
Selective Document Retrieval

from Encrypted Database

Christoph Bösch1, Qiang Tang2, Pieter Hartel1, and Willem Jonker1

1 University of Twente, The Netherlands
{c.boesch,pieter.hartel,willem.jonker}@utwente.nl

2 APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

qiang.tang@uni.lu

Abstract. We propose the concept of selective document retrieval (SDR)
from an encrypted database which allows a client to store encrypted data
on a third-party server and perform efficient search remotely. We propose
a new SDR scheme based on the recent advances in fully homomorphic
encryption schemes. The proposed scheme is secure in our security model
and can be adapted to support many useful search features, including ag-
gregating search results, supporting conjunctive keyword search queries,
advanced keyword search, search with keyword occurrence frequency, and
search based on inner product. To evaluate the performance, we imple-
ment the search algorithm of our scheme in C. The experiment results
show that a search query takes only 47 seconds in an encrypted database
with 1000 documents on a Linux server, and it demonstrates that our
scheme is much more efficient, i.e., around 1250 times faster, than a
solution based on the SSW scheme with similar security guarantees.

Keywords: Searchable Encryption, Homomorphic Encryption, Privacy.

1 Introduction

Outsourcing data to a third-party server is continuously gaining popularity be-
cause it can significantly reduce operational costs for a client. However, to store
outsourced data securely on an untrusted server, the data should be encrypted
to make it inaccessible to the server and other attackers. The issue is that, if
the encryption is done with standard encryption schemes, the client will not be
able to search anymore unless it retrieves the whole outsourced database from
the server. To solve the problem, we need a special type of encryption primitive
which allows the following things.

1. The client can encrypt his data and store the ciphertext on the server. More
specifically, we assume the client stores a list of (document, index) pairs on
the server, where the index is an encrypted version of the keywords which
appear in the document. Note that the document should be encrypted inde-
pendently. We skip the details of document encryption in the paper because
it is not relevant for the search.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 224–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Selective Document Retrieval from Encrypted Database 225

2. The client can ask the server to search in the indexes on his behalf, without
leaking information about the keywords in the indexes and what has been
searched for. Moreover, the client may even want to hide from the server the
fact which documents have been matched by a search query.

3. The client can selectively retrieve the contents identified by a search, possibly
in a private manner. The option for the client to selectively retrieve matched
documents may be very useful in practice. For example, a search may indicate
that 900 out of 1000 documents are matched, but the client may just want to
retrieve 10 of them instead of all of them due to various reasons. The option
for the client to retrieve matched documents in a private manner may also
be useful in practice since which documents are retrieved can already leak
some information about the documents.

The first two requirements are straightforward and are coming from security
considerations, while the last one is coming from flexibility, efficiency, and secu-
rity considerations. Note that, an alternative solution is for the client to store a
plaintext copy of the indexes locally so that he can search by himself. Clearly,
this is not a good solution because the client needs to maintain the index storage.

1.1 Problem Statement

In the direction of solving the above problem, searchable encryption (SE) schemes
have been the most relevant cryptographic primitive. A SE scheme enables a
third-party server to search on his behalf directly on encrypted data without
knowing the plaintext data. In particular, SE in the symmetric setting (referred
to as SSE throughout the paper) can serve as a more suitable solution, where the
term symmetric means that only the client can generate searchable contents. It
is worth noting that there also exist SE schemes in the asymmetric setting, such
as PEKS [1], where the concept of a public key encryption scheme is employed
and every entity can generate searchable data. Clearly, asymmetric SE is of less
interest to our problem, compared to SSE.

The concept of SSE and its security model can be found in [5,27,28]. From the
definition, we can see that it is meant to achieve the functionalities in the first two
requirements mentioned before. By a straightforward extension as discussed in
Remark 1 in Section 2.1, it can achieve the functionality in the third requirement.
However, with respect to the desired security guarantees, an SSE scheme leaks
a lot of sensitive information to the server, and such information includes (at
least) which documents match the client’s search request and which documents
the client has retrieved.

The research problem we will address in this paper is to design a new cryp-
tographic primitive, which satisfies all three requirements from the perspectives
of both functionalities and security guarantees.

1.2 Our Contribution

Firstly, we propose a new cryptographic primitive, namely selective document
retrieval (SDR), and present a security model. Secondly, based on the recent

226 C. Bösch et al.

advances in fully homomorphic encryption schemes and the index construction
technique by Chang and Mitzenmacher [5], we propose a SDR scheme to support
equality test predicates and prove its security in the proposed security model.
The intuition behind the construction is rather straightforward, but interestingly
it can serve as a framework to support more flexible search features. We show
that the proposed SDR scheme can be easily adapted to support features, includ-
ing aggregating search results, supporting conjunctive keyword search queries,
advanced keyword search, search with keyword occurrence frequency, and search
based on inner product.

