

Lecture Notes in Computer Science 7483
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dieter Gollmann Felix C. Freiling (Eds.)

Information Security
15th International Conference, ISC 2012
Passau, Germany, September 19-21, 2012
Proceedings

13

Volume Editors

Dieter Gollmann
Hamburg University of Technology, Institute for Security in Distributed Applications
Harburger Schlossstrasse 20, 21073, Hamburg, Germany
E-mail: diego@tu-harburg.de

Felix C. Freiling
Friedrich-Alexander-University, Department of Computer Science
Martenstrasse 3, 91058 Erlangen, Germany
E-mail: felix.freiling@cs.fau.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33382-8 e-ISBN 978-3-642-33383-5
DOI 10.1007/978-3-642-33383-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946460

CR Subject Classification (1998): E.3, E.4, D.4.6, K.6.5, C.2, J.1, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Information security continues to be a topic of great relevance to society. The
Information Security Conference (ISC) is an annual international conference
dedicated to research on the theory and applications of information security.
The 2012 conference was the 15th in the conference series that started as a
workshop in 1997, changed to a conference in 2001, and has been held on five
different continents since. Hosted by the University of Passau in Lower Bavaria,
ISC 2012 was the first conference in this series to be held in Germany.

ISC 2012 attracted high-quality papers on all technical aspects of informa-
tion security. We received 72 submissions, which were reviewed by at least three
members of the program committee. We finally accepted 23 papers, which are
collected in these proceedings. In addition, we invited Isabel Trancoso and her
colleagues to speak on privacy issues in speech processing. A second keynote
speech was given by Michael Waidner from Fraunhofer SIT and Technische Uni-
versität Darmstadt.

We wish to thank all the people who invested time and energy to make ISC
2012 a success: First and foremost come all the authors who submitted papers
to ISC and presented them at the conference. The members of the program
committee together with all the external reviewers worked hard in evaluating the
submissions and, in some cases, in shepherding promising work. The ISC steering
committee, in particular Masahiro Mambo, helped us graciously in all critical
decisions. Thanks also go to the 2012 general chair Joachim Posegga and his team
at Passau University for handling the local arrangements, to Eric Rothstein for
maintaining the conference website, and to Isaac Agudo and Cheng-Kang Chu
for their efforts as publicity chairs.

July 2012 Dieter Gollmann
Felix C. Freiling

Organization

General Chair

Joachim Posegga University of Passau, Germany

Steering Committee Chair

Masahiro Mambo Kanazawa University, Japan

Program Chairs

Dieter Gollmann Hamburg University of Technology, Germany
Felix C. Freiling Friedrich-Alexander-Universität, Erlangen,

Germany

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Tuomas Aura Aalto University, Finland
Joonsang Baek KUSTAR, UAE
Alex Biryukov University of Luxembourg, Luxembourg
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Liqun Chen HP Laboratories Bristol, UK
Xiaofeng Chen Xidian University, P.R. China
Chen-Mou Cheng National Taiwan University, Taiwan
Sherman S.M. Chow University of Waterloo, Canada
Jorge Cuellar Siemens, Germany
Vanesa Daza Universitat Pompeu Fabra, Spain
Claudia Diaz KU Leuven, Belgium
Roberto Di Pietro Università degli Studi Roma Tre, Italy
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Bao Feng Institute for Infocomm Research, Singapore
Eduardo B. Fernandez Florida Atlantic University, USA
Josep Ferrer University of the Balearic Islands, Spain
Sara Foresti Università degli Studi di Milano, Italy
Stefanos Gritzalis University of the Aegean, Greece
Thorsten Holz Ruhr-Universität Bochum, Germany
Martin Johns SAP, Germany
Angelos Keromytis Columbia University, USA
Igor Kotenko Russian Academy of Sciences, Russia
Xuejia Lai Shanghai Jiao Tong University, P.R. China

VIII Organization

Zhenkai Liang National University of Singapore, Singapore
Peng Liu Pennsylvania State University, USA
Javier López Universidad de Málaga, Spain
Masahiro Mambo Kanazawa University, Japan
Mark Manulis TU Darmstadt, Germany
Atsuko Miyaji JAIST, Japan
Jose Morales Carnegie Mellon University, USA
Raphael C.-W. Phan Loughborough University, UK
Frank Piessens KU Leuven, Belgium
Christian W. Probst Technical University of Denmark, Denmark
Vincent Rijmen KU Leuven, Belgium
Matt Robshaw Orange Labs, France
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati Università degli Studi di Milano, Italy
Jörg Schwenk Ruhr-Universität Bochum, Germany
Jan Seedorf NEC Laboratories Europe, Germany
Miguel Soriano Universitat Politècnica de Catalunya, Spain
Rainer Steinwandt Florida Atlantic University, USA
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Lingyu Wang Concordia University, Canada
Susanne Wetzel Stevens Institute of Technology, USA
Duncan Wong City University of Hong Kong, P.R. China
Jeff Yan Newcastle University, UK
S.M. Yiu University of Hong Kong, P.R. China
Jianying Zhou Institute for Infocomm Research, Singapore
Alf Zugenmaier Hochschule München, Germany

Additional Reviewers

Man Ho Au
Werner Backes
Oleksandr Bodriagov
Andrey Chechulin
Kai Yuen Cheong
Tat Wing Chim
Cheng-Kang Chu
Willem De Groef
Philippe De Ryck
Xinshu Dong
Ming Duan
Sebastian Gajek
Wei Gao
Stefano Guarino
Seda Gurses

Javier Herranz
Jialin Huang
Kangkook Jee
Christos Kalloniatis
Ergina Kavallieratou
Gunnar Kreitz
Po-Chun Kuo
Sebastian Lekies
Gaëtan Leurent
Wei Li
Yue-Hsun Lin
Flavio Lombardi
Nikolaos Makriyannis
Daniel A. Mayer
Kirill Morozov

Organization IX

Nick Nikiforakis
Evgenia Novikova
Kazumasa Omote
Kailas Patil
Constantinos Patsakis
Alfredo Rial
Panagiotis Rizomiliotis
Santi Martinez Rodriguez
Rodrigo Roman
Arnab Roy
Igor Saenko
Bagus Santoso
Theodoor Scholte
Nicolas Sendrier
Isamu Teranishi
Elmar Tischhauser
Aggeliki Tsochou

Frederik Vercauteren
José Luis Vivas
Huaqun Wang
Baodian Wei
Ralf-Philipp Weinmann
Jia Xu
Kenji Yasunaga
Eunjung Yoon
Bin Zhao
Hang Zhao
Yuanjie Zhao
Hui Zhang
Tao Zhang
Yinghui Zhang
Chen Zhong
Youwen Zhu

Publicity Chairs

Isaac Agudo Universidad de Málaga, Spain
Cheng-Kang Chu National Chiao Tung University, Taiwan

Local Organization

Marita Güngerich, Siglinde Böck, Eric Rothstein

Table of Contents

Invited Paper

Privacy-Preserving Speaker Authentication . 1
Manas Pathak, Jose Portelo, Bhiksha Raj, and Isabel Trancoso

Cryptography and Cryptanalysis

Differential Attacks on Reduced RIPEMD-160 . 23
Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 39
Bogdan Groza and Bogdan Warinschi

On Optimal Bounds of Small Inverse Problems and Approximate GCD
Problems with Higher Degree . 55

Noboru Kunihiro

Mobility

Strong Authentication with Mobile Phone . 70
Sanna Suoranta, André Andrade, and Tuomas Aura

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End
of the Road? . 86

Chaitrali Amrutkar, Patrick Traynor, and Paul C. van Oorschot

Cards and Sensors

Domain-Specific Pseudonymous Signatures for the German Identity
Card . 104

Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler

Solutions for the Storage Problem of McEliece Public and Private Keys
on Memory-Constrained Platforms . 120

Falko Strenzke

100% Connectivity for Location Aware Code Based KPD in Clustered
WSN: Merging Blocks . 136

Samiran Bag, Aritra Dhar, and Pinaki Sarkar

XII Table of Contents

Software Security

Learning Fine-Grained Structured Input for Memory Corruption
Detection . 151

Lei Zhao, Debin Gao, and Lina Wang

Dynamic Anomaly Detection for More Trustworthy Outsourced
Computation . 168

Sami Alsouri, Jan Sinschek, Andreas Sewe, Eric Bodden,
Mira Mezini, and Stefan Katzenbeisser

An Empirical Study of Dangerous Behaviors in Firefox Extensions 188
Jiangang Wang, Xiaohong Li, Xuhui Liu, Xinshu Dong,
Junjie Wang, Zhenkai Liang, and Zhiyong Feng

Processing Encrypted Data

Collaboration-Preserving Authenticated Encryption for Operational
Transformation Systems . 204

Michael Clear, Karl Reid, Desmond Ennis, Arthur Hughes, and
Hitesh Tewari

Selective Document Retrieval from Encrypted Database 224
Christoph Bösch, Qiang Tang, Pieter Hartel, and Willem Jonker

Additively Homomorphic Encryption with a Double Decryption
Mechanism, Revisited . 242

Andreas Peter, Max Kronberg, Wilke Trei, and Stefan Katzenbeisser

Authentication and Identification

Secure Hierarchical Identity-Based Identification without Random
Oracles . 258

Atsushi Fujioka, Taiichi Saito, and Keita Xagawa

Efficient Two-Move Blind Signatures in the Common Reference String
Model . 274

E. Ghadafi and N.P. Smart

New Directions in Access Control

Compliance Checking for Usage-Constrained Credentials in Trust
Negotiation Systems . 290

Jinwei Hu, Khaled M. Khan, Yun Bai, and Yan Zhang

A Quantitative Approach for Inexact Enforcement of Security
Policies . 306

Peter Drábik, Fabio Martinelli, and Charles Morisset

Table of Contents XIII

OSDM: An Organizational Supervised Delegation Model for RBAC 322
Nezar Nassr, Nidal Aboudagga, and Eric Steegmans

GPU for Security

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic
Library . 338

Johannes Gilger, Johannes Barnickel, and Ulrike Meyer

A Highly-Efficient Memory-Compression Approach for
GPU-Accelerated Virus Signature Matching . 354

Ciprian Pungila and Viorel Negru

Models for Risk and Revocation

Intended Actions: Risk Is Conflicting Incentives . 370
Lisa Rajbhandari and Einar Snekkenes

On the Self-similarity Nature of the Revocation Data 387
Carlos Gañán, Jorge Mata-Dı́az, Jose L. Muñoz,
Oscar Esparza, and Juanjo Alins

Author Index . 401

Privacy-Preserving Speaker Authentication

Manas Pathak1, Jose Portelo2, Bhiksha Raj1, and Isabel Trancoso2

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 INESC-ID/IST, Lisbon, Portugal

Abstract. Speaker authentication systems require access to the voice
of the user. A person’s voice carries information about their gender, na-
tionality etc., all of which become accessible to the system, which could
abuse this knowledge. The system also stores users’ voice prints – these
may be stolen and used to impersonate the users elsewhere. It is therefore
important to develop privacy preserving voice authentication techniques
that enable a system to authenticate users by their voice, while simulta-
neously obscuring the user’s voice and voice patterns from the system.
Prior work in this area has employed expensive cryptographic tools, or
has cast authentication as a problem of exact match with compromised
accuracy. In this paper we present a new technique that employs secure
binary embeddings of feature vectors, to perform voice authentication in
a privacy preserving manner with minimal computational overhead and
little loss of classification accuracy.

1 Introduction

The number of services provided to users over the network grows daily. Many of
these services require users to authenticate themselves, typically through pass-
words. Increasingly, these services are accessed through small, voice-enabled client
devices such as smartphones and cellphones. In these cases, authenticating a user
by voice is often more convenient than typing in passwords or passphrases. Even
in cases where passwords may be typed conveniently, they may be combined with
voice-based authentication as an added form of security. As a result, voice-based
authentication systems, also often referred to as speaker authentication systems or
speaker verification systems are becoming increasingly popular.

In a speaker authentication system, a user enrolls with the system by pro-
viding some “enrollment” recordings of themselves from which the system may
form a voice print or model for the user. Subsequently, during operation the user
announces their identity and provides an “authentication” recording to the sys-
tem. The system compares this recording to the stored model for the announced
identity and determines if the the user is indeed who they claim to be.

However, in the process of using speaker authentication systems, the user
currently places a lot of faith in the system. A person’s voice, in addition to being
a biometric, carries information regarding the person’s gender, their emotional
state, their nationality, etc. The implicit trust is that the system will not extract
this information from the signal and use it for other undesired purposes, such as
to generate advertisements aimed at the user, or to sell it to third parties.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 1–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Pathak et al.

There are other risks as well. In the discussion that follows, we will not distin-
guish between the system and a malicious hacker who may have compromised
the system and has access to all data and information it possesses. The system
may manipulate and edit the recordings provided by the speaker to create fake
recordings that the user never spoke. It could also use the recordings to break
into other systems where the user has authenticated themselves by voice.

In addition to the privacy and security violations listed above which result
from unintended use of the speaker’s data, there is scope for direct privacy
violation through usage of the authentication system in intended ways. The
system could use the model it possesses for a user to uncover other recordings
by the user, such as on services like YouTube, or even from recordings of audio
in public places, where the user may have assumed anonymity.

Clearly then, in order to ensure the user’s privacy the following conditions
must ideally be satisfied: First, the system should not have clear access to the
audio recorded by the user. Second, the system should also not possess a model
of the user’s speech that it could use to identify the speaker elsewhere. These
are not entirely unreasonable requirements; similar criteria are in fact stated as
being desirable for other forms of secure biometrics as well [1].

In this paper we describe two recently-developed privacy-preserving frame-
works for speaker authentication that address these problems by enabling a user
to perform authentication without revealing their actual voice patterns to the
system, either during enrollment or during authentication phases.

The first framework [2] employs secure function evaluation (SFE) protocols
[13] to implement a conventional state-of-art voice authentication algorithm [14]
in a manner that enables the user and system to interact only on encrypted
data which the system cannot decrypt and observe in plaintext. Both the audio
transmitted by the user to the system and the models stored by it are encrypted
in this manner. Thus the system (or an adversary who breaks into it) can neither
manipulate the incoming audio for nefarious purposes, nor make any undesired
inferences from the audio or the models it possesses.

The second approach [3] takes a different tack – it modifies the basic pattern
matching algorithms employed for speaker authentication to enable them to be
performed through exact and inexact match of hash strings derived from the
audio obtained through stochastic locality-sensitive-hashing functions. Here too,
the data transmitted by the user to the system, including both enrollment and
authentication data, are transformed in a manner that does not permit the
system to make undesired inferences from it, thereby protecting the user.

The SFE-based approach provides the same accuracy as the state-of-the-art
in voice authentication systems, since it essentially only embeds the same com-
putation into a privacy-preserving framework. It also generalizes to other prob-
lems in speech processing, such as the training of Gaussian mixture densities or
HMMs from private speech data [15] and inference over HMMs from private
data [16], both of which are component problems in many speech applications.
On the other hand, it requires repeated encryption and decryption of the data,
imposing high computational overhead on the process. Moreover, it remains

Privacy-Preserving Speaker Authentication 3

vulnerable to imposters who may take over the user’s client device, and while
these can also be protected against, such protection would impose additional
computational expense. The hashing-based methods, on the other hand, are rel-
atively lightweight and fast; however by modifying the fundamental classification
algorithms themselves they may compromise classification accuracy. Also, they
are specific to the problem at hand – speaker authentication, and do not gener-
alize beyond it in their current format.

In all cases we envision a client-server model, where a user employs a
computation-capable client device such as a smartphone or computer, which
can perform the operations necessary to protect the data. For completeness,
we must also consider the possibility of an imposter who gains access to the
user’s client device and can manipulate the data its transmits. The proposed
frameworks must ideally ensure that such an imposter cannot break into the
system and pretend to be the user. We do not address the issue of fraudulent
voice input, such as by imposters who may attempt to mimic the user’s voice
or criminals who may force the user to speak; these do not fall under the scope
of the presented work. We will also generally assume that all communication
between the user and the system is over an appropriately secured channel and
hence impervious to man-in-the-middle or replay attacks by eavesdroppers.

In closing this introductory section, we note that while there has been a
substantial body of work on general techniques for data processing with pri-
vacy constraints, concerns about the privacy of voice-based biometric systems,
and speech applications in general have largely been ignored until recent times
[17], and literature addressing the topic is sparse. Smaragdis and Shashanka
[15] propose SFE protocols for training and evaluating Gaussian mixtures and
hidden Markov models on speech data, with privacy constraints. Pathak, et al.
[16] develop and implement an efficient protocol for privacy preserving HMM
inference applied to isolated word recognition. The work reported in this ar-
ticle and the related citations are the only extant publications that address
the issue of privacy-preserving speech biometrics, to the best of our knowl-
edge.

In the following sections we first describe the problem of speaker authentica-
tion and common state-of-art methods for the task (Section 2). Subsequently, we
describe the SFE-based procedure in Section 3 and the hashing-based approach
in Section 4, followed by conclusions and discussion in Section 5.

2 Speaker Authentication

We begin by briefly outlining the actual algorithms used for speaker authentica-
tion, as a prelude to describing our privacy-preserving frameworks. Recall that
a user enrolls with a speaker authentication system by providing it enrollment
voice samples. The system builds a “model” for the user from these samples.
Later, to authenticate himself the user announces his identity to the system and
provides it with a voice sample. The system compares the sample to the model
it has for the user to authenticate him. In the outline we will discuss both how
the model is learned, and how it is used for authentication.

4 M. Pathak et al.

Before we proceed, it must be noted that the system does not actually work
on the digitized speech signal directly. Instead, speech signals are parameterized
into a sequence of feature vectors, typically mel-frequency cepstral coefficients
(MFCC) vectors [6] augmented by their temporal derivatives and double deriva-
tives, which characterize the variation in the frequency content of the signal as
a function of time. Thus, when we refer to the audio signal, we are in fact only
referring to the sequence of feature vectors derived from it.

Note that our discussion assumes text-independent speaker authentication,
where the user is not required to say a specific passphrase. However the tech-
niques are easily extended to text-dependent authentication also.

2.1 Speaker Authentication Using Likelihood Ratios from GMMs

The most common and successful technique for text-independent speaker au-
thentication treats the problem as one of hypothesis testing [18], performed
using a likelihood ratio test. To authenticate a recording X given by a speaker,
the system computes the probability of X using a model λs for the speaker and
compares it to the probability computed from a Universal Background Model
(UBM) λU representing generic speech. Authentication uses the following rule:

P (X|λs)

P (X|λU)

{
≥ θ accept speaker,

< θ reject speaker.
(1)

Each recording X actually comprises a sequence of feature vectors, i.e. X =
[x1,x2, · · · ,xT]. The individual vectors xt are assumed to be independent and
identically distributed. The probability distribution of the individual vectors is
assumed to be a Gaussian mixture [19] with the form

P (xt|λC) =
∑
k

wC
k N (xt;μ

C
k , Σ

C
k) (2)

where C is either s or U , wC
k represents the mixture weight of the kth Gaussian

in the Gaussian mixture density for C, N () represents a Gaussian, and μC
k and

ΣC
k represent the mean and variance of the kth Gaussian for C.
To effectively represent the characteristics of a generic speaker, the parame-

ters of the UBM λU are usually learned from a collection of speech recordings
from a large number of speakers, typically using the expectation-maximization
(EM) algorithm. The parameters λs of the model for a speaker s are obtained
by adapting the UBM to the enrollmentp data from the speaker as follows.

Model Adaptation
The UBM parameters are adapted to individual speakers using maximum a
posteriori (MAP) estimation. It has been empirically established that speaker
models obtained by MAP estimation signicantly outperform the models trained
directly on the enrollment data [20][18].

The MAP estimation procedure comprises estimation of a sample estimate
of the parameters of the distribution for the speaker, followed by interpolation

Privacy-Preserving Speaker Authentication 5

with the UBM. Given set of feature vectors x1, · · · ,xT obtained from enrollment
samples, we first compute the a posteriori probabilities of the individual Gaus-
sians in the UBM. For the ith mixture component of the UBM, the a posteriori
probability conditioned on xt is given by

P (i|xt) =
wU

i N (xt;μ
U
i , Σ

U
i)∑

k w
U
k N (xt;μU

k , Σ
U
k)

. (3)

Similarly to the M-step of EM, the a posterior probabilities are then used to
compute the updated sample estimates of mixture weights, means, and variances.

w′
i =

1

T

∑
t

P (i|xt), μ′
i =

∑
t P (i|xt)xt∑
t P (i|xt)

,

Σ′
i =

∑
t P (i|xt)diag(xtx

T
t)∑

t P (i|xt)
. (4)

Finally, the parameters of the adapted model λs = {ws
i , μ

s
i , Σ

s
i } are given by the

convex combination of these new parameters and the UBM parameters:

ws
i = αiw

′
i + (1− αi)w

U
i , μs

i = αiμ
′
i + (1− αi)μ

U
i ,

Σs
i = αiΣ

′
i + (1 − αi)

[
ΣU

i + μU
i μ

U
i

T
]
− μs

iμ
s
i
T . (5)

The adaptation coefficients αi for the mixture components control the contribu-
tion of the enrollment data to the estimate, relative to the UBM.

A number of variations on the above scheme have also been proposed, primar-
ily aimed at accounting for the fact the amount of “registration” data may be
limited, and that the recording conditions for the registration and authentication
recordings may differ. These variants typically employ various flavors of factor
analysis [8][9] to assign a priori probabilities to the parameters of λs. However,
the fundamental structure remains what has been described above, and we shall
remain with it for the presentation in this article.

2.2 Speaker Authentication Using GMM Supervectors

An alternate equally-successful approach to likelihood ratio tests obtains a sep-
arate Gaussian mixture for each of multiple enrollment recordings from the
speaker through MAP adaptation of the UBM. Thus, instead of having a sin-
gle Gaussian mixture repesenting the speaker, we now have multiple Gaussian
mixtures, each representing one of the enrollment recordings. For each record-
ing, the parameters of Gaussian mixture, namely the means, covariances (which
are usually assumed to be diagonal matrices) and mixture weights, are concate-
nated into a “supervector” representing the recording. Similar supervectors are
obtained for a number of recordings from each of a large number putative im-
posters. The collection of supervectors from the target speaker and the imposters
are used as positive and negative exemplars to train a binary classifier.

6 M. Pathak et al.

For authentication, a supervector is similarly obtained from the test recording
and classified by the binary classifier.

Note that once again a priori probability distributions may be assigned to
the parameters of the Gaussian mixtures through factor analysis as in [21]. In
this case the vectors of factors may be used instead of the actual supervectors
to represent the recordings.

2.3 A SVM Based Authentication System

The most common binary classifiers used in this framework are kernel-based sup-
port vector machines [10]. A number of differnt kernels may be used; however we

consider only RBF kernels. Here the kernel is given by k(vi,vj) = e−γ·d2(vi,vj),
where d(vi,vj) refers to the Euclidean distance between vectors vi and vj , and
γ is a scaling factor. RBF kernels are observed to result in good classification
accuracies for the speaker authetication task. Moreover, they are easily adapted
to the hashing-based privacy-preserving speaker authentication schemes we will
describe later.

2.4 k-Nearest-Neighbor Based Classification

As an alternative, we also consider a k-NN based classifier. k-NN classifiers
are not normally employed in speaker authentication systems; however they are
easily adapted to the hashing-based privacy-preserving authentication system
we will describe later. Here, for each speaker S, the system retains a set of
“exemplar” vectors VS derived from registration recordings by the speaker. In
addition, for each of a large number of imposters I from an imposter set I, it
retains a set of exemplar vectors VI . The procedure for classification is given by
Algorithm 1.

Note that although we have referred to the algorithm as k-NN, we do not
restrict ourselves to the k closest neighbors, but consider all exemplars. Also,
the weights assigned to exemplars are based on mean reciprocal rank (MRR),
rather than the distance to y.

3 Privacy-Preserving Authentication as Secure Function
Evaluation

Secure Function Evaluation is a formalism under which two parties with private
inputs can jointly compute a function of both their inputs without exposing
them to one another [13]. Under the SFE framework we treat speaker authen-
tication as a problem where the system and user must compute the likelihood-
ratio test described in Section 2.1 from their private inputs, namely the users
audio and the models retained by the system, without exposing them to one
another.

The general principle behind the SFE framework employed is illustrated in
Figures 1 and 2. The key is to decompose the overall operation into a sequence

Privacy-Preserving Speaker Authentication 7

Algorithm 1. MRR algorithm for authentication

Training:
• Store the exemplar set of vectors VS from the training instances for the target
speaker S.
• For each imposter I in imposter set I, store a set of exemplar vectors VI . Let
V = VS ∪I∈I VI be the set of all exemplars for all speakers, including target and
imposters.
Testing:
• Given “test” vector y from claimed speaker S

• Rank order all exemplars v ∈ V as follows:

rank(v) = |V| −
∑

u∈V\v
I(d(u,y) > d(v,y))

where I() is an indicator function.
for each speaker C ∈ S

⋃
I do

Score(C) =
∑

v∈VC

1
rank(v)

end for
If Score(S) > maxC∈I Score(C) accept S else reject S

Fig. 1. In a regular computation, user “Al-
ice” sends her data a to system “Bob”, who
combines it with his data b to compute the
function. The output c is returned to Alice.

Fig. 2. In an SFE, the computation of
the function is decomposed into several
intermediate steps. Each step requires
inputs from both parties. The output of
each step is distributed to both parties
as random additive shares.

of intermediate steps. Each step requires inputs from both the user and the
system, and the output of each step is also distributed across both as random
additive shares that individually do not reveal anything about the outcome of
the step. The final outcome is received by the system. The manner in which the
computation is broken down and performed in this manner is specified through
detailed protocols.

We now briefly present a preliminary discussion of some of the tools we employ
that enable us to decompose the computation in this manner, and subsequently
outline the protocols we employ for various aspects of speaker verification, fol-
lowed by the performance, security and computation caveats to consider.

8 M. Pathak et al.

3.1 Preliminaries

Homomorphic Encryption. The entire framework is predicated on the use
of homomorphic encryption techniques that allow for arithmetic and logical op-
erations to be performed directly on encrypted data to obtain encrypted results.
If · and + are two operators and x and y are two plaintexts, a homomorphic
encryption function E satisfies E[x] · E[y] = E[x + y]. Thus, a party who only
possesses the encrypted values E[x] and E[y] can obtain E[x+y], the encryption
of the outcome of the operation x + y, without actually ever knowing the true
values of x and y.

In this work, we use the Paillier cryptosystem [22] which is a public-key cryp-
tosystem that satisfies additive homomorphism. Given two numbers x and y,
the Paillier cryptosystem satisfies E[x] ·E[y] = E[x+ y], and as a consequence,
E[x]y = E[x·y]. We refer the reader to [22] for more details on the crypto system.

Using the homomorphic encryption scheme, we can now also define a set of
“primitive” protocols that enable the user and system to perform some opera-
tions. We will present these primitives as they are required by our operations.
Given space constraints, we will not explain exactly how the primitives are im-
plemented, and refer the reader to [2] [15] for details.

Gaussian Computation as a Dot Product. We make extensive use of the
fact that the computation of the log of a Gaussian can be expressed as a dot
product. We use the following construction from [15]. The logarithm of a multi-
variate Gaussian density N (x;μ,Σ) computed on a d-dimensional vector x can
be represented as the quadratic product logN (x;μ,Σ) = x̃T W̃ x̃, where x̃ is an
extended vector obtained by concatenating 1 to x, and W̃ is a (d+ 1)× (d+ 1)
matrix given by.

W̃ =

⎡⎢⎢⎣
− 1

2Σ
−1 Σ−1μ

0 w∗

⎤⎥⎥⎦ , (6)

where w∗ = − 1
2μ

TΣ−1μ− 1
2 log |Σ|.

We can reduce this computation further to a single inner product x̄TW , where
x̄ is a quadratically extended feature vector derived from x̃ which consists of all
pairwise product terms x̃ix̃j of all components x̃i ∈ x̃, and W is obtained by

unrolling W̃ into a vector. In this representation logN (x;μ,Σ)=x̄TW .
We can now describe the SFE protocols for the following operations: user

enrollment including model adaptation to the user’s data, and authentication.
In all of the description below, we assume only the user has the private key

to the homomorphic encryption scheme which can be used to decrypt encrypted
data, but both the user and the system possess the public encryption key and can
encrypt data. Thus the user can perform both encryption E[·] and decryption
E−1[·], while the system can only preform E[·].

Privacy-Preserving Speaker Authentication 9

We assume that the user computes MFCC feature vectors from the audio on
his client device. We also assume that the user has computed both the feature
vectors xt and their quadratic extensions x̄t. All communication of data from
the user to the system are encrypted with his private key. All references to
Gaussians actually refer to the unrolled vector W derived from the W̃ matrices
for the Gaussians.

3.2 Private Enrollment Protocol

We assume that the system has access to the UBM, λU trained on a collection
of speech data. We propose the following protocol to adapt the system’s UBM
to the user’s enrollment samples. We refer to individual Gaussian components
in a mixture as P (x|i) for conciseness.
Inputs:

1. User has feature vectors x1, . . . ,xT and their quadratic extensions x̄1, . . . , x̄T

derived from enrollment samples.
2. System has the UBM λU = WU

i for i = 1, . . . , N , and mixing weight α.

Output: System obtains encrypted adapted model E[λs] = {E[ws
i], E[μs

i],
E[Σs

i]}.

Computing the posterior probabilities:
For each t:

1. The user sends the encrypted vector E[x̄t] to the system.
2. The system computes the encrypted log probabilities for each Gaussian in

the UBM: E
[
logwU

i P (xt|i)
]
=
∑

j E[x̄t,j]
WU

i,j+E[logwU
i].

3. The logsum protocol [15] enables a party holding E[log x] and E[log y] to
collaborate with another party who holds the private encryption key to ob-
tain E[log(x + y)] without revealing x or y. The system participates with
the user’s client in the logsum protocol to obtain E

[
log
∑

i w
U
i P (xt|i)

]
.

4. The system computes encrypted log posteriors:E[P (i|xt)]=E
[
logwU

i P (xt|i)
]

- E
[
log
∑

i w
U
i P (xt|i)

]
.

5. The private exponentiation protocol [2] enables a party holding E[log x] to
collaborate with the party who holds the encryption key to obtain E[x]
without revealing x. The system then executes the private exponentiation
protocol with the user to obtain E [P (i|xt)].

Learning ws
i .

6. The system E[w′
i] as E [

∑
t P (i|xt)] =

∏
t E [P (i|xt)].

7. The system then computes the encrypted updated mixture weights as

E[ws
i] = E[w′

i]
α/TE[wU

i]
1−α.

10 M. Pathak et al.

Learning μs
i .

8. The system generates subtracts a random number r homomorphically from
E[P (i|xt)] to obtain E[P (i|xt)− r] and sends it to the user.

9. The user decrypts this value and multiplies it by feature vectors to obtain
P (i|xt)xt − rxt. He encyrpts it and sends E[P (i|xt)xt − rxt] and E[xt] to
the system.

10. The system computes E[P (i|xt)xt] = E[P (i|xt)xt] = E[xt]
r + E[P (i|xt)xt−

rxt]. It then computes E[
∑

t P (i|xt)xt] =
∏

t E[P (i|xt)xt].
11. The private division protocol [2] enables a party holding E[x] and E[y] to col-

laborate with the party holding the encryption key to obtain E[x/y] without
revealing x or y.The system engages the user in a private division protocol
with E[

∑
t P (i|xt)xt] and E[w′] as inputs to obtain E[μ′].

12. The system then computes the encrypted adapted mean as.

E[μ̂s
i] = E[μ′

i]
αE[μU

i]
1−α.

Learning Σ̂s
i .

This is similar to learning μ̂s
i and continues from Step 9 of the protocol.

13. The user multiplies P (i|xt) − r by xtx
T
t to obtain1. P (i|xt)xtx

T
t − rxtx

T
t .

He sends E[P (i|xt)xtx
T
t − rxtx

T
t] and E[xtx

T
t] to the system.

14. The system, which knows r, computesE[P (i|xt)xtx
T
t −rxtx

T
t]E[xtx

T
t]

r to ob-
tainE[P (i|xt)xtx

T
t] for each t. The system then computes

∏
t E[P (i|xt)xtx

T
t]

to obtain E[
∑

t P (i|xt)xtx
T
t].

15. The system engages the user in the private division protocol with E[w′] and
E[
∑

t P (i|xt)xtx
T
t] as inputs to obtain E[Σ′

i].
16. The private vector product protocol [2] permits a user with encrypted vectors

E[x] and E[y] to engage with a user who has the private decryption key to
compute E[x � y], where � represents a Schur (component-wise) product.
The system and user participate in the private vector product protocol with
input E[μs

i] to obtain E[μs
iμ

sT
i]. The system then computes the encrypted

updated covariance as

E[Σs
i] = E[Σ′

i]
αE[ΣU

i + μU
i μ

UT
i]1−α − E[μs

iμ
sT
i].

The above protocol only represents the first iteration of the iterative MAP adap-
tation algorithm. In practice many iterations are required. The primary variation
in subsequent iterations is that the user now only possesses the encrypted model
learned in the previous iteration, and Step 1. of the above protocol cannot be
performed. Instead this must be replaced by the protocol followed for authentica-
tion, which computes encrypted Gaussian log likelihoods from encrypted models
and data.

At each iteraion (and finally) the encrypted model parameters obtained by
the system cannot be directly used, since it only obtains the encrypted values of

1 For efficiency purposes, only the diagonal terms of the product xtx
T
t can be included

without having a significant impact on accuracy.

Privacy-Preserving Speaker Authentication 11

the means, mixture weights and variances; the product and logarithmic terms
in W s

i must be computed from it. This can be done through a rather simple
protocol in which the system adds (or multiplies) random terms to the individual
parameters of the model homomorphically to mask their true value and ships the
masked values to the user. The user decrypts the data, performs the necessary
operations, re-encrypts the values and returns them to the system. The system
thereafter proceeds to eliminate the random maskers from the encrypted result,
also homomorphically. The details of the protocol can be found in [2].

3.3 Private Verification Protocol

Once enrolment is complete, the system possesses encrypted models for the user,
as well as the UBM. These are used to authenticate the user as follows:

Inputs:

1. User has extended feature vectors x̄1, . . . , x̄T for a test sample.
2. System has E[λs] = E[W s

i], for all Gaussians i = 1, . . . , N .

Output: System obtains the score E[logP (x1, . . . , xT |λs)].

1. The system generates a random vector p and computes E[W s
i] · E[−p] to

obtain E[Ŵ s
i − p]. This is sent to the user.

2. The user decrypts it and obtains W s
i − p. He computes the inner product

x̄T
t (W

s
i − p) ∀t, and sends E[x̄T

t (W
s
i − p)] and E[x̄t] ∀t to the system.

3. The system computes the inner product E[x̄T
t p] =

∏
k E[xt,k]

pk ∀t. It then
computes E[x̄T

t W
s
i] = E[x̄T

t (W
s
i − p)] ·E[x̄T

t p] ∀i. The system and the user
then participate in the logsum protocol to obtain E[logP (xt|λs)]. The system
finally computes E[logP (x1, . . . ,xT |λs)] =

∏
t E[logP (xt|λs)].

The above protocol can be used to compute scores for both the speaker model
and the UBM (although the system has access to the UBM in plain text, it is
actually more efficient to simply encrypt it and compute the encrypted UBM
score in this manner).

Once both the encrypted “user” score E[logP (x1, . . . ,xT |λs)] and the UBM
score E[logP (x1, . . . ,xT |λU)] are available, the system can engage a secure com-
parison protocol [23] to determine which is greater.

3.4 The Efficacy of the SFE Approach

Since the SFE protocols described above essentially enable a direct privacy-
preserving implementation of the likelihood-ratio test, actual authentication per-
formance is not significantly different from that obtained with the original “un-
secured” method. The only degradation comes from the fact that the encryption
works over finite integer fields, and to utilize it all numbers must be converted
to finite-precision integers. However, even with only 16-bit precision the perfor-
mance of the algorithm is largely comparable to that obtained with floating-point
valued features and models.

12 M. Pathak et al.

The larger issue arises from the computational overhead. The computations
require repeated exchange of information between the user and the system, as
well as repeated encryption and decryption. Table 1 shows execution times for
the verification phase of the protocol using different encryption schemes – enroll-
ment times would be several factors higher. All Gaussian mixtures employed in
this experiment were mixtures of 32Gaussians. The table only evaluates the com-
putation time, most of which is dominated by the time required for encryption
and decryption. Communication overhead is negligible compared to these times.
For comparison, the conventional “insecure” version of the algorithm took 14 sec-
onds to run on the same computer, on the same utterance. Clearly the feasibility
of this approach in practical terms is questionable within current computational
infrastructures.

Table 1. Execution time of the verification protocol for a single 4.4second utterance

Steps Time (256-bit) Time (1024-bit)

Encrypting x̄t ∀t 576.81 s 35747.82 s
Evaluating Adapted 407.21 s 7597.57 s
Evaluating UBM same as adapted same as adapted
Comparison 0.3 s 16.88 s

Total =E[x̄t] + adapted 1391.53 s 50959.84 s
+ UBM + compare ∼ 23 min ∼ 14 hr, 9 min

A second factor to be considered is security. The SMC protocols described
above ensure that if they are correctly followed, no information is leaked what-
soever. The system learns nothing about the user’s data, and the user in turn
does not learn anything about the models stored by the system. The original
objectives of privacy we set forth are satisfied.

However, the framework described above assumes “honest but curious” users
and system. The user and the system are assumed to correctly perform the
operations required of them, although they may inspect the output. Such an
assumption is clearly naive. For instance, an imposter who has broken into the
user’s client device could modify the numbers sent out by the user’s client device
in only the last step of the protocol, i.e. the secure comparison protocol; this
would result in incorrect results being obtained by the system, which result
in the imposter obtaining a much-higher-than-random probability of breaking
into the system. These too can be protected against, by including a stage of
verification after each operation, e.g. using zero-knowledge proofs [24]; however
such verification can increase the communication and computation overhead
manifold over the current values.

On the other hand, the SMC framework not only has the benefit of being
exact; it can also be generalized to incorporate other models, and perform ad-
ditional tasks such as actual recognition of speech. Moreover, with appropriate
verification, the procedures can be made arbitrarily secure.

Privacy-Preserving Speaker Authentication 13

4 Privacy Preserving Speaker Authentication through
Hashing

The computational overhead from the SFE framework arises from two reasons.
First, homomorphic encryption is expensive, as are homomorphic operations on
data. Secondly, the processing is interactive, requiring repeated exchange of large
amounts of data between the user and system.

By comparison, text-password based systems are blindingly fast, and yet
highly secure. The reasons for this are not difficult to identify. Firstly, authenti-
cation requires an exact match between the password stored by the system and
the string typed in by the user. This means that fast one-way hashing functions
(e.g. DES) may be employed to encrypt the password. Since the stored password
and the password transmitted by the user encrypt to the same cryptostring, com-
parison can be performed in the encrypted domain: a perfect match results in
authentication; a mismatch provides no information about the original (unen-
crypted) text strings. A consequence of this is that the exchange need not be
interactive: the user transmits a password, and the system determines whether
the user must be authenticated in a single comparison operation; in the entire
process the user’s password remains secure.

On the other hand, the conventional password-based authentication scheme
cannot be applied to speaker authentication for an obvious reason: speech record-
ings are not deterministic, and features derived from enrollment and test record-
ings are highly unlikely to be identical. Moreover, speech recordings tend to vary
in length, making such direct exact comparisons impossible in most cases.

In the Hashing-based framework we attempt to map the authentication prob-
lem to a process similar to password matching. To do so, we employ the
supervector-based mechanisms for authentication described in Section 2.2. Re-
call that in this formalism each recording, both from the enrollment data and
the test data, is converted to a single “supervector” by adapting a UBM to the
recording, and concatenating the parameters of the resultant distribution into
a single vector. The length of the supervector only depends on the number of
Gaussians in the UBM and is independent of the length of the recording, thereby
resulting in a fixed-length parameterization of the audio. Nevertheless the su-
pervectors are not determinsitic and will vary from recording to recording, and
cannot be matched to one another.

In [3] a technique was proposed to convert these supervectors to password-
like strings by hashing them using a locality sensitive hashing (LSH) scheme
[25]. Once hashed in this manner, the supervectors of different recordings from
a speaker could map onto the same hash with high probability. The problem
here was that recordings from imposters too could map onto the same hashes.
To reduce the incidence of such collisions, enrollment recordings were hashed
multiple times using several hashes, and the collection of hash values was used as
a password set for the speaker. Test recordings were hashed in the same manner,
and the set of test hashes were compared to the hashes from the enrollment set.
If a sufficient number of exact matches were found between the two sets, the
user was authenticated.

14 M. Pathak et al.

By converting the problem of authentication to a password matching prob-
lem, privacy issues were effectively eliminated. Computation of supervectors and
hashes was performed on the user’s client device. The server only obtained hashes
that had been encrypted by a one-way function such as SHA-256, both from the
enrollment data and during authentication. Speaker authentication in this man-
ner was as secure as text-based password matching. The problem however, was
one of accuracy – by requiring only exact matches between hashes of test and
enrollment data, the accuracy of the system was compromised.

The hashing-based mechanism we employ approaches the problem of conver-
sion of audio into hashes differently – we employ a hashing mechanism based
on the principle of secure binary embeddings (SBE) [5][4]. SBEs have an inter-
esting property – they convert the audio into hashes that can be compared to
one another in a manner that permits a small degree of mismatch between the
hashes. At the same time, they provide information theoretic guarantees that
the distance between hashes of vectors provides no information about the true
relationship between the vectors, if the vectors are sufficiently far apart. Fur-
thermore, they cannot be inverted to recover supervectors from their hashes, if
the key to the hashing function is kept private.

In the following sections we will describe the SBE and its properties, and how
we apply it to the problem of speaker authentication. Since the actual mechanism
employed to authenticate users is no longer identical to existing techniques,
which are based on the ability to estimate the actual distances between vectors,
we also include a section with experiments demonstrating the effectiveness of
the approach.

4.1 Secure Binary Embeddings

Secure binary embeddings (SBE) [5] convert vectors to bit sequences through ran-
dom projections followed by band quantization. The resulting bit strings, which
we will refer to as “hashes”, have the following property: if the Euclidean dis-
tance between two vectors is below a threshold, the Hamming distance between
their hashes is proportional to the Euclidean distance; above the threshold the
Hamming distance provides no information regarding the true distance between
the two vectors. Given an L-dimensional vector x ∈ RL, the M -bit SBE of x is
defined as

q(x) = Q
(
Δ−1(Ax +w)

)
(7)

whereΔ is a precision parameter,A ∈ R
M×L is a random matrix whose elements

are drawn from a normal distribution with zero mean and unit variance, and
w ∈ RM is a vector composed of random numbers drawn uniformly from [0, Δ].
Q() is a quantization function given by Q(y) = �y%2�, where the floor and
modulus operations are performed component wise.

The binary hash q(x) generated by Equation 7 has the following properties [4]:
given two vectors x and x′ that have a Euclidean distance d(x,x′) = ‖x−x′‖, the
probability that the ith bits, qi(x) and qi(x

′) respectively of the hashes q(x) and
q(x′) are identical depends only on the distance d(x,x′) between the vectors and

Privacy-Preserving Speaker Authentication 15

not on x and x′ themselves. The following relationship results as a consequence
[4]: with probability at most e−2t2M the normalized (per-bit) Hamming distance
dH(q(x),q(x′)) between q(x) and q(x′) is bounded by:

1

2
− 1

2
e
−
(

πσd(q(x)√
2Δ

)2

− t ≤ dH(q(x),q(x′)) ≤ 1

2
− 4

π2
e
−
(

πσd(q(x)√
2Δ

)2

+ t

where t is a control factor. The import of the above bound is that the Ham-
ming distance dH(q(x),q(x′)) is correlated to the Euclidean distance d(x,x′)
if d(x,x′) is less than a threshold (which depends on Δ). Specifically, for small
d(x,x′), E[dH(q(x),q(x′))], the expected Hamming distance, can be shown to be

bounded from above by
√
2π−1σΔ−1d(x,x′), which is linear in d(x,x′). However,

if the distance between x and x′ is greater than this threshold, dH(q(x),q(x′))
is bounded by 0.5 − 4π−2exp

(
−0.5π2σ2Δ−2d(x,x′)2

)
, which rapidly converges

to 0.5 and effectively gives us no information whatsoever about the true distance
between x and x′.

Figure 3 illustrates this relation through a simulation. For the simulation we
randomly generated samples in a high-dimensional space (L = 1024) and com-
puted their hashes. Figure 3 shows the scatter of the normalized per-dimension
Euclidean distance between pairs of these vectors, and the normalized per-bit
Hamming distance between their hashes. The number of bits in the hashes is
also shown in the figures. We note that in all cases, once the normalized Eu-

Fig. 3. Embedding behaviour for different values of Δ and different amounts of mea-
surements M

clidean distance between two vectors exceeds Δ, the Hamming distance between
their hashes no longer provides any information about the Euclidean distance.
We also see that changing the value of the precision parameter Δ allows us to
adjust the distance threshold until which the Hamming distance is informative.
Increasing the number of bits M in the hashes also leads to a reduction of the
variance of the Hamming distance.

A converse property of the embeddings is that for all x′ except those that
lie within a small radius of any x, dH(q(x),q(x′)) provides little information
about how close x′ is to x as evident from Figure 3. In fact, it can be shown
that beyond this radius the embedding provides information theoretic security
if the embedding parameters A and w remain unknown to a potential adversary

16 M. Pathak et al.

who may try to deduce the data from their hashes. Any algorithm attempting
to recover a signal x from its embedding q(x) or to infer anything about the re-
lationship between two signals sufficiently far apart using only their embeddings
will fail to do so. Furthermore, even in the case where A and w are known, it
seems computationally intractable to derive x from q(x) unless one can guess a
starting point very close to x. In effect, it is infeasible to invert the SBE without
strong a priori assumptions about x.

4.2 Speaker Verification with Secure Embeddings

SBE hashes thus enable us to compare data that are close together, without
actually being able to observe the data. This immediately enables us to apply
them to the problem of privacy-preserving speaker authentication, through a
rather direct modification of the algorithms described in Section 2.2. The manner
in which we modify the algorithms is predicated on the fact that dH(q(x),q(x′))
is more-or-less linearly related to d(x,x′) for nearby vectors. We explain the
actual modifications below.

In all cases we assume that the speaker possesses the embedding parameters
A and w. The supervectors for the speaker’s recordings are computed on the
user’s client device. The SBE hashes of the supervectors are also computed on
the user’s client device using A and w. For both the enrollment data and for
subsequent authentication data only the hashes are transmitted to the system
over a secure channel.

During the enrolment phase the system also requires hashes derived from a
large collection of recordings from imposters.

We and defer the discussion of the provenance ofA and w and the consequent
implications on user privacy, as well as the source of the imposter recordings, to
Section 4.6

SVM-Based Classifier: The SVM based classifier used for speaker authen-
tication systems utilizes an RBF kernel defined by k(x,x′) = e−γ·d2(x,x′). We
modify this by replacing the Euclidean distance d(x,x′) between vectors by the
hamming distance between their hashes dH(q(x),q(x′)). The resulting SVM uti-

lizes the modified pseudo-kernel: kq(x,x
′) = e−γ·d2

H(q(x),q(x′)). Note that for a
given A and w, the modified kernel kq(x,x

′) closely approximates the conven-
tional RBF for small d(x,x′), but varies significantly from it at larger d(x,x′).
Although it does not satisfy Mercer’s conditions and cannot be considered a true
kernel, in practice it is effective as we shall see in the experiments described in
Section 4.3.

During enrollment, the SVM classifier is now trained using hashes of (super-
vectors derived from) enrollment recordings provided by the user, in conjunction
with the hashes of a collection of imposter recordings. During operation, hashes
of supervectors derived from test recordings are classified by the SVM.

Privacy-Preserving Speaker Authentication 17

k-NN Classifier: The k-NN classifier of Section 2.4 can also be similarly mod-
ified. Here we replace the Euclidean distance d(x,x′) used to rank order the
neighbors of a vector by the Hamming distance between their SBE hashes,
dH(q(x),q(x′)). The motivation behind the design of the algorithm in Section
2.4, which was designed with the hashing-based classifiers in mind, can now be
explained. Since the expected Hamming distance dH(q(x),q(x′)) between any
the hashes of any two vectors x and x′ with Euclidean distance d(x,x′) > MΔ is
0.5M , dH(q(x),q(x′)) cannot reliably be used to choose the k closest neighbors
to any x correctly except for small k. Hence we simply consider all exemplars to
compute the score for any vector. Secondly, since the actual Hamming distance
between the hashes of two vectors is a random variable and does not fall signifi-
cantly above 0.5M , particularly for larger M , weights are assigned to exemplars
based on reciprocal rank, rather than the distance itself.

The actual implementation of the authentication is straight-forward. In the
enrollment phase the system obtains the hashes of a set of enrolment recordings
from the user, as well as those for a collection of recordings from several im-
posters. The k-NN algorithm is used thereafter to classify hashes derived from
test recordings of the user.

4.3 Experiments in Speaker Authentication

Unlike the SFE-based framework which merely embedded a conventional algo-
rithm within a privacy-preserving framework, the SBE-based mechanisms de-
scribed above modify the actual classifier by changing the distance functions
they use. Therefore, before we proceed, we first demonstrate the accuracy of the
SBE-based speaker authentication.

Experiments were run on the YOHO Speaker Verification corpus [11]. It com-
prises of a collection of short utterances produced by 138 different speakers,
108 male and 30 female. Each utterance contains a sequence of three two-digit
numbers (e.g. “26-81-57”). The recordings were sampled at 8kHz and digitized
as 16-bit words. The corpus is divided into an enrollment set and a verifica-
tion set. The enrollment set contains 96 utterances from each speaker, totaling
14.54 hours of audio. The verification set, which is the “test” set, contains 40
utterances from each speaker, totaling 6.24 hours of audio. We did not explicitly
record imposters; instead for each of the 138 speakers in the corpus, the remain-
ing 137 were used as imposters. All speech signals were parameterized into a
sequence of MFCC feature vectors, each computed from an analysis frame of
25ms, at the rate of 100 vectors per second. The 13-dimensional MFCC vectors
were augmented with the temporal differences and double-differences to result
in a total of 39 features per frame.

A UBM (which, we recall is a Gaussian mixture) was trained from the data
for all the speakers. The UBM was adapted to each recording from each speaker
to obtain a single Gaussian supervector for each recording. The length of the
supervectors depends on the number of Gaussians in the UBM: a UBM with

18 M. Pathak et al.

N Gaussians results in supervectors with L = 39N dimensions. We evaluated
UBMs of different sizes, with the number of Gaussian components ranging from
4 to 128 Gaussians, to find the optimal settings.

4.4 Experiments Using Supervectors

In the first experiment we directly employed the supervectors in the classifiers de-
scribed in Section 2.2, to obtain reference speaker authentication results against
which we could compare the performance of SBE-based authentication. We re-
port results obtained from supervectors obtained with GMMs of different sizes.
Results are reported using both the SVM and k-NN classifiers. In a binary classi-
fication task such as speaker authentication, the two key performance metrics are
“precision”, which records the percentage of all recordings that were “accepted”
by the system that actually belonged to the target speaker, and “recall”, which
records the fraction of all recordings by a speaker that were correctly accepted.
Ideally, both precision and recall must be close to 100%. We report performances
in terms of “F-measure”, which is the harmonic mean of precision and recall and
encapsulates both. If either of them is low, the F-measure will be low. Note that
for the k-NN classifier which actually obtains separate scores for each speaker
in the corpus, the F-measure is also identical to the accuracy of a multi-class
classifier that attempts to identify the speaker in each recording.

The obtained results averaged over all the speakers and are presented in Tables
2 and 3 respectively. In both cases the classifier achieves a close to optimal

Table 2. Speaker authentication F-measure (%age) using SVMs

#Gaussians 4 8 16 32 64 128

F-measure 76.8 89.2 92.8 94.0 94.1 94.4

Table 3. Speaker authentication F-measure (%age) using k-NN

#Gaussians 4 8 16 32 64 128

F-measure 71.8 86.7 92.4 94.8 91.5 85.4

performance with supervectors derived from mixtures of 32 Gaussians – for the
k-NN classifier the performance falls off with increasing Gaussians; for the SVMs,
although further increase in suprevector size results in improved performance,
the improvements are marginal. Consequently, for experiments with the SBE
we will consider only SBE hashes of supervectors obtained from mixtures of 32
Gaussians.

4.5 Experiments Using SBE Hashes

The secure binary embeddings have two parameters that can be varied: the
quantization step size Δ and the number of bits M . The value of M by itself is

Privacy-Preserving Speaker Authentication 19

not informative, since increasing L (dimensionality of the supervector) requires
increasing values of M to retain the same resolution. Hence we report our results
as a function of bits per coefficient (bpc), computed asM/L. The results obtained
for the SVM and k-NN classifiers are presented in Tables 5 and 4 respectively.

Table 4. Speaker authentication F-measure (%age) using k-NN + SBE

Δ 13.5 14.0 14.5 15.0 15.5

bpc=4 72.4 78.9 82.8 85.6 87.3
bpc=8 85.0 88.6 89.9 90.8 91.6
bpc=16 90.2 91.8 92.7 93.1 93.2

Table 5. Speaker authentication F-measure (%age) using SVMs + SBE

Δ 13.5 14.0 14.5 15.0 15.5

bpc=4 85.4 87.9 89.0 90.9 91.6
bpc=8 90.7 92.1 93.0 93.7 93.9
bpc=16 94.0 94.0 94.6 94.6 94.9

From Figure 3 and the discussion in Section 4.1 we can infer that smaller Δ
values result in smaller neighborhoods over which the distances between adjacent
vectors can be deduced from their hashes. Thus, smallerΔ values result in hashes
q(x) that better obscure the value of the vectors x. By the same token, however,
they are also likely to result in poorer classification accuracy since x cannot
reliably be compared to a model.

Tables 5 and 4 report performance as a function of Δ and bpc. As expected,
increasing Δ generally improves classification performance, but then so does
increasing bpc. For small bpc small Δ values result in unacceptably poor clas-
sification. However increasing bpc improves the classification performance in all
cases, and at bpc=16, the performance stabilizes quickly and is thereafter largely
independent of Δ. At these settings we notice little, if any degradation when we
work from SBE hashes instead of the original supervectors.

4.6 Privacy and Other Practical Issues

Let us now analyze the actual privacy afforded by the SBE-based authentication.

When the User Possesses A and w as Private Keys: In the most secure
case, the user generates (A,w) and retains it as his private key. Since the system
only obtains the hashes and does not know A or w, it provably has no means of
recovering vectors from their hashes. Moreover, it also has no way of computing
hashes given a vector. As a result, the process is totally secure from abuse by the
system. Moreover, this also protects the user from imposters: the user’s private
key is tied to her client device(s), and if these are secured, e.g. by a password,
the system cannot be broken into by an imposter who poses as the user.

20 M. Pathak et al.

The problem here is that since the system has no means of computing hashes,
the user is in charge of downloading imposter data and generating hashes from
them for the system to train its classifiers from, an onerous responsibility. One
alternative is to use a “single-class” classifier, which only requires positive in-
stances from the user; however the performance of such classifiers tends to be
poor [3]. A more practical solution is for the user to generate his set of negative
samples from the positive samples. This can be achieved by using the method
proposed in [12], in which the user iteratively estimates SVM classifiers and gen-
erates negative instances that lie on the wrong side of the decision boundary.
The authors of this technique state that after a few iterations the classifica-
tion results are comparable to the ones obtained using sets of genuine positive
and negative samples; however whether this is true for supervectors of speech
recordings remains to be seen.

The System Provides A and w: Recall that the SBE is essentially not invert-
ible without strong a priori assumptions about the data. Under the assumption
of non-invertibility, we can propose the following: the system generates (A,w)
once, and transmits it to the speaker. The system is now in charge of generating
imposter hashes. Users only send the SBE hashes of their enrollment data to the
system. Even if the hashes are not invertible, this process is not secure: since
the system can generate hashes on its own, it does not prevent the system from
searching public sources such as YouTube for instances of the speaker’s voice.
This may not be an unacceptable compromise in many situations; however, it
is still unknown whether the system can recover a vector from its hash given a
priori information that it can obtain.

Finally, we note that one of the key advantages of the SFE approach was
its generalizability – the same framework could also be employed for a variety
of other tasks such as speaker identification, speech recognition, etc. Since the
hashing-based approach can only be guaranteed to be secure if the user retains
the hashing parameters, it does not lend itself to such generalization.

5 Discussion and Conclusions

With increasing use of speech-based services, the issue of the privacy of the
users and their speech data is only just beginning to be considered. These issues
go beyond the mere problem of biometrics. Even for speech-based biometrics,
the proposed frameworks are not complete – while they enable some operations,
specifically speaker authentication, to be performed securely, they cannot provide
the same security to closely related tasks such as speaker identification. In the
larger scenario, users who use speech recognition and speech mining services,
social media sites etc. remain exposed.

The presented work can thus only be considered a first step towards estab-
lishing a truly secure framework for speech processing applications in general.
We continue to investigate these issues and hope researchers around the world
recognize the importance of the problem and take it up as well.

Privacy-Preserving Speaker Authentication 21

Acknowledgements. The authors would like to thank Petros Boufounos for
many helpful suggestions. José Portêlo and Isabel Trancoso were supported by
Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia, under
PhD grant SFRH/BD/71349/2010 and project PTDC/EIA-CCO/122542/2010.
Bhiksha Raj was partially supported by NSF Grant 1017256.

References

1. Adler, A.: Biometric System Security. In: Jain, A.K., Flynn, P., Ross, A. (eds.)
Handbook of Biometrics. Springer (2007)

2. Pathak, M., Raj, B.: Privacy Preserving Speaker Verification using adapted GMMs.
In: Proc. Interspeech (2011)

3. Pathak, M., Raj, B.: Privacy-Preserving Speaker Verification as Password Match-
ing. In: Proc. ICASSP (2012)

4. Boufounos, P., Rane, S.: Secure Binary Embeddings for Privacy Preserving Nearest
Neighbors. In: Proc. Workshop on Information Forensics and Security,WIFS (2011)

5. Boufounos, P.: Universal Rate-Efficient Scalar Quantization. IEEE Trans. on In-
formation Theory 58(3), 1861–1872 (2012)

6. Davis, S.B., Mermelstein, P.: Comparison of Parametric Representations for Mono-
syllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions
on Acoustics, Speech, and Signal Processing 28(4), 357–366 (1980)

7. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification using Adapted
Gaussian Mixture Models. Digital Signal Processing 10(1-3), 19–41 (2000)

8. Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: Joint Factor Analysis Versus
Eigenchannels in Speaker Recognition. IEEE Trans. Audio, Speech and Language
Processing 15(4), 1435–1447 (2007)

9. Sennoussaoui, M., Kenny, P., Brummer, N., de Villiers, E., Dumouchel, P.: Mixture
of PLDA Models in I-Vector Space for Gender-Independent Speaker Recognition.
In: Proc. Interspeech 2011, Florence, Italy (August 2011)

10. Campbell, W.M., Campbell, J.R., Reynolds, D.A., Singer, E., Torres-Carrasquillo,
P.A.: Support Vector Machines for Speaker and Language Recognition. Computer
Speech and Language 20, 210–229 (2006)

11. Campbell, J.P.: Testing with the YOHO CD-ROM voice verification corpus. In:
Proc. ICASSP (1995)

12. Yu, H., Han, J., Chang, K.C.C.: PEBL: Positive Example based Learning for Web
Page Classification using SVM. In: Proc. of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 239–248. ACM (2002)

13. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

14. Kinnunena, T., Li, H.: An overview of text-independent speaker recognition: From
features to supervectors. Speech Communication 52(1), 12–40 (2010)

15. Smaragdis, P., Shashanka, M.: A Framework for Secure Speech Recognition. IEEE
Transactions on Audio, Speech, and Language Processing 15(4), 1404–1413

16. Pathak, M., Rane, S., Sun, W., Raj, B.: Privacy Preserving Probabilistic Inference
with Hidden Markov Models. In: Proc. ICASSP, Prague, Czech Republic (May
2011)

17. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy
concerns. IEEE Security & Privacy 1(2), 33–42

22 M. Pathak et al.

18. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted
Gaussian Mixture Models. Digital Signal Processing 10(1-3), 19–41 (2000)

19. Bimbot, F., Bonastre, J.-F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I.,
Meignier, S., Merlin, T., Ortega-Garćıa, J., Petrovska-Delacrétaz, D., Reynolds,
D.A.: A Tutorial on Text-Independent Speaker Verification. EURASIP Journal on
Advances in Signal Processing 4, 430–451 (2004)

20. Reynolds, D.A.: Comparison of Background Normalization Methods for Text-
Independent Speaker Verification. In: Proceedings of the European Conference on
Speech Communication and Technology (September 1997)

21. Shou-Chun, Rose, R., Kenny, P.: Adaptive score normalization for progressive
model adaptation in text independent speaker verification. In: Proc. ICASSP, Las
Vegas, Nevada, USA (April 2008)

22. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

23. Kershbaum, F., Biswas, D., de Hoogh, S.: Performance Comparison of Secure Com-
parison Protocols. In: Proceedings of the 2009 20th International Workshop on
Database and Expert Systems Application, pp. 133–136 (2009)

24. Quisquater, J.-J., Guillou, L.C., Berson, T.A.: How to Explain Zero-Knowledge
Protocols to Your Children. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435,
pp. 628–631. Springer, Heidelberg (1990)

25. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hash-
ing. In: Proceedings of the 25th Very Large Database (VLDB) Conference (1999)

Differential Attacks on Reduced RIPEMD-160

Florian Mendel1, Tomislav Nad2, Stefan Scherz, and Martin Schläffer2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
2 Graz University of Technology, IAIK, Austria

Abstract. In this work, we provide the first security analysis of reduced
RIPEMD-160 regarding its collision resistance with practical complex-
ity. The ISO/IEC standard RIPEMD-160 was proposed 15 years ago and
may be used as a drop-in replacement for SHA-1 due to their same hash
output length. Only few results have been published for RIPEMD-160 so
far and most attacks have a complexity very close to the generic bound.
In this paper, we present the first application of the attacks of Wang et
al. on MD5 and SHA-1 to RIPEMD-160. Due to the dual-stream struc-
ture of RIPEMD-160 the application of these attacks is nontrivial and
almost impossible without the use of automated tools. We present prac-
tical examples of semi-free-start near-collisions for the middle 48 steps
(out of 80) and semi-free-start collisions for 36 steps of RIPEMD-160.
Furthermore, our results show that the differential characteristics get
very dense in RIPEMD-160 such that a full-round attack seems unlikely
in the near future.

Keywords: hash functions, cryptanalysis, semi-free-start collisions.

1 Introduction

In the last decade, several significant advances have been made in the field
of hash function research. Especially the collision attacks [16–18] on the MD4
family of hash functions, in particular on MD5 and SHA-1, have weakened the
security assumptions of many commonly used hash functions. As a consequence,
NIST is organizing the SHA-3 competition to evaluate alternative hash function
designs and choose a new hash function standard in 2012 [11]. During this on-
going evaluation, not only the three classical security requirements (preimage
resistance, second preimage resistance and collision resistance) are considered.
Researchers also analyze (semi-) free-start collisions, near-collisions, and any
other non-random behavior of a hash function or its building blocks. Commonly,
also simplified or round-reduced variants are studied to get new insights in the
design and strength of a cryptographic primitive.

RIPEMD-160 is a cryptographic hash function which was designed by Dob-
bertin et al. in 1996 [5] and standardized by ISO/IEC in 1997 [6]. As a part of the
ISO/IEC 10118-3 standard on dedicated hash functions, RIPEMD-160 is used
in many applications and is part of several standards, e.g. OpenSSL, OpenPGP.
Furthermore, RIPEMD-160 is often recommended as a drop-in replacement for

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 23–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

24 F. Mendel et al.

SHA-1 due to their same output length. Even though RIPEMD-160 relies on
the same design principles as MD5 and SHA-1, the dual-stream structure makes
RIPEMD-160 more secure against recent attacks on other members of the MD4
family. For this reason, only few results on RIPEMD-160 have been published
to date.

The only work regarding the collision resistance of RIPEMD-160 has been
published by Mendel et al. [9]. In this work, the application of the differential
attacks on RIPEMD by Dobbertin [4] and Wang et al. [16] has been studied.
However, due to the increased number of steps and the two streams are more
different than in RIPEMD, they concluded that RIPEMD-160 might be secure
against these types of attacks. The best currently known attack on the hash
function RIPEMD-160 is a preimage attack for 31 (out of 80) steps by Ohtahara
et al. [12]. However, the complexity of the attack is very close to the generic
complexity of 2160. Recently, Sasaki and Wang [14] have shown non-random
properties for up to 51 steps when starting from round 2. However, the complex-
ity of the attack is very high 2158 and the attack setting is much weaker than in
a collision attack.

In this paper, we provide the first analysis of unmodified RIPEMD-160 against
collision attacks. We show how the collision attacks of Wang et al. can be applied
on up to 3 rounds of the RIPEMD-160 compression function. We present semi-
free-start collisions for 36 steps and semi-free-start near-collisions for 48 steps
when starting at round 2. Contrary to all previous results, our results have
a very low complexity and we are able to show practical examples in all cases.
Although we were not able to attack the reduced round hash function, our results
provide a significant improvement in the analysis of the collision resistance of
RIPEMD-160 and gives new insights in its security.

The paper is structured as follows. In Sect. 2 we briefly describe the dual-
stream hash function RIPEMD-160. In Sect. 3 we present different strategies to
construct collisions for round-reduced RIPEMD-160 using local collisions in both
streams. In Sect. 4, we show in detail how to find high-probability differential
characteristics and confirming inputs using an automatic search tool. Finally, we
conclude in Sec. 5.

2 Description of RIPEMD-160

RIPEMD-160 was designed by Dobbertin, Bosselaers and Preneel in 1996 as a
replacement for RIPEMD [5] and is part of the international standard ISO/IEC
10118-3:2004 on dedicated hash functions. It is an iterative hash functions based
on the Merkle-Damg̊ard design principle [2,10] and produces a 160-bit hash value
by processing message blocks of 512 bits. Like its predecessor RIPEMD, the
compression function of RIPEMD-160 consists of two parallel streams. The two
streams of RIPEMD-160 are designed more differently than those of RIPEMD.
In each stream the expanded message block is used to update the state variables.

Differential Attacks on Reduced RIPEMD-160 25

After the computations the results of both streams are combined with the chain-
ing input, which is illustrated in Fig. 1 and defined as follows:

h0 = B−1 +B78 + (B′
77 ≪ 10) h3 = B−4 + (B75 ≪ 10) +B′

79

h1 = B−2 + (B77 ≪ 10) + (B′
76 ≪ 10) h4 = B−5 +B79 + B′

78

h2 = B−3 + (B76 ≪ 10) + (B′
75 ≪ 10)

The final values of one iteration h0, . . . , h4 are either the final hash value or the
chaining input for the next message block.

Hj−1

Hj

Mj Mj

L
ef
t
S
tr
ea
m

R
ig
h
t
S
tr
ea
m

+

≪ 64 ≪ 32 ≫ 64

Bi−5 Bi−1 Bi−2 Bi−3 Bi−4

Bi−4 Bi Bi−1 Bi−2 Bi−3

Ki

Wi

+

+

+

+

f

≪ 10

≪ s

≪ 10

≪ 10

Fig. 1. The compression function (left) and state update transformation (right) of
RIPEMD-160.

State Update Transformation. The five 32-bit input state variables of both
streams h0 = B−5 = B′

−5 and hi = B−i = B′
−i with 1 ≤ i ≤ 4 are initialized

with the initial value (first block) or the previous chaining values. The state
update transformation updates the five state variables in five rounds of 16 steps
each using one expanded message word Wi in each step.

Note that he Boolean functions f and rotation values s are different in each
stream and each round. fr is used for the r-th round in the left stream and f6−r

for the r-th round in the right stream with 1 ≤ r ≤ 5. For the rotation values s
and the constants Ki we refer to [5].

f1(X,Y, Z) = X ⊕ Y ⊕ Z f4(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)

f2(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z) f5(X,Y, Z) = X ⊕ (Y ∨ ¬Z)

f3(X,Y, Z) = (X ∨ ¬Y)⊕ Z

Message Expansion. The message expansion of RIPEMD-160 is a round-wise
permutation of the 16 message block words. For the left and the right stream
different permutations are used.

26 F. Mendel et al.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Round 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Left Round 2 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Round 3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
Stream Round 4 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

Round 5 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13

Round 1 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
Right Round 2 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

Round 3 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
Stream Round 4 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

Round 5 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

3 Constructing (Local) Collisions for RIPEMD-160

In this section, we provide a general outline how to construct collisions for
RIPEMD-160. The idea is based on the recent differential attacks on the MD4
family of hash functions [16, 18] and its application to the dual stream hash
function RIPEMD-128 in [8]. The high-level strategy is basically the same in all
attacks and can be summarized as follows:

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round
of the hash function.

3. Use message modification techniques to fulfill conditions imposed by the
characteristic in the first round to increase the probability of the character-
istic.

4. Use random trials to find values for the remaining free message bits such
that the message follows the characteristic.

The most difficult and important part of the attack is to find a good differential
characteristic for both the first round and the remaining rounds of the hash
function, since this defines the final attack complexity.

3.1 Constructing High-Probability Characteristics for RIPEMD-160

In a differential attack on hash functions, we first need to construct differential
characteristics that hold with high probability. In general, a characteristic has
a high probability if the number of differences and conditions imposed by the
differential characteristic is small. We refer to such a characteristic to be sparse.
For single-stream hash functions, a characteristic does not need to be sparse in
the first round, since we can use basic message modification [18] to determinis-
tically construct conforming message pairs. However, in the case of dual-stream
hash functions, a single message word is used to update two streams in each
round which complicates message modification. Therefore, we try to construct
sparse characteristics also in at least one stream of the first round such that the
message modification part can be carried out more efficiently.

Differential Attacks on Reduced RIPEMD-160 27

For MD5 a very sparse characteristic with only differences in the MSB of the
chaining variable exists, which can be used to construct long high-probability
characteristics [1]. RIPEMD-160 consists of two MD5-like step update transfor-
mations. However, due to the additional rotation of the state variable Bi−4 this
high-probability characteristic does not exist in RIPEMD-160. Moreover, be-
cause of the additional rotation also differences spread rather quickly such that
differential characteristics get dense easily. Therefore, also using a linearized ap-
proximation of the hash function and algorithms from coding theory (as it is
done for instance in the attacks on SHA-1 [13]) does not result in sparse charac-
teristics [9]. The best choice is to use local collisions, which result in large areas
which do not contain any differences at all. This strategy is usually advantageous
for hash functions using permuted message words in the message expansion.

We start by constructing a very sparse (high probability) characteristic for
the hash function after the first round. Then a suitable characteristic for the first
round needs to be constructed. The goal is to use one or more message words
to construct short local collisions within only a few steps in both streams of
the later rounds. This is obviously more difficult for dual-stream hash functions,
since more constraints have to be fulfilled. In particular, the different message
word permutations and rotation values in each stream of RIPEMD-160 make
the construction of many short local collisions difficult.

3.2 Local Collisions

In MD4-like hash functions, a local collision has to start and end by a difference
in a message word. We basically have three options to construct local collisions
for two rounds which are shown in Fig. 2. First, we can use differences in two
message words, to construct local collisions within each round. Second, we can
use differences in a single message word, to construct local collisions spanning
over two rounds. Thirdly, we can combine the two approaches or use even more
message word differences.

Remember that we aim for a high probability differential characteristics after
the first round in both streams. This can be achieved by using short local colli-
sions in the second round. Another possibility is to use local collisions spanning
over two rounds and cancel the differences very early in the second round in each
stream.

R
o
u
n
d
1

R
o
u
n
d
2

Wi

Wj

Wi

Wj

Wi

Wj

Wi

Wj

R
o
u
n
d
1

R
o
u
n
d
2

Wi

Wi

Wi

Wi

R
o
u
n
d
1

R
o
u
n
d
2

Wi

Wj

Wi

Wj

Wi

Wj

Wi

Wj

Fig. 2. Three options to construct local collisions for two rounds

28 F. Mendel et al.

To get high-probability differential characteristics, we aim for local collisions
over as few steps as possible. The minimum number of steps for a local collision
in RIPEMD-160 is five since a difference has to pass through all 5 state words.
A single 5-step local collision can easily be constructed using differences in at
least three message words depending on the Boolean function fr. Assuming that
the differences at the input of the Boolean function can always be absorbed, one
needs only differences in the message words that are used in step one, four and
five of the local collision. Note that if the differences can not be absorbed also
differences in the other message words might be needed.

However, even if we have differences in three message words, we need to con-
struct up to four (short) local collisions. This places several constraints on the
message words. Possible candidates for message words which contain differences
are given in Sect. 3.3.

If differences in a single message word are used, the local collisions have to
be constructed over two rounds. The advantage is that we only need two local
collisions instead of four. In general, this places less constraints on the message
words and may also lead to sparser characteristics in the third round. However,
this approach has consequences on the minimum number of steps of a local
collision:

Observation 1. The shortest local collision, which uses difference(s) in a single
message word, has to be constructed over six steps.

The reason for this is the update process of RIPEMD-160. A 5-step local collision
only allows non-zero differences in a single state variable, more precisely if a
message word Wj is introducing a difference in step i, only the state variable
Bi contains a difference. This difference can be canceled five steps later using
the same message word. However, at the input of step i + 4 of the 5-step local
collision we get the following setting:

ΔBi−1 = 0, ΔBi+3 = 0, ΔBi+2 = 0, ΔBi+1 = 0 and ΔBi �= 0 and ΔWk = 0

Then, the following step update transformation has to lead to a zero difference
in ΔBi+4 = 0 in order to produce a 5-step local collision:

Δ=0︷ ︸︸ ︷
Bi+4 =

Δ=0︷ ︸︸ ︷
(((Bi−1 ≪ 10) + f(Bi+3, Bi+2, (Bi+1 ≪ 10)) +Wk +Ki+4) ≪ s)+

(Bi ≪ 10)︸ ︷︷ ︸
Δ�=0

However, this equation leads to a contradiction since only one term contains a
non-zero difference. Hence, a 5-step local collision cannot be constructed using
a difference in a single message word. Note that this restriction also applies
to local collisions constructed within one round using only differences in two
distinct message words.

Differential Attacks on Reduced RIPEMD-160 29

Since RIPEMD-160 consists of two streams with different permutations of
message words, both streams need to be considered concurrently. The first step
in the attack is to determine those message words, which may contain differences
in order to lead to local collisions. We have several constraints regarding those
local collisions such that the whole attack can be carried out efficiently.

3.3 Choosing Message Word Differences

In this section, we describe the different options to construct sparse local collision
in RIPEMD-160. The best result and the semi-free-start near-collision on 48
steps (see Sect. 4) was obtained using a difference in a single message word.
However, we have also analyzed the use of differences in two or three message
words and present local collisions for these cases as well.

Using a single message word difference, we need to construct local collisions
between round 1 and 2 of RIPEMD-160. If we consider only a difference in a
single message word, we get a sparse differential characteristic in the second
round if the local collisions end as early as possible in both streams. Using W7,
we can construct local collisions which end in the first and fourth step of the
second round in the left and right stream, respectively. The candidates, which
can construct local collisions that end in the first half of round 2 in both streams
are given in Table 1.

Table 1. Local collision candidates (single message word)

Message Local Collision Lengths
Word Left Stream Right Stream

W7 9 steps (step 7 to 16) 17 steps (step 2 to 19)
W6 15 steps (step 6 to 21) 7 steps (step 9 to 16)
W10 10 steps (step 10 to 20) 10 steps (step 13 to 23)

Unfortunately, it is very hard to find a corresponding differential characteristic
for the first round (also see Section 4). Due to the XOR-function used in round 1
of the left stream and the rather short local collision (9 steps), we did not
succeed in finding a corresponding differential characteristic. However, due to
the repeating pattern in the message expansion of RIPEMD-160, we can use
a local collision of the same length and position between round 2 and 3 using
message word W3 by skipping the first round. Note that this setting is used for
the main attack of this paper and is also shown in Fig. 3.

Note that a single 5-step local collision can be constructed easily using differ-
ences in multiple message words. Since the Boolean functions in the second round
of both streams can absorb the differences, three message words are sufficient
to construct 5-step local collisions. However, due to the message permutation,
it is not possible to construct 5-step local collisions in the second round of both
streams concurrently. We list the shortest local collision for the second round

30 F. Mendel et al.

7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

left

right

Fig. 3. Using message word W3 and round 2-4

and the resulting local collisions for the first round in Table 2. Unfortunately, we
did not find high-probability characteristics using differences in three message
words.

Table 2. Local collision candidates (triples of message words)

Triples of Local Collision Lengths
Message Left Stream Right Stream
Words Round 1 Round 2 Round 1 Round 2

(W4,W10,W12) 8 steps (4 - 12) 7 steps (17 - 24) 8 steps (7 - 15) 5 steps (23 - 28)
(W5,W9,W15) 10 steps (5 - 15) 5 steps (22 - 27) 10 steps (0 - 10) 7 steps (22 - 29)

(W4,W10,W12) 20 steps (4 - 24) 8 steps (7 - 15) 5 steps (23 - 28)

Another possibility is to use differences in two distinct message words. Only
three message pairs can construct 6-step local collision in round 2 of both streams
concurrently and suitable local collisions in round 1. Those pairs of message
words are presented in Table 3 as well as some candidates for a combined ap-
proach. In such 6-step local collisions, two state variables have to contain dif-
ferences. Due to different rotation values and the additional modular addition
in the state update process, it is not possible to use a single bit difference in
both state variables concurrently. Moreover, we need a long carry expansion
to cancel differences in the modular addition which results in not so sparse
characteristics.

Table 3. Local collision candidates (pairs of message words)

Pairs of Local Collision Lengths
Message Left Stream Right Stream
Words Round 1 Round 2 Round 1 Round 2

(W0,W8) 8 steps (0 - 8) 6 steps (25 - 31) 8 steps (3 - 11) 6 steps (20 - 26)
(W7,W15) 8 steps (7 - 15) 6 steps (16 - 22) 8 steps (2 - 10) 6 steps (19 - 25)
(W3,W14) 11 steps (3 - 14) 6 steps (23 - 29) 13 steps (1 - 14) 6 steps (18 - 24)

(W12,W13) 12 steps (12 - 24) 7 steps (8 - 15) 6 steps (21 - 27)
(W7,W15) 15 steps (7 - 22) 8 steps (2 - 10) 6 steps (19 - 25)
(W9,W10) 17 steps (9 - 26) 9 steps (4 - 13) 6 steps (23 - 29)

Differential Attacks on Reduced RIPEMD-160 31

4 Collision Attacks on RIPEMD-160

In this section, we show how to find semi-free-start near-collisions for 48 steps
and semi-free-start collisions for 36 steps of RIPEMD-160 using an automated
search tool. The results are obtained using the middle 3 rounds of RIPEMD-160
and a single bit difference in message word W3.

4.1 Automatic Search Tool

To find a differential characteristic and confirming inputs after fixing the message
words which contain differences requires an advanced set of techniques and tools.
Due to the increased complexity of RIPEMD-160 compared to RIPEMD, finding
good (high probability) differential characteristics by hand is almost impossible.
Hence, we have used an automatic tool which can be used for finding complex
nonlinear differential characteristics as well as for solving nonlinear equations
involving conditions on state words and message words. The tool is based on the
approach of Mendel et al. to find both complex nonlinear differential character-
istics and conforming message pairs for RIPEMD-128 [8] and SHA-256 [7].

The basic idea is to consider differential characteristics which impose arbi-
trary conditions on pairs of bits using generalized conditions [3]. Generalized
conditions are inspired by signed-bit differences and take all 16 possible condi-
tions on a pair of bits into account. Table 4 lists all these possible conditions
and introduces the notation for the various cases.

Table 4. Notation for possible generalized conditions on a pair of bits [3].

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

By considering the propagation of these generalized conditions in a bit sliced
way we can construct differential characteristics efficiently. The basic idea of
the search algorithm is to randomly pick a bit from a set of bit positions with
predefined conditions, impose a more restricted condition and compute how this
new condition propagates. This is repeated until an inconsistency is found or all
unrestricted bits from the set are eliminated. Note that this general approach
can be used for both, finding differential characteristics and conforming message
pairs.

32 F. Mendel et al.

For example, the search strategy for finding nonlinear characteristics works
as follows (for a more detailed description of the search algorithm or how the
conditions are propagated we refer to [7]):

1. Define a set of unrestricted bits (?) and differences (x).
2. Pick a random bit from the set.
3. Impose a zero-difference (-) on unrestricted bits (?), or randomly choose a

sign (u or n) for differences (x).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

Note that in RIPEMD-160 we have two modular additions (separated by a ro-
tation operation) within one state update. Therefore, two different carry expan-
sions may occur and by only picking random bits of Bi respectively B′

i in the
search, the conditions propagate very slowly. Hence, we also consider output bits
of the first modular addition and impose more restrictions on these conditions.
This way contradictions are detected much earlier, which improves the search
significantly.

We use the same strategy to find conforming input pairs for a given differential
characteristic. Instead of picking an unrestricted bit (?) we pick an undetermined
bit without difference (-) and assign randomly a value (0 or 1) until a solution
is found:

1. Define a set of undetermined bits without difference (-).
2. Pick a random bit from the set.
3. Randomly choose the value of the bit (0 or 1).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

Note that the efficiency of finding a conforming message pair can be increased
if the undetermined bits without difference (-) are picked in a specific order.
The order strongly depends on the specific hash function. In general, fully de-
termining word after word turns out to be a good approach. It can be used to
find solutions without the need for hand-tuned advanced message modification
techniques.

4.2 Finding a Differential Characteristic

The starting point for the search tool to find a semi-free-start near-collision on
48 steps is given in Table 6. Note that we do not fix the message difference
prior to the search to allow the tool to find a good solution. In order to get a
differential characteristics resulting in a low attack complexity, we aim for a low
Hamming weight difference in the message words, and hence, also in the state

Differential Attacks on Reduced RIPEMD-160 33

Table 5. Semi-free-start near-collision for round 2-4 (48 steps) of RIPEMD-160

H0 b23f78a3 7775d378 20806ef8 8d6b662d 4f669598

M1
2e3d54df e568a9cd d5e45e10 52f4e41a bb1bcda9 ffd073a6 ffe9b7f6 bfe436a9

1273b786 b4ce0002 254a969e 359b7260 817f9eda ef3fff6d bc5068f5 2c3fc390

M∗
1

2e3d54df e568a9cd d5e45e10 52f4f41a bb1bcda9 ffd073a6 ffe9b7f6 bfe436a9

1273b786 b4ce0002 254a969e 359b7260 817f9eda ef3fff6d bc5068f5 2c3fc390

ΔM1
00000000 00000000 00000000 00001000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 d98051ed e2a12c89 a16b3753 e8764785 1cb36d97

H∗
1 d98053ed e3a16c89 a16b3753 e8764785 1cb36d97

ΔH1 00000200 01004000 00000000 00000000 00000000

words after the first 16 steps, i.e. after step 32. Hence, we first search for a good
characteristic in this area.

We start by searching for a sparse differential characteristic only in state
words B′

24 and B′
30 in the right stream. This way the search space gets reduced

significantly on one hand, but also the resulting differential characteristics get
sparser after step 24 in the right stream. This in turn simplifies finding conform-
ing inputs later. We are able to find a differential characteristics with a single
bit differences in W3 (see Table 7) and only few conditions after step 32, which
results in an overall low attack complexity.

We continue the search for the remaining parts of the differential character-
istic. Using our search tool, we are able find many differential characteristic for
the left and right stream. The differential characteristic for round 2-4 (48 steps)
of RIPEMD-160 is given in Table 8.

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the first 16
steps (steps 16-31), we need to apply message modification techniques. Since we
have many conditions in the first steps of the left and right stream this may
not be an easy task. However, using our tool and generalized conditions, we
can do message modification for the first 16 steps quite efficiently. Of course, by
hand-tuning basic message modification the complexity might be significantly
improved, but using our tool this phase of the message search can be automated
and still be done quite efficiently. It can be summarized as follows.

– Since the first steps in the right stream are very dense, we start with guessing
the remaining free bits in the state words B′

16 to B′
22. This determines the

message words W5 and W13.
– Next we guess the state words B26 to B16 in the left stream. This determines

B−1, B−2, B−3 and most of the message words, except W4,W11 and large
parts of W2,W8.

– Finally, we guess all free bits in the remaining message words to determine
the remaining state variables and to find a confirming message pair.

34 F. Mendel et al.

The resulting semi-free-start near-collision for three rounds (steps 16-63) of
RIPEMD-160 is given in Table 5. Note that the same input also leads to a
collision for 36 steps of RIPEMD-160. Furthermore, one can combine two semi-
free-start near-collision as given in Table 5 to construct a second-order differ-
ential collision (4-sum) with practical complexity for 48 steps of RIPEMD-160,
which also improves the result of Sasaki and Wang in [15] by 8 steps.

5 Conclusions and Future Work

In this work, we have presented new results on the dual-stream hash function
RIPEMD-160 standardized by ISO/IEC. To be more precise, we show how the
collision attacks of Wang et al. on MD5 and SHA-1, and the recent attack on
RIPEMD-128 by Mendel et al. can be extended to RIPEMD-160. We have pre-
sented practical semi-free-start near-collisions for 48 out of 80 steps and semi-
free-start collisions for 36 steps by skipping the first round. Our results improve
upon previous results in a number of ways. First, we have increased the number
of steps for which (near-) collisions for the compression function of RIPEMD-160
can be found. Second, our attacks have a very low complexity and we are even
able to show practical examples.

Unfortunately, it is very hard to find a similar attack including the first round
of RIPEMD-160. Due to the XOR-function used in round 1 of the left stream
we did not succeed in finding a corresponding differential characteristic. It is
part of future work to apply the attack also to round 1-3 which will probably
require many improvements in the automated tool. Furthermore, to find (near-)
collisions also for the reduced hash function of RIPEMD-160 where the chaining
value is fixed, we need to construct sparser local collisions with more freedom to
perform message modification.

The ideas and techniques in this paper may also be used in attacks on other
hash functions, which update more state variables using a single message word,
like SHA-2 or the SHA-3 candidates Blake and Skein.

Acknowledgments. This work was supported in part by the Research Coun-
cil KU Leuven: GOA TENSE (GOA/11/007), by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy) and by the European
Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. In addition, this work was supported by the Research Fund KU
Leuven, OT/08/027 and by the Austrian Science Fund (FWF, project P21936).

References

1. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

2. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

Differential Attacks on Reduced RIPEMD-160 35

3. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

4. Dobbertin, H.: RIPEMD with Two-Round Compress Function is Not Collision-
Free. J. Cryptology 10(1), 51–70 (1997)

5. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82.
Springer, Heidelberg (1996)

6. International Organization for Standardization: ISO/IEC 10118-3:2004. Informa-
tion technology – Security techniques – Hash-functions – Part 3: Dedicated hash-
functions (2004), http://www.iso.org/

7. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

8. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 226–243. Springer, Heidelberg (2012)

9. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Re-
sistance of RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg
(2006)

10. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

11. National Institute of Standards and Technology: Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

12. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 169–186. Springer, Heidelberg (2011)

13. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-
lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.
LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

14. Sasaki, Y., Wang, L.: 2-Dimension Sums: Distinguishers Beyond Three Rounds
of RIPEMD-128 and RIPEMD-160. Cryptology ePrint Archive, Report 2012/049
(2012), http://eprint.iacr.org/

15. Sasaki, Y., Wang, L.: Distinguishers beyond Three Rounds of the RIPEMD-128/-
160 Compression Functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 275–292. Springer, Heidelberg (2012)

16. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

17. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

18. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://www.iso.org/
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/

36 F. Mendel et al.

A Differential Characteristics

Table 6. Starting characteristic for the attack on round 2-4 of RIPEMD-160

i ∇Bi ∇B′
i j ∇Wj

-5 --------------------------------

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

16 -------------------------------- -------------------------------- 0 --------------------------------

17 -------------------------------- -------------------------------- 1 --------------------------------

18 -------------------------------- ???????????????????????????????? 2 --------------------------------

19 -------------------------------- ???????????????????????????????? 3 ????????????????????????????????

20 -------------------------------- ???????????????????????????????? 4 --------------------------------

21 -------------------------------- ???????????????????????????????? 5 --------------------------------

22 -------------------------------- ???????????????????????????????? 6 --------------------------------

23 ???????????????????????????????? ???????????????????????????????? 7 --------------------------------

24 ???????????????????????????????? ???????????????????????????????? 8 --------------------------------

25 ???????????????????????????????? ???????????????????????????????? 9 --------------------------------

26 ???????????????????????????????? ???????????????????????????????? 10 --------------------------------

27 ???????????????????????????????? ???????????????????????????????? 11 --------------------------------

28 -------------------------------- ???????????????????????????????? 12 --------------------------------

29 -------------------------------- ???????????????????????????????? 13 --------------------------------

30 -------------------------------- ???????????????????????????????? 14 --------------------------------

31 -------------------------------- -------------------------------- 15 --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------------- --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- --------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- --------------------------------

45 -------------------------------- --------------------------------

46 -------------------------------- --------------------------------

47 -------------------------------- --------------------------------

48 -------------------------------- --------------------------------

49 -------------------------------- --------------------------------

50 -------------------------------- --------------------------------

51 -------------------------------- --------------------------------

52 -------------------------------- ????????????????????????????????

53 -------------------------------- ????????????????????????????????

54 -------------------------------- ????????????????????????????????

55 -------------------------------- ????????????????????????????????

56 -------------------------------- ????????????????????????????????

57 ???????????????????????????????? ????????????????????????????????

58 ???????????????????????????????? ????????????????????????????????

59 ???????????????????????????????? ????????????????????????????????

60 ???????????????????????????????? ????????????????????????????????

61 ???????????????????????????????? ????????????????????????????????

62 ???????????????????????????????? ????????????????????????????????

63 ???????????????????????????????? ????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Differential Attacks on Reduced RIPEMD-160 37

Table 7. Characteristic for the attack on round 2-4 of RIPEMD-160 once the differ-
ential characteristic after step 24 in the right stream has been fixed

i ∇Bi ∇B′
i j ∇Wj

-5 --------------------------------

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

16 -------------------------------- -------------------------------- 0 --------------------------------

17 -------------------------------- -------------------------------- 1 --------------------------------

18 -------------------------------- ???????????????????????????????? 2 --------------------------------

19 -------------------------------- ???????????????????????????????? 3 -------------------n------------

20 -------------------------------- ???????????????????????????????? 4 --------------------------------

21 -------------------------------- ???????????????????????????????? 5 --------------------------------

22 -------------------------------- ???????????????????????????????? 6 --------------------------------

23 ???????????????????????????????? ???????????????????????????????? 7 --------------------------------

24 ???????????????????????????????? -1--nu-u----n------n------------ 8 --------------------------------

25 ???????????????????????????????? -1-un-0----------0----0------u-- 9 --------------------------------

26 ?????????x?????????????????????? ------0u---------1----1n-0--00-- 10 --------------------------------

27 ----------???????????????????x-- -------n----u---------0--1--n0-- 11 --------------------------------

28 -------------------------------- -------0----------un--1------u-- 12 --------------------------------

29 -------------------------------- -------00---n-----1----------1-- 13 --------------------------------

30 -------------------------------- --1-----1---0----------------u-- 14 --------------------------------

31 -------------------------------- --0--------------------------0-- 15 --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------------- --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- --------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- --------------------------------

45 -------------------------------- --------------------------------

46 -------------------------------- --------------------------------

47 -------------------------------- --------------------------------

48 -------------------------------- --------------------------------

49 -------------------------------- --------------------------------

50 -------------------------------- --------------------------------

51 -------------------------------- --------------------------------

52 -------------------------------- -----x--------------------------

53 -------------------------------- --------------------------------

54 -------------------------------- --------------------------------

55 -------------------------------- --------------------------------

56 -------------------------------- ---------------------------x----

57 -----x-------------------------- --------------------------------

58 -------------------------------- --------------------------------

59 -------------------------------- --------------------------------

60 -------------------------------- -----------------x--------------

61 ---------------------------x---- --------------------------------

62 ----------------------x--------- --------------------------------

63 -------------------------------- --------------------------------

----------------------x---------

-------x---------x--------------

38 F. Mendel et al.

Table 8. Differential Characteristic for round 2-4 of RIPEMD-160 resulting in a semi-
free-start near-collision

i ∇Bi ∇B′
i j ∇Wj

-5 --------------------------------

-4 --------------------------------

-3 --------------------------------

-2 --------1000000-----------------

-1 --------------------------------

16 -------------------------------- 00000000000000000000000000000000 0 --------------------------------

17 -------------------------------- 00001010111111-11111000100011111 1 --------------------------------

18 -------------------------------- uuuu1uuuuuuuuuuuuuuuuuuuuuuuuuuu 2 --------------------------------

19 -------------------------------- 01-01101001110101001100011-100-- 3 -------------------n------------

20 ---000-------------------------- nu-nu01000uuuu0u0u01101011-unn-- 4 --------------------------------

21 -------------1------------------ 11-000u0uu10--u1-111-11--10-00nn 5 -----11111--000-------------01--

22 ---0---------------------------- uu-0nu01------11-11n110--n1-10uu 6 --------------------------------

23 ---nu--------------------------- ----1-01---u-0-1-0n01111-1uuuu10 7 --------------------------------

24 ---00-------nuuuuuuuuuuuu000u--- -1--nu0u0---n011-00n0000--01---- 8 -------------------1------------

25 000-----10--111111111111111-0000 -10un-0-00-------011000---101u-0 9 --------------------------------

26 --101101nu111111--1111111------- --1---0u0111-----100--1n-00100-- 10 ----0101--------------------11--

27 --------00----unnnnnnnnnnnnnnn-- -------n11--u--1---1--0--10-n0-- 11 --------------------------------

28 --------------100010000000000011 -------0----------un--1------u-- 12 --------------------------------

29 ----0000000001111111------------ -------00---n----11----------1-- 13 ----11110-----------------------

30 -------------------------------0 --1-----1--------------------u-- 14 -------------------------1---10-

31 -------------------------------- --0--------------------------0-- 15 -------------------------00-----

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------------- --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- --------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- --------------------------------

45 -------------------------------- --------------------------------

46 -------------------------------- --------------------------------

47 -------------------------------- --------------------------------

48 -------------------------------- --------------------------------

49 -------------------------------- --------------------------------

50 -------------------------------- --------------------------------

51 -------------------------------- --------------------------------

52 -------------------------------- -----x--------------------------

53 -------------------------------- --------------------------------

54 -------------------------------- --------------------------------

55 -------------------------------- --------------------------------

56 -------------------------------- ---------------------------x----

57 -----x-------------------------- --------------------------------

58 -------------------------------- --------------------------------

59 -------------------------------- --------------------------------

60 -------------------------------- -----------------x--------------

61 ---------------------------x---- --------------------------------

62 ----------------------x--------- --------------------------------

63 -------------------------------- --------------------------------

----------------------x---------

-------x---------x--------------

Revisiting Difficulty Notions
for Client Puzzles and DoS Resilience

Bogdan Groza1 and Bogdan Warinschi2

1 Faculty of Automatics and Computers, Politehnica University of Timisoara
bogdan.groza@aut.upt.ro

2 Computer Science Department, University of Bristol
bogdan@cs.bris.ac.uk

Abstract. Cryptographic puzzles are moderately difficult problems that can be
solved by investing non-trivial amounts of computation and/or storage. Devising
models for cryptographic puzzles has only recently started to receive attention
from the cryptographic community as a first step towards rigorous models and
proofs of security of applications that employ them (e.g. Denial-of-service (DoS)
resistance). Unfortunately, the subtle interaction between the complex scenarios
for which cryptographic puzzles are intended and typical difficulties associated
with defying concrete security easily leads to flaws in definitions and proofs.
Indeed, as a first contribution we exhibit shortcomings of the state-of-the-art def-
inition of security of cryptographic puzzles and point out some flaws in existing
security proofs. The main contribution of this paper are new security definitions
for puzzle difficulty. We distinguish and formalize two distinct flavors of puzzle
security (which we call optimal and ideal) and in addition properly define the re-
lation between solving one puzzle vs. solving multiple ones. We demonstrate the
applicability of our notions by analyzing the security of two popular puzzle con-
structions. In addition, we briefly investigate existing definitions for the related
notion of DoS security. We demonstrate that the only rigorous security notions
proposed to date is not sufficiently demanding (as it allows to prove secure pro-
tocols that are clearly not DoS resilient) and suggest an alternative definition.
Our results are not only of theoretical interest. We show that our better charac-
terization of hardness for puzzles and DoS resilience allows establishing formal
bounds on the effectiveness of client puzzles which confirm previous empirical
observations.

1 Introduction

Background. Cryptographic puzzles are moderately difficult problems that can be solved
by investing non-trivial amounts of computation and/or memory. A typical use for puz-
zles is to balance participants costs during the execution of some protocols. For ex-
amples, many papers addressed their use against resource depletion in SSL/TLS [7],
TCP/IP [14], general authentication protocols [3,10], spam combat [9], [8], [11]. The
use of puzzles reaches beyond balancing resources: they can be used as proof-of-work
in other applications (like timestamping) or through a clever application in encryption
into the future [17]. Puzzles are accounted under various names: cryptographic puzzles,

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 39–54, 2012.
© Springer-Verlag Berlin Heidelberg 2012

40 B. Groza and B. Warinschi

client puzzles, computational puzzles or proofs of work, we prefer the first one since the
puzzles that we study are intrinsically based on cryptographic functions.

Most of the puzzle-related literature concentrates on providing constructions, often
with additional, innovative properties. For example puzzles that are non-parallelizable
prevent an adversary from using distributed computations to solve them. Examples of
constructions include the well known time-lock puzzle [17], the constructions proposed
by Tritilanunt et al. in [21] and later by Jeckmans [12], Ghassan and Čapkun [15], Tang
and Jeckmans [20], Jerschow and Mauve [13]. All of these constructions can ensure that
a puzzle-solver spends computation cycles before a server engages in any expensive
computation. To alleviate computational disparities between solvers, Abadi et al. [1]
build puzzles that rely on memory usage rather than on CPU speed, this leading to a
more uniform behaviour between devices.

Given the wide-range of applications for puzzles and the number of proposed con-
structions it is probably surprising that devising formal security notions for puzzles has
received rather little attention so far, with only two notable exceptions. Chen et al. [6]
initiate the formal study of security properties for puzzles. They identify two such prop-
erties. Puzzle difficulty requires that no adversary can solve a single puzzle faster than
some prescribed bound, whereas puzzle unforgeability requires that no adversary can
produce a valid-looking puzzle. While this latter property is not required by all sce-
nario usages for puzzles, the former one is critical. In a recent paper, Stebila et al. [18]
notice that single-puzzle difficulty may not suffice to guarantee security when puzzles
are used in real applications, since here it may be needed that an adversary does not
solve multiple puzzles faster than some desired bound, and the relation between single-
puzzle difficulty and multi-puzzle difficulty is unclear at best, and completely inexistent
at worst.

To fix this, Stebila et al. [18] propose a notion of puzzle difficulty that accounts for
multiple puzzles being solved at once and prove that two existing constructions Hash-
Inversion (initially used by Juels and Brainard [14]) and HashTrail (initially used in
the hashcash system [4]) meet this notion. The main motivation for the work in this
paper is that the proposed security definition is problematic: the notion defined is in-
complete since it does not account for the tightness of the bounds and, strictly speaking,
it cannot be met by any existing scheme. This does not contradict the security proofs
mentioned above as the claims rely on faulty analysis: the difficulty bound provided for
the HashInversion puzzle is wrong while for HashTrail is largely overestimated.

Our results. The main contribution of our paper are new security notions for puzzle
difficulty. We distinguish between two different flavors of puzzle difficulty. The first
property demands that no adversary can solve the puzzle faster than by using the “pre-
scribed” algorithm (i.e. the puzzle-solving algorithm that is associated to the puzzle).
We call such puzzles optimal. We call a puzzle ideal if on the average the puzzle is
as hard to solve as in the worst case. These notions have already appeared in the lit-
erature but have never been formalized and previous work does not seem to make a
clear distinction between them. For example, [2] introduces informally the notion of
computation guarantee which requires that a malicious party cannot solve the puzzle
significantly faster than honest clients. This is what we call optimality. Other papers
[20] require that solving the puzzle be done via deterministic computation – this seems

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 41

to be what we call an ideal puzzle. The formulations for both of these notions are in the
multi-puzzle setting which, as correctly observed in [18], is the case relevant for most
practical applications. While it is not true in general that for a puzzle construction solv-
ing n puzzles takes n times the resources needed for solving one puzzle, this is clearly
a desirable property. We capture this intuition through a property that we call difficulty
preserving. Having fixed the definitions we move to the analysis of two popular puzzle
systems HashTrail and HashInversion. We prove that, in the random oracle model, these
puzzles are optimal and difficulty preserving for concrete difficulty bounds that we de-
rive. Finally, we look at existing work on using puzzles for provable DoS resistance.
Unfortunately, we discovered that the formal definition for DoS resilience proposed
by [18] is not strong enough as it allows for clear attacks against protocols that are
provably secure according to the definition. We then design and justify a new security
definition that does not suffer from the problems that we have identified.

Before we move on, we note that getting the security definitions for puzzles and
DoS security right is quite important as more and more works in this direction have
appeared (a book chapter in [5] and also [16] and [19]) and all seem to have inherited
the weaknesses in the definition of [18].

2 Shortcomings of Existing Definitions and Proofs

The first attempt to formalize puzzle properties, and in particular puzzle difficulty, was
by Chen et al. in [6]. Recently, Stebila et al. [18], motivated by the observation that
the security notion of [6] does not guarantee that solving n puzzles is n times harder
than solving one, introduced a new definition of puzzle difficulty. In brief, a puzzle is
deemed εk,d,n(·)-strongly difficult if the success probability of an adversary is less or
equal to εk,d,n(·) and εk,d,n(t) ≤ εk,d,1(t/n) (this later condition enforcing stronger
difficulty w.r.t. n puzzles). Here k is a security parameter, d is the difficulty level and n
denotes the number of solved puzzles.

Shortcomings of existing definitions. There are several weak points in the difficulty def-
inition outlined above. Perhaps the most problematic one is that the property of a puzzle
of being ”strongly” difficult is in fact a property of the function ε that upperbounds the
success of the adversary. However, ε is an upper bound on the hardness of the puzzle,
but not necessarily the tightest possible (for example if one sets εk,d,n = 1 any puzzle
is εk,d,n-strongly difficult). A natural question is then what if one can find a bound that
deems the puzzle strongly difficult, while for some other tighter bounds this property
does not hold anymore. Should we consider such a puzzle strongly difficult or not? Note
that in contrast, Chen et al. in [6] clearly state that any puzzle that is ε difficult is ε + μ
difficult and the most accurate difficulty bound is the infimum of ε. The point is not that
one would find such a bound on purpose, but rather as security reductions are not trivial
one could find a good bound with respect to which the puzzle is strongly difficult, just
to turn out that the puzzle is not strongly difficult for a tighter bound.

To show that the tightness of the bound matters, take for example the case of the
time-lock puzzles. We skip the formalism as we want to keep this example as intuitive as
possible. Set m to be an RSA-like modulus (sufficiently large to rule out any insecurity)

42 B. Groza and B. Warinschi

and assume that solving one puzzle means given x ∈R [0..2k−1] to compute x2dmodm.
We assume the usual hypothesis that this computation cannot be done faster than d
squarings unless one knows the factorization of the modulus. Suppose the adversary
can get 1 or 2 fresh values x and has to compute x2dmodm for each of them with
no prior knowledge of the modulus. We can say that the success probability of the
adversary is upper bounded by εk,d,n(t) =

t
n·d , ∀n ∈ {1, 2}. To check for correctness,

indeed, if n = 1 the probability to find the output for less than d steps (one step means
one squaring) is almost 0 assuming a sufficiently large modulus and 1 at d steps. While
for n = 2, for less than d steps the probability is 0, at d steps the adversary has solved
the first puzzle, while the probability that the second is also solved is 2−k due to the
possibility of colliding x1, x2, and 2−k is lower than 1/2 claimed by the upper bound.
Thus the bound holds and one can also verify that εk,d,1(t/2) = εk,d,2(t) so the puzzle
is εk,d,n(t)-strongly difficult. We set some artificially small parameters just to easily
exhibit some calculation. Let k = 16 and d = 216 (the bound holds for these values
as well). One would expect that solving the two puzzles requires 2 × 216 = 131072
steps. However, due to the possibility of colliding inputs the average number of steps
is actually 216 − 1 = 131071, that is, one step is missing. The numbers given here
are artificially small and the variation is not very relevant, but it has the sole purpose
to show that the criterion has some deficiencies. The problem here is that the bound is
not tight enough. More precise bounds that should have been used are: εk,d,1 = 0 if
t ∈ [0, d), εk,d,1 = 1 if t = d and εk,d,2 = 0 if t ∈ [0, d), εk,d,2 = 2−k if t ∈ [d, 2d) and
εk,d,2 = 1 if t = d. For these bounds indeed εk,d,1(t/2) ≤ εk,d,2(t) which shows that
in fact the puzzle is not strongly difficult. These bounds are also informal and we used
them just as an intuition, indeed for any t < d the adversary can still guess the solution
with negligible (but non-zero) probability.

We can prove, and we specify this in a remark that follows, that if the bound is tight
then the condition from [18] is sufficient to make a puzzle difficulty preserving. But,
one may further ask if this condition is really necessary. The answer is negative. In
fact, quite surprisingly, the HashTrail puzzle does not satisfy it and neither does the
HashInversion puzzle (while both of them can be proved to be difficulty preserving).
We call HashInversion the generic puzzle which consists in the partial inversion of
a hash function, that is given x′′, H(x′||x′′) find x′. Also, we refer HashTrail as the
generic puzzle which consists in finding an input to H(r||·) such that the result has a
fixed number of trailing zeros. Both these constructions are frequently used in many
proposals. The first one is used by Jules and Brainard in [14] and the second by Back
in the Hashcash system [4]. We prefer the generic names HashInversion and HashTrail
as these suggest better what means to solve the puzzle as well as we are not interested
in the specific details for the construction of the puzzles used in [4], [14].

Moreover, and this is another weakness for the definition of [18], the criterion
εk,d,n(t) ≤ εk,d,1(t/n), can never hold in general. The reason is that in the game that de-
fines security of multiple puzzle it is possible with some (negligible) probability that the
challenge puzzles contain two identical puzzles. In this case solving n puzzles should
always require less effort than n times the effort required to solve a single puzzle, at
least up to negligible factors. The definition should therefore allow for this kind of slack,
i.e. it should require that |εk,d,n(t)−εk,d,1(t/n)| ≤ k−ω(1). The time-lock puzzle seems

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 43

to satisfy such a criterion, but note that this is certainly not the case for the hash-based
puzzles above which are the most commonly employed solution in practice.

Flaws in existing proofs. In light of the above comments, it is natural to ask how tight
are the bounds obtained in [18]. By inspecting the security proofs it turns out that beside
the conceptual shortcoming in judging the hardness of n puzzle instances, the bound
used for the HashTrail puzzle is extremely loose while the bound for the HashInversion
puzzle is wrong (these puzzles are difficulty preserving as we show later in the paper,
but unfortunately the proofs provided in [18] are wrong). Figure 1 depicts the loose
bound in (i) and the wrong bound in (ii) for the case of n = 3 puzzles of difficulty
d = 8 bits. Note that in (ii) the adversary advantage is well underestimated.

We give a short numerical example to illustrate this. Informally, the HashInver-
sion puzzle requires that given H(x′||x′′), x′′ find random x′ ∈R [0..2d). The dif-
ficulty bound claimed for this puzzle is εd,k,n = (q+n

n·2d)
n and the puzzle is deemed

strongly difficult with respect to this bound. Just to show that this bound is wrong
consider the trivial case of n = 2, d = 3, i.e., the case of solving 2 puzzles each
having 3 bits. Consider an adversary running at most 11 steps. According to the afore-
mentioned bound, one would expect that the advantage of the adversary is less than
(11+2
2·23)2 = (1316)

2 ≈ 0.66. Consider the naive (yet the best) algorithm that successively
walks trough the set {0, 1, 2, ..., 7} in order to solve each puzzle. The success proba-
bility of this algorithm is actually bigger than 0.66 as one can easily show. The naive
algorithm can solve two puzzles in 11 steps if, given x′

1 and x′
2 the two solutions, it

holds that x′
1 + x′

2 ≤ 9. That is, there exists 1 solutions for 2 steps (the pair {(0, 0)}),
2 solutions for 3 steps (the pairs {(0, 1), (1, 0)}) and so on, k − 1 solutions for k steps
up to k = 9 steps. From there on, one can note that for 10 steps given the set of pairs
{(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 0)} one must discard the first
and the last pair (since 8 is not a valid value for the 3 bit guess) while for 11 steps one
must discard the first 2 and the last 2 pairs. Summing up, the naive algorithm succeeded
in 1+2+3+ ...+8+7+6 = 36+13 = 49 out of the obvious 23× 23 variants which
gives a success probability of 49

64 ≈ 0.76. Thus the naive algorithm does better than the
success probability of the adversary considered in [18] and the discrepancy is due to the
flawed security proof. The difference is not big in this example, but obviously it gets
significant when one increases the values of n and d.

100 200 300
t

0.5

1.0

1.5

2.0
Adv

(i)
200 400 600

t

0.2

0.4

0.6

0.8

1.0
Adv

(ii)

Fig. 1. Adversary advantage at n = 3, d = 8 for HashTrail (i) and HashInversion (ii) puzzles
according to Stebila et al. (dotted line) and in this paper (continuous line)

44 B. Groza and B. Warinschi

3 Puzzle Difficulty

To formalize puzzle difficulty and related notions we proceed as follows. First we de-
fine the usual game of solving multiple puzzles and bound the adversary advantage by
εk,d,n(t). Then, we define puzzle optimality which means that, up to some negligible
factor, there is no adversary that can solve one or more puzzles with better advantage
than the solving algorithm that comes with the puzzle. This property was generally ig-
nored, we consider it to be the most relevant, since if an adversary can solve puzzles
in less steps than the puzzle solving algorithm, then such a construction may have no
use at all. Further, if the puzzle is optimal, assuming the usual way of solving more
puzzles by running the solving algorithm on each of the puzzles, the puzzle is difficulty
preserving and solving n puzzles is n times as hard as solving one. For completeness,
we also define ideal puzzles as puzzles that can not be solved faster than the average
number of steps, this again up to some negligible factor.

3.1 Syntax for Cryptographic Puzzles

Our definition of a puzzle system follows in spirit the definition from [6], with several
differences. One is that we do not consider arbitrary strings as inputs together with
keys to the puzzle generation, but instead we group these in what we call the attribute
space. This ensures a more general setting, since strings and long term secrets are part of
puzzles that assure additional properties, such as unforgeability, etc. Thus in the simpler
case where one does not want to ensure any additional property, the attributes can be
set to null. We use the symbol⊥ to indicate the null attribute. The attributes can also be
used to simulate secret keys, if these are used in the construction of the protocol.

Definition 1 (Cryptographic puzzle). Let dSpace denote the space of difficulty levels,
pSpace the puzzle space, sSpace the solution space and aSpace the attribute space. A
cryptographic puzzle, or alternatively client puzzle, CPuz is a quadruple of algorithms,
(Setup,Gen,Find,Ver), with the following descriptions:

• Setup(1k) is the setup algorithm that takes as input a security parameter 1k and
outputs dSpace, pSpace, sSpace and aSpace,

• Gen(d , atr) is the puzzle generation algorithm, it takes as input the difficulty of the
puzzle to be created d ∈ dSpace and a list of attributes atr ∈ aSpace then outputs a
puzzle instance puz ∈ pSpace,

• Find(puz, t) is the solving algorithm that takes as input a puzzle puz ∈ pSpace and
the maximum number of steps t that is allowed to perform, then outputs a solution
sol ∈ sSpace ∪ {⊥} (where ⊥ is for the case when a solution could not be found in t
steps),

• Ver(puz, sol′) is the verification algorithm that takes as input a potential solution
sol′ ∈ sSpace and a puzzle puz ∈ pSpace and outputs 1 if and only if sol′ is a correct
solution for puzzle puz and 0 otherwise.

For soundness, we require that puz is the input necessary and sufficient to run the Find
algorithm and that for any sol that is output of Find the verification holds. By this,

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 45

we force that one cannot produce a puzzle construction that is impossible to solve either
because the information is not sufficient or the puzzle has no solution.

Remark 1. In [18] Ver also takes the secret master key s and is also responsible for veri-
fying if the solution is authentic, also embedding the functionality of VerAuth from [6].
Here we choose to keep the puzzle description close to that from [6], thus Ver is re-
sponsible just for verifying the correctness of the solution, and not the authenticity of
the puzzle.

Remark 2. The puzzle is generic and can be further augmented with other algorithms
to ensure additional properties. For example one can add the Auth algorithm to verify
authenticity for the case of unforgeable puzzles as in [6], etc.

Remark 3. On purpose, we did not specify any detail on the runtime of Gen, Find and
Ver algorithms. This is because we wanted to keep the definition as generic as possible
as it addresses puzzle in general. For practical purposes, one can request that all four
algorithms work in probabilistic polynomial time.

3.2 Optimal, Ideal, and Difficulty Preserving Puzzles

We formalize puzzle difficulty using a game in which the adversary A is allowed to
get as many puzzles and their solutions from the challenger C and later needs to find
solutions for one or more puzzles generated by the challenger.

PUZZLE SOLVING GAME. We define the puzzle game ExecCPuz,kA,d,n (t) as the following
four stage game between challenger C and adversary A:

1. challenger C runs Setup on input 1k to get dSpace, pSpace, sSpace, aSpace and
sets d ∈ dSpace as the difficulty level of the game,

2. adversary A is allowed to make qGen queries to GenSolvePuz which returns each
time a puzzle and its corresponding solution, i.e., {puz, sol}, and n queries to a Test
oracle which on each invocation generates and returns a target puzzle puz♦,

3. after t steps adversary A outputs the solutions {sol♦1 , sol♦2 , ..., sol♦n } for puzzles
{puz♦1 , puz♦2 , ..., puz♦n } that were returned by Test,

4. challenger C queries Ver on all puzzles and solutions output from adversary A and
returns 1 if all solutions are correct else returns 0.

The winning event, denoted by WinCPuz,kA,d,n (t), is the event in which the adversary outputs
a correct solution for the puzzles and the game returns 1, i.e.,

WinCPuz,kA,d,n (qGen, t) = Pr
[
ExecCPuz,kA,d,n (qGen, t) = 1

]
.Remark 4. We did not stress whether the adversary A runs GenSolvePuz on its own
or these are simulated by the challenger C as we did not make distinction between in-
teractive and non-interactive puzzles (puzzles that are generated by the solver or the
challenger). We defer such specific details for the security proof of each particular puz-
zle that we analyze.

Remark 5. In addition to previous hardness definitions we allow collision in the gener-
ation algorithm, that is, we did not exclude that the same puzzle can be outputted more

46 B. Groza and B. Warinschi

than once. Generally, collisions appear as a negligible factor in the hardness bound, but
this factor is relevant as the examples from the previous section showed.

Remark 6. In ExecCPuz,kA,d,n (t) we assumed puzzles of the same difficulty level. But it is
easy to extend this definition to puzzles of various difficulty levels as well. Such an
extension to puzzles of multiple difficulty levels does not appear to be possible with the
definition from related work [18] since multiple puzzle difficulty is linked inextricably
to single puzzle difficulty, but for precisely the same difficulty parameter d.

Definition 2 (Difficulty bound). For εk,d : N→ [0, 1] a family of functions indexed by
parameters k, d and n, we say that εk,d (·) is a difficulty bound for puzzle system CPuz

if: WinCPuz,kA,d,n (qGen, t) ≤ εk,d,n(qGen, t).

Before formally defining the different properties for puzzles, we need to introduce the
average and the maximum solving time that one should expect from an honest client,
that is a client who simply executes the Find algorithm that defines the puzzle. Below,
we write ExecCPuz,kFind,d,n(t) for the random variable obtained by executing the experiment
defined above with a “benign” adversary who for each puzzle that it obtains as challenge
it solves it using the Find algorithm. The following definitions captures the average
probability of solving n puzzles of difficulty d in time t.

Definition 3 (Find bound). For a given CPuz we denote by ζk,d,n(t) the probability

that Find correctly finishes in at most t steps, i.e., ζk,d,n(t) = Pr
[
ExecCPuz,kFind,d,n(t) = 1

]
.

For a puzzle system, the next definition identifies the maximum number of steps needed
by the Find algorithm to solve n puzzles with probability 1.

Definition 4 (Maximum solving time). For a given CPuz the maximum solving time
of CPuz is tmax if tmax is the minimum number of steps at which ζk,d,n(t) is 1, i.e.,
ζk,d,n(tmax) = 1, ζk,d,n(t

′
max) < 1, ∀t′max < tmax.

Definition 5 (Average solving time). For a given CPuz we define the average solving
time as the average number of steps required by Find, i.e., tavr(k, d, n) =

∑
i=1,tmax

i ·
[ζk,d,n(i)− ζk,d,n(i− 1)].

Remark 7. In Definition 1 we assumed that Find can solve at most one puzzle at a time,
thus whenever Find is used to solve more than one puzzle we consider the usual way in
which one repeatedly uses Find for each of the puzzles. In the case when Find behaves
differently on more than one puzzle, one can extend the input and output of Find to a
vector of puzzle instances and solutions.

Remark 8. There are puzzles for which tmax is infinite while tavr is finite. Consider for
example the trivial HashTrail puzzle, which we analyze in the next section, that consists
in finding an input for a hash function such that the output ends with d consecutive zeros.
Obviously, if one considers the hash function simulated by a random oracle, we have
tmax =∞ and tavr = 2d.

Definition 6 (Optimal puzzle). We say that CPuz is optimal if at any number of steps
and any number of puzzles the success probability of the adversary is upper bounded by
the success probability of the solving algorithm of the puzzle plus some negligible factor
in the difficulty level and security parameter, i.e., ∀t, n, εk,d,n(t) ≤ ζk,d,n(t)+νn(k, d).

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 47

Definition 7 (Difficulty preserving puzzle). We say that an optimal CPuz is diffi-
culty preserving if the average solving time for n puzzles of difficulty d equals n times
the average solving time of a puzzle of difficulty 1 up to some negligible factor, i.e.,
∀n, d, |tavr(k, d, n)− n · tavr(k, d, 1)| ≤ νn(k, d).

Remark 9. The optimality condition εk,d,n(t) ≤ ζk,d,n(t) + νn(k, d) ensures that the
bound from the puzzle solving game, i.e., εk,d,n(t), is νn(k, d) tight.

Remark 10. The condition εk,d,n(t) ≤ εk,d,1(t/n) is enough to assure that an optimal
puzzle, i.e., a puzzle for which ∀n, d, |εk,d,n(t)−ζk,d,n(t)| ≤ νn(k, d), is difficulty pre-
serving. This is trivial to prove, but it seems that the condition εk,d,n(t) ≤ εk,d,1(t/n)
is not so trivial since none of the puzzles that we analyze next satisfies it (one could
easily plot the difficulty bounds to verify this).

Remark 11. To assure that a puzzle is difficulty preserving for puzzles of various diffi-
culty levels, one must enforce that tavr(k, d, n) is the sum of the difficulty levels, i.e.,
tavr(k, d, n) = tavr(k, d1, 1) + tavr(k, d2, 1) + ... + tavr(k, dn, 1). Here d denotes an
array of the difficulty levels.

Definition 8 (Ideal puzzle). We say that an optimal puzzle CPuz is ideal if the average
solving time equals the maximum solving time up to some negligible value in the the
security parameter k and difficulty level d, i.e., ∀n, d, |tavr(k, d, n) − tmax(k, d, n)| ≤
νn(k, d). Alternatively, having an optimal puzzle, i.e., εk,d,n(t) ≤ ζk,d,n(t)+νn(k, d),
∀n, d, the puzzle is ideal if εk,d,n(t) = νn(k, d), ∀n, d, ∀t < tmax.

4 New Difficulty Bounds for HashTrail and HashInversion

We now examine the HashInversion and HashTrail puzzles and establish tight security
bounds for each of them.

HASHTRAIL PUZZLE. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash function.
The HashTrail puzzle is a quadruple of algorithms:

• Setup(1k) is the setup algorithm that on input 1k outputs dSpace = [1, k], pSpace =
{0, 1}∗ × {0, 1}k, sSpace = {0, 1}∗,

• Gen(d) is the generation algorithm which on input d randomly chooses r ∈ {0, 1}k
and outputs puzzle instance puz = {d , r},

• Find(puz, t) is the solving algorithm that on input puz and the number of steps t
iteratively samples sol ∈ [0, t) until H(r||sol)1..d = 0,

• Ver(puz, sol) is the algorithm that takes puz, sol as input and returns 1 ifH(r||sol)1..d =
0 and 0 otherwise.

Theorem 1. In the random oracle model, the HashTrail puzzle is optimal and diffi-
culty preserving with tavr(k, d, 1) = 2d, tmax(k, d, 1) = ∞ and solving and difficulty

bounds: ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1
2nd ·

(
1− 1

2d

)i−n
, εHT

k,d,n(t) ≤ ζHT
k,d,n(t) +

1
2d−1 +

q2Gen
2k+1 .

48 B. Groza and B. Warinschi

Remark 12. For HashTrail, in [18] the advantage is upper bounded by q+n
n·2d using Markov

inequality - obviously, q
2d

is a bound for the probability to solve 1 puzzle in q queries
and dividing it with n gives a bound of the probability for n instances. While such a
bound is easy to prove, Figure 1 shows how loose this is compared to the advantage
from the previous theorem for a small numerical example. In section 2 we showed that
loose bounds cannot say much about the difficulty of solving multiple puzzles.

