
Domain-Specific Pseudonymous Signatures

for the German Identity Card

Jens Bender1, Özgür Dagdelen2, Marc Fischlin2, and Dennis Kügler1

1 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
2 Technische Universität Darmstadt, Germany

Abstract. The restricted identification protocol for the new German
identity card basically provides a method to use pseudonyms such that
they can be linked by individual service providers, but not across dif-
ferent service providers (even not malicious ones). The protocol can be
augmented to allow also for signatures under the pseudonyms. In this
paper, we thus view —and define— this idea more abstractly as a new
cryptographic signature primitive with some form of anonymity, and use
the term domain-specific pseudonymous signatures. We then analyze the
restricted identification solutions in terms of the formal security require-
ments.

1 Introduction

The protocols designed for the new German identity card [7] secure the commu-
nication between the card and the reader resp. the terminal. See Figure 1 for an
overview. Initially, the parties run the password-authenticated connection estab-
lishment protocol (PACE) to derive a secure channel between the card and the lo-
cal reader, with the user’s consent who needs to enter the password. Then
the card and the remote end point, called the terminal or service provider, run the
extended access protocol (EAC) to authorize mutually and to establish another
secure channel between these points. In the card authentication step anonymity
is guaranteed by the fact that a large number of cards share the same secret. The
security of these protocols has been analyzed in [4, 6, 12].

The overall design of the identity card includes

Fig. 1. Protocols for the Ger-
man ID Card

another protocol, called restricted identification.
In this optional protocol, card holders can use
domain-specific pseudonyms to interact with ser-
vice providers such that (a) a service provider can
recognize pseudonyms of individual cards and use
this information for the service (domain-specific
linkability), and (b) different service providers can-
not link interactions of one user in their respec-
tive domains (cross-domain anonymity). Although
the concept of restricted identification in [7] —and the Diffie-Hellman based
solution— currently only support recognition of pseudonyms, it can be easily

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 104–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Domain-Specific Pseudonymous Signatures for the German Identity Card 105

extended for more functionality, by allowing users to create signatures under
their pseudonyms.

1.1 Domain-Specific Pseudonymous Signatures

To analyze the protocols of the new German identity card we formally introduce
the concept of domain-specific pseudonymous signatures which captures the sce-
nario of the restricted identification protocols, augmented through signatures,
but also allows to reason about the security of the basic restricted identifica-
tion protocol.1 In a sense, (domain-specific) pseudonymous signatures can be
seen as a relaxed version of group signatures with a limited form of linkability:
While group signature schemes, as formalized in [3], provide a very strong form
of anonymity, preventing an adversary to identify signers even when knowing
the secret keys, pseudonymous signatures are designed specifically to allow a
well-defined verifier to link signatures.

The group-signature ancestry also lays the ground to model the security of
pseudonymous signatures. As mentioned, according to [3], secure group signature
schemes should satisfy full anonymity, the resistance to identify the origin of
signatures, and full traceability, the ability of the group manager to trace the
origin of a signature with the help of some trapdoor information. The latter
property implies, for example, unforgeability (because a forgery could not be
traced) and non-frameability, saying that a set of malicious parties, potentially
including the group manager, could falsely blame an honest user (which would
again contradict traceability).

Concerning anonymity, we note that the goal of restricted identification is
exactly to allow a service provider to link previously seen pseudonyms. We thus
relax the security requirement for pseudonymous signatures and only demand
cross-domain anonymity, i.e., the inability to link signatures given for different
service providers, even if both of them are malicious. Furthermore, since the
restricted-identification scenario does not involve an authority for traceability,
we revert to unforgeability directly for our setting, meaning that one cannot
forge signatures on behalf of honest users.

We also introduce another property saying that it is infeasible to make the
verifier accept a signature for an invalid domain-specific pseudonym. This as-
sumes a white- or black-listing approach, in the former case making sure that
valid pseudonyms are those in the white list, and in the other case demanding
that the verifier would not accept a black-listed pseudonym. We observe that
this property contrasts with unforgeability which merely protects honest signers
from signature forgeries under their name. While this additional property, which
we call seclusiveness, follows from full-traceability for group signatures, we need
to state it explicitly in our setting without a tracing authority. Roughly, unforge-
ability together with seclusiveness provide a weaker, yet “best-we-can-hope-for”
form of full-traceability for domain-specific pseudonymous signatures.

1 Interestingly, the term “pseudonymous signatures” has occasionally been already
mentioned in the literature, typically referring to regular signatures under pseudo-
nyms [14], but not considered formally, from a cryptographic point of view.



106 J. Bender et al.

1.2 Analysis of the Restricted-Identification Solutions

We then continue to analyze the current solution for restricted identification (and
its signature-augmented version). The basic solution is roughly to give users a
random value x1 and the service provider a certified group element R, such that
the user will derive the domain-specific pseudonym as the Diffie-Hellman key
IR = Rx1 (or, to be precise, the hash value thereof). This value is then sent over
a previously established secure channel to the service provider (but we ignore
the channel part in our analysis).

