
A Quantitative Approach

for Inexact Enforcement of Security Policies�

Peter Drábik, Fabio Martinelli, and Charles Morisset

IIT-CNR, Security Group
Via Giuseppe Moruzzi 1, 56124 Pisa, Italy

{peter.drabik,fabio.martinelli,charles.morisset}@iit.cnr.it

Abstract. A run-time enforcement mechanism is a program in charge
of ensuring that all the traces of a system satisfy a given security policy.
Following Schneider’s seminal work, there have been several approaches
defining what kind of policies can be automatically enforced, and in
particular, non-safety properties cannot be correctly and transparently
enforced. In this paper, we first propose to build an enforcement mecha-
nism using an abstract notion of selector. We then propose to quantify the
inexact enforcement of a non-safety property by an enforcement mecha-
nism, by considering both the traces leading to a non-secure output by
this mechanism and the secure traces not output, thus formalizing an
intuitive notion of security/usability tradeoff. Finally, we refine this no-
tion when probabilistic and quantitative information is known about the
traces. We illustrate all the different concepts with a running example,
representing an abstract policy dealing with emergency situations.

Keywords: Runtime Enforcement, Safety, Security/Usability Tradeoff.

1 Introduction

An enforcement mechanism is a program in charge of controlling the actions of a
target over a system, such that the sequences of actions submitted to the system
satisfy a security policy. For instance, a security policy can state that the user
of a database cannot execute a request to remove a table she does not own, or
that an application downloaded onto a mobile operating system cannot modify
the core functionalities of the system.

An enforcement mechanism can therefore be seen as a monitor between a tar-
get, seen as a black-box, and a system, such that only secure sequences of actions
are executed by the system. There have been several important approaches aim-
ing at understanding and characterizing what kind of policies are enforceable,
and we can cite in particular the seminal work of Schneider [18] and the one of
Ligatti et al. [15]. In the former, Schneider showed that if a policy is not a safety
property (i.e., a non-secure trace might be extended to a secure one), then it

� This research was supported by the EU FP7-ICT project NESSoS under the grant
agreement n. 256980.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 306–321, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Quantitative Approach for Inexact Enforcement of Security Policies 307

can only be enforced by a “mechanism that uses more information than would
be available only from observing the steps of a target’s execution”. In the latter,
Ligatti et al. introduce, among others, the edit-automaton, and prove that any
security property (over finite traces), including non-safety ones, can be enforced
by a monitor built from an edit-automaton.

Indeed, an edit-automaton is powerful enough to buffer the entire trace, and
to only release the actions submitted by the target when it is certain that they do
not violate the policy. However, in many cases, buffering is not a desirable option,
for instance when a non-safety policy is built to deal with critical situations,
where a non-secure action needs to be performed immediately, and the control
might only come afterwards. Such situations can typically occur in the context
of healthcare policies [1,5]. Moreover, since a monitor usually needs to output an
action to the system whenever the target submits one, buffering the trace would
lead to violate the transparency1 of the monitor.

In this paper, we therefore start from the observation that since non-safety
policies cannot be exactly enforced (i.e., correctly and transparently), then a
monitor can only enforce inexactly a non-safety policy. We formalize this concept
by characterizing the non-secure traces output by a monitor together with the
secure traces not output. By quantifying over these traces, we show that not all
inexact monitors are alike, and that it is possible to define a strategy to adopt.
Intuitively, this strategy corresponds to defining a security/usability2 tradeoff.

The main contributions of this paper are three-fold. Firstly, we present a sim-
ple framework for runtime monitors with no editing power using a general con-
cept of selector (which can be seen as a generalization of a security-automaton)
and we define the notion of n-safety policy, which, intuitively, is a policy allowing
for at most n non secure steps. Secondly, we introduce the concept of inexact en-
forcement with the sets C and T, which, intuitively, contain the traces violating
the correctness of the monitor and those violating its transparency, respectively,
and we illustrate it on a detailed running example, inspired by a basic break-
glass healthcare policy. In particular, we observe that in a basic setting, it might
be better to go for an “all-or-nothing” approach. Finally, we present different
levels of quantification over these sets, in particular using probabilistic and quan-
titative information about traces, paving the way towards a formal risk-aware
run-time enforcement.

Outline. The rest of this paper is structured as follows: after presenting some
related approaches, we introduce in Section 2 the basic concepts such as trace,
security property, monitor and enforcement. In Section 3, we define selectors, and
we show how to build a monitor. In Section 4, we define the notion of n-safety

1 We adopt here a strict notion of transparency, which states that a correct input trace
should not be edited at all, even if the result of the editing is somehow transparent.
This is the reason why we do not consider expressive editing power, such as insertion
or suppression, as they are not helpful with respect to strict transparency.

2 We use here the notion usability in its general meaning, i.e., stating that a system can
be used, rather than as the ability to realize user requirements, as it can sometimes
be found in security.

308 P. Drábik, F. Martinelli, and C. Morisset

property, together with the one of n-selector. In Section 5, we characterize the
inexact enforcement of a property, and we define the notion of security/usability
tradeoff. In Section 6, we consider the case where the monitor knows the proba-
bility of each possible extension. Finally, in Section 7, we introduce the concept
of quantitative policy, and we transform the previous tradeoff into the notion of
risk exposure, after which we conclude and detail our future work.

