We say that w separates q from down(Y ).
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Markov decision processes (MDPs). MDPs are commonly used to model
systems with probabilistic and nondeterministic behaviour. Denoting by Dist(X)
the set of probability distributions over a set X , an MDP takes the formM =
(S, s̄, α, δ), where S is a set of states, s̄ ∈ S is an initial state, α is a set of actions
and δ : S×α→ Dist(S) is a (partial) probabilistic transition function.

Each state s of an MDPM has an associated setA(s) of enabled actions, given

by A(s)
def
= {a ∈ α | δ(s, a) is defined}. If action a ∈ A(s) is taken in state s, then

the next state is determined randomly according to the distribution δ(s, a), i.e.,
a transition to state s′ occurs with probability δ(s, a)(s′). A path throughM is
a (finite or infinite) sequence π = s0a0s1a1 . . . where s0=s̄, and ai ∈ A(si) and
δ(si, ai)(si+1) > 0 for all i. We denote by IPaths (FPaths) the set of all infinite
(finite) paths and, for finite path π, last(π) is its last state.

An adversary σ : FPaths → Dist(α) (also called a strategy or policy) of M
is a resolution of the choices of action in each state, based on its execution so
far. In standard fashion [13], an adversary σ induces a probability measure PrσM
over IPaths . An adversary σ is deterministic if σ(π) is a Dirac distribution for
all π (and randomised if not); it is memoryless if σ(π) depends only on last(π).
The set of all adversaries forM is AdvM.

A reward structure for M is a function ρ : S × α → R mapping actions to
(positive or negative) reals. For an infinite path π = s0a0s1a1 . . . and a number

k ∈ N∪{∞} the total reward in k steps for π over ρ is ρ[k](π)
def
=

∑k−1
i=0 ρ(si, ai).

Model checking MDPs. In this paper, we focus on two key classes of properties
for MDPs: the probability of reaching a target and the expected total reward. In
each case, we consider both time-bounded and unbounded variants. We will later
discuss generalisation to more expressive properties. In this and the following
sections, we assume a fixed MDPM = (S, s̄, α, δ).

Definition 1 (Reachability predicate). A reachability predicate [T ]�k
∼p com-

prises a set of target states T ⊆ S, a relational operator ∼∈{�,�}, a rational
probability bound p and a time-bound k ∈ N ∪ {∞}. It states that the probability
of reaching T within k steps satisfies ∼ p. Formally, satisfaction of [T ]�k

∼p by

MDPM, under adversary σ, denotedM, σ |= [T ]�k
∼p, is defined as follows:

M, σ |= [T ]�k
∼p ⇔ PrσM({s0a0s1a1 · · · ∈ IPaths | ∃i � k : si ∈ T }) ∼ p .

Definition 2 (Reward predicate). A reward predicate [ρ]�k
∼r comprises a re-

ward structure ρ : S×α→ R, a relational operator ∼∈{�,�}, a rational reward
bound r and a time bound k ∈ N∪{∞}. It states that the expected total reward
cumulated within k steps satisfies ∼ r. Formally, satisfaction of [ρ]�k

∼r by M,
under adversary σ, denotedM, σ |= [ρ]�k

∼r , is defined as follows:

M, σ |= [ρ]�k
∼r ⇔ ExpTotσ,kM (ρ) ∼ r where ExpTotσ,kM (ρ)

def
=

∫
π
ρ[k](π) dPrσM.

For the unbounded forms of the notation above (k = ∞), we will often omit k,
writing e.g. [ρ]∼r instead of [ρ]�∞

∼r or ExpTotσM(ρ) instead of ExpTotσ,∞M (ρ).
For this paper, we also need to consider weighted sums of rewards.
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Definition 3 (Weighted reward sum). Given a weight vector w ∈ Rn and
vectors of time bounds k = (k1, . . . , kn) ∈ (N ∪ {∞})n and reward structures
ρ = (ρ1, . . . , ρn) for MDP M, the weighted reward sum w·ρ[k] over a path π

is defined as w·ρ[k](π) def
=

∑n
i=1 wiρi[k](π). The expected total weighted sum

is then: ExpTotσ,kM (w·ρ) def
=

∫
π
w·ρ[k](π) dPrσM. For any adversary σ, we have:

ExpTotσ,kM (w·ρ) =
∑n

i=1 wiExpTot
σ,ki

M (ρi) .

Notice that satisfaction of reachability and reward predicates is defined above
with respect to a specific adversary σ of an MDP M. When performing model
checking on the MDP, the most common approach is to verify that such a predi-
cate is satisfied for all adversaries σ ∈ AdvM. An alternative, often described as
controller synthesis, is to ask the dual question: whether there exists an adversary
σ satisfying the predicate. In either case, model checking reduces to computing
the maximum or minimum reachability probability or expected reward. For the
unbounded cases, this can be done by solving an LP problem, using policy iter-
ation, or with value iteration, an approximate iterative numerical method [19].
For time-bounded properties, only value iteration is applicable.

3 Multi-objective Queries

We now describe how to formalise multi-objective queries for MDPs. In the
following section, we will present novel, efficient algorithms for their verification.
We formulate our queries in a similar style to the one taken in [11], but with two
key additions. Firstly, we include the ability to specify time-bounded reachability
and reward properties. Secondly, we consider Pareto curves.

The essence of multi-objective properties for MDPs is that they require mul-
tiple predicates to be satisfied concurrently for the same adversary.

Definition 4 (Multi-objective predicate). A multi-objective predicate is a
vector ψ=(ψ1, . . . , ψn) of reachability or reward predicates. We say that ψ is
satisfied by MDP M under adversary σ, denoted M, σ |=ψ, if M, σ |=ψi for
all 1 � i � n. We call ψ a basic multi-objective predicate if it is of the form
([ρ1]

�k1

�r1
, . . . , [ρn]

�kn

�rn
), i.e. it comprises only lower-bounded reward predicates.

We define three ways to formulate multi-objective queries for an MDP:
achievability queries, which check for the existence of an adversary satisfying
a multi-objective predicate ψ; numerical queries, which maximise or minimise a
reachability/reward objective over the set of adversaries satisfying ψ; and Pareto
queries, which determine the Pareto curve for a set of objectives.

Definition 5 (Achievability query). For MDPM and multi-objective pred-
icate ψ, an achievability query asks if ψ is satisfiable (or achievable), i.e.
whether there exists an adversary σ ∈ AdvM such that M, σ |=ψ.

Definition 6 (Numerical query). For MDPM, a numerical query is of the

form num([o1]
�k1
� , (ψ2 . . . , ψn)), comprising an n−1-sized multi-objective predi-

cate (ψ2 . . . , ψn) and an objective [o1]
�k1
� , where o1 is a reward structure ρ1 or

target set T1, k1 ∈ N ∪ {∞} is a time bound and 
 ∈ {min,max}. We define:
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Fig. 1. Example MDP (a), graphs for ([{s1}]�x, [{s3}]�y) (b) and ([{s1}]�2
�x, [ρ]�y) (c)

num([o1]
�k1

min , (ψ2, . . . , ψn))
def
= inf{x ∈ R | ([o1]�k1

�x , ψ2, . . . , ψn) is satisfiable} .
num([o1]

�k1
max, (ψ2, . . . , ψn))

def
= sup{x ∈ R | ([o1]�k1

�x , ψ2, . . . , ψn) is satisfiable} .

Definition 7 (Pareto query). For MDP M, a Pareto query takes the form

pareto([o1]
�k1
�1 , . . . , [on]

�kn
�n ), where each [oi]

�ki
�i is an objective as in Defn. 6. The

set of achievable values is A = {x ∈ Rn | ([o1]�k1
∼1x1

, . . . , [on]
�kn
∼nxn

) is satisfiable}
where ∼i=� if 
i = max and ∼i=� if 
i = min. We say, for points x,y ∈ A,
that x dominates y if xi ∼i yi for all i and xj 	= yj for some j. Then:

pareto([o1]
�k1
�1 , . . . , [on]

�kn
�n )

def
= {x ∈ A | x is not dominated by any y ∈ A} .

Convexity. A fundamental property of the multi-objective optimisation prob-
lems solved in this paper (and on MDPs in general) is their convexity. More
precisely, consider target sets T1, . . . , Tn, reward structures ρ1, . . . , ρm and time-
bounds k1, . . . , kn, l1, . . . , lm ∈ N ∪ {∞}. Let xσ ∈ Rn+m be the vector defined

such that xi = PrσM(♦�kiTi) for 1�i�n and xn+j = ExpTot
σ,kj

M (ρj) for 1�j�m,
where PrσM(♦�kiTi) denotes the probability of reaching Ti in ki steps under σ.
Then, the set {xσ |σ ∈ AdvM} forms a convex polytope [9,11]1. As a direct con-
sequence of this, the set of achievable values for a Pareto query is also convex.

Example 1. Fig. 1(a) shows an MDP with accompanying reward structure ρ
indicated by underlined numbers. Consider first the multi-objective predicate
ψ = ([{s1}]�x, [{s3}]�y), which imposes lower bounds on the probabilities of
reaching states s1 and s3. The grey area in Fig. 1(b) shows the values of x and y
for which ψ is satisfiable. The two points on the graph marked as + correspond
to the two possible memoryless deterministic adversaries inM. The line joining
them (their convex closure) represents the points for all possible adversaries. For
this example, this line also constitutes the Pareto curve. Achievability queries
on ψ for (x, y) = (0.2, 0.7) and (0.4, 0.7) return true and false, respectively.
Numerical query num([{s1}]max, ([{s3}]�0.7)) returns 0.3.

Consider a second predicate ψ′ = ([{s1}]�2
�x, [ρ]�y), now with a time-bounded

reachability and reward predicate. Fig. 1(c) depicts (by +) points for some of the
deterministic adversaries ofM, of which there are infinitely many. Their convex
combination, the dashed area, marks the points achievable by all (randomised)

1 Strictly speaking, this requires finiteness of rewards, which we discuss below.
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adversaries, and its downward closure, in grey, shows the values of x and y for
which ψ′ is satisfiable. The Pareto curve is the black line along the top edge.

Assumptions. For the purposes of model checking the queries described in this
section, we need to impose certain restrictions on the use of rewards. For clarity,
we describe these in terms of achievability queries but they apply to all three
classes. We first need the following definition.

Definition 8 (Reward-finiteness). LetM be an MDP and consider an achiev-

ability query ψ=([T1]
�k1
∼1p1

, . . . , [Tn]
�kn
∼npn

, [ρ1]
�l1
��1r1 , . . . , [ρm]�lm

��mrm) forM. We say
that ψ is reward-finite if, for each 1�j�m such that lj=∞ and ��j = �,

we have: sup{ExpTotσ,ljM (ρj) | M, σ |=([T1]
�k1
∼1p1

, . . . , [Tn]
�kn
∼npn

)} < ∞ and is
fully reward-finite if, for each 1�j�m such that lj=∞ and ��j = �, we have:

sup{ExpTotσ,ljM (ρj) | σ ∈ AdvM} <∞ .
Let M and ψ be as in Defn. 8. To model check ψ on M, we require that: (i)
each reward structure ρi assigns only non-negative values; (ii) ψ is reward-finite;
and (iii) for indices 1�j�m such that lj=∞, either all ��js are � or all are �.

Condition (ii) imposes natural restrictions on finiteness of rewards. Notice
that we only require finiteness for adversaries which satisfy the probabilistic
predicates contained in ψ. We adopt this approach from [11] where, in addition,
algorithms are given to check that ψ is reward-finite and to construct a modified
MDP that is equivalent (in terms of satisfiability of ψ) but for which ψ is fully
reward-finite. This can be checked by a simpler multi-objective query containing
only probabilistic predicates. Thus, in the remainder of this paper, we assume
that all queries are fully reward-finite.

Condition (iii) ensures that the algorithms we define in the next section do not
need to compute unbounded expected total rewards for MDPs with both positive
and negative rewards, which is unsound. For unbounded reachability predicates,
again using methods from [11], we can easily invert their bounds (to match those
of any reward predicates) by making a simple change to the MDP.

Extensions. We also remark that the class of multi-objective properties out-
lined in this section can be extended in several respects. In particular, as shown
in [11], we can add support for probabilistic ω-regular (e.g. LTL) properties via
reduction to probabilistic reachability on a product of the MDP and one or more
deterministic Rabin automata. That work also allows arbitrary Boolean combi-
nations of predicates, which are reduced to disjunctive normal form and treated
separately. Both of these extensions can be adapted to our setting; the former
we have implemented and used for our experiments in Section 5.

4 Multi-objective Probabilistic Model Checking

We now present efficient algorithms for checking the multi-objective queries de-
fined in the previous section. Proofs of correctness can be found in [12].

Reduction to basic form. The first step when checking any type of query
is to reduce the problem to one over a basic predicate on a modified MDP.
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Input: MDP M, multi-objective predicate ψ = ([ρ1]
�k1
�r1

, . . . , [ρn]
�kn
�rn

)
Output: true if ψ is achievable, false if not

1 X := ∅; ρ = (ρ1, . . . ρn); k = (k1, . . . kn); r = (r1, . . . rn);
2 do
3 Find w separating r from down(X);

4 Find adversary σ maximising ExpTotσ,kM (w·ρ);
5 q := (ExpTotσ,ki

M (ρi))1�i�n;
6 if w · q < w · r then return false;
7 X := X ∪ {q};
8 while r �∈ down(X);
9 return true;

Alg. 1. Basic algorithm for checking achievability queries

We do so by converting reachability predicates into reward predicates (by adding
a one-off reward of 1 upon reaching the target) and then negating objectives for
predicates with upper bounds. Formally, we do the following.

Proposition 2. LetM=(S, s̄, α, δ) be an MDP and ψ=([T1]
�k1
∼1p1

, . . . , [Tn]
�kn
∼npn

,

[ρ1]
�l1
��1r1 , . . . , [ρm]�lm

��mrm) be a multi-objective predicate. LetM′=(S′, (s̄, ∅), α′, δ′)
be the MDP defined as follows: S′=S × 2{1,...,n}, α′=α × 2{1,...,n} and, for all
s, s′ ∈ S, a ∈ α and c ⊆ {1, . . . , n}:

– δ′((s, c), (a, c′))((s′, c ∪ c′)) = δ(s, a)(s′) where c′ = {i | s ∈ Ti} \ c;
– δ′((s, c), a′)((s′, c′)) = 0 for all other c, c′ and a′.

Now, let ψ′ be ([ρT1 ]
�k1+1
�p1

, . . . , [ρTn ]
�kn+1
�pn

, [ρ̄1]
�l1
�r1
, . . . , [ρ̄m]�lm

�rm
), where: reward

ρTi((s, c), (a, c
′)) is equal to 1 if i ∈ c′ and ∼i = �, to −1 if ∼i = �, and to 0

otherwise; and ρ̄i((s, c), (a, c
′)) is equal to ρi(s, a) if ��i = � and to −ρi(s, a) if

∼i = �. Then ψ is satisfiable inM if and only if ψ′ is satisfiable inM′.

Notice that the reduction described above results in reward structures with both
positive and negative rewards. For time-bounded properties, this is not a concern.
For unbounded ones, we must take care that they are all either non-negative or
non-positive, as mentioned earlier in our discussion of condition (iii).

Achievability queries. We begin with achievability queries. We first give an
outline of the overall algorithm; subsequently, we will describe in more detail
how it is implemented in practice using value iteration.

By applying the reduction described above, we only need to consider the case
of a basic multi-objective predicate ψ = ([ρ1]

�k1

�r1
, . . . , [ρn]

�kn

�rn
). Alg. 1 shows how

to check if ψ is satisfiable. It works by generating a sequence of weight vectors
w and optimising a w-weighted sum of the n objectives. A resulting optimal ad-
versary σ is then used to generate a point q which is guaranteed to be contained
on the Pareto curve for ψ, and a collection X of such points is assembled. Each
new weight vector w is identified by finding a separating hyperplane between
down(X) and r = (r1, . . . , rn). Once r is found to be contained in down(X), we
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Fig. 2. Example executions of Algorithms 1, 3 and 4 (see Examples 2, 3 and 4).

know that ψ is achievable. If, on the other hand, w · q < w · r, then we know
that ψ cannot possibly be achievable.

Correctness of Alg. 1 is proved in [12]. Termination is guaranteed by the fact
that each iteration of the loop identifies a point q on a unique face of the Pareto
curve. In the worst case, the number of faces is exponential in |M|, k and n [9];
however, our experimental results (in Section 5) show the number of steps is
usually small on practical examples. The individual model checking problems
solved in each step (lines 4-5 of Alg. 1) require time polynomial in |M|. We
describe their practical implementation in the next section.

Example 2. We illustrate the execution of Alg. 1 on the MDP from Example 1
and the achievability query ([{s1}]�0.2, [{s3}]�0.7). Let us assume that we have
already applied Proposition 2 so that we have an equivalent reward predicate
([ρ1]�0.2, [ρ2]�0.7) (the full reduction is in [12]). As a first (arbitrary) weight
vector, we pick w=(0.5, 0.5) and then maximise w · ρ. The resulting optimal
adversary σ (which chooses a in s0) gives q = (ExpTotσM(ρ1),ExpTot

σ
M(ρ2))

= (0.4, 0.6) and we have X = {q}. Fig. 2(a) shows the point q (as ) and the
target point r = (0.2, 0.7) (as ). The dotted line represents the hyperplane with
orientation w passing through q (i.e. the points x for which w ·x = w ·q = 0.5),
the points above which correspond to unachievable value pairs. The grey region
is down(X), in which all points are achievable. Since r 	∈ down(X), we continue.

Next, we pick a weight w′ = (0.1, 0.8). Maximising w′ ·ρ results in adversary
σ′ (which chooses b in s0) giving q′ = (0.1, 0.9), which we add to X . Fig. 2(b)
again shows both points in X , down(X) and r. It also plots points x for which
w′ · x = w′ · q′ = 0.73. Since r is now in down(X), the algorithm returns true.

Value iteration. The most expensive part of Alg. 1 in practice is the combi-
nation of lines 4-5, which computes the maximum possible value for a weighted
sum of reward objectives, determines a corresponding optimal adversary σ, and
then finds the value for the n individual objectives under σ.

Alg. 2 shows how to perform all these tasks using a value iteration-style com-
putation. One key difference between this algorithm and standard value iteration
is that it needs to optimise a combination of unbounded and bounded properties.
This is done in three phases (lines 3-8, 9-13 and 14-20). The first two correspond
to the unbounded part; the third to the bounded part.
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Input: MDP M=(S, s̄, α, δ), weight vect. w, reward structures ρ=(ρ1, . . . , ρn),
vector of time bounds k ∈ (N ∪ {∞})n, convergence threshold ε

Output: Adv. σ maximising ExpTotσ,kM (w·ρ), q = (ExpTotσ,ki
M (ρi))1�i�n

1 x := 0; x1 := 0; . . . ; xn := 0; y = 0; y1 := 0; . . . ; yn := 0;
2 σ∞(s) = ⊥ for all s ∈ S;
3 do
4 foreach s ∈ S do
5 ys := maxa∈A(s)(

∑
{i|ki=∞} wi·ρi(s, a) +∑

s′∈S δ(s, a)(s′) · xs′);

6 σ∞(s) := argmaxa∈A(s)(
∑

{i|ki=∞} wi·ρi(s, a) +
∑

s′∈S δ(s, a)(s′) · xs′);

7 δ := maxs∈S (ys − xs); x := y;

8 while δ > ε;
9 do

10 foreach s ∈ S and i ∈ {1, . . . , n} where ki = ∞ do
11 yi

s := ρi(s, σ
∞(s)) +

∑
s′∈S δ(s, σ∞(s))(s′) · xi

s′ ;

12 δ := maxn
i=1 maxs∈S (yi

s − xi
s); x

1 := y1; . . . ; xn := yn;

13 while δ > ε;
14 for j = max{k� < ∞ | � ∈ {1, . . . , n}} down to 1 do
15 foreach s ∈ S do
16 ys := maxa∈A(s)(

∑
{i|ki�j} wi·ρi(s, a) +∑

s′∈S δ(s, a)(s′) · xs′);

17 σj(s) := argmaxa∈A(s)(
∑

{i|ki�j} wi·ρi(s, a) +∑
s′∈S δ(s, a)(s′) · xs′);

18 foreach i ∈ {1, . . . , n} where ki � j do
19 yi

s := ρi(s, σ
j(s)) +

∑
s′∈S δ(s, σj(s))(s′) · xi

s′ ;

20 x := y; x1 := y1; . . . ; xn := yn;

21 foreach i ∈ {1, . . . , n} do qi := yi
s̄;

22 σ behaves as σj in j-th step when j < maxi∈{1,...,n} ki, and as σ∞ afterwards;
23 return σ, q

Alg. 2. Value iteration-based algorithm for lines 4-5 of Alg. 1

Another important difference is that the algorithm performs the optimisation
of the weighted sum w·ρ[k] and the computation of the vector of individual

objective values q = (ExpTotσ,ki

M (ρi))1�i�n simultaneously: the former in phases
1 and 3; the latter in phases 2 and 3. Consider first the optimisation of w·ρ[k].
The values, for all states s ∈ S, are computed as a sequence of increasingly precise
approximations, stored in a pair of vectors, x and y. Each new approximation is
stored in y (line 5); then, x and y are compared for convergence and x is set to y
(line 7) before proceeding to the next iteration. Computation of the bounded part
of w·ρ[k] continues in phase 3 in similar fashion (although no convergence check
is needed). During optimisation of w·ρ[k], a corresponding optimal adversary
is also determined, with the unbounded and bounded fragments stored in σ∞

and σj , respectively. The choices made by this adversary are used to compute
the value qi for each of the n individual objectives, the values for which are also
stored in pairs of vectors (xi,yi for each qi).

In practice, storing multiple |S|-sized vectors (x, y, xi, and yi) is relatively
expensive. We discuss later how the algorithm’s memory usage can be improved.
We include an example of the execution of Alg. 2 in [12].
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Input: MDP M, objective [ρ1]
�k1
max, predicate ([ρ2]

�k2
�r2

, . . . , [ρn]
�kn
�rn

)

Output: Value of num([ρ1]
�k1
max, ([ρ2]

�k2
�r2

, . . . , [ρn]
�kn
�rn

))

1 X:=∅; ρ:=(ρ1, . . . ρn); k:=(k1, . . . kn); r:=( min
σ∈AdvM

ExpTotσ,k1
M (ρ1), r2, . . . rn);

2 do
3 Find w separating r from down(X) such that w1 > 0;

4 Find adversary σ maximising ExpTotσ,kM (w·ρ);
5 q := (ExpTotσ,ki

M (ρi))1�i�n;
6 if w · q < w · r then return ⊥;
7 X := X ∪ {q}; r1 := max{r1,max{r′ | (r′, r2, . . . , rn) ∈ down(X)}};
8 while r �∈ down(X) or w · q > w · r;
9 return r1;

Alg. 3. Algorithm for checking numerical queries

Numerical queries. We now turn our attention to numerical queries. Alg. 3
shows how Alg. 1 can be adapted to check these. Like Alg. 1, it generates points
q on the Pareto curve from a sequence of weight functions w. For the objective
ρ1 that is being optimised, we generate a sequence of lower bounds r1 that are
used in the same fashion as Alg. 1. Initially, we take r1 to be the minimum
possible value for ρ1, which can be computed with a separate instance of value
iteration. New (non-decreasing) values for r1 are generated at each step based on
the set of points X determined so far. The numerical computation for each step
(lines 4-5 of Alg. 3) can again be carried out with Alg. 2. Correctness of Alg. 3
is proved in [12]. The bound on the number of steps needed is as for Alg. 1.

Example 3.We demonstrate Alg. 3 on the MDP from Example 1 and numerical
query ([{s1}]max, ([{s3}]�0.7)). Initially, r1=0.1 and, with w=(0.1, 0.8), we get
q=(0.1, 0.9). The resulting area down(X) is shown as dark grey in Fig. 2(c).
Next, r1 remains as 0.1 and, with w=(1, 0), we get q=(0.4, 0.6). Adding this to
X , down(X) is enlarged by the light grey area. Finally, r1 is set to 0.3, choosing
w=(0.5, 0.5) yields q=(0.4, 0.6) again, and the loop ends. Fig. 2(c) also shows
the points q and r (as and ). The final value returned is r1=0.3.

Pareto curves. Next, we discuss Pareto queries. Generating and visualising
Pareto curves (or their approximations) provides a much clearer view of the
trade-offs between objectives. Our algorithm is implemented as a simple modifi-
cation of our previous algorithms, and is presented as Alg. 4. For simplicity, we
focus on the 2-objective case, which is most practical for visualisation. Our im-
plementation, described later, also supports the 3-objective case and, in theory,
this can be extended to an arbitrary number of objectives.

Alg. 4, like the earlier ones, builds a set X of points on a Pareto curve P
using weights w. Since P is convex, the surface of points X represents a lower
approximation of P . Our algorithm also constructs an upper approximation Y
using the generated weightsw. As illustrated in Example 2, for each point q ∈ X ,
there is a corresponding hyperplane passing through q and with orientation w,
above which no values are achievable. Hence these represent upper bounds on P
and we store, in Y , any weight w that resulted in each point q ∈ X .
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Input: MDP M, reward structures ρ = (ρ1, ρ2), time bounds (k1, k2), εp ∈ R>0

Output: An εp-approximation of a Pareto curve

1 X := ∅; Y : R2 → 2R
2

, initially Y (x) = ∅ for all x; w = (1, 0);

2 Find adversary σ maximising ExpTotσ,kM (w·ρ);
3 q := (ExpTotσ,k1

M (ρ1),ExpTot
σ,k2
M (ρ2));

4 X := X ∪ {q}; Y (q) := Y (q) ∪ {w}; w = (0, 1);
5 do

6 Find adversary σ maximising ExpTotσ,kM (w·ρ);
7 q := (ExpTotσ,k1

M (ρ1),ExpTot
σ,k2
M (ρ2));

8 X := X ∪ {q}; Y (q) := Y (q) ∪ {w}; w = ⊥;

9 Order X to a sequence x1, . . . ,xm such that ∀ i: xi
1�xi+1

1 and xi
2�xi+1

2 ;
10 foreach i ∈ {1, . . . m− 1} do
11 Let u be the element of Y (xi) with maximal u1;

12 Let u′ be the element of Y (xi+1) with minimal u′
1.;

13 Find a point p such that u · p = u · xi and u′ · p = u′ · xi+1;
14 if distance of p from down(X) is � εp then
15 Find w separating down(X) from p, maximising w·p− max

x∈down(X)
w·x;

16 while w �= ⊥;
17 return X

Alg. 4. Algorithm for Pareto curve approximation for 2 objectives

The sequence of weights w is generated as follows. We construct an initial
curve using weights (1, 0) and (0, 1). Then, we repeatedly: (i) sort the points
in X ; (ii) for each successive pair xi,xi+1 in X , find the lowest point p on
the intersection of the hyperplanes stored in Y for xi and xi+1; (iii) choose w
as a separating hyperplane between down(X) and p. The algorithm continues
until the maximum distance between the two approximations falls below some
threshold εp. In principal, the algorithm can enumerate all faces of P . The reason
for constructing an εp-approximation is two-fold: firstly, the number of faces is
potentially large, whereas an approximation may suffice; secondly, computation
of individual points (using value iteration), is already approximate.

Example 4. We illustrate Alg. 4 on the MDP from Example 1 with objectives
([{s1}]max, [{s3}]max). The first two weight vectors w are (1, 0) and (0, 1),
yielding points q of (0.4, 0.6) and (0.1, 0.9), repectively (see Fig. 2(d)). The hyper-
planes attached to eachpoint are also shown, by dotted lines, as is their intersection
p = (0.4, 0.9). We choose separating hyperplane w = (0.5, 0.5), indicated by the
sloped dotted line. The algorithm then finds the intersection (0.1, 0.9) of this with
the horizontal line and, since this point is already in down(X), terminates.

Adversary generation. Finally, we describe how to generate optimal adver-
saries for our multi-objective queries. We explain this for achievability queries,
but it can easily be adapted to the other types too. Unlike standard (single-
objective) MDP model checking, where deterministic adversaries always suffice
to optimise reachability/reward objectives, multi-objective optimisation requires
randomised adversaries. Alg. 1, when finding that bounds r are achievable,
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generates points q1, . . . , qm on the Pareto curve. Each corresponding call to
Alg. 2 returns a (deterministic) adversary, say σqj for the current point qj . The
final adversary σopt is constructed from these and a weight vector u ∈ Rm sat-

isfying ri �
∑m

j=1 ui · q
j
i for all 1 � i � n: it simply makes an initial one-off

random choice of adversary σqj to mimic (each with probability uj).

5 Implementation and Results

We implemented our multi-objective model checking techniques in PRISM [14],
also adding the automaton construction of [11] to support ω-regular proper-
ties. Value iteration is built on top of PRISM’s “sparse” engine. It would also be
straightforward to adapt its symbolic (MTBDD) engine, which can improve scal-
ability on models exhibiting regularity; but, for the current set of experiments,
the sparse engine suffices to illustrate the benefits offered by our approach.

Heuristics and optimisations. Our core algorithms are based on generating
weight vectors w representing separating hyperplanes (e.g. at line 3 of Alg. 1).
The choice of each w is not unique and affects the number of steps needed by the
algorithm. Based on our results, the following is an effective heuristic. For the
first n vectors (assuming n objectives), choose w with wi = 1 for some i. Next,
given point r and set of points X , choose w to maximise minx∈X(w ·q−w ·x),
i.e., pick the hyperplane with maximal Euclidean distance d from q. This is done
by solving the LP: “maximise d subject to

∑n
i=1 wi = 1 and wi · (qi − xi) � d

for all x ∈ X”. In practice, these problems are small and fast to solve.
We also apply various optimisations to the basic value iteration algorithms

of Section 4. For unbounded properties, Gauss-Seidel value iteration [19] can
be used to increase performance. Furthermore, we can significantly reduce the
number of vectors stored with slight changes to Alg. 2; details are in [12].

Experimental results. We evaluated our techniques on benchmarks from sev-
eral sources.2 First, we used multi-objective problems resulting from the assume-
guarantee framework of [15]. Second, we verified multi-objective properties on
existing PRISMmodels: (i) a task-graph scheduler problem, minimising expected
job completion time and expected energy consumption; (ii) a team-formation
protocol, maximising the probability of completing two (separate) tasks and the
expected size of the team that does so; (iii) a dynamic power management (dpm)
controller, minimising over k steps both expected energy consumption and ex-
pected average queue size. Experiments were run on a 2.66GHz PC with 8GB of
RAM. We used ε = 10−6 for value iteration (this is the default in PRISM; smaller
values led to very similar results) and εp = 10−4 for Pareto curve generation.

The results are shown in Table 1: assume-guarantee problems at the top; the
others below. For each model, we give the size (number of states), and details
of the objectives in the query used. The middle part of the table compares the
performance of our value iteration-based technique with the LP-based imple-
mentation of [11] on numerical queries. In our experiments, performance for

2 All models/properties used are at www.prismmodelchecker.org/files/atva12mo/

http://www.prismmodelchecker.org/files/atva12mo/
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Table 1. Experimental results for our implementation and a comparison with [11].

Case study
[parameters]

Num.
states

Objectives Numerical query Pareto query

Num. Types
LP ([11]) Val. iter. Val. iter.

LP size Time (s) Pt.s Time (s) Pt.s Time (s)

consensus
(2 proc.s)

[R K]

3 2 691
2

[T1]max

[T2]max

1026 0.57 3 0.02 3 0.04
4 2 1517 2288 0.67 3 0.03 3 0.05
5 2 3169 4812 0.94 3 0.05 3 0.06

consensus
(3 proc.s)

[R K]

3 2 17455
2

[T1]max

[T2]max

40386 9.85 3 0.22 3 0.27
4 2 61017 140676 144.06 3 0.87 3 1.06
5 2 181129 mem-out 3 2.83 3 3.44

zeroconf
[K]

4 5449
2

[T1]max

[T2]max

12916 1.25 2 0.13 4 0.60
6 10543 24639 7.07 4 0.46 4 0.79
8 17221 40833 19.6 4 0.76 4 1.13

zeroconf-tb
[K T ]

2 14 29572
2

[T1]max

[T2]max

61816 5.25 3 1.69 2 0.85
4 10 19670 46659 5.01 2 0.32 3 0.84
4 14 42968 103964 11.01 2 0.63 3 1.77

team-form.
[N ]

3 12475
2

[T1]max

[ρ2]max

14935 1.37 4 0.21 7 0.24
4 96665 115289 11.57 4 1.08 7 1.72
5 907993 mem-out 2 5.66 6 12.66

team-form.
[N ]

3 12475
3

[T1]max

[T2]max

[ρ2]max

14935 1.37 3 0.18 57 1.39
4 96665 115289 10.55 5 1.77 61 14.55
5 907993 mem-out 2 9.49 57 141.76

scheduler
[K]

5 31965
2

[ρ1]min

[ρ2]min

57954 59.15 8 6.10 10 8.08
25 633735 mem-out 8 526.56 11 776.44
50 2457510 mem-out 8 3938.94 10 5361.86

dpm
[k]

100 636
2

[ρ1]
�k
min

[ρ2]
�k
min

n/a n/a 3 4.50 6 0.12
200 636 n/a n/a 3 4.30 11 0.32
300 636 n/a n/a 3 4.59 9 0.36

achievability queries was very similar, so we omit them. The right part of the ta-
ble shows times to compute Pareto curves for the same objectives on each model
(which cannot be done with the implementation of [11]). For value iteration-
based algorithms, we show the number of points (steps of the algorithm) needed;
for LP-based, we show the size of the linear program solved.

Comparing the value-iteration and LP-based approaches, we see huge gains
in run-time for our methods (up to approx. 150 times faster). There are also
significant improvements in scalability: the biggest models solved with value
iteration are about 20 times bigger than those for LP. One factor in the low run-
times for our technique is that the algorithms generally require a fairly small
number of steps, even when generating the Pareto curve.

1.481879287 16.29309556
1.453607682 16.50297211
1.432373114 16.94741655
1.426941015 17.34247828
1.426941015 19.12025606

1.465111111 16.08148148
1.443111111 16.22222222
1.424814815 16.43786008
1.418666667 16.57283951
1.412444444 16.94814815
1.410518519 20.67160494
1.410518519 21.26419753

0.5

1

0.5

1

0.5
1

1.5
2

z

y

x

Fig. 3. Pareto curves from: (a) task-graph scheduler, K=2; (b) Zeroconf protocol,
K=2, T=10; (c) team formation protocol, N=3 (axes x/y/z = Probability of complet-
ing task 1/probability of completing task 2/expected size of successful team)
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Pareto curves. Finally, we show in Fig. 3 the Pareto curves generated for
some of our examples. Plot (a) shows, for a task-graph scheduling problem, how
different schedulers vary in terms of completion time and energy usage. Plot
(b) is from an instance of assume-guarantee verification; the plot shows how it
is possible to bound the probability of an error in the overall system (y-axis)
for various different reliability levels of one of the components (x-axis). Plot
(c) shows a 3-objective Pareto curve evaluating strategies in a team-formation
protocol (see Fig. 3 caption for objectives). In each case, the plots give a clear,
visual illustration of the trade-off between competing objectives. The curves
could also be used to quickly answer any additional achievability or numerical
queries for those objectives, without running any further model checking.

