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Abstract Supernova explosions are among the most powerful cosmic events,
whose physical mechanism and consequences are still incompletely understood.
We have developed a fully MPI-OpenMP parallelized version of our VERTEX-
PROMETHEUS code in order to perform three-dimensional simulations of stellar
core-collapse and explosion on Tier-0 systems such as Hermit at HLRS. Tests on
up to 64,000 cores have shown excellent scaling behavior. In this report we present
the system of equations and the algorithm for its solution that are employed in our
code VERTEX-PROMETHEUS. We also discuss the parallelization of VERTEX-
PROMETHEUS and present our progress in porting, optimizing, and performing
production runs on a large variety of machines, starting from vector machines and
reaching to modern systems. In particular the results of our efforts to achieve good
parallel scaling on the new Cray XE6 at HLRS Stuttgart are highlighted.

1 Introduction

A star more massive than about eight solar masses ends its life in a catastrophic
explosion, a supernova. Its quiescent evolution comes to an end, when the pressure
in its inner layers is no longer able to balance the inward pull of gravity. Throughout
its life, the star sustained this balance by generating energy through a sequence
of nuclear fusion reactions, forming increasingly heavier elements in its core.
However, when the core consists mainly of iron-group nuclei, central energy
generation ceases. The fusion reactions producing iron-group nuclei relocate to the
core’s surface, and their “ashes” continuously increase the core’s mass. Similar
to a white dwarf, such a core is stabilised against gravity by the pressure of its
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degenerate gas of electrons. However, to remain stable, its mass must stay smaller
than (roughly) the Chandrasekhar limit. When the core grows larger than this limit, it
collapses to a neutron star, and a huge amount (� 1053 erg) of gravitational binding
energy is set free. Most (� 99 %) of this energy is radiated away in neutrinos, but
a small fraction is transferred to the outer stellar layers and drives the violent mass
ejection, which disrupts the star in a supernova.

Despite 40 years of research, the details of how this energy transfer happens and
how the explosion is initiated are still not well understood. Observational evidence
about the physical processes deep inside the collapsing star is sparse and almost
exclusively indirect. The only direct observational access is via measurements
of neutrinos or gravitational waves. To obtain insight into the events in the
core, one must therefore heavily rely on sophisticated numerical simulations. The
enormous amount of computer power required for this purpose has led to the use of
several, often questionable, approximations and numerous ambiguous results in the
past. Fortunately, however, the development of numerical tools and computational
resources has meanwhile advanced to a point, where it is becoming possible to
perform multi-dimensional simulations with unprecedented accuracy. Therefore
there is hope that the physical processes which are essential for the explosion can
finally be unravelled.

An understanding of the explosion mechanism is required to answer many
important questions of nuclear, gravitational, and astro-physics like the following:

• How do the explosion energy, the explosion timescale, and the mass of the
compact remnant depend on the progenitor’s mass? Is the explosion mechanism
the same for all progenitors? For which stars are black holes left behind as
compact remnants instead of neutron stars?

• What is the role of the – incompletely known – equation of state (EoS) of the
proto-neutron star? Do softer or stiffer EoSs favour the explosion of a core
collapse supernova?

• How do neutron stars receive their natal kicks? Are they accelerated by asym-
metric mass ejection and/or anisotropic neutrino emission?

• What are the generic properties of the neutrino emission and of the gravitational
wave signal that are produced during stellar core collapse and explosion? Up
to which distances could these signals be measured with operating or planned
detectors on earth and in space? And what can one learn about supernova
dynamics or nuclear and particle physics from a future measurement of such
signals in the case of a Galactic supernova?

• How do supernovae contribute to the enrichment of the intergalactic medium
with heavy elements? What kind of nucleosynthesis processes occur during and
after the explosion? Can the elemental composition of supernova remnants be
explained correctly by the numerical simulations? Does the rapid neutron capture
process (r-process), which produces e.g. gold and the actinides, take place in
supernovae?
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2 Numerical Modeling

2.1 History and Constraints

According to theory, a shock wave is launched at the moment of “core bounce”
when the neutron star begins to emerge from the collapsing stellar iron core. There is
general agreement, supported by all “modern” numerical simulations, that this shock
is unable to propagate directly into the stellar mantle and envelope, because it loses
too much energy in dissociating iron into free nucleons while it moves through the
outer core. The “prompt” shock ultimately stalls. Thus the currently favoured
theoretical paradigm exploits the fact that a huge energy reservoir is present in
the form of neutrinos, which are abundantly emitted from the hot, nascent neutron
star. The absorption of electron neutrinos and anti-neutrinos by free nucleons in the
post-shock layer is thought to reenergize the shock, thus triggering the supernova
explosion.