To achieve the additional unforgeability and seclusiveness properties in the
signature-augmented case the user is instead given a random representation
(x1, x2) of the authority’s public key y, i.e., y = gx1 = gx1

1 gx2
2 for generators

g1, g2 = gz1 . Here, the authority can create such representations easily with the
knowledge of z = logg1 g2. Each domain will again hold a certified group ele-
ment R, and the user will derive once more the domain-specific pseudonym as
the Diffie-Hellman key IR = Rx1 and transmits this value to the provider.

Obviously, if two malicious users could pool their distinct secrets (x1, x2) and
(x′

1, x
′
2) then they could recover the authority’s secret key z. However, we note

that these secrets are protected through the hardware of the identity card and
are not available to users. In a sense, our security analysis relies on this fact,
but at the same time even allows a single (malicious) user access to its secret
key. In case of suspicion of leakage of the authority’s secret key z a new key can
be generated, the old key can be revoked, but white-listing can be used to mark
the user keys under the old key as still valid.

In the signature-augmented version, the user additional signs a message m by
giving two intertwined non-interactive proofs of knowledge (where the message
enters the hash evaluation to derive the challenge non-interactively in the random
oracle model). This first proof shows that the user knows the discrete logarithm
x1 of IR to base R, and the other proof shows that it additionally knows x2 such
that (x1, x2) forms a representation of y = gx1

1 gx2
2 . The first proof is basically

a Schnorr proof of knowledge (PoK) [21], and the second one is an Okamato
PoK [17] but re-using the data from the Schnorr proof.

We show that the basic restricted-identification protocol ensures cross-domain
anonymity according to our notion. Since pseudonyms IR = Rx1 are essentially
Diffie-Hellman keys, this holds under the Decisional Diffie-Hellman assumption.
For the signature-augmented version we show that unforgeability holds as well (in
the random oracle model, and under the discrete log assumption). This follows
from the Schnorr PoK for x1. Seclusiveness follows from the Okamoto proof
showing that the pair (x1, x2) is a representation of y and has thus been issued
by the authority. Here, however, due to the construction we require that no two
malicious users collaborate. As explained above, this is prevented by hiding and
protecting the secret of users within the secure hardware of the chip. Thereby,
users can use their secrets, however, they cannot extract the keys to collude.
Note that the basic version does not implement a signature functionality and
thus cannot satisfy these two notions.



Domain-Specific Pseudonymous Signatures for the German Identity Card 107

1.3 Related Work

As noted above, domain-specific pseudonymous signatures can be seen as de-
scendants of group signatures, only with weaker anonymity requirements but
with domain-specific verifiers. The related concept of ring signatures [20] can
be viewed as “ad-hoc” group signatures without a central manager. For such
schemes, rings of users can be formed at will, and one user can sign on behalf of
the ring, but there is usually no mean to identify the actual signer later. As such,
domain-specific pseudonymous signatures provide stronger notions of traceabil-
ity than ring signatures, but a weaker form of anonymity —the domain holder
can link signatures.

We note that credential systems [5, 8] are very similar to our pseudonymous
signatures, but diverge in some important aspects. Most importantly, creden-
tial systems typically provide multi-show unlinkability, as opposed to our pseu-
donymous signatures. As such, solutions for multi-show credential systems are
usually slightly more complex [9–11]. For one-show solutions, where the user
can use a credential (under a pseudonym) only once, domain-specific linkability
—and therefore cross-domain anonymity— has not been considered before. We
also note that the question of turning cross-domain pseudonymous signatures
into full-fledged multi-show credential systems is beyond the scope of the paper
here: the requirement of recognizing pseudonyms for domain holders is inherent
in the application requirement.

Finally, let us point out that our notion of domain-specific pseudonymous
signatures is close to a recent proposal of Bernhard et al. [2] for defining direct
anonymous attestation (DAA). Their security definition for DAA also resembles
the one for group signature schemes but comes with a limited form of linkability:
signatures of the same user in the same domain (called base there) should be
publicly linkable. At the same time, one should be able to identify signatures
given the user’s secret key, a requirement which we do not impose in our setting.
Moreover, their scenario assumes that linkability must be enforced via crypto-
graphic means, domain-specific pseudonymous signatures allow this by default
through the pseudonyms. Besides minor technical differences concerning secu-
rity in presence of compromised keys or incorporating black-listing, the main
difference to their setting is that our model takes into account the extra layer of
domain-specific pseudonyms and its unlinkability to the pseudonym layer.

Similarly, Wei [22] also uses DAA as a motivation for his work on tracing-by-
linking group signatures, but he considers a weaker form of anonymity where
a signer’s identity is only hidden if he signs at most a fixed number of times
for k ≥ 1. Any additional signature enables to trace back the identity of the
signer by a public algorithm. The approach also includes a notion of k-linkability
which corresponds to (public) traceability and essentially means that more than
k signatures are linkable and allow to identify the origin. It also contains a notion
of non-slanderness which means that no group of malicious users (including the
issuing authority) can sign more than k times such that it points to an honest
user outside of the group. This primitive does not help in our scenario, because
we demand unlinkability only among different domain sectors. Furthermore, our



108 J. Bender et al.

notion of seclusiveness, in contrast with non-slanderness which addresses the
linkability of more than k signatures, refers to the fact that one cannot produce
any signature on behalf of honest users.