Related Work. There has been a significant bulk of work on enforcement mecha-
nisms, especially about their theoretical foundations. We mention here only the
closest to our work, and we refer the reader to [12] for a comprehensive survey.

As already mentioned Schneider formalized Execution Monitoring (EM) mech-
anisms as security automata in [18]. Later, Ligatti et al. [15], starting from this
initial model, defined a series of automata with increasing power that act as trace
consumers and producers. The main novelty was the capability to alter the trace
produced by the target, by suppressing, inserting and editing actions. The most
powerful class is called edit automata. The semantics of the enforcement mecha-
nisms was still given in terms of big step-semantics for automata. Later work [16]
has shown how to enforce non-safety properties, also proposing a notion of enforce-
ment up to equivalence among traces. In [3], Basin et al. consider the case where
some actions are uncontrollable (i.e., cannot be stopped), and define what policies
can then be enforced, by using aDeterministic TuringMachine tomodel amonitor.

After these different approaches characterizing what properties one can en-
force with a specific mechanism, a slightly different strand of work started to
consider what happens when limiting the editing power of the edit-automata,
already recognized to be too powerful. We can mention here some work consid-
ering a limited capability for trace history recording, e.g., shallow history in [9]
and limited memory in [19]. The former considers automata that only record the
set of relevant actions that happened in the past, while the latter allows only
a limited knowledge. Basically, these approaches are limiting the visibility over
the past trace, while we are interested here in investigating a limited visibility
over the future trace. Some approaches also try to go beyond the traditional
runtime enforcement model, such as the definition of facets values [2], where a
variable can take different values according to the security level of the user, or
the Secure Multi Execution framework [6], where a program is executed multiple
times, with different levels of security, thus being able to consider a wider range
of security policies, such as non-interference ones.

Another recent class of work is mainly interested in what behaviour an en-
forcement mechanism should have when the trace is not secure, since traditional
definitions do not specify this case. In [4], the authors use a notion of distance
among traces, thus expressing that if a trace is not secure, it should be edited
to a secure trace close to the non-secure one.

2 Basic Definitions

As we said in the introduction, a monitor is responsible for enforcing a policy
over a system, and we identify the three following entities: the target is an active

A Quantitative Approach for Inexact Enforcement of Security Policies 309

entity sending actions to the system; the system is a passive entity waiting for
actions from the target, and executing them; the monitor is an entity between
the target and the system, receiving actions from the target and sending actions
to the system. We now introduce the notion of traces, together with some usual
notations, and then we express the notion of policy and monitor.

2.1 Actions and Traces

Let A be the set of actions that the target can output, such that A contains the
special action �, indicating that the target has finished its execution, and does
not output any other actions. We consider here traces consisting of an unbounded
number of actions, and we say that a trace is consistent when any action � is
followed only by � actions. We write T for the set of all finite, unbounded,
consistent traces, and given a natural number n, abusing the notation, we write
T n for the subset of T consisting of all traces of length n. For the sake of
exposition, we consider that any trace σ can always be extended by adding any
finite number of � actions, and conversely that the actions � at the end of a
trace can always be removed. Given a trace σ ∈ T , we write |σ| for the length
of σ (potentially including � actions at the end), and we write ε for the empty
trace.

Given a trace σ, we write σi for the action located at the i-th index of σ,
starting from 0. Note that we consider that σi is always defined, and returns �
if i is greater than the length of σ. We extend this notation to write σi<j for
the sub-trace of σ between the locations i and j − 1. For instance, given the
trace σ = abcde, we have σ1<3 = bc. When the first index is equal to 0, we
write σ0<j = σ<j , which corresponds to the prefix of length j of the trace. In
particular, we have σ<0 = ε.

Given two traces σ and τ in T , we write σ; τ (or στ when no confusion can
arise) for the concatenation of σ with τ , we write σ � τ to denote that σ is a
prefix of τ . Note that we consider the prefix relation to be built modulo the �
actions3 at the end of the trace, in other words, if σ � τ , then σ� � τ .

2.2 Security Policy and Property

In general, a security policy is expressed over sets of traces, describing all the
secure runs of the system. For instance, a security policy could state that the
system cannot execute the same trace twice. However, such a policy cannot be
enforced by run-time monitoring, since it is usually considered that the monitor
can only see the current trace submitted by the target. Following most existing
approaches in the context of run-time enforcement, we only consider here security
policies that can be defined using a security property, which is a computable
predicate P : T → B.

3 In general, we consider the � actions at the end of a trace as non-significant actions,
and we use them mostly to avoid checking the length of a trace every time we want
to access an action of a trace.

310 P. Drábik, F. Martinelli, and C. Morisset

Moreover, we consider here only reasonable properties [16], which, in addition
to being defined as computable predicates, also always hold over the empty
trace, so that a system cannot start in a non-secure state. We therefore exclude
liveness properties that require that a particular action is always executed. The
reason we impose this constraint is to ensure that a monitor can always output a
secure trace. Note that many access control policies (e.g., the Access Matrix [13],
the Bell-Padula model [14], the Role-based model [8], etc), can be expressed as
security properties, since they do not depend on previous executions of the target,
but only on the current state of the system.