Thirdly, we set appropriate parameters for the symmetric BV encryption
scheme [3] and implement it in C. This is the first publicly-available imple-
mentation of the scheme in C with carefully chosen parameters, so that it may
be of independent interest for other works. We use the BV scheme to instantiate
the encryption component in the proposed SDR scheme, and evaluate the perfor-
mances. The experiment results show that a search query takes only 47 seconds
in an encrypted database with 1000 documents and 100 keywords, while a search
query takes around 10 minutes in an encrypted database with 5000 documents
and 250 keywords. In contrast, for the SSW scheme by Shen et al. [27], a search
query takes around 16 hours in an encrypted database with 1000 documents
and 100 keywords on the same server. We did not study the document retrieval
performance in the paper, because it will be similar for all schemes if they are
to achieve a similar level of security. We note that although the performance
of the proposed SDR scheme does not say that it is an efficient solution in all
application scenarios, it is the most efficient one we have now.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we describe SDR
and formalize its security property. In Section 3, we propose a SDR scheme
and prove its security. In Section 4, we describe various search features of the
proposed SDR scheme. In Section 5, we implement the search algorithm of the
proposed SDR scheme and analyse the experimental results. In Section 6 we
review related work. Section 7 concludes the paper.

2 Definitions of SDR

Throughout the paper, we use the following notation. Given a document d con-
sisting of keywords w, let u(d) denote the distinct keywords contained in d. Let D
be the possible document space and W = {s0, . . . , sb} be a pre-built dictionary
of keywords to search for, which satisfies that u(d) ⊆ W for any d ∈ D.

2.1 Algorithmic Definition of SDR

An SDR scheme comprises five algorithms (Keygen, BuildIndex, Trapdoor,
SearchIndex, Retrieve), defined as follows.

Selective Document Retrieval from Encrypted Database 227

– Keygen(s): Run by a client, this algorithm takes a security parameter s as
input, and outputs a secret key K. It may also generate some other public
parameters such as a predicate set F .

– BuildIndex(K, d): Run by the client, this algorithm takes the key K and a
document d ∈ D as input, and outputs an index Id which encodes u(d) (i.e.
all keywords w from the document d).

– Trapdoor(K, f): Run by the client, this algorithm takes the key K and a
predicate f ∈ F as input, and outputs a trapdoor Tf .

– SearchIndex(Tf , Id): Run by the server, this algorithm takes a trapdoor Tf

and an index Id as input and returns an encrypted result [[Rd]] to the client,
where Rd implies whether u(d) satisfies the predicate f or not.

– Retrieve(K, {[[Rd]] |d ∈ DB};DB): Run between the client and the server, the
client takes the secret keyK and the encrypted search results {[[Rd]]|d ∈ DB}
as input and the server takes the encrypted database DB as input. At the
beginning of the protocol, the client first decrypts {[[Rd]] | d ∈ DB} and
decides which documents to retrieve, and at the end of the protocol the
client retrieves the documents he wants.

A standard work flow of SDR usage is as follows. A client first runs the Keygen
algorithm to generate the key K and parameters, then runs the BuildIndex al-
gorithm to generate an index for every document he has, finally stores every
(document, index) pair on the server. We assume that the documents are en-
crypted by the client with some standard symmetric encryption algorithm using
a key different from K. Later on, when the client wants to retrieve some docu-
ments, it first runs the Trapdoor algorithm to generate a trapdoor, then sends
the trapdoor to the server which can then run the SearchIndex algorithm to
match the trapdoor with every index in the database and send the encrypted
match results to the client. Finally, the client runs the Retrieve algorithm with
the server to retrieve (some of) the matched documents. Note that the client
can selectively retrieve the matched documents, not necessarily all of them.

Remark 1. Referring to the definition of SSE [7], any SSE scheme can be triv-
ially extended to a SDR scheme: by letting the server send the search results
(i.e. outputs of SearchIndex executions) back to the client, who then selectively
determines which documents to retrieve. If we assume that the server returns
all the documents matched by the SearchIndex in SSE, then it is equivalent to a
SDR scheme in which the client always retrieves all the matched documents.

Similar to the case in other cryptographic primitives, an SDR scheme should
always be sound, namely the following two conditions should always hold.

1. If u(d) satisfies f, then Retrieve(K, {[[Rd]] | d ∈ DB};DB) will return all doc-
uments d chosen by the client.

2. If u(d) does not satisfy f, then the probability that Retrieve(K, {[[Rd]] | d ∈
DB};DB) returns d is negligible.

228 C. Bösch et al.

2.2 Security Properties for SDR

Recall that the main objective of SDR schemes is to enable the server to search
over the encrypted data and let the client selectively retrieve the matched con-
tents. In this setting, information leakage can come from three sources, namely
index, trapdoor, and query results. Correspondingly, there are three types of
privacy concerns.

– Index privacy, similar to the plaintext privacy in [27], means that indexes
should not leak any information about the encoded keywords.

– Trapdoor privacy, similar to the predicate privacy in [27], means that trap-
doors should not leak any information about the encoded predicates.

– Query result privacy means that if the client retrieves x documents for any
integer x in two executions of the Retrieve algorithm, then the server should
not know whether the two executions return the same documents or not.

The concerns of index privacy and trapdoor privacy have been considered by
existing SSE schemes. Notably, Shen et al. [27] propose a definition of full secu-
rity, which tries to capture the above two privacy concepts. Note that, Shen et
al. only give a fully secure SSE scheme which support inner product queries for
vectors of even length, without being able to present a scheme which generally
achieves full security. To our knowledge, no SSE scheme has been shown to be
fully secure in general.

However, query result privacy has not been touched upon in the setting of
outsourcing encrypted data, although it is a practical concern for many appli-
cation scenarios. For example, suppose that Alice stores both her work-related
documents and personal documents on a remote server protected by an SSE
scheme. Moreover, she only queries her work-related documents in her office,
and queries personal documents at home. One day, if the server notices at 10:00
pm that Alice is querying the same document as that she queried at 11:00 am,
then the server can guess that Alice is working over the time in her office.