The idea of extending restricted identification to allow unlinkable sector sig-
natures has appeared concurrently in [15]. The scheme does not cover the issue
of seclusiveness, though, and is less explicit about the underlying security model,
e.g., it remains unclear if unlinkability holds for multiple signatures. Exploring
such questions and providing sound models, including issues related to black-
listing or white-listing, and to prove security according to these models for the
(augmented) restricted identification protocol of the new German identity cards
is our contribution here.

2 Domain-Specific Pseudonymous Signatures

To simplify the notation we denote by {a}n a set of n elements a1, . . . , an where
the indices i = 1, 2, . . . , n are implicit.

2.1 Preliminaries

Below we define our domain-specific pseudonymous signature scheme first for
static groups. Since both the secret keys of users and the domain keys are cho-
sen by the authority, we can imagine that a sufficiently large set is chosen at
the outset, and individual entries only become active if required. We hence as-
sume an algorithm NymKGen generating the group manager’s key pair, as well
as sufficiently many pseudonyms nym (and secret keys gsk[nym]) and public do-
main keys dpk. Each pseudonym and its secret key can now be combined via an
algorithm NymDSGen to build a domain-specific pseudonym dsnym = nym[dpk]
which, together with gsk[nym] can be used to sign messages.

In addition, we can also introduce the concept of black-lists to the model. For
this, we assume that the list is represented by a (dynamically updated) set B
of domain-specific pseudonyms which have been revoked earlier. We note that,
alternatively, one could employ white-listing where valid pseudonyms are those
included in the list; to revoke such a pseudonym one simply removes the entry
from the white-list.

Definition 1 (Domain-Specific Pseudonymous Signature). A domain-
specific pseudonymous signature scheme is a collection of the following efficient
algorithms NYMS = (NymKGen,NymDSGen,NymSig,NymVf) defined as fol-
lows.

NymKGen(1κ, 1n, 1d) is a probabilistic algorithm which, on input a security pa-
rameter 1κ and parameters 1n, 1d (both polynomial in κ) outputs a pair
(gpk, gmsk) where gpk is the group public key and gmsk the secret key of
the group manager, and outputs n (unique) pseudonyms nym with their cor-
responding secret keys gsk[nym], and d domain descriptions dpk.



Domain-Specific Pseudonymous Signatures for the German Identity Card 109

NymDSGen(nym, gsk[nym], dpk) is a deterministic algorithm which maps a pseu-
donym nym (and its secret key gsk[nym]) and the domain dpk to a domain-
specific pseudonym dsnym = nym[dpk].

NymSig(dsnym, gsk[nym], dpk,m) is a probabilistic algorithm which, on input a
domain-specific pseudonym dsnym, a secret key gsk[nym], a domain dpk, and
message m, outputs the signature σ of m under gsk[nym] for domain dpk.

NymVf(gpk, dsnym, dpk,m, σ,B) is a deterministic algorithm which, on input a
message m and a signature σ together with the group public key gpk, a
domain-specific pseudonym dsnym, the domain’s key dpk, and a list B, out-
puts either 1 (=valid) or 0 (=invalid).

We assume the usual completeness property, that for any honestly generated pa-
rameters, domain-specific pseudonyms, and signatures the verification algorithm
accepts and outputs 1.

Note that we can assume that the group manager uses some standard way of
certification for the public keys dpk given out to registered verifiers, and that
the signing and verification algorithms check the validity of the keys. We thus
often omit this step from the description of protocols.

2.2 Cross-Domain Anonymity

Cross-domain anonymity protects against linking pseudonyms across different
domains —within one domain pseudonyms are meant to be linkable. We define
cross-domain anonymity via a game between the adversary and a left-or-right
oracle which, given two pseudonyms, a message, and a domain, generates a
signature for either the left or the right pseudonym in the domain, according to
a secret random bit b. We assume that the adversary can make adaptive calls to
this left-or-right oracle; this is necessary since we cannot apply a hybrid argument
to reduce such multiple queries to a single one (as opposed to the case of full-
anonymity for group signatures as in [3], where this is possible since anonymity
even holds if the adversary knows the users’ secret keys). The adversary’s goal
is to predict b significantly beyond the pure guessing probability (condition (a)
below).

In addition to challenge queries to the left-or-right oracle, the adversary may
decide to blacklist domain-specific pseudonyms, to create additional signatures
via NymSig, and to corrupt users. For simplicity, we define a version for static
corruptions where all corruptions are made at the outset, before any other oracle
calls are made, and discuss the adaptive version briefly below. To exclude trivial
attacks, we must take into account that domain-specific pseudonyms are in prin-
ciple linkable by the domain holder. Hence, in “transitivity” attacks where the
adversary asks the left-or-right oracle first about a signature for domain-specific
pseudonyms dsnym0, dsnym1 and then for dsnym0, dsnym

′
1 for the same domain,

but dsnym1 �= dsnym′
1, the signatures would point to the same domain-specific

pseudonym if and only if the oracle signs under the left pseudonym. We thus
exclude such queries in condition (b) below.