6 Conclusions

We have presented novel techniques for multi-objective model checking of MDPs,
using a value iteration-based computation to build successive approximations of
the Pareto curve. Compared to existing approaches, this gives significant gains
in efficiency and scalability, and enables verification of time-bounded properties.
Furthermore, we showed the benefits of visualising the Pareto curve for several
probabilistic model checking case studies. Future directions include extending
our techniques to timed probabilistic models such as CTMDPs and PTAs.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt is also supported
by a Royal Society Newton Fellowship.
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Abstract. The verification of partial-information probabilistic systems
has been shown to be undecidable in general. In this paper, we present a
technique based on inspection of counterexamples that can be helpful to
analyse such systems in particular cases. The starting point is the obser-
vation that the system under complete information provides safe bounds
for the extremal probabilities of the system under partial information.
Using classical (total information) model checkers, we can determine op-
timal schedulers that represent safe bounds but which may be spurious,
in the sense that they use more information than is available under the
partial information assumptions. The main contribution of this paper
is a refinement technique that, given such a scheduler, transforms the
model to exclude the scheduler and with it a whole class of schedulers
that use the same unavailable information when making a decision. With
this technique, we can use classical total information probabilistic model
checkers to analyse a probabilistic partial information model with in-
creasing precision. We show that, for the case of infimum reachability
probabilities, the total information probabilities in the refined systems
converge to the partial information probabilities in the original model.

1 Introduction

Verification algorithms for formalisms like Markov Decision Processes and their
variants have been studied extensively in the last 20 years, given their wide
range of applications. In these systems, there are two kinds of choices: non-
deterministic and probabilistic (with probability values specified in the model).
Non-deterministic choices are resolved using the so-called schedulers: by restrict-
ing a system to the choices of the scheduler, the restricted system collapses to
a Markov chain, and probability values for properties can be calculated. Worst-
case probability values are then defined by considering the maximum/minimum
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probability over all schedulers. In consequence, a counterexample is a scheduler
that yields greater/less probability than allowed by the specification.

Background. In recent years, considerable attention has been paid to prob-
abilistic systems in which the non-deterministic choices are resolved according
to partial information (see [2,3,5,9] and references therein). The formalisms in
these works can be seen as generalized versions of Decentralized Partial Observa-
tion Mdps. Using these formalisms we can model, for instance, a game in which
players keep some information hidden.

The quantitative model checking problem was shown to be undecidable in
general for partial information Mdps [10]. Some techniques are available for
finite-horizon properties or to obtain over-approximations [11]. To the best of
our knowledge, the technique for quantitative analysis in this paper is the first
one in which the amount of information available is gradually refined. As a
work in a similar direction, the first abstraction refinement technique for non-
probabilistic partial-information games was proposed quite recently [6]. A recent
work concerning qualitative properties in a setting similar to ours is [2].

Contribution. We present an iterative technique that allows to improve the
accuracy of the values obtained using total information analysis on partial infor-
mation systems. In order to do this, we present an algorithm to check whether a
total information scheduler complies with the partial information assumptions.
We also present a transformation (called refinement) that, given a scheduler
that does not comply with the assumptions, modifies the model to exclude this
scheduler and a whole class of schedulers that use the same unavailable infor-
mation when making a decision. This transformation can be carried out using
different criteria. For the case of infimum reachability probabilities, we show a
criterion under which, by successively applying the refinements, the total infor-
mation probabilities in the refined systems converge to the partial information
probabilities in the original model.

Introductory Example. We illustrate the problem we address, and the useful-
ness of our technique, using the players A and B in Fig. 1 (the automaton A ‖ B
will be used later). To simplify, we assume that they play a turn-based game (the
systems we consider in the rest of the paper allow for non-deterministic arbitrary
interleaving). When the game starts, player A tosses a coin whose sides are la-
belled with 0 and 1. Then, B tosses a similar coin keeping the outcome hidden. In
the next turn, A tries to guess if both outcomes agree: in the state a0, the guess of
A is that an agreement happened, and his outcome has been 0 (the meaning of the
other states is similar). After the guess, a synchronized transition (depicted with
a dashed line) takes both A and B to the initial state, where another round starts.
PlayerB wins if A fails to guess at least once. The problem under consideration is
to calculate the minimum probability that B wins. Intuitively we can think that
player A wants to prevent the system from reaching one of the states in which B
wins. An example strategy for the first round for playerAwould be “ifA’s outcome
is 0, then A guesses an agreement. Otherwise, it guesses a disagreement”. In this
scheduler/strategy,B wins iff its outcome is 1. Hence, for this scheduler/strategy,
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the probability thatB wins is the probability thatB’s outcome is 1, that is, 1/2. It
is easy to see that, for every scheduler, B wins in the first round with probability
1/2. In subsequent rounds, player A might try different schedulers, but since all
of them lead B to win the round with probability 1/2, the probability that B has
won after round N is 1 − (1/2)N . Hence, the probability that B wins the game
in some round is 1. The minimum probability that B wins, quantifying over all
schedulers, is then 1.

This result is not, however, the one yielded by standard tools for probabilistic
model checking such as Prism [12] or LiQuor [4]. Such tools verify this model
by constructing the parallel composition A ‖ B shown in Fig. 1 (double-framed
boxes indicate the states in which B wins) and considering all schedulers for
the composed model under total information. The problem with this approach
(sometimes called the compose-and-schedule approach) is that there exist some
unrealistic schedulers as the one shown in Fig. 2: in this scheduler, the proba-
bility of reaching a state in which B wins is 0. The scheduler simply guesses an
agreement in case an agreement happened, and a disagreement otherwise. This
is unrealistic, as in the original model A is unable to see the outcome of B.
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Fig. 1. Player A tries to guess if the choices agree

The problem illustrated by the example led to the definition of
partial-information schedulers or distributed schedulers (in which a scheduler
of the compound system is obtained by composing schedulers for each player).
However, the verification of properties under partial-information schedulers was
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Fig. 2. An unrealistic scheduler for the parallel composition
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proven to be difficult, and several hardness and undecidability results are known
(see [10,2], just to name a few).

The result considering all schedulers can be seen as a safe (although overly
pessimistic) bound on the minimum/maximum probability. In this paper, we
present a technique to obtain tighter safe bounds. This technique works through
a series of refinements : it starts by verifying the system as if total information
were available, using standard algorithms for the total-information case. If the
system is deemed correct, then it is also correct under partial information, as
the set of schedulers under partial information is a subset of the ones under total
information. If the system is deemed as incorrect, it can be checked whether the
counterexample obtained is valid under partial information: that is, if all choices
are resolved using only available information. If the scheduler is indeed valid,
then we can conclude that the system under consideration is incorrect, and we
can use the counterexample obtained as witness. For the case in which the coun-
terexample is not valid under partial information (that is, the case in which there
is a decision that is resolved according to information not available) we present
a transformation that produces a system in which the spurious counterexample
is less likely to occur in a new analysis under total information. We can analyse
the resulting system by repeating this refinement each time we get a spurious
counterexample, in the hope that eventually we find the system correct or we
get a real counterexample. We show that, for infimum reachability probabilities,
the refinements can be carried out in such a way that the results converge to the
actual value for all systems.
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(b) A scheduler after the first
refinement

Fig. 3.

We can explain our counterexample-based transformation of the system by fol-
lowing our previous example: we first detect that, in the counterexample in Fig. 2,
the player A performs a choice using unavailable information while in state 0, by
noticing that its choices differ for the state (0, 0) and the state (0, 1) (the player
also cheats in state 1, but can tackle one state at a time). The transformation
forces (the refined model of) A to choose beforehand what the move will be
in state 0, this choice being resolved during the coin toss. If the state reached
is 0, player A must adhere to its previous decision. The refined model of A is
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shown in Fig. 3(a). Roughly speaking, the non-determinism at state 0 has been
“pulled backwards”. If we apply the compose-and-schedule approach, the com-
pound system still has some unrealistic counterexamples, as A can still cheat in
state 1. One of such unrealistic counterexamples is shown in Fig. 3(b). However,
the minimum probability that B wins is now 1 for all schedulers (as eventually
A passes through state 0, in which A cannot cheat). Since our transformation
ensures that 1 is a lower bound for the minimum probability, we know that the
result is 1 and the verification finishes.

This verification, calculating the exact result after one refinement, can be
contrasted with the näıve approach of computing the minimum probability pN
that B wins before round N , increasing N successively. These probabilities can
be computed by considering each of the schedulers for A up to round N . The
value of pN is 1 − (1/2)N , and so this approximation never reaches the actual
value 1. In addition, as general schedulers depend on the local history of A,

computing pN involves computations for 22
N

different schedulers.

2 The Model

In this section we introduce Markov Decision Processes, together with a notion
of parallel composition suited to define partial-information schedulers.

Markov Decision Processes. Let Dist(A) denote the set of discrete
probability distributions over the set A. The support of A is denoted by supp(A).

A Markov Decision Process (Mdp)M is a quadruple (S,Q,Σ, T ) where S is
a finite set of states, Q ⊆ S is a set of initial states, Σ is the finite alphabet of
the system, each element in Σ is called a label, and T ⊆ S × Σ × Dist(S) is a
transition structure: if μ = (s, α, d) ∈ T then there is a transition μ with label
α enabled in s, and the probability of reaching t from s using this transition
is d(t). When no confusion arises, we write μ(t) instead of d(t). We write en(s)
for the set of transitions (t, α, d) with t = s. The label of μ is written label(μ).
We assume that subindices and superindices map naturally from Mdps to their
constituents and so, for instance, Sp is the set of states ofMp.

A path in an Mdp is a (possibly infinite) sequence ρ = s0.μ1.s1. · · · ..μn.sn,
where μi ∈ en(si−1) and μi(si) > 0 for all i. If ρ is finite, the last state of ρ is
denoted by last(ρ), and the length is denoted by len(ρ) (a path having a single
state has length 0). Given two paths ρ, σ such that last(ρ) is equal to the first
state of σ, we denote by ρ ·σ the concatenation of the two paths. The set of finite

paths of anM is denoted by PathsM. We write s
μ−→t to denote μ ∈ en(s)∧μ(t) >

0. Overloading the notation, we write s
α−→t iff ∃μ : label(μ) = α ∧ s μ−→t. Given a

set of target states U , the set reach(U) comprises all infinite paths w such that
at least one state in w is in U .

The standard semantics of Mdps is given by schedulers. A (total informa-
tion) scheduler η for an Mdp is given by a state initη ∈ Q and a function
η : PathsM → T such that, if en(last(ρ)) 	= ∅, then η(ρ) ∈ en(last(ρ)). In
words, the scheduler chooses an enabled transition based on the previous path.
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For simplicity, in case en(last(ρ)) = ∅ we define η(ρ) = ςlast(ρ), where ςlast(ρ) is
a fictitious transition representing the fact that, after ρ, the system remains in
last(ρ) forever. Accordingly, we define ςs(s) = 1 for all s. The set of all schedulers
forM is denoted by Sched(M).

The set Paths(η) contains all the paths s0.μ1.s1. · · · .μn.sn such that s0 =

initη, η(s
0.μ1.s1. · · · ..μi−1.si−1) = μi and si−1 μi

−→si for all i. We say that two
schedulers η, ζ are equivalent (denoted η ≡ ζ) iff Paths(η) = Paths(ζ) (note that
this implies η(ρ) = ζ(ρ) for all ρ ∈ Paths(η)).

The probability Prη(ρ) of the path ρ under η is
∏n

i=1 μ
i(si) if ρ ∈ Paths(η).

If ρ 	∈ Paths(η), then the probability is 0.
We are interested on the probability of (sets of) infinite paths. Given a finite

path ρ, the probability of the set ρ↑ comprising all the infinite paths that have
ρ as a prefix is defined by Prη(ρ↑) = Prη(ρ). In the usual way (that is, by
resorting to the Carathéodory extension theorem) it can be shown that the
definition on the sets of the form ρ↑ can be extended to the σ-algebra generated
by the sets of the form ρ↑. Since the measure of any set in the σ-algebra is
determined by the measure in the sets ρ↑, it follows that for all measurable sets
H: η ≡ ζ =⇒ Prη(H) = Prζ(H) .

Composition of variable-based Mdps. The systems we compose exchange
information through the use of shared variables. In consequence, we assume that
the state of an Mdp is given by a valuation on a set of variables V . The variables
in the set W ⊆ V are the write variables. The set of all valuations on a set V
is denoted by V [V ]. The value of variable v in state s is denoted by s(v). Given
a state s and a set V ′ ⊆ V , we define the restriction [s]V ′ as the valuation on
V ′ such that [s]V ′(v) = s(v) for all v ∈ V ′. Given an Mdp Mp whose set of
variables is Vp, we write [s]p for [s]Vp and [s]Wp for [s]Wp .

The set of states of a variable-based Mdp Mp is the set V [Vp]. We assume,
however, that the transitions of variable-based Mdps are of the form (s, α, d)
where d is a distribution on V [Wp] (instead of of V [Vp]). In order to comply with
the definition of Mdp given in the previous subsection, we can lift d to V [Vp]
in the obvious way by defining d′(t) = 0, if t(v) 	= s(v) for some v 	∈ Wp; and
d′(t) = d([t]Wp ), otherwise. In what follows, when writing μ(t), we mean d(t) if
t ∈ V [Wp], or d

′(t) if t ∈ V [Vp].
We say that the Mdps M1, · · · ,MN , are compatible if ∀p�=q : Wp ∩Wq = ∅.

Given a set of compatible Mdps {M1, · · ·MN}, let M(α) be the subset com-
prising the modules such that α ∈ Σp, W (α) be ∪Mp∈M(α)Wp and ¬W (α)

be V \ W (α). We define the parallel composition M = ‖Np=1Mp as the Mdp

(S,Q,Σ, T ) such that:
– S is the set of valuations on

⋃
p Vp

– Q is the set of states s such that [s]Wp ∈ Qp for all p

– Σ =
⋃N

p=1Σp

– μ = (s, α, d) ∈ T iff for all Mp ∈ M(α) there exists μp ∈ enp([s]p) such
that label(μp) = α, μ(t) =

∏
Mp∈M(α) μp([t]

W
p ) if [s]¬W (α) = [t]¬W (α) and

μ(t) = 0 whenever [s]¬W (α) 	= [t]¬W (α) .
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Given a transition μ = (s, α, d) inM, we define [μ]p = ([s]p, α, d
′), where d′(t′) =∑

{t|[t]Wp =t′} d(t) for all t
′ ∈ V [Wp]. Note that μ∈en(s)=⇒[μ]p∈en([s]p).

Control functions. The definitions introduced so far map easily to modelling
languages with shared variables such as Prism, but in order to consider partial
information we also need to introduce a concept resembling input/output as in
Probabilistic I/O Automata (PIOA [3]): the control function.

The technique we present considers a composition ‖Np=1Mp together with a
function control: Σ → {Mp}p ∪ {⊥}. If control(α) =Mp, the intended meaning
is that Mp decides to execute the transitions with this label, while the other
modules Mq with α ∈ Σq react to this transition. We formalize this meaning
when introducing partial-information schedulers. Labels with control(α) = ⊥
are not controlled by any module (it can be thought that they are controlled by
an external entity that has full knowledge). For the previous definition to make
sense, we require control(α) 	= ⊥ =⇒ α ∈ Σcontrol(α). We impose the follow-
ing condition, analogous to the input-enabledness condition for Input/Output
Automata [3]:

α ∈ Σp ∧ control(α) 	= ⊥ ∧ control(α) 	=Mp =⇒ ∀sp ∈ Sp : ∃tp : sp
α−→tp . (1)

In other words, whenever the module control(α) chooses to execute a transition,
it will not be blocked because of other modules not having an α transition
enabled. Given a transition μ we write control(μ) instead of control(label(μ)).

The control/reaction mechanism is similar to the PIOA, but our definition
for Mdps is simpler, as it does not need input and output schedulers as in
Switched PIOA [3] nor tokens [3] (or interleaving schedulers [9]) for interleaving
non-determinism.

If the model is specified in a language that does not allow control specifications
(such as Prism), we can take control(α) = Mp if Mp is the only module with
α ∈ Σp, and control(α) = ⊥ if α ∈ Σp ∩Σq for some p 	= q.

Partial-information schedulers for Mdps. Our partial-information sched-
ulers require the choices of a module to be the same in all paths in which the
information observed by such module is the same. Given a path ρ the information
available to Mp is called the projection of ρ over Mp (denoted [ρ]p). In order to
define projections, we say that a transition μ affects moduleMp iff label(μ) ∈ Σp

or s
μ−→t for some s, t such that [s]p 	= [t]p. Projections are defined inductively as

follows: the projection of the path s0 is [s0]p. The projection [ρ.μ.s]p is defined
as [ρ]p.[s]p if μ affectsMp or [ρ.μ.s]p = [ρ]p, otherwise. Alternatively, projections
might have been defined to include also information about the transitions. Our
definition is simpler and, in addition, it is easy to emulate the (apparently) more
general definition by keeping the last transition executed as part of the state of
the module.

Definition 1 (Partial-information scheduler). Given M = ‖ N
p=1Mp, the

set PISched(M) comprises all schedulers η such that for all modules Mp, paths
ρ, σ ∈ Paths(η) with [ρ]p = [σ]p the two following conditions hold:
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label(η(ρ)) = label(η(σ)) ∈ Σp =⇒ [η(ρ)]p = [η(σ)]p (2)

control(η(ρ)) = control(η(σ)) =Mp =⇒ label(η(ρ)) = label(η(σ)) . (3)

To understand (2), recall that in a state s there might be different transitions
enabled, say μ, λ, with label(μ) = label(λ) = α. Hence, (2) ensures that, if the
module Mp synchronizes in a transition labelled with α after both ρ and σ, then
the particular transition used in the synchronization must be the same after both
ρ and σ. In Eq. (3) we require that, if Mp is the module that chooses the label
in both ρ and σ, then the chosen label must be the same.

Given an MdpM = ‖Np=1Mp, a set H of infinite paths and B ∈ [0, 1], we are
interested in the problem of deciding if Prη(H) ≤ B for all η ∈ PISched(M).
The inequality holds iff supη∈PISchedPr

η(H) ≤ B. This problem has been proven
undecidable, even in the particular case in which H is the set of paths that reach
a particular state [10]. In contrast, it is well-known that the model-checking
problem under total information is solvable in polynomial time on the size of
the model for logics such as Pctl∗ and Ltl [7].

3 Refinement

In this section we show how a system can be verified under partial information
by using total-information techniques on successive refinements of the original
system. Our technique starts by verifying the system M under total informa-
tion, that is, by calculating STot = supη∈SchedPr

η(H). If STot is less than or
equal to the allowed probability B then the inclusion PISched ⊆ Sched implies
SPar = supη∈PISchedPr

η(H) ≤ B, and hence the system is correct under partial
information. In case that STot > B, model-checking algorithms can provide a
representation of a scheduler η such that Prη(H) > B (see [7]). If η ∈ PISched,
thenM is not correct under partial information, and η is a counterexample. If
η 	∈ PISched, then we perform a transformation on the system that prevents
the particular counterexample and with it a class of schedulers that violate the
partial information assumption in a similar way.

We start the description of our technique by showing how to check if a sched-
uler η is in PISched.

3.1 Detection of Partial-Information Counterexamples

Under total information, for minimum/maximum reachability it suffices to con-
sider only globally Markovian (Gm) schedulers. A scheduler η is Gm iff η(ρ) =
η(σ) for all ρ, σ ∈ Paths(η) with last(ρ) = last(σ). Moreover, the verification of
general Ltl and Pctl

∗ formulae is carried out by reducing the original problem
to problems for which Gm schedulers are sufficient [7].

We address the problem of checking whether η ∈ PISched for a given Gm

scheduler η. The method here resembles the well-known technique of self-com-
position [1]. We denote by η>0(s) the value of η(ρ) for all ρ ∈ Paths(η) with
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last(ρ) = s. Note that a Gm scheduler is completely determined by the value
of η>0(s) in the states s reachable in η, in the sense that if two schedulers η, ζ
reach the same states and η>0(s) = ζ>0(s) for all reachable states, then η ≡ ζ.

We reduce the problem to that of checking whether η has conflicting paths.
Given a Gm η, we say that two states s, t with [s]p = [t]p are η-conflicting for
the module Mp iff either of the following holds

label(η>0(s)) = label(η>0(t)) ∈ Σp ∧ [η>0(s)]p 	= [η>0(t)]p or (4)

control(η>0(s)) = control(η>0(t)) =Mp ∧ label(η>0(s)) 	= label(η>0(t)) . (5)

We say that two paths ρ, σ ∈ Paths(η) are η-conflicting for Mp if [ρ]p = [σ]p,
last(ρ) = s, last(σ) = t and the states s, t are η-conflicting. From the definition
of η-conflicting and the definition of PISched, we have the following equivalence
for all Gm η:

η ∈ PISched ⇐⇒ η has no conflicting paths . (6)

Now we show how to check the (in)existence of conflicting paths for Mp. For all

s, t ∈ S, rp ∈ Sp, we define the relation s
rp�t, that holds iff there exist paths

ρ, σ such that ρ · σ ∈ Paths(η), last(ρ) = s, last(σ) = t and [σ]p = rp. This
relation can be extended naturally to the sequences πp = r1p · · · rkp , so we can

write s
πp�t. By the definition of �, if s

πp�t then there exists a path π from s
to t in η such that [π]p = πp. Consider the non-deterministic finite automaton

Nfap(η) that represents the relation
rp�. In this automaton, each word starting

in s and ending in t corresponds to a πp such that s
πp�t.

The problem of checking whether η has conflicting paths is now that of check-

ing whether initη
πp�s and initη

πp�t for some η-conflicting s, t. This can be done
by constructing the synchronous product automaton

Nfa2p(η) = Nfap(η)×Nfap(η) (7)

and checking whether it has a path from (initη, initη) to some η-conflicting (s, t).

Superfluous conflicts. We show that some conflicts can be ignored. For in-
stance, consider that we are calculating supη Pr

η(reach(U)), and we find that s,
t are η-conflicting, and the probability Prηs(reach(U)) to reach U starting from
s is 0. We say that this conflict is superfluous. Intuitively, one might think that
η could be changed so as to not cheat in s, and the probabilities would not
decrease, as the probability from s was already 0 in η: if all the conflicts are su-
perfluous, then, we should be able to construct a partial-information scheduler
yielding the same probabilities. This intuitive reasoning can be proven, and we
state it formally in the theorem below. For minimum probabilities, we say that
the conflict is superfluous if Prηs(reach(U)) = 1.

Theorem 1. Let η be such that Prη(reach(U)) = supη′ Prη
′
(reach(U)) (or,

resp., Prη(reach(U)) = infη′ Prη
′
(reach(U))). If all conflicts in η are superfluous,

then there exists η∗ ∈ PISched such that Prη
∗
(reach(U)) = Prη(reach(U)).
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3.2 Refining a System for a Conflict

According to Eq. (6), if a counterexample η does not comply with the partial-
information constraints, there exist two η-conflicting states s and t for a module
Mp. Since these states are conflicting, we have that [s]p = [t]p and either (4)
or (5) holds. In words, two different transitions μ, λ are chosen in Mp while,
because of the partial-information constraints the choices must coincide. Next,
we show how to refine the module Mp. The refinement is modular, in the sense
that only Mp is affected.

As illustrated in the example in the introduction, the idea is to split [s]p in
such a way that μ and λ are not enabled in the same state. We present a general
way to split states, that will be useful to develop a splitting criterion that ensures
convergence for the case of the infimum probabilities (see Thm. 3).

In order to ensure input-enabledness, the transitions enabled in each of the
split states must comply with a certain condition: given a state sp of Mp, a
minimal choice set is a set F of transitions such that, for each label α not
controlled by Mp there is transition labelled with α in F and, if there is a
controlled transition enabled in sp, then F has at least one controlled transition.
Intuitively, when a module restricts its choices to a minimal choice set F , it fixes
the reactions for all non controlled transitions, and fixes the controlled transition
to execute (if any). In the following, let T1, · · · , TZ be sets of transitions such
that for every minimal choice set F there exists i such that F ⊆ Ti. These sets
are called choice sets. As an example, the simplest splitting criterion is, given
two states s, t being η-conflicting for Mp, take T1 = en([s]p) \ {[η(s)]p} and
T2 = en([s]p) \ {[η(t)]p} as choice sets.

The overall idea of the transformation is then simple: the state sp being split
is replaced by Z states s1p, · · · , sZp in such a way that the transitions enabled

in si correspond to Ti. We construct the refined module Mq in the following
definition.

Definition 2. Given a module Mp in M, u ∈ Sp, and choice sets {Ti}Zi=1, the
refinement Mq(η, u, {Ti}Zi=1) is defined as:
– Vq = Vp ∪ {x} where x 	∈ Vp is a fresh variable name. The domain of x is
{1, · · · , Z}. In addition, W ′

q =Wp ∪ {x}
– Sq is the set of valuations on Vq
– Qq = {v | [v]p = u ∧ [v]p ∈ Qp} ∪ {v | [v]p 	= u ∧ v(x) = 1 ∧ [v]p ∈ Qp}
– Σq = Σp ∪ {α | ∃u′ : [u′]Wp

α−→[u]Wp }
– for all v ∈ Sq, we have μq ∈ enq(r) iff some of the following conditions hold:
• label(μq) ∈ Σq \Σp and μq(v

′) = 1 for some v′ such that [v′]Wp = [v]Wp .
• label(μq) ∈ Σp,

∀v′, v′′ ∈ supp(μq) : v
′(x) = v′′(x) (8)

and there exists μp ∈ enp([v]p) such that μp([u]
W
p ) > 0 and

∀v′ : μq(v′) = μp([v′]p) and (9)

[v]p 	= u ∨ (v(x) = i ∧ μp ∈ Ti ) . (10)
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• label(μq) ∈ Σp, and

∀v′ ∈ supp(μ) : v′(x) = 1 (11)

and there exists μp ∈ enp([v]p) such that μp([u]
W
p ) = 0 and (9) and (10)

hold.

Next we explain this transformation informally. If u ∈ Qp, then in Qq we have
Z states corresponding to up, the variable x having different values in each state
(note that these two states constitute the set of all states v such that [v]p = u).
For all the other initial states, we just set the value of x arbitrarily to 1 (we
could have chosen any value in {1, · · · , Z}), since the transitions that lead to u
will update the variable regardless of the initial value.

Notice that the alphabet of the module is extended in order to synchronize in
all transitions that might change the variables of Mp, and lead it to u.

The transitions inMq that synchronize on the newly added labels only change
the value of x in a non-probabilistic fashion. The transitions in Mq having labels
that were already in Σp correspond to transitions μp that were already in Mp.
We have two cases: first we consider the case in which μp reaches u. Each of
the corresponding transitions μq changes the value of x in a non-probabilistic
fashion (condition (8)) so that there are Z transitions corresponding to μp: each
one setting x to a value in {1, · · · , Z}. Wrt. the other variables, the transitions
μq behave in the same way as in Mp (condition (9)). In addition, condition (10)
ensures that, if μq is enabled in a state corresponding to u, then μq corresponds
to a transition inMp that is consistent with the value of x. In case μp does reach
not u, condition (11) specifies that the transition μq set the value of x to 1 (for
the same reason that some initial states were set to such an arbitrary value).
Note that the transitions μq must also respect the probabilities in μp, and be
consistent with the value of x (as we require the conditions (9) and (10)).

If the moduleMp inM =‖rMr is refined toMq(u, {Ti}Zi=1), the refined system
M(u, {Ti}Zi=1) is Mq(u, {Ti}Zi=1) ‖r �=pMr. control(α) remains unchanged.

Given a set of infinite paths H in an MdpM with variables V , we can obtain
the corresponding set inM(u, {Ti}Zi=1):

H′ = {s′0.μ′1.s′1. · · · | [s′0]V .[μ′1]V .[s′1]V · · · ∈ H} .

The following theorem ensures that we can apply refinements without changing
the partial-information extremal probability values.

Theorem 2. sup
η∈PISched(M)

Prη(H) = sup
η∈PISched(M(u,{Ti}Z

i=1))

Prη(H′)

3.3 Convergence

In the beginning of this section we introduced the problem of computing SPar, in
order to know whether SPar ≤ B. Depending on the particular system and prop-
erty being checked, and on how the choice sets are chosen, the probabilities in
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the refined systems might actually converge or not to SPar. The next subsection
shows that, when calculating infimum values for reachability properties, there
exists a sequence of choice sets that ensures that the probabilities converge.

Suppose the variables in the original system are x1, · · · , xN , and that given
a system with N variables, the new variable introduced in Definition 2 is xN+1.
Given M, we write N(M) for the number of variables in M. Let V ↓ i be
the set of variables {x1, · · · , xi}. An i-state is an element of V [V ↓ i]. We say
that two transitions are an i-choice in state sp if they are enabled in sp and
1 ≤ i ≤ N is the minimum value such that [μ]Wp∩V↓i 	= [λ]Wp∩V↓i. Exceptionally,
if label(μ) 	= label(λ) and control(label(μ)) = control(label(λ)) = Mp, we say
that μ, λ are a 0-choice. When refining a system with N variables, we eliminate
(at least) one i-choice, where trivially i ≤ N , and for each transition leading
to the refined state we create new (N + 1)-choices: the different transitions μq
corresponding to a transition μp in Definition 2 can be distinguished only by the
values they assign to xN+1.

Consider a scheduler η 	∈ PISched. By Eq. (6), it has at least two conflicting
states s, t. We say that μ, λ, is an i-conflict in η iff there exist s, s′, sp, such that
[s]p = [s′]p = sp, [η(s)]p = μ, [η(t)]p = λ, and μ, λ are an i-choice in sp. We say
that μ, λ is a minimum conflict if it is an i-conflict with minimum i, quantifying
over all conflicts in η.

Informally, the following theorem states that, if every time we search for a
minimum conflict, and we refine all the states having such a conflict, then the
infimum probabilities under total information (in the refined systems) converge
to the infimum probability under partial information (in the original system).

Theorem 3. Given an Mdp M and a set of states U , consider the sequence
of Mdps defined inductively as follows: M0 is ‖ pMp. Given Mk and ηk 	∈
PISched(Mk), we defineMk+1 by defining intermediate systemsMk,l. Let Smin

be the states with a minimum conflict μ, λ for Mp in ηk. The system Mk,0 is
Mk; given Mk,l, if there exists sl+1 such that [sl+1]V↓N(Mk) ∈ Smin then we let

Mk,l+1 =Mk,l([s
l+1]p, {T1, T2}) , where T1 = en([sl+1]p) \ {μ′ | [μ′]Vp↓N(Mk) =

μ} and T2 = en([sl+1]p) \ {λ′ | [λ′]Vp↓N(Mk) = λ}. If no such sl+1
p exists, we let

Mk+1 =Mk,l. There exists l such that Mk+1 =Mk,l. Moreover, we have
lim
k→∞

inf
η∈Sched

PrηMk
(reach(Uk)) = inf

η∈PISched
PrηM(reach(U)) ,

where Uk is the set of all states s in Mk such that [s]V↓N(M) ∈ U .

For simplicity, in the theorem above we assume that we are unlucky and we
never find a partial information counterexample. In case we do, we can simply
makeMk+1 =Mk. We also preserve indices across refinements: if Mp is refined
inMk,l, then Mp is the refined module inMk,l+1.

There is no similar convergence for upper bounds of supremum probabili-
ties: together with the computable lower bounds limn→∞ Prη(reach(Un)) (where
reach(Un) is the set of paths reaching U before n steps) such upper bounds would
turn the approximation problem for the supremum decidable, and it is not [10].
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4 Experimental Results

In spite of Thm. 3, we do not have an upper bound on the number of refine-
ments needed to get a probability ε-close to the actual one. In consequence, we
implemented a preliminary prototype of the refinement technique in Prism, to
check whether some improvements in worst-case probabilities can be found in
practically acceptable times.

Variants implemented. We found that, in some cases, the criterion for se-
lecting conflicts in Thm. 3 (which we refer to as “minimum variable conflict”
or MVC) does not improve the probabilities quickly enough. An explanation for
this behaviour can be seen in a small example: in a system with N variables,

suppose that in a module we have s
μ−→t λ−→r, and in r there is a non-deterministic

choice that the fictitious counterexamples resolve according to a hidden coin that
is tossed by another module in a transition than synchronizes with μ. In the first
refinement, we pull the non-determinism backwards to s′. For the scheduler not
to cheat any longer, we need to pull the non-determinism to s but, in the first
variant, this only occurs after all the N -conflicts have been refined, as the choices
introduced in s′ are (N + 1)-choices.

We implemented a second variant (which we refer to as “shortest projection
conflict” or SPC) that performs a breadth-first search on the automaton Nfa2p(η)
in Eq. (7), in order to obtain the shorter projection ρp for which the partial
information restrictions are violated. In the previous example, if s.μ.t.λ.r is the
smallest conflicting path in the first counterexample, then s.μ.t is the smallest
conflicting path in the second counterexample, and the cheating is eliminated in
the second refinement. In addition, in this variant we split each state into several
states: if the conflict concerns controlled transitions, then each choice set has a
single controlled transition (and also has all non-controlled transitions); if the
conflict concerns a reaction to a certain label α, then each choice set has a single
transition labelled with α (and also all controlled transitions, and transitions
with labels other than α). This is easy to implement and yields better results in
practice. Examples can be constructed to show that SPC does not converge in
all cases.

Table 1. Experimental results

SPC MVC

N k |S| initial Initial
prob.

|S| final Final
prob.

Time
(s)

Superf.
conflicts

|S| final Final
prob.

Time
(s)

Light 3 4 712 0.44 2376731 0.30 * 2973 10 8506371 0.44 12418
bulb 3 5 1042 0.62 5774983 0.50 16762 0 7592182 0.62 11317

4 4 2069 0.09 893665 0.05 * 1561 80 2015056 0.09 19983
4 5 3453 0.23 7708257 0.15 26363 156 8294102 0.23 14182

Crowds 3 - 109 1.00 6393 0.40 * 6 0 17705 0.40 * 54
4 - 237 1.00 163634 0.30 * 530 0 308510 0.55 20050

Afs 20 7 6600 1.00 6978 0.23 * 197 0 6978 0.23 * 198
25 8 10125 1.00 10719 0.22 * 710 0 10719 0.22 * 728
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Experiments. We analysed three systems: (1) the crowds protocol [14]: a group
of N entities tries to deliver a message to an evil party in an anonymous way. We
ask for the maximum probability that the evil party guesses the sender correctly.
(2) the protocol for anonymous fair service (Afs) in [11] (precisely, the variant
called Afs1 in [11]), which involves two clients and a server. We ask for the
worst-case probability that one of the clients gets k services more than the other
one before the first N services happen; (3) the problem of the light bulb and
the prisoners [15]: there is a group of N prisoners. In each round, a prisoner is
selected at random and taken to a room where he can switch the light bulb. The
only information available to each prisoner is the state of the light bulb when
he enters the room. The prisoners win the game if one of them can, at some
point, guess that all of them have been in the room (they lose in case of a wrong
guess). We ask for the maximum probability that the prisoners lose the game in
k steps. For (2), we reused in [10]; the other models were written specifically, as
there are no existing Prism models with partial information constraints.

The results are shown in Table 1. The experiments were ran on a six-core
Intel Xeon at 2.80 GHz with 32Gb of memory, in order to be able to analyse the
problem of the light bulb and the prisoners for as many refinements as possible.
The table shows the number of states in the initial system, and in the final
system after the last refinement, and similarly for the probability values. We
set a time-out of 8hs. for experiments: the cases where the last scheduler had
no conflicts (or all of them were superfluous) are marked with a ∗. In these
cases we also indicate the number of superfluous conflicts in the last scheduler,
as a measure of the usefulness of Thm. 3. For timed-out experiments, the time
reported is the time spent to compute the last probability computed.