Detailed spherically symmetric hydrodynamic models, which recently include
a very accurate treatment of the time-dependent, multi-flavour, multi-frequency
neutrino transport based on a numerical solution of the Boltzmann transport
equation [1, 2], reveal that this “delayed, neutrino-driven mechanism” does not
work as simply as originally envisioned. Although in principle able to trigger the
explosion (e.g., [3–5]), neutrino energy transfer to the post-shock matter turned out
to be too weak. For inverting the infall of the stellar core and initiating powerful
mass ejection, an increase of the efficiency of neutrino energy deposition is needed.

A number of physical phenomena have been pointed out that can enhance
neutrino energy deposition behind the stalled supernova shock. They are all linked
to the fact that the real world is multi-dimensional instead of spherically symmetric
(or one-dimensional; 1D) as assumed in the works cited above:

(1) Convective instabilities in the neutrino-heated layer between the neutron star
and the supernova shock develop to violent convective overturn [6]. This
convective overturn is helpful for the explosion, mainly because (a) neutrino-
heated matter rises and increases the pressure behind the shock, thus pushing
the shock further out, (b) cool matter is able to penetrate closer to the neutron
star where it can absorb neutrino energy more efficiently, and (c) the rise of
freshly heated matter reduces energy losses by the reemission of neutrinos.
These effects allow multi-dimensional models to explode easier than spherically
symmetric ones [7–9].

(2) Recent work [10–13] has demonstrated that the stalled supernova shock is
also subject to a second non-radial low-mode instability, called the standing
accretion shock instability or “SASI” for short, which can grow to a dipolar,
global deformation of the shock [12, 14, 15].
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(3) Convective energy transport inside the nascent neutron star [16–18] might
enhance the energy transport to the neutrinosphere and could thus boost the
neutrino luminosities. This would in turn increase the neutrino-heating behind
the shock.

This list of multi-dimensional phenomena (limited to non-magnetized supernova
cores) awaits more detailed exploration by multi-dimensional simulations. Until
recently, such simulations have been performed with only a grossly simplified
treatment of the involved microphysics, in particular of the neutrino transport and
neutrino-matter interactions. At best, grey (i.e., single energy) flux-limited diffusion
schemes were employed. Since, however, the role of the neutrinos is crucial for the
problem, and because previous experience shows that the outcome of simulations
is indeed very sensitive to the employed transport approximations, studies of the
explosion mechanism require the best available description of the neutrino physics.
This implies that one has to solve the Boltzmann transport equation for neutrinos.

2.2 The Mathematical Model

As core-collapse supernovae involve such a complex interplay of hydrodynamics,
self-gravity and neutrino heating and cooling, numerical modellers face a classical
“multiphysics” problem. Although the overall problem can still be formulated as
a system of non-linear partial differential equations, rather dissimilar methods –
sometimes with conflicting requirements on the computer architecture and the
parallelization strategy – need to be applied to treat individual subsystems. In
the case of our code, the system of equations that needs to be solved consists of
the following components:

• The multi-dimensional Euler equations of (relativistic) hydrodynamics, sup-
plemented by advection equations for the electron fraction and the chemical
composition of the fluid, and formulated in spherical polar coordinates;

• Equations for the space-time metric (or in the Newtonian case, the Poisson
equation) for calculating the gravitational source terms in the Euler equations;

• The Boltzmann transport equation and/or its moment equations which determine
the (non-equilibrium) distribution function of the neutrinos;

• The emission, absorption, and scattering rates of neutrinos, which are required
for the solution of the neutrino transport equations;

• The equation of state of the stellar fluid, which provides the closure relation
between the variables entering the Euler equations, i.e. density, momentum,
energy, electron fraction, composition, and pressure.