2.3 Game-Style Security Definition

Similar to the security definitions in SSE security models, we consider the at-
tacker to be a semi-honest server (and any other outside attacker). By semi-
honest we mean an honest-but-curious [12] database server that can be trusted
to adhere to the protocol, but which tries to learn as much information as pos-
sible. Formally, the definition is as follows.

Definition 1. An SDR scheme is secure if no probabilistic polynomial-time at-
tacker has non-negligible advantage in the attack game defined in Fig. 1, where
the advantage is defined to be |Pr[b = b′]− 1

2 |.
By granting index oracle queries to the attacker, we cover index privacy in the
sense that the attacker cannot distinguish the indexes of different documents.
By granting trapdoor oracle queries to the attacker, we cover trapdoor privacy

Selective Document Retrieval from Encrypted Database 229

1. The challenger runs the Keygen algorithm and obtains the secret key K and
the predicate set F . The challenger publishes F and picks a random bit b.

2. The attacker A adaptively makes the following types of queries.

– Index oracle query. On the j-th index query, A outputs two documents
dj,0, dj,1 ∈ D. The challenger responds with BuildIndex(K, dj,b).

– Trapdoor oracle query. On the i-th trapdoor query, A outputs two
predicates fi,0, fi,1 ∈ F . The challenger responds with Trapdoor(K, fi,b).

– Retrieve oracle query. Suppose that there have been j index queries
and i trapdoor queries, the challenger (simulating the client) and the server
run the Retrieve algorithm. The server’s input is the database DB, which
contains j (index, document) pairs, and the challenger’s input is the key
K and a set of document identifiers IDb, where ID0 and ID1 are two
identifier sets of identical size chosen by the attacker. Basically, IDb tells
which documents the challenger should retrieve.

3. A outputs a guess b′ of the bit b.

Fig. 1. Attack Game of SDR

in the sense that the attacker cannot distinguish the trapdoors received from
the client. Similarly, by granting retrieve oracle queries to the attacker, we cover
query result privacy in the sense that the attacker cannot tell the retrieved
documents by the client. Note that in granting the retrieve oracle queries, we
restrict that the identity sets are of the same cardinality; otherwise the attacker
may trivially win the game unless the client always retrieves all the documents.
As a consequence, if an SDR scheme is secure under this definition, an attacker
only learns how many documents the challenger has retrieved but nothing else.

2.4 Relaxation of the Security Definition

As discussed before, query result privacy may be an important concern in many
application scenarios for SDR schemes, but it may not be so important in other
scenarios. To be secure under Definition 1, the Retrieve algorithm of an SDR
scheme will use private information retrieval [6, 22] technique in one way or
another so that it will incur significant computational and communication com-
plexities, hence it is very likely that this privacy property may be sacrificed for
the efficiency reasons. As a result, it is useful to have a definition covering only
index privacy and trapdoor privacy. Formally, we give the following definition.

Definition 2. An SDR scheme achieves index privacy and trapdoor privacy,
if no probabilistic polynomial-time attacker has non-negligible advantage in the
attack game defined in Fig. 1 with the following exceptions.

1. Retrieve oracle challenge query is disallowed in the game.
2. For any index oracle challenge query (dj,0, dj,1) and any trapdoor oracle chal-

lenge query (fi,0, fi,1), the following is true: u(dj,0) satisfies fi,0 if and only
if u(dj,1) satisfies fi,1.

With the relaxation, the above definition provides the same level of security
guarantees to the full security definition [27].

230 C. Bösch et al.

3 The Proposed SDR Scheme

In this section, we propose a new SDR scheme and prove its security in the
security model described in Section 2. We describe the scheme for the case of
equality test predicates, while the scheme does support other types of predicates
which will be elaborated in Section 4.

3.1 Preliminary

An encryption function E(·) is called homomorphic if there exist two (possibly
the same) operations (⊗ and ⊕), such that E(a) ⊗ E(b) = E(a ⊕ b). In this
paper the homomorphic encryption of an element x is written as [[x]]. Thus
[[a]]⊗[[b]] = [[a⊕b]]. In our construction, we use a semantically secure homomorphic
encryption scheme that allows one multiplication followed by multiple additions
on encrypted values. For example, the lattice-based schemes such as the Gentry-
Halevi-Vaikuntanathan (GHV) scheme [10] and Brakerski-Vaikuntanathan (BV)
scheme [3] and the pairing-based Boneh-Goh-Nissim (BGN) scheme [2] satisfy
the required property.

3.2 The Proposed Scheme

The proposed SDR scheme makes use of a symmetric homomorphic encryption
scheme satisfying the requirements stated in Section 3.1 and the index construction
method by Chang and Mitzenmacher [5]. Next, we describe the algorithms of the
proposed scheme, namely (Keygen,BuildIndex,Trapdoor, SearchIndex,Retrieve).

– Keygen(s). Given a security parameter s, generate a key K for a symmetric
homomorphic encryption scheme, such as the symmetric version of the BV
scheme described in Section 5.1, and equality test predicate set F = {fw |w ∈
W}. For any document d, u(d) satisfies fw if and only if w ∈ u(d).

– BuildIndex(K, d). With the key K and a document d, the algorithm does the
following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

Note that b is the size of the possible keyword set. The bit Id[i] is set to
be 1 if w ∈ u(d) = si ∈ W ; otherwise, the Id[i] is set to be 0.