HASHINVERSION PUZZLE. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash
function. The HashInv puzzle is the quadruple of algorithms:

• Setup(1k) is the setup algorithm that on input 1k outputs dSpace = [1, k], pSpace =
{0, 1}∗ × {0, 1}k, sSpace = {0, 1}∗,

• Gen(d) is the puzzle generation algorithm which on input d randomly chooses x ∈
{0, 1}k, computes H(x), sets x′ as the first d bits of x and x′′ as the remaining bits
and outputs puzzle instance puz = {d , x′′,H(x)},

• Find(puz) is the solving algorithm that on input puz and the number of steps t itera-
tively samples at most t values sol ∈ {0, 1}d until H(sol||x′′) = H(x),

• Ver(puz, sol) be the algorithm that takes puz, sol as input and returns 1 ifH(sol||x′′) =
H(x) and 0 otherwise.

Theorem 2. Let [zi]P (z) denote the coefficient of zi in the expansion of polynomial
P (z). In the random oracle model, the HashInversion puzzle is optimal and difficulty
preserving with tavr(k, d, 1) = 2d−1, tmax(k, d, 1) = 2d and solving and difficulty

bounds: ζHI
k,d,n(t) =

∑
i=n,t[z

i]
(
z · 1−z2d

1−z

)n
· 1
2nd , εHI

k,d,n(t) ≤ ζHI
k,d,n(t) +

n
2d +

q2Gen
2k−d+1 .

The proof of Theorem 1 can be found in Appendix A.1, due to space limitations we
defer a proof of Theorem 2 for the extended version of this paper.

Remark 13. In [18] the advantage of HashInversion is upper bounded by
(
q+n
n·2d
)n

. As
Figure 1 shows for a small numerical example, the advantage of the solving algorithm
from the previous theorem is much bigger, thus the bound in [18] is wrong.

5 DoS Resilience

Defining resilience against resource exhaustion DoS is a non-trivial task that requires
subtle analysis of the costs incurred by the steps done on the server side. In practice,
choosing the right amount of work that needs to be done in order to gain access to a
particular resource on the server side is a matter of protocol engineering, rather than
cryptography. Notably, as the server resources are always limited, when the number of
honest clients exceeds the total amount of resources, resource exhaustion is unavoid-
able. Thus from the protocol design, the best one could do is to hinder an adversary
from claiming resources in the name of potentially many honest participants - this is
were proof-of-work comes into action.

AN ATTACK ON THE APPROACH OF STEBILA ET AL. The security definition for DoS
resilience of Stebila et al. [18] builds directly on the difficulty of puzzle systems of [18]
and, essentially, requires that an adversary cannot claim more resources than the number

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 49

of puzzles he is able to solve in the running time of the adversary. The problem with
this definition is that it disregards an important aspect of puzzle defense against DoS,
namely puzzle management. Puzzles used for DoS resilience come with an expiration
time to avoid what we call a next day attack where an adversary first spends large
amounts of resources to solve a large amount of puzzles and later it uses these puzzles
with solutions to claim the corresponding resources in a much shorter interval. The
definition of [18] allows for next day attacks as the execution that is considered looks
directly at how many puzzles an adversary can solve in time t (and this amount is
bounded by puzzle difficulty), but does not account for the possibility that the puzzles
sent to claim resources could have been solved earlier.

OUR APPROACH. To prevent such attacks we take two measures: first we introduce a
fixed lifetime for the puzzles, then we define resilience as a condition that must hold in
any time interval [t2, t1] and not just for an adversary having runtime t. By Πtpuz (CPuz)
we denote a protocolΠ that is protected by puzzles generated by CPuz and with lifetime
tpuz , i.e., the protocol deems as invalid any solution received later than tpuz after the
generation of the puzzle. We stress that we do not consider the detailed cost of running
the server program, etc., and we consider as a premise that puzzles of difficulty d from
CPuz are enough to protect the server.

PROTOCOL ATTACK GAME. We define the attack game Exec
Πtpuz (CPuz

k
d,n)

Adv based on a
two stage adversary. First adversary Adv1 is allowed to interact with the server and
honest clients via: (1) RequestPuz(str) on which the server answers with a new fresh
instance puz, (2) SolvePuz(puz) on which any client answers with a solution sol.

Then Adv1 outputs state information stateAdv1 to Adv2 which is allowed to do the
same actions subject only to one restriction: t1 marks the time at which Adv1 has send
its state information and at t2 + tpuz he must output the solutions to n puzzles created
no sooner than t1. The game returns 1 if the adversary has returned correct solutions for
all n puzzles, i.e.,

Win
Πtpuz (CPuz

k
d,n)

Adv (t2 − t1, n) = Pr

[
Exec

Πtpuz (CPuz
k
d,n)

Adv = 1

]
Definition 9 (DoS Resilience). Let CPuzkd,n be an unforgeable, difficulty preserving

puzzle. Protocol Πd,tpuz (CPuz
k
d,n) is εkd,n-DoS resilient if for any t1, t2 ∈ [0, tΠ] with

t1 < t2, having an adversary Adv that can perform at most tAdv : t2 − t1 + tpuz
computations in time t2 − t1 + tpuz it holds:

Pr

[
Win

Πtpuz (CPuz
k
d,n)

Adv (t2 − t1, n)

]
≤ εkd,n(tAdv : t2 − t1 + tpuz) + ν(k)

PRACTICAL APPLICABILITY. We sketch the practical applicability of our security no-
tions. The next theorem links the efficacy of a puzzle-based DoS defense system with
the parameters of the underlying puzzle. Informally, the theorem states that a puzzle
scheme can protect a protocol only when the ratio between the computational power of
the adversary and that of the client does not exceed service time (note that paradoxically

50 B. Groza and B. Warinschi

this is independent on the hardness of the puzzle, an aspect that to best of our knowledge
is overlooked in previous work on client puzzles). In practice, DoS is usually analyzed
by means of queuing theory and the main parameter is service time θservice which gives
the maximum input rate that can be handled by the system. For example, if service time
is θservice = 10ms then the server can handle a maximum input rate λ = 100 con-
nections each second and beyond this the systems gets saturated (leading to a waiting
queue than can grow without bound). While previous definition is of theoretical inter-
est, it can be easily translated to practical systems where resource exhaustion occurs as
soon as the requests of an adversary exceed the inverse of the service time. In the proof
of the following theorem, note that the lifetime of the puzzle tpuz from the εkd,n-DoS
resilience is used to derive a practical bound that depends strictly on the computational
resources and maximum acceptable load of the server θ−1

service .

Theorem 3. Consider protocol Πd,tpuz (CPuz
k
d,n) runs on a server side with service

time θservice for each connection and the computational resources of the adversary
and clients are πA and πC respectively. Protocol Πd,tpuz (CPuz

k
d,n) can provide DoS

protection only if πA < πC · θ−1
service and the maximum level of protection is reached at

d = πA.

This bound seems to justify existing empirical results. Dean and Stubblefield [7] pro-
vided the first positive results for protecting SSL/TLS by using client puzzles. In the
performance related section, the authors of [7] note that 20-bit puzzles seem to offer
the optimal level of protection. While this observation is only empirical, it is supported
by the result of Theorem 3 which shows d = πA as the maximum difficulty level and
indeed in practice the computational power of an adversary is the order of 220 hashes
per second. For distributed DoS attacks these values must be scaled up with the size of
the bot-net that the adversary controls.

6 Conclusion

We refined difficulty notions for puzzles, making a clear distinction between optimal,
difficulty preserving, and ideal puzzles. Also we provided new difficulty bounds for two
hash based puzzles. We showed that these bounds are tight enough to ensure optimality
and that the puzzles are difficulty preserving. Finally, we introduced a stronger defini-
tion for DoS resilience motivated by the observation that previous definitions may still
allow an adversary to mount a successful attack. As this is the third paper proposing
rigorous difficulty notions for client puzzles and showing that previous definitions fail,
it is clear that formalizing puzzles properties is not as easy as it may appear on first
sight. Our definition opens the avenue of studying puzzles and their use in DoS defense
in more detail than was possible in the past (e.g., by introducing new security notions
and including an explicit puzzle management mechanism in the puzzle protocol). Previ-
ously, choosing puzzle difficulty in practice was only based on empirical observations,
here we provided a clear upper bound for this as well as a bound on the usefulness of
client puzzles against DoS. Namely, puzzles will work only if πA < πC · θ−1

service which
places the computational power of the adversary and clients in a clear, crisp relation
with network service time.

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 51

Acknowledgement. First author was partially supported by national research grant
CNCSIS UEFISCDI, project number PNII IDEI 940/2008-2011 and by the strategic
grant POSDRU/21/1.5/G/13798, inside POSDRU Romania 2007-2013, co-financed by
the European Social Fund - Investing in People.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-bound func-
tions. ACM Transactions on Internet Technology 5, 299–327 (2005)

2. Abliz, M., Znati, T.: A guided tour puzzle for denial of service prevention. In: Proceedings of
the 2009 Annual Computer Security Applications Conference, ACSAC 2009, pp. 279–288.
IEEE Computer Society (2009)

3. Aura, T., Nikander, P., Leiwo, J.: DOS-Resistant Authentication with Client Puzzles. In:
Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2000. LNCS,
vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

4. Back, A.: Hashcash - a denial of service counter-measure. Technical report (2002)
5. Boyd, C., Gonzalez-Nieto, J., Kuppusamy, L., Narasimhan, H., Rangan, C., Rangasamy, J.,

Smith, J., Stebila, D., Varadarajan, V.: An investigation into the detection and mitigation of
denial of service (Dos) attacks: Critical information infrastructure protection. In: Crypto-
graphic Approaches to Denial-of-Service Resistance, p. 183 (2011)

6. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security Notions and Generic Construc-
tions for Client Puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 505–
523. Springer, Heidelberg (2009)

7. Dean, D., Stubblefield, A.: Using client puzzles to protect tls. In: Proceedings of the 10th
Conference on USENIX Security Symposium, SSYM 2001, vol. 10, p. 1. USENIX Associ-
ation, Berkeley (2001)

8. Dwork, C., Goldberg, A., Naor, M.: On Memory-Bound Functions for Fighting Spam. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Heidelberg (2003)

9. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

10. Gao, Y., Susilo, W., Mu, Y., Seberry, J.: Efficient trapdoor-based client puzzle against DoS
attacks. Network Security, 229–249 (2010)

11. Jeckmans, A.: Computational puzzles for spam reduction in SIP (draft) (July 2007)
12. Jeckmans, A.: Practical client puzzle from repeated squaring. Technical report (August 2009)
13. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles from mod-

ular square roots. In: Sixth International Conference on Availability, Reliability and Security,
ARES 2011, pp. 135–142 (2011)

14. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against connection
depletion attacks. In: Proceedings of NDSS 1999 (Networks and Distributed Security Sys-
tems), pp. 151–165 (1999)

15. Karame, G.O., Čapkun, S.: Low-Cost Client Puzzles Based on Modular Exponentiation. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
679–697. Springer, Heidelberg (2010)

16. Rangasamy, J., Stebila, D., Boyd, C., Gonzalez Nieto, J.: An integrated approach to crypto-
graphic mitigation of denial-of-service attacks. In: Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, pp. 114–123. ACM (2011)

17. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto. Technical
report, Cambridge, MA, USA (1996)

52 B. Groza and B. Warinschi

18. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger Difficulty
Notions for Client Puzzles and Denial-of-Service-Resistant Protocols. In: Kiayias, A. (ed.)
CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg (2011)

19. Suriadi, S., Stebila, D., Clark, A., Liu, H.: Defending web services against denial of ser-
vice attacks using client puzzles. In: 2011 IEEE International Conference on Web Services
(ICWS), pp. 25–32. IEEE (2011)

20. Tang, Q., Jeckmans, A.: On non-parallelizable deterministic client puzzle scheme with batch
verification modes (2010)

21. Tritilanunt, S., Boyd, C., Foo, E., González Nieto, J.M.: Toward Non-parallelizable Client
Puzzles. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS,
vol. 4856, pp. 247–264. Springer, Heidelberg (2007)

A Proofs

A.1 Proof of Theorem 1

Suppose that Find finishes at exactly the t-th query and let t = t1 + t2 + ...+ tn where
ti denotes the number of queries made to H to solve the ith puzzle. The probability to
solve the ith puzzle at exactly the ti query is obviously (1− 1

2d
)ti−1 · 1

2d
. Since solving

each puzzle is an independent event, the probability to solve the puzzles at exactly
t1, t2, ..., tn steps for each puzzle is

∏
i=1,n(1− 1

2d
)ti−1 · 1

2d
= (1− 1

2d
)t−n · 1

2nd . But

there are exactly
(
t−1
n−1

)
ways of writing t as a sum of exactly n integers from which the

probability to solve the puzzle follows as: ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1
2nd ·
(
1− 1

2d

)i−n
.

We prove the adversary advantage in the random oracle model. For this, challenger
C simulates H by flipping coins and playing the following game G0 with adversaryA:

(1) The challenger C runs Setup on input 1k then it will flip coins to answer to the
adversaryA,

(2) The adversary A is allowed to ask GenSolvePuz, Test, ComputeHash which C
answers as follows: (2.1) on GenSolvePuz, challenger C picks r ∈ {0, 1}k checks
if r is present on its tape and stores it if not then randomly chooses a solution sol
and returns the pair {r, sol}, (2.2) on Test, challenger C queries itself GenSolvePuz
but marks its answers and solutions as {(r♦1 , sol♦1), (r♦2 , sol♦2), ..., (r♦n , sol

♦
n)} and

returns just {r♦1 , r♦2 , ..., r♦n }, (2.3) on ComputeHash, challenger C simulates H to
the adversary A, that is, he receives r, sol from adversary A, check if r, sol was not
already queried and if not he flips coins to get y and stores stores the triple {r, sol, y}
on its tape then returns y to A,

(3) At any point the adversary A can stop the game by sending C a set of pairs {(r♦1 ,
sol♦1), (r

♦
2 , sol♦2), ..., (r♦n , sol

♦
n)},

(4) When challenger C receives {(r♦1 , sol♦1), (r♦2 , sol♦2), ..., (r♦n , sol♦n)} he checks that
each {r♦1 , r♦2 , ..., r♦n } are stored on its tape and for each solution it checks that the
last d bits of y in {r, sol, y} are zero. If a triple {r, sol, y} such that the last d bits of
y are zero is not present on the tape, then challenger C flips coins one more time to
get a new y and accepts the solution if y ends with d zeros (note that these values
are not stored on the tape). If all these hold then challenger C outputs 1, otherwise it
outputs 0.

Revisiting Difficulty Notions for Client Puzzles and DoS Resilience 53

Remark 14. For correct simulation of GenSolvePuz the length l of the correct answer
should be chosen according to the probability distribution of the lengths for a particular
difficulty level, i.e., Pr[l] = (1− (1− 2−d)2

l

)(1 − 2−d)2
l−1

.
Let G1 be the same as G0 with the following difference: on GenSolvePuz, chal-

lenger C picks r ∈ {0, 1}k checks if r is present on its tape and aborts if so, other-
wise it continues as in G0 by storing the values then sending them to A. We have:∣∣∣Pr[A wins G0

]
− Pr

[
A wins G1

]∣∣∣ ≤ q2Gen
2k+1 .

We now bound the adversary advantage in G1. At the end of the game, challenger C
inspects his tape and sets t as the number of queries made to ComputeHash that have
an r♦i , ∀i ∈ {1, n} as input. Let Ei denote the event that for i of the puzzles a pair
{r♦, sol♦, y} where y ends with d zeros is not present on the tape. Obviously, there
n + 1 possible outcomes of G1: E0, E1, ..., En. In each Ei let Pr

[
A wins Ei

]
be the

probability that the adversary has the correct answers for n − i of the puzzles and he
guessed the output of i of them which happens with probability 2−id since the adversary
never queriedH to get a correct output. We have:
Pr
[
A wins G1

]
= Pr

[
A wins E0

]
+

1

2d
· Pr
[
A wins E1

]
+

1

22d
· Pr
[
A wins E2

]
+

... +
1

2nd
· Pr
[
A wins En

]
= ζk,d,n(t) +

1

2d
· Pr
[
A wins E1

]
+

+
1

22d
· Pr
[
A wins E2

]
+ ...+

1

2nd
· Pr
[
A wins En

]
<

< ζHT
k,d,n(t) +

1

2d
+

1

22d
+ ...+

1

2nd
< ζHT

k,d,n(t) +
1

2d − 1

By elementary calculations it follows that: WinHashTrail,k
A,d,n (qGen, t) ≤

∣∣∣Pr[A wins G0

]
−

Pr
[
A wins G1

]∣∣∣+ Pr
[
A wins G1

]
= ζHT

k,d,n(t) +
1

2d−1
+

q2Gen
2k+1 .

The puzzle follows as optimal since εHT
k,d,n(t) ≤ ζHT

k,d,n(t)+
1

2d−1 +
q2Gen
2k+1 and 1

2d−1 +
q2Gen
2k+1 is negligible in d and k respectively.

Now we prove that the puzzle is difficulty preserving which is trivial to do. For d = 1
it is easy to prove that tavr(k, 1, d) = 2d. This is straight forward since:

tavr(k, 1, d) =
∑

i=1,∞
i · 1

2d
·
(
1− 1

2d

)i−1

=
1

2d
·
∑

i=1,∞
i ·
(
1− 1

2d

)i−1

=

=
1

2d
· lim
i→∞

i ·
(
1− 1

2d

)i−1 ·
(
− 1

2d

)
−
(
1− 1

2d

)i
+ 1

1
22d

= 2d

We now want to show that n · tavr(k, d, 1) = tavr(k, d, n). By definition we have

ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1
2nd ·

(
1− 1

2d

)i−n
. Thus it follows:

tavr(k, d, n)=
∑

i=n,∞
i·(ζHT

k,d,n(t)−ζHT
k,d,n(t−1))=

∑
i=n,∞

i·
(
i− 1

n− 1

)
· 1

2nd
·
(
1− 1

2d

)i−n

54 B. Groza and B. Warinschi

Recall that
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
and write

tavr(k, d, n) =
∑

i=n,∞
i ·
[(

i− 2

n− 2

)
+

(
i− 2

n− 1

)]
· 1

2nd
·
(
1− 1

2d

)i−n

=

=
1

2d
·
∑

i=n,∞
i ·
(
i− 2

n− 2

)
· 1

2(n−1)d
·
(
1− 1

2d

)i−n

︸ ︷︷ ︸
tavr(k,d,n−1)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(
1− 1

2d

)i−n

︸ ︷︷ ︸
εk,d,n−1(∞)=1

+

(
1− 1

2d

)
·
∑

i=n,∞
i ·
(
i− 2

n− 1

)
· 1

2nd
·
(
1− 1

2d

)i−n−1

︸ ︷︷ ︸
tavr(k,d,n)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(
1− 1

2d

)i−n

︸ ︷︷ ︸
εk,d,n(∞)=1

Multiply with 2d to get tavr(k, d, n) = tavr(k, d, n− 1)+2d from which by recurrence
we have tavr(k, d, n) = n · tavr(k, d, 1) which completes the proof.

A.2 Proof of Theorem 3

Let R denote the number of resources takeover by the adversary and λ the number of
requests to the server. We have λ ∈ [0, λA] where λA is the maximum rate at which an
adversary can request connections (limited by network parameters only). Obviously a
DoS takes place if λ > θ−1

service since the server can handle at most θ−1
service connections

each second. But by using client puzzle the number of requests is also bounded by the
computational power of the adversary. A misleading bound on the adversary request rate

is λmax =
πA
d

. By careful inspection of Definition 9 the difficulty bound includes the

puzzle lifetime tpuz and the correct bound is λmax =
πA + tpuzπA

d
(since all puzzle

computed during tpuz can be used as well to gain resources). But puzzle lifetime tpuz
must be bigger than the time a client needs to solve the puzzle, i.e., tpuz > dπ−1

C , since
otherwise clients are unable to solve the puzzles and cannot get resources anyway. Thus

λmax >
πA
d

+
πA
πC

. It follows:R(λ) = λ, if λ ∈
[
0,

πA
d

+
πA
πC

]
. Which means that the

number of resources drops with the increase in the difficulty of the puzzle but it never

drops below
πA
πC

since: limd→+∞R(λ) =
πA
πC

. Accordingly, the adversary can always

get at least πA · π−1
C resources, regardless of the puzzle difficulty level, and the DoS

condition is met when πA ·π−1
C ≥ θ−1

service . Obviously πA ·π−1
C is the minimum amount

of resources gained on the side of the adversary and this met as soon as d > πA.

On Optimal Bounds of Small Inverse Problems

and Approximate GCD Problems
with Higher Degree

Noboru Kunihiro

The University of Tokyo, Japan
kunihiro@k.u-tokyo.ac.jp

Abstract. We show a relation between optimal bounds of a small in-
verse problem and an approximate GCD problem. First, we present a
lattice based method to solve small inverse problems with higher degree.
The problem is a natural extension of small secret exponent attack on
RSA cryptosystem introduced by Boneh and Durfee. They reduced this
attack to solving a bivariate modular equation: x(A + y) ≡ 1 (mod e),
where A is a given integer and e is a public exponent. They proved that
the problem can be solved in polynomial time when d ≤ N0.292. In this
paper, we extend the Boneh–Durfee’s result to more general problem. For
a monic polynomial h(y) of degree κ(≥ 1), integers C and e, we want
to find all small roots of a bivariate modular equation: xh(y) + C ≡ 0
(mod e). We denote by X and Y the upper bound of roots. We present
an algorithm for solving the problem and prove that the problem can
be solved in polynomial time if γ ≤ 1 − √

κα and |C| is small enough,
where X = eγ and Y = eα. We employ a similar approach as unravelled
linearization technique introduced by Herrmann and May in especially
evaluating the lattice volume. Interestingly, our algorithm does not rule
out the case of C = 0, which implies that our algorithm can solve a
univariate unknown modular equation h(y) ≡ 0 (mod p), where p is un-
known. Our algorithm achieves the best bound in the literature. Then,
we show that our obtained bound is natural under the similar sense
of Howgrave-Graham’s discussion in CaLC2001 and we prove that our
bound, including Boneh–Durfee’s bound, is optimal under the reasonable
assumption.

Keywords: RSACryptosystem, LLL algorithm, Small Inverse Problem,
Approximate GCD Problem.

1 Introduction

RSA cryptosystem is the widely used cryptosystem [16]. LetN be an RSAmoduli
and d, e be secret and public exponents, respectively. Wiener showed that when
d < N1/4, the RSA can be broken in polynomial time [17]. In 1999, Boneh and
Durfee first improved the bound to d ≤ N0.284 and then they improved the
bound to d ≤ N0.292 [1]. They reduced a small secret exponent attack to solving

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 55–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

56 N. Kunihiro

a bivariate modular equation: x(A + y) ≡ 1 (mod e) and proposed an efficient
algorithm for solving this problem. They referred this problem as “small inverse
problem”. Their attack is based on Coppersmith’s lattice based techniques [2–
4]. In their proof for d ≤ N0.292, they introduced the concept of Geometrically
Progressive Matrix and gave an upper bound of the volume of generated lattice.
Then, its proof is very complicated.

In 2010, Herrmann and May [8] gave an elementary proof to Boneh-Durfee’s
stronger bound [1]. They employed unravelled linearization technique developed
in [7]. In 2011, Kunihiro et al. gave a unified framework for small secret exponent
attack [13]. In their analysis, they employed unravelled linearization technique
too and use two-parameter space. Furthermore, they optimized the bound in
their framework and proved that the Boneh–Durfee’s stronger bound is still
optimal in their framework. [13] also discussed more general problem x(A+ y)+
C ≡ 0 (mod e) not necessary for C �= 1 but small |C|.

On the other hand, Kunihiro introduced a class of Generalized Small Inverse
Problem by extending small inverse problem [11]. This problem is formulated as
finding all small roots of n+1-variate modular equation: x0h(x1, . . . , xn)+C ≡ 0
(mod N) for an n-variate polynomial h(x1, . . . , xn), integers C and N . Then, [12]
demonstrated a general method which solves this problem. If we apply it to the
small inverse problem, the obtained bound is d ≤ N0.284. Note that his algorithm
does not achieve the stronger bound: d ≤ N0.292. In [12], the algorithm which
solves xh(y) + C ≡ 0 (mod e) for h(y) of degree κ was also proposed. The
condition that the problem can be solved in polynomial time was derived. Let
(x, y) = (x0, y0) be the solution satisfying |x0| < X := eγ and |y0| < Y := eα.

The condition is given by γ ≤ 1− 2
√

(κα)2+3κα−κα

3 .
Howgrave-Graham [10] introduced approximate common divisor problems1.

Let a be an integer and N be a composite whose prime factor p is unknown.
He showed an algorithm for solving a modular equitation: a+ y ≡ 0 (mod p) in
polynomial time. May extended the problem into that with more higher degree.
Letting h(y)be a monic polynomial with degree κ, he showed a polynomial time
algorithm for solving h(y) ≡ 0 (mod p). He showed the condition that the prob-

lem is solvable is Y ≤ Nβ2/κ, where Y is an upper bound of the absolute value
of the solution and p = Nβ .

Howgrave-Graham [10] discussed the relation between two problems: x(A +
y) ≡ 0 (mod N) and x(A + y) ≡ 1 (mod N). Then, he claimed that Boneh-
Durfee’s stronger bound [1] is natural if there exist a reduction between two
problems.

1.1 Our Contributions

Improving the Bound for Small Inverse Problems with Higher Degree.
We consider the following problem. Given a positive integer e, an integer C and
a monic polynomial h(y) with degree κ, we want to find all small roots of a

1 He introduced a partially approximate common divisor problem and a general ap-
proximate common divisor problem. In this paper, we discuss only the partial one.

On Optimal Bounds of Small Inverse Problems 57

bivariate modular equation: xh(y) + C ≡ 0 (mod e). We denote the solution of
the equation by (x, y) = (x0, y0). LetX(:= eγ) and Y (:= eα) be the upper bound
of |x0| and |y0|, respectively. We first prove that the problem can be solved if

γ ≤ 1−
√
κα,

|C| < XY κ and κ/(κ+ 1)2 ≤ α ≤ 1/κ. It is a better bound than that obtained
in [12]. In the proof, we employ the similar technique as unravelled linearization
technique [8]. This result is a natural extension of the Herrmann and May’s
result [8] and Kunihiro et al.’s result [13]; the degree of h(y) is larger than or
equal to 1.

Naturalness and Optimality of Our Bounds. Interestingly, our proposed
algorithm does not rule out of the case: C = 0. Then, our algorithm can inher-
ently solve the univariate unknown modular equation: h(y) ≡ 0 (mod p), where
p is unknown but its multiplier N is known. The class of these problems includes
a (partially) approximate GCD problem [10]. It is remarkable that fully homo-
morphic encryption schemes over integers [5, 6] are based on the difficulty of
this problem. Then, it is important to understand the difficulty of approximate
GCD problem. Suppose that p := Nβ and the solution y0 is upper bounded by
Nα. The best known bound for the problem is α < β2/κ due to May [15]. We
prove that our algorithm achieves the same bound as the best known algorithm.
Furthermore, we show that our obtained bound: γ ≤ 1 −√

κα is optimal under
a reasonable assumption: the optimal bound for h(y) ≡ 0 (mod p) is α ≤ β2/κ.
Last, we show that the bound obtained in this paper is also natural under the
similar sense of Howgrave-Graham’s discussion.

1.2 Organization

Section 2 gives preliminaries. In this section, we introduce mathematical lem-
mas and review previous known results. In Section 3, we present an efficient
algorithm for solving xh(y)+C ≡ 0 (mod e) with a monic polynomial h(y). We
first propose how to select shift-polynomials in constructing a lattice basis. In
evaluating the volume of constructed lattice, we employ a similar technique as
unravelled linearization. Furthermore, we derive a condition that the problem
can be solved in polynomial time. In Section 4, we show that our algorithm
can also find all small roots of the univariate unknown modular equation and
achieves the same bound as best known bound. Then, we show that our ob-
tained bound γ ≤ 1 −

√
κα is optimal under the reasonable assumption. Then,

the obtained bound is natural under the similar sense of Howgrave-Graham’s
discussion. Section 5 concludes a paper.

2 Preliminaries

2.1 LLL Algorithm and Howgrave-Graham’s Lemma

For a vector b = (b1, b2, . . . , bw), ‖b‖ denotes the Euclidean norm of b: ‖b‖ =√∑w
i=1 b

2
i . For a trivariate polynomial h(x, y, z) =

∑
hi,j,kx

iyjzk, define the

58 N. Kunihiro

norm of a polynomial as ‖h(x, y, z)‖ =
√∑

h2
i,j,k. That is, ‖h(x, y, z)‖ denotes

the Euclidean norm of the vector which consists of coefficients of h(x, y, z).
Let B = {aij} be a w × w matrix of integers. Suppose that the rows of B

are linearly independent. The rows of B generate a lattice L, a collection of
vectors closed under addition and subtraction; in fact the rows forms a basis of
L. The lattice L is also represented as follows. Letting ai = (ai1, ai2, . . . , aiw),
the lattice L spanned by 〈a1, . . . ,aw〉 consists of all integral linear combinations
of a1, . . . ,aw, that is:

L =

{
w∑
i=1

niai|ni ∈ ZZ

}
.

The volume of full-rank lattice is given by vol(L) = | det(B)|.
The LLL algorithm outputs short vectors in the lattice L.

Proposition 1 (LLL [14]). Let B = {aij} be a non-singular w × w matrix of
integers. The rows of B generate a lattice L. Given B, the LLL algorithm finds
vectors b1 and b2 ∈ L such that

‖b1‖ ≤ 2(w−1)/4(vol(L))1/w and ‖b2‖ ≤ 2w/4(vol(L))1/(w−1)

in time polynomial in (w,max log2 |aij |).
We reduce the root finding problem in modular equation to the case of root
finding equation over integers by using the following lemma.

Lemma 1 (Howgrave-Graham [9]). Let ĥ(x, y, z) ∈ Z[x, y, z] be a polyno-
mial, which is a sum of at most w monomials. Let m be a positive integer and
X,Y, Z and φ be some positive integers. Suppose that

1. ĥ(x̄, ȳ, z̄) ≡ 0 (mod φm), where |x̄| < X, |ȳ| < Y, |z̄| < Z.
2. ‖ĥ(xX, yY, zZ)‖ < φm/

√
w.

Then ĥ(x̄, ȳ, z̄) = 0 holds over integers.

2.2 Known Algorithm for Solving xh(y) + C ≡ 0 (mod e) with
Non-linear h(y)

Let h(y) be a monic polynomial with degree κ. We consider a bivariate modular
equation: f(x, y) = xh(y)+C ≡ 0 (mod e). [12] proposed a lattice based method
for solving this problem.

The shift-polynomials are defined by

g[i,j,k](x, y) := xiyjf(x, y)kem−k.

A set of shift-polynomials is denoted by Fw. The set Fw is given by Fw :=
Gw ∪Hw, where

Gw := {g[u−i,j,i] : u = 0, . . . ,m; i = 0, . . . , u; j = 0, . . . , κ− 1} and

Hw := {g[0,j,u] : u = 0, . . . ,m; j = κ, . . . , t}.

Note that t is a parameter to be optimized.

On Optimal Bounds of Small Inverse Problems 59

Let (x, y) = (x0, y0) be a solution of f ≡ 0 (mod e), where it holds that
|x0| < X(:= eγ), |y0| < Y (:= eα). [12] proved that this problem can be solved in
polynomial time if

γ ≤ 1− 2
√
(κα)2 + 3κα− κα

3
. (1)

If κ = 1 and α = 1/2, Eq. (1) leads to the Boneh and Durfee’s weaker bound:
d ≤ N0.284. Then, we can say that Eq. (1) is a weaker bound. One of our
contribution is to improve the bound to a stronger version of bound: γ ≤ 1−

√
κα.

A common strategy for improving the bound is to remove “damaging” polyno-
mial. The resulting lattice may be no longer full rank and computing its volume
is not so easy. We resolve this problem by developing a similar technique as
unravelled linearization introduced by Herrmann and May [8].

3 Improving the Bound for xh(y) + C ≡ 0 (mod e)

Let h(y) be a monic polynomial with degree κ. We address how to solve

f(x, y) := xh(y) + C ≡ 0 (mod e).

Our result is an extension of [8] and [13]. That is, [8] and [13] only discuss
the case of κ = 1, but, we extend the result to any positive integer κ. Note
that Herrmann and May claimed that linearization is effective in their analysis.
However, our analysis is not fully based on linearization technique.

3.1 A New Method for Selecting Shift-Polynomials

Let h(y) := aκ + aκ−1y+ · · ·+ a1y
κ−1 + yκ. Here, we set H(y) := aκ + aκ−1y+

· · ·+ a1y
κ−1 and then h(y) = yκ +H(y). Let f(x, y) := xh(y) +C. We want to

find all small roots of

f(x, y) = x(aκ + aκ−1y + · · ·+ a1y
κ−1 + yκ) + C ≡ 0 (mod e).

Let (x, y) = (x0, y0) be a solution of f(x, y) ≡ 0 (mod e) and X,Y be the upper
bound of |x0| and |y0|.

First, we transform f(x, y) into

f(x, y) = xh(y) + C = x(yκ +H(y)) + C = (xyκ + C) + xH(y).

Letting z := xyκ + C, we have f̄(x, y, z) := z + xH(y). Since H(y) in [8] is
a constant, this transformation is considered as “linearization”. However, H(y)
in our paper is a polynomial of degree κ − 1; this transformation is not fully
linearization if κ > 1.

We define shift-polynomials as

ḡ[i,j,k](x, y, z) := xiyj f̄(x, y, z)kem−k = xiyj(z + xH(y))kem−k.

60 N. Kunihiro

Letting z0 := x0y
κ
0 +C, it is easy to see that ḡ[i,j,k](x0, y0, z0) ≡ 0 (mod em) for

any non-negative integers i, j and k. Note that the upper bound of |z0| is given
by XY κ + |C|. We let Z := XY κ + |C|.

We denote by F a set of shift-polynomials. We give the set F as F := G ∪H,
where

G := {ḡ[u−i,j,i] : u = 0, . . . ,m; i = 0, . . . , u; j = 0, . . . , κ− 1} and

H := {ḡ[0,j,u] : u = 0, . . . ,m; j = κ, . . . , κ+ τu− 1}.

Note that τ is a parameter to be optimized and 0 ≤ τ ≤ 1. We omit roundings
as their contribution is negligible for sufficiently large m.

We define polynomial and monomial orders as follows.

polynomial order: We define � as ḡ[i,j,k] � ḡ[i′,j′,k′]

if

⎧⎨⎩
i+ k < i′ + k′ or
i+ k = i′ + k′ and i < i′ or
i = i′, k = k′ and j ≤ j′.

monomial order: We define � as xiyjzk � xi′yj
′
zk

′

if

⎧⎨⎩
i+ k < i′ + k′ or
i+ k = i′ + k′ and i < i′ or
i = i′, k = k′ and j ≤ j′.

We write a ≺ b if a � b and a �= b.

3.2 Expansion in Shift-Polynomials

As well as [8] and [13], we will manipulate the underlying polynomial rather
than the corresponding matrix. We substitute each occurrence of xyκ by the
term z − C. We call the form obtained by the substitution compressed form.

A lattice basis is constructed by using the coefficient vectors of shift-polynomials
in F as basis vectors. Note that the coefficient vectors of the shift-polynomials
ḡ[i,j,k](xX, yY, zZ) are written as row vectors. Let B(m; τ) be a matrix, where all
rows ofB(m; τ) are coefficient vectors of shift-polynomials according to the order-
ing � of F .

Theorem 1. Let m be an integer. Let τ be a parameter with 0 ≤ τ ≤ 1. A
lattice basis matrix B(m; τ) is triangular for any m and τ .

To prove Theorem 1, we introduce some notations. We partially use the same
symbols as [13].

Definition 1. We denote by S(f) a set of monomials appearing in expansion
of f on the compressed form.

Definition 2. We say f(x, y) ∼= g(x, y) if S(f) = S(g).

On Optimal Bounds of Small Inverse Problems 61

Definition 3. WedefineF(f) := {g ∈ F|g ≺ f} and defineS(F ′) :=
⋃

g∈F ′ S(g)
for F ′ ⊆ F .

We have especially S(F(f)) :=
⋃

g∈F(f) S(g). In general, it is enough for proving
Theorem 1 to show that for any polynomial f ∈ F there exist a monomial mf

such that

– S(f −mf) ⊆ S(F(f)) and
– mf �∈ S(F(f)).

We denote M := S(F). For xiyjzk ∈M, we define M(xiyjzk) according to the
above monomial order as

M(xiyjzk) = {xi′yj
′
zk

′
∈ M|xi′yj

′
zk

′
≺ xiyjzk}.

This means that M(xiyjzk) is a set of elements before xiyjzk.

Proof. It is enough for proving Theorem 1 to show that the following two lemmas.

Lemma 2. For any ḡ[i,j,k] ∈ F , S(ḡ[i,j,k] − em−kxiyjzk) ⊆ S(F(ḡ[i,j,k]))

Lemma 3. For any ḡ[i,j,k] ∈ F , xiyjzk �∈ S(F(ḡ[i,j,k])).

From Lemmas 2 and 3, we directly have Theorem 1. ��

To prove Lemma 2, we prove the following two small lemmas.

Lemma 4. For any ḡ[i,j,k] ∈ F , S(ḡ[i,j,k] − em−kxiyjzk) ⊆M(xiyjzk).

Lemma 5. For any ḡ[i,j,k] ∈ F , S(F(g[i,j,k])) =M(xiyjzk).

To prove Lemma 4, we prove the following three small lemmas.

Lemma 6. If ḡ[u,j,0] ∈ G,

S(g[u−i,j,i] − em−ixu−iyjzi) = ∅.

Lemma 7. If i ≥ 1 and ḡ[u−i,j,i] ∈ G,

S(g[u−i,j,i] − em−ixu−iyjzi) ⊆M(xu−iyjzi).

Lemma 8. If ḡ[0,j,u] ∈ H,

S(ḡ[0,j,u] − em−uyjzu) ⊆M(yjzu).

Proofs of Lemmas 6, 7 and 8 are given in Appendix A.

62 N. Kunihiro

Proof of Lemma 3
It is enough to show that for any [i′, j′, k′] ∈ F(ḡ[i,j,k]) it holds that xiyjzk �∈
S(ḡ[i′,j′,k′]). From Lemma 2, it trivially holds. Then, we have the lemma. ��

We give a small example. Let h(y) = y2 + a1y + a2 and m = 2, τ = 1. Since
κ = 2, we will substitute each occurrence xy2 by the term z−C. The polynomial
ḡ[0,2,1] ∈ H ⊆ F is calculated as follows:

ḡ[0,2,1] = e2−1x0y2(z + x(a1y + a2))
1 = ey2z + exy2(a1y + a2)

= ey2z + e(z − C)(a1y + a2) = ey2z + e(z − C)a1y + e(z − C)a2

= ey2z + ea1yz − eCa1y + ea2z − eCa2

We can easily verify that {yz, y, z, 1} ⊆ M(y2z). More examples are given in
Appendix B.

3.3 Deriving a Condition

Remember that Z = XY κ + |C|. For Theorem 1, the volume vol(L) is given by

vol(L) =

m∏
u=0

u∏
k=0

κ−1∏
j=0

Xu−kY jZkem−k
m∏

u=0

τu−1∏
j=0

Y κ+jZuem−u.

We describe vol(L) as XsXY sY ZsZese . The values sX , sY , sZ , se and dim(L) are
explicitly given by

sX =

m∑
u=0

u∑
k=0

κ−1∑
j=0

(u − k) =
κ

6
m3 + o(m3)

sY =

m∑
u=0

u∑
k=0

κ−1∑
j=0

j +

m∑
u=0

τu−1∑
j=0

(κ+ j) =
τ2

6
m3 + o(m3)

sZ =

m∑
u=0

u∑
k=0

κ−1∑
j=0

k +

m∑
u=0

τu−1∑
j=0

u =
(κ
6
+

τ

3

)
m3 + o(m3)

se =

m∑
u=0

u∑
k=0

κ−1∑
j=0

(m− k) +

m∑
u=0

τu−1∑
j=0

(m− u) =
(κ
3
+

τ

6

)
m3 + o(m3)

dim(L) =

m∑
u=0

u∑
k=0

κ+

m∑
u=0

τu =
(κ
2
+

τ

2

)
m2 + o(m2).

From now on, we divide the analysis into three cases based on the values of α
and C.

On Optimal Bounds of Small Inverse Problems 63

Case 1: The first is for small |C| and κ/(κ+ 1)2 ≤ α ≤ 1/κ;
Case 2: the second is for small |C| and 0 < α < κ/(κ+ 1)2;
Case 3: the third is for large |C|.

Note that in [8], the case: C = 1, κ = 1 and α = 1/2 was only considered, which
is included in Case 1.

For Case 1, which is the most important case, we have the following theorem.

Theorem 2. Let X = eγ and Y = eα. Suppose that XY κ ≥ |C| and κ/(κ +
1)2 ≤ α ≤ 1/κ. The maximal upper bound of γ is 1−

√
κα.

Proof. Since Z = XY κ + |C| ≤ 2XY κ, we have

vol(L) ≤ XsXY sY 2sZ (XY κ)sZ ese = 2szXsX+sZY sY +κsZese

= (21+2τX2(κ+τ)Y (κ+τ)2e2κ+τ)(m
3/6+o(m3)).

From Lemma 1, the condition that the problem can be solved in polynomial time
is given by vol(L) ≤ em dim(L). Letting X := eγ and Y := eα, this condition can
be simplified into

γ ≤ 1− 1

2

(
κ

(τ + κ)
+ (κ+ τ)α

)
. (2)

By optimizing the right side of Eq. (2), we have

γ ≤ 1−
√
κα. (3)

In this case, the optimal setting of τ is given by τ =
√
κ/α− κ. ��

Remark 1. It holds that 0 ≤ τ ≤ 1 when κ/(κ+ 1)2 ≤ α ≤ 1/κ.

Next, we show an analysis for Case 2. Suppose that XY κ ≥ |C| and 0 < α <
κ/(κ+ 1)2. The analysis is almost the same as Theorem 2 and we have Eq. (2).
In this case, the optimal value of τ is given by τ = 1. The optimal bound of γ is
given by

γ ≤ κ+ 2

2(1 + κ)
− κ+ 1

2
α. (4)

Finally, we show an analysis for Case 3. Suppose that XY κ ≤ |C|. Since
Z ≤ 2|C|, we have

vol(L) ≤ (2|C|)sZXsXY sY ese .

By similar calculation, we have a condition:

XκY τ2

<

(
e

|C|

)κ+2τ

.

If |C| ≈ e especially, we have XκY τ2

< 1. Hence, we cannot solve the problem
in polynomial time in this case.

64 N. Kunihiro

4 Discussion – The Bound Is Natural and Optimal?–

We discuss the following two problems2.

Problem A: Let N be a positive integer. For a monic polynomial h(y) and an
integer C, find all small roots of a bivariate modular equation: xh(y)+C ≡ 0
(mod N).

Problem B: Let N(= pq) be a composite number of unknown factorization.
For a monic polynomial h(y), find all small roots of a univariate unknown
modular equation: h(y) ≡ 0 (mod p).

We especially denote Problem A with C = 0 by Problem A(0) and denote Prob-
lem A with C = 1 by Problem A(1).

Problem B has a strong relation with (partially) approximate GCD prob-
lem [10]. It is remarkable that fully homomorphic encryption schemes over inte-
gers [5, 6] are based on the difficulty of this problem.

There are reductions between Problem A(0) and Problem B. That is, Problem
B can be solved in polynomial time if we can solve Problem A(0). The converse
is also true. We show explicit reduction between two problems in Section 4.1.
On the other hand, no reductions between Problem A(1) and Problem A(0) are
known.

With regards to Problem B, May [15] proposed an algorithm which solves
Problem B: h(y) ≡ 0 (mod p). Suppose that p ≥ Nβ. Let Y be the upper bound
of the solution. He showed that if

Y ≤ Nβ2/κ, (5)

this problem can be solved in polynomial time. So far, the above bound is the
best known algorithm.

4.1 Our Algorithm also Solves Problem B: h(y) ≡ 0 (mod p)

As shown in Section 3, our algorithm solves Problem A for small enough |C|. As
easily verified, our algorithm does not rule out the case of C = 0. Then, we can
also solve Problem A(0) and then Problem B.

We show an explicit algorithm which solves Problem B: h(y) ≡ 0 (mod p)
by the following idea. First, find the small root of xh(y) ≡ 0 (mod N) by our
proposed algorithm in Section 3. Let y = y0 be the solution of h(y) ≡ 0 (mod p)
and Y be Y := Nα. We know that one of the solution of xh(y) ≡ 0 (mod N)
is given by (x, y) = (q, y0). Then, we can find the solution y = y0 of h(y) ≡ 0
(mod p) by using our proposed algorithm.

Next, we evaluate the condition at which our algorithm solves Problem B.
Letting p = Nβ , we have q = N1−β. The condition at which our algorithm
solves Problem A(0): xh(y) ≡ 0 (mod N) is given from Theorem 2 by

1− β < 1−
√
κα.

2 Some parts of this section are implicitly discussed in Section 5 of [10].

On Optimal Bounds of Small Inverse Problems 65

Then, we have the condition:
α < β2/κ.

This is exactly the same bound as best known one for h(y) ≡ 0 (mod p) [15].
Note that the algorithm requires more lattice dimension while it achieves the

same bound as best known algorithm.

4.2 Optimality of Our Bound under a Reasonable Assumption

We’ll discuss the optimality of our obtained bound. As shown above, the best
known bound for h(y) ≡ 0 (mod p) is May’s bound: α < β2/κ, which is shown
in [15]. While it is still an open problem whether this bound is optimal or not,
we suppose that this bound is optimal in the following discussion.

We denote by C a set of integers such that 0 ∈ C. Assume that we have an
algorithm which solves the problem: xh(y) + C ≡ 0 (mod N) for any C ∈ C in
polynomial time whenever

γ ≤ 1− l(κα)

for some function l() satisfying t < l(t) <
√
t for some t in adequate interval. This

implies that it holds that 1−
√
κα < 1− l(κα) < 1− κα. The similar discussion

in previous subsection concludes that we can solve the equation: xh(y) = 0
(mod N) if 1−β ≤ 1− l(κα). This leads that we can solve the equation: h(y) ≡ 0
(mod p) whenever

α ≤ l−1(β)/κ.

From the setting of function l(), we have β2/κ < l−1(β)/κ. Then, we can improve
the May’s bound. This contradicts to the optimality of May’s bound. Then, the
bound obtained by our algorithm is also optimal under the assumption that
May’s bound for Problem B is optimal.

This implies that if we could find an algorithm for solving xh(y) + C = 0
which achieves the better bound than γ ≤ 1 −

√
κα, we can also improve the

bound for h(y) ≡ 0 (mod p).

4.3 Natural Bound for xh(y) + C ≡ 0 (mod e)

Howgrave-Graham [10] claimed that Boneh-Durfee’s stronger bound [1] is natural
if there exist a relation between x(A+y) ≡ 1 (mod e) and x(A+y) ≡ 0 (mod e).
By following this idea, we show that our obtained bound: γ ≤ 1 −

√
κα in

Theorem 2 is also natural.
Assume that there exists a polynomial time algorithm for solving Problem A

which calls Problem A(0) as a subroutine. We consider an achievable bound for
Problem A which uses the best known algorithm for Problem A(0). We call it a
natural bound. We’ll show that our obtained bound in Theorem 2 is natural.

We derive a condition that xh(y) +C ≡ 0 (mod e). Let X = eγ and Y = eα.
Then, we have β = 1 − γ. By using Eq. (5), the problem can be solved if
α ≤ β2/κ = (1−γ)2/κ. This condition can be simplified into γ ≤ 1−

√
κα. This

bound is exactly the same bound obtained in Section 3. Then, our obtained
bound is natural.

66 N. Kunihiro

5 Conclusions

We presented the algorithm for solving the bivariate modular equation: xh(y)+
C ≡ 0 (mod e) for a monic polynomial h(y) with a degree κ. This result is
an extension of Herrmann-May’s result. Our algorithm solves the problem if
γ < 1 −

√
κα and |C| is small enough. Our algorithm also solves the univariate

unknown modular equation: h(y) ≡ 0 (mod p), where p is unknown but its
multiplier N is known. We proved that our algorithm achieves the same bound
as the best known algorithm. Furthermore, we showed that our obtained bound:
γ ≤ 1 −

√
κα is optimal under the assumption that the optimal bound for

h(y) ≡ 0 (mod p) is α < β2/κ. We showed that the obtained bound is also
natural under the similar sense of Howgrave-Graham’s discussion in CaLC2001.

Acknowledgement. The author was supported by KAKENHI 22700006.

Reference

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

2. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

3. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

5. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

6. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

7. Herrmann, M., May, A.: Attacking Power Generators Using Unravelled Lineariza-
tion: When Do We Output Too Much? In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

8. Herrmann, M., May, A.: Maximizing Small Root Bounds by Linearization and
Applications to Small Secret Exponent RSA. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

9. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

10. Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

11. Kunihiro, N.: Solving Generalized Small Inverse Problems. In: Steinfeld, R.,
Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 248–263. Springer, Heidelberg
(2010)

12. Kunihiro, N.: Solving generalized small inverse problems. IEICE Transactions E94-
A(6), 1274–1284 (2011)

On Optimal Bounds of Small Inverse Problems 67

13. Kunihiro, N., Shinohara, N., Izu, T.: A Unified Framework for Small Secret Expo-
nent Attack on RSA. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 260–277. Springer, Heidelberg (2012)

14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982)

15. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
University of Paderborn (2003)

16. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

17. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

A Proofs

Proof of Lemma 6
The polynomial ḡ[u,j,0] is given by ḡ[u,j,0] = emxuyj. Then, we have the lemma.

��
Proof of Lemma 7
Suppose that ḡ[u−i,j,i] ∈ G. Note the from the setting of G, it holds that 0 ≤ i ≤ u
and 0 ≤ j ≤ κ− 1. The polynomial ḡ[u−i,j,i] is transformed into

ḡ[u−i,j,i] = em−ixu−iyj(xH(y) + z)i = em−ixu−i
i∑

t=0

(
i

t

)
yjzi−txtH(y)t

= em−ixu−iyjzi + em−i
i∑

t=1

(
i

t

)
xu−i+tyjH(y)tzi−t.

Then, we have

ḡ[u−i,j,i] − em−ixu−iyjzi ∼=
i∑

t=1

t(κ−1)∑
k=0

xu−i+tyj+kzi−t (6)

We focus on terms xu−i+tyj+kzi−t in right hand side of Eq. (6). Let q := �(j +
k)/κ� and r := (j + k)%κ(= j + k − qκ). Note that it holds that u − i + t ≥ q
since u ≥ i and t ≥ q by the setting of G. The latter inequality comes from the
fact q = �(j + k)/κ� = �(t + 1)(κ − 1)/κ� < t + 1. Then, each xu−i+tyj+kzi−t

can be transformed into

xu−i+tyj+kzi−t = (xyκ)qyj+k−κqxu−i+t−qzi−t

= xu−i+t−qyj+k−κqzi−t(z − C)q

∼=
q∑

l=0

xu−i+t−qyrzi−t+l.

It is easily verified that u− i+ t− q ≥ 0 and 0 ≤ r ≤ κ− 1. The summation of
the degree of x and that of z is given by (u− i+ t− q) + (i− t+ l) = u− (q− l).

68 N. Kunihiro

If q < l, then u − (q − l) < u and all terms are in M(xu−iyjzi). If q = l and
t < q, then (u− i+ t− q)+ (i− t+ l) = u and u− i+ t− q < u− i. And then, all
terms are in M(xu−iyjzi). Finally, if q = l = t, then u − i + t − q = u − i and
r < j. And then, all terms are in M(xu−iyjzi). Then, for any cases, we have

S(ḡ[u−i,j,i] − em−ixu−iyjzi) ⊆M(xu−iyjzi).

Then, we have the lemma. ��
Proof of Lemma 8
Suppose that ḡ[0,j,u] ∈ H. The polynomial ḡ[0,j,u] is transformed into

ḡ[0,j,u] = em−uyj(xH(y) + z)u = em−uyj
u∑

t=0

(
u

t

)
zu−txtH(y)t

= em−uyjzu + em−u
u∑

t=1

(
u

t

)
xtyjH(y)tzu−t.

Then, we have

ḡ[0,j,u] − em−uyjzu ∼=
u∑

t=1

t(κ−1)∑
k=0

xtyj+kzu−t. (7)

We focus on terms xtyj+kzu−t in right hand side in Eq. (7). Let q := �(j+k)/κ�
and r := (j + k)%κ(= j + k − qκ). We separate each term xtyj+kzu−t into two
cases:

1. t ≥ q and
2. t < q.

At the first case, each xtyj+kzu−t can be transformed into

xtyj+kzu−t = (xyκ)qxt−qyj+k−κqzu−t

= xt−qyrzu−t(z − C)q ∼=
q∑

l=0

xt−qyrzu−t+l.

It is easily verified that r holds that 0 ≤ r ≤ κ−1. The summation of the degree
of x and that of z is given by (t− q) + (u− t+ l) = u− (q− l). Hence, all terms
are in M(yjzu).

At the second case, each xtyj+kzu−t can be transformed into

xtyj+kzu−t = (xyκ)tyj+k−κtzu−t

= yj+k−κtzu−t(z − C)t ∼=
t∑

l=0

yj+k−κtzu−t+l.

It is enough to prove that

κ− 1 + τ(u − t+ l) ≥ j + k − κt

for all yj+k−κtzu−t+l. The summation of degree of x and degree of z is bounded by

On Optimal Bounds of Small Inverse Problems 69

(κ− 1 + τ(u − t+ l))− (j + k − κt) ≥ κ− 1 + τ(u − t)− (j + k − κt)

≥ κ− 1 + τ(u − t)− (j + t(κ− 1)− κt)

= κ− 1 + τ(u − t)− j + t

= κ− 1 + τu − j + t(1− τ).

Here, since κ−1+τu ≥ j and τ ≤ 1, we have κ−1+τ(u−t+ l)−(j+k−κt) ≥ 0.
Hence, all terms are in M(yjzu).

Then, we have
S(ḡ[0,j,u] − em−uyjzu) ⊆M(yjzu).

Then, we have the lemma. ��

B Small Example

We give a small example. Let h(y) = y2 + a1y+ a2 and m = 2, τ = 1. Note that
κ = 2. From the definition of G and H described in Section 3, we have

G := {ḡ[u−i,j,i] : u = 0, 1, 2; i = 0, . . . , u; j = 0, 1} and

H := {ḡ[0,j,u] : u = 0, 1, 2; j = 2, . . . , 1 + u}

and F = G
⋃
H. We explicitly have a set of indexes as

[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [0, 1, 1], [0, 1, 1], [0, 2, 1], [2, 0, 0],

[2, 1, 0], [1, 0, 1], [1, 1, 1], [0, 0, 2], [0, 1, 2], [0, 2, 2], [0, 3, 2].

Next, we show the expansion in compressed form. We show an explicit form of
lattice basis matrix derived from F . Due to the lack of space, we omit X,Y and
Z. Note that since κ = 2, we substitute each occurrence xy2 by the term z −C.
The following corresponds to a coefficient matrix under the compressed form:

1 y x xy z yz y2z x2 x2y xz xyz z2 yz2 y2z2 y3z2

ḡ[0,0,0] e2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ḡ[0,1,0] 0 e2 0 0 0 0 0 0 0 0 0 0 0 0 0

ḡ[1,0,0] 0 0 e2 0 0 0 0 0 0 0 0 0 0 0 0

ḡ[1,1,0] 0 0 0 e2 0 0 0 0 0 0 0 0 0 0 0
ḡ[0,0,1] 0 0 ea2 ea1 e 0 0 0 0 0 0 0 0 0 0
ḡ[0,1,1] −a1eC 0 0 a2e a1e e 0 0 0 0 0 0 0 0 0
ḡ[0,2,1] −a2eC −a1Ce 0 0 a2e a1e e 0 0 0 0 0 0 0 0

ḡ[2,0,0] 0 0 0 0 0 0 0 e2 0 0 0 0 0 0 0

ḡ[2,1,0] 0 0 0 −0 0 0 0 0 e2 0 0 0 0 0 0
ḡ[1,0,1] 0 0 0 0 0 0 0 ea2 ea1 e 0 0 0 0 0
ḡ[1,1,1] 0 0 −ea1C 0 0 0 0 0 ea2 ea1 1 0 0 0 0
ḡ[0,0,2] 0 0 A1 0 0 0 0 A2 A3 A4 A5 1 0 0 0
ḡ[0,1,2] 0 0 −A3C A1 −A5C 0 0 0 A2 A3 A4 A5 1 0 0
ḡ[0,2,2] −CA1 0 −A2C −A3C C6 −A5C 0 0 0 A2 A3 A4 A5 1 0

ḡ[0,3,2] A3C
2 −CA1 0 −CA2 −2CA3 A6 −CA5 0 0 0 A2 A3 A4 A5 1

,

where A1 = −a21C,A2 = a22, A3 = 2a1a2, A4 = a21 + 2a2, A5 = 2a1, A6 = A1 −
A4C. Note that we can easily verify that the corresponding matrix is lower
triangular.

Strong Authentication with Mobile Phone

Sanna Suoranta, André Andrade, and Tuomas Aura

Aalto University, Department of Computer Science and Engineering, Espoo, Finland

Abstract. As critical services and personal information are moving to the online
world, password as the only user authentication method is no longer acceptable.
The capacity of the human memory does not scale to the ever larger number of
ever stronger passwords needed for these services. Single sign-on (SSO) systems
help users cope with password fatigue, but SSO systems still mostly lack support
for strong two-factor authentication. At the same time, the users have adopted mo-
bile phones as personal digital assistants that are used both for accessing online
services and for managing personal information. The phones increasingly include
mobile trusted computing technology that can be used for hardware-based stor-
age of user credentials. Thus, it is rather obvious that the mobile phones should
be used as authentication tokens for critical online services.

In this paper, we show that existing open-source software platforms and com-
monly available mobile devices can be used to implement strong authentication
for an SSO system. We use the Internet-enabled mobile phone as a secure token
in a federated single sign-on environment. More specifically, we extend the Shib-
boleth SSO identity provider and build an authentication client based on a Nokia
hardware security module. Our system design is modular, and both the SSO so-
lution and the hardware-based security module in the phone can be replaced with
other similar technologies. In comparison to most commercially available strong
authentication services, our system is open in the sense that it does not depend on
a specific credential issuer or identity provider. Thus, it can be deployed by any
organization without signing contracts with or paying fees to a third party. No
modifications need to be made to the client web browser or to the online service
providers. We conclude that it is possible to implement strong personal authenti-
cation for an open-source SSO system with low start-up and operating costs and
gradual deployment.

1 Introduction

The traditional way to authenticate users for services is passwords. Since typical user
has accounts and passwords for about 25 services and types in eight passwords daily,
the password quality is often poor [21], and the users suffer from password fatigue.
Federated Identity Management (FIM) systems try to help the users and the service
providers by offering them Single Sign-on (SSO) that allows users to log into several
services with just one credential. Moreover, as critical services such as healthcare move
to the online world, stronger authentication methods than passwords are needed. Pass-
words alone do not provide sufficient protection against spyware and phishing attack.
Typically, stronger security is achieved with two-factor authentication where the user
has a physical credential or a one-time code list in addition to the traditional password.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 70–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strong Authentication with Mobile Phone 71

Another recent development is that users nowadays access online services from mo-
bile devices, such as mobile phones or tablet computers, over near-ubiquitous wireless
Internet connections. The device user interfaces limit the potential authentication meth-
ods, but the devices also provide new hardware-based methods including SIM cards and
mobile trusted platform modules.

In this paper, we describe an architecture for federated identity environment that
provides strong authentication to online services with the mobile phone as a secure
token. Our goal is to prove that standard technology and open source building blocks
can be used to implement a strong mobile authentication solution. We also want to show
that trusted computing technology already available in many mobile phones can be
used as part of two-factor authentication, and that it can be used together with existing
single sign-on architectures through open interfaces. Our architecture is modular, and
both the SSO solution and the hardware-based security module can be replaced with
similar technologies. Furthermore, we wanted to show that an identity provider can
independently replace the password authentication method in the FIM system with a
strong authentication method. Thus, in contrast with many currently deployed systems,
strong authentication can be achieved without paying fees to a third-party authentication
provider.

2 Strong Authentication

Authentication and user information management is a big task for organizations that
start to offer their services online. For this reason, many small service providers prefer
to form or join a federations for authenticating their users [10]. In federated identity
management (FIM), service providers (SP) outsource the user authentication to identity
providers (IdP). Two commonly used open FIM systems are OpenID [31][34] and Shib-
boleth [24], which is based on the Security Assertion Markup Language (SAML) [32].
For example, Google acts as an identity provider for the OpenID community [30] and
other services can use it to authenticate their users. In Finland, Shibboleth is used in
higher-education institutions, which form the HAKA federation [14]. Big commercial
services, on the other hand, seldom give their user databases for others to manage since
knowledge about the users and their behavior is valuable information and because they
do not trust to other IdPs to provide sufficient security [39].

The first requirement for strong authentication is that the identity provider must ver-
ify the true identity of the person. This step, called identity proofing, is the most ex-
pensive part of establishing a strong authentication system, and it can easily result in
a monopoly for authentication services. Federated authentication can reduce the cost
somewhat if multiple identity providers trust each other to perform the identity proof-
ing. However, often the service providers trust the users to give correct information
about themselves even though the information is not verified at all. In the global service
markets, meeting the user and really verifying her identity from a trustworthy source
such as a passport is often impossible for service providers that do not have customer
service personnel in every country. Typically, the identity provider, including Google,
only verifies that user is reachable at an email address, not who she really is.

It is often said that authentication is based on something the user knows, has, or is.
The second requirement for strong authentication is that at least two of these methods

72 S. Suoranta, A. Andrade, and Tuomas Aura

are used together. For example, Bhargav-Spantzel et al. [9] have proposed a strong
authentication system for FIM that combines the two factors of biometric authentication
and some information known to the user, such as a social security number or credit
card number. Although some notebook computers have a fingerprint reader and mobile
phones have cameras for face recognition, the mobile devices needed for biometric
authentication are not widely deployed or secure enough. Thus, strong authentication
is usually based on a combination of something the user knows and something she has.
Commonly, the latter is a purpose-build device, such as a smart card or the SecureID
token [35], but recently general purpose identifiers such as RFID tags have gained favor
to be used as physical tokens in two-factor authentication [33].

Another way to increase the strength of the authentication is to use multiple commu-
nication channels. For example, in Mizuno et al. [28] and in the protocols now used by
many banks, a service provider sends an identifier to the user’s mobile phone through
the (relatively secure) phone network and the user sends it back through an insecure
channel using a computer, which thus is authenticated as the client device. The system
is targeted especially for untrusted computers, e.g. mobile computers or shared hosts
in an Internet cafe. However, the transfer of information between the authentication
device and the client computer requires either human input or secure pairing of the
devices, both of which result in relatively poor usability of the secure tokens.

In Finland, strong authentication can be achieved using the Finnish Electronic Iden-
tification (FINEID) [20] that is a PKI based system where digital certificates are stored
in a chip embedded in a personal identity card. The FINEID card costs 55 euros, is
valid for five years, and requires a smart card reader. Most citizens find it unnecessary
or too difficult to obtain one [43]. Another reason for the low adoption of FINEID is
that there exist another, more ubiquitous method for strong authentication. The Finnish
banks have long offered an authentication service (TUPAS) based on the online bank
login [41]. The authentication is based on a password (number) and a one-time pass-
word list (on paper) sent to the customers by the bank. Any service provider may use
the TUPAS authentication but it has to agree separately with each bank about using
their authentication server. Thus, TUPAS is not a complete identity federation system,
and many online services only support a few of the largest banks. The service providers
pay a monthly fee and a small transaction fee (typically around 0.10-0.50 euros) for
each user authentication [29]. The customers pay their share in the monthly service fee
of their online bank account, which makes the authentication service appear as free to
the users.

The above-mentioned methods provide strong authentication but they are not easy to
use on mobile devices. In the next section, we describe strong authentication methods
that are targeted for mobile devices.

3 Mobile Authentication

Mobile phone networks worldwide have at least 3.5 billion subscribers [43]. Mobile
phone operators authenticate the subscriber with a small smart card called SIM or
USIM, given to the user when the customer relationship is established. These are the
most used cryptographic authentication method in the world. The authentication can

Strong Authentication with Mobile Phone 73

be strong if the operator verifies reliably the customer identities (i.e. no anonymous
pre-paid SIMs) and if the user is additionally required to input a PIN code to access
the SIM. The card stores an International Mobile Subscriber Identity (IMSI), which
is the customer identifier, and the cryptographic keys and algorithms that are needed
for the authentication and key exchange.

The GSM and 3G authentication can be used in services of the Internet with the
help of the Extensible Authentication Protocol (EAP) [4][5], which defines several
methods for authentication. The EAP protocol itself is designed for network access au-
thentication. Li et al. [26] present a first attempt to create an EAP based uniform access
authentication framework, but it is targeted for network access, not for service access.
The network access authentication could also be used for authentication to services: the
Generic Authentication Architecture (GAA) [2] describes on the architectural level how
pre-shared secrets needed in application-level authentication protocols can be derived
from the AKA authentication, and the General Bootstrapping Architecture (GBA) [1]
specifies how the shared secrets are actually created.

In the recent years, mobile phone operators worldwide have launched authentication
services where other online service providers can use the phone network access authen-
tication to check the customer identity. These methods are described below. None of
them provides single sign-on as such, but they can be used as strong user authentication
methods in federated identity management.

3.1 One-Time Passwords with Mobile Phone

The SMS-OTP method replaces a traditional paper OTP list with text messages sent
to the mobile phone stored in the customer database using the Short Message Service
(SMS). In the authentication process [28], the customer first types in her username and
maybe also a password to the service. Then, she receives an SMS message with a one-
time password which she has to type into the web-based service. Although the method
is two-factor authentication, it is not very strong since the SMS messages are delivered
in plaintext in GSM networks. Nonetheless, eavesdropping SMS is not very easy in the
phone network air interface or in the phone network itself, and sniffing only the one-
time password is not sufficient for login. The SMS-OTP method is easy to learn because
most customers are used to SMS messages. For the service provider, SMS-OTP is easy
to take into use because it does not require sending separate OTP lists to the customers,
and the passwords are generated when they are needed. SMS-OTP does not require any
changes to the SIM card or the mobile phone software.

The OTP lists can also be stored on the SIM card, or the SIM card can generate the
passwords using the SIM Application Toolkit. Each service needs its own OTP list or
generator since the service and the client must be synchronized, but this is no problem
because the SIM card can contain several OTP generators. The service provider must
distribute the OTP list or the generator to its clients. The phone network operator can
usually do this over the air but, in the worst case, it the SIM card needs to be updated to
a newer version. This method is more secure than sending cleartext SMSs since the one-
time password does not travel unprotected over any network until the customer uses it in
the authentication process. To protect the customers against theft of the mobile phone,
the OTP generation can require a PIN code. The SIM-OTP method has been tested in a

74 S. Suoranta, A. Andrade, and Tuomas Aura

pilot case in Finland for logging into an online bank, but it will not be used in the future
because a more secure method is available [23].

3.2 Mobile Certificates

Mobile certificate is also based on the SIM card, which must be updated because, cryp-
tographic keys and other information such as the user’s official name, citizenship, and
electrical identification number need to be stored in the card [19]. The user can get the
new SIM card after the mobile phone network operator has verified her identity either
face-to-face or with other strong authentication methods. In the authentication process,
the user must type in her PIN code before the authentication challenge is digitally signed
with the SIM card. The mobile certificate is based on standardization work of ETSI but,
to achieve interoperability, industry bodies like the Finnish mobile phone operator asso-
ciation FiCom publish detailed instructions for applying the standards [18]. Currently,
the mobile certificates work locally between operators in the same country but global
roaming for using the certificates in another country has not been implemented. The
costs of the authentication differs from country to country. Recently, one mobile op-
erator in Finland launched a mobile certificate service, which costs for the customers
1,9 euros monthly and 0,07 euros for each authentication event [15]. The cost is higher
for the users than in the bank-based TUPAS authentication. The fees for the service
providers have not been published and the system is not yet widely deployed. Since the
network operators see the mobile certificate authentication as a money-making business,
they are not keen to integrate it to single sign-on or federated authentication, although
such implementations have not been banned either.

All the SIM-based authentication methods described above can be strong if they
require the user to input a PIN or password in addition to having the SIM card, and
if the mobile phone operator performs strong identity proofing of its customers. The
disadvantage of these methods is that they depend on the mobile network operator as a
trusted entity that is involved in every transaction. This gives the network operator the
opportunity to charge a fee for each transaction. Roaming agreements between network
operators may eventually result in global federation of the authentication but, so far,
interoperability between operators has been limited.

3.3 Trusted Computing Software and Hardware

The development of the SIM card based methods has taken long time and the operator-
dependent business models have slowed down their adoption. Meanwhile, also other
mobile-phone-based methods have been investigated. For example, SecureID tokens are
available as software to many mobile phones [36]. Such software is usually not consid-
ered secure unless it is run in a secure hardware environment. The first hardware-based
security modules in mobile phones were developed for digital rights management [27].
Later, they have been extended to be general-purpose trusted-computing platforms. For
example, the Trusted Platform Module (TPM) [42] specifies the features required for a
trusted computing platform, and M-Shield [8] is a secure hardware and software com-
ponent that is used in many mobile phones.

Strong Authentication with Mobile Phone 75

Ekberg et al. [16][17][25] have proposed a trusted platform architecture called On-
board Credentials (ObC). The architecture of ObC is depicted in Figure 1. All com-
munication with the secure hardware goes through the Credential Manager [16]. An
interpreter allows small pieces of software be run in a secure environment and a there
is a cryptographic library including e.g. RSA encryption and digital-signature algo-
rithms.There are also two keys: the symmetric ObC platform key (OPK), which is the
master key of the device, and the asymmetric device secret key SKD [17]. The device
manufacturer or some other trusted third party certifies the corresponding public key
PKD. Since the memory of the trusted hardware is very small, everything that is not
used at the moment is encrypted and stored in the ObC database.

Fig. 1. Architecture of the On-board Credentials[17]

Because anyone can create pieces of software to be run in the secure environment,
these programs must be isolated from each other. In the process called provisioning, a
provisioner creates a symmetric key (RK) that is encrypted with the target-device pub-
lic key PKD. The provisioner can authorize other secure software to access its data in
another process called endorsement. Unlike the authentication models described earlier
in this paper, the ObC model is open in the sense that anyone can provision new creden-
tials and endorse others to use them as building blocks for new credentials. Since OPK
and SKD are device dependent, separate procedures have been defined for migration
of the credentials and keys to a new device [37]. ObC is a flexible platform for secure
credential management, but it is not yet widely deployed. Although it is open, it has
not been standardized and the APIs are not fully documented. Nevertheless, we find the
idea of a generic, programmable hardware security module on a personal mobile device
to be a compelling one, and build our architecture on the assumption that most phones
will eventually have one, even if based on slightly different technologies.

76 S. Suoranta, A. Andrade, and Tuomas Aura

3.4 Federated Identity Management with Mobile Phone

Mobile devices have developed in a direction where their usage does not differ from
laptop computers. This creates an opportunity to combine the phone-based strong au-
thentication methods with FIM systems. Abe et al. [3] have implemented an identity
provider on a mobile phone. They use the USIM card to sign a SAML assertion after
the user has entered her PIN code into the mobile phone. Placing the IdP on the mobile
phone is a clever idea, but there are some of technical and business problems. The SP
has to find the IdP to whom it sends the authentication request. Furthermore, mobile
network operators often want to provide the authentication as a service for which they
can charge users.

Mobile phones can also be used as clients for services. Because of the limited user in-
terface on the phones, it would be desirable to migrate application sessions to the phone
only when the user is mobile. Aoyagi et al. [7] have developed a prototype that allows
single sign-on using multiple terminals with different network connections. They use
two-dimensional bar code readers in the mobile phone to bind the authentication of the
devices to each other. This only works with mobile phones that have a camera. Another
solution is to migrate the authentication session from one device to another one. In
Shibboleth, this can be done with moving the session cookies between the devices [40].

Both in OpenID and in Shibboleth, the IdP can implement different authentication
methods and service providers may request a certain method to be used. Although usu-
ally only a password-based method is used, it is possible to integrate strong two-factor
authentication even to OpenID. For example, mobile phone operators in Estonia pro-
vide strong authentication by acting as OpenID identity providers [22]. In this work, we
have modified Shibboleth to use mobile-phone-based strong authentication. In the next
section, we describe the building blocks that are needed for our architecture.

4 Building Blocks for Strong and Mobile Identity Federation

In order to build an architecture for strong and mobile authentication in a federated
environment, we need a FIM system and trusted computing technology that works on
a mobile phone. Our first criterion was that the solutions are already in use and that
they are based on open source software. In this section, we explain our choices for the
building blocks for strong and mobile identity federation.

We chose Shibboleth to be the FIM system because it is used in the HAKA federa-
tion. OpenID is not widely used in Finland since other stronger authentication methods
such as TUPAS are available. The second reason for our choice is that the installation
packages, source code, configuration files and other information are available on the
Shibboleth wiki pages [38]. In addition, the use of the HAKA federation is not limited
to Finnish academic institutions. The federation is itself part of a larger Nordic one, the
Kalmar e-identity Union [12]. Shibboleth typically uses password authentication. How-
ever, the HAKA federation is prepared to add other authentication methods: the IdP can
inform the service provider about the used authentication method in SAML attributes
defined in the FunetEduPerson schema [13] and, in the future, the service provider can
also request a specific method.

Strong Authentication with Mobile Phone 77

Another essential building block for strong mobile authentication is the hardware-
based, tamper-proof security module that is used in the mobile phone. There are not
many open source solutions of trusted computing technology that work on mobile
phones and that can be used freely. We chose to use ObC as an example of a trusted com-
puting module. We used N900 phone with ObC emulator. The reason for choosing this
phone is that N900 runs Maemo, an open-source smart phone operating system. It im-
plements the Qt framework and provides the necessary cryptographic components [6].
Similar mobile trusted computing technology is already available in some commercial
smart phones and it is expected to become widely available, even though the technology
has not yet received much public attention.

Based on these building blocks, we designed a protocol that allows the user to au-
thenticate herself to a service in a federated environment. When combined with strong
identity proofing, the authentication is strong because it is based on something known,
a password, and something physical, a mobile phone storing user credentials in the
hardware security module. Our protocol is designed in such a way that the FIM system
or the hardware-security component could be replaced without major changes to the
architecture. Next, we describe the system design and implementation.

5 Design and Implementation

We consider systems where the user has two devices: a computer with a web browser,
which is used for accessing the service, and a mobile phone, which is only used for
authentication. Naturally, a multitasking mobile phone can be used for both purposes at
the same time. We first describe and illustrate the user experience of the system through
screenshots from our functional prototype implementation. Later in Section 5.3, the
implementation architecture will be described.

5.1 Authentication User Experience

The user accesses protected resources in a Service Provider (SP) with his web browser.
The SP redirects the connection to an IdP. Optionally, the user may be allowed to choose
from multiple identity providers on a Where Are You From (WAYF) page. Then, the
browser shows the login form (Figure 2a) where the user types in his username and
clicks the Start Login button. As a result, the browser shows a short session identifier to
the user (Figure 2b) and the authentication session in the IdP is created.

The user then starts on her mobile phone the authentication client, which stores user
credentials with the help of the hardware security module on the phone. The authenti-
cation client connects to a preconfigured IdP with a preconfigured username. If the user
has multiple IdPs or usernames, she is prompted to select from a list (Figure 3a). Then
the authentication client shows the user a list of session identifiers and the user needs
to choose the one also shown in the browser (Figure 3b). The other session identifiers
in the list may correspond to sessions initiated by attackers or to parallel authentication
sessions initiated by the same user on different browsers, or they may be random val-
ues. The user always has to choose from multiple identifiers so that she cannot develop
a habit of automatically clicking Ok.

78 S. Suoranta, A. Andrade, and Tuomas Aura

(a) Login page in the browser (b) Result page with the session ID

Fig. 2. Web browser user interface

After the user has confirmed the session identifier, she still has to enter the PIN code
for accessing her credential in the secure hardware module on the phone (Figure 3c).
The rest of the authentication process takes place automatically between the authenti-
cation client on the phone and the IdP. If the authentication is successful (Figure 3d),
the web browser is granted access to the service. The session management of the SSO
system redirects the browser to the application page.

5.2 Key Design Decisions

Three important design decision were made in the authentication system to make it
easier to deploy and more usable in practical systems. The first design decision was to
build the solution with software on platforms that are open and free to use. In particular,
we did not want the solution to depend on the mobile operators or to be tied into any
other commercial authentication service. Also, the authentication system should not be
limited to any specific geographical region or specific mobile networks. These criteria
exclude the use of the otherwise convenient SIM-based authentication methods. It is
also critical that the SSO system administrators, such as the university IT services, can
continue to enroll their own users as before without depending on an external certifica-
tion or identity proofing services.

The second design choice is that the user initiates both the browser session and the
authentication process. That is, the user has to manually start the authentication client on
the phone rather than being prompted automatically to accept the authentication event.
Event-based implementations would typically require a multitasking operating system
for listening to events on the background and energy-consuming keep-alive messages.
Our user-started application can be easily ported to any mobile phone platform that has
a hardware security module and a data connection. The authentication client could natu-
rally be launched automatically on phones that support some kind of event notifications,
but we did not want to depend on that.

The third important design decision is that there is no direct communication between
the web browser that is used for accessing the service and the mobile phone. The com-
munication takes place via the IdP, with the help of the user who has to confirm the
session identifier. This makes our solution independent of the web browser implemen-
tation and avoids the need for the user to set up a direct communication link, such as
a Bluetooth association, between the two devices. Again, our design choices make the
solution easy to use and to deploy on a broad range of platforms. Next, we describe the
architectural components and the protocol used in the communication.

Strong Authentication with Mobile Phone 79

(a) Authentication client starting page

(b) Confirm session alias (c) The PIN query

(d) Authentication success

Fig. 3. Mobile phone user interface

5.3 Architecture and Protocol

The system architecture and SAuth protocol that connects its parts are depicted in Fig-
ure 4. Andrade [6] gives an even more detailed description. SAuth is a strong authen-
tication method for single sign-on systems that uses the mobile phone as the security
token. Our implementation was written for the Shibboleth single sign-on system [11]
and it uses virtual credentials stored in the mobile phone with the On-board Creden-
tials (ObC) [16] secure hardware platform. Either one of these components could be
replaced with similar technology without major changes to the architecture.

The service client is assumed to be a browser on a PC, although it could also run
on the same mobile phone that is used as the secure token. The client browser does
not require any modifications. The service provider (typically a web server) is left out
from the architecture diagram because it only forwards the connection to the IdP in
the beginning and grants access to the service after successful authentication, as always
in web SSO systems. The essential modifications were done to the Shibboleth IdP. An
extension called Authentication Service (AuS) is added to the IdP to handle the user
authentication with another device than the one accessing the service. Two software

80 S. Suoranta, A. Andrade, and Tuomas Aura

Fig. 4. SAuth implementation overview [6]

components were developed for the mobile phone: a Qt authentication client that han-
dles the communication with the AuS and an ObC module that is executed within the
secure environment and takes care of the user credentials.

When the user initiates the authentication process in the web browser, the AuS mod-
ule on the IdP creates a session identifier and stores the session information in its
database. The user then starts the authentication client on the mobile phone, which
connects to the IdP and sends the username to it. Based on the username, the AuS finds
the pending authentication sessions from the database and sends their session identi-
fiers to the authentication client. After the user has chosen one session identifier, a sim-
ple public-key-based challenge-response protocol takes place between the AuS and the
hardware security module on the phone. When the IdP has verified the user signature,
it redirects the web browser to the actual service. Since the communication between
the mobile phone and the IdP takes place over the Internet, the phone must have a data
connection. The connections between the client browser and IdP, and between the IdP
and mobile phone, are secured with TLS. While the authentication process takes place
on the phone, the web browser polls for its completion with Javascript. As a standard
backup, if the browser does not support Javascript, the user will have to click on a link
on the IdP web page after completing the authentication on the phone.

5.4 Preventing Man-in-the-Middle Attacks

In order to guarantee that the same user controls both devices during the authentication,
the user must compare the session aliases shown to her in the web browser and in the

Strong Authentication with Mobile Phone 81

Fig. 5. Session alias input

mobile phone. The AuS creates a unique session identifier (alias) for each username
that starts authentication on a browser as shown above in Figure 3b. If there is more
than one session associated with the same username, it could indicate an attacker trying
to gain access. Since multiple identifiers are always shown to the user, even a careless
user is unlikely to accept one that corresponds to the attacker session.

However, we implemented a design alternative for the cases when the IdP detects
multiple authentication sessions for the same user: the AuS may request the user to
type in on the mobile phone the session alias, as shown in Figure 5. This reduces fur-
ther the likelihood that a careless user will accept the wrong session identifier. It also
solves denial-of-servie (DoS) problems in situations where an attacker has opened a
large number of incomplete authentication sessions. In that case, the identifiers do not
need to be sent to phone or shown to the user. Instead, the user is asked to type in the
correct session alias. We have left this mechanism as a configuration option in the AuS.

5.5 Mobile Phone Hardware Security Module

The actual identification of the user is achieved by a challenge-response authentication
protocol with digital signatures created on the mobile phone. The private signature key
is stored securely using the ObC hardware-based security module which guarantees that
the key never leaves the secure environment unsealed [16]. While the hardware security
module could also store passwords and symmetric keys, digital signature schemes offer
optimal levels of authentication, integrity and non-repudiation while strongly resisting
forgery. Public key cryptography is now feasible on most mobile devices, and hardware
security (mobile trusted computing) technology with public-key support is becoming
available on consumer phones. Furthermore, the credentials are protected from misuse
by the PIN-based access control. Any operation on these credentials has to be authorized
with the correct PIN. This helps protect the user credentials if the phone is lost or stolen.
In our implementation, the user has at most three attempts to get the PIN right or,
otherwise, the credentials will be blocked and the user will not be able to authenticate.

Because mobile phones have only small keyboards that are not nice for typing in a
lot of information, we store the IdP address and the username in an XML configuration
file on the phone. An example is shown in Figure 6. The idp field is the URL of the
IdP with the SAuth authentication module. The user field contains the username. The
id field identifies the user private key in the ObC credential manager.

The user public key naturally needs to be registered with the IdP. In our implemen-
tation, the enrollment and updating of the keys is done manually in a way similar to

82 S. Suoranta, A. Andrade, and Tuomas Aura

Fig. 6. Example configuration file

how passwords are managed in most SSO systems. A password-based online enroll-
ment protocol could speed up the deployment of the strong authentication method in
a system where users already have passwords. However, bootstrapping with a weaker
authentication method is not acceptable if the goal is strong personal authentication,
and manual user registration with effective identify proofing is required. Alternatively,
the authentication could be based on public-key certificates issued by a third party or
on some other commercially available online authentication method.

6 Discussion

The design of our system is generic in the sense that it is not exclusive to a specific
SSO or trusted-computing technology. This applies to the protocol as well as to the
implementation itself. Both can be easily replaced with other similar technologies. For
instance, our implementation uses Shibboleth as the base SSO system but it could be
easily ported to another system such as OpenID because the AuS is built as a Java servlet
extension, which is fairly independent from the rest of the SSO system. The mobile
authentication client, on the other hand, was designed with a simple interface that allows
other credential managers similar to ObC to be used. This modularity enhances the
availability of the solution as well as eases its integration with other technologies.

If the IdP has a contract with a mobile operator, even SIM-card-based authentication
could be offered as an alternative to the users who have SIMs from co-operating mobile
operators. For most online services, however, it would be impossible to restrict the user
base to the customers of specific mobile operators. Our architecture works equally well
with foreign or anonymous prepaid SIM cards, which are popular in some countries.

The security level of our solution varies depending on the chosen trusted computing
technology and credential provisioning process. ObC is considered to be tamper-proof.
If an off-the-shelf Android phone with a software-based security module is used instead
of the hardware-based one, the security level is lower because mobile phones can be
hacked. However, the security module can be changed to whatever is available, and even
the software modules are better than nothing. Moreover, the security of the credential
provisioning depends on the processes of the IdP, which takes care of the initial identity
proofing and credential distribution.

We have chosen not to use a direct network connection between the client computer
and the mobile phone. The user initiates both the browser and authentication-client
connections to the IdP and compares the session aliases, thus proving that she has both
devices. This way, the user is in charge of the authentication process and no attacker
can gain access to the service. Moreover, the user interface design prevents a careless
user from blindly accepting incoming authentication requests. A more typical design

Strong Authentication with Mobile Phone 83

would be to couple the devices together with a local-area radio link, e.g. Bluetooth,
or some other other local communication channel, such as the camera in the mobile
phone. We feel that setting up such connections is tedious to the user, prone to failure,
and puts unnecessary restrictions of the types of devices used. On the other hand, our
solution does not work if the mobile phone is offline. Moreover, even though usability
of pairing mechanisms have been tested and our solution works in somewhat similar
way, usability testing would be interesting since the beginning of the authentication
process is different in our system.

Our system can be taken into use incrementally. All users of an IdP do not need to
have their identity verified strongly in the start. Information about the identity proofing
and authentication methods and their strength can be delivered to the online services
together with the other attributes e.g. in the SAML messages. The gradual deployment
of the authentication method allows the SP to move to requiring strong authentication
when most of its user identities have been verified strongly. Apart from having a smart
phone with a hardware security feature, there is no need for major one-time investments
to hardware on the user side or for operator contracts on the SP side. Even the hardware
security module on the phone is not absolutely necessary if the SPs are satisfied with
the lower security of software-based credentials. Only the IdP has to update its software
to provide strong authentication in addition to traditional password authentication.

7 Conclusions

We have designed and implemented strong, two-factor authentication with a mobile
phone as security token for a federated single sign-on environment. The architecture is
based on open source components. It is modular and allows replacing the SSO system
and the hardware security module with other similar technologies. Using the system for
user authentication does not require changes to client web browsers or service-provider
applications. The identity provider can take the system into use incrementally, on side
of weaker authentication methods such as passwords. The user takes responsibility for
comparing session identifiers and thus linking the service session and authentication to
each other, which avoids the need for a direct communication link between the browser
and the phone. Altogether, the results of this project show that it is possible to imple-
ment strong personal authentication for an open-source SSO system with low start-up
and operating costs and gradual deployment to a broad range of devices and browsers.

References

1. 3GPP. Generic bootstrapping architecture (GBA). Specification TS 33.220 v. 10.0.0, 3GPP
(October 2010), http://www.3gpp.org/ftp/Specs/html-info/33220.html

2. 3GPP. Generic authentication architecture (GAA); system description. Specification TR
33.919 v. 10.0.0, 3GPP (March 2011)

3. Abe, T., Itoh, H., Takahashi, K.: Implementing identity provider on mobile phone. In: The
2007 ACM Workshop on Digital Identity Management, DIM 2007. ACM (November 2007)

4. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Authentication
Protocol (EAP). RFC 3748 (Proposed Standard), Updated by RFC 5247 (June 2004)

http://www.3gpp.org/ftp/Specs/html-info/33220.html

84 S. Suoranta, A. Andrade, and Tuomas Aura

5. Aboba, B., Simon, D., Eronen, P.: Extensible Authentication Protocol (EAP) Key Manage-
ment Framework. RFC 5247 (Proposed Standard) (August 2008)

6. Andrade, A.: Strong Mobile Authentication in Single Sign-On Systems. Master’s thesis,
Aalto University School of Science (May 2011)

7. Aoyagi, M., Abe, T., Takahashi, K.: Symmetric identity federation for fixed-mobile con-
vergence. In: Proceedings of the 4th ACM Workshop on Digital Identity Management, pp.
33–40 (October 2008)

8. Azema, J., Fayad, G.: M-Shield mobile security technology: making wireless secure. Texas
Instruments, White paper (2008),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
(referred July 4, 2011)

9. Bhargav-Spantzel, A., Squicciarini, A., Bertino, E.: Privacy preserving multi-factor authenti-
cation with biometrics. In: DIM 2006: Proceedings of the Second ACM Workshop on Digital
Identity Management. ACM (2006)

10. Bhatti, R., Bertino, E., Ghafoor, A.: An integrated approach to federated identity and privi-
lege management in open systems. Communications of the ACM 50(2) (February 2007)

11. Carmody, S., Erdos, M., Hazelton, K., Hoehn, W., Morgan, R.B., Scavo, T., Wasley, D.: Shib-
boleth Architecture: Protocols and Profiles. Technical report, Internet2 Middleware Initiative
(September 2005)

12. CSC - IT Center for Science. Kalmar e-identity union linking nordic research networks
(2011), http://www.csc.fi/english/csc/publications/cscnews/2010/4/kalmar/
(referred July 5, 2011)

13. CSC - IT Center for Science. Funeteduperson schema (2011),
http://www.csc.fi/english/institutions/haka/definitions/funeteduperson/
(referred July 5, 2011)

14. CSC - IT Center for Science. Haka federation (2011),
http://www.csc.fi/english/institutions/haka (referred July 5, 2011)

15. DNA mobile network operator. DNA mobile certificate (2011), http://www.dna.fi/
yksityisille/puhe/palvelut/Sivut/DNAMobiilivarmenne.aspx (ref. July 4, 2011)

16. Ekberg, J.-E., Asokan, N., Kostiainen, K., Eronen, P., Rantala, A., Sharma, A.: Onboard cre-
dentials platform design and implementation. Technical Report NRC-TR-2008-001, Nokia
Research Center (2008)

17. Ekberg, J.-E., Asokan, N., Kostiainen, K., Rantala, A.: On-board credentials with open pro-
visioning. Technical Report NRC-TR-2008-007, Nokia Research Center (2008)

18. FiCom Ry. FiCom published application instructions for mobile certificate standard (May
25, 2005) (in Finnish), http://www.ficom.fi/ajankohtaista/
ajankohtaista 1 1.html?Id=1117009845.html (referred July 4, 2011)

19. FiCom Ry. Mobile certificate makes identification simpler (2008) (in Finnish),
http://www.ficom.fi/tietoa/tietoa_5_3.html (rererred July 1, 2011)

20. Finnish Population Register Centre. Fineid citizen certificate (2011), http://fineid.fi
(referred July 1, 2011)

21. Florêncio, D., Herley, C.: A largescale study of web password habits. In: Proceedings of the
16th International Conference on World Wide Web, WWW 2007 (2007)

22. Ideelabor. OpenID in Estonia (2008), http://openiddirectory.com/
openid-providers-c-1.html (referred February 27, 2009)

23. Information society advisory board for creating electrical authentication. Mobile authentica-
tion methods, description and comparison (November 13, 2008) (in Finnish),
http://www.arjen-tietoyhteiskunta.fi/files/185/
mobiilitunnistamismenetelmat.pdf

24. Internet2. Shibboleth (2006), http://shibboleth.internet2.edu/
(referred September 5, 2006)

http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.csc.fi/english/csc/publications/cscnews/2010/4/kalmar/
http://www.csc.fi/english/institutions/haka/definitions/funeteduperson/
http://www.csc.fi/english/institutions/haka
http://www.dna.fi/yksityisille/puhe/palvelut/Sivut/DNAMobiilivarmenne.aspx
http://www.dna.fi/yksityisille/puhe/palvelut/Sivut/DNAMobiilivarmenne.aspx
http://www.ficom.fi/ajankohtaista/ajankohtaista_1_1.html?Id=1117009845.html
http://www.ficom.fi/ajankohtaista/ajankohtaista_1_1.html?Id=1117009845.html
http://www.ficom.fi/tietoa/tietoa_5_3.html
http://fineid.fi
http://openiddirectory.com/openid-providers-c-1.html
http://openiddirectory.com/openid-providers-c-1.html
http://www.arjen-tietoyhteiskunta.fi/files/185/mobiilitunnistamismenetelmat.pdf
http://www.arjen-tietoyhteiskunta.fi/files/185/mobiilitunnistamismenetelmat.pdf
http://shibboleth.internet2.edu/

Strong Authentication with Mobile Phone 85

25. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with open pro-
visioning. In: Proceedings of the 4th International Symposium on Information, Computer,
and Communications Security, ASIACCS 2009 (2009)

26. Li, X., Ma, J., Park, Y., Xu, L.: A usim-based uniform access authentication framework in
mobile communication. EURASIP Journal on Wireless Communications and Networking -
Special Issue on Security and Resilience for Smart Devices and Applications (January 2011)

27. Messerges, T.S., Dabbish, E.A.: Digital rights management in a 3g mobile phone and beyond.
In: DRM 2003: Proceedings of the 3rd ACM Workshop on Digital Rights Management, pp.
27–38. ACM, New York (2003)

28. Mizuno, S., Yamada, K., Takahashi, K.: Authentication using multiple communication chan-
nels. In: ACM Workshop on Digital Identity Management (2005)

29. NorthID. Operations models for electrical authentication and identity management. Work-
shop material (September 15, 2009) (in Finnish)

30. OpenID.net. Get an OpenID (2006), http://openid.net/get-an-openid/ (referred July
1, 2011)

31. OpenID.net. Openid.net website (2008), http://openid.net/ (referred December 30,
2008)

32. Ragouzis, N., Hughes, J., Philpott, R., Maler, E., Madsen, P., Scavo, T.: Security assertion
markup language (SAML) v2.0 technical overview. Technical report, OASIS (March 25,
2008)

33. Rahnama, B., Elci, A., Celik, S.: Securing rfid-based authentication systems using parsekey+.
In: SIN 2010: Proceedings of the 3rd International Conference on Security of Information
and Networks (September 2010)

34. Recordon, D., Reed, D.: OpenID 2.0: A platform for user-centric identity management. In:
ACM Workshop on Digital Identity Management, DIM (2006)

35. RSA Security. RSA SecureID (2009), http://www.rsa.com/node.aspx?id=1156 (re-
ferred July 4, 2010)

36. RSA Security. Software authenticators (2011), http://www.rsa.com/node.aspx?id=1313
(referred July 4, 2011)

37. Sharma, A.K.: Onboard credentials: Hardware assisted secure storage of credentials. Mas-
ter’s thesis, Helsinki University of Technology (2007)

38. Shibboleth. Wiki (2011), https://wiki.shibboleth.net/ (referred July 5, 2011)
39. Sun, S.-T., Hawkey, K., Beznosov, K.: OpenIDemail enabled browser: Towards fixing the

broken web single sign-on triangle. In: DIM 2010: Proceedigns of the 6th ACM Workshop
on Digital Identity Management, October 8. ACM (2010)

40. Suoranta, S., Heikkinen, J., Silvekoski, P.: Authentication Session Migration. In: Aura, T.,
Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS, vol. 7127, pp. 17–32. Springer, Hei-
delberg (2012)

41. The Finnish Bankers’ Association. Banks’ tupas certification service for service providers
(October 2005),
http://www.pankkiyhdistys.fi/sisalto/upload/pdf/tupasV21eng.pdf
(ref. September 8, 2006)

42. Trusted Computing Group. Trusted platform module (2011),
http://www.trustedcomputinggroup.org/developers/trusted_platform_module/
(referred July 4, 2011)

43. Virtanen, M.: Mobile electronic id. Master’s thesis, Aalto University School of Science and
Technology (2010)

http://openid.net/get-an-openid/
http://openid.net/
http://www.rsa.com/node.aspx?id=1156
http://www.rsa.com/node.aspx?id=1313
https://wiki.shibboleth.net/
http://www.pankkiyhdistys.fi/sisalto/upload/pdf/tupasV21eng.pdf
http://www.trustedcomputinggroup.org/developers/trusted_platform_module/

Measuring SSL Indicators on Mobile Browsers:
Extended Life, or End of the Road?

Chaitrali Amrutkar1, Patrick Traynor1, and Paul C. van Oorschot2

1 Georgia Tech Information Security Center (GTISC),
Georgia Institute of Technology

{chaitrali,traynor.cc}@gatech.edu,
2 School of Computer Science,

Carleton University, Ottawa
paulv@scs.carleton.ca

Abstract. Mobile browsers are increasingly being relied upon to perform secu-
rity sensitive operations. Like their desktop counterparts, these applications can
enable SSL/TLS to provide strong security guarantees for communications over
the web. However, the drastic reduction in screen size and the accompanying re-
organization of screen real estate significantly changes the use and consistency of
the security indicators and certificate information that alert users of site identity
and the presence of strong cryptographic algorithms. In this paper, we perform the
first measurement of the state of critical security indicators in mobile browsers.
We evaluate ten mobile and two tablet browsers, representing over 90% of the
market share, using the recommended guidelines for web user interface to con-
vey security set forth by the World Wide Web Consortium (W3C). While desk-
top browsers follow the majority of guidelines, our analysis shows that mobile
browsers fall significantly short. We also observe notable inconsistencies across
mobile browsers when such mechanisms actually are implemented. Finally, we
use this evidence to argue that the combination of reduced screen space and an
independent selection of security indicators not only make it difficult for experts
to determine the security standing of mobile browsers, but actually make mo-
bile browsing more dangerous for average users as they provide a false sense of
security.

1 Introduction

Mobile browsers provide a rich set of features that often rival their desktop counter-
parts. From support for Javascript and access to location information to the ability for
third-party applications to render content through WebViews, browsers are beginning
to serve as one of the critical enablers of modern mobile computing. Such functionality,
in combination with the near universal implementation of strong cryptographic tools
including SSL/TLS, allows users to become increasingly reliant upon mobile devices
to enable sensitive personal, social and financial exchanges.

In spite of the availability of SSL/TLS, mobile users are regularly becoming the
target of malicious behavior. A 2011 report indicates that mobile users are three times
more likely to access phishing websites than desktop users [18]. Security indicators (i.e.,
certificate information, lock icons, cipher selection, etc.) in web browsers offer one of

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 86–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 87

the few defenses against such attacks. A user can view different security indicators and
related certificate information presented by the browser to offer signals or clues about
the credibility of a website. Although mobile and tablet browsers appear to support
similar security indicators when compared to desktop browsers, the reasons behind the
increasing number of attacks on mobile browsers are not immediately clear.

In this paper, we perform the first comprehensive empirical evaluation of security
indicators in mobile web browsers. The goal of this work is not to determine if average
users take advantage of such cues, but instead to demonstrate that such indicators are
lacking and thus fail to provide sufficient information for even experts. We believe that
this distinction is critical because it highlights areas where not even the best trained
users will be able to differentiate between malicious and benign behavior. Rather than
an ad hoc analysis, we base our study on the recommendations set forward by the W3C
for user interface security [9] as a proxy for best practices. In particular, we systemat-
ically measure which browsers strictly conform to the absolute requirements and pro-
hibitions of this document. We perform our analysis across ten mobile and two tablet
browsers, representing greater than 90% of the mobile market share [16], and then com-
pare our results against the five most popular desktop browsers.

Our study makes the following contributions:

– Widespread failure to implement recommended security indicators in mobile
browsers: We perform the first systematic and comprehensive comparison between
mobile, tablet and traditional browsers based on the best practices set forth in the
W3C guidelines [9]. Whereas desktop browsers largely conform to these guide-
lines, mobile and tablet browsers fail to do so in numerous instances. We believe
that this makes even expert users subject to attacks including an undetectable man-
in-the-middle.

– Mobile security indicators are implemented inconsistently across browsers:
Our study observed tremendous inconsistency in the presentation and availability
of such indicators in mobile and tablet browsers, in contrast to traditional desktop
browsers. Accordingly, many of the clues experts instruct average users to look for
can no longer reliably be found on these platforms.

– Newest security indicator is largely absent: Extended Validation (EV) SSL indi-
cators and certificates [8,27,34] were designed to improve assurance of the identity
of the certificate holder. While this mechanism is not a requirement of the W3C rec-
ommendations, its use is pervasive in desktop browsers and virtually non-existent
in mobile browsers. Mobile users are therefore unable to determine if certificates
have undergone so-called extended validation, and sites using these certificates may
be unable to justify their significant monetary investment in them.

Our measurements and observations from examining the most widely used mobile
browsers lead us to make a number of bold assertions which we expect will be viewed
as controversial, and thus worthy of discussion within the community. (1) Browser de-
signers have been forced by the dramatic reduction in screen space to sacrifice a number
of visual security features. The determination of which features are the most useful ap-
pears to have been by independent processes, as reflected in the different subsets of
security indicators implemented across the mobile platforms. (2) Previous studies have

88 C. Amrutkar, P. Traynor, and P.C. van Oorschot

overwhelmingly demonstrated that average users simply do not understand security in-
dicators even on desktop browsers [21–23, 25, 36, 38]. Our measurements demonstrate
that the display of security indicators on mobile platforms are considerably worse, to the
extent that we as experts cannot express confidence in having sufficient information to
take proper decisions. Consequently, we assert that the role of security indicators in mo-
bile browsers offers little more than a false sense of security. The security user interface
must therefore either be dramatically improved, to provide indicators of demonstrable
use, or should be considerably simplified, to remove unusable, unreliable, or mislead-
ing artifacts. (3) We argue that the current practice of repeatedly forcing a user-base
that is largely security un-savvy to make subtle security decisions is a losing game. Mi-
nor tweaks to the wordings of certificate interface dialogues, for example, may reach a
slightly higher local maxima in terms of security improvements, but are highly unlikely
to attain a more global maxima offering demonstrably better security. Given the real es-
tate constraints of the increasingly dominant mobile platforms, our evidence shows that
this current practice has actually resulted in a decrease in overall security signaling.
Consequently, we raise questions not only about the viability of Extended Validation
(EV) SSL certificates, but about the ongoing viability of SSL indicators themselves due
to the inability to convey accurate, reliable information to users as necessary for subtle
security decisions.

For these reasons, we believe that a measurement study as reported in the current
paper is a requisite first step for our community to address these difficult issues and
deal with these problems head-on.

The remainder of our paper is organized as follows: Section 2 explains the manda-
tory elements of the W3C guidelines; Section 3 provides the primary results of our
evaluation; Section 4 presents ways in that a user can be misled about the identity of a
website or the use of encryption and attacks that are enabled by this confusion; Section 5
discusses the presence of EV-SSL, the newest security indicator; Section 6 provides a
discussion of our findings; Section 7 presents an overview of related research; and Sec-
tion 8 offers concluding remarks.

2 Background on W3C Recommendations

The World Wide Web Consortium (W3C) has defined user interface guidelines [9] for
the presentation and communication of web security context information to end-users
of both desktop and mobile browsers.

We chose a subset of the absolute requirements (MUST) and prohibitions (MUST
NOT) specified in the W3C guidelines.1 We omitted the guidelines represented by
clauses including the MAY, MAY NOT, SHOULD and SHOULD NOT keywords as
they represent the optional guidelines [3]. We classify the W3C guidelines into four
categories: identity signal, certificates, robustness and TLS indicators.

1) Identity signal: availability: The security indicators showing identity of a website
MUST be available to the user either through the primary or the secondary interface at
all times.

1 The guidelines deemed to be the most critical, definitively testable and enabling attacks when
violated were selected based on the authors’ experience and knowledge of the area of SSL
indicators.

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 89

Table 1. Details of the browsers used for experimental evaluation. We selected Android browser
version 2.3.3 since it has the highest market share among the available Android platforms [15].
(*: The version numbers of these browsers were not apparent. We have used the default browsers
shipped with the referenced version of the OS.)

Category Browser Name Version Rendering Engine Operating System Device

Mobile

Android 2.3.3 Webkit Android 2.3.3 Nexus One
Blackberry 5.0.0 Mango Blackberry OS 5.0.0.732 Bold 9650
Blackberry 6.0.0 Webkit Blackberry OS 6 Torch 9800

Chrome Beta 0.16.4130.199 Webkit Android 4.0.3 Nexus S
Firefox Mobile 4 Beta 3 Gecko Android 2.3.3 Nexus One

Internet Explorer
* Trident

Windows Phone LG-C900
Mobile 7.0.7004.0 OS

Nokia Browser 7.4.2.6 Webkit Symbian Belle Nokia 701

Opera Mini
6.0.24556 Presto Android 2.3.3 Nexus One

5.0.019802 Presto iOS 4.1 (8B117) iPhone
Opera Mobile 11.00 Presto Android 2.3.3 Nexus One

Safari * Webkit iOS 4.1 (8B117) iPhone

Tablet
Android * Webkit Android 3.1 Samsung Galaxy
Safari * Webkit iOS 4.3.5 (8L1) iPad 2

Desktop

Chrome 15.0.874.106 Webkit OS X 10.6.8 –
Firefox 7.0.1 Gecko OS X 10.6.8 –

Internet Explorer 8.0.7600.16385 Trident Windows 7 –
Opera 11.52 Presto OS X 10.6.8 –
Safari 5.1.1 Webkit OS X 10.6.8 –

2) Certificates: required content: In addition to the identity signal, the web browsers
MUST make the following security context information available through information
sources (certificates): the webpage’s domain name and the reason why the displayed
information is trusted (or not).
3) Robustness: visibility of indicators: Web content MUST NOT obscure the security
user interface.
4) TLS indicators:
a) Significance of presence: Any UI indicator (such as the padlock) MUST NOT signal
the presence of a certificate unless all parts of the webpage are loaded from servers
presenting at least validated certificates over strongly TLS-protected interactions.
b) Content and Indicator Proximity: Content MUST NOT be displayed in a manner
that confuses hosted content and browser chrome2 indicators, by allowing that content
to mimic chrome indicators in a position close to them.
c) Availability: The TLS indicators MUST be available to the user through the primary
or the secondary interface at all times.

3 Empirical Observations

We evaluate ten mobile and two tablet browsers against the W3C recommended prac-
tices for security indicators. The details of the browsers are provided in Table 1. For
each of the guidelines described in Section 2, we create and run a set of experiments
to verify compliance on all the candidate browsers and record our observations. All the
experiments were performed on web browsers on real mobile phones, and are recreated

2 A browser chrome refers to the graphical elements of a web browser that do not include web
content.

90 C. Amrutkar, P. Traynor, and P.C. van Oorschot

Table 2. Results of experiments on candidate mobile browsers to test compliance with the first
three W3C guidelines given in Section 2. Each guideline column consists of sub-columns stating
the experiments performed on the browsers. A × implies that the browser does not comply with
the respective W3C guideline. A · implies that the browser complies with the respective W3C
guideline. NA: Implies that the concerned experiment is not applicable to that browser. Note that
all the desktop browsers are compliant to the same guidelines.

Mobile and Tablet 1) Identity signal: availability 2) Certificates: required content Robustness
Browsers Owner Cert issuer’s Domain name Information on Content does not

(See Table 1 for versions) information information available? why certificate obscure indicators
available? available? trusted available? on the address bar?

Android · · · × ×
Blackberry Mango · · · · NA

Blackberry Webkit · · · · ×
Chrome Beta · · · × ·

Firefox Mobile · · · × ×
iPhone Safari × × × × ×

Nokia Browser · · · × ×
Opera Mini × × × × ×

Opera Mobile × × × × ×
Windows IE Mobile × × × × ×

Safari on iPad 2 × × × × ·
Android on Galaxy · · · × ×

in the respective emulators to generate many of the figures throughout the paper. The
browser versions used in our evaluation are approximately the latest as of April 20th,
2012. Tables 2 through 4 provide the synopsis of the results of our experiments.

3.1 Identity Signal: Availability

An identity signal contains information about the owner of a website and the corre-
sponding certificate issuer. Before issuing a certificate, the certificate provider requests
the contact email address for the website from a public domain name registrar, and
checks that published address against the email address supplied in the certificate re-
quest. Therefore, the owner of a website is someone in contact with the person who
registered the domain name. Popular browsers represent the owner information of a
website using different terminology including owner, subject, holder and organization.

We visited a public webpage presenting a trusted root certificate from all the candi-
date browsers. We then evaluated the browsers for the presence of identity signal, either
on the primary or the secondary interface.

Observations: The IE Mobile, iPhone and iPad Safari, and Opera Mini and Mobile
browsers do not provide a user interface to view certificates. Accordingly, none of these
five browsers comply with the W3C recommendations. We note that when a website
presents a certificate that is from a Certificate Authority (CA) not from a trusted root,
all the browsers provide an interface to view the certificate via an error message. The
Android mobile and tablet, Blackberry Mango and Webkit, Chrome Beta and Nokia
browsers always allow a user to view certificates (both trusted and untrusted) and

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 91

therefore comply with this guideline. A user is required to click the lock icon to view
certificate information on the Chrome Beta and Blackberry Mango browsers. However,
the browsers do not provide any visual indication to the user about this process of ac-
cessing the certificate information. Browsers supporting a UI for viewing certificate
information provide a clear indication in the “options” in the browser menu. Although
the Firefox Mobile browser does not support a certificate UI, it displays the identity
information of a website when the site identity button is clicked. All desktop browsers
comply with this guideline. Table 2 provides the summary of our results.

3.2 Certificates: Required Content

In addition to the identity signal content, a certificate from a website must provide
the same website’s domain name and the reason why the displayed information is
trusted (or not). Trust reasons include whether or not a certificate was accepted interac-
tively, whether a self-signed certificate was used, whether the self-signed certificate was
pinned to the site that the user interacts with, and whether trust relevant settings of the
user agent were otherwise overridden through user action. We believe that information
such as “certificate is implicitly trusted” and “the certificate chain is trusted/valid” also
conveys the reason behind a browser trusting or not trusting a particular website.

We analyzed the candidate browsers for the presence of the required certificate con-
tent by visiting a website that uses strongly TLS-protected connection with its clients.

Observations: The IE Mobile, iPhone and iPad Safari, and Opera Mini and Mobile
browsers do not provide a user interface to view certificates from trusted CAs. There-
fore, these browsers fail to meet the W3C guideline. Additionally, even though the
remaining mobile and tablet browsers provide a user interface to view certificate infor-
mation, they do not provide an explanation on why a particular certificate is trusted.
Only the Blackberry Mango and Webkit browsers comply with the guideline by mak-
ing all the required parts of a certificate available. When a website presents a certificate
from a trusted CA, the Blackberry Mango and Webkit browsers show the reason “cer-
tificate is implicitly trusted”. Therefore, all but two mobile and tablet browsers fail to
meet this W3C guideline. All desktop browsers follow this guideline correctly. Table 2
provides the summary of our results.

3.3 Robustness: Visibility of Indicators

The TLS indicators generally found on the primary interface are lock icon, https
URL prefix, URL coloring and site identity button. Typically, the address bar in a web
browser holds these indicators. Therefore, we examined whether web content over-
writes or pushes the address bar out of a user’s view during browsing.

Observations: Presumably, in order to free up screen real estate for other purposes,
the address bar on all but two mobile and tablet browsers is overwritten by web con-
tent once a webpage is rendered and/or when a user starts interacting with the page.
The IE Mobile browser always displays the address bar in the portrait view. However,
the address bar is never displayed in IE Mobile when a user interacts with a webpage in
the landscape mode. The Chrome beta browser makes the address bar persistently avail-
able in both the portrait and landscape modes. Out of the two tablet browsers, only the

92 C. Amrutkar, P. Traynor, and P.C. van Oorschot

Table 3. Results of experiments on candidate mobile browsers to test compliance with the W3C
guidelines 3a, 3b, and 3c given in Section 2. The symbol notation is as defined in Table 2. ‘s’:
Implies that the https URL prefix is present on the ‘s’econdary interface.

Mobile and Tablet TLS indicators
Browsers 3a) significance of presence 3b) position 3c) availability

(See Table 1 for versions) Mixed content: Mixed content: Favicon not next https prefix Lock shown? Cipher details
no lock shown? no https shown? to lock icon? available? available?

Android Open lock with × × ·(s) · ×
a question mark

Blackberry Mango × × · ·(s) · ·
Blackberry Webkit × × · ·(s) · ·

Chrome Beta Closed lock with https striked · ·(s) · ·
a cross on top through

Firefox Mobile No security × · ·(s) · On clicking the ×
indicators shown site identity button

iPhone Safari · × · ·(s) · ×
Nokia Browser · × · ·(s) · ×

Opera Mini · × · ·(s) · ×
Opera Mobile · × · ·(s) · ×

Windows IE Mobile × × · ·(s) · ×
Safari on iPad 2 · × · ·(s) · ×

Android on Galaxy Open lock with × · ·(s) · ×
a question mark

Table 4. Results of experiments on desktop browsers to test compliance with the guidelines in
Table 3. The symbol notation is as defined in Table 2. ‘p’: Implies that the https URL prefix is
present on the ‘p’rimary interface.

Desktop Browsers TLS indicators
(See Table 1 3a) significance of presence 3b) position 3c) availability
for versions) Mixed content: Mixed content: Favicon not next https prefix Lock shown? Cipher details

no lock shown? no https shown? to lock icon? available? available?

Chrome Lock with a × · ·(p) · ·
yellow triangle

Firefox · × · ·(p) · On clicking the

site identity button ·
IE · × · ·(p) · ×

Opera · × · ·(p) · ·
Safari · × · ·(p) · ×

tablet Safari browser avoids the security indicators on the address bar being overwritten
by a webpage’s content, therefore allowing a persistent view of the security indicators
on the primary interface. The Android tablet browser hides the address bar once a web-
page is rendered. Tables 2 shows that the mobile and tablet browsers do not follow this
guideline unlike the desktop browsers.

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 93

Fig. 1. The address bar of the Android browser when a webpage over SSL is loaded. The browser
places the favicon adjacent to the lock icon, thereby violating the W3C guideline 3b described in
Section 2. The star icon to the right of the address bar is to bookmark the webpage.

3.4 TLS Indicators

TLS indicators include the https prefix, the padlock icon, information about the ci-
phers used in the connection and URL coloring (or site identity button) to depict the
difference between EV-SSL and SSL certified webpages.

a) Significance of presence: If a web browser displays a TLS indicator for the presence
of a certificate for a webpage consisting of content obtained over both http and https
connections (mixed content), this guideline is not followed.

We created a simple webpage that uses a strong TLS connection to retrieve the top-
level resource and embedded a map obtained from a third-party over an unsecured
http connection. We rendered this webpage on the candidate browsers and analyzed
the browsers for the presence of two basic TLS security indicators: the https URL
prefix and the padlock icon. If a browser shows any of these two indicators on a mixed
content webpage, it does not follow the W3C guideline.

Observations: The Blackberry Mango, Blackberry Webkit and IE Mobile browsers
display a lock icon on a webpage holding mixed content, thus failing to meet the W3C
guideline. The Blackberry Webkit and IE Mobile browsers display a mixed-content
warning and, if the user proceeds to the webpage, a lock icon is displayed. The Android
browsers on the mobile and tablet devices present an open lock with a question mark
inside the lock. The Chrome Beta browser displays a closed lock with a cross on top and
a striked through https URL prefix for a mixed content webpage. This behavior of
Android and Chrome is inconsistent with the other browsers. Therefore, it is necessary
for the users of these browsers to understand the meaning of the new symbols in order
to interpret its reference to mixed content on a webpage.

All browsers display the https URL prefix on the primary or the secondary inter-
face. We note that this issue is present even in popular desktop browsers. The behavior
of displaying the https URL prefix on a mixed content webpage fails to meet the
W3C recommendation in the desktop and mobile browsers as shown in Tables 3 and 4.

b) Content and Indicator Proximity: The padlock icon used as a security indicator
and the favicon used as an identity element of a website are two popular elements that
use a browser’s chrome. If a browser allows a favicon to be placed next to the padlock,
an attacker can feign a secure website by mimicking the favicon as a security indicator.
We evaluated this scenario by visiting a webpage over a strong TLS connection from
all candidate browsers and observing the relative locations of the favicon and padlock.

Observations: The Android mobile browser does not follow the W3C guideline. The
browser places the favicon of a webpage beside the padlock icon as shown in Figure 1.
All other browsers adhere to this guideline, as shown in Tables 3 and 4.

94 C. Amrutkar, P. Traynor, and P.C. van Oorschot

Android Mobile Blackberry Mango Blackberry Webkit

Chrome Beta Firefox Mobile Internet Explorer Mobile

Nokia Browser Opera Mini Opera Mobile

iPhone Safari Safari TabletAndroid Tablet

Fig. 2. Security indicators on the primary interface (address bar) of all the mobile and tablet
browsers. Every browser has three screenshots of the address bar: from top to bottom, the websites
are Google over an http connection, Gmail over a secure connection with an SSL certificate and
Bank of America over a secure connection with an EV-SSL certificate.

We observed several inconsistencies in the use and position of the padlock icon and
the favicon in the mobile and tablet browsers. As shown in Figure 2, the favicon is
displayed only on the Android (mobile and tablet), Blackberry Webkit and Firefox Mo-
bile browsers. The remaining mobile and tablet browsers never display a favicon. This
behavior is inconsistent with desktop browsers. We believe lack of screen space to be
one of the drivers behind the removal of the favicon from the mobile environment. In
addition to the almost total lack of use of favicons, we also noticed that the position of
the padlock icon in mobile browsers is inconsistent across different mobile browsers.
In the past, researchers have shown that the padlock icon is the security indicator most
often noticed by users [23,38]. Traditional desktop browsers generally display the pad-
lock icon in the address bar. However, all mobile and tablet browsers except Android
(mobile and tablet), Blackberry Webkit, Chrome Beta and IE Mobile browsers display
the lock icon on the title bar instead of the address bar. We believe that the reason be-
hind this shift of location of the padlock icon in the mobile and tablet browsers is the
non-persistent availability of the address bar to the user. Whenever a user starts interact-
ing with a webpage, most mobile browsers hide the address bar to accommodate more
content on the small screen.

c) Availability: We studied the presence of lock icon, https URL prefix and details
of the cipher used in a TLS connection by visiting a TLS protected webpage from all
candidate browsers. The padlock icon and https URL prefix are primary interface in-
dicators and cipher information is a secondary interface indicator on desktop browsers.

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 95

Observations: Websites handling sensitive digital transactions (such as banks) ask
users to search for the httpsURL prefix to ensure security of their transactions. There-
fore, easy access to the https URL prefix is important. This indicator is present in the
address bar (primary interface) of desktop browsers and is clearly visible to the user at
all times. Among the mobile and tablet browsers, all but the Blackberry Mango browser
display the https URL prefix in the address bar. The Blackberry Mango browser does
not have an address bar and provides a choice to view the webpage’s URL from the
browser’s options. This setting requires a user to be knowledgeable of the change to be
able to find the URL of the current webpage and also makes the https URL prefix a
secondary interface indicator. Although the other mobile browsers display the https
URL prefix in the address bar, they hide the address bar (except Chrome Beta) for bet-
ter usability. In the Chrome Beta browser, if the URL of a webpage is longer than the
screen size, the https URL prefix is hidden. Since a user is required to interact with
the address bar to view the URL prefix of a webpage, the httpsURL prefix becomes a
secondary interface indicator in all mobile and tablet browsers. This increases the like-
lihood of a successful downgrade attack (e.g., SSLstrip [6] attack) on the mobile and
tablet browsers, since a user requires effort to view the https URL prefix.

The information about the ciphers used in setting up the TLS connection between
a website server and the user’s browser is not available in any of the browsers except
Blackberry Mango and Webkit and Chrome Beta. Accordingly, all the mobile and tablet
browsers except three do not comply this W3C guideline for our experiments. Tables 3
and 4 provide the summary of our results.

4 User Deception and Potential Attacks

The W3C user interface guidelines, which we use as a proxy for best practice, are an
effort to communicate security information to users such that they can make informed
decisions about websites that they visit. If these guidelines are not implemented by a
browser, users are more easily misled about the identity of a website or the security of a
connection. We discuss four attacks that are enabled on browsers violating one or more
of the W3C guidelines. Table 5 provides a summary of potential attacks described in
this section on the candidate browsers.

i) Phishing without SSL: An attacker masquerades as a trustworthy entity in a phishing
attack. By closely imitating a legitimate website’s identity information in combination
with lock icon spoofing, a malicious website can launch a phishing attack without SSL
on a browser violating the W3C guidelines 1, 2 and 3b as follows.

An attacker buys a domain name that closely resembles the domain name of the
legitimate website. For example, to spoof www.bankofamerica.com, the attacker
buys the domain name www.bankofamericaa.com. The attacker then imitates the
content of the targeted legitimate website. Instead of spending money on purchasing an
SSL certificate to increase the “false” credibility of the malicious website, an attacker
instead makes the favicon of the malicious website a lock image. Therefore, the closely
imitated domain name provides an impression of correct identity of the intended website
and the spoofed lock provides an illusion of strong encryption.

96 C. Amrutkar, P. Traynor, and P.C. van Oorschot

Table 5. Summary of potential attacks on candidate mobile browsers. A × implies that the attack
is possible. A · implies that the corresponding attack is not possible on the browser.

Attacks And
ro

id

Blac
kb

err
y M

an
go

Blac
kb

err
y W

eb
kit

Chr
om

e Beta

Fire
fo

x M
ob

ile

iP
ho

ne
Safa

ri

Nok
ia

Ope
ra

M
ini

Ope
ra

M
ob

ile

IE
M

ob
ile

Safa
ri

on
iP

ad
2

And
ro

id
on

Gala
xy

Phishing without SSL × · · · · · · · · · · ·
Phishing with SSL · × · · · × · × × × × ·
Phishing using a · × · · · × · × × × × ·
compromised CA
Industrial espionage/ × × × × × × × × × × × ×
Eavesdropping

When this malicious website is rendered in a browser that makes viewing the URL
of the website difficult, situates the favicon next to the padlock icon and does not offer
a UI to view identity information such as website owner’s name, even an advanced user
might be subjected to phishing.

ii) Phishing with SSL: Spoofing only the lock icon may not be adequate to launch
a successful phishing attack. To increase the credibility of a phishing website, the at-
tacker can buy an inexpensive SSL certificate for the website. The presence of a valid
certificate causes a browser to display SSL indicators such as the https URL prefix
and URL coloring (or colored site identity button) in addition to the lock icon in the
browser’s chrome. If a user blindly trusts just these SSL indicators and can not verify
additional identity information of the website (violation of guideline 1 and 2), he can
be subjected to a phishing attack.

iii) Phishing using a compromised CA: Compromising a CA allows an attacker to
obtain rogue certificates for legitimate websites. There have been several such attacks
recently [12,13]. If a user’s browser trusts a CA, the browser will accept all certificates
signed by the CA without showing any warning to the user. This behavior persists even
when the same CA is compromised and the necessary update to remove the trusted CA
from the browser has not been installed. An expert user who is knowledgeable of a CA
compromise can verify every certificate issuer’s organization in the certificate chain,
therefore declining interacting with a malicious website with a rogue certificate. If a
browser fails to meet guidelines 1 and 2, thereby not presenting user interface to enable
certificate viewing, even an expert user could be exposed to a phishing attack.

iv) Industrial espionage / eavesdropping: A man-in-the-middle (network) attacker
can use any one of the cipher downgrade, substituting http for https or inserting
mixed content techniques for user deception to launch an eavesdropping attack on a
user’s session as follows:

SSLstrip attack: The SSLstrip [6] man-in-the-middle attacker sits on a local network
and intercepts traffic. When the attacker detects a request to an encrypted https site,
he substitutes a duplicate of the intended destination as an unencryptedhttp site. This
switching strips away the security that prevents a third party from stealing or modifying

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 97

data, while deceiving the server that an encrypted page has been sent to the client. The
network attacker can also fake a lock icon in the stripped http page, by replacing the
favicon by a lock icon [29]. If the https prefix is not available to a user persistently, he
may not be able to recognize that he is using an unsecured connection by noticing the
change from https to http in the address bar. A browser not displaying the https
prefix persistently does not follow requirement 3c in Section 2.