110 J. Bender et al.

We require another case to be excluded. Namely, the additional signatures
generated through NymSig cannot hide the pseudonyms behind the signatures;
this would require further means like anonymous signatures and would only work
if signatures are not publicly verifiable [13, 23]. Since such extra signatures for
domain-specific pseudonyms would thus also allow to link the origin in the left-or-
right queries to the pseudonyms, we must disallow the adversary from querying
NymSig about domain-specific pseudonyms, which are also used in left-or-right
queries (condition (c) below).

The model below assumes, to the advantage of the adversary, that all pseudo-
nyms, all domain keys, and domain-specific pseudonyms are known at the outset;
only the assignment of pseudonyms to domain-specific pseudonyms remains hid-
den. Nonetheless, we assume that the relation of domains and domain-specific
pseudonyms is known (see below for the motivation). All this is captured by
giving the adversary the corresponding data as sets, with W � D being the set of
all domain-specific pseudonyms dsnym and the corresponding domains dpk. The
adversary will thus attack domain-specific pseudonyms from W. As common, we
measure the adversary’s running time including also all steps of honest parties,
and covering both phases of the adversary.

In the definition, we presume that domain-specific pseudonyms are unique
within a domain; global uniqueness can then be trivially achieved by attaching
the domain key to the pseudonym. Indeed, domain-specific uniqueness will be
later ensured by the unforgeability property anyway.

Definition 2 (Cross-Domain Anonymity). A domain-specific pseudonymous
signature scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is
(n, d, t, Q, ε) cross-domain anonymous with Q = (qc, qs, qt) if for any algorithm
A running in time t, and making at most qc queries to the corruption oracle,
qs queries to the signing oracle, and qt queries to the left-or-right oracle, the
probability that the following experiment returns 1 is at most ε:

Experiment CD− AnonNYMS
A (κ, n, d)

b
$←− {0, 1}

T, S,W,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n, and D = {dpk}d
W = {NymDSGen(nym, gsk[nym], dpk) | nym ∈ N, dpk ∈ D}
W � D := {(NymDSGen(nym, gsk[nym], dpk), dpk) | nym ∈ N, dpk ∈ D}
st← ACorrupt(gpk,W,W � D,N)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

d← AB′,NymSig′,LoR(st)
If A queries B′(dsnym) on input dsnym ∈W
− set B← B ∪ {dsnym}

If A queries NymSig′(dsnym, dpk,m) on input dsnym ∈ W \ B, dpk ∈ D,
and message m
− set S← S ∪ {(dsnym, dpk,m)}



Domain-Specific Pseudonymous Signatures for the German Identity Card 111

− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

If A queries LoR(dsnym0, dsnym1, dpk,m) on inputdsnym0, dsnym1 ∈ W\B
dpk ∈ D, and message m,
− set T← T ∪ {({dsnym0, dsnym1}, dpk,m)}
− find nym0, nym1 ∈ N \ C such that

dsnymi = NymDSGen(nymi, gsk[nymi], dpk) for i = 0, 1
− return ⊥ if no such nym0, nym1 exist,

else return NymSig(dsnymb, gsk[nymb], dpk,m)
Return 1 iff

(a) d = b and
(b) for any ({dsnym0, dsnym1}, dpk,m), ({dsnym′

0, dsnym
′
1}, dpk,m′) ∈ T

we have either {dsnym0, dsnym1} = {dsnym′
0, dsnym

′
1}

or {dsnym0, dsnym1} ∩ {dsnym′
0, dsnym

′
1} = ∅, and

(c) for any (dsnym, dpk,m) ∈ S there is no dsnym′,m′

such that ({dsnym, dsnym′}, dpk,m′) ∈ T.

The probability is taken over all coin tosses of NymKGen, NymSig, and A, and
the choice of b.

We note that the adversary in our game always accesses oracles through their
domain-specific pseudonyms. This is possible since A knows the set W of such
pseudonyms (but not the relation to the pseudonyms nym). Having this list at
the outset is motivated by the fact that the adversary can potentially collect such
domain-specific pseudonyms when acting as a domain holder, where it gets to
learn the domain-specific pseudonyms and signatures under these pseudonyms.
Note that this also allows to link domain-specific pseudonyms dsnym to domain
keys dpk, hence we giveW � D as additional input. This also implies that we can-
not grant the adversary access to another signature oracle which it can provide
nym, dpk,m to get a signature for m under the corresponding dsnym; it would
be easy to check for the validity of the signature under the domain-specific pseu-
donym with the help of W and to link dsnym to nym. In other words, one can
link pseudonyms to their domain-specific pseudonyms given a signature under
the pseudonym for the respective domain.

For an adaptive version, the adversary may interleave Corrupt queries with the
other oracle queries arbitrarily. Then we must ensure that no nym in a Corrupt
query has appeared in an LoR query before, declaring the adversary to lose if
this is the case.

2.3 Unforgeability

Unforgeability of domain-specific pseudonymous signatures follows the basic
paradigm for regular signatures: It should be infeasible to create a valid sig-
nature on behalf of an honest pseudonym for a previously unsigned message.
This should even hold if the adversary knows the group manager’s secret key
(but not the user’s secret key, else trivial attacks would be possible). Since for



112 J. Bender et al.

unforgeability we do not need to hide the link between pseudonyms and domain-
specific pseudonyms, we assume that the adversary simply knows the tuples
(dsnym, nym, dpk) of domain-specific pseudonyms, and corresponding pseudo-
nyms and domain keys. Below we say that the adversary wins if it manages to
forge a signature under a domain-specific pseudonym dsnym∗ which is potentially
derived from some pseudonym nym in some domain dpk; but the adversary does
not to specify these values.