The two criteria have similar performance forAfs, but SPC outperforms MVC
in the other systems. Even when SPC cannot find the realistic probability, in the
light bulb case study, it is able to obtain improvements for the probabilities. It is
also remarkable that, for Afs, we ran the experiments for the same parameters
as in [11] (N = 20, k = 1..20, not shown in the Table 1) and the probabilities
obtained using our technique coincide with the ones in [11]: these were known
to be safe bounds, but thanks to our technique now we know that they were in
fact exact values.

5 Concluding Remarks

Decidability. Although Thm. 3 ensures that the successive values converge to
the infimum reachability probability, we found no way to check if a given ap-
proximation is within a certain error threshold: although the bounds get tighter,
there is no way to know when we are close enough to the actual value. These
approximations are still valuable, as it is not known whether the approximation
problem is decidable for infimum probabilities. It is undecidable for the supre-
mum [10], but the infimum/supremum problems are not trivially dual to each
other: in fact, for probabilistic finite automata (which are a particular case of
the models in [3,10] and here) the approximation problem is undecidable for the
supremum [13] and decidable for the infimum [8].
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Complexity. Our result of convergence (Thm. 3) concerns the computation of
the infimum reachability probability. The problem of, given a system such that
the infimum is 0 or 1, determining which of the cases holds, can be shown to be
NP-hard using a similar argument as in [9, Thm. 5.5]. This NP-hardness result
implies that, unless P = NP , for each error threshold ε there is no polynomial
algorithm to approximate the value within relative error ε (these problems are
often called inapproximable). We do not have any bounds on the amount of
refinements needed to get an approximation: however. Given this hardness result,
the best we can expect is that our technique is useful in practical cases, as shown
in Sec. 4.

Further work. We are particularly interested in linking this approach with
existing ones. For instance, we plan to study if it can be applied to the game-like
setting in [6], or whether it can be adapted for qualitative properties as studied
in [2]. In addition, we plan to consider conflict selection criteria other than
“minimum-variable-first” and “shortest-projection-first”, to find better results in
practical cases. Given that our results are appealing to quantitative verification,
a natural step forward would be to extend the results here to consider discounts
and rewards.
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Abstract. This paper presents the tool COMICS 1.0, which performs
model checking and generates counterexamples for DTMCs. For an in-
put DTMC, COMICS computes an abstract system that carries the model
checking information and uses this result to compute a critical subsys-
tem, which induces a counterexample. This abstract subsystem can be
refined and concretized hierarchically. The tool comes with a command
line version as well as a graphical user interface that allows the user to
interactively influence the refinement process of the counterexample.

1 Introduction

Discrete-time Markov chains (DTMCs) are widely used to model safety-critical
systems with uncertainties. Model checking probabilistic computation tree logic
(PCTL) properties can be performed by prominent tools like Prism [1] and
Mrmc [2]. Unfortunately, the implemented numerical methods do not provide
diagnostic information in form of counterexamples, which are very important for
debugging and are also needed for CEGAR frameworks [3].

Although different approaches [4,5,6] were proposed for probabilistic counterex-
amples, there is still a lack of efficient and user-friendly tools. To fill this gap, we
developed the tool COMICS, supporting SCC-based model checking [7] and, in case
the property is violated, the automatic generation of abstract counterexamples [5],
which can be subsequently refined either automatically or user-guided.

While most approaches represent probabilistic counterexamples as sets of
paths, we use (hierarchically abstracted) subgraphs of the input DTMC, so-
called critical subsystems. The user can refine abstract critical subsystems hi-
erarchically by choosing system parts of interest which are to be concretized
and further examined. All computation steps of the hierarchical counterexample
refinement can be guided and revised. Though refinement can be done until a
fully concrete counterexample is gained, it seems likely that the user can gain
sufficient debugging information from abstract systems considering real-world ex-
amples with millions of states. The tool’s graphical user interface (GUI) permits
visualization, reviewing and creation of test cases.

The only other available tool we are aware of is DiPro [8], which supports
both DTMCs and CTMCs but no abstract counterexamples, which is crucial for
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the handling of large systems. It also does not allow the user to influence the
search by using his or her expertise. Comparative experiments show that we can
compute reasonably smaller counterexamples in shorter time with our tool.

In Section 2 we give a brief introduction to the methods implemented in our
tool. We describe the features and architecture and report on benchmarks in
Section 3. We conclude the paper in Section 4. The tool, a detailed manual, and
a number of benchmarks are available at the COMICS website1.

2 Foundations

In this section we briefly explain the algorithms implemented in COMICS (see [5]
for more details). We use the standard definitions for DTMCs and PCTL.

Model checking time-unbounded PCTL properties for DTMCs can be reduced
to the following problem: Given a DTMC M with one initial state sI and a set
of target states T , decide whether the probability to reach T from sI is below an
upper bound2 λ ∈ [0, 1] ⊂ R. In case this bound is violated, a counterexample
can be given as a set of finite paths of M leading from sI to T with a cumulated
probability mass greater than λ.

In [7] we proposed a model checking approach for DTMCs based on hierar-
chical abstraction. The result is an abstract DTMC, which represents the total
probabilities of reaching target states from the initial state by single transition
probabilities. The abstraction is hierarchically refinable, where the refinement of
an abstract state might again contain abstract states. Based on this approach, in
[5] we presented a method to compute and represent counterexamples as critical
subsystems, consisting of subsets of the original DTMC’s states and transitions
such that the probability of reaching target states from the initial state within
the subsystem still exceeds the probability bound λ. We compute these subsys-
tems using path searches on the abstract DTMCs: either the global search (GS),
which searches for most probable paths from sI to T , or the local search (LS),
which connects fragments of already found paths to extend the current subsys-
tem. Abstract subsystems can be refined by selecting and concretizing abstract
states and performing path search again to reduce the number of concretized
states and transitions in the subsystem.

3 The COMICS Tool

COMICS can be used either as

SccMC GUI

Concretize
CritSubSys

Global Search Local Search

Path Set

Global Search

DTMC DTMC

Result

Result

Fig. 1. Architecture of COMICS

a command-line tool or with
a GUI, the latter allowing
the user to actively influence
the process of finding a coun-
terexample. The program
consists of approximately
20 000 lines of code in five
1 http://www-i2.informatik.rwth-aachen.de/i2/comics/
2 We only consider unbounded PCTL properties.

http://www-i2.informatik.rwth-aachen.de/i2/comics/
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Fig. 2. Screenshot of COMICS’s GUI with an instance of the crowds protocol

main components (see Fig. 1). The GUI is implemented in Java, all other com-
ponents in C++. The user may select exact or floating point arithmetics for the
computations.

SccMC performs model checking for an input DTMC and returns an abstract
DTMC to Concretize or to GUI. Concretize selects and concretizes some states,
either automatically or user-guided via the GUI. CritSubSys can be invoked on
the modified system to compute a critical subsystem using GS or LS. The result
is given back to Concretize for further refinement or returned as the result.
Heuristics for the number of states to concretize in a single step as well as
for the choice of states are offered. It is also possible to predefine the number
of concretization steps. Counterexample representations as sets of paths and as
critical subsystems are offered. The first case yields aminimal counterexample [4].
The GUI provides a graph editor for specifying and modifying DTMCs. A large
number of layout algorithms increase the usability even for large graphs. Both
concrete and abstract graphs can be stored, loaded, abstracted, and concretized
by the user. As the most important feature, the user is able to control the hier-
archical concretization of a counterexample. If an input graph seems too large
to display, the tool offers to operate without the graphical representation. In
this case the abstract graph can be computed and refined in order to reduce the
size. Fig. 2 shows one abstracted instance of the crowds protocol benchmark [9],
where the probability of reaching the unique target state is displayed in the in-
formation panel on the right as well as on the edge leading from the initial state
to the target state. The initial state is abstract and can therefore be expanded.

Fig. 3 provides a comparison with DiPro [8]. We applied our tool using GS,
LS and the k-shortest path (kSP) approach [4] to the crowds protocol and the
probabilistic contract signing protocol [10] for different probability thresholds all
smaller than the model checking result (total prob.). We measured the size of
the counterexample (states), the probability of reaching target states (prob.) and
the computation time excluding the initial model checking. TO denotes timeout,
MO out of memory and ERR wrong result. On the crowds protocol, GS performs
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crowds contract signing

states 3515 18817 198199 485941 1058353 33790 156670 737278 1654782

transitions 6035 32677 198199 857221 1872313 34813 157693 753663 1671165

total prob. 0.2346 0.4270 0.7173 0.809 0.8731 0.5156 0.5156 0.5039 0.5039

prob. threshold 0.15 0.23 0.25 0.35 0.4 0.4 0.5 0.5 0.5 0.5

GS # states 629 1071 2036 5198 5248 5250 6827 37601 140034 369448
prob. 0.1501 0.2301 0.25 0.3503 0.4002 0.4001 0.5 0.5 0.5 0.5
time (s) 0.02 0.38 0.38 7.97 16.36 18.78 0.36 2.98 238.82 605.81

LS # states 182 900 943 4180 6368 6657 37377
prob. 0.1501 0.2302 0.2501 0.3501 0.4 TO 0.5 0.5 MO MO
time (s) 0.14 1.11 6.1 619.06 2455.46 8 54.58

kSP # states 1071 6827 37601 140034 369444
prob. 0.15 TO TO TO TO TO 0.5 0.5 0.5 0.5
time (s) 6.58 1.93 0.13 0.69 1.49

DiPro # states 938 2901 3227 9005 13311 74751
prob. 0.1675 0.2334 0.254 0.3533 ERR ERR 0.5 0.5 MO MO
time (s) 2.02 7.06 7.87 44.34 1210 7114

Fig. 3. Results for crowds and contract signing (TO > 2h)

best, while LS computes in general smaller counterexamples. kSP is the fastest
method for contract signing, however, the representation of the result consists
of a huge number of paths instead of a small subsystem of the input DTMC.

4 Conclusion and Future Work

We presented version 1.0 of our tool COMICS which generates abstract, hierar-
chically refinable counterexamples for DTMCs. In the future, we will integrate
the computation of minimal critical subsystems [6] and the adaption of our ap-
proaches to symbolic data structures. We are also working on an incremental
version of the Dijkstra algorithm for path search and on compositional coun-
terexamples .
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5. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker,
B.: Hierarchical Counterexamples for Discrete-Time Markov Chains. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer,
Heidelberg (2011)
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Abstract. We develop a generic technique to compute minimal sepa-
rating DFAs (deterministic finite automata) and regular invariants. Our
technique works by expressing the desired properties of a solution in
terms of logical formulae and using SAT or SMT solvers to find solu-
tions. We apply our technique to three concrete problems: computing
minimal separating DFAs (e.g., used in compositional verification), reg-
ular model checking, and synthesizing loop invariants of integer programs
that are expressible in Presburger arithmetic.

1 Introduction

In this paper, we present a generic technique based on SAT or SMT solvers to
compute minimal separating DFAs (deterministic finite automata) and regular
invariants.

A separating DFA is a DFA that separates two disjoint regular languages, i.e.,
whose accepted language contains the first language and is disjoint to the sec-
ond. A minimal separating DFA is a separating DFA that has the least number
of states among all separating DFAs. Many well known problems can be reduced
to the problem of finding a minimal separating DFA. For instance, in [5] mini-
mal separating DFAs are used in the context of compositional verification. Two
other examples are the minimization of incomplete specified DFAs [13] and the
computation of minimal DFAs that are consistent with a set of positively and
negatively classified samples [3]. Note that finding a minimal separating DFA is
in fact a non-trivial task since the corresponding decision problem “Given two
disjoint regular languages. Does a separating DFA with k ∈ N states exist?” is
NP-hard (cf. [14] where this is shown for two disjoint finite languages).

Regular invariants are defined in terms of binary relations T specified by finite-
state transducers. Intuitively, a regular invariant is a regular language L (alterna-
tively a DFA) that is invariant (or closed) under T , i.e., for all (u, v) ∈ T with u ∈ L
also v ∈ L is satisfied. Regular invariants occur, e.g., in regular model checking
[4]. There, one way to prove a program correct is to find a regular invariant with
respect to the transitions of the program that overapproximates the set of initial
configurations and has an empty intersection with the set of bad configurations.
In this sense, regular invariants extend the concept of separating DFAs.

The main contribution of this work is a technique to compute minimal sepa-
rating DFAs and regular invariants. Our technique works as follows. It takes a

S. Chakraborty and M. Mukund (Eds.): ATVA 2012, LNCS 7561, pp. 354–369, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Computing Minimal Separating DFAs and Regular Invariants 355

problem instance, translates it into a logical formula of size polynomial in the
input, and uses a SAT or SMT solver to find a solution. More precisely, our tech-
nique creates a logical formula ϕn that depends on the regular languages given
as input as well as a natural number n ≥ 1. Moreover, ϕn has the following two
properties. First, ϕn is satisfiable if and only if there exists a DFA with n states
that possesses the desired properties. Second, a model of ϕn allows to derive a
DFA with these properties. Starting with n = 1 we increase n until ϕn becomes
satisfiable. This guarantees to find a suitable DFA (if one exists).

We implement the formula ϕn in two logics: propositional logic over Boolean
variables and the quantifier-free logic over the structure (N, <,=) where we allow
constants c ∈ N and uninterpreted functions. We choose these logics because
highly-optimized off-the-shelf solvers are available in both cases, e.g., the MiniSat
SAT solver in the first case and Microsoft’s Z3 SMT solver in the latter. Since
the decision problem variant of computing minimal separating DFAs and regular
invariants is NP-hard, using SAT and SMT solvers is a natural approach.

We apply our technique to three concrete problems: computing minimal sepa-
rating DFAs (Section 3), regular model checking (Section 4.1), and synthesizing
loop invariants of integer programs that are expressible in Presburger arithmetic
(Section 4.2). The latter two can be subsumed under the topic regular invari-
ants. Each mentioned section begins with an introduction to the setting, then
describes the application of our technique, and finally concludes with related
work and experiments.

2 Preliminaries

Words, Languages and Finite automata. An alphabet Σ is a finite set of symbols.
A word w = a1 . . . an is a finite, possibly empty, sequence of symbols ai ∈ Σ. If
a sequence is empty, we call it the empty word, denoted by ε. The concatenation
of two words u = a1 . . . an and v = b1 . . . bm is the word uv = a1 . . . anb1 . . . bm.
Σ∗ is the set of all finite words over Σ. A subset L ⊆ Σ∗ is called a language.

A (nondeterministic) finite automaton (NFA) is a tuple A = (Q,Σ, q0, Δ, F )
where Q is a finite, non-empty set of states, Σ is the input alphabet, q0 ∈ Q
is the initial state, Δ ⊆ Q × Σ × Q is the transition relation and F ⊆ Q is
the set of final states. The size of an NFA is the number |Q| of its states. For
w = a1 . . . an ∈ Σ∗, a run of A on w from a state q is a sequence q1, . . . , qn+1

such that q1 = q and (qi, ai, qi+1) ∈ Δ for 1 ≤ i ≤ n; we also write A : q
w−→ qn+1

for short. A word w is accepted by A if A : q0
w−→ q with q ∈ F . The language

accepted by A is the set L(A) = {w ∈ Σ∗ | A : q0
w−→ q, q ∈ F}. A language

L ⊆ Σ∗ is called regular if there exists an NFA A such that L = L(A).
A deterministic finite automaton (DFA) is an NFA where for every p ∈ Q and

a ∈ Σ a unique q ∈ Q exists such that (p, a, q) ∈ Δ. In this case, Δ defines a
function δ : Q×Σ → Q, and we replace Δ by δ in the definition of a DFA.

Logics, Formulae, and Satisfiability. In this paper, we consider three logics:
propositional logic over Boolean variables, quantifier-free logic over the struc-
ture (N, <,=) with uninterpreted functions, and Presburger arithmetic. We use
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the first two logics to implement our technique in Section 3.1 and Section 3.2,
respectively. The third logic is considered in Section 4.2 in the context of syn-
thesizing loop invariants of integer programs.

In propositional logic, a formula ϕ—often called SAT formula—is built from
Boolean variables x1, . . . , xn and the logical connectives ∧, ∨, → and ¬ with
their usual meaning. The set Var(ϕ) is the set of variables occurring in ϕ; if the
variables occurring in ϕ are of special interest, we also write ϕ(x1, . . . , xn). A
model of ϕ is a mapping M : Var(ϕ)→ {0, 1} (0 representing false, 1 represent-
ing true) such that ϕ evaluates to true if all variables xi in ϕ are substituted by
M(xi); we then write M |= ϕ. A formula ϕ is said to be in conjunctive normal
form if ϕ =

∧r
i=1 ci where ci =

∨si
j=1 lij is a clause and lij is either a Boolean

variable or its negation. Satisfiability of a formula can be decided by a SAT
solver, and if the formula is satisfiable, then the solver can provide a model.
Note that most SAT solver require the input to be in conjunctive normal form.

The second logic we consider is the usual quantifier-free logic over the structure
(N, <,=). We additionally allow constants c ∈ N and enrich this logic with
uninterpreted functions. Each such function is of the form f : N × . . . × N → N
and represents an unknown function of which only the name f and its signature
is known. In our case, it turns out that functions of the form N × . . . × N →
{true, false}, which can easily be simulated, are also helpful and used later on.
The concept of a model M is lifted to this kind of formulae in the natural way.
If f is an uninterpreted function occurring in a formula ϕ and M |= ϕ, then we
write fM to denote the function defined by the model M. Satisfiability of this
kind of formulae can be decided with today’s satisfiability modulo theory (SMT)
solvers, and, hence, we bravely refer to them as SMT formulae.

Presburger arithmetic is the first order logic over the structure (Z,+,≤, 0).
For convenience, we add syntactic sugar to this logic by also allowing to use the
relations <, > and arbitrary constants c ∈ Z. Presburger formulae have the nice
property that they define regular languages. More formally, each Presburger for-
mula ϕ(x1, . . . , xn) can be translated into a DFA Aϕ working over the alphabet
{0, 1}n (see, e.g., [11]). Intuitively, the automaton Aϕ accepts exactly the set of
binary strings encoding integer values that satisfy ϕ. Note, however, that not
every regular language represents a Presburger formula. Nonetheless, in [11] the
problem to decide whether a regular language represents a Presburger formula
is shown to be decidable in polynomial time. Moreover, in this case, a formula
defining the language can be computed in polynomial time.

3 Minimal Separating DFAs

The first application of our technique is to compute minimal separating DFAs.
To this end, let L1, L2 ⊆ Σ∗ be two disjoint regular languages over a fixed
alphabet Σ. A DFA A with L1 ⊆ L(A) and L2 ∩ L(A) = ∅ is said to be a
separating DFA since it separates both languages. A minimal separating DFA
is a separating DFA of minimal size. Note that minimal separating DFAs are
not unique for fixed L1, L2 since their behavior on words not belonging to L1 or
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L2 is unspecified. In fact, computing a minimal separating DFA for two disjoint
regular languages is computationally hard (cf. [14]).

Minimal separating DFAs are helpful in various contexts. For instance, a direct
application to compositional verification is described in [5]. Moreover, the well-
known task of minimizing incompletely specified DFAs [13] can also be phrased
in terms of minimal separating DFAs. To this end, an incompletely specified
DFA is defined as a DFA B = (Q,Σ, q0, δ,Acc,Rej,Unspec) whose states are
partitioned into accepting, rejecting, and unspecified states. The task of mini-
mizing an incompletely specified DFA now is to compute a DFA of minimal size
that accepts all words that lead to an accepting state in B and rejects all words
that lead to a rejecting state in B. This, however, is the same as computing a
minimal separating DFA for the languages L1 = {u ∈ Σ∗ | B : q0 u−→ q, q ∈ Acc}
and L2 = {u ∈ Σ∗ | B : q0 u−→ q, q ∈ Rej}. Finally, let us mention Biermann’s
task of computing a minimal DFA that agrees with a finite set of positively and
negative classified samples [3]. Here, L1 and L2 are both finite languages.

Let us now describe our technique to compute minimal separating DFAs.
For the rest of this section, fix an alphabet Σ, and let L1, L2 ⊆ Σ∗ be two
disjoint regular languages. Let us assume that L1 and L2 are given by two NFAs
A1 = (Q1, Σ, q

1
0 , Δ1, F1) and A2 = (Q2, Σ, q

2
0, Δ2, F2), respectively.

We search for a separating DFA by creating a formula ϕA1,A2
n that depends

on the NFAs A1, A2, a natural number n ≥ 1, and has the following properties:

– ϕA1,A2
n is satisfiable if and only if there exists a separating DFA A with n

states, i.e., L1 ⊆ L(A) and L2 ∩ L(A) = ∅.
– If M |= ϕA1,A2

n , then M can be used to derive a DFA separating L1 and L2.

Clearly, if ϕA1,A2
n is satisfiable for a given value of n, then we have found a

separating DFA. However, if the formula is unsatisfiable, then the parameter
n has been chosen too small and we need to increment it. Since a separating
DFA always exist, e.g., the DFA accepting exactly the language L1, this process
terminates eventually. The algorithm in pseudo code is shown in Algorithm 1.
Note that an even faster approach is to use a binary search to find the minimal
value of n rather than incrementing n by one in each iteration. Providing an
intelligent starting value of n is difficult, but the size of A1 is a natural choice.

We can now state the main result of this section.

Theorem 1. Let L1, L2 ⊆ Σ∗ be two disjoint regular languages. If a minimal
separating DFA has k states, then Algorithm 1 terminates after k iterations and
returns a minimal separating DFA.

Proof. Let us first state that a DFA separating L1 and L2 always exist, e.g.,
the DFA accepting exactly the language L1. Then, the proof of Theorem 1 is
a straight-forward application of the fact that ϕA1,A2

n has indeed the desired
properties (cf. Lemma 2 on page 360): if a minimal separating DFA has k states,

then ϕA1,A2

l is satisfiable for all l ≥ k, and we find the minimal value k since we
increase n by one in every iteration. ��
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Algorithm 1: Computing minimal separating DFAs.

Input: two disjoint regular languages L1, L2 ⊆ Σ∗ given as NFAs A1,A2.

n := 0;
repeat

n := n+ 1;

Construct and solve ϕA1,A2
n ;

until ϕA1,A2
n is satisfiable;

Construct and return AM;

In the following two subsections, we utilize two different logics to implement the
formula ϕA1,A2

n . The first is the propositional logic over Boolean variables, which
we consider in Section 3.1. In Section 3.2, we consider the quantifier-free logic
over the structure (N, <,=) with uninterpreted functions. However, before we
continue to implement ϕA1,A2

n , let us briefly discuss related work.

Related work. Chen et al. [5] propose an algorithm to compute minimal sep-
arating DFAs, which is based on algorithmic learning. Internally, they use an
algorithm to minimize incompletely specified DFAs as a subroutine. In fact,
every algorithm that minimizes incompletely specified DFAs (e.g., [13]) can be
used to compute minimal separating DFAs. Note, however, that these algorithms
typically require deterministic automata as input whereas we allow NFAs.

With the emerge of fast and efficient SAT and SMT solvers and since the
problem itself is computationally hard (cf. [14]), it seems justified to promote
a SAT and SMT based approach in this context. Due to the lack of publicly
available tools we did not yet compare our technique to other approaches.

3.1 Finding Separating DFAs Using SAT Formulae

In the following, we describe a formula in the propositional logic over Boolean
variables that, if satisfiable, encodes a DFA with a fixed number n ≥ 1 of
states that separates L1 and L2. The automaton will have the state set Q =
{q0, . . . , qn−1}, and the initial state q0 ∈ Q. To encode a DFA, we make the fol-
lowing simple observation: if the set of states and the initial state are fixed (e.g.,
as above), then each DFA is completely defined by its transition function and
final states. Our encoding exploits this fact and uses Boolean variables dp,a,q
and fq with p, q ∈ Q and a ∈ Σ. If dp,a,q is assigned to true, it means that
δ(p, a) = q. Similarly, if fq is assigned to true, then state q is a final state.

To make sure that the variables dp,a,q indeed encode a deterministic transition
function, we impose the following constraints.

¬dp,a,q ∨ ¬dp,a,q′ p, q, q′ ∈ Q, q 	= q′, a ∈ Σ (1)∨
q∈Q

dp,a,q p ∈ Q, a ∈ Σ (2)
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Constraints of type (1) make sure that the variables dp,a,q in fact encode a well-
defined function, i.e., that for every state p ∈ Q and input a ∈ Σ there is at
most one q ∈ Q such that dp,a,q is set to true. Constraints of type (2), on the
other hand, ascertain that the transition function is total. The latter constraints
are not needed in general and might be skipped.

Let ϕDEA
n (d, f) be the conjunction of the constraints of type (1) and (2)

where d is the vector of all variables dp,a,q and f the vector of all variables fq.
From a model M of the formula ϕDEA

n (d, f) it is straight-forward to derive a
DFA AM = ({q0, . . . , qn−1}, Σ, q0, δ, F ): δ(p, a) = q for the unique q such that
M(dp,a,q) = 1, and F = {q |M(fq) = 1}.

Until now, L(AM) is unspecified. Thus, to guarantee that AM is a separating
DFA, we need to impose further constraints on the formula ϕDEA

n . We do so by
introducing two auxiliary formulae ϕA1⊆

n and ϕ¬A2
n that express the following:

– If M |= ϕDEA
n ∧ ϕA1⊆

n , then L(A1) ⊆ L(AM).
– If M |= ϕDEA

n ∧ ϕ¬A2
n , then L(A2) ∩ L(AM) = ∅.

Clearly, if M |= ϕDEA
n ∧ ϕA1⊆

n ∧ ϕ¬A2
n , then AM is DFA separating L1 and L2.

The idea behind the formulae ϕA1⊆
n and ϕ¬A2

n is to impose restrictions on
the variables dp,a,q and fq, which determine the automaton AM. Keeping this in
mind, it is easier to explain the formulae by directly referring to the automaton
AM rather than to describe their influence on the variables dp,a,q and fq. Note,
however, that we thereby implicitly assume that the corresponding formula is
satisfiable and that M is a model.

The idea of the formula ϕA1⊆
n is to keep track of the parallel behavior of the

automaton A1 and AM. For that, we use new auxiliary variables xq,q′ where q ∈
Q and q′ ∈ Q1. Intuitively, we want to establish for all models M |= ϕDEA

n ∧ϕA1⊆
n

that if some input w ∈ Σ∗ induces the runs AM : q0
w−→ q and A1 : q

1
0

w−→ q′, then
xq,q′ is assigned to true. This is done by the following constraints.

xq0,q10 (3)

(xp,p′ ∧ dp,a,q)→ xq,q′ p, q ∈ Q, p′, q′ ∈ Q1, a ∈ Σ, (p′, a, q′) ∈ Δ1 (4)

The constraint (3) requires the variable xq0,q10 to be assigned to true because

ε induces the runs AM : q0
ε−→ q0 and A1 : q

1
0

ε−→ q10 . The constraints of type (4)
describe how to propagate the values of the variables xq,q′ step-by-step: if there

exists a word u such that AM : q0
u−→ p and A1 : q

1
0

u−→ p′, i.e., xp,p′ is assigned to
true, and there are transitions δ(p, a) = q in AM and (p′, a, q′) ∈ Δ1, then xq,q′

has to be assigned to true, too.
Using the variables xq,q′ we can now express that L(A1) ⊆ L(AM) as done

below by the constraints of type (5). These constraints state that if a word leads
to an accepting state in A1, then it also leads to an accepting state in AM.

xq,q′ → fq q ∈ Q, q′ ∈ F1 (5)

Let ϕA1⊆
n (d, f , x) be the conjunction of the constraints of type (3) to (5) where

d, f are as described above, and x is the vector of new variables xq,q′ with q ∈ Q
and q′ ∈ Q1. Then, we obtain the following lemma.
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Lemma 1. If M |= ϕDEA
n (d, f) ∧ ϕA1⊆

n (d, f, x), then L(A1) ⊆ L(AM).

Proof. The proof follows the same line of arguments that we used in our intuitive
explanation above. Let M |= ϕDEA

n (d, f) ∧ ϕA1⊆
n (d, f, x).

First, let us show by induction that if there exists a word w such that
AM : q0

w−→ q and A1 : q
1
0

w−→ q′, then xq,q′ is assigned to true. For w = ε

the claim holds since AM : q0
ε−→ q0 and A1 : q

1
0

ε−→ q10 , and constraint (3) forces

xq0,q10 to be set to true. For w = ua assume that AM : q0
u−→ p

a−→ q and

A1 : q
1
0

u−→ p′ a−→ q′. In particular, this means that there are transitions δ(p, a) = q
in AM, i.e. M(dp,a,q) = 1, and (p′, a, q′) ∈ Δ1. Moreover, the induction hypothe-
sis yields that xp,p′ is assigned to true. Then, however, the constraints of type (4)
force xq,q′ to be set to true, too.

Now, let w ∈ L(A1). Then, there exists q ∈ Q and q′ ∈ F1 such that

AM : q0
w−→ q and A1 : q

1
0

w−→ q′. Hence, M(xq,q′ ) = 1. In this case, the con-
straints of type (5) assure that M(fq) = 1, and, hence, w ∈ L(AM). ��

The formula ϕ¬A2
n works analogous to ϕA1⊆

n . We introduce new auxiliary vari-
ables yq,q′ with q ∈ Q, q′ ∈ Q2 and modify the constraints of type (3) and (4)
accordingly. Note that we need to change the constraints of type (5) slightly
such that they now express that whenever a word is accepted by A2, then it is
rejected by AM. The constraints on the variables yq,q′ are listed below.

yq0,q20 (6)

(yp,p′ ∧ dp,a,q)→ yq,q′ p, q ∈ Q, p′, q′ ∈ Q2, a ∈ Σ, (p′, a, q′) ∈ Δ2 (7)

yq,q′ → ¬fq q ∈ Q, q′ ∈ F2 (8)

Let ϕ¬A2
n (d, f, y) be the conjunction of the constraints of type (6) to (8) where

d, f are as described above, and y is the vector of new variables yq,q′ with
q ∈ Q and q′ ∈ Q2. Analogous to Lemma 1 we obtain L(A2) ∩ L(AM) = ∅ if
M |= ϕDEA

n (d, f) ∧ ϕ¬A2
n (d, f, y).

We can now combine all subformulae and obtain the following result.

Lemma 2. Let L1, L2 ⊆ Σ∗ be two disjoint regular languages, n ∈ N and

ϕA1,A2
n (d, f , x, y) = ϕDFA

n (d, f) ∧ ϕA1⊆
n (d, f , x) ∧ ϕ¬A2

n (d, f , y).

Then, ϕA1,A2
n (d, f , x, y) is satisfiable if and only if there exists a DFA with n

states that separates L1 and L2.

Proof. The direction from left to right is a straight-forward application of the
properties of the formulae ϕA1⊆

n and ϕ¬A2
n (cf. Lemma 1). Let ϕA1,A2

n be satisfi-
able and M |= ϕA1,A2

n . Then, AM is an automaton with n states that separates
L1 and L2.

For the reverse direction, let A = (Q,Σ, q0, δ, F ) be a DFA with n states
that separates L1 and L2. From A we can derive a model M as follows: we set
M(dp,a,q) = 1 if and only if δ(p, a) = q, and M(fq) = 1 if and only if q ∈ F .
Values for the variables xq,q′ and yq,q′ can be derived by looking at the states
reachable in the products of A and A1 as well as A and A2, respectively. ��
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Finally, let us note that ϕA1,A2
n can easily be turned into conjunctive normal

form by applying that A→ B is logically equivalent to ¬A∨B and De Morgan’s
law. In conjunctive normal form, ϕA1,A2

n ranges over O(n2|Σ|+ n(|Q1|+ |Q2|))
variables and comprises O(n2(|Δ1|+ |Δ2|) + n(|F1|+ |F2|)) clauses.

3.2 Finding Separating DFAs Using SMT Formulae

In this section, we implement the formula ϕA1,A2
n in the quantifier-free logic over

the structure (N, <,=) with constants c ∈ N and uninterpreted functions. To this
end, let us assume that all automata have a special form: the set of states is Q =
{0, 1, . . . , n− 1}, the initial state is 0, and the alphabet is Σ = {0, 1, . . . ,m− 1}.
We can easily achieve this form by renaming the states of the automaton and
symbols of the alphabet.

The formula ϕA1,A2
n is based on the very same idea as in Section 3.1, but uses

two functions d : N×N→ N and f : N→ {0, 1} to encode the automaton we are
searching for; the function d encodes the transitions whereas f encodes the set of
final states. By means of these functions, it is easy to derive an automaton AM =
({0, . . . , n−1}, Σ, 0, δ, F ) from a model M |= ϕA1,A2

n : we define δ(i, a) = dM(i, a)
for i ∈ Q, a ∈ Σ and i ∈ F ⇔ fM(i) = 1. To ensure that δ is well-defined, we
will make sure that d(i, a) < n is satisfied for 0 ≤ i < n and 0 ≤ a < m.

To express that AM separates L1 and L2, we additionally utilize two auxiliary
functions x : N×N→ {0, 1} and y : N×N→ {0, 1}, which have the same meaning
as the equally named variables in Section 3.1. By means of the functions d, f, x, y,
we can now rephrase the constraints of Section 3.1 as follows.

d(i, a) < n i ∈ Q, a ∈ Σ
x(0, 0) ∧ y(0, 0)

x(i, i′)→ x(d(i, a), j′) i ∈ Q, i′, j′ ∈ Q1, a ∈ Σ, (i′, a, j′) ∈ Δ1

x(i, i′)→ f(i) i ∈ Q, i′ ∈ F1
y(i, i′)→ y(d(i, a), j′) i ∈ Q, i′, j′ ∈ Q2, a ∈ Σ, (i′, a, j′) ∈ Δ2

y(i, i′)→ ¬f(i) i ∈ Q, i′ ∈ F2

Let ϕA1,A2
n (d, f, x, y) be the conjunction of these constraints. Then, we obtain

the following lemma. The proof is analogous to the proof of Lemma 2 and,
therefore, skipped.

Lemma 3. Let L1, L2 ⊆ Σ∗ be two disjoint regular languages and n ∈ N. Then,
ϕA1,A2
n (d, f, x, y) is satisfiable if and only if there exists a DFA A with n that

separates L1 and L2.

Finally, let us briefly remark that the formula ϕA1,A2
n (d, f, x, y) comprises

O(n|Σ|+ n(|Δ1|+ |Δ2|) + n(|F1|+ |F2|)) constraints.
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4 Regular Invariants

Let us now extend the technique of the previous section to the task of synthe-
sizing regular invariants. Regular invariants are defined in terms of finite-state
transducers. A finite-state transducer is basically an NFA (or DFA) A that works
over the alphabet (Σ∪{ε})× (Σ∪{ε}) and reads pairs (u, v) of words. We write

A : p
(u,v)−−−→ q if there exists a sequence of transitions in A that leads from state p

to q and where the labels along the transitions yield the pair (u, v). Rather than a
language, a finite-state transducer accepts (or defines) a relationR(A) ⊆ Σ∗×Σ∗

where R(A) = {(u, v) | A : q0
(u,v)−−−→ q, q ∈ F}. A relation R ⊆ Σ∗ × Σ∗ is called

rational if there exists a finite-state transducer A such that R = R(A).
For a relation R ⊆ Σ∗ × Σ∗ we denote the reflexive and transitive closure

by R∗. For a language L ⊆ Σ∗ and a relation R ⊆ Σ∗ × Σ∗ let R(L) = {v ∈
Σ∗ | ∃u ∈ A : (u, v) ∈ R} be the image of L under R. Finally, we call a (regular)
language L ⊆ Σ∗ a (regular) invariant if R(L) ⊆ L.