Cipher downgrade attack: A man-in-the-middle (network attacker) can tamper with
the initial messages sent by a client browser to establish an SSL connection with a
website server. Before a TLS connection is set up, a client and server exchange a list of
ciphers that they support. A network attacker can modify the list of supported ciphers
sent by the client to a list containing only weak ciphers, and then forward the client’s
request/response to the server. On receiving a list of only weak ciphers (e.g., DES-
CBC-SHA), the server can either drop the connection because no ciphers are mutually
supported, or provide support for that cipher and begin an encrypted session with the
weak cipher. When a connection using the weak cipher is initiated, all the data in transit
is protected using the weak cipher’s encryption scheme. This allows a network attacker
to capture the stream of data and break the weak encryption offline. The attack is also
useful to mislead even an expert user that their transactions are over a connection with
strong encryption algorithms, since the SSL indicators such as https URL prefix and
lock icon are present even for a connection using a weak cipher. If a browser does not
display cipher information, it fails to meet the W3C requirement 3c in Section 2.

Mixed content attack: A man-in-the-middle attacker can tamper (e.g., code injection)
with the unencrypted content present on a webpage consisting of mixed content and
replace the original content with any malicious content of his choice. If a web browser
displays SSL indicators for a webpage containing mixed content (violation of guideline
3a), even an expert user may be unable to detect a network attack exploiting the mixed
content on a webpage.

Our experimental results combined with this threat model make the candidate mo-
bile and tablet browsers susceptible to phishing and eavesdropping attacks as shown in
Table 5.

5 Inadequate EV-SSL Differentiation

The W3C guidelines do not establish recommendations for the browser user interface to
signify the difference between EV-SSL [8,34] and SSL certificates. The sole distinction
between an SSL and an EV-SSL certificate from a user’s perspective is the set of indica-
tors on his browser. For example, the Firefox desktop browser uses a green site identity
button to convey the presence of an EV-SSL certificate on a website. However, the site
identity button is blue in the same browser when a website with an SSL certificate is
rendered.

SSL certificates can be ‘domain-validation-only’with minimal verification performed
on the details of the certificate. Since any successful SSL connection causes the pad-
lock icon to appear, users are not likely to be aware of whether the website owner has
been validated or not. Therefore, fraudulent websites have started using inexpensive
domain-validated SSL certificates with minimal verification to gain user trust. EV-SSL

98 C. Amrutkar, P. Traynor, and P.C. van Oorschot

Table 6. Results of whether browsers differentiate between EV-SSL and SSL certified webpages.
A × implies that the browser does not provide differentiating indicators and a · implies the
presence of such indicators in the browser.

And
ro

id

Blac
kb

err
y M

an
go

Blac
kb

err
y W

eb
kit

Chr
om

e Beta

Fire
fo

x M
ob

ile

iP
ho

ne
Safa

ri

Nok
ia

Ope
ra

M
ini

Ope
ra

M
ob

ile

IE
M

ob
ile

Safa
ri

on
iP

ad
2

And
ro

id
on

Gala
xy

EV-SSL v/s SSL × × × × · · × × × × · ×
differentiation

certificates were created to restore confidence among users that a particular website
owner has been subjected to more rigorous vetting than simply determining control of
a domain name [37]. If browsers do not differentiate between SSL and EV-SSL certifi-
cates, then the fundamental motivation [8] behind EV-SSL certificates becomes void.
So too does the incentive for site owners to pay extra for such certificates – an SSL cer-
tificate from Go Daddy costs $12.99/year [1] and an EV-SSL certificate from VeriSign
costs $1499/year [2]. In a browser with no differentiation between SSL and EV-SSL,
both these certificates appear the same from a user’s perspective. An adversary holding
a domain name and willing to spend money for the SSL certificate would then trigger
exactly the same user interface elements to users, and thus appear to provide identical
guarantees as a website certified by the more expensive certificate.

Experimental Observations: We browsed both EV-SSL and SSL certified webpages
using all the candidate browsers. With the exceptions of the Firefox Mobile and the
iPhone and iPad Safari browsers, none of the mobile or tablet browsers display any
indicators that differentiate between EV-SSL and SSL certified webpages. The Firefox
Mobile browser changes the site identity button green or blue to depict the presence of
EV-SSL and SSL certified webpages respectively. The Safari mobile and tablet browsers
use green and blue coloring of the ‘title’ to represent the difference between EV-SSL
and SSL. This behavior of the Firefox Mobile and the Safari browsers is consistent with
their desktop counterparts. All tested desktop browsers indicate the difference between
these two certificate types. Table 6 provides a summary of the results.
We note the following advice within official guidelines from the CA/Browser Forum [5]:

In cases where the relying application accepts both EV and non-EV certificates, it
is recommended that the application’s behavior differ in a distinct way for each type
of certificate. Application developers should consider the EV treatment offered by other
application developers that also recognize EV certificates and, where practical, provide
consistent treatment.

We assert that much more specific advice is essential, for example, in a revision or
extension of the W3C user interface guidelines [9] and potentially in the CA/Browser
Forum’s own recommendations, as well as in appropriate supporting standards.

6 Discussion and Implications

Having performed comprehensive measurements of security indicators in the most
widely used mobile browsers (over 90% of the market share), we now discuss what

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 99

we see to be the implications. We have separated this from our measurements to allow
independent interpretations by others.

It appears quite clear that the lack of available screen real estate has dramatically in-
fluenced the use of security indicators on mobile devices. Whereas traditional browsers
have a considerably richer space budget to accommodate current (and experimental) in-
dicators, mobile browsers struggle to clearly show content, let alone signals of the origin
and security of the content’s connection. Our study suggests that browser vendors have
individually made different decisions to best balance these competing demands, inde-
pendently selecting to implement different subsets of the indicators in use on desktop
browsers. Unfortunately, our study also reveals that the choices made by each browser
removes signals available to users to detect, and possibly avoid, specific attacks—even
if only by expert users. It is not our conclusion that implementing exactly the same
security indicators on mobile platforms is impossible from an engineering perspective;
but rather, the real estate limit of mobile phones makes unclear the means of doing so
in a manner that does not simply overwhelm the content on small mobile screens.

Moreover, even if possible, it is entirely unclear that duplicating all desktop security
indicators on mobile browsers is the best course of action to pursue. Studies over the
last decade have repeatedly shown that average users either ignore or do not understand
browser security indicators [21–23, 25, 36, 38]. While usability and HCI experts have
contributed to some improvements, the community appears to be at a stalemate, lacking
new ideas—even across 10 mobile browsers—to improve (or retain) security signaling
while preserving usability. For example, wording and sequencing of warning dialogs
has arguably been improved, but such changes are minor enhancements at best—and
appear to move us at best to local maxima, constrained by the current set of indicators
and the SSL security framework, while higher global maxima seem beyond reach.

Given these observations, our work reaches the following logical conundrum: Mobile
browsers are currently vulnerable to attacks that could potentially be ameliorated by
implementing known security indicators at least as well as on desktops. These indicators
have not been implemented due to space constraints. Moreover, were these indicators
to be implemented on mobile browsers (likely at the expense of page content), it is
entirely unclear that users would profitably notice them. Accordingly, our community
faces a difficult question:

Should mobile browsers vendors continue to include only a subset of indicators
and provide a false sense of security to even expert users, or implement the full
corpus of indicators (which past studies indicate users will largely ignore) at
the risk of drastically reducing the usability of these applications?

Answering this question invokes a discussion of the limits an SSL security framework,
based on third-party certificates, with trust deriving from a combination of browser
configuration data and user input. A key assumption is that users can be provided with
sufficient interface cues (e.g., regarding the origin and algorithms used to exchange
sensitive content) and then take correct security actions based thereon. However, as the
cited studies (and others) indicate, the largely security un-savvy average user cannot
perform this task. Presented with subtle streams of information, users cannot realisti-
cally be expected to sort out differences between cryptographic algorithms, nor proper

100 C. Amrutkar, P. Traynor, and P.C. van Oorschot

responses to increasing incidents of CA compromise [12, 13]. In short, continuing to
“punt” security decisions to users who, in spite of browsing daily for the past decade
have not become security experts, is a strategy that appears no longer to anyone’s ad-
vantage. Compounded by the screen constraints of mobile devices, and these devices
becoming the dominant means of end-user computing on the planet, continuing the
current approach becomes even less plausible. We argue that something must change.

As a straw-man suggestion, to progress conversation, we encourage discussion of
the following resolution. As mobile users increasingly offload computationally expen-
sive operations to “the cloud” (e.g., complex image rendering), so too might they out-
source more security decisions. Large external organizations or specialist entities are
more likely to have an understanding of the currently appropriate security footing for a
browser (e.g., sufficiently strong algorithms, websites using certificates from bad CAs,
etc.). Accordingly, the average user could be better served by simply receiving a single
indicator representing the opinion of the identity and security of the connection through
one of these entities. Desktop browsers such as Chrome are already beginning to rely
on such services to protect users from malicious downloads and phishing websites, and
other researchers have proposed using CDNs to provide more expensive security ser-
vices (e.g., defense against heap spraying attacks) [28]. Based on browser configuration,
expert users could continue to make their own decisions, perhaps through secondary
interfaces. In particular, given that our study shows that the majority of security infor-
mation available in mobile browsers is in such secondary interfaces, expert users could
look at a more complete set of information than currently available, and make more
informed decisions themselves. This approach would both minimize the space required
for security indicators and would potentially provide a more useful metric for users.

We do not believe that this straw-man proposal is without any issues, but rather that
the community is overdue to directly confront the (lack of) security provided by current
indicators. Our measurement study shows that currently, the value is clearly insufficient.

7 Related Work

TRADITIONAL BROWSER INDICATORS: Traditional desktop browsers contain a range
of security indicators in the chrome of the browser including the lock icon, the https
URL prefix, and certificates. Several studies have indicated that these security cues
used in desktop browsers go unnoticed [21,23,33,34,38] or are absent in websites [35].
Although domain name mismatches between certificates and websites are observed of-
ten [37], Sunshine et al [36] showed that users ignore TLS warnings for domain name
mismatches, and showed that users ignore TLS warnings for expired certificates and
unknown CAs. Moreover, a majority do not understand these warnings. The lock icon
is the security indicator most often noticed [23, 38]. However, even when used as a se-
curity cue by users, many do not fully understand its meaning [21–23] and its absence
also often goes unnoticed [21]. Additionally, the majority of users who rely on the lock
icon remain unaware of its identity feature [21,23,25,38] and do not reliably understand
the concept of certificates [21, 22]. Indicators for newer technologies such as EV-SSL
have also been shown to be ineffective to convey better security to the user as compared
to a simple SSL certificate [17, 27].

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 101

TECHNIQUES FOR BETTER INDICATORS: Several techniques have been proposed to
design better security indicators to prevent potential attacks such as phishing. Researchers
have proposed better warnings [36], more effective interface dialogues [17], browser
plugins [19], trusted path from the browser to the human user [39] and mandatory se-
curity indicators [26] to help users make correct security decisions. Other proposed
security mechanisms include disabling JavaScript in the user browser and forcing per-
sistent visibility of the browser’s location line [24]. Dynamic Security Skins [22] allow
a remote web server to prove its identity in a way that is easy for a human user to ver-
ify and hard for an attacker to spoof. Finally, efforts have been taken [5, 8, 9, 11, 14] to
standardize security indicators and thus minimize confusion across browsers.

MOBILE BROWSER INDICATORS: Almost all the efforts in the area of security indi-
cators in browsers have been focused on desktop browsers. The increasing user base
of mobile web browsers and mobile e-commerce has made mobile browsers attractive
targets for attacks [4, 7, 10, 20, 30–32]. In light of these developments and considering
how the mobile browser user interface differs from desktops, it is important to analyze
and understand the security indicators used in mobile browsers. Although the W3C [9]
guidelines consider mobile browsers in their definitions, a large-scale evaluation of the
state-of-the-art security indicators in mobile browsers has not been carried out.

8 Concluding Remarks

Modern mobile browsers enable a range of sensitive operations over SSL/TLS con-
nections. Although these browsers aim for equivalent functionality to traditional desk-
tops, their smaller screen size has resulted in significant changes to the presentation and
availability of SSL indicators. This paper presents the first large scale, cross-sectional
measurement of this class of applications and compares the security indicators used in
the overwhelming majority of mobile browsers to their traditional desktop counterparts.
Our results are threefold: that mobile browsers implement only a subset of the recom-
mended indicators from the desktop world thus eliminating the opportunity for even
expert users to avoid attacks such indicators might signal, that the subset chosen across
each browser are inconsistent and that the newest indicator (EV-SSL) is virtually un-
seen. Our measurements lead us to the conclusion that current security indicators force
our community to either accept a false sense of security or to argue for the complete
implementation of the W3C’s best practices at the cost of screen space otherwise avail-
able for content. Having presented our empirical evidence of these problems, we argue
for high profile exposure of our results within the security community. Moreover, we
offer a straw-man proposal to motivate a call-to-arms to address mobile browser secu-
rity interface challenges, and better allow informed decisions based on knowledge of
the state-of-the-art.

The importance of mobile browsers is only increasing. In particular, a growing num-
ber of the most popular mobile apps (e.g., Facebook, ESPN) are simply wrappers for
the mobile browser via APIs such as WebViews. This approach provides the advantage
of a consistent user experience across virtually all platforms while drastically reduc-
ing the engineering effort to achieve this feat. In spite of being reliant on the browser,
such apps provide users with none of the traditional indicators of security offered by the

102 C. Amrutkar, P. Traynor, and P.C. van Oorschot

browsers. Specifically, these APIs present all of the content of the browser without any
of the chrome, meaning that all primary and secondary security interfaces are absent. If
such indicators are critical to providing security to browser users, the community must
then confront the question directly and argue decisively for their use. If they are not, the
community should instead argue to remove them entirely to avoid unnecessary use of
precious real estate, user confusion and a false sense of security. Regardless of which
argument is made, the community must face these questions head-on.

References

1. GoDaddy SSL certificate, http://www.godaddy.com/Compare/
gdcompare ssl.aspx?isc=sslqgo016b

2. VeriSign certificate, https://www.verisign.com/ssl/
buy-ssl-certificates/index.html?sl=t72010166130000002
&gclid=CIKMyY2GuKgCFYg32godV2 8Bw

3. Key words for use in RFCs to Indicate Requirement Levels (March 1997),
http://www.ietf.org/rfc/rfc2119.txt

4. Overflow clickjacking (November 2008), http://research.zscaler.com/
2008/11/clickjacking-iphone-style.html

5. Guidelines for the Processing of EV Certificates, version 1.0 (January 2009),
http://www.cabforum.org/Guidelines for the
processing of EV certificatesv1 0.pdf

6. SSLstrip, presented at Black Hat DC (2009),
http://www.thoughtcrime.org/software/sslstrip/

7. Android Browser Exploit (2010), http://threatpost.com/en us/blogs/
researcher-publishes-android-browser-exploit-110810

8. Guidelines for the Issuance and Management of Extended Validation Certificates, version
1.3 (November 20, 2010), http://www.cabforum.org/Guidelines_v1_3.pdf

9. W3C: Web Security Context: User Interface Guidelines (August 2010),
http://www.w3.org/TR/wsc-ui/

10. Web-based Android attack (November 2010), http://www.infoworld.com/
d/security-central/security-researcher-releases-web-
based-android-attack-317?source=rss security central/

11. Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates,
version 1.0 (April 11, 2011), http://www.cabforum.org/
Announcement-Baseline Requirements.pdf

12. Comodo compromise (April 1, 2011), http://www.csoonline.com/
article/678777/comodo-compromise-expands-hacker-talks

13. DigiNotar CA compromise (August 30, 2011),
http://community.websense.com/blogs/securitylabs/archive/
2011/08/30/diginotar-ca-compromise.aspx

14. The CA/Browser forum (April 11, 2011), http://www.cabforum.org/
15. Android OS market share by version (May 2012),

http://developer.android.com/
resources/dashboard/platform-versions.html

16. Mobile Browser Market Share (May 2012), http://gs.statcounter.com/
#mobile browser-ww-monthly-201204-201205

17. Biddle, R., van Oorschot, P., Patrick, A., Sobey, J., Whalen, T.: Browser interfaces and ex-
tended validation SSL certificates: an empirical study. In: Proceedings of the ACM Workshop
on Cloud Computing Security (2009)

http://www.godaddy.com/Compare/gdcompare_ssl.aspx?isc=sslqgo016b
http://www.godaddy.com/Compare/gdcompare_ssl.aspx?isc=sslqgo016b
https://www.verisign.com/ssl/buy-ssl-certificates/index.html?sl=t72010166130000002&gclid=CIKMyY2GuKgCFYg32godV2_8Bw
https://www.verisign.com/ssl/buy-ssl-certificates/index.html?sl=t72010166130000002&gclid=CIKMyY2GuKgCFYg32godV2_8Bw
https://www.verisign.com/ssl/buy-ssl-certificates/index.html?sl=t72010166130000002&gclid=CIKMyY2GuKgCFYg32godV2_8Bw
http://www.ietf.org/rfc/rfc2119.txt
http://research.zscaler.com/2008/11/clickjacking-iphone-style.html
http://research.zscaler.com/2008/11/clickjacking-iphone-style.html
http://www.cabforum.org/Guidelines_for_the_processing_of_EV_certificatesv1_0.pdf
http://www.cabforum.org/Guidelines_for_the_processing_of_EV_certificatesv1_0.pdf
http://www.thoughtcrime.org/software/sslstrip/
http://threatpost.com/en_us/blogs/researcher-publishes-android-browser-exploit-110810
http://threatpost.com/en_us/blogs/researcher-publishes-android-browser-exploit-110810
http://www.cabforum.org/Guidelines_v1_3.pdf
http://www.w3.org/TR/wsc-ui/
http://www.infoworld.com/d/security-central/security-researcher-releases-web-based-android-attack-317?source=rss_security_central/
http://www.infoworld.com/d/security-central/security-researcher-releases-web-based-android-attack-317?source=rss_security_central/
http://www.infoworld.com/d/security-central/security-researcher-releases-web-based-android-attack-317?source=rss_security_central/
http://www.cabforum.org/Announcement-Baseline_Requirements.pdf
http://www.cabforum.org/Announcement-Baseline_Requirements.pdf
http://www.csoonline.com/article/678777/comodo-compromise-expands-hacker-talks
http://www.csoonline.com/article/678777/comodo-compromise-expands-hacker-talks
http://community.websense.com/blogs/securitylabs/archive/2011/08/30/diginotar-ca-compromise.aspx
http://community.websense.com/blogs/securitylabs/archive/2011/08/30/diginotar-ca-compromise.aspx
http://www.cabforum.org/
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://gs.statcounter.com/#mobile_browser-ww-monthly-201204-201205
http://gs.statcounter.com/#mobile_browser-ww-monthly-201204-201205

Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? 103

18. Boodaei, M.: Mobile users three times more vulnerable to phishing attacks (2011),
http://www.trusteer.com/blog/
mobile-users-three-times-more-vulnerable-phishing-attacks

19. Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.: Client-side defense against
web-based identity theft. In: Proc. NDSS (2004)

20. Davies, C.: iPhone Os Safari Vulnerable To DoS Attacks (April 16, 2008),
http://www.iphonebuzz.com/
iphone-safari-dos-bug-discovered-162212.php

21. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2006)

22. Dhamija, R., Tygar, J.: The battle against phishing: Dynamic security skins. In: Proceedings
of the Symposium on Usable Privacy and Security (2005)

23. Downs, J., Holbrook, M., Cranor, L.: Decision strategies and susceptibility to phishing. In:
Proceedings of the Second Symposium on Usable Privacy and Security (2006)

24. Felten, E.W., Balfanz, D., Dean, D., Wallach, D.S.: Intrusion Detection Prevention Web
Spoofing: An Internet Con Game. In: 20th National Information Systems Security Confer-
ence (1997)

25. Friedman, B., Hurley, D., Howe, D., Felten, E., Nissenbaum, H.: Users’ conceptions of web
security: a comparative study. In: CHI Extended Abstracts on Human Factors in Computing
Systems (2002)

26. Herzberg, A., Jbara, A.: Security and identification indicators for browsers against spoofing
and phishing attacks. ACM Transactions on Internet Technology (2008)

27. Jackson, C., Simon, D.R., Tan, D.S., Barth, A.: An Evaluation of Extended Validation and
Picture-in-Picture Phishing Attacks. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC
2007. LNCS, vol. 4886, pp. 281–293. Springer, Heidelberg (2007)

28. Livshits, B., Molnar, D.: Empowering Browser Security for Mobile Devices Using Smart
CDNs. In: Proceedings of the Workshop on Web 2.0 Security and Privacy, W2SP (2010)

29. Marlinspike, M.: More Tricks For Defeating SSL in Practice (2009),
http://www.blackhat.com/presentations/bh-usa-09/
MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf

30. Niu, Y., Hsu, F., Chen, H.: iPhish: Phishing Vulnerabilities on Consumer Electronics. In:
Usability, Psychology, and Security (2008)

31. Porter Felt, A., Wagner, D.: Phishing on mobile devices. In: Web 2.0 Security and Privay
(2011)

32. Resig, J.: iPhone overflow clickjacking (November 2008),
http://ejohn.org/blog/clickjacking-iphone-attack/

33. Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The Emperor’s New Security Indicators.
In: IEEE Symposium on Security and Privacy (2007)

34. Sobey, J., Biddle, R., van Oorschot, P.C., Patrick, A.S.: Exploring User Reactions to New
Browser Cues for Extended Validation Certificates. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 411–427. Springer, Heidelberg (2008)

35. Stebila, D.: Reinforcing bad behaviour: the misuse of security indicators on popular websites.
In: Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest
Group of Australia on Computer-Human Interaction (2010)

36. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: 18th USENIX Security
Symposium Crying Wolf: An Empirical Study of SSL Warning Effectiveness. Work (2009)

37. Vratonjic, N., Freudiger, J., Bindschaedler, V., Hubaux, J.P.: The inconvenient truth about
web certificates. In: The Workshop on Economics of Information Security, WEIS (2011)

38. Whalen, T., Inkpen, K.: Gathering evidence: use of visual security cues in web browsers. In:
Proceedings of Graphics Interface (2005)

39. Ye, Z.E., Smith, S., Anthony, D.: Trusted paths for browsers. ACM Transactions on Informa-
tion and System Security (TISSEC) (May 2005)

http://www.trusteer.com/blog/mobile-users-three-times-more-vulnerable-phishing-attacks
http://www.trusteer.com/blog/mobile-users-three-times-more-vulnerable-phishing-attacks
http://www.iphonebuzz.com/iphone-safari-dos-bug-discovered-162212.php
http://www.iphonebuzz.com/iphone-safari-dos-bug-discovered-162212.php
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
http://ejohn.org/blog/clickjacking-iphone-attack/

Domain-Specific Pseudonymous Signatures

for the German Identity Card

Jens Bender1, Özgür Dagdelen2, Marc Fischlin2, and Dennis Kügler1

1 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
2 Technische Universität Darmstadt, Germany

Abstract. The restricted identification protocol for the new German
identity card basically provides a method to use pseudonyms such that
they can be linked by individual service providers, but not across dif-
ferent service providers (even not malicious ones). The protocol can be
augmented to allow also for signatures under the pseudonyms. In this
paper, we thus view —and define— this idea more abstractly as a new
cryptographic signature primitive with some form of anonymity, and use
the term domain-specific pseudonymous signatures. We then analyze the
restricted identification solutions in terms of the formal security require-
ments.

1 Introduction

The protocols designed for the new German identity card [7] secure the commu-
nication between the card and the reader resp. the terminal. See Figure 1 for an
overview. Initially, the parties run the password-authenticated connection estab-
lishment protocol (PACE) to derive a secure channel between the card and the lo-
cal reader, with the user’s consent who needs to enter the password. Then
the card and the remote end point, called the terminal or service provider, run the
extended access protocol (EAC) to authorize mutually and to establish another
secure channel between these points. In the card authentication step anonymity
is guaranteed by the fact that a large number of cards share the same secret. The
security of these protocols has been analyzed in [4, 6, 12].

The overall design of the identity card includes

Fig. 1. Protocols for the Ger-
man ID Card

another protocol, called restricted identification.
In this optional protocol, card holders can use
domain-specific pseudonyms to interact with ser-
vice providers such that (a) a service provider can
recognize pseudonyms of individual cards and use
this information for the service (domain-specific
linkability), and (b) different service providers can-
not link interactions of one user in their respec-
tive domains (cross-domain anonymity). Although
the concept of restricted identification in [7] —and the Diffie-Hellman based
solution— currently only support recognition of pseudonyms, it can be easily

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 104–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Domain-Specific Pseudonymous Signatures for the German Identity Card 105

extended for more functionality, by allowing users to create signatures under
their pseudonyms.

1.1 Domain-Specific Pseudonymous Signatures

To analyze the protocols of the new German identity card we formally introduce
the concept of domain-specific pseudonymous signatures which captures the sce-
nario of the restricted identification protocols, augmented through signatures,
but also allows to reason about the security of the basic restricted identifica-
tion protocol.1 In a sense, (domain-specific) pseudonymous signatures can be
seen as a relaxed version of group signatures with a limited form of linkability:
While group signature schemes, as formalized in [3], provide a very strong form
of anonymity, preventing an adversary to identify signers even when knowing
the secret keys, pseudonymous signatures are designed specifically to allow a
well-defined verifier to link signatures.

The group-signature ancestry also lays the ground to model the security of
pseudonymous signatures. As mentioned, according to [3], secure group signature
schemes should satisfy full anonymity, the resistance to identify the origin of
signatures, and full traceability, the ability of the group manager to trace the
origin of a signature with the help of some trapdoor information. The latter
property implies, for example, unforgeability (because a forgery could not be
traced) and non-frameability, saying that a set of malicious parties, potentially
including the group manager, could falsely blame an honest user (which would
again contradict traceability).

Concerning anonymity, we note that the goal of restricted identification is
exactly to allow a service provider to link previously seen pseudonyms. We thus
relax the security requirement for pseudonymous signatures and only demand
cross-domain anonymity, i.e., the inability to link signatures given for different
service providers, even if both of them are malicious. Furthermore, since the
restricted-identification scenario does not involve an authority for traceability,
we revert to unforgeability directly for our setting, meaning that one cannot
forge signatures on behalf of honest users.

We also introduce another property saying that it is infeasible to make the
verifier accept a signature for an invalid domain-specific pseudonym. This as-
sumes a white- or black-listing approach, in the former case making sure that
valid pseudonyms are those in the white list, and in the other case demanding
that the verifier would not accept a black-listed pseudonym. We observe that
this property contrasts with unforgeability which merely protects honest signers
from signature forgeries under their name. While this additional property, which
we call seclusiveness, follows from full-traceability for group signatures, we need
to state it explicitly in our setting without a tracing authority. Roughly, unforge-
ability together with seclusiveness provide a weaker, yet “best-we-can-hope-for”
form of full-traceability for domain-specific pseudonymous signatures.

1 Interestingly, the term “pseudonymous signatures” has occasionally been already
mentioned in the literature, typically referring to regular signatures under pseudo-
nyms [14], but not considered formally, from a cryptographic point of view.

106 J. Bender et al.

1.2 Analysis of the Restricted-Identification Solutions

We then continue to analyze the current solution for restricted identification (and
its signature-augmented version). The basic solution is roughly to give users a
random value x1 and the service provider a certified group element R, such that
the user will derive the domain-specific pseudonym as the Diffie-Hellman key
IR = Rx1 (or, to be precise, the hash value thereof). This value is then sent over
a previously established secure channel to the service provider (but we ignore
the channel part in our analysis).

To achieve the additional unforgeability and seclusiveness properties in the
signature-augmented case the user is instead given a random representation
(x1, x2) of the authority’s public key y, i.e., y = gx1 = gx1

1 gx2
2 for generators

g1, g2 = gz1 . Here, the authority can create such representations easily with the
knowledge of z = logg1 g2. Each domain will again hold a certified group ele-
ment R, and the user will derive once more the domain-specific pseudonym as
the Diffie-Hellman key IR = Rx1 and transmits this value to the provider.

Obviously, if two malicious users could pool their distinct secrets (x1, x2) and
(x′

1, x
′
2) then they could recover the authority’s secret key z. However, we note

that these secrets are protected through the hardware of the identity card and
are not available to users. In a sense, our security analysis relies on this fact,
but at the same time even allows a single (malicious) user access to its secret
key. In case of suspicion of leakage of the authority’s secret key z a new key can
be generated, the old key can be revoked, but white-listing can be used to mark
the user keys under the old key as still valid.

In the signature-augmented version, the user additional signs a message m by
giving two intertwined non-interactive proofs of knowledge (where the message
enters the hash evaluation to derive the challenge non-interactively in the random
oracle model). This first proof shows that the user knows the discrete logarithm
x1 of IR to base R, and the other proof shows that it additionally knows x2 such
that (x1, x2) forms a representation of y = gx1

1 gx2
2 . The first proof is basically

a Schnorr proof of knowledge (PoK) [21], and the second one is an Okamato
PoK [17] but re-using the data from the Schnorr proof.

We show that the basic restricted-identification protocol ensures cross-domain
anonymity according to our notion. Since pseudonyms IR = Rx1 are essentially
Diffie-Hellman keys, this holds under the Decisional Diffie-Hellman assumption.
For the signature-augmented version we show that unforgeability holds as well (in
the random oracle model, and under the discrete log assumption). This follows
from the Schnorr PoK for x1. Seclusiveness follows from the Okamoto proof
showing that the pair (x1, x2) is a representation of y and has thus been issued
by the authority. Here, however, due to the construction we require that no two
malicious users collaborate. As explained above, this is prevented by hiding and
protecting the secret of users within the secure hardware of the chip. Thereby,
users can use their secrets, however, they cannot extract the keys to collude.
Note that the basic version does not implement a signature functionality and
thus cannot satisfy these two notions.

Domain-Specific Pseudonymous Signatures for the German Identity Card 107

1.3 Related Work

As noted above, domain-specific pseudonymous signatures can be seen as de-
scendants of group signatures, only with weaker anonymity requirements but
with domain-specific verifiers. The related concept of ring signatures [20] can
be viewed as “ad-hoc” group signatures without a central manager. For such
schemes, rings of users can be formed at will, and one user can sign on behalf of
the ring, but there is usually no mean to identify the actual signer later. As such,
domain-specific pseudonymous signatures provide stronger notions of traceabil-
ity than ring signatures, but a weaker form of anonymity —the domain holder
can link signatures.

We note that credential systems [5, 8] are very similar to our pseudonymous
signatures, but diverge in some important aspects. Most importantly, creden-
tial systems typically provide multi-show unlinkability, as opposed to our pseu-
donymous signatures. As such, solutions for multi-show credential systems are
usually slightly more complex [9–11]. For one-show solutions, where the user
can use a credential (under a pseudonym) only once, domain-specific linkability
—and therefore cross-domain anonymity— has not been considered before. We
also note that the question of turning cross-domain pseudonymous signatures
into full-fledged multi-show credential systems is beyond the scope of the paper
here: the requirement of recognizing pseudonyms for domain holders is inherent
in the application requirement.

Finally, let us point out that our notion of domain-specific pseudonymous
signatures is close to a recent proposal of Bernhard et al. [2] for defining direct
anonymous attestation (DAA). Their security definition for DAA also resembles
the one for group signature schemes but comes with a limited form of linkability:
signatures of the same user in the same domain (called base there) should be
publicly linkable. At the same time, one should be able to identify signatures
given the user’s secret key, a requirement which we do not impose in our setting.
Moreover, their scenario assumes that linkability must be enforced via crypto-
graphic means, domain-specific pseudonymous signatures allow this by default
through the pseudonyms. Besides minor technical differences concerning secu-
rity in presence of compromised keys or incorporating black-listing, the main
difference to their setting is that our model takes into account the extra layer of
domain-specific pseudonyms and its unlinkability to the pseudonym layer.

Similarly, Wei [22] also uses DAA as a motivation for his work on tracing-by-
linking group signatures, but he considers a weaker form of anonymity where
a signer’s identity is only hidden if he signs at most a fixed number of times
for k ≥ 1. Any additional signature enables to trace back the identity of the
signer by a public algorithm. The approach also includes a notion of k-linkability
which corresponds to (public) traceability and essentially means that more than
k signatures are linkable and allow to identify the origin. It also contains a notion
of non-slanderness which means that no group of malicious users (including the
issuing authority) can sign more than k times such that it points to an honest
user outside of the group. This primitive does not help in our scenario, because
we demand unlinkability only among different domain sectors. Furthermore, our

108 J. Bender et al.

notion of seclusiveness, in contrast with non-slanderness which addresses the
linkability of more than k signatures, refers to the fact that one cannot produce
any signature on behalf of honest users.

The idea of extending restricted identification to allow unlinkable sector sig-
natures has appeared concurrently in [15]. The scheme does not cover the issue
of seclusiveness, though, and is less explicit about the underlying security model,
e.g., it remains unclear if unlinkability holds for multiple signatures. Exploring
such questions and providing sound models, including issues related to black-
listing or white-listing, and to prove security according to these models for the
(augmented) restricted identification protocol of the new German identity cards
is our contribution here.

2 Domain-Specific Pseudonymous Signatures

To simplify the notation we denote by {a}n a set of n elements a1, . . . , an where
the indices i = 1, 2, . . . , n are implicit.

2.1 Preliminaries

Below we define our domain-specific pseudonymous signature scheme first for
static groups. Since both the secret keys of users and the domain keys are cho-
sen by the authority, we can imagine that a sufficiently large set is chosen at
the outset, and individual entries only become active if required. We hence as-
sume an algorithm NymKGen generating the group manager’s key pair, as well
as sufficiently many pseudonyms nym (and secret keys gsk[nym]) and public do-
main keys dpk. Each pseudonym and its secret key can now be combined via an
algorithm NymDSGen to build a domain-specific pseudonym dsnym = nym[dpk]
which, together with gsk[nym] can be used to sign messages.

In addition, we can also introduce the concept of black-lists to the model. For
this, we assume that the list is represented by a (dynamically updated) set B
of domain-specific pseudonyms which have been revoked earlier. We note that,
alternatively, one could employ white-listing where valid pseudonyms are those
included in the list; to revoke such a pseudonym one simply removes the entry
from the white-list.

Definition 1 (Domain-Specific Pseudonymous Signature). A domain-
specific pseudonymous signature scheme is a collection of the following efficient
algorithms NYMS = (NymKGen,NymDSGen,NymSig,NymVf) defined as fol-
lows.

NymKGen(1κ, 1n, 1d) is a probabilistic algorithm which, on input a security pa-
rameter 1κ and parameters 1n, 1d (both polynomial in κ) outputs a pair
(gpk, gmsk) where gpk is the group public key and gmsk the secret key of
the group manager, and outputs n (unique) pseudonyms nym with their cor-
responding secret keys gsk[nym], and d domain descriptions dpk.

Domain-Specific Pseudonymous Signatures for the German Identity Card 109

NymDSGen(nym, gsk[nym], dpk) is a deterministic algorithm which maps a pseu-
donym nym (and its secret key gsk[nym]) and the domain dpk to a domain-
specific pseudonym dsnym = nym[dpk].

NymSig(dsnym, gsk[nym], dpk,m) is a probabilistic algorithm which, on input a
domain-specific pseudonym dsnym, a secret key gsk[nym], a domain dpk, and
message m, outputs the signature σ of m under gsk[nym] for domain dpk.

NymVf(gpk, dsnym, dpk,m, σ,B) is a deterministic algorithm which, on input a
message m and a signature σ together with the group public key gpk, a
domain-specific pseudonym dsnym, the domain’s key dpk, and a list B, out-
puts either 1 (=valid) or 0 (=invalid).

We assume the usual completeness property, that for any honestly generated pa-
rameters, domain-specific pseudonyms, and signatures the verification algorithm
accepts and outputs 1.

Note that we can assume that the group manager uses some standard way of
certification for the public keys dpk given out to registered verifiers, and that
the signing and verification algorithms check the validity of the keys. We thus
often omit this step from the description of protocols.

2.2 Cross-Domain Anonymity

Cross-domain anonymity protects against linking pseudonyms across different
domains —within one domain pseudonyms are meant to be linkable. We define
cross-domain anonymity via a game between the adversary and a left-or-right
oracle which, given two pseudonyms, a message, and a domain, generates a
signature for either the left or the right pseudonym in the domain, according to
a secret random bit b. We assume that the adversary can make adaptive calls to
this left-or-right oracle; this is necessary since we cannot apply a hybrid argument
to reduce such multiple queries to a single one (as opposed to the case of full-
anonymity for group signatures as in [3], where this is possible since anonymity
even holds if the adversary knows the users’ secret keys). The adversary’s goal
is to predict b significantly beyond the pure guessing probability (condition (a)
below).

In addition to challenge queries to the left-or-right oracle, the adversary may
decide to blacklist domain-specific pseudonyms, to create additional signatures
via NymSig, and to corrupt users. For simplicity, we define a version for static
corruptions where all corruptions are made at the outset, before any other oracle
calls are made, and discuss the adaptive version briefly below. To exclude trivial
attacks, we must take into account that domain-specific pseudonyms are in prin-
ciple linkable by the domain holder. Hence, in “transitivity” attacks where the
adversary asks the left-or-right oracle first about a signature for domain-specific
pseudonyms dsnym0, dsnym1 and then for dsnym0, dsnym

′
1 for the same domain,

but dsnym1 �= dsnym′
1, the signatures would point to the same domain-specific

pseudonym if and only if the oracle signs under the left pseudonym. We thus
exclude such queries in condition (b) below.

110 J. Bender et al.

We require another case to be excluded. Namely, the additional signatures
generated through NymSig cannot hide the pseudonyms behind the signatures;
this would require further means like anonymous signatures and would only work
if signatures are not publicly verifiable [13, 23]. Since such extra signatures for
domain-specific pseudonyms would thus also allow to link the origin in the left-or-
right queries to the pseudonyms, we must disallow the adversary from querying
NymSig about domain-specific pseudonyms, which are also used in left-or-right
queries (condition (c) below).

The model below assumes, to the advantage of the adversary, that all pseudo-
nyms, all domain keys, and domain-specific pseudonyms are known at the outset;
only the assignment of pseudonyms to domain-specific pseudonyms remains hid-
den. Nonetheless, we assume that the relation of domains and domain-specific
pseudonyms is known (see below for the motivation). All this is captured by
giving the adversary the corresponding data as sets, with W � D being the set of
all domain-specific pseudonyms dsnym and the corresponding domains dpk. The
adversary will thus attack domain-specific pseudonyms from W. As common, we
measure the adversary’s running time including also all steps of honest parties,
and covering both phases of the adversary.

In the definition, we presume that domain-specific pseudonyms are unique
within a domain; global uniqueness can then be trivially achieved by attaching
the domain key to the pseudonym. Indeed, domain-specific uniqueness will be
later ensured by the unforgeability property anyway.

Definition 2 (Cross-Domain Anonymity). A domain-specific pseudonymous
signature scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is
(n, d, t, Q, ε) cross-domain anonymous with Q = (qc, qs, qt) if for any algorithm
A running in time t, and making at most qc queries to the corruption oracle,
qs queries to the signing oracle, and qt queries to the left-or-right oracle, the
probability that the following experiment returns 1 is at most ε:

Experiment CD− AnonNYMS
A (κ, n, d)

b
$←− {0, 1}

T, S,W,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n, and D = {dpk}d
W = {NymDSGen(nym, gsk[nym], dpk) | nym ∈ N, dpk ∈ D}
W � D := {(NymDSGen(nym, gsk[nym], dpk), dpk) | nym ∈ N, dpk ∈ D}
st← ACorrupt(gpk,W,W � D,N)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

d← AB′,NymSig′,LoR(st)
If A queries B′(dsnym) on input dsnym ∈W

− set B← B ∪ {dsnym}
If A queries NymSig′(dsnym, dpk,m) on input dsnym ∈ W \ B, dpk ∈ D,
and message m

− set S← S ∪ {(dsnym, dpk,m)}

Domain-Specific Pseudonymous Signatures for the German Identity Card 111

− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

If A queries LoR(dsnym0, dsnym1, dpk,m) on inputdsnym0, dsnym1 ∈ W\B
dpk ∈ D, and message m,

− set T← T ∪ {({dsnym0, dsnym1}, dpk,m)}
− find nym0, nym1 ∈ N \ C such that

dsnymi = NymDSGen(nymi, gsk[nymi], dpk) for i = 0, 1
− return ⊥ if no such nym0, nym1 exist,

else return NymSig(dsnymb, gsk[nymb], dpk,m)
Return 1 iff

(a) d = b and
(b) for any ({dsnym0, dsnym1}, dpk,m), ({dsnym′

0, dsnym
′
1}, dpk,m′) ∈ T

we have either {dsnym0, dsnym1} = {dsnym′
0, dsnym

′
1}

or {dsnym0, dsnym1} ∩ {dsnym′
0, dsnym

′
1} = ∅, and

(c) for any (dsnym, dpk,m) ∈ S there is no dsnym′,m′

such that ({dsnym, dsnym′}, dpk,m′) ∈ T.

The probability is taken over all coin tosses of NymKGen, NymSig, and A, and
the choice of b.

We note that the adversary in our game always accesses oracles through their
domain-specific pseudonyms. This is possible since A knows the set W of such
pseudonyms (but not the relation to the pseudonyms nym). Having this list at
the outset is motivated by the fact that the adversary can potentially collect such
domain-specific pseudonyms when acting as a domain holder, where it gets to
learn the domain-specific pseudonyms and signatures under these pseudonyms.
Note that this also allows to link domain-specific pseudonyms dsnym to domain
keys dpk, hence we giveW � D as additional input. This also implies that we can-
not grant the adversary access to another signature oracle which it can provide
nym, dpk,m to get a signature for m under the corresponding dsnym; it would
be easy to check for the validity of the signature under the domain-specific pseu-
donym with the help of W and to link dsnym to nym. In other words, one can
link pseudonyms to their domain-specific pseudonyms given a signature under
the pseudonym for the respective domain.

For an adaptive version, the adversary may interleave Corrupt queries with the
other oracle queries arbitrarily. Then we must ensure that no nym in a Corrupt
query has appeared in an LoR query before, declaring the adversary to lose if
this is the case.

2.3 Unforgeability

Unforgeability of domain-specific pseudonymous signatures follows the basic
paradigm for regular signatures: It should be infeasible to create a valid sig-
nature on behalf of an honest pseudonym for a previously unsigned message.
This should even hold if the adversary knows the group manager’s secret key
(but not the user’s secret key, else trivial attacks would be possible). Since for

112 J. Bender et al.

unforgeability we do not need to hide the link between pseudonyms and domain-
specific pseudonyms, we assume that the adversary simply knows the tuples
(dsnym, nym, dpk) of domain-specific pseudonyms, and corresponding pseudo-
nyms and domain keys. Below we say that the adversary wins if it manages to
forge a signature under a domain-specific pseudonym dsnym∗ which is potentially
derived from some pseudonym nym in some domain dpk; but the adversary does
not to specify these values.

Our notion of unforgeability is weaker than the non-frameability property of
group signatures in the sense that, even though the adversary may know the
group manager’s secret key, it must not collaborate with the group manager
during generation. We again consider only the version of static corruptions, al-
though here it is straightforward to capture adaptive corruptions by giving the
adversary simply the corruption oracle in the second phase, too.

Definition 3 (Unforgeability). The domain-specific pseudonymous signature
scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is (n, d, t, q, ε)-un-
forgeable if any algorithm A, running in time t and making at most q signing
queries, makes the following experiment output 1 with probability at most ε:

Experiment UnforgeNYMS
A (κ, n, d)

S,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n, and D = {dpk}d
W � N� D :={(NymDSGen(nym, gsk[nym], dpk), nym, dpk) |nym∈N, dpk∈D}
st← ACorrupt(gpk, gmsk,W � N� D)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

(m∗, σ∗, dsnym∗)←− AB′,NymSig′,Corrupt(st)
If A queries B′(dsnym) on input dsnym ∈W

− set B← B ∪ {dsnym}
If A queries NymSig′(dsnym, dpk,m) on input dsnym ∈ W \ B, dpk ∈ D,
and message m

− set S← S ∪ {(dsnym, dpk,m)}
− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

Output 1 iff there are nym∗ ∈ N \ C and dpk∗ ∈ D such that
(a) NymDSGen(nym∗, gsk[nym∗], dpk∗) = dsnym∗, and
(b) NymVf(gpk, dsnym∗, dpk∗,m∗, σ∗,B) = 1, and
(c) (dsnym∗, dpk∗,m∗) /∈ S.

The probability is taken over all coin tosses of NymKGen, NymSig, and A.

Note that conditions (a) and (c) also imply that domain-specific pseudonyms
of different users (within a domain) cannot collide, except with negligible prob-
ability. Otherwise, the adversary may corrupt one of the two parties, and any
signature created under the domain-specific pseudonym of the one party would

Domain-Specific Pseudonymous Signatures for the German Identity Card 113

immediately constitute a forgery under the other party’s pseudonym. (In the
above model it would then be more appropriate to let the adversary in calls to
NymSig′ also specify nym, instead of searching for it; since the adversary knows
the list W � N� D it can look this value up.)

2.4 Seclusiveness

Seclusiveness finally considers the case that the verifier would accept a signature
under a domain-specific pseudonym which has not been created by the authority.
Note that this assumes that only the black-listed domain-specific pseudonyms are
available, but not the universe of all created pseudonyms. This is indeed a valid
assumption, following the suggestion in [7] about revocation for pseudonyms
through black-lists, with no intention for white-lists. It is also clear that, unlike in
case of unforgeability, we thus cannot allow the adversary to know the manager’s
secret key; else generating keys for additional users would be easy.

As in unforgeability, we again consider only the version of static corruptions.
One captures adaptive corruptions by giving the adversary simply the corruption
oracle in the second phase, too.

Definition 4 (Seclusiveness). The domain-specific pseudonymous signature
scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is (n, d, t, Q, ε)-se-
cluding with Q = (qc, qs) if any algorithm A, running in time t and making at
most qs signing queries and qc corruption queries, makes the following experi-
ment output 1 with probability at most ε:

Experiment SecNYMS
A (κ, n, d)

W,B,C,N,D← ∅
(gpk, gmsk, {gsk[nym]}n, {nym}n, {dpk}d)← NymKGen(1κ, 1n, 1d)
N = {nym}n and D = {dpk}d
W = {NymDSGen(nym, gsk[nym], dpk) | nym ∈ N, dpk ∈ D}
W � N� D

:= {(NymDSGen(nym, gsk[nym], dpk), nym, dpk) | nym ∈ N, dpk ∈ D}
st←− ACorrupt(gpk,W � N� D)

If A queries Corrupt(nym) on input nym ∈ N
− set C← C ∪ {nym}
− return gsk[nym]

(m∗, σ∗, dsnym∗)←− AB′,NymSig′(st)
If A queries B′(dsnym) on input dsnym ∈W

− set B← B ∪ {dsnym}
If A queries NymSig′(dsnym, dpk,m) on dsnym ∈W \ B, dpk ∈ D,
and message m

− find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
− return NymSig(dsnym, gsk[nym], dpk,m)

Output 1 iff there exists dpk∗ ∈ D such that
(a) NymVf(gpk, dsnym∗, dpk∗,m∗, σ∗,B) = 1
(b) dsnym∗ /∈ W

The probability is taken over all coin tosses of NymKGen, NymSig, and A.

114 J. Bender et al.

3 Construction

The idea of the discrete-log based construction is as follows: The group manager
will hold two generators g1, g2 = gz1 with z ∈ gmsk for which it knows the discrete
log with respect to each other. In addition, it will hold a public key y = gx1 ,
such that it can easily compute many pairs (x1, x2) such that y = gx1

1 gx2
2 with

the help of z; this is the trapdoor property of such values [1, 18]. Each user
pseudonym nym will receive one of these pairs as its secret key gsk[nym]. The
domain parameters are given by values dpk = gr. A user can then compute the
domain-specific pseudonym as dsnym = dpkx1 .

To sign a message the user can then use common discrete-log based protocols
(in the random oracle model) to show that (a) it knows the discrete-log x1 of
dsnym with respect to dpk, and (b) it knows a matching value x2 to this discrete
logarithm x1 such that the pair forms a representation of y. Essentially, this is
accomplished by running the non-interactive version of the Okamoto proof of
knowledge [17] for x1, x2 and y to base g1, g2, where the x1-part can simultane-
ously be used to show knowledge of x1 of dsnym with respect to base dpk. As
usual, the message to be signed enters the hash computations.

Construction 1. The construction of the domain-specific pseudonymous signa-
ture scheme NYMS = (NymKGen,NymDSGen,NymSig,NymVf) is as follows:

NymKGen(1κ, 1n, 1d): Let G = 〈g〉 be a (public) cyclic group of prime order q.
We also assume a public hash function H, modeled as a random oracle in
the security proofs. Choose z ∈R Zq randomly and calculate g1 := g and
g2 := gz. Define gpk := gx1 for random x ∈R Zq. To generate the secrets
for the pseudonyms choose n random elements x2,1, . . . , x2,n ∈R Z∗

q and
calculate x1,i = x − z · x2,i for i = 1, 2, . . . , n. Define gsk[i] := (x1,i, x2,i).
By xj we denote the xj,i when pseudonym i is clear from context. For the
domain-parameters pick random r1, . . . , rd ∈R Z

∗
q and define dpki := gri for

i = 1, . . . , d. Store z in gmsk. (Note that once the values gsk[·] have been
output resp. given to the users, the group manager deletes them.)

NymDSGen(nym, gsk[nym], dpk): Compute and output the domain-specific pseu-
donym nym[dpk] := dpkx1 , which is also sometimes denoted as dsnym when
nym and dpk are known from context.

NymSig(dsnym, gsk[nym], dpk,m): Let a1 = gt11 · gt22 and a2 = dpkt1 , for ran-
dom t1, t2 ∈R Zq. Compute c = H(dpk, dsnym, a1, a2,m). Let s1 = t1− c · x1

and s2 = t2−c ·x2. Then, output σ = (c, s1, s2). (Note that in the Restricted-
Identification protocol the user also sends dsnym which we can include here
in the signature, in order to match the protocol description.)

NymVf(gpk, dsnym, dpk,m, σ,B): To verify a signature perform the following
steps:
1. Parse (c, s1, s2)← σ.
2. Let a1 = yc · gs11 · gs22 and a2 = dsnymc · dpks1 .
3. Output 1 iff c = H(dpk, dsnym, a1, a2,m) and dsnym /∈ B.

Domain-Specific Pseudonymous Signatures for the German Identity Card 115

Revocation Mechanisms. We presented our construction above in terms of
black-listing, revoking fraudulent domain-specific pseudonyms by listing them
explicitly. Alternatively, and our definitions and constructions are robust in this
regard, one can use a white-listing approach to list valid entries only. To rep-
resent the whitelisting approach in our framework any delisted domain-specific
pseudonym from W will be put in B, such that W \ B corresponds to the set
of currently whitelisted entries. Checking for whitelisting thus corresponds to
verifying that the entry is in W \ B in our framework.

Blacklisting and whitelisting is performed by calculating the domain-specific
pseudonym dsnym for domain dpk, but without knowledge of the private keys
x1 and x2. One important difference between black- and whitelisting is that
whitelisting allows to retain security even if authority’s secret key z is compro-
mised. If whitelisting is used it is not strictly required to keep z secret. While
an attacker would be able to construct valid private keys (x1, x2) corresponding
to the group public key y, the corresponding pseudonyms would not be listed
on the whitelist and thus, the signatures would be rejected. Therefore, the at-
tacker would have to find corresponding private keys for given pseudonyms on
the whitelist, which in turn would require to calculate discrete logarithms.

4 Security Analysis

Our proofs work in the random oracle model, and thus, an adversary may also
query a random hash function oracle. By qh, we denote the maximum number
of queries to hash function oracle made by the adversary.

4.1 Number-Theoretic Assumptions

Our proof for the anonymity follows by reduction to the Decisional Diffie-Hellman
(DDH) assumption whereas the hardness of unforgeability and seclusiveness is
reduced to the Discrete Logarithm (DL) problem. Both are considered as stan-
dard assumptions, and are believed to be hard for decades. Roughly, the DDH
assumption says that distinguishing the tuples (ga, gb, gab) and (ga, gb, g′) where
g′ is picked randomly from all group elements, is hard. The DL assumption says
it is hard to find a given group G generated by g and element A = ga. In our
security analysis we use concrete bounds for the underlying problems, i.e., we
assume that the Discrete-Logarithm problem is (t, ε)-hard if any algorithm A
given A ∈ G (sampled uniformly in G), running in time t, finds a with ga

′
= A

with probability at most ε. Second, the Decisional Diffie-Hellman problem is
(t, ε)-hard if any algorithm A can differentiate tuples (ga, gb, gc) and (ga, gb, gab)
with probability at most 1

2 + ε in runtime t where a, b, c ∈ Zϕ(G) are sampled
uniformly.

4.2 Anonymity

Informally, the protocol is cross-domain anonymous (with respect to static cor-
ruptions) because the domain-specific pseudonyms appear to be random to the

116 J. Bender et al.

adversary under the decisional Diffie-Hellman assumption. Below we write t′ ≈ t
to denote the fact that t′ is essentially the same running time as t, except for
minor administrative overhead.

Theorem 1. Assume the DDH problem is (t, ε)-hard. Then the domain-specific
pseudonymous signature scheme NYMS of Section 3 is (n, d, t′, Q, ε′) cross-

domain anonymous with Q = (qc, qs, qt, qh), where ε′ ≤ ndε + (qs+qt+qh)(qs+qt)
q2

and t′ ≈ t. This holds in the random oracle model.

Proof. We combine the ideas of pseudorandom synthesizers of Naor and Rein-
gold [16] with the simulation soundness of the non-interactive zero-knowledge
proofs (aka. signatures) in the random oracle model. That is, assume the origi-
nal attack of the adversary on our protocol. In a first game hop we replace the
actual signature computations in LoR and NymSig′ queries by simulated signa-
tures (via programming the random oracle). See [19] for details. This strategy is
valid if programming the hash values in such computations have not appeared in
previous hash queries of the adversary, nor in previous signature queries. How-
ever, since the random group elements a1, a2 enter the hash evaluations, the
probability that an input collision occurs in any of the at most qs + qt signature
generations, is at most (qs + qt + qh)(qs + qt)/q

2. Given that no such collision
occurs the simulation is perfectly indistinguishable such that the adversary’s
success probability cannot increase by more than this term.

Note that after the game hop, we can create valid signatures on behalf of
users without knowing the secret keys. In the next game hop, we replace the
domain-specific pseudonyms dsnym in LoR queries by random group elements
(but in a consistent way). That is, whenever we are supposed to use dsnym we
instead use a new random element dsnym′ ← G, unless nym in combination with
dpk has been used before, either in a signature request or an LoR query, in which
case we use again the previously generated random value dsnym′.

We claim that this hop cannot increase the adversary’s success probability
noticeable by the DDH assumption. To this end, we briefly recall the notion of
a pseudorandom synthesizer in [16]. The pseudorandom synthesizers for the DH
pairs is an a × b matrix, with the rows labeled by values gxi and the columns
labeled by grj , and entries at position i, j set to gxirj , such that this matrix
is indistinguishable from an a × b matrix of independent and random group
elements, even if the row and column labels gxi and grj are given. In a sense,
the matrix entries are correlated but still look random. As discussed in [16] this
holds in our case under the DDH assumption. In fact, it allows for a reduction to
the DDH problem with a loss of a factor ab where, in our case, after the initial
corruption, there are at most ab ≤ nd entries of honest users.

In the next game hop, we always use the left domain-specific pseudonym
dsnym0 in LoR queries, independently of the value of b. We stress that, in case
of b = 1, this does not change the adversary’s success probability at all. Assume
from now on b = 1. Note that each LoR query about (dsnym0, dsnym1, dpk,m)
is answered by a random element, just as it would be for b = 0. All other LoR
queries involving dpk can only be about the same pair (dsnym0, dsnym1) in this

Domain-Specific Pseudonymous Signatures for the German Identity Card 117

order, in reverse order (dsnym1, dsnym0), or for distinct entries. In the first case,
we would answer again consistently with the (wrong) random element, in the
second case, we would switch to the other random element, and in the third case
use an independent random value. This behavior, however, is identical to the
case b = 0 from the adversary’s point of view. Similarly, the adversary cannot
make any signature request for (dsnym0, dpk) nor (dsnym1, dpk) without losing.
It follows that such signature requests do not depend on the bit b. Hence, the
probability of the experiment returning 1 does not change.

In the final game, the adversary’s success probability is independent of b, and
the adversary cannot win with probability more than 1

2 . Collecting all probabil-
ities from the game hops yields the claimed bound. ��

Anonymity of Restricted Identification. Recall that in the basic version of
the restricted identification protocol, the user merely shows the domain-specific
pseudonym dsnym to the service provider (who checks that this value has not
been revoked yet). Anonymity of this solution follows from the proof above
under the DDH assumption alone, noting that we do not need to simulate the
additional signatures in the random oracle model.2

4.3 Unforgeability

Theorem 2. Assume the DL problem is (t, ε)-hard on G, then the domain-
specific pseudonymous signature scheme NYMS of Section 3 is (n, d, t′, Q, ε′)-
unforgeable with Q = (qs, qh), where

ε′ ≈ (2q)−1(qh −
√
qh
√
δε+ (2δ/q)(qs + qh)2 + qh)

and t′ ≈ t with δ = 4ndq2. This holds in the random oracle model.

Due to space limitations, the proof of Theorem 2 appears in the full version of
this work; however, we provide a sketch here.

Proof (Sketch). We reduce the hardness of the unforgeability game (cf. Defini-
tion 3) to the discrete-logarithm problem. We embed a DL challenge A = ga

into a domain-specific pseudonym dsnym∗ of an randomly chosen pseudonym
nym∗ ∈ N and domain dpk∗ ∈ D. Similarly to the proof of Schnorr signa-
tures [19], we leverage the Forking Lemma, in order to obtain two related
forgeries (c, s1, s2), (c

′, s′1, s
′
2) on a message m under dsnym∗ from which we can

extract the witness (resp. discrete logarithm) from the challenge as follows. Given
both signatures σ, σ′ we extract the discrete-log a of dsnym∗ = A = ga as follows.
Given s1 = t1 − c · a and s′1 = t1 − c′ · a, we have a = (s1 − s′1)/(c

′ − c). Hence,
we found the solution a for the DL instance A.

We require that A succeeds to forge on behalf of pseudonym nym∗ under
domain public key dpk∗ in the first signature. In addition, we loose a tightness

2 The specification actually lets the user send a hash value of dsnym. This does not
affect the discussion, though.

118 J. Bender et al.

factor due to Forking Lemma, which yields the probability to find the discrete
logarithm of A at most ε = ε′/nd · (ε′/qh + 1/q)− (2qs + 2qh)

2/q where ε′ is the
success probability of A.

4.4 Seclusiveness

As remarked before, seclusiveness only holds as long as the adversary does not
get a hold of the group manager’s secret key. By construction, this means that
the adversary can thus only corrupt one user, else z becomes known. When
considering blacklisting for our construction, we stipulate this below by requiring
that the secrets are stored securely in hardware, or, respectively, that the number
of corrupt requests qc is at most 1. If whitelisting is used instead, then we do
not require any bound on the number of corruptions the adversary can made,
since learning z does not help the adversary to compute a domain-specific dsnym
which is listed in the (still trustworthy) whitelist.

Theorem 3. Assume the DL problem is (t, ε)-hard on G, then the domain-
specific pseudonymous signature scheme of Section 3 is (n, d, t′, Q, ε′)-secluding

with Q = (qc, qs, qh), where qc = 1, ε′ ≈ (2q)−1(qh−
√
qh
√
qh + 4q2ε+ 4q2δ) and

t′ ≈ t with δ = 2(qs + qh)/q. This holds in the random oracle model.

Due to space limitations, the proof of Theorem 2 appears in the full version of
this work; however, we provide a sketch here.

Proof (Sketch). We are given an adversary A which wins in the seclusiveness
game of NYMS. Here, A outputs a signature under a domain-specific pseudo-
nym dsnym to no corresponding identity nym ∈ {nym}d. Intuitively, the proof
works as follows. We are asked for the discrete-log a of an element A := gadl from
a presumably DL-hard group Gdl. We embed A in generator g2 such that the
group’s master key z ∈ gmsk equals a. We are able to generate one secret key
pair (x1, x2) satisfying x = x1 + zx2 for unknown x, gmsk. Using the signature
given by A we can extract a second pair (x∗

1, x
∗
2) . Those two key pairs suffice to

disclose z (resp. a) and thus, we solve the DL problem. ��

References

1. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

2. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anony-
mous attestation with user-controlled linkability. Cryptology ePrint Archive, Re-
port 2011/658 (2011), http://eprint.iacr.org/

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and A Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

4. Bender, J., Fischlin, M., Kügler, D.: Security Analysis of the PACE Key-Agreement
Protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

http://eprint.iacr.org/

Domain-Specific Pseudonymous Signatures for the German Identity Card 119

5. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates; Build-
ing in Privacy. The MIT Press (2000)

6. Brzuska, C., Dagdelen, Ö., Fischlin, M.: TLS, PACE, and EAC: A Cryptographic
View at Modern Key Exchange Protocols. In: GI-Sicherheit 2012. GI-LNI, pp.
71–82 (2012)

7. Advanced security mechanism for machine readable travel documents extended
access control (eac). Technical Report (BSI-TR-03110) Version 2.05 Release Can-
didate, BSI (2010)

8. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28 (October 1985)

9. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

10. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

11. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

12. Dagdelen, Ö., Fischlin, M.: Security Analysis of the Extended Access Control Pro-
tocol for Machine Readable Travel Documents. In: Burmester, M., Tsudik, G.,
Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 54–68. Springer, Hei-
delberg (2011)

13. Fischlin, M.: Anonymous Signatures Made Easy. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 31–42. Springer, Heidelberg (2007)

14. Koops, C.f.B.J., Buitelaar, H., Lips, M. (eds.): D5.4: Anonymity in electronic gov-
ernment: a case-study analysis of governments? identity knowledge. FIDIS report
(February 2012)

15. Kutylowski, M., Shao, J.: Signing with multiple ID’s and a single key. In: 38th
CCNC, pp. 519–520. IEEE (2011)

16. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE (1997)

17. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

18. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

20. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

21. Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

22. Wei, V.K.: Tracing-by-Linking Group Signautres. Cryptology ePrint Archive, Re-
port 2004/370 (2004), http://eprint.iacr.org/

23. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous Signature Schemes. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 347–363. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Solutions for the Storage Problem

of McEliece Public and Private Keys
on Memory-Constrained Platforms

Falko Strenzke

FlexSecure GmbH, Germany
strenzke@flexsecure.de

Abstract. While it is generally believed that due to their large public
and private key sizes code based public key schemes like the McEliece
PKC cannot be conveniently implemented on memory-constrained de-
vices, we demonstrate otherwise. We show that for the public key we
face rather a transmission problem than a storage problem: we propose
an approach for Public Key Infrastructure (PKI) scenarios which to-
tally eliminates the need to store public keys of communication part-
ners. Instead, all the necessary computation steps are performed during
the transmission of the key. We show the feasibility of the approach
through an example implementation and give arguments that it will be
possible for a smart card controller to carry out the associated compu-
tations fast enough to sustain the transmission rates of possible future
high speed contactless interfaces. Concerning the McEliece private key,
we demonstrate, contrasting to previously published implementations,
that the parity check matrix, which is by far the largest part of this key,
is not necessary to achieve fast decryption on embedded systems.

Keywords: post-quantum cryptography, code-based cryptography, pub-
lic key encryption scheme, efficient implementation, embedded devices.

1 Introduction

Code-based cryptography, i.e. the class of cryptographic schemes built on er-
ror correcting codes, encompasses public key encryption schemes [1,2] as well as
signature schemes [3,4] and an identification scheme [5]. The main advantage of
code-based cryptographic schemes over currently used schemes that are based on
the factoring or discrete logarithm problem is their believed security in the pres-
ence of quantum computers [6], but at least the encryption schemes’ operations
can also be implemented comparatively fast [7].

However, the large public key size in these schemes are considered a tremen-
dous disadvantage. For this reason, a number of attempts have been made to

� A part of the work of F. Strenzke was done at Cryptography and Computeralgebra,
Department of Computer Science, Technische Universität Darmstadt, Germany.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 120–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Solutions for the Storage Problem of McEliece Public and Private Keys 121

reduce the public key size by using special codes [8,9,10]. But some of these at-
tempts have already been shown to result in insecure cryptosystems [11,12,13].
All recent proposals that reduce the key size using other codes than in the origi-
nal McEliece scheme will have to prevail for some time until they can be granted
the same trust as the original scheme, employing classical binary Goppa codes
[14], the security of which is still unquestioned after more than 30 years – how-
ever, with the exception of certain choices of code parameters [15], which are
only of relevance for code-based signature schemes [3].

Accordingly, in the first part of the work, we address the problem of per-
forming the public operations, i.e. encryption or signature verification, of con-
ventional code-based public key cryptosystems with large public keys on devices
with limited memory resources, like for instance smart cards. Typically, smart
cards have less than 20 KB of RAM, while the available amount of non-volatile
memory (NVM), e.g. flash-memory, can be as large as 512 KB [16,17]. If a public
key of a communication partner shall be temporarily stored on the device for the
purpose of performing e.g. an encryption, it would have to be stored in the NVM
since it exceeds the size of the RAM many times over. Specifically, the public
keys will be at least 100 KB large for reasonable security parameters, as we will
see in Section 2.2. For instance, the works [18,19,20] all describe implementations
of code-based encryption schemes on embedded devices, where the public key is
stored in the devices NVM. The drawbacks of storing such an amount of data
in the device’s NVM are first of all the cost of keeping such a large amount of
memory available for this purpose and also the much slower writing speed com-
pared to RAM access. In order to circumvent these problems, we show in this
work that the public operations can be executed by only storing very small parts
of the public keys at any given time during the operation. Our approach also
considers that these operations are always carried out in a PKI context, which
implies the verification of user public key certificates against issuer certificates.
We point out that this approach is equally usable for the Niederreiter PKC as
well as certain code-based signature schemes.

The second part of this work shows a solution for the McEliece private key,
which in previously published implementations [21,18,19,22] of the McEliece
PKC features the parity check matrix, the size of which is similar to that of
the McEliece public key. The benefit of the parity check matrix, which is not
an essential part of the private key, but a precomputation that allows faster
computation of the so called syndrome vector. We show that an optimized im-
plementation of the syndrome computation allows practical decryption times
without this matrix, reducing the private key size dramatically.

2 Preliminaries

2.1 Public Key Cryptography

In a public key infrastructure, the trustworthiness of a public key is always veri-
fied against a trust anchor. From the trust anchor, which is usually a certification

122 F. Strenzke

authority (CA) certificate, to the user certificate, there is a certificate chain in-
volved. The trustworthiness of a certificate lower in the chain is guaranteed by
its authentic digital signature created by the respective issuer, verifiable via the
corresponding public key contained in the issuer certificate.

For the case of public key encryption, it means that a user A’s public key
intended for encryption is contained in the user certificate. A user B willing to
encrypt a message for A thus goes through the following steps:

1. retrieve A’s public encryption certificate Enc-Cert A (for example by access-
ing a database or asking A directly)

2. verify the authenticity of Enc-Cert A by checking the signature on the cer-
tificate against the trust anchor (CA certificate)

3. encrypt the secret message using Enc-Cert A and send it to A

Since in this work we will address problems and solutions for embedded devices
such as smart cards, we wish to point out why it is necessary to be able to
carry out not only the private operations of a public key scheme (i.e. decryp-
tion or signature generation) but also the public operations on such devices.
One application are key exchange schemes. Key exchange schemes based on
public key cryptography are used for instance in the context of the German
ePassport [23]. There, an elliptic curve based key agreement scheme is realized
[24]. In order to replace this scheme with a quantum computer secure solu-
tion, one would have to combine a public key encryption scheme with a public
key signature scheme that both have this property. Then, one party sends the
signed and encrypted symmetric key to the other party. In the mentioned context
this means that eventually the ePassport’s chip has to carry out the encryption
operation.

2.2 Code-Based Encryption Schemes

In the following, we explain two code-based encryption schemes, where we focus
on the encryption operation and those parts of the decryption operation that
are relevant for the understanding of this work.

Both code-based encryption schemes employ irreducible binary Goppa Codes
[14] as error correcting codes.

Definition 1. Let the polynomial g(Y) =
∑t

i=0 giY
i ∈ F2m [Y] be monic and

irreducible over F2m [Y], and let m, t be positive integers. Then g(Y) is called a
Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as C(Γ, g(Y)) = {c ∈
Fn
2 |Sc(Y) :=

∑n−1
i=0

ci
Y−αi

= 0 mod g(Y)}, where n � 2m, Sc(Y) is the syn-
drome of c, Γ = {αi|i = 0, . . . , n− 1}, the support of the code, where the αi are
pairwise distinct elements of F2m , and ci are the entries of the vector c.

The code defined in such way has length n (i.e. the length of the code words),
dimension k � n−mt (i.e. the length of the message words) and can correct up
to t bit flip errors.

Solutions for the Storage Problem of McEliece Public and Private Keys 123

As for any linear error correcting code, for a Goppa code there exists a gen-
erator matrix G ∈ F

n×k
2 and a parity check matrix H ∈ F

mt×n
2 [25]. Given

these matrices, a message v ∈ Fk
2 can be encoded into a codeword c of the code

by computing c = vG, and the syndrome s ∈ Fmt
2 of a (potentially distorted)

codeword can be computed as s = cHT . Here, we do not give the formulas for
the computation of these matrices as they are of no importance for the under-
standing of the topics of this work. The interested reader, however, is referred
to [25].

The first encryption scheme we present is the McEliece [1] scheme.

Overview of the McEliece PKC. In this section we give a brief overview of the
McEliece PKC.

Algorithm 1. The McEliece encryption Operation

Require: the McEliece public key Gp ∈ F
k×n
2 and the message m ∈ F

k
2 ,

Ensure: the ciphertext z ∈ F
n
2

1: create a random binary vector e ∈ F
n
2 with Hamming weight wt (e) = t

2: z ← mGp ⊕ e

The McEliece secret key consists of the Goppa polynomial g(Y) of degree t
and the support Γ , together they define the secret code C.

The public key is given by the public n×k generator matrix Gp = TG over F2,
where G is a generator matrix of the secret code C and T is a non-singular k× k
matrix over F2, the purpose of which is to bring Gp into reduced row echelon
form, i.e. Gp = [I|G2], which results in a more compact public key [7]. The
encryption operation (Algorithm 1) allows messages v ∈ Fk

2 . A random vector
e ∈ Fn

2 with hamming weight wt (e) = t has to be created. Then the ciphertext
is computed as z = vGp + e. Note that due to the reduced row echelon form
of Gp the first k bits of v are reproduced in vGp. However, since the McEliece
PKC, as well as the Niederreiter PKC, which is introduced shortly, needs to be
wrapped in a so-called CCA2 conversion [26], this is not a problem [7].

McEliece decryption is performed by applying error correction to the cipher-
text z, which can only be done with the knowledge of the secret key, i.e. the
code C. With the exception of the first step, which is the computation of the
syndrome polynomial S(Y), which will be the topic of Section 4 and will be
explained there, the further details of the decryption procedure are irrelevant
for the understanding of the topics of this work.

The McEliece parameters are given by the code parameters n, k and t. An
example parameter set giving about 100 bits of security with respect to the
attacks given in [27] would be be n = 2048, k = 1498 and t = 50, yielding a
public key size of about 100 KB.

The other encryption scheme is the Niederreiter [2] scheme. Here, the public
key consists of the public parity check matrix Hp = THs, where Hs is the

parity check matrix of the private code and Hp ∈ F
(n−k)×n
2 , and T is chosen

124 F. Strenzke

equivalently to its counterpart in the McEliece scheme. Furthermore, as in the
McEliece scheme, Hp can be put in systematic form. Then the public key will be
of the same size as for the McEliece cryptosystem. The Niederreiter encryption
is depicted in Algorithm 2. The message is encoded into an error vector of weight
t and the ciphertext is the corresponding syndrome, which can only be decoded
by the holder of the private key.

Algorithm 2. The Niederreiter encryption Operation

Require: the Niederreiter public key H ∈ F
(n−k)×n
2 and the message m

Ensure: the ciphertext z ∈ F
n−k
2

1: encode the message m into e ∈ F
n
2 , where wt (e) = t, using an appropriate algorithm

(“constant-weight-word encoding”)
2: z ← eH

3 Online Public Operation

In this section, we explain the main idea of the paper, namely how to implement
the public operations of code-based schemes without storing full public keys on
the device. In a naive approach, the public operation, which we here assume
to be an encryption operation, would be realized by first retrieving the public
key (embedded into a public key certificate containing also a signature) of the
communication partner, storing it on the device, computing the hash value of
the certificates to-be-signed (TBS) data (which includes the code-based public
key), verifying the signature, and finally encrypting the designated message using
the certificate’s public key. With the proposed approach however, no storage of
the whole public key is required. Instead, only a comparatively small amount
of RAM memory will be used. The basic idea is to use the computation time
that is available to the devices CPU in the time interval between the receival
of two bytes via the serial interface. During this interval both the encryption
algorithm and the hash algorithm are advanced by one small step. Hence we call
this approach “on-line public operation”.

This approach works because both the computation of the hash value of the
public key and the matrix-vector product only depend on a small part of the
whole public key at any given point in time: while the hash function acts on
blocks of multiple bytes (for instance 64 bytes for SHA-256), the matrix multi-
plication could in principle be carried out bit-wise.

3.1 Description of the Online Public Operation

In Figure 1, the complete process of the on-line public operation approach is
depicted. On the left hand side, the processing of the certificate containing the
code-based public key to be used in the public operation is shown. Here, we
assume that the public key is contained in an X.509 public key certificate [28].
Such a certificate is constituted by the sequence of the TBS data, followed by
a field containing information about the signature algorithm (not shown in the

Solutions for the Storage Problem of McEliece Public and Private Keys 125

figure) and finally the signature. The signature ensures the authenticity of the
TBS data, and is calculated based on their hash value, using a hash algorithm
as specified in the preceding information field. Please note that the signature
algorithm used to sign the user certificate needs not to be code-based (in which
case the trust anchor certificate would contain a large code-based key itself).
Instead, a hash based signature scheme [29] could be used. These schemes are
also quantum computer resistant and feature extremely small public keys.

In Step 1a the part of the TBS data that precedes the public key is received by
the device and processed in the normal manner, which includes the computation
of the hash value of the received data. Once the transmission of the public key,
i.e. the public matrix M , begins (Step 2a), the computation of the product vM
begins, where v is a binary vector whose meaning depends on the type of the
code-based scheme. In an encryption scheme like McEliece or Niederreiter, v
represents a message. The hash computation is also continued. After the whole
public matrix has been received, the remaining TBS data is again processed in
the normal manner (Step 3a). Finally, when the TBS data have been completely
received the hash value of the TBS data is ready. It is then used to verify the
certificate’s signature with the help of the certificate of the issuer I which is
stored on the device as the trust anchor (Step 4).

The public operation of the code-based scheme is potentially composed of
computations before the matrix-vector product is needed (Step 1b). These com-
putations can be done before the public matrix transmission begins, e.g. they
could be carried out before and/or during the receival of the TBS data preceding
the public key. Once the public key matrix has been fully received and processed
(i.e. after Step 2a), the remaining computations of the public operation are car-
ried out (Step 3b), e.g. the addition of the error vector e in the McEliece scheme.
The result is either a ciphertext (in case of an encryption scheme) or a Boolean
value (in case of a signature verification). But whether this result is output re-
spectively further processed by the device (Step 5a) depends on the result of the
signature verification (Step 4). If the verification fails, the device will output an
error answer (Step 5b).

3.2 Transmission Rates

In this section, we give an overview of transmission rates available for embedded
systems, especially smart card microcontrollers.

For instance a SLE66CLX360PE [17] smart card platform from Infineon Tech-
nologies AG features an ISO/IEC 14443 compliant contactless interface which
can transmit up to 106 KB/s. This allows the transmission of a McEliece public
key of size 100 KB for the parameters given in Section 2.2 in about 1s, which
can be considered at least acceptable for certain applications.

In the future, contactless transmission rates may be about 837,500 bytes/s
[30], i.e. about 8 times higher than the rate considered above1. In the following

1 In the referenced work, this transmission rate is actually only achieved in the direc-
tion from the card to the reader. However, we want to use it merely as an orientation
for the transmission rates achievable in the near future.

126 F. Strenzke

Fig. 1. Overview of the complete process of the on-line public operation

section, we will show that it is still feasible to sustain such a high transmission
rate at typical smart card CPU speeds of about 30 MHz if adequate hardware
support is available on the device. Note that in this case there are still about 35
CPU cycles available between the receival of two bytes.

3.3 Example Implementation

We implemented the proposed approach in the C programming language on
an ATUC3A1512 32-bit microcontroller from Atmel’s AVR32 family. We chose
an embedded 32-bit platform basically because SHA-256 is designed for 32-bit
platforms. There also exist 32-bit smart card controllers [31], thus our evaluations
are significant for this type of platform.

The personal computer (PC) communicates with the AVR32 over a serial line.
For the implementation of the serial communication, on the AVR32, we used
the API for the device’s Universal Asynchronous Receiver Transmitter (UART)
provided by Atmel. On the side of the personal computer, we used the API to
the serial port of the Linux operating system. The PC can send commands to

Solutions for the Storage Problem of McEliece Public and Private Keys 127

the AVR32, which are formed by a six byte header and optional payload data,
the length of which is encoded the last four header bytes. The first header byte
is zero for all commands, and the second byte determines one of the following
commands:

– set the vector to multiply
– carry out the on-line multiplication (starts an interactive protocol for the

matrix transmission described below)
– get the multiplication result from the AVR32
– get the hash result from the AVR32

The AVR32 responds to these commands by sending a two byte status code and
optional data payload preceding the status code, or in the case of the on-line
multiplication command, by starting an interactive protocol.

This protocol is depicted in Figure 2. As a precondition, the vector to multi-
ply has to be set in the device through the corresponding command. After the
receival of the on-line multiplication command (which does not carry payload
data), the AVR32 sets up two buffers B1 and B2 which are of an equal prede-
fined size. It sends a two byte acknowledgement (ACK) code to the PC as the
answer to the command. Then the PC sends the first matrix part which is of
equal size as the buffers B1 and B2. The receival of a single byte over the UART
interface of the AVR32 triggers an interrupt which is serviced by an Interrupt
Service Routine (ISR) which writes the byte to the next free position in B1. Af-
ter the first block has been received completely, the AVR32 sends another ACK
code to the PC, who in turn reacts by sending the next part. At this point the
AVR32 exchanges the role of the buffers B1 and B2: the data is now received to
B2 (which did not play any role while receiving the first part), and B1, contain-
ing the first matrix part, is fed into the SHA-256 computation and the matrix
multiplication. Both, the hashing and matrix multiplication are implemented as
objects which can be updated by calling routines that take arbitrary amounts
of data as an argument.

For hash functions, this is the standard implementation technique. Because
demanded by our approach, we adopted this technique for the matrix multipli-
cation. In our implementation, the matrix-vector multiplication is carried out
column-wise. The advantages and disadvantages of this approach in contrast to
row-wise multiplication is discussed in Section 3.4. The multiplication object
knows the number of rows and columns of the matrix and has the source vector
set. As the matrix data is fed column-wise it keeps track of the current row
and column position. It processes the current column by carrying out the logical
AND (multiplication in F2) between the matrix column and the vector 32-bit
word-wise, and computes the XOR (addition in F2) with a 32-bit accumulator.
When a column is finished, the parity (i.e. sum of all the word’s bits in F2) of
the accumulator is written to the corresponding result bit.

Non-interactive Version of the Protocol. It turned out that the interac-
tive protocol incurs significant delay in the communication which most probably

128 F. Strenzke

results from the fact that our PC program is running in user space and thus
sending and receiving data via the serial interface is delayed. If the protocol
were implemented in a card terminal, which could be the case in a real world
implementation of the on-line multiplication such issues would not arise. To show
the efficiency of the approach, we modified the protocol depicted in Figure 2:
the AVR32 does not send any ACK answers beyond the very first one. Conse-
quently, the matrix data is sent as a continuous stream after the AVR32 has
sent the initial ACK. In this way, the protocol looses the feature that it works
independently of the ratio of transmission speed and computation speed: in this
non-interactive setting, it must be guaranteed that the hash and multiplication
computation of the processed buffer has finished before the receive buffer has
been completely filled. With this approach the performance could be improved
by a factor of roughly 1.3 compared to the interactive variant of the protocol.
The concrete results are discussed shortly.

Simulation of Higher Transmission Rates. On the chosen AVR32 plat-
form, the maximal transmission speed is given by a baud rate of 460,800. In
the RS232 transmission format each data byte is encoded in 10 bits, yielding a
net transmission rate of 46,080 byte/s. In order to demonstrate the computation
speed that would be possible beyond this limitation, we implemented a means
of simulating higher transmission speeds. This is achieved by creating a matrix
whose rows have repetitive entries, i.e. the values of 8-bit chunks repeats r times.
An example of the beginning of a row for r = 4 would be

0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3, 0xA3, 0x22, ...

In this setting, on the PC side such a repetitive matrix is generated. When the
matrix is transmitted, however, each repeated element is sent only once. On the
receiving side, the repetition value r is also known and each received byte is
appended to the buffer r times. In this way, we simulate a transmission rate
Bsim = rBreal, where Breal is the actual UART transmission rate.

Table 1 shows the measurement results for the non-interactive version de-
scribed in the previous paragraph. Here, we used a matrix with 1000 rows and
800 columns, i.e. yielding a size of 100,000 bytes. This is approximately the
size of McEliece public keys with 100 bit security [19]. In all our measurements
the CPU speed of the AVR32 was set to 33 MHz, since also todays contactless
smart card platforms run at approximately this speed, for instance the Infineon
Technologies SLE76 [16] smart card controller. The SLE76 CPU only runs at
30MHz, using this in our implementation showed that at this CPU speed the
(simulated) transmission rate given in the rightmost column of Table 1 could
not be supported in the experiment.

Furthermore, we measured the random error vector creation as the second
part of the encryption operation for parameters n = 2048 and t = 50 to be less
than 4 ms at a CPU speed of 33MHz, the addition (XOR) of the error vector to
the intermediate vector is certainly even much less complex and thus completely
negligible for the timings considered here.

Solutions for the Storage Problem of McEliece Public and Private Keys 129

The transmission speed of 386,640 bytes/s, that can be sustained in our test
setup, is approximately half of that of the research implementation presented in
[30] already mentioned in Section 3.2. Thus our results show that even without
dedicated hardware, todays embedded platforms already enable computation
speeds for the hash computation and matrix multiplication not too far from
the associated transmission rates that can be expected to be supported by con-
tactless devices in the near future. This makes it feasible that with adequate
hardware support the full 837,500 Byte/s rate given in [30] can be supported by
the throughput of the computational operations.

Fig. 2. Schematic overview of the interrupt based implementation of the on-line mul-
tiplication

The hash implementation is based on the open source implementation [32].
The C source code allows for complete unrolling of the SHA-256 compression
function through a macro definition. Activating loop unrolling resulted in a per-
formance gain of 1.6 for the hash function computation. All further performance
data is based on this implementation choice.

3.4 Column-wise vs. Row-wise Matrix-Vector Multiplication

The row-wise computation of the matrix-vector multiplication is an alternative to
the column-wise approach. In this case the computation of the result is according
to b =

∑
iMiai, where Mi is the vector represented by the i-th row of M and ai

it the i-th entry of the vector a. This means that a row Mi is added to the result
if the corresponding bit ai is one, otherwise nothing has to be done. In the normal
case, where the whole matrix is available instantly, this approach has a significant

130 F. Strenzke

Table 1. Performance of the SHA-256 and binary matrix multiplication on the
AT32UC3A1 platform. The results in the first column are based on the throughput
benchmarking results for the two computational tasks. The following two entries in
this column, that give the resulting time for the on-line multiplication and the trans-
mission rate necessary to support the throughput of both computational tasks, are
theoretically derived from the former. In the second column, the time of the whole
on-line matrix multiplication with the given transmission rate Bsim = 8 ·46, 080 byte/s
was measured on the ATUC3A1512 platform and the computational throughput given
in the first row is the effective throughput corresponding to the measured running time.
Here a receive buffer size of 1536 bytes was used.

based on computation
throughput

experimental
result - w/o ACK

cycles/byte measured: 55.6 for SHA-256,
4.2 for mult. yields: 59.8

92

time at 33MHz CPU for
100,000 Bytes

181ms 279ms

transmission rate in bytes/s 551,839 Bsim = 368, 640 (r =
8)

advantage over the column-wise approach since on average half of vector a’s bits
have value zero. But in the case of the on-line public operation, this advantage dis-
appears since thematrix-vectormultiplication’s running time is determined by the
transmission time alone (under the assumption of sufficient computational power
of the device as analyzed in Section 3.2).The row-wise approachwould only have an
advantage if the saved computational effort could be used to perform other tasks,
which can be assumed to be rather unlikely or at least of minor relevance in the
context of embedded devices such as smart cards.

On the other hand, the disadvantage of the row-wise multiplication lies in
its potential side-channel vulnerability. Specifically, if an attacker is able to find
out whether the currently transmitted row is added or ignored, for instance by
analyzing the power trace [33], he can deduce the value of the secret bit ai.
Of course, countermeasures can be implemented. A certain randomization could
for instance be introduced by keeping a number of received rows in a buffer
and processing them in a randomized order. However, whether the questionable
computational advantage of this method is worth such efforts must be decided
in a concrete implementation scenario.

In any case, once the X.509 key format for a code-based scheme is defined, the
choice for one of the two methods is taken. While it then would still be possible to
transmit the matrix in the other orientation in order to carry out the multiplica-
tion, the on-line hash computation only works if the correct orientation is used.

3.5 Code-Based Signature Schemes

A number of code-based signature schemes have been proposed. In the following,
we will address two of these schemes very briefly with the goal of showing that the
proposed approach for the on-line public operation is applicable to both of them.

Solutions for the Storage Problem of McEliece Public and Private Keys 131

In [3], the McEliece scheme is inverted in the sense that the signer proves his
ability to decode a binary vector related to the message using a certain code.
Thus, the signature verification basically consists of a matrix-vector multiplica-
tion just like for the encryption schemes described in Section 2.2. For security
considerations concerning this scheme please refer to [34,35].

A signature scheme involving two binary matrices as the public key is pre-
sented in [4]. In the verification operation, both matrices have to be multiplied
by a vector. Thus the on-line public operation can be carried out by transmitting
them one after another. Note, however, that the originally proposed parameters
for this scheme are insecure [36].

4 McEliece Decryption without the Parity Check Matrix

In the McEliece scheme, the first step of the decryption operation, which for
the sake of brevity we will not not fully explain here, is, as already men-
tioned in Section 2.2, the computation of the syndrome polynomial S(Y) as
S(Y) ≡

∑n
i=1

ci
Y⊕αi

mod g(Y), where g(Y) is the Goppa Polynomial, ci is the
i-th ciphertext bit and the αi is the i-th support element.

In the implementations [21,18,19,22], the syndrome computation is done with
the help of the parity check matrix H of the code. This matrix is in fact nothing
else than a list of all the n different polynomials 1

Y⊕αi
mod g(Y) which yields

the syndrome vector when multiplied with the ciphertext as a bit vector.
The syndrome computation without the parity check matrix is in princi-

ple achieved by invoking an Extended Euclidean Algorithm (EEA) with g(Y)
and Y ⊕ αi as the initial remainders. This EEA executes in a single iteration.
Accordingly, in an implementation of the syndrome computation a number of
optimizations are possible. The resulting Algorithm is given in Algorithm 3.
There, z[i] denotes the i-th ciphertext bit and Bj the coefficient to Y j of B(Y),
etc. Its average complexity (i.e. for a ciphertext with Hamming weight n/2),
expressed in the terms of additions, multiplication and inversions in F2m , is
Csyndr = nt(Cmult + Cadd) +

n
2Cinv.

We implemented this algorithm in a McEliece PKC implementation based on
the open source implementation [21] presented in [7]. Table 2 shows the tim-
ing results measured on an Atmel AT32 AP7000 CPU, a CPU similar to the
AT32UC3A1. The CPU runs at 150 MHz, however, we give the according run-
ning time for the typical smart card CPU speed of 33 MHz, which was already
employed in Section 3.3. The smaller parameter set has already been introduced
in Section 2.2, the larger one is is proposed in [27] for 128-bit security though
there the authors assume addition of t+ 1 errors, which is possible through the
employment of list-decoding [37], which is not supported by our implementation.
Accordingly the security level here is only approximate, but the reduction of se-
curity of our implementation only using t errors, however, can easily be bounded
by understanding that an attacker can get from a ciphertext with t+1 errors to
t errors by guessing one error position correctly, the success probability of which
is (t+ 1)/n = 0.02. Accordingly, the security of the scheme with t errors cannot
be smaller than 128− log2(1/0.02) > 122 bits.

132 F. Strenzke

Algorithm 3. The Syndrome computation without parity check matrix

Require: the ciphertext z ∈ F
n
2 , and the Goppa Polynomial g(Y) ∈ F2m[Y] of degree

t

Ensure: the syndrome polynomial S(Y) ∈ F2m[Y] of degree � t− 1
S(Y) ← 0
for i ← 0 up to n− 1 do

if z[i] = 1 then
B(Y) ← 0
b ← gt

for j ← t− 1 down to 0 do
Bj ← b

b ← b · αi ⊕ gj

end for
f ← b−1

for j ← 0 up to deg (B(Y)) do
Sj ← Sj ⊕ f · Bj

end for
end if

end for

Table 2. Private key sizes, cycle counts and corresponding timings taken for the
McEliece decryption operation and its suboperation, the syndrome computation, on
an Atmel AT32 AP7000 CPU. Each cycle count was obtained by carrying out the
operation ten times and taking the mean of the results.

code parameters n = 2048, t = 50 n = 2960, t = 56

security level 100 bit > 122 bit

cycles t @ 33 MHz cycles t @ 33 MHz

with par. ch. mat.
cyc. whole decr. 2.00 · 106 61 ms 3.12 · 106 95 ms

cyc. only syndr. comp. 0.26 · 106 8 ms 0.39 · 106 12 ms
private key bytes 158,140 277,328

w/o par. ch. mat.
cyc. whole decr. 4.42 · 106 134 ms 7.39 · 106 224 ms

cyc. only synd. comp. 2.65 · 106 80 ms 4, 71 · 106 143 ms
private key bytes 17,340 28,688

The respective private key sizes without the parity check matrix given in
Table 2 are formed by the Goppa Polynomial g(Y), the support Γ , a matrix
for computing the square root modulo g(Y), which is needed to speed up the
decryption, and the logarithm and anti-logarithm tables for F2m , each of size
!log2n" elements, i.e. a total of 8192 resp. 16384 bytes for either parameter set
(each element occupies 2 bytes). These tables need not necessarily be stored in
the key, instead they can be created in RAM before the decryption operation, if
allowed by the memory constraints of the given platform.

From this example implementation, that does not use any hardware support
for the F2m operations or DSP instructions, we see that the decryption time

Solutions for the Storage Problem of McEliece Public and Private Keys 133

approximately doubles when the parity check matrix is not stored as part of the
key, but due to the general speed advantage of the McEliece scheme over RSA
or Elliptic curve based schemes [7,18] these timings are still highly competitive.

5 Conclusion

In this work, on the one hand, we have shown an approach for implementing
the operations involving code-based public keys on memory-constrained devices
like smart cards, that covers the matrix-vector multiplication as well as the
hash computation for the verification of the user certificate. The solution is
applicable to basically all code-based encryption and signature schemes that
have been proposed so far. Thus we are confident that this work improves on
the applicability of this class of cryptographic schemes by reducing the impact
of the large public key sizes for memory-constrained devices.

Furthermore, we also showed that the McEliece private key size can be dra-
matically reduced by excluding the parity check matrix while still allowing for
practical decryption timings on memory constrained devices. As a result, the
McEliece scheme in our opinion gains superiority over the Niederreiter scheme:
while the situation for the public key as discussed in this work is equal for both
schemes, only the McEliece scheme allows for the reduction of the private key size
as proposed in this work. The reason is simply that the Niederreiter private key
size is mainly determined by the size of the scrambler matrix T , which cannot be
excluded in this scheme. In [20], the matrix T is implemented as a pseudorandom
sequence of bits, which effectively reduces the Niederreiter private size, but this
comes at the expense of public key size: because of the pseudorandom nature of
T , the public key matrix cannot be in reduced row echelon form, resulting in an
otherwise unnecessary increase of the public key size. In view of the results of
the first part of this work, this directly affects the time taken by the encryption
operation on an embedded device (at least in a PKI context).

References

1. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN
Progress Report 42-44, 114–116 (1978)

2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems Control Inform. Theory 15(2), 159–166 (1986)

3. Courtois, N.T., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital
Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–
174. Springer, Heidelberg (2001)

4. Kabatianskii, G., Krouk, E., Smeets, B.: A Digital Signature Scheme Based on
Random Error-Correcting Codes. In: Darnell, M. (ed.) Cryptography and Coding
1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)

5. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

6. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography.
Springer Publishing Company, Incorporated (2008)

134 F. Strenzke

7. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
47–62. Springer, Heidelberg (2008)

8. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of
the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

9. Berger, T.P., Loidreau, P.: How to Mask the Structure of Codes for a Cryptographic
Use. Designs, Codes and Cryptography 35, 63–79 (2005), doi:10.1007/s10623-003-
6151-2

10. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

11. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of Two McEliece Cryptosystems
Based on Quasi-Cyclic Codes. Mathematics in Computer Science 3, 129–140 (2010)

12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of
McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

13. Umana, V.G., Leander, G.: Practical key recovery attacks on twoMcEliece variants.
In: Cid, C., Faugere, J.-C. (eds.) SCC 2010, pp. 27–44 (2010)

14. Goppa, V.D.: A new class of linear correcting codes. Problems of Information
Transmission 6, 207–212 (1970)

15. Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate
McEliece cryptosystems. In: 2011 IEEE Information Theory Workshop (ITW), pp.
282–286. IEEE (2011)

16. Infineon Technologies AG: SLE76 Product Data Sheet,
http://www.infineon.com/cms/de/product/

channel.html?channel=db3a3043156fd57301161520ab8b1c4c
17. Infineon Technologies AG: SLE 66CLX360PE(M) Family Data Sheet,

http://www.infineon.com/dgdl/SPI SLE66CLX360PE 1106.pdf?folderId=

db3a304412b407950112b408e8c90004&fileId=db3a304412b407950112b4099

d6c030a&location=Search.SPI SLE66CLX360PE 1106.pdf
18. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-

bedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
49–64. Springer, Heidelberg (2009)

19. Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Samarati,
P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010.
LNCS, vol. 6033, pp. 47–59. Springer, Heidelberg (2010)

20. Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 165–181.
Springer, Heidelberg (2010)

21. Biswas, B., Sendrier, N.: HyMES - an open source implementation of the McEliece
cryptosystem (2008),
http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

22. Shoufan, A., Wink, T., Molter, G., Huss, S., Strenzke, F.: A Novel Processor Ar-
chitecture for McEliece Cryptosystem and FPGA Platforms. In: ASAP 2009, pp.
98–105. IEEE Computer Society, Washington, DC (2009)

23. German Federal Bureau of Information Security (BSI): Technical Guideline TR-
03110: Advanced Security Mechanisms for Machine Readable Travel Documents,
Version 2.02 (2009)

24. German Federal Bureau of Information Security (BSI): Technical Guideline TR-
03111: Elliptic Curve Cryptography, Version 1.11 (2009)

http://www.infineon.com/cms/de/product/channel.html?channel=db3a3043156fd57301161520ab8b1c4c
http://www.infineon.com/cms/de/product/channel.html?channel=db3a3043156fd57301161520ab8b1c4c
http://www.infineon.com/dgdl/SPI_SLE66CLX360PE_1106.pdf?folderId=db3a304412b407950112b408e8c90004&fileId=db3a304412b407950112b4099d6c030a&location=Search.SPI_SLE66CLX360PE_1106.pdf
http://www.infineon.com/dgdl/SPI_SLE66CLX360PE_1106.pdf?folderId=db3a304412b407950112b408e8c90004&fileId=db3a304412b407950112b4099d6c030a&location=Search.SPI_SLE66CLX360PE_1106.pdf
http://www.infineon.com/dgdl/SPI_SLE66CLX360PE_1106.pdf?folderId=db3a304412b407950112b408e8c90004&fileId=db3a304412b407950112b4099d6c030a&location=Search.SPI_SLE66CLX360PE_1106.pdf
http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

Solutions for the Storage Problem of McEliece Public and Private Keys 135

25. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North
Holland (1997)

26. Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems -
Conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
19–35. Springer, Heidelberg (2001)

27. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

28. Cooper, et al.: RFC 5280, http://tools.ietf.org/html/rfc5280
29. Coronado, L.C., Buchmann, J., Carlos, L., Garcia, C., Dahmen, E., Klintsevich,

E., Darmstadt, T.U.: CMSS – An Improved Merkle Signature Scheme Johannes
Buchmann (2006),
http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/BCDDK06.pdf

30. Witschnig, H., Patauner, C., Maier, A., Leitgeb, E., Rinner, D.: High speed RFID
lab-scaled prototype at the frequency of 13.56 MHz. E & I Elektrotechnik und
Informationstechnik 124, 376–383 (2007), doi:10.1007/s00502-007-0485-9

31. Infineon Technologies AG: SLE78 Product Data Sheet,
http://www.infineon.com/cms/en/product/

channel.html?channel=db3a30431ce5fb52011d47b166342af0

32. Gay, O., http://www.ouah.org/ogay/sha2/
33. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
34. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D., Buch-

mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer
(2009)

35. Finiasz, M.: Parallel-CFS: Strengthening the CFS McEliece-Based Signature
Scheme. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 159–170. Springer, Heidelberg (2011)

36. Otmani, A., Tillich, J.-P.: An Efficient Attack on All Concrete KKS Proposals.
In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 98–116. Springer,
Heidelberg (2011)

37. Bernstein, D.J.: List Decoding for Binary Goppa Codes. In: Chee, Y.M., Guo,
Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS,
vol. 6639, pp. 62–80. Springer, Heidelberg (2011)

http://tools.ietf.org/html/rfc5280
http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/BCDDK06.pdf
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431ce5fb52011d47b166342af0
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431ce5fb52011d47b166342af0
http://www.ouah.org/ogay/sha2/

100% Connectivity for Location Aware Code
Based KPD in Clustered WSN: Merging Blocks

Samiran Bag1, Aritra Dhar2, and Pinaki Sarkar3

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata-700108, India
samiran r@isical.ac.in

2 Guru Nanak Institute of Technology, Kolkata-700114, India
3 Mathematics Department, Jadavpur University, Kolkata-700032, India

{aritra.dhar7,pinakisark}@gmail.com

Abstract. Key management in wireless sensor networks (WSN) is a challenging
task because of the stringent resource available to the nodes. As such key pre-
distribution (KPD) is regarded as one of the best option for key management in
WSN. This work analyzes an existing work by Simonova et al. that makes use of
deployment knowledge where the deployment zone consists of clusters of nodes.
Transversal design (TD) based KPD scheme of Lee and Stinson is used to dis-
tribute the keys in these clusters. However Simonova et al. points out that any
KPD could have been used. This leads the current authors to investigates the ap-
plicability of Ruj and Roy’s Reed Solomon (RS) code based KPD , similar to the
TD based KPD in distributing the key in each cluster. Much like the TD based
KPD, the RS code based KPD does not offer full connectivity among nodes in
the clusters amounting to lack of full connectivity in the amalgamated network.
Full connectivity among nodes in each cluster and thus the entire network can be
achieved by a deterministically merging strategy using exactly two nodes. This
merging strategy is certainly better than a random approach by Chakrabarti et al.
where the exact number of nodes being merged is not specified and does not en-
sure full connectivity. Since the scheme of Simonova et al. uses too many keys
after amalgamation, a modified approach using Cluster Head (CH) is proposed
to provide full communication in the network. Comparative study establishes the
proposed Cluster Head design perform better than the KPD of Simonova et al.
while proving the efficiency of the merging strategy.

Keywords: Security in WSN, Key predistribution (KPD), Reed Solomon (RS)
Code, Combinatorial Designs, Deterministic Merging Blocks, Connectivity.

1 Introduction

Wireless sensor networks (WSN) is a two tier network consisting of many tiny sensing
devices at the lower tier and a Key distribution server(KDS) at the upper tier. However
depending on the application WSNs can be made to have more tiers. which are normally
used to provide a sort of hierarchy to a network by subdividing it into (small) clusters.
These sensor networks gather information about the environment. Sensor nodes have
their inbuilt memory module, a small processor system and a very limited power source

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 136–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 137

that allows the sensors to process data and wireless transceiver to communicate to other
sensors of the network as well as to the KDS.

A heterogeneous wireless sensor network can have different types sensor nodes dif-
fering in resourcefulness. Such a network can have ordinary nodes having less resource
in terms of low amount of memory, less computational power and very limited bat-
tery power and some nodes called cluster heads which are rich in resources. As the
name suggests, communication in wireless sensor networks is achieved using radio fre-
quencies. Resource constrained nodes can communicate with each other only within a
limited range having center as the node and small radius termed as Radio Frequency
range or radius of communication or physical layer of [10]. This range or radius is
generally same for ordinary sensors and may be varied for CHs. On the other hand, the
KDS has quite a large radius of communication.

In spite of all the weaknesses in the basic building blocks of WSNs, these networks
have several military applications like monitoring enemy movements, etc. Besides they
are utilized for other scientific purposes like smoke detection, wild fire detection, seis-
mic activity monitoring etc.

Towards secure communication, it is important that any two sensor nodes should
communicate in an encrypted manner using a common secret key. Due to resource con-
straints symmetric encryption is preferred over public key techniques. Symmetric key
cryptographic techniques requires the nodes to possess the secret key beforehand. Here
also standard techniques like online key exchange using public parameters or the con-
cept of using trusted authorities are generally avoided. Alternatively key predistribution
(KPD) involving preloading and later establishing the keys among the nodes is an ef-
fective solution.

Combinatorial designs have been being used for KPD in WSN for almost a decade.
Çamptepe & Yener [1] first proposed the use of such designs for predistribution of keys
in WSN which inspired other researchers to follow suit. Some research work on the use
of design theory in KPD in WSN can be found in [2,5,12,10].

In some applications sensor networks are deployed in a grid group fashion where
the entire deployment zone is split into smaller zones and sensor nodes are deployed
in this smaller zones such that all the sensors falling into one smaller region forms a
group among themselves. Sometimes one or more CHs are deployed into each of these
smaller zones. Such schemes can be found in [5,12,14,15,20].

1.1 Related Works

In most of their applications, WSNs once deployed works unattended for long dura-
tion of time while its constituent nodes deals with lot of sensitive information. During
the message exchange, symmetic key cryptosystems are preferred to public key cryp-
tography as the later incurs lots of computations. In symmetric key cryptography, both
the communicating parties possess the same key prior to message exchange. Standard
online key exchange technique involving public parameters are generally avoided due
to their heavy and costly computations. Treating a node as Trusted Authority is highly
risky as capture of that node will make the entire system vulnerable. Hence schemes
like Kerberos [16] can not be implemented for security in WSN. This leads one to
adopt various Key Predistribution (KPD) techniques.

138 S. Bag, A. Dhar, and P. Sarkar

Eschenauer & Gligor in their work [8] suggested the pioneering idea of predistribu-
tion of keys into the sensors. Their idea can broadly be divided into two steps:

– Keys are (randomly) preloaded into the sensors prior to deployment.
– Key establishment: this phase consists of

• Shared key discovery: establishing shared common key among the nodes; and
• Path key establishment: establishing path via other node(s) between a given

pair of nodes that do not share any common key.

Random preloading of keys means that the key rings or key chains are formed randomly.
Key establishment is done in [8] using challenge and response technique. Schemes that
follow similar random preloading and later probabilistically establishing strategy are
called random key predistribution schemes. Some more examples of such schemes are
[4,6,12]. Çamptepe & Yener presents an excellent survey of such schemes in their tech-
nical report [2].

On the other hand there exists KPD schemes based on deterministic approach in-
volving Mathematical tools. Çamptepe & Yener [1] were first to propose a determin-
istic KPD scheme where keys are preloaded and later established in an deterministic
manner. Following their initial work, numerous deterministic KPD schemes based on
combinatorial designs have been proposed as can be found in [9,10,11,13].

Simonova et al. in their paper [15], discussed two KPD schemes(homogeneous and
heterogeneous) using deployment knowledge. In both the schemes the entire deploy-
ment zone is considered as the integration of some grids. There are two types of key
pools original key pool(OKPi, j for a grid hi, j) and deployment key pool(DKP). For
the OKP, they consider the transversal designed by Lee and Stinson [11]. It is to be
noted that all the OKPs are disjoint.To construct the DKP, they considered augmented
square grids made of m2 number of normal grids. The DKP is defined as DKPi, j =
{⋃x,y OKPx,y|x = 1,2, . . . ,(i+m),y = 1,2, . . . ,(j +m)}. So the grid is augmented by
m− 1 cells on both horizontal and vertical sides before deployment.

1.2 Contributions in This Paper

This work suggests an improvement the research work by Simonova et al. [15]. The
generic nature of [15] allows a KPD using Reed Solomon code [13] to form the basis of
the clusters of [15]. However both the original scheme in [15] and this new scheme lacks
full connectivity among nodes and selective node attack is actually feasible. As for lack
of common key, when two nodes, not sharing a key wants to communicate, a common
path has to be sought. This leads to increased cost of communication and trusting other
(intermediate) nodes. Thus one is prompted to think of a remedial strategy to combat
this problem.

The problem can be addressed applying a deterministic strategy where exactly two
nodes are merged to form fully connected blocks. Corollary 1 of Theorem 2 of section
3 establishes that merging two nodes of Ruj & Roy’s scheme [13] in a certain fashion
results in full connectivity among the newly formed (merged) blocks. Hence the equiv-
alent Simonova et al. design based on RS code has full connectivity. Issue of selective
node attack is dealt with by proposing a new hierarchical design in section 5 where
cluster heads (CH) are used as connecting media between clusters.

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 139

In one odd work, merging block concept was proposed by Chakrabarti et al. where
‘z’ nodes of TD based KPD [10] were randomly merged to form blocks. The resultant
network thus possessed ‘�N /z�’ many blocks where N is the number of nodes in the
original TD model in [10]. Apart from failing to give theoretical justification to most
aspects of their design, their model fails to provide full connectivity among the blocks
of the merged network.

1.3 Terminologies

‘Uncompromised nodes’ mean nodes that are not captured by the adversary. ‘Com-
munication model/scheme’ and ‘Key predistribution (KPD) model/scheme’ mean the
same and abbreviated to ‘KPD’. ‘TD’ is used as abbreviation of Transversal Design.
Unless otherwise stated, the notation and symbols introduced here will be reserved for
the terms mentioned here.

1.4 Notations

– Connectivity between nodes: Two nodes within communication radius of each other
share common key, which is not compromised are said to be connected.

– Full–connectivity of the network: If any two nodes of the network share a secret
key then the network is said to have full connectivity. Here the individual node’s
RF range is not taken into account as the deployment is random.

– TD based KPD: Transversal Design based key predistribution (KPD) of [10].
– RS code based KPD: Reed Solomon code based KPD of Ruj & Roy in [13].
– The set N=Z+ = {1,2,3, . . .} is the set of all natural numbers or positive integers.
– N : denotes total number of nodes for both the KPD in [13,10].
– p : prime, q = pr−prime power, the number of elements in the finite field, Fpr−

finite field with char(Fq) = p,r ∈ N.
– k: number of keys in the key ring of each node as in Lee & Stinson work [10].
– l : the dimension of the Reed Solomon code denoted by Ruj & Roy in [13].

Note that in [13], Ruj & Roy reserved the symbol k to denote the dimension of the Reed
Solomon code. In this paper, we used the symbol l to denote the same as in [10], for the
sake of maintaining consistency of notation with the pioneering work. Notations related
to combinatorial designs and resiliency are defined in sections 1.5 and 7 respectively.

1.5 Basics of Combinatorial Design

This section briefly describes some basic notion of combinatorial design necessary for
understanding Ruj & Roy [13] scheme. Elaborate discussions can be found in any stan-
dard book on Combinatorics like Stinson’s [18] or [19].

Consider a finite set X . Then a set system or design is a pair (X ,A) where A is a
set of subsets of X called blocks. Elements of X are called varieties. A (v,b,r,k)− 1
design based on X satisfies the following conditions:

– |X |= v, |A |= b.
– Each subset in A contains exactly k elements (rank).
– Each variety in X occurs in r many blocks (degree).

140 S. Bag, A. Dhar, and P. Sarkar

Further a (v,b,r,k)−1 design is called a configurations if any two of it’s blocks intersect
in at most one point.

Group-divisible design of type gu and block size k: is a triple (X ,H ,A), where

1. X is a finite set with |X |= gu.
2. H is a partition of X into u parts, that is, H = {H1,H2,H3, . . . ,Hu} with X =

H1∪H2∪H3∪ . . .∪Hu, |Hi|= g ∀ 1≤ i≤ u and Hi∩H j = φ ∀ 1≤ i �= j ≤ u.
3. A is the collection of blocks of X having the following properties: |H ∩ A| ≤

1 ∀ H ∈H , ∀ A∈A , given any pair of varieties x∈Hi,y∈Hj with i �= j ∃ unique
A ∈A such that x,y ∈ A.

Transversal Designs TD(k,n): are special type of group-divisible designs with g =
n,u = k, and as well as (nk,n2,n,k)− configuration. Relation between BIBDs, group-
divisible designs and transversal designs can be found in books on Combinatorial De-
signs like [19,18] while [10, section III] briefs the topic nicely.

Common Intersection Design (CID): maximal CID – Suppose that X ,A is a v,b,r,k–
configuration. X ,A is said to be a μ–common intersection design (μ–CID) if:

|{Aα ∈A : Ai∩Aα �= φ and A j ∩Aα �= φ}| ≥ μ

whenever Ai ∩A j = φ . For the sake of consistency, one defines μ = ∞ whenever Ai ∩
A j �= φ ,∀ i, j.

For any given set of parametric values of v,b,r,k, such that a configuration can be
obtained with them, one would like to construct a configuration with maximum pos-
sible μ . This maximal value of μ will be denoted μ∗. Theorem 14. of [10, section IV]
basically establishes such T D(k,n) designs are k(k−1)∗−CID. To ensure the existence
of a 3rd node sharing separate common keys with both the given non–communicating
nodes, it is important that the value of is μ∗ reasonably high. When k = q and q− 1,
one can readily see that T (q,q) and TD(q− 1,q) possesses pretty high value of μ∗.

2 KPD Using Reed Solomon Codes

This section is devoted to the description of key predistribution scheme proposed by Ruj
and Roy in [13]. The scheme uses Reed Solomon codes to predistribute and establish
the communication keys among the sensor nodes. The construction of Reed Solomon
codes has been given in [13]. For the sake of completeness, salient features are being
sketched here:

To construct (n,ql ,d,q) Reed Solomon code having alphabet in the finite field Fq (q:
prime or prime power > 2), consider the following set of polynomials over Fq:

P = {g(y) : g(y) ∈ Fq[y],deg(g(y))≤ l− 1} (1)

Thus the number of elements in P denoted by |P | = ql . Let F∗q = {α1,α2,α3, . . .,
αq−1} be the set of non-zero elements of Fq. For each polynomial pm(y) ∈ P , define

cpm = (pm(α1), pm(α2), . . . , pm(αq−1))

to be the mth codeword of length n = q− 1. Let C = {cpm : pm(y) ∈ P} be the col-
lection of all such code words formed out of the polynomials over Fq. This results in a

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 141

(n,ql ,d,q) Reed Solomon Code. Since the number of code-words is ql , the system can
support up to ql nodes.

Now the polynomial pm and the corresponding codeword cpm are given to the mth

node. For the codeword cpm = (a1,a2, . . . ,an), one assigns the keys having
key-identifiers (a1,α1),(a2,α2), . . . ,(an,αn) where a j = pm(α j), j = 1,2, . . . ,n to the
mth node. The node id of the mth node is obtained by evaluating the polynomial pm

at x = q and taking only the numerical value. That is the mth node has the node id
pm(q) (without going modulo ‘p’). Alternatively one could have considered taking tu-
ples formed from each node’s polynomial’s coefficients as its node id. Such considera-
tions of taking tuples as node ids can be found in [10].

A WSN with 16 nodes based on Reed Solomon parameters q = 4,n = 3 & l = 2 is
presented in Table 1. Here ‘2’ means the polynomial ‘x’ and ‘3’ means the polynomial
‘x+1’ modulo the irreducible polynomial x2+x+1 over F2[x] which are commonly re-
ferred to as x and x+ 1. Thus 0,1,2,3 forms the finite field F4. The nodes’ polynomials
i+ jy ∈ F4[y] for 0≤ i, j ≤ 3 are given in 2nd row of Table 1. By evaluating these poly-
nomials at non-zero points, the keys (pm(b),b) where 0 ≤ i, j ≤ 3 have been derived
and tabulated in the corresponding columns.

Table 1 constructed by similar computations is being presented in a slightly differ-
ent manner from Ruj & Roy [13]. This group–divisible design form of presentation
helps one realize the similarity of the Reed Solomon based KPD to a Transversal De-
sign T D(q− 1,q) with parameters q− 1,q. However it is important to state that in
T D(q− 1,q) design which has been explained in Theorem 6 of [10, section III] is
slightly different from Reed Solomon code. In TD(q− 1,q) design, the evaluation is
done for y = 0,1, . . . ,q− 2 while in Reed Solomon based design, it is done at non–
zero points, i.e., y = 0,1, . . . ,q− 1. One must remember for T D(q− 1,q),k = q− 1
while noting that their scheme their scheme [10] can be extended to Fq,q = pr: a prime
power.

N0 to N15 denotes the nodes with ids ranging from 0 to 15 whose polynomials are rep-
resented in the column immediately below it. Key ids contained in a node are presented
in the columns below each node. V −C denoted the distinct Variety Classes H1,H2,H3,
where Hd = {(i,d) : 0 ≤ i ≤ 3} for d = 1,2,3. One notes that the scheme under con-
sideration is a (q− 1)(q− 2)−CID as the number of keys per node = k = q− 1 (see
section 1.5). Thus for nodes not sharing any key, there are enough nodes which can play
the role of the intermediate node in multi-hop (2-hop) process. This encourages one to
search for a deterministic design with exactly two merged nodes per block yielding full
connectivity among the blocks.

Table 1. Polynomials, Node and Key identifiers for q2 = 16 nodes. Table adapted from section
3.1 of Ruj and Roy [13]. Alternative presentation: Group–Divisible Design form.

Nodes N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15

V −C 0y+0 1 2 3 y y+1 y+2 y+3 2y 2y+1 2y+2 2y+3 3y 3y+1 3y+2 3y+3

H1 (0,1) (1,1) (2,1) (3,1) (1,1) (0,1) (3,1) (2,1) (2,1) (3,1) (0,1) (1,1) (3,1) (2,1) (1,1) (0,1)
H2 (0,2) (1,2) (2,2) (3,2) (2,2) (3,2) (0,2) (1,2) (3,2) (2,2) (1,2) (0,2) (1,2) (0,2) (3,2) (2,2)
H3 (0,3) (1,3) (2,3) (3,3) (3,3) (2,3) (1,3) (0,3) (1,3) (0,3) (3,3) (2,3) (2,3) (3,3) (0,3) (1,3)

142 S. Bag, A. Dhar, and P. Sarkar

2.1 Weakness of the above KPD Scheme [13,15]

The RS code based KPD in [13] lacks full connectivity among nodes (see section 3) and
selective node attack is feasible (refer section 5). This results in multi-hop communica-
tions among the nodes which increases cost of communication as well as enhancing the
chances of adversarial attacks on such communication. Thus the energy efficiency and
security of message exchange of each cluster and hence the entire network of RS code
based KPD in [15] might be grossly affected.

3 Remedy: Deterministic Merging of Nodes

Lack of direct communication for any arbitrarily chosen pair of nodes can be tackled
by merging certain number of nodes yielding a network with fewer blocks, each pos-
sessing larger key rings. With this increased number of keys per block, one may expect
improved communication between any given pair of blocks. Chakrabarti et al. [3] sug-
gested the novel idea of random merging z nodes of a TD(k,n) based KPD proposed
by Lee & Stionson [10] having similar weakness. Though connectivity of the resultant
model was much improved, full connectivity was not assured. Other than this, the au-
thors of [3] have not satisfactorily explained many aspects of their design, like the basic
concept of merging, choice of nodes while merging, the heuristic in [3, section 4] etc.

(a) Deterministic Merging Strategy with q =
4 = 22.

(b) Deterministic Merging strategy: general
even case: q = 2r .

Fig. 1. Deterministic Merging Blocks Strategy on RS Based KPD scheme even cases of q =
4,2r ,r ∈ N

These observations prompt the current authors to think of deterministic merging of
nodes of the scheme in [13] for the case l = 2. In this regard, it is worth noting that
Table 1 indicates the network having 16 nodes can be partitioned into 4 classes each
containing 4 nodes on the basis of their key sharing. These classes are separated by
double column partitioning lines after each set of 4 nodes: N0,N1,N2,N3; N4,N5,N6,N7;
N8,N9,N10,N11; & N12,N13,N14,N15. Every class has the property that the coefficient
of y in their respective polynomials is same. Equating each other’s polynomials i+ jy
with 0 ≤ i ≤ 3 for some fixed j = 0,1,2 or 3 results in no common solution, hence
no common key. As for example with j = 1 with i = 0,1,2,3, the corresponding 4

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 143

polynomials are 0+ y,1+ y,2+ y,3+ y, which does not have any common solution.
Hence no shared keys for corresponding nodes.

The other case for any pair of nodes not sharing any common key is whenever
their constant term is same since only non–zero values of y are allowed. This gives
rise to alternative type of partition: N0,N4,N8,N12; N1,N5,N9,N13; N2,N6,N10,N14; &
N3,N7,N11,N15. This motivates one to visualize the key sharing of the 16 nodes, N0

to N15, like a ‘square-grid’ as presented in Figure 1(a). Any pair of nodes, other than
the ones lying in the same row or column shares exactly 1 key as the equations: (j−
j′)y = (i′ − i) has unique solution over non–zero points of F4 (since q = 4) that is with
0≤ i �= i′, j �= j′ ≤ 3.

Merging of nodes in pairs for the case q = 4,2r can be now achieved as indicated
by the slanted line in Figure 1. In Figure 1(a) for q = 4, the nodes: Ni, j & Ni⊕1, j⊕1 are
merged. j = 0,2. For q = 2r, Figures 1(b) demonstrate the strategy. Idea in Figures 1(b)
is to break up the network into pairs of rows, i.e. {1,2};{3,4}, . . . ,{2r−1,2r} and apply
similar process. Here ⊕ : addition modulo 2 for both cases.

Before explaining the general odd case, it is useful to visualize the case when q = 5,
i.e. a network with q2 = 52 = 25 nodes as presented in Figure 2(a). Rest of the discussion
is similar to that of the case q = 4 = 22 except for the merging of last three rows. As
usual the arrows indicate the merging strategy. The strategy indicated in Figure 2(a) is
same for the first and second rows while differs in the last three rows when compared to
Figure 1(a). This is because a similar strategy like previous cases would imply one row
is left out. Of course for q = p = 5 all arithmetic operations are ‘modulo 5’ arithmetic
operations as done in F5.

(a) Deterministic Merging Strategy with
q = p = 5 =⇒ 25 nodes.

(b) Deterministic Merging strategy: general
odd case: q = pr,r ∈ N.

Fig. 2. Deterministic Merging Blocks Strategy on RS Based KPD scheme for p = 5,r = 1 =⇒
q = 5 and all odd cases q = pr,r ∈ N

The general case of q = pr :odd prime power, q2 nodes (l = 2) can visualized as a
q× q ‘square-grid’ as in Figure 2(b) where the merging is indicated. Nodes in same
row or column having do not share common key while any other pair of nodes have
exactly one common key. Nodes occurring at the ends of a slanted line are merged.
Like for q = 5, the idea is to look at two rows at a time and form blocks containing

144 S. Bag, A. Dhar, and P. Sarkar

one node of each except for last 3 rows. For fixed 0 ≤ i ≤ q− 2, merge the nodes Ni, j

& Ni⊕1, j⊕1(⊕ : addition modulo q), for 0 ≤ j ≤ q− 3 (with increment of 2) ∀ q > 4.
The last node of every odd row is merged with the first node of the row above it. Taking
combination of two row would have left out one row, so top three row are combined
separately. Figure 2(b) explains the merging for this case.

Note that in case merging of nodes is done randomly, one may end up with merged
pairs like N0,0∪N0,1 and N0,2 ∪N0,3, (for q ≥ 4) which do not share any common key,
thus not be able to communicate even after merging.