In what follows we will briefly summarise the neutrino transport algorithms,
thus focusing on the major computational kernel of our code. For a more complete
description of the entire code we refer the reader to [19, 20], and the references
therein.
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Fig. 1 Illustration of the phase space coordinates (see the main text)

2.3 “Ray-by-Ray Plus” Method for the Neutrino Transport
Problem

The crucial quantity required to determine the source terms for the energy, momen-
tum, and electron fraction of the fluid owing to its interaction with the neutrinos is
the neutrino distribution function in phase space, f .r; #; �; �; �; ˚; t/. Equivalently,
the neutrino intensity I D c=.2�„c/3 � �3f may be used. Both are time-dependent
functions in a six-dimensional phase space, as they describe, at every point in space
.r; #; �/, the distribution of neutrinos propagating with energy � into the direction
.�; ˚/ at time t (Fig. 1).

The evolution of I (or f ) in time is governed by the Boltzmann equation, and
solving this equation is, in general, a six-dimensional problem (as time is usually not
counted as a separate dimension). A solution of this equation by direct discretization
(using an SN scheme) would require computational resources in the PetaFlop range.
Although there are attempts by at least one group in the United States to follow such
an approach, we feel that, with the currently available computational resources, it is
mandatory to reduce the dimensionality of the problem.

Actually this should be possible, since the source terms entering the hydrody-
namic equations are integrals of I over momentum space (i.e. over �, �, and ˚), and
thus only a fraction of the information contained in I is truly required to compute
the neutrino effects on the dynamics of the flow. It therefore makes sense to consider
angular moments of I , and to solve evolution equations for these moments, instead
of dealing with the Boltzmann equation directly. The 0th to 3rd order moments are
defined as

J ; H ; K; L; : : : .r; #; �; �; t/ D 1

4�

Z
I.r; #; �; �; �; ˚; t/ n0;1;2;3;::: d˝ (1)

where d˝ D sin � d� d˚ , n D .cos �; sin � cos ˚; sin � sin ˚/, and exponenti-
ation represents repeated application of the dyadic product. Note that the moments
are tensors of the required rank.
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So far no approximations have been made. In order to reduce the size of the
problem even further, one needs to resort to assumptions on its symmetry. At this
point, one assumes that I is independent of � and ˚ , then each of the angular
moments of I becomes a scalar, which depends on three spatial dimensions, and
one dimension in momentum space: J; H; K; L D J; H; K; L.r; #; �; �; t/. Thus
the neutrino moment equations at different angular directions (except for some
terms which can be accounted for explicitly in an operator split) decouple from
each other. Therefore, for each “radial ray”, i.e. for all zones of same angle, the
moment equations can be solved independently. Except for some additional terms,
this problem is identical to solving N� � N� times the moment equations for a
spherically symmetric star with N� � N� being the number of grid zones in polar
direction. As we will explain later, the great advantage of our “ray-by-ray” neutrino
transport is the easy way to obtain perfect scaling behaviour to a large number of
cores.

The System of Equations

With the aforementioned assumptions it can be shown [19], that in the Newtonian
approximation the following two transport equations need to be solved in order to
compute the source terms for the energy and electron fraction of the fluid:
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These are evolution equations for the neutrino energy density, J , and the neutrino
flux, H , and follow from the zeroth and first moment equations of the comoving
frame (Boltzmann) transport equation in the Newtonian, O.v=c/ approximation.
The quantities C .0/ and C .1/ are source terms that result from the collision term
of the Boltzmann equation, while ˇr D vr=c, ˇ# D v#=c, and ˇ' D v'=c, where
vr , v# , and v' are the components of the hydrodynamic velocity, and c is the speed
of light. The functional dependencies ˇr D ˇr.r; #; '; t/, J D J.r; #; '; �; t/,
etc. are suppressed in the notation. This system includes four unknown moments
.J; H; K; L/ but only two equations, and thus needs to be supplemented by two
more relations. This is done by substituting K D fK � J and L D fL � J , where fK

and fL are the variable Eddington factors, which for the moment may be regarded
as being known, but in our case are indeed determined from a separate simplified
(“model”) Boltzmann equation.

The moment equations (2) and (3) are very similar to the O.v=c/ equations
in spherical symmetry which were solved in the 1D simulations of [21] (see
Eqs. (7),(8),(30), and (31) of the latter work). This similarity has allowed us to reuse
a good fraction of the one-dimensional version of the transport part, for coding the
multi-dimensional algorithm. The additional terms necessary for this purpose have
been set in boldface above.