Among reasonable properties, the category of safety properties has been par-
ticularly studied. Intuitively, with a safety property, a non-secure trace cannot
be extended into a secure one. More formally:

Definition 1. A reasonable property P is a safety property if, and only if:

∀σ1, σ2 ∈ T ¬P(σ1) ∧ σ1 � σ2 ⇒ ¬P(σ2)

Running Example. For instance, consider the set of actions Ae = {b, d, s},
where b stands for a benign action, d for a dangerous action and s for a supervision
action. We want to express that the target can execute any benign action, but
must execute first a supervision action before executing a dangerous action,
which is given by the following property Pe, which is clearly a safety property:

Pe(σ) ⇔ (∀i σi = d ⇒ ∃j < i σj = s).

We introduce in Section 4.1 the concept of n-safety property, which, roughly
speaking, is a property allowing at most n “bad” steps. One of the problems we
try to address in this paper is the enforcement of such properties.

2.3 Monitor

A monitor can be represented as a function E : T → T , that is, a function taking
a trace as an input from the target, and returning another trace to the system.
As we said in Section 1, we are interested here in monitors that have no editing
power over the trace, only a truncating one. In other words, the trace output by
the monitor is either exactly the one input by the target, or its prefix. Intuitively,
we want a monitor to be both secure (i.e., that the monitor only output secure
traces), and usable (i.e., that the monitor does not truncate secure traces), which
we express with the traditional notions of correct enforcement, transparent en-
forcement, and exact enforcement (for both correct and transparent) defined as
follows.

Definition 2. An enforcement mechanism E : T → T is said to:

– be conservative if, and only if, for any trace σ ∈ T , we have E(σ) � σ;
– correctly enforce a property P if, and only if, for any trace σ ∈ T , we have

P(E(σ)),

A Quantitative Approach for Inexact Enforcement of Security Policies 311

– transparently enforce a property P if, and only if, for any trace σ ∈ T such
that P(σ), we have E(σ) = σ.

– exactly enforce a property P, which we denote as E
 P if, and only if, E
is conservative, and correctly and transparently enforces P,

It is worth observing that even though we do not consider editing power here, for
any reasonable property, there exists a monitor enforcing exactly this property:
since the monitor has access to the whole trace, it can simply check whether
the security property holds for the trace, and output it in the positive case, or
output ε otherwise. In other words, the ability to edit a trace is not necessary to
enforce exactly a reasonable property, knowing the future of the trace is enough.

We now present a framework based on the notion of selector, which is a simple
function taking the past trace, the action to control, and decides whether the
action should be kept or the trace stopped. To some extent, the role of a selector
is close to the one of a security automaton [15]. A monitor is then defined by
calling a selector for each action submitted by the target, thus making explicit
the fact that a monitor must make a decision at each step, and cannot simply
wait for the rest of the trace. We consider the notion n-selectors in Section 4. This
framework allows us to tackle the problem of inexact enforcement in Section 5.

3 Selector-Based Monitor

We introduce our framework by revisiting the definition of the class EM (for
Execution Monitoring), defined by Schneider [18] as excluding “mechanisms that
use more information than would be available only from observing the steps of
a target’s execution”, which we characterize by defining the concept of selector,
which embodies the fact that a monitor must make a decision at each step using
only past information.

3.1 Selector

A selector is a function F : T ×A → B, such that given a trace σ and an action
a, F (σ, a) is true if and only if the action a should be kept after having executed
the trace σ. Moreover, we consider only selectors stating that if an action should
not be kept, then any following action should also not be kept. We say that a
monitor satisfying this constraint is consistent, which is formally specified as:

∀σ ∈ T ∀i F (σ<i, σi) = false ⇒ ∀j > i F (σ<j , σj) = false

For instance, the selectors Ffalse and Ftrue , which return always false and always
true, respectively, are trivially consistent. Clearly, this notion of consistency is
related to the one of safety. Indeed, given a computable property P , the selector
FP , as defined in Equation (1), is clearly consistent when P is a safety property.

FP(σ, a) =

{
true if P(σ; a)

false otherwise
(1)

Intuitively, the selector FP is analogous to a truncation automaton [15].

312 P. Drábik, F. Martinelli, and C. Morisset

3.2 From Selector to Monitor

Given a selector, we can straight-forwardly define a monitor by calling the se-
lector at each step. More formally, given a selector F : T × A → B, we define
the monitor EF : T → T as follows:

∀i ∈ N EF (σ)
i =

{
σi if F (σ<i, σi) = true

� otherwise

Clearly, if F is a consistent selector, for any consistent trace σ, EF (σ) is also
consistent.For instance, from the two selectors Ffalse and Ftrue described above,
we can define the monitors4 Efalse and Etrue , which respectively always outputs
the empty trace and always outputs the input trace. It is worth noting that both
monitors are conservative, that Efalse enforces correctly any property and that
Etrue enforces transparently any property. In other words, it is always trivial to
build a correct monitor, and it is always trivial to build a transparent monitor,
but in general, such monitors are not exact.

When P is a safety property, we can however always build the monitor EP
from the selector FP defined in Equation 1, and we can prove that EP enforces
exactly P (all proofs can be found in the companion report [7]).