3.1 Assured Full Connectivity: Theoretical Results

Equating the polynomials of the 4 nodes constituting any two merged blocks, one read-
ily sees that:

Theorem 1. The proposed deterministic Merging Block Strategy where two nodes of
the Reed Solomon based KPD scheme in [13] are clubbed to form the merged blocks
results in full connectivity among the merged blocks.

Proof. Consider any two arbitrary blocks A and B. It is evident from the construction
that at least node from block A will never lie in the horizontal line as well as the vertical
line of either of the two nodes the other block B (refer figures 1(a), 1(b) 2(a) and 2(b)
for q = 4,2r,5 and for general case respectively). This implies that these two nodes will
have a common key as discussed in section 3. Hence the blocks A and B can commu-
nicate through this key. As the two blocks were arbitrarily chosen, one is assured of
full connectivity in the new network consisting of blocks constructed by merging two
nodes in the manner explained above (again refer figures 1(a), 1(b) 2(a) and 2(b) for
q = 4,2r,5 and for general case respectively).

Theorem 2. The resulting Merged Block Design has a minimum of one (1) to a maxi-
mum of four (4) common keys between any two given pair of (merged) blocks.

Proof. Any two nodes can share at most one key in original Reed Solomon based KPD
in [13]. So there are at most 4 keys common between two blocks. This situation occurs
only if both nodes of the 1st block shares two (2) distinct keys with each node of the
2nd block.

Remark 1. Some important features of the merging block design are as follows:

– Thus the resultant merged block design (as suggested here) has full connectivity
among the blocks through at least one common keys between any two given pair of
(merged) blocks.

– Full communication can not be assured when nodes are merged randomly to form
larger blocks. Probably this is the main reason why authors of [3] could not jus-
tify several issues in their random merging model. Table 2 indicates that even the
resiliency (E1(s)) of the current stragy is better than those (ECMR(s)) of [3].

– The current authors feel that it is mandatory to have inter nodal communication oth-
erwise the entire concept to achieve full connectivity by this technique is lost. The
essence of the merging concept is that any communication is always received by

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 145

either of the two constituent nodes of a block. Now if required it can pass the infor-
mation down to the other node comprising its block and hence make the other node
connected. This consideration was given importance while proposing the merged
design. Evaluation was done at y = 2, p−1

2 , pt − 1,1≤ t ≤ r.
– It should be highlighted that merging does not mean that the nodes physically com-

bine to become one. Just that they are to be treated as one unit.
– So, the total number links in the merged scheme is same as that of the original Reed

Solomon based KPD of Ruj & Roy in [13]. This fact will be recalled later while
discussing resiliency of the system.

4 RS Code Based Simonova et al. KPD

In their work [15], Simonova et al. considered a network of p4 nodes for any prime
p and subdivided them into cluster of p2 many. Each cluster was modeled using Lee
& Stinson classic Transversal design of [10]. Inter cluster connectivity was ensured by
amalgamating the key rings of each nodes. They had denoted the original key pool as
Korig and the new key pool after amalgamation as Kdepl . However there was a small
error in calculating the group–divisible form. Of course one can utilize RS code based
KPD [13] to distribute the keys in each cluster. Accordingly their strategy get modified
for the current application which is explained below:

– For each cell deployment key pool X is the union of the original key pools of
m×m cells. This means that the size of the finite set X is Kdepl = |X |= m2Korig.

– Each original key pool contributing to the deployment key pool serves as a group
Hg, so the set of groups consists of kdepl = m2(q− 1) groups.

– Each group Hg consists of Korig = q elements.

Rest of the details can be looked up in [15, section 3.3].

4.1 Full Connectivity: Minimum Keys

As TD design based KPD was provoked for inner cluster communication, full con-
nectivity was not achieved inside each cluster, hence not in the entire network. Merg-
ing block design presented in section 3 addresses this issue assuring full inner cluster
communication among blocks and hence full connectivity in the whole network. How-
ever the network size is halved consisting of blocks of 2 nodes with 2kdepl − 1,kdepl =
m2(q− 1) keys per ring.

5 New Heterogeneous Design

Wireless sensor nodes are generally very resource constrained and their cost varies pro-
portionately to the amount of resource inbuilt into them. It may not be affordable to
use costly sensor nodes having more amount memory. The key predistribution model
of Simonova et al. may become very demanding when block merging technique is ap-
plied to it. Though minimum key concept using merging block may reduce this storage
problem, better solution is necessary. In Simonova et al. the network size is correlated

146 S. Bag, A. Dhar, and P. Sarkar

to number of keys one node can contain. To circumvent this trade one may think of
using a heterogeneous design. A heterogeneous network consists of different types of
nodes varying mainly in resources they possess. One may think of implanting exactly
one cluster head (CH) into the q2 many clusters of the network giving rise to a hierar-
chical structure with KDS at top of the ladder, followed by a set of q2 many CHs in the
2nd tier beneath each lies q2 many nodes.

In each cluster any KPD may be used like the same one based on TD of [10]. In
addition to the q−1 keys corresponding to the TD design, each node is preloaded with
exactly one key that links it to its CH. Thus each CH have q2 keys one for each of the
node in the lower tier. For communication with other CHs at the same tier, each CH
holds another set of q2− 1 keys and one additional key to link it with the Base Station.
Thus CH contains a total of 2q2 many keys. While the nodes now have (q− 1)+ 1= q
many keys in them.

This scheme similarly does not have full connectivity, which can be addressed by
the merging technique. Nodes in each cluster are merged to form blocks in absolutely
the same manner as before. However, now each block contains 2(q−1+1)−1= 2q+
1 keys. Communication of nodes of different cluster takes place via the CHs of the
respective clusters. So one obtain a fully connected network till the RF range of the
CH. As the CHs are more resourceful and can be given extra security as they are less
in number, the overall communication is fast and secure. Key establishment protocols
in section 6 of both design, viz. Simonova et al. and this elaborate how ‘selective-node-
attack’ is possible in former but gets eradicated here. The current concept differs from
the one proposed in [17] as the notion of separating connectivity and communication is
not needed here. The extra key for CH does the job.

6 Key Establishment Protocol

During key establishment phase, in Simonova et al. model [15], the nodes first ex-
change their identifiers. Since these identifiers are public information, they can be trans-
mitted in unencrypted form. Upon receiving ids of the other nodes, the nodes compute
the key-id of the shared key in a similar way as in the TD model of [10]. Here one
notes the the adversary can do the same and can compute the common id of the com-
mon key between the two nodes. However the adversary can not know the actual key
until he compromises some node containing that key. This makes ‘selective node attack’
feasible.

This inspires the authors to think of encrypting the node ids during transmission in
the new design. Each node N(a,b) = Naq+b is deployed with following data preloaded
into them. These are utilized for key establishment according to the protocol described
in Algorithm 1:

– The extra key in each node meant for its CH;
– KPD keys compromising their key ring;
– key ids corresponding to each key in their key ring;
– their respective polynomials and the node ids.

Establishing keys for nodes automatically establishes common keys between the merged
blocks.

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 147

Immediately on deployment, the nodes send their ids to their CH encrypted with1

common key shared with their CH’s;
On receiving each of the node ids aq+b (without being reduced modulo q), the CH2

form the polynomial ay+b corresponding to the node ids;
These polynomials are equated for common key ids in much the same way as was3

done by nodes in Transversal Design [10] or its amalgamated design Simonova et al.
[15];
The common keys are indicated back to the nodes using some indicator in an4

encrypted manner. Again the node-CH keys are used. ;
Nodes decrypts the encrypted indicator using the share node-CH keys ;5

Knowledge of the merging technique is applied for establishing shared keys between6

nodes, automatically establishes shared keys between any pair of blocks;
Keys thus established are used for message exchange;7

Algorithm 1. Key Establishment Protocol

Since the CHs are doing most the operations in this protocol, the process is fast and
secure. Hence ‘selective node attack’ is ruled out in the new scheme.

7 Resiliency: Comparative Study

In this section the resiliency of the all the schemes analyzed are discussed in terms of a
well known measure called E(s), which helps in comparing the various schemes stud-
ied. E(s) is defined to be the fraction of links disconnected when s nodes (in original) or
blocks (in merged) are captured by the adversary and all the keys in them are exposed
to the adversary.

Let q− 1 be the number of keys per node. In RS code based KPD in [13], the repli-
cation number of a certain key is q. Hence every key occurs in q many nodes. If the
adversary compromises s nodes then the total number of keys she obtains is sk all of
which may not be distinct. Let sdk be the number of distinct keys that the adversary gets
to know by compromising s many nodes. Since one key is common between q many
nodes, one key corresponds to

(q
2

)
many links of the WSN. So, sdk keys contribute to

sdk
(q

2

)
many links. Hence the number of links exposed is sdk

(q
2

)
. Since, there are

(q
2

)
distinct links per key and and total of q(q− 1) keys in the key pool of RS code design

[13], the total number of link = q(q− 1)
(q

2

)
for each cluster. Hence, E(s) =

sdk(q
2)

q(q−1)(q
2)

for original RS code based KPD in [13].
From the construction of the merging blocks, it is clear that a merged block network

of size N corresponds to a original KPD of size roughly 2N. Capture of s merged blocks
is equivalent to capturing 2s nodes of original KPDs. So here the ratio of links broken
E(s)≈ old E(2s) of each of the original KPDs. The tabulated values in Table 2 confirm
these observations.

As for the resiliency of new design in section 5 and Simonova et al. scheme [15],
suppose S= s1+s2+ . . .+sq2 be the number of compromised nodes, where si =number
of compromised nodes in cluster i,1 ≤ i ≤ q2. The for the new model of section 5,

148 S. Bag, A. Dhar, and P. Sarkar

E(S) =
q2

∑
i=1

E(si), where E(si) =resiliency of RS code based KPD in [13] design on

compromise of si nodes. This is due to the fact that each cluster is independent of
the other in terms of connectivity and are linked by their respective CH. Whereas in
Simonova et al. scheme [15], capture of si nodes affects minimum of 1 to maximum
of m2 other nodes. The exact value, dependent on m is difficult to predict. Simulation
results are given in Table 2.

8 Connectivity, Scalability and Communication Overhead

Connectivity is defined to be the probability that any given pair of nodes (in original
KPDs) or blocks (in their merged designs) can communicate directly, i.e. share common
cryptographic key(s). From corollary 2 of Theorem 1, connectivity is 1.

As only linear, quadratic and cubic equations have general solution, key establish-
ment involving solving (l−1)th degree can be done till l = 4 for the KPD in [13]. Thus
this KPD scheme with l = 2 =⇒ having q2 nodes scales to q3 to q4 nodes for l = 3,4
respectively. Accordingly one has to think of new merging strategy.

Communication overhead measures the computational complexity of first the key
establishment and then message exchange. It is well known that linear, quadratic and
cubic equations have general solution. Key establishment involving solving (l− 1)th

degree can be done till l = 4. Though quadratic and cubic equations can be solved in
constant time, the complexity or communication overhead of finding the solution to
these equations is quite high. Thus with increasing number of nodes in the original
KPD, the resiliency drops abruptly and the complexity of key establishment increases
rapidly. So, practically l = 2 case is considered for the basic design [13] which is used
to distribute keys in the clusters of both Simonova et al. and the new design.

9 Simulation and Comparative Results

Simulation is performed to monitor the achieved effectiveness of the proposed model
in this paper in terms of resiliency over the model proposed by Simonova et al. [15] and
the original KPD [13].

The run results after 100 runs for each data set are tabulated in table 2 where Nmb =
�NRS

2 �, l = 2 =⇒ k = q− 1. NRS (= q2) and Nmb denotes total number of nodes and
merged blocks in the network respectively. smb is the total number of nodes compromised.
As noted, the effect of compromising 2s nodes of the original network is equivalent to
s compromised blocks in the merged network. E1(s),ERS(s) denotes the resiliency co-
efficient in the merged and original network respectively. While ECMR(s) denoted the
corresponding data adapted from [3]. E2(s),E3(s) are the resiliency coefficients of the
merging block design over Simonova et al. [15] and the original KPD [13] respectively.
The entire network size is accordingly taken to be N 2

mb and N 2
RS respectively.

10 Conclusions and Future Research Directions

This paper investigates the connectivity issue of a KPD scheme by Simonova et al.
[15] where the network is subdivided into clusters. The classic TD based KPD in [10]

100% Connectivity for Location Aware Code Based KPD in Clustered WSN 149

Table 2. Simulation & comparative results for E(s) for the original KPDs and their merged design

NRS Nmb smb E1(s) ERS(s) E2(s) E3(s) ECMR(s)
841 420 5 0.296121 0.296707 0.182103 0.186332 0.317145

1681 840 5 0.219025 0.219159 0.216666 0.155608 0.234575
2401 1200 5 0.186576 0.186709 0.157999 0.139810 0.199822
2401 1200 10 0.338858 0.338890 0.231038 0.199857 0.362916
5041 2520 10 0.247530 0.247352 0.201631 0.170041 0.265104
10201 5100 10 0.180536 0.190590 0.179905 0.136963 0.193354
10201 5100 20 0.328524 0.329059 0.261768 0.200380 0.351849
10609 5304 10 0.177394 0.177280 0.188190 0.136963 0.189988
10609 5304 30 0.443347 0.443746 0.315809 0.233972 0.4748246

was utilized for predistribution of keys in each cluster of [15] which is replaced by the
RS code based KPD in [13]. Hence the work here can be thought of amalgamating q2

networks (treated as clusters) build with the same KPD of [13] with q−1 keys per node.
The deficiencies like lack of connectivity and feasibility of ‘selective node attack’ the
original RS code based KPD are naturally carried over to the equivalent of Simonova et
al. Deterministic merging of nodes forming blocks within clusters address the issue of
connectivity of not only the clusters, but of the entire network. Combinatorial approach
helps one view the similarity between the original design in [10] while a new hierarchy
based KPD using RS code for clusters solves the node attack problem. This new model
requires q2 many CHs and has q keys per node as opposed to m2(q−1) keys per node of
Simonova et al. model using RS code. Combing merging blocks with the new strategy
addresses both the issues.

One readily visualizes some immediate future research directions. Application of
similar deterministic merging concept to network based on other KPDs like [12,9] lag-
ging full connectivity among its nodes like may result in interesting works. The reason
of preferring such merging strategy over its random counterpart has been sketched.
More detailed generic survey of deterministic verses random merging of nodes yield-
ing fully communicating networks can be nice topic of future research. This paves a
direction which may fulfill the target of achieving fully communicating deterministic
schemes having high resiliency. A priori one must look to design scheme having good
node support, small key rings, high resilience and scalability. Mathematical solutions to
such fascinating problems will be interesting.

Acknowledgement The authors would like to extended their gratitude towards the
Ph.D. supervisors of Mr. Pinaki Sarkar, viz. Dr. Indranath Sengupta, Department of
Mathematics, Jadavpur University and Prof. Subhamoy Maitra, ASU, ISI Kolkata, both
of whose inspiration has helped this work to become a success. This work is meant to
be a part of Ph.D. thesis of Mr. Pinaki Sarkar. The inputs from Mr. Sabyasachi Datta
of Pure Mathematics Department, University of Calcutta and Miss. Amrita Saha are
worth mentioning and hence need to be thanked heartily. The authors would also like
to sincerely express their gratitude towards Mr. Sumit Kumar Pandey and Mr. Sourav
Sengupta for their constant motivation and help related to technical issues during the
drafting of the paper.

150 S. Bag, A. Dhar, and P. Sarkar

References

1. Çamtepe, S.A., Yener, B.: Combinatorial Design of Key Distribution Mechanisms for Wire-
less Sensor Networks. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004)

2. Çamtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor networks: A sur-
vey 2005. Technical Report, TR-05-07 Rensselaer Polytechnic Institute, Computer Science
Department (March 2005)

3. Chakrabarti, D., Maitra, S., Roy, B.: A key pre-distribution scheme for wireless sensor net-
works: merging blocks in combinatorial design. International Journal of Information Secu-
rity 5(2), 105–114 (2006)

4. Chan, H., Perrig, A., Song, D.X.: Random key predistribution schemes for sensor networks.
In: IEEE Symposium on Security and Privacy. IEEE Computer Society, Los Alamitos (2003)

5. Du, W., Deng, J., Han, Y.S., Chen, S., Varshney, P.K.: A key management scheme for wireless
sensor networks using deployment knowledge. In: INFOCOM (2004)

6. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution Scheme for
Wireless Sensor Networks. ACM Trans. Inform. Syst. Secur. 8, 228–258 (2005)

7. Di Pietro, R., Mancini, L.V., Mei, A.: Energy efficient node-to-node authentication and com-
munication confidentiality in wireless sensor networks. Wireless Networks 12(6), 709–721
(2006)

8. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In:
ACM Conference on Computer and Communications Security, pp. 41–47 (2002)

9. Lee, J.-Y., Stinson, D.R.: Deterministic Key Predistribution Schemes for Distributed Sensor
Networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 294–307.
Springer, Heidelberg (2004)

10. Lee, J.Y., Stinson, D.R.: A combinatorial approach to key predistribution for distributed
sensor networks. In: IEEE Wireless Communications and Networking Conference, WCNC
2005, New Orleans, LA, USA (2005)

11. Lee, J.Y., Stinson, D.R.: On the construction of practical key predistribution schemes for
distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst. Secur. 11(2),
5:1–5:35 (2008)

12. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: ACM Con-
ference on Computer and Communications Security, pp. 52–61. ACM, New York (2003)

13. Ruj, S., Roy, B.: Key Predistribution Schemes Using Codes in Wireless Sensor Networks.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 275–288. Springer,
Heidelberg (2009)

14. Ruj, S., Roy, B.K.: Key predistribution using combinatorial designs for grid-group deploy-
ment scheme in wireless sensor networks. TOSN 6(1) (2009)

15. Simonova, K., Ling, A.C.H., Wang, X.S.: Location-aware key predistribution scheme for
wide area wireless sensor networks. In: SASN, ACM, pp. 157–168 (2006)

16. Steiner, J.G., Neuman, B.C., Schiller, J.I.: Kerberos: An authentication service for open net-
work systems. In: USENIX Winter, pp. 191–202 (1988)

17. Sarkar, P., Saha, A., Chowdhury, M.U.: Secure Connectivity Model in Wireless Sensor Net-
works Using First Order Reed-Muller Codes. In: MASS 2010, pp. 507–512 (2010)

18. Stinson, D.R.: Combinatorial Designs: Construction and Analysis. Springer, New York
(2004)

19. Street, A.P., Street, D.J.: Combinatorics of Experimental Design. Clarendon Press, Oxford,
ISBN 0198532555

20. Yu, Z., Guan, Y.: A key management scheme using deployment knowledge for wireless sen-
sor networks. IEEE Trans. Parallel Distrib. Syst. 19(10), 1411–1425 (2008)

Learning Fine-Grained Structured Input

for Memory Corruption Detection

Lei Zhao1,2, Debin Gao2, Lina Wang1

1 Computer School of Wuhan University, Wuhan, China
2 School of Information Systems, Singapore Management University, Singapore

zhaolei.whu@gmail.com, dbgao@smu.edu.sg, lnwang@whu.edu.cn

Abstract. Inputs to many application and server programs contain rich
and consistent structural information. The propagation of such input in
program execution could serve as accurate and reliable signatures for de-
tecting memory corruptions. In this paper, we propose a novel approach
to detect memory corruptions at the binary level. The basic insight is
that different parts of an input are usually processed in different ways,
e.g., by different instructions. Identifying individual parts in an input
and learning the pattern in which they are processed is an attractive
approach to detect memory corruptions. We propose a fine-grained dy-
namic taint analysis system to detect different fields in an input and
monitor the propagation of these fields, and show that deviations from
the execution pattern learned signal a memory corruption. We imple-
ment a prototype of our system and demonstrate its success in detecting
a number of memory corruption attacks in the wild. In addition, we eval-
uate the overhead of our system and discuss its advantages over existing
approaches and limitations.

Keywords: memory corruption, dynamic taint analysis.

1 Introduction

Memory corruption exploits usually involve overwriting significant memory seg-
ments such as return addresses and function pointers [21]. Typical memory cor-
ruption exploits include control-hijacking attacks (e.g., [10]) and non-control
data attacks (e.g., [8]). Despite having a long history, memory corruption ex-
ploits are still one of the biggest challenges to computer security [19].

Many techniques have been proposed to fight against memory corruption ex-
ploits, e.g., secure language [20,14], bug detection [17], safe library [25], bounds
checking [26], etc. Some of these techniques require access or even changes
to the source code (e.g., [3,7,20,14]), which might not be suitable when deal-
ing with commercial off-the-shelf applications. Dynamic approaches which do
not require source code of the program include canary-based techniques [10],
probabilistic defenses [4], runtime enforcement [25], dynamic taint analysis [21],
control flow integrity [2], etc. These binary-level techniques are powerful and ef-
ficient against many attacks, however they also suffer from some limitations [3].

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 151–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 L. Zhao, D. Gao, and L. Wang

For example, dynamic tainting such as TaintCheck cannot detect non-control
data attacks [21]. Pointer tainting [18] may result in a large number of false
alarms because of legitimate use of input as pointers [23].

In this paper, we investigate how fine-grained taint analysis and propagation of
program inputs could fight against memory corruptions. Program inputs usually
contain rich structural information, which has been shown to be useful in a num-
ber of security applications [13,16]. Intuitively, programs usually parse an input
into various fields, which contain independent semantics and are subsequently
processed by different instructions [6,15]. A consistent and reliable pattern on
the fine-grained structure of an input and the corresponding processing of it by
different instructions could be used to capture normal execution of the program,
since memory corruption exploits usually violate program semantics, e.g., the
overflowed bytes are not processed by intended instructions. Thus the process-
ing of exploits may not be consistent with that in benign executions. With this
observation, memory corruptions could be detected by monitoring deviations of
program execution from the pattern of input processing.

There are some difficulties in realizing such an intuition. First, the fine-grained
structural information of the input might not be known. This could be due to a
proprietary protocol used or lack of documentation. Moreover, even if a protocol
description is available, it is usually not implementation specific, which might
introduce noise to the detection (e.g., two independent fields in an input might
be processed by the same instructions in a similar way in an optimized imple-
mentation). Second, it is unclear how to model the propagation and processing
of the fine-grained structural input and to define patterns to catch the devia-
tions. Third, existing dynamic tainting systems do not support the monitoring
of fine-grained structural inputs.

We propose a novel technique called FiGi to monitor fine-grained input infor-
mation for detecting memory corruptions. FiGi extends existing dynamic taint
systems to enable precise monitoring of the propagation of individual input bytes
(and their corresponding taint tags) during program executions. It learns and
extracts structural information in program inputs by analyzing the execution
context of every input byte. To normalize the input structures for specific in-
puts, FiGi uses a tree structure to model the input as well as its propagation
in program executions, and constructs normal patterns by monitoring benign
executions of the program. We implement FiGi and demonstrate its success in
detecting a number of memory corruption exploits in the wild, include both
control-hijacking and non-control data attacks. We additionally evaluate the
overhead in using FiGi, and discuss its advantages over existing dynamic tech-
niques in detecting memory corruption exploits as well as its limitations.

2 Related Work

The closest related work to FiGi is dynamic taint analysis which has been pro-
posed to detect attacks, to diagnose vulnerabilities, and to generate attack signa-
tures. TaintCheck [21] detects attacks that overwrite return addresses, function

Learning Fine-Grained Structured Input for Memory Corruption Detection 153

pointers, format vulnerabilities, and in general control-related memory corrup-
tions [8]. Pointer tainting detects non-control data attacks [18], but over-tainting
causes a large number of false alarms [23]. FiGi differs from these existing dy-
namic tainting systems in the granularity of tainting in that FiGi assigns a
different taint tag to each individual byte of the input and monitors the prop-
agation of every taint tag. As we will show in Section 5, FiGi is able to detect
both the control-hijacking attacks and non-control data attacks.

Clause et al. proposed tainting memory allocation to improve memory
safety [9,12]. Instead of tainting the input of the program, they taint the mem-
ory segments and the corresponding pointers for dynamic memory allocations
on the heap and stack. However, a drawback of their approach is that compiler
optimization may consolidate multiple memory regions (especially for local vari-
ables) into a single allocation request, which hides the granularity required for
effective detection of memory corruptions. FiGi, on the other hand, does not
suffer from this limitation because our tainting is fine-grained and not limited
to memory allocations.

A key step in FiGi is to learn the structure of inputs, which is closely related to
protocol reversing [6,15]. FiGi employs a similar idea as these protocol and for-
mat reversing techniques. However, the different scenarios in which the recovered
structure is used pose very different requirements on the discovery of the input
structure. FiGi uses the input structure to detect memory corruptions exploits,
which requires very fine-grained input structure to be learned; on the other hand,
protocol and data structure reversing could benefit from grouping multiple fields
of the input together as long as the execution context is similar [15].

3 A Motivating Example and the Challenges

In this section, we present a motivating example to demonstrate the idea of FiGi
as well as the challenges involved.

232 char ifname[MAX_PATH_LEN]; /* input file name */

233 char ofname[MAX_PATH_LEN]; /* output file name */

756 if(make_ofname() != OK) return;

757 ifd = OPEN(ifname, ascii && !decompress, RW_USER);

1072 local int make_ofname() {

1076 strcpy(ofname, ifname); //memory corruption

Fig. 1. A motivating example of vulnerable gzip

Fig. 1 shows a vulnerable code segment of gzip-1.2.4 with an unsafe string
copy from ifname to ofname. If the length of the filename (part of the input)

154 L. Zhao, D. Gao, and L. Wang

is larger than 1024 bytes, strcpy will result in an overflow of the buffer for
ofname. Note that FiGi works on the binary level. The source code and the
corresponding memory layout of variables in Fig. 1 and Fig. 2 are presented
for clearer explanation only. FiGi does not need to know anything about the
high-level symbols such as ifname and ofname.

0

1

0

1

of_name
(807f680)

part_nb
(807fa80)

if_name
(807faa0)

2

2

of_name
(807f680)

part_nb
(807fa80)

if_name
(807faa0)

0

1

1056

1057

of_name
(807f680)

part_nb
(807fa80)

if_name
(807faa0)

2

1058

1055

(a) (b) (c)

A B C D

0 1 2 3

input:

taint tags:

Fig. 2.Memory layout of gzip. 0x807f680, 0x807fa80 and 0x807faa0 are the beginning
memory addresses of ifname, part nb and ofname, respectively.

We first examine what FiGi could learn from the fine-grained structural input
in benign executions of gzip, when each byte of the command line input to
gzip is assigned a different taint tag. Fig. 2(a) shows a portion of the memory
layout in one particular execution of gzip, and we can see that each byte on
the stack comes with a unique taint tag. At a closer look into the instructions
processing the tainted input, we also realize that the tainted input bytes are
stored into two buffers of which the memory addresses start from 0x807f680

and 0x807faa0, respectively. Moreover, the bytes are all processed by the same
instructions (strcpy and open) continuously during program executions. That
is, the tainted input is processed as one unit. Therefore, FiGi could derive that
the entire input contains only one field (see Fig. 2(b)).

To see the advantage of monitoring the fine-grained structural input, we con-
sider a typical memory corruption exploit with inputs of 1200 bytes long at offset
0–1199 as shown in Fig. 2(c). When the input is longer than 1056 bytes, the un-
safe string copy will overwrite segments of part_nb (the memory address starts

Learning Fine-Grained Structured Input for Memory Corruption Detection 155

from 0x807fa80) and ifname (the memory address starts from 0x807faa0).
Bytes with tags 1056–1199 would be accessed when open executes. FiGi would
realize that the input portion with offset 1056–1199 is accessed by two instruc-
tions, namely open and strcpy, while the input portion with offset 0–1055 is
accessed by strcpy only. Given the assumption that the input fields contain
independent semantic and are subsequently processed by different instructions,
from the exploit execution, the two portions with offset 1056–1199 and 0–1055
form two independent fields. This constitutes a deviation from what FiGi had
learned from training of gzip, and triggers an alarm. Note that this deviation
could not have been detected without a fine-grained monitoring of the struc-
tural input. Also note that such a memory corruption cannot be detected by
TaintCheck [21] because tainted data does not change any function pointers or
format characters.

Although this motivating example shows some intuition as to how the fine-
grained structural input and its propagation during program executions could
help detecting memory corruptions, there are some challenges we face.

1. The structural information of the input might not be known, either due to a
proprietary protocol in use or lack of documentation. FiGi assumes that the
only information available is the binary program as well as some training
inputs. Therefore, we need to design FiGi in such a way that the structural
information is learned via training.

2. It is unclear how to best model the propagation and processing of the fine-
grained structural input to catch memory corruptions and to minimize false
alarms. As we shall explain in the next section, FiGi keeps multiple patterns
for each program to minimize false alarms.

4 System Design

4.1 Patterns and Deviations

We design two types of patterns in FiGi based on the observations that 1) the
input structure is well-defined and consistent; and 2) fields accessed by different
instructions are independent of one another. With these two observations, we
capture the independent fields and the input structures. At the same time, for
each independent field, we capture the execution context in which the field is
processed as well.

Definition 1. An independent field of the input consists of several continuous
bytes which are always accessed as one unit in the program execution.

Definition 2. The accessing location of an independent field is the program
execution context accessing the bytes of this field, which include the current call
stack as well as the accessing instructions.

With the two patterns, a program execution processing one input could be rep-
resented as follows.

156 L. Zhao, D. Gao, and L. Wang

Definition 3. An input processing is denoted as R(i) = 〈S,F,E〉. In this for-
mula, R(i) refers to the program execution with the input i. S refers to the struc-
ture of i. F = {f1, f2, ..., fn} refers to the set of fields. E = {e1, e2, ..., em} refers
to the set of accessing locations.

The input structure is specific with i (e.g., the offset interval of fields). With this
impact, the field sets cannot be directly compared, and a normalized representa-
tion is required to generally represent the structured input. We will demonstrate
this part in Sec. 4.5. Beside, there are mapping relationships between F and E.
fi is mapped with with more than one ej , which indicates that one field could
be accessed by several execution contexts, respectively.

For an unknown execution R(i), the deviation is detected if 1) S is not matched
with any of benign inputs, or 2) even S is matched, but the ej of fi cannot be
matched. The first condition makes sense because the abnormal execution vio-
lates the input structures due to the misuse of corrupting bytes by unintended
instructions. However, it is possible that the exploit could break and interrupt
the input parsing, especially when the program is control hijacked and jumps
to illegal instructions. These cases are common in multiple vulnerable programs
(e.g, AT-Tftp, ghttpd in Sec. 5). As a result, we could only get a partial structure
and the difference of structures may not be clear. In such cases, the second condi-
tion makes sense because a specific fields can only be accessed in several specific
accessing locations. In Sec. 5.2, we will use the ghttpd program to illustrate.

4.2 Overview

As demonstrated in Sec. 3, we cannot expect the structural information of in-
puts is known, and we need to extract and learn patterns on input processing
from benign executions. To overcome these challenges, the basic idea of FiGi is
to model the propagation and processing of the fine-grained structured input
through dynamic execution monitoring. Fig. 3 shows an overview of FiGi.

1. We adopt the dynamic taint analysis to dynamically monitor the program
executions as well as the propagation of inputs. In addition, we extend the
dynamic taint analysis to enable precise monitoring of the propagation of
individual input bytes (and their corresponding taint tags), such fine-grained
propagation could be used to capture the structured input.

2. To model the input processing and learn some patterns, we identify fields of
the input via execution context comparison. This approach is similar with
the protocol/format reversing techniques [15], except the difference that the
field identification is performed online for the purpose of emergency responses
to memory corruption attacks. Moreover, for exploits, the input structure
may not be sufficient for deviation detection, because the memory corrup-
tion attack could break and interrupt the input parsing, from which the
deviation cannot be observed and lead to false negatives. For effectiveness
enhancement, we also collect the corresponding processing contexts for each

Learning Fine-Grained Structured Input for Memory Corruption Detection 157

Context
Analysis

Execution
traces

Features Collection
and Identifying

Fields

Structure
Normalization

Context
Analysis

Features Collection
and Identifying

Fields

Structure
Normalization

Online
Monitoring

Deviations
Detection

Patterns

Offline Training

Online Detection

Fig. 3. The overview framework of our model

independent field based on the intuition that one field could be accessed in
several specific execution contexts.

3. The identified fields are represented by the taint tags of a specific input.
Since some fields are not length-fixed and some fields are optional, we need
a normalized representation of structural inputs to compare the structures
and figure out the deviations. We design to use the tree structure to model
the structured input based on the observation that the input is processed
subsequently and the input parsing looks like the construction of a tree.

4. By analyzing the execution context and identifying fields of benign execu-
tions, we generate patterns of the input processing and propagation, and
use them to detect the deviation of executions with unknown inputs. The
deviation detection is performed online. In details, we dynamically analyze
the execution context and the propagation of fine-grained structured inputs
to identify fields and collect patterns, whenever a field is identified, update
R(i) and perform deviation detection on R(i) with trained ones.

4.3 Execution Monitoring and Context Tracking

To monitor the propagation of inputs and precisely capture the execution con-
text, we extend the dynamic tainting [21,6] to give each byte a unique taint tag.
The taint tag includes two items, the taint source and the taint offset, which refer
to the source of the input and the byte offset, respectively. Among the taint prop-
agation, we make the destination operand has the union taint record for multiple
source operands. For example, suppose the instruction is ADD %eax, %ecx. The
taint records of %eax and %ecx are {1001, 3} and {1001, 7}, respectively. After
the execution, the taint record of %ecx will be {{1001, 3}{1001, 7}}.

During execution monitoring, we record two types of execution context in-
formation: the run-time call stack and the address of instructions that access
tainted bytes [15]. To acquire the run-time call stack, we monitor the the function

158 L. Zhao, D. Gao, and L. Wang

call and return instructions, as well as the stack frame balancing. For each taint
byte, we make every tainted instructions as well as the call stack to form an ex-
ecution sequence of this taint byte. Then we compare the execution sequences of
taint bytes with continuous offsets, if the execution sequences could be matched,
we regard the continuous bytes belong to the same field.

4.4 Identifying Fields and Collecting Patterns

In the dynamic protocol reversing techniques, the execution context analysis are
performed off-line [6] and the inputs are assumed benign [6,15]. For our problem
scope, we cannot wait for the program to exit and should sponsor quick response
to the anomaly as early as possible. That is, the execution context comparison
and identifying fields should be performed online.

To identify fields online, an intuitive approach is to compare the execution
context of a captured taint byte with those of its continuous bytes whenever
the taint byte is captured. However, the taint bytes are dynamically processed
and the order of accessed taint bytes is an undecided problem (e.g., the program
could access another field such as a separator between the period of accessing two
continuous bytes). To overcome the problem, we design to perform the context
comparison whenever a function returns that causes the call stack changes. For
every calling of a function, we allocate a data structure to store the execution
sequences of taint bytes which are accessed within the current call stack. When

Algorithm 1. Identifying Fields

Data: InstAddr(tb): the instruction address accessing the taint byte tb
Data: ExecSeq[index]: the data structure storing the execution sequences
Data: ExecSeq[index][tb]: the execution sequence of the taint byte tb
Result: 〈 offset intervals, accessing locations 〉

1 while instruction i do
2 if i is tainted then
3 for taint byte tb in i do
4 Insert InstAddr(tb) into the ExecSeq[index][tb];
5 end

6 end
7 Call Stack Analysis;
8 if call stack changes and a function returns then
9 ContextComparison(ExecSeq[index]);

// compare the execution sequences and identify fields

10 delete ExecSeq[index];
11 index−−;

12 end
13 if call stack changes and a function starts then
14 index++;
15 ExecSeq[index] = new ExecSeq;

16 end

17 end

Learning Fine-Grained Structured Input for Memory Corruption Detection 159

0 1 1056 1057

E
xecution Sequence

b7e8cda0

b7e8d283
b7e8d28a
b7e8d28e

b7e8d283
b7e8d28a
b7e8d28e

8051114 ->
804950d ->
8049a65 ->
804a2a6 ->
/*
main ->
treat_file ->
make_ofname ->
strcpy - >
*/

8051114 ->
804950d ->
8049a89 ->
/*
main ->
treat_file ->
open ->
*/

b7e8cda0

b7e8cda0

b7e8cda0

Fig. 4. The execution trace of the vulnerable gzip. The header refers to taint tags of
input bytes, the left column refers to the call stacks, and the hex numbers refer to the
address of instructions accessing the taint bytes.

a function returns, we compare the execution context for the bytes that are
only processed in this function, and the offset interval could be identified. The
algorithm is shown in Algorithm 1.

This scheme leads to little impact on the effectiveness of identified fields but
a little impact on the detection of memory corruptions. First, it is rarely that
several parts of one field are processed with different functions. Second, memory
corruption attacks could only be detected when the call stack changes, which
causes a little delay.

Whenever a field is identified, we record the current call stack as well as the
instruction address accessing this field, and make them as the accessing location
of this field. Note that the field could be accessed by several instructions, we
only regard the current call stack and the beginning instruction address as the
accessing locations.

We still take the gzip example for detailed illustration. Fig. 4 shows a seg-
ment of execution contexts. When the program calls strcpy, we create a new
object of data structure to store the execution sequences for every taint byte.
Among the instructions of strcpy, we record the tainted instructions, and in-
sert the instructions into the execution sequences of taint bytes. When strcpy

returns, we find that the taint bytes share the same execution context and then
are grouped as one unit in strcpy. The field with the offset interval [0, 1199]
(the length of the exploit is 1200) is identified. Another call stack is captured
when program calls open. The bytes from offset 1056 to 1199 are accessed by

160 L. Zhao, D. Gao, and L. Wang

the instructions of which the addresses are b7e8d283, b7e8d28a, and b7e8d28e.
But the bytes from offset 0 to 1055 are not accessed in this function. As a result,
a new field of which the offset interval is [1056, 1199] is identified.

For the two fields identified in this trace segment, [0, 1199] and [1056, 1199],
the accessing locations identifying these two fields are shown in Fig. 5. The
two fields are accessed by several instructions, we only record the beginning
instruction addresses as the accessing locations.

8051114 -> 804950d -> 8049a65 -> 804a2a6 -> b7e8cda0
/* main -> treat_file -> make_ofname -> strcpy */

offset interval

8051114 -> 804950d -> 8049a89 -> b7e8d283
/* main -> treat_file -> open */

0-1199

execution context

1056-1199

Fig. 5. The accessing locations identifying the two fields

4.5 Structure Normalization

The identified fields are represented with the offset intervals. These offsets are
specific to an input, because the values of some fields are user-defined and not
every fields is length-fixed. For two inputs, the offset intervals are likely not
identical and cannot directly to compare. We need to normalize the specific
offsets with an abstract structure.

The tree structure is a well fit data structure to represent the input formats
because the input could be a flatten or hierarchical structure [6,15]. In our ap-
proach, we also employ the tree to normalize the structures of specific inputs,
where nodes refer to the fields and edges refer to the flatten or hierarchical
relationships.

During online monitoring and detection, the tree is dynamically built and
initialized with a root node. Whenever a new field is identified, we search its
parent node of which the offset interval is the smallest yet covers the offset
interval of the new field, and then insert a new node into the tree as a child
node of its parent node. If no parent is found, we will make the root node as the
parent node. At the same time, for a parent node has several child nodes, we
order these child nodes with a increasing order of their offset interval.

5 Implementation and Evaluation

We implement FiGi on the platform of Bitblaze [24]. TEMU, the taint tracking
component of Bitblaze, develops sophisticated data structures on the QEMU
and could be very slow with an overhead at several hundreds [24].

Learning Fine-Grained Structured Input for Memory Corruption Detection 161

Table 1. Vulnerable Programs

Programs Published Date Vulnerable Description Detected

3CTfpdSvc-0.11 2006-05 stack overflow
√

AT-Tftp-1.9 2008-05 stack overflow
√

knftpd-1.0.0 2011-10 stack overflow
√

tftpd32-2.21 2010-09 format string
√

nginx-0.6.38 2010-08 heap overflow
√

wu-ftpd-2.6.0 2001-01 format string (non-control)
√

ghttpd-1.4.3 2002-10 stack overflow (non-control)
√

floatFTP 2011-09 stack overflow (ROP attack)
√

gzip-1.2.4 2002-06 stack overflow (DoS)
√

Bitblaze uses shadow memory and a data structure of taint record to repre-
sent the taint tags for every bytes. FiGi extends the data structure of such taint
record to an array to store the multiple tags, and modifies the taint propaga-
tion for instructions with multiple source operands. Compared with the original
Bitblaze, the performance of FiGi is impacted by a litter larger memory move-
ment of taint records and the multiple taint propagation for instructions that
have multiple tainted source operands. FiGi results in the similar overhead as
Bitblaze.

The off-line training is a stand-alone program that is performed on the exe-
cution traces collected from FiGi. The online monitoring, context analysis, and
deviation detection are implement as a plugin of TEMU. Both the off-line training
and online monitoring are implemented in C++ with about 3000 lines of code.

5.1 Evaluation on Attacks

We select several vulnerable programs to evaluate the effectiveness of FiGi. The
selected programs are shown in Table 1. The exploits of vulnerable programs
cover memory corruptions on stacks, format strings, and heaps. The execution
of such exploits could result in both control-hijacking and non-control data at-
tacks. In addition, we also select an attack exploit based on the Return-Oriented
Programming (ROP), which is a research focus during recent years, and a DoS
attack of which the memory corruption could lead the program to crash but
hard to exploit.

As shown in Table 1, FiGi could detect all these memory corruptions. In
general, memory corruptions are the root-cause of control-hijacking, non-control
data attacks, and many memory errors. The approach behind FiGi is to de-
tect the misuse of user inputs by unintended instructions. Therefore, we claim
that FiGi is transparent to the type of attacks, no matter the memory cor-
ruption is used for control-hijacking, non-control data attacks, or just deny of
service.

162 L. Zhao, D. Gao, and L. Wang

5.2 A Case Study

We use an example to show a case study on how FiGi works to detect both
the control-hijacking and non-control data attacks. There is a stack overflow
vulnerability in the log() function in ghttpd-1.4.3. This vulnerability could
be triggered when the GET package contains too many bytes. In [8], Chen et al.
proposed a non-control data attack to overwrite a significant pointer and force
the program to execute the “\bin\sh”. We use both control-hijacking exploit
and non-control exploit to compromise this program.

0

exploit: GET {shellcode}\x30\x83\x82\xbf\x30\x83\x82\xbf..

322-325

0-360

/*804a497*/

1 2 326-329

804a497 pop %ebx T1{(10000, 322);(10000, 323);(10000, 324);(10000, 325);}
804a498 pop %esi T1{(10000, 326);(10000, 327);(10000, 328);(10000, 329);}
804a499 pop %edi T1{(10000, 330);(10000, 331);(10000, 332);(10000, 333);}
804a49a pop %ebp T1{(10000, 334);(10000, 335);(10000, 336);(10000, 337);}
804a49b ret T1{(10000, 338);(10000, 339);(10000, 340);(10000, 341);}

330-333

/*804a499*/

334-337

/*804a498*/ /*804a49a*/

338-341

/*804a49b*/

Fig. 6. The detection of the control-hijacking attack on ghttpd. T1 refers to tainted,
and T0 refers to non-tainted. The taint tags of individual byte are separated with “;′′.
Each taint tag is represented as (source, offset), where source refers to the input
source and offset refers to the offsets of every bytes.

Let us first examine the control-hijacking attack shown in Figure 6. We ob-
serve that operands of these 5 instructions are tainted. By comparing execution
contexts, 5 fields are identified ([322, 325], [326, 329], [330, 333], [334, 337], and
[338, 341]), of which the accessing locations are 804a497, 804a498, 804a499,
804a49a, 804a49b. After the normalization, we compare the pattern of the ex-
ploit with trained ones and find that the accessing locations of the 5 fields are
never present in the benign executions.

During the non-control attack, as shown in Figure 7, the exploit only over-
writes the value of ebx and esi. FiGi detects that 2 fields are identified and
their accessing locations are not present in benign executions.

Note that the execution of log() function is much earlier before the ghttpd

parsing the entire GET request package, thus the tree structure at this moment is
simple. However, the tree structure of a benign input is much more complicate,
and a similar result could be seen in [15]. There is no difference between this
partial tree structure and a benign tree because this partial tree is a sub-tree
of that. The deviation in this example is detected by matching the accessing
locations.

Learning Fine-Grained Structured Input for Memory Corruption Detection 163

0

exploit: GET AA…AA\x3c\x83\x82\xbf /cgi-bin/../../../../bin/sh

322-325

0-329

/*804a497*/ /*804a498*/

1 2 326-329

804a497 pop %ebx T1{(10000, 322);(10000, 323);(10000, 324);(10000, 325);}
804a498 pop %esi T1{(10000, 326);(10000, 327);(10000, 328);(10000, 329);}
804a499 pop %edi T0
804a49a pop %ebp T0
804a49b ret T0

Fig. 7. The detection of the non-control data attack on ghttpd

5.3 False Negative and False Positive

In our experiments, we encounter no false negatives. It means that we missed
no attacks among these control-hijacking, non-control data attacks, and memory
corruption errors. Among these attacks, all the exploits try to overwrite some
significant data structures, including the internal data structures (such as the
return addresses) and significant variables. After the corruptions, some bytes
would further be misused by unintended instructions, which may lead to the
deviation of input structures or the deviation of execution context for a specific
field of user input. These anomalies could be captured by the patterns of in-
put processing. However, there is no guarantee that the false negatives will not
occur.

The false positives is a big challenge in FiGi. The main reason to arise false
positive is the coverage. That is, if the coverage is not sufficient, then we could
miss some input processing patterns. For example, record sequences [11] are
common in some user inputs such as images, videos and others. Generally, the
processing of such sequences will be a loop. In such cases, the number of loop
paths is large and hard to be full covered, and FiGi may generate false positives
for benign executions covering untrained paths.

In addition, there is no close relationships between the input structure and
the execution paths. Inputs with the same structure but different values of fields
could also generate different patterns. This scenario is not rare because some
significant input values could affect the program behaviors. We are interested in
the training overhead of inputs with identical structures. In the two case studies,
we only change the value of some fields but keep the structure unchanged, and
then construct 8 benign inputs for gzip and nginx, respectively. The training
overhead is shown in Fig. 8, and the numbers of trained patterns are 3 and 4,
respectively.

164 L. Zhao, D. Gao, and L. Wang

(a) gzip (b) nginx

0

1

2

3

4

1 2 3 4 5 6 7 8

nu
m

be
r

of
 p

at
te

rn
s

number of benign inputs

0

1

2

3

4

5

1 2 3 4 5 6 7 8

nu
m

be
r

of
 p

at
te

rn
s

number of benign inputs

Fig. 8. The training overhead of the gzip and nginx

5.4 Comparison with Peer Techniques

We perform a theoretical comparison between FiGi and peer techniques on
their abilities to detect attacks. Since FiGi works on the binary level, we just
select peer techniques works on binaries (e.g., TaintCheek [21], PointerTaint-
ing [18], CFI [2], Clause2007 [9,12]) and transparent protection systems (e.g.,
StackGuard [10], Data Execution Protection (DEP for short) [1], ALSR [4]).

Table 2. Comparison with Peer Techniques

Attacks
Performance Errors

S(C) F(C) H(C) F(N) S(N) H(N) ROP DoS

StackGuard [10]
√ • • × × × • × ≈ 1x FN

DEP [1]
√ √ √ × × × × × ≈ 1x FN

ALSR [4]
√ √ √ √ √ √ • • ≈ 1x FN

TaintCheck [21]
√ √ √ × × × √ × 1.5x-30x FN

PointerTaint [18]
√ √ √ √ √ √ √ × 1.5x-30x FP/FN

CFI [2]
√ √ √ × × × √ × 1x-2x FN

Clause2007 [9,12]
√ √ √ √ √ √ √ • 1x-500x FN

FiGi
√ √ √ √ √ √ √ √

100x-1000x FP

In Table 2, we list the control-hijacking and non-control data attacks which
may be caused by stack overflow, format string, and heap overflow. For short
representation, we use S, F, H to denote the stack overflow, format string vulner-
ability, and heap overflow, respectively. We use C and N to denote the control-
hijacking and non-control data attacks, respectively. The symbol S(C) refers to
the control-hijacking attacks caused by stack overflow. Other symbols could be
similarly explained. In addition, we also select ROP and DoS memory corrup-
tions as comparison features. ROP could be caused by stack overflow, format
string, and heap overflow, and in Table 2, we just use ROP to represent attacks
passing DEP.

Learning Fine-Grained Structured Input for Memory Corruption Detection 165

In Table 2, we use
√
, ×, • to denote that the attack can be detected, can-

not be detected, and uncertain. • means the protection mechanism may have
variants, which could be the improvement of previous techniques, or a differ-
ent implementation. Attacks could be detected by some of them, but may not
be detected by other variants. For example, StackGuard [10] places a hard-to-
predict canary before the return address on the stack, which could detect stack
smashing but cannot detect control-hijacking attacks caused by format string
and heap overflow. As an improvement, StackShield protects the stack by copy-
ing the return address to a “secure” location. Some ASLR [4] only randomize
the load memory but keep the relative addresses un-randomized, than it can-
not detect the memory corruptions between variables (e.g., wu-tftp and gzip).
As an improvement, some fine-grained ASLR could also randomize the relative
addresses (e.g., ASLR through binary transformation [4]), which could mitigate
more attacks. As we discussed in Sec. 2, Clause2007 [9,12] may lose its ability
for non-control memory corruptions if the symbol table is unavailable.

FiGi could detect all these memory corruptions based the consistent and re-
liable foundation that memory corruption exploits violate the program seman-
tics, leading some input bytes being misused by unintended instructions, and
the anomaly could be captured through patterns on the input processing. We
encounter no false negatives (FN for short in Table 2), but other peer techniques
could result in false negatives more or less. It means that FiGi misses the least
number of attacks. However, FiGi could result in false positives (FP for short in
Table 2).

From Table 2, we could also observe that performance is the shortage of FiGi.
The transparent protections are very fast. The prototype of TaintCheck [21]
could result in the overhead about 30x. Recent advances on dynamic taint anal-
ysis could reduce the overhead to 1.5x [5]. There is no quantified performance in
PointerTainting [18], but it should has the similar overhead with dynamic taint
analysis. The overhead of CFI is about 1x-2x. The Clause2007 [9,12] prototype
based on software emulation could cause the overhead of 100x-500x, and the
improved overhead with hardware-assistant is about 1x-2x. We build FiGi on
TEMU [24], of which the overhead is more than several hundreds. To improve
the performance, several optimizations could be used, such as simplifying taint
tracking instructions [22], designing novel memory layout to reduce the overhead
caused by taint propagation [5], faster emulator [5], and hardware assistant [12].
Although these optimizations may not be directly used, we could learn from
these and design similar schemes.

6 Limitations and Discussions

In this paper, the fields mainly include semantic independent units, and we do
not recognize the higher level data types. For the complex and higher level data
types such as structs and unions, every item in the struct or union is treated as
one independent field, if each item is processed as one unit among the execution.

Comparing the execution contexts could lead to over-fine granularity [15].
For example, strcmp could return after accessing the first few bytes. In such

166 L. Zhao, D. Gao, and L. Wang

cases, the first few bytes will be regarded as one field and FiGi may divide the
string into several parts. Fortunately, such over-fine granularity shall occur in
all executions, both benign and abnormal ones. Therefore, this limitation bring
little noise to the deviation detection.

7 Conclusion

In this paper, we propose a novel approach FiGi to detect memory corruptions
at the binary level. FiGi identifies individual parts in an input and learns the
pattern in which they are processed. We implement a prototype of FiGi and
demonstrate its success in detecting a number of memory corruption attacks
in the wild. The experiments shown that FiGi is effective to detect memory
corruptions.

Acknowledgment. This work is partially supported by the National Natural
Science Foundation of China (no. 60970114), the Doctoral Priority Development
Projects granted by the Chinese Ministry of Education (no. 20110141130006),
the Research Award for Excellent Doctoral Student granted by Chinese Ministry
of Education, and the Northeast Asia Grant Program by SafeNet.

References

1. Data execution protection,
http://technet.microsoft.com/en-us/library/cc738483(WS.10).aspx

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and System
Security 13(1), 1–40 (2009)

3. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing Memory
Error Exploits with WIT. In: 2008 IEEE Symposium on Security and Privacy, pp.
263–277 (2008)

4. Bhatkar, S., DuVarney, D.: Address obfuscation: An efficient approach to combat a
broad range of memory error exploits. In: Proceedings of USENIX Security (2003)

5. Bosman, E., Slowinska, A., Bos, H.: Minemu: The World’s Fastest Taint Tracker.
In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
1–20. Springer, Heidelberg (2011)

6. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: Automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of CCS, pp.
317–329 (2007)

7. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow in-
tegrity. In: Proceedings of OSDI, pp. 147–160 (2006)

8. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-hijacking attacks
are realistic threats. In: Proceedings of USENIX Security (2005)

9. Clause, J., Doudalis, I., Orso, A., Prvulovic, M.: Effective memory protection using
dynamic tainting. In: Proceedings of ASE, pp. 284–292 (2007)

10. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proceedings of USENIX Security (1998)

http://technet.microsoft.com/en-us/library/cc738483(WS.10).aspx

Learning Fine-Grained Structured Input for Memory Corruption Detection 167

11. Cui, W., Peinado, M., Chen, K., Wang, H., Irun-Briz, L.: Tupni: Automatic reverse
engineering of input formats. In: Proceedings of CCS, pp. 391–402 (2008)

12. Doudalis, I., Clause, J., Venkataramani, G., Prvulovic, M., Orso, A.: Effective
and Efficient Memory Protection Using Dynamic Tainting. IEEE Transactions on
Computers 61(1), 87–100 (2012)

13. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: Pro-
ceedings of PLDI, vol. 43, pp. 206–215 (2008)

14. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A safe dialect of C. In: Proceedings of USENIX ATC, pp. 275–288 (2002)

15. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In: Proceedings of NDSS (2008)

16. Lin, Z., Zhang, X.: Reverse Engineering Input Syntactic Structure from Program
Execution and Its Applications. IEEE Transactions on Software Engineering 36(5),
688–703 (2010)

17. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity for
bug detection in C programs. In: Proceedings of FSE, vol. 28, pp. 317–326 (2003)

18. Nakka, N., Kalbarczyk, Z., Iyer, R.: Defeating Memory Corruption Attacks via
Pointer Taintedness Detection. In: Proceedings of DSN, pp. 378–387 (2005)

19. National Institute of Standards and Technology: National vulnerability database
statistics, http://web.nvd.nist.gov/view/vuln/statistics

20. Necula, G.C., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy
code. In: Proceedings of POPL, pp. 128–139 (2002)

21. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of
NDSS (2005)

22. Qin, F., Wang, C., Li, Z., Kim, H.S., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In:
Proceedings of Micro, pp. 135–148 (2006)

23. Slowinska, A., Bos, H.: Pointless tainting? Evaluating the practicality of pointer
tainting. In: Proceedings of EuroSys, pp. 61–74 (2009)

24. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer
Security via Binary Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

25. Tsai, T., Singh, N.: Libsafe: transparent system-wide protection against buffer
overflow attacks. In: Proceedings of DSN, pp. 541–550 (2002)

26. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.:
PAriCheck: an efficient pointer arithmetic checker for C programs. In: Proceedings
of AsiaCCS, pp. 145–156 (2010)

http://web.nvd.nist.gov/view/vuln/statistics

Dynamic Anomaly Detection

for More Trustworthy Outsourced Computation

Sami Alsouri, Jan Sinschek, Andreas Sewe, Eric Bodden, Mira Mezini,
and Stefan Katzenbeisser

Technische Universität Darmstadt
Center for Advanced Security Research Darmstadt - CASED

Mornewegstraße 32, 64293 Darmstadt, Germany
{sami.alsouri,jan.sinschek,andreas.sewe,eric.bodden}@cased.de,

mezini@st.informatik.tu-darmstadt.de,

katzenbeisser@seceng.informatik.tu-darmstadt.de

Abstract. A hybrid cloud combines a trusted private cloud with a pub-
lic cloud owned by an untrusted cloud provider. This is problematic:
When a hybrid cloud shifts computation from its private to its public
part, it must trust the public part to execute the computation as in-
tended. We show how public-cloud providers can use dynamic anomaly
detection to increase their clients’ trust in outsourced computations. The
client first defines the computation’s reference behavior by running an au-
tomated dynamic analysis in the private cloud. The cloud provider then
generates an application profile when executing the outsourced computa-
tion for its client, persisted in tamper-proof storage. When in doubt, the
client checks the profile against the recorded reference behavior. False
positives are identified by re-executing the dubious computation in the
trusted private cloud, and are used to re-fine the description of the ref-
erence behavior. The approach is fully automated. Using 3,000 harmless
and 118 malicious inputs to different Java applications, we show that our
approach is effective. In particular, different characterizations of behavior
can yield anything from low numbers of false positives to low numbers of
false negatives, effectively trading trustworthiness for computation cost
in the private cloud.

Keywords: Cloud security, dependability, dynamic analysis, anomaly
detection, hybrid clouds.

1 Introduction

Cloud computing allows companies to outsource part of their computations to
server farms, usually owned by a cloud provider. It promises many benefits, such
as reducing infrastructure investments, the ability to quickly adapt its compute
power according to the demands (the so-called “elastic cloud”), or the adoption
of a pay-as-you-go billing model [22].

But cloud computing comes at a risk. While a company controls its pri-
vate computer servers, it has limited control over resources rented in the cloud.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 168–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Anomaly Detection 169

This motivates the so-called “hybrid cloud” scenario, in which a company owns
a private cloud of trusted compute servers, while at the same time this private
cloud shares data with a public cloud service owned by a public cloud provider,
executing another set of computations. Which computations are performed in
the private and which ones in the public cloud depends on the company’s pref-
erences and policies.

All instances of hybrid clouds share the common problem that, when shifting
computation from their private to their public parts, they must trust the public
part to execute the computation as intended. But what justifies that trust?

In this work, we introduce behavior compliance control , in which a cloud
provider uses methods from dynamic anomaly detection to provide clients trust-
worthy evidence about the absence of “abnormal” executions caused by incorrect
server configurations, version mismatches, hardware glitches or malicious attacks
by third parties [20]. Providing such evidence is very important in scenarios
where faults or attacks occur through invalid program inputs such as incorrect
or compromised configuration files.

Our approach starts with a learning phase in which the client uses an auto-
mated tool to learn the behavior of an application by running it in the trusted
private cloud on a collection of representative inputs. This process, conducted
before outsourcing the application, results in a so-called application model. The
model is considered to characterize the application’s intended behavior. In this
work we study and compare models at different levels of granularity.

After the application has been outsourced into the public cloud, the out-
sourced application uses runtime monitoring techniques to log critical runtime
information into a securely sealed storage, thus yielding trusted evidence on the
application’s remote behavior. Next, the client verifies if the observed log infor-
mation, according to this evidence, complies with the application model learned
in the learning phase. If the run is found to be compliant, the outsourced com-
putation is assumed to have executed correctly. If the run is not compliant this
can be either due to an actual anomaly in the public cloud, or due to a false
positive caused by an imprecise application model. We restrict ourselves to de-
terministic programs, which the client can re-execute in the private cloud to tell
both cases apart. If this trusted re-execution yields the same result then the
client has identified a false positive, and can use this false positive to refine the
application model. If not, then the client has found an anomaly, i.e., an actual
piece of evidence of a faulty or maliciously influenced computation in the public
cloud.

In this work, we present the first work leveraging dynamic anomaly detection
for the scenario of hybrid cloud computing. In particular, we present the follow-
ing contributions: We present an abstract architectural framework for behavior
compliance control. The framework is defined in terms of its abstract security
requirements, and hence independent of any concrete implementation. In addi-
tion, however, we present and make publicly available1 a concrete instantiation

1 Our implementation is available, in source, along with all our raw data and scripts
to reproduce our empirical results, at http://seceng.de/research/projects/bcc

http://seceng.de/research/projects/bcc

170 S. Alsouri et al.

of this framework for the Java platform. In this instantiation, we implement a
sealed storage using Trusted Computing technologies.

Another main contribution is an empirical evaluation showing how the effi-
cacy of our approach depends on the choice of application model. We evaluate
three kinds of models that abstract from an application’s dynamic behavior with
increasing granularity, by recording (1) the set of called methods, (2) a dynamic
call graph, or (3) a dynamic calling context tree. We used our Java-based imple-
mentation to produce and evaluate application models for three different open-
source applications, applied to 3,000 publicly available documents we believe to
be harmless and 118 known malicious documents containing web exploits. Our
results show that our approach is effective. In particular, different choices of
models can yield anything from low numbers of false positives to low numbers of
false negatives. This gives clients a large degree of freedom in trading increased
trustworthiness for increased computation cost in the private cloud.

The remainder of this paper is structured as follows. In Section 2, we describe
our three choices of behavioral abstractions. Section 3 defines our architectural
framework for behavior compliance control, while Section 4 describes our con-
crete instantiation for Java. In Section 5, we discuss our empirical evaluation,
assessing the usefulness of our three abstractions for the purpose of behavior
compliance control, as well as the performance of our approach. We discuss re-
lated work in Section 6 and our conclusions in Section 7.

2 Characterizing Behavior

Behavior compliance control builds on techniques from dynamic anomaly detec-
tion [8,9,11,13,18], a methodology that attempts to detect anomalous executions
by comparing certain execution characteristics with those known to be character-
istic for correct and “compliant” executions. Our technique significantly extends
traditional anomaly detection by a means to conduct the detection process in a
distributed but nevertheless trustworthy fashion. Yet, an important design deci-
sion that both previous approaches as well as ours have to make is how to best
characterize an application’s runtime behavior.

Since all previous approaches describe behavior at one level of granularity and
have therefore some disadvantages, we decided to not restrict ourselves to a single
mind set: Instead of fixing one given classification of behavior upfront, we decided
to implement three white-box abstractions on different levels of abstraction,
and to compare their relative usefulness for the behavior compliance control of
outsourced applications. Clients can then choose which abstraction best fits their
needs.

Behavior Models. We regard function calls as a main ingredient for characterizing
behavior.2 We have evaluated three approximations of behavior by tracing which

2 We use the term “function” instead of “method” because our approach is not bound
to Java. Our functions are not “functional” in the strict sense: They may have side-
effects.

Dynamic Anomaly Detection 171

functions a program calls during its execution, and in which contexts. Each
approximation thereby induces a different kind of application model for our
behavior compliance control approach. We distinguish models according to the
amount of information they contain (from least to most):

– Functions: A set of functions F the application called during the execution.
– Call graph: A call graph, with nodes representing functions, and an edge

from f to f ′ if f calls f ′ at least once during the execution.
– Calling context tree: A calling context tree [1], with the root node repre-

senting the program’s entry point and a node f ′ as child of node f if f calls
f ′ in the same context at least once during its execution.

To illustrate these abstractions, consider the example program in Figure 1. Fig-
ure 2a shows the “Functions” representation of the example program. Herein,
the model just consists of the set of all functions called during the program’s ex-
ecution. Figure 2b, on the other hand, shows the program’s dynamic call graph.
Note that in a call graph, every function, such as bar, is represented by exactly
one node, no matter in how many different contexts the function is invoked. Fig-
ure 2c shows the program’s calling context tree. In this representation, calling
contexts are kept separate: Because bar is called by two different functions, once
by main and once by foo, it appears twice in the tree, just under the appropriate
contexts.

We chose these three different characterizations of behavior carefully, so that
one can construct a model of higher abstraction from a model of lower abstrac-
tion. This allows us to compare the models directly to each other, based on the
very same data set. The fact that the three different abstractions form such a to-
tal order allows us to evaluate different characterizations of behavior at opposite
ends of the granularity spectrum: The “Functions” abstraction is quite coarse-
grained but can be computed very efficiently. Yet, by its nature it may have
the tendency to yield false negatives, i.e., to miss anomalies. Hence, the amount
of trustworthiness that this abstraction provides is relatively low. The calling
context trees at the other end of the spectrum are very fine-grained. Their com-
putation consumes more time, and by their nature they tend to cause a relatively
large number of false positives, increasing the necessary computation cost in the
private cloud. But nevertheless, this may still be a price worth paying for the
additional trustworthiness they provide. In Section 5, we present an extensive
evaluation demonstrating the absolute and relative utility of those abstractions
for the task of behavior compliance control. We formalize our abstractions in the
appendix.

Model Generation in the Learning Phase. For the purpose of behavior compli-
ance control, models should be sensitive to malicious inputs, where faults or
attacks occur through them, such as incorrect or compromised configuration
files.

We therefore opt for a dynamic approach that collects an application model as
a union of a set of runtime execution profiles. Within the trusted private cloud,

172 S. Alsouri et al.

1 public static void main (S t r ing args []) {
2 foo () ;
3 bar () ;
4 }
5

6 static void foo () { bar () ; }
7

8 static void bar () { }

Fig. 1. Example program

{main, foo, bar}
(a) Functions

main foo

bar

(b) Call graph

main

foo

bar

bar

(c) Calling context tree

Fig. 2. Three abstractions of the example program

the client collects an execution profile for every test run. The application’s final
model for this training data is then defined as the union of all those individual
profiles. In the case of Functions we use simple set union, while in the case of
call graphs or calling context trees we define the union in the natural way, by
computing the union over the graph’s, respectively tree’s, node and edge sets.
We call the resulting profile the application’s model. Since the union operation
is associative, one can compute the model in a step-wise and iterative way, i.e.,
after each individual profile is collected, or instead compute the union once over
all collected individual profiles.

This property is key to our approach: When a model appears too restrictive,
it can easily be expanded by joining the application’s current model with new
execution profiles. Clients can make use of this property after having identified a
false positive. The model is extended accordingly to avoid the same false positive
in the future. This process can be fully automated.

3 Platform Architecture

In this section, we present our abstract platform architecture for behavior com-
pliance control. The architecture assumes the presence of a trusted logger that
is sufficiently tamper-resistant, as well as securely sealed storage on the host
that performs the computation. Assuring the integrity of these components is
a problem complementary to the one of behavior compliance control and may
be achieved through several means. In Section 4 we will describe a concrete

Dynamic Anomaly Detection 173

instantiation of the generic architecture that fulfills these requirements, includ-
ing concrete mechanisms for establishing the integrity of the collected profiles.

As described in Section 2, the client first computes an application model by
running the software in a trusted environment, the private cloud. Subsequently,
the client outsources the application and executes it in the untrusted public
cloud. After execution, the public cloud provides the client with evidence about
the application’s behavior. The client finally verifies the evidence locally to decide
on its trustworthiness, and, if required, refines the application model. In the
following, we detail the individual phases of this procedure.

I: Learning phase. As described in Section 2, the client generates an applica-
tion model m, characterizing the behavior of the application, by running the
application in the client’s trusted private cloud collecting the generated profiles.
Afterwards, the application is outsourced to the public part of the cloud.

II: Runtime phase. Figure 3 shows the abstract platform architecture of the
hosting platform. We assume the presence of trusted system measurement com-
ponents, which assure the load-time integrity of the loaded applications and
the trusted logger. The load-time integrity of the public cloud platform can be
verified by the client before outsourcing takes place. Those mechanisms in fact
assure the client that, at load time, exactly those components are brought to
execution that the client intended to execute.

The trusted logger logs the events coming from the application itself (i.e., in
case of using instrumented code) or from the middleware (e.g., the Java Virtual
Machine, or a business process engine), on which this application runs. As men-
tioned previously, a core task of the public cloud is to generate logs about the
execution of the outsourced application in a trustworthy way. As the generated
logs are security critical, secure storage is required.

III: Compliance verification phase. Once the client has obtained the log and
verified its integrity, he compares the log against the application model collected
in the learning phase. We write l |= m if the log l corresponds to the model
m and l �|= m otherwise. Whenever l �|= m, this means that the log diverged
from the model, indicating a dubious execution. Such a divergence could be the
effect of an execution anomaly but could also just be a false positive, due to an
overfitting application model.

To tell apart a false positive from an actual anomaly, the client would then
re-execute the application in the private cloud and record the resulting log l′. We
write l ≡ l′ if the log l is equivalent to the log l′ and l �≡ l′ otherwise. Whenever
l ≡ l′, the execution in the public cloud is considered correct and trustworthy,
and the divergence was a false positive. In this case, the client expands m by
including l. By doing so, m can be continuously improved to decrease the overall
false positives rate. (Note that there is a trade-off: By including l in m the
model also becomes more permissive, which may yield more false negatives as
well.) If otherwise l �≡ l′, the execution is considered untrustworthy. Concrete
implementations of the “|=” and “≡” operators depend on the kind of profile
being used. We discuss our concrete instantiation in Section 4.

174 S. Alsouri et al.

A

Application1

Application

Trusted
Logger

AppID

l1, ..., ln
l i m

?

}

for(i=1 to n){

Application2

Hosting PlatformClient

}

Fig. 3. Our architecture for behavior compliance control

Note that, in contrast to intrusion detection, where a very low false positive
rate is imperative, our approach can tolerate higher rates. Essentially, the false-
positive rate determines how much outsourced computation has to be re-done in
the private cloud. Thus, in the hybrid cloud environment, a false-positive rate
in the order of a few percent may well be acceptable, as still the bulk of the
computation is performed in the public cloud.

Threat model and limitations. Our approach hinders attacks by the cloud provider
but cannot fully prevent them. This is because we demand the existence of a
trusted logger, whose integrity can only be assured through specialized hard-
ware. The cloud provider has access to this hardware and thus may have the
means to compromise it. Assuming, however, that the trusted logger can indeed
be trusted, our architecture guarantees that detected anomalies can be com-
municated to the client in a tamper-proof way. Our approach can effectively
identify execution anomalies caused by malicious program inputs of any kind,
of by faults or misconfigurations in the execution environment. The former is
particularly useful to identify attacks on such systems in the public cloud that
have a public interface, for instance web servers or document servers.

Our approach is passive, i.e., anomalous behavior is detected only after the
fact. As such, our approach cannot prevent anomalous behavior from happening.
Instead it allows the client to identify the anomaly, and thereby to re-execute the
original computation (and thus circumvent the anomaly) in the trusted private
cloud, and to take other appropriate measures such as legal actions in case
the anomaly was caused by a malicious intruder. While approaches to active
compliance control are possible (e.g., by inserting a runtime monitor that checks
model compliance just in time), such an approach would greatly suffer from any
false positives: When a monitor detects an anomaly at runtime, it must decide
whether the anomaly is real or a false positive at that point in time. In most
cases, this is impossible. In any case, such active compliance control would not
be able to provide the flexible trust/cost trade-off that we see as one of the
greatest benefits of our approach.

Last but not least, it should be noted that all security-related approaches to
anomaly detection, including our own one, are susceptible to mimicry attacks [30,
36], in which an attacker tries to execute behavior that is malicious, but never-
theless mimics legal behavior in such a way that the malicious behavior remains

Dynamic Anomaly Detection 175

undetected. This problem can be mitigated somewhat by keeping the application
model undisclosed, but to the best of our knowledge no way to absolutely avert
mimicry attacks is known to date.

4 Platform Instantiation

We next discuss our instantiations of the generic architecture described in Sec-
tion 3 to the Java language and platform. As a way to provide secure storage,
we base our instantiation on concepts from Trusted Computing. Our full im-
plementation of this instantiation is available online, in source, on our project
website.

4.1 Adaption to Java

To generate execution profiles, we use JP2, an open source calling-context-tree
profiler for Java [26,27]. This light-weight profiler consists of a small Java agent,
which instruments the profiled application at load time, and an accompanying
tool to instrument the Java runtime library ahead-of-time. This combination
enables us to generate execution profiles which cover not only the application
but also the Java runtime library itself. Moreover, JP2’s profiles cover not only
methods that have a bytecode representation but also method calls made in
either direction across the bytecode-native code boundary. The following details
are specific to a Java-based setting:

– Virtual machine-based execution: The Java platform allows for easy
load-time transformation of code. Hence, to introduce a runtime monitor, a
client does not need to instrument his application in house. Instead, the ap-
plication can be transformed remotely, by a custom class loader [23] or trans-
formation agent. Such instrumentation is performed on the level of bytecode
and requires no access to source code. JP2 does exactly this.

– Generated code: The same class-loader mechanism that makes it easy to
introduce a runtime monitor at load time also makes it possible to generate
classes at runtime. Such classes frequently bear a randomized name, and
that name must be canonicalized to ensure that the same method, up to
renaming, can be reliably identified across program runs. To that end, we
integrated the hashing facility from TamiFlex [5] with the calling-context-
tree profiler described next.

– Recursion: When using the Calling Context Tree abstraction, recursive
calls can cause the profile to grow very large. One way to address this would
be to “fold” those sub-trees in the CCT that exhibit a recursive structure.
The generated profiles would hereby be bounded. However, what exactly
counts as recursion in a language with dynamic dispatch is not obvious: Do
only calls to the same target method count or also calls to a different target
method of the same call site? Calls of the latter kind are frequent, e.g., when
operating on objects structured using the Composite pattern [10]. Moreover,
mutual recursion or, more generally, larger cycles of calls could be considered

176 S. Alsouri et al.

recursive as well and maybe thus subject to folding. For the purpose of this
paper we restrict the discussion to the straight-forward calling context tree
abstraction produced by JP2 and do not fold recursive calls; thus, the tree
structure mirrors the entire computation.

In our current implementation, we always collect full calling context trees, even
if we are just interested in call graphs or function sets. Call graphs are computed
from a CCT by merging nodes with the same name, and method sets are com-
puted by a simple exhaustive search through the call graph. This methodology
is a limitation of our prototype. For efficiency, a realistic implementation would
record only the information required for the chosen behavior characterization.
We implement the “|=” operator from Section 3 by simply checking whether
the calling context tree, call graph or function set collected on the server is a
sub-tree, sub-graph or sub-set of the respective application model. For the “≡”
we define that l ≡ l′ if the respective trees or graphs are isomorphic, or in the
case of function sets if they are equal. We store calling context trees and call
graphs in a normalized fashion that allows us to decide l ≡ l′ in time linear in
the size of the operands.

4.2 Integrity of Trusted Components and Runtime-Secure Storage

To safeguard not only against anomalies caused by accidental misconfigurations
or hardware glitches but also against (certain classes of) malicious attacks, it is
necessary to store the runtime information collected in a trustworthy manner.

Our particular choice to instantiate the integrity measurement components
and the secure storage relies on the concepts of Trusted Computing. To assure
load-time integrity of the trusted logger in the public cloud, we first build a
chain of trust, starting from the cloud server’s hardware up to the trusted logger
itself. For this purpose, our hardware was equipped with a TPM chip. Trusted
boot is assured using the Grand Unified Bootloader (GRUB) version 0.97 to-
gether with TrustedGrub [35] version 1.1.5. We used the attestation framework
IMA (Integrity Measurement Architecture [25]) to allow the client to verify the
load-time integrity of the behavior measurement component and the secure stor-
age (effectively comparing cryptographic hashes of the binaries). Clients would
typically use the integrity reporting facilities of those components before the
outsourcing of computations takes place.

To provide a runtime-secure storage, our logging facilities record a hash chain
of all logged events in one fixed Platform Configuration Register (PCR) of the
TPM chip. For each logged event, the register’s current hash value is replaced
by a hash over this current value and the event’s own payload data. A client can
then validate the integrity of the log by re-performing the same hash operation
on the log and comparing the resulting hash values. If they differ, the log has
been tampered with, and the computation should be re-performed in the private
cloud.

In the general context of outsourced applications, the use of a single hard-
ware TPM is insufficient: Many applications execute in the same remote host,

Dynamic Anomaly Detection 177

and each can be executed many times. Data measured for different application
must be stored separately. We hence use the concept of virtual TPMs (vTPMs),
which allows us to assign a (unique) virtual TPM instance to each outsourced
process [28]. All vTPMs are managed by a vTPM manager, which provides an
interface to create and access vTPM instances; the vTPM manager is notified
whenever an application instance is started. We implemented a vTPM manager
in Java as a proxy to create and manage vTPM instances. The vTPM instances
themselves are implemented using the TPM emulator proposed by Strasser and
Stamer [29]. To communicate with vTPMs, we use the tpm4java library [33],
which facilitates using the cryptographic functionalities of vTPMs in our Java
applications. In detail, one chooses a particular vPCR i to hold a hash chain of all
recorded events. Whenever a new log entry is generated, the vPCR i is extended
by hashing the log entry using SHA-1 and running the TPM Extend command of
the corresponding vTPM instance as described in the TPM specification [34].
The log entry itself is stored in external (untrusted) storage. Thus, after the
outsourced application terminates, the vPCR register i of the vTPM associated
to the application contains a (securely stored) hash chain of all recorded events;
further, the log l of all events is available on storage.

Subsequently, remote attestation is performed to securely transfer the log,
which is signed by the vTPM, to the client. After verifying the log’s integrity,
the client verifies the compliance of each single log entry (i.e., each call edge)
with the application model as described in Sections 2 and 3.

5 Evaluation

In this section we evaluate our three behavior abstractions from Section 2, func-
tion sets, call graphs, and calling-context trees, with respect to following four
research questions:

RQ1 (Feasibility): In the learning phase, do the collected profiles converge to
a stable model of legal inputs with low false-positive rates?

RQ2 (Effectiveness): To what extent is the application model able to dis-
criminate between legal and illegal inputs?

RQ3 (Scalability): Is the profile size independent of the application’s runtime?
RQ4 (Efficiency): Can our approach be implemented efficiently enough to in-

duce a sufficiently low runtime overhead?

5.1 General Experimental Setup

One restriction of our approach is that, to produce representative models, it
requires a representative set of program inputs. This restricted us in our choice
of evaluation subjects; we had to opt for applications for we would be able to
obtain large sets of abnormal/malicious as well as legal/harmless inputs. We
chose the following subjects:

1. Apache pdfbox: A PDF manipulation framework [2].

178 S. Alsouri et al.

2. POI-HSLF: A Java API to extract data from PowerPoint documents [3].
3. POI-HWPF: A Java API to extract data from Word documents [3].

All applications operate on popular file types (Adobe PDF, Microsoft Power-
Point .ppt, and Microsoft Word .doc), all of which can be obtained in large
numbers from the web. Moreover, all three file types are well-known attack vec-
tors. For the PDF file type there further exist repositories of malicious inputs,
which serve us to simulate possible manipulations by the cloud provider (details
below).

5.2 RQ1: Feasibility

For behavior compliance control to be feasible, it must be possible to automati-
cally generate a useful application model from only a number of representative
inputs small enough not to be prohibitive. Moreover, the generated application
models must yield false positive rates low enough for the approach to pay off.
Remember that any false positive induces increased computation cost in the
private cloud.

For our evaluation, we used the top 1,000 results of a Google search for
filetype:pdf, filetype:ppt, and filetype:doc, respectively. The resulting
corpus of inputs allowed us to generate application models from various num-
bers of input documents. We believe those 3,000 documents to be harmless,
legal documents.3 Therefore, if a model classified any run as abnormal that was
induced by one of those inputs, we count this classification as a false positive.

To generate the application models, we first used the JP2 profiler (cf. Sec-
tion 4.1) to obtain a calling context tree for each of the applications and inputs.
From the resulting CCTs we then derived both dynamic call-graph and function-
set profiles. This ensures that, for a given input document, all three abstractions
of the application’s behavior are consistent.

We then used ten-fold cross-validation [21] to determine the false-positive rate
that can be expected of the collected models. For each of the three file types,
the 1,000 profiles were first divided into ten subsets of 100 profiles each. Then,
each profile from one of the subsets was checked for compliance with application
models derived from an increasing number of (randomly chosen) profiles in the
other nine subsets, up to all 900 profiles in the end. Every compliance check
yields either the answer “compliant” or an anomaly warning. Since we consider
our training set to only contain compliant input documents, we consider all
warnings to be false positives.

Figure 4 shows the resulting false positive rates, averaged over the 10 sub-
sets, for various training set sizes. Because we used ten-fold cross-validation, at
most 900 out of the 1000 available inputs were used for model generation. As
Figure 4 shows, for both the Function and Call Graph abstractions it suffices

3 This is because Google has put in place filters to remove invalid or potentially mali-
cious documents from its search index. In fact we tried to find malicious documents
using Google but failed.

Dynamic Anomaly Detection 179

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

0

0.2

0.4

0.6

0.8

1

Training Set Size

F
a
ls
e
P
o
si
ti
v
e
R
a
te

Apache pdfbox (.pdf)

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

Training Set Size

POI-HSLF (.ptt)

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

Training Set Size

POI-HWPF (.doc)

Function

Call graph

CCT

Fig. 4. False positive rate for differently-sized training sets (arithmetic mean ± stan-
dard deviation of 10 training sets each)

to use only a few hundred inputs for model generation to obtain a model with
a false-positive rates below 5%. Using the calling-context-tree (CCT) abstrac-
tion, however, requires a larger number of inputs to achieve low false-positive
rates. Even when using 900 inputs to generate the application model, an av-
erage of about 22%, 10%, and 3%, respectively, of the remaining 100 profiles
are deemed non-compliant. We also observe that at least for the Calling Context
Tree abstraction the false-positive rates very much depend on the program under
evaluation.

5.3 RQ2: Effectiveness

To increase trustworthiness, behavior compliance control must be able to detect
abnormal execution behavior. For the purpose of our evaluation we consider an
execution to be abnormal if it executes on an abnormal program input. In reality,
there could be other sources of abnormality such as glitches in the hardware or
execution environment. We obtained abnormal inputs from two distinct sources:
from dedicated repositories of malicious inputs for the file types in question and
from applying fuzzing techniques to legal inputs.

To simulate a targeted attack by a third party, we have used a set of 118
PDFs that have previously been used in exploits.4 For this experiment, we used
application models computed by including all 1,000 profiles for PDF file type.
As Table 1 shows, all abnormal executions were classified correctly when using
the Calling Context Tree abstraction. When using the more coarse-grained Call
Graph and Function abstractions, however, only 34% respectively 11% of in-
puts were classified correctly. We therefore conclude that it is essential to use
information-rich profiles to detect targeted attacks reliably. This is the main
trade-off at the heart of this paper: Increased trust requires an increase invest-
ment to counter-balance the increased rate of false positives caused by such
information-rich profiles.

4 Test data taken from http://contagiodump.blogspot.com/2010/08/

malicious-documents-archive-for.html (Collection 3).

http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html

180 S. Alsouri et al.

Table 1. Percentage of inputs (exploits or fuzzed) detected as illegal

Exploits Fuzzed

Apache pdfbox POI-HSLF POI-HWPF
(.pdf) (.ppt) (.doc)

Functions 11% 83% 100% 100%
Call graphs 34% 89% 100% 100%
CCTs 100% 97% 100% 100%

As we were unable to obtain a similarly large number of malicious Power-
Point and Word documents to simulate a targeted attack, we commenced on a
best-effort basis and resorted to fuzzing techniques to simulate an untargeted
attack or a problem caused by a faulty data transmission. For each file type,
we randomly picked 100 documents from of our corpus of legal documents and
applied simple fuzzing techniques to them.5 This process yields 100 documents
each which we define to be abnormal inputs. For each of these inputs we then ran
the corresponding application and compared its behavior, abstracted as Func-
tions, Call Graph, or Calling Context Tree, with the application model of legal
inputs used before.

Table 1 shows the percentage of fuzzed inputs that were successfully detected
as illegal. As these results show, false negatives created by this simple fuzzing
algorithm are easy to recognize. It follows that abnormal program runs induced
by inputs corrupted in this manner will most likely be detected using behavior
compliance control; the abstraction chosen (Functions, Call Graph, Calling Con-
text Tree) has little influence on the detection rate. Those observations hold for
the particular fuzzing approach we consider. More targeted fuzzing approaches,
taking advantage of the input document’s internal structure, may be harder to
recognize, but from a security perspective would probably also be less capable
of exploiting a vulnerability in the outsourced application.

5.4 RQ3: Scalability

For behavior compliance control to pay off, checking for compliance must be
affordable, and must scale to large, long-running applications. We thus evaluate
whether the size of the model correlates with the runtime of the application. If
this were the case, the compliance check could be as expensive as re-performing
the actual outsourced computation, hence defeating the purpose of outsourcing.

For the Function and Call Graph abstractions it is immediately obvious that
no such correlation can exist. This is because the number of functions, and con-
sequently the number of call-graph edges, is statically bounded. For the Calling

5 10 random single-byte changes beyond the first 1024 bytes of data; the latter avoids
corrupting the main document header, a case that is particularly easy to identify as
abnormal.

Dynamic Anomaly Detection 181

Context Tree abstraction, however, this is not the case. In particular, the use of
recursion can cause an application’s calling context tree to to any size.6 Figure
5 visualizes the relation between application runtime (with CCT logging en-
abled) and and the number of nodes in the resulting CCT profile. Interestingly,
in our benchmark longer-running applications do not induce significantly larger
profiles; thus, our approach scales well over time.

5.5 RQ4: Efficiency

We comment on the runtime overhead caused by the instrumentation necessary
for profile generation and on the overhead induced by using securely sealed
storage.

For the experiments mentioned above, we used a setup as described in Sec-
tion 2: we collected calling context trees in all cases, and in a second step com-
puted call graphs and method sets based on the collected trees. This procedure
is inefficient. In a real-world setting one would rather opt for a customized in-
strumentation that emits the respective representation directly, as this can safe a
significant amount of execution time. While computing full CCTs will generally
incur a significant runtime overhead (10 times or more), one can bring overheads
down to under 5% by using probabilistic calling context trees [6]. Such proba-
bilistic CCTs appear quite sufficient for our purposes, and we plan to evaluate
their utility in future work. Method sets and call graphs are statically bounded
and can therefore be indexed ahead-of-time, which makes instrumentation pos-
sible that produces little to no observable runtime overhead [16]. We thereby
conclude that sufficiently efficient implementations are possible given the state
of the art in dynamic program analysis. While such implementations are outside
the scope of this paper, we plan to investigate them in future work.

We measured the runtime cost of our runtime-secure storage on a machine
equipped with an AMD Phenom II X2 555 processor and 4 GiB RAM under
GNU/Linux (kernel 2.6.32) and the TPM emulator version 0.7.2. Our tests show
that the most expensive operation is to create a vTPM instance, which takes
1 second on average. However, this operation is only invoked once, at applica-
tion startup time. The overhead is caused by the expensive TPM TakeOwnership

operation, which creates the Storage Root Key (SRK) key-pair.
The average total cost of storing a CCT profile depends on the average node

number. For pdfbox, POI-HSLF and POI-HWPF those are 120,850, 78,568 and
48,239 respectively. Hashing the unique identifier (8 bytes) of every node takes
about 6 μs. The instruction TPM Extend, which extends a PCR register with a
hash, takes 400 μs. That is, we estimate the overhead of securely storing a full CCT
profile for pdfbox, POI-HSLF and POI-HWPF at about 50, 32 and 20 seconds re-
spectively. When using the more coarse-grained Call Graph abstraction, only an
average 5,313, 2,338 resp. 2,289 nodes must be stored for pdfbox, POI-HSLF and
POI-HWPF respectively, lasting approximately 3.1, 1.95 and 1.93 seconds. The
most efficient abstraction are Functions. The overhead for Functions is 2.1, 1.53
and 1.52 seconds for 2,577, 1,301 and 1,281 functions respectively.

6 In practice, the virtual machine’s maximum stack size does impose a (large) limit.

182 S. Alsouri et al.

0 50 100 150
0

1

2

·105

Runtime [s]

#
N
o
d
es

Apache pdfbox (.pdf)

0 1 2
0

2

4

6

8

·104

Runtime [s]

POI-HSLF (.ptt)

0 5 10
0

2

4

6
·104

Runtime [s]

POI-HWPF (.doc)

Fig. 5. Relation between application runtime and model size, measured in number of
calling context tree nodes

Our results show that the cost of secure storage becomes an issue with CCTs
but appears low enough for the other two abstractions. In any case, note that
storage can be performed asynchronously on a separate processor core (or even
a set of those).

6 Related Work

There is has been a significant amount of previous work on automated property
inference [7, 24, 31, 32] and anomaly detection [13, 18] on many different levels,
both static and dynamic, all with their relative strengths and weaknesses. Many
of those approaches could be integrated into our generic architecture defined
in Section 3. We decided to define our own set of three behavior abstractions
because this setup would allow us to evaluate the relative properties of those
abstractions. Our approach extends all previous approaches to anomaly detection
by allowing anomalies to be identified in a distributed but trustworthy manner.

Our approach is not the first to capture program behavior in terms of calling-
context information. Ammons et al. [1] show how to generate context-sensitive
performance profiles efficiently, using hardware performance counters. Dynamic
sandboxing, proposed by Inoue et al. [19], shows similarities with behavior com-
pliance control. Like behavior compliance control, dynamic sandboxing relies on
dedicated training runs to determine a set of legal behaviors. However, Inoue
et al. only consider profiles at function granularity and validate them in two
very limited scenarios; in particular, they do not provide a detailed, quantitative
evaluation and do not consider a broader applicability of dynamic sandboxing
beyond runtime monitoring.

Our approach builds on ideas from intrusion detection. In the mid-nineties,
Forrest et al. [9] addressed an important problem in intrusion detection, the
definition of what they call “self”, in other words a system’s normal behavior.
The authors propose a method to define “self” for privileged Unix processes
by recording short sequences of system calls. Behaviors that deviate from these
patterns are flagged as anomalous and considered untrustworthy.

Dynamic Anomaly Detection 183

None of those approaches considers the scenario of behavior compliance con-
trol in cloud computing. In addition, all approaches are black-box approaches
(in addition to other similar works mentioned in Section 2). Compared to our
approach, this gives them the advantage of being independent of any program-
ming language or compiler. On the other hand, white-box approaches such as
ours yield higher flexibility (as they can obtain more information) and finer
granularity.

Other authors have proposed enforcement architectures to control access to
data objects distributed to remote systems [37]. Such architectures control how
outsourced applications can access outsourced objects at runtime, assuming that
these applications are trusted after verifying their load-time integrity. As we
discussed before, behavior compliance control goes well beyond such load-time
based measures.

Trusted Computing allows to remotely attest the integrity of computing plat-
forms. Behavior compliance control goes beyond binary attestation by not only
considering the integrity of the application’s code at load-time, but its actual
runtime behavior. Gu et al. [15] propose an approach to remote attestation that
can be seen as complementary to ours. Behavior compliance control is focused
on assessing the compliance of a single application’s execution to its model. Gu
et al.’s approach, on the other hand, rather focuses on system-wide attestation;
the authors attest behavior by measuring the ways in which different processes
call each other. In an approach called Semantic Attestation, Vivek et al. [17]
propose to use a trusted virtual machine for remote attestation. The core idea is
that such a trusted virtual machine is capable of performing code analysis and
runtime monitoring. In the approach, the appropriate property checkers need to
be programmed manually, though. This is in stark difference to behavior compli-
ance control, in which application models are automatically generated from legal
executions. In more recent work, Gu et al. [14] propose an architecture to attest
the execution of single mission-critical subroutines of an outsourced application.
The authors use the debug facilities of certain CPUs to track the execution of
a specific function. The execution of the function is then transferred to a secure
environment prepared by a secure kernel.

Finally, some effort has been spent on the construction of schemes for ver-
ifiable computation [4, 12], which aim at outsourcing computations to a third
party, while offering a proof of correctness for the result. At the moment, these
constructions are rather impractical and cannot cope with side-effects of the
program execution.

7 Conclusion

We have presented behavior compliance control, a novel approach to increase
the trust in the validity of executions of outsourced applications. The approach
goes beyond load-time based systems for compliance control by considering the
application’s runtime behavior. This allows the client outsourcing the application
to detect abnormal executions even in cases where the application’s code remains

184 S. Alsouri et al.

unaltered after loading. Such anomalies can for instance be caused by faulty or
malicious inputs, misconfigurations, version mismatches or hardware glitches.
We have presented a reference architecture for behavior compliance control, and
an instantiation for the Java platform which is available as open source.

We have implemented and evaluated our approach based on three different
abstractions of runtime behavior: function sets, call graphs and calling context
trees. Using a large-scale empirical evaluation we could show that the former
two abstractions yield few false positives, while still being able to identify a
significant number of abnormal executions caused by malicious inputs, and all
cases of abnormal executions caused by fuzzed inputs. Those abstractions can
also be implemented efficiently. Calling context trees identify all malicious inputs
but also yield a larger number of false positives, causing additional computation
cost in the client’s private cloud. It is hence up to the client to decide whether
this additional cost is justified by the increased trust that this abstraction offers.

An interesting piece of future work would be to evaluate optimized imple-
mentations of behavior abstractions in the apparent sweet spot between full
calling context trees and call graphs. An approach with bounded context strings
paired with probabilistic calling contexts [6] appears like a potentially optimal
candidate in this solution space.

Acknowledgements. This work was supported by the German Federal Min-
istry of Education and Research (BMBF) within EC SPRIDE and by the Hessian
LOEWE excellence initiative within CASED.

References

1. Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: Proc. of the 10th Conference on Program-
ming Language Design and Implementation (PLDI), pp. 85–96 (1997)

2. Apache Software Foundation. The Apache Java PDF Library (PDFbox),
http://pdfbox.apache.org/

3. Apache Software Foundation. The Java API for Microsoft Documents (Apache
POI), http://poi.apache.org/

4. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

5. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In:
Proc. of the 33rd International Conference on Software Engineering (ICSE), pp.
241–250 (2011)

6. Bond, M.D., McKinley, K.S.: Probabilistic calling context. In: Proc. of the 22nd
Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pp. 97–112 (2007)

7. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. In: Proc. of the 21st In-
ternational Conference on Software Engineering (ICSE), pp. 213–224 (1999)

http://pdfbox.apache.org/
http://poi.apache.org/

Dynamic Anomaly Detection 185

8. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: Proc. of the 2003 IEEE Symposium on Security
and Privacy (S&P), pp. 62–75 (2003)

9. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix
processes. In: Proc. of the 1996 Symposium on Security and Privacy (S&P), pp.
120–128 (1996)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

11. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for
anomaly detection. In: Proc. of the 11th Conference on Computer and Communi-
cations Security (CCS), pp. 318–329 (2004)

12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

13. Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6,000 projects: Lightweight
cross-project anomaly detection. In: Proc. of the 19th International Symposium on
Software Testing and Analysis (ISSTA), pp. 119–130 (2010)

14. Gu, L., Cheng, Y., Ding, X., Deng, R.H., Guo, Y., Shao, W.: Remote Attestation on
Function Execution (Work-in-Progress). In: Chen, L., Yung, M. (eds.) INTRUST
2009. LNCS, vol. 6163, pp. 60–72. Springer, Heidelberg (2010)

15. Gu, L., Ding, X., Deng, R.H., Xie, B., Mei, H.: Remote attestation on program
execution. In: Proc. of the 3rd Workshop on Scalable Trusted Computing (STC),
pp. 11–20 (2008)

16. Gutzmann, T., Löwe, W.: Custom-made instrumentation based on static analysis.
In: Proc. of the 9th International Workshop on Dynamic Analysis, WODA (2011)

17. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual machine
directed approach to trusted computing. In: Proc. of the 3rd Conference on Virtual
Machine Research and Technology Symposium, pp. 3–20 (2004)

18. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: Proc. of the 24th International Conference on Software Engineering
(ICSE), pp. 291–301 (2002)

19. Inoue, H., Forrest, S.: Anomaly intrusion detection in dynamic execution environ-
ments. In: Proc. of the 2002 Workshop on New Security Paradigms (NSPW), pp.
52–60 (2002)

20. Karabulut, Y., Kerschbaum, F., Massacci, F., Robinson, P., Yautsiukhin, A.: Secu-
rity and trust in IT business outsourcing: a manifesto. ENTCS 179, 47–58 (2007)

21. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1137–1143 (1995)

22. Lacity, M.C., Khan, S.A., Willcocks, L.P.: A review of the IT outsourcing literature:
Insights for practice. The Journal of Strategic Information Systems 18(3), 130–146
(2009)

23. Liang, S., Bracha, G.: Dynamic class loading in the java virtual machine. In: Proc.
of the 13th Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pp. 36–44 (1998)

24. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: Proc. of the 24th International Conference on Automated
Software Engineering (ASE), pp. 371–382 (2009)

25. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proc. of the 13th USENIX
Security Symposium, pp. 1–16 (2004)

186 S. Alsouri et al.

26. Sarimbekov, A., Sewe, A., Binder, W., Moret, P., Mezini, M.: JP2: Call-site aware
calling context profiling for the Java Virtual Machine. Science of Computer Pro-
gramming (2012), doi:10.1016/j.scico.2011.11.003

27. Sarimbekov, A., Sewe, A., Binder, W., Moret, P., Schöberl, M., Mezini, M.:
Portable and accurate collection of calling-context-sensitive bytecode metrics for
the Java Virtual Machine. In: Proc. of the 9th Conference on the Principles and
Practice of Programming in Java (PPPJ), pp. 11–20 (2011)

28. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: Tpm virtualiza-
tion: Building a general framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted
Computing, pp. 43–56. Vieweg+Teubner (2008)

29. Strasser, M., Stamer, H.: A Software-Based Trusted Platform Module Emulator.
In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp.
33–47. Springer, Heidelberg (2008)

30. Tan, K., McHugh, J., Killourhy, K.: Hiding Intrusions: From the Abnormal to the
Normal and Beyond. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp.
1–17. Springer, Heidelberg (2003)

31. Thummalapenta, S., Xie, T.: Alattin: Mining alternative patterns for detecting
neglected conditions. In: Proc. of the 24th International Conference on Automated
Software Engineering (ASE), pp. 283–294 (2009)

32. Thummalapenta, S., Xie, T.: Mining exception-handling rules as sequence associa-
tion rules. In: Proc. of the 31st International Conference on Software Engineering
(ICSE), pp. 496–506 (2009)

33. The tpm4java library, http://sourceforge.net/projects/tpm4java/
34. Trusted Computing Group, Inc. TPM Main Specification Level 2 Version 1.2, Re-

vision 116 (March 2011)
35. The TrustedGRUB extension to the GRUB bootloader,

http://sourceforge.net/projects/trustedgrub/

36. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proc. of the 9th Conference on Computer and Communications Security (CCS),
pp. 255–264 (2002)

37. Zhang, X., Seifert, J.-P., Sandhu, R.: Security enforcement model for distributed
usage control. In: Proc. of the Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), pp. 10–18 (2008)

http://sourceforge.net/projects/tpm4java/
http://sourceforge.net/projects/trustedgrub/

Dynamic Anomaly Detection 187

Appendix

Definition 1: (Function set) Let r be a monitored program run. Then the
function set of r, which we denote by functionSet(r), is the smallest set fulfilling
the following property: For any invocation f → f ′ of function f ′ from function
f on r, it holds that {f, f ′} ⊆ functionSet(r).

Definition 2: (Call graph) A call graph is a directed graph (V,E) with V a
set of nodes representing functions, and E ⊆ V ×V a set of directed edges. Then
the call graph of r, cg(r), is a call graph that fulfills the following constraints.
V is the smallest set such that for any invocation f → f ′ of function f ′ from
function f on r, it holds that {f, f ′} ⊆ V . E is the smallest subset of V × V
such that for each such f, f ′ it holds that (f, f ′) ∈ E.

Definition 3: (Calling context tree) Let F be the set of all function identi-
fiers. Then CM , the set of all calling contexts over F , is defined as CM := F+.
The set CM is closed under concatenation: we define a concatenation function
“·” on calling contexts such that for any context c ∈ CM and function f ∈ F
it holds that c · f ∈ CM . A calling context tree is a tree (V,E) with V ⊆ CM

a set of nodes representing calling contexts and E ⊆ V × V a parent-child re-
lationship. We further demand that there exists a unique root node v0 which
has no parents, i.e., for which it holds that ¬∃v ∈ V s.th. (v, v0) ∈ E. Let r
be a monitored program run. Then cct(r) is a calling context tree for which
the following holds. V is the smallest set such that for any invocation c → f
of function f from within context c on r, it holds that {c, c · f} ⊆ V . E is the
smallest subset of V × V such that for each such f, c it holds that (c, c · f) ∈ E.

An Empirical Study of Dangerous Behaviors
in Firefox Extensions

Jiangang Wang1, Xiaohong Li
,1, Xuhui Liu2, Xinshu Dong2, Junjie Wang1,
Zhenkai Liang2, and Zhiyong Feng1

1 Department of Computer Science, Tianjin University
xiaohongli@tju.edu.cn

2 School of Computing, National University of Singapore

Abstract. Browser extensions provide additional functionality and customiza-
tion to browsers. To support such functionality, extensions interact with browsers
through a set of APIs of different privilege levels. As shown in previous studies,
browser extensions are often granted more privileges than necessary. Extensions
can directly threaten the host system as well as web applications, or bring in indi-
rect threats to web sessions by injecting contents into web pages. In this paper, we
make an empirical study to analyze extension behaviors, especially the behaviors
that affect web sessions. We developed a dynamic technique to track the behav-
iors of injected scripts and analyzed the impact of these scripts. We analyzed the
behaviors of 2465 extensions and discussed their security implications. We also
proposed a solution to mitigate indirect threats to web sessions.

1 Introduction

Browser extensions are widely adopted by modern web browsers to allow users to cus-
tomize their web browsers. Browser extensions can change display of web pages, im-
prove browsers’ behaviors, and introduce new features. To support such functionalities,
extensions need to monitor and modify web contents, change browser behaviors and
appearances, access stored website passwords, cookies, etc. They can issue HTTP re-
quests on behalf of users, and open sockets to listen to connections or connect to remote
servers. They can even access the local file system and launch processes. On one hand,
all these privileges enable extensions to extend the functionality of browsers; on the
other hand, they increase the attack surface of users’ systems.

Threats from extensions can be categorized into two types: direct threats and indirect
threats. Direct threats arise from extensions’ direct access to critical browser resources
or the local system. Extensions can read and write Document Object Module (DOM)
of any web page by which page contents and user keystrokes are visible to extensions.
By inserting new elements to DOM, extensions can easily push contents to users at the
extension developer’s will. They also can access browser components directly, such as
Firefox’s password manager. Extensions can also access network and access local files
with current system user’s privileges.

Indirect threats are threats to web sessions. By injecting code into a page, browser
extensions can easily take full control of a web session. Although this is an intended

� Corresponding author.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 188–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Empirical Study of Dangerous Behaviors in Firefox Extensions 189

functionality of browser extensions, malicious extensions can take advantage of it to
carry out attacks against web sessions.

To limit extensions’ high privileges in browsers, several solutions have been devel-
oped. Ter Louw et al. proposed a solution [1, 2] to enhance browser extension security
by protecting the integrity of browser code base and the confidentiality and integrity of
user data. It provides an isolation mechanism to prevent one malicious extension from
compromising another. Google Chrome has adopted an extension system designed with
least privilege, privilege separation, and strong isolation [3]. Each extension is granted
a set of privileges at installation time and it cannot exceed the granted privileges dur-
ing execution time. A recent proposal [4] further divides privileges of Chrome exten-
sions into micro-privileges, to restrict extensions’ capabilities in cross-site requests and
DOM element accesses. It also introduces resources requesting new origins. To mitigate
threats from over-privileged extensions, Mozilla has developed a new extension devel-
opment framework Jetpack [5] to assist developers in building extensions following the
principle of least authority (POLA).

To gain a better understanding of dangerous behaviors in Firefox extensions, we
performed an empirical study of real-world Firefox extensions. Instead of looking for
vulnerabilities in browser extensions [6], our focus is on dangerous runtime behaviors of
browser extensions. We specifically study indirect threats to web sessions, and discuss
what are missing from existing solution in dealing with them.

We developed an automatic testing system based on instrumented Firefox to dynam-
ically investigate extension behaviors. Using this system, we studied Firefox extensions
hosted in the Mozilla Addons repository [7]. In total, 2465 extensions had been tested,
which were distributed in 13 different categories. We summarize our findings of danger-
ous behaviors in Firefox extensions, and discuss potential improvements in mitigating
indirect threats while maintaining usability.

This paper makes the following contributions:

1. We perform an empirical study of Firefox extension behaviors by monitoring their
runtime behaviors, with a focus on indirect threats. From our analysis, we propose
improvement to current solutions in mitigating indirect extension threats to web
sessions.

2. We designed and implemented an automatic testing system to monitor the browser
extension behaviors.

2 Threats from Extension

2.1 Browser Extensions

Browser extensions are tools to extend browsers to enhance their functionality. To ob-
tain highly customizable features, extensions are granted high privileges. They can ac-
cess almost all components in a browser. The extension privileges can be summarized
as follows:

– Monitoring and modifying web contents. All contents displayed in web page are
visible to extensions including user inputs. Extension can modify the page by mod-
ifying DOM.

190 J. Wang et al.

– Accessing browser components. Extensions can access browsers’ password man-
agers, cookie files, etc.

– Accessing network. Extensions also have full access to network and sockets. It can
easily issue HTTP requests.

– Accessing local file systems. Extensions can access local file system with the priv-
ileges of the browser process.

– Launching processes. Extensions can launch processes through certain browser
API.

As discussed, extensions have powerful privileges. In the following subsections, we will
discuss what a malicious extension can do with these powerful privileges. In the rest of
the paper, we focus on Firefox extensions.

2.2 Direct Threats

Direct threats are threats from browser extensions, through directly accessing critical
resources of browsers or host systems.

– Direct DOM Access. Extensions can access all DOM structures in any page, in-
cluding contents browsed by users, contents in all forms filled and submitted by
users, and events on keystrokes and mouse clicks. They can also access all infor-
mation submitted to the server, including account names and passwords, personal
information, finance information, etc. They can not only read DOM, but also mod-
ify DOM to create new page contents.

– Browser Component Access. Extensions are capable to access all Firefox compo-
nents, including the password manager and the browsing history, etc. Consequently,
they can easily collect account information, such as passwords stored in the pass-
word manager and the browsing history.

– Arbitrary File Access. Extensions have the ability to access local file systems
without any restriction. Once a malicious extension is installed, the whole system
is controlled by attackers with the browser user’s privilege. Since extensions can
access arbitrary files and the extension system does not provide a mechanism to
protect the integrity of installed extensions, it is possible for a malicious extension
to change other benign extensions’ behaviors by modifying their installed files.

– Network Access. Extensions have variable ways to access the network, such as
sending XMLHttpRequest directly, or requesting resources like images or scripts
from arbitrary servers. By attaching information to requests, malicious extensions
can send out collected information.

– Launching Process. Launching a local process is considered highly dangerous,
because by running malicious code, an attacker can take full control of victims’
computers and make them part of a botnet.

– Dynamic Code Execution. Executing dynamic code is an important feature in the
JavaScript language, which enables the program to execute dynamically generated
strings as JavaScript code. The strings may originate from an attacker, allowing
them execute malicious code.

– Listening to Keyboard Events. Listening to keyboard events is common in exten-
sions, but an attacker can use this feature to steal users’ inputs.

An Empirical Study of Dangerous Behaviors in Firefox Extensions 191

The root cause of direct threats is the high privileges that a browser grants to ex-
tensions. Different browser vendors proposed different mechanisms to mitigate these
threats. Firefox browser adopts a Sandbox Review System to force all submitted exten-
sions to be manually reviewed before they are released to the public. Google Chrome
adopts a new extension system [3] with “least privileges” principle. The new system
requires developers to claim the minimal privileges their extensions need. When an
extension is installed, a prompt dialog pops up to warn the users what privileges the
extension claims, whether to continue installing or not is determined by users. At run
time, an extension cannot exceed privileges it claimed.

2.3 Indirect Threats to Web Sessions

Extensions introduce indirect behaviors through two steps. It first injects contents (script
code or HTML elements) into web sessions; The injected contents then result in subse-
quent behaviors, which may launch attacks against the web sessions. Extensions have
various ways to inject contents to web pages. They can call the write or writeln meth-
ods of DOM objects, appendChild or insertBefore methods of HTMLElement ob-
jects.

Unfortunately, current browsers lack the abilities to distinguish injected contents
from original ones. The indirect threats completely bypass permission checking on the
extension itself, and can launch attacks to web sessions. These attacks can be launched
in all pages, regardless they are vulnerable or not.

Let us use a scenario to demonstrate how it can be exploited by attacks. An extension
claims for privileges to access the browsing history and DOM, but it does not require
the privilege to access the network. It seems that this claim should be allowed because
although the extension may access users’ private data, it cannot send them to untrusted
third party through network APIs. However, direct access to network has been limited,
but this extension can still access network in an indirect way. The extension can modify
the DOM tree of benign web pages and inject <script>, or <iframe> tags
into pages, which use a malicious site as its source, and attach users’ private data or
cookies of target web sites as parameters. Such indirect threats have not been well
studied by existing research work, and are also not constrained by existing browser
extension systems.

All the behaviors conducted by extensions are within the context of browsers. So, it’s
almost impossible for traditional general protection mechanisms (e.g., anti-virus soft-
ware or firewall) to judge certain behaviors are conducted by extensions or browsers
themselves, let alone to tell these behaviors are benign or not. The protection mecha-
nism again malicious extensions can only be deployed within browsers.

3 Design and Implementation

In this section, we present the design and implementation of our extension testing sys-
tem that can automatically download, install, and test browser extensions and obtain
their behavior information. We first illustrate the architecture of the system, then in-
troduce the design and implementation of modules in our system in detail, and finally
explain the testing process of browser extensions.

192 J. Wang et al.

Fig. 1. System architecture of our Firefox extension testing system. The main components are in
grey color.

Although our approach and study are based on Firefox, our approach does not depend
on specific feature of Firefox, and our study is performed assuming the availability of
protection mechanism on all browsers. Our solution and study can be straightforwardly
extended to other browsers.

3.1 System Architecture

The system architecture is shown in Figure 3.1. There are six modules in our extension
testing system. Instrumented Browser monitors the execution of browser extensions.
It contains three sub-modules, Injected Object Tracker is a module to track whether
an HTML element or a piece of JavaScript is originated from web page or injected
by extensions; ExInfoEx is used for extracting the position information of items (such
as menu items) added by tested extension and offering them to simulating module for
triggering the events; XdoWrapper is a wrapper of Xdotool [8] that makes it easy to
simulate many kinds of events at the window level. Addon-Downloader is responsible
for downloading all the analyzable browser extensions to the local system. Controller
is a module that connects other modules together and makes the whole test process
automatic. We also created a test website to drive the testing of extensions.

3.2 Design and Implementation

We give the detailed introduction about the design and implementation of the major
components in our system.

Instrumented Browser. In order to investigate the tested extension’s behaviors, we
intercept the interfaces or functions that are accessed by the tested extension at runtime
using an instrumented Mozilla Firefox 3.5.

In this customized browser, for detecting the direct threats of an extension, we in-
serted a series of hooks into the browser’s source code. We mainly hook four modules
of Firefox: the XPConnect module, the DOM module, the Content module, and the

An Empirical Study of Dangerous Behaviors in Firefox Extensions 193

JavaScript engine. XPCOM makes it possible for JavaScript to invoke methods pro-
vided by the browser. The XPConnect module is responsible for the communication
between JavaScript and XPCOM components. By inserting hooks into this module, we
can intercept the events of browser extension accessing XPCOM interfaces, and extract
the parameters. In the DOM module and the Content module, we inserted hooks to
intercept event listener registration and removal issued by a browser extension. Spider-
Monkey [9], the JavaScript engine in Firefox, is also instrumented to intercept several
security-related JavaScript native functions for analysis.

The instrumented browser contains three sub-modules:

Injected Object Tracker. To investigate the indirect behaviors of an extension, it is
necessary to track the contents injected into web pages by extensions and monitor their
subsequent behaviors. For this purpose, we design the Injected Object Tracker to track
the source of injected contents. We intercept interfaces used by extensions to inject new
contents to web pages. Once extensions inject any object into web pages, the injected
object is marked with the source “extension”. During behavior monitoring, we can find
out whether the behavior is from the original web page or from objects injected by
extensions.

ExInfoEx. ExInfoEx (Extension Information Extractor) is a browser extension that
identifies the browser user interface elements that are added by the tested extension
and transfer the position information of these elements to XdoWrapper module to trig-
ger the events targeted on them. However, due to the technology of “overlay”, how to
distinguish the elements added by an extension from the elements belonging to browser
itself becomes the biggest challenge we faced.

To resolve this problem, we modify the process of overlay loading. When the browser
creates elements defined in overlays in the process of loading, an extra attribute is added
to each element. The value of this attribute is set to the extension’s identifier that is still
retained by the browser at this time and can be easily extracted. With this attribute,
ExInfoEx can identify those elements by traversing the DOM tree of the browser user
interface.

XdoWrapper. For exposing as many behaviors of a browser extension as possible, we
need to simulate users’ behaviors to trigger the events in web pages and in the chrome
area. XdoWrapper is such a module that receives specific instructions from the ExIn-
foEx module to simulate these users’ behaviors, and provides the relevant information
about the windows of browser to the Controller module. It is a wrapper of xdotool
[8], which can conveniently generate various keyboard and mouse events at the win-
dow level and easily manage and manipulate all the windows opened in the operating
system.

Controller. The Controller module is used to connect other modules together and coor-
dinate the entire testing process. Specifically, it is mainly responsible for the following
work:

– Install/uninstall extensions. Controller is responsible for the installation and
uninstallation of each extension.

194 J. Wang et al.

– Start/shutdown the browser. During the whole test process, there are many cases
need to start or shutdown the browser.

– Configure/clean the testing environment. Before or after an extension is tested, the
testing environment needs to be configured with the corresponding information or
cleaned up by the controller module.

– Coordinate the whole process. All these processes (install, configure, test, and unin-
stall) should be connected together smoothly, and this is one of the main tasks of
Controller.

– Handling exceptions. Controller also handles unexpected issues, such as browser
crashes.

Addon Downloader. The Addon Downloader module is responsible for downloading
all the testable browser extensions in the online repository. We utilize Htmlcxx [10] (a
lightweight HTML and CSS parser for C++) to parse an extension’s page and determine
whether the extension is testable, and then with the help of Libcurl [11](a client-side
file transfer library), download it to our system.

3.3 Testing Process

We first download all the testable browser extensions in the repository. Each extension
downloaded to the local system is then installed on the instrumented browser for test-
ing. After installation, essential information about the extension, such as name, ID (if
applicable) and installation path, is extracted from the browser profile and recorded into
a configuration file, which is used by the browser in the phase of monitoring extension’s
behaviors. We then restart the browser to begin the behavior monitoring process. At the
beginning of restart, the browser reads the information about the tested extension from
the configuration file. This information is indispensable for browsers to detect the be-
havior information of the tested extension. Once the browser obtains this information
during restart, the behavior monitoring process is automatically started. For exposing
more behaviors of the tested extension, the system first leads browser to visit a particu-
lar website designed by ourselves and simulates a variety of events in web pages, such
as click on links, keyboard input, and form submission. Then, the system goes through
the browser interface, detects the elements (such as menu items, context menu items
and status bar items) added by the tested extension, and generates events corresponding
to clicks on each these elements. If new windows pop up after clicks, they are simply
closed. After that, the browser is shut down, and the tested extension is removed. Rele-
vant configuration information related to this extension is also cleaned up. After all the
above procedures are over, the testing process for one extension is completed, and the
process for next extension can start.

4 Evaluation and Analysis

The experiment was conducted on a computer with Intel(R) Core(TM)2 Duo CPU at
2.33GH, 250GB 7200RPM disk, and 4GB RAM. Its operating system is Ubuntu 10.04,
with the instrumented Firefox 3.5 installed.

An Empirical Study of Dangerous Behaviors in Firefox Extensions 195

Table 1. The ratings of extension behaviors

Rating Behaviors

high
Arbitrary file access; Process launching; Download; XPinstall; Network access via
XPCOM APIs; Update; DOM injection

medium
Password; Login; Cookie; Network access via XMLHttpRequest; Addons manage-
ment; Changing Firefox preferences; Profile

low History; Bookmark; Clipboard; Dynamic code execution

none

Accessibility; Browser core; Auto complete; Log to console; Searching; Spell
checking; DOM; Editor; Internationalization; Offline cache; XML parser; Net-
work utilities; RSS/RDF; Data types and structures; Streams; Memory man-
agement; Thread management; Component management; Additional XPCOM
services; JavaScript core; JavaScript debugger; XPConnect; Authentication; Cer-
tification; Cryptograph; Additional security interfaces; Document handling; Trans-
action management; Web worker; Window management; Print; Database access;
Images; Zip/jar process; JVM; Plugins

We first investigated the behaviors of Firefox extensions by analyzing the critical
XPCOM interfaces and JavaScript functions exposed to extensions, and classified them
into different levels according to their potential risks. Then we further studied Firefox
extension behaviors by testing 2465 extensions hosted on the Mozilla Addons web-
site [7] using our extension testing system, and analyzed the experimental data from
various perspectives.

4.1 Studying and Classifying Extension Behaviors

Through the analysis of critical XPCOM interfaces and JavaScript functions used by
Firefox extensions, we summarize them into 54 different behaviors. To investigate ex-
tension behaviors from a security perspective, all these behaviors are rated into four
levels according to their potential risks. This work is mainly based on Firefox security
severity ratings [12], Chromium’s severity guidelines for security issues [13] and the
work of Barth et al [3]. The ratings are described in Table 1.

Rating High includes the behaviors that can possibly download, install, or execute
a program. These behaviors are considered the most privileged and dangerous ones,
because they could be utilized by an attacker to compromise users’ entire operating
system. “DOM injection” is also classified into High because it can inject DOM con-
tents into web applications that in turn initiate network access. Rating Medium consists
of behaviors that may access users’ private information (e.g., the password or cookie),
or access network in a relatively safe way (like through XMLHttpRequest). The behav-
iors that may modify the critical data of the browser are also rated as this level. The
behaviors in Rating Low are those that may obtain limited information of users, such
as browsing history or bookmark, and those that are likely to cause a vulnerability with
low possibility, like executing a dynamically generated string. All other non-sensitive
behaviors are classified into Rating None. These ratings are used to investigate how
many browser extensions exhibit high privileged behaviors and how the distribution of
the usage of different behaviors looks like.

196 J. Wang et al.

The Statistics of Extension Behaviors. To better understand the behaviors of Fire-
fox extensions, we performed a study of statistics on their behaviors according to their
ratings. We four that 33% of them had the behaviors belonging to Rating High. The
extensions with the behaviors of Rating Medium accounted for nearly 16% of the total
and only 1% of the tested extensions possessed the behaviors of Rating Low. A large
number of the tested extensions, approximately 50% of them, only demonstrated the
behaviors with Rating None, which are invariably benign to users. Note that one ex-
tension with higher privileged behaviors does not indicate that it will definitely cause a
damage, but means that the extension has such capabilities that, if abused, will bring se-
vere threats to users’ data and/or the underlying operating system. We have known that
Firefox provides the browser extensions with excessive privileges, and from our ex-
periments we found that the extensions on Mozilla indeed utilize these high privileges
widely.

To investigate the extensions’ behaviors in detail from a security perspective, Table 2
lists the frequency of security-related behaviors of Ratings High, Medium and Low. In
Rating High, there were 37 (1.50%) extensions found to access files outside their instal-
lation directory. Four (0.16%) extensions launched a process on the local system, and
10 (0.41%) use the download API provided by XPCOM. None of the extensions were
found to install other addons through XPInstall API. The most widely used interfaces
in this group are XPCOM interfaces for network accessing, accounting for 29.66% of
the entire test set. Only one extension in our experiment uses the Update system. Ad-
ditionally, there were 108 extensions (4.38%) found to inject new contents into web
pages.

In Rating Medium, we found no extensions that access password information, while
the login and cookie information were found to be accessed by some extensions, ac-
counting for 1.78% and 2.80%, of the total number of extensions. There were 441
(17.89%) extensions issuing HTTP requests through the XMLHttpRequest object. The
number of extensions that used XPCOM APIs to manage addons (e.g., to search and in-
stall addon from the repository or to locate the installation location) were 139 (5.64%).
Although changing Firefox preferences may greatly annoy users, there were still 31
(1.26%) extensions doing so. In addition, one extension was observed to access the
profile information of the Firefox.

In Rating Low, there were 43 (1.74%) and 44 (1.78%) extensions found to access the
limited information, the browsing history and bookmarks. 49 of the tested extensions,
about 1.99%, were found to manipulate the clipboard through XPCOM APIs. To our
surprise, although Mozilla has highly recommended not to execute dynamic generated
strings with “eval()” or “Function()”, and several safer alternatives are also available,
there were still 145 extensions showing such behaviors, accounting for 5.88% of the
total number of extensions examined.

4.2 Extension’s Indirect Threats to Web Sessions

To investigate the indirect threats from browser extensions, our experiment paid spe-
cial attentions to indirect behaviors of extensions that inject new web contents into web
pages. As shown in Table 3, there were 108 browser extensions that inject new contents

An Empirical Study of Dangerous Behaviors in Firefox Extensions 197

Table 2. Frequency of security-related behaviors

Rating Behavior Quantity Frequency

High

Arbitrary file access 37 1.50%
Process launching 4 0.16%
Download 10 0.41%
XPInstall 0 0.00%
Network access via XPCOM API 731 29.66%
Update 1 0.04%
DOM injection 108 4.38%

Medium

Password 0 0.00%
Login 44 1.78%
Cookie 69 2.80%
Network access via XMLHttpRequest 441 17.89%
Addons management 139 5.64%
Changing Firefox preferences 31 1.26%
Profile 1 0.04%

Low

History 43 1.74%
Bookmark 44 1.78%
Clipboard 49 1.99%
Dynamic code execution 145 5.88%

Table 3. Statistics of contents injected into webpages

Injected Element Quantity Total Ratio
script 14 108 12.96%
iframe 8 108 7.41%
a 8 108 7.41%
img 14 108 12.96%
object/embed 3 108 2.78%
others 95 108 87.96%

into web pages, among which 14 extensions inserted “script” tags into pages, eight ex-
tensions inserted “iframe” tags into pages, and other 14 extensions inserted “img” tags.
There were some other elements that were also found to be injected into pages by ex-
tensions, such as “div”, “span” and so on. We focus our analysis on those cases that
extensions injected elements that are frequently exploited in attacks, including script,
iframe and img tags. By manually examining these cases, we conclude that all the ex-
tensions that inject new contents into web pages, were exempted from being malicious.

For the 14 extensions that injected “script” elements into web pages, six of them
directly injected JavaScript code into pages, while the remaining eight extensions in-
jected “script” elements that request external JavaScript from the developers’ websites
or third-party ones.