Our notion of unforgeability is weaker than the non-frameability property of
group signatures in the sense that, even though the adversary may know the
group manager’s secret key, it must not collaborate with the group manager
during generation. We again consider only the version of static corruptions, al-
though here it is straightforward to capture adaptive corruptions by giving the
adversary simply the corruption oracle in the second phase, too.

Definition 3 (Unforgeability). The domain-specific pseudonymous signature
scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is (n, d, t, q, ε)-un-
forgeable if any algorithm A, running in time t and making at most q signing
queries, makes the following experiment output 1 with probability at most ε:

Experiment UnforgeNYMS
A (κ, n, d)

S,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n, and D = {dpk}d
W � N� D :={(NymDSGen(nym, gsk[nym], dpk), nym, dpk) |nym∈N, dpk∈D}
st← ACorrupt(gpk, gmsk,W � N� D)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

(m∗, σ∗, dsnym∗)←− AB′,NymSig′,Corrupt(st)
If A queries B′(dsnym) on input dsnym ∈W
− set B← B ∪ {dsnym}

If A queries NymSig′(dsnym, dpk,m) on input dsnym ∈ W \ B, dpk ∈ D,
and message m
− set S← S ∪ {(dsnym, dpk,m)}
− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

Output 1 iff there are nym∗ ∈ N \ C and dpk∗ ∈ D such that
(a) NymDSGen(nym∗, gsk[nym∗], dpk∗) = dsnym∗, and
(b) NymVf(gpk, dsnym∗, dpk∗,m∗, σ∗,B) = 1, and
(c) (dsnym∗, dpk∗,m∗) /∈ S.

The probability is taken over all coin tosses of NymKGen, NymSig, and A.
Note that conditions (a) and (c) also imply that domain-specific pseudonyms
of different users (within a domain) cannot collide, except with negligible prob-
ability. Otherwise, the adversary may corrupt one of the two parties, and any
signature created under the domain-specific pseudonym of the one party would



Domain-Specific Pseudonymous Signatures for the German Identity Card 113

immediately constitute a forgery under the other party’s pseudonym. (In the
above model it would then be more appropriate to let the adversary in calls to
NymSig′ also specify nym, instead of searching for it; since the adversary knows
the list W � N� D it can look this value up.)

2.4 Seclusiveness

Seclusiveness finally considers the case that the verifier would accept a signature
under a domain-specific pseudonym which has not been created by the authority.
Note that this assumes that only the black-listed domain-specific pseudonyms are
available, but not the universe of all created pseudonyms. This is indeed a valid
assumption, following the suggestion in [7] about revocation for pseudonyms
through black-lists, with no intention for white-lists. It is also clear that, unlike in
case of unforgeability, we thus cannot allow the adversary to know the manager’s
secret key; else generating keys for additional users would be easy.

As in unforgeability, we again consider only the version of static corruptions.
One captures adaptive corruptions by giving the adversary simply the corruption
oracle in the second phase, too.

Definition 4 (Seclusiveness). The domain-specific pseudonymous signature
scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is (n, d, t, Q, ε)-se-
cluding with Q = (qc, qs) if any algorithm A, running in time t and making at
most qs signing queries and qc corruption queries, makes the following experi-
ment output 1 with probability at most ε:

Experiment SecNYMS
A (κ, n, d)

W,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n and D = {dpk}d
W = {NymDSGen(nym, gsk[nym], dpk) | nym ∈ N, dpk ∈ D}
W � N� D

:= {(NymDSGen(nym, gsk[nym], dpk), nym, dpk) | nym ∈ N, dpk ∈ D}
st←− ACorrupt(gpk,W � N� D)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

(m∗, σ∗, dsnym∗)←− AB′,NymSig′(st)
If A queries B′(dsnym) on input dsnym ∈W
− set B← B ∪ {dsnym}

If A queries NymSig′(dsnym, dpk,m) on dsnym ∈W \ B, dpk ∈ D,
and message m
− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

Output 1 iff there exists dpk∗ ∈ D such that
(a) NymVf(gpk, dsnym∗, dpk∗,m∗, σ∗,B) = 1
(b) dsnym∗ /∈ W

The probability is taken over all coin tosses of NymKGen, NymSig, and A.



114 J. Bender et al.

3 Construction

The idea of the discrete-log based construction is as follows: The group manager
will hold two generators g1, g2 = gz1 with z ∈ gmsk for which it knows the discrete
log with respect to each other. In addition, it will hold a public key y = gx1 ,
such that it can easily compute many pairs (x1, x2) such that y = gx1

1 gx2
2 with

the help of z; this is the trapdoor property of such values [1, 18]. Each user
pseudonym nym will receive one of these pairs as its secret key gsk[nym]. The
domain parameters are given by values dpk = gr. A user can then compute the
domain-specific pseudonym as dsnym = dpkx1 .