Lemma 1. For any safety property P, EP
 P.

Running Example. For instance, consider the trace bbsddb. Following the
definition of Pe, we have EPe(bbsddb) = bbsddb, because a supervision action is
present before any dangerous action. Now, consider the trace bbdsdb: we have
EPe(bbdsdb) = bb���� = bb�. Indeed, even though the second dangerous
action is preceded by a supervision action, the first one is not, and since the EPe

is consistent, every action after the first dangerous action included is transformed
into the � action.

We can now formally express and prove that, as stated by Schneider [18]
“if the set of executions for a security policy is not a safety property, then
an enforcement mechanism from EM does not exist for this policy”. Moreover,
since we do not consider real-time availability problems or infinite memory, we
can even prove the converse, as stated in Proposition 1 (which is simply the
reformulation of Schneider’s result in our framework).

Proposition 1. Given a property P, there exists an enforcement mechanism E
in EM such that E
 P if and only if P is a safety property.

This result, although expected, nonetheless narrows down enforceable properties
to safety properties, and does not provide a way to enforce non-safety properties,
such as those existing in emergency contexts. We present in the following section
such properties, and we show in Section 5 how to enforce them inexactly.

4 For the sake of clarity, when the name of the selector comes with a subscript, such as
Fx, when no ambiguity can arise, we write directly Ex for the corresponding monitor
instead of EFx .

A Quantitative Approach for Inexact Enforcement of Security Policies 313

4 n-safety Properties and n-selectors

In this section, we first introduce the concept of n-safety properties, which are
properties where a maximum of n non-secure steps is allowed. We then define
n-selectors, which are selectors that can use the following n steps to make a
decision about an action. Intuitively, we introduce n-selectors to characterize
the selection process with complete information about the future, and we use
them when we have incomplete or imperfect information (Section 5.2).

4.1 n-safety

Although many security policies are safety properties, there also exist some prop-
erties which do not satisfy the safety condition, such as some liveness properties,
as stated in Section 2.2, or policies including obligations requiring a given action
to be executed after a particular trace, otherwise the entire trace would be non-
secure. For instance, it might be authorized to create a temporary copy of a file,
as long as this copy is deleted after usage. Another example concerns break-glass
policies [1,5], usually defined in healthcare environments, where some violations
of the property can be tolerated during an emergency situation, as long as an
audit is performed afterwards.

In order to define the notion of n-safety, we first introduce the one of critical
trace: given a trace σ and a property P , a trace τ is said to be critical if, and
only if, extending σ with τ can lead to a secure trace even though each step in
τ is non-secure. More formally, we define the predicate DP as follows:

∀σ, τ ∈ T DP(σ, τ) ⇔ ∀τ ′ � τ (τ ′ �= ε⇒ ¬P(σ; τ ′)) ∧ ∃τ ′′ ∈ T P(σ; τ ; τ ′′)

Note that in the above definition, we implicitly assume that σ; τ belongs to
T . Clearly, this is not necessarily the case, for instance if σ ends with �. In
order to be rigorous, we would need to define the set T (σ), as the set of possible
extensions from σ. However, for the sake of readability, we assume this constraint
to be implicit, and notationally speaking, we use τ to indicate extensions rather
than full traces.

We then define a n-safety property as a property holding for the empty trace
and admitting critical traces whose length are at most n.

Definition 3. A property P is an n-safety property if, and only if

∀σ, τ ∈ T DP(σ, τ) ⇒ |τ | � n

Clearly, given m � n, a m-safety property is also a n-safety property.

Running Example. One of the limitations of the running example is that
it requires the target to first ask for supervision before being able to perform
the dangerous operation. In some contexts, such as healthcare, it might not be
possible to ask for a supervision first, and it might be needed to do the dangerous
action first, and then only to ask for the supervisor to verify that everything was

314 P. Drábik, F. Martinelli, and C. Morisset

correct. For the sake of this example, let us introduce a new “critical” action c,
such that when executing c, the supervision can be done at most k steps after
the action.

For instance, for k = 2, the trace cb is critical for the trace b (or any other
secure trace that does not contain s), since bcbs is secure while bcbb is not.
However, cbb is not critical, since it is not possible to extend cbb to a secure
trace. We can then define the property Pk,e, which extends Pe by tolerating at
most k non-secure steps, as:

Pk,e(σ) ⇔ Pe(σ) ∨ (∀i σi = c ⇒ ∃(j � i+ k) σj = s)

The property Pk,e is a combination of a safety property, Pe, and of a k-safety
property, and therefore is also a k-safety property.

4.2 n-selector

An n-selector is a function Fn : T × A × T n → B, such that for any n, for
any traces σ and τ such that |τ | = n, and any action a, Fn(σ, a, τ) indicates
whether the action a should be kept knowing that the past trace is σ and that
the future execution is τ . Intuitively, an n-selector is a selector with a visibility
of n steps over the future trace, and it follows that n is equal to 0, an n-selector
is equivalent to a selector. Let us observe that since it is always possible to ignore
the end of a trace, given a selector Fn, it is always possible to build an equivalent
selector Fm when n � m. For instance, the selectors Ffalse and Ftrue defined in
Section 3.1 are also n-selectors, for any n.