Synthesizing regular invariants (that of course possess additional properties)
is an important task in various applications. In the next two subsections we
show how our technique can be applied to two prominent settings: regular model
checking (in Section 4.1) and synthesis of loop invariants (in Section 4.2).

4.1 Regular Model Checking

In the regular model checking framework [4], configurations of a program (or
system) are modeled as finite words over a fixed alphabet Σ. The program itself
is a tuple P = (I, T ) consisting of a regular set I ⊆ Σ∗ of initial configurations
and a rational relation T ⊆ Σ∗ × Σ∗ defining the transitions, i.e., the succes-
sor relation on the configurations. Regular model checking—more precise, the
regular model checking problem—is the decision problem

“Given a program P = (I, T ) and a regular set B ⊆ Σ∗ of bad configurations.
Does T ∗(I) ∩B = ∅ hold?”.

In other words, the model checking problem asks whether there is a path in P
that leads from an initial configuration into the set of bad configurations. In
this case, the program is erroneous. Note that the model checking problem is in
general undecidable (cf. [4]).

Many tools for regular model checking such as T(o)rmc [10], which is based
on Lash, or Lever [16] try to compute a regular set that overapproximates
the reachable configurations, is an invariant, and has an empty intersection with
the set of bad configurations. More formally, these tools search for a regular set
P ⊆ Σ∗ with I ⊆ P , B ∩ P = ∅, and T (P ) ⊆ P . We call such a set a proof that
the program P is correct (with respect to B) since it proves that there does not
exist a path from any initial configuration to a bad one. In other words, a proof
is a regular invariant with the additional properties I ⊆ P and B ∩ P = ∅.
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We can extend our technique from the previous section to compute proofs. To
this end, let us assume that I andB are given as two NFAsAI andAB and that T
is given as a finite-state transducer AT = (QT , (Σ∪{ε})×(Σ∪{ε}), qT0 , ΔT , FT ).

Analogous to Section 3, we create a formula ψAI ,AB ,AT

n that is satisfiable if
and only if there exists a DFA A with n states such that L(A) is a proof. In the
following, we show how this is done for SAT formulae. The adaptation for SMT
formulae can be done in a straight-forward manner.

Following the definition of a proof from above, we define ψAI ,AB ,AT

n as

ψAI ,AB ,AT

n := ϕDEA
n ∧ ϕAI⊆

n ∧ ϕ¬AB

n ∧ ϕinv AT

n

where the subformulae ϕAI⊆
n and ϕ¬AB

n are as in Section 3.1, and ϕinv AT

n ensures

that if M |= ϕDEA
n ∧ ϕinv AT

n , then T (L(AM)) ⊆ L(AM).

In other words, the formula ϕinv AT

n needs to make sure that L(AM) is an
invariant. To this end, we consider the parallel behavior ofAM and AT analogous
to Section 3.1. This time, however, the situation is more involved since AT works
on pairs (u, v) of words.

We need to establish that if (u, v) is accepted by AT and u ∈ L(AM), then
v ∈ L(AM) holds, too. In other words, this means that if AT reaches a final
state after reading (u, v) and AM reaches a final state after reading u, then AM

must also reach a final state after reading v. This condition can be expressed
using auxiliary variables zq,q′,q′′ with q, q

′′ ∈ Q and q′ ∈ QT . Their meaning is

that if AT : qT0
(u,v)−−−→ q′, AM : q0

u−→ q, and AM : q0
v−→ q′′, then zq,q′,q′′ is set to

true. The following constraints define the formula ϕinv AT

n .

zq0,qB0 ,q0 (9)

(zp,p′,p′′ ∧ dp,a,q ∧ dp′′,b,q′′)→ zq,q′,q′′ p, p′′, q, q′′ ∈ Q, a, b ∈ Σ,
p′, q′ ∈ QT , (p′, (a, b), q′) ∈ ΔT (10)

(zp,p′,p′′ ∧ dp,a,q)→ zq,q′,p′′ p, p′′, q ∈ Q, a ∈ Σ,
p′, q′ ∈ QT , (p′, (a, ε), q′) ∈ ΔT (11)

(zp,p′,p′′ ∧ dp′′,b,q′′)→ zp,q′,q′′ p, p′′, q′′ ∈ Q, b ∈ Σ,
p′, q′ ∈ QT , (p′, (ε, b), q′) ∈ ΔT (12)

(zq,q′,q′′ ∧ fq)→ fq′′ q, q′′ ∈ Q, q′ ∈ FT (13)

Let ϕinv AT

n (d, f, z) be the conjunction of the constraints of type (9) to (13)
where d, f are as described in Section 3.1, and z is the vector of new variables
zq,q′,q′′ . Then, we obtain T (L(AM)) ⊆ L(AM) in analogy to Lemma 1.

We can now combine all subformulae and obtain an algorithm to compute
proofs in regular model checking. The algorithm is shown in Algorithm 2. Let us

remark that ψAI ,AB ,AT

n ranges over O(n2|Σ|+n(|QI |+ |QB|+n|QT |)) variables
and comprises O(n2(|ΔI |+ |ΔB|+ n2|ΔT |) + n(|F I |+ |FB|+ n|FT |)) clauses.

Using Algorithm 2 we can establish Theorem 2. The proof of Theorem 2 is
done analogously to Theorem 1 and, hence, skipped.
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Algorithm 2: Computing proofs using SAT or SMT solvers.

Input: a program P = (I, T ) and a regular set B of bad configurations.

n := 0;
repeat

n := n+ 1;

Construct and solve ψAI ,AB ,AT

n ;

until ψAI ,AB ,AT

n is satisfiable;
Construct and return AM;

Theorem 2. Let P = (I, T ) be a program and B a regular set of bad configura-
tions. If a proof that P is correct exists, then Algorithm 2 terminates and returns
a proof (of minimal size).

Note that we cannot guarantee that Algorithm 2 terminates since there might
not exist a proof at all. Hence, Algorithm 2 is necessarily a semi algorithm (the
regular model checking problem is undecidable). This, however, is of course also
true for all other algorithms.

Related Work and Experiments. There are various tools for regular model
checking, which have been successfully applied in practice. Prominent examples
are T(o)rmc [10] (based on Lash), Lever [16], and Fast [1].

T(o)rmc computes overapproximations of the set of reachable configurations
using various extrapolation techniques. However, T(o)rmc does not consider
the set of bad configurations directly and, hence, cannot guarantee to find an
overapproximation having an empty intersection with the set of bad configura-
tions. In such a situation, T(o)rmc has to be restarted with different settings
until a proof has been found. This is a resource consuming process, and choos-
ing “good” settings requires in-depth knowledge about both T(o)rmc and the
particular application domain. By contrast, our technique is generic and does
not need any particular knowledge about the domain. Moreover, T(o)rmc re-
quires DFAs as input whereas our technique can also handle NFAs. Thus, the
input for our technique can be exponentially smaller than an equivalent input
for T(o)rmc.

Lever computes proofs using automata learning techniques. Thereby, it does
not learn a proof directly, but a set of configurations that are enriched with
additional information. This is necessary to be able to answer queries posed by
the learning algorithm. However, the problem with this approach is that even
if a proof exists it can no longer be guaranteed that these augmented sets are
regular. In this case, Lever cannot find a proof and might not terminate. This is
a drawback compared to our technique, which always finds a proof if one exists.
Note, however, that learning based techniques treat the input automata as black
boxes whereas we assume them to be known as white boxes.
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Fast computes the exact set of reachable configurations by means of accel-
eration techniques. Also here, this set is not necessarily regular (in general not
even computable) although a proof might exist. In such situations, Fast fails
and does not terminate.

At this point let us note that our approach is different from bounded model
checking [2] although it seems quite similar. The idea of bounded model checking
is to search for a bad execution whose length is bounded by some integer k. The
value of k is increased until a bug is found or some a priori defined bound
is reached. We, on the other hand, always consider the whole program, but
parametrize the size of a proof we are looking for.

We implemented a proof-of-concept based on the MiniSat SAT solver and
Microsoft’s Z3 SMT solver. To evaluate our technique, we ran experiments sug-
gested in [9]. These experiments comprise a token-ring protocol and programs
relying on so-called “arithmetic relations”. The results are so far promising and
show that our technique performs well not only on toy examples but also on
non-trivial medium size examples. This holds especially in situation where it is
a priori known that proofs are small. In our experiments, we could not find any
significant difference between the SAT and SMT based approach.

Finally, let us mention that our proof-of-concept is not meant to compete with
the above-named tools, mainly for two reasons. First, it is by far not as optimized
as the mature tools, and further optimizations remain to be investigated. Second,
it is a generic technique not solely dedicated to regular model checking.

4.2 Synthesizing Loop Invariants in Presburger Arithmetic

In this section, we consider imperative programs that work over integer variables.
An example of such a program is depicted in Figure 1.

Our goal is to compute (or synthesize) loop invariants expressible in Pres-
burger arithmetic for annotated loops. Thereby, we assume the following setting.
Program states are described by Presburger formulae ϕ(x) that range over all
program variables x = (x1, . . . , xn) ∈ Zn. The annotated loop is given as a pre-
condition ϕpre(x) of the loop, a postcondition ϕpost(x), and a formula ϕloop(x, x

′)
that describes the effect of the loop on the program variables. Thereby, x cor-
responds to the variables before the loop body is executed whereas x′ corre-
sponds to the (altered) program variables after the loop body has been executed.

Input: x

r = 0;

y = x;

while(y > 0) {

r = r + 3;

y = y - 1;

}

Fig. 1. An example program
over integer variables

G(x, y, r) := y > 0

ϕpre(x, y, r) := r = 0 ∧ y = x

ϕpost(x, y, r) := y = 0∧
∃t : x+ x = t ∧ x+ t = r

ϕloop(x, y, r, x
′, y′, r′) := x′ = x ∧ y′ = y − 1∧

r′ = r + 3

Fig. 2. Presburger formulae describing the loop of
the program in Figure 1



366 D. Neider

Finally, let G(x) be the loop guard. Figure 2 shows an example of formulae that
describe the loop of the program in Figure 1.

Intuitively, a loop invariant is a statement about the states of a program that
is true before and after every iteration of the loop. Formally, we define a loop
invariant as a set Inv of program states that satisfies the following properties:

– ϕpre(x)→ x ∈ Inv ,
– (x ∈ Inv ∧ ¬G(x))→ ϕpost(x), and
– (x ∈ Inv ∧G(x) ∧ ϕloop(x, x

′))→ x′ ∈ Inv .

In the example of Figure 1 and 2, the set of program states satisfying the condi-
tion 3(x− y) = r is a loop invariant. In fact, this loop invariant is exactly what
our technique (described below) computes in this example.

Since we are interested in loop invariants that can be expressed in Presburger
arithmetic, we want to compute regular loop invariants, i.e., loop invariants that
are regular languages, and translate them into Presburger formulae. To this
end, we turn the formulae ϕpre, ϕpost, and G into DFAs Aϕpre , Aϕpost , and AG

working over the alphabet Σ = {0, 1}n and ϕloop into a finite-state transducer
Aϕloop working over the alphabet Σ×Σ. Then, we can reformulate the definition
of loop invariants from above as follows, where now a loop invariant is a set
Inv ⊆ Σ∗ that matches the encoding of program states used by Aϕpre , AG, etc.

– L(Aϕpre) ⊆ Inv ,
– (Σ∗ \ (L(AG) ∪ L(Aϕpost))) ∩ Inv = ∅

(which is true if and only if (Inv ∩ (Σ∗ \ L(AG))) ⊆ L(Aϕpost)), and
– (R(Aϕloop) ∩ (L(AG)×Σ∗))(Inv) ⊆ Inv .

If phrased this way, and if we set I = L(Aϕpre), B = Σ∗ \ (L(AG) ∪ L(Aϕpost)),
and T = (R(Aϕloop) ∩ (L(AG)×Σ∗)), then computing (or synthesizing) regular
loop invariants boils down to computing proofs in the sense of Section 4.1. This
leads to the main result of this section.

Theorem 3. Let Presburger formulae ϕpre, ϕpost, ϕloop, and G for a loop of an
integer program be given, and let I = L(Aϕpre), B = Σ∗ \ (L(AG) ∪ L(Aϕpost)),
and T = (R(Aϕloop) ∩ (L(AG)×Σ∗)). Then, Algorithm 2 with input P = (I, T )
and B terminates and returns a regular loop invariant if one exists.

Once Algorithm 2 returns a regular loop invariant, we can try to translate it into
a Presburger formula according to [11]. However, even if this is not possible, a
(regular) loop invariant is enough for the verification of programs as it proves
that the postcondition holds once the loop terminates. Nonetheless, it would
be interesting to investigate whether we can impose further constraints on the

formula ϕAI ,AB ,AT

n (corresponding to the characterization in [11]) that guarantee
that a computed loop invariant can be translated into a Presburger formula.
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RelatedWork and Experiments. Many techniques to compute loop invariants
(for integer programs) have been proposed, e.g., abstract interpretation (used in
[8]) or template-based approaches (used in [15]) to name just two examples. The
idea of the latter is to search for loop invariants only in a restricted (often “sim-
ple”) domain such as linear inequalities or polyhedra. In this sense, we use Pres-
burger formulae, or DFAs, as templates. As to our knowledge not much research
has been devoted to this type of templates. Moreover, the idea of using tools for
regular model checking to synthesize loop invariants is novel.

Table 1. Experimental results of
InvGen’s “C test suite” examples

Experiment Size Presburger

down 3 yes
gulwani cegar2 3 yes
half 7
ken-imp 3
NetBSD g Ctoc 2 yes
simple 2 yes
simple if 2 yes
split 6
up-nd 2 yes

To try our approach, we extended the
SAT-based proof-of-concept of Section 4.1
using Mona [7] to translate Presburger
formulae into DFAs. We considered ex-
ample programs (mostly fragments taken
from real world software) that are deliv-
ered with the InvGen toolkit [6]. About
10% of these examples (nine in total) were
suitable for our setting, i.e., they con-
tained a single loop, the effect of the loop
could be expressed in Presburger arith-
metic, etc.

Table 1 shows the results of our ex-
periments. The column “Size” shows how
many states a resulting DFA comprises.
The column “Presburger” indicates whether a loop invariant could be trans-
lated into a Presburger formula. Since we did not use software for this task, a
blank entry indicates that a DFA did not obviously encode a formula. All ex-
periments were done on an Intel Q9550 CPU running Linux, each in less that
30 seconds with at most 300 MB of RAM used. As Table 1 depicts, our imple-
mentation found loop invariants for all examples. In comparison, InvGen also
found loop invariants for all examples and used roughly the same amount of
time and memory. This shows that our technique can match InvGen (where it
is applicable).

However, we did not benchmark our technique with template-based tools other
than InvGen. Such a comparison seems to be unsatisfactory for two reasons.
First, there are very few (and perhaps uninteresting) examples that have two
equally complex solutions for either template and would allow a fair comparison.
Second, our implementation is a proof-of-concept, and it is doubtful whether it
can compete with optimized tools on their type of templates.

5 Conclusion

We presented a generic technique to compute minimal separating DFAs and,
based on that, regular invariants. The main idea is to express the desired prop-
erties of a DFA in terms of a logical formula and to use a SAT or SMT solver
to find a solution. We applied this technique to the task of computing minimal
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separating DFAs directly as well as to regular model checking and to the syn-
thesis of loop invariants of integer programs. Our experiments showed that SAT
and SMT solvers are useful tools for these tasks.

The way we compute automata allows us to compute minimal DFAs (although
that might not be needed in every situation). Moreover, we can easily adapt
our technique to also compute minimal NFAs. On the one hand, this has the
advantage that NFAs as solution can be exponentially smaller than DFAs, and,
thus, ϕn might be satisfiable for much smaller n. The disadvantage, on the other
hand, is that encoding NFAs enlarges ϕn significantly.

Finally, let us note that our work is meant as a showcase how to use SAT
and SMT solvers to compute (minimal) DFAs that possess certain properties
with respect to other given regular languages. In this sense, one can think of our
technique as a generic toolkit from which an algorithm for a concrete problem can
be instantiated. We hope that such a toolkit comes in handy for other researches
and may be applied in different fields, too. For instance, our technique can also
be used to compute winning strategies for games on automatic graphs [12].

Acknowledgment. I thank Madhusudan Parthasarathy and Christof Löding
very much for drawing my attention to this topic and for their support.
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Abstract. In the last years, search-based QBF solvers have become essential for
many applications in the formal methods domain. The exploitation of their rea-
soning efficiency has however been restricted to applications in which a “satisfi-
able/unsatisfiable” answer or one model of an open quantified Boolean formula
suffices as an outcome, whereas applications in which a compact representation
of all models is required could not be tackled with QBF solvers so far.

In this paper, we describe how computational learning provides a remedy to
this problem. Our algorithms employ a search-based QBF solver and learn the set
of all models of a given open QBF problem in a CNF (conjunctive normal form),
DNF (disjunctive normal form), or CDNF (conjunction of DNFs) representation.
We evaluate our approach experimentally using benchmarks from synthesis of
finite-state systems from temporal logic and monitor computation.

Keywords: QBF, Computational learning, QBF model enumeration.

1 Introduction

Recent progress in quantified Boolean formula (QBF) and satisfiability (SAT) solving
has strengthened the applicability of such solvers in many areas of formal methods. For
example, in bounded model checking [1], the question whether some property holds
along a run of a given system with some bounded length is encoded into a SAT formula,
and then subsequently solved. In case the formula is found to be satisfiable, from a
corresponding assignment to the variables, we can reconstruct a run that violates the
specification. When generalizing from SAT to QBF solving, we can use the universal
quantifiers to apply a more concise problem encoding or ask more complex questions
such as: “do there exist values for some parameters in a system such that for every
input of some fixed length to the system, we do not reach some error state?”. In case
of a positive answer, it is desirable to obtain values for the parameters. This is called
open QBF solving, as here, we leave some variables in the QBF instance unquantified
and ask for an assignment to these variables that witness the satisfiability of the QBF
formula. Such an assignment is also called a model of the formula.

For other applications, however, obtaining one model is not enough, but we rather
need all models of an open QBF formula. Representatives of this class are the syn-
thesis of finite-state systems from temporal logic specifications, which is frequently
reduced to game solving, and building a system monitor for identifying that a system
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reached a potentially bad state, i.e., a state from which some error state can be reached
within a short amount of time. As in these applications, there can easily be millions
or even billions of models for an open QBF formula, it is furthermore not sufficient
to just enumerate the models, but we rather need a compact representation of them.
Resolution-based variable elimination techniques are known not to scale well for many
variables to be eliminated, so we need some alternative approach for obtaining such a
compact representation of all models of a given SAT or QBF instance, which we call
the ALLSAT and ALLQBF problems for the scope of this paper.

For the ALLSAT problem, some solutions that go beyond simple model enumeration
and successive variable elimination are known. A typical ingredient of such an approach
is the enumeration of solution cubes [2,3], which leads to a DNF representation of the
set of models, possibly combined with some on-the-fly or a-posteriori post-processing
to obtain a CNF representation [2,4] of the model set. For ALLQBF, search-based solv-
ing approaches that go beyond simple model enumeration [5] and variable elimination
by resolution are unknown so far. Thus, for applications in which the ALLQBF problem
has to be solved for instances that have many models, but for which there are also many
quantified variables, no feasible solution exists yet.

In this paper, we present an approach to extend a state-of-the-art search-based QBF
solver to an ALLQBF solver by employing (active) computational learning [6], which
is the process of deriving a model of some data by asking questions to some teacher or-
acle. Computational learning should not be confused with clause learning, a technique
to increase the performance of SAT and QBF solvers.

Our approach learns a CNF (conjunctive normal form), DNF (disjunctive normal form)
or CDNF (conjunction of DNFs) representation of the set of all models of an open quan-
tified Boolean formula, i.e., a QBF instance in which some variables are left free. The
algorithms for all of these result types can equally be applied for ALLSAT solving, but the
main target of our approach is ALLQBF solving. Benchmarks from synthesis of finite-
state systems and monitor generation show the effectiveness of the new approach.

We start by stating the required preliminaries in Section 2 and describe our approach
to learn DNF, CNF or CDNF representations of the set of models of an open QBF prob-
lem in Section 3. Section 4 discusses how a modern QBF solver can be adapted to its use
as oracle in a learning process. In Section 5, we discuss synthesis and monitor genera-
tion as two of the application of ALLQBF solving, from which we take the Benchmarks
for our experimental evaluation of a prototype implementation of our learning approach
in Section 6. We conclude with a summary.

2 Preliminaries

In this paper, we consider open quantified Boolean formulas (QBF) in prenex-cnf-form,
i.e., for a finite set of free variables V , we define the set of QBF instances Q(V ) over
V as all formulas of the type:

ψ = Q1x1.Q2x2. . . . Qnxn.φ (1)

where n ∈ IN,Qi ∈ {∀, ∃} for all 1 ≤ i ≤ n, and φ is a Boolean formula in conjunctive
normal form over the set of variables {x1, . . . , xn} ∪ V . A Boolean formula is said to
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be in conjunctive normal form if it is a conjunction of a set of clauses φ =
∧

v Cv . A
clause Cv is in turn a set of literals that is treated disjunctively, i.e., Cv =

∨
w lw. A

literal is a variable or its negation. In (1), Q1x1.Q2x2. . . . Qnxn is the prefix and φ is
the matrix. The level of a variable xi is defined to be one plus the number of expressions
Qjxj .Qj+1xj+1 in the prefix with j ≥ i and Qj 	= Qj+1 (plus 1 if Q1 = ∀). For the
sake of simplicity, we will use the term outermost (respectively innermost) quantifier
level to indicate variables having the highest (respectively lowest) level. The level of a
literal is the level of its variable. A literal l is universal if l = vi or l = ¬vi for some
1 ≤ i ≤ n with Qi = ∀. All other literals are existential. In (1), a literal l is

– unit if l is existential, and, for somem ≥ 0,
• a clause (l ∨ l1 ∨ . . . ∨ lm) is a clause in φ, and
• each literal li (1 ≤ i ≤ m) is universal and has a level lower than l.

– monotone or pure if
• either l is existential, ¬l does not occur in any clause in φ, and l occurs in some

clauses in φ;
• or l is universal, l does not occur in any clause in φ, and ¬l occurs in some

clauses in φ.
– don’t care if l is existential, and neither l nor ¬l occur in any clause in φ.

Any element of Q(V ) can be seen as a function that maps some variable valuation
f ∈ (V → B) to either true or false. IfQ1 = ∀, we say that ψ is outermost universally
quantified, and if Q1 = ∃, we say that ψ is outermost existentially quantified. We call
Q(∅) the set of closed QBF instances. For any set V , Q(V ) is the set of open QBF
instances over V .

Given some set of variables V and some open QBF formula ψ ∈ Q(V ), we say that
some variable valuation f ∈ (V → B) is a model of ψ if ψ(f) = true. Likewise, f is
a co-model of ψ if ψ(f) = false. A partial variable valuation is a function f ′ : V →
{false, true,⊥}, and a variable valuation f is a completion of f ′ if for every v ∈ V ,
f ′(v) = f(v) if f ′(v) 	= ⊥. We say that a partial variable valuation is a partial model
(partial co-model) of some open QBF formula ψ if every completion of the partial
valuation is a model (co-model) of ψ.

We call a conjunction of literals a term and a disjunction of terms a Boolean formula
in disjunctive normal form. For a partial (or complete) variable valuation f ′ ∈ (V →
{false, true, ⊥}), we define the term induced by f ′ as follows:

term(f ′) =
( ∧

v∈V,f ′(v)=true

v
)
∧
( ∧

v∈V,f ′(v)=false

¬v
)

For some Boolean formula in disjunctive normal form t1 ∨ t2 ∨ . . . tm, we define
terms(t1 ∨ t2 ∨ . . . ∨ tm) = {t1, t2, . . . , tm}. Likewise, for some term t = l1 ∧ l2 ∧
. . .∧ lm, we define lits(t) = {l1, l2, . . . , lm}. For a Boolean formulaψ over some set of
variables V , some term t = l1 ∧ . . .∧ lm is an implicant of ψ if ¬t∨ψ ≡ true. A term
is called a prime implicant if we cannot remove any of its literals without losing the
property that it is an implicant. A Boolean function F : (V → B)→ B is called mono-
tone if for every f, f ′ : V → B with F (f) = true and for all v ∈ V , f(v) = true
implies f ′(v) = true, we have F (f ′) = true. We denote the exclusive or Boolean
operator by ⊕ and the function composition operator by ◦.
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3 ALLQBF Solving by Computational Learning

In this section, we show how to use computational learning techniques to obtain com-
pact representations of the sets of models of open QBF formulas that are specified in
the commonly used prenex-cnf-form.

Given an open QBF formula ψ over the set of variables V , we consider three repre-
sentations for a set of models of ψ here: a disjunctive normal form (DNF) Boolean for-
mula, a conjunctive normal form (CNF) Boolean formula, and a conjunction of DNFs
(called CDNF), all over V . We start this section by first declaring the requirements to
the QBF solver that we use as an oracle in the following learning algorithms, and then
explain how to compute a DNF, CNF or CDNF representation of the set of models using
the QBF solver as oracle in Sections 3.2, 3.3, and 3.4, respectively.

3.1 Requirements to the QBF Solver Used

For the henceforth algorithms, we use a QBF solver for open QBF formulas in prenex-
cnf-form as an oracle in the learning process, and apply it for checking the satisfiability
and non-universality of open QBF formulas. In case of a positive answer to one of these
checks, the solver must be able to return a (partial) model/co-model of the open QBF
formula, respectively, i.e., a valuation for the unquantified variables.

In the experimental evaluation of the following learning schemes, we used an open-
QBF version of QuBE 7.2 [7]. The modifications that were required are more com-
plex than one might think, as QuBE 7.2 uses a very advanced preprocessor that can
remove and rename variables. This preprocessor allows it to achieve high levels of per-
formance, but it can make the production of models and co-models nontrivial. So, the
modifications for satisfying the requirements above, while still using the preprocessor,
are described in Section 4.

3.2 Learning DNFs

Let ψ = Q1x1.Q2x2. . . . Qnxn.φ be an open QBF formula over the free variables V
such that φ is in conjunctive normal form. For learning a DNF representation of the
set of models of ψ, we apply a variant of the classical algorithms from learning theory
for obtaining monotone DNFs [8] or k-term DNFs [9] from a function to learn. Our
variant, depicted in Algorithm 1, makes use of the fact that when learning from open
QBF formulas, we can take advantage of the possibility to check if a term is an implicant
of ψ.

In the algorithm, terms are repeatedly added to the candidate DNF representation
ψ′ until ψ′ represents precisely the set of models of ψ. In line 2 of the algorithm, it is
checked using a QBF solver as an oracle whether there exists some variable valuation
to the variables in V that is a model of ψ, but not yet of ψ′. Whenever this is the case,
we know that ψ′ is not yet complete and search for a prime implicant of ψ′ that also
implies the newly found variable valuation.

Note that since the negation of a DNF formula is a CNF formula, (φ∧¬ψ′) is in CNF,
and thus the QBF instance ρ computed in line 2 is in prenex-cnf-form. The algorithm
uses the partial model of ρ as a starting point for finding the next prime implicant. Of
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course, the model can also be complete, but does not need to be. In particular, if the
QBF solver finds a satisfying assignment to V while still preprocessing, the model will
typically be incomplete.

In the remaining lines of the algorithm, the implicant f ′ (represented in form of a
partial variable valuation) obtained in line 3 is reduced as much as possible in order
to obtain a prime implicant. In line 7, we take profit from the fact that we use a QBF
solver as oracle: by universally quantifying over the variables that are not set in f ′

and one additional variable v, we can check whether f ′(v) can be set to ⊥ without
changing the fact that f ′ is an implicant. The algorithm guarantees that at the end of the
computation, the DNF representation of the set of models of ψ is irreducible, i.e., there
are no superfluous literals or terms in the obtained DNF ψ′.

Algorithm 1. DNF learning using a QBF solver as oracle
Data: An open QBF instance ψ = Q1x1.Q2x2. . . . Qnxn.φ over the set of variables V
Result: The set of its models represented as DNF ψ′

begin
ψ′ := false ;1

while ρ := Q1x1.Q2x2. . . . Qnxn.(φ ∧ ¬ψ′) is satisfiable do2

f ′ := partial model of ρ;3

for v ∈ V do4

if f ′(v) �= ⊥ then5

f ′′ := f ′ \ (v �→ f ′(v)) ∪ (v �→ ⊥);6

if ∀{v′ ∈ V | f ′′(v′) = ⊥}.Q1x1.Q2x2. . . . Qnxn.(φ ∧ term(f ′′)) �≡ false7

then
f ′ := f ′′;8

L := {¬v | v ∈ V, f ′(v) = false} ∪ {v | v ∈ V, f ′(v) = true};9

ψ′ := ψ′ ∨∧
l∈L l;10

end

3.3 Learning CNFs

Learning CNFs instead of DNFs as described above can be seen as the dual case. Since
for search-based QBF solving, the matrix of a Boolean formula has to be in CNF, we
would however have to re-encode this matrix to complement the original formula. Thus,
we apply a slightly different method, aiming to skip the re-encoding step into prenex-
normal-form of the formula.

Algorithm 2 describes the modified procedure. In this algorithm, the function Enc−

is used to map a Boolean formula in CNF form into a CNF formula that encodes its
negation (using a Tseitin encoding [10]), and EncV− describes the necessary variables.
Let ψ =

∧
1≤i≤m

∨
1≤j≤ki

lij be a CNF formula with m ∈ IN, k1, . . . , km ∈ IN, and
lij ∈ V ∪ {¬v | v ∈ V } for 1 ≤ i ≤ m and 1 ≤ j ≤ ki. We define:

EncV−(ψ) = {vi | 1 ≤ i ≤ m}

Enc−(ψ) =
( ∨

1≤i≤m

vi

)
∧

∧
1≤i≤m

∧
1≤j≤ki

(¬vi ∨ ¬lij)
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Algorithm 2. CNF learning using a QBF solver as oracle
Data: An open QBF instance ψ = Q1x1.Q2x2. . . . Qnxn.φ over the set of variables V
Result: The set of its models represented as CNF ψ′

begin
ψ′ := true ;1

while ρ := ∃s,EncV−(ψ′).Q1x1.Q2x2. . . . Qnxn.((φ ∨ s) ∧ (Enc−(ψ′) ∨ ¬s)) is2

non-universal do
f ′ := partial co-model of ρ;3

for v ∈ V do4

if f ′(v) �= ⊥ then5

f ′′ := f ′ \ (v �→ f ′(v)) ∪ (v �→ ⊥);6

if Q1x1.Q2x2. . . . Qnxn.(φ ∧ term(f ′′)) ≡ false then7

f ′ := f ′′;8

ψ′ := ψ′ ∧
(∨

v∈V,f ′(v)=false v ∨∨
v∈V,f ′(v)=true ¬v

)
;9

end

The algorithm is based on the idea to iterative find cubes of variable valuations to
the free variables that falsify the input formula. Such cubes are then added to the input
formula in the next round of the algorithm by encoding these using the Enc− function
in line 2 of the algorithm.

3.4 Learning CDNF

In [11], Bshouty describes a learning algorithm for conjunctions of Boolean formulas
in disjunctive normal form based on the monotone theory. Given some set of variables
V , we call a Boolean function f over V c-monotone for some c : V → B if f ′ ◦mc is
monotone formc being the function mapping a variable valuation x : V → B to some
other valuation x′ : V → B such that for all v ∈ V : x′(v) = x(v) ⊕ c(v).

The main idea of Bshouty’s learning algorithm is to represent the function to learn
as a conjunction of Boolean formulas in disjunctive normal forms, where each of these
formulas is c-monotone for some c ∈ (V → B). During the learning process, the
algorithm maintains and updates the candidate CDNF formula ψ′ learned so far. When-
ever there exists a false-positive for this CDNF formula, i.e., there exists a valuation
f : (V → B) for which ψ′(f) = true but ψ(f) = false, a new DNF is added to
ψ′ that is kept f -monotone during the learning process. Whenever a false-negative is
found for ψ′, i.e., there exists a valuation f : (V → B) for which ψ′(f) = false but
ψ(f) = true, for every DNF ρ that is a conjunct of ψ′ and its associated monotonicity
base c, ρ is extended by some prime implicant for the c-monotone closure of ψ that is
implied by f . For more details on Bshouty’s CDNF learning algorithm, the interested
reader is referred to [12].

Algorithm 3 shows the overall learning algorithm, adapted to the treatment of open
QBF formulas. During its run, the set C contains the CDNF learned so far, split up into
its DNF formulas, which are paired together with the respective monotonicity base.
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Algorithm 3. CDNF learning using a QBF solver as oracle
Data: An open QBF instance ψ = Q1x1.Q2x2. . . . Qnxn.φ over the set of variables V
Result: The set of its models represented as CDNF ψ′

begin
C := ∅ ;1

while true do2

if ρ := ∃s,EncV−(C).Q1x1.Q2x2. . . . Qnxn.((φ ∨ s) ∧ (Enc−(C) ∨ ¬s)) is3

non-universal then
f = co-model of ρ;4

C := C ∪ {(f, false)};5

if ρ := ∃EncV−(C).Q1x1.Q2x2. . . . Qnxn.φ ∧ Enc−(C) is satisfiable then6

f = model of ρ;7

C′ = ∅;8

for (c, η) ∈ C do9

if f |= η then10

C′ = C′ ∪ {(c, η)}11

else12

for v ∈ V do13

if c(v) �= f(v) then14

f ′ = f \ (v �→ f(v)) ∪ (v �→ c(v));15

if Q1x1.Q2x2. . . . Qnxn.φ ∧ term(f ′) is satisfiable then16

f := f ′;17

η′ =
(∧

v∈V,f(v)=true,c(v)=false v
)
∧
(∧

v∈V,f(v)=false,c(v)=true ¬v
)

;18

C′ = C′ ∪ {(c, η ∨ η′)};19

C := C′;20

else21

for (c, η) ∈ C do22

for t ∈ terms(η) do23

η′ :=
∨

t′∈terms(η)\{t} t
′;24

C′ := C \ {(c, η)} ∪ {(c, η′)};25

if ∃V,EncV+(C),EncV−(C′).(Enc+(C) ∧ Enc−(C′)) ≡ false then26

C := C′ ∪ {(c, η′)};27

else28

for l ∈ lits(t) do29

η′ :=
∨

t′∈terms(η)\{t} t
′ ∨∧

l′∈lits(t)\{l} l
′;30

C′ := C \ {(c, η)} ∪ {(c, η′)};31

if ∃V,EncV−(C),EncV+(C′).(Enc−(C) ∧ Enc+(C′)) ≡ false then32

C := C′ ∪ {(c, η′)};33

return ψ′ =
∧

(c,η)∈C ρ;34

end
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In this algorithm, the function Enc− is used to map a set C onto a CNF that encodes
the negation of the CDNF formula represented by C = {(c1, ρ1), . . . , (cm, ρm)}, and
EncV− describes the necessary variables. We define:

EncV−(C) = {vi | 1 ≤ i ≤ m}

Enc−(C) =
( ∨

1≤i≤m

vi

)
∧

∧
1≤i≤m

(¬vi ∨ ¬ρi)

Likewise, the function Enc+ is used to map a set C onto a CNF that encodes it in
non-negated form using the Tseitin encoding [10] and EncV+ represents the necessary
variables. The number of variables needed here is higher than for EncV−, as one vari-
able is introduced for every term in the DNFs of C.