To sign a message the user can then use common discrete-log based protocols
(in the random oracle model) to show that (a) it knows the discrete-log x1 of
dsnym with respect to dpk, and (b) it knows a matching value x2 to this discrete
logarithm x1 such that the pair forms a representation of y. Essentially, this is
accomplished by running the non-interactive version of the Okamoto proof of
knowledge [17] for x1, x2 and y to base g1, g2, where the x1-part can simultane-
ously be used to show knowledge of x1 of dsnym with respect to base dpk. As
usual, the message to be signed enters the hash computations.

Construction 1. The construction of the domain-specific pseudonymous signa-
ture scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is as follows:

NymKGen(1κ, 1n, 1d): Let G = 〈g〉 be a (public) cyclic group of prime order q.
We also assume a public hash function H, modeled as a random oracle in
the security proofs. Choose z ∈R Zq randomly and calculate g1 := g and
g2 := gz. Define gpk := gx1 for random x ∈R Zq. To generate the secrets
for the pseudonyms choose n random elements x2,1, . . . , x2,n ∈R Z

∗
q and

calculate x1,i = x − z · x2,i for i = 1, 2, . . . , n. Define gsk[i] := (x1,i, x2,i).
By xj we denote the xj,i when pseudonym i is clear from context. For the
domain-parameters pick random r1, . . . , rd ∈R Z

∗
q and define dpki := gri for

i = 1, . . . , d. Store z in gmsk. (Note that once the values gsk[·] have been
output resp. given to the users, the group manager deletes them.)

NymDSGen(nym, gsk[nym], dpk): Compute and output the domain-specific pseu-
donym nym[dpk] := dpkx1 , which is also sometimes denoted as dsnym when
nym and dpk are known from context.

NymSig(dsnym, gsk[nym], dpk,m): Let a1 = gt11 · gt22 and a2 = dpkt1 , for ran-
dom t1, t2 ∈R Zq. Compute c = H(dpk, dsnym, a1, a2,m). Let s1 = t1− c · x1

and s2 = t2−c ·x2. Then, output σ = (c, s1, s2). (Note that in the Restricted-
Identification protocol the user also sends dsnym which we can include here
in the signature, in order to match the protocol description.)

NymVf(gpk, dsnym, dpk,m, σ,B): To verify a signature perform the following
steps:
1. Parse (c, s1, s2)← σ.
2. Let a1 = yc · gs11 · gs22 and a2 = dsnymc · dpks1 .
3. Output 1 iff c = H(dpk, dsnym, a1, a2,m) and dsnym /∈ B.



Domain-Specific Pseudonymous Signatures for the German Identity Card 115

Revocation Mechanisms. We presented our construction above in terms of
black-listing, revoking fraudulent domain-specific pseudonyms by listing them
explicitly. Alternatively, and our definitions and constructions are robust in this
regard, one can use a white-listing approach to list valid entries only. To rep-
resent the whitelisting approach in our framework any delisted domain-specific
pseudonym from W will be put in B, such that W \ B corresponds to the set
of currently whitelisted entries. Checking for whitelisting thus corresponds to
verifying that the entry is in W \ B in our framework.

Blacklisting and whitelisting is performed by calculating the domain-specific
pseudonym dsnym for domain dpk, but without knowledge of the private keys
x1 and x2. One important difference between black- and whitelisting is that
whitelisting allows to retain security even if authority’s secret key z is compro-
mised. If whitelisting is used it is not strictly required to keep z secret. While
an attacker would be able to construct valid private keys (x1, x2) corresponding
to the group public key y, the corresponding pseudonyms would not be listed
on the whitelist and thus, the signatures would be rejected. Therefore, the at-
tacker would have to find corresponding private keys for given pseudonyms on
the whitelist, which in turn would require to calculate discrete logarithms.

4 Security Analysis

Our proofs work in the random oracle model, and thus, an adversary may also
query a random hash function oracle. By qh, we denote the maximum number
of queries to hash function oracle made by the adversary.

4.1 Number-Theoretic Assumptions

Our proof for the anonymity follows by reduction to the Decisional Diffie-Hellman
(DDH) assumption whereas the hardness of unforgeability and seclusiveness is
reduced to the Discrete Logarithm (DL) problem. Both are considered as stan-
dard assumptions, and are believed to be hard for decades. Roughly, the DDH
assumption says that distinguishing the tuples (ga, gb, gab) and (ga, gb, g′) where
g′ is picked randomly from all group elements, is hard. The DL assumption says
it is hard to find a given group G generated by g and element A = ga. In our
security analysis we use concrete bounds for the underlying problems, i.e., we
assume that the Discrete-Logarithm problem is (t, ε)-hard if any algorithm A
given A ∈ G (sampled uniformly in G), running in time t, finds a with ga

′
= A

with probability at most ε. Second, the Decisional Diffie-Hellman problem is
(t, ε)-hard if any algorithm A can differentiate tuples (ga, gb, gc) and (ga, gb, gab)
with probability at most 1

2 + ε in runtime t where a, b, c ∈ Zϕ(G) are sampled
uniformly.

4.2 Anonymity

Informally, the protocol is cross-domain anonymous (with respect to static cor-
ruptions) because the domain-specific pseudonyms appear to be random to the



116 J. Bender et al.

adversary under the decisional Diffie-Hellman assumption. Below we write t′ ≈ t
to denote the fact that t′ is essentially the same running time as t, except for
minor administrative overhead.