For the six extensions that directly injected code, the injected code’s behaviors were
rather simple. Three of them simply set certain JavaScript objects’ values to 1, as shown

198 J. Wang et al.

<SCRIPT type=”text/javascript”>
window.script1309754027588=1;
</SCRIPT>

Fig. 2. JavaScript code to assign an object

<SCRIPT id=”afterthedeadline−dispatchDisable”>
if (window.setTimeout)

window.setTimeout(function(){
if (”AtD” in window || ”AtDCore” in window) {

document.AtDdisabled = true;
var ev = document.createEvent(”HTMLEvents”);
ev.initEvent(”disableAtD”,true,false);
document.dispatchEvent(ev);

}
},100);

</SCRIPT>

Fig. 3. JavaScript code to disable extension

in Figure 2; two of them injected empty code; and one of them set a timer event to
disable itself, as shown in Figure 3. We also closely examined the eight extensions
that injected “script” elements with src attributes to refer external JavaScript. We found
that one of them accesses the cookie that was believed to belong to its own website.
In another case, the injected script called the insecure function “eval” to load dynamic
code. However, we have confirmed that this case is also benign.

In the eight extensions that injected “iframe” HTML elements into web pages, the
requested pages loaded by iframes all came from the corresponding extension’s official
website. For the behaviors of these injected pages in iframes, we also find two pages
that access the cookie of their own.

Other injection behaviors are also innocuous. All the “a” HTML elements injected
into web pages by the eight extensions do not link to other pages. The 14 extensions
inject “img” HTML element into web pages, using an image either from their chrome
areas or from other sites as the source of “img” tag. All these images used as normal
were icons and did not contain malicious event handlers. The three extensions that
injected “object” or “embed” HTML elements are to include flash files to web pages.

From the experimental results, we found that subsequent behaviors of web contents
injected into web sessions by extensions can be summarized in three groups.

– Network Access. Via script, img, iframe or embedded tags.
– Cookie Access. Via script tags.
– Others. Certain injected code assigns simple values to certain objects, or register

event listeners. None of these is security related.

An Empirical Study of Dangerous Behaviors in Firefox Extensions 199

Table 4. Statistics of some dangerous functionalities and practices

Dangerous Practice Quantity Total Ratio
Accessing files beyond the directory of its own. 37 2465 1.50%
Launching a process. 4 2465 0.16%
Issuing HTTP requests via XMLHttpRequest. 441 2465 17.89%
Changing the preferences of the browser. 31 2465 1.26%
Capability of dynamic code execution(evel, Function). 145 2465 5.88%
Listening to the keyboard events targeted at web pages. 19 2465 0.77%
Preference names without “extensions.” prefix. 266 2465 10.79%

4.3 Direct Threats

Dangerous Functionalities and Practices. In our experimental analysis, we also fo-
cused on dangerous functionality and practices. Table 4 lists the statistical results of our
experiment.

Accessing files beyond the directory of its own. Browser extensions may have legit-
imate needs to access local files, so we focused on accesses to files outside the ex-
tensions’ installation directories by monitoring the invocations to the “initWithPath”
function of the “nsILocalFile” interface and its parameter. Among the 37 extensions
with such behaviors, 15 extensions access files from “/home/username”, and surpris-
ingly there are as many as 7 extensions found to access files from “/usr/bin”, 5 accessing
“/tmp”, and 2 accessing “/bin”. After manual inspection, all of them were confirmed to
be not malicious.

Launching a process. We monitor process launching by intercepting the “run” method
of the “nsIProcess” interface. In these four extensions that launch new processes, two
of them (KidZui and KidZui K2) executed the program “/usr/bin/xmodmap” to modify
keymaps and pointer button mappings in the X system. Another extension (Zotero)
executed the program “/usr/bin/mkfifo” to create a named pipe. Moreover, the extension
named “TTS for linux” executed a shell script, which is responsible for converting
text to speech by calling KTTSD (Kde Text To Speech Daemon) via DCOP (Desktop
COmmunication Protocol).

Issuing HTTP requests via XMLHttpRequest. We found 33 extensions sending current
page URLs to remote servers using XMLHttpRequest, which might be due to the fact
that browsers do not append the referrer header to the HTTP request generated by
extensions using XMLHttpRequest by default. Although no abuse of such information
was found, it is possible for malicious extensions to use this approach to collect users
favors or sense users’ behaviors that may not be acceptable for some users.

Changing the preferences of the browser. The modifications to some of the browser
preferences can lead to exploit or at least annoying users. To evaluate the situation
among Firefox extensions that how many extensions access the critical preferences of
the browser, we intercepted the “getBranch” method of the “nsIPrefService” interface
and logged its parameters. We found 20 extensions accessed “network.*” preferences,
8 accessed “general.useragent.*” accesses, etc.

200 J. Wang et al.

Capability of dynamic code execution. We found that 145 (5.88%) extensions still use
the dangerous JavaScript features “eval()” or “Function()”, despite the existence of safer
alternatives. These dangerous practices could leave the door open to attackers. Their ex-
istence showed that Mozilla’s review process does not completely eliminate dangerous
and vulnerable coding practices, although Mozilla’s Add-on Review Guide [14] clearly
states that any extension using “eval()” to evaluate remote code should be rejected.

Listening to the keyboard events on web pages. We found 19 extensions that monitor
the user’s keyboard operations. However, after our manual reviewing, considering the
particular functionality these extensions need to implement, such event monitoring is
considered essential for their functional goals. For example, a translator extension “Nice
Translator” accelerates the query speed by recording the user input in real time. And
another extension “gleeBox” provides a keyboard-centric approach to navigating the
web, which also needs to monitor the keyboard events.

Preference names without the “extensions” prefix. Mozilla suggests that it is a good
practice to name extension preferences with an “extensions” prefix; otherwise, exten-
sion preferences’ names may pollute the namespace of the browser’s own preference
system and affect the stability of the browser. However, during our experiment, we still
found up to 266 extensions violating this rule, accounting for 10.79% of the total.

5 Discussion

5.1 Tracking Principals of Indirect Behaviors

Indirect threats to web sessions come from injected contents by browser extensions. A
recent proposal [4] introduces new permissions to have fine-grained control on accesses
to DOM elements and the capability to introduce new origins into web sessions. This is
a promising direction in mitigating indirect threats from browser extensions. However,
there are other cases of indirect threats other than introducing new origins via the src
attributes of “img” of “iframe” HTML tags. For example, things will get more compli-
cated when a script injected into a web session by a browser extension can dynamically
create another script, which in turn modifies the web page’s original JavaScript to tam-
per with their original XMLHttpRequest destinations.

We argue that instead of imposing an allow or disallow option for browser extensions
to introduce new origins into web sessions, we need a more systematic approach, which
tracks the principals of contents from different sources in web sessions. When injected
contents from browser extensions modify original contents in the web page, the princi-
pal of the injected content should be propagated to the modified contents. As a result,
additional security mechanisms, such as permission checking or access control can be
applied on the dynamic principals of different components in the same web session.
This approach would not only mitigate indirect threats to web sessions from browser
extensions, but would allow legitimate interactions between browser extensions and
web sessions.

5.2 Coverage of Extension Behaviors

In our testing system, we setup a simple web site to simulate the real world web sites,
and we use XdoWrapper to simulate users’ click or keyboard strike events. However,

An Empirical Study of Dangerous Behaviors in Firefox Extensions 201

some extensions are designed to work only on specific web sites and some behaviors
will only be triggered by certain user actions. Since we are not able to simulate the
exact environments for them, it is possible that certain behaviors are not triggered in
our testing system. As our future work, we will work on solutions to achieve better
coverage of extension behaviors with assistance from static program analysis.

6 Related Work

We discuss research work related to browser extension security in the following cate-
gories.

A. Study of security and privacy in browser extensions. Martin Jr. et al [15] investigate
privacy issues in IE 6 extensions, where they found some extensions monitoring users’
behaviors or intercepting and disclosing SSL-protected traffic. A more recent study [16]
investigates privileges in 25 Firefox extensions that are necessary for extensions’ func-
tionalities, and found that only 3 out of the 25 extension would actually require the
most powerful capabilities of the privileges Firefox extensions all have, violating the
least privilege principle. Compared to them, our work focuses on dangerous behaviors
in Firefox extensions, and our study was conducted with an automatic testing tool.

B. Securing browser extensions. Based on the weaknesses of the old Firefox extension
system, Barth et el. [3] propose a new browser extension system for Google Chrome,
which is designed with least privilege, privilege separation and strong isolation. How-
ever, Liu et al. [4] find that the original design of the Chrome extension framework had
still violated the principles of least privileges and privilege separation, and they propose
improvements to it with micro-privilege management and fine-grained access control to
DOM elements. Similarly, Mozilla develops a new extension framework Jetpack [5] to
make it easier to develop more secure browser extensions. The basic idea of the new
framework is to isolate extensions into a collection of modules, each of which is ex-
pected to follow the principle of least authority (POLA). Karim et al. [17] perform a
static analysis on 77 core Jetpack framework modules and 359 extensions, where they
find 12 and 24 capability leaks, respectively. Although we propose potential improve-
ment to mitigate indirect threats to web sessions from browser extensions, we do not
aim for a redesign of browser extension frameworks in this paper. Our focus is on the
existing behaviors of Firefox extensions that are currently used by users today.

Sabre [18] is a system that analyzes the browser extensions by monitoring in-browser
information-flow. It produces an alert when an extension is found to access some sensi-
tive information in an unsafe way. A similar approach [19] is also used to detect attacks
against privilege escalation vulnerabilities in Firefox extensions. Another recent work
by Ter Louw et [1, 2] discusses techniques for runtime monitoring of extension behav-
iors. They try to reduce the threats posed by malicious or buggy Firefox extensions by
controlling an extension’s access to XPCOM. Similar to this work, to protect users from
spy add-ons, SpyShield [20] uses an access-control proxy to control communications
between untrusted add-ons and their host application. Some static approaches are also
proposed to detect vulnerabilities in JavaScript-based widgets. GATEKEEPER [21] is
a static approach for enforcing security and reliability policies for JavaScript programs.

202 J. Wang et al.

VEX [6] is a framework for identifying potential security vulnerabilities in browser
extensions by static information-flow analysis.

Compared to the work above, our focus in this paper is on dangerous behaviors in
existing Firefox extensions, rather than detecting vulnerabilities or attacks.

C. Automatic event simulation. Some existing systems for web application testing, such
as Selenium [22], Watir [23] and [24] can simulate mouse and keyboard events on
webpages. However, they cannot trigger events in Firefox extensions. In this work, we
provide additional support for Firefox’s internal event simulation.

7 Conclusion

In this paper, we present a large-scale study on dangerous behaviors in Firefox exten-
sions. We focus on investigating the indirect threats posed by extensions by tracking
the behaviors of new web content injected by extensions. Through an automatic test-
ing system equipped with an injected object tracker, we tested over 2,465 extensions
in 13 different categories from the Mozilla Addon repository. We found that there are
108 extensions in total injecting various contents (such as scripts, iframes, images and
so on) into web pages. Although these cases are not malicious, they can be abused
to tamper with web sessions and should be tackled with special care. To mitigate this
kind of threats, we discuss a solution to apply principal tracking to constrain the behav-
iors of injected content by extensions, while still maintaining usability for legitimate
behaviors.

Acknowledgments. We are grateful to the anonymous reviewers for their insightful
comments and suggestions. This research was supported in part by National Natural
Science Foundation of China (No.90718023, 91118003), Tianjin Research Program
of Application Foundation and Advanced Technology (No.10JCZDJC15700), “985”
funds of Tianjin University, and National University of Singapore under NUS Young
Investigator Award R-252-000-378-101.

References

1. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security against
malware extensions. Journal in Computer Virology 4, 179–195 (2008)

2. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible Web Browser Security. In:
Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19. Springer,
Heidelberg (2007)

3. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities. In: Network and Distributed System Security Symposium (2010)

4. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: Threat analysis and countermea-
sures. In: Proceeding of the Network and Distributed System Security Symposium, NDSS
2012 (2012)

5. Mozilla. Jetpack, https://wiki.mozilla.org/Jetpack
6. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: vetting browser extensions

for security vulnerabilities. In: Proceedings of the 19th USENIX Conference on Security,
Berkeley, CA, USA, p. 22 (2010)

https://wiki.mozilla.org/Jetpack

An Empirical Study of Dangerous Behaviors in Firefox Extensions 203

7. Mozilla add-ons, https://addons.mozilla.org/
8. xdotool, http://www.semicomplete.com/projects/xdotool/
9. Spidermonkey, https://developer.mozilla.org/en/SpiderMonkey

10. htmlcxx - HTML and CSS APIs for C++, http://htmlcxx.sourceforge.net/
11. libcurl - the multiprotocol file transfer library, http://curl.haxx.se/libcurl/
12. Security severity ratings,

https://wiki.mozilla.org/Security_Severity_Ratings
13. Severity guidelines for security issues,

http://dev.chromium.org/developers/severity-guidelines
14. Add-on review guide,

https://wiki.mozilla.org/AMO:Editors/EditorGuide/AddonReviews
15. Martin Jr., D.M., Smith, R.M., Brittain, M., Fetch, I., Wu, H.: The privacy practices of web

browser extensions. Communications of the ACM (2001)
16. Felt, A.P.: A survey of firefox extension API use. Technical report, University of California

at Berkeley (2009)
17. Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-C.: An Analysis of the Mozilla Jetpack

Extension Framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 333–355.
Springer, Heidelberg (2012)

18. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based browser exten-
sions. In: Computer Security Applications Conference, ACSAC (2009)

19. Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In: Proceedings of
the 19th USENIX Conference on Security, USENIX Security 2010, p. 23. USENIX Associ-
ation, Berkeley (2010)

20. Li, Z., Wang, X.-F., Choi, J.Y.: SpyShield: Preserving Privacy from Spy Add-Ons. In:
Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 296–316.
Springer, Heidelberg (2007)

21. Guarnieri, S., Livshits, B.: Gatekeeper: Mostly static enforcement of security and reliability
policies for javascript code. In: USENIX Security Symposium (2009)

22. Selenium web application testing system, http://seleniumhq.org/
23. Watir automated webbrowsers, http://wtr.rubyforge.org/
24. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for the automated

detection of clickjacking attacks. In: Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, pp. 135–144 (2010)

https://addons.mozilla.org/
http://www.semicomplete.com/projects/xdotool/
https://developer.mozilla.org/en/SpiderMonkey
http://htmlcxx.sourceforge.net/
http://curl.haxx.se/libcurl/
https://wiki.mozilla.org/Security_Severity_Ratings
http://dev.chromium.org/developers/severity-guidelines
https://wiki.mozilla.org/AMO:Editors/EditorGuide/AddonReviews
http://seleniumhq.org/
http://wtr.rubyforge.org/

Collaboration-Preserving Authenticated

Encryption for Operational Transformation
Systems

Michael Clear, Karl Reid, Desmond Ennis, Arthur Hughes, and Hitesh Tewari

School of Computer Science and Statistics,
Trinity College Dublin

Abstract. We present a flexible approach for achieving user-controlled
privacy and integrity of documents that are collaboratively authored
within web-based document-editing applications. In this setting, the goal
is to provide security without modifying the web application’s client-side
or server-side components. Instead, communication between both compo-
nents is transparently intercepted and processed (if necessary) by means
of a local proxy or browser plugin. We improve upon existing solutions
by securely preserving real-time collaboration for encrypted documents
and facilitating self-containment of the metadata (an overhead of encryp-
tion) within the same document. An architectural generalization is also
presented that permits generic transformations and fine-grained access
control. Security is assessed with respect to several threat models, and
performance is evaluated alongside other approaches.

1 Introduction

Privacy for data stored in the cloud is a growing concern. Although the ubiq-
uity of TLS for securing the transport layer ensures confidentiality and integrity
for data in-transit, reservations arise about the security of data persisted in the
cloud. This is especially pronounced for Software as a Service (SaaS) offerings
whereby an organization’s security policy is incompatible with that adopted by
the service provider. Since it is desirable to avail of the convenient function-
ality and resources supported by the provider, these concerns have often been
incautiously ignored.

In recent years, there has been significant research in the area of computing
delegation and data delegation as cloud computing has emerged as a predomi-
nant paradigm. Advances in fully homomorphic encryption since Gentry’s 2009
breakthrough [1] such as [2], along with practical predicate encryption such as
[3] proceed towards the realizing the goal of privacy in outsourced computations.
However, in these settings, control is assumed over the remote server.

Some SaaS applications can retain their functionality while simultaneously
allowing end-to-end data privacy, without performing computations homomor-
phically or relying on cryptographic techniques that require changes to be made
to the server. Other applications can retain the bulk of their features under sim-
ilar conditions. In fact, if control were assumed over customizing the server-side

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 204–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Collaboration-Preserving Authenticated Encryption for OT Systems 205

software to accommodate end-to-end data privacy and integrity, the task would
be less challenging. By ‘end-to-end’, we mean that the client has exclusive access
to any keys required to authenticate or decrypt the application data.

Consider a SaaS-orientated solution comprising two components - a user-
facing client and a remote server. For several web applications such as Google
Docs [4], there is a tight-coupling between both. Indeed, the client is not guaran-
teed to be static, and there may or may not be a published API between client
and server. In the absence of a published API, the interface i.e. protocol must
be reverse engineered.

There are several web-based real-time collaborative-editing systems based on
the technique of Operational Transformation (OT). In essence, OT manages
consistency of shared resources that are acted on concurrently by multiple col-
laborators. As collaborators relay their edit operations to each other (usually
via a coordinator), these edits must be correctly transformed relative to other
concurrent edits to preserve the consistency of the shared resource. Web-based
OT applications include Google Docs [4], Etherpad [5] and Apache Wave [6].

We focus on Google Docs in this work for a multitude of reasons. Firstly,
it is popular and free, allowing us to readily obtain empirical data from co-
operative users. Secondly, alternative approaches for achieving encryption have
been explored in the literature, (most notably [7,8]), thus allowing a comparative
analysis to be conducted.

Achieving security for services that are operated by untrusted parties, and do-
ing so without control over the server is a difficult challenge. Availing of security
functions such as encryption in this scenario often disrupts core functionality
of the service. For example in the case of collaborative editing, features such as
spell checking and searching that are performed on the server-side are spoiled.
Nevertheless, it may be satisfactory for users that the predominant functionality
of such applications, namely easy sharing of documents, real-time collaborative
editing and granular version control, remain unimpaired by added security func-
tions. In addition, many users may only require encryption for a small portion
of the document, for example, sensitive fields such as social security numbers.

The contributions of this paper are as follows:

1. A flexible approach is presented to achieve transparent application-layer
security (integrity and authentication) for untrusted OT systems such as
Google Docs. Unlike prior work, our solution does not use an out-of-band
resource to store auxiliary information nor does it suffer from synchronization
issues regarding its consistency. Instead, the presented approach inextrica-
bly couples the auxiliary information into the document representation in a
manner that allows both efficient incremental encryption and preservation
of collaborative functionality.

2. A model is formulated that expresses this approach generically for a certain
class of OT systems. As a result, the precise preconditions and expected
behavioral properties can be established.

206 M. Clear et al.

3. A proof-of-concept implementation for the Firefox web browser is discussed
and is shown to compare favorably against existing implementations. Note
that the complex issue of key sharing is not addressed in this particular
work.1

1.1 Related Work

The target problem exhibits overlap with several areas; in particular incremental
cryptography [9] and secure timestamp systems [10].

This work was carried out independent to the contributions of Feldman et al.
[11] and thus there are several similarities, although both works have a different
focus. The major difference is that we concentrate on providing security for
existing, live OT systems such as Google Docs whereas Feldman et al. devise a
new OT-based framework to be deployed on an untrusted server. Furthermore,
they consider protection against a variety of active attacks, such as forking,
which we don’t address in this paper.

Adkinson-Orellana et al. [8] present a security layer to provide encryption for
Google Docs by means of a Firefox extension that mediates traffic to/from the
Google Docs server in order to transparently encrypt/decrypt it. Since seman-
tically secure encryption depends on a random component, it is necessary to
include additional information with a ciphertext. The authors of [8] propose to
employ a hidden document serving as an index table where this information can
be stored. This approach introduces a host of synchronization issues - collab-
orating users must somehow synchronize updates to the shared index in order
to maintain consistency. Furthermore, the auxiliary information is externalized;
that is, stored out-of-band.

An improved solution appears in a more recent work by Huang and Evans [7].
The authors also develop a Firefox extension to transparently mediate Google
Docs traffic. Their solution is based on incremental encryption, introduced by
Bellare, Goldreich and Goldwasser [9]. In particular, they use a block cipher
mode of operation known as RPC [12] for incremental authenticated encryption.
A derivative of SkipList data structure is employed to accomodate efficient in-
cremental encryption, and it supports complete document integrity. Its main
drawback is synchronization limitations. Synchronization is difficult because it
relies on a block table (the chaining of all the blocks together), which may give
rise to conflicts if multiple users are editing simultaneously, although the authors
cite other technical reasons. In the version of Google Docs targeted in this work,
the size of a delta i.e. the number of characters modified in a single edit must be
preserved by the browser extension in order to maintain consistency, certainly in
the presence of active collaborators. As a result, the approach taken by Huang

1 Nevertheless, key sharing has been incorporated into our proof-of-concept imple-
mentation by intercepting the requests that specifically relate to document sharing,
and then enveloping the symmetric key using the target recipient’s public key and
depositing the envelope in a remote centralized data store. PKI is employed in the
present proof-of-concept implementation, and ECC is used for efficiency.

Collaboration-Preserving Authenticated Encryption for OT Systems 207

and Evans where a block table is stored in the document content is rendered
infeasible by our goal to support fuller collaboration. This reason along with our
aim to avoid storing auxiliary data “out-of-band” motivated the revision-based
approach adopted here.

1.2 Notation

In this paper, we index strings, sequences and vectors starting from 0. Given a
string w in Σ∗ for some alphabet Σ, the j-th character is denoted by w[j], and a
substring of w with starting index i and ending index (exclusive) j is denoted by
w[i, j]. The symbol ‖ denotes string concatenation. As a notational convenience,
the length of all strings and sequences is given by the | · | operator. We denote
the empty string by ε.

For a probability distribution DS defined on a set S, we denote by x
$←− DS

the fact that x is sampled from S according to DS . For any set T , the notation

t
$←− T indicates that t is uniformly sampled from T .
All vectors and sequences used throughout this paper are denoted in boldface.

The set N0 is considered to be the set of natural numbers with inclusion of 0.
A function is said to be negligible (in some parameter n) if for all polynomial

functions g(x): f(n) < 1/g(n) for sufficiently large n.

1.3 Paper Organization

This paper is organized as follows: firstly in Section 2, an abstraction of an Oper-
ational Transformation system is formulated which models a variety of real-world
collaborative editing systems. Our methodology for collaboration-preserving en-
cryption and authentication of document content is then expressed within this
model. A proof-of-concept implementation then follows for GoogleDocs in Section
3 where we instantiate our approach with cryptographic primitives. Performance
is evaluated in Section 4. Finally, security properties are analyzed in Section 5.

2 Abstract Collaborative Editing System

An abstraction of a simplified collaborative editing system is presented in this
section. The model described here will be referred to as the Simple Transac-
tional Collaborative Editing (STCE) model. We intentionally omit the opera-
tional transformation aspects relating to consistency and concurrency control,
which have been the subject of considerable research so far [13,14,15], and are
outside the scope of this work. Accordingly, these properties are taken as as-
sumptions.

The system is coordinated by a centralized server, denoted by C, referred to as
the coordinator. The abstraction is simplified to center around a fixed document
resource, which therefore obviates the need to reference a particular document.
For the document resource implicit in the description, we assume that there are
n connected collaborating sites labelled s1, . . . , sn. The interface exposed to each
site by C is outlined in Figure 1.

208 M. Clear et al.

Service 1 EstablishSession
1: siteId ← n

2: n ← n+ 1
3: Initialize position for site siteId to 0
4: Initialize revision number for site siteId to |H|
5: return siteId

Service 2 UpdateCursorPosition
Input: siteId : N0

Input: p : N0

Require: p ≤ |δH(ε)|
1: Update cursor position for site siteId to p

Service 3 Edit
Input: siteId : N0

Input: mutations : M+

Input: revisionNum : N0

Require: 0 ≤ siteId < n

Require: H[0, revisionNum] ‖ r ∈ H � where
r := (positionsiteId,mutations)

1: r′ ← result of OT processing on r with respect to
recent revisions (since last revision committed by the
site)

2: newRevisionNum ← |H|
3: H ← H ‖ r′

4: return newRevisionNum

Service 4 LoadRevisions
Input: startRevNum : N0

Input: endRevNum : N0

Require: 0 ≤ startRevNum ≤ endRevNum ≤ |H|
1: return H[startRevNum, endRevNum]

Service 5 GetHistorySize

1: return |H|

Fig. 1. Interface to the Coordinator C

Let Σ be an alphabet. A document’s content is typed as a string over this
alphabet - an element of Σ∗. Each site si maintains a local state qi, which is
a pair (c, d), where c ∈ N0 is the site’s cursor position within the document
content and d ∈ Σ∗ is its local copy of the document content. Thus we define
the state space Q � {(p, w) ∈ N0 × Σ∗ : 0 ≤ p ≤ |w|}. Upon establishing a
session with C, a site initializes its cursor position to 0, and any changes to it
must be synchronized with C. Therefore, C keeps track of the current cursor
positions of all active collaborators facilitating control over synchronization and
mutual exclusion.

2.1 Primitive Operations

There are a finite number of prescribed primitive operations that can be per-
formed on a state. Such a primitive operation is termed amutation. It is sufficient
to describe two such types in this simplified system, namely for insertion and
deletion. Define a set of symbolic tags T � {τins, τdel}. Now we define the set of
insertion mutations Mτins � {(τins, v) : v ∈ Σ∗} and the set of deletion mutations
Mτdel � {(τdel, k) : k ∈ Z}. Finally the total set of mutations M is the union
Mτins ∪Mτdel.

Some mutations may not be compatible with a particular state. An example is
deletionwhere the number of characters specified for deletionmay exceed the range
of the document string. Although removing as many characters as possible is satis-
factory, an alternative that is useful later for other purposes is to augmentQwith a
‘failure’ state. Thus, we define Q̂ � Q∪ {⊥}. A mutation description μ (i.e. a pair
inM) induces a state transformation function δμ : Q̂→ Q̂. We have that

δ(τins,v)(q) =

{
(p+ |v|, w[0, p] ‖ v ‖ w[p, |w|]) if q := (p, w) ∈ Q

⊥ if q = ⊥

Collaboration-Preserving Authenticated Encryption for OT Systems 209

and

δ(τdel,k)(q) =

⎧⎨⎩
(p+ k,w[0, p+ k] ‖ w[p, |w|]) if q := (p,w) ∈ Q, k < 0 ≤ p+ k < |w|
(p,w[0, p] ‖ w[p+ k, |w|]) if q := (p,w) ∈ Q, 0 ≤ k ≤ p+ k ≤ |w|
⊥ otherwise

Informally, the former splices a new string into an existing string while the
latter has the effect of removing a portion of the string before or after a specified
position (it removes as many characters as possible of the specified number
of characters). These transformation functions transform states, updating both
cursor position and document content.

2.2 Composite Operations

A mutation is an atomic primitive operation. In order to specify an ordered
sequence of mutations to be treated as an atomic unit, the system supports
composite operations which behave as transactions. Any valid edit request pro-
duced by a site entails a non-empty ordered sequence of mutations termed a
revision that is to be applied atomically. A revision also specifies the cursor po-
sition in the content string at which the mutations are to be applied. Define the
set of revisions as R � N0×M+, We distinguish a revision r ∈ R by boldface. If
r is valid, the coordinator C stores r in its chronology, which is discussed further
later. It also relays r to the n− 1 other sites and takes care of the appropriate
operational transformations.

Let r := (p, μ0, . . . , μ�−1) be a revision. The transformation function δr :
Σ∗ ∪ {⊥} → Σ∗ ∪ {⊥} induced by r is given by:

δr:=(p,μ0,...,μ�−1)(s) =

{
proj1((δμ�−1

◦ · · · ◦ δμ0)(p, w)) if s := (p, w) ∈ Q

⊥ otherwise
(1)

where proj1 is the projection map that returns the second (index 1) component
of its vector argument.

We say two revisions r1 and r2 are equivalent, written r1 ∼ r2, iff δr1 = δr2 . It
is easy to show that for every equivalence class in R/ ∼, there is a representative
r ∈ R of the form (τdel, k), (τins, v)) where k ∈ Z and v ∈ Σ∗. Such an r
is said to be in normal form, and we make use of this in the security game
in Section 2.3. This prompts the question: should a site normalize a revision
prior to sending it to C? Alternatively, should C normalize the revision before
recording it in its chronology? Clearly this depends on the requirements and
feature set of the system. Each mutation corresponds to an editing event and
these events may be bundled together periodically to form atomic revisions.
Thus in order to facilitate an undo feature with arbitrary granularity, preserving
the original sequence of events is necessary. Another motivation to preserve the
original sequence of events in a persistent chronology is to allow for fine-grained
logging. Normalization would lose any such information. Thus, in the system
described here, we assume that a revision submitted by a site remains structurally
invariant in persistent storage provided by C.

210 M. Clear et al.

For each document, the coordinator C maintains a history H ⊂ R∗ of all
revisions ordered by the time of commitment. It exposes a facility to make range
queries on H. We define δH = δrm−1

◦ · · · ◦ δr0 where H = r0, . . . , rm−1.
A history is a sequence of valid revisions i.e. reconstitution of the document
string does not yield the ‘failure’ state. Therefore, we define the history space as
H � {H ∈ R∗ : δH(ε) �= ⊥} where ε is the empty string.

2.3 Transformations

Consider useful types of pre-processing and post-processing that may be per-
formed on revisions stored in a history. To capture the restricted transformations
that can be applied to revisions in the system, we define a stateful (dependent on
the history preceding a given revision) and reversible transformation as follows:

Definition 1. Define HR � {(H, r) ∈ H × R : H ‖ r ∈ H}. Define R̂ �
R∪{⊥}. A revision transformation is a pair (Map, Invert), where Map ⊆ HR×R̂
is a relation and Invert : HR→ R̂ is a function, satisfying
∀(H , r, r′) ∈ Map : r′ ∈ R, ∀(I , s, s′) ∈ (H×R× R̂) \Map:

1. H ‖ r′ ∈ H.
2. proj0(r) = proj0(r

′)
3. proj0 ◦ δr = proj0 ◦ δr′

4. r ∼ Invert(H, r′)
5. Invert(I , s′) = ⊥

Intuitively, properties 1-3 capture the requirement that Map preserve both the
validity of a revision, the cursor position it acts at and the change in cursor
position it effects, whereas the final two properties constrain the transformation
to be reversible. We will respectively view Map and Invert as a randomized algo-
rithm and a deterministic algorithm. To apply such algorithms to a history H ,
we define

InvertH(Invert,H) =

⎧⎪⎨
⎪⎩

ε if H = ε

r′ ‖ InvertH(Invert,H′) if H = H′ ‖ r : r ∈ R and r′ �= ⊥
⊥ otherwise

where r′ = Invert(H ′, r) and

MapH(Map,H) =

⎧⎪⎨⎪⎩
ε if H = ε

H ′′ ‖ r′ if H = H ′ ‖ r : r ∈ R and r′ �= ⊥ and r′ �= ⊥
⊥ otherwise

where H ′′ = MapH(Map,H ′) and r′ = Map(H ′′, r)
Definition 1 generalizes several transformation functionalities including string

isomorphisms. An important characteristic of a revision transformation is that
it may rely on the structure of a revision to accomplish invertibility i.e. it may
reorder mutations or add ‘dummy mutations’ to store auxiliary information. For

Collaboration-Preserving Authenticated Encryption for OT Systems 211

example: suppose the desired transformation is information lossy, which implies
that additional information must be stored to reverse it. Due to the property of
structural invariance of revisions that is provided by the system, it is possible to
map a revision to one with an appended insertion-deletion pair (an insertion of
a string immediately followed by its deletion). Such a null sequence has no effect
on the content but the information it encodes serves to inform the invertibility
of the transformation. Building on the notion established by Definition 1, we can
establish a family of transformations with common functionality parameterized
by some key or index. Thus given the spaces K1 and K2, and a subset of their
product K ⊆ K1 × K2, a family of transformations TK is defined as the set
{(Mapk1

, Invertk2) : (k1, k2) ∈ K}.

Encryption. A useful family of transformations is one whose function is to
encrypt the content of a document. This is, for example, readily instantiated by
a symmetric cipher. In this case, we have K1 = K2. For confidentiality only (or
in addition to revision integrity as described in Section 5), the Map algorithm
may be ‘stateless’ and act independently of a history argument. A generalized
IND-CPA game for the confidentiality-only setting is sketched as follows:

Fix a security parameter λ. The challenger C generates some (k1, k2) ∈ K
from λ. The attacker A is granted oracle access to Mapk1

(·) to make queries. A
produces two distinct revisions r0 and r1 with the property that proj0 ◦ δr0

=
proj0 ◦ δr1

, and sends them to C. Accordingly, C samples a bit b uniformly at
random, and returns rb

′ = Mapk1
(Normalize(rb)) to A. The selected revision

is normalized prior to application of Mapk1
to prevent trivial distinguishability.

Finally, A outputs a bit b′, and as usual, it is said to win the game if b = b′.
As is standard, if the advantage of any polynomially-bounded A is negligible
in λ, the system is IND-CPA-secure. Of course it is easy to extend this game
to capture the IND-CCA1 and IND-CCA2 security properties by exposing an
oracle to Invertk2(·) with appropriate restrictions on queries.

For the remainder of this paper, we omit the first argument (history) from
Map and Invert since we only consider per-revision integrity in this paper due to
space constraints. However, complete integrity is not difficult to achieve and is
discussed in Section 5.

2.4 Replay and Reconstitution Algorithms

Suppose we have a family of transformations TK for some key spaceK ⊆ K1×K2.
Let (k1, k2) ∈ K. Suppose that all sites apply Mapk1 to each revision before send-
ing it to C. A key goal is to minimize the number of applications of Invertk2 that
must be applied to ‘undo’ the transformation for each revision. An important
observation is that the number of such applications need only depend on the
length of the reconstituted document string δH(ε) where H is a history that has
not been transformed. Thus, the time complexity is linear in |δH(ε)| as opposed
to linear in |H|. Clearly, this is of considerable practical value since a document
may have a long revision history whose early revisions no longer contribute to
the present document content.

212 M. Clear et al.

Firstly, we need to build a list of operations that must be executed in sequence
to reconstitute the document string - see Algorithm 1. It is necessary to keep
a reference to the ‘parent’ revision of a particular operation since it is such
revisions that the Invertk2 algorithm is applied to in the end. Now any string
that is inserted into the document as a result of a single revision may be broken
up into many contiguous portions due to subsequent deletions. We will refer to
these contiguous portions as pieces and each one points to its parent revision. A
piece may be described by an offset and length with respect to the inserted string
- this also obviates the need to allocate memory to store multiple substrings.

A self-balancing search tree of pieces ordered by document position is con-
structed in the replay algorithm. Roughly speaking, an insertion is handled by
finding the piece that precedes it (if it exists) in the tree and splitting that piece
if its range overlaps with the position of the string to be inserted. We can avoid
shifting the positions of the pieces that follow it in the tree by instead translating
the positions of subsequent operations (subtracting the number of characters in-
serted in the case of insertion). This is achieved by maintaining a ‘delta’ integer
to be added to all operations. Deletion is handled by removing all pieces whose
range completely overlaps with the deleted range, and appropriately splitting
any pieces whose range partially overlaps; the delta is increased by the number
of characters removed.

The replay algorithm (Algorithm 2) builds up a search tree of pieces. Recall
that a piece specifies a portion of a string inserted in a revision in addition to ref-
erencing that revision. Subsequently, in the ‘reconstitute’ algorithm (Algorithm
4), the document’s content is assembled by performing an in-order traversal of
the tree, and for each piece: (1) applying Invertk2 to its associated revision; (2)
normalizing the result; and (3) projecting the string in its insertion mutation in
accordance with the offset and length attributes of the piece. An outline of the
these algorithms can be found in Figure 3.

The behavior of the replay algorithm for insertions is illustrated in Figure 2. In
the figure, two simple revisions are considered that insert text into the document.
In particular, this signifies how a piece is fragmented through successive replays
while retaining a pointer to the original revision structure that generated it.
In this example, no transformation has been applied to the text. Therefore the
correct document content after revisions r1 and r2 have been applied may be
reconstituted by performing an in-order traversal of the tree.

3 Concrete Collaborative Editing System

The STCE model presented in the previous section is compatible with the sup-
ported features of Google Docs. Some of these features are directly exposed via
standard APIs published by Google, whereas the availability of others may not
be guaranteed at present - the latter were discovered by reverse engineering and
experimentation. In brief, in order for our approach to work, it is necessary that
such systems support both structural invariance for revisions and arbitrary range
queries on the history. It will be shown later however that the latter requirement

Collaboration-Preserving Authenticated Encryption for OT Systems 213

r1:= (position: 0, mutations: [(type: insert, "some text")])

"more"

revision -> r2
offset = 0
length = 4

"some "

revision -> r1
offset = 0
length = 5

"text"

offset = 5
length = 4

revision -> r1

revision -> r1

"some text"

offset = 0
length = 9

r2:= (position: 5, mutations: [(type: insert, "more")])

Tree (after r1):

Revisions:

Tree (after r1 + r2):

Fig. 2. Formation of the tree as revisions are replayed

Algorithm 1 MakeOpList
Input: H : H
1: m ← |H|
2: L ← new list
3: i ← 0
4: for 0 ≤ i < m do
5: Parse r := (p,mutations) ← H[i]
6: r′ ← Normalize(r)
7: Parse (τdel, k), (τins, v) ← r′

8: Append (p, r, (τdel, k)) to L

9: Append (min(p, p+ k), r, (τins, v)) to L

10: end for
11: return L

Algorithm 2 Replay
Input: L � List of operations outputted by MakeOpList.
1: T ← new search tree
2: Δp ← 0
3: for all (p, r, μ) ∈ L do
4: p ← p+Δp

5: τ ← proj0(μ)
6: if τ = τins then
7: Δp ← Δp − ReplayInsertion(T, p, r, μ)
8: else if τ = τdel then
9: Δp ← Δp + ReplayDeletion(T, p, r, μ)

� ReplayDeletion entails more cases than
ReplayInsertions but in many ways is similar. It
is omitted in this version of the paper due to space
constraints.

10: end if
11: end for
12: return T

Algorithm 3 ReplayInsertion
Input: T

Input: p

Input: r
Input: μ := (τins, v)
1: Pre ← {x ∈ T | x.position < p}
2: if Pre �= ∅ then
3: prev ← max(Pre) (piece with max position)
4: if prev.position+ prev.length > p then
5: φ1, φ2 ← Split(prev, p, |v|) �

Split divides a piece about a position into two sub-
pieces. The position of the second piece is shifted by
the third argument.

6: Remove prev from T

7: Add φ1 to T

8: Add φ2 to T

9: end if
10: end if
11: Add new piece to T with position:=p, length:=|v|,

offset := 0, revision:=r
12: return |v|

Algorithm 4 Reconstitute
Input: T � Tree of pieces outputted by Replay
Input: f : R → R∪ {⊥}
1: w ← ε

2: U ← list of pieces from in-order traversal of T
3: for all u ∈ U do
4: r′ ← f(u.revision)
5: if r′ = ⊥ then
6: return ⊥
7: end if
8: v ← δr′(ε)
9: if v = ⊥ then
10: return ⊥
11: end if
12: w ← w ‖ v[u.offset, u.offset+ u.length]
13: end for
14: return w

Fig. 3. Replay Algorithms, abstractly, as introduced in Section 2.4

214 M. Clear et al.

can be somewhat relaxed. The former is attractive because it facilitates un-
restricted ‘undo’ (a feature supported for example by the open source editor
Etherpad [5]) along with granular logging.

3.1 Correspondence between the STCE Model and Google Docs

Google Docs fits directly into our STCE model. Its server acts as the coordina-
tor C and each collaborator session can be viewed as a site. Google Docs is a
web application with a Javascript-based client-side front-end, referred to in this
paper as the client. Edits to the document or movements of the cursor generate
events that result in mutate requests being periodically sent to the server in
an asynchronous manner; no such requests are sent during spans of inactivity.
However, when events are being generated, the period between network requests
is low enough to give rise to small revisions on average. An empirical analy-
sis, examined later, reveals that on the order of 1 or 2 inserted characters are
embedded in a typical update. This alone has security implications.

The client also receives periodic updates on the edits applied to the document
in concurrent sessions, which is captured (only synchronously) in STCE by pe-
riodic invocation of C.GetHistorySize followed by invocation of C.LoadRevisions.
An outline of the correspondence between STCE and Google Docs2. is given in
Table 1.

Table 1. Correspondence between the interface to the coordinator C in our STCE
Model and Google Docs

STCE Analog in Google Docs

C.EstablishSession HTTPS GET edit request: Returns document content string, site/session id and most recent revision
number.

C.Edit HTTPS POST mutate request: Contains a sequence of JSON encoded mutations.

C.UpdateCursorPosition HTTPS POST mutate request: Contains a JSON encoded structure containing the new starting
and ending positions of the cursor (for selection).

C.LoadRevisions HTTPS GET load request: Specifies starting revision and ending revision (inclusive) of the desired
range. Returns a sequence of JSON encoded revisions.

C.GetHistorySize HTTPS GET bind request: Returns updates made by other collaborators; includes most recent
revision number at the time of request, which corresponds to |H|.

In particular, if formatting information is ignored, the document content is
represented in Google Docs by a string of UTF-8 characters. Edits submitted
by collaborators comprise an array of mutations (insertions or deletions) bun-
dled into an atomic unit called a revision. Each revision is assigned a unique
positive integer. The property of structural invariance of revisions, discussed
in Section 2, is adhered to - potentially for the reasons mentioned earlier. Re-
call that structural invariance requires that the server persist the exact revision
representation it receives from the collaborator without any manipulation. Ar-
bitrary range queries are also supported; this functionality is provided by the
official API [16]. It is important to note that the Google Docs interface briefly

2 This work targets the version of Google Docs available at the time of writing - April
2012.

Collaboration-Preserving Authenticated Encryption for OT Systems 215

described in Table 1 pertains to the interface employed by the Google Docs client
and not that specified in the API.

3.2 Implementation

A proof-of-concept browser extension was developed for the Firefox web browser
[17] (tested with Firefox version 11).

The extension consists of two fundamental components - a lightweight mod-
ule written in Javascript, which is loaded by the browser, and a more complex
core written in Java that performs almost all of the processing. Intercommu-
nication between Javascript and Java is facilitated by LiveConnect [18]. This
solution offers far better performance for cryptographic computations than sim-
ilar implementations developed entirely in Javascript [7,8], albeit at the expense
of portability among browsers. Like the other implementations, the extension
intercepts and modifies requests and responses depending on whether the URI
is determined to match for Google Docs. Such protocol messages are then pro-
cessed by the Java component. In addition, our extension establishes a ‘back-
ground’ HTTPS connection with the Google Docs server. This is made possible
because the cookie used for session authentication can be readily captured since
we are listening to HTTP messages to/from Google Docs.

Recall the abstraction of a revision transformation defined in Section 2.3. In
the prototype extension, the concrete transformation that is adopted performs
authenticated encryption of revisions. Therefore, both confidentiality and in-
tegrity of the document content are protected. More precisely, assume a set of
collaborators share a symmetric key for a document. Now let the key space K
be {0, 1}λ.

Our overall approach is independent of the choice of cipher or MAC. For the
prototype, AES in GCM mode was chosen, largely due to performance. In com-
parison to the mode (RPC) employed in [7], the throughput of CTR mode is
higher due to the encryption of ‘chaining’ nonces in RPC. This becomes more
important for revisions that insert sizable content strings. Furthermore, aside
from content, revision metadata can be authenticated using the same GHASH
operation (this also readily facilitates linear integrity of revisions), which re-
quires only a single multiplication in GF (2128) for each block of encrypted and
authenticated-only data. Another motivation is the parallelizable nature of both
GHASH and CTR mode. Although sufficient for our proof-of-concept implemen-
tation, replacing GHASH with a more secure MAC should probably be consid-
ered for a deployed implementation due to several vulnerabilities of polynomial
MACs, especially those based on GF (2128) [19].

The transformation is thus described by the pair of algorithms (Mapk :=
EncRk, Invertk := DecRk). Informally, EncRk is a randomized algorithm that is
roughly described as follows3

3 Support for complete integrity defined in Section 5 is omitted from this description.
One way to achieve this is to let EncRk take a history argument and include the tag
from the last revision in the authenticated-only data in the MAC (GHASH in this
case).

216 M. Clear et al.

Algorithm 5. EncRk

Input: r ∈ R
1: Uniformly sample IV

$←− {0, 1}λ
2: s ← ε

3: for all insertion mutations μi in r do
4: Parse μi as (τins, vi)
5: s ← s ‖ vi
6: end for
7: c ← Base64Encode(EncryptAES−GCMk(s, IV))
8: Replace each vi with characters from c equal in length to the original vi. Denote

the updated r as r′. Denote the remainder of c as c′.
9: Append the mutation sequence ((τins, c

′), (τdel,−|c′|)) to r′.
10: return r′.

In brief, Algorithm 5 encrypts and MACs, using AES in GCM mode, the con-
catenation of every content string that is featured in a revision. In Google Docs, a
revision is a JSON object encoded in UTF-8. As such, the raw bytes constituting
the ciphertext and tag (produced by the MAC) must be appropriately encoded
- we use Base64. The resultant encoded string can be partially distributed over
the original mutations, but the remainder must be stored somewhere within the
revision to enable future MAC validation and decryption.

We omit a description of the deterministic algorithm DecRk but as expected,
it merely removes the auxiliary mutations and decrypts the content (after vali-
dating the MAC).

3.3 Replaying Revisions

When a document is initially opened, the browser extension uses the background
HTTPS connection it has established in a new thread to asynchronously fetch the
complete revision history for the document (C.LoadRevisions). As revisions are
received, the replay algorithm (Algorithm 2) described in Section 2.4 is executed.
The following steps are executed:

1. Run Algorithm 1 followed by Algorithm 2 to build a tree of pieces (sub-
strings of the content inserted in a revision) that contribute ‘content’ to the
present document string. Each piece in the tree is linked to the revision that
contains it.

2. Transform the ‘content’ of each piece in the tree back into plaintext by run-
ning the reconstitution algorithm (Algorithm 4) to assemble the decrypted
content string. The reconstitution algorithm applies DecRk to the revision
linked to each piece. In summary, the following steps are executed for every
piece in the tree.

Collaboration-Preserving Authenticated Encryption for OT Systems 217

(a) Verify the authentication tag of the revision. Exit if verification fails.
(b) Decrypt the ‘content’ of the piece. In practice, only the ciphertext blocks

in the revision that correspond to the piece are decrypted. Thus, a stream
encipherment mode such as CTR is advantageous.

(c) Append the decrypted string to the document string

Concurrently, the extension intercepts the HTTPS response containing the com-
plete document content that is used to render the document in the Google Docs
editor. It then substitutes the reconstituted (decrypted) string for the original
string in the response (which is merely ciphertext), and the Google Docs client
renders the decrypted document.

3.4 Snapshot Optimization

A snapshot is a recording of the complete textual state of the document at a po-
sition in the discrete timeline of revisions. Snapshots have the same purpose here
as ‘checkpoints’ in [11]. A snapshot consists of a string of text constituting the
document’s global content at the given time. Such a feature would be employed
to optimize processing of a timeline, as a single revision subsumes the cumulative
effect of a sequence of revisions. Accordingly, this would reduce the bandwidth
consumption incurred by loading the revision history while also curtailing the
number of replay steps necessary. This mechanism also helps to minimize the
expansion overhead of encryption in addition to minimizing cost of decryption
/ MAC validation.

Concretely, a snapshot is a revision consisting of a deletion mutation that
deletes the entire document content followed by an insertion mutation that re-
stores it. Naturally, the snapshot’s insertion mutation would be encrypted. We
leave to future work the problem of systematically creating and locating snap-
shots. It seems that synchronization may be the most significant obstacle, but
this can be mitigated by waiting for periods of inactivity.

Remark 1. The inclusion of a snapshot mechanism allows us to relax some of
the assumptions made of the cloud provider. In particular, we only require that
a constant number of most recent revisions in the timeline are subject to range
queries and/or persisted.

4 Evaluation

4.1 Statistical Analysis of Revisions

A small collection of 20 documents authored in Google Docs were submitted by
distinct users for analysis. These documents, evolved organically, were shared
among an average of 3 users. Analysis of these documents reveals some interest-
ing findings, although a much larger and diverse sample size is needed to draw
clear conclusions.

In Table 2, ‘filtered’ means that only insertion revisions with a total num-
ber of characters ≤ 10 were considered. This amounts to 99.3% of all revisions

218 M. Clear et al.

Table 2. Statistics of Revision Histories for Sample Documents

Mean

Bytes Transferred Per Revision 701.2

Number of Inserted Characters Per Insertion Revision (filtered) 1.96

Number of Inserted Characters Per Insertion Revision (Unfiltered) 3.55

processed, which eliminates a significant number of revisions, though not all, gen-
erated by pasting or other means. The standard deviation in this particular case
was 0.93. The high mean for the unfiltered case is explained by the occurrence
of considerably large revisions in the data set arising from pasting or other non-
typing events. Of particular interest are those revisions arising from ‘naturally’
typed edits. Another interesting question was the observed distribution of the
number of inserted characters in revisions incorporating insertions. A histogram
based on all revisions across all sample documents is shown in Figure 4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Number of inserted characters

Frequency Distribution of Inserted Character Counts

Frequency

Fig. 4. Relative Frequency Distribution of the Number of Inserted Characters Per
Insertion Revision

If the histogram is shifted to the left by 1, it bears some resemblance to the
Poisson distribution with λ ≈ 1. Although much work has shown a connection
between the Pareto distribution and keystrokes sent on a network connection
[20,21], this distribution does not appear to fit our empirical data. Clearly, more
data is needed to find an appropriate model.

Remark 2. Considerable variability has been observed with autosaving in Google
Docs and thus there can be fluctuating burst lengths for a variety of reasons
ranging from network conditions to local workloads. Hence, these results were
obtained to help extract some macro-scale behavioral patterns.

Collaboration-Preserving Authenticated Encryption for OT Systems 219

The histogram demonstrates that there will naturally be suboptimal cipher-
text expansion in the proposed system. Furthermore, the figure reveals signif-
icant information leakage that can be exploited by an attacker. Together with
timing information, there is scope to learn information about the plaintexts.
Such attacks are discussed in Section 5.

4.2 Performance

Overhead Size. AES-GCM (128-bit block size) encryption is employed by the
browser extension, and is configured to use a 16-byte MAC. Every revision is
associated with a unique IV. Since a revision is an encoded JSON object, it is
necessary to base64-encode the ciphertext + IV. Finally, two ‘dummy’ muta-
tions are added - an insertion followed by a deletion. Consequently, the ratio
of size of the processed mutations over the size of the single insertion mutation
is approximately 4.82. To give concrete sizes, a mutation of 28 bytes grows to
three mutations requiring an aggregate 135 bytes. Since revisions sent to the
server typically contain additional metadata and formatting information, the
percentage of bandwidth consumed by such overhead is less pronounced. This is
highlighted in the results that were collected from analysis of sample documents,
as shown in Table 3. It seems that on average approximately 4% of the bandwidth
for insertion edits is consumed by the overhead incurred by authenticated en-
cryption, although the overhead percentage is significant for the actual mutation
sequence in a revision. Therefore, there is an appreciable impact on storage and
bandwidth for initial loads, which further supports the future implementation
of snapshots.

It must be emphasized that the bandwidth and storage overheads are markedly
larger than the solution presented in [7], mainly due to constant-sized JSON for-
matting in the ‘dummy’ mutations. However, this is compensated by our preser-
vation of full collaboration.

Table 3. Overhead Incurred by Authenticated Encryption (Unoptimized) For Insertion
Edits

Mean Standard Deviation

Percentage Overhead Per Mutation Sequence 66.52% 13.18%

Percentage Overhead Per Revision 40.46% 5.8%

Percentage Overhead Per Total (headers + body) Mutate HTTP Message 4.37% 0.37%

Running Time. A microbenchmark was conducted on a machine with an Intel
Core i3 processor running at 3.2 GHz and 4 GB of RAM. The mean was taken
of 1,000 executions for each case. Each test run involved generating a 16-byte
IV and performing an AES encryption in the selected mode of operation. Our
implementation used the Bouncy Castle cryptography library [22].

Using the benchmark environment, the running times of the replay and re-
constitution algorithms were evaluated. A small set of documents was employed,
each containing approximately 10,000 revisions, half of which were encrypted

220 M. Clear et al.

Table 4. Run-time performance of algorithms executed during a document’s initial
loading stage

Mean Standard Deviation

Running time of replay algorithm (documents without encryption) < 1μs < 1μs

Running time of replay algorithm (documents with encryption) 107 ms 11 ms

Running time of reconstitution algorithm (documents with encryption) 160 μs 54 μs

using our browser extension. Table 4 gives a rough guideline of the real-time
performance of the initial load process where the fetched revisions are used to
build a tree. Unsurprisingly, an appreciable cost is incurred for the encrypted
documents, although it is small enough to remain hidden from users. Neverthe-
less, this is clearly not scalable. As the revision history increases, the bandwidth
costs to transfer the history in addition to the processing thereof become im-
practical. Therefore, the snapshot algorithm described in Section 3.4 must be
employed as an optimization. In practice, the point at which the history size be-
comes infeasible is determined by the timeouts dictated by browsers. Hence, it is
necessary that the latency of the load revisions requests along with tree process-
ing and reconstitution are less than this limit. Empirical results would suggest
that this limit is well beyond 20,000 revisions for common usage patterns, and
thus snapshots would not have to be taken frequently.

5 Security Analysis

5.1 Threat Model

A threat model that only focuses on passive attacks is considered. A malicious
cloud provider could alter the client-side part of the web application to inject
Javascript that surreptitiously relays to the server the unencrypted content ren-
dered in the browser. Therefore, we assume the client-side code executing in the
browser is trusted. This is the position assumed in other works, most notably
[7]. Additionally, a host of other active threats such as mounting a man-in-the-
browser attack are also not covered in this threat model.

We return briefly to the STCE model wherein we can express the desired
security properties. Disregarding the client-side code, the interface to the coor-
dinator C is a good reflection of the view of the real system. Let P be a set of
parties with access to the document. Naturally, we have that C ∈ P . Let S ⊂ C
be a set of sites who possess a pre-shared key k for the document in question.
Let A be an adversary in P\S. We define some desirable security properties:

1. Confidentiality: A has a negligible advantage in learning any information
about a ciphertext under an adaptive Chosen Ciphertext Attack (negligible
advantage in the IND-CCA2 game discussed in Section 2.3).

2. Revision Integrity: A has a negligible advantage in forging a revision in
H that passes the integrity check performed by parties in S.

3. Complete Integrity: A stronger property than (2) requires that an at-
tacker is unable to efficiently forge an alternate history whose revisions all

Collaboration-Preserving Authenticated Encryption for OT Systems 221

satisfy (2) i.e. it has negligible advantage in the following game. The at-
tacker is permitted to make adaptive queries to the oracles MapH(Mapk1

, ·)
and InvertH(Invertk2 , ·). Suppose it makes q = poly(λ) queries to the former.
It records H ′

i ← MapH(Mapk1
, ·) where Hi ∈ H for 0 ≤ i < q. It wins the

game if it outputs a non-empty history H ′ such that H ′ is not a substring
of any H ′

i for 0 ≤ i < q and InvertH(Invertk2 ,H
′) �= ⊥.

Properties (1) and (2) follow from our adoption of AES-GCM. A more thorough
analysis of these properties is provided in the full version 4 of this paper. As
stated earlier, a more secure alternative is to replace GHASH with a more secure
MAC. Certain countermeasures are needed to limit the power of an adversary
to choose arbitrary long messages; for example a revision may be broken up into
independently encrypted/authenticated units whose size is limited.

Property (3) ensures that there exists some means to prevent C rearranging
the revisions in a history to yield an alternative document content string. Thus,
there needs to be a chain of dependence between successive revisions, for example
by means of a linked authenticated structure. Consider a site with knowledge of
a current history H (its local copy). Suppose it has to commit a new revision r.
A means to fulfill property (3) is to compute a linear hash chain of all revisions
in H. This is similar to the approach adopted in [11]. Naturally, only a single
hash needs to be stored by a site, thus incrementality is not sacrificed. This
hash along with a precise description of a revision is incorporated into the MAC
that is included as part of the revision. Now it may be the case that other sites,
who are synchronized with knowledge of H , concurrently send revisions to C.
These revisions can be arranged in an arbitrary order by C. However, the correct
operational transformations must be performed on this ordering. Otherwise this
can be detected (by virtue of including a site’s position in the MAC). Hence, the
only scope for re-ordering afforded to C is at such points of concurrency, which is
inherent in the consistency notions of OT systems. As such, the game definition
of property (3) deprives the adversary of this particular case. We defer to the
full paper a more formal security assessment of this property together with other
active attacks mountable by C such as dropping edits and forking documents as
explored in [11]. Furthermore, this paper omits a detailed treatment of Property
(3) from both the algorithm descriptions and the implementation, in particular
verification of an entire history.

The issue of information leakage arising from timing patterns (including
those due to typing patterns) is a fundamental concern. Timestamp informa-
tion recorded in each revision facilitates the formation of a detailed profile of a
user’s editing characteristics. This prompts the questions: is it feasible for the
browser extension to smoothen the distribution by inserting artificial delays?
Perhaps a dedicated out-of-browser proxy would afford more control over this.
Alternatively, perhaps another option is to implement a custom feature that al-
lows a user to enter a particularly sensitive string of text (social security numbers
etc...) that is then collectively sent as a single revision using the ‘background’
connection. This would serve to prevent information leakage sourcing from

4 Full version available on the authors’ webpage

222 M. Clear et al.

typing traits. In fact, given the scope for information leakage, users may only
desire privacy for certain sensitive fields in their documents, and thus disable
encryption for the remaining content.

5.2 Conclusions and Future Work

We have presented a new approach for protecting confidentiality and integrity of
documents in collaborative editing systems. A proof-of-concept implementation
developed for the Firefox web browser demonstrates the practicality of this so-
lution over alternative work in the literature. In particular, this approach is the
first, to the best of our knowledge, to preserve full collaboration and not to rely
on externalized, out-of-band resources to store metadata for deployed untrusted
OT systems.

Many questions have been raised by this research, which will be followed up as
part of future work. Some of these question relate to ensuring protection against
malicious active attacks such as forking documents, lessening information leakage
from timing information, and investigating and implementing optimizations such
as snapshots.

Acknowledgments. The authors would like to thank the anonymous reviewers
for many helpful comments and suggestions.

References

1. Mitzenmacher, M. (ed.): Fully homomorphic encryption using ideal lattices. ACM
Press (September 2009)

2. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

3. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

4. Google docs (2012), https://docs.google.com/
5. Etherpad collaborative real-time editor (2012), http://www.etherpad.com
6. Apache wave (2012), http://incubator.apache.org/wave
7. Huang, Y., Evans, D.: Private editing using untrusted cloud services. In: 2011

31st International Conference on Distributed Computing Systems Workshops
(ICDCSW), pp. 263–272 (2011)

8. Adkinson-Orellana, L., Rodŕıguez-Silva, D.A., Gil-Castiñeira, F., Burguillo-Rial,
J.C.: Privacy for google docs: Implementing a transparent encryption layer. In:
2nd Cloud Computing International Conference - CloudViews (2010)

9. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing, pp. 216–233 (1994)

10. Lipmaa, H.: Secure and Efficient Time-stamping Systems. Dissertationes mathe-
maticae Universitatis Tartuensis. Tartu University Press (1999)

11. Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: Sporc: group collabo-
ration using untrusted cloud resources. In: Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI 2010, p. 1. USENIX
Association, Berkeley (2010)

https://docs.google.com/
http://www.etherpad.com
http://incubator.apache.org/wave

Collaboration-Preserving Authenticated Encryption for OT Systems 223

12. Buonanno, E., Katz, J., Yung, M.: Incremental Unforgeable Encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002)

13. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, CSCW 1998, pp. 59–68. ACM, New York
(1998)

14. Li, D., Li, R.: Preserving operation effects relation in group editors. In: Proceedings
of the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW
2004, pp. 457–466. ACM, New York (2004)

15. Li, R., Li, D.: Commutativity-based concurrency control in groupware. In: 2005
International Conference on Collaborative Computing: Networking, Applications
and Worksharing, p. 10 (2005)

16. Google documents list api version 3.0 (2012),
https://developers.google.com/google-apps/documents-list/

17. Mozilla firefox (2012), http://www.mozilla.org/firefox
18. Liveconnect technical documentation (2012),

https://developer.mozilla.org/en/LiveConnect

19. Saarinen, M.J.O.: Cycling attacks on gcm, ghash and other polynomial macs and
hashes. Cryptology ePrint Archive, Report 2011/202 (2011),
http://eprint.iacr.org/

20. Donoho, D.L., Flesia, A.G., Shankar, U., Paxson, V., Coit, J., Staniford, S.: Mul-
tiscale Stepping-Stone Detection: Detecting Pairs of Jittered Interactive Streams
by Exploiting Maximum Tolerable Delay. In: Wespi, A., Vigna, G., Deri, L. (eds.)
RAID 2002. LNCS, vol. 2516, pp. 17–35. Springer, Heidelberg (2002)

21. Paxson, V., Floyd, S.: Wide area traffic: the failure of poisson modeling.
IEEE/ACM Trans. Netw. 3, 226–244 (1995)

22. Bouncy castle crypto api (2012), http://www.bouncycastle.org

https://developers.google.com/google-apps/documents-list/
http://www.mozilla.org/firefox
https://developer.mozilla.org/en/LiveConnect
http://eprint.iacr.org/
http://www.bouncycastle.org

Selective Document Retrieval

from Encrypted Database

Christoph Bösch1, Qiang Tang2, Pieter Hartel1, and Willem Jonker1

1 University of Twente, The Netherlands
{c.boesch,pieter.hartel,willem.jonker}@utwente.nl

2 APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

qiang.tang@uni.lu

Abstract. We propose the concept of selective document retrieval (SDR)
from an encrypted database which allows a client to store encrypted data
on a third-party server and perform efficient search remotely. We propose
a new SDR scheme based on the recent advances in fully homomorphic
encryption schemes. The proposed scheme is secure in our security model
and can be adapted to support many useful search features, including ag-
gregating search results, supporting conjunctive keyword search queries,
advanced keyword search, search with keyword occurrence frequency, and
search based on inner product. To evaluate the performance, we imple-
ment the search algorithm of our scheme in C. The experiment results
show that a search query takes only 47 seconds in an encrypted database
with 1000 documents on a Linux server, and it demonstrates that our
scheme is much more efficient, i.e., around 1250 times faster, than a
solution based on the SSW scheme with similar security guarantees.

Keywords: Searchable Encryption, Homomorphic Encryption, Privacy.

1 Introduction

Outsourcing data to a third-party server is continuously gaining popularity be-
cause it can significantly reduce operational costs for a client. However, to store
outsourced data securely on an untrusted server, the data should be encrypted
to make it inaccessible to the server and other attackers. The issue is that, if
the encryption is done with standard encryption schemes, the client will not be
able to search anymore unless it retrieves the whole outsourced database from
the server. To solve the problem, we need a special type of encryption primitive
which allows the following things.

1. The client can encrypt his data and store the ciphertext on the server. More
specifically, we assume the client stores a list of (document, index) pairs on
the server, where the index is an encrypted version of the keywords which
appear in the document. Note that the document should be encrypted inde-
pendently. We skip the details of document encryption in the paper because
it is not relevant for the search.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 224–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Selective Document Retrieval from Encrypted Database 225

2. The client can ask the server to search in the indexes on his behalf, without
leaking information about the keywords in the indexes and what has been
searched for. Moreover, the client may even want to hide from the server the
fact which documents have been matched by a search query.

3. The client can selectively retrieve the contents identified by a search, possibly
in a private manner. The option for the client to selectively retrieve matched
documents may be very useful in practice. For example, a search may indicate
that 900 out of 1000 documents are matched, but the client may just want to
retrieve 10 of them instead of all of them due to various reasons. The option
for the client to retrieve matched documents in a private manner may also
be useful in practice since which documents are retrieved can already leak
some information about the documents.

The first two requirements are straightforward and are coming from security
considerations, while the last one is coming from flexibility, efficiency, and secu-
rity considerations. Note that, an alternative solution is for the client to store a
plaintext copy of the indexes locally so that he can search by himself. Clearly,
this is not a good solution because the client needs to maintain the index storage.

1.1 Problem Statement

In the direction of solving the above problem, searchable encryption (SE) schemes
have been the most relevant cryptographic primitive. A SE scheme enables a
third-party server to search on his behalf directly on encrypted data without
knowing the plaintext data. In particular, SE in the symmetric setting (referred
to as SSE throughout the paper) can serve as a more suitable solution, where the
term symmetric means that only the client can generate searchable contents. It
is worth noting that there also exist SE schemes in the asymmetric setting, such
as PEKS [1], where the concept of a public key encryption scheme is employed
and every entity can generate searchable data. Clearly, asymmetric SE is of less
interest to our problem, compared to SSE.

The concept of SSE and its security model can be found in [5,27,28]. From the
definition, we can see that it is meant to achieve the functionalities in the first two
requirements mentioned before. By a straightforward extension as discussed in
Remark 1 in Section 2.1, it can achieve the functionality in the third requirement.
However, with respect to the desired security guarantees, an SSE scheme leaks
a lot of sensitive information to the server, and such information includes (at
least) which documents match the client’s search request and which documents
the client has retrieved.

The research problem we will address in this paper is to design a new cryp-
tographic primitive, which satisfies all three requirements from the perspectives
of both functionalities and security guarantees.

1.2 Our Contribution

Firstly, we propose a new cryptographic primitive, namely selective document
retrieval (SDR), and present a security model. Secondly, based on the recent

226 C. Bösch et al.

advances in fully homomorphic encryption schemes and the index construction
technique by Chang and Mitzenmacher [5], we propose a SDR scheme to support
equality test predicates and prove its security in the proposed security model.
The intuition behind the construction is rather straightforward, but interestingly
it can serve as a framework to support more flexible search features. We show
that the proposed SDR scheme can be easily adapted to support features, includ-
ing aggregating search results, supporting conjunctive keyword search queries,
advanced keyword search, search with keyword occurrence frequency, and search
based on inner product.

Thirdly, we set appropriate parameters for the symmetric BV encryption
scheme [3] and implement it in C. This is the first publicly-available imple-
mentation of the scheme in C with carefully chosen parameters, so that it may
be of independent interest for other works. We use the BV scheme to instantiate
the encryption component in the proposed SDR scheme, and evaluate the perfor-
mances. The experiment results show that a search query takes only 47 seconds
in an encrypted database with 1000 documents and 100 keywords, while a search
query takes around 10 minutes in an encrypted database with 5000 documents
and 250 keywords. In contrast, for the SSW scheme by Shen et al. [27], a search
query takes around 16 hours in an encrypted database with 1000 documents
and 100 keywords on the same server. We did not study the document retrieval
performance in the paper, because it will be similar for all schemes if they are
to achieve a similar level of security. We note that although the performance
of the proposed SDR scheme does not say that it is an efficient solution in all
application scenarios, it is the most efficient one we have now.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we describe SDR
and formalize its security property. In Section 3, we propose a SDR scheme
and prove its security. In Section 4, we describe various search features of the
proposed SDR scheme. In Section 5, we implement the search algorithm of the
proposed SDR scheme and analyse the experimental results. In Section 6 we
review related work. Section 7 concludes the paper.

2 Definitions of SDR

Throughout the paper, we use the following notation. Given a document d con-
sisting of keywords w, let u(d) denote the distinct keywords contained in d. Let D
be the possible document space and W = {s0, . . . , sb} be a pre-built dictionary
of keywords to search for, which satisfies that u(d) ⊆ W for any d ∈ D.

2.1 Algorithmic Definition of SDR

An SDR scheme comprises five algorithms (Keygen, BuildIndex, Trapdoor,
SearchIndex, Retrieve), defined as follows.

Selective Document Retrieval from Encrypted Database 227

– Keygen(s): Run by a client, this algorithm takes a security parameter s as
input, and outputs a secret key K. It may also generate some other public
parameters such as a predicate set F .

– BuildIndex(K, d): Run by the client, this algorithm takes the key K and a
document d ∈ D as input, and outputs an index Id which encodes u(d) (i.e.
all keywords w from the document d).

– Trapdoor(K, f): Run by the client, this algorithm takes the key K and a
predicate f ∈ F as input, and outputs a trapdoor Tf .

– SearchIndex(Tf , Id): Run by the server, this algorithm takes a trapdoor Tf

and an index Id as input and returns an encrypted result [[Rd]] to the client,
where Rd implies whether u(d) satisfies the predicate f or not.

– Retrieve(K, {[[Rd]] |d ∈ DB};DB): Run between the client and the server, the
client takes the secret keyK and the encrypted search results {[[Rd]]|d ∈ DB}
as input and the server takes the encrypted database DB as input. At the
beginning of the protocol, the client first decrypts {[[Rd]] | d ∈ DB} and
decides which documents to retrieve, and at the end of the protocol the
client retrieves the documents he wants.

A standard work flow of SDR usage is as follows. A client first runs the Keygen
algorithm to generate the key K and parameters, then runs the BuildIndex al-
gorithm to generate an index for every document he has, finally stores every
(document, index) pair on the server. We assume that the documents are en-
crypted by the client with some standard symmetric encryption algorithm using
a key different from K. Later on, when the client wants to retrieve some docu-
ments, it first runs the Trapdoor algorithm to generate a trapdoor, then sends
the trapdoor to the server which can then run the SearchIndex algorithm to
match the trapdoor with every index in the database and send the encrypted
match results to the client. Finally, the client runs the Retrieve algorithm with
the server to retrieve (some of) the matched documents. Note that the client
can selectively retrieve the matched documents, not necessarily all of them.

Remark 1. Referring to the definition of SSE [7], any SSE scheme can be triv-
ially extended to a SDR scheme: by letting the server send the search results
(i.e. outputs of SearchIndex executions) back to the client, who then selectively
determines which documents to retrieve. If we assume that the server returns
all the documents matched by the SearchIndex in SSE, then it is equivalent to a
SDR scheme in which the client always retrieves all the matched documents.

Similar to the case in other cryptographic primitives, an SDR scheme should
always be sound, namely the following two conditions should always hold.

1. If u(d) satisfies f, then Retrieve(K, {[[Rd]] | d ∈ DB};DB) will return all doc-
uments d chosen by the client.

2. If u(d) does not satisfy f, then the probability that Retrieve(K, {[[Rd]] | d ∈
DB};DB) returns d is negligible.

228 C. Bösch et al.

2.2 Security Properties for SDR

Recall that the main objective of SDR schemes is to enable the server to search
over the encrypted data and let the client selectively retrieve the matched con-
tents. In this setting, information leakage can come from three sources, namely
index, trapdoor, and query results. Correspondingly, there are three types of
privacy concerns.

– Index privacy, similar to the plaintext privacy in [27], means that indexes
should not leak any information about the encoded keywords.

– Trapdoor privacy, similar to the predicate privacy in [27], means that trap-
doors should not leak any information about the encoded predicates.

– Query result privacy means that if the client retrieves x documents for any
integer x in two executions of the Retrieve algorithm, then the server should
not know whether the two executions return the same documents or not.

The concerns of index privacy and trapdoor privacy have been considered by
existing SSE schemes. Notably, Shen et al. [27] propose a definition of full secu-
rity, which tries to capture the above two privacy concepts. Note that, Shen et
al. only give a fully secure SSE scheme which support inner product queries for
vectors of even length, without being able to present a scheme which generally
achieves full security. To our knowledge, no SSE scheme has been shown to be
fully secure in general.

However, query result privacy has not been touched upon in the setting of
outsourcing encrypted data, although it is a practical concern for many appli-
cation scenarios. For example, suppose that Alice stores both her work-related
documents and personal documents on a remote server protected by an SSE
scheme. Moreover, she only queries her work-related documents in her office,
and queries personal documents at home. One day, if the server notices at 10:00
pm that Alice is querying the same document as that she queried at 11:00 am,
then the server can guess that Alice is working over the time in her office.

2.3 Game-Style Security Definition

Similar to the security definitions in SSE security models, we consider the at-
tacker to be a semi-honest server (and any other outside attacker). By semi-
honest we mean an honest-but-curious [12] database server that can be trusted
to adhere to the protocol, but which tries to learn as much information as pos-
sible. Formally, the definition is as follows.

Definition 1. An SDR scheme is secure if no probabilistic polynomial-time at-
tacker has non-negligible advantage in the attack game defined in Fig. 1, where
the advantage is defined to be |Pr[b = b′]− 1

2 |.

By granting index oracle queries to the attacker, we cover index privacy in the
sense that the attacker cannot distinguish the indexes of different documents.
By granting trapdoor oracle queries to the attacker, we cover trapdoor privacy

Selective Document Retrieval from Encrypted Database 229

1. The challenger runs the Keygen algorithm and obtains the secret key K and
the predicate set F . The challenger publishes F and picks a random bit b.

2. The attacker A adaptively makes the following types of queries.

– Index oracle query. On the j-th index query, A outputs two documents
dj,0, dj,1 ∈ D. The challenger responds with BuildIndex(K, dj,b).

– Trapdoor oracle query. On the i-th trapdoor query, A outputs two
predicates fi,0, fi,1 ∈ F . The challenger responds with Trapdoor(K, fi,b).

– Retrieve oracle query. Suppose that there have been j index queries
and i trapdoor queries, the challenger (simulating the client) and the server
run the Retrieve algorithm. The server’s input is the database DB, which
contains j (index, document) pairs, and the challenger’s input is the key
K and a set of document identifiers IDb, where ID0 and ID1 are two
identifier sets of identical size chosen by the attacker. Basically, IDb tells
which documents the challenger should retrieve.

3. A outputs a guess b′ of the bit b.

Fig. 1. Attack Game of SDR

in the sense that the attacker cannot distinguish the trapdoors received from
the client. Similarly, by granting retrieve oracle queries to the attacker, we cover
query result privacy in the sense that the attacker cannot tell the retrieved
documents by the client. Note that in granting the retrieve oracle queries, we
restrict that the identity sets are of the same cardinality; otherwise the attacker
may trivially win the game unless the client always retrieves all the documents.
As a consequence, if an SDR scheme is secure under this definition, an attacker
only learns how many documents the challenger has retrieved but nothing else.

2.4 Relaxation of the Security Definition

As discussed before, query result privacy may be an important concern in many
application scenarios for SDR schemes, but it may not be so important in other
scenarios. To be secure under Definition 1, the Retrieve algorithm of an SDR
scheme will use private information retrieval [6, 22] technique in one way or
another so that it will incur significant computational and communication com-
plexities, hence it is very likely that this privacy property may be sacrificed for
the efficiency reasons. As a result, it is useful to have a definition covering only
index privacy and trapdoor privacy. Formally, we give the following definition.

Definition 2. An SDR scheme achieves index privacy and trapdoor privacy,
if no probabilistic polynomial-time attacker has non-negligible advantage in the
attack game defined in Fig. 1 with the following exceptions.

1. Retrieve oracle challenge query is disallowed in the game.
2. For any index oracle challenge query (dj,0, dj,1) and any trapdoor oracle chal-

lenge query (fi,0, fi,1), the following is true: u(dj,0) satisfies fi,0 if and only
if u(dj,1) satisfies fi,1.

With the relaxation, the above definition provides the same level of security
guarantees to the full security definition [27].

230 C. Bösch et al.

3 The Proposed SDR Scheme

In this section, we propose a new SDR scheme and prove its security in the
security model described in Section 2. We describe the scheme for the case of
equality test predicates, while the scheme does support other types of predicates
which will be elaborated in Section 4.

3.1 Preliminary

An encryption function E(·) is called homomorphic if there exist two (possibly
the same) operations (⊗ and ⊕), such that E(a) ⊗ E(b) = E(a ⊕ b). In this
paper the homomorphic encryption of an element x is written as [[x]]. Thus
[[a]]⊗[[b]] = [[a⊕b]]. In our construction, we use a semantically secure homomorphic
encryption scheme that allows one multiplication followed by multiple additions
on encrypted values. For example, the lattice-based schemes such as the Gentry-
Halevi-Vaikuntanathan (GHV) scheme [10] and Brakerski-Vaikuntanathan (BV)
scheme [3] and the pairing-based Boneh-Goh-Nissim (BGN) scheme [2] satisfy
the required property.

3.2 The Proposed Scheme

The proposed SDR scheme makes use of a symmetric homomorphic encryption
scheme satisfying the requirements stated in Section 3.1 and the index construction
method by Chang and Mitzenmacher [5]. Next, we describe the algorithms of the
proposed scheme, namely (Keygen,BuildIndex,Trapdoor, SearchIndex,Retrieve).

– Keygen(s). Given a security parameter s, generate a key K for a symmetric
homomorphic encryption scheme, such as the symmetric version of the BV
scheme described in Section 5.1, and equality test predicate set F = {fw |w ∈
W}. For any document d, u(d) satisfies fw if and only if w ∈ u(d).

– BuildIndex(K, d). With the key K and a document d, the algorithm does the
following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

Note that b is the size of the possible keyword set. The bit Id[i] is set to
be 1 if w ∈ u(d) = si ∈ W ; otherwise, the Id[i] is set to be 0.

3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]), which means the plaintext
version index is encrypted bit by bit.

4. Output the index Id = [[Id]].

– Trapdoor(K, fw). With the key K and a predicate fw, the algorithm does the
following:

1. Construct tfw = (tfw [1], tfw [2], . . . , tfw [b]). For every 1 ≤ i ≤ b, the value
of tfw [i] is set to be 1 if w = si and 0 otherwise.

2. Output the trapdoor Tfw = ([[tfw [1]]], [[tfw [2]]], . . . , [[tfw [b]]]).

Selective Document Retrieval from Encrypted Database 231

– SearchIndex(Tfw , Id). With a trapdoor Tfw and an index Id, the algorithm
outputs [[Rd]] = [[tfw�Id]], where the notation � represents an inner product.
Note that the computation is based on Tfw and Id using the homomorphic
properties stated in Section 3.1. The server sends [[Rd]] to the client.

– Retrieve(K, {[[Rd]] | d ∈ DB};DB). Here, DB is the database which contains
all the (document, index) pairs the client has stored at the server. The client
and the server interact as follows:

1. The client first decrypts the encrypted search results {[[Rd]] | d ∈ DB},
and gets to know which are the matched documents.

2. The client decides a subset of the matched documents, and runs a private
information retrieval (PIR) protocol (e.g. [6, 22, 25]) with the server to
retrieve the documents.

For efficiency reasons, in the Retrieve algorithm, the client can select the desired
documents and directly tell the server which documents he wants.

3.3 Security Results

With respect to the proposed SDR scheme, it is clear that the SearchIndex algo-
rithm always returns 1 if u(d) satisfies fw and 0 otherwise. Hence, the soundness
property is achieved given that the PIR protocol used in the Retrieve algorithm
is also sound. Next, we summarize the security of the SDR scheme and leave the
proofs to the full paper due to space reasons.

Theorem 1. The proposed SDR scheme in Section 3.2 is secure under Defi-
nition 1 given that the adopted symmetric homomorphic encryption scheme is
IND-CPA secure [14] and the PIR protocol in the Retrieve algorithm is secure [6].

In the proposed SDR scheme, if the client directly retrieves the matched docu-
ments without using a PIR protocol in the Retrieve algorithm, then the scheme
achieves the relaxed security under Definition 2 given that the encryption scheme
is IND-CPA secure. The intuition is very straightforward based on the fact that
all operations in the search are carried out in the ciphertext domain using the
homomorphic properties of the encryption scheme.

Theorem 2. The proposed SDR scheme without using PIR protocol in the
Retrieve algorithm achieves index privacy and trapdoor privacy under Defini-
tion 2 given that the adopted symmetric homomorphic encryption scheme is
IND-CPA secure [14].

4 Adaptations of the Proposed SDR Scheme

In the previous section, we described an SDR scheme and analysed its secu-
rity. Besides supporting equality test predicates, the scheme can be adapted to
support a number of useful search features, including aggregating search results,

232 C. Bösch et al.

supporting conjunctive keyword search queries, advanced keyword search, search
with keyword occurrence frequency, and search based on inner product. More-
over, based on the same analysis in Section 3.3, all variants in this section are still
secure in our security model. We also show that it is straightforward to adapt
the proposed SDR scheme to the asymmetric setting or multi-user setting.

4.1 Aggregating Search Results

In the proposed scheme, the server has to send back an [[Rd]] for each document. If
the symmetric BV scheme [3] is used in the scheme, to reduce the communication
complexity, we can transform (depending on the degree α of the polynomials) up
to α ciphertexts that encode α bits separately, into a single ciphertext Cp [17].
For a detailed description of the BV-scheme and the used variables, we refer the
reader to Section 5.1. The packed ciphertext is calculated by:

Cp =

(∑
i

c0,ixi,
∑
i

c1,ixi

)
.

This means, for a collection of 1000 documents and using a 1024 degree polyno-
mial, the server has to send back only one ciphertext instead of 1000.

4.2 Conjunctive Keyword Search

To support conjunctive keyword search queries for any number of keywords,
we propose a variant of the proposed SDR scheme. The Trapdoor algorithm
needs to be changed slightly, while other algorithms stay basically the same. For
conjunctive keyword search, the predicate set can be denoted as F = {fW′ |W ′ ⊆
W}. For any document d, u(d) satisfies fW′ if and only if u(d) ⊆ W ′.

– Trapdoor(K, fW′). With the key K and a predicate fW′ , it does the following:

1. Construct tfW′ = (tfW′ [1], tfW′ [2], . . . , tfW′ [b]). For every keyword wi from
W , the value of tfW′ [i] is set to be 1 if si ∈ W ′ and 0 otherwise.

2. Output the trapdoor TfW′ = ([[tfW′ [1]]], [[tfW′ [2]]], . . . , [[tfW′ [b]]]).

As a result of the modification, the output of a SearchIndex(TfW′ , Id) query tells
the client how many keywords in the trapdoor appear in the index Id.

4.3 Advanced Keyword Search

In some application scenarios, the client may care about some keywords more
than others, which implies that it is desirable to allow the client to put a weight
on each keyword in the trapdoor. To do so, we propose another variant of the
proposed SDR scheme. The Trapdoor and Retrieve algorithms need to be changed
slightly, while other algorithms stay basically the same. For this variant, the
predicate set can be denoted as F = {fW′ |W ′ ⊆ W}, as specified in Section 4.2.

Selective Document Retrieval from Encrypted Database 233

– Trapdoor(K, fW′). With the key K and a predicate fW′ , it does the following:

1. Construct tfW′ = (tfW′ [1], tfW′ [2], . . . , tfW′ [b]). For every keyword wi from
W , the value of tfW′ [i] is set to be 2i−1 if si ∈ W ′ and 0 otherwise.

2. Output the trapdoor TfW′ = ([[tfW′ [1]]], [[tfW′ [2]]], . . . , [[tfW′ [b]]]).

– Retrieve(K, {[[Rd]] | d ∈ DB};DB). Here, DB is the database which contains
all the (index, document) pairs the client has stored at the server. The client
and the server interact as follows:

1. The client first decrypts the encrypted search results {[[Rd]]|d ∈ DB}. For
every document d, the client can recover which keywords are contained
in the index (by writing Rd in a binary form, if the i-th bit is 1 then
si is contained in the index). The client can then add weights on the
keywords and decide which documents to retrieve.

2. The client and the server run a PIR protocol for the client to retrieve
the documents.

By letting the client know exactly, which of several keywords satisfy the search,
the client is able to run multiple queries at once using only one trapdoor.

4.4 Search with Keyword Occurrence Frequency

In practice, a search query may rank the relevance of a document based on not
only whether some keywords are contained but also the occurrence frequency
of these keywords in the documents. The proposed scheme can be modified
to support such a requirement. To do so, we proposed another variant of the
proposed SDR scheme. The BuildIndex algorithm needs to be changed slightly,
while other algorithms stay basically the same. For this variant, the predicate
set is still the equality test one.

– BuildIndex(K, d). With the key K and a document d, it does the following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

The bit Id[i] is set to be the occurrence frequency of w if w ∈ u(d) =
si ∈ W ; otherwise, the Id[i] is set to be 0.

3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]).
4. Output the index Id = [[Id]].

In this variant, the value of a SearchIndex(Tfw , Id) query tells the client the
occurrence of the keyword w in the document d, and then the client can decide
which documents to retrieve accordingly.

4.5 Search Based on Inner Product

To support search based on inner product, we propose another variant of the pro-
posed SDR scheme. The BuildIndex and Trapdoor algorithms need to be changed
slightly, while other algorithms stay basically the same. For this variant, the pred-
icate set can be denoted as F = {f = (f [1], f [2], · · · , f [b]) |f [i](1 ≤ i ≤ b) ∈ N}.

234 C. Bösch et al.

– BuildIndex(K, d). With the key K and a document d, it does the following:

1. Generate the list of distinct keywords, namely u(d).
2. Construct a plaintext index for d, denoted as Id = (Id[1], Id[2], . . . , Id[b]).

The value Id[i] is set to be w if w = si; otherwise, the Id[i] is set to be 0.
3. Generate [[Id]] = ([[Id[1]]], [[Id[2]]], . . . , [[Id[b]]]).
4. Output the index Id = [[Id]].

– Trapdoor(K, f). With the key K and a predicate f, the algorithm outputs the
trapdoor Tf = ([[f [1]]], [[f [2]]], . . . , [[f [b]]]).

As a result of the modification, the output of a SearchIndex(Tf , Id) query tells
the client the inner product of f and the keyword vector in the index Id.

4.6 Multi-user Variant (adaption to asymmetric setting)

In some application scenarios, it may be desirable that multiple users are able
to write new data to an existing database as in the case of PEKS [1]. The pro-
posed SDR scheme can be extended straightforwardly to meet the requirement.
In the Keygen algorithm, the client generates a public/private key pair for a
homomorphic public key encryption scheme, such as the public key version of
the BV scheme [3]. In the algorithms BuildIndex, Trapdoor, and SearchIndex, the
encryptions are done with the client’s public key. The Retrieve algorithm stays
the same. In the extended scheme, everyone can generate searchable indexes
based on the client’s public key. However, only the client with the private key is
able to decrypt the search results which are always encrypted under the client’s
public key. Thus, compared with other similar schemes in the asymmetric setting
such as PEKS [1], the extended scheme does not suffer from the inherent offline
keyword recovery attacks [4]. Without the client’s secret key, the server cannot
get the output of a search.

5 Search Performances of the Proposed SDR Scheme

In this section, we adapt the recent lattice-based symmetric BV scheme [3] to our
proposed solution and explain our choice of parameters. We then show our imple-
mentation results and discuss some optimizations for the implementation. Note
that our implementation focuses on the SearchIndex algorithm, in an attempt to
demonstrate the efficiency differences between the proposed SDR scheme and
existing SSE schemes.

5.1 Adaption of the Symmetric BV Scheme

In this subsection we denote scalars in plain and vectors in bold. We write

x
R←− X when we mean that x is chosen at random from the distribution X . The

scheme uses the following parameters:

– the dimension α, which is a power of 2,
– the modulus q, which is a prime such that q ≡ 1 (mod 2α)

Selective Document Retrieval from Encrypted Database 235

– the cyclotomic polynomial f(x) = xα + 1,
– the error distribution χ over the ring Rq = Zq[x]/〈f(x)〉
– ciphertext degree D (supports D − 1 multiplications),
– number of supported additions A,
– message space t < q, which is prime,
– error parameter σ (standard deviation of the discrete Gaussian error distri-

bution).

All parameters are chosen in such a way to guarantee correctness and security
of the scheme. For correctness the BV scheme requires:

q ≥ 4 · (2tσ2√α)D · (2α)(D−1)/2 ·
√
A.

Note that D is the ciphertext degree and not the number of supported multi-
plications [17]. The encryption scheme consists of the following algorithms. We
simplified the Mul and Add algorithms to support one multiplication followed
by several additions:

– SH.Keygen(1κ): Sample a ring element s
R←− χ and set the secret key sk := s.

(If we only care about homomorphism, sampling s
R←− Rq is sufficient.)

– SH.Enc(sk ,m): Recall that the message space is Rt. We encode our message

as a degree α polynomial with coefficients in Zt. To encrypt, sample a
R←− Rq

and e
R←− χ and output the ciphertext c = (c0, c1) ∈ R2

q where c1 = −a and
c0 = as+ te+m.

– SH.Mul(c, c′): Given the two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) output

the ciphertext vector cmul = c ·c′ = (c0c
′
0, c0c

′
1+c′0c1, c1c

′
1) using polynomial

multiplication.
– SH.Add(c, c′): Given the two ciphertexts c = (c0, c1, c2) and c′ = (c′0, c

′
1, c

′
2)

output the ciphertext vector cadd = c + c′ = (c0 + c′0, c1 + c′1, c2 + c′2) ∈
R3

q which is calculated by coordinate-wise vector addition of the ciphertext
vectors.

– SH.Dec(sk , c): To decrypt, first define the secret key vector s =

(1, s, s2, . . . , sD) ∈ RD+1
q , compute 〈c, s〉 =

∑D
i=0 cis

i ∈ Rq, and output
the message m = 〈c, s〉 (mod t).

5.2 Choice of BV Parameters and Implementation

We choose our parameters for the symmetric BV scheme based on our needs,
and also take into account the work of Lauter et al. [17] which assessed the
security against the decoding attack [18] and the distinguishing attack [21]. We
use the following parameters: D = 2, A = 100, t = 2, σ = 8. With these fixed
parameters, we calculate the flexible parameters as seen in Table 1. We made
experiments with smaller q and larger A (up to 1000) and still ended up with
correct results.

236 C. Bösch et al.

Table 1. Implementation results for the parameters mentioned in Section 5.2. The
degree of the polynomials is denoted by α, �lg(q)� is the bit size of q, and lg(T) is the
logarithm of the runtime of the distinguishing attack from [18]. WC |c| is the worst case
ciphertext size and the last two columns describe the time in seconds, that is required
for a single multiplication or addition, respectively.

α �lg(q)� lg(T) WC |c| MUL ADD

256 14 64 896 B 410 E-06 11 E-06
512 20 107 2.5 kB 454 E-06 21 E-06
1024 33 134 8.25 kB 2.8 E-03 72 E-06

We implemented the scheme in C/C++ using FLINT, namely Fast Library
for Number Theory [16]. We tested the code on an Intel Xeon CPU X5677@3.47
GHz running linux 2.6.37-sabayon x86 64. In this situation, our results for degree
512 polynomials show that an addition (after a multiplication) takes 21 · 10−6

seconds and a multiplication takes 454 · 10−6 seconds.
At this moment, we only have a single threaded implementation of our scheme.

The homomorphic multiplication operation has to calculate four independent
polynomial multiplications, which can be done in parallel. This will decrease the
computation time significantly. The same is applicable for the addition opera-
tion, which uses three independent polynomial additions. These additions can
also be easily done in parallel. Another optimization, which is mentioned by
Lauter et al. [17] is to use the Fast Fourier Transformation (FFT) to speed up
computations. This has already been considered in SWIFFT [20]. Due to the
choice of parameters (Zq mod xα + 1, where α is a power of 2 and q = 1 (
mod 2α)) the FFT can be computed more efficiently.

To compare our scheme with others, we also implemented a type A symmetric
prime order pairing, using the PBC [19] library. On the same machine, a single
pairing operation takes 5.8 · 10−3 seconds.

5.3 Performance of the Proposed SDR Scheme

We now consider the efficiency of the proposed SDR scheme, where the efficiency
is measured in terms of the computation, communication and space complexities.

In Table 2, the first column shows the number of supported search keywords.
The second column shows the number of documents stored on the server. The
third and fourth columns show the number of required additions and multipli-
cations for a search over the database. The last two columns show the worst
case trapdoor size, which has to be transmitted, depending on the degree of
the polynomial. Based on the performances of the symmetric BV scheme, for
a document set of size 1000 with a keyword set of size 100, a search takes 47
seconds. For a document set of size 5000 with a keyword set of size 250, a search
takes around 10 minutes. The result of a query is of size

⌈
Docs
α

⌉
· |c|, where α is

the degree of the polynomial and |c| the size of a single ciphertext according to
Table 1. Note that the worst case trapdoor size is also the worst case index size,

Selective Document Retrieval from Encrypted Database 237

Table 2. Number example of the computational complexity. The last two columns de-
scribe the worst case trapdoor size considering the use of 256 or 512 degree polynomials.
This is also the size of an encrypted index for a single document.

Keywords Docs Additions Multiplications WC |T 256
fw | WC |T 512

fw |
100 1000 99,000 100,000

87 kB 250 kB
100 5000 495,000 500,000

250 1000 249,000 250,000
218.75 kB 625 kB

250 5000 1,245,000 1,250,000

Table 3. Number example of the computational complexity of the SSW scheme.
GE(CT) and GE(T) shows the number of group elements per ciphertext and trap-
door, respectively.

Keywords Docs Pairings GE(CT) GE(T)

100 1000 202,000
202 202

100 5000 1,010,000

250 1000 502,000
502 502

250 5000 2,510,000

that has to be stored on the server for a single document. Table 3 shows the
computational complexity of the SSW [27] scheme in terms of pairings that have
to be computed per search. The last two columns show the number of group
elements per ciphertext and trapdoor, respectively.

In Table 4, we compare our scheme to other schemes. The first three rows
describe the asymptotic comparison from the perspective of computational com-
plexity of the algorithms. Our Trapdoor algorithm is a constant time operation,
since it requires only a table lookup which can be done using a trivial hash func-
tion as index. Our BuildIndex algorithm has to process each distinct keyword per
document. Thus the complexity is O(n|Δ|). To search, the server has to perform
a constant number (namely, b) of operations for all n documents. Thus the server
load is O(n). The server has to store one index per document, so the index size
is O(n). The fourth and fifth rows of the table compare the expressiveness of
search queries, and the last row compares the security of the schemes.

It is worth noting that the above computational complexity comparison is
asymptotic. In practice, different operations make a great difference for the real
speed number. In our case, the operations are polynomial additions and multipli-
cations, which are much more efficient than other operations such as pairings. For
example, for the SSW scheme [27], a search query in the database needs n(2v+2)
composite order pairings. As shown in Table 5, for the proposed scheme, given a
database set of size 1000 with a keyword set of size 100, a search takes 47 seconds.
However, for the same setting, a search takes 58580 (i.e. 1000×202×0.0058×50)
seconds (≈ 16.3 hours) for the SSW scheme on the same machine, which is 1247×
slower than our proposed scheme. These numbers are based on the performance

238 C. Bösch et al.

Table 4. Computational performance of different search schemes, where n is the num-
ber of documents in the database, v the number of words per document, and a is the
number of keywords in the trapdoor. The number of distinct words per document is
denoted by |Δ| and |R(w)| denotes the number of documents containing the keyword
w. The asterisk ∗ refers to the use of a so-called FKS dictionary introduced by Fredman
et al. [8], which reduces the lookup time to O(1).

Properties SWP [28] Goh [11] SSE [7] SSW [27] Ours

Compute Trapdoor O(1) O(1) O(1) O(v) O(a)
Compute Indexes O(nv) O(n|Δ|) O(n|Δ|) O(nv) O(n|Δ|)
Search Indexes O(nv) O(n) O(|R(w)|)∗ O(nv) O(n)

Conjunctive Search No No No Yes Yes
Advanced Search Features No No No Yes Yes

Full Security No No No No Yes

Table 5. Comparison of the search times of our scheme and Shen et al. scheme. The
SSW (prime) column shows the SSW scheme under the assumption that it uses prime
order pairing. The SSW (composite) shows a calculated value.

Scheme small (100/1000) large (250/5000)

Our (α = 512) 47 s 9.9 m
Our (α = 1024) 4.8 m 59.8 m
SSW (prime) 19.5 m 4.0 h
SSW (composite) 16.3 h 8.4 d

of a type A symmetric prime order pairing using the PBC [19] library and the
fact that a pairing on a 1024-bit composite order elliptic curve can be 50 times
slower than in a prime order group [9]. For our comparison this is a conservative
estimate since the SSW scheme uses composite order groups, where the order is
the product of four primes. Our scheme is more efficient than the SSW scheme.

6 Related Work

Research into the area of search over encrypted data has been a topic of both
database community and cryptography community. Starting from the work by
Hacigümüş et al. [15], many proposals have been proposed and most of them are
centered around the concept of bucketization. However, these proposals have not
been analysed in a security model and are usually vulnerable to some attacks.
Next, we briefly review some representative SSE schemes which have tried to
achieve provable security in some security model.

Searchable encryption can be achieved by oblivious RAMs [13, 23, 24], which
hide all information, including the query result, from the server. An oblivious
RAM based scheme is not efficient in the sense that it needs a logarithmic num-
ber of rounds of interaction for each read and write. SSE schemes improve the
efficiency at the cost of revealing some information. The first practical scheme
for searching in encrypted data in the symmetric setting was proposed by Song,
Wagner and Perrig [28] (SWP). SWP uses a special two-layered encryption con-
struct, which is known as a sequential scan. SWP is not secure against statistical

Selective Document Retrieval from Encrypted Database 239

analysis across multiple queries and leaks the positions of the queried keywords
in a document, thus revealing index information.

Some of the above problems are addressed by Goh [11] by adding a Bloom
filter index to each document. The index makes the scheme independent of the
document encryption. Goh also introduces the formal indistinguishability against
chosen keyword attack (IND-CKA) and a slightly stronger IND-CKA2 security
model. Goh notes that the security models for secure indexes do not require the
trapdoors to be secure, which is an important requirement for any SSE scheme.
Chang and Mitzenmacher [5] propose two index schemes, similar to Goh [11], us-
ing pre-built dictionaries. They propose a simulation-based definition of security
to guarantee privacy for the indexes and the trapdoors. They achieve a notion
of security that is similar to IND-CKA2. As discussed by Curtmola et al. [7],
the definition is not only non-adaptive, but can also be trivially satisfied by any
SSE scheme, even one that is insecure. Curtmola et al. [7] propose new adver-
sarial models for searchable encryption: a non-adaptive and an adaptive one,
and proposed two schemes. The first scheme (SSE-I) is only secure against non-
adaptive adversaries but more efficient than the second scheme (SSE-II), which
is also secure against adaptive adversaries. Curtmola et al. review existing secu-
rity definitions for searchable encryption and propose new indistinguishability
and simulation-based definitions that address the shortcomings of the existing
definitions. At the same time they loosen the character of SSE by allowing the
leakage of a user’s search pattern. Shen, Shi and Waters [27] (SSW) give for-
mal definitions for predicate encryption (PE) and its security. SSW defines full
security for secret key PE (SKPE). Full security for SKPE is security in the
strongest sense possible since the server should only learn the access pattern. In
addition, SSW introduces a symmetric key predicate encryption scheme that is
proven to be selectively single challenge secure (SCS) which is a relaxed versions
of the full security definition. However, they show that only for a special type
of query (namely, inner products), SCS security is as good as full security. SSW
uses bilinear groups of composite order and is therefore not efficient.

Other works, such as that in [26], have tried to implement SSE in practice. Un-
fortunately, they usually sacrifice privacy to a certain extent in order to achieve
satisfactory performances.

7 Conclusion and Future Work

In this paper, we have proposed the concept of selective document retrieval
(SDR) as a cryptographic primitive for outsourcing encrypted data. Compared
with symmetric searchable encryption (SSE), an SDR scheme can potentially
provide more flexible services and better security guarantees. We described a se-
curity model to cover three types of privacy properties, including index privacy,
trapdoor privacy, and query result privacy. Note that a secure SSE scheme cannot
be trivially extended to provide query result privacy. We have proposed a con-
struction for SDR based on homomorphic encryption and the index construction
method by Chang and Mitzenmacher [5]. The construction offers a very flexible

240 C. Bösch et al.

framework, and can be adapted very easily to support many useful search fea-
tures. To evaluate the performance, we have implemented the search algorithm
in C based on the symmetric Brakerski-Vaikuntanathan (BV) scheme [3], and
the results show that it can be much more efficient than a solution based on ex-
isting SSE schemes. In Section 5, we have evaluated the search algorithm of the
proposed SDR scheme, but a comprehensive performance study is still needed,
in particular for the Retrieve algorithm. The performance of PIR protocols is
currently an ongoing research topic for the community, and recently researchers
have shown that such protocols can actually be practical [22]. We leave a full
discussion of the issue as a future work.

Acknowledgements. We like to thank Michael Naehrig for helpful discussions
on the BV scheme and the anonymous reviewers for their valuable comments.
This work was done when Qiang Tang worked at the University of Twente.

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

4. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.-H.: Off-Line Keyword Guessing At-
tacks on Recent Keyword Search Schemes over Encrypted Data. In: Jonker, W.,
Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg
(2006)

5. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: FOCS 1995: Proceedings of the 36th Annu. IEEE Symposium on Foundations
of Computer Science, pp. 41–50 (1995)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions. In: CCS 2006: Proceedings
of the 13th ACM Conference on Computer and Communications Security, pp. 79–
88. ACM (2006)

8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with 0(1) Worst
Case Access Time. J. ACM 31(3), 538–544 (1984)

9. Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

10. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem
from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–
522. Springer, Heidelberg (2010)

Selective Document Retrieval from Encrypted Database 241

11. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003)
12. Goldreich, O.: Secure Multi-Party Computation. Working draft (October 2002)
13. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
14. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),

270–299 (1984)
15. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted

Data in the Database-Service-Provider Model. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, pp. 216–227. ACM
(2002)

16. Hart, W.: FLINT: Fast Library for Number Theory, http://www.flintlib.org
17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be

Practical? In: Proceedings of the 3rd ACMWorkshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124 (2011)

18. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

19. Lynn, B.: The Pairing-Based Cryptography library,
http://crypto.stanford.edu/pbc

20. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest
Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

21. Micciancio, D., Regev, O.: Lattice-Based Cryptography, pp. 147–191. Springer
(2009)

22. Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private
Information Retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172.
Springer, Heidelberg (2012)

23. Ostrovsky, R.: Efficient Computation on Oblivious RAMs. In: Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing, pp. 514–523.
ACM (1990)

24. Ostrovsky, R.: Software Protection and Simulations on Oblivious RAMs. PhD the-
sis. MIT (1992)

25. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information
Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

26. Pappas, V., Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Private Search in
the Real World. In: Zakon, R.H., McDermott, J.P., Locasto, M.E. (eds.) Twenty-
Seventh Annual Computer Security Applications Conference, ACSAC 2011, pp.
83–92. ACM (2011)

27. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

28. Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.
44–55. IEEE Computer Society (2000)

http://www.flintlib.org
http://crypto.stanford.edu/pbc

Additively Homomorphic Encryption

with a Double Decryption Mechanism, Revisited

Andreas Peter1, Max Kronberg2, Wilke Trei2, and Stefan Katzenbeisser1

1 Security Engineering Group
Technische Universität Darmstadt and CASED, Germany

{peter,katzenbeisser}@seceng.informatik.tu-darmstadt.de
2 Arbeitsgruppe Algebra/Geometrie
Universität Oldenburg, Germany

{m.kronberg,wilke.trei}@uni-oldenburg.de

Abstract. We revisit the notion of additively homomorphic encryption
with a double decryption mechanism (DD-PKE), which allows for addi-
tions in the encrypted domain while having a master decryption proce-
dure that can decrypt all properly formed ciphertexts by using a special
master secret. This type of encryption is generally considered as a practi-
cal way to enforce access control in hierachical organisations where some
form of malleability properties are required. Up to now, only two ad-
ditively homomorphic DD-PKE schemes have been proposed: CS-Lite
by Cramer and Shoup (Eurocrypt 2002), and a variant called BCP by
Bresson, Catalano and Pointcheval (Asiacrypt 2003).

In this work, we argue that the two existing schemes only provide
partial solutions for hierarchical organisations. Essentially, this is due
to the fact that the master authority, being in possession of the master
secret, has no control on the validity of given ciphertexts. We say that
the master is unable to “detect invalid ciphertexts”, which limits the
employment of such schemes in practice. Therefore, we propose the first
additively homomorphic DD-PKE scheme which allows the master to
detect invalid ciphertexts. In fact, our scheme has the additional property
that the master decryption is independent of the users’ public keys. Our
solution is based on elliptic curves over rings and we prove it to be
semantically secure under a DDH-related assumption. Moreover, we give
experimental results on the choice of elliptic curves and their effect on
the efficiency of our scheme’s setup.

Keywords: Public-Key Cryptography, Homomorphic Encryption, Dou-
ble Decryption Mechanisms, Elliptic Curves, Factoring.

1 Introduction

We consider a concrete example taken from practice that involves a company
having many employees (e.g., an insurance company) with a certain hierarchy
among them, and in particular with some master authority (e.g., the head of
the company) that sits at the top of this hierarchy. Most of the company’s data

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 242–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Additively Homomorphic DD-PKE, Revisited 243

is stored on some central servers where hierachical access control is enforced by
using encryption. But it happens occasionally that some employees leave the
company or new people are being employed, and so every employee should get
her own public and corresponding private keys. In this scenario, the company
should be concerned with the following challenges:

– To avoid expensive key management, employees should be able to generate
their own key pairs without getting in touch with the master authority.

– If an employee leaves the company or loses her keys (this concerns both the
public and the private key), the master authority still wants to be able to
recover all data. Hence, the master authority needs some master secret (in-
dependent of the employees’ individual private keys) that allows to decrypt
any data stored on the company’s servers. Moreover, the master authority
should be able to check whether a ciphertext has been encrypted under a
given employee’s public key. This is relevant, for instance, in the following
case: Assume an unavailable employee (for whatever reason, maybe due to
quitting) left some important data on the server, e.g., an encryption of an
important decision (1 for ‘yes’ and 0 for ‘no’). The master authority needs
to know this decision, but at the same time needs to verify whether it was
encrypted by the respective employee, i.e., under her public key. In fact, an
encryption under the wrong employee’s public key might lead the master to
a wrong decision.

– Additionally, in practice there is often the requirement that the used cryp-
tosystem has a certain malleability property or is even homomorphic.

The just described scenario is a typical application (cf. [16]) of so-called ad-
ditively homomorphic encryption schemes with a double decryption mechanism
(DD-PKE) which combine all the above properties in just one cryptosystem.
Roughly speaking, such schemes have two independent, additively homomor-
phic decryption procedures. Now, because solutions to the described scenario
are most wanted in practice, one would expect the existence of many cryptosys-
tems of this type. But in fact, there exist only two such schemes, namely CS-Lite
by Cramer and Shoup [8] and a variant called BCP by Bresson, Catalano and
Pointcheval [7]. Looking at these two schemes in detail, one notices two major
weaknesses:

1. In the BCP cryptosystem, in order for the master authority to decrypt a
given ciphertext, it has to know the employee’s public key under which it
was created. This fact contradicts to the requirement that the company does
not want to do any complex key management (and in fact simply does not
see the public keys in general).

2. Furthermore, both cryptosystems have the drawback that the master au-
thority is unable to check whether a given ciphertext was encrypted under
a given public key. This also contradicts the requirements of the above sce-
nario. We note here that the authors of [7] left such “ciphertext validity
checks” of the master authority as an open question.

244 A. Peter et al.

In this work, we propose the first additively homomorphic DD-PKE scheme that
avoids both just mentioned drawbacks: It is User-Independent (i.e., the master
decryption procedure is independent of the public keys of the employees/users)
and it allows the master to detect invalid ciphertexts (i.e., given a ciphertext and
a user’s public key the master can check whether the ciphertext was encrypted
under the given public key).

Our solution is based on elliptic curves over rings ZN2 where N = pq is some
RSA-modulus, and we prove its semantic security under a Decisional Diffie-
Hellman (DDH) related assumption on such curves. Finally, we discuss different
possible choices of elliptic curves in the setup of our cryptosystem. Since these
choices might have an effect on the security of our scheme, we also consider
randomly chosen curves (which we require to have an order with at least two
large prime factors). For this, one has to rely on a conjecture by Galbraith
and McKee [14] about the likelyhood of hitting on such curves. Therefore, we
made a substantial number of experiments to get an idea on the efficiency of
our setup algorithm for randomly chosen curves. Since there are only a few
experimental results on this matter in the literatue, our results might be of
independent interest.

Related Work. Since the first efficient, additively homomorphic encryption
scheme was proposed by Paillier [24] a lot of follow-up papers appeared in this
area (see [10] for a survey). In particular, there were many approaches to con-
struct such schemes by using elliptic curves (see Galbraith’s elliptic-curve-based
Paillier scheme [13] and the references therein). Another important paper in
this context is by Armknecht, Katzenbeisser and Peter [2] who give an easy to
use abstract framework and security characterization of such schemes. While we
are only interested in additively homomorphic encryption (i.e., it is possible to
evaluate the addition of plaintexts over their encryptions without knowledge of
the private key), much attention is recently being devoted to the topic of fully
homomorphic encryption [17,6], which allows for the evaluation of any circuit
over encrypted data without being able to decrypt.

Besides the great many of works on homomorphic encryption, there are several
constructions of (non-homomorphic) DD-PKE schemes [16,27]. In this regard,
we note that although identity-based encryption [5,25] is related to DD-PKE,
therein the master secret is essential in order to generate the users’ private keys
(in DD-PKE only some publicly known master information is needed, so there
is no interaction between the users and the master).

Finally, we mention the only two existing schemes [8] and [7] which are both
additively homomorphic and have a double decryption mechanism.

2 Preliminaries

Notation. We write x←− X if X is a random variable or distribution and x is
to be chosen randomly from X according to its distribution. In the case where X

is solely a set, x
U←− X denotes that x is chosen uniformly at random fromX . For

an algorithm A we write x←− A(y) if A outputs x on fixed input y according to

Additively Homomorphic DD-PKE, Revisited 245

A’s distribution. Sometimes, we need to specify the randomness of a probabilistic
algorithm A explicitly. To this end, we interpret A as a deterministic algorithm
A(y, r), which has access to random values r.

By a description of a finite set X we mean an efficient sampling algorithm
(according to some distribution) for the set X . If X is a group, a description of
X additionally includes the neutral element and a set of efficient algorithms that
allow us to perform the usual group operation on X and the inversion of group
elements. We abuse notation and write X both for the description and for the
set itself. If a description of X is given, we denote sampling from X according to
the distribution given by the sampling algorithm of the description by x←− X .

If f : X → Y is a mapping between two sets X and Y , we write dom(f) = X
for the domain of f and im(f) for its image. In addition, we write f |S for the
restriction of f to a subset S ⊆ X , i.e. f |S : S → Y with f |S(s) := f(s)
for all s ∈ S. If X and Y are groups (additively written), and f is a group
homomorphism, we write ker(f) := {x ∈ X | f(x) = 0} for the kernel of f .
If f is surjective, we write f−1(y) := {x ∈ X | f(x) = y} for the preimage of
y under f for y ∈ Y . Surjective group homomorphisms are also called group
epimorphisms.

We recall that a public-key encryption scheme E = (KeyGen,Enc,Dec) consists
of a probabilistic polynomial time (PPT) key generation algorithm KeyGen which
generates a pair (pk, sk) of corresponding public and private keys for a given
security parameter κ, a PPT encryption algorithm Enc and a deterministic PT
decryption algorithm Dec with the usual correctness condition. We denote the
set of plaintexts by P , the set of ciphertexts by Ĉ, and the set of all encryptions
(i.e., outputs of the encryption algorithm) by C.

Elliptic Curves over Rings. In this section, we want to recall some facts
about elliptic curves over rings. To this end, let R be a commutative unital ring
with R∗ denoting its group of units. We say that for a, b ∈ R the equation

E : y2z = x3 + axz2 + bz3 (1)

defines an elliptic curve E over R if the discriminant Δ := 16(4a3 + 27b2) is a
unit in R, i.e., Δ ∈ R∗. For all triples (x, y, z) ∈ R3 that satisfy (1), we say that
(x, y, z) is equivalent to (x′, y′, z′) if there exists ν ∈ R∗ such that νx = x′, νy =
y′ and νz = z′. Indeed this defines an equivalence relation (denoted by ∼) on all
such triples and we denote equivalence classes by (x : y : z). This relation allows
us to define the set of R-valued points of E (denoted by E(R)) as the set of all
equivalence classes (x : y : z) with x, y, z ∈ R satisfying (1) such that the ideal
I generated by x, y, z is R, i.e., I := {rx+ sy + tz | r, s, t ∈ R} = R.

It can be shown (see [21, Section 3]) that the usual chord and tangent process
on elliptic curves over fields (cf. [26, Chapter III]) yields a group law on E(R)
with identity element O := (0 : 1 : 0) if R has the property that every projective
R-module of rank one is free. For our work, it suffices to consider this case, since
we will only work over finite rings which have this property. Therefore, we will
from now on restrict our attention to finite rings R.

246 A. Peter et al.

It should be noted that there are explicit and efficient formulae to perform the
group law on E(R) which we do not want to recall here due to space limitations
(instead we refer to [21,13]). Furthermore, we recall that the Chinese Remainder
Theorem on ZN (where N = pq is some RSA-modulus) implies natural reduction
maps from E(ZN) to E(Zp) and E(Zq). It follows that E(ZN) ∼= E(Zp)×E(Zq)
(see [13]).

There are a few other facts in the case where R = ZN2 for some RSA-modulus
N = pq, that are of particular interest to us, which follow from the p-adic theory
of elliptic curves, and we refer the reader to [13] and [26] for details:

1. #E(ZN2) = N#E(ZN) = N#E(Zp)#E(Zq).
2. Pi := (Ni : 1 : 0) ∈ E(ZN2) with mPi = Pmi for all m ∈ ZN .
3. NP1 = O.

Finally, we state that if the factorization of N is not known, the Decisional
Diffie-Hellman Problem is believed to be hard for elliptic curves over ZN2 . It
is defined as follows: Given a random point Q of large order k (meaning that
k has about the same size as N), points rQ, sQ and tQ (r, s, t ∈ Zk), it is
computationally infeasible to decide whether t = rs mod k or not. We denote
this problem by DDHZN2 . We stress that even if the factorization of N is known,
DDHZN2 is still believed to be hard for randomly chosen elliptic curves over ZN2 .
We will see later that, as in the case where N is prime, if the factorization of
N is known, then DDHZN2 can be solved efficiently for pairing-friendly curves
(here, we mean curves where the reduced Weil or Tate pairing over Zp and Zq

can be efficiently computed). For a detailed discussion on pairing-friendly elliptic
curves over fields, we refer to [11], and to [15] when working over rings.

3 (User-Independent) Double Decryption

We start by recalling what it means for an encryption scheme to have a double
decryption mechanism. We do this along the lines of Galindo and Herranz’s work
[16].

Definition 1. A public key encryption scheme with a double decryption mech-
anism (DD-PKE) is a tuple (Setup,KeyGen,Enc,Dec,mDec) of PPT algorithms
such that

Setup: Setup(κ) takes a security parameter κ as input and outputs a tuple
(PP,MK) where PP contains the public system parameters (particularly in-

cludes descriptions of the plaintext space P and the ciphertext space Ĉ), and
MK is the master secret key which is only known to the master entity.

Key Generation: KeyGen(PP) takes the system’s public parameters PP as in-
put and outputs a pair of public/private keys (pk, sk) to a user.

Encryption: Enc(PP,pk)(m) takes the public parameters PP, a user’s public key
pk and a message m ∈ P as input and outputs a ciphertext c ∈ C.

User Decryption: Dec(PP,sk)(c) takes the public parameters PP, a user’s secret

key sk and a ciphertext c ∈ Ĉ as input and outputs either a plaintext m ∈ P
or the special symbol ⊥.

Additively Homomorphic DD-PKE, Revisited 247

Master Decryption: mDec(PP,MK,pk)(c) takes the public parameters PP, the

master secret key MK, a user’s public key pk and a ciphertext c ∈ Ĉ as input
and outputs either a plaintext m ∈ P or the symbol ⊥.

For such schemes, we require the usual correctness condition in public key en-
cryption schemes both for the user decryption and the master decryption. It
should be noted that by combining the system’s public parameters in the user’s
public keys, we can think of a DD-PKE scheme as being a usual encryption
scheme that additionally has a master decryption procedure (that uses the mas-
ter secret key). Also, we stress that the notion of semantic security is exactly
the same as that for usual public-key encryption schemes. Furthermore, it is
noteworthy that the key generation algorithm KeyGen does not get the master
secret MK as input.

Next, we introduce the notion of User Independence in the context of such
DD-PKE schemes, which basically means that the master entity can decrypt
any given ciphertext even without knowing the corresponding receiver (i.e., the
user’s public key under which it has been encrypted). In other words this means
that the master decryption is independent of the users.

Definition 2. A DD-PKE scheme is user-independent (UI-DD-PKE) if the
master decryption does not get the user’s public key as an input, i.e., it only
gets the system’s public parameters, the master secret and a ciphertext as input.

4 An Additively Homomorphic UI-DD-PKE Scheme

We introduce a new public key cryptosystem with a simple structure that com-
bines a couple of unique properties in a single scheme. Due to its many properties,
we will restrict our attention to the scheme’s formal definition and proof of cor-
rectness in this section, and deal with its properties in the next section. The
semantic security of the scheme will be proven in Section 6. In order to formally
define our cryptosystem, we need the following two facts:

Proposition 1. If N = pq is some RSA-modulus, i.e., p and q are primes
of about the same bit length κ, then there is an efficient construction of elliptic
curves E : y2z = x3+axz2+bz3 over ZN2 such that M := lcm(#E(Zp),#E(Zq))
has at least two large (of about the same size as p and q) prime factors.

Proof. There are three different methods to construct such elliptic curves, which
have direct influence on the system’s efficiency and applicability. We therefore
put the proof of this proposition in a section on its own (see Section 7). �

Lemma 1. As in Proposition 1, let M ∈ N have at least two large prime fac-
tors (of about κ bits). If π(M) denotes the product of all small prime factors
(including multiples) of M , then

Pr
s

U←−Π(M)

[gcd(s,M) �= 1] is negligible in κ,

where Π(M) := {s ∈ ZN2 \ {0} | gcd(s, π(M)) = 1}.

248 A. Peter et al.

Proof. Let L(M) =
∏r

i=1 p
νi
i be the product (r ≥ 2) of all large (of about κ

bits) prime factors in M , i.e., M = π(M) · L(M). By definition, we have that
Pr[gcd(s,M) �= 1 for s ∈ Π(M)] = Pr[s ∈ ZL(M) \ Z∗

L(M)]. But if ϕ denotes
Euler’s totient function, we have

#Z
∗
L(M) = ϕ(L(M)) =

r∏
i=1

(pi − 1)pνi−1
i , and hence

#Z∗
L(M)

#ZL(M)
=

r∏
i=1

(
1− 1

pi

)
.

However, the fractions 1
pi

are negligible in κ, and so the product of all these is
negligibly close to 1. Therefore, we have

Pr[s ∈ ZL(M) \ Z∗
L(M)] = 1−

#Z
∗
L(M)

#ZL(M)
= 1− (1− negl(κ)) = negl(κ),

where negl(κ) denotes a negligible function in κ. �

Definition 3 (The Cryptosystem).

Setup: Setup(κ) computes an RSA-modulus N = pq where p and q are primes
of about the same bit length κ and constructs an elliptic curve E : y2z =
x3 + axz2 + bz3 over ZN2 such that E has the properties as described in
Proposition 1. Furthermore, it chooses a point Q = (x : y : z) ∈ E(ZN2)
whose order divides M = lcm(#E(Zp),#E(Zq)).

1

It outputs the public parameters PP := (N, π(M), a, b, Q) and the master
secret key MK := M . The plaintext space is P = ZN and the ciphertext
space is Ĉ = 〈Q〉 × 〈Q,P1〉.

Key Generation: KeyGen(PP) chooses s ∈ Z
∗
M at random and computes R :=

sQ. This can be done by sampling s ∈ Π(M) (which is possible as π(M) is
included in PP), since then s ∈ Z∗

M holds with overwhelming probability by
Lemma 1.2 It outputs the user’s public key pk := R and secret key sk := s.

Encryption: Enc(PP,pk)(m) chooses a random value r ∈ ZN2 and computes the
ciphertext (A,B) as

A := rQ and B := rR + Pm.3

User Decryption: Dec(PP,sk)(A,B) outputs

m =
x(B − sA)

N
.

Master Decryption: mDec(PP,MK)(A,B) outputs

m =
x(MB)

N
M−1 mod N.

1 This can be done by taking a random point Q′ = (x′ : y′ : z′) ∈ E(ZN2) and setting
Q := NQ′. See also Section 7.

2 We note that by using Hasse’s bound on #E(Zp) and #E(Zq), we have M ≤
#E(Zp)#E(Zq) ≤ N2.

3 We note that if we forget about the first component A of our ciphertexts, then the
encryption looks very similar to Galbraith’s elliptic-curve-based Paillier scheme [13].

Additively Homomorphic DD-PKE, Revisited 249

Concerning the correctness of both decryption procedures, we see that

Dec(PP,sk)(Enc(PP,pk)(m)) =
x(rR + Pm − srQ)

N
= m

and

mDec(PP,MK)(Enc(PP,pk)(m)) =
x(M(rR + Pm))

N
M−1 mod N = m

by using the fact that ord(Q) divides M , so MR = sMQ = O.

Remark 1. 1. We stress that the knowledge of M is polynomial-time equivalent
to the knowledge of the factorization of N (cf. [23, Theorem 10]). Therefore,
it is computationally infeasible to compute the master secret key MK from
the public parameters PP.

2. It is also computationally infeasible to compute the user’s secret key from
its public key under the assumption that the Discrete Logarithm Problem
(DLP) is hard in E(ZN2).

3. Without knowledge of the factorization of N it is computationally infeasible
to find a point Q′ on the curve (that differs from linear combinations of
the publicly known points Q,R and P1), because one would need to solve
polynomial equations in ZN2 .

4. We notice that the users’ public keys are not needed in the master decryption
algorithm, and so we have successfully defined a UI-DD-PKE scheme.