3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]), which means the plaintext
version index is encrypted bit by bit.

4. Output the index Id = [[Id]].

– Trapdoor(K, fw). With the key K and a predicate fw, the algorithm does the
following:

1. Construct tfw = (tfw [1], tfw [2], . . . , tfw [b]). For every 1 ≤ i ≤ b, the value
of tfw [i] is set to be 1 if w = si and 0 otherwise.

2. Output the trapdoor Tfw = ([[tfw [1]]], [[tfw [2]]], . . . , [[tfw [b]]]).

Selective Document Retrieval from Encrypted Database 231

– SearchIndex(Tfw , Id). With a trapdoor Tfw and an index Id, the algorithm
outputs [[Rd]] = [[tfw�Id]], where the notation � represents an inner product.
Note that the computation is based on Tfw and Id using the homomorphic
properties stated in Section 3.1. The server sends [[Rd]] to the client.

– Retrieve(K, {[[Rd]] | d ∈ DB};DB). Here, DB is the database which contains
all the (document, index) pairs the client has stored at the server. The client
and the server interact as follows:

1. The client first decrypts the encrypted search results {[[Rd]] | d ∈ DB},
and gets to know which are the matched documents.

2. The client decides a subset of the matched documents, and runs a private
information retrieval (PIR) protocol (e.g. [6, 22, 25]) with the server to
retrieve the documents.

For efficiency reasons, in the Retrieve algorithm, the client can select the desired
documents and directly tell the server which documents he wants.

3.3 Security Results

With respect to the proposed SDR scheme, it is clear that the SearchIndex algo-
rithm always returns 1 if u(d) satisfies fw and 0 otherwise. Hence, the soundness
property is achieved given that the PIR protocol used in the Retrieve algorithm
is also sound. Next, we summarize the security of the SDR scheme and leave the
proofs to the full paper due to space reasons.

Theorem 1. The proposed SDR scheme in Section 3.2 is secure under Defi-
nition 1 given that the adopted symmetric homomorphic encryption scheme is
IND-CPA secure [14] and the PIR protocol in the Retrieve algorithm is secure [6].

In the proposed SDR scheme, if the client directly retrieves the matched docu-
ments without using a PIR protocol in the Retrieve algorithm, then the scheme
achieves the relaxed security under Definition 2 given that the encryption scheme
is IND-CPA secure. The intuition is very straightforward based on the fact that
all operations in the search are carried out in the ciphertext domain using the
homomorphic properties of the encryption scheme.

Theorem 2. The proposed SDR scheme without using PIR protocol in the
Retrieve algorithm achieves index privacy and trapdoor privacy under Defini-
tion 2 given that the adopted symmetric homomorphic encryption scheme is
IND-CPA secure [14].

4 Adaptations of the Proposed SDR Scheme

In the previous section, we described an SDR scheme and analysed its secu-
rity. Besides supporting equality test predicates, the scheme can be adapted to
support a number of useful search features, including aggregating search results,

232 C. Bösch et al.

supporting conjunctive keyword search queries, advanced keyword search, search
with keyword occurrence frequency, and search based on inner product. More-
over, based on the same analysis in Section 3.3, all variants in this section are still
secure in our security model. We also show that it is straightforward to adapt
the proposed SDR scheme to the asymmetric setting or multi-user setting.

4.1 Aggregating Search Results

In the proposed scheme, the server has to send back an [[Rd]] for each document. If
the symmetric BV scheme [3] is used in the scheme, to reduce the communication
complexity, we can transform (depending on the degree α of the polynomials) up
to α ciphertexts that encode α bits separately, into a single ciphertext Cp [17].
For a detailed description of the BV-scheme and the used variables, we refer the
reader to Section 5.1. The packed ciphertext is calculated by:

Cp =

(∑
i

c0,ixi,
∑
i

c1,ixi

)
.

This means, for a collection of 1000 documents and using a 1024 degree polyno-
mial, the server has to send back only one ciphertext instead of 1000.

4.2 Conjunctive Keyword Search

To support conjunctive keyword search queries for any number of keywords,
we propose a variant of the proposed SDR scheme. The Trapdoor algorithm
needs to be changed slightly, while other algorithms stay basically the same. For
conjunctive keyword search, the predicate set can be denoted as F = {fW′ |W ′ ⊆
W}. For any document d, u(d) satisfies fW′ if and only if u(d) ⊆ W ′.

– Trapdoor(K, fW′). With the key K and a predicate fW′ , it does the following:

1. Construct tfW′ = (tfW′ [1], tfW′ [2], . . . , tfW′ [b]). For every keyword wi from
W , the value of tfW′ [i] is set to be 1 if si ∈ W ′ and 0 otherwise.

2. Output the trapdoor TfW′ = ([[tfW′ [1]]], [[tfW′ [2]]], . . . , [[tfW′ [b]]]).

As a result of the modification, the output of a SearchIndex(TfW′ , Id) query tells
the client how many keywords in the trapdoor appear in the index Id.

4.3 Advanced Keyword Search

In some application scenarios, the client may care about some keywords more
than others, which implies that it is desirable to allow the client to put a weight
on each keyword in the trapdoor. To do so, we propose another variant of the
proposed SDR scheme. The Trapdoor and Retrieve algorithms need to be changed
slightly, while other algorithms stay basically the same. For this variant, the
predicate set can be denoted as F = {fW′ |W ′ ⊆ W}, as specified in Section 4.2.