Given a property P , we can define the n-selector Fn,P in a similar fashion
than the selector FP :

Fn,P (σ, a, τ) =

{
true if there exists τ ′ � τ P(σ; a; τ ′)

false otherwise
(2)

For any n-safety property, the selector Fn,P is consistent, since if for some trace
σ and index i, we have Fn,P(σ

<i, σi, σi+1<i+n) = false , then by definition of
n-safety, we know that any extension of σi+n is non-secure.

We show in [7] that n-selectors can be directly used to enforce exactly n-
safety properties. However, in order to use an n-selector, one needs to be able to
produce the n following steps of the trace, and although it could be possible in
some contexts (for instance when the entire input trace is known in advance, or
by buffering the n following steps, such as done by an edit-automaton [15]), in
general the monitor does not have access to this information. For instance, in the
running example, buffering the trace would defeat the purpose of the n-safety
property, that is to accept time-critical actions in the absence of supervision. We
study in the next section the problem of inexact enforcement.

5 Inexact Enforcement of n-safety Properties

An n-safety property can only be enforced inexactly (i.e., either not correctly or
not transparently, or both) by a mechanism in EM (i.e. with no precise knowledge

A Quantitative Approach for Inexact Enforcement of Security Policies 315

about the future). We address in this section the problem of inexact enforcement,
and we propose to quantify the necessary security/usability tradeoff.

5.1 Security/Usability Tradeoff

In order to quantify the non-correctness of a monitor, given a monitor E and a
property P , we introduce the set C〈E,P〉, which represents all traces for which
the monitor outputs a non-secure trace. Similarly, the quantification of the non-
transparency is done using the set T〈E,P〉, which represents the secure traces
that the monitor does not output as they are. More formally, we have:

C〈E,P〉 = {σ ∈ T | ¬P(E(σ))} T〈E,P〉 = {σ ∈ T | P(σ) ∧E(σ) �= σ}.

When E enforces exactly P , we clearly have C〈E,P〉 = T〈E,P〉 = ∅. Conversely,
since an n-safety property cannot be enforced exactly using a selector, at least
one of these two sets is necessarily non empty.

We showed in Section 3.2 that it is always trivial to define a monitor that
enforces a property either correctly or transparently, with the monitors Efalse

and Etrue , respectively. It follows that minimizing one set without considering
the other is trivial, and thus we are interested here in minimizing both sets
together. In other words, we want to establish a tradeoff between security (i.e.,
correctness) and usability (i.e., transparency), when both cannot be achieved
simultaneously. Intuitively, the bigger the set C〈E,P〉 is, the less secure E is,
while the bigger the set T〈E,P〉, the less usable E is.

5.2 Building a Selector from an n-selector

Given a trace σ and an action a, we can define a selector F from the n-selector
Fn,P defined in Section 4.2. In order to illustrate the general approach, let us
first consider a very simple case, and let us assume that only two traces τ1 and τ2
of length n are possible after σ; a (meaning that the whole trace is either σ; a; τ1
or σ; a; τ2). Three cases might occur:

– Fn,P(σ, a, τ1) = Fn,P (σ, a, τ2) = true, and we can define F (σ, a) = true;
– Fn,P(σ, a, τ1) = Fn,P (σ, a, τ2) = false, and we can define F (σ, a) = false;
– Fn,P(σ, a, τ1) = true and Fn,P(σ, a, τ2) = false (the converse case being

equivalent), and in this case, the selector F has to make a choice: either to
stop and not output the secure trace σ; a; τ1, or to continue and output the
non-secure trace σ; a; τ2 (or a non-secure prefix of it).

The first two cases are rather straight-forward, and the difficulty clearly lies in
the third case. In general, this choice has to be made with respect to all possible
extensions of length n, and not only τ1 and τ2. The crucial point is to make a
decision for a trace σ and an action a such that P(σ) holds and P(σ; a) does not,
and when there exists a trace τ such that Fn,P(σ, a, τ) = true. Indeed, at this
point, the selector is left with two choices: either accepting a and taking the risk
to output an non-secure trace, for instance if the target stops right after a or if

316 P. Drábik, F. Martinelli, and C. Morisset

the trace τ is not output, or stopping at this point, and therefore not outputting
the secure trace σ; a; τ .

Since at this level of formalism, we only compare two traces based on the fact
that they are secure or not (we consider in the following sections the probability
and the impact of a trace), we propose here a general selector Fr, specifying that
the number non-secure extensions must not exceed a given ratio r of the total
number of traces:

Fr(σ, a) =

⎧⎪⎨
⎪⎩
true if there exists τ ∈ T n such that Fn,P(σ, a, τ) = true

and |{τ ∈ T n | Fn,P(σ, a, τ) = false}| � r |T n|
false otherwise

In particular, the selector F0 only accepts an action when it is certain that every
possible extension is secure, while the selector F1 accepts actions as long as there
is a possibility for a secure extension. Note that given any 0 � r � 1, if a trace
is secure at each step, then Fr accepts it, and if a trace is irremediably bad (i.e.,
there is no possibility to extend it to a secure trace), then Fr stops the trace.