5. Finally, we note that the master decryption never fails on a given ciphertext
c ∈ Ĉ, and so it always outputs a message m ∈ P . This is different for the
user decryption. It will output ⊥ if x(B− sA) is not divisible by N . We will
show in the next section (Property 2) that this happens if and only if the
given ciphertext is invalid, which users can efficiently detect.

5 Properties of the Cryptosystem

We start with two properties of the cryptosystem that are independent of the
choice of elliptic curves in the setup algorithm as long as these curves satisfy the
properties of Proposition 1.

Property 1. The cryptosystem is additively homomorphic, i.e.,

Dec(PP,sk)(Enc(PP,pk)(m1) + Enc(PP,pk)(m2)) = m1 +m2.

Together with item 4 of Remark 1 this means that the scheme is an additively
homomorphic UI-DD-PKE scheme.

Proof. Let m1,m2 ∈ ZN be two plaintexts encrypted as (A1, B1) and (A2, B2),
respectively. Then (A,B) := (A1, B1)+(A2, B2) is a ciphertext of m := m1+m2

since

x(B − sA)

N
=

x(r1R+ Pm1 + r2R+ Pm2 − sr1Q− sr2Q)

N

=
x(Pm1+m2)

N
=

(m1 +m2)N

N
= m1 +m2.

�

250 A. Peter et al.

Property 2. Users can detect invalid ciphertexts.

Proof. By definition (see also item 3 of Remark 1), a ciphertext c is of the form
(A,B) = (rQ, tQ+Pm) ∈ 〈Q〉×〈Q,P1〉 (recall that mP1 = Pm and ord(P1) | N ;
cf. Section 2). If s denotes a user’s private key, we know that a ciphertext c is
valid if and only if t = rs mod ord(Q), which in turn is equivalent to saying that
B − sA = Pm (recall that Pm �∈ 〈Q〉 for all 0 �= m ∈ ZN). �

There are a couple of interesting properties of the cryptosystem that depend on
the actual choice of the elliptic curve in the setup algorithm. We start with the
detection of invalid ciphertexts for the master entity.

Property 3. If DDHZN2 is hard in E(ZN2) (even when the factorization of N is
known), then the master entity, when given a user’s public key, cannot decide
whether a given ciphertext is a valid encryption under this public key or not.

Proof. Assume that the master can detect invalid ciphertexts which are, by
definition, of the form (A,B) = (rQ, tQ + Pm) ∈ 〈Q〉 × 〈Q,P1〉. Then we can
use this detection algorithm to solve DDHZN2 as follows: Given a DDHZN2 -tuple
(Q, rQ, sQ, tQ), we just check the ciphertext (A,B) = (rQ, tQ) for validity under
the public key sQ. Clearly, we have:

(A,B) is valid ⇐⇒ (Q, rQ, sQ, tQ) is a valid DDHZN2 -tuple.

�

As explained in the Introduction, there are applications where the master entity
should be able to check ciphertexts for validity as well. This is where pairings
come into play. We will see that our cryptosystem is actually a nice application of
hidden pairings – a notion introduced by Dent and Galbraith [9]. Therein, they
present an identification scheme as a cryptographic application which was the
only interesting application known until now. Unfortunately, since our scheme
uses elliptic curves with certain properties in a non-black-box way, we cannot
use the construction of a “hidden pairing”-group of [9] directly, but need to
construct our own. Our construction is given in the following result that we
prove in Section 7:

Lemma 2. There is an efficient construction of an elliptic curve E over ZN2

with properties as in Proposition 1 together with a point Q ∈ E(ZN2) of large
order dividing M such that

1. if Q1 and Q2 denote the natural reductions of Q to E(Zp) and E(Zq), re-
spectively, we have that ord(Q) = lcm(ord(Q1), ord(Q2))

2. we can efficiently compute the ‘reduced’ Tate pairings τp and τq on E over
Zp and Zq, respectively.

Since the Tate pairings τp and τq can only be computed if the factorization of
N is known, they are called hidden pairings. Concerning the security of elliptic
curves with properties as in the Lemma, we refer the reader to [15] and [9]. This
Lemma has an interesting consequence on our cryptosystem:

Additively Homomorphic DD-PKE, Revisited 251

Property 4. Let Q be a point on an elliptic curve E over ZN2 as in Lemma 2. If
our cryptosystem uses E and Q in its public parameters, then the master entity
can detect invalid ciphertexts under a given user’s public key.

Proof. Let R = sQ be a user’s public key and let (A,B) = (rQ, tQ + Pm) ∈
〈Q〉 × 〈Q,P1〉 be a ciphertext. In order to check the validity of (A,B) under R,
the master entity first uses the master secret M to compute the plaintext m (by
using mDec). Since the master knows the factorization of N , it can now compute
the reductions modulo p of Q,R,A and T := B − Pm = tQ in E(Zp) which
we denote by Q1, R1, A1 and T1, respectively. Additionally, let Q2, R2, A2, T2 ∈
E(Zq) be the respective reductions modulo q. Since the master can efficiently
compute the ‘reduced’ Tate pairings τp and τq, respectively, it can check whether
(Q1, R1, A1, T1) and (Q2, R2, A2, T2) are valid DDH-tuples in E(Zp) and E(Zq),
respectively, in the usual way (see [12] and [22]). We have the relation that
(Q1, R1, A1, T1) is a valid DDH-tuple in E(Zp) if and only if t = sr mod ord(Q1).
An analogous relation holds for the prime q. Together, the Chinese Remainder
Theorem over Zord(Q) yields that (Q1, R1, A1, T1) and (Q2, R2, A2, T2) are valid
DDH-tuples over their respective prime fields if and only if t = rs mod ord(Q)
which in turn holds if and only if (A,B) is a valid ciphertext under R. �

6 Semantic Security

Considering the fact that our cryptosystem is an additive variant of the El-
Gamal cryptosystem, it is rather obvious that it is semantically secure under
the DDHZN2 -assumption. Therefore, and due to space limitations, we only give
a proof sketch of this fact here: Proving semantic security of additively ho-
momorphic cryptosystems boils down to proving that a random encryption is
computationally indistinguishable from an encryption of 0 (e.g., Armknecht et
al. [2]). In our cryptosystem, a random encryption has the form (rQ, rR + Pm)
with randomness r ∈ ZN2 and random message m ∈ ZN . An encryption of 0,
on the other hand, has the form (rQ, rR) for randomness r ∈ ZN2 . Now, if we
write X = rQ and S = rR + Pm for randomness r ∈ ZN2 and random message
m ∈ ZN , we see that semantic security states: Given points X,R ∈ 〈Q〉 and given
a random point S, decide whether logQ(S) = logQ(X) logQ(R). This problem is
the DDHZN2 -problem, except that S is chosen from a larger group (and not only
from 〈Q〉). However, DDHZN2 reduces to this more general problem.

In practice, from an adversary’s point of view the situation is even worse, since
without knowledge of the factorization of N it is extremely hard to find a point
Q′ on the curve at all (that differs from linear combinations of the publicly known
points Q,R and P1), because one would need to solve polynomial equations in
ZN2 . It should be mentioned though that the security highly depends on the
order of the point Q. Therefore, one should always take great care in the setup
of the cryptosystem that the point Q really has large order (of about the same
size as the prime factors of N).

Finally, we note that concerning the size of the security parameter of our
scheme, we need to ensure that the bit length of the primes p and q is roughly

252 A. Peter et al.

512 (at least). This yields a 1024 bit RSA-modulus and so we can assume that
factoring such a large number is indeed hard in practice. Since solving discrete
logarithms on elliptic curves over prime fields is assumed hard if the bit length of
the order of the underlying prime field is about 180, having 512 bits here makes
it reasonable to assume that the DLP is indeed hard on our chosen curves. Such a
parameter setting is similar to the settings of [13] and [9], where it is argued that
one can assume a high level of security while having efficient group operations
on the curve at the same time.

7 Concrete Setup of the System’s Parameters

The basic goal of this section is to prove Proposition 1 and Lemma 2, i.e., to give
efficient constructions of elliptic curves with the properties as described in the
respective claim. Since curves satisfying Lemma 2 will also satisfy Proposition
1, we start with the latter (Method 1) and then look at which of these curve
additionally satisfy the Lemma (Methods 2 and 3).

Method 1: Random Curves. Given a security parameter κ (which in practice
will be of size 512), the fundamental idea is to choose two distinct, random
primes p and q of about κ bits (so N = pq is our RSA-modulus) together with
two random elliptic curves E1 and E2 over Zp and Zq, respectively. We require
that both E1(Zp) and E2(Zq) have at least one large prime factor (of about
κ bits) – so we discard all curves not having this property and repeat choosing
random curves until we find two suitable elliptic curves. Then, by using standard
techniques (i.e., consideringE1 and E2 over Zp2 and Zq2 , respectively (cf. Lemma
3), and then using the Chinese Remainder Theorem), we construct an elliptic
curve E over ZN2 such that M := lcm(#E(Zp),#E(Zq)) has at least two large
prime factors.

We remark that concerning the security of our cryptosystem, this way of
constructing the elliptic curves prevents an attacker to exploit any particular
structure of the used elliptic curve.

Likelyhood of hitting on such curves. One problem with this approach concerns
the likelyhood of hitting on such curves by random sampling given a prime p.
Since there is no final answer to this question in theory, we have to rely on
a conjecture by Galbraith and McKee [14]: First, let us only consider elliptic
curves E with prime order. It is conjectured that

Pr[#E(Zp) is prime] is asymptotic to cp
1

log p
as p→∞,

where

cp =
2

3

∏
l>2

(
1− 1

(l − 1)2

) ∏
2<l|p−1

(
1 +

1

(l + 1)(l − 2)

)

Additively Homomorphic DD-PKE, Revisited 253

and the probability is over all random primes p and (a, b)
U←− Z

2
p \ {(a, b) ∈ Z

2
p |

4a3 + 27b2 = 0}. We ran some numerical tests ourselves (see Table 1) which
confirm the conjecture in practice.

Table 1. Numerical probability of hitting on a curve with prime order

Bit length of p 64 128 192 256

Pr[#E(Zp) is prime] 1.17 % 0.58 % 0.38 % 0.27 %

As we have discussed before, we actually do not need the curve to have a large
prime order, but only a nearly prime order. Therefore, we can optimize our
search for elliptic curves by using a result by Lenstra [20] that small prime factors
appear with a high probability. The idea is to fix a set S of small primes and
allow #E(Zp) to be divisible by powers of s ∈ S. This increases the probability
to hit on a curve with a large prime dividing the order by a huge factor (e.g.,
for orders of the form 2k·prime this factor is about 3, while for orders of the
form 2k · 3l·prime the factor is about 5.5 in our numerical results). This was
also conjectured by Galbraith and McKee in [14] and our numerical tests give
evidence for this conjecture (cf. Table 2).

Table 2. Numerical probability of hitting on a curve with nearly prime order

Bit length of p 64 128 192 256

Pr[#E(Zp) = 2k · prime] 3.61 % 1.78 % 1.28 % 0.90 %

Pr[#E(Zp) = 2k · 3l · prime] 6.58 % 3.06 % 2.23 % 1.45 %

Concerning the efficiency of constructing curves as in Proposition 1, our experi-
ments show that for an RSA-modulus of 512 bits (i.e., two primes of about 256
bits) it takes roughly 15 minutes using MAGMA on a single core of an Intel
Xeon running at 2.5 GHz. For an 1024 bit RSA-modulus, it takes approximately
13 hours per curve. Allowing primes of up to three dividing the group order,
we were able to generate five pairs of elliptic curves in approximately two days,
while allowing prime factors of up to 13, this time halves (cf. Table 3). Since
the Setup algorithm of our cryptosystem needs to be run only once, such an
efficiency is reasonable in practice.

Table 3. Numerical results for the runtime of the Setup algorithm for log p = 512 and
5 keys generated, where S := {prime p | p is allowed to divide #E(Zp)}

S = {2, 3} S = {2, 3, 5} S = {2, 3, 5, 7, 11} S = {2, 3, 5, 7, 11, 13}
Time 2d 6h 4m 20s 23h 15m 10s 2d 5h 49m 41s 1d 4h 43m 17s

Tested Curves 1298 552 1266 687

254 A. Peter et al.

Performing our cryptosystem’s setup. Recall that for a high level of security
it is not enough to find suitable elliptic curves, we should also choose the
point Q ∈ E(ZN2) in the Setup algorithm to be of large order dividing M =
lcm(#E(Zp),#E(Zq)) (cf. Section 6). The following two lemmata can be used
in order to do this:

Lemma 3. For a prime p > 3 and an elliptic curve E over Zp, we can efficiently
construct an elliptic curve E′ over Zp2 such that E′(Zp2) has order #E(Zp) · p
and the reduction from Zp2 to Zp induces a group homomorphism from E′(Zp2)
to E(Zp).

Proof. Let E be given by the short Weierstrass equation y2z = x3 + axz2 + bz3

over Zp. The existence of E′ such that it reduces to E is simple, because it is
sufficient to define E′ by the same Weierstrass equation. Since the discriminant
of E is invertible modulo p it also is modulo p2, thus E′ is an elliptic curve.
Due to the geometric definition of the elliptic curve group law, the existence of
the induced group homomorphism is obvious. It is left to be proven that this
homomorphism is surjective.

Fix any finite point P = (x0 : y0 : 1) ∈ E(Zp), then y0 is a solution to the
polynomial equation 0 = y2− (x3

0+ax0+ b). In the case y0 �≡ 0 (mod p) there is
a unique integer 0 ≤ k < p such that (y0+kp)2− (x3

0+ax0+b) ≡ 0 (mod p2) by
Hensel’s lifting lemma. The new point (x0 : y0+ kp : 1) obviously reduces to the
initial point. In the case y0 ≡ 0 (mod p) we know that x0 has been a solution
for 0 = x3+ax+b (mod p). Since this polynomial cannot have any double roots
we can find a solution x0 + kp for the same equation modulo p2. This proves
surjectivity.

To compute the order of E′(Zp2) it is sufficient to compute the kernel of
the reduction to E(Zp). Obviously there are exactly p points (kp : 1 : 0) for
0 ≤ k < p on E′(Zp2) that reduce to the point at infinity on E(Zp). Thus
#E′(Zp2) = #E(Zp) · p holds due to the homomorphism theorem. �

Lemma 4. Let p > 3 be a prime, E be an elliptic curve defined over Zp and
P ∈ E(Zp) a point with gcd(ord(P), p) = 1. Then the curve E′(Zp2) constructed
as in Lemma 3 contains a point P ′ of order ord(P).

Proof. Let Q′ be any preimage of P under the reduction map (Q′ can be con-
structed following the proof of Lemma 3). By the homomorphism theorem, we
have ord(P) | ord(Q′). Multiplying both points with p permutes the subgroup
generated by P on E(Zp) and P ′ := pQ′ has order ord(P ′) = ord(pP) = ord(P)
since the order of P is coprime to p. �

Now, the construction of a point Q ∈ E(ZN2) with large order dividing M ,
where E is a random curve such that M has at least two large prime factors (as
in Proposition 1), works as follows:

1. Choose a random RSA-modulus N = pq and random elliptic curves E1(Zp),
E2(Zp) with nearly prime order as described before.

2. Pick points P1 ∈ E1(Zp) and P2 ∈ E2(Zq) of high order coprime to p and q.

Additively Homomorphic DD-PKE, Revisited 255

3. Apply Lemma 3 and 4 to construct elliptic curves E′
1 and E′

2 with points
P ′
1 ∈ E′

1(Zp2) and P ′
2 ∈ E′

2(Zq2) of high order.
4. Use the Chinese Remainder Theorem to merge E′

1 and E′
2 to a single curve

E defined over the ring ZN2 . The lift Q of P ′
1 and P ′

2 will have order
lcm(ord(P1), ord(P2)) and is the point used for the public parameters PP.

Method 2: Supersingular Curves. A more efficient way to construct elliptic
curves that satisfy Proposition 1 is by using supersingular curves E and partic-
ular RSA-moduli N = pq. For such curves it is known that over a prime field Zp

we have #E(Zp) = p+1. We note that the following discussion can be done for
arbitrary supersingular elliptic curves, however, we restrict our attention to the
following family of curves:

Lemma 5 (see [19]). Let p be an odd prime with p ≡ 2 (mod 3) and let 0 �=
b ∈ Zp. Consider the elliptic curve E : y2 = x3 + b. Then, E(Zp) is cyclic and
#E(Zp) = p+ 1.

So if we start with a strong prime p (i.e., p + 1 is not smooth) with p ≡ 2
(mod 3) and setting E to be the curve given by the equation y2 = x3 + b for
some 0 �= b ∈ Zp, we ensure a large factor in #E(Zp) = p + 1. To construct a
strong prime p fulfilling the congruence condition it is possible to take a prime
p′ of the desired bit length κ such that p := 6p′ − 1 is also prime.

Now, by using Lemmas 3 and 4, we can construct an elliptic curve together
with a point Q of high order suitable for our cryptosystem in exactly the same
way as we did in Method 1 (items 2 – 4 in the construction therein). We remark
that constructing the elliptic curves in this way gives a very fast and easy setup
of our system.

Additional property: Hidden pairing. Since supersingular elliptic curves have an
embedding degree of at most k = 6, they allow for an efficient evaluation of the
‘reduced’ Tate pairing, which can then be used to solve DDH-challenges [12,22].
Therefore, our just constructed elliptic curve E over ZN2 has a hidden pairing
[9], and we can efficiently solve DDH if the factorization of N is known. This
proves Lemma 2.

Method 3: Complex Multiplication. The CM method [3] allows us to con-
struct elliptic curves E together with primes p and q such that E satisfies Propo-
sition 1. Even more, by using extended algorithms [11], it is possible to construct
E over ZN2 such that it has a small embedding degree over the prime fields Zp

and Zq. This yields another construction satisfying Lemma 2.

8 Conclusions

We presented a new additively homomorphic UI-DD-PKE scheme that combines
many interesting properties in just one scheme. Most importantly, by choosing

256 A. Peter et al.

the system’s parameters (i.e., the elliptic curves) appropriately, our scheme is the
first that allows the master entity to check for invalid ciphertexts, additionally
to being a UI-DD-PKE scheme. Such a cryptosystem has practical relevance
in hierarchical organisations, e.g., in order to reduce key management, or to
deal with the problem of key loss. Additionally, the ability to check for invalid
ciphertexts might be useful in electronic voting systems where some form of
“after the fact” validity checks of votes are required [1]. Finally, we note that
due to its ElGamal-like structure, our cryptosystem is likely to be anonymous
[4] and hence it would be interesting to investigate the effect of the double
decryption mechanism on known constructions such as group encryption [18].
Further potential future work includes an analysis of the MOV-attack [22] in
hidden pairing scenarios, and the possibilities of extracting the randomness used
to encrypt a message in our scheme, which would probably yield a practical
trapdoor discrete logarithm group.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium,
pp. 335–348. USENIX Association (2008)

2. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: char-
acterizations, impossibility results, and applications. Designs, Codes and Cryptog-
raphy, 1–24, doi:10.1007/s10623-011-9601-2

3. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp. 61,
29–68 (1993)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: FOCS, pp. 97–106. IEEE (2011)

7. Bresson, E., Catalano, D., Pointcheval, D.: A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and Its Applications. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg
(2003)

8. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

9. Dent, A.W., Galbraith, S.D.: Hidden Pairings and Trapdoor DDH Groups. In:
Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 436–451.
Springer, Heidelberg (2006)

10. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists.
EURASIP J. Inf. Secur. 2007, 15:1–15:15 (2007)

11. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

12. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comput. 62, 865–874 (1994)

13. Galbraith, S.D.: Elliptic curve paillier schemes. J. Cryptology 15(2), 129–138 (2002)

Additively Homomorphic DD-PKE, Revisited 257

14. Galbraith, S.D., McKee, J.F.: The probability that the number of points on an
elliptic curve over a finite field is prime. Journal of the LMS 62(03), 671–684 (2000)

15. Galbraith, S.D., McKee, J.F.: Pairings on Elliptic Curves over Finite Commutative
Rings. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp.
392–409. Springer, Heidelberg (2005)

16. Galindo, D., Herranz, J.: On the security of public key cryptosystems with a double
decryption mechanism. Inf. Process. Lett. 108(5), 279–283 (2008)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

18. Kiayias, A., Tsiounis, Y., Yung, M.: Group Encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)

19. Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New Public-Key
Schemes Based on Elliptic Curves over the Ring Zn. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992)

20. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics,
649–673 (1987)

21. Lenstra, H.W.: Elliptic curves and number theoretic algorithms. In: Proceedings
of the International Congress of Mathematicians, pp. 99–120 (1988)

22. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

23. Okamoto, T., Uchiyama, S.: Security of an Identity-Based Cryptosystem and the
Related Reductions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 546–560. Springer, Heidelberg (1998)

24. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

25. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

26. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer (1986)
27. Youn, T.-Y., Park, Y.-H., Kim, C.-H., Lim, J.: An Efficient Public Key Cryptosys-

tem with a Privacy Enhanced Double Decryption Mechanism. In: Preneel, B.,
Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 144–158. Springer, Heidelberg
(2006)

Secure Hierarchical Identity-Based Identification
without Random Oracles

Atsushi Fujioka1, Taiichi Saito2, and Keita Xagawa1

1 NTT Secure Platform Laboratories,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

{fujioka.atsushi,xagawa.keita}@lab.ntt.co.jp
2 Tokyo Denki University,

5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
taiichi@c.dendai.ac.jp

Abstract. This paper proposes a generic construction of hierarchical
identity-based identification (HIBI) protocols secure against imperson-
ation under active and concurrent attacks in the standard model. The
proposed construction converts a digital signature scheme existentially
unforgeable against chosen message attacks, where the scheme has a
protocol for showing possession of signing key. Our construction is based
on the so-called certificate-based construction of hierarchical identity-
based cryptosystems, and utilizes a variant of the well-known OR-proof
technique to ensure the security against impersonation under active and
concurrent attacks.

We also present several concrete examples of our construction employ-
ing the Waters signature (EUROCRYPT 2005), and other signatures. As
results, its concurrent security of each instantiation is proved under the
computational Diffie-Hellman (CDH) assumption, the RSA assumption,
or their variants in the standard model.

Chin, Heng, and Goi proposed an HIBI protocol passively and concur-
rently secure under the CDH and one-more CDH assumption,
respectively (FGIT-SecTech 2009). However, its security is proved in the
random oracle model.

Keywords: hierarchical identity-based identification, impersonation un-
der active and concurrent attacks, computational Diffie-Hellman assump-
tion, RSA assumption.

1 Introduction

Identification is one of the important research topics in cryptography. An iden-
tification protocol is a protocol between a prover and a verifier, in which the
prover tries to convince the verifier of his/her identity. In the so-called standard
identification (SI), the verifier needs to know the identity and a public key of
the prover. The security of SI protocols is defined by an experiment in which an
adversary is allowed to act as verifiers in the learning phase, and then tries to
impersonate some entity in the challenge phase. We say that the SI protocol is

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 258–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Secure Hierarchical Identity-Based Identification without Random Oracles 259

secure when, for any polynomial-time adversary, the probability that it succeeds
in the impersonation is negligible.

In the experiment, when an adversary is only allowed to eavesdrop communi-
cations in identification in the learning phase, the attack model is called imper-
sonation under passive attacks (imp-pa model). When an adversary is allowed to
sequentially access entities who prove their identities (namely, only one access is
allowed at a same time), the attack model is called impersonation under active
attacks (imp-aa model), and when an adversary is allowed to concurrently access
entities who prove their identities, even in the challenge phase, the attack model
is called impersonation under concurrent attacks (imp-ca model) [2]. When we
use an identification protocol in real world, an adversary may behave actively,
and possibly establishes many connections. Thus, it is desirable that the protocol
ensures at least the imp-aa security, and is expected to be imp-ca secure.

After the proposal of identity-based cryptography [18], identification in the
identity-based setting, called identity-based identification (IBI), has been inves-
tigated. In an IBI protocol, a trusted third party called private key generator
(PKG) is assumed to exist as in other identity-based cryptographic primitives.
It publishes a master public key, generates a secret key corresponding to the
identity of an entity, and gives the secret key to the entity. When an identifi-
cation protocol starts, the verifier in the IBI protocol needs to know only the
master public key and the identity of the prover, while an SI protocol requires
the verifier to check the authenticity of the public key of the prover in some way
(such as public key infrastructure).

Hierarchical identity-based identification (HIBI) is an extension of IBI. In an
HIBI protocol, the single PKG functionality of generating secret keys is divided
into partial ones and they are delegated to multiple PKGs. If a PKG is assigned
an identity vector, ID(k−1) = (I1, . . . , Ik−1), and given a secret key, sk ID(k−1) ,
corresponding to the identity vector, then it can generate a secret key, sk ID(k) ,
corresponding to an identity vector, ID(k) = (I1, . . . , Ik−1, Ik). We may denote
an identity by ID if we need not to specify its hierarchy depth.

Similarly as IBI has three phase, HIBI also has Setup, Extract, and
Identification: In phase Setup, the root PKG chooses a security parameter
κ, generates a pair of master public and secret keys, and publishes the master
public key. In phase Extract, the (intermediate) PKG of ID(k−1) has the secret
key, sk ID(k−1) , and extracts the secret key, sk ID(k) , for ID(k), where ID(k−1) is a
prefix of ID(k). In phase Identification, the prover of ID who has sk ID proves
the identity to a verifier.

The first security formulation for IBI was given by Kurosawa and Heng [14],
and Bellare, Namprempre, and Neven provided formal security definitions of IBI
protocols, the imp-pa, imp-aa, and imp-ca security [1]. Kurosawa and Heng also
proposed the first generic construction of IBI protocols from digital signature
(DS) schemes. The construction generates an imp-pa secure IBI protocol from
a DS scheme existentially unforgeable against chosen message attacks (euf-cma
secure) and its Σ-protocol [7] for signature possession.

260 A. Fujioka, T. Saito, and K. Xagawa

The first security formulation for HIBI was given by Chin, Heng, and Goi [6].
They also proposed the first HIBI protocol based on the Kurosawa-Heng IBI
protocol [14] and the hierarchical identity-based signature (HIBS) scheme by
Gentry and Silverberg [10]. Their HIBI protocol is imp-pa secure under the CDH
assumption and imp-ca secure under the one-more CDH assumption. However,
since the Gentry-Silverberg scheme is based on the Boneh-Franklin signature [5],
the security of their HIBI protocol is inherently proved in the random oracle
model [3]. To the best of our knowledge, there exists no HIBI protocol proved
to be secure in the standard model.

Our Contributions. This paper proposes a generic construction of HIBI pro-
tocols imp-ca secure in the standard model.

The generic construction converts an euf-cma secure DS scheme that has a
Σ-protocol proving knowledge of signature generation key. We show that if the
DS scheme has such protocol, the certificate-based construction [1] is applicable
to the Σ-protocol in order to construct an HIBI protocol. Roughly speaking,
in the HIBI protocol, each user has a certificate chain that certifies a signature
verification key. In phase Identification, the prover sends the certificate chain
and proves the knowledge of the signature generation key corresponding to the
signature verification key certified by the certificate chain. Next, we modify the
HIBI protocol by applying a variant of the well-known OR-proof technique, and
prove that the resulting HIBI protocol is imp-ca secure.

We also present several concrete examples of our construction employing the
Waters signature [19], and other signatures. Then, we obtain HIBI protocols
proved to be imp-ca secure under the computational Diffie-Hellman (CDH) as-
sumption, the RSA assumption, or their variants in the standard model.

Organization. We give a definition of hierarchical identity-based identification
and related notions in Section 2. A generic construction of HIBI protocols and
its security discussion are provided in Section 3, and Section 4 gives HIBI pro-
tocols secure under several number-theoretic assumption in the standard model.

2 Definitions

In this section, we present definitions of hierarchical identity-based identification
(HIBI) protocols and digital signature (DS) schemes, and introduce a property
similar to Σ-protocols [7] in DS schemes.

Hierarchical Identity-Based Identification. Two types of formal definitions
for key generation in hierarchical identity-based cryptography have been pro-
posed in the literature. One consists of three algorithms, Root Setup, Lower-level
Setup, and Extraction, as in the hierarchical identity-based encryption (HIBE)
in [10], and the other consists of two algorithms, root-key-generation algorithm
and node-key-generation algorithm, as in the HIBE in [13]. The two types of
definitions are essentially the same. Here, we adopt the formal definition of HIBI

Secure Hierarchical Identity-Based Identification without Random Oracles 261

protocols in [6]. Note that key generation in [6] is the former type, and we de-
scribe it in the latter type.

We define an HIBI protocol as follows: Let HIBI = (SetUp, KG, P, V) be an
HIBI protocol, where SetUp is the root-key-generation algorithm that on input
1κ outputs mpk and msk , KG is the node-key-generation algorithm that on input
(sk ID(k−1) , ID(k)) outputs sk ID(k) , P is the prover algorithm that, taking inputs
mpk , ID and sk ID, interacts with V, and V is the verifier algorithm that, taking
inputs mpk and ID, interacts with P and finally outputs dec ∈ {accept , reject}.
Here, ID(k−1) = (I1, . . . , Ik−1), ID(k) = (I1, . . . , Ik), i.e., ID(k−1) is a prefix
of ID(k), and sk ID(0) = msk . Thus, SetUp is used in Setup, KG is used in
Extract, P and V are used in Identification. Hereafter, for ID = (I1, . . . , Ik),
we let pref(ID) denote the set of all prefixes of ID including itself, that is,
{(I1), (I1, I2), . . . , (I1, . . . , Ik)}.

We describe the formal definitions of the security of HIBI based on the follow-
ing imp-atk experiments between a challenger and an impersonator I = (CV, CP),
where atk denotes a type of attack such that atk ∈ {pa, aa, ca}.
Setup Phase: The challenger obtains (mpk ,msk)← SetUp(1κ). The imperson-

ator, CV, is given the master public key mpk .
Learning Phase: CV can ask queries to the oracles Init, Corr, and Conv

when atk = pa, and also to Prov when atk = aa or ca. In each oracle access,
the oracle is initialized by independent random coin, but maintains its own
state during identification.

– The oracle Init receives a user initialization query ID. It initializes the
identities in pref(ID). It then returns ID to CV.

– The oracle Corr receives a key extraction query ID. It obtains sk ID ←
KG(msk , ID), and returns sk ID to CV.

– The oracle Conv receives a transcript query ID. It returns a transcript
of a transaction between the prover with identity ID and a verifier to CV.

– (only when atk = aa or ca) The oracle Prov receives an identification
query ID. It obtains sk ID ← KG(msk , ID), runs P(mpk , ID, sk ID), and
interacts with CV as the prover of identity ID. When atk = aa, CV is
allowed to access Prov once at the same time, and when atk = ca, it
is allowed to access Prov with many different identities, many times at
the same time.

Challenge Phase: CV outputs a target identity ID∗ and state information stCP.
If ID∗ or any prefix of ID∗ is queried to the key-extraction oracle Corr in
the learning phase, then the challenger outputs 0 and halts. In addition, if
ID∗ is not initialized in the learning phase, then the challenger also outputs
0 and halts. Otherwise, the challenger gives stCP to CP.
CP plays the role of a prover of the target identity ID∗ and interacts with the
challenger running V(mpk , ID∗). During the interaction, CP is allowed to ask
queries to the oracles Init, Corr, and Conv, (and Prov when atk = aa or
ca), as the same as in the learning phase except that identification queries
should not be the target identity ID∗ and key extraction queries should not
be ID∗ or its prefixes. Finally the challenger outputs dec ← V(mpk , ID∗).

262 A. Fujioka, T. Saito, and K. Xagawa

We say an HIBI protocol is secure against impersonation under passive,
active or concurrent attacks (named imp-pa, imp-aa or imp-ca secure, respec-
tively) if for any polynomial-time passive, active or concurrent impersonator I,
Pr [dec = accept] is negligible.

We note that the maximal depth � is determined independently of the security
parameter.

Digital Signature. Let DS = (Gen, Sign, Vrfy) be a DS scheme, where Gen
is the key-generation algorithm that on input 1κ outputs a pair of signature
verification and generation keys (vk , gk), Sign is the signing algorithm that
takes as input a message m and gk and outputs a signature σ, and Vrfy is
the verification algorithm that takes as input a message m, a signature σ and
vk , and outputs accept or reject . For any (vk , gk) ← Gen(1κ) and any m,
accept = Vrfy(vk , m, Sign(gk , m)) holds.

Some DS schemes use not only public keys of users but also common pa-
rameters. In such scheme, Gen is divided into two algorithms: PGen and KGen.
PGen on input 1κ generates the common parameters params , and KGen takes
params as input and generates a pair of signature verification and generation
keys (vk , gk) for each user. We call this type of DS schemes set-up type.

Key Possession Protocol for Digital Signature. In this paper, we require
that a DS scheme has a variant of Σ-protocols [7] proving knowledge of signature
generation key.

Let DS = (Gen, Sign, Vrfy) be a DS scheme. Let vk be a signature verification
key and gk be a signature generation key such that (vk , gk) ← Gen(1κ). The
common input to (P, V) is vk , and the secret input to P is gk .

Suppose that a three-move protocol between P and V are described by four
probabilistic polynomial time algorithms (Σcom, Σch, Σres, Σvrfy), as follows.

P→ V: P computes (a, st)← Σcom(vk , gk) and sends a to V.
V→ P: V computes c← Σch(vk) and sends c to P.
P→ V: P computes z ← Σres(vk , gk , a, c, st) and sends z to V.
V: V computes dec ← Σvrfy(vk , a, c, z) and outputs dec ∈ {accept , reject}.
We call this type of three-move protocols canonical [2], and moreover, we call a
canonical protocol Σ+-type if it satisfies the following three properties: special
zero-knowledge, special soundness, and special challenge [9]:

Special zero-knowledge: We can obtain an accepting transcript from a chal-
lenge, c, and vk . That is, there is a probabilistic polynomial time algorithm Σsim

that takes on input vk and c such that c ← Σch(vk), and outputs (a, z) such
that accept = Σvrfy(vk , a, c, z). The distribution of transcripts generated by Σch

and Σsim is indistinguishable from that of real transcripts.

Special soundness: We can compute a signature generation key gk ′ from the
signature verification key vk and two accepting transcripts (a, c, z) and (a, c′, z′)
such that c �= c′. That is, there is a probabilistic polynomial time algorithm

Secure Hierarchical Identity-Based Identification without Random Oracles 263

Σext that takes as input vk and two transcripts (a, c, z) and (a, c′, z′) satisfying
accept = Σvrfy(vk , a, c, z) = Σvrfy(vk , a′, c′, z′) and c �= c′, and outputs gk ′, where
accept = Vrfy(vk , m, Sign(gk ′, m)) holds for any m.

Special challenge: Σch depends only on params , not on vk , and the output c is
uniformly distributed over a commutative group G. In addition, the group oper-
ation + is computable in polynomial time. G is determined only by params , not
by vk . That it, there is a probabilistic polynomial time algorithm Σ+

ch such that
it takes as input params (not vk) and outputs c, and c is uniformly distributed
over G.

We call an protocol Σ∗-type if the special challenge property is replaced with
the following property [9]:

Strongly special challenge: Σch depends only on 1κ, not on vk , and the output
challenge c is uniformly distributed over a commutative group G. In addition,
the group operation + is computable in polynomial time. G is determined only
by 1κ, not by vk . That it, there is a probabilistic polynomial time algorithm
Σ∗ch such that it takes as input 1κ (not vk) and outputs c, and c is uniformly
distributed over G.

Note that while the special challenge property requires that the underlying
DS scheme is set-up type, the strongly special challenge property does not.

3 Construction of Strongly Secure HIBI Protocols

Let DS = (Gen, Sign, Vrfy) be a DS scheme which has a Σ∗-type protocol for key
possession. Suppose that the protocol for key possession uses four probabilistic
polynomial time algorithms (Σcom, Σ∗ch, Σres, Σvrfy), and has the special zero-
knowledge property with a probabilistic polynomial time algorithm Σsim and the
special soundness with a probabilistic polynomial time algorithm Σext.

Before showing the proposed construction, we provide a construction of imp-pa
secure HIBI protocols from DS schemes. Then, we modify the construction to
the proposed one which generates imp-ca secure HIBI protocols by using the
well-known OR-proof technique.

3.1 Weakly Secure Construction

In this section, we give a construction of HIBI from DS by describing an HIBI
protocol, HIBI′, produced from a DS scheme, DS. When DS is euf-cma secure,
then HIBI′, is weakly secure, i.e., imp-pa secure.

In phase Setup of HIBI′, the root PKG chooses a security parameter κ, gen-
erates a pair of signature verification and generation keys, (vk , gk), with Gen,
and publishes vk as the master public key.

In phase Extract of HIBI′, the (intermediate) PKG of ID(k−1) has the secret
key, sk ID(k−1) , and extracts the secret key, sk ID(k) for ID(k), where ID(k−1) is
a prefix of ID(k), i.e., ID(k−1) = (I1, . . . , Ik−1) and ID(k) = (I1, . . . , Ik−1, Ik).
sk ID(k−1) consists of a chain of signature verification keys (vk1, . . . , vkk−1), their

264 A. Fujioka, T. Saito, and K. Xagawa

signatures (σ1, . . . , σk−1), and the signature generation key gkk−1, where vk0 =
mpk , gk0 = msk , σi ← Sign(gk i−1, (ID

(i), vk i)), and ((ID(i), vk i), σi) is a valid
certificate under vk i−1 (1 ≤ i ≤ k). Then, the (intermediate) PKG generates
a pair of signature verification and generation keys, (vkk, gkk), with Gen, signs
(ID(k), vkk) with Sign to compute its signature, σk, and forms sk ID(k) as a chain
of signature verification keys vk1, . . . , vkk, their signatures σ1, . . . , σk, and the
signature generation key gkk.

In phase Identification of HIBI′, the prover of ID(n) who has sk ID(n) proves
the identity to a verifier by showing possession of gkn corresponding to vkn. It
generates a commitment value a with Σcom, and sends (vk1, . . . , vkn), (σ1, . . . ,
σn), and a to the verifier. The verifier checks validity of all certificates, generates
a challenge value c with Σ∗ch, and sends c to the prover. The prover generates a
return value z with Σres, and sends z to the verifier. Finally, the verifier checks
validity of (a, c, z) with Σvrfy, and outputs the result.

Next, we show the above construction generates weakly secure IBI protocols.

Theorem 3.1. If the underlying DS scheme is euf-cma secure, then the con-
structed HIBI protocol is imp-pa secure.

We describe an outline of the proof. In order to prove the theorem by contra-
diction, let us consider an impersonator I ′ = (CV′, CP′) who breaks the imp-pa
security of HIBI′.

In the security game, the challenger generates a chain of signature verification
keys on the query ID to the Init oracle. When I ′ impersonates the target identity,
I ′ uses either a new chain or the chain of signature verification keys which the
challenger prepared on the query from I ′. Thus, we first classify the impersonator
into two types; A Type-I impersonator sends the signature verification keys in
the first message that are the same as them prepared by the challenger, and a
Type-II impersonator does not.

We then construct a forger, F ′, who breaks the euf-cma security of DS from
the impersonator I ′.
Type-I: Receiving vk , F ′ guesses when I ′ initializes an identity of which the tar-
get identity is a prefix, and guesses the depth of the target identity. F ′ generates
the keys in the HIBI protocol and assigns vk the leaf key of the target identity,
i.e., the verification key of the guessed depth. Since F ′ has the signing oracle and
all signature generation keys but the one corresponding to vk , and the protocol
is Σ∗-type, F ′ perfectly simulates the oracles until I ′ corrupts the identity that
F ′ guessed as the target identity. Eventually, CV′ declares the target identity
ID∗. If F ′’s guess is wrong, then F ′ aborts. Otherwise, it runs CP′ twice with
different challenges and extracts the corresponding signature generation key gk
to vk . So that, F ′ can forge any messages.

Type-II: From the hypothesis that I′ does not send the signature verification
keys in the first message that are the same as them prepared by the challenger,
I ′ has forged at least one of certificates (σ1, . . . , σn). As in the case of the Type-
I impersonator, F ′ guesses when I ′ initializes an identity of which the target

Secure Hierarchical Identity-Based Identification without Random Oracles 265

identity is a prefix, and guesses the depth of the signature verification key in
the chain on which I ′ will forge a certificate. F ′ generates the keys in the HIBI
protocol and assigns vk the key of the target identity in the chosen depth. Since
F ′ has the signing oracle and all signature generation keys but corresponding one
to vk , and the protocol is Σ∗-type, F ′ perfectly simulates the oracles. Eventually,
CV′ declares the target identity ID∗. If F ′’s guess is wrong, then F ′ aborts.
Otherwise, it runs CP′ and obtains a forgery.

A full proof will be given in the final version of this paper.

3.2 Proposed Construction

In this section, we give the proposed construction of HIBI from DS.
We describe an HIBI protocol HIBI = (SetUp, KG, P, V) produced from a DS

scheme, DS.
SetUp(1κ): It takes as input 1κ, runs (vk , gk)← Gen(1κ), (vkmaster , gkmaster)←

Gen(1κ), and outputs ((1κ, vk , vkmaster), (1κ, gk)) as (mpk , msk).
KG(sk ID(k−1) , ID(k)): It takes as input sk ID(k−1) and ID(k). Then, it parses sk ID(k−1)

as sk ID(k−1) = (1κ, vk1, . . . , vkk−1, σ1, . . . , σk−1, gkk−1), runs (vkk, gkk) ←
Gen(1κ), σk ← Sign(gkk−1, (ID

(k), vkk)), and outputs (1κ, vk1, . . . , vkk,

σ1, . . . , σk, gkk) as sk ID(k) . Here, sk ID(0) = (1κ, gk), gk0 = gk , and ID(k−1)

of sk ID(k−1) is a prefix of ID(k), i.e., ID(k−1) = (I1, . . . , Ik−1) and ID(k) =
(I1, . . . , Ik−1, Ik).

P→ V: P takes as input (mpk , ID(n), sk ID(n)), parses mpk and sk ID(n) as (1κ, vk ,
vkmaster) and (1κ, vk1, . . . , vkn, σ1, . . . , σn, gkn), respectively, runs (a0, st)←
Σcom(vkn, gkn), c1 ← Σ∗ch(1

κ), and (a1, z1) ← Σsim(vkmaster , c1), and sends
(vk1, . . . , vkn), (σ1, . . . , σn) and (a0, a1) to V.

V→ P: V takes as input (mpk , ID(n)), parses mpk as (1κ, vk0, vkmaster), runs
deci ← Vrfy(vk i−1, (ID(i), vk i), σi) (1 ≤ i ≤ n), and outputs reject if deci =
reject for some i. Otherwise, V runs c← Σ∗ch(1

κ), and sends c to P.
P→ V: P computes c0 = c − c1, runs z0 ← Σres(vkn, gkn, a0, c0, st), and sends

(c0, z0, z1) to V.
V: V computes c1 = c − c0, runs dec′1 ← Σvrfy(vkmaster , a1, c1, z1), dec′0 ←

Σvrfy(vkn, a0, c0, z0), and outputs accept if both dec ′0 and dec′1 are accepts.
Otherwise, it outputs reject .

Note that the above construction requires the strongly special challenge property,
i.e., challenges are generated by Σ∗ch. However, when we starts from a set-up type
DS scheme, it is clear that we need only the special challenge property since it
is enough to generate the challenges from params not 1κ.

3.3 Security against Active and Concurrent Attacks

In this section, we prove that the constructed HIBI protocol is strongly secure
when the DS scheme is euf-cma secure. Actually, we show that the HIBI proto-
cols is imp-ca secure, and it is clear that the imp-ca security implies the imp-aa
security. Thus, the protocol is strongly secure, i.e., secure against active and
concurrent attacks.

266 A. Fujioka, T. Saito, and K. Xagawa

Setup
SetUp(1κ)

(vk, gk)← Gen(1κ)
(vkmaster , gkmaster)← Gen(1κ)

output (mpk, msk) = ((1κ, vk , vkmaster), (1
κ, gk))

Extract
KG(sk

ID(k−1) , ID(k))

sk
ID(k−1) = (1κ, vk1, . . . , vkk−1, σ1, . . . , σk−1, gkk−1)

(vkk, gkk)← Gen(1κ)

σk ← Sign(gkk−1, (ID(k), vkk))
output sk

ID(k) = (1κ, vk1, . . . , vkk, σ1, . . . , σk, gkk)

Identification
P(mpk, ID(n), sk

ID(n)) V(mpk , ID(n))

mpk = (1κ, vk , vkmaster) mpk = (1κ, vk , vkmaster)
sk

ID(n) = (1κ, vk1, . . . , vkn,

σ1, . . . , σn, gkn) ((vk1, . . . , vkn),
(a0, st)← Σcom(vkn, gkn) (σ1, . . . , σn),

c1 ← Σ∗
ch(1

κ) (a0, a1))

(a1, z1)← Σsim(vkmaster , c1) −→ deci ← Vrfy(vki−1, (ID(i), vki), σi)
(1 ≤ i ≤ n)

output reject if deci = reject
c for some i

c0 = c− c1 ←− c← Σ∗
ch(1

κ)
z0 ← Σres(vkn, skn, a0, c0, st) (c0, z0, z1)

−→ c1 = c− c0
dec′

0 ← Σvrfy(vkn, a0, c0, z0)
dec′

1 ← Σvrfy(vkmaster , a1, c1, z1)
output accept

if dec′
0 = dec′

1 = accept,
and otherwise, output reject

Fig. 1. Proposed Construction

Theorem 3.2. If the underlying DS scheme is euf-cma secure, then the con-
structed HIBI protocol is imp-ca secure.

We describe an outline of the proof.
In order to prove the theorem by contradiction, we construct a forger, F ,

who breaks the euf-cma security of DS from an impersonator I = (CV, CP) who
breaks the imp-ca security of HIBI.

To impersonate an identity, I needs to show possession of an signature gener-
ations key for either one of signature verification keys of a new certificate chain,
the last of the certificate chain which F prepared, or vkmaster .

The first two types are the same as Type-I and Type-II in the passive security.
We classify the third type, I exploiting vkmaster , as Type-III.

In the active and concurrent security, F needs to simulate Prov oracle for all
types of impersonators. It is possible for the Type-I and Type-II impersonators
when F has the generation key, gkmaster , for vkmaster , and possible for the Type-
III impersonator when F has the all generation keys, gks, for all users.

Note that for the imp-ca security, the key possession protocol must satisfy
the (strongly) special challenge property as the challenge should be split and is
used for Σ-protocols to show possession of both signature generation keys gk
and gkmaster .

A full proof will be given in the final version of this paper.

Secure Hierarchical Identity-Based Identification without Random Oracles 267

3.4 Discussion

It is known that an HIBS scheme can be constructed from a DS scheme by using
chains of certificates, which is called certificate-based HIBS in [1].

If we have a DS scheme with a Σ-protocol for signature possession, we ob-
tain an HIBI-like protocol by combining the certificate-based HIBS construction
and the Kurosawa-Heng IBI construction [14]. However the HIBI-like protocol
is different from HIBI protocols in some points. The HIBI-like protocol needs
two different key-generation algorithms; one generates secret keys for PKGs (in-
ternal nodes in hierarchical tree), and another secret keys for users (leaf nodes).
Since the secret key for user is a signature of the underlying DS scheme and
not a signature generation key, it cannot be used for generating secret keys for
descendant nodes.

It is also known that an HIBI protocol can be constructed from an SI protocol
and a DS scheme by generating a certificate of a public key of the SI protocol
with the certificate-based HIBS scheme [1]. Our generic construction of HIBI
protocols can be seen as a variant of this construction. If the SI protocol is a
Σ-protocol for proving knowledge of signature generation key in the DS scheme,
this protocol coincides with our generic construction of HIBI protocols from DS
schemes. However our construction does not need an additional cryptographic
primitive such as the SI protocol. In addition, the prover does not send a chain of
certificates but a chain of the signature verification keys and that of signatures,
since the verifier has the prover’s identity vector. This reduces communication
cost of the identities stored in the certificates.

4 Instantiations

4.1 Secure HIBI Protocol from Prime-Order Bilinear Group

Through our generic construction, we can instantiate an HIBI protocol from the
Waters signature scheme Wat05 [19], which is secure under the CDH assumption
in a prime-order bilinear group, with a Σ-protocol described later. Unfortunately,
the signature verification key in Wat05 consists of n + 3 group elements, where
n is the length of a message. Hence, we modify Wat05 to a set-up type one such
that its signature verification key consists of a group element, whereas the public
parameter contains n + 2 group elements. We call it Wat05′, and see that it is
also euf-cma secure under the CDH assumption.

[A variant Wat05′ of Wat05] We start to describe our variant. Let G be a
group of prime order, p, for which there exists an efficiently computable bilinear
map into GT . Let e : G × G → GT denote the bilinear map and let g be a
generator of G. The size of the group, p, is determined by the security parameter
κ. We will sign messages of n bits, and we can use a collision-resistant hash
function, H : {0, 1}∗ → {0, 1}n, to sign messages of arbitrary length.

Let b be an n-bit binary string b = (b1, . . . , bn) (bi ∈ {0, 1}), and 〈u〉 be
〈u〉 = (u0, u1, . . . , un) (ui ∈ G). Then, Ub denotes Ub = u0 ·

∏n
i=1 ubi

i .
The variant Wat05′ is defined as follows:

268 A. Fujioka, T. Saito, and K. Xagawa

PGen: It takes as input 1κ and generates a bilinear group (G,GT , e, p, g). It
randomly generates u0, u1, . . . , un ← G and sets 〈u〉 = (u0, u1, . . . , un). It
outputs params = (G,GT , e, p, g, 〈u〉).

KGen: It takes as input 1κ and params and randomly selects a secret x ∈ Zp.
The signature verification key is vk = e(g, g)x. The signature generation key
is gk = gx.

Sign: It takes as input params , gk , and m ∈ {0, 1}n, randomly selects r ← Zp,
computes

(σ1, σ2) = (gk · (Um)r, gr),

and outputs σ = (σ1, σ2).
Vrfy: It takes as input params , vk , m, and σ, parses σ as σ = (σ1, σ2), checks

whether
vk = e(σ1, g)/e(σ2, Um)

holds, and outputs accept if it holds. Otherwise, it outputs reject .

[Σ+-type Protocol for Wat05′]. To construct an HIBI protocol, we require a
Σ-protocol for the key relation {(vk , gk) ∈ GT×G : vk = e(gk , g)}. The following
Σ-protocol is obtained by applying the Fiat-Shamir transform in reverse order
to the identity-based signature scheme 3 in Hess [11]:

Σcom: It takes as input params , vk and gk , and parses params =
(G,GT , e, p, g, 〈u〉), vk = e(g, g)x, and gk = gx. It randomly selects r ∈ Zp,
computes A = e(g, g)r, and outputs (a, st) = (A, r).

Σ+
ch: It takes as input params = (G,GT , e, p, g, 〈u〉). It randomly selects c ∈ Zp

and outputs c.
Σres: It takes as input params , vk , gk , a, c, and st , and parses st = r. It then

computes Z = gr · gkc and outputs z = Z.
Σvrfy: It takes as input params , vk , a, c, and z, and parses them as params =

(G,GT , e, p, g, 〈u〉), a = A, z = Z. It checks whether A ∈ GT , Z ∈ G, and
e(Z, g) = A · vkc hold, and outputs accept if they hold; otherwise, it outputs
reject .

Σsim: It takes as input params , vk , and c. It randomly selects Z ∈ G and com-
putes A = e(Z, g) · vk−c. It outputs (A, Z) as (a, z).

Σext: It takes as input params , vk , (a, c, z), and (a, c′, z′), and parses them as
a = A, z = Z, and z′ = Z ′. It computes t = (Z/Z ′)1/(c−c′) ∈ G and outputs
t as gk .

Theorem 4.1. The above protocol is Σ+-type.

Proof. We only show the special soundness since it is easy to verify special zero-
knowledge and special challenge properties. Suppose that (A, c, Z) and (A, c′, Z ′)
are two accepting transcripts such that c �= c′. The algorithm Σext computes
t = (Z/Z ′)1/(c−c′) as gk . From the hypothesis, it holds that

e(Z, g) = A · vk c and e(Z ′, g) = A · vkc′ .

Secure Hierarchical Identity-Based Identification without Random Oracles 269

Hence, we have that

e(t, g) =
(

e(Z, g)
e(Z ′, g)

)1/(c−c′)

=
(

A · vk c

A · vkc′

)1/(c−c′)

=
(
vkc−c′

)1/(c−c′)
= vk .

This completes the proof. 	

4.2 Secure HIBI Protocol from Composite-Order Bilinear Group

We next instantiate an HIBI protocol from LW10′, which is a variant of the
Lewko-Waters signature scheme, LW10, [15], through our generic construction.

Roughly speaking, their signature scheme is the Boneh-Boyen identity-based
encryption scheme [4] with a tweak of composite order pairing. Their scheme
employs a pairing group G of composite order N = p1p2p3, which has subgroups
Gpi of prime order pi with generator gi (for i ∈ {1, 2, 3}).

In the original scheme, the signature verification key is (g1, u, h, e(g1, g1)x) ∈
G3

p1
×GT and the signature generation key is (gx

1 , g3) ∈ Gp1 ×Gp3 . We observe
that appearance of a generator of G3, g3, causes nothing in the security proof of
the signature. In addition, we observe that users can share the composite-order
group if they trust the parameter generation.

Let N = p1p2p3 be the product of three distinct primes. Let G be a group
of order N , for which there exists an efficiently computable bilinear map e :
G × G → GT . For i = 1, 2, 3, let Gpi denote a subgroup of G of order pi. We
will sign messages in ZN , and we can use a collision-resistant hash function,
H : {0, 1}∗ → ZN , to sign messages of arbitrary length.

The scheme LW10′ is defined as follows:

PGen: It takes as input 1κ, randomly selects three primes p1, p2, p3, and con-
structs G of order N = p1p2p3 and GT , e, and generators g and R of Gp1

and Gp3 , respectively. It randomly selects u, h ∈ Gp1 . The public parameter
is params = (G,GT , e, N, g, u, h, R).

KGen: It takes as input params . It randomly selects a secret x ∈ ZN . The
signature verification key is vk = e(g, g)x. The signature generation key is
gk = gx.

Sign: It takes as input params , gk and m ∈ ZN , randomly selects r, γ, γ′ ∈ ZN ,
computes

(σ1, σ2) = (gk · (um · h)r ·Rγ , gr ·Rγ′
)

and outputs σ = (σ1, σ2).
Vrfy: It takes as input params , vk , m, and σ = (σ1, σ2), randomly selects s ←

ZN , checks whether

vks = e(σ1, g
s)/e(σ2, (um · h)s)

holds, and outputs accept if it holds. Otherwise, it outputs reject .

270 A. Fujioka, T. Saito, and K. Xagawa

[Σ+-type Protocol for LW10′]. Again, the following protocol is obtained
by applying the Fiat-Shamir transform in reverse order to the identity-based
signature scheme 3 in Hess [11].

Σcom: It takes as input params , vk and gk . It randomly selects r ∈ ZN and
outputs A = e(g, g)r as a and r as st .

Σ+
ch: It takes as input params . It randomly selects c ∈ ZN and outputs c.

Σres: It takes as input params , vk , gk , a, c, and st , and parses a = A, st = r. It
then computes Z = gr · gkc, and outputs Z as z.

Σvrfy: It takes as input params , vk , a, c, and z, and parses them as a = A, z = Z.
It checks whether A ∈ GT , Z ∈ G, and e(Z, g) = A · vk c hold, and outputs
accept if they hold, and otherwise reject .

Σsim: It takes as input params , vk , and c. It randomly selects γ ∈ ZN , and
compute Z = gγ and A = e(Z, g) · vk−c. It outputs (A, Z) as (a, z).

Σext: It takes as input params , vk , (a, c, z), and (a, c′, z′), and parses them as
a = A, z = Z, and z′ = Z ′. It computes t = (Z/Z ′)1/(c−c′) ∈ G and outputs
t as gk .

Remark 4.1. We note that the protocol is for the relation {(vk , gk) ∈ GT × G :
e(gk , g) = vk}, where gk is in G rather than Gp1 . Hence, gk ′ extracted from
Σext may contain the part of Gp2 and Gp3 but this (invalid) gk ′ has ability to
forge any message. We can generate a signature from gk ′ as (σ′1, σ

′
2) = (gk ′ ·

(umh)rRγ , grRγ′
) which passes the verification.

Theorem 4.2. The above protocol is Σ+-type.

Proof. We only show the special soundness since it holds special zero-knowledge
and special challenge properties obviously. As in the previous proof, suppose
that (A, c, Z) and (A, c′, Z ′) are two accepting transcripts such that c �= c′.
Then, the algorithm Σext computes t = (Z/Z ′)1/(c−c′) as gk . By the argument
in the previous proof, we have that e(t, g) = vk . 	

4.3 Secure HIBI Protocol under the (Strong) RSA Assumption

To instantiate the secure HIBI protocol under the (strong) RSA assumption, we
employ the strong-RSA-based signature schemes CS99 proposed by Cramer and
Shoup [8] or the RSA-based signature scheme HW09 proposed by Hohenberger
and Waters [12] as examples.

In both schemes, the signature verification key involves the RSA modulus
N = pq, which is the product of two safe primes. The signature generation key
is the factorization p and q.

[Σ+-type Protocol for Factorization]. The user can prove the knowledge
of such factorization by the zero-knowledge proof by Poupard and Stern [17].
We give an optimized version of the protocol.

Let N be the product of two strong primes p = 2p′ + 1 and q = 2q′ + 1. Let
λ be the bit length of N . The protocol involves two thresholds Ta and Tc, and a
randomly chosen element G ∈ [0, 2λ+ω(lg κ)).

Secure Hierarchical Identity-Based Identification without Random Oracles 271

Σcom: It takes as input params = (Ta, Tc, G), vk including N = pq and gk =
(p, q). It randomly selects r ∈ [0, Ta) and outputs A = Gr mod N as a and
r as st .

Σ+
ch: It takes as input params . It randomly selects c ∈ [0, Tc) and outputs c.

Σres: It takes as input params , vk , gk , a, c, and st , and parses a = A, st = r. It
then computes z = r + c · (N −φ(N)), where φ(·) is Euler’s totient function,
and outputs z.

Σvrfy: It takes as input params , vk , a, c, and z, and parses them as params =
(Ta, Tc, G) and a = A. It checks whether z ∈ [0, Ta) and A ≡ Gz−Nc

(mod N) hold, and outputs accept if they hold, and otherwise reject .
Σsim: It takes as input params , vk = N , and c ∈ [0, Tc). It randomly selects

z ∈ [0, Ta) and computes A = Gz−Nc mod N . It outputs (A, z) as (a, z).
Σext: It takes as input params , vk , (A, c, z), and (A, c′, z′). It computes t =

N(c− c′)− (z−z′) which may be a non-zero multiple of p′q′. If so, it obtains
factoring of N by using Miller’s factoring algorithm [16,17].

Remark 4.2. In the original protocol, params = (Ta, Tc, G1, G2, . . . , GK) and it
runs the above protocol in parallel with sharing state r and challenge c. Setting
K = 1 suffices for our purpose as in the following.

Theorem 4.3 (Adapted version of [17, Theorems 4, 5 and 7]). Let κ
be the security parameter. Suppose that the common input is the RSA modulus
N = pq of length λ, where p and q are strong primes. If lg Tc = ω(lg κ) and
lg Ta < λ, then the above protocol has special soundness. If (N − φ(N))Tc/Ta is
negligible in κ, then the above protocol is complete with negligible error and has
special zero-knowledge property.

Proof. Special challenge property and special zero-knowledge property follows
from the original proof. Hence, we omit them.

We discuss the special soundness property. Let (A, c, z) and (A, c′, z′) be two
acceptance transcripts. Since they are accepted, we have that

A ≡ Gz−Nc ≡ Gz′−Nc′ (mod N).

Hence, t = N(c−c′)−(z−z′) is the multiple of the unknown order of G. We note
that t is non-zero, since c �= c′, Ta < N , and z− z′ ∈ (−Ta, Ta). We additionally
note that the order of G in Z∗N is in {1, 2, 4, p′, q′, 2′p, 2q′, p′q′, 2p′q′ = λ(N)}.
For randomly chosen G, the probability that the order of G is less than p′q′ is
negligible in κ. Therefore, the algorithm Σext can factorize N with the Miller
factoring algorithm by using 2t, which is the non-zero multiple of λ(N) with
overwhelming probability.

Remark 4.3. For example, we can set Ta = 2λ/2+2κ and Tc = 2κ.

4.4 Comparison

In this section, we compare the imp-ca-secure HIBI protocols produced by our
generic construction with the CHG09 protocol [6].

272 A. Fujioka, T. Saito, and K. Xagawa

Due to page limitation, we can not describe the detailed analysis, however, our
HIBI protocols are less efficient than the CHG09 protocol in key size and commu-
nication cost. It is because that we adopt the certificate-based construction, and
the certificate-based construction increases both the key size and communication
cost. We will discuss this issue minutely in the final version of this paper.

Regarding to the assumption, our HIBI protocol based on a variant of the
Waters signature [19] has an advantage than the CHG09 protocol. Though se-
curity of the CHG09 protocol depends on the one-more CDH assumption, our
protocol is based on the CDH assumption.

Needless to say, all our HIBI protocols are superior to the CHG09 protocol so
far as the security model is concerned. Our security proofs are accomplished in
the standard model, while the security proof of the CHG09 protocol needs the
random oracle model.

5 Conclusion

This paper proposed a generic construction of HIBI protocols secure against
impersonation under active and concurrent attacks in the standard model. The
proposed construction converts a DS scheme existentially unforgeable against
chosen message attacks, where the scheme has a protocol for showing possession
of the signature generation key. Our construction is based on certificate-based
construction of hierarchical identity-based cryptosystems, and utilizes a variant
of the well-known OR-proof technique to ensure the security against imperson-
ation under active and concurrent attacks.

We also presented several concrete examples of our construction employing
the Waters signature, and other signatures. As results, its imp-ca security of
each instantiation is proved under the CDH assumption, the RSA assumption,
or their variants in the standard model.

References

1. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. Journal of Cryptology 22(1), 1–61 (2009)

2. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

3. Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)

4. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 584–615 (2003); A preliminary version appeared In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg
(2001)

Secure Hierarchical Identity-Based Identification without Random Oracles 273

6. Chin, J.-J., Heng, S.-H., Goi, B.-M.: Hierarchical Identity-Based Identification
Schemes. In: Ślęzak, D., Kim, T.-H., Fang, W.-C., Arnett, K.P. (eds.) SecTech
2009. CCIS, vol. 58, pp. 93–99. Springer, Heidelberg (2009)

7. Cramer, R.: Modular Design of Secure, yet Practical Cryptographic Protocols. PhD
thesis, University of Amsterdam (1996)

8. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Transactions on Information and System Security 3(3), 161–185 (2000); A
preliminary version appeared in 6th ACM CCS (1999)

9. Fujioka, A., Saito, T., Xagawa, K.: Security Enhancements by OR-Proof in
Identity-Based Identification. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 135–152. Springer, Heidelberg (2012)

10. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

11. Hess, F.: Exponent group signature schemes and efficient identity based signature
schemes based on pairings. Cryptology ePrint Archive, Report 2002/012 (2002),
http://eprint.iacr.org/2002/012

12. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009), The full version is available at
http://eprint.iacr.org/2009/283

13. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

14. Kurosawa, K., Heng, S.-H.: From Digital Signature to ID-based Identifica-
tion/Signature. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 248–261. Springer, Heidelberg (2004)

15. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010), The full version is available at
http://eprint.iacr.org/2009/482

16. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences 13(3), 300–317 (1976)

17. Poupard, G., Stern, J.: Short Proofs of Knowledge for Factoring. In: Imai, H.,
Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 147–166. Springer, Heidelberg
(2000)

18. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

19. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Hei-
delberg (2005), The full version is available at http://eprint.iacr.org/2004/180

http://eprint.iacr.org/2002/012
http://eprint.iacr.org/2009/283
http://eprint.iacr.org/2009/482
http://eprint.iacr.org/2004/180

Efficient Two-Move Blind Signatures

in the Common Reference String Model

E. Ghadafi and N.P. Smart

Dept. Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom

{ghadafi,nigel}@cs.bris.ac.uk

Abstract. Blind signatures provide a mechanism for achieving privacy
and anonymity whereby a user gets the signer to sign a message of his
choice without the signer learning the message, or being able to link a
signature to the protocol run via which it was obtained. In this paper,
we construct a blind signature scheme that requires minimal interaction
(two moves) between the user and the signer, and which yields standard
signatures. The signature request protocol is akin to the classic, blind-
unblind methodology used for RSA blind signatures in the random oracle
model; whilst the output signature is a standard Camenisch-Lysyanskaya
signature in bilinear groups. The scheme is secure in the common ref-
erence string model, assuming a discrete logarithm related assumption
in bilinear groups; namely a new variant of the LRSW assumption. We
provide evidence for the hardness of our new variant of the LRSW as-
sumption by showing it is intractable in the generic group model.

1 Introduction

Background. Since their introduction by Chaum [11], blind signatures have
been used in a number of cryptographic applications that require one party (a
signer) to authenticate a message for another party (the user), whilst maintain-
ing privacy of the user’s message. The classic example of their use is in e-cash
protocols [11] where a bank acts as the signer, and the message is a represen-
tation of digital cash; the privacy requirement comes from the non-traceability
requirement of cash.

A blind signature must satisfy two security requirements [20,28], blindness
and unforgeability. Blindness requires that the signer does not learn the message
he is signing and in addition, when he later sees the final signature, he cannot
link it to the protocol run via which it was obtained. Unforgeability on the other
hand requires that the user cannot output any new signatures that he has not
asked the signer to sign for him, or in other words, the number of signatures
the user can compute is equal to the number of completed interactions he was
involved in with the signer.

Since their introduction, a number of authors have presented blind signature
algorithms based on different assumptions and in different models. For example,

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 274–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Two-Move Blind Signatures in the Common Reference String Model 275

schemes based on factoring related assumptions have been given in the Random
Oracle Model (ROM) [3], and in the Common Reference String (CRS) model [10];
schemes based on discrete logarithm related assumptions have been given in the
ROM [1,5,28] and in the CRS model [2,14,26]; schemes based on a combination
of discrete logarithm and factoring based assumptions have been given in the
CRS model [21]; finally, in [13,20] schemes in the CRS model are given under
general assumptions.

A blind signature consists of two distinct phases. In the first phase, which
we shall call the signature request phase, the user obtains from the signer the
signature on the message he requires. In the second phase, the signature and
message are made public and anyone can apply the public verification algorithm
to verify the message/signature pair. The signature request phase is the most
complex of all phases. One could consider such a phase as a general secure two-
party computation, where the user has the message as his private input, whereas
the signer has a secret key as his private input. After such a secure computation,
the user outputs a valid blind signature on his secret message.

The “classic” blind signature schemes are in the ROM and are essentially
Full-Domain-Hash (FDH) style signature schemes. In these schemes, the hash
function is applied to the message, the result is then blinded and sent to the
signer. The signer signs the blinded message as he would sign a normal message.
On receiving the output from the signer the user then unblinds the signature
using a homomorphic property of the underlying signature scheme. Such a mech-
anism is the basis of the original RSA based scheme of Chaum [11], which was
proved secure in [3]; Chaum’s scheme outputs standard RSA-FDH signatures
[4]. It also forms a basis of the BLS signature [7] based blind signature scheme
of Boldyreva [5]. The advantage of such schemes is that the output signature
corresponds to a standard signature scheme; in these two cases RSA-FDH and
BLS respectively. Our construction has a similar flavour in that the signature
generation protocol is of the blind/unblind variant and that the output signature
is a “standard” signature, namely a Camensich–Lysyanskaya (CL) signature [9].
However, we dispense with the need for random oracles and instead work in the
CRS model.

Prior Work in the CRS Model. Due to the round-optimal nature of a two-
move signature request phase, and the desire to avoid the use of the random
oracle, much recent work has focused on developing round-optimal blind signa-
tures in the CRS model.

In [13], Fischlin presented a scheme in the CRS model which has a two-
move signature request protocol. The scheme is a generic construction from
basic primitives, namely schemes for commitment, encryption and signatures as
well as generic non-interactive zero knowledge (NIZK) proofs for NP-languages.
The signature request protocol consists of the user sending a commitment to the
message to the signer, who responds with a signature on the commitment. The
user then uses this signature on the commitment to construct the blind signa-
ture, by first encrypting the commitment and the signature, and then adding
NIZK proofs to prove that the encrypted signature is a valid signature on the

276 E. Ghadafi and N.P. Smart

encrypted commitment, and that the encrypted commitment is a commitment
to the specific message.

Using the notion of automorphic signatures, Fuchsbauer [14] (see also [2])
presented a variant of the construction of Fischlin, using specific efficient com-
ponents. In particular, he made use of the efficient NIZK proofs of Groth and
Sahai [18,19] which hold for only specific NP-statements in bilinear groups. In
Fuchsbauer’s scheme, the blind signature is constructed by providing a Groth–
Sahai proof of knowledge of a signature on a message (as opposed to a signature
on a commitment as in Fischlin’s generic construction). This makes the under-
lying NIZK proofs simpler, but makes use of a different signature request phase.
The resulting blind signature consists of around 30 group elements, and is the
most efficient round-optimal blind signature scheme in the CRS model known
to date.

Fuchsbauer’s scheme is based on a new intractibility assumption called the
ADH-SDH assumption, which he shows holds in the Generic Group Model
(GGM) [30,23]. This is a falsifiable assumption, in the sense of Naor [25], which
is closely related to the q-SDH problem lying behind the Boneh–Boyen signature
scheme [6]. However, the resulting blind signature is not a standard signature,
e.g. it is not a true Boneh–Boyen signature.

Concurrently to our work, [24] proposed a scheme over composite-order bilin-
ear groups (which are less efficient than their prime-order counterparts due to the
necessity of requiring a large group order that is hard to factor). Although the
final signatures of their scheme consist of only two group elements, their scheme
requires a large communication overhead that linearly grows with the bit-length
of the message to be signed. In addition, unlike ours, it requires large public
parameters. The more recent work [29] (which was published after our work had
been completed) instantiated the scheme of [24] in symmetric prime-order bi-
linear groups. Similar to [24], their scheme requires both larger communication
overhead and much larger public parameters than our scheme.

In this paper, we present a round-optimal blind signature scheme in the CRS
model which is significantly more efficient than Fuchsbauer’s scheme; a signature
only consists of three group elements. Indeed the resulting signature is a stan-
dard CL signature on the message m. Furthermore, our scheme requires a low
communication overhead and the reference string is minimal. We note that our
required hardness assumption, being interactive, is not falsifiable. However, this
property is inherited from the underlying CL signature where the underlying
hardness assumption is the LRSW assumption, which is itself interactive.

In [16], the authors present a generic round-optimal blind signature scheme in
the standard model, which results in blind signatures from any standard signa-
ture scheme. However, their construction is not as efficient as our construction in
the CRS model for the CL signature scheme. In particular, the generic construc-
tion of [16] requires the use of ZAPs and two-party secure function evaluation
protocols.

Our Scheme. The scheme we present has a number of similarities to previ-
ous work, yet a number of distinct advantages. As already remarked it results

Efficient Two-Move Blind Signatures in the Common Reference String Model 277

in standard CL signatures, is optimal in the number of moves in the signing
protocol, and dispenses with the need for using the ROM.

Recall that security of the RSA-FDH based blind signature is not based on
the same assumption as the original RSA-FDH signature, indeed it is based on a
stronger one, the same holds true for the BLS-based blind signature. In our con-
struction the same property w.r.t. assumptions holds; whilst security of the stan-
dard CL signature scheme is based on the LRSW assumption [22], the security of
our scheme relies on a stronger assumption, which we call the Extended-LRSW
(E-LRSW) assumption, which is itself related to the Blind-LRSW (B-LRSW)
assumption previously proposed in [12]. We justify the hardness of this new as-
sumption by presenting a proof in the GGM. We note, our proof can be modified
to also justify the B-LRSW assumption in the GGM.

We note that the CRS-based scheme in [21] also outputs standard CL signa-
tures, however, the signature request protocol requires factoring-based assump-
tions to provide security. Our signature request protocol is significantly simpler.

We now state some disadvantages of our scheme. Firstly, to obtain a highly effi-
cient protocol, we work in the honestly-generated keys model; security can easily
be obtained in the adversarially-generated keys model with either the addition
of an extra round of communication, the addition of NIZK proofs of knowledge,
or a more complex setup phase. Secondly, our scheme reduces to an interactive
assumption rather than a standard cryptographic assumption. However, this is
relatively standard in the construction of efficient blind signature schemes, e.g.
[11,5]. It remains an open problem to derive a (truly) efficient round-optimal
blind signature scheme in the CRS model which allows adversarially-generated
keys, and which reduces to a non-interactive assumption while requiring low
communication overhead and a small reference string.

Paper Organization. The rest of the paper is organized as follows; In Section 2
we recap on the syntax and security definitions for blind signatures. In Section 3
we recap on the basic properties of bilinear groups that we shall need, and we will
present the underlying hard problems on which the security of our scheme rests.
Finally, we present our scheme in Section 4, with the security proof provided in
Section 5.

2 Syntax and Security of Blind Signatures

In this section we define the syntax and security of blind signatures. Since we
are focusing on signature request phases which are two-move, we specialize the
syntax for this case.

Syntax. A blind signature scheme BS (with a two-move signature request phase)
in the CRS model consists of six probabilistic polynomial time algorithms

BS = (SetupBS,KeyGenBS,RequestBS, IssueBS,UnblindBS,VerifyBS).

The syntax of these algorithms is defined as follows; where to aid notation all
algorithms (bar SetupBS and KeyGenBS) are assumed to take as implicit input
CRSBS as output by SetupBS;

278 E. Ghadafi and N.P. Smart

– SetupBS(1
λ): Takes as input a security parameter λ and outputs a common

string CRSBS. We assume CRSBS contains a description of the key and mes-
sage spaces for the scheme.

– KeyGenBS(CRSBS): Takes as input the reference string CRSBS and outputs a
pair of public/secret keys (pkBS, skBS) for the signer.

– RequestBS(m, pkBS): This algorithm, run by the user, takes a message m in
the space of messages M and the public key pkBS, and produces a signature
request ρ, plus some state St (which is assumed to contain m).

– IssueBS(ρ, skBS): This algorithm, run by the signer, takes the signature re-
quest ρ and the secret key skBS, and produces a pre-signature β.

– UnblindBS(β, St, pkBS): On input of β, St and the public key pkBS, this algo-
rithm produces a blind signature σ on m, or it outputs ⊥.

– VerifyBS(m,σ, pkBS): This is the public signature verification algorithm. This
should output 1 if σ is a valid signature on m and 0 otherwise.

Correctness of the blind signature algorithm is that if both parties behave hon-
estly then signatures should verify, i.e. for all CRS’s output by SetupBS we have,

Pr [(pkBS, skBS)← KeyGenBS(CRSBS),m←M,

(ρ, St)← RequestBS(m, pkBS), β ← IssueBS(ρ, skBS),

σ ← UnblindBS(β, St, pkBS) : VerifyBS(m,σ, pkBS) = 1] = 1.

Security. The standard security model for blind signatures [20,28] consists of
two properties, blindness and unforgeability. Intuitively, blindness says that an
adversarial signer who chooses two messages m0 and m1 and then interacts with
an honest user who requests signatures on those messages (in an order unknown
to the signer), is unable to tell the order in which the messages were signed
upon being presented with the final unblinded signatures. On the other hand,
unforgeability deals with an adversarial user whose goal is to obtain k+1 distinct
message/signature pairs given only k interactions with the honest signer. To
define blindness, we consider an adversary A which has three modes find, issue
and guess, running in an experiment as in Figure 1. Note that the experiment
is defined for honestly-chosen keys. Our security results will hold, regarding
blindness, for adversarially-chosen keys as long as the challenger in the blindness
game is given access to the secret key as well.

We can obtain full security against adversarially-chosen keys by simply re-
questing a secret key holder to prove, in zero-knowledge, knowledge of the un-
derlying secret key for a given public key, and then using, within our proof
for blindness, a knowledge extractor for the zero-knowledge proof to extract the
witness (i.e. the secret key). The additional security obtained from adversarially-
chosen keys comes however at the expense of the zero-knowledge proof. To obtain
the same number of rounds, we will require such a proof to be non-interactive,
and hence costly with currently known techniques; or it can be efficient and in-
teractive, and hence cost more rounds. Another alternative would be in the setup
phase for the signer to prove knowledge of their secret keys via an (interative or
non-interactive) zero-knowledge proof. In the interactive case, we would however

Efficient Two-Move Blind Signatures in the Common Reference String Model 279

Experiment ExpBlind
BS,A (λ)

– CRSBS ← SetupBS(1
λ).

– (pkBS, skBS) ← KeyGenBS(CRSBS).
– (m0,m1, Stfind) ← A(find, pkBS, skBS,CRSBS).
– b ← {0, 1}.
– (ρb,Stb) ← RequestBS(m0, pkBS):
– (ρ1−b,St1−b) ← RequestBS(m1, pkBS):
– (β0, β1,Stissue) ← A(issue, ρ0, ρ1,Stfind).
– σ0 ← UnblindBS(βb, Stb, pkBS).
– σ1 ← UnblindBS(β1−b,St1−b, pkBS).
– If σ0 =⊥ or σ1 =⊥ Then Set (σ0, σ1) ← (⊥,⊥).
– b∗ ← A(guess, σ0, σ1,Stissue).
– Return 1 If b = b∗ Else Return 0.

Fig. 1. Security experiment for blindness of blind signatures

Experiment ExpUnforge
BS,A (λ)

– CRSBS ← SetupBS(1
λ).

– (pkBS, skBS) ← KeyGenBS(CRSBS).
– {(mi, σi)}k+1

i=1 ← AIssueBS(·,skBS)(pkBS,CRSBS).
– Return 0 If any of the following is true:

• A called its oracle more than k times.
• ∃i, j ∈ {1, . . . , k + 1}, with i �= j, s.t. mi = mj .
• ∃i ∈ {1, . . . , k + 1} s.t. VerifyBS(mi, σi, pkBS) = 0.

– Else Return 1.

Fig. 2. Security experiment for unforgeability of blind signatures

require the ability to rewind the signer to the start of the setup phase in order
to extract the secret within our proof.

Our focus is on a protocol which is efficient in the honestly-generated keys
model, but extending our results (admittedly with a loss of efficiency) to the
adversarially-generated keys model in one of the ways described above is triv-

ial. We define AdvBlind
BS,A (λ) =

∣∣∣2 · Pr[ExpBlind
BS,A (λ) = 1]− 1

∣∣∣ and we say that the

scheme is blind if AdvBlind
BS,A (λ) is a negligible function of λ for any polynomial

time adversary A.
To define unforgeability, we consider an adversary A, having oracle access to

IssueBS(·, skBS), for adversarially-chosenfirst parameter, running in an experiment

as in Figure 2.We define the advantageAdvUnforge
BS,A (λ)=Pr[ExpUnforge

BS,A (λ)=1] and

we say that the scheme is unforgeable if the advantageAdvUnforge
BS,A (λ) is a negligible

function of λ for any polynomial time adversaryA.
Note that our definition of forgery is not that of strong unforgeability; we do

not require the adversary to not be able to output a new signature on an old
message. This is because the final signature in our scheme will be a CL signature,
which is always randomizable. Hence, our blind signature scheme may not be
suitable in applications which require the strong unforgeability definition.

280 E. Ghadafi and N.P. Smart

3 Bilinear Groups and Associated Hard Problems

In this section, we introduce the basic mathematical constructs needed to present
our scheme.

Bilinear Groups. Bilinear groups are a set of three groups G1, G2 and GT , of
prime order p, along with a bilinear map t̂ : G1 × G2 −→ GT . We shall write
G1 and G2 additively (with identity element 0), and GT multiplicatively (with
identity element 1), and write G1 = 〈P1〉,G2 = 〈P2〉, for two explicitly given
generators P1 and P2. We let G

×
i = Gi \ {0} for i = 1, 2. Multiplication by an

integer x in the group G1 (resp. G2) will be denote by [x]P1 (resp. [x]P2). We
define P = (p,G1,G2,GT , t̂, P1, P2) to be the set of pairing group parameters.

The function t̂ must have the following three properties:

1. Bilinearity: ∀Q1 ∈ G1, ∀Q2 ∈ G2, ∀x, y ∈ Z, we have t̂([x]Q1, [y]Q2) =
t̂(Q1, Q2)

xy.

2. Non-Degeneracy: The value t̂(P1, P2) generates GT .

3. The function t̂ is efficiently computable.

Following [15], we categorize pairings into three distinct types (other types are
possible, but the following three are the main ones utilized in practical protocols).

– Type-1: This is the symmetric pairing setting in which G1 = G2.

– Type-2: Here we have G1 �= G2, but there is an efficiently computable
isomorphism ψ : G2 −→ G1 where ψ(P2) = P1.

– Type-3: Again G1 �= G2, but now there is no known efficiently computable
isomorphism.

In this paper, we shall always consider Type-3 pairings. Such pairings can be
efficiently realized; by taking G1 to be the set of points of order p of an elliptic
curve over Fq with a “small” embedding degree k; by taking G2 to be the set of
points of order p on a twist of the same elliptic curve over Fqe , for some divisor
e of k; and GT to be the subgroup of order p in the finite field Fqk .

For a security parameter λ, we let SetupGrp(1
λ) denote an algorithm which

produces a pairing group instance P of Type-3.

Hard Problems. The security of our scheme rests on a variant of the following
assumption, introduced in [22] in the case of Type-1 pairings; we present this
problem in its generality for all pairings,

Definition 1 (LRSW Assumption). If A is an algorithm which is given ac-
cess to an oracle O[x]P2,[y]P2

(·) that on input of m ∈ Fp outputs (A,B,C) =

(A, [y]A, [x +m · x · y]A), for some random A ∈ G
×
1 , we let Q denote the set of

queries made by A to O[x]P2,[y]P2
(·).

The LRSW assumption is said to hold for the output of SetupGrp if for all
probabilistic polynomial time adversaries A, and all outputs of SetupGrp, the fol-
lowing probability is negligible in the security parameter λ,

Efficient Two-Move Blind Signatures in the Common Reference String Model 281

Pr [x, y ← Fp, X ← [x]P2, Y ← [y]P2,

(Q,m,A,B,C)← AOX,Y (·)(P , X, Y)

: m ∈ Fp \Q ∪ {0} ∧ A ∈ G
×
1

∧ B = [y]A ∧ C = [x+m · x · y]A]

In [22], it was shown that the LRSW assumption holds in the GGM and is
independent of the DDH assumption. The LRSW assumption is the underlying
hard problem behind the Camenisch–Lysyanskaya (CL) signature scheme.

Definition 2 (Camenisch–Lysyanskaya Signature Scheme). The CL sig-
nature scheme is given by the following triple of algorithms given an output P
of SetupGrp(1

λ).

– KeyGen(P): The secret key is skCL ← (x, y) ∈ F2
p, whereas the public key is

pkCL ← (X,Y) = ([x]P2, [y]P2).

– Sign(m, skCL): Select A← G
×
1 , and then set B ← [y]A, C = [x+m · x · y]A.

Output (A,B,C).

– Verify(m, (A,B,C), pkCL): Output true if and only if t̂(B,P2) = t̂(A, Y)
and t̂(C,P2) = t̂(A,X) · t̂(B,X)m.

Indeed, the LRSW problem and the EF-CMA security of the CL signature
scheme are equivalent since the oracle in the LRSW assumption produces CL
signatures, and the output of the adversary against the LRSW assumption cor-
responds precisely to a forger who can construct one more CL signature. This
is mirrored below in the relationship between the hardness of our E-LRSW as-
sumption and the unforgeability of our scheme.

We shall require a strengthening of the LRSW assumption, a variant of which
was first proposed by Chen et al. [12]. We first present the strengthening of Chen
et al., called the Blind-LRSW (B-LRSW) assumption, and then we present our
modification which we call the Extended-LRSW (E-LRSW) assumption.

In the B-LRSW problem, the oracle provided to the adversary does not take
as input an element m ∈ Fp, but instead takes as input an element M ∈ G1.
The output of the oracle is a CL signature on the discrete logarithm m of M
with respect to P1. The output of the adversary against this modified LRSW
assumption is still a valid CL signature on a new element m. It was called the
Blind-LRSW assumption because the adversary is given access to an oracle which
can produce what are in effect blinded signatures. Formally we define

Definition 3 (B-LRSW Assumption). If A is an algorithm which is given
access to an oracle, denoted by OB

[x]P2,[y]P2
(·), that on input of M = [m]P1 ∈ G1

outputs (A,B,C) = (A, [y]A, [x +m · x · y]A), for some random A ∈ G
×
1 , we let

Q denote the set of queries made by A to OB
[x]P2,[y]P2

(·).
The B-LRSW assumption is said to hold for the output of SetupGrp if for

all probabilistic polynomial time adversaries A, and all outputs of SetupGrp, the
following probability is negligible in the security parameter λ,

282 E. Ghadafi and N.P. Smart

Pr [x, y ← Fp, X ← [x]P2, Y ← [y]P2,

(Q,m,A,B,C)← AOB
X,Y (·)(P , X, Y)

: [m]P1 /∈ Q ∧ m ∈ Fp \ {0} ∧ A ∈ G
×
1

∧ B = [y]A ∧ C = [x+m · x · y]A]

Note that the oracle in the B-LRSW assumption, given access to x and y, can
compute its response by choosing a ∈ Fp at random and outputing the triple
([a]P1, [a · y]P1, [a ·x]P1 + [a · x · y]M), i.e. the oracle does not need to be able to
solve discrete logarithms if it has access to x and y.

Also note, since an oracle query to OX,Y (·) can be simulated with an oracle
query to OB

X,Y (·), and the output of the adversaries in the two problems is
essentially identical, that an adversary A against the LRSW assumption can
be turned into an adversary against the B-LRSW assumption (but it appears
not vice-versa). Thus, the B-LRSW assumption is stronger than the LRSW
assumption.

In our hard problem, shown to hold in the GGM, we extend the oracle in
the B-LRSW assumption to provide some additional data about the values A,
x and y, with respect to a new public key element Z = [z]P1. The output of the
adversary still being a Camenisch–Lysyanskaya signature.

Definition 4 (E-LRSW Assumption). If A is an algorithm which is given
access to an oracle, denoted by OE

[x]P2,[y]P2,[z]P1
(·), that on input of M = [m]P1 ∈

G1 (for some unknown value of m) outputs (A,B,C,D) = (A, [y]A, [x +m · x ·
y]A, [x ·y ·z]A), for some random A ∈ G

×
1 , we let q denote the number of queries

made by A to OE
[x]P2,[y]P2,[z]P1

(·).
The E-LRSW assumption is said to hold for the output of SetupGrp, if for

all probabilistic polynomial time adversaries A, and all outputs of SetupGrp, the
following probability is negligible in the security parameter λ,

Pr [x, y, z ← Fp, X ← [x]P2, Y ← [y]P2, Z ← [z]P1,

{(mi, Ai, Bi, Ci)}q+1
i=1 ← AOE

X,Y,Z (·)(P , X, Y, Z)

: mi ∈ Fp \ {0} for all 1 ≤ i ≤ q + 1 ∧ Ai ∈ G
×
1 ∧ Bi = [y]Ai

∧ Ci = [x+mi · x · y]Ai ∧ (if i �= j then mi �= mj)]

Note we present this assumption in terms of a one-more problem rather than in
the form of the B-LRSW assumption. This is because the extra item D allows
the adversary to “open” the signature in one of a number of ways, if he can
recover z by solving the underlying discrete logarithm problem. However, the
intuition is that he needs to commit to how he is going to open the signature
before he sends the request to the oracle. We formalize this intuition when we
present a proof in the GGM of the difficulty of the E-LRSW problem.

We note that our E-LRSW assumption is in some sense to the LRSW assump-
tion, as the HSDH assumption from [8] is to the SDH assumption. In that the
“queries” ([1/(x + ci)]P1, ci) in the SDH assumption are replaced by “blinded

Efficient Two-Move Blind Signatures in the Common Reference String Model 283

queries” ([1/(x + ci)]P1, [ci]Q1, [ci]P2) in the HSDH assumption, and the out-
put value ([1/(x+ c∗)]P1, c

∗) in the SDH assumption is replaced by the blinded
output value ([1/(x + c∗)]P1, [c

∗]Q1, [c
∗]P2) in the HSDH assumption, where

P1 ∈ G1, P2 ∈ G2, Q1 ← G1, x, ci ← Z∗
p and some c∗ ∈ Z∗

p where c∗ /∈ {ci}.
Recall the blind signature scheme below is akin to the blind-unblind schemes

in the ROM, such as those based on RSA. It should therefore not be surprising
that we need to strengthen the security assumption of the underling signature
scheme so as to cope with blindness properties. This is exactly what is required
for the ROM-based RSA and discrete logarithm based schemes [3,5].

The following theorem proves that the assumption holds in the GGM.

Theorem 1. Let A denote an adversary in the generic group model against the
E-LRSW assumption. Assume A makes qG group operation queries, qP pairing
queries and qO queries to the E-LRSW oracle OE . If we set n = 5+qG+4qO+qP
then the probability of the adversary winning the E-LRSW game is O(n2 · qO/p),
where p is the (prime) order of the generic groups.

Due to lack of space, we provide the proof for this theorem in the full paper [17].

4 Our Scheme

In Figure 3, we define the algorithms which make up our blind signature scheme.
Notice, that β contains a CL signature on the “hidden” message m+ z · r, but
no party knows the value of z. The signer is signing a message he does not know.
Indeed, the user also does not know the message (unless he picks r = 0), but he
is able to unblind this signature to produce a valid CL signature on m using his
value r. To see that the unblinded signature is valid, notice that the value of C
(before multiplication by t) is equal to

C = ([a · x]P1 + [a · x · y]Co)− [r]D,

= [x]A+ [a · x · y] · ([m]P1 + [r]Z) − [r]D,

= [x+m · x · y]A+ [a · x · y · r]Z − [r]D,

= [x+m · x · y]A.

Then notice, that even the revealed signature provides no linkage with the values
signed, due to the fact that CL signatures for Type-3 pairings are unlinkable
once randomized. In our security proof we will confirm this intuition. Besides
yielding short signatures (i.e. of size G3

1), our scheme has a low communication
complexity where the user sends only one element from G1, whereas the signer’s
reply consists of 4 group elements from G1. In addition, our scheme has a very
short public key and CRS which are of size G2

2 and a single element from G1,
respectively. Note, that in a concrete setting to obtain security equivalent to
128-bit symmetric key sizes one can select parameters such that the number of
bits needed to represent an element of G1 is 256.

284 E. Ghadafi and N.P. Smart

SetupBS(1
λ)

– P ← SetupGrp(1
λ).

– z ← Fp, Z ← [z]P1.
– M := Fp \ {0}.
– CRSBS ← (P , Z,M).
– Output CRSBS.

RequestBS(m,pkBS)

– r ← Fp.
– Co ← [m]P1 + [r]Z.
– ρ ← Co, St ← (m,r).
– Output (ρ,St).

UnblindBS(β,St, pkBS)

– Parse β as (A,B,C,D).
– Parse St as (m, r).
– C ← C − [r]D.
– If VerifyBS(m, (A,B,C), pkBS) = 0

• Return ⊥.
– t ← Fp \ {0}.
– A ← [t]A, B ← [t]B, C ← [t]C.
– σ ← (A,B,C).
– Output σ.

KeyGenBS(CRSBS)

– x, y ← Fp.
– X ← [x]P2.
– Y ← [y]P2.
– skBS ← (x, y), pkBS ← (X,Y).
– Output (pkBS, skBS).

IssueBS(ρ, skBS)

– Parse ρ as Co.
– a ← Fp \ {0}.
– A ← [a]P1.
– B ← [a · y]P1.
– C ← [a · x]P1 + [a · x · y]Co.
– D ← [a · x · y]Z.
– β ← (A,B,C,D).
– Output β.

VerifyBS(m,σ, pkBS)

– Parse σ as (A,B,C).
– If A = 0 or t̂(A, Y) �= t̂(B,P2)

or t̂(C,P2) �= t̂(A,X) · t̂(B,X)m

• Return 0.
– Return 1.

Fig. 3. Our blind signature scheme

5 Proof of Security

First, we prove that the scheme is blind, then we show that it is unforgeable.

Theorem 2. The above blind signature scheme is perfectly blind. In particular,
if A is an adversary against the blindness of the above blind signature scheme,
then

AdvBlind
BS,A (λ) = 0.

Proof. We reduce blindness to the hiding property of Pedersen commitments
[27], which is defined by the experiment in Figure 4:

If C is an adversary in the experiment in Figure 4 then we define

AdvHiding
Pedersen,C(λ) = |2 · Pr[ExpHiding

Pedersen,C(λ) = 1]− 1|.

That Pedersen commitments are perfectly hiding is a classic result. Thus, we
have AdvHiding

Pedersen,C(λ) = 0, i.e. Pr[ExpHiding
Pedersen,C(λ) = 1] = 1/2.

We now turn to the security game for blindness for our blind signature scheme.
We let G0 denote the experiment played by the adversaryA against the blindness
property of the scheme, see Figure 5. We let E denote the event that the guess

Efficient Two-Move Blind Signatures in the Common Reference String Model 285

Experiment ExpHiding
Pedersen,C(λ)

– sk ← Fp, b ← {0, 1}, r0, r1 ← Fp.
– pk ← [sk]P1.
– (m0,m1, St) ← C1(pk), with mi ∈ Fp.
– C0 ← [mb]P1 + [r0]pk.
– C1 ← [m1−b]P1 + [r1]pk.
– b′ ← C2(C0, C1,St).
– If b = b′ then return 1, else return 0.

Fig. 4. Security experiment for the hiding property of Pedersen commitment

Game G0

– z ← Fp, Z ← [z]P1.
– x, y ← Fp, (X,Y) ← ([x]P2, [y]P2).
– (m0,m1,Stfind) ← A(find, (X,Y), (x, y), Z).
– b ← {0, 1}.
– r0, r1 ← Fp \ {0}.
– Cob ← [m0]P1 + [r0]Z, Co1−b ← [m1]P1 + [r1]Z.
– (β0, β1,Stissue) ← A(issue,Co0,Co1,Stfind).
– Parse β0 as (Ab, Bb, Cb, Db) and β1 as (A1−b, B1−b, C1−b, D1−b).
– C0 ← C0 − [r0]D0, C1 ← C1 − [r1]D1.
– t0, t1 ← Fp \ {0}.
– σ0 ← ([t0]A0, [t0]B0, [t0]C0).
– σ1 ← ([t1]A1, [t1]B1, [t1]C1).
– If VerifyBS(m0, σb, pkBS) = 0 or VerifyBS(m1, σ1−b, pkBS) = 0

• σ0 ←⊥ and σ1 ←⊥.
– b∗ ← A(guess, σ0, σ1,Stissue).
– Return 1 if b = b∗ else return 0.

Fig. 5. Game G0

stage of the adversary is passed the pair (σ0, σ1) = (⊥,⊥). We clearly have

Pr[ExpBlind
BS,A (λ) = 1] ≤Pr[E] · Pr[ExpBlind

BS,A (λ) = 1|E]

+ Pr[¬E] · Pr[ExpBlind
BS,A (λ) = 1|¬E].

It is clear that in the case that the event E happens, then the adversary A can
be turned into an adversary against the Pedersen commitments Co0 and Co1.
We hence have that

Pr[ExpBlind
BS,A (λ) = 1|E] = Pr[ExpHiding

Pedersen,C(λ)] = 1/2.

In the following, we will show that we also have

Pr[ExpBlind
BS,A (λ) = 1|¬E] = Pr[ExpHiding

Pedersen,C(λ)] = 1/2,

and so
Pr[ExpBlind

BS,A (λ) = 1] ≤ (Pr[E] + Pr[¬E])/2 = 1/2,

from which our result will follow.

286 E. Ghadafi and N.P. Smart

So from now on assume that the event ¬E happens. In which case there is
no need for the challenger to check the returned pre-signatures are valid. Thus,
the challenger can obtain valid signatures by ignoring the values returned by
the adversary and simply generating the signatures himself; since he knows the
secret key. Hence, from game G0 we can make a hop to game G1 shown in
Figure 6.

Game G1

– z ← Fp, Z ← [z]P1.
– x, y ← Fp, (X,Y) ← ([x]P2, [y]P2).
– (m0,m1,Stfind) ← A(find, (X,Y), (x, y), Z).
– b ← {0, 1}.
– r0, r1 ← Fp \ {0}.
– Cob ← [m0]P1 + [r0]Z, Co1−b ← [m1]P1 + [r1]Z.
– (β0, β1,Stissue) ← A(issue,Co0,Co1,Stfind).
– a0, a1 ← Fp \ {0}.
– σ0 ← ([a0]P1, [a0 ·y]P1, [a0 ·x+a0 ·x ·y ·m0]P1).
– σ1 ← ([a1]P1, [a1 ·y]P1, [a1 ·x+a1 ·x ·y ·m1]P1).
– b∗ ← A(guess, σ0, σ1,Stissue).
– Return 1 if b = b∗ else return 0.

Fig. 6. Game G1

If we let S0(m) denote the distribution of signatures returned to the final
stage of the adversary in game G0 on message m assuming event ¬E hap-
pens, and S1(m) the distribution in game G1, we see that S0(m) is identi-
cally distributed to S1(m). This is because in G0 we randomize a specific CL
signature, whereas in G1 we produce a new independent CL signature. It is
easy to see that these two operations have the same effect on the distribu-
tion of the final signature passed to the final stage of the adversary. If we let
Pr[Gi] denote the probability of the adversary winning in game Gi, we have
Pr[G0|¬E] = Pr[G1].

We now show that an adversary playing G1, must have zero advantage. To
see this note that the value Co returned by RequestBS is a Pedersen commitment
to the value m, hence an adversary in game G1 can be turned into an adversary
against the hiding property of Pedersen commitments. That we have Pr[G1] =

Pr[ExpHiding
Pedersen,C(λ)] follows immediately; we simply translate the (m0,m1) out-

put by the first stage of adversary A in game G1, into the challenge for the
Pedersen hiding game; this provides the input into the second stage of adversary
A; the input to the third stage of adversary A is then independent of the values
returned by our first game hop.

Note that the above proof holds even if the adversary can select the value of the
secret key skBS, as long as the challenger is able to extract it so as to answer the
queries for game G1.

We now turn to show that our scheme is unforgeable.

Efficient Two-Move Blind Signatures in the Common Reference String Model 287

Theorem 3. If the E-LRSW assumption holds then the above blind signature
scheme is unforgeable. In particular, if A is an adversary against the unforge-
ability of the above blind signature scheme, then there is an adversary B which
solves the E-LRSW problem such that

AdvUnforge
BS,A (λ) = AdvE−LRSW,B(λ).

Proof. Let A denote an adversary against the unforgeability experiment of the
blind signature scheme. We shall use A to construct an algorithm which solves
the E-LRSW problem. Let (P , X, Y, Z) denote the input to the E-LRSW problem
instance. Algorithm B sets up the CRS and the public keys for the blind signature
scheme by setting CRSBS ← (P , Z,Fp \ {0}) and pkBS ← (X,Y).

Algorithm B now calls adversary A. At some point A will make one of q
queries to its IssueBS oracle. Algorithm B responds to a query on Co as follows:
It passes the value Co to its E-LRSW oracle OE

X,Y,Z so as to obtain a tuple

(A,B,C,D) = (A, [y]A, [x+ t · x · y]A, [x · y · z]A),

where Co = [t]P1. Notice that if t = m+r ·z then (A,B,C,D) is a valid response
for the commitment to the messagem. The tuple (A,B,C,D) is now passed back
to algorithm A.

Eventually,A will terminate by outputting a set of q+1 tuples (mi, Ai, Bi, Ci)
where (Ai, Bi, Ci) is a valid CL signature on mi. By returning this list to its
challenger, the adversary thereby solves the E-LRSW assumption.

Note that if we have modified the protocol such that the signer appends a NIZK
proof of correctness of its response, then the above proof can be applied in the
case where the adversary generates his own secret keys; as long as one adds
an additional game-hop to enable the extraction of the witness underlying the
NIZK proof system. This is a standard technique so we leave it to the reader.

Acknowledgements. The authors would like to thank the EU projects CACE,
eCrypt-2 and the ERC Advanced Grant to Nigel Smart for funding the work
in this paper. The second author was supported by the EPSRC under grant
EP/H043454/1, and was also partially funded by a Royal Society Wolfson Merit
Award, and Google Inc. The authors would like to thank Bogdan Warinschi for
useful conversations whilst the work was carried out.

References

1. Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–
151. Springer, Heidelberg (2001)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

288 E. Ghadafi and N.P. Smart

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16, 185–215 (2008)

4. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

5. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)

6. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. Journal of Cryptology 21, 149–177 (2008)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17, 297–319 (2004)

8. Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group
Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
1–15. Springer, Heidelberg (2007)

9. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

10. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without
Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 134–148. Springer, Heidelberg (2005)

11. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology
– CRYPTO 1982, pp. 199–203 (1982)

12. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols.
Cryptology ePrint Archive, Report 2009/198 (2009), http://eprint.iacr.org/

13. Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Ref-
erence String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
60–77. Springer, Heidelberg (2006)

14. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/

15. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156, 3113–3121 (2008)

16. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round Optimal Blind Sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011)

17. Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common
reference string model. Cryptology ePrint Archive, Report 2010/568 (2010),
http://eprint.iacr.org/

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
Cryptology ePrint Archive, Report 2007/155 (2007), http://eprint.iacr.org/

19. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

20. Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

21. Kiayias, A., Zhou, H.-S.: Concurrent Blind Signatures Without Random Oracles.
In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Efficient Two-Move Blind Signatures in the Common Reference String Model 289

22. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended
Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

23. Maurer, U.: Abstract Models of Computation in Cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

24. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on Transformations from
Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Sig-
natures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538.
Springer, Heidelberg (2010)

25. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

26. Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Or-
acles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99.
Springer, Heidelberg (2006)

27. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

28. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13, 361–396 (2000)

29. Seo, J.H., Cheon, J.H.: Beyond the Limitation of Prime-Order Bilinear Groups,
and Round Optimal Blind Signatures. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 133–150. Springer, Heidelberg (2012)

30. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Compliance Checking for Usage-Constrained
Credentials in Trust Negotiation Systems

Jinwei Hu1, Khaled M. Khan2, Yun Bai3, and Yan Zhang3

1 Department of Computer Science, TU Darmstadt, Germany
hu@mais.informatik.tu-darmstadt.de

2 Department of Computer Science and Engineering, Qatar University, Qatar
k.khan@qu.edu.qa

3 School of Computing and Mathematics, University of Western Sydney, Australia
{ybai,yan}@scm.uws.edu.au

Abstract. We propose an approach to placing usage-constraints on RT creden-
tials; issuers specify constraints by designing non-deterministic finite automata.
We show by examples that this approach can express constraints of practical in-
terest. We present a compliance checker in the presence of usage-constraints,
especially for trust negotiation systems. Given an RT policy, the checker is able
to find all minimal satisfying sets, each of which uses credentials in a way con-
sistent with given constraints. The checker leverages answer set programming,
a declarative logic programming paradigm, to model and solve the problem. We
also show preliminary experimental results: supporting usage-constraints on cre-
dentials incurs affordable overheads and the checker responds efficiently.

1 Introduction

Compliance checking aims to, given a policy p and a set C of credentials, answer the
questions of whether and how a subset of C satisfies p. Such a subset is called a satisfy-
ing set of p in C. A credential is a cryptographic certificate from a credential issuer, who
asserts attributes about a principal. For example, “University says Alice is a student” is
a credential, where University is the issuer, Alice is the principal, and “is-a-student” is
the attribute. A policy is a statement to be proved, e.g., “Alice can access files”.

Compliance checkers can be broadly categorized into three types [9]. Type-1 check-
ers return no satisfying set in any case but a Boolean value indicating whether p is sat-
isfied. Type-2 checkers return one satisfying set of p, if any. Type-3 checkers are able
to find all minimal satisfying sets of p in C. This feature distinguishes types-3 checkers
from the other two and makes them proper checkers for trust negotiation (TN) systems
[6,11]. In TN, two participants, say Alice and Bob, iteratively exchange credentials to
gradually increase trust between each other. When requesting (sensitive) attributes of
Alice, Bob may receive a (release) policy p from Alice, which specifies attributes that
Bob should exhibit before Alice discloses her attribute. In this case, Bob uses his com-
pliance checker to search for satisfying sets of p in his credential set. There are two
main reasons why type-3 checkers are more appropriate for TN than type-1 and type-2
checkers. On the one hand, a type-3 checker ensures that TN establishes trust whenever

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 290–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Compliance Checking for Usage-Constrained Credentials 291

possible. In event of not establishing trust with a negotiation tactic, TN may restart ne-
gotiation with an alternative tactic, owing to the use of type-3 checkers. On the other
hand, it also broadens choices of negotiation strategies. For example, one may choose
to disclose the set of credentials that reveals least sensitive information.

When a compliance checker finds a satisfying set of a policy, it actually composes
a proof of the policy (e.g., as defined in Section 4.1), using the credentials in the set.
Credential issuers, however, may not foresee all the proofs that their credentials con-
tribute to and all the consequences that their credentials make possible, largely be-
cause of the open nature of TN systems. This uncertainty annoys credential issuers
sometimes; they may want to restrict the circumstances under which their credentials
are used. For example, a bank may require its credentials to be used for limited pur-
poses set out in agreements.1 Therefore, credential issuers may specify a constraint
stating valid ways to use its credentials. For example, the bank may attach to its creden-
tials a constraint listing proofs allowed by the agreements. Compliance checkers (e.g.,
Bob’s checker) ought to work out satisfying sets which prove a policy in a way con-
sistent with constraints. A principal who uses the proof (e.g., Alice) should verify the
consistency.

In this paper, we propose such a compliance checker. We first devise a mechanism for
credential issuers to specify usage-constraints. A constraint is defined based on NFAs
(non-deterministic finite automaton). We employ ASP (answer set programming) to
encode the checking problem and ASP solvers to compute all satisfying sets.

The remainder of the paper is organized as follows. We state the assumptions made in
this work and review RT (a family of role-base trust-management languages) in Section
2. We discuss related work in Section 3. In Section 4 we define usage-constraints on
credentials and propose the type-3 compliance checking problem in the presence of
constraints. Section 5 describes an ASP encoding of the problem, while the detailed
encoding is presented in Appendix A. In Section 6 we undertake a group of experiments
to evaluate the performance of our approach. Finally, we conclude in Section 7.

2 Background

Assumptions When Bob searches for proofs of Alice’s policy p, we assume that Bob’s
credential set is fixed. That is, the compliance checker works on a static set of creden-
tials. We refer to this set as a credential context.

After receiving a proof, Alice is obliged to verify any usage-constraints on creden-
tials that are used in the proof. This is because any otherwise forbidden access that
results from a proof not complying with constraints may only cause loss to Alice. For
example, suppose that a companyC issues a qualification certificate to Bob but puts
a constraint that the certificate be used only in companyC. Suppose further Alice ac-
cepts a proof using this certificate and therefore allows Bob to access her sensitive
files. The companyC is not held responsible for this access, because it already states
the restriction on the certificate. On the contrary, it is Alice who did not enforce the
constraint.

1 http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/
PKIagreements.pdf

http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/PKIagreements.pdf
http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/PKIagreements.pdf

292 J. Hu et al.

Policy language RT [8] is a family of role-base trust-management languages. We as-
sume that TN uses two of its sub-language, RT 0 and RT 1, to represent credentials.
RT 0 credentials make assertions by defining role memberships. Memberships can be
defined in four ways, corresponding four kinds of RT0 credentials. Since an NFA reads
a string from left to right in convention, we reverse the arrow direction in RT .

Type-1: D → A.r , where A and D are principals and r is a role name. A issues this
credential to assert that D is a member of A.r. A.r is called a normal role.

Type-2: B .r ′ → A.r , where A and B are principals and r and r′ are role names. By
issuing this credential, A asserts that a member of B.r′ is also a member of A.r.

Type-3: A.r1 .r2 → A.r , where A is a principal and r1 and r2 are role names. This
credential means that a principal is a member of A.r if it is a member of B.r2 for
any principal B who is a member of A.r1. A.r1.r2 is called a linked role.

Type-4: B1 .r1 ∩ · · · ∩ Bn .rn → A.r , where A and Bi are principals, and r and ri
are role names. The credential asserts that a principal is a member of A.r if it is a
member of Bi.ri for all i ∈ [1..n]. B1.r1 ∩ · · · ∩ Bn.rn is called an intersection
role.

We recall some notions of RT [12]. We say a credential of the form e → A.r defines
the role A.r, where e can be D, B.r′, A.r1.r2, or B1.r1 ∩ · · · ∩ Bn.rn. Given a set C
of RT0 credentials, let Prin(C) be the set of principals in C; define NRole(C) as the
set of normal roles A.r such that A is a principal in C and r is a role name in C. Let
LRole(C) be the set of linked roles in C and IRole(C) be the set of intersection roles
in C. Further, let Role(C) = NRole(C) ∪ LRole(C) be the set of roles in C, containing
normal and linked roles; let E(C) = Prin(C) ∪ Role(C) ∪ IRole(C) be the set of role
expressions in C, containing principals, roles, and intersection roles.

Definition 1. [12] The semantics of C is given by the least 	C⊆ E(C) × E(C) such
that (1) for any e ∈ E(C), e 	C e, (2) if e1 	C e2 and e2 	C e3 then e1 	C e3 , (3)
for any credential e → A.r in C, e 	C A.r , (4) if A.r1.r2 ∈ E(C) and B 	C A.r1 ,
then B .r2 	C A.r1 .r2 , and (5) if B1.r1 ∩ · · · ∩ Bn.rn ∈ E(C) and e 	C Bi .ri for
i ∈ [1..n], then e 	C B1 .r1 ∩ · · · ∩ Bn .rn . We write 	 if C is clear from the context.

Example 1. Suppose that a parking lot provides parking services to staff of its partners
(e.g., a medical center). The lot provides special service for people with disability. We
let Clot be the credential context consisting of the following credentials.
c1 : Bob → Med .staff c2 : Med → Lot .partner c3 : Lot .partner .staff → Lot .pk
c4 : Bob → HR.dis c5 : HR.dis → Med .dis c6 : Med .dis → Lot .dis
c7 : Lot .pk ∩ Lot .dis → Lot .spk

We have Bob 	Clot
Lot .pk and Bob 	Clot

Lot .spk . ��
RT 1 credentials allow the use of parameterized roles. For ease of exposition, we focus
mainly on RT 0 credentials.

3 Related Work

Bauer et al. [3] present an approach to constraining credential usage for proof-carrying
authorization (PCA). It has a heavy influence on this work: we follow the idea to place
constraints on proofs. Nevertheless, we observe some essential differences between

Compliance Checking for Usage-Constrained Credentials 293

PCA and TN; these differences dissuade us from adapting their approach to TN. First,
PCA does not search for proofs but only verifies proofs submitted by access-requester.
This makes it possible to define constraints as arbitrary functions over proofs. In con-
trast, a compliance checker of TN ought to search for proofs by itself. It appears difficult
for an efficient search algorithm to work with arbitrary functions. This consideration
leads to our definition of constraints as NFA properties. It seems restrictive to define
constraints as NFA properties, instead of arbitrary functions over proofs; but, as it turns
out, most example constraints in [3] could be expressed. Second, compliance checkers
are expected to find all proofs of a conclusion. Even though some mechanisms [2] as-
sist principals in composing proofs in PCA, they only find one proof and thus provide
inadequate help for TN. Finally, PCA policy languages are seldom used in TN.

Lee and Winslett present an efficient type-3 compliance checker CLOUSEAU [6].
CLOUSEAU compiles credentials and policies into an intermediate representation that
is analyzed using efficient pattern matching algorithms. Another type-3 compliance
checker SSgen is proposed by Smith et al. [11]. Given an input, SSgen iteratively in-
vokes a type-2 checker, which generates only one satisfying set with the input; SSgen
feeds the type-2 checker with modified input so that previously generated proofs are
excluded and an alternative proof can be found. It remains unclear, however, how to
extend existing type-3 checkers like CLOUSEAU and SSgen to deal with constraints on
credential usage.

To restrict credential usage, one may attempt to employ a type-3 checker to generate
satisfying sets and remove the sets that violate usage-constraints; so the remaining sets
respect the constraints. Here, the constraints can be arbitrary functions over proofs, as
one only needs to verify proofs against them. We take a closer look at this approach
with CLOUSEAU as the checker.

First, CLOUSEAU has to supply all satisfying sets but not only the minimal ones.
For a counter-example, suppose that C1 = {c1, c2, c3, c4, c5} is a satisfying set and
C2 = {c1, c2} a minimal one. Suppose further that a constraint requires that the use
of c2 be accompanied by the use of c3.2 In this case, C1 is a set conforming to the
constraint, but C2 is not. In the worst case, the number of minimal satisfying sets for a
given policy can be exponential [6,11], not to speak of the number of all satisfying sets.
It is challenging to efficiently verify the sets against constraints, in spite of the efficient
algorithms used in CLOUSEAU.

Second, CLOUSEAU returns credential sets, instead of proofs. From a credential set,
however, more than one proof might be constructed. For example, one can write two
proofs using credentials in C1, as mentioned earlier. In this case, it is ambiguous which
proof a constraint concerns with.

Finally, this approach lacks an intuitive way to capture constraints over attributes
required of credential issuers [3]. For example, Alice may say that her credentials can
only be used in a proof involving credentials from herself or her friends. We are not
aware of any simple extensions to CLOUSEAU which are able to enforce this constraint.

2 Suppose that the given policy is A 	 C .r and that the credentials are c1 : A → B .r ,
c2 : B .r → C .r , c3 : C .r .r ′ → C .r , c4 : D → B .r , and c5 : A → D .r ′. One can compose
two distinct proofs using credentials {c1, c2} and {c1, c2, c3, c4, c5}, respectively. Note that
the second proof relies on c3 rather than just spuriously include it.

294 J. Hu et al.

One might consider specifying credentials in more complicated languages. For ex-
ample, besides RT 0 and RT 1, the RT family includes more expressive languages such
as RTT . Similarly one might redesign policy languages so that principals can specify
in more detail how their assertions and judgements are to be used. This could entail the
introduction of new modalities [4] and of complex inference rules [3]. This approach
is less attractive for the following reasons. First, apart from the compliance checker, it
may result in changes to other TN components. Since a TN system uses its policy lan-
guage to represent credentials and release policies [9], this representation might need
revisions. Second, one has to design a new compliance checker that is able to efficiently
find all minimal satisfying sets in the presence of the new, more complicated language.
Finally, in this manner, only a set of predefined constraints can be enforced [3].

To sum up, based on these these observations, an alternative is arguably worth in-
vestigating. The challenge is to support constraints that capture practical requirements
while enabling efficient compliance checking. As such, we propose a novel definition
of constraints based on NFAs and employ ASP to enforce constraints.

Note that we do not concern ourselves with the information leakage and hiding prob-
lem in TN; instead, we simply focus on how to find all minimal proofs which use cre-
dentials in a way consistent with constraints.

4 Usage-Constraints on Credentials

To support usage-constraints on credentials, we follow an idea similar to the one in
[3]: allow credential issuers to specify constraints on proofs where their credentials are
to be used. A proof is decomposed into a set of strings. Constraints are defined based
on NFAs; a proof is required to be accepted by NFAs, either partially or entirely as
specified. A compliance checker is designed to return all such minimal proofs.

4.1 Defining Proofs

Suppose e1 	C e2 ; there is a proof justifying this statement. The proof can take various
forms. For example, Fig. 1 shows a proof tree of Bob 	Clot

Lot .spk . A node of a
proof tree is a pair of principal-role, which means the principal becomes a member
of the role. A proof like this hinders a simple definition of constraints. First, it could

Bob : Lot .spk

Bob : Lot .dis

Bob : Med .dis

Bob : HR.dis

Bob : Bob

Bob : Lot .pk

Bob : Lot .partner .staff

Bob : Med .staff

Bob : Bob

Med : Lot .partner

Med : Med

∗

Fig. 1. A proof tree of Lot .spk 	Clot Bob. The star edge denotes a linked membership derived
from the outgoing node of the edge.

Compliance Checking for Usage-Constrained Credentials 295

contain redundant reasoning. For example, the tree in Fig. 1 also serves as a proof
of Bob 	Clot

Lot .pk ; in this case, it includes superfluous applications of credentials.
Second, placing constraints on trees raises the bar for credential issuers to correctly
specify constraints.

A slight revision will provide a simpler solution but no less capability. In brief, we
borrow an idea of model checking linear temporal logic properties [5]. We obtain a set
of sequences of principal-role pairs, when a tree is traversed: a traversal starts from a
leaf node and proceeds until it encounters a star edge or the root node. Consider again
the tree in Fig. 1; we have the following sequences.
[Bob : Bob,Bob : HR.dis ,Bob : Med .dis ,Bob : Lot .dis ,Bob : Lot .spk]
[Bob : Bob,Bob : Med .staff ,Bob : Lot .partner .staff ,Bob : Lot .pk ,Bob : Lot .spk]
[Med : Med ,Med : Lot .partner]
Observe that each sequence concerns only one principal; it could be shortened as a role
path defined below.

Definition 2. A role path in C is a tuple [e0, e1, · · · , en] where (1) e0 ∈ Prin(C), (2)
{e1, · · · , en} ⊆ Role(C), and (3) if ei = ej then i = j.

Condition 1 says that a role path begins with a principal. Condition 2 says that a princi-
pal is followed by a sequence of roles. Condition 3 says there is no cycle in a role path.3

For example, we have the following role paths in Clot ; there, h1, h2, and h3 correspond
to the tree in Fig. 1.
h1 : [Bob,HR.dis ,Med .dis ,Lot .dis ,Lot .spk]
h2 : [Bob,Med .staff ,Lot .partner .staff ,Lot .pk ,Lot .spk]
h3 : [Med ,Lot .partner]
h4 : [Bob,Med .staff ,Lot .partner .staff ,Lot .pk]

Definition 3. LetH be the set of role paths in C. We define a relation +⊆ 2H×2C×	;
for any (H,C, e1 	 e2) ∈+, we write H +C e1 	 e2 . For any H ⊆ H and C ⊆ C,
the followings hold:

1. If e ∈ h for some h ∈ H , then H +C e 	 e.
2. If H +C e1 	 e2 and H +C e2 	 e3 , then H +C e1 	 e3 .
3. For any [· · · , ei, ei+1, · · ·] ∈ H , if ei → ei+1 ∈ C then H +C ei 	 ei+1 .
4. If H +C B 	 A.r1 , then for any [· · · , B.r2, A.r1.r2, · · ·] ∈ H , H +C B .r2 	

A.r1 .r2 .
5. For any B1 .r1 ∩ · · · ∩ Bn .rn → A.r ∈ C, if for i ∈ [1..n] both

[· · · , e, Bi.ri, A.r, · · ·] ∈ H and H +C e 	 Bi .ri hold, then H +C e 	 A.r .

Example 2. Continue with Example 1. Consider the sets Hpk = {h3, h4} and C =
{c1, c2, c3} ⊂ Clot . One can derive Hpk +C Bob 	 Lot .pk . Hpk shows how Bob 	
Lot .pk is concluded using credentials in C: From h4, Bob first becomes a Med .staff ;
from h3, Med is a Lot .partner ; continuing with h4, Bob turns into a Lot .partner .staff
because of Med ’s membership in Lot .partner , and finally becomes a Lot .pk .

If we let Hspk = {h1, h2, h3} and C = Clot , we have Hspk +C Bob 	 Lot .spk .
Hspk explains Bob 	 Lot .spk in the same way as the proof tree in Fig. 1 does. Path h2

3 This is not to be confused with policy cycles [7].

296 J. Hu et al.

seems to indicate that Bob gains Lot .spk simply because of his membership in Lot .pk ,
which is granted to any Lot .partner .staff without the requirement of a membership
in Lot .dis . As indicated by the fact that {h2, h3} +C Bob 	 Lot .spk does not hold,
however, this understanding is not correct. Actually, the intuition here is that Bob’s
membership in Lot .spk is preceded by his membership in Lot .pk . ��

We write H1 ≤ H2 if H1 ⊆ H2 or for all h ∈ H1, there exists h′ ∈ H2 such that h is a
prefix of h′,4 and H1 < H2 if H1 ≤ H2 and H1 �= H2.

Definition 4 (Proof). We say H is a proof of e1 	 e2 using C if H +C e1 	 e2 and
for all H ′ < H it does not hold that H ′ +C e1 	 e2 .

For example, {h3, h4} is a proof of Bob 	 Lot .pk using {c1, c2, c3}.

4.2 Defining Constraints

Semantically, a constraint defines a set of allowable proofs. A proof, in turn, is a set
of role paths. Further, a role path, when viewed as a string, is accepted or denied by an
NFA (non-deterministic finite automaton). Hence, credential issuers could design NFAs
to define allowable proofs.

Definition 5. [10] An NFA N is a tuple (S,Σ, δ, s0 , F), where S is a finite set of states,
Σ is a finite alphabet, δ : S × (Σ ∪ {ε}) ,→ 2S is the transition function, s0 ∈ S is the
start state, and F ⊆ S is the set of accept states. For Σ′ ⊆ Σ, we write δ(s1, Σ

′) = s2
as a shorthand for the set {δ(s1, v) = s2 | v ∈ Σ′} for any s1, s2 ∈ S.

Let w be a string over the alphabet Σ; we say N accepts w if we can write w as
v1v2 · · · vm, where each vi is a member ofΣ∪{ε} and a sequence of states q0, q1, · · · , qm
exists in S with three conditions: (1) q0 = s0, (2) qi+1 ∈ δ(qi, vi+1) for i ∈ [0..m− 1],
and (3) qm ∈ F . Let L(N) be the set of strings that N accepts.