Selective Document Retrieval from Encrypted Database 233

– Trapdoor(K, fW′). With the key K and a predicate fW′ , it does the following:

1. Construct tfW′ = (tfW′ [1], tfW′ [2], . . . , tfW′ [b]). For every keyword wi from
W , the value of tfW′ [i] is set to be 2i−1 if si ∈ W ′ and 0 otherwise.

2. Output the trapdoor TfW′ = ([[tfW′ [1]]], [[tfW′ [2]]], . . . , [[tfW′ [b]]]).

– Retrieve(K, {[[Rd]] | d ∈ DB};DB). Here, DB is the database which contains
all the (index, document) pairs the client has stored at the server. The client
and the server interact as follows:

1. The client first decrypts the encrypted search results {[[Rd]]|d ∈ DB}. For
every document d, the client can recover which keywords are contained
in the index (by writing Rd in a binary form, if the i-th bit is 1 then
si is contained in the index). The client can then add weights on the
keywords and decide which documents to retrieve.

2. The client and the server run a PIR protocol for the client to retrieve
the documents.

By letting the client know exactly, which of several keywords satisfy the search,
the client is able to run multiple queries at once using only one trapdoor.

4.4 Search with Keyword Occurrence Frequency

In practice, a search query may rank the relevance of a document based on not
only whether some keywords are contained but also the occurrence frequency
of these keywords in the documents. The proposed scheme can be modified
to support such a requirement. To do so, we proposed another variant of the
proposed SDR scheme. The BuildIndex algorithm needs to be changed slightly,
while other algorithms stay basically the same. For this variant, the predicate
set is still the equality test one.

– BuildIndex(K, d). With the key K and a document d, it does the following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

The bit Id[i] is set to be the occurrence frequency of w if w ∈ u(d) =
si ∈ W ; otherwise, the Id[i] is set to be 0.

3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]).
4. Output the index Id = [[Id]].

In this variant, the value of a SearchIndex(Tfw , Id) query tells the client the
occurrence of the keyword w in the document d, and then the client can decide
which documents to retrieve accordingly.

4.5 Search Based on Inner Product

To support search based on inner product, we propose another variant of the pro-
posed SDR scheme. The BuildIndex and Trapdoor algorithms need to be changed
slightly, while other algorithms stay basically the same. For this variant, the pred-
icate set can be denoted as F = {f = (f [1], f [2], · · · , f [b]) |f [i](1 ≤ i ≤ b) ∈ N}.

234 C. Bösch et al.

– BuildIndex(K, d). With the key K and a document d, it does the following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

The value Id[i] is set to be w if w = si; otherwise, the Id[i] is set to be 0.
3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]).
4. Output the index Id = [[Id]].

– Trapdoor(K, f). With the key K and a predicate f, the algorithm outputs the
trapdoor Tf = ([[f [1]]], [[f [2]]], . . . , [[f [b]]]).

As a result of the modification, the output of a SearchIndex(Tf , Id) query tells
the client the inner product of f and the keyword vector in the index Id.

4.6 Multi-user Variant (adaption to asymmetric setting)

In some application scenarios, it may be desirable that multiple users are able
to write new data to an existing database as in the case of PEKS [1]. The pro-
posed SDR scheme can be extended straightforwardly to meet the requirement.
In the Keygen algorithm, the client generates a public/private key pair for a
homomorphic public key encryption scheme, such as the public key version of
the BV scheme [3]. In the algorithms BuildIndex, Trapdoor, and SearchIndex, the
encryptions are done with the client’s public key. The Retrieve algorithm stays
the same. In the extended scheme, everyone can generate searchable indexes
based on the client’s public key. However, only the client with the private key is
able to decrypt the search results which are always encrypted under the client’s
public key. Thus, compared with other similar schemes in the asymmetric setting
such as PEKS [1], the extended scheme does not suffer from the inherent offline
keyword recovery attacks [4]. Without the client’s secret key, the server cannot
get the output of a search.

5 Search Performances of the Proposed SDR Scheme

In this section, we adapt the recent lattice-based symmetric BV scheme [3] to our
proposed solution and explain our choice of parameters. We then show our imple-
mentation results and discuss some optimizations for the implementation. Note
that our implementation focuses on the SearchIndex algorithm, in an attempt to
demonstrate the efficiency differences between the proposed SDR scheme and
existing SSE schemes.

5.1 Adaption of the Symmetric BV Scheme

In this subsection we denote scalars in plain and vectors in bold. We write

x
R←− X when we mean that x is chosen at random from the distribution X . The

scheme uses the following parameters:

– the dimension α, which is a power of 2,
– the modulus q, which is a prime such that q ≡ 1 (mod 2α)

Selective Document Retrieval from Encrypted Database 235

– the cyclotomic polynomial f(x) = xα + 1,
– the error distribution χ over the ring Rq = Zq[x]/〈f(x)〉
– ciphertext degree D (supports D − 1 multiplications),
– number of supported additions A,
– message space t < q, which is prime,
– error parameter σ (standard deviation of the discrete Gaussian error distri-

bution).

All parameters are chosen in such a way to guarantee correctness and security
of the scheme. For correctness the BV scheme requires:

q ≥ 4 · (2tσ2√α)D · (2α)(D−1)/2 ·
√
A.