5.3 From Local Ratio to Global Ratio

The local ratio r defined in the previous section acts as “worst-case scenario”,
since in any case, the selector Fr stops a trace whenever the proportion of non-
secure extensions is above this ratio. However, from a global perspective, we are
mostly interested in quantifying the proportion of non-secure traces output and
of secure traces not output from all possible traces. We thus define QC〈E,P,k〉
and QT〈E,P,k〉 as the proportion of the number of traces of length k in C〈E,P〉
and in T〈E,P〉 to all the traces in T k, respectively.

To some extent, these two values can be seen as utility functions of a moni-
tor with respect to a property, and therefore establishing the security/usability
tradeoff consists in providing a minimization strategy for these utility functions.
For instance, a very simple strategy could be to minimize the sum (QC〈E,P,k〉+
QT〈E,P,k〉), or to define a threshold on QC〈E,P,k〉 and to minimize QT〈E,P,k〉.

The local ratio r can be therefore seen as a pessimistic approach, and
it is straight-forward to observe that QC〈Er,P,k〉 � r. However, as we il-
lustrate in the next section, it is possible to have a situation where r is
much greater than QC〈Er,P,k〉, and in general, given a specific strategy over
(QC〈Er,P,k〉,QT〈Er,P,k〉), it is not trivial to define an r that satisfies it.

Indeed, the selector only makes a decision based on the relative number of
possible non-secure extensions, which is not necessarily representative of the
global number of non-secure traces. In other words, the local ratio r should be
considered as a parameter of the selector specifying which behaviour to adopt
when facing a critical trace, rather than a global measure of inexactitude. Let us
nonetheless observe that for any specific ratio, given a fixed trace length k, we
can derive the values QC〈Er,P,k〉 and QT〈Er,P,k〉. In other words, the required
ratio r can be inferred from the strategy, as we illustrate in the next section.
We believe the problem of calculating the optimal ratio r for any strategy is a
challenging one, and we plan to address it in future work.

A Quantitative Approach for Inexact Enforcement of Security Policies 317

Table 1. Tradeoff values for P2,e and k = 4

E Efalse Er1 Er2 Er3 Etrue

ratio 0 � r1 < 2/3 2/3 � r2 < 16/21 16/21 � r3 � 1

QC〈 〉 0 0 0.25 0.21 0.54
QT〈 〉 0.45 0.11 0.04 0 0

5.4 Running Example

Let us consider the 2-safety property P2,e, as defined in Section 4.1, and a trace
length of 4. We recall that a trace consists of any sequence of actions in {b, d, s, c},
possibly followed by � actions. It follows that

∣∣T 4
∣∣ = 45−1

3 = 341, with the
following break-down: there are 112 non-secure traces caused by a d not preceded
by an s (e.g., bd��); 73 non-secure traces caused by a c not followed by an s
in the next two steps (e.g., cbb�); 12 secure traces with exactly two non-secure
steps (e.g., bcbs); 27 secure traces with exactly one non-secure step (e.g., csdb)
and 117 secure traces without non-secure step (e.g., sdc�).

The monitor Etrue outputs all 185 non-secure traces and all secure traces, and
therefore we haveQC〈Etrue ,P2,e,4〉 ≈ 0.54 and QT〈Etrue ,P2,e,4〉 = 0. Conversely, the
monitor Efalse does not output any non-secure trace, but only output the secure
trace ε, meaning thatQC〈Efalse ,P2,e,4〉 = 0 andQT〈Efalse ,P2,e,4〉 ≈ 0.45. Intuitively,
those two monitors should act as “worst cases”, meaning that defining a monitor
worse than them is pointless.

Now, let us identify the different possible ratios r, and the corresponding
tradeoff values. Let σ be a trace that does not contain s and the action c, then
there are 14 traces τ out of 21 of length 2 such that F2,P2,e(σ, c, τ) = false .
Hence, for any ratio 0 � r1 < 2/3, Fr1(σ, c) = false, which means that Er1 does
not accept any trace with a non-secure step. On the other hand, if the ratio is
above 2/3, the action c is accepted. Now, given the trace σ; c, where σ does not
contain s, and an action a either equal to b or to c, then there are 16 traces τ
out of 21 of length 2 such that F2,P2,e(σ; c, a, τ) = false . It follows that given
a ratio 2/3 � r2 < 16/21, Fr2(σ; c, a, τ) = false. Finally, it is easy to see that if
the ratio is above 16/21, then the selector only stops when all future traces are
non-secure. We summarize these results in Table 1.

Interestingly, we can observe that the monitor Er2 is always worse than Er3 ,
which is due to the fact that since Fr2 always accepts the first c, but stops if
the following action is not an s, then it outputs a non-secure trace in this case,
even for the correct input traces. In other words, it means that without further
information about the probability or the impact of a trace, an “all-or-nothing”
approach should be adopted: either all secure traces should be output, with Er3 ,
or none, with Er1 .