Finally, the changes of the energy, e, and electron fraction, Ye, required for the
hydrodynamics are given by the following two equations

de
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(for the momentum source terms due to neutrinos see [19]). Here mB is the baryon
mass, and the sum in Eq. (4) runs over all neutrino types. The full system consisting
of Eqs. (2–5) is stiff, and thus requires an appropriate discretization scheme for its
stable solution.

2.3.1 Method of Solution

In order to discretize Eqs. (2–5), the spatial domain Œ0; rmax	 � Œ#min; #max	 �
Œ'min; 'max	 is covered by Nr radial, N# latitudinal, and N' longitudinal zones,
where #min D 0 and #max D � correspond to the north and south poles, respectively,
of the spherical grid and 'min D 0 and 'max D 2� covers the full sphere. (In general,
we allow for grids with different radial resolutions in the neutrino transport and
hydrodynamic parts of the code. The number of radial zones for the hydrodynamics
will be denoted by N

hyd
r .) The number of bins used in energy space is N� and the

number of neutrino types taken into account is N� .
The equations are solved in three operator-split steps corresponding to a lateral,

an azimutal and a radial sweep.
In the first two steps, we treat the boldface terms in the respectively first lines of

Eqs. (2–3), which describe the lateral and azimutal advection of the neutrinos with
the stellar fluid, and thus couple the angular moments of the neutrino distribution of
neighbouring angular zones. For this purpose we consider the equations
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where 
 represents one of the moments J or H . Although it has been suppressed
in the above notation, an equation of this form has to be solved for each radius, for
each energy bin, and for each type of neutrino. An explicit upwind scheme is used
for this purpose.

In the third step, the radial sweep is performed. Several points need to be noted
here:

• Terms in boldface not yet taken into account in the lateral sweep, need to be
included into the discretization scheme of the radial sweep. This can be done in a
straightforward way since these remaining terms do not include derivatives of the
transport variables J or H . They only depend on the hydrodynamic velocities v#

and v' , which are a constant scalar field for the transport problem.
• The right hand sides (source terms) of the equations and the coupling in energy

space have to be accounted for. The coupling in energy is non-local, since the
source terms of Eqs. (2) and (3) stem from the Boltzmann equation, which is an
integro-differential equation and couples all the energy bins.
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• The discretization scheme for the radial sweep is implicit in time. Explicit
schemes would require very small time steps to cope with the stiffness of the
source terms in the optically thick regime, and the small CFL time step dictated
by neutrino propagation with the speed of light in the optically thin regime. Still,
even with an implicit scheme & 105 time steps are required per simulation. This
makes the calculations expensive.

Once the equations for the radial sweep have been discretized in radius and energy,
the resulting solver is applied ray-by-ray for each pair of angles .#; '/ and for each
type of neutrino; i.e. for constant .#; '/, N� two-dimensional problems need to be
solved.

The discretization itself is done using a second order accurate scheme with
backward differencing in time according to [21]. This leads to a non-linear system
of algebraic equations, which is solved by Newton-Raphson iteration with explicit
construction and inversion of the corresponding Jacobian matrix with the Block-
Thomas algorithm.

3 Porting and Scaling on the Cray XE6 “HERMIT” at HLRS

3.1 Parallelization Strategy

The ray-by-ray approximation readily lends itself to parallelization over the different
angular zones. In order to make efficient use of modern supercomputer systems
with relatively small shared-memory units (e.g. 16 CPUs per node on Cray XE6),
distributed memory parallelism is indispensable. An MPI version of the VERTEX-
PROMETHEUS code using domain decomposition was initially developed within a
cooperation between MPA and the Teraflop Workbench at the HLRS in 2007/2008.
Since then, the parallelization of VERTEX-PROMETHEUS has been further
extended to allow good scaling on several thousands of cores as required for future
3D supernova simulations.

The VERTEX-PROMETHEUS code employs a hybrid MPI-OpenMP paral-
lelization scheme, in which the parallelization of the transport module – the main
computational kernel and most CPU-intense part of the code – is along radial “rays”
for fixed angular bins of the three-dimensional grid. Hence, every “ray” of the
transport is treated by one core using as many OpenMP threads as cores available
on an individual node. This strategy allows almost perfect scaling behavior, since
almost no MPI communication is necessary between individual rays during the
transport step.