Note that D is the ciphertext degree and not the number of supported multi-
plications [17]. The encryption scheme consists of the following algorithms. We
simplified the Mul and Add algorithms to support one multiplication followed
by several additions:

– SH.Keygen(1κ): Sample a ring element s
R←− χ and set the secret key sk := s.

(If we only care about homomorphism, sampling s
R←− Rq is sufficient.)

– SH.Enc(sk ,m): Recall that the message space is Rt. We encode our message

as a degree α polynomial with coefficients in Zt. To encrypt, sample a
R←− Rq

and e
R←− χ and output the ciphertext c = (c0, c1) ∈ R2

q where c1 = −a and
c0 = as+ te+m.

– SH.Mul(c, c′): Given the two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) output

the ciphertext vector cmul = c ·c′ = (c0c
′
0, c0c

′
1+c′0c1, c1c

′
1) using polynomial

multiplication.
– SH.Add(c, c′): Given the two ciphertexts c = (c0, c1, c2) and c′ = (c′0, c′1, c′2)

output the ciphertext vector cadd = c + c′ = (c0 + c′0, c1 + c′1, c2 + c′2) ∈
R3

q which is calculated by coordinate-wise vector addition of the ciphertext
vectors.

– SH.Dec(sk , c): To decrypt, first define the secret key vector s =

(1, s, s2, . . . , sD) ∈ RD+1
q , compute 〈c, s〉 =

∑D
i=0 cis

i ∈ Rq, and output
the message m = 〈c, s〉 (mod t).

5.2 Choice of BV Parameters and Implementation

We choose our parameters for the symmetric BV scheme based on our needs,
and also take into account the work of Lauter et al. [17] which assessed the
security against the decoding attack [18] and the distinguishing attack [21]. We
use the following parameters: D = 2, A = 100, t = 2, σ = 8. With these fixed
parameters, we calculate the flexible parameters as seen in Table 1. We made
experiments with smaller q and larger A (up to 1000) and still ended up with
correct results.

236 C. Bösch et al.

Table 1. Implementation results for the parameters mentioned in Section 5.2. The
degree of the polynomials is denoted by α, �lg(q)� is the bit size of q, and lg(T) is the
logarithm of the runtime of the distinguishing attack from [18]. WC |c| is the worst case
ciphertext size and the last two columns describe the time in seconds, that is required
for a single multiplication or addition, respectively.

α �lg(q)� lg(T) WC |c| MUL ADD

256 14 64 896 B 410 E-06 11 E-06
512 20 107 2.5 kB 454 E-06 21 E-06
1024 33 134 8.25 kB 2.8 E-03 72 E-06

We implemented the scheme in C/C++ using FLINT, namely Fast Library
for Number Theory [16]. We tested the code on an Intel Xeon CPU X5677@3.47
GHz running linux 2.6.37-sabayon x86 64. In this situation, our results for degree
512 polynomials show that an addition (after a multiplication) takes 21 · 10−6

seconds and a multiplication takes 454 · 10−6 seconds.
At this moment, we only have a single threaded implementation of our scheme.

The homomorphic multiplication operation has to calculate four independent
polynomial multiplications, which can be done in parallel. This will decrease the
computation time significantly. The same is applicable for the addition opera-
tion, which uses three independent polynomial additions. These additions can
also be easily done in parallel. Another optimization, which is mentioned by
Lauter et al. [17] is to use the Fast Fourier Transformation (FFT) to speed up
computations. This has already been considered in SWIFFT [20]. Due to the
choice of parameters (Zq mod xα + 1, where α is a power of 2 and q = 1 (
mod 2α)) the FFT can be computed more efficiently.

To compare our scheme with others, we also implemented a type A symmetric
prime order pairing, using the PBC [19] library. On the same machine, a single
pairing operation takes 5.8 · 10−3 seconds.

5.3 Performance of the Proposed SDR Scheme

We now consider the efficiency of the proposed SDR scheme, where the efficiency
is measured in terms of the computation, communication and space complexities.

In Table 2, the first column shows the number of supported search keywords.
The second column shows the number of documents stored on the server. The
third and fourth columns show the number of required additions and multipli-
cations for a search over the database. The last two columns show the worst
case trapdoor size, which has to be transmitted, depending on the degree of
the polynomial. Based on the performances of the symmetric BV scheme, for
a document set of size 1000 with a keyword set of size 100, a search takes 47
seconds. For a document set of size 5000 with a keyword set of size 250, a search
takes around 10 minutes. The result of a query is of size

⌈
Docs
α

⌉ · |c|, where α is
the degree of the polynomial and |c| the size of a single ciphertext according to
Table 1. Note that the worst case trapdoor size is also the worst case index size,

Selective Document Retrieval from Encrypted Database 237

Table 2. Number example of the computational complexity. The last two columns de-
scribe the worst case trapdoor size considering the use of 256 or 512 degree polynomials.
This is also the size of an encrypted index for a single document.

Keywords Docs Additions Multiplications WC |T 256
fw | WC |T 512

fw |
100 1000 99,000 100,000

87 kB 250 kB
100 5000 495,000 500,000

250 1000 249,000 250,000
218.75 kB 625 kB

250 5000 1,245,000 1,250,000

Table 3. Number example of the computational complexity of the SSW scheme.
GE(CT) and GE(T) shows the number of group elements per ciphertext and trap-
door, respectively.