Theorem 1. Assume the DDH problem is (t, ε)-hard. Then the domain-specific
pseudonymous signature scheme NYMS of Section 3 is (n, d, t′, Q, ε′) cross-

domain anonymous with Q = (qc, qs, qt, qh), where ε′ ≤ ndε + (qs+qt+qh)(qs+qt)
q2

and t′ ≈ t. This holds in the random oracle model.

Proof. We combine the ideas of pseudorandom synthesizers of Naor and Rein-
gold [16] with the simulation soundness of the non-interactive zero-knowledge
proofs (aka. signatures) in the random oracle model. That is, assume the origi-
nal attack of the adversary on our protocol. In a first game hop we replace the
actual signature computations in LoR and NymSig′ queries by simulated signa-
tures (via programming the random oracle). See [19] for details. This strategy is
valid if programming the hash values in such computations have not appeared in
previous hash queries of the adversary, nor in previous signature queries. How-
ever, since the random group elements a1, a2 enter the hash evaluations, the
probability that an input collision occurs in any of the at most qs + qt signature
generations, is at most (qs + qt + qh)(qs + qt)/q

2. Given that no such collision
occurs the simulation is perfectly indistinguishable such that the adversary’s
success probability cannot increase by more than this term.

Note that after the game hop, we can create valid signatures on behalf of
users without knowing the secret keys. In the next game hop, we replace the
domain-specific pseudonyms dsnym in LoR queries by random group elements
(but in a consistent way). That is, whenever we are supposed to use dsnym we
instead use a new random element dsnym′ ← G, unless nym in combination with
dpk has been used before, either in a signature request or an LoR query, in which
case we use again the previously generated random value dsnym′.

We claim that this hop cannot increase the adversary’s success probability
noticeable by the DDH assumption. To this end, we briefly recall the notion of
a pseudorandom synthesizer in [16]. The pseudorandom synthesizers for the DH
pairs is an a × b matrix, with the rows labeled by values gxi and the columns
labeled by grj , and entries at position i, j set to gxirj , such that this matrix
is indistinguishable from an a × b matrix of independent and random group
elements, even if the row and column labels gxi and grj are given. In a sense,
the matrix entries are correlated but still look random. As discussed in [16] this
holds in our case under the DDH assumption. In fact, it allows for a reduction to
the DDH problem with a loss of a factor ab where, in our case, after the initial
corruption, there are at most ab ≤ nd entries of honest users.

In the next game hop, we always use the left domain-specific pseudonym
dsnym0 in LoR queries, independently of the value of b. We stress that, in case
of b = 1, this does not change the adversary’s success probability at all. Assume
from now on b = 1. Note that each LoR query about (dsnym0, dsnym1, dpk,m)
is answered by a random element, just as it would be for b = 0. All other LoR
queries involving dpk can only be about the same pair (dsnym0, dsnym1) in this



Domain-Specific Pseudonymous Signatures for the German Identity Card 117

order, in reverse order (dsnym1, dsnym0), or for distinct entries. In the first case,
we would answer again consistently with the (wrong) random element, in the
second case, we would switch to the other random element, and in the third case
use an independent random value. This behavior, however, is identical to the
case b = 0 from the adversary’s point of view. Similarly, the adversary cannot
make any signature request for (dsnym0, dpk) nor (dsnym1, dpk) without losing.
It follows that such signature requests do not depend on the bit b. Hence, the
probability of the experiment returning 1 does not change.

In the final game, the adversary’s success probability is independent of b, and
the adversary cannot win with probability more than 1

2 . Collecting all probabil-
ities from the game hops yields the claimed bound. ��

Anonymity of Restricted Identification. Recall that in the basic version of
the restricted identification protocol, the user merely shows the domain-specific
pseudonym dsnym to the service provider (who checks that this value has not
been revoked yet). Anonymity of this solution follows from the proof above
under the DDH assumption alone, noting that we do not need to simulate the
additional signatures in the random oracle model.2

4.3 Unforgeability

Theorem 2. Assume the DL problem is (t, ε)-hard on G, then the domain-
specific pseudonymous signature scheme NYMS of Section 3 is (n, d, t′, Q, ε′)-
unforgeable with Q = (qs, qh), where

ε′ ≈ (2q)−1(qh −√qh
√
δε+ (2δ/q)(qs + qh)2 + qh)

and t′ ≈ t with δ = 4ndq2. This holds in the random oracle model.

Due to space limitations, the proof of Theorem 2 appears in the full version of
this work; however, we provide a sketch here.

Proof (Sketch). We reduce the hardness of the unforgeability game (cf. Defini-
tion 3) to the discrete-logarithm problem. We embed a DL challenge A = ga

into a domain-specific pseudonym dsnym∗ of an randomly chosen pseudonym
nym∗ ∈ N and domain dpk∗ ∈ D. Similarly to the proof of Schnorr signa-
tures [19], we leverage the Forking Lemma, in order to obtain two related
forgeries (c, s1, s2), (c

′, s′1, s
′
2) on a message m under dsnym∗ from which we can

extract the witness (resp. discrete logarithm) from the challenge as follows. Given
both signatures σ, σ′ we extract the discrete-log a of dsnym∗ = A = ga as follows.
Given s1 = t1 − c · a and s′1 = t1 − c′ · a, we have a = (s1 − s′1)/(c

′ − c). Hence,
we found the solution a for the DL instance A.