In line 3 of the algorithm, it is checked whether C has a false-positive. A false-
positive can be found by obtaining a satisfying assignment to the formula

∧
(c,ρ)∈C ρ

∧¬ψ. However, when ψ is in prenex-normal form, negating ψ requires a re-encoding to
get¬ψ back into prenex-cnf. In Algorithm 3, this problem is circumvented by searching
for a witness for the non-universality of

∨
(c,ρ)∈C ¬ρ∨ψ instead (which is the negation

of the former formula).
Whenever a false-negative is found, all DNFs in C for which the false-negative is not

a model are updated to change this fact. At the end of the algorithm (starting with line
22), redundant terms in the DNFs and redundant literals are identified using standard
SAT solving (lines 26 and 32), and then removed.

4 QBF Solver Modification

All operations on open QBF formulas can easily be translated to the closed QBF case as
follows: checking for satisfiability of an open QBF formulaψ over V amounts to testing
if ∃V.ψ ≡ true, and checking the non-universality of an open QBF formulaψ amounts
to testing if ∀V.ψ ≡ false. In the former case, the solver must be able to output a
partial model of ψ. This is supported by many modern QBF solvers when the outermost
quantification level is existentially quantified, which is the case for ∃V.ψ ≡ true.
For the non-universal (unsatisfiable) case, where the outermost quantification level is
universal (∀V.ψ ≡ false), our QBF solver oracle needs to output a trace, or path, that
leads to an unsatisfiable branch of the search space. This is referred to here as a co-
model.

In this work we use the QBF solver QuBE 7.2 [7]. QuBE is a state-of-the-art DPLL
search-based solver designed to take closed formulas as input, where V = ∅. This
obstacle is circumvented by making free variables quantified as described above, and
pushing them to the outermost quantifier level. Furthermore, QuBE incorporates many
modern techniques: with respect to this paper, it includes for instance pure/don’t care
literal detection [13], conflict and solution analysis with solution cube minimization
and learning [14,15,16], and an advanced preprocessor [17] that allows it to achieve
unmatched performance when compared to the pure search-based algorithm. However,
many of these advanced techniques have to be modified in order to produce correct
partial models and co-models of the input formula.
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Both the preprocessor and the solver were modified in order to keep information on
the outermost quantified variables in a slightly more advanced way than a plain use
of don’t touch literals techniques (also called frozen literals) as previously done, e.g.
in [18]. Indeed, either existential or universal variables are selectively “not touched”
according to the outermost binding quantifier.

4.1 Preprocessing Phase

The preprocessor must behave in a slightly different way depending on the quantifier
at the highest level of the prefix of the input formula. In case this is an existential
quantifier, no variable elimination nor variable renaming techniques —such as equiv-
alence reasoning, variable elimination by Q-resolution, and the subsumption through
resolution (self-subsumption) that are not model preserving transformations which can
be applied to existential variables— are performed on don’t touch variables. Rather,
unit and pure literals can still be given a value, simply adding it to the model. In the
second case, where the input formula is bound by a universal quantifier, no preprocess-
ing techniques have to be deactivated. Basically, the only rules of inference normally
applied to universal variables are pure literal detection and universal reduction, also
known as clause minimization [19]. Universal pure literals are immediately pushed into
the current model: Note, by the definition of universal pure literal in Section 2, that this
valuation to the variable will be sound in order to falsify the clause in case the formula
is unsatisfiable. The universal reduction rule states that in a clause, whose literals have
been simplified according to their evaluations, the literals quantified at the innermost
prefix level among all the others can be removed if universal. This operation is per-
formed every time a clause is added to the matrix — for instance, when a resolvent
computed in a Q-resolution step substitutes its two antecedents, and every time a clause
is simplified (e.g. when in a clause the existential literal l is deleted because ¬l is unit).
Whenever a universal reduction rule is applied, we track the universal literals being
deleted: if all the literals in the clause are eliminated, resulting in the empty clause that
proves the unsatisfiability of the whole formula, those literals are pushed into the model
with their sign flipped.

4.2 Search Phase

During the search, in order to extract the model we have to record the value given to the
outermost quantified variables as soon as a conflict occurs or a solution is found. This
is done selectively for conflicts if the outermost quantifier is existential, or for solutions
when the outermost quantifier is universal. When the solving procedure completes the
exploration of the search space, the assignment values saved previously can be eligible
to be included into the model. Indeed, because of the on-the-fly universal reduction
performed by the solver during both exploration and backtrack phases on the clauses
(respectively, its dual existential reduction being performed on the solution cubes), it
may be the case that some valuations must be changed, or even further variables must
be pushed into the model as well. This can happen when their values have already been
taken from the assignment stack and put into the model or no valuation is currently
given. In these situations, the valuation must be either flipped in case it is currently
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satisfying the clause/cube, or forced in case it has no valuation yet. Consider the QBF
ϕ = ∀y1y2∃x3φ and the empty clause y1 ∨ y2 ∨ x3 ∈ φ. Assume that y2 is a decision
literal at level d, and ¬x3 is assigned because of unit propagation at the same decision
level d. No value was given to |y1|. As soon as the conflict occurred, the assignment to
the outermost quantified universal variables was cached as y2. Since the empty clause
has led the conflict analysis to the root of the search tree, witnessing the unsatisfiability
of the whole QBF, the model has to be modified as follows: ¬y1 is added, and the value
for |y2| is flipped into ¬y2.

5 Applications of ALLQBF Solving

In this section, we sketch two applications of ALLQBF solving. The aim of this section
is twofold: first of all, our experimental evaluation in the next section is based on bench-
marks from these two applications. Second, we want to show the interested reader why
the transition from plain QBF solving to ALLQBF solving is such an interesting one.

5.1 Synthesis of Reactive Systems

In formal verification, one analyses a system for correctness with respect to a speci-
fication after it has been designed. The idea behind synthesis is that we can actually
construct a system directly from the specification, and save the manual work of actu-
ally designing it. After choosing a formal specification language, and describing which
inputs and outputs the system under design has, synthesis is essentially a push-button
technique.

On the technical level, synthesis is typically reduced to solving a game with an ω-
regular winning condition. A play in this game represents a trace of the system to be
synthesized, and plays that are winning for a designated system player in turn repre-
sent traces that are allowed by the specification. Winning plays are of infinite length,
meaning that the system they represent has no predefined point of going out of service.
Games frequently have huge state spaces, but are representable in a symbolic way. De-
termining the positions in the game from which the system player wins is typically done
by evaluating a fixed point expression. For example, in case of a safety specification,
the synthesis problem reduces to safety game solving, and the winning positions are the
ones that are not in the attractor of the bad positions, i.e., the ones from which the sys-
tem player can enforce never to visit any of the bad states. Using a quantified Boolean
formula, we can represent the problem if for a position in game there exists an output
such that for every input, a non-bad state is reached. By performing ALLQBF solving
on this formula, we obtain a small representation of all of these positions if the game
transition function has a small encoding as CNF formula. Then, we can plug in the
negation of this positions set as the new set of bad states, and obtain a formula whose
models represent the positions from which the system player does not lose in two steps.
Iterating this idea until we reach a fixed point finally gets us the set of states that are
winning for the system player.
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Currently, synthesis tools use BDDs [20] or anti-chains [21] for symbolic reasoning,
which are both techniques with well-known scalability limits. Plain QBF solving has
been proposed earlier for bounded safety game solving [22], but was found to have a
bad performance there. For the initial experimental evaluation in this paper, we used a
modified version of the UNBEAST synthesis tool [20] that lazily tracks the operations
performed on BDDs and generates QBF instances to represent pre-fixed points in the
game solving fixed point computation when synthesizing a load balancer. As the com-
putations performed by UNBEAST are optimized towards BDD usage, we refrain from
declaring a “winner“ in this setting.

5.2 Monitor Synthesis

Consider a safety-critical sequential circuit. Adding a runtime monitor for such a circuit,
that observes the transitions in the system and produces a warning signal if the system is
about to enter a bad state, allows warning other parts of the system that the output of this
circuit should not be trusted any more. This way, malicious bit flips in the hardware, as
well as assumptions about the system environment that actually do not hold in practice,
can often be found even after the system is deployed.

ALLQBF solving can help us in constructing such a monitor. For some value of k,
we encode the problem “for a given state in the system, along some trace of length k
starting from there, we do not visit a bad state” into an open QBF formula, and leave
the starting state variables open. A CDNF, DNF or CNF representation for all of these
states can then be interpreted as a circuit that checks if the system is still in a state that
is not potentially bad, and outputs false if this is not the case.

For our experimental evaluation in the next section, we used the single-property cir-
cuits from the hardware model checking competition HWMCC’11 [23] and translated
the monitor synthesis problem for k = 2 into an open QBF formula using a standard
Tseitin encoding.

6 Experimental Results

We evaluate a prototype implementation of the learning techniques presented in Section
3 using a version of QuBE 7.2 that has been modified as described in Section 4. Before
learning, we simplify the open QBF instance by applying a restricted version of QuBE’s
preprocessor that does not alter its set of models.

The aim of this experimental evaluation is to show that the proposed approaches
already scale to systems of practical size. Due to the fact that ALLQBF solving is a
relatively new topic, comparing against other solvers is difficult. For example, the QBF
solver QUANTOR [24] is based on removing quantifiers by resolution and expansion,
and in principle it is possible to obtain a CNF representation of the set of models of an
open QBF formula. However, it comes with no possibility to ensure that the open (or
outermost existential) variables remain intact and thus cannot be used.Techniques for
removing only existential variables cannot handle the universal ones dealt with here.



ALLQBF Solving by Computational Learning 381

All computation times given in the following are obtained on a Sun XFire computer
with 2.6 Ghz AMD Opteron processors running an x64-version of Linux. The memory
usage was never observed to exceed 2GB.

6.1 Synthesis of Reactive Systems

Out of the 3411 game solving/synthesis benchmarks, the maximally allowed computa-
tion time of 3600 seconds was enough for CDNF learning to work in 3307 cases, CNF
learning to finish in 3358 cases, and DNF learning to succeed in 3297 case. Figure 1
shows the numbers of instances learned over time, while Figure 2 compares the number
of literals in the learned model set representation. Table 1 shows the properties of some
example instances used in this comparison.

It can be seen that in many cases, the result sizes of the techniques coincide - then,
DNF learning is often the fastest method. However, for complicated benchmarks, when
granting more time for solving an instance, the CNF variant overtakes the DNF variant
in terms of instances solved. The experiments show that the CDNF learning method is
a reasonable compromise between the two.

Table 1. Properties of some example problem instances in the game solving benchmarks. For
every instance, “# V.”, “# F.” and “# Clauses” denote the numbers of variables, free variables
and clauses in the instance, respectively. The column “P.S.-time” contains the time for plain QBF
solving the instance. For CDNF, DNF and CNF learning, the sizes (s.) of the resulting formulas
and the time (t.) to obtain these are reported. All times are given in seconds.

Instance # # # P.S. # CDNF CNF DNF
V. F. Cl. -time Models s. t. s. t. s. t.

load_16.xml_SAT_4_10 1185 18 1349 0.04 90112 10 3.62 9 2.12 12 1.83
load_18.xml_SAT_4_10 1935 28 2179 0.06 9.22747e+07 10 7.02 9 3.90 12 3.05
load_31.xml_SAT_4_10 11299 108 13090 0.16 1.08939e+29 31 192 19 286 42 45.6
load_33.xml_SAT_5_7 3396 49 3588 0.08 1.5668e+13 14 21.4 21 21.2 31 6.90
load_35.xml_SAT_5_7 5401 75 5746 0.11 2.62866e+20 16 50.7 23 60.3 39 16.0
load_57.xml_UNSAT_5_6 2924 37 4330 0.05 unknown timeout timeout timeout
load_72.xml_UNSAT_4_3 1181 37 1470 0.01 3.70482e+09 timeout 109 645 timeout
load_74.xml_SAT_2_8 10402 73 10115 0.14 2.95148e+20 6 49.6 6 69.3 6 8.09
load_75.xml_SAT_2_9 14390 88 14425 0.21 9.67141e+24 6 95.2 6 130 6 13.4

6.2 Monitor Synthesis

Out of the 465 monitor synthesis benchmarks, in 286 cases, the learning process did not
finish for any mode within a time limit of 15 minutes. In 65 additional cases, the set of
models was empty or contained all possible variable valuations (and is therefore unin-
teresting for the purpose of monitoring). Table 2 shows some representative remaining
cases. Compared to the game solving benchmarks, it can be seen that the performance
is worse, which is due to the fact that the monitor synthesis benchmarks are harder to
solve: they have more variables, more clauses, and are derived from challenging hard-
ware model checking problems.

For monitor synthesis, CDNF learning is not as competitive as in the game solving
case, and DNF learning is more advisable to use here than CNF learning. Figure 3
shows the performance.
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Fig. 1. Graph showing how many of the reactive synthesis benchmarks could be solved (i.e., the
set of their models is learned) within certain time bounds
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Fig. 2. Formula size comparisons of the learning results for CDNF, CNF, and DNF on the game
solving benchmarks

Table 2. Properties of some example problem instances in the game solving benchmarks. The
notation is the same as in Table 1.

Instance # # # P.S. # CDNF CNF DNF
V. F. Cl. -time Models s. t. s. t. s. t.

bob3 1232 74 3218 0.1 7.41919e+21 timeout timeout 1211 485
bob9234redmiter 1843 119 4627 0.15 2.10288e+35 timeout 384 798 358 371
irstdme4 2534 124 6088 0.21 1.66153e+37 25 245 46 180 15 48.9
pdtvisgigamax0 2276 16 6566 0.21 64512 timeout 7 185 7 21.7
vis4arbitp1 747 23 2024 0.07 4.18867e+06 timeout 652 389 331 29.3
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Fig. 3. Graph showing how many of the monitor synthesis benchmarks could be solved (i.e., the
set of their models is learned) within certain time bounds

7 Conclusion

We have presented a way to turn a search-based QBF solver into an ALLQBF solver
for open quantified Boolean formulas by using computational learning. The resulting
set of models of a formula is represented either in DNF, CNF, or CDNF form, and we
gave suitable learning algorithms for all of these forms.

The initial evaluation of the approach in this paper shows its potential. We conjecture
that a future tighter integration of the solver and the learning algorithm will provide a
significant further speed improvement.
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Abstract. We introduce games with probabilistic uncertainty, a model
for controller synthesis in which the controller observes the state through
imprecise sensors that provide correct information about the current
state with a fixed probability. That is, in each step, the sensors return
an observed state, and given the observed state, there is a probability
distribution (due to the estimation error) over the actual current state.
The controller must base its decision on the observed state (rather than
the actual current state, which it does not know). On the other hand, we
assume that the environment can perfectly observe the current state. We
show that controller synthesis for qualitative ω-regular objectives in our
model can be reduced in polynomial time to standard partial-observation
stochastic games, and vice-versa. As a consequence we establish the pre-
cise decidability frontier for the new class of games, and establish optimal
complexity results for all the decidable problems.

1 Introduction

In reactive control systems, a controller interacts with its environment through
sensors and actuators. The controller observes the state of the environment
through a set of sensors, computes a control law that depends on the history
of observed sensor readings, and feeds the computed control signal to the envi-
ronment through actuators. The state of the environment is then updated as a
function of the control signal as well as a disturbance signal that models exter-
nal inputs to the environment. The sense-compute-actuate cycle repeats forever,
resulting in an infinite trace of states. The controller synthesis problem asks
to design a control law for the controller that ensures that the trace of states
belongs to a given specification of “good” traces, no matter how the external
disturbance behaves.

Controller synthesis has been studied extensively for deterministic games with
ω-regular specifications [5,15,14]. In this setting, the problem is modeled as a
game on a graph. The vertices of the graph represent system states, and are
divided into “controller states” and “disturbance states.” At a controller state,
the controller chooses an outgoing edge and moves to a neighboring vertex along
this edge. At a disturbance state, the disturbance chooses an outgoing edge and
moves along this edge. If the infinite trace so obtained satisfies the specification,
the controller wins; otherwise, the disturbance wins. The games are called perfect
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observation, since both players have exact knowledge of the current state and
the history of the game. They model the case of perfect sensors and actuators,
and where the entire state is observable through sensors.

The model of perfect-observation deterministic games have been extended
to systems with partial observation, in which the controller can only observe
part of the environment’s state [16,8], and to stochastic dynamics [13,9,11,12], in
which the state updates happen according to a probabilistic law. The standard
way to model partial-observation and stochastic dynamics [8,3,2] is to extend
the preceding graph model by fixing an equivalence relation on the vertices
(the “observation function”), and stipulating that the controller only sees the
equivalence class of the current vertex, not the particular vertex the state is in.
In addition, the transitions of the graph are stochastic: the controller and the
disturbance each choose some move, and the next vertex is chosen according to a
probability distribution based on the current vertex and the chosen move. Partial
observation models the scenario in which sensors observe only part of the state.
Stochastic dynamics models imperfect actuators and probabilistic disturbances.
So far, models for reactive games do not model sensor imperfections.

In this paper, we introduce a different, albeit natural, model of probabilistic
uncertainty in controller synthesis motivated by imperfect sensors. Consider a
state given by n bits. We assume the sensors used to measure the state are not
perfect, and observing the state through the sensor results in some bits being
flipped with some known probability (probabilistic noise). In contrast, we allow
the disturbance to precisely observe the state as well as the observation of the
controller, corresponding to a worst case assumption on the disturbance. The
objective of the controller is to find a strategy that ensures that the system sat-
isfies the specification under this probabilistic uncertainty on the current state.
This model is natural in applications where the controller observes the state
bits through unreliable sensing channels, where probabilistic noise in the com-
munication channels results in bits being flipped with some known probability
(according to the classical communication channel model of Shannon). Thus,
the controller observes n bits through the sensor, and this estimate defines a
probability distribution over the state space for the current state.

Our model (which we call games with probabilistic uncertainty) is inspired
by analogous models of state estimation under probabilistic noise in continuous
control systems. We believe this model of games with probabilistic uncertainty
captures the behavior of many imperfect-sensor-based control systems, and is a
formulation of the problem in a discrete setting. Intuitively, the standard model
of partial-observation games represents “partial but correct information” where
the controller can observe correctly only the first k < n bits of the state (i.e.,
the observation is partial as the controller observes only a part of the state
bits, but the information about the observed state bits is always correct). In
contrast, our model of games with probabilistic uncertainty represents “complete
but uncertain information” where the controller can observe all the n bits of the
state but with uncertainty of observation (i.e., the controller can observe all the
bits, but each bit is correct with some probability). Since the type of uncertain
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information in our model is very different from the standard models of partial-
observation games studied in the literature, the relationship between them is not
immediate.

Our main contribution is establishing the equivalence of the new class of
games and partial-observation games. Our main technical result is a polynomial-
time reduction from games with probabilistic uncertainty to standard partial-
observation games, and a converse reduction from partially-observable Markov
decision processes (POMDPs) to games with probabilistic uncertainty. The tech-
nical constructions that establish the equivalence of the two classes of games
which represent two different notions of information (partial but correct vs com-
plete but uncertain) are quite intricate. For example, for the new class of games
the inductive definition of probability measure is subtle and different from the
classical definition of probability measure for probabilistic systems [18,10]. This
is because the controller observes a history that can be completely different from
the actual history, whereas the environment (or disturbance) observes the ac-
tual history. We first inductively define a probability measure of observed history,
given the actual history, and use it to define the required probability measure by
another inductive construction. We show how our polynomial constructions for
reduction capture the subtleties in the probability measure, and by establishing
a precise mapping of strategies (which is at the heart of the proof of correctness
of the reduction) we obtain the desired equivalence result.

In the positive direction, our reduction allows us to solve controller synthesis
problems for games with probabilistic uncertainty against ω-regular specifica-
tions, using algorithms of [8,2]. In the negative direction, we get lower bounds
on the hardness of problems by using known lower bounds for POMDPs using
the hardness results of [1,7]. In particular, with our reductions we establish pre-
cisely the decidability frontier of games with probabilistic uncertainty for various
classes of parity objectives (a canonical form to express ω-regular specifications);
and for all the decidable problems we establish optimal complexity bounds (most
of them EXPTIME-complete, and one PTIME-complete; see Table 1). Moreover,
our reduction allows the rich body of algorithms (such as symbolic and anti-chain
based algorithms [8,2]) for partial-observation games, along with any future al-
gorithmic developments for partial-observation games, to be applicable to solve
games with probabilistic uncertainty. In summary, our results provide precise
decidability frontier, optimal complexity, and algorithmic solutions for games
with probabilistic uncertainty, that is a natural model for control problems with
state estimation under probabilistic noise. Detailed proofs, omitted due to lack
of space, available in [6].

2 Games with Probabilistic Uncertainty

We now introduce games with probabilistic uncertainty, a class of games with
probabilistic imperfect information.

Probability distribution. A probability distribution on a finite set A is a function
κ : A→ [0, 1] such that

∑
a∈A κ(a) = 1. We denote by D(A) the set of probability

distributions on A.
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Table 1. Decidability and complexity of games with probabilistic uncertainty with
parity objectives

Sure Almost Positive

Safety EXP-complete EXP-complete EXP-complete

Reachability EXP-complete EXP-complete PTIME-complete

Büchi EXP-complete EXP-complete Undec.

coBüchi EXP-complete Undec. EXP-complete

Parity EXP-complete Undec. Undec.

Game structures with probabilistic uncertainty. A game structure with proba-
bilistic uncertainty consists of a tuple G = (L,ΣI , ΣO, Δ, un), where (a) L is
a set of locations ; (b) ΣI and ΣO are two sets of input and output alphabets,
respectively; (c) Δ : L × ΣI × ΣO → D(L) is a probabilistic transition func-
tion that given a location, an input and an output letter gives the probability
distribution over the next locations; and (d) un : L → D(L) is the probabilistic
uncertainty function that given the true current location describes the probabil-
ity distribution of the observed location. If un is the identity function we obtain
perfect-observation games.

Intuitively, a game proceeds as follows. The game starts at some location
� ∈ L. Player 1 observes a state drawn from the distribution un(�), which rep-
resents a potentially faulty observation process. Intuitively, at every step the
player can observe the value of all variables that corresponds to the state of the
game, but there is a probability that the observed value of some variables is
incorrect. Player 2 observes both the “correct” state � as well as the “observed”
state of Player 1, corresponding to the worst possible behavior of the adversary.
Given the observation of the history of the game so far, Player 1 picks an input
alphabet σi ∈ Σi. Player 2 then picks an output letter σo ∈ Σo: Player 2 observes
the history of correct locations, the moves of the players, and also observes the
history of observed locations of Player 1. The state of the game is updated to �′

with probability Δ(�, σi, σo)(�′). This process is repeated ad infinitum.

Plays. A play of G is a sequence ρ = �0σ
i
0σ

o
0�1σ

i
1σ

o
1 . . . of locations, input letter,

and output letter, such that for all j ≥ 0 we have Δ(�j , σ
i
j , σ

o
j )(�j+1) > 0. The

prefix up to �n of the play ρ is denoted by ρ(n), its length is |ρ(n)| = n+ 1 and
its last element is Last(ρ(n)) = �n. The set of plays in G is denoted by Plays(G),
and the set of corresponding finite prefixes is denoted Prefs(G).
Strategies.Astrategy forPlayer 1 observes thefiniteprefixof aplayand then selects
an input letter (pure strategies) or a probability distribution over input letters in
Σi. Formally, a pure strategy for Player 1 is a function α : Prefs(G) → Σi, and a
randomized strategy for Player 1 is a function α : Prefs(G) → D(Σi). Similarly,
pure and randomized strategies for Player 2 are defined as functions β : Prefs(G)×
Prefs(G)×Σi → Σo and β : Prefs(G)×Prefs(G)×Σi → D(Σo), respectively,where
the output letter is chosen based on the original history and observed history. Note
that Player 2 sees Player 1’s choice of input action at each step.
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Outcomes. The outcome of two randomized strategies α for Player 1 and β
for Player 2 from a location � ∈ L is the set of plays ρ = �0σ

i
0σ

o
0 . . . such

that (1) � = �0, (2) there exists a sequence �′0�
′
1 . . . such that un(�j)(�

′
j) > 0

for each j ≥ 0, (3) for each j ≥ 0, we have α(�′0σ
i
0σ

o
0 . . . �

′
j)(σ

i
j) > 0 and

β(ρ(j), �′0σ
i
0σ

o
0�

′
1 . . . �

′
j , σ

i
j)(σ

o
j ) > 0, and Δ(�j , σ

i
j , σ

o
j )(�j+1) > 0. The primed

sequence �′0�
′
1 . . . gives the sequence of observations made by Player 1 using

the probabilistic uncertainty function. Note that this sequence may be incorrect
with some probability due to probabilistic uncertainty in the observation. We
denote this set of plays as Outcome(G, �, α, β). The outcome of two pure strate-
gies is defined analogously, considering pure strategies as degenerate randomized
strategies which pick a letter with probability one. The outcome set of the pure
(resp. randomized) strategy α for Player 1 in G is the set Outcome1(G, �, α) of
plays ρ such that there exists a pure (resp. randomized) strategy β for Player 2
with ρ ∈ Outcome(G, �, α, β). The outcome set Outcome2(G, �, β) for Player 2 is
defined symmetrically.

Probability measure. Given strategies α and β, we define the probability measure
Prα,β�0

(·). The definition of the probability measure is subtle and non-standard
as the prefix that Player 1 observes can be completely different from the origi-
nal history. For a finite prefix ρ ∈ Prefs(G), let Cone(ρ) denote the set of plays

with ρ as prefix. We will define Prα,β�0
(·) for cones, and then by Caratheodory

extension theorem [4] there is a unique extension to all measurable sets of
paths. To define the probability measure we also need to define a function
ObsSeq(ρ), that given a finite prefix ρ, gives the probability distribution over
finite prefixes ρ′, such that ObsSeq(ρ)(ρ′) denotes the probability of observing

ρ′ given the correct prefix is ρ. The base case is as follows: Prα,β�0
(Cone(�0)) = 1;

and ObsSeq(�0)(�
′) = un(�0)(�

′). The inductive definition of ObsSeq is as fol-
lows: for a prefix ρ of length n+ 1 we have ObsSeq(ρσinσ

o
n�n+1)(ρ

′σinσ
o
n�

′
n+1) =

ObsSeq(ρ)(ρ′) ·un(�n+1)(�
′
n+1). Given a sequence ρ = �0σ

i
0σ

o
0�1σ

i
1σ

o
1 . . . �n, we de-

fine AcMt(ρ) = {ρ̃ = �̃0σ̃i0σ̃o0�1σ̃i1σ̃o1 . . . �̃n | ∀1 ≤ j ≤ n−1. σ̃ij = σ
i
j and σ̃oj = σoj }

the sequences of same length as ρ such that the sequence of input and out-
put letter matches (i.e., the set of action-matching prefixes). Note that for non
action-matching prefixes the observation sequence function always assigns prob-
ability zero. The inductive case for the probability measure is as follows: for a
prefix ρ of length n+ 1 with last state �n, we have

Prα,β
�0

(Cone(ρσi
nσ

o
n�n+1)) =

Prα,β
�0

(Cone(ρ))
∑

ρ′∈AcMt(ρ)

ObsSeq(ρ)(ρ′) · α(ρ′)(σi
n) · β(ρ, ρ′, σi

n)(σ
o
n) ·Δ(�n, σ

i
n, σ

o
n)(�n+1).

i.e., ObsSeq(ρ)(ρ′) gives the probability to observe ρ′, then α(ρ′)(σin) denotes the
probability to play σin given the strategy and observed sequence ρ′, and since
Player 2 observes the correct sequence as well as the observed sequence ρ′, the
probability to play σon is given by β(ρ, ρ′, σin)(σ

o
n) (Player 2 observes both ρ and

ρ′), and the final term Δ(�n, σ
i
n, σ

o
n)(�n+1) gives the transition probability.
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Winning objectives. An objective for Player 1 in G is a set φ ⊆ Plays(G) of plays.
A play ρ ∈ Plays(G) satisfies the objective φ, denoted ρ |= φ, if ρ ∈ φ. We
consider ω-regular objectives specified as parity objectives (a canonical form to
express all ω-regular objectives [17]). For a play ρ = �0σ

i
0σ

o
0 . . ., we denote by ρk

the k-th location �k of the play and denote by Inf(ρ) the set of locations that
occur infinitely often in ρ, that is, Inf(ρ) = {� | ∀i∃j : j > i and �j = �}. We
consider the following classes of objectives.
1. Reachability and safety objectives. Given a set T ⊆ L of target locations,

the reachability objective Reach(T ) requires that a location in T be visited
at least once, that is, Reach(T ) = {ρ | ∃k ≥ 0 · ρk ∈ T }. Dually, the
safety objective Safe(T ) requires that only states in T be visited. Formally,
Safe(T ) = {ρ | ∀k ≥ 0 · ρk ∈ T }.

2. Büchi and coBüchi objectives. Let T ⊆ L be a set of target locations. The
Büchi objective Buchi(T ) requires that a state in T be visited infinitely
often, that is, Buchi(T ) = {ρ | Inf(ρ)∩T 	= ∅}. Dually, the coBüchi objective
coBuchi(T ) requires that only states in T be visited infinitely often. Formally,
coBuchi(T ) = {ρ | Inf(ρ) ⊆ T }.

3. Parity objectives. For d ∈ N, let p : L→ {0, 1, . . . , d} be a priority function,
which maps each state to a nonnegative integer priority. The parity objective
Parity(p) requires that the minimum priority that occurs infinitely often be
even. Formally, Parity(p) = {ρ | min{p(�) | � ∈ Inf(ρ)} is even}. The Büchi
and coBüchi objectives are the special cases of parity objectives with two
priorities, p : L→ {0, 1} and p : L→ {1, 2}, respectively.

Sure, almost-sure and positive winning. An event is a measurable set of plays,
and given strategies α and β for the two players, the probabilities of events are
uniquely defined. For an objective φ, assumed to be Borel, we denote by Prα,β� (φ)
the probability that φ is satisfied by the play obtained from the starting location
� when the strategies α and β are used. Given a game G, an objective φ, and a
location �, we consider the following winning modes: (1) a strategy α for Player 1
is sure winning for the objective φ from � ∈ L if Outcome(G, �, α, β) ⊆ φ for all
strategies β for Player 2; (2) a strategy α for Player 1 is almost-sure winning for

the objective φ from � ∈ L if Prα,β� (φ) = 1 for all strategies β for Player 2; and
(3) a strategy α for Player 1 is positive winning for the objective φ from � ∈ L
if Prα,β� (φ) > 0 for all strategies β for Player 2.

Qualitative analysis of a game consists of the computation of the sure, almost-
sure and positive winning sets. The sure (resp. almost-sure and positive) winning
decision problem for an objective consists of a game and a starting location �, and
asks whether there is a sure (resp. almost-sure and positive) winning strategy
from �.

3 Partial-Observation Stochastic Games

We now recall the usual definition of partial-observation games and their sub-
classes. We focus on partial-observation turn-based probabilistic games, where
at each round one of the players is in charge of choosing the next action and the



Equivalence of Games 391

transition function is probabilistic. We will present a polynomial time reduction
of games with probabilistic uncertainty to these games.

Partial-observation games. A partial-observation stochastic game (for short
partial-observation game or simply a game) is a tuple G = 〈S1 ∪S2, A1, A2, δ1 ∪
δ2,O1,O2〉 with the following components:
1. (State space). S = S1 ∪ S2 is a finite set of states, where S1 ∩ S2 = ∅ (i.e.,
S1 and S2 are disjoint), states in S1 are Player 1 states, and states in S2 are
Player 2 states.

2. (Actions). Ai (i = 1, 2) is a finite set of actions for Player i.
3. (Transition function). For i ∈ {1, 2}, the probabilistic transition function for

Player i is the function δi : Si×Ai → D(S3−i) that maps a state si ∈ Si and
an action ai ∈ Ai to the probability distribution δi(si, ai) over the successor
states in S3−i (i.e., games are alternating).

4. (Observations). O1 ⊆ 2S is a finite set of observations for Player 1 that
partitions the state space S, and similarly O2 is the observations for Player 2.
These partitions uniquely define functions obsi : S → Oi, for i ∈ {1, 2}, that
map each state to its observation such that s ∈ obsi(s) for all s ∈ S. We
will only focus on the special case where Player 2 is perfectly informed (has
complete observation) and refer them as one-sided games, i.e., O2 = S, and
obs2(s) = s for all s ∈ S (i.e., the partition consists of singleton states).

Special Class: POMDPs. We will consider one special class of one-sided
partial-observation games called partial-observable Markov decision processes
(POMDPs), where the action set for Player 2 is a singleton (i.e., there is ef-
fectively only Player 1 and stochastic transitions). Hence we will omit the action
set and observation for Player 2 and represent a POMDP as the following tuple
G = 〈S,A, δ,O〉, where δ : S ×A→ D(S).
Plays. In a game, in each turn, for i ∈ {1, 2}, if the current state s is in Si, then
Player i chooses an action a ∈ Ai, and the successor state is chosen by sampling
the probability distribution δi(s, a). A play in G is an infinite sequence of states
and actions ρ = s0a0s1a1 . . . such that for all j ≥ 0, if sj ∈ Si, for i ∈ {1, 2}, then
aj ∈ Ai such that δi(sj , aj)(sj+1) > 0. The definitions of prefix and length are
analogous to the definitions in Section 2. For i ∈ {1, 2}, we denote by Prefsi(G)
the set of finite prefixes in G that end in a state in Si. The observation sequence
of ρ = s0a0s1a1 . . . for Player i (i = 1, 2) is the unique infinite sequence of
observations and actions, i.e., obs(ρ) = o0a0o1a1o2 . . . such that sj ∈ oj for all
j ≥ 0. The observation sequence for finite sequences (prefix of plays) is defined
analogously.

Strategies. A pure strategy in G for Player 1 is a function α : Prefs1(G) → A1.
A randomized strategy in G for Player 1 is a function α : Prefs1(G) → D(A1).
A (pure or randomized) strategy α for Player 1 is observation-based if for all
prefixes ρ, ρ′ ∈ Prefs1(G), if obs(ρ) = obs(ρ′), then α(ρ) = α(ρ′). We omit
analogous definitions of strategies for Player 2. We denote by AG, AO

G, AP
G, BG,

BO
G, BP

G the set of all Player-1 strategies in G, the set of all observation-based
Player-1 strategies, the set of all pure Player-1 strategies, the set of all Player-
2 strategies in G, the set of all observation-based Player-2 strategies, and the
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set of all pure Player-2 strategies, respectively. In the setting where Player 1
has partial-observation and Player 2 has complete observation, the set BG of all
strategies coincides with the set BO

G of all observation-based strategies. We will
require the players to play observation-based strategies.

Outcomes. The outcome of two randomized strategies α (for Player 1) and β
(for Player 2) from a state s in G is the set of plays ρ = s0a0s1a1 . . . ∈ Plays(G),
with s0 = s, where for all j ≥ 0, if sj ∈ S1 (resp. sj ∈ S2), then α(ρ(j))(aj) > 0
(resp. β(ρ(j))(aj) > 0) and δ1(sj , aj)(sj+1) > 0 (resp. δ2(sj , aj)(sj+1) > 0).
This set is denoted Outcome(G, s, α, β). The outcome of two pure strategies
is defined analogously by viewing pure strategies as randomized strategies that
play their chosen action with probability one. The outcome set of the pure (resp.
randomized) strategy α for Player 1 in G is the set Outcome1(G, s, α) of plays ρ
such that there exists a pure (resp. randomized) strategy β for Player 2 with ρ ∈
Outcome(G, s, α, β). The outcome set Outcome2(G, s, β) for Player 2 is defined
symmetrically.