Example 3 (Final-usage constraint). Continue with Example 1. Recall that the medi-
cal center issues the credential HR.dis → Med .dis defining the role Med .dis . Suppose
that the center confines the usage of the memberships of Med .dis to limited purposes.
For example, it can be used in proving entitlement to special parking service; rather, it
cannot be used in any commercial promotions where, for instance, people with disabil-
ity are given coupons. To this end, the center requires that each role path of a proof H
be accepted by the NFA Nlot in Fig. 2. Consider a path [e0, e1, · · · , en] ∈ H . Nlot says
that e0 must be a principal such as Bob. Next, if Nlot does not confrontMed .dis (i.e., no
credential defining Med .dis is used) all the way through the path, it will accept the path.
Suppose otherwise that ei = Med .dis (i.e, a credential of the form ei−1 → Med .dis is
used); Nlot accepts the path if it ends with Lot .spk . Consequently, H is a proof where
credentials affirming disability by Med is only used for special parking service if and
only if all role paths in H are accepted by Nlot . ��

One may have noticed that Nlot works only in the context of Clot . It is unlikely for the
center to specify a similar NFA for every situation where a credential defining Med .dis

4 A path [e0, · · · , en] is a prefix of a path [e0, · · · , en, · · · , en+m] where m ≥ 0.

Compliance Checking for Usage-Constrained Credentials 297

Nlot :
Prin(Clot) Med.dis

Role(Clot)\{Med.dis} Role(Clot)

Lot.spk

Fig. 2. An NFA Nlot that restricts the usage of credentials defining Med .dis to special parking
service in the context of Clot

may be used. Instead, the center is more willing to write a special NFA with a credential
context placeholder. In event of compliance checking, as the credential context is fixed,
a context like Clot is substituted for the placeholder.

Definition 6. A context-dependent NFA, denoted as γ, is an NFA (S,Σ, δ, s0 , F) where
the alphabet Σ consists of the following:

1. a finite set Prin of principals and a finite set Role of roles, and
2. a set of special symbols {Prin(C),Role(C)} ∪ {Role(C)\A | A ⊂ Role}, where
C denotes the credential context placeholder.

The set Role contains roles that a principal is aware of, when designing a context-
dependent NFA; likewise, Prin contains principals. Take Example 3 for instance; the
center knows the roles Med .dis and Lot .spk , for it means to restrict the usage of cre-
dentials like HR.dis → Med .dis to the special parking service that is represented by
Lot .spk . In this case, Prin = {Med ,Lot} and Role = {Med .dis ,Lot .spk}.

A special symbol is treated as a single unit. Consider for example the NFA γlot in
Fig. 3; it accepts the following string.

Prin(C) Role(C)\{Med .dis}Med .dis Role(C) Lot .spk (1)

A special symbol turns into a set expression after a credential context C is substituted
for the placeholder. For example, if Clot takes place of C, Role(C) turns into Role(Clot),
which is the set of roles in Clot . Supposing that v is a special symbol, we write the set
expression obtained from the substitution as v|C .

Definition 7. Given a role path h = [e0, · · · , en] in a context C, we say (γ, C) allows
h if γ accepts a string v0 · · · vn such that for i ∈ [0..n], either vi = ei or vi is a special
symbol and ei ∈ vi|C . Denote the set of paths allowed by (γ, C) as L(γ, C).

For instance, (γlot, Clot) allows the path [Bob,HR.dis ,Med .dis ,Lot .dis ,Lot .spk], for
γlot accepts the string in (1). The center can specify the context-dependent NFA γlot in
Fig. 3 so as to restrict the usage of credentials defining Med .dis to special parking
service in any credential context. As discussed in Example 3, those credentials will not
be used for other purposes as long as role paths are allowed by (γlot, C).

We notice that L(γ, C) is still a regular language, which can be directly captured
by an NFA. For example, Nlot in Fig. 2 recognizes L(γlot, Clot) (i.e., L(Nlot) =
L(γlot, Clot)). When designing a context-dependent NFA, credential issuers could first
specify an NFA for a specific context, and abstract it away later. Throughout the rest
of this paper, unless otherwise stated, references to an NFA imply a context-dependent
NFA. When C is clear from the context, we say γ allows a role path instead of (γ, C).

298 J. Hu et al.

γlot :
Prin(C) Med.dis

Role(C)\{Med.dis} Role(C)

Lot.spk

Fig. 3. A context-dependent NFA γlot restricting the usage of credentials defining Med .dis to
special parking service

Definition 8 (Usage-constraint). A credential constraint is a tuple 〈γ, π〉 where γ is
an NFA and π ∈ {∀, ∃}. We say a proof H in C is valid with respect to (wrt) 〈γ, π〉
if H ⊆ L(γ, C) when π = ∀ and H ∩ L(γ, C) �= ∅ when π = ∃. A constraint 〈γ, ∀〉
requires that each role path of H be allowed by (γ, C). A constraint 〈γ, ∃〉 says there is
at least one role path of H allowed by (γ, C).

Example 4 (Delegation depth). Recall that the parking lot delegates the judgement of
disability to the center by credential c6 : Med .dis → Lot .dis . No restriction is placed
on the delegation; the center could re-delegate the judgement to any principal. The lot
may deem this over-permissive and want to control the delegation. For example, the
lot might decide that a principal’s disability should be asserted directly by the center;
namely, it allows no re-delegation from the center. As such, the lot designs an NFA γd0
in Fig. 4 and put a constraint 〈γd0 , ∀〉. When designing γd0 , the lot is aware of credential
c6 and thus of the sets Prin = {Lot ,Med} and Role = {Lot .dis,Med .dis}.

We now examine the semantics of 〈γd0 , ∀〉. Consider for example the credential
context Clot . According to the constraint, all role paths of a valid proof wrt it should be
allowed by γd0 . A path is allowed if it meets one of the conditions: (1) Lot .dis does not
show up and (2) Lot .dis is preceded by Med .dis , which in turn is preceded by a prin-
cipal. In the latter case, Med .dis follows immediately a principal; this indicates the use
of a credential e → Med .dis , where e is a principal. Hence, a proof involving Lot .dis
uses no delegation of Med .dis if and only if it is valid wrt the constraint. Consider a
proof Hdepth containing a path [Bob,HR.dis ,Med .dis ,Lot .dis ,Lot .spk]. Since γd0
does not allow this path, the proof Hdepth is not valid. On the other hand, Hdepth does
use a delegation that the lot tries to prevent (e.g., a credential HR.dis → Med .dis).

Suppose that the lot now relaxes its requirement: it permits the center to re-delegate
to another principal, but disallows any further delegation. This time the lot designs an
NFA γd1 , as shown in Fig. 4. In comparison with γd0 , γd1 permits an optional role
between a principal and Med .dis ; this models a possible one-step re-delegation. ��

One can proceed to define more constraints using logical connectives as below and
define their semantics as in the propositional logic.

con ::= 〈γ, ∀〉 | 〈γ, ∃〉 | (¬con) | (con ∧ con) | (con ∨ con) | (con ⇒ con)

We could also define a constraint like 〈¬γ1 ∨ γ2, ∀〉 so that a path is allowed by γ2 if
allowed by γ1. Since regular languages are closed under the operations union, intersec-
tion, difference, and complement, there is a constraint 〈γ, ∀〉 to the same effect.

Definition 9. Given a credential context C, a set Γ of credential constraints, and a goal
D 	 A.r , we say C ⊆ C is a proving set of e1 	 e2 if for all C′ ⊂ C there is no

Compliance Checking for Usage-Constrained Credentials 299

γd0 :
Prin(C)

ε
Med.dis

Role(C)\{Lot.dis}

Lot.dis

γd1 :
Prin(C) Role(C), ε

ε
Med.dis

Role(C)\{Lot.dis}

Lot.dis

Fig. 4. NFA γd0 forbids re-delegation. NFA γd1 allows an optional one-step re-delegation.

proof H ′ of e1 	 e2 using C′ such that H ′ is valid wrt all constraints in Γ . Type-3
compliance checking problem in the presence of constraints is to find all the proving
sets C1, . . . , Cn. We denote this problem as 〈C, Γ,D 	 A.r〉.

5 ASP Representation

To solve the type-3 compliance checking problem in the presence of constraints, we
encode it in ASP. The use of ASP is motivated by, among others, its ability to return
all solutions to a problem. Intuitively, we view RT 0 credentials as actions of adding
principals to roles’ member sets. For example, the application of a credential D → A.r
adds the principal D to A.r’s member set; another credential A.r → B .r ′, if applied,
further makes D a member of B.r′. Therefore, a credential context is considered as a
set of actions that may be executed to grant principals role-memberships. Now, to de-
cide if a principal is a member of a role is to decide if there exists an action plan which
ultimately adds the principal to the role’s member set. The ASP encoding is parame-
terized on proof size. Given a proof H , define its size as size(H) =

∑
h∈H size(h),

where, assuming h = [e0, · · · , en], size(h) = n. Given 〈C, Γ,D 	 A.r〉 and a proof
size parameter k, for any answer set that the ASP program returns, it corresponds to a
proving set with a proof H such that size(H) < k; on the other hand, for any proving
set C with a proof H such that size(H) < k, then the program returns an answer set
corresponding to C.

6 Experimental Results

In this section, we evaluate the performance of our compliance checker and the over-
heads resulting from the support of usage-constraints on credentials. Our concerns lie
mainly in the computing time required to find all proving sets for a given policy. Ex-
periments were carried out on a Windows 7 laptop with Intel Core 2.66GHz i5-560M
processor and 4GB RAM. ASP programs were executed with the grounder gringo 3.0.3
and the solver clasp 2.0.3.5 In each test, the compliance checking is performed in a cre-
dential context of 50 RT0 credentials, i.e., |C| = 50. All results for a specific parameter
setting were averaged over 5 independent tests.

5 http://sourceforge.net/projects/potassco/

http://sourceforge.net/projects/potassco/

300 J. Hu et al.

 400
 420
 440
 460
 480
 500
 520
 540
 560
 580
 600

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 ti
m

e
(m

s)

Size of the union of all proving sets (U)

No proving sets
Two proving sets
U proving sets
One proving set

Fig. 5. The computing time as a function of the size of the union of all proving sets

 0 2 4 6 8 10 12 14 5
 10

 15
 20

 25
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850

Average time
 (ms)

Size of
each proving set

Number of
proving sets

Average time
 (ms)

Fig. 6. Computing time as a function of the number of proving sets and the size of each set

We conducted three groups of experiments. First, we evaluated the checker’s perfor-
mance with respect to the size of proving sets. We considered three cases: (i) the policy
had one proving set of size U , (ii) the policy had U proving sets of size one, (iii) the
policy had two proving sets of size 3U

4 , where U is the size of the union of all proving
sets. These are the most interesting cases explored in literature [6,11]. We placed on
credentials 20 manually created constraints of types in [3]; these constraints concerned
at least 80% of the credentials in C. We set k as 25; namely we only searched for proofs
of size smaller than 25. Fig. 5 shows the results. In all cases, it took the checker less
than 600 ms to find all proving sets. Besides, we also tested the cases when no proving
sets existed. To perform such tests, when we obtained the single proving set in cases of
(i), we included one more constraint to rule it out so that no such set existed. In all four
cases, the running time grew linearly.

Further we examined the computing time as a function of the number of proving
sets and the size of each proving set. Again we put 20 manually created constraints and
set k, the limit of proof size, as 25. Fig. 6 shows the results, which confirm that the
computing time grew linearly with respect to the number and the size of proving sets.

Similar experiments were conducted on CLOUSEAU in [6]. Although our checker is
several times slower than CLOUSEAU, it responded within 850 ms in all previous tests.

Second, we examined the overheads incurred by supporting constraints; we varied
the number of constraints |Γ |. In this experiment, we set k = 25. Initially, we had
|Γ | = 0 and 10 proving sets each of size 15. Later, we incrementally added constraints.

Compliance Checking for Usage-Constrained Credentials 301

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 ti
m

e
(s

ec
on

d)

The number of constraints

(ii) The number of proving sets decreases
(i) The number of proving sets remains

10 8 8 6 6 4
4

2

2

Fig. 7. Computing time as a function of the number of constraints. Below the data points of case
(ii) is labelled the number of proving sets in each case of |Γ |.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 ti
m

e
(s

ec
on

d)

The proof size (k)

(iii) set size from 15 to 20
(ii) set size from 5 to 10
(i) set size from 3 to 21

Fig. 8. Computing time as a function of the proof size parameter k

We considered two cases: (i) All proving sets remained, i.e., constraints did not invali-
date any of them; (ii) some sets were not valid wrt some added constraints. Recall that
a proof should be valid wrt every constraint in Γ ; hence, the ASP program encoded all
constraints in Γ . Fig. 7 shows the results. In both cases, the checker performed well be-
fore |Γ | grew to 30 and turned impractical afterwards. Comparing the times for |Γ | = 0
and 0 < |Γ | < 30, we note that constraints incurred overheads less than 1 second.

Finally, we evaluated the influence of proof size on performance by varying the pa-
rameter k. In this experiment, we had 20 constraints and 10 proving sets. We considered
three cases according to the size of proving sets: (i) the size ranged from 3 to 21, (ii)
the size ranged from 5 to 10, and (iii) the size ranged from 15 to 20. Fig. 8 shows
the results. We see that k had a heavy influence on performance. The indistinguishable
time difference between the three cases also implies that k played a major role in per-
formance. The checker responded within 3 seconds when k = 30; but the performance
degenerated rapidly as k grew. This is in accordance with our ASP encoding, which is
parametric to k. We observed from practical proofs that their size seldom exceeds 30.

7 Conclusions

In this paper, we presented a definition of usage-constraints on credentials based on
NFAs (non-deterministic finite automaton). We illustrated by examples that the defini-
tion is able to express important constraints in practice. Based on an encoding in ASP

302 J. Hu et al.

(answer set programming), we proposed a compliance checker that is able to find all
minimal sets of credentials for a given policy; each such set not only constitutes a proof
of the policy but also uses the credentials in a way consistent with given constraints.
Experiment results showed the efficiency of our approach.

We assumed that compliance checking is performed in a localized credential con-
text. In practice, however, the context may be distributed. In that case, the problem is
more challenging. For one thing, constraints may be stored with credentials and thus be
distributed too. For another, we still need to search for multiple, if not all, proving sets
for a given policy. We plan to study the compliance checking problem under distributed
credential contexts in future work.

Acknowledgment. Khaled M. Khan, Yan Zhang and Yun Bai are supported by an
NPRP grant (NPRP 09-079-1-013) from the Qatar National Research Fund (QNRF).
Jinwei Hu is supported by CASED (www.cased.de). The statements made herein are
solely the responsibility of the authors. We also thank Dieter Gollmann for shepherding
the paper and the anonymous reviewers for their helpful comments.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in access-control systems. In: IEEE
Symposium on Security and Privacy, pp. 81–95 (2005)

3. Bauer, L., Jia, L., Sharma, D.: Constraining credential usage in logic-based access control.
In: CSF, pp. 154–168 (2010)

4. Becker, M.Y.: Information flow in credential systems. In: CSF, pp. 171–185 (2010)
5. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about systems.

Cambridge University Press (2004)
6. Lee, A.J., Winslett, M.: Towards an efficient and language-agnostic compliance checker for

trust negotiation systems. In: ASIACCS, pp. 228–239 (2008)
7. Li, J., Li, N., Winsborough, W.H.: Automated trust negotiation using cryptographic creden-

tials. ACM Trans. Inf. Syst. Secur. 13(1) (2009)
8. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-

work. In: IEEE Symposium on Security and Privacy, pp. 114–130 (2002)
9. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., Yu, L.:

Requirements for policy languages for trust negotiation. In: POLICY, pp. 68–79 (2002)
10. Sipser, M.: Introduction to the Theory of Computation (2005)
11. Smith, B., Seamons, K.E., Jones, M.D.: Responding to policies at runtime in trustbuilder. In:

POLICY, pp. 149–158 (2004)
12. Winsborough, W.H., Li, N.: Towards practical automated trust negotiation. In: POLICY, pp.

92–103 (2002)

A ASP Encoding

Since uppercase letters are usually taken as variables in ASP and lowercase letters as
constants, we use lowercase letters to denote principals in ASP programs. We translate

Compliance Checking for Usage-Constrained Credentials 303

a compliance checking problem 〈C, Γ, d 	 a.r 〉 into an ASP program, denoted as
Π(〈C, Γ, d 	 a.r 〉, k). An ASP program is a finite set of rules of the form

a :- b1, · · · , bm, not bm+1, · · · , not bn.

where 0 ≤ m ≤ n, a is either an atom or ⊥, bi is an atom, and not denotes (default)
negation. We say that a rule is a fact if n = 0. For simplicity, we omit :- when writing
facts. Readers are referred to [1] for details.

Π(〈C, Γ, d 	 a.r 〉, k) consists of four parts: Π(C), Π(apply), Π(d 	 a.r , k), and
Π(Γ). Except Π(apply), the sub-programs are parametric to problems. Program Π(C)
models each credential in C. Program Π(apply) states how credentials are applied.
Program Π(d 	 a.r , k) tests whether a proof of size smaller than k exists. Program
Π(Γ) interprets the constraints in Γ and ensures that proofs extracted from answer sets
are valid wrt the constraints. Program Π(C) follows the original semantics of RT [8];
we omit its presentation here.

We first present Π(d 	 a.r , k). Fact (2) below declares our goal as proving that
principal d can obtain a membership in a.r. Rule (3) says that we prove the goal at step
T if the goal holds at T . Rule (4) says that once the goal is proved at T it is proved
afterwards. Rule (5) requires that an answer set should contain the atom prove(k) (i.e.,
the membership is proved within k steps).

goal (m(d, r(a.r))). (2)

prove(T) :- hold (M,T), goal(M), step(T). (3)

prove(T + 1) :- step(T), T < k, prove(T). (4)

⊥ :- not prove(k). (5)

A term m(d, r(a.r)) denotes d’s membership in a.r. Expression r(a.r) is short for
a term r(a, r, ρ), where ρ is a special constant used in our ASP programs. The term
r(a, r, ρ) denotes a role a.r ∈ NRole(C). Similar shorthands are used below.

We proceed to describe Π(apply) (i.e., how credentials are applied), as shown in
Fig. 9. At each step, some credentials are applicable while others are not. As stated in
rule (6), a credential is applicable if there is a principal ready to accept the membership
it offers. Rule (7) says that, a principal is ready when his memberships satisfy the cre-
dential’s condition and he is not forbidden from being so. Rules (8) and (9) list the two
cases of a principal being not ready: one is when the principal already owns the mem-
bership that the credential offers; the other is when another principal is ready. Rules
(10) and (11) are two auxiliary rules defining the satisfiability of conditions.

At each step, one and only one membership is granted; as a result, if more than
one membership can be granted at a step, only one of them succeeds and others are
blocked. In addition, if the goal d 	 a.r has been reached, no more membership is
needed. Rules (12)-(14) capture this idea. Specifically, rule (12) says that, when the
goal has not yet been reached, a credential is applied if not blocked. A credential is
blocked in event of another credential being applied at the same time (rule (13)) or a
linked role membership being derived (rule (14)). Rule (14) also implies that linked role
memberships take priority. Finally, rule (15) says that only applicable credentials may
be applied; otherwise there arises a conflict.

304 J. Hu et al.

apbl(C, T) :- rdy(X,C, T), cred(C), step(T). (6)

rdy(X,C, T) :- not not rdy(X,C, T), sat(cond(C,X), T). (7)

not rdy(X,C, T) :- effect(C,m(X,R)),hold(m(X,R), T). (8)

not rdy(X,C, T) :- rdy(Y,C, T), X �= Y, prin(X), prin(Y). (9)

sat(D,T) :- not not sat(D, T), in(, D), step(T). (10)

not sat(D,T) :- in(M,D), not hold(M,T), step(T). (11)

apl(C, T) :- cred(C), step(T),not goal(T),not blk(C,T). (12)

blk(C, T) :- cred(C;C′), step(T),apl(C′
, T), C �= C

′
. (13)

blk(C, T) :- linked(, T), cred(C). (14)

⊥ :- cred(C), step(T),apl(C, T),not apbl(C,T). (15)

obt(m(X,R
′),m(X,R), T + 1) :- rdy(X,C, T), effect(C,m(X,R)), in(m(X,R

′),

cond(C,X)), apl(C, T), T < k − 1. (16)

obt(M ′
,M, T + 1) :- linked(M ′

,M, T), T < k − 1. (17)

hold(M,T) :- obt(,M, T
′), T ′ ≤ T, step(T ;T ′). (18)

obt(m(X, r(X)),m(X, r(X)), 1) :- prin(X). (19)

need(M) :- goal(M). (20)

need(M) :- need(M ′), obt(M,M
′
,). (21)

need(m(Y, r(Z.N))) :- obt(m(X, r(Y.N ′)),m(X, r(Z.N.N
′)), T),

need(m(X, r(Y.N ′));m(X, r(Z.N.N
′))). (22)

⊥ :- not need(M), obt(,M, T), T > 1. (23)

Fig. 9. Rules modelling how credentials are applied

A principal obtains a role membership when a credential is applied (rule (16)) or
when a linked role membership is derived (rule (17)). A fact obt(m1,m2, t) means that,
following m1 in a path, membership m2 is obtained at step t; note that m1 and m2 are
memberships of the same principal. The obtained memberships remain afterwards (rule
(18)). Rule (19) declares facts that a principal d is a member of r(d) at the beginning.

The rest of the encoding ensures that the proof is minimal. To retain only necessary
memberships, we traverse back from the goal. As stated in rule (20), the goal is needed.
Moreover, a membership next to a needed membership is necessary (rule (21)). Rule
(22) considers the case of linked role memberships: if y’s membership in z.n helps
derive x’s membership in z.n.n′ from x’s membership in y.n′, then y’s membership in
z.n is necessary provided that the latter two are also necessary. Rule (23) says that all
derived memberships should be necessary; otherwise there arises a conflict.

Finally, we present the program Π(Γ). For each con ∈ Γ , we have a program
Π(con). Hence, Π(Γ) =

⋃
con∈Γ (Π(con)). Here we only present the representa-

tion of a constraint 〈γ, ∃〉; other types of constraints can be likewise encoded. As-
sume that the credential context is C and that L(N) = L(γ, C), i.e., N recognizes
the language L(γ, C). We work with N. First we denote the NFA N in ASP. Sup-
pose N = (S,Σ, δ, s0 , F); we use a fact start(s0) to denote the start state s0 , a fact

Compliance Checking for Usage-Constrained Credentials 305

read(m(X, r(X)), S) :- start(s0), tran(s0, X, S),need(m(X, r(X))). (24)

read(m(X,R), S) :- read(m(X,R
′), S′), tran(S′

, R, S),

obt(m(X,R
′),m(X,R), T). (25)

read(M,S) :- read(M,S
′), tran(S′

, ε, S). (26)

final(M) :- read(M,S), accept(S). (27)

exist :- final(M), last(M). (28)

⊥ :- not exist . (29)

last(M) :- not not last(M), obt(,M,). (30)

not last(m(X,R)) :- obt(m(X,R),m(X,R
′),), R �= R

′
. (31)

Fig. 10. Rules encoding 〈γ,∃〉

accept(sf) to denote an accept state sf ∈ F, and a fact tran(s1, e, s2) to denote a
transition s2 ∈ δ(s1, e) where e ∈ Prin(C) ∪ Role(C) ∪ {ε}.

Next we test if a role path is accepted by N. Recall that a path is seen as a se-
quence of principal-role pairs. For example, a path [e0, e1] corresponds to a sequence
[e0 : e0, e0 : e1]. In our ASP programs, we do not encode the path, but the sequence with
atoms of the form obt(m(e0, r(e0)),m(e0, r(e1)), t), where m(e0, r(e1)) denotes the
principal-role pair e0 : e1. Therefore, we verify the sequence.

In Fig. 10, rules (24)-(27) simulate N reading an input string and making state tran-
sitions accordingly. Rule (24) says, given a sequence [e0 : e0, · · ·] as input, N starts in
its start state s0 and, if there is a transition s ∈ tran(s0, e0), proceeds to another state s.
In a state s′, N proceeds to another state s, depending on what it reads from the input.
Suppose that N reaches s′ after reading e0 : ei and that the next symbol in a sequence is
e0 : ej . In this case, N transits to another state s if there is a transition s ∈ tran(s′, ej).
Rule (25) captures this idea; there, an atom read(m(e0, r(ej)), s) means that N is in
state s after reading e0 : ej . Rule (26) interprets the transition ε as usual: in a state s′, N
moves to a state s reachable from s′ via ε. This reading and transiting process goes on
until the input reaches its end or no transition is available. Rule (27) marks a member-
ship final if an accept state is reached after N reads it. If the final membership is also
the last one in a sequence, N accepts this sequence; namely, there exists a sequence
accepted by N, as stated in rule (28). As required by the constraint, such a sequence
must exist; hence rule (29) excludes answer sets where exist is not true. Rules (30) and
(31) define the last membership in a sequence.

A Quantitative Approach

for Inexact Enforcement of Security Policies�

Peter Drábik, Fabio Martinelli, and Charles Morisset

IIT-CNR, Security Group
Via Giuseppe Moruzzi 1, 56124 Pisa, Italy

{peter.drabik,fabio.martinelli,charles.morisset}@iit.cnr.it

Abstract. A run-time enforcement mechanism is a program in charge
of ensuring that all the traces of a system satisfy a given security policy.
Following Schneider’s seminal work, there have been several approaches
defining what kind of policies can be automatically enforced, and in
particular, non-safety properties cannot be correctly and transparently
enforced. In this paper, we first propose to build an enforcement mecha-
nism using an abstract notion of selector. We then propose to quantify the
inexact enforcement of a non-safety property by an enforcement mecha-
nism, by considering both the traces leading to a non-secure output by
this mechanism and the secure traces not output, thus formalizing an
intuitive notion of security/usability tradeoff. Finally, we refine this no-
tion when probabilistic and quantitative information is known about the
traces. We illustrate all the different concepts with a running example,
representing an abstract policy dealing with emergency situations.

Keywords: Runtime Enforcement, Safety, Security/Usability Tradeoff.

1 Introduction

An enforcement mechanism is a program in charge of controlling the actions of a
target over a system, such that the sequences of actions submitted to the system
satisfy a security policy. For instance, a security policy can state that the user
of a database cannot execute a request to remove a table she does not own, or
that an application downloaded onto a mobile operating system cannot modify
the core functionalities of the system.

An enforcement mechanism can therefore be seen as a monitor between a tar-
get, seen as a black-box, and a system, such that only secure sequences of actions
are executed by the system. There have been several important approaches aim-
ing at understanding and characterizing what kind of policies are enforceable,
and we can cite in particular the seminal work of Schneider [18] and the one of
Ligatti et al. [15]. In the former, Schneider showed that if a policy is not a safety
property (i.e., a non-secure trace might be extended to a secure one), then it

� This research was supported by the EU FP7-ICT project NESSoS under the grant
agreement n. 256980.

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 306–321, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Quantitative Approach for Inexact Enforcement of Security Policies 307

can only be enforced by a “mechanism that uses more information than would
be available only from observing the steps of a target’s execution”. In the latter,
Ligatti et al. introduce, among others, the edit-automaton, and prove that any
security property (over finite traces), including non-safety ones, can be enforced
by a monitor built from an edit-automaton.

Indeed, an edit-automaton is powerful enough to buffer the entire trace, and
to only release the actions submitted by the target when it is certain that they do
not violate the policy. However, in many cases, buffering is not a desirable option,
for instance when a non-safety policy is built to deal with critical situations,
where a non-secure action needs to be performed immediately, and the control
might only come afterwards. Such situations can typically occur in the context
of healthcare policies [1,5]. Moreover, since a monitor usually needs to output an
action to the system whenever the target submits one, buffering the trace would
lead to violate the transparency1 of the monitor.

In this paper, we therefore start from the observation that since non-safety
policies cannot be exactly enforced (i.e., correctly and transparently), then a
monitor can only enforce inexactly a non-safety policy. We formalize this concept
by characterizing the non-secure traces output by a monitor together with the
secure traces not output. By quantifying over these traces, we show that not all
inexact monitors are alike, and that it is possible to define a strategy to adopt.
Intuitively, this strategy corresponds to defining a security/usability2 tradeoff.

The main contributions of this paper are three-fold. Firstly, we present a sim-
ple framework for runtime monitors with no editing power using a general con-
cept of selector (which can be seen as a generalization of a security-automaton)
and we define the notion of n-safety policy, which, intuitively, is a policy allowing
for at most n non secure steps. Secondly, we introduce the concept of inexact en-
forcement with the sets C and T, which, intuitively, contain the traces violating
the correctness of the monitor and those violating its transparency, respectively,
and we illustrate it on a detailed running example, inspired by a basic break-
glass healthcare policy. In particular, we observe that in a basic setting, it might
be better to go for an “all-or-nothing” approach. Finally, we present different
levels of quantification over these sets, in particular using probabilistic and quan-
titative information about traces, paving the way towards a formal risk-aware
run-time enforcement.

Outline. The rest of this paper is structured as follows: after presenting some
related approaches, we introduce in Section 2 the basic concepts such as trace,
security property, monitor and enforcement. In Section 3, we define selectors, and
we show how to build a monitor. In Section 4, we define the notion of n-safety

1 We adopt here a strict notion of transparency, which states that a correct input trace
should not be edited at all, even if the result of the editing is somehow transparent.
This is the reason why we do not consider expressive editing power, such as insertion
or suppression, as they are not helpful with respect to strict transparency.

2 We use here the notion usability in its general meaning, i.e., stating that a system can
be used, rather than as the ability to realize user requirements, as it can sometimes
be found in security.

308 P. Drábik, F. Martinelli, and C. Morisset

property, together with the one of n-selector. In Section 5, we characterize the
inexact enforcement of a property, and we define the notion of security/usability
tradeoff. In Section 6, we consider the case where the monitor knows the proba-
bility of each possible extension. Finally, in Section 7, we introduce the concept
of quantitative policy, and we transform the previous tradeoff into the notion of
risk exposure, after which we conclude and detail our future work.

Related Work. There has been a significant bulk of work on enforcement mecha-
nisms, especially about their theoretical foundations. We mention here only the
closest to our work, and we refer the reader to [12] for a comprehensive survey.

As already mentioned Schneider formalized Execution Monitoring (EM) mech-
anisms as security automata in [18]. Later, Ligatti et al. [15], starting from this
initial model, defined a series of automata with increasing power that act as trace
consumers and producers. The main novelty was the capability to alter the trace
produced by the target, by suppressing, inserting and editing actions. The most
powerful class is called edit automata. The semantics of the enforcement mecha-
nisms was still given in terms of big step-semantics for automata. Later work [16]
has shown how to enforce non-safety properties, also proposing a notion of enforce-
ment up to equivalence among traces. In [3], Basin et al. consider the case where
some actions are uncontrollable (i.e., cannot be stopped), and define what policies
can then be enforced, by using aDeterministic TuringMachine tomodel amonitor.

After these different approaches characterizing what properties one can en-
force with a specific mechanism, a slightly different strand of work started to
consider what happens when limiting the editing power of the edit-automata,
already recognized to be too powerful. We can mention here some work consid-
ering a limited capability for trace history recording, e.g., shallow history in [9]
and limited memory in [19]. The former considers automata that only record the
set of relevant actions that happened in the past, while the latter allows only
a limited knowledge. Basically, these approaches are limiting the visibility over
the past trace, while we are interested here in investigating a limited visibility
over the future trace. Some approaches also try to go beyond the traditional
runtime enforcement model, such as the definition of facets values [2], where a
variable can take different values according to the security level of the user, or
the Secure Multi Execution framework [6], where a program is executed multiple
times, with different levels of security, thus being able to consider a wider range
of security policies, such as non-interference ones.

Another recent class of work is mainly interested in what behaviour an en-
forcement mechanism should have when the trace is not secure, since traditional
definitions do not specify this case. In [4], the authors use a notion of distance
among traces, thus expressing that if a trace is not secure, it should be edited
to a secure trace close to the non-secure one.

2 Basic Definitions

As we said in the introduction, a monitor is responsible for enforcing a policy
over a system, and we identify the three following entities: the target is an active

A Quantitative Approach for Inexact Enforcement of Security Policies 309

entity sending actions to the system; the system is a passive entity waiting for
actions from the target, and executing them; the monitor is an entity between
the target and the system, receiving actions from the target and sending actions
to the system. We now introduce the notion of traces, together with some usual
notations, and then we express the notion of policy and monitor.

2.1 Actions and Traces

Let A be the set of actions that the target can output, such that A contains the
special action
, indicating that the target has finished its execution, and does
not output any other actions. We consider here traces consisting of an unbounded
number of actions, and we say that a trace is consistent when any action
 is
followed only by
 actions. We write T for the set of all finite, unbounded,
consistent traces, and given a natural number n, abusing the notation, we write
T n for the subset of T consisting of all traces of length n. For the sake of
exposition, we consider that any trace σ can always be extended by adding any
finite number of
 actions, and conversely that the actions
 at the end of a
trace can always be removed. Given a trace σ ∈ T , we write |σ| for the length
of σ (potentially including
 actions at the end), and we write ε for the empty
trace.

Given a trace σ, we write σi for the action located at the i-th index of σ,
starting from 0. Note that we consider that σi is always defined, and returns

if i is greater than the length of σ. We extend this notation to write σi<j for
the sub-trace of σ between the locations i and j − 1. For instance, given the
trace σ = abcde, we have σ1<3 = bc. When the first index is equal to 0, we
write σ0<j = σ<j , which corresponds to the prefix of length j of the trace. In
particular, we have σ<0 = ε.

Given two traces σ and τ in T , we write σ; τ (or στ when no confusion can
arise) for the concatenation of σ with τ , we write σ � τ to denote that σ is a
prefix of τ . Note that we consider the prefix relation to be built modulo the

actions3 at the end of the trace, in other words, if σ � τ , then σ
 � τ .

2.2 Security Policy and Property

In general, a security policy is expressed over sets of traces, describing all the
secure runs of the system. For instance, a security policy could state that the
system cannot execute the same trace twice. However, such a policy cannot be
enforced by run-time monitoring, since it is usually considered that the monitor
can only see the current trace submitted by the target. Following most existing
approaches in the context of run-time enforcement, we only consider here security
policies that can be defined using a security property, which is a computable
predicate P : T → B.

3 In general, we consider the
 actions at the end of a trace as non-significant actions,
and we use them mostly to avoid checking the length of a trace every time we want
to access an action of a trace.

310 P. Drábik, F. Martinelli, and C. Morisset

Moreover, we consider here only reasonable properties [16], which, in addition
to being defined as computable predicates, also always hold over the empty
trace, so that a system cannot start in a non-secure state. We therefore exclude
liveness properties that require that a particular action is always executed. The
reason we impose this constraint is to ensure that a monitor can always output a
secure trace. Note that many access control policies (e.g., the Access Matrix [13],
the Bell-Padula model [14], the Role-based model [8], etc), can be expressed as
security properties, since they do not depend on previous executions of the target,
but only on the current state of the system.

Among reasonable properties, the category of safety properties has been par-
ticularly studied. Intuitively, with a safety property, a non-secure trace cannot
be extended into a secure one. More formally:

Definition 1. A reasonable property P is a safety property if, and only if:

∀σ1, σ2 ∈ T ¬P(σ1) ∧ σ1 � σ2 ⇒ ¬P(σ2)

Running Example. For instance, consider the set of actions Ae = {b, d, s},
where b stands for a benign action, d for a dangerous action and s for a supervision
action. We want to express that the target can execute any benign action, but
must execute first a supervision action before executing a dangerous action,
which is given by the following property Pe, which is clearly a safety property:

Pe(σ)⇔ (∀i σi = d⇒ ∃j < i σj = s).

We introduce in Section 4.1 the concept of n-safety property, which, roughly
speaking, is a property allowing at most n “bad” steps. One of the problems we
try to address in this paper is the enforcement of such properties.

2.3 Monitor

A monitor can be represented as a function E : T → T , that is, a function taking
a trace as an input from the target, and returning another trace to the system.
As we said in Section 1, we are interested here in monitors that have no editing
power over the trace, only a truncating one. In other words, the trace output by
the monitor is either exactly the one input by the target, or its prefix. Intuitively,
we want a monitor to be both secure (i.e., that the monitor only output secure
traces), and usable (i.e., that the monitor does not truncate secure traces), which
we express with the traditional notions of correct enforcement, transparent en-
forcement, and exact enforcement (for both correct and transparent) defined as
follows.

Definition 2. An enforcement mechanism E : T → T is said to:

– be conservative if, and only if, for any trace σ ∈ T , we have E(σ) � σ;
– correctly enforce a property P if, and only if, for any trace σ ∈ T , we have
P(E(σ)),

A Quantitative Approach for Inexact Enforcement of Security Policies 311

– transparently enforce a property P if, and only if, for any trace σ ∈ T such
that P(σ), we have E(σ) = σ.

– exactly enforce a property P, which we denote as E + P if, and only if, E
is conservative, and correctly and transparently enforces P,

It is worth observing that even though we do not consider editing power here, for
any reasonable property, there exists a monitor enforcing exactly this property:
since the monitor has access to the whole trace, it can simply check whether
the security property holds for the trace, and output it in the positive case, or
output ε otherwise. In other words, the ability to edit a trace is not necessary to
enforce exactly a reasonable property, knowing the future of the trace is enough.

We now present a framework based on the notion of selector, which is a simple
function taking the past trace, the action to control, and decides whether the
action should be kept or the trace stopped. To some extent, the role of a selector
is close to the one of a security automaton [15]. A monitor is then defined by
calling a selector for each action submitted by the target, thus making explicit
the fact that a monitor must make a decision at each step, and cannot simply
wait for the rest of the trace. We consider the notion n-selectors in Section 4. This
framework allows us to tackle the problem of inexact enforcement in Section 5.

3 Selector-Based Monitor

We introduce our framework by revisiting the definition of the class EM (for
Execution Monitoring), defined by Schneider [18] as excluding “mechanisms that
use more information than would be available only from observing the steps of
a target’s execution”, which we characterize by defining the concept of selector,
which embodies the fact that a monitor must make a decision at each step using
only past information.

3.1 Selector

A selector is a function F : T ×A → B, such that given a trace σ and an action
a, F (σ, a) is true if and only if the action a should be kept after having executed
the trace σ. Moreover, we consider only selectors stating that if an action should
not be kept, then any following action should also not be kept. We say that a
monitor satisfying this constraint is consistent, which is formally specified as:

∀σ ∈ T ∀i F (σ<i, σi) = false ⇒ ∀j > i F (σ<j , σj) = false

For instance, the selectors Ffalse and Ftrue , which return always false and always
true, respectively, are trivially consistent. Clearly, this notion of consistency is
related to the one of safety. Indeed, given a computable property P , the selector
FP , as defined in Equation (1), is clearly consistent when P is a safety property.

FP(σ, a) =

{
true if P(σ; a)
false otherwise

(1)

Intuitively, the selector FP is analogous to a truncation automaton [15].

312 P. Drábik, F. Martinelli, and C. Morisset

3.2 From Selector to Monitor

Given a selector, we can straight-forwardly define a monitor by calling the se-
lector at each step. More formally, given a selector F : T × A → B, we define
the monitor EF : T → T as follows:

∀i ∈ N EF (σ)
i =

{
σi if F (σ<i, σi) = true

 otherwise

Clearly, if F is a consistent selector, for any consistent trace σ, EF (σ) is also
consistent.For instance, from the two selectors Ffalse and Ftrue described above,
we can define the monitors4 Efalse and Etrue , which respectively always outputs
the empty trace and always outputs the input trace. It is worth noting that both
monitors are conservative, that Efalse enforces correctly any property and that
Etrue enforces transparently any property. In other words, it is always trivial to
build a correct monitor, and it is always trivial to build a transparent monitor,
but in general, such monitors are not exact.

When P is a safety property, we can however always build the monitor EP
from the selector FP defined in Equation 1, and we can prove that EP enforces
exactly P (all proofs can be found in the companion report [7]).

Lemma 1. For any safety property P, EP + P.

Running Example. For instance, consider the trace bbsddb. Following the
definition of Pe, we have EPe(bbsddb) = bbsddb, because a supervision action is
present before any dangerous action. Now, consider the trace bbdsdb: we have
EPe(bbdsdb) = bb

 = bb
. Indeed, even though the second dangerous
action is preceded by a supervision action, the first one is not, and since the EPe

is consistent, every action after the first dangerous action included is transformed
into the
 action.

We can now formally express and prove that, as stated by Schneider [18]
“if the set of executions for a security policy is not a safety property, then
an enforcement mechanism from EM does not exist for this policy”. Moreover,
since we do not consider real-time availability problems or infinite memory, we
can even prove the converse, as stated in Proposition 1 (which is simply the
reformulation of Schneider’s result in our framework).

Proposition 1. Given a property P, there exists an enforcement mechanism E
in EM such that E + P if and only if P is a safety property.

This result, although expected, nonetheless narrows down enforceable properties
to safety properties, and does not provide a way to enforce non-safety properties,
such as those existing in emergency contexts. We present in the following section
such properties, and we show in Section 5 how to enforce them inexactly.

4 For the sake of clarity, when the name of the selector comes with a subscript, such as
Fx, when no ambiguity can arise, we write directly Ex for the corresponding monitor
instead of EFx .

A Quantitative Approach for Inexact Enforcement of Security Policies 313

4 n-safety Properties and n-selectors

In this section, we first introduce the concept of n-safety properties, which are
properties where a maximum of n non-secure steps is allowed. We then define
n-selectors, which are selectors that can use the following n steps to make a
decision about an action. Intuitively, we introduce n-selectors to characterize
the selection process with complete information about the future, and we use
them when we have incomplete or imperfect information (Section 5.2).

4.1 n-safety

Although many security policies are safety properties, there also exist some prop-
erties which do not satisfy the safety condition, such as some liveness properties,
as stated in Section 2.2, or policies including obligations requiring a given action
to be executed after a particular trace, otherwise the entire trace would be non-
secure. For instance, it might be authorized to create a temporary copy of a file,
as long as this copy is deleted after usage. Another example concerns break-glass
policies [1,5], usually defined in healthcare environments, where some violations
of the property can be tolerated during an emergency situation, as long as an
audit is performed afterwards.

In order to define the notion of n-safety, we first introduce the one of critical
trace: given a trace σ and a property P , a trace τ is said to be critical if, and
only if, extending σ with τ can lead to a secure trace even though each step in
τ is non-secure. More formally, we define the predicate DP as follows:

∀σ, τ ∈ T DP(σ, τ) ⇔ ∀τ ′ � τ (τ ′ �= ε⇒ ¬P(σ; τ ′)) ∧ ∃τ ′′ ∈ T P(σ; τ ; τ ′′)

Note that in the above definition, we implicitly assume that σ; τ belongs to
T . Clearly, this is not necessarily the case, for instance if σ ends with
. In
order to be rigorous, we would need to define the set T (σ), as the set of possible
extensions from σ. However, for the sake of readability, we assume this constraint
to be implicit, and notationally speaking, we use τ to indicate extensions rather
than full traces.

We then define a n-safety property as a property holding for the empty trace
and admitting critical traces whose length are at most n.

Definition 3. A property P is an n-safety property if, and only if

∀σ, τ ∈ T DP(σ, τ) ⇒ |τ | � n

Clearly, given m � n, a m-safety property is also a n-safety property.

Running Example. One of the limitations of the running example is that
it requires the target to first ask for supervision before being able to perform
the dangerous operation. In some contexts, such as healthcare, it might not be
possible to ask for a supervision first, and it might be needed to do the dangerous
action first, and then only to ask for the supervisor to verify that everything was

314 P. Drábik, F. Martinelli, and C. Morisset

correct. For the sake of this example, let us introduce a new “critical” action c,
such that when executing c, the supervision can be done at most k steps after
the action.

For instance, for k = 2, the trace cb is critical for the trace b (or any other
secure trace that does not contain s), since bcbs is secure while bcbb is not.
However, cbb is not critical, since it is not possible to extend cbb to a secure
trace. We can then define the property Pk,e, which extends Pe by tolerating at
most k non-secure steps, as:

Pk,e(σ)⇔ Pe(σ) ∨ (∀i σi = c⇒ ∃(j � i+ k) σj = s)

The property Pk,e is a combination of a safety property, Pe, and of a k-safety
property, and therefore is also a k-safety property.

4.2 n-selector

An n-selector is a function Fn : T × A × T n → B, such that for any n, for
any traces σ and τ such that |τ | = n, and any action a, Fn(σ, a, τ) indicates
whether the action a should be kept knowing that the past trace is σ and that
the future execution is τ . Intuitively, an n-selector is a selector with a visibility
of n steps over the future trace, and it follows that n is equal to 0, an n-selector
is equivalent to a selector. Let us observe that since it is always possible to ignore
the end of a trace, given a selector Fn, it is always possible to build an equivalent
selector Fm when n � m. For instance, the selectors Ffalse and Ftrue defined in
Section 3.1 are also n-selectors, for any n.

Given a property P , we can define the n-selector Fn,P in a similar fashion
than the selector FP :

Fn,P (σ, a, τ) =

{
true if there exists τ ′ � τ P(σ; a; τ ′)
false otherwise

(2)

For any n-safety property, the selector Fn,P is consistent, since if for some trace
σ and index i, we have Fn,P(σ

<i, σi, σi+1<i+n) = false , then by definition of
n-safety, we know that any extension of σi+n is non-secure.

We show in [7] that n-selectors can be directly used to enforce exactly n-
safety properties. However, in order to use an n-selector, one needs to be able to
produce the n following steps of the trace, and although it could be possible in
some contexts (for instance when the entire input trace is known in advance, or
by buffering the n following steps, such as done by an edit-automaton [15]), in
general the monitor does not have access to this information. For instance, in the
running example, buffering the trace would defeat the purpose of the n-safety
property, that is to accept time-critical actions in the absence of supervision. We
study in the next section the problem of inexact enforcement.

5 Inexact Enforcement of n-safety Properties

An n-safety property can only be enforced inexactly (i.e., either not correctly or
not transparently, or both) by a mechanism in EM (i.e. with no precise knowledge

A Quantitative Approach for Inexact Enforcement of Security Policies 315

about the future). We address in this section the problem of inexact enforcement,
and we propose to quantify the necessary security/usability tradeoff.

5.1 Security/Usability Tradeoff

In order to quantify the non-correctness of a monitor, given a monitor E and a
property P , we introduce the set C〈E,P〉, which represents all traces for which
the monitor outputs a non-secure trace. Similarly, the quantification of the non-
transparency is done using the set T〈E,P〉, which represents the secure traces
that the monitor does not output as they are. More formally, we have:

C〈E,P〉 = {σ ∈ T | ¬P(E(σ))} T〈E,P〉 = {σ ∈ T | P(σ) ∧E(σ) �= σ}.

When E enforces exactly P , we clearly have C〈E,P〉 = T〈E,P〉 = ∅. Conversely,
since an n-safety property cannot be enforced exactly using a selector, at least
one of these two sets is necessarily non empty.

We showed in Section 3.2 that it is always trivial to define a monitor that
enforces a property either correctly or transparently, with the monitors Efalse

and Etrue , respectively. It follows that minimizing one set without considering
the other is trivial, and thus we are interested here in minimizing both sets
together. In other words, we want to establish a tradeoff between security (i.e.,
correctness) and usability (i.e., transparency), when both cannot be achieved
simultaneously. Intuitively, the bigger the set C〈E,P〉 is, the less secure E is,
while the bigger the set T〈E,P〉, the less usable E is.

5.2 Building a Selector from an n-selector

Given a trace σ and an action a, we can define a selector F from the n-selector
Fn,P defined in Section 4.2. In order to illustrate the general approach, let us
first consider a very simple case, and let us assume that only two traces τ1 and τ2
of length n are possible after σ; a (meaning that the whole trace is either σ; a; τ1
or σ; a; τ2). Three cases might occur:

– Fn,P(σ, a, τ1) = Fn,P (σ, a, τ2) = true, and we can define F (σ, a) = true;
– Fn,P(σ, a, τ1) = Fn,P (σ, a, τ2) = false, and we can define F (σ, a) = false;
– Fn,P(σ, a, τ1) = true and Fn,P(σ, a, τ2) = false (the converse case being

equivalent), and in this case, the selector F has to make a choice: either to
stop and not output the secure trace σ; a; τ1, or to continue and output the
non-secure trace σ; a; τ2 (or a non-secure prefix of it).

The first two cases are rather straight-forward, and the difficulty clearly lies in
the third case. In general, this choice has to be made with respect to all possible
extensions of length n, and not only τ1 and τ2. The crucial point is to make a
decision for a trace σ and an action a such that P(σ) holds and P(σ; a) does not,
and when there exists a trace τ such that Fn,P(σ, a, τ) = true. Indeed, at this
point, the selector is left with two choices: either accepting a and taking the risk
to output an non-secure trace, for instance if the target stops right after a or if

316 P. Drábik, F. Martinelli, and C. Morisset

the trace τ is not output, or stopping at this point, and therefore not outputting
the secure trace σ; a; τ .

Since at this level of formalism, we only compare two traces based on the fact
that they are secure or not (we consider in the following sections the probability
and the impact of a trace), we propose here a general selector Fr, specifying that
the number non-secure extensions must not exceed a given ratio r of the total
number of traces:

Fr(σ, a) =

⎧⎪⎨⎪⎩
true if there exists τ ∈ T n such that Fn,P(σ, a, τ) = true

and |{τ ∈ T n | Fn,P(σ, a, τ) = false}| � r |T n|
false otherwise

In particular, the selector F0 only accepts an action when it is certain that every
possible extension is secure, while the selector F1 accepts actions as long as there
is a possibility for a secure extension. Note that given any 0 � r � 1, if a trace
is secure at each step, then Fr accepts it, and if a trace is irremediably bad (i.e.,
there is no possibility to extend it to a secure trace), then Fr stops the trace.

5.3 From Local Ratio to Global Ratio

The local ratio r defined in the previous section acts as “worst-case scenario”,
since in any case, the selector Fr stops a trace whenever the proportion of non-
secure extensions is above this ratio. However, from a global perspective, we are
mostly interested in quantifying the proportion of non-secure traces output and
of secure traces not output from all possible traces. We thus define QC〈E,P,k〉
and QT〈E,P,k〉 as the proportion of the number of traces of length k in C〈E,P〉
and in T〈E,P〉 to all the traces in T k, respectively.

To some extent, these two values can be seen as utility functions of a moni-
tor with respect to a property, and therefore establishing the security/usability
tradeoff consists in providing a minimization strategy for these utility functions.
For instance, a very simple strategy could be to minimize the sum (QC〈E,P,k〉+
QT〈E,P,k〉), or to define a threshold on QC〈E,P,k〉 and to minimize QT〈E,P,k〉.

The local ratio r can be therefore seen as a pessimistic approach, and
it is straight-forward to observe that QC〈Er,P,k〉 � r. However, as we il-
lustrate in the next section, it is possible to have a situation where r is
much greater than QC〈Er,P,k〉, and in general, given a specific strategy over
(QC〈Er,P,k〉,QT〈Er,P,k〉), it is not trivial to define an r that satisfies it.

Indeed, the selector only makes a decision based on the relative number of
possible non-secure extensions, which is not necessarily representative of the
global number of non-secure traces. In other words, the local ratio r should be
considered as a parameter of the selector specifying which behaviour to adopt
when facing a critical trace, rather than a global measure of inexactitude. Let us
nonetheless observe that for any specific ratio, given a fixed trace length k, we
can derive the values QC〈Er,P,k〉 and QT〈Er,P,k〉. In other words, the required
ratio r can be inferred from the strategy, as we illustrate in the next section.
We believe the problem of calculating the optimal ratio r for any strategy is a
challenging one, and we plan to address it in future work.

A Quantitative Approach for Inexact Enforcement of Security Policies 317

Table 1. Tradeoff values for P2,e and k = 4

E Efalse Er1 Er2 Er3 Etrue

ratio 0 � r1 < 2/3 2/3 � r2 < 16/21 16/21 � r3 � 1

QC〈 〉 0 0 0.25 0.21 0.54
QT〈 〉 0.45 0.11 0.04 0 0

5.4 Running Example

Let us consider the 2-safety property P2,e, as defined in Section 4.1, and a trace
length of 4. We recall that a trace consists of any sequence of actions in {b, d, s, c},
possibly followed by
 actions. It follows that

∣∣T 4
∣∣ = 45−1

3 = 341, with the
following break-down: there are 112 non-secure traces caused by a d not preceded
by an s (e.g., bd

); 73 non-secure traces caused by a c not followed by an s
in the next two steps (e.g., cbb
); 12 secure traces with exactly two non-secure
steps (e.g., bcbs); 27 secure traces with exactly one non-secure step (e.g., csdb)
and 117 secure traces without non-secure step (e.g., sdc
).

The monitor Etrue outputs all 185 non-secure traces and all secure traces, and
therefore we haveQC〈Etrue ,P2,e,4〉 ≈ 0.54 and QT〈Etrue ,P2,e,4〉 = 0. Conversely, the
monitor Efalse does not output any non-secure trace, but only output the secure
trace ε, meaning thatQC〈Efalse ,P2,e,4〉 = 0 andQT〈Efalse ,P2,e,4〉 ≈ 0.45. Intuitively,
those two monitors should act as “worst cases”, meaning that defining a monitor
worse than them is pointless.

Now, let us identify the different possible ratios r, and the corresponding
tradeoff values. Let σ be a trace that does not contain s and the action c, then
there are 14 traces τ out of 21 of length 2 such that F2,P2,e(σ, c, τ) = false .
Hence, for any ratio 0 � r1 < 2/3, Fr1(σ, c) = false, which means that Er1 does
not accept any trace with a non-secure step. On the other hand, if the ratio is
above 2/3, the action c is accepted. Now, given the trace σ; c, where σ does not
contain s, and an action a either equal to b or to c, then there are 16 traces τ
out of 21 of length 2 such that F2,P2,e(σ; c, a, τ) = false . It follows that given
a ratio 2/3 � r2 < 16/21, Fr2(σ; c, a, τ) = false. Finally, it is easy to see that if
the ratio is above 16/21, then the selector only stops when all future traces are
non-secure. We summarize these results in Table 1.

Interestingly, we can observe that the monitor Er2 is always worse than Er3 ,
which is due to the fact that since Fr2 always accepts the first c, but stops if
the following action is not an s, then it outputs a non-secure trace in this case,
even for the correct input traces. In other words, it means that without further
information about the probability or the impact of a trace, an “all-or-nothing”
approach should be adopted: either all secure traces should be output, with Er3 ,
or none, with Er1 .

6 Probabilistic Enforcement

In the previous section, we implicitly consider any two traces have the same
probability to occur. However, in some cases, it is possible to quantify the

318 P. Drábik, F. Martinelli, and C. Morisset

likelihood of a particular trace to happen, typically when the probabilistic be-
haviour of the target is provided. For instance, consider the running example: it
could be possible to determine the likelihood of a particular nurse to ask for su-
pervision after executing a dangerous action, by statistically analyzing the past
activity of this nurse, or by using a pre-established level of trust for this nurse. In
general, let us assume that there exists a conditional probability function ψ(τ |σ),
indicating the probability of the trace τ to occur after the trace σ. We require
such a function to be a probability distribution for traces of same length, that
is,
∑

τ∈T n(τ | σ) = 1, for any n and any σ.
The security/usability tradeoff can now be expressed with PC〈E,P,k〉, which

represents the accumulated probability for the target to output a trace of length
n such that the monitor outputs a non-secure trace, and PT〈E,P,k〉, which rep-
resents the accumulated probability for the target to output a secure trace of
length n such that the monitor does not output the same trace. More formally,
given a monitor E, an n-safety property P and trace length k, we define:

PC〈E,P,k〉 =
∑
σ∈T k

{ψ(σ|ε) | σ ∈ C〈E,P〉}

PT〈E,P,k〉 =
∑
σ∈T k

{ψ(σ|ε) | σ ∈ T〈E,P〉}

The ratio-based selector Fr defined in Section 5.3 can therefore be refined to a
probabilistic ratio-based selector Fpc , such that given a trace σ, an action a and
a probability threshold pc, Fpc is defined by:

Fpc(σ, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true if: - there exists τ ∈ T n such that Fn,P (σ, a, τ) = true;

- ψ(τ |σ; a) �= 0; and

-
∑

τ∈T n{ψ(τ |σ; a) | Fn,P(σ, a, τ) = false} � pc

false otherwise

Following a similar reasoning to the one for Fr, we can see that PC〈Epc ,P,k〉 � pc,
since at each step, the monitor only keep accepting actions if the aggregated
probability of reaching a bad trace is lower than pc.

7 Quantitative Enforcement

In some context, it can be argued that outputting a particular non-secure trace
does not have the same impact as outputting another one. For instance, in the
running example, the impact of the trace dddd is intuitively much higher than
that of b

. In other words, quantifying only over the sets C〈E,P〉 and T〈E,P〉
might not be enough, even with the probability of traces. In this section, we
consider that in addition to the security property, we are provided with a quan-
titative property, associating each trace with a specific impact.

Given a set of traces T and a domain of values (V,≤,+,−), a quantitative
property is a function Q : T → V. For the sake of generality, we assume that

A Quantitative Approach for Inexact Enforcement of Security Policies 319

both P and Q coexist, as they serve a different purpose: P indicates which traces
are secure, while Q indicates the impact of each trace. For instance, Q might
denote the financial cost on the system to accept a trace, which could be in some
instances smaller for a non-secure trace than for a secure one.

Given an n-safety quantitative property (P , Q), an enforcement mechanism E :
T → T and a fixed length of traces k, we define RC〈E,P,k〉, which corresponds to
the risk created by accepting non-secure traces, and therefore corresponds to a
notion of damage, and RT〈E,P,k〉, which corresponds to the risk of not accepting
some secure traces, and therefore rather corresponds to a notion of loss:

RC〈E,P,Q,k〉 =
∑
σ∈T k

{ψ(σ|ε) ·Q(E(σ)) | σ ∈ C〈E,P〉}

RT〈E,P,Q,k〉 =
∑
σ∈T k

{ψ(σ|ε) · (Q(σ)−Q(E(σ)) | σ ∈ T〈E,P〉}.

It is worth observing that using the monitor Efalse leads to RC〈Efalse ,P,k〉 = 0,
which corresponds to the intuition that refusing every trace does not create any
risk in terms of security, while for the monitor Etrue , we have RT〈Etrue ,P,k〉 = 0,
which corresponds to the intuition that accepting every trace does not create a
risk of loss of usability. Let us also observe that if P is a safety property, then P
can be exactly enforced by the monitor EP , with RC〈EP ,P,k〉 = RC〈EP ,P,k〉 = 0.
This observation is consistent with the intuition that if the future can be ignored,
then the monitor does not need to expose itself to any risk.

In general, given an n-safety property P and a risk threshold λ, indicating
the risk limit a monitor can take, we can define the selector Fλ, such that given
a trace σ and an action a:

Fλ(σ, a) =

{
true if

∑
τ∈T n{ψ(τ |σ; a) ·Q(σ; a; τ) | Fn,P (σ, a, τ) = false} ≤ λ

false otherwise

Following a similar reasoning to the one for Fpc , we can see that RC〈Eλ,P,k〉 ≤ λ,
since at each step, the monitor only keep accepting actions if the aggregated
probability of reaching a bad trace is lower than λ.

Running Example. We measure the impact of a trace by the number of non-
secure actions executed by the system: we add 1 for each d not preceded by s, and
1 for each c neither preceded by s nor followed by s in the two following steps. For
instance, Qe(ddsd) = 2, and Qe(cbbs) = 1. Note that in this case RT〈E,P2,e,Qe,4〉
roughly measures the impact of secure traces that have been output as non-
secure traces by E. We present in Table 2 the different thresholds experimentally
obtained for the parameter λ, assuming all traces are equiprobable.

Two results are particularly interesting to observe. Firstly, the monitor Eλ2 ,
which corresponds to the monitor Er2 , has a lower impact than the monitor
Eλ4 , which corresponds to the monitor Er3 . In other words, when the impact of
traces is taken into account, then an approach “all-or-nothing” is not necessarily
the best, and it might be worth stopping in a non-secure state, even though

320 P. Drábik, F. Martinelli, and C. Morisset

Table 2. Tradeoff values for P2,e, Qe, k = 4 and equiprobable traces

E Efalse Eλ1 Eλ2 Eλ3 Eλ4 Etrue

ratio 0 � λ1 < 1.34 1.34 � λ2 < 1.48 1.48 � λ3 � 2.1 2.1 � λ4

QC 0 0 0.25 0.23 0.21 0.54
QT 0.45 0.11 0.04 0.02 0 0
RC 0 0 0.25 0.23 0.28 1.09
RT 0 0 0.04 0.02 0 0

there still is a possibility to find a secure extension. Secondly, the monitor Eλ3 is
created, and the only difference with Eλ2 is that Eλ3 accepts the first non-secure
c, and accepts the following action only if it is a b or a s. In other words, Eλ3 is
willing to take the risk of the first non-secure c, but not of a second one.

8 Conclusion

In this paper, we have presented the problem of inexact enforcement of secu-
rity policies, and of non-safety properties in particular. We have formalized the
concept of security/usability tradeoff by quantifying over the set of non-secure
traces output by a monitor and the set of secure traces not output. When proba-
bilistic knowledge about the future trace is available, we can define the notion of
probability of failure. Moreover, when quantitative information is also available,
then it is possible to define the risk exposure of a monitor. We have illustrated
that the best approach to adopt when dealing with critical traces depends on
whether quantitative information is available or not, which reinforces the idea
that security policies need to include a quantitative aspect [11].

The ultimate goal, the construction of the optimal monitor that minimizes
the risks or its approximations, is an ongoing and future work. Verification tech-
niques such as probabilistic model checking [10] might be a useful tool, since
they enable analysis of quantitative properties of probabilistic models. An inter-
esting approach is to consider the tradeoff as some utility functions that need
to optimized, such as it is done in [17], where the authors model access control
systems as Markov Decision Processes, thus leading towards a general notion
of utility-based security. We also need to validate the applicability of our ap-
proach for real-world scenarios, and to understand whether the calculations can
be done at runtime, or should rather be done as an analysis of a security prop-
erty. Finally, we would like to increase the expressiveness of monitors, in order
to consider editing of a bad trace, which extends the range of the choices to
analyze at run-time.

References

1. Ardagna, C.A., De Capitani di Vimercati, S., Grandison, T., Jajodia, S., Samarati,
P.: Regulating Exceptions in Healthcare Using Policy Spaces. In: Atluri, V. (ed.)
DAS 2008. LNCS, vol. 5094, pp. 254–267. Springer, Heidelberg (2008)

A Quantitative Approach for Inexact Enforcement of Security Policies 321

2. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of POPL 2012, pp. 165–178. ACM, New York (2012)

3. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable Security Policies Re-
visited. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp.
309–328. Springer, Heidelberg (2012)

4. Bielova, N., Massacci, F.: Predictability of Enforcement. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

5. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Proceedings of SACMAT 2009, pp. 197–206. ACM, New York (2009)

6. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 109–
124. IEEE Computer Society, Washington, DC (2010)

7. Drábik, P., Martinelli, F., Morisset, C.: A quantitative approach for the inexact
enforcement of security policies. Technical Report TR-07-2012, IIT-CNR (2012)

8. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference, pp. 554–563 (1992)

9. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings
of Security and Privacy, pp. 1–13 (2004)

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

11. Kephart, J.: The utility of utility: Policies for self-managing systems. In: Proceed-
ings of POLICY 2011, Pisa, Italy. IEEE Computer Society (2011)

12. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? a survey. Computer Science Review 6(1), 27–45 (2012)

13. Lampson, B.: Protection. In: Proceedings of the 5th Annual Princeton Conference
on Information Sciences and Systems, pp. 437–443. Princeton University (1971)

14. LaPadula, L., Bell, D.: Secure Computer Systems: A Mathematical Model. Journal
of Computer Security 4, 239–263 (1996)

15. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. Journal of Information Security 4(1-2), 2–16 (2005)

16. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Transactions on Information and System Security 12(3), 1–41 (2009)

17. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of ACM CODASPY 2012, pp. 169–180.
ACM, New York (2012)

18. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 30–
50 (2000)

19. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under
memory-limitation constraints. Information and Computation 206(2-4), 158–184
(2008)

OSDM: An Organizational Supervised

Delegation Model for RBAC

Nezar Nassr1, Nidal Aboudagga2, and Eric Steegmans1

1 Katholieke Universiteit Leuven,
Dept. of Computer Science and Engineering,

Leuven, Belgium
{nezar.nassr,eric.steegmans}@cs.Kuleuven.be

2 SecureICT, Belgium
nidal.aboudagga@secureict.com

Abstract. The dynamic nature of operations in organizations has led
to an interest in roles and permissions delegation to enable a seamless
continuity of business. Delegation involves assigning a given set of access
rights from one user to another. In existing role delegation models, dele-
gation is often authorized and controlled by a relation that specifies who
can delegate to whom. The usage of such relations in delegation mod-
els has some disadvantages; such as complexity of maintenance, error
proneness, inconsistencies and inabilities to define some organizational
policies related to delegation. In this paper, we propose a new delega-
tion model that depends on organizational lines of authority to authorize
and control delegation. The main advantages of this approach are that
it simplifies the management of delegation authorization and complies
with organizational behavior. Furthermore, it eliminates inconsistencies
related to changes to roles and permissions.

Keywords: Access Control, RBAC, Delegation, Revocation.

1 Introduction

Role-based access control (RBAC)[1] has become the dominant authorization
mechanism used in a wide range of organizations. RBAC has gained wide ac-
ceptance since it greatly simplifies the management of access rights. Moreover,
RBAC attempts to simulate organizational structures at a high level by its hi-
erarchical model. In RBAC, roles are assigned to users and permissions are as-
sociated to roles. Users represent staff in organizations. Roles represent the job
functions of the users or sub-functions in some cases. Permissions are privileges
for accessing objects or performing activities.

High dependability of organizations on access control systems and the dy-
namic nature of operations have shown a demand for dynamism in the access
control systems in place. RBAC supports the principle of least privilege [16],
which entails that users are assigned the minimum privileges required for achiev-
ing their functions. However, this has led to situations where some specific priv-
ileges are assigned only to very few users. Despite the clear advantages of this

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 322–337, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OSDM: An Organizational Supervised Delegation Model for RBAC 323

approach, it restrains access to important resources to a small closed group. At
times, none of those users maybe available. This may hamper certain activities
within the organization at stake. These situations have led to requirements of
increased dynamism of the access control systems in place.

Role delegation is a mechanism of performing a takeover on a user’s access
rights. Delegation gives authority of a user on another user’s access privileges to
perform functions of the user originally assigned to the delegated access rights.
Existing delegation models suggest that delegation can take two forms: adminis-
trative delegation and user delegation. In administrative delegation, an admin-
istrative user assigns access rights to a user while the administrative user is not
necessarily assigned to the delegated role. In user delegation, a user assigns a
subset of his available rights to another user [2].

Most of the existing delegation models [3][4][5][6][7] use a relation to authorize
delegation, that is used to determine which user can delegate to whom. The
delegation relation often takes the form can-delegate(R, some conditions), where
R is the role to be delegated, the conditions specify who can delegate the role, in
addition to other parameters such as depth of delegation. The conditions often
take the form: a user who has role x can delegate role y. The delegation relation
(can-delegate) brings some disadvantages to the delegation model:

1. The delegation relations in existing delegation models add complexity to
the access control model. Large organizations typically have a rather large
number of roles. By adding delegation relations for most of these roles, the
entire system may explode. This is blocking for large organizations since they
require huge efforts for defining a huge number of relations.

2. The delegation relations cannot express precise conditions on who can dele-
gate a specific role. As an example, consider a delegation relation that states
that a professor can delegate the teaching assistant role. This means that a
professor in the faculty of arts can delegate the teaching assistant role to a
user in the computer science department.

3. The delegation relations may become inconsistent if updates to RBAC rela-
tions are allowed such as updates to the role hierarchy [2]. Such updates may
occur when new activities are deployed in the organization. This adds huge
efforts for the maintenance of the relations, specifically in cases of updates to
roles such as adding or removing roles, as well as updates to the hierarchies
of roles. Such updates are likely to happen in organizations.

4. User delegation models suggest that a user who is delegating an access right
has to be assigned to it [2]. This is not necessarily valid, since it is possible
that the user possessing the access right to be delegated is absent. Further-
more, it is not guaranteed that another user who possesses the same access
right is available, especially in case of emergency.

In this paper we propose a novel form of delegation, called the organizational
supervised delegation model (OSDM). The idea came after surveying some ac-
cess control models and policies in some organizations. Our surveys included one
of the largest European banks, a European university and a software provider.

324 N. Nassr, N. Aboudagga, and E. Steegmans

We have discussed the applicability of the delegation authorization relations pro-
vided in existing delegation models [3][4][5][6][7]. All the surveyed organizations
commented negatively on these relations, and mainly regarding complexity and
the huge number of relations to be defined which makes managing them ex-
tremely hard. Furthermore, organizations often adapt a different approach for
authorizing delegation. We have found that any user-role assignment or role (or
permissions) delegation must be approved by the line managers of the users.
When roles are delegated, the delegation request is initiated by a user, then ap-
proved by another user then executed by a user or a process. No user can delegate
a role assigned to himself without approval. The user who approves delegation is
not necessarily assigned to the role or to the permissions to be delegated. OSDM
depends on organizational hierarchies to find users who must approve delegation,
according to lines of authority defined in the organizational structure. OSDM
addresses the above mentioned limitations of existing role delegation models.

The remainder of this paper is organized as follows: In the second section
we show an overview of organizational structures. In the third section we review
existing role delegation models. The fourth section presents our proposed delega-
tion model. Section five is a discussion on OSDM. Finally, section six concludes
our work.

2 Overview of Organizational Structures

Organizational structures outline the planned pattern of positions of individuals,
job duties and activities to be achieved. They also describe the lines of authority
among different parts of the organization [8]. Organizational structures are mod-
eled using organizational charts that depict the relationships between different
positions and the hierarchy that represents authority depending on the rank of
users. Organizational structures can take several forms. Most of structures used
are hierarchical, matrix, and the flat organizational structures. In a flat struc-
ture, all employees report directly to a single manager. In hierarchical structures,
each individual reports to one and only one manager at the next higher level
[9]. Authority is clear in hierarchical organizations, and managers have absolute
authority on their teams.

The matrix structure involves dual authorities, where individuals can report
to two managers. Employees often have a functional manager and participate in
projects that have a project manager. Users report some activities to the project
manager and some activities to their functional manager. Authority of functional
managers and project managers in the matrix structure varies according to the
type of the matrix. Resource assignment is normally controlled by the functional
manager. Therefore, we are interested in functional managers for our delegation
model, since we care about who has the power to approve resource assignment
and therefore delegation.

We have developed an example users hierarchy to be used for explanation
throughout the rest of the paper. Fig. 1 depicts the users hierarchy of a software
development department in a technology department of a hierarchical organiza-
tional structure.

OSDM: An Organizational Supervised Delegation Model for RBAC 325

Fig. 1. Software development department users hierarchy of the organizational
structure

3 Related Work

In the last few years, several role delegation models [3][4][5][6][7] studying delega-
tion in the context of role based access control have emerged. However, delegation
was studied before RBAC was proposed, and there were some predecessors of
RBAC delegation such as: the access matrix models which introduced the con-
cept of copy flag, which allows users to delegate rights [10]. Wood and Fernandez
[11] introduced the idea of reverting the rights to the upper level after revoking
a low-level delegation. Graph-based delegation was introduced in [12]. A variety
of delegation approaches were also introduced in [13]. In this paper, we focus
on delegation in the context of RBAC. Delegation in RBAC can have several
characteristics depending on the requirements of the environment where delega-
tion is applied. The main characteristics of delegation were explained by Barka
et al. [14]. These key characteristics include permanence, monotonicity, total-
ity, administration, levels of delegation, multiple delegation, lateral agreements,
cascading revocation, and grant-dependency revocation [14].

The first work that studied delegation in RBAC was achieved by Barka and
Sandhu [3][14]. They proposed the RBDM0 delegation model [3] which stud-
ied delegation in flat roles structure. RBDM0 focused on grant total delegation
which means that the delegator keeps the power to use the role after delegation
and covers only the delegation of roles. RBDM0 does not support partial role
permissions delegations. RBDM0 controls user-user delegation by means of the
can-delegate relation. The can-delegate relation takes the form of (a, b) ∈ can-
delegate. It means that a user who is an original member of the role a can delegate

326 N. Nassr, N. Aboudagga, and E. Steegmans

his role to a user who is an original member of role b. Revocation in RBDM0
can happen in two ways: firstly, by time outs. Delegations are revoked when the
delegation period expires. Secondly, any original member of the delegated role
can revoke the membership of any delegate member in that role.

RDM2000 [5][15] was the first delegation model to address delegation with hi-
erarchical roles. It also supports multi-step delegation. The can-delegate relation
in RDM2000 takes the form: can-delegate ⊆ R × CR × N, where R are sets of
roles, CR are prerequisite conditions, and N is the maximum delegation depth.
The meaning of (r, cr, n)∈ can-delegate is that a user who is a member of role
r (or a role senior to r) can delegate role r (or a role junior to r) to any user
whose current entitlements in roles satisfy the prerequisite condition cr without
exceeding the maximum delegation depth n.

The permission-based delegation model (PBDM) [6] was the first to address
permission delegation (partial delegation). PBDM supports role as well as per-
mission delegations with features of multi-step delegation and multi-option re-
vocation. PBDM comprises in two models; PBDM0 and PBDM1. In PBDM0,
permission delegation involves three steps. Firstly, a temporary delegation role is
created by the delegator. Secondly, the permissions to be delegated are assigned
to the temporary role with permission-role assignment. Thirdly, the delegator
assigns the temporary role to the delegatee by user-role assignment. Revocation
in PBDM0 includes three cases: by revoking the delegated role, by removing
one or more pieces of permissions from the delegated role, or by revoking the
user-delegation role assignment.

PBDM1 extends PBDM0 with two main features. Firstly, it adds support for
role-role delegation, which supports delegating specific permissions of a role to
another role rather than to another user. Secondly, it adds means for controlling
delegation; to restrict delegation only to authorized users. This is achieved by
the can-delegate relation, which takes the form: can-delegate ⊆ DBR × Pre-con
× P-Range × M, where DBR are sets of delegable roles, Pre-con are prerequisite
conditions, P-Range is the delegation range that specifies which permissions can
be delegated, and M is the maximum delegation depth.

Crampton et al. [2] proposed a new model for dealing with transfer delega-
tion. In transfer delegation, the delegator loses the power of using the access
right after delegation is completed. They also have proposed two relations for
controlling delegation. The can-delegate and the can-receive relations. The ad-
vantages of using different relations for controlling delegations include flexibility,
greater control, ease of management and is less error prone. They also included
constraints on the can-delegate and can-receive relations to ensure that the re-
lations do not give the authority to a delegator to delegate a right that is not
available to him.

The capability based delegation model [7] is an interesting work based on
the capability based access control model (CRBAC) presented in the same pa-
per. The CRBAC model integrates a capability-based access control mechanism
into the RBAC96 model. Roles and permissions are assigned to capabilities,
and capabilities are assigned to users. Delegation is achieved by creating a new

OSDM: An Organizational Supervised Delegation Model for RBAC 327

capability, then by assigning delegable authority (roles or permissions) to the
capability, then the delegator sends the capability to the delegatee. Unlike the
other delegation models, delegation is authorized by a permission that the dele-
gator must possess for creating the capability.

We discuss the drawbacks of the reviewed models and how OSDM addresses
them in section 5.

4 The Organizational Supervised Delegation Model

We have shown in the previous sections that existing delegation models depend
on the delegation relation for determining who can delegate a given role or a
set of permissions. We have also shown the drawbacks of using the delegation
relation for authorizing delegation. Our surveys of different organizations have
revealed that no user is directly allowed to delegate his role to another user
without the approval of the direct line managers of both users. Another problem
with existing role delegation models is that they require that the user performing
the delegation to possess the role to be delegated. This conflicts with one of the
major reasons for using delegation; which is when the user is absent without early
notification due to an emergency situation, and hence, blocks urgent activities
usually performed by that user.

In this section, we provide our delegation model that aims at addressing issues
of existing delegation models. We start by extending RBAC to enable the user
hierarchy feature, that is used to find the users who must approve the delegation.
Then we provide a detailed description of the delegation model followed by the
formal model of the organizational supervised delegation model (OSDM). The
last subsection explains how revocation is performed in OSDM.

4.1 Extensions to RBAC

In RBAC, roles are assigned to users and permissions are assigned to roles. Roles
represent job functions or sub-functions in organizations, while permissions are
privileges to access objects or execute operations. The main advantage of RBAC
is that it simplifies the management of access rights, since users can be reassigned
from one role to another. New permissions can be assigned to roles as new
applications and systems are incorporated, and permissions can be revoked from
roles as needed [16].

RBAC has paid attention to simulating organizational structures after the
concept was originally proposed for user group structures in [17]. RBAC imple-
ments role hierarchies that are a natural means of structuring roles in organiza-
tions [18]. Role hierarchies are partial orders that express inheritance relations
among roles. Although role hierarchies in RBAC can reflect some points from
organizational structures, the functional role hierarchy constructed through the
existing role engineering approaches does not reflect organizational structures,
because they do not take into account the structural characteristics of orga-
nizations [19]. Hierarchies in RBAC implement the is-a relationships between

328 N. Nassr, N. Aboudagga, and E. Steegmans

hierarchical roles. In most organizations, superiors do not need full access on
permissions of their inferiors. It is not necessary that a manager inherits from
his inferiors since managers are often performing completely different tasks from
their subordinates. In consequence, the application of the is-a inheritance in
these situations results in the assignment of undesired and unnecessary privileges
to superiors. This conflicts with the least privilege concept. In many situations,
senior users have supervision relationships with junior users. Organizations are
seeking flexibility when defining hierarchies in the access control model that can
reflect these nuances [20]. More so, in organizational hierarchies, lines in the
hierarchy mean different levels in the structure. While in RBAC it is possible
that hierarchical roles are assigned to users in the same level in the hierarchy.
For example, in the users structure depicted in Fig. 1, the senior developer role
might inherit from the role of the junior developer, although both are in the
same level in the hierarchy.

From the description above, it is clear that the role hierarchies in RBAC
cannot reflect organizational structures, and therefore, we cannot take the role
hierarchies as basis for modeling the organizational hierarchies. Our delegation
model depends on the organizational structure in order to find the user who must
approve the delegation request. It is impossible to know the manager of a given
user in RBAC, since the organizational structure is not available or is misleading
in RBAC. Therefore, we propose an extension to RBAC to define hierarchies over
users. The hierarchy of users must respect the user hierarchies in organizational
structures. In our proposed extension, users hierarchies are represented as a
general tree, where each user has one parent node corresponding to his direct
responsible (line manager). As an example, the structure depicted in Fig. 1 can
be represented by the tree model shown in Fig. 2.

Modeling users hierarchies in RBAC with general trees makes it easier for
finding the responsible (line manager) of any user, who is in charge of approving
the delegation request. The direct line manager is the parent node of the user
node, while the next level manager is the parent node of the direct manager
node. This complies with hierarchies in organizational structures. Even in the
matrix structure, the functional managers are responsible for approving task
assignments to their employees. Therefore, the parent nodes in matrix structures
represent functional managers.

The proposed model incurs some amendments on the administrative RBAC
model [18]. The AddUser command now has an extra parameter called Parent
that corresponds to the user’s direct responsible. If the node to be added is a
parent node (responsible), then the children nodes can be attached to this parent
node as sub-trees. The DeleteUser is also modified. If the user node to be deleted
has no children, it means that the user is not responsible for other users, then it
can be deleted outright. If the user to be deleted is a parent of some other nodes,
which means that he is a responsible of some other users. Then we promote the
children users and attach them to the parent of the deleted node. The root node
can only be replaced and cannot be deleted. Other administrative commands
remain unchanged.

OSDM: An Organizational Supervised Delegation Model for RBAC 329

Fig. 2. Modeling the hierarchy of users of an organization structure by a general tree
data structure

The extended RBAC model is composed from the following elements and
relations:

- U,R, P : are sets of users, sets of roles and sets of permissions, respectively.

- PA ⊆ P ×R, a many-to-many permissions to roles association.

- RA ⊆ U ×R, a many-to-many users to roles assignments.

- RH ⊆ R × R, a partial order on R. Also represented by ≥. If r, r′ ∈ R,
then r ≥ r′ means r is higher in hierarchy than r′ and that r inherits all
permissions of r′.

- UH ⊆ U × U , a partial order on U . Also represented by > . If u, u′ ∈ U ,
then u > u′ means u is higher in hierarchy than u′ and that u has authority
on u′.

4.2 Delegation in OSDM

The central notion of OSDM is that delegation must be approved by the line
managers of the delegator and the delegatee. OSDM supports both role dele-
gation and permission delegation. More so, OSDM supports delegation in both
flat and hierarchical roles. In general, the delegation process in OSDM is accom-
plished in three main steps: firstly, a delegation request is initiated, secondly, the
delegation request is sent for approval, and finally, the delegated access rights
are assigned to the delegatee.

330 N. Nassr, N. Aboudagga, and E. Steegmans

There are three types of situations in which delegation takes place. Firstly,
backup of roles. When the user is absent, the function needs to be achieved
by others. Secondly, centralization of authority. When an organization needs to
reorganize functions and distribute functions from higher job positions to lower
job positions in the organizational structure. Thirdly, collaboration of work.
Users need to collaborate with others to achieve specific tasks [6]. However, user
delegation models discussed in the literature requires that the user performing
the delegation must possess the ability to use the access right [2]. This is not
valid in all cases, since in the backup of role case, the user is absent and cannot
initiate the delegation. Therefore, we enable different users to initiate the request.
Specifically, the delegation request can be initiated by three different users:

- By the delegator (the user that delegates the role). The delegator asks to
delegate his role or permissions to another user.

- By the delegatee (the user that is to be delegated the access right). The
delegatee asks to acquire an access right from another user.

- By the line manager of the delegator, either by the direct line manager or
by a higher level line manager.

Consider the hierarchy depicted in Fig. 1, if Alice needs to delegate one of her
access rights to Bob, then the delegation request can be initiated either by Alice
herself, by Bob, or by one of Alice’s line managers, usually Ted. In case of absence
of Ted, the request can be initiated by Brian, Tim or Steve.

Once the delegation request is initiated, the delegation request becomes pend-
ing for approval. The request must be approved by a line manager of the delegator
and a line manager of the delegatee. The reason for this is that the line manager
of the delegator is responsible for achievement of his tasks. The approval of the
line manager of the delegatee is required because he is responsible for assign-
ing the resources to the tasks. The line managers entitled for approval receive
a request to approve the delegation. This means that the delegation authoriza-
tion is performed by the parent nodes of the delegator and the delegatee. Once
both of them have sent their approvals, the delegation operation step can be
accomplished; in which the delegated access rights are assigned to the delegatee.
Usually, the delegation request is sent to the first line managers of the delegator
and the delegatee, but in case of their absence, the request can be redirected on
demand to the higher level line managers of the delegator or the delegatee. In
case that the delegator and the delegatee are supervised directly by the same
first line manager, then only one delegation request is sent to the line manager.
If a user’s access right is to be delegated to his direct line manager, then one
approval request is sent to the line manager of the delegatee. The steps of the
delegation process in OSDM are depicted in the activity diagram shown in Fig. 3.

To explain the approval step of delegation, we continue our example. When
the delegation request is initiated for delegating some access rights from Alice to
Bob, the request for approval is sent to both Ted and Marc. In case of absence of
either Ted or Marc the delegation request can be sent to Brian, Tim or Steve. If
Ted asks to acquire an access right from Alice, then only one request is sent to

OSDM: An Organizational Supervised Delegation Model for RBAC 331

Fig. 3. The activity diagram of the delegation process

Brian for approval. If Alice needs to delegate some access rights to Tony, then
only one approval request is sent to Ted.

Once the delegation request is approved, then the third step of delegation can
be executed. The delegation operation step depends on the characteristics of del-
egation to be implemented. The identified characteristics of delegation comprise
totality, permanence, monotonicity, administration, levels of delegation, multi-
ple delegation, lateral agreements, cascading revocation, and grant-dependency
revocation [14]. The delegation operation using these characteristics has been de-
scribed by several papers [3][4][5][6][14]. In OSDM, we focus on total and partial
grant delegation with flat and hierarchical roles.

We adapted the approach discussed in [3][5][6] for the delegation operation.
We start with delegation operations on flat roles then we move to hierarchical
roles.

Delegation in Flat Roles:

1. Grant total delegation: In this case, the delegator delegates a role with all
its permissions to the delgatee. The delegatee must not be a member in that
role before delegation. The delegated role is assigned to the delegatee with
delegation relation instead of the original role assignment relation. This is im-
portant to identify delegated roles from roles that where originally assigned
to users by the system administrators. The delegatee can start using the role
after this step, and the delegator retains the power to use the delegated role.

332 N. Nassr, N. Aboudagga, and E. Steegmans

2. Grant partial delegation: In this case, the delegator only grants a subset of
permissions of a given role to the delgatee. A temporary role is created and
is assigned to the permissions to be delegated. The temporary role is then
assigned to the delegatee with delgation. The delegatee can start using the
delegated permissions after this step, and the delegator retains the power to
use the delegated permissions.

Delegation in Hierarchical Roles:

1. Grant total delegation: In this case, the delegator delegates a role with all
its permissions to the delegatee. The delegatee then has the power to use
the role plus all the roles in the hierarchy junior to the delegated role. The
delegator is explicitly assigned to the roles junior to the delegated role. The
delegated role is assigned to the delegatee with delgation and the delegator
retains the power to use the delegated role.

2. Grant partial delegation: This case is exactly the same as the grant partial
delegation in flat roles structure.

4.3 A UML/OCL Formal Model of OSDM

In this subsection, we include the formal model of OSDM for completeness.
We use the Unified Modeling Language (UML) [21] and the Object Constraint
Language (OCL) [22] to formalize the definitions of OSDM. Fig. 4. shows the
UML class diagram of OSDM. The diagram projects the relationships between
the different classes of the extended RBAC model according to the definitions in
section 4.1. Furthermore, the diagram depicts the classes required for delegation.
The DelegationRequest class represents the initiated delegation request. The Ap-
provalRequest represents the requests for approving the delegation request and
then assigning the delegated role to the user by delegation. The diagram also de-
picts the two types of role assignments; the original and delegation assignments.

The following definitions formalize OSDM constraints in OCL:

Definition 1:
In OSDM, the line manager of a user is the user higher in the hierarchy (parent
node). In case of absence of the direct line manager, then the line manager is
the next level manager.

context::User:getLineManager()

post: if self.Manager.Absent = false

then result = self.Manager

else result = self.Manager.getLineManager()

endif

Definition 2:
Self delegation is not allowed in OSDM; the delegator and delegatee cannot be
the same user.

OSDM: An Organizational Supervised Delegation Model for RBAC 333

Fig. 4. The class diagram of OSDM

context::Delegation

inv: no_self_delegation: self.User <> OriginatingRole.User

Definition 3:
The role assigned to the user by the delegation relation must be exactly the
role in the delegation request; which is the delegated role.

context::Delegation

inv: same_role: self.Role = OriginatingRole.Role

Definition 4:
The delegation request is initialized by the delegator, the delegatee or the line
manager of the delegator.

context::DelegationRequest

inv: InitiatorRule: self.Initiator = self.Delegatee or

self.Initiator = OriginatingRole.User.getLineManager()

or self.Initiator = OriginatingRole.user

Definition 5:
The delegation request can be initialized only if the delegatee is not assigned
to the delegated role.

context::DelegationRequest

inv: Delegator_not_member_in_delegated_role:

self.delegatee.role ->asSet() ->excludes(OriginatingRole.role)

334 N. Nassr, N. Aboudagga, and E. Steegmans

Definition 6:
Proper delegation requests must have been forwarded to a manager of both
users involved in a delegation request.

context::DelegationRequest

inv: requests_initiated:

ApprovalRequest.Manager ->

forSome(manages(self.Delegatee)) and

ApprovalRequest.Manager ->

forSome(manages(self.Delegation.User))

Definition 7:
The role must be assigned to the user once the delegation Request is approved.

context::DelegationRequest

inv: delegate_role: if ApprovalRequest.Approved = true

then delegation ->allInstances ->

includes(delegation|delegation.role = self.OriginatingRole

and delegation.user = self.delegatee)

endif

If multi-step delegation is not allowed, then the link between DelegationRequest
and UserRoleAssignment in Fig. 4 must be changed to be between Delegation-
Request and Original class. The link between UserRoleAssignment and Delega-
tionRequest indicates that the delegation request can only be initiated if the role
to be delegated is assigned to the delegator.

4.4 Revocation in OSDM

Revocation is the step that ends delegation and deassigns the previously dele-
gated access rights from the delegatee. Revocation can be performed when the
reason for delegation becomes invalid. For example, if the delegation was per-
formed because of user absence and the user returns back to duty. Revocation
in OSDM is achieved as follows:

- In case of grant total delegation, the revocation is simply achieved by deas-
signing the delegated role from the delegatee.

- In case of grant partial delegation, revocation is achieved either by deassign-
ing the delegated temporary role, or by revoking one or more permissions
from the temporary role.

In both cases, revocation must be initiated by the delegator, the delegatee or the
line manager of the delegator. The revocation must also be approved by the line
manager of the delegator. The approval of the line manager of the delegatee is not
necessary for revocation, since the line manager of the delegator is responsible
for the accomplishment of his tasks, whereas the line manager of the delegatee
is involved in cases where tasks are to be assigned to his employees.

OSDM: An Organizational Supervised Delegation Model for RBAC 335

5 Discussion

Controlling delegation is the mechanism in delegation models that determine
the security of the delegation model. Although the proposed delegation control
relations in existing role delegation models provide a means for authorizing del-
egation, they still suffer from disadvantages that will turn organizations away
from using them. Defining such relations introduces complexities and is prone to
error. If the definition of a relation is missing then it prevents delegating a role,
while an erroneous relation enables delegation to none entitled entities. More so,
relations complicate updates to RBAC, organizations need to revise the relations
after each update. Even if organizations can tolerate this great overhead caused
by relations, they will not be able to express some constraints on delegation such
as specifying that manager m should approve delegation of role r of user u. This
is due to the fact that conditions in delegation relations depend on roles. This
could create inconsistencies, given it is possible that two managers having the
same role becomes able to delegate a specific role. Other models such as CRBAC
[7] uses a permission to authorize delegation. This eliminates complications in-
troduced by the can-delegate relation, but it opens security breaches since any
user that has a permission to create a capability can delegate his roles and per-
missions. Furthermore, role hierarchies in RBAC does not reflect organizations
structures as shown in [19][20][23]. This has led to the idea of OSDM, which
models organizational structures in RBAC and then utilizes them in controlling
and authorizing delegation.

The advantages of OSDM other than addressing the above limitations of
existing delegations, are that it complies with organizational policies towards
delegation authorization. OSDM also provides a means for reflecting the organi-
zational hierarchies and lines of authority in RBAC. In organizational structures,
the functional line managers of users are responsible for resource allocation.
Which means that roles are assigned to users based on the agreement of their
line managers. This is also valid for delegation.

The implementation of the model is straightforward once the organizational
chart is available to be projected and maintained in the access control system of
the organization.

6 Conclusion

The central contribution of this paper is a new roles and permissions delegation
model for role based access control, the organizational supervised role delegation
model (OSDM). This model provides a new means for controlling and autho-
rizing delegation based on the organizational hierarchy. The development of the
OSDM model was motivated by surveying some organizations and verifying their
delegation and role assignment mechanisms in place. The survey has concluded
that such actions are usually approved by managers according to lines of author-
ity in the organization.

336 N. Nassr, N. Aboudagga, and E. Steegmans

The model starts by extending RBAC to adopt changes required for imple-
menting organizational hierarchies. Mainly by adding support for users hierar-
chies. This enables implementing authority relations among different users by
modeling the hierarchy using a general tree data structure. The users hierarchy
helps in finding users who need to approve delegations and revocations according
the lines of authority in the organization. In existing delegation models, delega-
tion is authorized by using a delegation relation that define who can delegate a
given role. We have explained disadvantages of this approach that could prevent
organizations from using delegation models based on such relations.

The delegation request can be initiated by three different parties, the dele-
gator, the delegatee, or the line manager of the delegator. Once the request is
initiated, the delegation request is sent for approval to the line managers of the
delegator and the delegatee. The delegation operation is performed when both
approvals are received. OSDM supports both role and permission delegations, as
well as flat and hierarchical role structures. Revocation in OSDM takes similar
steps to delegation. Firstly, a request for revocation is to be initiated by the
delegator, the delegatee or the line manager of the delegator. Afterwards, the
revocation request needs to be approved by the line manager of the delegator,
before the revocation operation is performed.

The future work on OSDM will focus on defining API classes for the model,
and validation on a case study or by implementing our approach at one of the
surveyed organizations. More so, we will be looking at extending the model to
support parametrized roles delegation. We will be also looking at more efficient
modeling of users hierarchies that can implement special lines of authorities and
constraints.

References

1. Ferraiolo, D., Kuhn, D.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference (1992)

2. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. Int.
J. Inf. Sec. 7(2), 123–136 (2008)

3. Barka, E., Sandhu, R.: A Role-based Delegation Model and Some Extensions. In:
Proceedings of 23rd National Information System Security Conference, Baltimore,
pp. 101–114 (2000)

4. Crampton, J., Khambhammettu, H.: Delegation in Role-Based Access Control. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
174–191. Springer, Heidelberg (2006)

5. Zhang, L., Ahn, G., Chu, B.: A Rule-based framework for role-based delegation.
In: Proceedings of ACM Symposium on Access Control Models and Technologies
(SACMAT 2001), Chantilly, VA, pp. 153–162 (2001)

6. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC.
In: Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies (SACMAT 2003), pp. 149–157. ACM, New York (2003)

7. Hasebe, K., Mabuchi, M., Matsushita, A.: Capability-based delegation model in
RBAC. In: Proceedings of the 15th ACM Symposium on Access Control Models
and Technologies (SACMAT 2010), pp. 109–118. ACM, New York (2010)

OSDM: An Organizational Supervised Delegation Model for RBAC 337

8. Schermerhorn, J., Osborn, R., Uhl-Bien, M.: Organizational Behavior, 12th edn.,
p. 377. Wiley (2011)

9. Harris, M., Raviv, A.: Organization Design. Management Science INFORMS 48(7),
852–865 (2002)

10. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
munications of the ACM 19(8), 461–471 (1976)

11. Wood, C., Fernandez, E.B.: Authorization in a Decentralized Database System. In:
Proceedings of the 5th International Conference on Very Large Databases, Rio de
Janeiro, pp. 352–359 (1979)

12. Griffiths, P.A., Wade, B.W.: An Authorization Mechanism for a Relational
Database System. ACM Transactions on Database Systems (TODS) TODS Home-
page Archive 1(3), 242–255 (1976)

13. Majetic, I., Leiss, E.L.: Authorization and Revocation in Object-Oriented
Databases. IEEE Transactions on Knowledge and Data Engineering 9(4), 668–672
(1997)

14. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceedings
of the 16th Annual Computer Security Applications Conference (ACSAC 2000).
IEEE Computer Society, Washington, DC (2000)

15. Zhang, L., Ahn, G., Chu, B.: A rule-based framework for role-based delegation and
revocation. ACM Trans. Inf. Syst. Secur. 6(3), 404–441 (2003)

16. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els, CA, USA, pp. 38–47. IEEE Computer Society (1996)

17. Fernandez, E.B., Wu, J., Fernandez, M.H.: User group structures in object-
oriented databases. In: Proc. 8th Annual IFIP W.G.11.3 Working Conference on
Database Security, Bad Salzdetfurth, Germany. Database Security, VIII - Status
and prospects, vol. 60, pp. 57–76 (August 1994)

18. ANSI INCITS 359, Standard for Role Based Access Control (2004)
19. Lee, H.-H., Lee, Y.L., Noh, B.-N.: A Framework for Modeling Organization Struc-

ture in Role Engineering. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA
2004. LNCS, vol. 3732, pp. 1017–1024. Springer, Heidelberg (2006)

20. Nassr, N., Steegmans, E.: ROAC: A Role-Oriented Access Control Model. In:
Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322,
pp. 113–127. Springer, Heidelberg (2012)

21. OMG: The Unified Modelling Language. OMG Available Spec. Version 2.2 (Febru-
ary 2009), http://www.omg.org/spec/UML/2.2/

22. OMG: Object Constraint Language. OMG Available Spec. Version 2.0 (May 2006),
http://www.omg.org/spec/OCL/2.0/

23. Moffett, J., Lupu, E.: The uses of role hierarchies in access control. In: Proceedings
of the Fourth ACM Workshop on Role-Based Access Control (RBAC 1999), pp.
153–160. ACM, New York (1999)

http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/OCL/2.0/

GPU-Acceleration of Block Ciphers

in the OpenSSL Cryptographic Library

Johannes Gilger, Johannes Barnickel, and Ulrike Meyer

Research Group IT-Security
RWTH Aachen University, Aachen, Germany

{gilger,barnickel,meyer}@ITSec.RWTH-Aachen.de

Abstract. The processing power of graphic processing units (GPUs) has
been applied for cryptographic algorithms for some time. For AES and
DES especially, there is large body of existing academic work and some
available code which makes use of the CUDA framework.

We contribute to the field of symmetric-key GPU cryptography by
implementing and benchmarking multiple block ciphers on CUDA and
OpenCL in the form of an OpenSSL cryptographic engine. We show com-
mon techniques to implement and accelerate these block ciphers (AES,
DES, Blowfish, Camellia, CAST5, IDEA). Another equally important
part of our work presents a guideline on how to perform reproducible
benchmarks of these ciphers and similar GPU algorithms.

Keywords: GPU, Graphics Processing Unit, Block Cipher, Cryptog-
raphy, Symmetric Key, AES, DES, Blowfish, IDEA, CAST-5, Camellia,
OpenSSL, Performance, Benchmark.

1 Introduction

Graphic processing units have originally been designed to handle the generation
and modification of graphical data. This includes rendering of 2D or 3D scenes by
means of shaders, relatively small and limited programs to instruct the GPU’s
programmable rendering pipeline. As GPUs became increasingly powerful (in
terms of floating point operations per second) compared to available CPUs in
the last few years, the interest in using these devices for tasks other than the
interactive generation of graphical output surged.

Although a small number of people had already experimentedwith using graph-
ically oriented programmingAPIs such as DirectX and OpenGL to translate more
general computation tasks to theGPU, coining the termGPGPU (general purpose
programming for GPUs), the process was cumbersome and error-prone.

1.1 CUDA and OpenCL

CUDA (Compute Unified Device Architecture) is Nvidia’s approach to GPGPU,
with its initial release in 2007 aiming at the G80 chip first seen in the GeForce
8800 GTX GPU. CUDA is a programming framework which executes instruc-
tions on the CPU (“host”) and the GPU (“device”) and passes data between the

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 338–353, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 339

corresponding memory spaces. Programming for the host is done using standard
ANSI C, while programming for the GPU introduces some new keywords to the
C language.

The Open Computing Language (OpenCL [15]) is a standardized GPGPU
framework to enable programs to leverage the computing power of GPU and
CPU devices by different vendors. The first OpenCL specification was released
in 2008 by the Khronos group. In most aspects, OpenCL behaves very similar
to CUDA, making the effort to port programs manageable. The important dis-
tinction is that OpenCL is a standard rather than a product, and the actual
implementation is the responsibility of the respective CPU and GPU vendors.

Many recent research papers describe the acceleration of symmetric block ci-
phers as well as other cryptographic algorithms like hash functions, public key
encryption schemes, and digital signature schemes using GPGPU frameworks.
However, with regard to symmetric block ciphers, prior work focused on AES
[26] and DES [8] and the CUDA framework, and only very few of these imple-
mentations were released as Open Source software.

1.2 Our Contribution

In this paper we present our implementations of the symmetric block ciphers
AES [26], DES [8], Blowfish [29], IDEA [17], Camellia [22], and CAST5 [1] using
CUDA and OpenCL. We chose these algorithms as they are standard encryp-
tion algorithms implemented in the OpenSSL cryptographic library [28]. The
OpenSSL implementation includes thoroughly tested CPU implementations of
these ciphers against which we benchmarked our own implementation efforts. We
show that our GPU implementations can accelerate all block ciphers by a factor
of ten (compared to CPU implementations) for practical application scenarios.
The fact that we implemented the CUDA and OpenCL ciphers as an OpenSSL
engine, based on the engine-cuda project [21], makes these ciphers available to
software which already employs OpenSSL with relatively little effort. While the
original engine-cuda project included a capable AES implementation for CUDA,
we show that our improved AES implementation is almost twice as fast.

In addition, we present guidelines for benchmarking cryptographic and other
programs with CUDA and OpenCL. We deduce these guidelines from our own
experience with the implementation and various shortcomings of the benchmark-
ing presented in related work (see Section 2).

The rest of the paper is structured as follows: Section 2 summarizes previ-
ous work on GPU implementations of symmetric ciphers and their integration
in frameworks and applications. The results of our implementation efforts are
presented in Section 3. Section 4 summarizes our lessons leading into a guideline
for developing and evaluating cryptographic algorithms on GPU platforms.

2 State of the Art

Cryptographic algorithms have been ported to graphics hardware even before
general purpose programming tools existed. Using libraries like OpenGL and

340 J. Gilger, J. Barnickel, and U. Meyer

DirectX, symmetric key algorithms such as AES have successfully been run and
accelerated on GPU devices [6], [10], [31].

With the introduction of general purpose computing on GPUs (GPGPU),
the number of publications on implementations of cryptographic algorithms on
graphics hardware surged.

2.1 Symmetric Key Ciphers

For symmetric key algorithms, AES is the block cipher most often investigated.
The earliest publication using CUDA to accelerate AES was by Manavski [20].
Manavski closely followed the Rijndael reference implementation, as did almost
every team after him. He identified the optimal location for storing the T-tables
and provided impressive benchmark performances, measuring raw kernel exe-
cution time as well as overall data rate, compared to an OpenGL implementa-
tion of AES. In 2008, Harrison et al. released their work with AES-CTR and
CUDA GPUs [11]. Aside from similar performance benchmarks, their work also
discussed general purpose data structures for scheduling serial and parallel ex-
ecution of block ciphers on GPUs. Luken et al. implemented and benchmarked
the AES and DES [19] on an NVIDIA Tesla C870 GPU, a specifically designed
GPGPU card. In some cases, AES was sought to be parallelized below the block-
level, and this approach was compared to the more common block-level paral-
lelism in [4], which also proposed a different distribution for T-tables in shared
memory in order to avoid memory access conflicts. A textbook implementation
of AES for the OpenCL framework was given in 2010 by Gervasi et al. [9]. This
implementation did not make use of the T-tables and consequently suffered from
unsatisfactory performance. Coincidentally, this publication also employed the
OpenSSL framework to integrate their GPU implementation, with the goal of
ultimately making it available to a broad audience by having it included in the of-
ficial OpenSSL development tree. Other work on AES includes [23], which closely
examines the different memory locations for the T-tables, correctly points out
the low ratio of computation vs. memory access of AES and provides benchmarks
which reportedly are able to reach the limit imposed by the memory bandwidth
on an Nvidia GeForce 9200M.

DES, which is deprecated for new cryptographic systems, has been imple-
mented on GPUs as well. Yang and Goodman published an AES and DES key
breaker realized using DirectX and AMD’s Close To Metal framework [32]. An-
other publication about a DES software breaker, this time using CUDA, was
released in 2010 by Agosta et al. [3]. The cost of breaking DES using CUDA-
enabled GPUs was compared to the COPACOBANA system [16], which is a
special-purpose multi-FPGA DES breaker, and found to perform in the same
order of magnitude. Noer et al. have announced that they have improved the
results of [3], with a 20-fold performance advantage of searching DES keys on
a GPU compared to a CPU [27]. They are furthermore planning to port their
efforts to OpenCL.

The CAST5 block cipher was implemented as part of an GPU-based dictionary
attack on OpenPGP secret keyrings by Milo et al[24]. In their paper, they present

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 341

a very detailed and well-written explanation of how they implemented their
CAST5 key searcher. The optimization techniques described in their paper apply
equally well to similar software and will likely provide noticeable performance
improvements.

A CUDA implementation of the Serpent block cipher was presented in [25].
Li et al. investigated MD5-RC4 encryption on GPUs [18].

2.2 Integration and Frameworks

Some researchers investigated GPU cryptography in terms of the framework
needed to actually integrate it into existing systems. In 2010, Jang et al. in-
troduced their implementation of a reverse SSL-proxy called SSLShader [13],
which is able to perform the necessary crypto-operations (RSA, AES128-CBC,
HMAC-SHA1) for a large number of independent SSL connections by using the
GPU starting from a certain threshold, where the latency incurred by the GPU
is lower than queueing the operations on the CPU. Recently, Jang et al. built
on their previous efforts and released a paper with a detailed account of how
they implemented their SSLShader which provides accelerated AES, RSA and
HMAC-SHA1 using a combination of GPU and CPU techniques [14].

Harrison and Waldron also investigated how well NVIDIA GPUs can be used
to provide a kernel-level service for cryptographic operations [12]. Using the
OpenBSD cryptographic framework (OCF) and a userspace daemon they were
able to provide GPU-cryptography for kernel- and userspace processes with min-
imal overhead. The kgpu project [30] also investigates the feasibility of a kernel-
level GPU framework using a userspace daemon which to dispatch CUDA opera-
tions. To eliminate the latency of kernel invocations, they introduce the concept
of a non-stop kernel (NSK) which continuously runs on the GPU and can be in-
structed by passing messages through allocated memory. Their implementation
is demonstrated by accelerating eCryptfs with AES using the GPU.

Agosta et al. investigated how GPGPUs can be integrated into the full-disk
encryption software TrueCrypt, using the XTS block mode and Twofish as the
block cipher [2].

2.3 Practical GPU-Accelerated Software

Much of the work using GPU software and cryptographic algorithms has been of
a strictly academic nature. However, there do exist some end-user software prod-
ucts which have incorporated GPU components to accelerate their functionality.

Hash algorithms and symmetric ciphers in particular can be found in a number
of proprietary consumer software products aimed at breaking password protected
files using brute force, or finding hash collisions in general. These implementa-
tions therefore do not provide facilities to actually use the GPU for the normal
application of the cryptographic algorithm, and the nature of the software forbids
opening the source code to competing companies. Another popular use of GPU
hardware is the generation of rainbow-tables, data-structures for pre-computed

342 J. Gilger, J. Barnickel, and U. Meyer

hashes that provide a tradeoff between storage space and computation time to
find a hash collision.

Open Source software employing cryptography has seen relatively few patches
to use GPU devices. The engine-cuda project [21] by Paolo Margara is a notable
exception to the large number of proprietary software, as it set out to create
an Open Source portable library to be used with the popular OpenSSL crypto
library which provides GPU-accelerated versions of the algorithms included in
the standard library. This project was chosen as the foundation for implementing
the algorithms presented in this paper.

2.4 Benchmarking Methodology

To benchmark their implementations of cryptographic algorithms on GPU de-
vices, the involved researchers used a variety of different metrics, which makes
it hard to compare the merits of the approaches with one another. While some
teams solely focused on the theoretical speed by counting the instructions needed
to perform the operations [5], others went a step further and implemented work-
ing GPU-versions of these algorithms. For symmetric ciphers, some implemented
the key-scheduling on the GPU [9], [14], while others used the CPU for this task
[11], [20]. Benchmarking of the implementations differed as well, with some teams
only measuring instruction throughput (presumably using the fastest available
on-card memory), others doing calculations to and from the GPU main memory
[19], and yet other teams measuring the whole computation chain starting from
the host to the device and back to the host [19], [20].

While the approach of microbenchmarking, only measuring the operation on
the GPU itself, is useful when designing and optimizing the algorithm itself, it
should not be used to compare the performance to a CPU-implementation, as it
does not represent the performance available for encrypting data stored in global
memory of the host system.

2.5 Benchmarking Problems

Much of the previous work suffered from minor flaws or omissions in the descrip-
tion of the benchmark process used.

Often, the specific CPU implementation used for comparison was not men-
tioned, and parameters such as number of CPU cores and compilation were
omitted as well. In one case, the performance for the CPU was measured using
a Java implementation of the block-cipher in question [7].

Some publications did not clearly state which time interval they measured
in order to compute performance results. Also the exact timing method (using
either system timers or GPU-specific timing facilities) was often not mentioned,
and we suspected this to be a source of error as well. Almost every team used a
different GPU, making a direct comparison of the results all the more difficult.

The GPU benchmarks including the host-section of computations often did
not state whether the data was already stored in (DMA-accessible) allocated
host-memory or if it had to be fetched from background memory first, including

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 343

the costly memory allocation of a large block. The structure of the payload data
also makes a significant difference in performance, since it can affect which mem-
ory locations need to be accessed during encryption. Only one team provided a
description of the payload data used for their benchmarks.

3 Implementation and Benchmarking Results

To implement and evaluate several popular block ciphers, we used the existing
engine-cuda [21] codebase as a foundation for our implementation efforts. The
original project was implemented as an OpenSSL engine (i.e. a shared library)
and already included the AES for CUDA in ECB and CBC mode [26] for all key
sizes. We implemented the following popular block ciphers:

– AES [26]: AES-128, AES-192, AES-256, 128 bits blocksize
– DES [8]: 64 bits keysize, 64 bits blocksize
– Blowfish [29]: 128-448 bits keysize, 64 bits blocksize
– IDEA [17]: 128 bits keysize, 64 bits blocksize
– Camellia [22]: 128, 192 and 256 bits keysize, 128 bits blocksize
– CAST5 [1]: 128 bits keysize, 64 bits blocksize

All of these algorithms were implemented with the electronic codebook (ECB)
block mode for encryption and decryption, as well as the cipher block chaining
(CBC) mode for decryption. We did not implement CBC encryption on the GPU,
as the CBC block mode cannot be parallelized during encryption and would not
benefit from the GPU platform. Other block modes which can be computed in
parallel (e.g. Counter mode (CTR)) could use our implementations with only
minimal modifications and a small constant overhead. We limited ourselves to
ECB and CBC as these are the block modes available in the current OpenSSL
packages.

Since the original engine-cuda project only supported AES with CUDA, we
had to significantly extend it to support OpenCL and other block ciphers as
well.

To the best of our knowledge, the Blowfish, IDEA, Camellia and CAST5
implementations represent the first published CUDA and OpenCL versions of
these algorithms. Although there have been previous efforts to implement AES
and DES using CUDA, none of these were readily available to be benchmarked
against our implementation, as none of them were Open Source.

3.1 Optimizations

We started implementing each block cipher by porting the implementation in-
cluded in OpenSSL to CUDA and OpenCL. After we ensured basic functionality,
we began to optimize the block cipher for these GPU platforms in terms of per-
formance. Most importantly, we looked at register usage per GPU thread, unco-
alesced memory access and diverging paths, trying to optimize each aspect using
a variety of techniques, some of which could certainly be classified as “compiler
work-arounds“:

344 J. Gilger, J. Barnickel, and U. Meyer

1. Removal of unnecessary flexibility. For example, we implemented separate
GPU kernels for ECB, CBC and the different key lengths rather than passing
these as parameters to a single kernel. In general, we passed as few parame-
ters as possible, e.g. by storing data such as T-Tables in one big chunk which
can be referenced using a single pointer. This resulted in reduced register
use, enabling us to better utilize the SMs of the GPU.

With BF KEY structure

__shared__ BF_KEY bs;

__device__ BF_KEY bsg;

if(TX < 18)

bs.P[TX] = bsg.P[TX];

bs.S[TX] = bsg.S[TX];

bs.S[TX+256] = bsg.S[TX+256];

bs.S[TX+512] = bsg.S[TX+512];

bs.S[TX+768] = bsg.S[TX+768];

Disregarding BF KEY structure

__shared__ uint32_t bs[1042];

__device__ uint32_t bsg[1042];

bs[TX] = bsg[TX];

bs[TX+256] = bsg[TX+256];

bs[TX+512] = bsg[TX+512];

bs[TX+768] = bsg[TX+768];

if(TX < 18)

bs[TX+1024] = bsg[TX+1024];

Fig. 1. Misaligned and aligned memory copy of the Blowfish key schedule

2. Removing uncoalesced memory access which would otherwise require mul-
tiple memory transactions. Figure 1 shows how we were able to get rid of
all the misaligned memory accesses for the Blowfish cipher with a simple
change. Sometimes, independent 32-bit values were fetched from memory
into a 64-bit variable and split up manually, so that the compiler would gen-
erate a single coalesced ld.global.u64 instruction instead of two strided
ld.global.u32 instructions.

3. Removal of bank conflicts when using shared memory. This was the case
for the AES version included with the original engine-cuda codebase. Figure
3 shows the time spent due to warp serialization for the original and our
improved AES implementation.

4. Reordering statements to reduce register use. In some cases, statements could
be reordered without influencing the computation. A variant of this approach
was to re-use variables for different steps of the computation.

5. Modification of the key schedule to avoid endian conversion of the payload
data, as many algorithms were developed with Big-Endian CPU architec-
tures in mind.

6. Use of native integer functions and synchronization. We used the preproces-
sor heavily to employ functions only available on specific compute capabili-
ties, such as native 24-bit or 32-bit multiplication. A simple example is given
in Figure 2.

7. Unrolling loops to reduce register use. Unrolling is a technique often per-
formed by CPU compilers, which we had to perform manually for CUDA,
for example for the encryption rounds.

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 345

#ifndef TX

#if (__CUDA_ARCH__ < 200)

#define TX (__umul24(blockIdx.x,blockDim.x) + threadIdx.x)

#else

#define TX (blockIdx.x * blockDim.x + threadIdx.x)

#endif

#endif

Fig. 2. Preprocessor macro for calculating the thread-ID TX

(a) Original AES-128 ECB implementation in engine-cuda

(b) Our improved AES-128 ECB implementation for engine-cuda

Fig. 3. The CUDA Visual Profiler showing the original engine-cuda (Figure 3(a)) and
our improved version of AES-128 ECB (Figure 3(b))

Table 1 shows how much resources are used by each kernel of our implemen-
tations of the block-ciphers as reported by nvcc. For better comparability, the
table lists the decryption kernels for ECB and CBC. Register use relates to each
thread, while the shared memory is counted block-wise and the constant memory
is reported for the whole kernel, following the visibility of each class of memory.

Depending on the compute capability the kernels are compiled for, nvcc will
use more or fewer registers for each kernel, up to twice as many registers for our
newer (CC 1.3) cards compared to the older card (CC 1.1).

Optimizations were also performed in the backend, which includes the memory
transfer functions, the setup of the GPU context and the memory allocation. It
is important to mention that we did not implement any stage of key-scheduling

346 J. Gilger, J. Barnickel, and U. Meyer

Table 1. Memory consumption for the implemented decryption kernels in engine-cuda
(compiled for CUDA Compute Capability 1.3)

Cipher Mode Registers Shared Memory Constant Memory

AES-{128,192,256} ECB 13 / 14 4376 bytes 264 bytes
CBC 15 4384 bytes 264 bytes

Blowfish
ECB 10 4176 bytes 8 bytes
CBC 12 4184 bytes 8 bytes

DES
ECB 9 2056 bytes 136 bytes
CBC 10 2064 bytes 136 bytes

CAST5
ECB 10 4104 bytes 144 bytes
CBC 12 4112 bytes 144 bytes

Camellia-128
ECB 14 4104 bytes 296 bytes
CBC 14 4112 bytes 296 bytes

IDEA
ECB 10 224 bytes 216 bytes
CBC 12 232 bytes 224 bytes

on the GPU but left that task to be performed by the CPU. We ensured that
our GPU implementations worked correctly by comparing their output to the
stock OpenSSL CPU output for a variety of different payload data and keys.

3.2 Benchmark System

We thoroughly benchmarked the resulting implementation of each algorithm on
two systems with different CPUs and GPUs, using an older GeForce 8600 GT
as well as a more recent GeForce GTX 295. The results presented in this paper
are based on the benchmark system described in Table 2.

Table 2. Benchmark system

CPU Intel Core i7 960 3.20GHz

GPU GeForce GTX 295 (CC 1.3)

RAM 12 GB DDR3 RDIMM

HDD Intel X-25 M II SSD (160GB)

Kernel Linux 3.0.0-17-generic x86 64

CUDA CUDA toolkit 4.1

Driver NVIDIA UNIX x86 64 285.05.33

CC GCC 4.4.6

The results for our second system were omitted due to space constraints and
will be provided as part of an extended version of this paper. The GeForce GTX
295 in the benchmark system contains two discrete GPUs on two different PCBs
(printed circuit boards), each of which is presented as an independent GPU to
the system. We only used one of these GPUs for our benchmarks. CPU reference
speeds were obtained using OpenSSL v1.0.1 and using one of the four CPU cores
of the benchmark system. We measured the theoretical kernel execution speed,

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 347

which does not take into account the time needed to transfer the data to and from
the GPU, as well as measuring the practical encryption speed, which includes
transfers from and back to host memory. In the following, we discuss the results
of both measurement techniques.

3.3 Impact of Payload on Kernel Benchmarks

The microbenchmarks of our cipher kernels are shown in Table 31 and Table 4.
These tables measure the theoretical ECB performance of the cipher kernels,
which only includes the execution time of the CUDA (resp. OpenCL) kernel
itself. The resulting time is given in milliseconds, from which the theoretical
performance (given in megabytes per second) can be derived. To demonstrate the
importance of the payload data, we measured performance with pseudo-random
data (obtained from /dev/urandom) and zero-bytes and used Δ to denote the
speed ratio of zero- over random bytes.

Table 3. ECB encryption kernel performance for different input data (8192 KB, Ge-
Force GTX 295)

Random bytes Zero bytes
Cipher Engine

Kernel ms MB/s Kernel ms MB/s
Δ

AES-128
CUDA 2.16 29613 1.36 47021 1.59

OpenCL 2.52 25408 1.72 37248 1.47

AES-192
CUDA 2.57 24922 1.58 40461 1.62

OpenCL 2.94 21760 1.98 32384 1.49

AES-256
CUDA 2.97 21572 1.87 34234 1.59

OpenCL 3.35 19072 2.23 28736 1.51

Blowfish
CUDA 2.12 30249 1.49 43077 1.42

OpenCL 30.07 2112 5.34 11968 5.67

Camellia-128
CUDA 2.43 26302 1.66 38647 1.47

OpenCL 2.43 26304 1.68 38016 1.45

CAST5
CUDA 2.19 29203 1.54 41519 1.42

OpenCL 2.45 26112 1.79 35648 1.37

DES
CUDA 4.14 15460 2.75 23279 1.51

OpenCL 4.12 15488 2.74 23296 1.50

IDEA
CUDA 1.75 36512 1.71 37388 1.02

OpenCL 1.60 40064 1.59 40128 1.00

The payload data is used as to determine the memory access for certain op-
erations (such as an index in a lookup table). When the payload consists only
of uniform bytes, the same memory area will be queried for every byte of pay-
load data, which results in excellent performance for constant memory (which
is cached after the first memory access). However, when the payload data ex-
hibits a certain amount of entropy, different memory areas will be queried in

1 We achieved slow results for Blowfish OpenCL because we had to work around an
apparent compiler bug which forced us to use slower memory.

348 J. Gilger, J. Barnickel, and U. Meyer

each request. In this case, shared memory shows a clear advantage over constant
memory.

No previous publication measured and compared both payload types and some
of the previous work did not even mention at all which payload they used.

3.4 Improved AES Implementation

Table 4 shows our improved AES-128 ECB implementation benchmarked against
the implementation which was already included with engine-cuda. Originally,
AES was implemented using a “fine-grained” approach, which employs four
threads for each cipher block of 128 bits. Our “coarse-grained” approach uses just
one GPU thread for each cipher block. As expected in [4], our coarse-grained ap-
proach delivered a noticeable performance increase. We also measured the speed
of storing the AES T-Tables, which represent the AES functionality in the form
of static lookup tables, in constant and in shared GPU memory. The results are
nearly identical when zero bytes are used as payload data, while random data
(which is much more practically relevant) shows the clear superiority of using
shared memory. This obvious discrepancy prompted our investigation into the
benchmark methodology of other teams, leading to the advice given in Section 4.

Table 4. Fine- and coarse-grained AES-128 ECB (8192 KB, CUDA)

Random bytes Zero bytes
Approach T-Table

Kernel MB/s Kernel MB/s
Δ

Fine
Constant 15.86 4036 3.54 18097 4.48

Shared 3.44 18584 3.53 18138 0.97

Coarse
Constant 14.35 4460 1.45 44123 9.89

Shared 2.16 29613 1.36 47021 1.58

3.5 OpenSSL Benchmarks

To evaluate the practical benefit of using GPU-accelerated block ciphers, we also
measured the performance using the OpenSSL speed command, which schedules
runs of increasingly large blocks of zero-byte data and measures the achieved
throughput. These results were averaged over five consecutive runs. This kind
of benchmarks includes the time needed to transfer the payload from the host
to the device memory, the cipher kernel execution, and the time for transferring
the data back to the host, and as such can be directly compared to the execution
time on the CPU. Figure 4 shows the results of GPU and CPU benchmarks for
CUDA and the ECB mode of each block cipher. It is obvious that because of the
latency incurred by invoking a GPU kernel and the necessary memory transfer,
GPU-accelerated block ciphers can only outperform the CPU if the payload data
is large enough, larger than 16KB in our case.

Although we also implemented the CBC-decryption, we chose to use the ECB
mode as the primary tool for benchmarking as it can be more easily compared

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 349

 0

 200

 400

 600

 800

1000

1200

16B
64B

256B
1KB

2KB
4KB

8KB
16KB

32KB
64KB

128KB
256KB

512KB
1M

B
2M

B
4M

B
8M

B

En
cr

yp
tio

n
sp

ee
d

[m
eg

ab
yt

es
/s

ec
on

d]

Encryption batch block size [bytes]

AES-128 GPU
AES-128 CPU
Blowfish GPU
Blowfish CPU

IDEA GPU
IDEA CPU

DES GPU
DES CPU

CAST5 GPU
CAST5 CPU

Camellia 128 GPU
Camellia 128 CPU

Fig. 4. ECB encryption with CUDA on one PCB of a GeForce GTX 295 (OpenSSL
speed)

to existing and new academic work with the same algorithms. The CBC mode
in our implementation only adds a small performance penalty in the form of
an additional memory access and does not invalidate the performance results
compared to the CPU, as shown in Figure 5.

We intentionally refrain from making statements concerning the performance
relative to existing work for the reasons stated in Section 4. We want to em-
phasize that the 8-10 fold improvement in speed shown in Figure 4 was actually
measured on our test system, but that the superiority of the GPU heavily de-
pends on the GPU generation, the CPU and the application area.