6 Probabilistic Enforcement

In the previous section, we implicitly consider any two traces have the same
probability to occur. However, in some cases, it is possible to quantify the

318 P. Drábik, F. Martinelli, and C. Morisset

likelihood of a particular trace to happen, typically when the probabilistic be-
haviour of the target is provided. For instance, consider the running example: it
could be possible to determine the likelihood of a particular nurse to ask for su-
pervision after executing a dangerous action, by statistically analyzing the past
activity of this nurse, or by using a pre-established level of trust for this nurse. In
general, let us assume that there exists a conditional probability function ψ(τ |σ),
indicating the probability of the trace τ to occur after the trace σ. We require
such a function to be a probability distribution for traces of same length, that
is,

∑
τ∈T n(τ | σ) = 1, for any n and any σ.

The security/usability tradeoff can now be expressed with PC〈E,P,k〉, which
represents the accumulated probability for the target to output a trace of length
n such that the monitor outputs a non-secure trace, and PT〈E,P,k〉, which rep-
resents the accumulated probability for the target to output a secure trace of
length n such that the monitor does not output the same trace. More formally,
given a monitor E, an n-safety property P and trace length k, we define:

PC〈E,P,k〉 =
∑
σ∈T k

{ψ(σ|ε) | σ ∈ C〈E,P〉}

PT〈E,P,k〉 =
∑
σ∈T k

{ψ(σ|ε) | σ ∈ T〈E,P〉}

The ratio-based selector Fr defined in Section 5.3 can therefore be refined to a
probabilistic ratio-based selector Fpc , such that given a trace σ, an action a and
a probability threshold pc, Fpc is defined by:

Fpc(σ, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
true if: - there exists τ ∈ T n such that Fn,P (σ, a, τ) = true;

- ψ(τ |σ; a) �= 0; and

-
∑

τ∈T n{ψ(τ |σ; a) | Fn,P(σ, a, τ) = false} � pc

false otherwise

Following a similar reasoning to the one for Fr, we can see that PC〈Epc ,P,k〉 � pc,
since at each step, the monitor only keep accepting actions if the aggregated
probability of reaching a bad trace is lower than pc.

7 Quantitative Enforcement

In some context, it can be argued that outputting a particular non-secure trace
does not have the same impact as outputting another one. For instance, in the
running example, the impact of the trace dddd is intuitively much higher than
that of b���. In other words, quantifying only over the sets C〈E,P〉 and T〈E,P〉
might not be enough, even with the probability of traces. In this section, we
consider that in addition to the security property, we are provided with a quan-
titative property, associating each trace with a specific impact.

Given a set of traces T and a domain of values (V,≤,+,−), a quantitative
property is a function Q : T → V. For the sake of generality, we assume that

A Quantitative Approach for Inexact Enforcement of Security Policies 319

both P and Q coexist, as they serve a different purpose: P indicates which traces
are secure, while Q indicates the impact of each trace. For instance, Q might
denote the financial cost on the system to accept a trace, which could be in some
instances smaller for a non-secure trace than for a secure one.

Given an n-safety quantitative property (P , Q), an enforcement mechanism E :
T → T and a fixed length of traces k, we define RC〈E,P,k〉, which corresponds to
the risk created by accepting non-secure traces, and therefore corresponds to a
notion of damage, and RT〈E,P,k〉, which corresponds to the risk of not accepting
some secure traces, and therefore rather corresponds to a notion of loss:

RC〈E,P,Q,k〉 =
∑
σ∈T k

{ψ(σ|ε) ·Q(E(σ)) | σ ∈ C〈E,P〉}

RT〈E,P,Q,k〉 =
∑
σ∈T k

{ψ(σ|ε) · (Q(σ)−Q(E(σ)) | σ ∈ T〈E,P〉}.

It is worth observing that using the monitor Efalse leads to RC〈Efalse ,P,k〉 = 0,
which corresponds to the intuition that refusing every trace does not create any
risk in terms of security, while for the monitor Etrue , we have RT〈Etrue ,P,k〉 = 0,
which corresponds to the intuition that accepting every trace does not create a
risk of loss of usability. Let us also observe that if P is a safety property, then P
can be exactly enforced by the monitor EP , with RC〈EP ,P,k〉 = RC〈EP ,P,k〉 = 0.
This observation is consistent with the intuition that if the future can be ignored,
then the monitor does not need to expose itself to any risk.

In general, given an n-safety property P and a risk threshold λ, indicating
the risk limit a monitor can take, we can define the selector Fλ, such that given
a trace σ and an action a:

Fλ(σ, a) =

{
true if

∑
τ∈T n{ψ(τ |σ; a) ·Q(σ; a; τ) | Fn,P (σ, a, τ) = false} ≤ λ

false otherwise

Following a similar reasoning to the one for Fpc , we can see that RC〈Eλ,P,k〉 ≤ λ,
since at each step, the monitor only keep accepting actions if the aggregated
probability of reaching a bad trace is lower than λ.

Running Example. We measure the impact of a trace by the number of non-
secure actions executed by the system: we add 1 for each d not preceded by s, and
1 for each c neither preceded by s nor followed by s in the two following steps. For
instance, Qe(ddsd) = 2, and Qe(cbbs) = 1. Note that in this case RT〈E,P2,e,Qe,4〉
roughly measures the impact of secure traces that have been output as non-
secure traces by E. We present in Table 2 the different thresholds experimentally
obtained for the parameter λ, assuming all traces are equiprobable.