Probability measure. We define the probability measure Prα,βs (·) as follows: for
a finite prefix ρ, let Cone(ρ) denote the set of plays with ρ as prefix. Then we
have Prα,βs (Cone(s)) = 1, and for a prefix of length n ending in a Player 1 state
sn we have Prα,βs (Cone(ρansn+1)) = Prα,βs (Cone(ρ)) ·α(ρ)(an) · δ1(sn, an)(sn+1);
and the definition when sn is a Player 2 state is similar. For a set Q of finite
prefixes, we write Prα,βs (Cone(Q)) for Prα,βs (

⋃
ρ∈Q Cone(ρ)).

The winning modes sure, almost-sure, and positive are defined analogously to
Section 2, where we restrict the players to play an observation-based strategy.
From the results of [8,2,1,3,7] we obtain the following theorem summarizing the
results for partial-observation games and POMDPs.

Theorem 1 ([8,2,1,3,7]). The following assertions hold:
1. (One-sided games and POMDPs). The sure, almost-sure, and positive win-

ning problems for safety objectives; the sure and almost-sure winning prob-
lems for reachability objectives and Büchi objectives; the sure and positive
winning problems for coBüchi objectives; and the sure winning problem for
parity objectives are EXPTIME-complete for one-sided partial-observation
games (Player 2 perfectly informed) and POMDPs. The positive winning
problem for reachability objectives is PTIME-complete both for one-sided
partial-observation games and POMDPs.

2. (Undecidability results). The positive winning problem for Büchi objectives,
the almost-sure winning problem for coBüchi objectives, and the positive
and almost-sure winning problems for parity objectives are undecidable for
POMDPs.

4 Reduction: Games with Probabilistic Uncertainty to
Partial-Observation Games

We now present a reduction of games with probabilistic uncertainty to one-
sided partial-observation games. Let G = (L,ΣI , ΣO, Δ, un) be a game with
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probabilistic uncertainty and we construct a one-sided partial-observation game
H = (L × L ∪ L× L×ΣI , A1 = ΣI , A2 = ΣO, δ = δ1 ∪ δ2,O1,O2) as follows:
1. The transition function δ1 is deterministic and for (�1, �2) ∈ L × L and
σI ∈ ΣI we have δ((�1, �2), σI) = (�1, �2, σI).

2. The transition function δ2 captures both Δ and un and is defined as follows:
for (�1, �2, σI) ∈ L×L×ΣI and σO ∈ ΣO we have δ((�1, �2, σI), σO)(�

′
1, �

′
2) =

Δ(�1, σI , σO)(�
′
1) · un(�′1)(�′2). Intuitively, the first component of the game

H keeps track of the real state of the game G, and the second component
keeps track of the information available from probabilistic uncertainty. Hence
Player 1 is only allowed to observe the second component which is the prob-
ability distribution over the observable state given the current state.

3. The observation mapping is as follows: we have O1 = L; and obs1(�1, �2) =
obs1(�1, �2, σI) = �2, i.e., only the second component is observable. Player 2
has perfect observation.

4. For a parity objective in G given by priority function pG : L→ {0, 1, . . . , d},
we consider the priority function pH in H as follows: pH((�, �′)) =
pH((�, �′, σI)) = pG(�), for all �, �

′ ∈ L and σI ∈ ΣI .
Correspondence of strategies. We will now establish the correspondence of
probabilistic uncertain strategies in G and the observation based strategies in H .
We present a few notations. For simplicity of presentation, we will use a slight
abuse of notation: given a history (or finite prefix) ρH = s0a0s1a1s2a2 . . . s2n
in H we will represent the history as s0a0a1s2a2a3s3 . . . s2n as the intermediate
state is always uniquely defined by the state and the action. Intuitively this is
removing the stuttering and does not affect parity objectives.

Mapping of strategies from G to H. Given a history ρH = s0a0a1s2a2a3s3 . . . s2n
in H , such that s2i = (�12i, �

2
2i), we consider two histories in G as follows:

(i) g1(ρH) = �10a0a1�
1
2a2a3 . . . �

1
2n; and (ii) g2(ρH) = �20a0a1�

2
2a2a3 . . . �

2
2n. In-

tuitively, g1 gives the first component (which is the correct history) and g2 gives
the second component (which is the observed history). We now define the map-
ping of strategies from G to H : given strategy αG for Player 1, a strategy βG for
Player 2, in the game G, we define the corresponding strategies in H as follows:
for a history ρH and an action ai for Player 1 we have: (i) αH(ρH) = αG(g2(ρH));
(ii) βH(ρH ai) = βG(g1(ρH), g2(ρH), ai). Note that αH is an observation-based
strategy, and βH is a strategy with complete-observation. We will use ĝ to denote
the mapping of strategies, i.e., αH = ĝ(αG) and βH = ĝ(βG).

Mapping of strategies from H to G. We now present the mapping in the other
direction. Let ρ1G = �10σ

i
0σ

o
0�

1
1σ

i
1σ

o
1 . . . �

1
n, and ρ

2
G = �20σ

i
0σ

o
0�

2
1σ

i
1σ

o
1 . . . �

2
n be two

prefixes in G. Intuitively, the first represent the correct history and the sec-
ond the observed history. Then we consider the following set of histories in H :
(i) h1(ρ

1
G) = {ρH | g1(ρH) = ρ1G}; and (ii) h2(ρ

2
G) = {ρH | g2(ρH) = ρ2G}; and

(iii) h12(ρ
1
G, ρ

2
G) = (�10, �

2
0)σ

i
0σ

o
0(�

1
1, �

2
1)σ

i
1σ

o
1 . . . (�

1
n, �

2
n). We now define the map-

ping of strategies. Given an observation-based strategy αH ∈ AO
H for Player 1,

and a complete observation-based strategy βH ∈ BH , we define the following
strategies in G: for a correct history ρ1G, observed history ρ2G, and input σi

we have: (i) αG(ρ
2
G) = αH(ρH) for ρH ∈ h2(ρ2G); and (ii) βG(ρ

1
G, ρ

2
G, σ

i) =
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βH(h12(ρ
1
G, ρ

2
G), σi). Note that since αH is observation-based it plays the same

for all ρH ∈ h2(ρ2G). We will use ĥ to denote the mapping of strategies, i.e.,

αG = ĥ(αH) and βG = ĥ(βH).
Given a starting state �0 ∈ G, consider the following probability distribution

μ in H : μ(�0, �) = un(�0)(�). Given the mapping of strategies, our goal is to
establish the equivalences of the probability measure. We introduce some nota-
tions required to establish the equivalence. For j ≥ 0, we denote by (τ1j , τ

2
j ) the

pair of random variables to denote the j-th Player 1 state of the game H , and
by θij and θoj the random variables for the actions following the j-th state. Our
first lemma establishes a connection of the probability of observing the second
component inH given the first component along with function ObsSeq. We intro-
duce notations to define two events: given two prefixes ρ1G = �10σ

i
0σ

o
0�

1
1σ

i
1σ

o
1 . . . �

1
n,

and ρ2G = �20σ
i
0σ

o
0�

2
1σ

i
1σ

o
1 . . . �

2
n in G, let E1,2(ρ1G, ρ2G) denote the event that for

all 0 ≤ j ≤ n we have τ1j = �1j , τ
2
j = �2j and for all 0 ≤ j ≤ n − 1 we have

θij = σij , θ
o
j = σoj ; and E1(ρ1G) denote the event that for all 0 ≤ j ≤ n we have

τ1j = �1j and for all 0 ≤ j ≤ n− 1 we have θij = σ
i
j , θ

o
j = σoj .

Lemma 1. Let ρ1G = �10σ
i
0σ

o
0�

1
1σ

i
1σ

o
1 . . . �

1
n, and ρ2G = �20σ

i
0σ

o
0�

2
1σ

i
1σ

o
1 . . . �

2
n be

two prefixes in G. Then for all strategies αH and βH , the probability that
the second component sequence in H is ρ2G, given the first component se-
quence is ρ1G is ObsSeq(ρ1G)(ρ

2
G), i.e., formally PrαH ,βH

μ (E1,2(ρ1G, ρ2G) | E1(ρ1G)) =
ObsSeq(ρ1G)(ρ

2
G).

Lemma 2 using Lemma 1 and an inductive argument establishes the equivalences
of the probabilities of the cones.

Lemma 2. For all finite prefixes ρ1G in G, the following assertions hold:

(1) For all strategies αG and βG, we have (i) PrαG,βG

�0
(Cone(ρ1G)) =

Prĝ(αG),ĝ(βG)
μ (Cone(h1(ρ

1
G))). (2) For all strategies αH and βH , we have

(i) Pr
ĥ(αH),ĥ(βH)
�0

(Cone(ρ1G)) = PrαH ,βH
μ (Cone(h1(ρ

1
G))).

Proof. We will present the result for the first item, and the proof for second
item is identical. Let us denote by αH = ĝ(αG) and βH = ĝ(βG). We will
prove the result by induction on the length of the prefixes. The base case is as
follows: let the length of the prefix ρ1G be 1, with ρ1G = �0. We observe that

PrαG,βG

�0
(Cone(�0)) = 1, and PrαH ,βH

μ (Cone(h1(�0))) = 1, and for all other cones
of length 1 the probability is zero. This completes the base case.

We now consider the inductive case: by inductive hypothesis we assume that
PrαG,βG

�0
(Cone(ρ1G)) = PrαH ,βH

μ (Cone(h1(ρ
1
G))); and show that

PrαG,βG

�0
(Cone(ρ1Ganbn�n+1)) = PrαH ,βH

μ (Cone(h1(ρ
1
Ganbn�n+1))).

Let �n be the last state of ρ1G. We first consider the left-hand side (LHS), and
for brevity in presentation let us denote Term = αG(ρ

′)(an) · βG(ρ1Gρ′an)(bn) ·
Δ(�n, an, bn)(�n+1)
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Pr αG,βG

�0
(Cone(ρ1Ganbn�n+1))

= PrαG,βG

�0
(Cone(ρ1G)) ·

( ∑
ρ′∈AcMt(ρ1

G)

ObsSeq(ρ1G)(ρ
′) · Term

)
= PrαH ,βH

μ (Cone(h1(ρ
1
G))) ·

( ∑
ρ′∈AcMt(ρ1

G)

ObsSeq(ρ1G)(ρ
′) · Term

)
=

∑
ρ′∈AcMt(ρ1

G)

PrαH ,βH
μ (Cone(h12(ρ

1
G, ρ

′))) · Term

Above the first equality is by definition, the second equality by inductive hy-
pothesis, and the last equality is obtained as follows: by Lemma 1 we have
ObsSeq(ρ1G)(ρ

′) = PrαH ,βH
μ (E1,2(ρ1G, ρ′) | E1(ρ1G)), and hence

PrαH ,βH
μ (Cone(h1(ρ

1
G))) ·

∑
ρ′∈AcMt(ρ1

G)

ObsSeq(ρ1G)(ρ
′)

=
∑

ρ′∈AcMt(ρ1
G)

PrαH ,βH
μ (Cone(h1(ρ

1
G))) · PrαH ,βH

μ (E1,2(ρ1G, ρ′) | E1(ρ1G))

=
∑

ρ′∈AcMt(ρ1
G)

PrαH ,βH
μ (Cone(h12(ρ

1
G, ρ

′))).

We now consider the right-hand side (RHS) PrαH ,βH
μ (Cone(h1(ρ

1
Ganbn�n+1)))

and the RHS can be expanded as: (below for brevity we write ρ̂ = h12(ρ
1
G, ρ

′))

∑
ρ′∈AcMt(ρ1

G
)

∑
�′
n+1

PrαH ,βH
μ (Cone(ρ̂))·αH(ρ̂)(an)·βH(ρ̂an)(bn)·δ((�n, �′n, an), bn)(�n+1, �

′
n+1)

Since we have

αH(h12(ρ
1
G, ρ

′))(an) = αG(ρ
′)(an); and βH(h12(ρ

1
G, ρ

′)an)(bn) = βG(ρ
1
Gan)(bn),

the above expression for RHS is equivalently described as:∑
ρ′∈AcMt(ρ1

G)

∑
�′n+1

PrαH ,βH
μ (Cone(h12(ρ

1
G, ρ

′))) · Term · un(�n+1)(�
′
n+1)

Since
∑

�′n+1
un(�n+1)(�

′
n+1) = 1, it follows that LHS is equal to the RHS. This

completes the proof and the desired result follows.

It follows that there is a sure, almost-sure, positive winning strategy in G for
Parity(pG) iff there is a corresponding one in H for Parity(pH) and hence from
Theorem 1 we obtain the following result.

Theorem 2. The sure, almost-sure, and positive winning problems for safety
objectives; the sure and almost-sure winning problems for reachability objectives
and Büchi objectives; the sure and positive winning problems for coBüchi objec-
tives; and the sure winning problem for parity objectives can be solved in EX-
PTIME for games with probabilistic uncertainty. The positive winning problem
for reachability objectives can be solved in PTIME.
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5 Reduction: POMDPs to Games with Probabilistic
Uncertainty

In this section we present a reduction in the reverse direction and show that
POMDPs with parity objectives can be reduced to games with probabilistic
uncertainty and parity objectives. We first present the reduction and then show
the correctness of the reduction by mapping prefixes, strategies, and establishing
the equivalence of the probability measure.

Reduction: POMDPs to games with probabilistic uncertainty. Let H =
(S,A, δ,O) be a POMDP with a parity objective φ, we construct the game of
probabilistic uncertainty G = (L,ΣI , ΣO, Δ, un) as follows: (i) L = S; (ii) ΣI =
A; (iii) ΣO = {⊥}; (iv) for � ∈ L and a ∈ ΣI let Δ(�, a,⊥)(�′) = δ(�, a)(�′),
i.e., the transition function is same as the transition function of the POMDP.
In other words, the state space is the same, the action choices of the POMDP
corresponds to the input action choice, and the output action set is singleton,
and the transition function mimics the transition function of the POMDP. Below
we use the probabilistic uncertainty to capture the partial-observation of the
POMDP. The uncertainty function is as follows: un(�)(�′) = 0 if obs(�) 	= obs(�′)
and 1

|obs(�)| if obs(�) = obs(�′). Finally, the parity objective is the same as the

original parity objective.

Mapping of prefixes.Given a prefix (or a finite history) ρH = s0a0s1a1s2 . . . sn
in H we construct a prefix in G as ρG = s0a0⊥s1a1⊥s2 . . . sn by simply inserting
the ⊥ actions. This construction defines a bijection h : PrefsH → PrefsG between
prefixes. We can naturally extend the mapping to sets of prefixes. Let Ψ ⊆
PrefsH , then h′(Ψ) = {h(ρ) | ρ ∈ Ψ}.

Lemma 3. For prefixes ρ, ρ′ in G we have ObsSeq(ρ)(ρ′) = 1∏n
i=1 |oi| if

obs(h−1(ρ)) = obs(h−1(ρ′)) = o1a1o2 . . . an−1on; and 0 otherwise.

Mapping of strategies. We first present the mapping of strategies from H
to G and then from G to H . Note that in the game G, there is no choice for
Player 2, and hence we remove the Player 2 strategies in the descriptions below.

Mapping strategies from H to G. Let αH be an observation-based Player-1 strat-
egy in H and ρG = s0a0⊥s1a1⊥s2 . . . sn be a prefix in G. We define a Player-1
strategy αG in G as follows: αG(ρG) = αH(h−1(ρG)).

Mapping strategies from G to H. Let αG be a Player-1 strategy in G and
ρH = s0a0s1a1s2 . . . sn be a prefix in H with o = o0a0o1a1o2 . . . on as its ob-
servation sequence. Note that as Player 2 has only one strategy (always play-
ing ⊥) we omit it from discussion. Note that every ρ ∈ AcMt(h(ρH)) can
have different actions with different probabilities enabled. We define a Player 1
strategy αH in H as follows: for an action a ∈ A we have αH(ρH)(a) =∑

ρ′∈AcMt(h(ρH)) ObsSeq(h(ρH))(ρ′) · αG(ρ′)(a). Using Lemma 3 we have that
ObsSeq only depends on the observation sequence, and thus we obtain Lemma 4.

Lemma 4. The strategy αH obtained from strategy αG is an observation-based
strategy for Player 1 in H.
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Correspondence of probabilities. In the following two lemmas we establish
the correspondence of the probabilities for the mappings.

Lemma 5. Consider the mapping of strategies from H to G. For all prefixes
ρH in H we have PrαH

μ (Cone(ρH)) = PrαG

�0
(Cone(h(ρH))).

Proof. The proof is based on induction on the length of the prefix ρH . We denote
the last state of ρH by �n.

Base case. For prefixes of length 1 where ρH = �0 we get PrαH
μ (Cone(�0)) = 1

and PrαG

l0
(Cone(h(�0))) = 1. For all other prefixes both sides are equal to 0.

Hence the base case follows.

Inductive step. By inductive hypothesis we assume the result for prefixes ρH of
length n (i.e., we assume that PrαH

μ (Cone(ρH)) = PrαG

�0
(Cone(h(ρH)))) and will

show that

PrαH
μ (Cone(ρHan�n+1)) = PrαG

�0
(Cone(h(ρHan�n+1))).

First we expand the left hand side (LHS) and by definition we get that:

PrαH
μ (Cone(ρHan�n+1)) = PrαH

μ (Cone(ρH)) · αH(ρH)(an) · δ(�n, an)(�n+1).

We now expand the right hand side (RHS) and get that:

PrαG

�0
(Cone(h(ρHan�n+1))) =

PrαG

�0
(Cone(h(ρH))) ·

∑
ρ′∈AcMt(h(ρH))

ObsSeq(h(ρH))(ρ′) · αG(ρ′)(an) ·Δ(�n, an,⊥)(�n+1)

Using inductive hypothesis, the definition of the game, and the mapping of strate-
gies we get on RHS:

PrαG

�0
(Cone(h(ρHan�n+1))) =

PrαH
μ (Cone(ρH)) ·

∑
ρ′∈AcMt(h(ρH))

ObsSeq(h(ρH))(ρ′) · αH(h−1(ρ′))(an) · δ(�n, an)(�n+1)

For all ρ′ that does not match the observation sequence of h(ρH), we have
ObsSeq(h(ρH))(ρ′) = 0 (by Lemma 3), and as αH is observation based for all
ρ′ ∈ AcMt(ρH) that matches the observation sequence of h(ρH), the strategy αH
plays the same. Let us denote by ρ′ ≈ h(ρH) that ρ′ matches the observation
sequence of h(ρH). Then we have∑

ρ′∈AcMt(h(ρH))

ObsSeq(h(ρH))(ρ′) · αH(h−1(ρ′))(an)

=
∑

ρ′∈AcMt(h(ρH)),ρ′≈h(ρH)

ObsSeq(h(ρH))(ρ′) · αH(h−1(ρ′))(an)

=
∑

ρ′∈AcMt(h(ρH)),ρ′≈h(ρH)

ObsSeq(h(ρH))(ρ′) · αH(ρH)(an)

= αH(ρH)(an);
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where the first equality follows as for all sequences ρ′ that does not match the ob-
servation sequence of h(ρH) we have ObsSeq(h(ρH))(ρ′) = 0; the second equality
follows as for all ρ′ ≈ h(ρH) we have αH(h−1(ρ′))(an) = αH(ρH)(an) (as αH is
observation based); and the last equality follows because as ObsSeq is a probabil-
ity distribution we have

∑
ρ′∈AcMt(h(ρH)),ρ′≈h(ρH) ObsSeq(h(ρH))(ρ′) = 1. Hence

we have

PrαG

�0
(Cone(h(ρHan�n+1))) = PrαH

μ (Cone(ρH)) · αH(ρH)(an) · δ(�n, an)(�n+1)

Thus we have that LHS and RHS coincide and this completes the proof.

Lemma 6. Let us consider the mapping of strategies from G to H. For all
prefixes ρG in G we have PrαH

μ (Cone(h−1(ρG))) = PrαG

�0
(Cone(ρG)).

The proof of Lemma 6 is similar to the proof of Lemma 5. The previous two
lemmas establish the equivalence of the probability measure and completes the
reduction of POMDPs to games with probabilistic uncertainty. Hence the lower
bounds for POMDPs also gives us the lower bound for games with probabilistic
uncertainty. Hence Theorem 2, along with the reduction from POMDPs and
Theorem 1 gives us the following result for games with probabilistic uncertainty
(the results are also summarized in Table 1).

Theorem 3. The following assertions hold:
1. (Complexity results). The sure, almost-sure, and positive winning problems

for safety objectives; the sure and almost-sure winning problems for reach-
ability and Büchi objectives; the sure and positive winning problems for
coBüchi objectives; and the sure winning problem for parity objectives are
all EXPTIME-complete for games with probabilistic uncertainty. The posi-
tive winning problem for reachability objectives is PTIME-complete.

2. (Undecidability results). The positive winning problem for Büchi objectives,
the almost-sure winning problem for coBüchi objectives, and the positive and
almost-sure winning problems for parity objectives are undecidable for games
with probabilistic uncertainty.

6 Conclusion

We considered games with probabilistic uncertainty, a natural model for control
under sensing uncertainties. We present a reduction of such games to classical
partial-observation games and a reduction of POMDPs to such games. As a con-
sequence we establish the precise decidability frontier and optimal complexities
for games with probabilistic uncertainty (Table 1).
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Abstract. We provide a Kleene Theorem for (Rabin) probabilistic au-
tomata over finite words. Probabilistic automata generalize deterministic
finite automata and assign to a word an acceptance probability. We pro-
vide probabilistic expressions with probabilistic choice, guarded choice,
concatenation, and a star operator. We prove that probabilistic expres-
sions and probabilistic automata are expressively equivalent. Our result
actually extends to two-way probabilistic automata with pebbles and
corresponding expressions.

1 Introduction

Kleene’s Theorem states the equivalence of rational and recognizable languages
in the free monoids. Naturally, this fundamental result has been generalized to
various settings and in particular to quantitative extensions of classical languages,
called formal power series [24,23,4].

The present paper aims at a probabilistic counterpart of Kleene’s Theorem.
There are actually a variety of models for probabilistic systems, comprising
Segala systems, generative systems, stratified systems, Markov chains, etc. (see
[29,25] for overviews). Those models may involve non-determinism and generate
some behavior according to probability distributions over states. Alternatively,
they may make a probabilistic decision depending on the input letter, like (re-
active) probabilistic automata [20]. The latter go back to Rabin [21] and are
an object of ongoing research considering decision problems such as emptiness,
language equivalence [24,28,9,10,18], and the value 1 problem [17].

Our starting point of view is that expressions and automata shall represent
quantitative properties of words. In particular, rather than at bisimulation equiv-
alence, we are looking at language equivalence in terms of formal power series
(i.e., mappings from strings to elements from the real-valued interval [0, 1]). This
actually has an immediate impact on the choice of both the automaton model
and the syntax of expressions that are supposed to characterize it. On the au-
tomata side, a probabilistic decision should depend on the given input. Therefore,
we consider probabilistic automata. On the specification side, we would like to
adopt concepts from rational expressions. In this paper, we actually provide a
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simple fragment of classical weighted rational expressions over the nonnegative
real numbers, including a star operator and concatenation. The star operator
has to be handled with care, though. It comes with a subtle restriction to make
sure that an expression associates with every word a probability. In this way, we
obtain a class of probabilistic expressions that have the same expressive power
as probabilistic automata. Translations forth and back are effective so that de-
cidability results for automata directly carry over to expressions.

Actually, we prove a more general result. Expressions are extended in such
a way that they capture two-way probabilistic automata [14,22] and automata
with pebbles (similar to two-way word automata and tree-walking automata).
Our expressions can then be considered as a probabilistic generalization of XPath
[19,27]. Note that (non-probabilistic) two-way automata are in fact an appropri-
ate machine model for compiling XPath queries [5]. The concept presented in
this paper may therefore constitute a first step towards probabilistic database
query languages: an expression is considered as a query, and an equivalent au-
tomaton can be used as a tool for evaluating queries efficiently (see [16] for recent
developments on weighted query evaluation).

Related Work. It has to be noted that there have been numerous approaches to
characterizing probabilistic systems in terms of algebraic expressions and process
calculi [29,7,12,11]. A unifying framework is due to Silva et al. [26], who consider
probabilistic systems in a general coalgebraic setting. This allows them to derive
algebraic expressions and a corresponding Kleene Theorem, as well as full ax-
iomatizations for many of those (and even for weighted automata over arbitrary
semirings). Their and above-mentioned works are mainly aiming at axiomatiza-
tion of probabilistic-system behaviors in terms of bisimulation equivalence, so
their focus is on system models including non-determinism and generative proba-
bility distributions. In this paper, we consider probabilistic automata, which are
a more appropriate machine model for our purpose, i.e., for evaluating queries.
Moreover, while the syntax of process-algebraic expressions is tailored to model-
ing probabilistic systems and uses action prefixing, fixed points, and process vari-
ables, we provide expressions with concatenation and a proper Kleene star. Thus,
our expressions are closer to language-theoretic operations and more convenient
to use in query languages. So far, there have been only few attempts to define
quantitative query languages. In [15], Flesca et al. introduce a weighted XPath.
Their approach, however, does not extend to probabilistic automata. Note that
the fact that we also consider two-way devices distinguishes our work from all
above-mentioned references. To the best of our knowledge, we present the first
Kleene-Schützenberger correspondence for probabilistic two-way automata.

Outline. In Section 2, after some motivating example, we recall the definition of
(reactive) probabilistic automata, introduce our probabilistic regular expressions,
and present a corresponding Kleene Theorem. A part of the proof of this theorem
is postponed to Section 4, where a more general result is shown for two-way
probabilistic automata and corresponding generalized expressions (which are
introduced in Section 3): automata and expressions are expressively equivalent
and can be transformed effectively into each other.
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1 32

a, 1
2

a, 1
3

b, 1

a, 1
6

a, 1
b, 1

Fig. 1. A probabilistic automaton equivalent to
[
1
6
a(a+ b) + 1

2
a
]∗ · ( 1

3
a+ b)

2 Probabilistic Automata and Expressions

Preliminaries.We fix a finite alphabetA. We restrict our attention to nonempty
words over A, i.e., sequences w = a0 · · · an−1 ∈ A+ with n ≥ 1 and ai ∈ A for
every i. The length n of w is denoted |w|, and pos(w) = {0, . . . , |w|} is the set of
positions of w. The last position of index n is added to facilitate the definition
of runs in two-way automata. To be able to deal with infinite sums over the
non-negative real numbers, we extend R≥0 to R∞

≥0 = R≥0∪{∞}. In other words,
we consider the continuous semiring (R∞

≥0,+, · , 0, 1) where∞ is assigned to any
infinite sum that does not converge.

2.1 Probabilistic Automata

We consider classical probabilistic finite automata (PFA) [21,20]. A PFA over
alphabet A is a tuple A = (Q, ι,Acc,P) where Q is the finite set of states,
ι ∈ Q is the initial state, and Acc ⊆ Q is the set of final states. Moreover,
P : Q×A×Q→ [0, 1] is a function that assigns a probability to each transition.
PFA are reactive automata, whose probabilistic choice depends on the current
input letter. Thus, we require that

∑
q′∈Q P(q, a, q′) ≤ 1 for all (q, a) ∈ Q × A.

We will moreover assume that a final state has no outgoing transitions with
positive probability: P(q, a, q′) > 0 implies q /∈ Acc. An example PFA is depicted
in Fig. 1 where 1 is the initial state and 3 is the only final state. Transitions with
probability 0 are omitted.

An accepting run of A over w = a0 · · ·an−1 ∈ A+ is a sequence of transitions
ρ = δ1 · · · δn such that δi = (qi−1, ai−1, qi) with q0 = ι and qn ∈ Acc. Given a
run ρ, we set P(ρ) =

∏n
i=1 P(δi). The semantics of the PFA A is the mapping

(series) �A� : A+ → [0, 1] given by �A�(w) =
∑

ρ P(ρ), where the sum ranges
over all accepting runs ρ over w. For instance, given the automaton of Fig. 1, we
have �A�(aab) = 1

4 + 1
6 = 5

12 .

2.2 Probabilistic Expressions

While PFAs are a machine model, we are aiming at denotational probabilistic
regular expressions with the same expressiveness as PFAs. We start with the
definition of classical weighted expressions (WEs) given by the syntax

E ::= s | a | E + E | E · E | E∗
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with s ∈ R∞
≥0 and a ∈ A. In the following, we often simply write EF instead of

E · F . Also, we let E0 def
= 1 and Em+1 = EEm for m ≥ 0. The semantics of a

WE E is a mapping �E� : A+ → R∞
≥0 which is defined inductively by

�s�(w) =

{
s if w = ε

0 otherwise
�a�(w) =

{
1 if w = a

0 otherwise

�E1 + E2�(w) = �E1�(w) + �E2�(w) �E∗�(w) =
∑

m∈N
�Em�(w)

�E1 · E2�(w) =
∑
w=uv

�E1�(u) · �E2�(v) .

In the following, we consider expressions modulo the following trivial identities:

0 + E ≡ E + 0 ≡ E E · 0 ≡ 0 ·E ≡ 0 E · 1 ≡ 1 ·E ≡ E 0∗ ≡ 1

We introduce below probabilistic regular expressions (PREs) as a fragment of
WEs. We have to restrict WEs since otherwise values greater than 1 could be
obtained. For instance, the WE (a + ab)(ba + a) should not be a PRE since it
evaluates to 2 on the word aba. The restriction will be both on sum and star.
Since we aim at PREs which are equivalent to PFAs, let us examine first which
type of WEs are obtained from PFAs. A transition δ = (q, a, q′) with probability
P(δ) = s could be denoted by the expression sa. Applying classical algorithms
to build a regular expression from finite-state automata, we then obtain, for the
automaton in Fig. 1, the expression

[
1
6a(a+b)+

1
2a

]∗·(13a+b). Now, the expression[
1
6a(a + b) +

1
2a

]∗ · (a + b), obtained by changing the subexpression 1
3a into a,

should be disallowed, because it corresponds to an automaton violating condition∑
q′∈QP(q, a, q

′) ≤ 1. On the other hand,
[
1
6a(a + b) +

1
2a

]∗ · (13a + 1
2b) would

be acceptable: we obtain a corresponding PFA from the automaton depicted in
Fig. 1 by setting P(1, b, 3) = 1

2 .

Definition 1. Probabilistic regular expressions (PREs) is the fragment of WEs
built inductively as follows:
(Atoms) s ∈ [0, 1] and a ∈ A are PREs.

(+a) If (Ea)a∈A are PREs, then
∑

a∈A a · Ea is a PRE.
(+s) If E and F are PREs and s ∈ [0, 1], then s ·E + (1− s) · F is a PRE.
(·) If E and F are PREs, then E · F is a PRE.
(∗) If E + F is a PRE, then E∗ · F is a PRE.

(ACD) Every WE that is obtained from a PRE by applying commutativity of
+, associativity of + or ·, or distributivity of · over + is a PRE.

There are two guarded sums. The first one (+a) is deterministic and guarded
by the next letter to be read. The second one (+s) is probabilistic. Also, the
star operation contains an implicit choice which is either to iterate again the
expression or to exit the loop. This choice also has to be guarded which is
the reason for the precondition E + F ∈ PRE in the rule (∗). The guard could
be deterministic as in (ab)∗b or probabilistic as in (13 (aa+ bb))

∗ 2
3 (a+ b). Finally,

with the above restrictions, we lose the classical ACD identities, hence we enforce
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these properties explicitely with the ACD-rules which allow to rewrite a PRE in
order to apply the star rule as needed.

Since PREs form a fragment of WEs, the semantics is inherited. From The-
orem 1 below, PREs are equivalent to PFAs. We deduce that the semantics of
E ∈ PRE takes values in [0, 1], so that one can interpret �E�(w) as a probability.

Example 1. A simplePRE is (13a)
∗ · 23b, which assigns to aword amb the probability

(13 )
m · 23 , and 0 to words not in a∗b. Moreover,E =

[
1
6a(a+ b) +

1
2a

]∗ · (13a+ b) is
indeed a PRE for the automaton fromFig. 1. To show thatE is a PRE, we use some
semantical equivalences such as sa ≡ as or 5

6 ≡
1
2 +

1
3 . The expression a(

1
6 (a+ b)+

5
6 )+ b uses two deterministic sums (first and third) and a probabilistic sum. Using
the above semantical equivalences andACD-rules, we deduce that 1

6a(a+b)+
1
2a+

1
3a+ b is a PRE and it remains to apply the star rule to get E.

In order to construct a PRE which is equivalent to a PFA, we need to be able
to concatenate a PRE after an arbitrary term of another PRE. This is possible
thanks to the following result.

Proposition 1. If E + F and G are PREs, then E + F ·G is also a PRE.

For a PFA, we can always find an equivalent PRE, and vice versa. This first
theorem, which is non-trivial even in the one-way setting, is generalized in the
next sections allowing two-way moves and pebbles.

Theorem 1. PFAs and PREs are effectively equivalent.

Proof. We only prove the translation from automata to expressions. The other
direction will be proved in a more general setting in Section 3.

Let A = (Q, ι,Acc,P) be a PFA. For each q ∈ Q \ Acc we construct a PRE
Eq =

∑
q′∈Acc Eq,q′ where �Eq,q′�(w) computes the sum of the probabilities of

nonempty runs over w starting from state q, ending in state q′. Hence, we will
obtain the PRE Eι, which computes exactly the behavior of A.

We follow usual procedures to translate automata into expressions. For q′ ∈ Q
and X ⊆ Q \Acc, we define fXq′ = 0 if q′ ∈ X and 1 otherwise. For q ∈ Q \Acc
and X ⊆ Q \Acc, we construct by induction on X a PRE EX

q =
∑

q′∈QE
X
q,q′f

X
q′

where EX
q,q′ is a PRE such that �EX

q,q′ �(w) is the sum of the probabilities of
nonempty runs over w starting from state q, ending in state q′ and using only

intermediary states in X . Hence, we have Eq = E
Q\X
q and Eq,q′ = E

Q\X
q,q′ .

The base of the induction is when X = ∅. For each state q ∈ Q \ Acc and
letter a ∈ A, by definition of PFAs we have

∑
q′∈Q P(q, a, q′) ≤ 1. Hence, using

rules (+a) and (+s) we obtain the PRE

E∅
q =

∑
a∈A
a ·

∑
q′∈Q

P(q, a, q′) =
∑

q′∈Q
E∅

q,q′f
∅
q′

where the last equality is obtained using ACD-rules and f∅q′ = 1.
For the induction step, let X ∪ {r} ⊆ Q \ Acc with r /∈ X . By induction,

we assume that PREs EX
q have been constructed for all q ∈ Q \ Acc, and we



A Probabilistic Kleene Theorem 405

construct E
X∪{r}
q . We have EX

r =
∑

q′∈QE
X
r,q′f

X
q′ ∈ PRE and fXr = 1 since

r /∈ X . Using rule (∗), we get GX
r =

(
EX

r,r

)∗ · (∑q′∈Q\{r}E
X
r,q′f

X
q′
)
∈ PRE . Now,

EX
q =

∑
q′∈QE

X
q,q′f

X
q′ ∈ PRE and fXr = 1. Using Proposition 1, we can plug GX

r

after EX
q,r and we obtain the PRE

EX∪{r}
q = EX

q,r ·GX
r +

∑
q′∈Q\{r}

EX
q,q′f

X
q′

=
∑

q′∈Q\{r}

(
EX

q,q′ + E
X
q,r

(
EX

r,r

)∗
EX

r,q′
)
fXq′ (ACD-rules)

=
∑

q′∈Q
E

X∪{r}
q,q′ f

X∪{r}
q′

using f
X∪{r}
r = 0 and f

X∪{r}
q′ = fXq′ if q′ ∈ Q \ {r}. ��

With Theorem 1, decidability of the equivalence problem for PFAs carries over to
PREs (provided the probabilities in an expression are rational numbers), whereas
their threshold problem is undecidable.