The MPI-parallelization of the much less expensive hydrodynamical part
PROMETHEUS is based on standard domain decomposition methods. Hereby, the
reconstruction scheme used to solve the hydrodynamic equations requires so-called
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qys = (qye)−1(qye −4)−1 qye = (qys)+1 (qys + 4)+1

qzs

qzs − 1

qze

qze+ 1

Fig. 2 Schematic sketch of the MPI communication pattern for an angular direction in the
hydrodynamics part of our code. The red rectangle symbolizes the data available in a specific
MPI task, the surrounding area marked by the dashed line reflects the zones to be communicated

“ghost-zones”, which have to be available in each MPI task. In our case, four ghost
zones are required on each cell interface in angular directions to integrate one time
step and these zones have to be MPI communicated to the neighbouring MPI tasks.
A sketch of grid zones to be MPI communicated is illustrated in Fig. 2.

3.2 Porting VERTEX-PROMETHEUS to the Cray XE6
“HERMIT”

As demonstrated in Fig. 3, we have already obtained excellent scaling behavior
with the explained parallelization strategy. For example, we have performed scaling
tests on the BlueGene/P system JUGENE at the Forschungszentrum Jülich to
demonstrate that our VERTEX-PROMETHEUS code scales perfectly up to 65,000
cores.

Since our VERTEX-PROMETHEUS code runs successfullyon several architec-
tures, the code should in principle work out of the box. However, we had to change
several smaller statements in order to be able to compile the code. Furthermore,
while performing the first scaling test on the Cray of the HLRS we detected that the
routine, which calculates the most important neutrino interaction rates, shows poor
performance. Initially, we have used the same version of this part of the transport
solver, which performs perfectly using the Intel compiler. To obtain better results on
the Cray XE6 we have rewritten this routine and we use now a vectorized version
with one main loop.

Employing this single optimization, the code scales well on up to 32,000 cores
of the Cray XE6 at HLRS as shown in Fig. 3. However, the scaling behavior is
still slightly worse than on Intel platforms. We plan to analyse the detailed code
performance on the Cray XE6 further to get better results of the scaling tests.
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Fig. 3 Strong scaling of VERTEX-PROMETHEUS on different machines and architectures. The
colored lines show the speedup on the respective machine relative to the run with the smallest
number of cores for a given problem size. The symbols mark the number of cores on which the
timings were done. The dashed black lines indicate a theoretically perfect scaling behavior. Note
that several lines lie on top of each other. Also note that due to limited memory on BlueGene/P
three different setups were timed, which are shown as three separate speedup curves

Another point concerning the special characteristics of the Cray XE6 is the strong
interconnection of the individual nodes. We cannot profit a lot by this feature since
our code needs only a low amount of communication (less than 5 % of the total
computing time).

Furthermore, we want to improve the performance of I/O on the Cray XE6. The
I/O is now handled by means of parallel HDF5 to ensure high scalability and to
eliminate the excessive memory consumption asscociated with temporary I/O arrays
on the root node. The handling of I/O performs quite well on IBM BlueGene and
Intel systems, however we want to optimize I/O on the Cray XE6 further.

4 Conclusion

We have presented our main simulation tool VERTEX-PROMETHEUS. In the
past years, we have developed a fully MPI/OpenMP parallelized code version to
be able to perform large scale runs on several thousand cores. At the moment
our code shows excellent scaling behavior on several platforms. After the new
Cray XE6 “HERMIT” had become available at HLRS, we have ported VERTEX-
PROMETHEUS to this new system. With minor optimizations (required by the
compiler) the code scales now up to 32,000 cores.
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Since our code is now ready to run on the new Cray XE6 at HRLS, we are
ready to start the first generation of three-dimensional simulations of core-collapse
supernova explosions this year. This simulations are extremely expensive (several
1020 floating point operations) that we need to strongly rely on Tier-0 systems
such as “HERMIT”. Only systems like the new Cray XE6 in Stuttgart give us the
possibility to advance our understanding of the details of the explosions mechanism
of core-collapse supernovae.
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