Keywords Docs Pairings GE(CT) GE(T)

100 1000 202,000
202 202

100 5000 1,010,000

250 1000 502,000
502 502

250 5000 2,510,000

that has to be stored on the server for a single document. Table 3 shows the
computational complexity of the SSW [27] scheme in terms of pairings that have
to be computed per search. The last two columns show the number of group
elements per ciphertext and trapdoor, respectively.

In Table 4, we compare our scheme to other schemes. The first three rows
describe the asymptotic comparison from the perspective of computational com-
plexity of the algorithms. Our Trapdoor algorithm is a constant time operation,
since it requires only a table lookup which can be done using a trivial hash func-
tion as index. Our BuildIndex algorithm has to process each distinct keyword per
document. Thus the complexity is O(n|Δ|). To search, the server has to perform
a constant number (namely, b) of operations for all n documents. Thus the server
load is O(n). The server has to store one index per document, so the index size
is O(n). The fourth and fifth rows of the table compare the expressiveness of
search queries, and the last row compares the security of the schemes.

It is worth noting that the above computational complexity comparison is
asymptotic. In practice, different operations make a great difference for the real
speed number. In our case, the operations are polynomial additions and multipli-
cations, which are much more efficient than other operations such as pairings. For
example, for the SSW scheme [27], a search query in the database needs n(2v+2)
composite order pairings. As shown in Table 5, for the proposed scheme, given a
database set of size 1000 with a keyword set of size 100, a search takes 47 seconds.
However, for the same setting, a search takes 58580 (i.e. 1000×202×0.0058×50)
seconds (≈ 16.3 hours) for the SSW scheme on the same machine, which is 1247×
slower than our proposed scheme. These numbers are based on the performance

238 C. Bösch et al.

Table 4. Computational performance of different search schemes, where n is the num-
ber of documents in the database, v the number of words per document, and a is the
number of keywords in the trapdoor. The number of distinct words per document is
denoted by |Δ| and |R(w)| denotes the number of documents containing the keyword
w. The asterisk ∗ refers to the use of a so-called FKS dictionary introduced by Fredman
et al. [8], which reduces the lookup time to O(1).

Properties SWP [28] Goh [11] SSE [7] SSW [27] Ours

Compute Trapdoor O(1) O(1) O(1) O(v) O(a)
Compute Indexes O(nv) O(n|Δ|) O(n|Δ|) O(nv) O(n|Δ|)
Search Indexes O(nv) O(n) O(|R(w)|)∗ O(nv) O(n)

Conjunctive Search No No No Yes Yes
Advanced Search Features No No No Yes Yes

Full Security No No No No Yes

Table 5. Comparison of the search times of our scheme and Shen et al. scheme. The
SSW (prime) column shows the SSW scheme under the assumption that it uses prime
order pairing. The SSW (composite) shows a calculated value.

Scheme small (100/1000) large (250/5000)

Our (α = 512) 47 s 9.9 m
Our (α = 1024) 4.8 m 59.8 m
SSW (prime) 19.5 m 4.0 h
SSW (composite) 16.3 h 8.4 d

of a type A symmetric prime order pairing using the PBC [19] library and the
fact that a pairing on a 1024-bit composite order elliptic curve can be 50 times
slower than in a prime order group [9]. For our comparison this is a conservative
estimate since the SSW scheme uses composite order groups, where the order is
the product of four primes. Our scheme is more efficient than the SSW scheme.

6 Related Work

Research into the area of search over encrypted data has been a topic of both
database community and cryptography community. Starting from the work by
Hacigümüş et al. [15], many proposals have been proposed and most of them are
centered around the concept of bucketization. However, these proposals have not
been analysed in a security model and are usually vulnerable to some attacks.
Next, we briefly review some representative SSE schemes which have tried to
achieve provable security in some security model.

Searchable encryption can be achieved by oblivious RAMs [13, 23, 24], which
hide all information, including the query result, from the server. An oblivious
RAM based scheme is not efficient in the sense that it needs a logarithmic num-
ber of rounds of interaction for each read and write. SSE schemes improve the
efficiency at the cost of revealing some information. The first practical scheme
for searching in encrypted data in the symmetric setting was proposed by Song,
Wagner and Perrig [28] (SWP). SWP uses a special two-layered encryption con-
struct, which is known as a sequential scan. SWP is not secure against statistical

Selective Document Retrieval from Encrypted Database 239

analysis across multiple queries and leaks the positions of the queried keywords
in a document, thus revealing index information.

Some of the above problems are addressed by Goh [11] by adding a Bloom
filter index to each document. The index makes the scheme independent of the
document encryption. Goh also introduces the formal indistinguishability against
chosen keyword attack (IND-CKA) and a slightly stronger IND-CKA2 security
model. Goh notes that the security models for secure indexes do not require the
trapdoors to be secure, which is an important requirement for any SSE scheme.
Chang and Mitzenmacher [5] propose two index schemes, similar to Goh [11], us-
ing pre-built dictionaries. They propose a simulation-based definition of security
to guarantee privacy for the indexes and the trapdoors. They achieve a notion
of security that is similar to IND-CKA2. As discussed by Curtmola et al. [7],
the definition is not only non-adaptive, but can also be trivially satisfied by any
SSE scheme, even one that is insecure. Curtmola et al. [7] propose new adver-
sarial models for searchable encryption: a non-adaptive and an adaptive one,
and proposed two schemes. The first scheme (SSE-I) is only secure against non-
adaptive adversaries but more efficient than the second scheme (SSE-II), which
is also secure against adaptive adversaries. Curtmola et al. review existing secu-
rity definitions for searchable encryption and propose new indistinguishability
and simulation-based definitions that address the shortcomings of the existing
definitions. At the same time they loosen the character of SSE by allowing the
leakage of a user’s search pattern. Shen, Shi and Waters [27] (SSW) give for-
mal definitions for predicate encryption (PE) and its security. SSW defines full
security for secret key PE (SKPE). Full security for SKPE is security in the
strongest sense possible since the server should only learn the access pattern. In
addition, SSW introduces a symmetric key predicate encryption scheme that is
proven to be selectively single challenge secure (SCS) which is a relaxed versions
of the full security definition. However, they show that only for a special type
of query (namely, inner products), SCS security is as good as full security. SSW
uses bilinear groups of composite order and is therefore not efficient.