We require that A succeeds to forge on behalf of pseudonym nym∗ under
domain public key dpk∗ in the first signature. In addition, we loose a tightness

2 The specification actually lets the user send a hash value of dsnym. This does not
affect the discussion, though.



118 J. Bender et al.

factor due to Forking Lemma, which yields the probability to find the discrete
logarithm of A at most ε = ε′/nd · (ε′/qh + 1/q)− (2qs + 2qh)

2/q where ε′ is the
success probability of A.

4.4 Seclusiveness

As remarked before, seclusiveness only holds as long as the adversary does not
get a hold of the group manager’s secret key. By construction, this means that
the adversary can thus only corrupt one user, else z becomes known. When
considering blacklisting for our construction, we stipulate this below by requiring
that the secrets are stored securely in hardware, or, respectively, that the number
of corrupt requests qc is at most 1. If whitelisting is used instead, then we do
not require any bound on the number of corruptions the adversary can made,
since learning z does not help the adversary to compute a domain-specific dsnym
which is listed in the (still trustworthy) whitelist.

Theorem 3. Assume the DL problem is (t, ε)-hard on G, then the domain-
specific pseudonymous signature scheme of Section 3 is (n, d, t′, Q, ε′)-secluding
with Q = (qc, qs, qh), where qc = 1, ε′ ≈ (2q)−1(qh−√qh

√
qh + 4q2ε+ 4q2δ) and

t′ ≈ t with δ = 2(qs + qh)/q. This holds in the random oracle model.

Due to space limitations, the proof of Theorem 2 appears in the full version of
this work; however, we provide a sketch here.

Proof (Sketch). We are given an adversary A which wins in the seclusiveness
game of NYMS. Here, A outputs a signature under a domain-specific pseudo-
nym dsnym to no corresponding identity nym ∈ {nym}d. Intuitively, the proof
works as follows. We are asked for the discrete-log a of an element A := gadl from
a presumably DL-hard group Gdl. We embed A in generator g2 such that the
group’s master key z ∈ gmsk equals a. We are able to generate one secret key
pair (x1, x2) satisfying x = x1 + zx2 for unknown x, gmsk. Using the signature
given by A we can extract a second pair (x∗

1, x
∗
2) . Those two key pairs suffice to

disclose z (resp. a) and thus, we solve the DL problem. ��

References

1. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

2. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anony-
mous attestation with user-controlled linkability. Cryptology ePrint Archive, Re-
port 2011/658 (2011), http://eprint.iacr.org/

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and A Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

4. Bender, J., Fischlin, M., Kügler, D.: Security Analysis of the PACE Key-Agreement
Protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

http://eprint.iacr.org/


Domain-Specific Pseudonymous Signatures for the German Identity Card 119

5. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates; Build-
ing in Privacy. The MIT Press (2000)

6. Brzuska, C., Dagdelen, Ö., Fischlin, M.: TLS, PACE, and EAC: A Cryptographic
View at Modern Key Exchange Protocols. In: GI-Sicherheit 2012. GI-LNI, pp.
71–82 (2012)

7. Advanced security mechanism for machine readable travel documents extended
access control (eac). Technical Report (BSI-TR-03110) Version 2.05 Release Can-
didate, BSI (2010)

8. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28 (October 1985)

9. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

10. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

11. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

12. Dagdelen, Ö., Fischlin, M.: Security Analysis of the Extended Access Control Pro-
tocol for Machine Readable Travel Documents. In: Burmester, M., Tsudik, G.,
Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 54–68. Springer, Hei-
delberg (2011)

13. Fischlin, M.: Anonymous Signatures Made Easy. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 31–42. Springer, Heidelberg (2007)

14. Koops, C.f.B.J., Buitelaar, H., Lips, M. (eds.): D5.4: Anonymity in electronic gov-
ernment: a case-study analysis of governments? identity knowledge. FIDIS report
(February 2012)

15. Kutylowski, M., Shao, J.: Signing with multiple ID’s and a single key. In: 38th
CCNC, pp. 519–520. IEEE (2011)

16. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE (1997)

17. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

18. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

20. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

21. Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

22. Wei, V.K.: Tracing-by-Linking Group Signautres. Cryptology ePrint Archive, Re-
port 2004/370 (2004), http://eprint.iacr.org/

23. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous Signature Schemes. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 347–363. Springer, Heidelberg (2006)

http://eprint.iacr.org/

	Domain-Specific Pseudonymous Signaturesfor the German Identity Card
	Introduction
	Domain-Specific Pseudonymous Signatures
	Analysis of the Restricted-Identification Solutions
	Related Work

	Domain-Specific Pseudonymous Signatures
	Preliminaries
	Cross-Domain Anonymity
	Unforgeability
	Seclusiveness

	Construction
	Security Analysis
	Number-Theoretic Assumptions
	Anonymity
	Unforgeability
	Seclusiveness

	References