Corollary 1.

1. The equivalence problem for PREs is decidable: given PREs E and F , does
�E� = �F � hold?

2. The threshold problem for PREs is undecidable: given an alphabet A, a PRE
E over A and 0 < s < 1, is there a word w ∈ A+ such that �E�(w) ≥ s?

Note that PFAs cannot recognize all series recognized by usual Rabin automata,
i.e., PFAs without the blocking assumption over accepting states. For example,
the map g : A+ → [0, 1], defined by g(an) = 1 if n > 0 and g(w) = 0 for
all other words w, is not recognizable by a PFA (note that a∗a is not a PRE).
However, g is recognized by a Rabin automaton with a single state. To deal with
this issue, we can add a fresh symbol � at the end of a word. For a function
f : A+ → [0, 1], we define f� : (A∪{�})+ → [0, 1] by f�(w�) = f(w) if w ∈ A+,
and 0 otherwise. For example, the series g� is defined by a(a∗�), which is a PRE
since a+� ∈ PRE. More generally, we can prove the following:

Proposition 2. Let f : A+ → [0, 1]. The function f� is recognizable by a PFA
(or equivalently by a PRE) iff f is recognizable by a Rabin automaton.

3 Adding Two-Way Navigation and Pebbles

In this section, we extend probabilistic automata and expressions such that they
allow us to navigate in a given word and place pebbles that can be recovered
later. Before we extend PFAs and PREs accordingly, let us give a motivating
example.

Example 2. Using pebbles in probabilistic expressions or automata is a natural
and powerful way to deal with nesting in LTL formulas. Indeed, temporal logics
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implicitly use a free variable to denote the position where a formula has to be
evaluated. We will mark this position with a pebble, say x, in expressions Eϕ(x)
or automata Aϕ(x) associated with LTL formulas ϕ.

Consider an LTL formula Fϕ, for Finally ϕ. Given a word w and a posi-
tion i in w, we are interested in the probability P(Fϕ,w, i) that ϕ holds in
w at position i. For instance, for ϕ = 1

3a, we should obtain P(Fϕ, abba, 0) =
1
3 +

2
3 (0 +

2
3 (0 +

2
3 (

1
3 +0))): either ϕ is satisfied immediately with probability 1

3 ,
or it is not (probability 2

3 ) so that (product) it has to be satisfied later. More
generally, we have

P(Fϕ,w, i) = P(ϕ,w, i) + P(¬ϕ,w, i)× P(Fϕ,w, i + 1)

=
∑
k≥i

P(ϕ,w, k)×
∏

i≤j<k

P(¬ϕ,w, j) .

For every LTL formula ϕ, we are aiming at an equivalent expression Eϕ(x) which
evaluates to P(ϕ,w, i) over word w when pebble x marks position i. For this, we
use a new construct, y!Eϕ(y), which marks the current position with pebble y,
and computes ϕ on the whole word (from beginning to end) with this position
marked (this is a non-progressing construct). Let us illustrate this inductive
construction for LTL formulas. For Finally ϕ, we set

EFϕ(x) = 	?→∗x?
((
y!E¬ϕ(y)

)
→

)∗(
y!Eϕ(y)

)
→∗�? .

The expression starts at the beginning of the word (	?), and moves to the right
(→∗) until it discovers the marked position (x?). Then, for each n ≥ 0, it iterates
n times the computation of ¬ϕ with the current position marked by y (y!E¬ϕ(y)),
moving to the right (→) between two computations. Finally, it computes ϕ with
y!Eϕ(y) before moving to the last position of the word (→∗�?).

Similarly, for Globally ϕ (Gϕ), we have P(Gϕ,w, i) =
∏

j≥i P(ϕ,w, j), leading
to the simpler expression

EGϕ(x) = 	?→∗x?
((
y!Eϕ(y)

)
→

)∗�? .

The last test (�?) is useful to enforce the preceding star operation to capture
the whole suffix of the word from the position marked by x.

Finally, based on the equivalence ϕUψ ≡ (¬ψ∧ϕ)Uψ, the expression for the
Until modality is

EϕUψ(x) = 	?→∗x?
((
y!(E¬ψ(y)←∗Eϕ(y))

)
→

)∗(
y!Eψ(y)

)
→∗�? .

In terms of automata, let us assume that, for every formula ϕ, there is an au-
tomaton Aϕ with two designated terminal states, OK and KO, such that runs
ending in OK (and at the end of the word) compute expression Eϕ and those
ending in KO compute expression E¬ϕ. These automata are 2-way, and can drop
and lift pebbles on word positions. Dropping a pebble resets the control at the
beginning. Lifting a pebble can be performed anywhere and resets the control to
the position of the last dropped pebble (which then gets removed). The figure
below depicts automata for the modalities Finally and Globally.
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�?

Aϕ(y)
OK

KO

→

x? →

drop

�?lift

�?lift

→
�?

Aϕ(y)
OK

KO

→

x? →

drop �?lift

3.1 Probabilistic Pebble Automata

Our extended automata navigate (just like extended expressions defined below)
inside a word in both directions, denoted → and ←. Motivated by Example 2,
we moreover equip automata with p ∈ N pebbles, 1, . . . , p. Naturally, two-way
automata can check if the current position carries some particular letter or peb-
ble, or if it is a border (i.e., the first or last) position of the input word. Thus,
they make their probabilistic choice depending on the type of the current posi-
tion, which is a set containing the letter and pebbles that can be found at the
current position. Formally, a p-type is a set t ⊆ A ∪ {	,�} ∪ {1, . . . , p} such
that (i) � ∈ t implies t = {�}, and (ii) � /∈ t implies |t ∩ A| = 1. In other
words, t indicates the current letter from A, unless the control is beyond the
word (� ∈ t). Moreover, it reveals if the current position is the first (	 ∈ t), or
the last one (� ∈ t), or neither of them (t ∩ {	,�} = ∅). Let Tp be the set of
p-types, and let T =

⋃
p∈N
Tp denote the set of types. The current state and type

of a configuration will give rise to a probability function, which triggers a move
of the automaton, taken from the setM = {→,←, drop, lift, stay}.

Let us formally define pebble probabilistic automata, which generalize PFAs.

Definition 2. A pebble probabilistic automaton (PPA) over A is a tuple A =
(p,Q, ι,Acc,P) where p ∈ N is the number of pebbles, Q is a finite set of states,
ι ∈ Q is the initial state, and Acc ⊆ Q \ {ι} is the set of final states. Moreover,
P : Q× Tp ×M×Q→ [0, 1] is a transition probability function such that:

– For all δ = (q, t, d, q′), if P(δ) > 0 then q /∈ Acc and 	 ∈ t implies d 	= ←
and � ∈ t implies d /∈ {→, drop}.

– For all q ∈ Q \Acc and all types t ∈ Tp, we have
∑

(d,q′)∈M×Q

P(q, t, d, q′) ≤ 1.

Next, we define the behavior of PPAs. Fix a word w = a0 · · · an−1 and a PPA A
with p pebbles. A configuration of A over w is a triple κ = (q, i, π) with q ∈ Q,
i ∈ pos(w) = {0, . . . , n}, and π ∈ {0, . . . , n − 1}≤p, where X≤p is the set of
words over X of length at most p. Intuitively, q is the current state, i is the
current position, and π represents a stack recording the k = |π| ≤ p positions
of the currently dropped pebbles: π = i1 · · · ik means that pebble � ∈ {1, . . . , k}
is currently at position i� and pebbles k + 1, . . . , p are currently not dropped.
Pebbles are dropped and lifted using a stack policy: if π = i1 · · · ik, only pebble
k + 1 can be dropped (provided k + 1 ≤ p), and only pebble k can be lifted
(provided k ≥ 1).
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Let κ = (q, i, π) be a configuration with π = i1 · · · ik. We call κ initial if q = ι,
i = 0, and π = ε. It is said to be final if q ∈ Acc, i = n, and π = ε. Moreover, the
type of κ is denoted by type(κ) and defined as {ai | i < n} ∪ {	 | i = 0} ∪ {� |
i = n} ∪

{
� ∈ {1, . . . , k} | i� = i

}
.

Given δ = (q, t, d, q′) ∈ Q× Tp ×M×Q as well as configurations κ = (q, i, π)

and κ′ = (q′, i′, π′), we write κ
δ−→ κ′ if t = type(κ) and the following hold:

1. if d =→ then i′ = i+ 1 and π′ = π
2. if d =← then i′ = i− 1 and π′ = π
3. if d = stay then i′ = i and π′ = π
4. if d = drop then i′ = 0 and π′ = πi and i < n
5. if d = lift then π′i′ = π .

In other words, drop saves the current position on the stack of pebbles (π′ = πi
in 4) and resets the head to the first position (i′ = 0 in 4). Moreover, π′i′ = π
in 5 means that lift pops the last dropped pebble and resets the control to the
position where this pebble was dropped.

A run of A over w is a finite sequence ρ = (κ0, δ1, κ1, . . . , δh, κh) (h ≥ 0) of
configurations and transitions such that, for all 0 < m ≤ h, we have P(δm) > 0
and κm−1

δm−−→ κm. We say that ρ is accepting if κ0 is an initial configuration
and κh is final. The probability of this run is the product of the probabilities of
the transitions all along the run: P(ρ) =

∏h
m=1 P(δm). Now, let �A�(w) be the

sum
∑

ρ P(ρ), where ρ ranges over the accepting runs of A over w. Note that
the number of accepting runs over a given word may be infinite so that, a priori,
�A� is a mapping A+ → R∞

≥0. However, one can show the following:

Proposition 3. For every PPA A and every w ∈ A+, we have �A�(w) ∈ [0, 1].

Proof. Let us define, for every w ∈ A+, a probability space (Ωw,Ew,Pw). The
set Ωw of outcomes is the set of maximal runs of A over w, starting in the initial
configuration (for technical reasons, we have to include infinite ones). Moreover,
the set Ew of events is the smallest σ-algebra containing, for all finite runs ρ,
the cylinder set Cyl (ρ)

def
= {ρ′ | ρ′ is a maximal run with prefix ρ}. With this,

there is a unique probability measure Pw for Ωw and Ew, which is given by
Pw(Cyl (ρ)) = 1 · P(δ1) · . . . · P(δh) for all finite runs ρ = (κ0, δ1, κ1, . . . , δh, κh).
As the set AR(w) of accepting runs over w is countable, it is measurable in the
probability space, and its probability is Pw(AR(w)) =

∑
ρ∈AR(w) P

w(Cyl (ρ)).

Note that the latter equals �A�(w) and that Cyl(ρ) = {ρ} for all ρ ∈ AR(w). ��
The proof above establishes a strong connection between PPAs and Markov
chains. This connection also provides an algorithm for evaluating a PPA wrt.
a given word, which reduces to computing the probability of reaching a final
configuration in the synchronized Markov chain (see, for example, [3]).

Example 3. Consider the PPA A (2-way, without pebbles) depicted on the left
of Fig. 2 (where 0 < s < 1) over alphabet A = {a}. The synchronized Markov
chain of A wrt. a word of length n is depicted on the right of the same figure.
This Markov chain represents a random walk over a straight line of bounded
length.
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1− s
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Fig. 2. Markov chain obtained by synchronizing A with a word of length n

3.2 Probabilistic Pebble Expressions

Now, we define probabilistic expressions that capture the expressive power of
PPAs. Just like PPAs, expressions are equipped with some pebbles from an in-
finite supply P = {1, 2, . . .} (though every expression will only employ a finite
number thereof). Also, expressions should be able to move left or right and to
check if pebbles are dropped on the current position. Hence, we adopt an XPath-
like syntax: we explicitly distinguish progression in the word (with← or→) from
tests ϕ ∈ Tests checking the current type. We define test formulas inductively
by

ϕ ::= a? | x? | 	? | �? | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where a ∈ A and x ∈ P . In particular, formulas 	? and �? allow an expression
to test whether it is at the first or last position of the word. Moreover, x? is true
if pebble x is on the current position. Formulas ϕ ∈ Tests are interpreted over a
type t ∈ T in a straightforward manner: for θ ∈ A∪{	,�}∪P , we write t |= θ?
if θ ∈ t. The semantics of boolean connectives is defined as expected.

We start with unrestricted weighted pebble expressions (WPEs) defined by

E ::= s | ϕ | ← | → | E + E | E ·E | E∗ | x!E

with s ∈ R∞
≥0, ϕ ∈ Tests and x ∈ P . The interpretation of s, sum, concatenation,

and star does not change wrt. WEs. The new atomic expressions ← and →
perform a step to the left or to the right. The expressions ϕ and x!E, on the
other hand, perform non-progressing computations (similar to s). The atomic
WE a is obtained by checking first if the current letter is a and then moving right,
hence the abbreviation a

def
= a?→. The new construct x!E is read “compute E

with x assigned to the current position”. The computation of E “rescans” the
whole word, from position 0 to position |w|.

The set of free pebbles of an expression E ∈ WPE is defined in the obvious
way; in particular, we set Free(x?) = {x} and Free(x!E) = Free(E) \ {x}.

The semantics �E� of an expression E assigns a value from R∞
≥0 to each

tuple (w, σ, i, j) where w = a0a1 · · · ∈ A+, i, j ∈ pos(w) and σ : Free(E) →
{0, . . . , |w| − 1}. It computes the weight of going from i to j with the pebble
assignment σ. Formally, the semantics is given in Table 1. Hereby, we let type(i) ∈
T denote the set {ai | i 	= |w|} ∪ {	 | i = 0} ∪ {� | i = |w|} ∪ σ−1(i). Moreover,
σ[x �→ i] stands for the assignment coinciding with σ except on x, which is
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Table 1. Semantics of WPEs

�s�(w, σ, i, j) =

{
s if j = i

0 otherwise
�ϕ�(w, σ, i, j) =

{
1 if j = i and type(i) |= ϕ
0 otherwise

�→�(w, σ, i, j) =
{
1 if j = i+ 1

0 otherwise
�←�(w, σ, i, j) =

{
1 if j = i− 1

0 otherwise

�E1 + E2� = �E1�+ �E2� �E∗�(w, σ, i, j) =
∑

m∈N
�Em�(w, σ, i, j)

�E1 · E2�(w, σ, i, j) =
∑

k∈pos(w)

�E1�(w, σ, i, k) × �E2�(w, σ, k, j)

�x!E�(w, σ, i, j) =

{
�E�(w, σ[x �→ i], 0, |w|) if j = i < |w|
0 otherwise

mapped to i. If Free(E) = ∅, then we let �E�(w) = �E�(w, 0, |w|) (omitting σ,
as it is irrelevant).

One can easily check that concatenation, also called Cauchy product, is as-
sociative, i.e., �(E1 · E2) · E3� = �E1 · (E2 · E3)�. Hence, one can define Em

by induction: E0 = 1 and Em+1 = E · Em. Moreover, + is associative and
commutative, concatenation distributes over +, and x! distributes over +.

As for expressions without pebbles, we need to restrict the sum and star
operations to get the probabilistic fragment. Doing so, we lose commutativity,
associativity and distributivity hence we enforce these properties explicitly. The
proof of Proposition 1 cannot be extended to cope with x!E, hence we strengthen
the rule for concatenation.

Definition 3. Probabilistic pebble expressions (PPEs) is the fragment of WPEs
built inductively as follows:
(Atoms) s ∈ [0, 1], ϕ ∈ Tests, ← and → are PPEs.

(+ϕ) If E and F are PPEs and ϕ ∈ Tests, then ϕ ·E + (¬ϕ) · F is a PPE.
(+s) If E and F are PPEs and s ∈ [0, 1], then s ·E + (1− s) · F is a PPE.
(·) If E + F is a PPE and G is a PPE, then E + F ·G is a PPE.
(∗) If E + F is a PPE, then E∗ · F is a PPE.
(x!) If E is a PPE, then x!E is a PPE.

(ACD) PPEs are closed under the following associativity, commutativity and
distributivity rules (ACD-rules):

A+ E + (F +G) ∈ PPE ←→ (E + F ) +G ∈ PPE
C+ E + F ∈ PPE ←→ F + E ∈ PPE
A· E · (F ·G) ∈ PPE ←→ (E · F ) ·G ∈ PPE
D· E · (F +G) ∈ PPE ←→ E · F + E ·G ∈ PPE
D· (E + F ) ·G ∈ PPE ←→ E ·G+ F ·G ∈ PPE
Dx! x!(E + F ) ∈ PPE ←→ x!E + x!F ∈ PPE

The semantics of PPEs is inherited from WPEs and we will show later that when
E ∈ PPE then �E�(w, σ, i, j) actually always belongs to [0, 1].
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Example 4. We continue Example 3. An equivalent PPE to denote the random
walk is given by

E = (¬�?(s→+ (1− s)¬	?←))∗ �? .

Moreover, let F = ¬�?(s→ + (1 − s)¬	?←) so that E = F ∗ �?. Notice that
E is indeed an expression in PPE because F + �? ∈ PPE. Let w be a word of
length m ≥ 2. We can easily see that, for all i, j ∈ pos(w) and all n ≥ |j− i|, the
expression Fn computes a positive value on (w, i, j). Therefore, the expression F ∗

computes an infinite sum on (w, i, j). In the present case (0 < s < 1), the series∑
n≥0�F

n�(w, i, j) converges: with α = 1−s
s , one can show that �E�(w, 0, |w|) =

1/(1 + α+ . . .+ α|w|), and �F ∗�(w, i, j) ∈ [0, 1].

We define now the multiset Terms(E) of terms of an expression E ∈WPE. This
will be crucial for the translation from expressions to automata in the next sec-
tion. Intuitively, if we suppose that summation is pushed up as much as possible
by means of ACD-rules, then the multiset of terms consists of all expressions
that occur in this big outermost sum. Formally, the definition is by induction
over E ∈ WPE. When E is an atom, we let Terms(E) = {{E}} be the singleton
multiset containing only the atom itself. Moreover,

Terms(E + F ) = Terms(E) 1 Terms(F )

Terms(E · F ) = {{E′ · F ′ | E′ ∈ Terms(E), F ′ ∈ Terms(F )}}
Terms(E∗) = {{E∗}}
Terms(x!E) = {{x!E′ | E′ ∈ Terms(E)}} .

Note that, if an expression F can be obtained from an expression E through
ACD-rules, then we have Terms(E) = Terms(F ). The converse also holds as can
be seen from the following proposition which can be easily proved by structural
induction on the expression.

Proposition 4. Let E ∈ WPE with Terms(E) = {{Ei | i ∈ I}}. Using ACD-
rules, we can rewrite E into

∑
i∈I Ei. In particular, we have �E� =

∑
i∈I�Ei�.

Hence, we identify E and
∑

i∈I Ei.

4 The Probabilistic Kleene Theorem

We prove in this section that PPAs are effectively equivalent to PPEs. We start
with the construction of PPAs from PPEs. The problematic cases are concate-
nation and iteration due to the precondition E + F ∈ PPE. To deal with these
cases, we construct from PPE E a PPA A which simultaneously recognizes all
terms of E.

Theorem 2. From any expression E ∈ PPE we can effectively construct an
equivalent PPA A = (p,Q, ι,Acc,P). More precisely, if Terms(E) = {{Ei | i ∈ I}},
the set of accepting states of A is Acc = {fi | i ∈ I} and for all i ∈ I the
expression Ei is equivalent to the PPA A[fi] = (p,Q, ι, {fi},P).
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Proof. The construction is by structural induction on the expression E ∈ PPE
which may have free pebbles. As usual, the assignment of free pebbles will be
encoded in the alphabet of the word read by the automaton A ∈ PPA, hence
(w, σ) will be interpreted as a word over A × 2Free(E) in the automata. Then,
equivalence A ≈ E means that, for all words w ∈ A+, assignments σ : Free(E)→
pos(w) \ {|w|}, and positions i, j ∈ pos(w), the value �E�(w, σ, i, j) is the sum
of the probabilities of the runs of A over (w, σ) starting in the initial state in
position i, ending in an accepting state in position j.

The cases s ∈ [0, 1], ϕ ∈ Tests, →, and ← are clear. For each atom, the
resulting automaton has only two states (it uses stay transitions for s and ϕ).

Now let E,E′ ∈ PPE be such that Terms(E) = {{Ei | i ∈ I}} and Terms(E′) =
{{E′

j | j ∈ J}}. By induction hypothesis, we have constructed two suitable PPAs

A = (p,Q, ι,Acc,P) and A′ = (p′, Q′, ι′,Acc′,P′) with Acc = {fi | i ∈ I}
and Acc′ = {f ′j | j ∈ J}. Without loss of generality, we assume that p = p′,
Q ∩ Q′ = ∅ and that a final state may only be reached when no pebble is
dropped (if necessary, this may be enforced by keeping the number of dropped
pebbles in the states).

Consider E′′ = ϕ·E+¬ϕ·E′. We have Terms(E′′) = {{ϕ·Ei | i ∈ I}}1{{¬ϕ·E′
j |

j ∈ J}}. We construct a PPA A′′ = (p,Q 1 Q′ 1 {ι′′}, ι′′,Acc 1 Acc′,P′′). From
the new initial state ι′′, we add stay transitions with probability 1 going to ι for
all types t satisfying ϕ, and going to ι′ for all other types.

The construction for E′′ = s ·E+(1− s) ·E′ is similar. We have Terms(E′′) =
{{s ·Ei | i ∈ I}}1 {{(1− s) ·E′

j | j ∈ J}}. We add stay transitions with probability
s from ι′′ to ι and stay transitions with probability 1− s from ι to ι′.

For the concatenation, we assume that E = F +G and E′′ = F +G ·E′. We
have I = K 1 L with Terms(F ) = {{Ei | i ∈ K}} and Terms(G) = {{Ei | i ∈ L}}.
Hence, we have Terms(E′′) = {{Ei | i ∈ K}} 1 {{Ei · E′

j | (i, j) ∈ L × J}}. The
automaton A′′ for E′′ consists of one copy of A and a copy A′

i of A′ for every
i ∈ L. First, A′′ simulates A until it reaches some final state fi of A. Then, if
i ∈ L, a stay transition leads with probability 1 into the initial state of A′

i. The
final states of A′′ consist of {fi | i ∈ K} and a copy of Acc′ for each i ∈ L.

For the Kleene star we assume that E = F + G and E′′ = F ∗ · G. We have
I = K 1 L with Terms(F ) = {{Ei | i ∈ K}} and Terms(G) = {{Ei | i ∈ L}}.
Hence, we have Terms(E′′) = {{F ∗ · Ei | i ∈ L}}. We construct the PPA A′′ =
(p,Q, ι,Acc′′,P′′) with Acc′′ = {fi | i ∈ L} by adding stay transitions with
probability 1 from all states fi for i ∈ K back to the initial state ι.

Consider E′′ = x!E. We have Terms(E′′) = {{x!Ei | i ∈ I}}. We construct the
PPA A′′ = (p+1, Q1{ι′′}1Acc′′, ι′′,Acc′′,P′′) with Acc′′ a copy of Acc. To this
aim, we shift the numbers of pebbles of A to {2, . . . , p+ 1} keeping pebble 1 to
be the fresh one, used to mark the position of variable x. We start by dropping
pebble 1 with transitions of the form (ι′′, t, drop, ι), each with probability 1. At
the end of a computation of A, pebble 1 is lifted, again with probability 1, using
transitions (q, {�}, lift, q′′) where q′′ ∈ Acc′′ is the copy of q ∈ Acc.

Finally, if E′′ is obtainted from E via ACD-rules, we have Terms(E′′) =
Terms(E) so we can keep the same automaton: A′′ = A. ��
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Note that, even if we start from a PRE, the proof above does not yield a PFA
since it adds stay transitions. Hence, this proof has to be adapted to translate
PREs into PFAs. By Proposition 3, the semantics of automata only assumes
values in [0, 1]. This carries over to PPE.

Corollary 2. For every PPE E and every w ∈ A+, we have �E�(w) ∈ [0, 1].

We turn now to the construction of expressions (PPEs) which are equivalent to
automata (PPAs). We follow usual procedures for the translation from automata
to expressions, ensuring throughout the proof that we produce expressions in
PPE. To this aim, we strongly rely on ACD-rules.

Theorem 3. Let A = (p,Q, ι,Acc,P) be a PPA with p pebbles. We can effec-
tively construct a PPE Eι =

∑
q∈Acc Eι,q such that �Eι,q�(w, 0, |w|) is the sum of

the runs from the initial configuration (ι, 0, ε) to the final configuration (q, |w|, ε).

5 Conclusion

In this paper, we presented a probabilistic Kleene Theorem, first for classical
probabilistic automata and then for extended automata with two-way navigation
and pebbles. This constitutes a first step towards probabilistic XPath, so we aim
at extending our work to finite trees and probabilistic tree automata. We also
raise the question of whether our technique can be used to obtain ω-expressions
for probabilistic Büchi automata, which have attracted a lot of attention [2,1,8].
Just like classical finite automata, weighted automata over semirings enjoy char-
acterizations in terms of monadic second-order logic [13,6]. Continuing this line
of research, a recent paper establishes a logical characterization of probabilistic
automata [30]. It would be interesting to study whether alternative characteri-
zations exist that use, for example, a transitive-closure operator [6].
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5. Bojańczyk, M.: Tree-Walking Automata. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 1–2. Springer, Heidelberg (2008)

6. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble Weighted Automata and
Transitive Closure Logics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 587–598.
Springer, Heidelberg (2010)



414 B. Bollig et al.

7. Buchholz, P., Kemper, P.: Quantifying the Dynamic Behavior of Process Algebras.
In: de Luca, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp.
184–199. Springer, Heidelberg (2001)

8. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata
on infinite strings. Logical Methods in Computer Science 7(3:22) (2011)

9. Cortes, C., Mohri, M., Rastogi, A.: Lp distance and equivalence of probabilistic
automata. Int. J. Found. Comput. Sci. 18(4), 761–779 (2007)

10. Cortes, C., Mohri, M., Rastogi, A., Riley, M.: On the computation of the rela-
tive entropy of probabilistic automata. Int. J. Found. Comput. Sci. 19(1), 219–242
(2008)

11. Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors.
Theor. Comput. Sci. 373(1-2), 92–114 (2007)

12. Deng, Y., Palamidessi, C., Pang, J.: Compositional Reasoning for Probabilistic
Finite-State Behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 309–337. Springer, Heidelberg (2005)

13. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste, M.,
Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science, ch. 5, pp. 175–211. Springer (2009)

14. Dwork, C., Stockmeyer, L.: On the power of 2-way probabilistic finite state au-
tomata. In: Proc. of FoCS 1989, pp. 480–485. IEEE Computer Society (1989)

15. Flesca, S., Furfaro, F., Greco, S.: Weighted path queries on semistructured
databases. Inform. and Comput. 204(5), 679–696 (2006)

16. Gastin, P., Monmege, B.: Adding Pebbles to Weighted Automata. In: Moreira, N.,
Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 28–51. Springer, Heidelberg (2012)

17. Gimbert, H., Oualhadj, Y.: Probabilistic Automata on Finite Words: Decidable
and Undecidable Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010)

18. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the Com-
plexity of the Equivalence Problem for Probabilistic Automata. In: Birkedal, L.
(ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 467–481. Springer, Heidelberg (2012)

19. Marx, M.: Conditional XPath. ACM Transactions on Database Systems 30(4), 929–
959 (2005)

20. Paz, A.: Introduction to probabilistic automata (Computer science and applied
mathematics). Academic Press (1971)

21. Rabin, M.O.: Probabilistic automata. Inform. and Control 6, 230–245 (1963)
22. Ravikumar, B.: On some variations of two-way probabilistic finite automata models.

Theor. Comput. Sci. 376, 127–136 (2007)
23. Sakarovitch, J.: Rational and recognizable power series. In: Droste, M., Kuich,

W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs in
Theoretical Computer Science, ch. 4, pp. 103–172. Springer (2009)

24. Schützenberger, M.P.: On the definition of a family of automata. Inform. and Con-
trol 4, 245–270 (1961)

25. Segala, R.: Probability and Nondeterminism in Operational Models of Concurrency.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78.
Springer, Heidelberg (2006)

26. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.: Quantitative Kleene coalgebras.
Inf. Comput. 209(5), 822–849 (2011)

27. ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking
automata. In: Proc. of PODS 2008, pp. 251–260. ACM (2008)



A Probabilistic Kleene Theorem 415

28. Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216–227 (1992)

29. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inform. and Comput. 121(1), 59–80 (1995)

30. Weidner, T.: Probabilistic Automata and Probabilistic Logic. In: Rovan, B.,
Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 813–824.
Springer, Heidelberg (2012)



Higher-Order Approximations

for Verification of Stochastic Hybrid Systems

Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate

Delft Center for Systems & Control, TU Delft,
Mekelweg 2, 2628 CD, Delft, The Netherlands

{S.EsmaeilZadehSoudjani,A.Abate}@tudelft.nl

Abstract. This work investigates the approximate verification of prob-
abilistic specifications expressed as any non-nested PCTL formula over
Markov processes on general state spaces. The contribution puts forward
new algorithms, based on higher-order function approximation, for the
efficient computation of approximate solutions with explicit bounds on
the error. Approximation error related to higher-order approximations
can be substantially lower than those for piece-wise constant (zeroth-
order) approximations known in the literature and, unlike the latter, can
display convergence in time to a finite value. Furthermore, higher-order
approximation procedures, which depend on the partitioning of the state
space, can lead to lower partition cardinality than the related piece-wise
constant ones. The work is first presented for Markov processes over Eu-
clidean spaces and thereafter extended to hybrid spaces characterizing
models known as Stochastic Hybrid Systems.

Keywords: General State-Space Markov Processes, Stochastic Hybrid
Systems, PCTL Verification, Bounded-Until and Reach-Avoid, Interpo-
lation Theory.

1 Introduction and background

This work addresses the investigation of complex properties over Markov pro-
cesses evolving in discrete time over continuous (uncountable) state spaces [10,14].
We are in particular interested in Markov models with state spaces displaying a
hybrid structure, namely characterized by a finite collection of bounded contin-
uous domains (typically taken to be subsets of Euclidean spaces). These models
are known in the literature as Stochastic Hybrid Systems (SHS) [6,7].

With regards to the probabilistic properties under investigation in this work,
we focus on formulae expressed via a modal logic known as PCTL [4]. PCTL
encodes probabilistic specifications that can be equivalently expressed via value
functions [15] and computed by recursive application of known operators or by
solving integral equations, as typical in dynamic programming problems over
continuous spaces [5]. This work zooms in on autonomous models (namely, on
models admitting no controller, nor scheduler, nor non-determinism), on non-
nested PCTL specifications, and mostly on finite-horizon properties that admit
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a finite recursive expression. Extensions to non-autonomous models have been
explored in [3], whereas to infinite-horizon specifications in [17].

With focus on a particular PCTL specification expressing probabilistic in-
variance, the work in [1] has put forward a formal connection between the study
of probabilistic invariance over SHS and the computation of a related property
over a discretized version of the model, namely a Markov chain (MC) – the latter
property can be computed with a probabilistic model checker, such as PRISM
[11] or MRMC [12]. The work in [2] has extended the approach to automata-
based properties. Both contributions are formal in that they allow an exact
computation of a bound on the formula-dependent approximation error. Recent
contributions in [8,9] have investigated the development of enhanced computa-
tional approaches with tightened bounds on the error, to translate a SHS into a
MC with the end goal of model checking PCTL formulae. In approximating SHS
as MC, the surveyed results [1,2,8,9] have leveraged piece-wise constant inter-
polations of the kernels characterizing the SHS models under study, which has
direct consequences on the derived error bounds. In contrast, this work provides
approximation methods via higher-order interpolations of the value functions
that are aimed at requiring less computational effort. More precisely, drawing
on the expression of non-nested PCTL formulae as value functions [1,15], this
work builds on the premises in [1,2,8,9] and puts forward higher-order approxi-
mation methods, obtained via interpolation procedures, in order to express the
value functions under study as compactly as possible. The claim is that using
higher-order interpolations (versus piece-wise constant ones) can be beneficial
in terms of obtaining tighter bounds on the approximation error. Furthermore,
since the approximation procedures depend on the partitioning of the state space,
higher-order schemes display an interesting tradeoff between more parsimonious
representations versus more complex local computation – this work explores the
computational compromise between partition size and local interpolation. In as-
sessing the computability of the results, an underlying tenet is that the total
number of integrations required in the interpolation is a proxy for total compu-
tational time. An additional advantage of the present study over previous work
is that in some cases the approximation error converges in time, which allows
the applicability of the method to the approximate solution of infinite-horizon
PCTL properties.

The article is structured as follows: Section 2 introduces a general state-space
Markov process and zooms in on a specific PCTL formula – finite-time bounded-
until – equivalently expressing it, via value functions, as a bounded-horizon
reach-avoid problem. Section 3 considers higher-order approximation schemes
over the value functions of interest, and quantifies explicitly the introduced ap-
proximation error over the formula (or problem). Section 4 tailors the results
to a well studied case in the literature, and specializes the proposed approach
to explicit schemes for low-dimensional models and known interpolation bases.
Section 5 extends the results to SHS models. Finally, Section 6 develops a few
numerical case studies to test and benchmark the proposed schemes. Due to
length limitations, the statements are presented without proofs.
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2 PCTL bounded-until Formula as a reach-avoid Problem

Consider a discrete-time, homogeneous Markov process X = (Xn)n∈N, taking
values on a general (namely, uncountable) state space S , with B(S ) repre-
senting the associated σ-algebra. The evolution of the Markov process is fully
characterized by a transition kernel T (dy|x) as:

T (A|x) = Px{Xn+1 ∈ A|Xn = x}, ∀A ∈ B(S ), n ≥ 0.

In this work we suppose that the transition kernel T (dy|x) of the Markov pro-
cess admits a density function t(y|x), such that T (dy|x) = t(y|x)dy. We consider
a bounded-until PCTL formula over a finite time horizon [0, N ] and express it
as a reach-avoid problem over that time horizon. Given two Borel measurable
bounded sets A ∈ B(S ) and B ⊂ A, we are interested in computing the proba-
bility that executions of the Markov process reach the target set B, while never
leaving the safe set A (that is, while avoiding Ac) during the time horizon [0, N ],
namely [16]:

Px(A,B) .= P{∃k ∈ [0, N ], Xk ∈ B ∧ ∀l ∈ [0, k − 1], Xl ∈ A|X0 = x}. (1)

(Notice that the expression above holds also for k = 0 since B ⊂ A, and can easily
be extended to the case where B∩A = ∅.) Given a probability level ε ∈ [0, 1] and
the inequality operator ∼∈ {>,≥, <,≤}, the quantity in (1) can be employed
to perform a satisfiability check over the corresponding bounded-until PCTL
formula, namely:

Px(A,B) ∼ ε ⇔ x |= P∼ε{A U≤NB}.