Other works, such as that in [26], have tried to implement SSE in practice. Un-
fortunately, they usually sacrifice privacy to a certain extent in order to achieve
satisfactory performances.

7 Conclusion and Future Work

In this paper, we have proposed the concept of selective document retrieval
(SDR) as a cryptographic primitive for outsourcing encrypted data. Compared
with symmetric searchable encryption (SSE), an SDR scheme can potentially
provide more flexible services and better security guarantees. We described a se-
curity model to cover three types of privacy properties, including index privacy,
trapdoor privacy, and query result privacy. Note that a secure SSE scheme cannot
be trivially extended to provide query result privacy. We have proposed a con-
struction for SDR based on homomorphic encryption and the index construction
method by Chang and Mitzenmacher [5]. The construction offers a very flexible

240 C. Bösch et al.

framework, and can be adapted very easily to support many useful search fea-
tures. To evaluate the performance, we have implemented the search algorithm
in C based on the symmetric Brakerski-Vaikuntanathan (BV) scheme [3], and
the results show that it can be much more efficient than a solution based on ex-
isting SSE schemes. In Section 5, we have evaluated the search algorithm of the
proposed SDR scheme, but a comprehensive performance study is still needed,
in particular for the Retrieve algorithm. The performance of PIR protocols is
currently an ongoing research topic for the community, and recently researchers
have shown that such protocols can actually be practical [22]. We leave a full
discussion of the issue as a future work.

Acknowledgements. We like to thank Michael Naehrig for helpful discussions
on the BV scheme and the anonymous reviewers for their valuable comments.
This work was done when Qiang Tang worked at the University of Twente.

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

4. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.-H.: Off-Line Keyword Guessing At-
tacks on Recent Keyword Search Schemes over Encrypted Data. In: Jonker, W.,
Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg
(2006)

5. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: FOCS 1995: Proceedings of the 36th Annu. IEEE Symposium on Foundations
of Computer Science, pp. 41–50 (1995)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions. In: CCS 2006: Proceedings
of the 13th ACM Conference on Computer and Communications Security, pp. 79–
88. ACM (2006)

8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with 0(1) Worst
Case Access Time. J. ACM 31(3), 538–544 (1984)

9. Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

10. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem
from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–
522. Springer, Heidelberg (2010)

Selective Document Retrieval from Encrypted Database 241

11. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003)
12. Goldreich, O.: Secure Multi-Party Computation. Working draft (October 2002)
13. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
14. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),

270–299 (1984)
15. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted

Data in the Database-Service-Provider Model. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, pp. 216–227. ACM
(2002)

16. Hart, W.: FLINT: Fast Library for Number Theory, http://www.flintlib.org
17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be

Practical? In: Proceedings of the 3rd ACMWorkshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124 (2011)

18. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

19. Lynn, B.: The Pairing-Based Cryptography library,
http://crypto.stanford.edu/pbc

20. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest
Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

21. Micciancio, D., Regev, O.: Lattice-Based Cryptography, pp. 147–191. Springer
(2009)

22. Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private
Information Retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172.
Springer, Heidelberg (2012)

23. Ostrovsky, R.: Efficient Computation on Oblivious RAMs. In: Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing, pp. 514–523.
ACM (1990)

24. Ostrovsky, R.: Software Protection and Simulations on Oblivious RAMs. PhD the-
sis. MIT (1992)

25. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information
Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

26. Pappas, V., Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Private Search in
the Real World. In: Zakon, R.H., McDermott, J.P., Locasto, M.E. (eds.) Twenty-
Seventh Annual Computer Security Applications Conference, ACSAC 2011, pp.
83–92. ACM (2011)

27. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

28. Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.
44–55. IEEE Computer Society (2000)

http://www.flintlib.org
http://crypto.stanford.edu/pbc

	Selective Document Retrievalfrom Encrypted Database
	Introduction
	Problem Statement
	Our Contribution
	Organization

	Definitions of SDR
	Algorithmic Definition of SDR
	Security Properties for SDR
	Game-Style Security Definition
	Relaxation of the Security Definition

	The Proposed SDR Scheme
	Preliminary
	The Proposed Scheme
	Security Results

	Adaptations of the Proposed SDR Scheme
	Aggregating Search Results
	Conjunctive Keyword Search
	Advanced Keyword Search
	Search with Keyword Occurrence Frequency
	Search Based on Inner Product
	Multi-user Variant (adaption to asymmetric setting)

	Search Performances of the Proposed SDR Scheme
	Adaption of the Symmetric BV Scheme
	Choice of BV Parameters and Implementation
	Performance of the Proposed SDR Scheme

	Related Work
	Conclusion and Future Work
	References