Other features of our extended GPU crypto library include timing facilities
for CUDA and OpenCL, benchmarking tools for trying different kinds of payload
data, keys and payload size and different levels of debug output.

4 Performing Reproducible Benchmarks

During the process of implementing the cryptographic algorithms presented in
this work, we gathered a number of benchmarking details which are important for
the production of reproducible comparable benchmark results. In the following,
we provide an overview on the details as guideline for future implementation
efforts, not only in the are of cryptography.

350 J. Gilger, J. Barnickel, and U. Meyer

 0

 200

 400

 600

 800

1000

1200

1400

AES-128

AES-192

AES-256

BF DES
IDEA

CM
LL

CAST5

D
ec

ry
pt

io
n

sp
ee

d
[m

eg
ab

yt
es

/s
ec

on
d]

ECB Decryption
CBC Decryption

Fig. 5. ECB and CBC decryption on 8MB blocks (CUDA, GeForce GTX 295, OpenSSL
speed)

Kernel and Framework. Depending on the framework, host operations and
the time for memory transfers dwarfs the actual kernel execution time. Any
research which does not only focus on the raw kernel should therefore include
benchmarks of both the kernels and the complete chain of operation.

Structure of Payload. When benchmarking the speed of a block cipher on
a GPU, it is important to mind the kind of data being used. While zero bytes
are the obvious choice for ease of generation and reproducibility, they can result
in artificially good result with unknown average-case behaviour. Block ciphers
should be developed using zero bytes as well as random data, and publications
should clearly indicate the source of payload data. Especially the behaviour with
random data should influence the choice of storing read-only lookup tables.

Ensuring Correctness. If block ciphers are implemented on GPU platforms,
the correctness of the cipher should be ensured at every step of the development
process. GPUs are hard to debug, so a combination of different keys, key sizes,
payload structure and payload length should be tested at all times. Especially
payload sizes which are not multiples of the thread block configurations are often
subject to failure. For platforms like OpenCL, tests for correctness should be run
repeatedly, since problems do occur non-deterministically.

Measuring Time. CUDA and OpenCL include their own timing functions for
the simple reason that kernel calls are nonblocking and may return before the
kernel is finished.

Scheduling Priorities. CUDA has an option to use spinning to wait on the
return of the GPU kernel, which for many repeated small invocations can make
a measurable difference. Understanding and verifying the method to poll for the
GPU kernel is important.

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 351

Eliminating Side Effects. When performing benchmarks, the GPU should be
switched to compute exclusive mode and any running X server should be stopped.
Benchmarking cryptography means allocating large blocks of page locked mem-
ory on the host, so the system should have enough free RAM. The CPU should
not be busy with other tasks except executing the host-thread. It is important
to use the GPU driver supplied by the vendor alongside the GPGPU framework.
Other drivers might work correctly as well but perform much worse when used
with CUDA or OpenCL.

Using Reference Implementations. When directly comparing the GPU to
existing CPU implementations, an established and publicly accessible CPU im-
plementation of the block cipher should be used. It is also important to verify
whether the reference implementation uses more than one CPU core, whether it
uses native instructions tailored to the CPU platform and if special instructions
like AES-NI are employed.

5 Conclusion

In this work, we showed the potential and limitations of GPU-accelerated block
ciphers as implemented within the OpenSSL cryptographic library. We were
able to clearly accelerate symmetric block ciphers using GPUs compared to
traditional CPU implementations, in terms of theoretical as well as practical
speed. As the first contribution we used the exact same setup to implement
these ciphers using CUDA and OpenCL. Perhaps not surprisingly, we were able
to show that both GPU frameworks are equally capable of delivering practical
performance for all of the implemented block ciphers.

In addition to the implementation and benchmarking we discuss common
problems encountered when trying to compare the benchmarking results of dif-
ferent implementations of symmetric ciphers. From this discussion, we compile
and present a list of recommendations for future implementations.

We hope that our paper and the future release of our source-code to the
engine-cuda project can assist in presenting correct benchmark results in this
and other GPU-related research areas, with the ultimate goal of raising the
scientific standard of similar work and to further the cause of open standards
within the GPGPU community.

References

1. Adams, C.: The CAST-128 Encryption Algorithm. RFC 2144 (Informational) (May
1997)

2. Agosta, G., Barenghi, A., Santis, F.D., Biagio, A.D., Pelosi, G.: Fast Disk Encryp-
tion through GPGPU Acceleration. In: PDCAT, pp. 102–109. IEEE Computer
Society (2009)

3. Agosta, G., Barenghi, A., Santis, F.D., Pelosi, G.: Record Setting Software Imple-
mentation of DES Using CUDA. In: ITNG, pp. 748–755. IEEE Computer Society
(2010)

352 J. Gilger, J. Barnickel, and U. Meyer

4. Biagio, A.D., Barenghi, A., Agosta, G., Pelosi, G.: Design of a parallel AES for
graphics hardware using the CUDA framework. In: IPDPS, pp. 1–8. IEEE (2009)

5. Bos, J.W., Stefan, D.: Performance Analysis of the SHA-3 Candidates on Exotic
Multi-core Architectures. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 279–293. Springer, Heidelberg (2010)

6. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret Key
Cryptography Using Graphics Cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

7. Daniel, T.R., Mircea, S.: AES on GPU using CUDA. In: 2010 European Confer-
ence for the Applied Mathematics & Informatics. World Scientific and Engineering
Academy and Society Press (2010)

8. N. I. for Standards and Technology. Data Encryption Standard (DES). NIST FIPS
PUB 46-3 (1999)

9. Gervasi, O., Russo, D., Vella, F.: The AES Implantation Based on OpenCL for
Multi/many Core Architecture. In: International Conference on Computational
Science and its Applications, pp. 129–134 (2010)

10. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-
modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

11. Harrison, O., Waldron, J.: Practical Symmetric Key Cryptography on Modern
Graphics Hardware. In: USENIX Security Symposium, pp. 195–210. USENIX As-
sociation (2008)

12. Harrison, O., Waldron, J.: GPU accelerated cryptography as an OS service. Trans-
actions on Computational Science 11, 104–130 (2010)

13. Jang, K., Han, S., Han, S., Moon, S., Park, K.: Accelerating SSL with GPUs. In:
SIGCOMM, pp. 437–438. ACM (2010)

14. Jang, K., Han, S., Han, S., Moon, S., Park, K.: SSLShader: Cheap SSL acceleration
with commodity processors. In: Proceedings of NSDI 2011 (2011)

15. Khronos OpenCLWorking Group. The OpenCL Specification, version 1.1 (Septem-
ber 30, 2010)

16. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA –A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

17. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

18. Li, C., Wu, H., Chen, S., Li, X., Guo, D.: Efficient implementation for MD5-
RC4 encryption using GPU with CUDA. In: Proceedings of the 3rd International
Conference on Anti-Counterfeiting, Security, and Identification in Communication,
pp. 167–170. IEEE Press (2009)

19. Luken, B.P., Ouyang, M., Desoky, A.H.: AES and DES encryption with GPU. In:
ISCA PDCCS, pp. 67–70. ISCA (2009)

20. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: International Conference on Signal Processing and Com-
munications, ICSPC 2007, pp. 65–68. IEEE (2008)

21. Margara, P.: engine-cuda (2011), http://code.google.com/p/engine-cuda/ (ac-
cessed April 25, 2012)

22. Matsui, M., Nakajima, J., Moriai, S.: A Description of the Camellia Encryption
Algorithm. RFC 3713 (Informational) (April 2004)

http://code.google.com/p/engine-cuda/

GPU-Acceleration of Block Ciphers in the OpenSSL Cryptographic Library 353

23. Mei, C., Jiang, H., Jenness, J.: CUDA-based AES parallelization with fine-tuned
GPU memory utilization. In: IPDPS Workshops 2010, pp. 1–7 (2010)

24. Milo, F., Bernaschi, M., Bisson, M.: A fast, GPU based, dictionary attack to
OpenPGP secret keyrings. Journal of Systems and Software 84(12), 2088–2096
(2011)

25. Nazlee, A.M., Hussin, F.A., Ali, N.B.Z.: Serpent encryption algorithm implemen-
tation on Compute Unified Device Architecture (CUDA). In: IEEE Student Con-
ference on Research and Development (SCOReD), 2009, pp. 164–167. IEEE (2010)

26. NIST. Advanced Encryption Standard (AES). National Institute of Standards and
Technology (2001)

27. Noer, D., Engsig-Karup, A., Zenner, E.: Improved Software Implementation of DES
Using CUDA and OpenCL

28. OpenSSL. OpenSSL: The Open Source toolkit for SSL/TLS (2011),
http://www.openssl.org/ (accessed April 25, 2012)

29. Schneier, B.: Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

30. Sun, W.: kgpu: Augmenting Linux with the GPU (2011),
http://code.google.com/p/kgpu/ (accessed April 25, 2012)

31. Yamanouchi, T.: AES encryption and decryption on the GPU. In: Nguyen, H. (ed.)
GPU Gems 3, ch. 36. Addison Wesley Professional (August 2007)

32. Yang, J., Goodman, J.: Symmetric Key Cryptography on Modern Graphics Hard-
ware. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 249–264.
Springer, Heidelberg (2007)

http://www.openssl.org/
http://code.google.com/p/kgpu/

A Highly-Efficient Memory-Compression

Approach for GPU-Accelerated Virus Signature
Matching

Ciprian Pungila and Viorel Negru

West University of Timisoara,
Blvd. V. Parvan 4, Timisoara 300223, Timis, Romania

{cpungila,vnegru}@info.uvt.ro
http://info.uvt.ro/

Abstract. We are proposing an approach for implementing highly
compressed Aho-Corasick and Commentz-Walter automatons for per-
forming GPU-accelerated virus scanning, suitable for implementation in
real-world software and hardware systems. We are performing experi-
ments using the set of virus signatures from ClamAV and a CUDA-based
graphics card, showing how memory consumption can be improved dra-
matically (along with run-time performance), both in the pre-processing
stage and at run-time. Our approach also ensures maximum bandwidth
for the data transfer required in the pre-processing stage, between the
host and the device memory, making it ideal for implementation in real-
time virus scanners. Finally, we show how using this model and an effi-
cient combination of the two automata can result in much lower memory
requirements in real-world implementations.

Keywords: gpu, gpu-accelerated, cuda, commentz-walter, aho-corasick,
wu-manber, memory efficient, virus scan, malicious code detection.

1 Introduction

The problem of efficient virus detection has had a lot of attention over the past
few years and, as the numbers of viruses grew exponentially, is now one of the
most computationally-intensive tasks found in intrusion detection systems. With
the performance boost that technology and, in particular, graphics cards have
shown lately, the solution has been improved dramatically, by a good factor of
times compared to normal CPU operational speed.

In essence, the problem of virus detection is related to the challenge of efficient
pattern matching (given that there are multiple patterns in the database that
need to be matched), both in terms of memory usage and processing time. Aho
et al[1] were the first to propose an algorithm for exact multiple pattern match-
ing (Aho-Corasick, or A-C) that is fast and runs in linear time. A-C is optimal
in the worst case, however, as Boyer-Moore have shown in [2], in practice there
are situations when the running time can be improved by jumping over redun-
dant characters, an idea that was later on studied by Commentz-Walter in [3].

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 354–369, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://info.uvt.ro/

Memory-Efficient GPU-Based Virus Scanner 355

The result was an algorithm (Commentz-Walter, or C-W) that is not optimal in
the worst case, but that can produce the same results in sublinear time in the
average case. Better performance had been obtained by Wu et al in [4] (the Wu-
Manber algorithm, or W-M) after implementing a hashing approach that can
significantly reduce the number of overall operations performed. We relate in
this paper to ClamAV[5], one of the most commonly used open-source antivirus
programs today.

This paper focuses on performing memory and time-efficient virus signature
matching in real-world systems by taking advantage of the massively paral-
lel processing capabilities of GPUs, and proposes a highly-efficient memory-
organization and virus signature scanning model that helps achieve these goals
without compromising performance. Furthermore, we show how using our ap-
proach, an efficient combination of the A-C and C-W algorithms can result in
much lower memory requirements. We discuss related work in section II, pre-
senting the CUDA architecture, the A-C, C-W and W-M algorithms along with
the ClamAV virus signature format and its implementation, while in section III
we present our own approach and the proposed model and discuss it in depth.
Section IV shows the experimental results we have obtained with a variety of
implementation scenarios performed, both on the GPU and on the CPU.

2 Background

2.1 The CUDA Architecture and Programming Model

For this paper we have focused on the feasibility of adding GPU-accelerated
virus scanning support to antivirus software in generic consumer hardware. We
have used a Core i7 CPU and a CUDA-based (PCI-E 2.0) GTX 560Ti 1GB
DDR5 graphics card, with the engine clock running at 900MHz, shader clock at
1800MHz, memory clock at 4200MHz and having 384 CUDA cores. The Com-
pute Unified Device Architecture (CUDA) is described in [7] and is the basis
for programming all CUDA-based GPU cards, offering an abstraction of the
underlying hardware through additional libraries that can be easily called from
C code. For our implementation, we have used Visual Studio 2010 and CUDA
version 4.1.

The GTX 560Ti card is based on the GF114 chip and has two processing
clusters with 4 multiprocessors each. Each multiprocessor consists of 48 stream
cores and is accompanied by 8 texture-processing units (see Figure 1). Stream
processors are operating on SIMD (Single Instruction Multiple Data) programs.
CUDA programming allows the GPU to be used as a massively parallel execution
machine, supporting a very high number of threads. Programs issued by the host
computer to the GPU are called kernels and are executed on the device as one or
more threads, organized in one or more blocks. Each multiprocessor executes one
or more thread blocks, those active containing the same number of threads and
being scheduled internally. It is possible to manage shared memory and the host
can access global, constant and texture memory (constant and texture memories
are cached, so therefore faster).

356 C. Pungila and V. Negru

Fig. 1. The GF114 chip layout

2.2 Multiple Pattern Matching

The Aho-Corasick algorithm is based on the trie tree concept and is in fact a
deterministic finite automaton (DFA) that has, at each level, a failure pointer
associated to the node, which gets called in case of a mismatch in the DFA at
the current state. The failure, for the root of the trie, as well as for all the nodes
at the first level in it, is always pointing back to the root. For the other levels of
the trie, the failure is being computed as being the longest possible suffix of the
word (at the current node in the trie) that is also a word in the tree (see Figure
2) - if no such suffix exists, the failure points back to the root.

The Commentz-Walter algorithm however uses a different approach, based
on the Boyer-Moore shift approach from simple pattern matching. It creates a
trie tree from the set of reversed patterns, and assigns to each node two shift
values, shift1 and shift2 and two additional functions, out and char. The C-
W performance heavily relies on the length of the smallest keyword in the tree
(wmin). shift1 is being computed as the smallest between wmin and (if it exists)
the distance between the current level of the current node (v) and all superiors
levels of the other nodes, that have as suffix the word formed at the initial node
v. shift2 is computed similarly, except that in this case we are computing the
smallest between wmin and (if it exists) the distance between the current level
of the current node (v) and all superiors levels of the leaf nodes that have as
proper suffix the word formed at the initial node v. out returns the pattern for
the current node, if its word is a keyword in the tree, while char(a) is computed

Memory-Efficient GPU-Based Virus Scanner 357

Fig. 2. a) The Aho-Corasick tree for the input set {BBBBAAAA, BBAABB, AAB-
BAA, AACCBB}. Sample failures are marked dashes. b) The Commentz-Walter au-
tomaton for the same input set (includes distances as [shift1, shift2]).

as being the minimum of wmin+1 and the level of all nodes having a as label.
The processing begins with a right-side comparison starting at position wmin; in
case of a mismatch, the current position at node v is increased by min{shift2(v),
max{shift1(v), char(text[pos-j])-j-1}}, where pos is the current position and j
indicates the depth in the tree. Our experiments have shown that the char func-
tion is always 1 for the set of signatures used in ClamAV, which is why the
shifting distance for C-W becomes min{shift1(v), shift2(v)}.

The Wu-Manber algorithm uses three tables built in the pre-computation
stage, called shift, hash and prefix. The shift table is similar to the one precom-
puted for the Boyer-Moore bad-character skip table, while the other two are
only used when shift table indicates not to shift (since there may be a potential
match at the current position). Just like Commentz-Walter and Boyer-Moore,
the performance highly depends on the length of the shortest pattern. The al-
gorithm looks at blocks of text, and the authors suggest a size of 2 for short
patterns and 3 for longer ones, leading to significant memory-requirements.

Numerous applications of multiple pattern matching have been proposed for
intrusion detection systems: an A-C implementation based on the ClamAV sig-
nature format is proposed in [8], another A-C-based approach for detecting ma-
licious code through system-call heuristics is proposed in [9], while in [10] bloom
filters are used to speed-up the scanning process. Lin et al[11] have observed
that the W-M approach can be used successfully on longer patterns from the
ClamAV database, while A-C can still be used for regular-expression matching
with shorter patterns, however their approach is lacking parallelism and is still
relying on the performance of the A-C machine, and although W-M performs
much better for longer patterns, A-C remains the primary bottleneck.

2.3 ClamAV and GPU-Accelerated Virus Scanning

Cha et al in [12] have observed that 95% of the scanning time of ClamAV is
focused on matching the regular expressions, although their number is very small

358 C. Pungila and V. Negru

(only about 16% of the number of signatures). ClamAV’s A-C tree is limited in
depth, as shown in Figure 6a [13]. The majority of the ClamAV signatures
(specifically, about 96.6% in the version of the main.cvd ClamAV database we
used) uses three types of constraints: {n-}, for specifying at least n characters,
{n-m} (for specifying between n and m characters) and {-m} (for specifying at
most m characters). The remaining signatures could be easily transformed into
this type of constraints, since for instance ? can be replaced with {1-1}, * with
{0,-} and subexpressions of type {ABCD(EE|FF)00} can be distributed into
separate patterns as follows: {ABCDEE00} and {ABCDFF00}. In our our tests,
from the 62,302 signatures we had used for testing from the ClamAV database,
only 6,831 contained regular expressions (about 11%).

AGPU-based patternmatching approach for virus scanning has been presented
by Vasiliadis et al in [6] as GrAVity, with significant improvements over the perfor-
mance of a single-coreCPU, by limiting the depth of the Aho-Corasick tree used for
scanning. Their approach however uses significant amount of memory (each node
in their implementation uses 1KB, which leads to 400 MB of memory for 400,000
nodes). Tuck et al have presented a compression-approach for the A-C automa-
ton through path-compression in [14] for the Snort network intrusion detection
system[15], improved even further through bitmapped nodes by Zha et al in [16].

2.4 Motivation of Our Work

The motivation of our work is based on two important aspects for malware
detection: the first is that static signatures are still the only completely accurate
way of detecting malicious code (and according to antivirus manufacturers they
will not disappear anytime soon, with so many thousands of viruses in the wild),
and the second is that the process of exact matching signatures is usually the
slowest, compared to dynamic heuristics. The recent improvements in hybrid
CPU/GPU solutions have shown that GPU-based solutions outperform greatly
CPU-based ones, however the main problem remains the data transfer between
the host and the device, a problem we aim to solve in this paper. For real-world
implementations, an antivirus based on GPU acceleration should offer a few
important advantages: low-memory footprint, good performance and WDDM
TDR-compliance.

The ClamAV implementation was modified to allow GPU-processing in
GrAVity[6], however the approach used a very inefficient implementation of the
DFA since every node was using 1 KB of data (given that at each node, there are
a maximum of 256 possible transitions, and that each transition is a pointer, that
will lead to at least 4*256 =1,024 bytes per node). That leads to 400 MB of usage
for the 400,000 nodes that the authors had obtained when using a tree limited to
depth 14. While Tuck et al[14] have shown how memory requirements can be im-
proved through path-compression using Snort signatures[15] (they had replaced
consecutive nodes having a single child with one single compressed node), an ap-
proach which was also used by Zha et al in [16] for reducing memory usage even
further through bitmapped nodes, a real performance bottleneck in GPU-based
implementations is also the way the memory is allocated (see Figure 3).

Memory-Efficient GPU-Based Virus Scanner 359

Fig. 3. a) Sparse, consecutive memory allocations and gaps that appear in GPU mem-
ory; b) A single, sequentially allocated memory block in the GPU device

Vasiliadis et al with MIDeA[17] have presented an architecture for intrusion
detection which uses a compacted state table representation, that only stores
for each state the elements between the lower and the upper limits. While this
approach does offer improvements over the one presented in [6], it does still
store additional redundant information if the states are sparse enough and a
low number of children exist for each state. In Gnort[18], the authors present a
solution based on Snort for implementing network IDS using GPUs, however the
actual implementations use the default Snort approaches (full, sparse, banded,
trie, etc.), still for all of them there is room for improvement in terms of space
efficiency. PFAC[19] is an open-source library that implements string matching
on the GPU that applies perfect hashing to the parallel failureless A-C, building
one or two-level perfect hashing for efficient storage, at the expense of processing
time. The final aim of PFAC is to build a perfect hash that stores only valid
transitions in the automata, however the process required to compute and build
the hash is laborious and quite expensive (as the authors observe, the mod opera-
tion is expensive to compute on the GPU), plus the actual memory requirements
may be higher (authors propose an inequality for determining the upper bound
for space usage, while in our approach the space usage is always constant).

ClamAV uses a depth-limited A-C tree (with a depth of 2, since the smallest
virus signature contains a subexpression of just 2 bytes) along with an imple-
mentation of W-M. The W-M algorithm however uses large amounts of memory
because of the shift and hash tables. In our implementation, for a block size of 3,
we obtained 224 = 16.7 million elements in the hash table, or, considering that
two 32/64-bit integer (we used 64-bit in our implementation) values are stored
into each element of the table, a total amount of 64 MB or 128 MB memory, not
counting additional structures needed.

In order for code that runs in the GPU through the CUDA architecture to
access the data it needs, this needs to be transferred from the host (the RAM
memory) to the device (in the GPU memory). The device to host bandwidth
can reach high peaks given the PCI-E 2.0 x16 architecture, however the band-
width is higher as the memory block being transferred is larger. That means
that for small transfers, such as repeated 1 KB transfers, the transfer is highly
inefficient. There is also a problem of the extra space being left-over as a gap
by the library-based memory allocation routines, for small-footprint allocations.
In order for the GPU to be able to take on the matching tasks from the CPU,
it must have access to the memory area that needs to be scanned or passed
through the A-C DFA, along with the data structures required to perform the

360 C. Pungila and V. Negru

processing. Sparse, repeated small-size memory allocations will create unwanted
gaps between memory locations, which may significantly increase the memory
usage, even though that may not be desired or expected. Although it may be
possible that future allocations will fit the gaps left-over, there is no guarantee
that it will happen eventually.

In the case of DFAs, where the number of nodes can reach several millions,
this is becoming a real problem as it can create huge memory losses. The sec-
ond problem with repeated allocations is that they consume a large amount of
time - in our tests, copying all DFA nodes from the host device to the GPU
device took over 2 hours for about 350,000 nodes. Of course, the ideal approach
is to copy large areas of memory at once and benefit from the full PCI-Express
bandwidth. This poses additional challenges since tree-based structures are gen-
erally comprised of unevenly distributed pointers throughout memory, simply
creating a linear list from these pointers will not suffice, as all data structures
must also update their internal pointers to accommodate the new locations. Our
approach using multiple queues will achieve a perfectly linear, gap-free distribu-
tion of nodes, as we will show in Section III. Using our model, the performance
of parsing the automata is not compromised and the space storage required is
always linear in S, the total number of states.

3 Implementation

We used 62,302 signatures from the ClamAV database for our tests. We have
implemented the A-C, a constraint-based A-C, C-W and W-M algorithms and
we began testing on the CPU, then moved on to the GPU. The constraint-
based A-C is an adaptation of the A-C algorithm to support the three types of
constraints that ClamAV signatures contain. For the CPU implementations, we
used path-compression and bitmapped nodes for the A-C and C-W automatons
(Figure 4 shows the data structure formats used during implementation), to
minimize memory usage, while for the GPU part we have built our own memory
model for aligning the automaton so that we can maximize the host-to-device
bandwidth when copying it into the GPU. We used a data-parallel approach for
performing scanning on the GPU.

Fig. 4. a) A-C compressed nodes; b) A-C normal nodes in the constraint-based au-
tomata supporting RegEx signatures; c) C-W normal nodes; d) C-W compressed nodes

Memory-Efficient GPU-Based Virus Scanner 361

Figure 5 b, c, d shows results for single-core CPU benchmarks of individual
algorithms, while Figure 5f shows the results obtained when attempting to
implement a dual-scanning system (first, AC-AC used A-C in one thread for
scanning RegEx signatures and again A-C in the other for scanning regular
signatures, and the second, AC-CW used A-C in one thread for scanning RegEx
signatures and C-W in the other for scanning regular signatures). The results
obtained showed that AC-CW is performing faster than AC-AC, however given
that C-W performs best when the shifting distance is higher, we have split the
set of signatures into two parts: the first, containing regular expressions and
patterns shorter in length than d, and the second containing patterns longer
than d (where d was chosen as 16, 32, 64, 96 and 128) (Figure 5a shows the
signature distribution after the split, showing how many signatures were scanned
by the RegEx signature scanner, and how many by the regular signature scanner
in the different scenarios). We also tested a two-thread scanner comprised of A-
C for RegEx scanning and W-M for regular scanning (referred to as AC-WM),
and results in Figure 5e show that memory usage is much lower in the AC-CW
approach compared to AC-WM.

In GrAVity, the authors limit the depth of the tree in order to reduce memory
usage[6]. This may produce false positives, but once a potential match is detected
an extra step is employed at the end to fully verify that a full match is present.
It is also stated that for a depth-limited tree of 8, the number of false positives
when scanning is less than 0.0001%, which is why in our approach we have
also used the same depth for our tree (however we also performed memory and
bandwidth benchmarks for depths 12 and 16). Our tests were performed on 50
MB of randomly generated binary data and we have used 128 threads per block
(a 66% occupancy rate offered the best results after performing initial testing
with 96, 128, 160 and 192 threads) and 8,192/4,096/1,024 blocks (leading to a
total of 1,048,576/524,288/131,072 threads) for each kernel running.

3.1 The Constraint-Based Aho-Corasick Automata

We have implemented the default A-C approach and also a constraint-based
version, where we added basic support for the three types of constraints found
in the ClamAV signatures. The process is performed as follows: a regular ex-
pression signature is being parsed and trimmed into its subexpression parts (e.g.
11AA22{8-}33FF{-12}DDEE will insert in the tree, separately, the patterns
11AA22, 33FF and DDEE), with pointers existing from the leaf of a subex-
pression to the leaf of the subexpression preceding it. Whenever a leaf of any
subexpression is reached, the leaf of the previous subexpression is checked -
if all leaves were visited, this is considered a partial match and is checked at
the end for a full match. Our constraint-based version of A-C ensures accurate
matching by adding match position arrays at every leaf of every subexpres-
sion, and verifying constraints on the spot whenever a partial match is found
(Figure 6b).

362 C. Pungila and V. Negru

Fig. 5. Signature distribution when performing dual-scanning and single-core CPU
performance results for tested algorithms

Memory-Efficient GPU-Based Virus Scanner 363

Fig. 6. a) ClamAV implementation of the A-C algorithm [13]; b) The constraint-based
A-C automata for the input set {00FA0F{4-8}*02FF1F*ABCCD0, 00AE{-12}01CE}.
Failure transitions are not shown.

3.2 Our Proposed Memory Compression Model

We have used stacks for rebuilding the automaton, replacing the pointers that
exist in the usual data structures with offsets in the stacks pointing to the
elements of interest. Basically, we are serializing the tree in a continuous, gap-
free memory block, but using offsets in the stacks for locating elements, instead
of pointers. For the standard A-C and C-W versions we use two stacks, nodes,
offsets : the first points to the list of serialized nodes, stored as structures, while
the second points to a list of offsets (Figure 7). The offset member of the
node structure indicates to the position where all the children of that node are
stored - the number of children is given by the population count of the bitmap
in the structure. The model proposed always stores all children of a node in a
sequential manner in the stack, while the offset in the stack corresponding to
the first child is stored in the parent node. Therefore, the child at index i in a
node n is accessible through a single reference: nodes[offsets[n->offset+i]].

The constraint-based automata uses a similar approach and a third stack,
links, which holds structures that contain an offset to a node in nodes (this offset
indicates the leaf of a previous subexpression in a regular expression pattern).

Building the A-C/C-W automata and preprocessing it is not part of the virus
scanner itself, since database signatures are usually delivered (through the up-
date mechanism) in a ready-to-be-used form. Given that our automata is one
continuous block of memory, the transfer between the host and the device is the
fastest possible. The algorithm we used to build the node stack for our model is
presented as follows:

– Initialization

1: topOfNodeStack ← 1 (top of node stack)
2: currentPosition← 0 (position in the stack)
3: topOfOffsetStack ← 0 (top of the stack of offsets)
4: node (the currently processed node)

364 C. Pungila and V. Negru

Fig. 7. The stack-based memory model used for efficient storage of the C-W automata
in the GPU. A similar model is used for the basic A-C implementation.

– function addNode(node, currentPosition)

1: nodeStack[currentPosition]← node
2: nodeStack[currentPosition].offset ← topOfOffsetStack
3: add to hash (key ← node, value← currentPosition)
4: pc← popCount(node.bitmap)
5: for i← 0 to pc− 1 do
6: offsetsStack[topOfOffsetStack]← topOfNodeStack + i
7: topOfOffsetStack ← topOfOffsetStack + 1
8: end for
9: old← topOfNodeStack

10: topOfNodeStack ← topOfNodeStack + pc
11: for i← 0 to pc− 1 do
12: addNode(node.child[i], old+ i)
13: end for

To further reduce memory usage, the offsets stack can be completely discarded,
assuming that offsets are stored in the node itself. The code for serializing the
automata while using a single stack of nodes is the following:

– Initialization

1: topOfNodeStack ← 1 (top of node stack)
2: currentPosition← 0 (position in the stack)
3: node (the currently processed node)

– function addNode(node, currentPosition)

1: nodeStack[currentPosition]← node
2: nodeStack[currentPosition].offset ← topOfNodeStack
3: add in hash (key ← node, value← currentPosition)
4: pc← popCount(node.bitmap)
5: old← currentPosition

Memory-Efficient GPU-Based Virus Scanner 365

6: topOfNodeStack ← topOfNodeStack + pc
7: for i← 0 to pc− 1 do
8: addNode(node.child[i], old+ i)
9: end for

In order to efficiently restore the pointers in the new structures, a hash is cre-
ated in the first step that holds a list of the nodes in the automaton, together
with their new corresponding offset in the GPU memory-representation. A sec-
ond processing step is then employed, which parses the GPU tree in pre-order
and restores pointers by locating them in the hash and replacing them with the
offset. While path-compression and bitmapped nodes may be applied to the au-
tomata at this stage to further reduce the memory usage on the GPU, there are
a few elements that suggest this option should be avoided in general: first, mem-
ory rellocation in the GPU is a time-consuming process (memory manipulation
routines, such as memmove() and realloc() in C, have significant impact over
the overall performance of the running thread) and second, coding complexity
greatly reduces, therefore reducing performance penalties in the GPU.

A simple theoretical analysis shows that in order to implement, using our
model and bitmapped nodes, a basic Aho-Corasick pattern matching automata
with an alphabet of size Σ and a total ofN nodes/states, the total space required
for storage is N×(2log2N+Σ) bits (for each node, the following was considered:
one failure offset to indicate the new state in case of a mismatch, using log2N
bits, the offset pointer to indicate to the list of children for the current node which
is also occupying log2N bits, and a bitmapped representation of the alphabet
occupying Σ bits). Comparing this result to PFAC[19], where the AC-Compact
approach used by the authors for 1,703,023 nodes occupied 24.18 MB (about 15
bytes per node, assuming an alphabet size of Σ = 32), our approach (without
any performance penalty, unlike AC-Compact) would require a storage space
of only 2 × 21 + 32 = 47 bits per node, or 10 bytes per node and a total of
15.02 MB of memory (1.6 times less memory) to store the complete automata
in memory.

4 Experimental Results

We have conducted a series of tests for evaluating the performance of our ap-
proach on the GPU using two types of tests: single-scanning, where the whole
input data set was scanned using the A-C and constraint-based A-C machine
(Figure 8), and dual-scanning, where we have used the A-C and AC-CW ap-
proaches for performing scanning in parallel with regular expressions (in the A-C
machine) and simple patterns (through C-W, see Figure 9).

In Figure 8a, the total number of nodes obtained after applying the depth-
limited implementation of our model (we used three different depths of 8, 12 and
16 for testing various scenarios) is directly proportional to the amount of memory
used by the A-C automata in Figure 8b. The GPU throughput of both the
standard A-C and the constraint-based A-C used in RegEx scanning (in Figure

366 C. Pungila and V. Negru

8 c, d), for the three different depths shows that the default A-C works about
twice as fast as the constraint-based A-C. RegEx scanning is mainly limited by
the large number of small signatures that get matched partially, since ClamAV’s
smallest signature is comprised of only 2 bytes. In particular, for a depth of 8,
when using the basic A-C machine, our automata was using only 18.63 MB of
memory for about 352,921 nodes, compared to the approach used in GrAVity
where the amount was about 345 MB (almost 19 times lower memory usage).
However, given that the A-C approach we had used in this test was affected
by the existence of many nodes that included redundant information (such as
the one used for leaves in subexpressions of regular expressions), the AC-CW
approach (which was using even less memory for the C-W automata than the
equivalent A-C) consumed only 14.75 MB of memory (lowest amount in our test)
for wmin=32, compared to almost 315 MB in the previous solution, leading to
almost 22 times lower memory usage in this scenario.

The last step of our experiment involved implementing the dual-scanning sys-
tem on the GPU, based on the observations made a-priori that using a combina-
tion of the Aho-Corasick and Commentz-Walter automata produces the lowest
memory usage, while maintaining the throughput similar to that of the Aho-
Corasick RegEx scanning approach alone. In our experiment, in one kernel ran
the A-C algorithm and in the other the C-W machine. We limited the depth of
the automata at a distance of 8, as discussed before, and the number of total
nodes for A-C (running in kernel 1) is shown in Figure 9a (we used different test
scenarios involving different values for Wmin for determining the best compro-
mise between memory usage and throughput performance), while the remaining

Fig. 8. Results obtained during the experimental phase when using a single A-C kernel
and the entire experimental set of ClamAV signatures

Memory-Efficient GPU-Based Virus Scanner 367

Fig. 9. Results obtained during the experimental phase when using dual-scanning with
one A-C kernel scanning for regular expressions and an AC-CW kernel for scanning
simple patterns

nodes were being used by regular pattern scanning in kernel 2. The memory
used by the GPU implementation is shown in Figure 9b and one can see that
while Wmin increases, the total storage required also increases, since the num-
ber of RegEx signatures increases (the data structures used in RegEx scanning
occupy of course more space than those used in regular signature matching).
Figure 9c shows performance obtained when using RegEx scanning, while Fig-
ure 9d shows performance obtained when dropping the RegEx scanning entirely
and only performing regular A-C matching in kernel 1. The bandwidth reached
1,420 Mbps when using 1 million threads (almost 34 times faster than the AC-
CW throughput on the CPU), for Wmin = 128, but at the expense of memory
usage (about 17.5MB required). The best compromise in terms of the Bandwidth

Memory
ratio is offered by the AC-CW implementation for Wmin = 16 and Wmin = 32,
both having a ratio value of 48.

5 Conclusion

We have proposed a highly-efficient memory compression model for implement-
ing GPU-accelerated virus signature matching and have tested it on the GPU,
in single and dual-scanning modes. Experimental results have shown that our
model is ideal for implementation in real-time monitoring systems based on
GPU hardware acceleration. Tests performed have revealed high performance
improvements over previous known attempts, using almost 22 times less mem-
ory than related implementations used in GrAVity, while achieving up to 38

368 C. Pungila and V. Negru

times higher bandwidths than single-core CPU implementations. In our exper-
iment, the most memory-efficient approach for implementing virus signature
matching relied on dual-threaded scanning, where one thread was scanning reg-
ular expressions through the Aho-Corasick machine, and the other thread was
scanning regular patterns using the Commentz-Walter algorithm.

Future work includes a GPU-based, WDDM TDR-compliant driver model for
performing real-time virus scanning as part of the Windows operating system.

Acknowledgements. This work was partially supported by the grant of the
European Commission FP7-REGPOT-CT-2011-284595 (HOST), and Romanian
national grant PN-II-ID-PCE-2011-3-0260 (AMICAS). Special thanks go to Sean
Baxter and Tim Murray at NVIDIA Corp. for their valuable help and insight
on the CUDA architecture.

References

1. Aho, A., Corasick, M.: Efficient string matching: An Aid to blbiographic search.
CACM 18(6), 333–340 (1975)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20, 762–772 (1977)

3. Commentz-Walter, B.: A String Matching Algorithm Fast on the Average. In:
Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 118–132. Springer, Heidelberg
(1979)

4. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical Report
TR-94-17, University of Arizona (1994)

5. Clam AntiVirus, http://www.clamav.net
6. Vasiliadis, G., Ioannidis, S.: GrAVity: A Massively Parallel Antivirus Engine. In:

Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 79–96.
Springer, Heidelberg (2010)

7. NVIDIA: NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, version 4.1,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA C Programming Guide.pdf

8. Lee, T.H.: Generalized Aho-Corasick Algorithm for Signature Based Anti-Virus
Applications. In: Proceedings of 16th International Conference on Computer Com-
munications and Networks, ICCN (2007)

9. Pungila, C.: A Bray-Curtis Weighted Automaton for Detecting Malicious Code
Through System-Call Analysis. In: 11th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC, pp. 392–400 (2009)

10. Erdogan, O.: Hash-AV: fast virus signature scanning by cache-resident filters. In-
ternational Journal of Security and Networks 2(1/2) (2007)

11. Lin, P.C., Lin, Y.D., Lai, Y.C.: A Hybrid Algorithm of Backward Hashing and
Automaton Tracking for Virus Scanning. IEEE Transactions on Computers 60(4),
594–601 (2011)

12. Cha, S.K., Moraru, I., Jang, J., Truelove, J., Brumley, D., Andersen, D.G.: Split
Screen: Enabling Efficient, Distributed Malware Detection. In: Proc. 7th USENIX
NSDI (2010)

13. Miretskiy, Y., Das, A., Wright, C.P., Zadok, E.: Avfs: An On-Access Anti-Virus
File System. In: Proceedings of the 13th USENIX Security Symposium (2004)

http://www.clamav.net
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

Memory-Efficient GPU-Based Virus Scanner 369

14. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient
string matching algorithms for intrusion detection. In: 23rd Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, INFOCOM, vol. 4, pp.
2628–2639 (2004)

15. Snort, http://www.snort.org/
16. Zha, X., Sahni, S.: Highly Compressed Aho-Corasick Automata For Efficient Intru-

sion Detection. In: IEEE Symposium on Computers and Communications, ISCC,
pp. 298–303 (2008)

17. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: MIDeA: A Multi-Parallel Intrusion
Detection Architecture. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS, pp. 297–308 (2011)

18. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: High Performance Network Intrusion Detection Using Graphics Processors.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 116–134. Springer, Heidelberg (2008)

19. Liu, C.H., Chien, L.S., Chang, S.C., Hon, W.K.: PFAC Library: GPU-based string
matching algorithm. In: PU Technology Conference, GTC (2012)

http://www.snort.org/

Intended Actions: Risk Is Conflicting Incentives

Lisa Rajbhandari and Einar Snekkenes

Norwegian Information Security Laboratory, Gjøvik University College, Norway
{lisa.rajbhandari,einar.snekkenes}@hig.no

Abstract. Most methods for risk analysis take the view that risk is a
combination of consequence and likelihood. Often, this is translated to
an expert elicitation activity where likelihood is interpreted as (qualita-
tive/ subjective) probabilities or rates. However, for cases where there
is little data to validate probability or rate claims, this approach breaks
down. In our Conflicting Incentives Risk Analysis (CIRA) method, we
model risks in terms of conflicting incentives where risk analyst subjec-
tive probabilities are traded for stakeholder perceived incentives. The
objective of CIRA is to provide an approach in which the input param-
eters can be audited more easily. The main contribution of this paper is
to show how ideas from game theory, economics, psychology, and deci-
sion theory can be combined to yield a risk analysis process. In CIRA,
risk magnitude is related to the magnitude of changes to perceived util-
ity caused by potential state changes. This setting can be modeled by a
one shot game where we investigate the degree of desirability the players
perceive potential changes to have.

Keywords: Game theory, Risk analysis, risk, conflicting incentives, in-
tended actions.

1 Introduction

One of the key objectives of risk analysis is to provide insight suitable for deciding
if risk exposure needs to be changed. That is, if a mitigation action is needed,
or risk exposure may be increased. Most methods for risk analysis (including
the ISO standard 27005 [1], NIST 800-30 [2], COBIT [3], CORAS [4]), take
the view that risk is a combination of consequence and likelihood. Often, this
is translated to an expert elicitation activity where likelihood is interpreted as
(qualitative/ subjective) probabilities or rates. However, for cases where there
is little data to validate probability or rate claims, this approach breaks down.
Besides the use of subjective judgment, the other challenge to Probabilistic Risk
Analysis (PRA) is handling of human performance and error [5]. Studies have
shown that experts rely on heuristics in making judgments (decision) which
might result in biases and errors [6, 7]. In addition, people are generally not well
calibrated at estimating probabilities [7]. Taleb [8] has provided examples of
incidents (called Black Swans) that cannot be accurately predicted based on the
historical data. Thus, the questions is: What information relating to uncertainty
can one reasonably expect to be able to collect reliably, and how should this

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 370–386, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Intended Actions: Risk Is Conflicting Incentives 371

information be framed so that it is ‘auditable’? Clearly, one approach could be
to explicitly capture the uncertainty using techniques such as interval analysis, p-
boxes or second order (subjective) probabilities. In this paper, we take a different
view.

The objective of our Conflicting Incentives Risk Analysis (CIRA) method is
to provide an approach where ‘probability affecting’ input parameters that can
cause risks to go from ‘acceptable’ to ‘unacceptable’ can be audited more easily.
In CIRA, we model risks in terms of conflicting incentives where risk analyst
subjective probabilities are traded for stakeholder perceived incentives. These
incentives are by necessity subjective. After all, it is these subjective perceptions
that will influence the stakeholder actions. However, the risk analyst should
aim to collect these incentives objectively without being influenced by his own
subjective judgment. The key contribution of this paper is to show how ideas
from game theory, economics, psychology, and decision theory can be combined
to yield a risk analysis method.

Mathematical Model
Risk Events

Risk Analyst

is
 c

on
ve

rt
er

d
to

ta
ke

s
in

pu
ts

Real World Scenario

studies

- By communicating with stakeholders
- Reviewing Documents
- Use taxonomies of stakeholders, utility factors, strategies
 ...

develops

Fig. 1. The Risk Analysis Process

When doing risk analysis, the risk analyst studies the real world scenario and
makes the abstraction ‘a mathematical model’ as depicted in Fig. 1. In reference
to this model, the analyst then comes up with a ‘hypothetical scenario’ which
he communicates with the stakeholders during workshops, interviews and/or
surveys. He then collects data by gathering responses from the stakeholders,
reviewing documents, using existing taxonomies of stakeholders, strategies, etc.
Finally, he makes an estimation based on the model and identifies the risk events.
However, the analyst needs to consider the validity of the model. That is, the
abstraction should capture the key features of the real world such that deductions
made from the abstraction provide a close approximation of what also will hold
in the real world.

372 L. Rajbhandari and E. Snekkenes

Concepts

Terminologies

Procedures

Library

- Taxonomy of stakeholders
- Taxonomy of strategies
- Taxonomy of utility factors
 and its corresponding metrics

Fig. 2. The CIRA Method

The CIRAmethod includes various concepts that are used to build the method,
terminologies for understanding the method and procedures for implementing
the method. The library includes the taxonomy of stakeholders, taxonomy of
strategies, and taxonomy of utility factors and its corresponding metrics. Thus,
the library can help the analyst to identify the relevant stakeholders, and for
each stakeholder, identify their utility factors and its corresponding metrics, and
strategies. The content of the library is dynamic, i.e. existing content can be
updated and new content can be added. For instance, the choice of the metric
for a utility factor such as privacy might differ depending on stakeholders and
application. Thus, with the library, the risk analyst can be provided with a selec-
tion of possible definitions of metrics capturing privacy that he can select from
or modify.

In CIRA, the risk owner is the stakeholder whose perspective we take when
doing our analysis. We focus on risks at the managerial level rather than the
technical level. We use aspects of Multi Criteria Decision Analysis (MCDA)
and Multi-attribute Utility Theory (MAUT) [9, 10, 11] to estimate stakeholder
utility. We model stakeholder incentives (i.e. changes in utilities) as the sum
of weighted values for utility factors such as privacy, satisfaction etc. One im-
portant motivation for the work reported in this paper is that in classical risk
analysis, risk having high consequence and low probability is problematic unless
there is strong evidence that the likelihood is small. Verification of low proba-
bility is difficult and requires patience (i.e. waiting a long time for nothing to
happen). On the other hand, utility factors can be identified from past actions,
surveys/ interviews and research in psychology. It is well known that many of
the incidents are caused by psychological motives. Thus, we want to include
psychological motives like revenge or desire for recognition in our methodology.
However, documenting that a stakeholder perceives that he has little to gain
by forcing an incident will often require less patience than verifying that the
probability of the incident is small.

In our model, a strategy is an action that may modify the value of the utility
factors. The strategy owner is the stakeholder that is in the position to trigger
the execution of the strategy. Figure 3 depicts a scatter plot of the utilities of
the outcome of some example strategies, where the strategy owner (risk owner)
utility is plotted on the x (y) axis. Each quadrant represents various situations
for the stakeholders: (1) ‘cooperation’, where both the stakeholders have the
incentive to cooperate as they both gain positive utility, (2) ‘desirable’ situation
for the risk owner as he gets positive utility and the converse for the strategy

Intended Actions: Risk Is Conflicting Incentives 373

CooperationDesirable

Increased RiskNot Desirable

Risk owner’s utility

Legend

Unacceptable risk event

Acceptable risk event

Channel (for risk appetite)

Strategy owner’s utility

Fig. 3. Incentive graph

owner, (3) ‘not desirable’ situation for the stakeholders- as they both get negative
utility, they both want to move out of this quadrant and (4) risky situation for
the risk owner as he gets negative utility while the strategy owner gets positive
utility.

In this paper, we focus on the fourth quadrant where each dot represents a par-
ticular risk event, caused by the ‘intentional’ execution of a strategy (intended ac-
tion) by the strategy owner. Intended actions include all the adversarial activities,
not just internal issues within the organization. Other risk events caused by unin-
tended/ accidental behavior of the strategy owner, environmental risks, technical
failures, etc will be investigated in future work.We argue that the underlying cause
of risk is in fact the ‘conflicting incentives’ situation itself. In the case of intentional
behavior of the strategy owner, we have a conflicting incentive situation when a
strategy owner can cause a transition that will yield a gain for himself and a loss
for the risk owner. This setting can be modeled by a one shot game where we in-
vestigate the degree of desirability the stakeholders perceive potential changes to
have. The degree of desirability (undesirability) can be expressed in terms of pos-
itive (negative) change in utility. That is the greater the positive change in utility,
the greater the degree of desirability. The idea being that risk is the combination of
the degree of desirability that motivates the strategy owner to send the risk owner
to an undesirable state and the magnitude of this undesirability. The risk for the
risk owner increases when there is a decrease in his utility or an increase in the
utility of the strategy owner or any combination of the former two. Other details
regarding risk appetite will be explained later in Sect. 4.

The remainder of this paper is structured as follows. Related work is given
in Sect. 2. In Sect. 3, we first give a brief overview of the steps of the CIRA

374 L. Rajbhandari and E. Snekkenes

method, then we explain the SNS scenario and finally our method by means of a
running example of the interaction between two stakeholders in Social Network-
ing Services (SNS): the data subject and the data controller. Even though CIRA
can address multiple players game, for the purpose of explaining our approach
we chose a simplified example including two players. In Sect. 4 and Sect. 5, we
discuss our findings and future work respectively. Conclusion is given in Sect. 6.

2 Related Work

Researchers have put forward various definitions of risk. According to Slovic et
al. [12], risk can be considered in three basic ways: risk as feelings (proposed by
Lowenstein et al. [13]), risk as analysis and risk as politics. Risk as feeling con-
sists of individuals’ “fast, instinctive, and intuitive reactions to danger”; risk as
analysis covers the scientific approach to risk such as risk assessment approaches;
risk as politics comes into effect when there is a clash between the former two
[12].

As mentioned earlier there are many classical risk management approaches
such as the ISO standard 27005 [1], NIST 800-30 [2], COBIT [3] and CORAS
[4]. For risk assessment, apart from estimating risk as the combination of conse-
quence and likelihood as in the methods given above, risk is also determined as
the combination of threat, vulnerability and consequence (e.g. in [14]). In [15],
Cox has shown the limitations of estimating risk as the combination of threat,
vulnerability and consequence.

Work on risk analysis and game theory includes: [16] for estimating reliability
of a system, [17, 18] for adversarial risk analysis, [19] for cybersecurity risk as-
sessment and [20, 21] for counterterrorism. Cox [17] states that the use of game
theory for risk analysis can improve the existing (adversarial) risk analysis ap-
proaches. According to Cox, this can be achieved by developing the risk models
using the concept of risk analysis, then utilizing game theory for optimizing the
decision of the defender in consideration to the attacker’s best response. Bier et
al. [18] emphasize the importance of game theory for risk analysis as it considers
the actions of intelligent and adaptive adversaries. In [21], risk and reliability
analysis is combined with game theory for the protection of complex systems
against intelligent and adaptable adversaries. As game theoretic approach pro-
vides a way to analyze the situations of conflict between the players, it helps
to understand the behavior of real world adversaries [22]. Furthermore, in [23],
it was shown that game theoretically inspired risk management process can be
integrated into the ISO 27005 standard.

Further, research has been done on understanding the incentives of the stake-
holders which can enhance the risk analysis process. Liu et al. [24] proposed the
incentive based modeling approach in order to model and understand attacker
intent, objectives and strategies. Anderson et al. [25] emphasize the importance
of incentives, as misaligned or bad incentives usually cause security failure, i.e.
gives rise to risk.

Intended Actions: Risk Is Conflicting Incentives 375

3 Conflicting Incentives Risk Analysis (CIRA)

In this section, we first give a brief overview of the steps involved in CIRA. We
then explain the social networking services (SNS) scenario. Finally, we explain
our method by means of a running example of SNS.

3.1 Summary of the CIRA Method

The overview of CIRA method is as follows:

1. Identify the stakeholders.
2. For each stakeholder,
2.1. identify the utility factors. For each identified utility factor, determine

the scale, measurement procedure, explain the underlying assumptions
if any and assign weights as perceived by the respective stakeholder.

2.2. identify the strategies to be considered.
3. Model a one shot game, then
3.1. determine the final value of the utility factors after the strategies of the

players are executed.
3.2. estimate the utility for each of the strategies for each of the players.

4. Compute the incentives (i.e. changes in utilities) for each of the strategies
for each of the players.

5. Determine risk by investigating each of the strategies with respect to the
sign and magnitude of the changes determined in 4.

3.2 The Social Networking Services (SNS) Scenario

To explain our method, we model a setting between two stakeholders in SNS:
the data subject (i.e. user) and the data controller (i.e. SNS provider). The
data controller collects personal information of the data subject to provide the
service. However, it is well known that this information can be used either to
provide general advertisements (ads) in compliance with the privacy policy (not
exploiting the personal information of the data subject) or by facilitating tar-
geted ads (exploiting the personal information for commercial purposes). Even
though most prominent SNS allow third parties to define the types of profiles
they are targeting, to which the social network then delivers targeted ads. The
SNS might change their policy to sell data to third parties.

3.3 Explaining the CIRA Method

We now explain our method by means of a running example of SNS.

1. Identify the Stakeholders. The first step is to identify the stakeholders
i.e. identify the risk owner along with the ‘n’ number of strategy owners. The
risk owner is assumed to be player 0. In our example, the stakeholders are the
data subject (risk owner) and the data controller (strategy owner).

376 L. Rajbhandari and E. Snekkenes

2. Identify the Utility Factors and Strategies. For each stakeholder, we
need to iteratively identify the utility factors and the strategies.

2.1. Identify the Utility Factors. For each stakeholder, identify the associated
collection of utility factors that provides the player with utility.

There are many definitions of assets (a term used in classical risk analysis
usually meaning anything that has value to the organization) which lead to
confusion [26]. Thus, in order to avoid this confusion and in the context of our
method we use the term utility factors. All the assets can be cast to our notion
of utility factors. Utility factors depend on the perspective of the player.

In our SNS example, we assume the utility factors for the data subject to be
having privacy and to be satisfied (includes availability, support: responsiveness
and effectiveness, service completeness) from using the service. Similarly, we
assume that the data controller is only concerned about gaining marginal net
profit and having a good reputation (includes experience of others and own
experience). Now, for each of the above utility factors, we determine: the scale
including the semantics of values, the measurement procedure (incorporating
the idea) from behavioral economics [27, 28, 29] and the underlying assumptions
if any. Then the weights are assigned to the utility factors as perceived by the
respective player using aspects of Multi Criteria Decision Analysis (MCDA)
techniques [11]. We assume that correlation among factors are captured in the
assignment of weights.

Recall that the metrics used in our example are not prescribed, but belong to
the extensible part of our method. The given metrics are just examples of what
a metric might look like rather than metrics that have been validated for use in
a specific real life risk analysis.

Privacy : First we need to decide if we need a projected or historic privacy metric.
This decides if we will count actual incidents or make use of expected/projected
number of incidents based on knowledge relating to data subject, data controller
and third party behavior. We decide to construct a projected privacy metric.

Scale: Privacy (scale: %) is defined to be

1/(1 +N) (1)

where N is the number of times that a private data object is directly or indirectly
utilized (e.g. read, copied or used as input to a decision process) in a way that is in
conflict with a data usage purpose statement that is understood and accepted by
the data subject. These numbers come from the analysis of the scenario, directly
and indirectly caused by the events triggered by the various stakeholders. Note
that we make the simplifying assumption that all data objects have the same
sensitivity and that all breaches of use are equally serious. The privacy incident
count is not to be restricted to incidents directly caused by the data controller,
but also includes breaches initiated by a third party having obtained the sensitive
data as a result of a privacy incident. If required, we can easily introduce separate
categories relating usage breach and data object category. The above privacy

Intended Actions: Risk Is Conflicting Incentives 377

metric is relative to a single subject. However, we may modify this metric to
measure the commitment of the data controller to process data in a privacy
friendly way by counting the incidents relating to all data subjects. Depending
on the setting, it may be relevant to limit the counting of N to a specific time
period (e.g. per month, per year). In the case that N cannot be uniquely defined,
e.g. because we only get to know about a subset of the privacy incidents, we end
up with a lower bound on N .

Measurement procedure:

1. Identify all data objects having a privacy requirement.
2. Identify all physical/logical locations where each of these data object in-

stances are stored over the lifetime of the data (i.e. until all copies of the
data have been deleted).

3. Identify what purpose is understood and accepted by the relevant subject
for each of the data objects.

4. Over the lifetime of the data, count the number of projected privacy inci-
dents.

In many cases it might be difficult to provide the number of data locations with
any precision. However, in most cases, we will be able to provide upper and
lower bounds. We can then use e.g. interval arithmetic [30] when computing the
metric.

Satisfaction : There are many issues relating to customer satisfaction (see e.g.
work on American Customer Satisfaction Index (ACSI) [31]).

Scale: For the purpose of this metric, we model satisfaction as expectation
fulfillment relating to function. We stipulate that users have expectations relating
to the following issues: (1) Service availability (scale: %), (2) Support if problems
including: (2.1) responsiveness (scale: %) and (2.2) effectiveness (scale: %) and
(3) service completeness (scale: %). Thus, the satisfaction metric consists of four
‘sub metrics’. The relative significance that a user puts on each of these factors
can be established using the MCDA explained below.

Measurement procedure: For each of the above service performance issues, we
can establish objective values e.g. service availability by number of interactions
with a response time of less than 1 second divided by the total number of in-
teractions (this leaves out infrastructure issues). Support really relates to two
separate issues: responsiveness (scale: %), and effectiveness (scale: %) i.e. the
‘extent’ to which the problem is solved (e.g. completely for now and all future
similar problems, or just a partial solution to this particular instance of the
problem). Responsiveness is given as

1/(1 + t) (2)

where t is the average time in minutes required to ‘solve’ a problem reported
by the user. Service completeness relates to the number of features that the
service actually delivers divided by the number of features that the user could
reasonably expect (e.g. based on similar services provided by others, or suggested

378 L. Rajbhandari and E. Snekkenes

in marketing material from the service provider). Here we make the simplifying
assumption that all users perceive each function to be equally important.

For satisfaction, other elements may be relevant such as satisfaction from
socialization and usability. However, these are not included because we use a
simplified model to explain the method. In addition, other strategies of the data
controller such as increasing the ‘lock-in-effect’ may represent risk.

Profit : The unit for profit is currency units (Euros). The weight for profit will
then specify how much utility each currency unit will give.

Reputation : We interpret reputation as the data subject’s expectancy relating to
future behavior of the data controller. The reader should note that ‘expectancy
relating to future behavior’ refers to the subjective, psychological expectation of
the data subject and not ‘expected value’ in a statistical sense. For the purpose
of this case study, we restrict our attention to privacy. Thus, a more appropriate
name for this metric would probably be ‘Privacy Reputation’.

Scale: When it comes to expectations about reputation it may be strongly influ-
enced by past behavior i.e. our experience [32]. Thus, we model reputation relat-
ing to two issues: experience of others (scale: %) and own experience (scale: %).

Measurement Procedure: Both of the above metrics can be established by doing
a survey. Clearly, we may also construct more sophisticated models taking into
account incident discovery rates, and how (negative) information is spread in a
human communication network. For example, we may want to establish the fol-
lowing: “How many privacy incidents affecting your friends (yourself) would you
be willing to accept before you would stop using the service?”. Then, experience
of others (own) can be computed using

1/(1 + P) (3)

where P is the maximum number of privacy incidents affecting your friends
(yourself) that you are willing to accept. The assumption that users are more
willing to accept privacy violations to others than themselves might not always
hold. As mentioned earlier, we can easily address this by presenting the risk
analyst with several reputations metrics so that he can choose and construct the
final model using the most appropriate metric.

In our SNS example, we assume the data subject gives higher concern to
his privacy than to the satisfaction he gets from using the service. On the other
hand, the data controller values his profit more than reputation. In our example,
we assume data subject privacy and satisfaction to be 0.6 and 0.4 respectively.
Similarly, we assume the data controller assigns weights of 0.7 and 0.3 for his
reputation and profit respectively. For the other elements comprising the utility
factors, we make the assumption that the stakeholders perceive each of these to
be equally important (see Table 1).

2.2. Identify the strategies. Determine the associated strategies of each player
(except for risk owner) i.e. ‘what can they do or consider doing?’. We assume

Intended Actions: Risk Is Conflicting Incentives 379

the risk owner plays only the ‘do nothing’ option. In general, a strategy may
be triggered by a planned behavior or stochastically. Note that in this paper
we consider only planned or intentional execution of strategies by the strategy
owner. Each strategy may modify the value of the utility factors belonging to
own as well as other players’ utility factors.

From the scenario, we know that the strategies of the data controller are ‘do
nothing’ (DN’), ‘exploit’ (E) and ‘not exploit’ (NE). However, the data subject
plays only the ‘do nothing’ (DN) option.

3. Model the Game. Model a one shot game (static and simultaneous game)
between the risk owner and strategy owners. Assume the system/ environment
to be in a fixed initial state and all the players are utility optimizing. By utility
optimizing, we mean that they are optimizing their behavior relative to the
weighted sum of the elements in their utility factor vector.

Now, we need to first determine the final value of the utility factors, then
estimate the utility for each of the strategies for each of the players.

3.1. Determine the Final Value of the Utility Factors. For each of the identi-
fied utility factors, determine the final value after the strategies of the players
are executed (for the utility factors’ valuation, we utilize the metrics explained
above). We use the additive utility function of MAUT to estimate the utility.
The additive utility function for a given player is defined to be the weighted
average of its individual utility functions [9] given as:

U =

m∑
k=1

wk · u(ak) . (4)

where
m- number of utility factors of the player,
wk is the assigned weight of utility factor ak and

∑m
k=1 wk = 1, and

u(ak) is the utility function for the utility factor ‘ak’.

For our SNS example, Table 1 depicts the initial value (IV) of the utility factors
and also its final value, if the strategies of the data controller were to be exe-
cuted. For the purpose of this example, we assume the values are obtained from
interviews and surveys. Note the ‘do nothing’ option of the data controller and
data subject does not incur any changes to utility factors.

For obtaining the values of privacy of the data subject, we instantiate (1) with
the assumption N=0 per month at the initial state and when the data controller
uses option NE. However, we assume N=10 per month when the data controller
uses option E. This results in the values of privacy as 100% and 9% respectively.

Note that the values for satisfaction and reputation are obtained using the
techniques borrowed from MCDA and MAUT. For support (an element of the
satisfaction utility factor), the values for the responsiveness are obtained by
instantiating (2) with t = 5 at the initial state and t = 4 when both the strategies
of the data controller are executed. Thus, responsiveness increases from the IV of

380 L. Rajbhandari and E. Snekkenes

Table 1. Final Values of the Utility Factors after the Strategy of the Data Controller
is Executed (an example)

Final Values

Stakeholders Utility Factors Weights IV NE E

Data Subject Privacy (%) 0.60 100 100 9
Satisfaction (%) 0.40 70 74 74

Availability (%) 0.33 80 85 85
Support (%) 0.33 53 56 56
Responsiveness (%) 0.50 17 20 20
Effectiveness (%) 0.50 90 92 92

Service Completeness(%) 0.33 80 82 82

Data Controller Profit (Euros) 0.70 200 200 400
Privacy Reputation (%) 0.30 42 75 38

Experience of others(%) 0.50 33 50 25
Own experience(%) 0.50 50 100 50

17% to 20% for both the strategies. Besides, we assume the effectiveness increases
from 90% to 92% when both the strategies of the data controller are executed.
Now, we evaluate the values for support instantiating (4) with the obtained
values of responsiveness and effectiveness: for the IV as 0.50 ·17+0.50 ·90 = 53%.
Similarly, the final values for both the NE and E are evaluated as 56%. We
make the following assumptions for the other elements of satisfaction: availability
increases from 80% to 85% and service completeness increases from 80% to 82%
after both the strategies of the data controller are executed. Thus, using (4) and
the values determined for the other elements comprising our satisfaction utility
factor, the obtained IV is 70% and the final values for both the strategies are
evaluated as 74%.

We assume the data controller makes an additional profit of 200 when he
uses the E option rather than the NE option. For reputation, for the experience
of others, the values are obtained after we instantiate the number of privacy
incidents in (3) with P = 2, P = 1 and P = 3 in the initial state, when the data
controller uses NE and E as 33%, 50% and 25% respectively. On the other hand,
for own experience i.e. personal experience of the data subject, the values are
obtained as follows after we instantiate in (3), P = 1 in the initial state and when
the data controller uses E and P = 0 when the data controller uses NE. Thus, the
values obtained in the initial state, when the data controller uses NE and E are
50%, 100% and 50% respectively. Thus, using (4) from the values determined for
the elements comprising reputation, reputation of the data controller increases
from an IV of 42% to 75% when the data controller chooses the NE option.
However, it decreases to 38% when the data controller selects the E option.

Usually, the individual utility functions (i.e. utility factors in our case) are
assigned values in the interval of 0 (worst) to 1 (best) when using MAUT. For
instance, in our case, we can easily compress the profit/ wealth to the interval 0
to 1. However, this would not be particularly helpful as most of the values will
be clustered right at the end. Thus, it is more intuitive to utilize the given scales
for the utility factors’ valuation.

Intended Actions: Risk Is Conflicting Incentives 381

Stakeholders

Data Subject

Utilities

IV

88

NE E

153Data Controller

89 35

163 291

Change in Utilities (Δ)

NE

89 - 88 = 1

E

163 -153 = 10

35 - 88 = - 53

291 - 153 = 138

Fig. 4. Matrix of Utilities and Change in Utilities w.r.t. Strategy of the Data Controller

3.2. Estimate the Utility. We again use the techniques from MAUT to estimate
the utility for each of the strategies for each of the players using (4). We make
the simplifying assumption that utility is linear.

For our SNS example, we use (4) to compute the utilities for the data subject
and the data controller with the values given in Table 1. In the initial state, the
utilities are given as follows:
For the data subject : 0.60 · 100 + 0.40 · 70 = 88
For the data controller : 0.70 · 200 + 0.30 · 42 = 153
Similarly, when the data controller selects NE and E, the utilities are obtained
as given in Fig. 4.

4. Compute the Incentives. We need to compute the incentives (i.e. changes
in utilities) for each of the strategies for each of the players. The change in utility
Δ is the difference between the utility of the player in the state resulting from
strategy use and the initial state.

In the SNS example, from Fig. 4, when the data controller uses the NE option,
Δ for the data subject and data controller are 1 and 10 respectively. When the
data controller uses the E option, the Δ for the data subject and data controller
are -53 and 138 respectively.

5. Determine Risk. This can be achieved by investigating each of the strategies
with respect to sign and magnitude of the changes determined in 4. The idea
being that risk is the combination of the strength of the force that motivates the
strategy owner to send the risk owner to an undesirable state and the magnitude
of this undesirability. Risk magnitude is related to the magnitude of changes to
perceived utility caused by potential state changes.

In other words, we look into how strong the players’ incentives are to make
the first move. Investigating the players’ motivation to move first helps to under-
stand the risks faced by the risk owner. In our model, we make the simplifying
assumption that all strategy owners will need the same time to act if they have
the same magnitude of incentive. Furthermore, players will move ordered by
decreasing incentives and all above a certain threshold will move.

In the SNS example, when the data controller uses the NE option, it results
in a positive change in utility for both the players (falls in the first quadrant in
the incentive graph). Thus, we know there is no risk. However, it is clear that
the data controllers’ degree of desirability to play the exploit option is high as
it leads him to a better position with a gain of 138. In this case, 138 is the
strength of the force that motivates the data controller to send the data subject

382 L. Rajbhandari and E. Snekkenes

to an undesirable state and -53 is the magnitude of this undesirability and the
combination of these is the risk (-53, 138).

4 Discussion

In a game theoretic interpretation, if you are in equilibrium, ‘forces’ will pull
you towards your current state. That is, there is no incentive for the players to
unilaterally change state, as the state where the risk owner is heading might be
worse for both himself and the strategy owner. Thus, if the strength of the ‘force’
to change state is negative then we are in equilibrium. We may also define game
theoretic risk to be a set related to the concepts of likelihood and consequence
as:

1. Likelihood(Li): How strong is strategy owner i’s incentive to make the first
move or the magnitude of incentive. The theory of planned behavior provides
a link [33].

2. Consequence(C): The value of the game for the risk owner.

Furthermore, risk appetite can be determined by asking questions like: ‘How
strong a temptation is acceptable to give a strategy owner to cause the risk
owner a given loss?’ In this setting, risk appetite refers to the collection of (C,
Li) pairs (referred to as SCL) for which the risk owner accepts (and prefers) that
the strategy owner i makes the first move. In other words, this collection helps
to decide if a risk is acceptable or not. That is, for risk acceptance criteria (C,
Li), risk (C′, L′

i) is acceptable, iff C′ ≥ C and L′
i ≤ Li. Note that a loss (gain)

will have a negative (positive) sign and we need to specify many risk pairs in
order to completely specify the risk acceptance criteria. We leave the definition
of a total ordering of risk for further work. If the risk owner finds himself in
a situation where the current (C, Li) is not in SCL, he will need to consider
other strategies than the ‘do nothing’ strategy. However, this takes us from risk
analysis to risk management which is outside the scope of this paper.

Recall, as shown in Fig. 3, that each dot represents a particular risk event.
The quadrant is divided into three areas: the area for acceptable risk events
(represented by white dots) and the area for unacceptable risk events (repre-
sented by black dots) separated by the shaded area. The shaded area represents
the channel in which the analyst does not have enough information to know if
a risk event is acceptable or not. The risk owner’s risk appetite will be a graph
somewhere in this channel which specifies a bound on the risk he currently is
willing to take. However, the risk appetite will differ depending on how the event
is triggered. For intended action, in many cases, it will be reasonable to make the
assumption that the strategy owner will be rational in a behavioral economics
sense. However, the risk appetite in the case of accidental execution may be
different. Consequently, we may have multiple risk acceptance graphs.

From the strategy owner’s perspective there is always the possibility that the
risk owner will implement a control that reduces the incentive that the strategy
owner may obtain. This concern is captured through the application of the theory

Intended Actions: Risk Is Conflicting Incentives 383

of Discounted Utility (DU) ([34]). The first mover advantage is then equal to
the saved opportunity cost that can be attributed to the discount factor. We
make the simplifying assumption that all risk events have associated the same
discount factor. However, if we have evidence suggesting that this is not the
case, we can easily modify our calculations, e.g. by using interval arithmetic to
capture the incertitude or by using specific discounting values if these are known.
DU has received some criticism relating to the assumption that the discounting
factor is assumed constant for all time intervals. However, we do not rely on this
assumption as it can easily be seen that the greater the incentive, the greater the
potential loss attributable to the discounting. Thus, from the assumption above,
a rational strategy owner that is forced to make a choice between risk events will
select the risk event with the highest value. This will (for a given strategy owner)
result in risk events being sorted according to their relative urgency. However,
in general we may not be able to predict the absolute time for when a risk
event may occur. Thus, the relative timing of risk events triggered by different
strategy owners may not necessarily be known. One way of dealing with this is
to establish separate risk appetites for each of the strategy owners. This would
then remove the need for assuming that all stakeholders have the same response
time for a given incentive.

In addition, thinking of player strategies reveal risks in a way that typical oc-
currence of events in classical risk analysis does not. As we look into the strategies
from the perspective of each stakeholder, we claim it provides a clearer view of
the situation in terms of not only what the stakeholder can do but also what he
might consider doing. Furthermore, it should be noted that quantification as such
does not give objectivity. This is because there will be an element of subjectivity
going into the choice and definition of the metrics capturing the utility factors.
In most of the classical risk analysis approaches, the probability is obtained by
asking questions such as “How likely it is that something will happen?”. When
there is insufficient historical data or when we have small probabilities, it is diffi-
cult to check if the probability is in fact correct. In CIRA, we ask questions such
as “How much does a person perceive to benefit from a certain incident?”. As
objectivity is closely related to ‘universal agreement’, our transparent approach
goes some way towards this goal by means of identifying the key issues where
disagreement may exist. Once identified, one can work towards agreement and
a common understanding.

5 Future Work

For future work, we will investigate to what extent CIRA scales to real world
scenarios. We will consider risk from a single (i.e. ‘first’) adversarial move vs.
risks from some number of adversarial moves vs. other scenarios. The idea being
that we need to consider the risks posed by all the events up to the point where
we have changed our exposure. Besides, we will compare CIRA with one or more
of the classical risk analysis methods such as ISO 27005 which will contribute
towards understanding its effectiveness.

384 L. Rajbhandari and E. Snekkenes

The following issues require further work: (1) Expressing risk as a single value.
(2) We will collect definitions of utility factors from the literature and put into
the library. (3) Different people may value the same utility factor differently.
Hence, we need to consider weights being captured as distributions. (4) In our
SNS example we made the simplifying assumption that utility is linear. We need
to investigate the issues relating to the non-linearity of utility factor valuation.
(5) The lack of precision or incertitude can be captured using uncertainty propa-
gation techniques such as P-box, interval arithmetic or similar. This recognition
is crucial in order not to enter into a game of self deception. (6) Finally, we will
investigate how risk neutral, risk seeking and risk averse behavior can be framed
in CIRA.

6 Conclusion

We have presented a method for risk analysis combining ideas from game theory,
economics, psychology and decision theory where the input parameters can be
audited and where risk is modeled in terms of conflicting incentives. Furthermore,
investigating the players’ incentive to move first helps to understand the risks
faced by the risk owner. Our method trades subjective probabilities for stake-
holder perceived incentives. By trading subjective probabilities for stakeholder
incentives, the risk analyst can focus on utility factors incorporating idea from
behavioral economics during the data collection phase of a risk analysis process.
Thus, CIRA is applicable in situations where the utilities for the stakeholders
can be estimated reasonably well.

Acknowledgement. The work reported in this paper is part of the PETweb II
project sponsored by The Research Council of Norway under grant 193030/S10.
We would like to thank Dieter Gollmann and the anonymous reviewers for their
valuable comments and suggestions.

References

[1] ISO: ISO/IEC 27005 Information technology -Security techniques-Information se-
curity risk management, 1st edn. (2008)

[2] Stoneburner, G., Goguen, A., Feringa, A.: NIST SP 800-30, Risk Management
Guide for Information Technology. NIST (2002)

[3] IT Governance Institute: COBIT 4.1, ISA (2007)
[4] Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based se-

curity analysis in seven steps — a guided tour to the CORAS method. BT Tech-
nology Journal 25(1), 101–117 (2007)

[5] Bier, V.M.: Challenges to the acceptance of probabilistic risk analysis. Risk Anal-
ysis 19, 703–710 (1999)

[6] Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases.
Science 185(4157), 1124–1131 (1974)

[7] Shanteau, J., Stewart, T.R.: Why study expert decision making? some histor-
ical perspectives and comments. Organizational Behavior and Human Decision
Processes 53(2), 95–106 (1992)

Intended Actions: Risk Is Conflicting Incentives 385

[8] Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, 2nd edn.
Random House Trade Paperbacks (2010)

[9] Clemen, R.T.: Making Hard Decision: An Introduction to Decision Analysis, 2nd
edn. Duxbury (1996)

[10] Wallenius, J., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K.: Mul-
tiple criteria decision making, multiattribute utility theory: Recent accomplish-
ments and what lies ahead. Management Science 54(7), 1336–1349 (2008); IN-
FORMS

[11] Dodgson, J.S., Spackman, M., Pearman, A., Phillips, L.D.: Multi-criteria analysis:
a manual. Department for Communities and Local Government, London (2009)
ISBN 9781409810230

[12] Slovic, P., Finucane, M., Peters, E., MacGregor, D.G.: Risk as analysis and risk
as feelings: Some thoughts about affect, reason, risk, and rationality. Risk Anal-
ysis 24(2), 311–322 (2004)

[13] Loewenstein, G.F., Weber, E.U., Hsee, C.K., Welch, N.: Risk as feelings. Psycho-
logical Bulletin 127(2), 267–286 (2001)

[14] ASME Innovative Technologies Institute, LLC: Risk Analysis and Management
for Critical Asset Protection (RAMCAP): The Framework, Version 2.0 (2006)

[15] Cox, J.L.: Some limitations of “Risk = Threat x Vulnerability x Consequence”
for risk analysis of terrorist attacks. Risk Analysis 28(6), 1749–1761 (2008)

[16] Hausken, K.: Probabilistic risk analysis and game theory. Risk Analysis 22(1),
17–27 (2002)

[17] Cox Jr., L.A.T.: Game theory and risk analysis. Risk Analysis 29(8), 1062–1068
(2009)

[18] Bier, V.M., Cox Jr., L.A.T., Azaiez, M.N.: Why both game theory and reliability
theory are important in defending infrastructure against intelligent attacks. In:
Game Theoretic Risk Analysis of Security Threats. International Series in Oper-
ations Research & Management Science, vol. 128, pp. 1–11. Springer US (2009)

[19] Carin, L., Cybenko, G., Hughes, J.: Cybersecurity strategies: The QuERIES
methodology. Computer 41, 20–26 (2008)

[20] Banks, D., Anderson, S.: Combining game theory and risk analysis in counterter-
rorism: A smallpox example. In: Wilson, A., Wilson, G., Olwell, D. (eds.) Statis-
tical Methods in Counterterrorism, pp. 9–22. Springer, New York (2006)

[21] Bier, V.: Game-theoretic and relaibility methods in counterterrorism and security.
In: Wilson, A., Wilson, G., Olwell, D. (eds.) Statistical Methods in Counterter-
rorism, pp. 23–40. Springer, New York (2006)

[22] Fricker Jr., R.D.: Game theory in an age of terrorism: How can statisticians con-
tribute? In: Wilson, A., Wilson, G., Olwell, D. (eds.) Statistical Methods in Coun-
terterrorism, pp. 3–7. Springer, New York (2006)

[23] Rajbhandari, L., Snekkenes, E.A.: Mapping between Classical Risk Management
and Game Theoretical Approaches. In: De Decker, B., Lapon, J., Naessens, V.,
Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 147–154. Springer, Heidelberg
(2011)

[24] Liu, P., Zang, W.: Incentive-based modeling and inference of attacker intent, ob-
jectives, and strategies. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS 2003, pp. 179–189. ACM, New York (2003)

[25] Anderson, R., Moore, T.: Information Security Economics – and Beyond. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 68–91. Springer, Hei-
delberg (2007)

[26] Kristandl, G., Bontis, N.: Constructing a definition for intangibles using the re-
source based view of the firm. Management Decision 45(9), 1510–1524 (2007)

386 L. Rajbhandari and E. Snekkenes

[27] Mullainathan, S., Thaler, R.H.: Behavioral economics. NBERWorking Paper 7948
(2000)

[28] Camerer, C.F., Lowenstein, G.: Behavioral economics: Past, present, future. In:
Camerer, C.F., Loewenstein, G., Rabin, M. (eds.) Advances in Behavioral Eco-
nomics, pp. 3–51. Princeton University Press (2004)

[29] Sent, E.M.: Behavioral economics: How psychology made its (limited) way back
into economics. History of Political Economy 36(4), 735–760 (2004)

[30] Hayes, B.: Computing science: A lucid interval. American Scientist 91(6), 484–488
(2003)

[31] Fornell, C., Johnson, M.D., Anderson, E.W., Cha, J., Bryant, B.E.: The American
Customer Satisfaction Index: Nature, purpose, and findings. Journal of Market-
ing 60(4), 7–18 (1996)

[32] Money, K., Hillenbrand, C.: Using reputation measurement to create value: An
analysis and integration of existing measures. Journal of General Management
32(1) (2006)

[33] Ajzen, I.: The theory of planned behaviour. Organizational Behaviour and Human
Decision Processes 50, 179–211 (1991)

[34] Goldin, J.: Making decisions about the future: the discounted-utility model. Mind
Matters: The Wesleyan Journal of Psychology 2, 49–56 (2007)

On the Self-similarity Nature

of the Revocation Data

Carlos Gañán, Jorge Mata-Dı́az, Jose L. Muñoz, Oscar Esparza,
and Juanjo Alins

Universitat Politècnica de Catalunya, Telematics Department, Barcelona, Spain
{carlos.ganan,jmata,jose.munoz,oscar.esparza,juanjo}@entel.upc.edu

Abstract. One of the hardest tasks of a Public Key Infrastructure
(PKI) is to manage revocation. Different revocation mechanisms have
been proposed to invalidate the credentials of compromised or misbe-
having users. All these mechanisms aim to optimize the transmission of
revocation data to avoid unnecessary network overhead. To that end,
they establish release policies based on the assumption that the revoca-
tion data follows uniform or Poisson distribution. Temporal distribution
of the revocation data has a significant influence on the performance and
scalability of the revocation service. In this paper, we demonstrate that
the temporal distribution of the daily number of revoked certificates is
statistically self-similar, and that the currently assumed Poisson distribu-
tion does not capture the statistical properties of the distribution. None
of the commonly used revocation models takes into account this fractal
behavior, though such behavior has serious implications for the design,
control, and analysis of revocation protocols such as CRL or delta-CRL.

Keywords: Self-similarity, Certification, Public Key Infrastructure, Re-
vocation.

1 Introduction

Today we are in the midst of an electronic business revolution. It is of utmost
importance that mechanisms are set up to ensure information and data security.
Organizations have recognized the need to balance the concern for protecting
information and data with the desire to leverage the electronic medium. Public
Key Infrastructure (PKI) is a step toward providing a secure environment by
using a system of digital certificates and certificate authorities (CAs). However,
one of the most important aspects in the design of a PKI is certificate revocation.

Certificate revocation is the process of removing the validity of a certificate
prematurely. There could be multiple reasons for revoking a certificate; such as
the certificate holder leaves the organization or there is a suspicion of private key
compromise. When a certificate is revoked, the information about the revoked
certificate needs to be published. Some of the methods that a CA can use to
revoke certificates are:

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 387–400, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

388 C. Gañán et al.

– Periodic Publication Mechanisms: Information about revoked certificates can
be posted on a certificate server so that the users are warned from using
those certificates. This mechanism includes the use of Certificate Revocation
Lists (CRL) and Certificate Revocation Trees (CRT). A CRL is a signed list
of certificates that have been revoked or suspended. CRT is a revocation
technology, which is based on Merkle hash trees, where the tree represents
all known certificate revocation information relevant to some known set of
PKI communities.

– Online Query Mechanisms: Online Query Mechanisms comprise Online Cer-
tificate Status Protocol (OCSP) and Online Transaction Validation Proto-
cols. OCSP is used to obtain online revocation information about certificates,
and Online Transaction Validation Protocols are used for online validation,
such as business transactions through credit cards.

A revocation method is selected by an organization based on the cost, infrastruc-
ture, and volumes of transactions that are expected. To gauge these costs, differ-
ent revocation mechanisms are tested under the assumption that the revocation
events follow a specific probability distribution. Most theoretical frameworks and
simulation studies for performance evaluation assume that the temporal distri-
bution of queries follows a Poisson distribution. Thus, organizations estimate
the infrastructure needed to deploy the PKI and the associated costs. However,
in this article, we demonstrate that revocation data is statistically self-similar,
that none of the commonly used revocation models is able to capture this fractal
behavior, and that such behavior has serious implications for the design, control,
and analysis of revocation protocols such as CRLs.

We start by analyzing the validity of Poisson-like process assumption. We
use publicly available CRLs from different certification authorities (containing
more than 300,000 revoked certificates over a period of three years). Our anal-
ysis demonstrates that the Poisson distribution fails to capture the statistical
properties of the actual revocation process. We also see that the Poisson dis-
tribution grossly under-estimates the bandwidth utilization of the revocation
mechanism. At first glance, this might look like an obvious result, since after all
as a memoryless process, Poisson distribution cannot be expected to model pe-
riodic trends like daily, weekly and monthly cycles in revocation rates. We show
however that the modeling inability transcends simple cycles. In particular, we
will show that self-similarity has a severe detrimental impact on the revocation
service performance.

Results of our analysis, including burstiness at all scales, strongly suggest
self-similar nature of revocation events. We confirm this by estimating the Hurst
parameter for the observed distribution and showing that the estimates vali-
date self-similar nature of the revocation lists. Beyond invalidating Poisson-like
distributions, this proof of self-similarity has the important implications on CA
utilization, throughput, and certificate stratus checking time. Intuitively, as the
revocation process is bursty (non-uniformly distributed) the CA will be partially
idle during low burst periods and vice versa. Thus, the revocation lists will grow
non-uniformly, and current updating policies will result bandwidth inefficient.

On the Self-similarity Nature of the Revocation Data 389

The rest of this article is organized as follows. Section 2 gives the necessary
statistical background required to understand self-similar processes and long
range dependency. In Section 3, we discuss the methodology we used to collect
and analyze real-world revocation data. We demonstrate self-similar nature of
the revocation data, followed by a Hurst parameter estimation. In Section 4 we
discuss how the observed self-similarity has crucial implications on performance
of the revocation service. Next section discusses the related work in the area.
Finally, we conclude in Section 6.

2 Background

2.1 Self-similar Processes

A phenomenon which is self-similar looks the same or behaves the same when
viewed at different degree of magnification. Self-similarity [1] is the property of
a series of data points to retain a pattern or appearance regardless of the level
of granularity used and can be the result of long-range dependence (LRD) in the
data series. One of the main properties of the self-similar data is burstiness [1].
Bursty data do not possess a stable mean value. Significant differences in the
mean value are one of the reasons why bursty data are more difficult to control
than shaped one. If a self-similar process is bursty at a wide range of timescales,
it may often exhibit long-range dependence. Long-range-dependence means that
all the values at any time are correlated in a positive and non-negligible way
with values at all future instants.

A stochastic process Y (t) is self-similar with Hurst parameter H if for any
positive stretching factor d, the distribution of the rescaled and reindexed pro-
cess d−HY (dt) is equivalent to that of the original process Y (t). This means
for any sequence of time points t1, . . . , tn and any positive constant d, the col-
lections {d−HY (dt1), . . . , d

−HY (dtn)} and {Y (t1), . . . , Y (tn)} are governed by
the same probability law. When the values of H are in the interval (0.5, 1), the
process presents LRD. A value of H equal to 0.5 indicates the absence of LRD.
This means that the smoothing with aggregation is much slower for self-similar
processes, the greater the degree of self-similarity, the slower will be smoothing
with aggregation.

Three implications of self-similarity are:

– No natural length of bursts.
– Presence of bursts in all time scales.
– Process does not smooth out on aggregation.

2.2 Statistical Tests for Self-similarity

The practical way to estimate degree of self-similarity is to measure the values
of Hurst exponent. In this paper we use five methods to test for self-similarity
(details about these methods are described in [2,3]).

390 C. Gañán et al.

The first method, the variance-time plot, relies on the slowly decaying variance
of a self-similar series. The variance of Y (m) is plotted against m on a log-log
plot; a straight line with slope (β) greater than -1 is indicative of self-similarity,
and the parameterH is given by H = 1−β/2. The second method, the R/S plot,
uses the fact that for a self-similar dataset, the rescaled range or R/S statistic
grows according to a power law with exponent H as a function of the number of
points included (n). Thus the plot of R/S against n on a log-log plot has slope
which is an estimate of H . The third approach, the periodogram method, uses
the slope of the power spectrum of the series as frequency approaches zero. On
a log-log plot, the periodogram slope is a straight line with slope close to the
origin.

While the preceding three graphical methods are useful for exposing faulty
assumptions (such as non-stationarity in the dataset) they do not provide con-
fidence intervals. The fourth method, called the Whittle estimator does provide
a confidence interval, but has the drawback that the form of the underlying
stochastic process must be supplied. The two forms that are most commonly
used are fractional Gaussian noise (FGN) with parameter 1/2 < H < 1, and
Fractional ARIMA(p,d,q) with 0 < d < 1/2 (for details see [2])). These two
models differ in their assumptions about the short-range dependences in the
datasets; FGN assumes no short-range dependence while Fractional ARIMA
can assume a fixed degree of short-range dependence. There are several other
methods in frequency and time domain to measure the Hurst parameter.

Finally, we use the Detrended Fluctuation Analysis (DFA) [4], which aims to
highlight the long-range dependence of a time series with trend. DFA method is
a version for time series with trend of the method of aggregated variance used
for a long-memory stationary process. It consists in aggregating the process by
windows with fixed length, detrending the process from a linear regression in
each window, computing the standard deviation of the residual errors (the DFA
function) for all data, and finally, estimating the coefficient of the power law from
a log-log regression of the DFA function on the length of the chosen window.

3 Examining the Self-similarity of the Revocation
Process

3.1 Data Collection

In order to capture the temporal correlation of the revocation process, first we
have to gather a large sample of revocation data. The approach we follow consists
in collecting revocation data from different certification authorities using their
available CRLs. In particular, we built some scripts to download and preprocess
the CRLs from the following CAs1: VeriSign, GoDaddy, Thawte, and Comodo.

Though we concentrate our analysis on CRL because it is the most common
and simplest method for certificate revocation [6], we expect the captured pattern
to be extensible to any other revocation mechanism (e.g. OCSP).

1 According to NetCraft’s survey [5], using these CAs we cover most of the world
market for SSL.

On the Self-similarity Nature of the Revocation Data 391

Table 1. Description of the collected CRLs

Issuer Name Number of Revoked Certificates Last Update Next Update

GoDaddy 932,900 2012/02/01 2012/02/03

VeriSign 5,346 2012/02/02 2012/02/16

Comodo 2,727 2012/02/03 2012/02/06

GlobalSign 7,591 2012/02/02 2012/03/03

Thawte 8,061 2012/02/01 2012/02/16

Once downloaded the revocation data, we preprocess these data to remove
duplicated information (e.g. certificates that are revoked due to several reasons).
Note that when a revoked certificate expires, it typically remains in the CRLs for
one additional publication interval, so we preprocess the CRLs to remove expired
certificates too. In this sense, Thawte’s and GlobalSign’s CRLs may contain
duplicate entries for the same certificate because of their policy statements.
These policy statements impose that a certificate that is revoked by several
reasons must be included in the CRL as many times as the number of revocation
reasons. Thus, we remove any duplicate entry from the composite dataset, and
tally the number of revocations per day. Finally, we build a dataset that covers
non-expired revoked certificates from 2008 to 2012 (see Figure 1).

Q3−2007 Q1−2010 Q3−2012
0

10

20

30

#
R

e
v
o

k
e

d
 c

e
rt

if
ic

a
te

s

 Verisign

Q3−2007 Q1−2010 Q3−2012
0

5

10

15

20

#
R

e
v
o

k
e

d
 c

e
rt

if
ic

a
te

s

 Thawte

Q3−2007 Q1−2010 Q3−2012
0

500

1000

1500

2000

#
R

e
v
o

k
e

d
 c

e
rt

if
ic

a
te

s

 GoDaddy

Q3−2007 Q1−2010 Q3−2012
0

10

20

30

40

#
R

e
v
o

k
e

d
 c

e
rt

if
ic

a
te

s

 Comodo

Fig. 1. Number of daily revoked certificates evolution for each CA

392 C. Gañán et al.

3.2 Evidence of Burstiness

Before providing formal estimation of self-similarity, we provide a graphical evi-
dence of bursty nature of the revocation data at different time scales.We also show
that this observed burstiness is not accounted by the Poisson distribution. In Fig-
ure 2, we show the revocation logs in four different time scales-ranging from 1 hour
to 1 day. Each plot is obtained by changing the time resolution. In Figure 2 we can
observe different evident trends; (i) Burstiness in all time scales: the burstiness
of the revocation process does not disappear when changing the time scales. (ii)
Lack of natural length of bursts: The figure shows burstiness ranging from days to
months. Note that the full duration of the figure with the largest time slot is 1,000
days, and some of the bursts have many hours of duration.

In addition, it is worth noting the difference between this bursty pattern and
a Poisson process. A Poisson process smooths out with large time scales and
resembles a uniformly distributed white noise at higher time scales. In contrast
to the revocation process, in a Poisson process the burstiness vanishes in coarse
time scales, longer length bursts are absent, and bursts smooths out much faster.
Thus, the trends of self-similarity present in the revocation data discussed above
are totally absent for Poisson processes.

Therefore, modeling the revocation process as Poisson is clearly inadequate,
and is thus likely to give unrealistic results. We will elaborate this analysis in
the next section, and discuss the consequences of self-similarity in the following
sections.

Fig. 2. Revocation Bursts over Four Orders of Magnitude

On the Self-similarity Nature of the Revocation Data 393

3.3 Statistical Analysis of Self-similarity

In this section, we use five different methods to estimate the Hurst parameter to
demonstrate the long range dependency of the revocation events formally. Since
there are different manifestations of self-similarity, different methods in time and
frequency domains are used in practice for the estimation (see Sec. 2.2). Note
that when using these estimators with real-life revocation data containing noise,
cycles and trends, they might estimate different values of the Hurst parameter.
For that reason, we use multiple methods, report the correlation coefficients
and confidence intervals by different methods, and visually inspect the data for
trends and cycles. The chances of estimates agreeing on real data is small [7],
but if most of the estimates are above 0.5 the LRD is likely to exist.

0 50 100
−0.5

0

0.5

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

 Verisign

0 50 100
−0.5

0

0.5

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

 Thawte

0 50 100
−0.5

0

0.5

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

 GoDaddy

0 50 100
−0.5

0

0.5

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

 Comodo

Fig. 3. Autocorrelation function of the revocation process per CA

First of all, we start analyzing the autocorrelation of the revocation data. Re-
call that in a self-similar process autocorrelations decay hyperbolically rather
than exponentially fast, implying a nonsummable autocorrelation function∑

k r(k) =∞ (long-range dependence). For the frame data, the empirical auto-
correlation functions r(k) are shown in Fig. 3, with lag k ranging from 0 to 100.
Notice that r(k) decreases slower than exponentially no matter the CA. The
curve does decay toward zero, but it does so extremely slowly. The very slowly
decaying autocorrelations are indicative of LRD.

394 C. Gañán et al.

0 1 2 3 4 5
−3

−2

−1

0

1

2

log10(Aggreate Level)

lo
g

1
0

(V
a

ri
a

n
c
e

s
)

Variance−time Method

(a)

0 1 2 3 4 5
0

1

2

3

log10(blocks of size m)

lo
g
1
0
(R

/S
)

R/S Method

slope 1/2

slope 1

(b)

−4 −3 −2 −1 0
−5

0

5

log10(Frequency)

lo
g
1
0
(P

e
ri
o
d
o
g
ra

m
)

Periodogram Method

(c)

1 2 3 4 5
0

2

4

6

8

10

Log of Aggregate Level

L
o
g
 o

f
R

e
s
id

u
a
l
V

a
ia

n
c
e

DFA Method

(d)

Fig. 4. Graphical methods for checking for self-similarity of the revocation process
from GoDaddy (a) variance-time plot, (b) pox plot of R/S, (c) periodogram plot, and
(d) DFA plot

In the following, we use five different methods for assessing self-similarity
described in Section 2.2: the variance-time plot, the rescaled range (or R/S) plot,
the periodogram plot, the DFA plot and the Whittle estimator. We concentrated
on individual months from our revocation time series, so as to provide as nearly
a stationary dataset as possible. To provide an example of these approaches,
analysis of a single month from GoDaddy revocation data is shown in Figure 4.
The figure shows plots for the four graphical methods: variance-time (upper left),
rescaled range (upper right), periodogram (lower left) and DFA (lower right).
The variance-time plot is linear and shows a slope that is distinctly different from
-1 (which is shown for comparison); the slope is estimated using regression as -
0.077, yielding an estimate forH of 0.96. The R/S plot shows an asymptotic slope
that is different from 0.5 and from 1.0 (shown for comparison); it is estimated
using regression as 0.95, which is also the corresponding estimate of H . The
periodogram plot shows a slope of -0.14 (the regression line is shown), yielding
an estimate of H as 0.83. Finally, the Whittle estimator for this revocation data

On the Self-similarity Nature of the Revocation Data 395

Verisign GoDaddy Thawte Comodo
0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 5. Summary plot of estimates of the Hurst parameter H for all the CAs

(not a graphical method) yields an estimated Hurst value of 0,923 with a 95%
confidence interval of (0.87, 0.95).

Once we have seen that GoDaddy presents a significant self-similar pattern,
we analyze the rest of the CAs. To that end, we use the whittle estimator to
obtain the Hurst value per CA and month. We chose this estimator because it
gives more refined measurement than other estimation techniques and it provides
confidence levels for the Hurst parameter [8]. Note that we are not interested in
estimating the exact value of the Hurst parameter but to prove the existence of
self-similarity in the revocation data. Figure 5 shows the H parameter of each
CA and the 95% confidence interval. It is worth noting that depending on the
month there are some CAs whose H parameter varies significantly. However, no
matter neither the CA nor the month, the Hurst value is always above 0.7. This
means that the revocation process of any CA presents LRD.

4 Significance of Self-similarity for Revocation Data
Management

Our collected data from real CAs show dramatically different statistical prop-
erties than those assumed by the stochastic models currently considered in the
literature. Almost all these models are characterized by an exponentially decay-
ing autocorrelation function. As a result, they give rise to a Hurst parameter
estimate of Ĥ = .50, producing variance-time curves, R/S plots, and frequency
domain behavior strongly disagreeing with the self-similar behavior of actual re-
vocation (see Section 3.3). In this section, we emphasize direct implications of the
self-similar nature of the revocation data in the performance of the revocation
service.

4.1 Impact on the Revocation Mechanism

As we mentioned before, traditional mechanisms made assumptions about the
revocation process to obtain efficient revocation data issuing policies. However,

396 C. Gañán et al.

these assumptions neglect the self-similar nature of the revocation data. This has
a direct impact due to the “burstiness” of the data and affects the congestion
management of the CA/repositories.

To give an idea of the impact of self-similarity, we analyze the work of Cooper
in [9] and in [10]. In these works, Cooper analyzed the best way to issue CRLs,
segmented CRLs and delta-CRLs in order to decrease the request peak band-
width. The author assumed that an average of 1,000 certificates are revoked each
day and that the CRLs have a fixed validity time. By doing these assumptions,
the self-similar behavior of the revocation process is neglected and the results
need to be adapted to the reality.

Using the traditional approach, CRLs are published periodically. Under this
assumption, CAs expect that consecutive CRLs should have similar size. How-
ever, this assumption is proven completely wrong when bursts are present. Thus,
consecutive CRLs can differ significantly in the number of revoked certificates
they include, and, consequently in their size. Using the data collected from
Verisign2, we studied how the size of the CRLs varies when CRLs are issued
daily. As in [10], we estimate that the size of a CRL is 51 bytes plus 9 bytes for
each certificate included on the CRL. If an average of r certificates are revoked
each day, certificates are valid for Lc days, and a certificate, at the time of re-
vocation, has an average of Lc

2 days until it expires, then the average size of a
CRL will be [10]:

SizeCRL = 51 + 4.5· r · Lc.

We assume that certificates have a lifetime of 365 days [11], therefore we can
calculate the daily size of the Verisign CRL for 5 randomly chosen months. We
execute the trial several times and check that the same depency is obtained.
Figure 6 shows the results in a box-plot. Note that the CRL size has a mean
size of around 150 KBytes, but it highly varies due to the revocation bursts. For
instance, during March 2008, there were four CRLs that exceed the 300 KBytes.
These variations are highly inefficient in terms of bandwidth, as during some
days the required bandwidth double the bandwidth needed in previous days.
Although this has not become a bottleneck in wired networks, novel scenarios
(e.g. Vehicular Networks) cannot afford these variations.

However, the self-similarity not only affects traditional CRL issuance, but also
its variants that aim to be bandwidth efficient such as delta-CRL. From [10], the
bandwidth for a delta-CRL system can be computed as:

B =
Nve−vt((51 + 4.5rLc)e

−(w+ l
O−l)v + (51 + 9rw))

(O − 1)1− evl/O + 1
, (1)

where N is the number of valid certificates, v is the validation rate, l is the
amount of time that a delta-CRL is valid, Lc is the certificate lifetime, r is the
number of certificates revoked per day, w is the window size of the delta-CRL
and O is the number of delta-CRLs that are valid at any given time.

2 Note that we use the data from VeriSign to provide a case study of variance in size
of the CRLs. The same variance pattern applies to the other CAs, though it is not
shown in this article.

On the Self-similarity Nature of the Revocation Data 397

Jan ’08 Mar ’08 Jun ’09 Aug ’10 Jan ’11
0

100

200

300

400

500

C
R

L
 S

iz
e
 (

K
B

y
te

s
)

Fig. 6. Estimated daily size of Verisign’s CRL

0 1 2 3 4 5 6 7
5

10

15

20

25

time (hours)

K
b
y
te

s
/s

Uniform

Self−similar

Poisson

Fig. 7. Delta-CRL BW consumption

Using the bandwidth as a comparison metric, we can evaluate the impact of
the self-similarity. Figure 7 shows the bandwidth necessary to download the re-
vocation data using a sliding window delta-CRL scheme. We have assumed that
there are 300,000 relying parties (N) each validating an average of 10 certificates
per day (v); delta-CRLs are issued once an hour, are valid for 4 hours (O), and
have a window size of 9 hours (w). We have also assumed that an average of
10 certificates are revoked each day (r) and that certificates are valid for 365
days (Lc). Note that depending on the distribution of the revocation process,
the required bandwidth presents significant variations. We change the number
of certificates revoked per day (r) according to three different distributions (i.e.
uniform, Poisson and self-similar) and evaluate the required bandwidth of a
delta-CRL system using Eq. (1). Uniform and Poisson distributions present a
similar behavior. On the opposite, a self-similar process makes the delta-CRL’s
size to vary. Thus, the optimal window to issue delta-CRLs should be calculated
taking into account the bursty pattern of the self-similar process. If this pat-
tern is neglected, the peak bandwidth will vary with each delta-CRL issuance
making the revocation service bandwidth-inefficient. When with a Poisson or

398 C. Gañán et al.

uniform process the maximum peak bandwidth is of ∼12Kb/s, a burst of revo-
cation events causes that some delta-CRL issuance require more than ∼20Kb/s.
Therefore, ignoring the self-similar pattern of the revocation process leads to
inaccurate network planning.

CRL releasing strategies might be optimized considering the effect of self-
similarity. Periodic updates might create bottlenecks at the repositories when
all users request new information at the same time. On the other hand, online
checking mechanisms such as OCSP, could be computationally overloaded during
bursty periods. Such mechanisms that base their efficiency on using pre-signed
responses have not been conceived to work under bursty patterns. Therefore, fur-
ther analysis should be conducted to establish pre-signing policies under bursty
revocation periods.

5 Related Work

Most of previous studies fail to capture the characteristics of real-world revo-
cation data; instead, they focus on theoretical aspects of certificate revocation
including the model of revocation [9], the revocation cause [12], and the cost of
issuing revocation information [13]. Thus, these theoretical models are not able
to capture the actual pattern of the revocation data. Most recently, the statisti-
cal properties of real revocation data have been studied [14,15,16]. Nevertheless,
the bursty pattern of the revocation process is neglected.

Regarding the traditional way of issuing CRLs, X.509 [17] defines one method
to release CRLs. This method involves each CA periodically issuing CRLs. Using
this method, the number of revoked certificates contained in each CRL varies
significantly. Thus, each CRL has a different size, and the issuance of the CRLs
results bandwidth inefficient. Authors in [15] already acknowledged the ineffi-
ciencies of the traditional method, and proposed releasing CRLs based on a set
of economic costs. However, they assumed a Poisson process when characterizing
the number of new certificate revocations, i.e., they neglected the burst pattern.
Thus, the resulting CRL releasing policies could be improved by taking into
account the self-similarity of the revocation process. Similarly, authors in [18]
collected empirical data about the reasons and frequency of user terminations
that require certificate revocations, and then model the consequences for certifi-
cate revocation. They investigate how to reduce the cost of certificate revocation
by reducing the number of revoked certificates and bandwidth consumption in
order to achieve better scalability.

In the same manner, authors in [14] carried out a thorough empirical analy-
sis of the revocation data not only taking into account the number of revoked
certificates, but also other factors such as geographical regions and revocation
causes. They also conclude that their collected CRLs exhibit exponential distri-
bution patterns. Though they acknowledge the existence of revocation bursts,
they do not capture this behavior. On the other hand, authors in [16] suggest a
functional form for the probability density function of certificate revocation re-
quests. They choose an exponential distribution function because it adequately

On the Self-similarity Nature of the Revocation Data 399

approximates the data they collected from a single CA. Based on this assump-
tion, they provide an economic model based on which a CA can choose what
they state to be the optimal CRL release interval. However, they do not take
into account the self-similar behavior of the revocation data.

6 Conclusions

Current simulation studies for performance evaluation and revocation data re-
lease strategies most commonly assume that the temporal distribution of re-
vocation events follows a Poisson distribution. In this paper, we questioned the
assumption of Poisson distribution. Our analysis of the revocation data contained
in different CRLs provides significant evidence that the real revocation events
follow a self-similar distribution. In particular, our analysis showed burstiness
at all time-scales, confirming scale-invariance of distribution. We also estimated
and showed that Hurst parameter for the daily number of revoked certificates is
above 0.5, proving the self-similarity and Long Range Dependence formally.

We then turned our attention to understanding its consequences on the perfor-
mance of the revocation services. We showed that traditional revocation mecha-
nisms, such as CRLs or delta-CRLs, do not take into account the bursty pattern
of the revocation events when establishing the issuing strategies. These bursts
increase the maximum peak bandwidth required to provide the revocation data
timely. Thus, self-similarity has a profound effect on the engineering of tra-
ditional mechanisms and should be taking into account when designing new
revocation protocols.

Acknowledgments. This work has been supported partially by the Spanish
Research Council with Project TEC2011-26452 (SERVET), by Spanish Min-
istry of Science and Education with Project CONSOLIDER CSD2007-00004
(ARES), FPU grant AP2010-0244, by Generalitat de Catalunya with Grant 2009
SGR-1362 to consolidated research groups and with the support from the SUR
(Secretaria d’Universitats i Recerca) of the DEC (Departament d’Economia i
Coneixement), and by the European Social Funds.

References

1. Willinger, W., Paxson, V., Taqqu, M.S.: Self-similarity and heavy tails: structural
modeling of network traffic, pp. 27–53 (1998)

2. Beran, J.: Statistics for Long-Memory Processes. Monographs on Statistics and
Applied Probability. Chapman & Hall (1994)

3. Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence:
An empirical study. Fractals 3, 785–798 (1995)

4. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos
Woodbury Ny 5(1), 82–87 (1995)

5. Netcraft. Market share of certification authorities (2009),
https://ssl.netcraft.com/ssl-sample-report/CMatch/certs

(accessed on May 2011)

https://ssl.netcraft.com/ssl-sample-report/CMatch/certs

400 C. Gañán et al.

6. Jain, G.: Certificate revocation: A survey,
http://csrc.nist.gov/pki/welcome.html (accessed on May 2011)

7. Karagiannis, T., Faloutsos, M., Riedi, R.H.: Long-range dependence: now you see
it, now you don’t. In: Proc. GLOBECOM 2002, pp. 2165–2169 (2002)

8. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature
of ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

9. Cooper, D.A.: A model of certificate revocation. In: Fifteenth Annual Computer
Security Applications Conference, pp. 256–264 (1999)

10. Cooper, D.A.: A more efficient use of Delta-CRLs. In: 2000 IEEE Symposium on
Security and Privacy. Computer Security Division of NIST, pp. 190–202 (2000)

11. Technological infrastructure for pki and digital certification. Computer Communi-
cations 24(14), 1460–1471 (2001)

12. Fox, B., LaMacchia, B.: Certificate Revocation: Mechanics and Meaning. In:
Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 158–164. Springer, Heidelberg
(1998)

13. Naor, M., Nissim, K.: Certificate Revocation and Certificate Update. IEEE Journal
on Selected Areas in Communications 18(4), 561–570 (2000)

14. Walleck, D., Li, Y., Xu, S.: Empirical Analysis of Certificate Revocation Lists. In:
Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp. 159–174. Springer, Heidelberg
(2008)

15. Ma, C., Hu, N., Li, Y.: On the release of CRLs in public key infrastructure. In:
Proceedings of the 15th Conference on USENIX Security Symposium, vol. 15, pp.
17–28 (2006)

16. Hu, N., Tayi, G.K., Ma, C., Li, Y.: Certificate revocation release policies. Journal
of Computer Security 17, 127–157 (2009)

17. ITU/ISO Recommendation. X.509 Information Technology Open Systems Inter-
connection - The Directory: Autentication Frameworks, Technical Corrigendum
(2000)

18. Ofigsbø, M.H., Mjølsnes, S.F., Heegaard, P., Nilsen, L.: Reducing the Cost of Cer-
tificate Revocation: A Case Study. In: Martinelli, F., Preneel, B. (eds.) EuroPKI
2009. LNCS, vol. 6391, pp. 51–66. Springer, Heidelberg (2010)

http://csrc.nist.gov/pki/welcome.html

Author Index

Aboudagga, Nidal 322
Alins, Juanjo 387
Alsouri, Sami 168
Amrutkar, Chaitrali 86
Andrade, André 70
Aura, Tuomas 70

Bag, Samiran 136
Bai, Yun 290
Barnickel, Johannes 338
Bender, Jens 104
Bodden, Eric 168
Bösch, Christoph 224

Clear, Michael 204

Dagdelen, Özgür 104
Dhar, Aritra 136
Dong, Xinshu 188
Drábik, Peter 306

Ennis, Desmond 204
Esparza, Oscar 387

Feng, Zhiyong 188
Fischlin, Marc 104
Fujioka, Atsushi 258

Gañán, Carlos 387
Gao, Debin 151
Ghadafi, E. 274
Gilger, Johannes 338
Groza, Bogdan 39

Hartel, Pieter 224
Hu, Jinwei 290
Hughes, Arthur 204

Jonker, Willem 224

Katzenbeisser, Stefan 168, 242
Khan, Khaled M. 290
Kronberg, Max 242
Kügler, Dennis 104
Kunihiro, Noboru 55

Li, Xiaohong 188
Liang, Zhenkai 188
Liu, Xuhui 188

Martinelli, Fabio 306
Mata-Dı́az, Jorge 387
Mendel, Florian 23
Meyer, Ulrike 338
Mezini, Mira 168
Morisset, Charles 306
Muñoz, Jose L. 387

Nad, Tomislav 23
Nassr, Nezar 322
Negru, Viorel 354

Pathak, Manas 1
Peter, Andreas 242
Portelo, Jose 1
Pungila, Ciprian 354

Raj, Bhiksha 1
Rajbhandari, Lisa 370
Reid, Karl 204

Saito, Taiichi 258
Sarkar, Pinaki 136
Scherz, Stefan 23
Schläffer, Martin 23
Sewe, Andreas 168
Sinschek, Jan 168
Smart, N.P. 274
Snekkenes, Einar 370
Steegmans, Eric 322
Strenzke, Falko 120
Suoranta, Sanna 70

Tang, Qiang 224
Tewari, Hitesh 204
Trancoso, Isabel 1
Traynor, Patrick 86
Trei, Wilke 242

van Oorschot, Paul C. 86

402 Author Index

Wang, Jiangang 188
Wang, Junjie 188
Wang, Lina 151
Warinschi, Bogdan 39

Xagawa, Keita 258

Zhang, Yan 290
Zhao, Lei 151

	Title

	Foreword
	Organization
	Table of Contents
	Invited Paper
	Privacy-Preserving Speaker Authentication
	Introduction
	Speaker Authentication
	Speaker Authentication Using Likelihood Ratios from GMMs
	Speaker Authentication Using GMM Supervectors
	A SVM Based Authentication System
	k-Nearest-Neighbor Based Classification

	Privacy-Preserving Authentication as Secure Function Evaluation
	Preliminaries
	Private Enrollment Protocol
	Private Verification Protocol
	The Efficacy of the SFE Approach

	Privacy Preserving Speaker Authentication through Hashing
	Secure Binary Embeddings
	Speaker Verification with Secure Embeddings
	Experiments in Speaker Authentication
	Experiments Using Supervectors
	Experiments Using SBE Hashes
	Privacy and Other Practical Issues

	Discussion and Conclusions
	References

	Cryptography and Cryptanalysis

	Differential Attacks on Reduced RIPEMD-160

	Introduction
	Description of RIPEMD-160
	Constructing (Local) Collisions for RIPEMD-160
	Constructing High-Probability Characteristics for RIPEMD-160
	Local Collisions
	Choosing Message Word Differences

	Collision Attacks on RIPEMD-160
	Automatic Search Tool
	Finding a Differential Characteristic
	Finding a Confirming Message Pair

	Conclusions and Future Work
	References

	Revisiting Difficulty Notions
for Client Puzzles and DoS Resilience
	Introduction
	Shortcomings of Existing Definitions and Proofs
	Puzzle Difficulty
	 Syntax for Cryptographic Puzzles
	Optimal, Ideal, and Difficulty Preserving Puzzles

	New Difficulty Bounds for HashTrail and HashInversion
	DoS Resilience
	Conclusion
	References

	On Optimal Bounds of Small Inverse Problems
and Approximate GCD Problems with Higher Degree
	Introduction
	Our Contributions
	Organization

	Preliminaries
	LLL Algorithm and Howgrave-Graham's Lemma
	Known Algorithm for Solving xh(y)+C 0 8mu(mod6mue) with Non-linear h(y)

	Improving the Bound for xh(y)+C 0 8mu(mod6mue)
	A New Method for Selecting Shift-Polynomials
	Expansion in Shift-Polynomials
	Deriving a Condition

	Discussion – The Bound Is Natural and Optimal?–
	Our Algorithm also Solves Problem B: h(y) 0 8mu(mod6mup)
	Optimality of Our Bound under a Reasonable Assumption
	Natural Bound for xh(y)+C 0 8mu(mod6mue)

	Conclusions
	Reference

	Mobility
	Strong Authentication with Mobile Phone

	Introduction
	Strong Authentication
	Mobile Authentication
	One-Time Passwords with Mobile Phone
	Mobile Certificates
	Trusted Computing Software and Hardware
	Federated Identity Management with Mobile Phone

	Building Blocks for Strong and Mobile Identity Federation
	Design and Implementation
	Authentication User Experience
	Key Design Decisions
	Architecture and Protocol
	Preventing Man-in-the-Middle Attacks
	Mobile Phone Hardware Security Module

	Discussion
	Conclusions
	References

	Measuring SSL Indicators on Mobile Browsers:
Extended Life, or End of the Road?
	Introduction
	Background on W3C Recommendations
	Empirical Observations
	Identity Signal: Availability
	Certificates: Required Content
	Robustness: Visibility of Indicators
	TLS Indicators

	User Deception and Potential Attacks
	Inadequate EV-SSL Differentiation
	Discussion and Implications
	Related Work
	Concluding Remarks
	References

	Cards and Sensors
	Domain-Specific Pseudonymous Signatures
for the German Identity Card
	Introduction
	Domain-Specific Pseudonymous Signatures
	Analysis of the Restricted-Identification Solutions
	Related Work

	Domain-Specific Pseudonymous Signatures
	Preliminaries
	Cross-Domain Anonymity
	Unforgeability
	Seclusiveness

	Construction
	Security Analysis
	Number-Theoretic Assumptions
	Anonymity
	Unforgeability
	Seclusiveness

	References

	Solutions for the Storage Problem
of McEliece Public and Private Keys on Memory-Constrained Platforms
	Introduction
	Preliminaries
	Public Key Cryptography
	Code-Based Encryption Schemes

	Online Public Operation
	Description of the Online Public Operation
	Transmission Rates
	Example Implementation
	Column-wise vs. Row-wise Matrix-Vector Multiplication
	Code-Based Signature Schemes

	McEliece Decryption without the Parity Check Matrix
	Conclusion
	References

	100% Connectivity for Location Aware Code
Based KPD in ClusteredWSN: Merging Blocks
	Introduction
	Related Works
	Contributions in This Paper
	Terminologies
	 Notations
	Basics of Combinatorial Design

	KPD Using Reed Solomon Codes
	Weakness of the above KPD Scheme RR08,SLW06

	Remedy: Deterministic Merging of Nodes
	Assured Full Connectivity: Theoretical Results

	RS Code Based Simonova et al. KPD
	Full Connectivity: Minimum Keys

	New Heterogeneous Design
	Key Establishment Protocol
	Resiliency: Comparative Study
	Connectivity, Scalability and Communication Overhead
	Simulation and Comparative Results
	Conclusions and Future Research Directions
	References

	Software Security
	Learning Fine-Grained Structured Input
for Memory Corruption Detection
	Introduction
	Related Work
	A Motivating Example and the Challenges
	System Design
	Patterns and Deviations
	Overview
	Execution Monitoring and Context Tracking
	Identifying Fields and Collecting Patterns
	Structure Normalization

	Implementation and Evaluation
	Evaluation on Attacks
	A Case Study
	False Negative and False Positive
	Comparison with Peer Techniques

	Limitations and Discussions
	Conclusion
	References

	Dynamic Anomaly Detection
for More Trustworthy Outsourced Computation
	Introduction
	Characterizing Behavior
	Platform Architecture
	Platform Instantiation
	Adaption to Java
	Integrity of Trusted Components and Runtime-Secure Storage

	Evaluation
	General Experimental Setup
	RQ1: Feasibility
	RQ2: Effectiveness
	RQ3: Scalability
	RQ4: Efficiency

	Related Work
	Conclusion
	References

	An Empirical Study of Dangerous Behaviors
in Firefox Extensions
	Introduction
	Threats from Extension
	Browser Extensions
	Direct Threats
	Indirect Threats to Web Sessions

	Design and Implementation
	System Architecture
	Design and Implementation
	Testing Process

	Evaluation and Analysis
	Studying and Classifying Extension Behaviors
	Extension's Indirect Threats to Web Sessions
	Direct Threats

	Discussion
	Tracking Principals of Indirect Behaviors
	Coverage of Extension Behaviors

	Related Work
	Conclusion
	References

	Processing Encrypted Data
	Collaboration-Preserving Authenticated
Encryption for Operational Transformation Systems
	Introduction
	Related Work
	Notation
	Paper Organization

	Abstract Collaborative Editing System
	Primitive Operations
	Composite Operations
	Transformations
	Replay and Reconstitution Algorithms

	Concrete Collaborative Editing System
	Correspondence between the STCE Model and Google Docs
	Implementation
	Replaying Revisions
	Snapshot Optimization

	Evaluation
	Statistical Analysis of Revisions
	Performance

	Security Analysis
	Threat Model
	Conclusions and Future Work

	References

	Selective Document Retrieval
from Encrypted Database
	Introduction
	Problem Statement
	Our Contribution
	Organization

	Definitions of SDR
	Algorithmic Definition of SDR
	Security Properties for SDR
	Game-Style Security Definition
	Relaxation of the Security Definition

	The Proposed SDR Scheme
	Preliminary
	The Proposed Scheme
	Security Results

	Adaptations of the Proposed SDR Scheme
	Aggregating Search Results
	Conjunctive Keyword Search
	Advanced Keyword Search
	Search with Keyword Occurrence Frequency
	Search Based on Inner Product
	Multi-user Variant (adaption to asymmetric setting)

	Search Performances of the Proposed SDR Scheme
	Adaption of the Symmetric BV Scheme
	Choice of BV Parameters and Implementation
	Performance of the Proposed SDR Scheme

	Related Work
	Conclusion and Future Work
	References

	Additively Homomorphic Encryption
with a Double Decryption Mechanism, Revisited
	Introduction
	Preliminaries
	(User-Independent) Double Decryption
	An Additively Homomorphic UI-DD-PKE Scheme
	Properties of the Cryptosystem
	Semantic Security
	Concrete Setup of the System's Parameters
	Conclusions
	References

	Authentication and Identification
	Secure Hierarchical Identity-Based Identification
without Random Oracles
	Introduction
	Our Contributions.
	Organization.

	Definitions
	Hierarchical Identity-Based Identification.
	Digital Signature.
	Key Possession Protocol for Digital Signature.

	Construction of Strongly Secure HIBI Protocols
	Weakly Secure Construction
	Proposed Construction
	Security against Active and Concurrent Attacks
	Discussion

	Instantiations
	Secure HIBI Protocol from Prime-Order Bilinear Group
	Secure HIBI Protocol from Composite-Order Bilinear Group
	Secure HIBI Protocol under the (Strong) RSA Assumption
	Comparison

	Conclusion
	References

	Efficient Two-Move Blind Signatures
in the Common Reference String Model
	Introduction
	Syntax and Security of Blind Signatures
	Bilinear Groups and Associated Hard Problems
	Our Scheme
	Proof of Security
	References

	New Directions in Access Control
	Compliance Checking for Usage-Constrained
Credentials in Trust Negotiation Systems
	Introduction
	Background
	Related Work
	Usage-Constraints on Credentials
	Defining Proofs
	Defining Constraints

	ASP Representation
	Experimental Results
	Conclusions
	References

	A Quantitative Approach
for Inexact Enforcement of Security Policies
	Introduction
	Basic Definitions
	Actions and Traces
	Security Policy and Property
	Monitor

	Selector-Based Monitor
	Selector
	From Selector to Monitor

	n-safety Properties and n-selectors
	n-safety
	n-selector

	Inexact Enforcement of n-safety Properties
	Security/Usability Tradeoff
	Building a Selector from an n-selector
	From Local Ratio to Global Ratio
	Running Example

	Probabilistic Enforcement
	Quantitative Enforcement
	Conclusion
	References

	OSDM: An Organizational Supervised
Delegation Model for RBAC
	Introduction
	Overview of Organizational Structures
	Related Work
	The Organizational Supervised Delegation Model
	Extensions to RBAC
	Delegation in OSDM
	Delegation in Flat Roles:
	Delegation in Hierarchical Roles:

	A UML/OCL Formal Model of OSDM
	Revocation in OSDM

	Discussion
	Conclusion
	References

	GPU for Security
	GPU-Acceleration of Block Ciphers
in the OpenSSL Cryptographic Library
	Introduction
	CUDA and OpenCL
	Our Contribution

	State of the Art
	Symmetric Key Ciphers
	Integration and Frameworks
	Practical GPU-Accelerated Software
	Benchmarking Methodology
	Benchmarking Problems

	Implementation and Benchmarking Results
	Optimizations
	Benchmark System
	Impact of Payload on Kernel Benchmarks
	Improved AES Implementation
	OpenSSL Benchmarks

	Performing Reproducible Benchmarks
	Conclusion
	References

	A Highly-Efficient Memory-Compression
Approach for GPU-Accelerated Virus Signature Matching
	Introduction
	Background
	The CUDA Architecture and Programming Model
	Multiple Pattern Matching
	ClamAV and GPU-Accelerated Virus Scanning
	Motivation of Our Work

	Implementation
	The Constraint-Based Aho-Corasick Automata
	Our Proposed Memory Compression Model

	Experimental Results
	Conclusion
	References

	Models for Risk and Revocation
	Intended Actions: Risk Is Conflicting Incentives
	Introduction
	Related Work
	Conflicting Incentives Risk Analysis (CIRA)
	Summary of the CIRA Method
	The Social Networking Services (SNS) Scenario
	Explaining the CIRA Method

	Discussion
	Future Work
	Conclusion
	References

	On the Self-similarity Nature
of the Revocation Data
	Introduction
	Background
	Self-similar Processes
	Statistical Tests for Self-similarity

	Examining the Self-similarity of the Revocation Process
	Data Collection
	Evidence of Burstiness
	Statistical Analysis of Self-similarity

	Significance of Self-similarity for Revocation Data Management
	Impact on the Revocation Mechanism

	Related Work
	Conclusions
	References

	Author Index