Two results are particularly interesting to observe. Firstly, the monitor Eλ2 ,
which corresponds to the monitor Er2 , has a lower impact than the monitor
Eλ4 , which corresponds to the monitor Er3 . In other words, when the impact of
traces is taken into account, then an approach “all-or-nothing” is not necessarily
the best, and it might be worth stopping in a non-secure state, even though

320 P. Drábik, F. Martinelli, and C. Morisset

Table 2. Tradeoff values for P2,e, Qe, k = 4 and equiprobable traces

E Efalse Eλ1 Eλ2 Eλ3 Eλ4 Etrue

ratio 0 � λ1 < 1.34 1.34 � λ2 < 1.48 1.48 � λ3 � 2.1 2.1 � λ4

QC 0 0 0.25 0.23 0.21 0.54
QT 0.45 0.11 0.04 0.02 0 0
RC 0 0 0.25 0.23 0.28 1.09
RT 0 0 0.04 0.02 0 0

there still is a possibility to find a secure extension. Secondly, the monitor Eλ3 is
created, and the only difference with Eλ2 is that Eλ3 accepts the first non-secure
c, and accepts the following action only if it is a b or a s. In other words, Eλ3 is
willing to take the risk of the first non-secure c, but not of a second one.

8 Conclusion

In this paper, we have presented the problem of inexact enforcement of secu-
rity policies, and of non-safety properties in particular. We have formalized the
concept of security/usability tradeoff by quantifying over the set of non-secure
traces output by a monitor and the set of secure traces not output. When proba-
bilistic knowledge about the future trace is available, we can define the notion of
probability of failure. Moreover, when quantitative information is also available,
then it is possible to define the risk exposure of a monitor. We have illustrated
that the best approach to adopt when dealing with critical traces depends on
whether quantitative information is available or not, which reinforces the idea
that security policies need to include a quantitative aspect [11].

The ultimate goal, the construction of the optimal monitor that minimizes
the risks or its approximations, is an ongoing and future work. Verification tech-
niques such as probabilistic model checking [10] might be a useful tool, since
they enable analysis of quantitative properties of probabilistic models. An inter-
esting approach is to consider the tradeoff as some utility functions that need
to optimized, such as it is done in [17], where the authors model access control
systems as Markov Decision Processes, thus leading towards a general notion
of utility-based security. We also need to validate the applicability of our ap-
proach for real-world scenarios, and to understand whether the calculations can
be done at runtime, or should rather be done as an analysis of a security prop-
erty. Finally, we would like to increase the expressiveness of monitors, in order
to consider editing of a bad trace, which extends the range of the choices to
analyze at run-time.

References

1. Ardagna, C.A., De Capitani di Vimercati, S., Grandison, T., Jajodia, S., Samarati,
P.: Regulating Exceptions in Healthcare Using Policy Spaces. In: Atluri, V. (ed.)
DAS 2008. LNCS, vol. 5094, pp. 254–267. Springer, Heidelberg (2008)

A Quantitative Approach for Inexact Enforcement of Security Policies 321

2. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of POPL 2012, pp. 165–178. ACM, New York (2012)

3. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable Security Policies Re-
visited. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp.
309–328. Springer, Heidelberg (2012)

4. Bielova, N., Massacci, F.: Predictability of Enforcement. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

5. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Proceedings of SACMAT 2009, pp. 197–206. ACM, New York (2009)

6. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 109–
124. IEEE Computer Society, Washington, DC (2010)

7. Drábik, P., Martinelli, F., Morisset, C.: A quantitative approach for the inexact
enforcement of security policies. Technical Report TR-07-2012, IIT-CNR (2012)

8. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference, pp. 554–563 (1992)

9. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings
of Security and Privacy, pp. 1–13 (2004)

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

11. Kephart, J.: The utility of utility: Policies for self-managing systems. In: Proceed-
ings of POLICY 2011, Pisa, Italy. IEEE Computer Society (2011)

12. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? a survey. Computer Science Review 6(1), 27–45 (2012)

13. Lampson, B.: Protection. In: Proceedings of the 5th Annual Princeton Conference
on Information Sciences and Systems, pp. 437–443. Princeton University (1971)

14. LaPadula, L., Bell, D.: Secure Computer Systems: A Mathematical Model. Journal
of Computer Security 4, 239–263 (1996)

15. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. Journal of Information Security 4(1-2), 2–16 (2005)

16. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Transactions on Information and System Security 12(3), 1–41 (2009)

17. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of ACM CODASPY 2012, pp. 169–180.
ACM, New York (2012)

18. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 30–
50 (2000)

19. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under
memory-limitation constraints. Information and Computation 206(2-4), 158–184
(2008)

	A Quantitative Approachfor Inexact Enforcement of Security Policies
	Introduction
	Basic Definitions
	Actions and Traces
	Security Policy and Property
	Monitor

	Selector-Based Monitor
	Selector
	From Selector to Monitor

	n-safety Properties and n-selectors
	n-safety
	n-selector

	Inexact Enforcement of n-safety Properties
	Security/Usability Tradeoff
	Building a Selector from an n-selector
	From Local Ratio to Global Ratio
	Running Example

	Probabilistic Enforcement
	Quantitative Enforcement
	Conclusion
	References