Next, we show that the quantity in (1), characterizing the satisfiability set of
the bounded-until PCTL formula, can be equivalently expressed by introducing
time-dependent value functions Wk : S → [0, 1], k ∈ [0, N ], which lead to the
alternative expression Px(A,B) =WN (x). The value functions Wk are obtained
recursively according to the following Bellman scheme, which characterizes the
reach-avoid problem in (1) [16]:

Wk+1(x) = 1B(x) + 1A\B(x)

∫
S

Wk(y)T (dy|x), k ∈ [0, N − 1], (2)

initialized as W0(x) = 1B(x), ∀x ∈ S , and where 1C denotes the indicator
function of set C ⊆ S . The Belman recursion in (2) indicates that the value
functionsWk are always equal to one within the target set B, while their supports
are contained in the set A (namely, they are equal to zero over the complement
of A). We are thus only interested in computing the value functions over the set
A\B, which allows simplifying the recursion in (2) as follows, for k ∈ [0, N − 1]:

Wk+1(x) = T (B|x) +
∫
A\B

Wk(y)T (dy|x), W0(x) = 0, ∀x ∈ A\B. (3)
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Let us denote with B(A\B) the space of bounded and measurable functions
f : A\B → R, and let us assign to this space the infinity norm ‖f‖∞ =
sup{|f(x)|, x ∈ A\B}, ∀f ∈ B(A\B). The affine operator RA,B, defined over
B(A\B) by

RA,Bf(x) = T (B|x) +
∫
A\B

f(y)T (dy|x), ∀f ∈ B(A\B), ∀x ∈ A\B, (4)

characterizes the solution of the recursion in (3) as Wk(x) = Rk
A,B(W0)(x), for

any k = 1, 2, ..., N .

3 Approximation Schemes and Error Quantification

The solution of the recursion in (3) cannot be characterized analytically in gen-
eral. The goal of this section is to propose numerical schemes for approximating
the value functions Wk, k = 0, 1, . . . , N , with an explicit quantification of the
approximation error. While previous work proposed approximations of the value
functions Wk by piece-wise constant functions [1,2,8,9], in this contribution we
are interested in considering approximations via higher-order interpolations.

3.1 Quantification of the Error of a Projection over a Function
Space

Consider a function space Φ = span{φ1(x), φ2(x), · · · , φn(x)} as a subset of
B(A\B), and a projection operator ΠA\B : B(A\B) → Φ that satisfies the in-
equality

‖ΠA\B(f)− f‖∞ ≤ E(f) (5)

under some regularity conditions on f (beyond f ∈ B(A\B), see assumptions in
Theorem 1), and where the bound E depends on the properties of the function
f . With focus on a linear projection operator, the next result provides a useful
tool for approximating the solution of the reach-avoid problem.

Theorem 1. Assume that a linear operator ΠA\B satisfies the inequality∥∥ΠA\B(t(y|·))− t(y|·)
∥∥
∞ ≤ ε, ∀y ∈ A, (6)

and that there exists a finite constantM, such that∫
A\B

∣∣ΠA\B(t(y|x))
∣∣ dy ≤M, ∀x ∈ A\B. (7)

Define the value functions W̄k as approximations of the value functions Wk (cfr.
(4)), by

W̄k = (ΠA\BRA,B)
k(W0), k = 0, 1, . . . , N. (8)

Then it holds that

‖Wk − W̄k‖∞ ≤ Ek, k = 1, 2, ..., N, (9)



420 S. Esmaeil Zadeh Soudjani and A. Abate

where the error Ek satisfies the difference equation

Ek+1 =MEk + L(A)ε,

initialized by E0 = 0, and where L(A) denotes the Lebesgue measure of the set
A.

Corollary 1. Under the assumptions raised in (6)-(7), the error Ek can be al-
ternatively expressed explicitly as

Ek = εL(A)1 −M
k

1−M , for M 	= 1, and Ek = εL(A)k, for M = 1.

One possible general choice for the constantM is M = 1 + εL(A\B).

Notice that the above error converges ifM < 1 as k goes to infinity, which makes
the result applicable to the approximate computation of the infinite-horizon
reach-avoid property (unbounded-until operator) with a finite approximation
error.

3.2 Construction of the Projection Operator

In the ensuing sections we focus, for the sake of simplicity, on a state space that
is Euclidean, namely S = Rd, where d is its finite dimension. In Section 5 we
extend the upcoming results to be valid over general models known as Stochastic
Hybrid Systems.

We discuss a general form for the interpolation operator. Let φj : D ⊂ Rd →
R, j = 1, · · · , n, be independent functions defined over a generic set D. The in-
terpolation operator ΠD is defined as a projection map into the function space
Φ = span{φ1(x), φ2(x), · · · , φn(x)}, which projects any function f : D → R to a
unique function ΠD(f) =

∑n
j=1 αjφj , using a finite set of data {(xj , f(xj))|xj ∈

D, j = 1, · · · , n} and such that ΠD(f)(xj) = f(xj). The operator ΠD is guaran-
teed to verify the inequality in (5), namely ‖ΠD(f)− f‖∞ ≤ ED(f), under some
regularity assumptions on its argument function f (cfr. Corollary 2).

With focus on the problem described in Section 2, let us select a partition
{Di}mi=1 for the set A\B, with finite cardinality m. Using a basis {φij}nj=1, let us
introduce the interpolation operators ΠDi for the projection over each partition
set Di, which is done as described above by replacing the domain D with Di.
Finally, let us introduce the (global) linear operator ΠA\B on a function f :
A\B → R by

ΠA\B(f) =
m∑
i=1

1DiΠDi(f |Di), (10)

where f |Di represents the restriction of the function f over the partition set Di.
The following result holds:

Theorem 2. The operator in (10) satisfies the inequality in (5) with constant
E(f) = maxi=1,...,m EDi(f |Di), and where ‖ΠDi(f |Di)− f |Di‖∞ ≤ EDi(f |Di).
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Corollary 2. The result in Theorem 1 can be tailored to the operator in (10)
and applied to the density t = f , under the assumptions (6)-(7) on t and using
the following two quantities:

ε = max
i
εi, where ‖ΠDi(t(y|·)|Di)− t(y|·)|Di‖∞ ≤ εi, for all y ∈ A;

M = max
i
Mi, where

∫
A\B
|ΠDi(t(y|x))| dy ≤Mi, for all x ∈ Di.

Here εi represents the interpolation error on the density function over the parti-
tion set Di.

3.3 Approximation Algorithm

An advantage of the interpolation operator in (10) is that ΠA\B(f) is fully
characterized by the interpolation coefficients αij , such that

ΠA\B(f) =
m∑
i=1

n∑
j=1

αijφij1Di .

The set of interpolation coefficients αij are computable by matrix multiplication
based on the data {f(xij)}m,n

i,j=1, where the matrix depends on the interpolation
points xij and on the basis functions φij and can be computed off-line (see step
5 in Algorithm 1).

Let us now focus on the recursion in (8), W̄k+1 = ΠA\BRA,B(W̄k), given the
initialization W̄0 = 0, for the approximate computation of the value functions.
This recursion indicates that the approximate value functions W̄k, k = 1, . . . , N,
belong to the image of the operator ΠA\B. Let us express these value functions
by

W̄k =
m∑
i=1

n∑
j=1

αkijφij1Di ,

where αkij denote the interpolation coefficients referring to W̄k (at step k). This

suggests that we need to store and update the coefficients αkij for each iteration

in (8). Writing the recursion in the form W̄k+1 = ΠA\B
(
RA,B(W̄k)

)
indicates

that it is sufficient to evaluate the function RA,B(W̄k) over the interpolation
points in order to compute the coefficients αk+1

ij . In the following, the pair i, s
indicate the indices of the related partition sets, namely Di,Ds, whereas the pair
of indices j, t show the ordering positions within partition sets. For an arbitrary
interpolation point xst we have:

RA,B(W̄k)(xst) = T (B|xst) +
∫
A\B

W̄k(y)t(y|xst)dy

= T (B|xst) +
m∑
i=1

n∑
j=1

αkij

∫
Di

φij(y)t(y|xst)dy.
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Introducing the following quantities

Q(s, t) =

∫
B
t(y|xst)dy, Pij(s, t) =

∫
Di

φij(y)t(y|xst)dy,

we have that

W̄k+1(s, t) = RA,B(W̄k)(xst) = Q(s, t) +

m∑
i=1

n∑
j=1

αkijPij(s, t).

Algorithm 1 provides a general procedure for the discrete computation of the
interpolation coefficients and of the approximate value functions.

Algorithm 1. Approximate computation of the value functions W̄k

Require: Density function t(y|x), safe set A\B
1: Select a finite m-dimensional partition of the set A\B = ∪m

i=1Di (Di are non-
overlapping)

2: For each Di, select interpolation basis functions φij and points xij ∈ Di, where
j = 1, . . . , n

3: Compute Pij(s, t) =
∫
Di

φij(y)t(y|xst)dy, where 1 ≤ i, s ≤ m and 1 ≤ j, t ≤ n

4: Compute matrix Q with entries Q(s, t) =
∫
B t(y|xst)dy

5: Compute matrix representation of operators ΠDi

6: Set k = 0 and W̄0(i, j) = 0 for all i, j
7: if k < N then
8: Compute interpolation coefficients αk

ij given W̄k(i, j), using matrices in step 5
9: Compute values W̄k+1(s, t) based on W̄k+1(s, t) = Q(s, t) +

∑
i

∑
j α

k
ijPij(s, t)

10: k = k + 1
11: end if
Ensure: Approximate value functions W̄k, k = 0, 1, . . . , N

Next, we provide a condition on the selection of the basis functions and of the
interpolation points, leading to a simplification of Algorithm 1.

Theorem 3 ([13]). Assume that there exists a choice of interpolation points
xij and of basis functions φij such that

det

⎡⎢⎣ φi1(xi1) · · · φin(xi1)...
. . .

...
φi1(xin) · · · φin(xin)

⎤⎥⎦ 	= 0, ∀i ∈ {1, 2, · · · ,m}.

Then, there additionally exists an equivalent basis made up of functions ψij such
that

span{ψi1, ψi2, · · · , ψin} = span{φi1, φi2, · · · , φin}

for all i, and which is related to the interpolation coefficients αkij = W̄k(i, j).
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Theorem 3 ensures that by utilizing the basis functions ψij step 5 in Algorithm
1 can be skipped, and that the main update (steps 8 and 9) can be simplified as
follows:

W̄k+1(s, t) = Q(s, t) +

m∑
i=1

n∑
j=1

W̄k(i, j)Pij(s, t), W̄0(i, j) = 0.

A sufficient condition for the satisfaction of the assumption in Theorem 3 is the
selection of a basis {φi1, · · · , φin} as a Chebyshev (or Haar) system [13], for all
i. In this case, the choice of the distinct interpolation points xij can be made
freely, for each partition set Di (instances of this selection will be given below).

In Algorithm 1, the interpolation points xij are in general pair-wise distinct.
Extending the domain of interpolation Di to its closure D̄i, it is legitimate to
use boundary points as interpolation points, which can lead to a reduction of the
number of integrations required in Algorithm 1. However, special care should be
taken, since the interpolation operator should produce a continuous output over
the boundaries of the neighboring partition sets. In the ensuing sections, we will
exploit this feature upon selecting equally spaced points.

4 Special Forms of the Projection Operator

In this section we leverage known interpolation theorems for the construction
of the projection operator ΠA\B. These theorems are presented over a general
domain D and are then used to derive specific error bounds for the problem of
interest presented in Section 2.1

4.1 Piece-Wise Constant Approximations

We focus on the approximation of a function by a piece-wise constant one, which
has inspired the previous work in [1,2,8,9]. The procedure is detailed in Algorithm
2, while the associated error is quantified in Theorem 4.

Consider a continuous, partially differentiable scalar field f : D ⊂ Rd → R
such that ‖∂f∂x‖ ≤M0, ∀x ∈ D. Then |f(x)− f(x′)| ≤M0‖x− x′‖, ∀x, x′ ∈ D.

Theorem 4. Suppose the density function t(·|x) is Lipschitz continuous with
constantM0:

|t(y|x) − t(y|x′)| ≤ M0‖x− x′‖, ∀x, x′ ∈ A\B.

Then the approximation error of Algorithm 2 is upper bounded by the quantity
NL(A)M0δ, where δ = maxi δi is the partition size of ∪mi=1Di = A\B, with
δi = sup{‖x− x′‖ : x, x′ ∈ Di}.
1 In the rest of the article, we employ normal typeset for bounds derived from general
interpolation theorems, whereas calligraphic letters are used for theorems developed
specifically for this article.
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Algorithm 2. Piece-wise constant computation of the value functions W̄k

Require: Density function t(y|x), safe set A\B
1: Select a finite m-dimensional partition of the set A\B = ∪m

i=1Di (Di are non-
overlapping)

2: For each Di, select one representative point xi ∈ Di

3: Compute matrix P with entries P (i, j) =
∫
Di

t(y|xj)dy, where 1 ≤ i, j ≤ m

4: Compute vector Q with entries Q(j) =
∫
B t(y|xj)dy

5: Set k = 0 and W̄0(i) = 0 for all i
6: if k < N then
7: Compute the vector W̄k+1 based on W̄k+1 = Q+ W̄kP
8: k = k + 1
9: end if
Ensure: Approximate value functions W̄k, k = 0, 1, . . . , N

Notice that in some cases [17] it is possible to find a constant M =
maxx∈A\B

∫
A\B t(y|x)dy that is less than one, which leads to an error (cfr. Corol-

lary 1) that converges as time horizon N grows.
Let us compare Algorithms 1 and 2 in terms of their computational complex-

ity. Algorithm 1 requires mn(mn + 1) integrations in the marginalization steps
(3 and 4), whereas m(m+ 1) integrations are required in Algorithm 2. Further-
more, steps 5 and 8 in Algorithm 1 can be skipped only if a Chebyshev (Haar)
system can be selected, whereas these steps are not needed at all in Algorithm 2.
As a bottom line, higher interpolation orders increase the computational com-
plexity of the approximation procedure, however this can as well lead to a lower
global approximation error. Since the global approximation error depends on
the local partitioning sets (their diameter, size, and the local continuity of the
density function), for a given error higher interpolation procedures may require
partitions with lower cardinality.

4.2 Higher-Order Approximations for One-Dimensional Systems

In this section we study higher-order interpolations over the real axis, where the
partition sets Di are real intervals. We use this simple setting to quantify the
error related to the approximate solution of the reach-avoid problem. In order to
assess the effect of the choice of the interpolation points on the approximation
error and on the computational complexity of the method, we compare two
different sets of interpolation points: equally spaced points and Chebyshev nodes.

Theorem 5 ([13]). Let f be a real (n + 1)-times continuously differentiable
function on the bounded (one-dimensional) interval D = [α, β]. For the interpo-
lation polynomial ΠD(f) ∈ span{1, x, x2, ..., xn}, with (n+ 1) pair-wise distinct
points {x0, x1, ..., xn} ⊂ D, and condition ΠD(f)(xj) = f(xj), j = 0, . . . , n, there
exist a ξ ∈ D such that

f(x)−ΠD(f)(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
j=0

(x− xj), ∀x ∈ D.
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Equally spaced interpolation points. The following result can be adapted
from [13].

Theorem 6. Consider equally spaced interpolation points x0, x1, ..., xn:

xj = α+ j
β − α
n

, j = 0, 1, 2, ..., n.

The interpolation error is upper bounded, ∀x ∈ D, by

|f(x)−ΠD(f)(x)| ≤
Mn

4(n+ 1)

(
β − α
n

)n+1

,

where Mn = maxx∈D |fn+1(x)|.

Application to the reach-avoid problem. Consider a one dimensional reach-
avoid problem with a partitioning of A\B = ∪mi=1Di which is such that Di =
[αi, βi]. Define the interpolation operator ΠDi(t|Di) over the basis Φ =
span{1, x, x2, ..., xn} using equally spaced interpolation points xij ∈ Di, j =
0, . . . , n. Then we can easily derive the following constants:

Mn = max
x,y∈A\B

∣∣∣∣∂n+1t(y|x)
∂xn+1

∣∣∣∣ , ε =
Mn

4(n+ 1)

(
δ

n

)n+1

,

and δi = βi − αi, δ = maxi δi, i = 1, 2, ...,m. Changing the basis of interpolation
gives us the opportunity to obtain another value for M to be used in the er-
ror computation. Let us select the interpolation basis functions to be Lagrange
polynomials:

Lij(x) =

n+1∏
s=1,s�=j

x− xis
xij − xis

.

This leads to a projection with a special form, namely ΠDi(t(y|x)|Di) =∑n+1
j=1 αijx

j−1 =
∑n+1

j=1 t(y|xij)Lij(x). Computing the constants κi =

maxx∈Di

∑n+1
j=1 |Lij(x)| yields the following choice ofM:∫

A\B
|ΠDi(t(y|x)|Di)| dy ≤ κi

∫
A\B

t(y|xij)dy ≤ κi, andM = max
i
κi.

Having the values of ε andM we are ready to implement Algorithm 1 for equally
spaced points and polynomial basis functions of degree at most n, with the pre-
specified error of Theorem 1.

Chebyshev nodes. The following statement can be adapted from [13].
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Theorem 7. Let f be a real (n + 1)-times continuously differentiable function
on the bounded interval D = [α, β]. For the interpolation polynomial ΠD(f) ∈
span{1, x, x2, ..., xn} with Chebyshev nodes

xj =
α+ β

2
+
β − α
2

cos

(
2j + 1

2(n+ 1)π

)
, j = 0, 1, 2, ..., n,

and values ΠD(f)(xj) = f(xj), we have

|f(x)−ΠD(f)(x)| ≤
Mn

2n(n+ 1)!

(
β − α
2

)n+1

, ∀x ∈ D,

where Mn = maxx∈D |fn+1(x)|.

Application to the reach-avoid problem. We can implement Algorithm
1 for Chebyshev nodes and Chebyshev polynomials of degree n, given a pre-
specified error in Theorem 1, and with the following value of ε:

ε =
Mn

2n(n+ 1)!

(
δ

2

)n+1

,

where the quantity Mn is that defined for equally spaced points. The only
difference between the selection of equally spaced points and of Chebyshev nodes
is the value of ε. The ratio of ε for these two cases (denoted respectively ε1
and ε2) is presented in Table 1 as a function of n (interpolation order). The
advantage gained by using Chebyshev nodes is distinctive over larger values of
the interpolation order.

Table 1. Ratio between equally spaced pints (ε1) vs. Chebyschev nodes (ε2), expressed
with double digit precision, for different orders of interpolation order (n).

n 1 2 3 4 5 6 7 8 9 10 11 12
ε2
ε1

0.50 0.50 0.42 0.33 0.25 0.19 0.14 0.10 0.07 0.05 0.04 0.03

It is worth mentioning that, unlike the piece-wise constant case [1,2,8,9], with
higher-order approximation approaches the global error is a nonlinear function of
the partition size δ, namely it depends on a power of the partition size contingent
on the order of the selected interpolation operator.

4.3 Bilinear Interpolation for Two-Dimensional Systems

We directly tailor the results above to a general two-dimensional system.

Theorem 8. Consider a partially differentiable function f(x1, x2), defined (for
simplicity) over the unit square D = [0, 1]2. For the interpolation operator

ΠD(f)(x1, x2) =a1 + a2x1 + a3x2 + a4x1x2

=x1(1 − x2)f(1, 0) + x1x2f(1, 1) + (1 − x1)(1 − x2)f(0, 0) + (1 − x1)x2f(0, 1),
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the error is upper bounded by

‖f −ΠD(f)‖∞ ≤
1

8

[
Mx2

1
+Mx2

2
+ 2Mx2

1x2
+ 2Mx2

2x1

]
,

where
∣∣∣∂2f
∂x2

i

∣∣∣ ≤Mx2
i
,
∣∣∣ ∂3f
∂x2

ix3−i

∣∣∣ ≤Mx2
ix3−i

, i = 1, 2, ∀(x1, x2) ∈ D.

Application to the reach-avoid problem. With focus on a two-dimensional
reach-avoid problem, consider a uniform partition (using squared partition sets)
of size δ for the set A\B. We employ a bilinear interpolation within each par-
tition set Di = [αi1, αi2] × [βi1, βi2] with basis {φ1(x) = 1, φ2(x) = x1, φ3(x) =
x2, φ4(x) = x1x2}, or with Lagrange polynomials

ψi1(x) =
(αi2 − x1)(βi2 − x2)
(αi2 − αi1)(βi2 − βi1)

, ψi2(x) =
(αi2 − x1)(x2 − βi1)
(αi2 − αi1)(βi2 − βi1)

,

ψi3(x) =
(x1 − αi1)(βi2 − x2)
(αi2 − αi1)(βi2 − βi1)

, ψi4(x) =
(x1 − αi1)(x2 − βi1)
(αi2 − αi1)(βi2 − βi1)

,

and compute the associated error, given the following value for ε:

ε =
δ2

16

[
Mx2

1
+Mx2

2
+ δ
√
2Mx2

1x2
+ δ
√
2Mx2

2x1

]
,

where
∣∣∣ ∂2t
∂x2

i
(y|x)

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3t
∂x2

ix3−i
(y|x)

∣∣∣ ≤ Mx2
ix3−i

, i = 1, 2, ∀x, y ∈ A\B. Note
that the basis function ψij is non-negative on the partition set Di and that∑4

j=1 ψij(x) = 1, which leads to a constantM = maxx∈A\B
∫
A\B t(y|x)dy ≤ 1.

4.4 Trilinear Interpolation for Three-Dimensional Systems

We now apply the results above to a general three-dimensional system.

Theorem 9. Consider a partially differentiable function f(x1, x2, x3), defined
(for simplicity) over the unit cube D = [0, 1]3. For the interpolation operator

ΠD(f)(x1, x2, x3) =a1 + a2x1 + a3x2 + a4x3 + a5x1x2 + a6x1x3 + a7x2x3 + a8x1x2x3

=(1 − x1)(1 − x2)(1 − x3)f(0, 0, 0) + x1x2x3f(1, 1, 1)

+ x1(1 − x2)(1 − x3)f(1, 0, 0) + (1 − x1)x2x3f(0, 1, 1)

+ (1 − x1)x2(1 − x3)f(0, 1, 0) + x1(1 − x2)x3f(1, 0, 1)

+ (1 − x1)(1 − x2)x3f(0, 0, 1) + x1x2(1 − x3)f(1, 1, 0),

the error is upper bounded by the expression

‖f −ΠD(f)‖∞ ≤
1

8
[Mx2

1
+Mx2

2
+Mx2

3
+ 2Mx2

1x2
+ 2Mx2

2x1
+ 2Mx2

1x3

+ 2Mx2
3x1

+ 2Mx2
2x3

+ 2Mx2
3x2

+ 6Mx1x2x3 ],

where
∣∣∣∂2f
∂x2

i

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3f
∂x2

ixj

∣∣∣ ≤ Mx2
ixj
,
∣∣∣ ∂3f
∂x2

1x2x3

∣∣∣ ≤ Mx1x2x3 , ∀x = (x1, x2, x3) ∈
D.
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Application to the reach-avoid problem. With focus on a three-dimensional
reach-avoid problem, consider a uniform partition (using cubic sets) of size δ for
the set A\B. We employ a trilinear interpolation within each partition set and
compute the associated error, given the following value for ε:

ε =
δ2

24

[
Mx2

1
+Mx2

2
+Mx2

3

]
+

δ3

12
√
3

[
Mx2

1x2
+Mx2

2x1
+Mx2

2x3
+Mx2

3x2
+Mx2

1x3
+Mx2

3x1
+ 3Mx1x2x3

]
,

where, ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ D,
∣∣∣ ∂2t
∂x2

i
(y|x)

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3t
∂x2

ixj
(y|x)

∣∣∣ ≤
Mx2

ixj
, and

∣∣∣ ∂3t
∂x2

1x2x3
(y|x)

∣∣∣ ≤Mx1x2x3 . Similar to the bilinear interpolation case,

the function ψij is non-negative on the partition set Di and
∑8

j=1 ψij(x) = 1,

which leads to a constantM = maxx∈A\B
∫
A\B t(y|x)dy ≤ 1.

5 Extensions to Stochastic Models with Hybrid State
Spaces

Stochastic Hybrid Systems are Markov processes defined over a hybrid state
space S made up of a finite, disjoint union of continuous domains, namely S =
∪q∈Q{q}×Rn(q), whereQ = {q1, q2, · · · , qm}, and the function n : Q→ N assigns
to each discrete location q ∈ Q a (finite) dimension for the associated continuous
domain Rn(q). The conditional stochastic kernel T : B(S ) ×S → [0, 1] on S
is fully characterized by three kernels Tq, Tx, Tr, dealing respectively with the
discrete evolution over locations, the continuous evolution in the domain of a
given location, and the continuous reset between domains of different locations:

T ({q′} ×Aq′ |(q, x)) = Tq(q′|(q, x)) ×
{
Tx(Aq′ |(q, x)), q′ = q,
Tr(Aq′ |(q, x), q′), q′ 	= q.

Consider a safe set A = ∪q∈Q{q}×Aq and a target set B = ∪q∈Q{q}×Bq, where
Bq ⊂ Aq. Since the conditional kernels Tx, Tr admit density functions tx, tr, we
can define the operator RA,B acting on f ∈ B(A\B) as

RA,Bf(q, x) = T (B|(q, x)) + Tq(q|(q, x))
∫
Aq\Bq

f(q, y)tx(y|(q, x))dy

+
∑
q̄ �=q

Tq(q̄|(q, x))
∫
Aq̄\Bq̄

f(q̄, y)tr(y|(q, x), q̄)dy, ∀q ∈ Q,∀x ∈ Aq\Bq .

Given a partitionAq\Bq = ∪iDq,i and a basis of interpolation functions {ψq,ij(x)},
we can construct the projection operator ΠA\B on B(A\B) by separately inter-
polating over the continuous domains associated to each discrete location. The
following holds:
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Theorem 10. Suppose the conditional kernels of the SHS model satisfy the fol-
lowing inequalities

‖ΠA\B(Tq(q|(q, ·))tx(y|(q, ·)))− Tq(q|(q, ·))tx(y|(q, ·))‖∞ ≤ Ex, ∀q ∈ Q, ∀y ∈ Aq,

‖ΠA\B(Tq(q̄|(q, ·))tr(y|(q, ·), q̄)) − Tq(q̄|(q, ·))tr(y|(q, ·), q̄)‖∞ ≤ Er, ∀q, q̄ ∈ Q, q̄ �= q, ∀y ∈ Aq̄,

then the following error bound can be established:

‖Rk
A,B(W0)− (ΠA\BRA,B)

k(W0)‖∞ ≤ Ek, W0 = 0,

Ek+1 = λ(Ex + (m− 1)Er) + κEk, E0 = 0,

where λ = maxq L(Aq), κ = max

{∑
j |ψq,ij(x)|

∣∣∣∣x ∈ Aq,i, ∀i, q
}
, and m is the

cardinality of the set of discrete locations.

6 Case Studies

The probabilistic safety (or invariance) problem over a finite time horizon can
be defined as follows:

Px(A) .= P{∀k ∈ [0, N ], Xk ∈ A|X0 = x}. (11)

Safety is the dual of reachability, which in turn is a special case of the reach-
avoid problem. In order to compute the solution of the safety problem over the
safe set A, we can compute that of the reach-avoid problem with a safe set
S and a target set Ac = S \A. In this instance, the operator RS ,Ac is used
to compute the associated value functions Wk, which leads to the solution of
the safety problem as 1 −WN . The errors associated to this procedure can be
computed exactly as done for the reach-avoid problem. We develop a few case
studies to investigate the probabilistic safety problem.

6.1 A One-Dimensional Case Study

Consider a probabilistic safety problem over the safe set A = [0, 2] and the
time horizon N = 10, over a model characterized by the kernel T (dy|x) =
g(x+ c− y)dy, where c = 1.3035, and the function g is defined as:

g(t) =

⎧⎨⎩3.57485
1

t2
exp

(
−t− 1

t

)
, t > 0,

0, t ≤ 0.

Selecting an approximation error EN = 0.01, we compute the required number of
partition sets to abide by such figure. Using piece-wise constant approximations
based on a global Lipschitz constant (cfr. Sec. 4.1) yields a valueM0 = 6.90 and
the error functionEN = NL(A)M0δ. This leads to a required number of partition
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sets m = 27616 and a total number of integrations m(m + 1) = 7.6 × 108 (the
number of integrations is here conceived as a proxy for computational complexity).

Now consider algorithms and error bounds developed for higher-order ap-
proximations. The constants Mn are: M1 = 88.93,M2 = 2063.65,M3 =
79064.41,M4 = 5428040, whereasM is computed based on the following opti-
mization problem:

M = max
x∈A

∫
A
t(y|x)dy = max

x∈A

∫ 2

0

g(x+ c− y)dy = max
x∈A

∫ x+c

x+c−2

g(u)du,

which leads to xopt = 0.82 andM = 0.96.
Table 2 compares the number of partition sets and the number of integrations

required to reach an approximation error EN = 0.01, using equally spaced points
and Chebyshev nodes. Notice that the two methods coincide for n = 0. The
formulas for the number of integrations are an adaptation of the corresponding
ones developed to assess Algorithm 1 (this case deals with invariance, rather than
the more general reach-avoid for Algorithm 1). Similar outcomes, performed for
an experiment with error EN = 0.001, are also reported. These results show that
Chebyshev nodes require in general a lower number of partition sets and therefore
fewer integrations. The values are comparable since the ratio ε2/ε1 is smaller for
larger values of n, as per Table 1. Notice further that equally spaced points
give the opportunity to select common boundary points over adjacent partition
sets as interpolation points, which can lead to a reduction on the associated
number of integrations. However, interestingly the complexity is in general not
monotonically decreasing with the order.

Table 2. Number of partition sets and integrations for equally spaced points (indexed
by 1) and for Chebyshev nodes (indexed by 2), given two error boundsEN = 0.01, 0.001.

uniform partitioning total # of partitions # of integrations

EN = 0.01 m1 m2 m1(n+ 1)(m1n+ 1) m2
2(n+ 1)2

piecewise constant, n = 0 23357 23357 5.5 · 108 5.5 · 108
piecewise linear, n = 1 275 194 1.5 · 105 94864
piecewise quadratic, n = 2 67 53 27135 25281
third-order, n = 3 36 29 15696 13456
fourth-order, n = 4 28 22 15820 12100

uniform partitioning total # of partitions # of integrations

EN = 0.001 m1 m2 m1(n+ 1)(m1n+ 1) m2
2(n+ 1)2

piecewise constant, n = 0 233563 233563 5.5 · 1010 5.5 · 1010
piecewise linear, n = 1 868 614 1508584 1507984
piecewise quadratic, n = 2 143 114 123123 116964
third-order, n = 3 64 52 49408 43264
fourth-order, n = 4 43 35 37195 30625

6.2 A Two-Dimensional Case Study

Consider a d-dimensional linear, stochastic difference equation over Rd

x(k + 1) = Ax(k) + w(k), k ∈ N,
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where w(k), k ≥ 0, is the process noise, taken to be Normal i.i.d. random vari-
ables with zero mean and covariance matrix Σ: w(k) ∼ N (0, Σ). Given any point
x ∈ Rd at any time, the distribution at the next time can be characterized by
a transition probability kernel T (·|x) ∼ N (·;Ax,Σ). For a detailed description
of the model and of its parameters the reader may refer to [8]. Let us con-
sider the probabilistic invariance problem over a safe set A = [−1, 1]d, namely
a hypercube pointed at the origin, and a time horizon [0, N ]. Select a two di-
mensional state space d = 2 and a covariance matrix Σ = 0.5I2. The following
constants are needed to compute the error:M = 0.71, Mx2

1
= 2.23, Mx2

2
=

0.72, Mx2
1x2

= 3.80, Mx1x2
2
= 2.17. Table 3 compares the complexity of

piece-wise constant and bilinear approximations, for different values of the global
error EN . Similarly, Figure 1a (on the left) compares the two approximations
over the probabilistic safety problem (blue lines). The vertical axis represents
the global approximation error, whereas the horizontal axis indicates the cor-
responding number of integrations, pointing to the computational complexity
of each method. For a given computational complexity, bilinear interpolations
approximate the solution with less error and their performance is dimension-
ally better in compared to the piece-wise constant approximations. Similarly,
for a given error threshold, less computations are required when using bilinear
interpolations.

Table 3. Piece-wise constant versus bilinear approximations

piece-wise constant bilinear

error
# of partitions
per dimension

# of integrations
# of partitions
per dimension

# of integrations

EN m1 m2
1 m2 4(m2 + 1)2

0.1 206 4.2 · 104 18 1444
0.01 2053 4.2 · 106 49 104

0.001 20525 4.2 · 108 145 8.5 · 104
0.0001 205241 4.2 · 1010 448 8.1 · 105

6.3 A Three-Dimensional Case Study

Consider the above system with three dimensional state space d = 3 and covari-
ance matrix Σ = 0.5I3. The following constants are needed to compute the er-
ror:M = 0.60,Mx2

1
= 2.66,Mx2

2
= 0.33,Mx2

3
= 1.50,Mx2

1x2
= 3.47,Mx2

2x1
=

1.28,Mx2
2x3

= 0.95,Mx2
3x2

= 1.92,Mx2
1x3

= 8.37,Mx2
3x1

= 6.27,Mx1x2x3 =
2.56. Table 4 compares piece-wise constant and trilinear approximations, for dif-
ferent values of the global error EN . Similarly, Figure 1a (on the left) compares
the two approximations over the solution of the safety problem (magenta lines).
Recall that there is a tradeoff between local computations and global error for
higher-order interpolations. Thus, if we consider a large global error, piece-wise
approximations may be computationally favorable (left of the crossing in the
magenta curves). However, for small error bounds the performance of trilinear
interpolations is much better in comparison with that of piece-wise constant
approximations.
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Fig. 1. Error comparison between piece-wise constant versus higher-order approxima-
tions, as a function of their computational complexity, for three case studies.

Table 4. Piece-wise constant versus trilinear approximations

piece-wise constant trilinear

error
# of partitions
per dimension

# of integrations
# of partitions
per dimension

# of integrations

EN m1 m3
1 m2 8(m2 + 1)3

0.1 383 5.6 · 107 30 2.4 · 105
0.01 3825 5.6 · 1010 78 3.9 · 106
0.001 38250 5.6 · 1013 220 8.6 · 107
0.0001 382498 5.6 · 1016 681 2.5 · 109

6.4 Case Study for a Hybrid Model

Consider the hybrid model of a chemical reaction network, with continuous dy-
namics described by stochastic difference equations, where time is discrete with
sampling interval Δ (see [9] for a complete derivation of the model and for its
parameters):{

x1(k + 1) = krΔq(k) + (1 − γrΔ)x1(k) +
√
krΔq(k) + γrΔx2(k)w1(k)

x2(k + 1) = kpΔx1(k) + (1− γpΔ)x2(k) +
√
kpΔx1(k) + γpΔx2(k)w2(k).

The model has two locations Q = {q1, q2} indicating a gene in active or inac-
tive mode. The variables x1, x2 are concentrations of m-RNA and of a protein,
respectively. The signals wi(k), i = 1, 2, k ∈ N ∪ {0}, are independent standard
Normal random variables. The transition kernels can be directly derived from
the above dynamics [9]. The safe set A is selected to cover an interval of 10%
variation around the steady state of the model. We study the probabilistic safety
of A over a 10-step interval.

Figure 1b compares the approximation errors of piece-wise constant and first-
order approximations. The total number of integrations differ roughly only by
a factor of two. Furthermore, considering for instance 1000 bins per dimension,
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the piece-wise constant (zeroth-order) approximation has a global error equal
to 32.64, whereas the first-order approximation leads to an error equal to 0.62,
with only twice as many integrations involved in the procedure.

7 Conclusions

This contribution has put forward new algorithms, based on higher-order func-
tion approximation, for the efficient computation of approximate solutions of
probabilistic specifications expressed as PCTL formulae over Markov processes
on general state spaces (and in particular over Stochastic Hybrid Systems).

The authors plan to extend the technique to nested PCTL formulae, to further
investigate its convergence properties, and to integrate the presented procedures
within the algorithms worked out in [8,9], with the goal of developing a flexible
software tool for abstraction and verification of Stochastic Hybrid Systems.
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