Design Science Research as Movement
Between Individual and Generic
Situation-Problem—-Solution Spaces

Ilia Bider, Paul Johannesson and Erik Perjons

Abstract Design science is an emerging research paradigm in the Information
Systems area. A design science project typically includes the activities of problem
analysis, requirements definition, artifact development, and evaluation. These
activities are not to be seen as sequential but can be carried out in any order. The
purpose of this paper is to propose a conceptualization and formalization of design
science research that show the possible ways in which a design science project can
be carried out. The proposal is based on the state oriented view on business
processes and suggests that design science research can be viewed as movements
in a space of situations, problems and solutions.

Keywords Design science - Information systems - Business process

1 Introduction
1.1 Motivation

Design science is an emerging research paradigm in the Information Systems (IS)
area. To make design science more widely accessible, there is a need for clear

1. Bider - P. Johannesson (D<) - E. Perjons

Department of Computer and Systems Sciences (DSV), Stockholm University, Stockholm,
Sweden

e-mail: pajo@dsv.su.se

I. Bider

e-mail: ilia@dsv.su.se

E. Perjons
e-mail: perjons@dsv.su.se

R. Baskerville et al. (eds.), Designing Organizational Systems, 35
Lecture Notes in Information Systems and Organisation 1,
DOI: 10.1007/978-3-642-33371-2_3, © Springer-Verlag Berlin Heidelberg 2013

36 1. Bider et al.

guidelines on how to use it, which are targeted at students and young researchers
as well as experienced researchers accustomed to other ways of conducting
research. One of the main issues that research students need to understand is that a
research process can be conducted in many alternative ways while still staying
within the design science paradigm.

The main way of presenting results of research of the design science type is
starting from a situation, presenting the identified problem, setting the require-
ments, describing the solution, presenting the results of tests whether the solution
solves the problem in the given situation, or/and a set of similar situations [1]. If
the test shows that the solution does not solve the problem, it is redesigned, and
tested again. Even when it is not explicitly stated that this sequence was the actual
order in which the research was conducted, this kind of presentation may create an
impression that this is how the research actually was done in real-life, which is
often far from the case.

One problem to be solved when creating guidelines for conducting design
science research is how to determine where in the process the researcher is at a
given moment, and what are the alternatives to proceed. The goal of this chapter is
to propose a solution to this problem. More exactly, we propose a kind of a map
which helps the researcher to identify his/her position in the design science pro-
cess, and explicitly shows the possible ways that are open for the researcher to
continue. This “map” is aimed to serve as a foundation for creating practical
guidelines on design science research in the future.

1.2 Design Science in Information Systems Research

Design science research [1-3] is related to finding new solutions for problems
known or unknown [4]. To count as related to research, a solution should be of a
generic nature, i.e., applicable not only to one unique situation, but to a class of
similar situations. A generic solution for real-life problems cannot be proven in a
formal way, but requires testing via implementation of the solution in one or more
situations and investigation whether it solves the intended problem or not. The
solidness of the verification, of course, depends on the number of implementations,
and the diversity of situations in which the solution has been tested. However, the
first step always is to implement and verify a generic solution in at least one
situation. In the literature, this is called demonstration [1].

There is a substantial difference between design science on one hand and wide
spread qualitative and quantitative empirical methods [5] on the other. The latter
are aimed to investigate real life situations as is, or as they were at some point in
the past, and find commonalities between them which can give rise to a theory that
explains the current or past state of affairs. Focusing on the present and past also
allows employing statistical methods as there is a possibility to gather information
on many similar real-life situations, insuring that the size of a sample is sufficiently
large for relying on statistical methods.

Design Science Research as Movement 37

Focusing on the present and past in such a dynamic area as IS has a major
drawback. Such a focus means that research follows the industry/practice and
explains its successes and failures rather than showing new ways to proceed.
Design science research with its focus on generic problem solving tries to over-
come this drawback. This kind of research can be considered as an activity aimed
at generating and testing hypotheses about future solutions. Therefore, demon-
stration is a critical part of design science, as it shows whether a hypothesis is
worth adoption or needs to be discarded or improved.

Design science research, on its own, cannot provide sufficient evidence in favor
of a hypothesis. It can only demonstrate that it could work in one or several
specific situations. The real proof comes when and if the industry/practice adopts
the solution, which generates sufficiently many examples of its usage in real life,
so that standard empirical methods can be employed to prove or disprove the
hypothesis generated by design science. Therefore, design science research cannot
be placed in the same category as standard empirical methods, but should be
regarded as complimentary to them.

Summarizing the above deliberations, we agree with [2] that design science
represents a distinct research paradigm—generating hypotheses on how the future
could look like and making initial filtering of them in order to remove hypotheses
not worth of pursuing. IS is not the only field within the social sciences where
design science research is applicable. Marxist theory, when it first emerged, can be
said to have followed the design science approach by proposing a solution for all
the evils of capitalism, though it failed to produce even one demonstration where
this solution would work. The difference of IS from other fields in the social
sciences is the greater dynamics of the IS industry/practice, where new solutions
are introduced and tested all the time. This gives a greater opportunity for design
science research to take a leading position in this field.

1.3 Artifacts in IS Design Science Research

As was mentioned in the previous subsection, design science concerns generic
solutions, not the individual ones. A generic solution is always a template that can
be adjusted to a specific situation to which the solution is to be applied. This
template can be defined in different ways, e.g., as a model, or as a method that
shows how to transform the original situation to a new and better one. In design
science literature such a template is often referred to as to an (scientific) artifact.
We call this artifact a primary artifact.

In addition to the primary artifacts, design science research in IS may include
secondary artifacts inherent to the field of Information Systems. In essence, IS
investigates technology enabled human organizations and practices, to which
nowadays belong any private company, public administration, interest organiza-
tion, or a bunch of youngsters playing an interactive game with each other. Thus,
IS is tightly connected to the technological artifacts (e.g., an ERP system or an e-

38 1. Bider et al.

service) used to tie together technologically enabled organizations and practices.
IS deals with both development and use of such technological artifacts. A generic
solution in IS is often built around some technological artifact, e.g., the solution
includes the development and/or introduction in organizational practice of some
type of an IT-system. We refer to such technological artifacts as secondary
artifacts.

In this paper, we do not investigate various types of primary and secondary
artifacts. Instead, the discussion is conducted in terms of individual and generic
solutions, while artifacts are referred to only in the explanatory examples. An
individual solution concerns a specific situation which disappears as soon as an
attempt to solve it has been made, and, normally, cannot be restored. A generic
solution can be applied to many real-life situations, and thus can be tested more
than once.

1.4 Moving Between the Two Worlds

As explained in Sect. 1.2 , design science research aims at generating and testing
generic solutions for various problems. To do that, a researcher needs to move in
and between two worlds: the world of real situations and real solutions, and the
world of generic (abstract) situations and solutions. The movements in these two
worlds cannot be totally independent of each other; movement in one world needs
to be coordinated with movement in the other world.

There is no fixed way in which the movement inside and between the two
worlds should be accomplished. One can start with designing a new solution for a
known problem and then design a generic solution based on it, using the individual
solution as an example. One can also start from the opposite pole—design a
generic solution for the problem unknown and search for a situation where such
generic solution can be applied to transform this situation to a better one.

The goal of this paper is not to prescribe the way to conduct research, but define
a “map” that includes both worlds. The map is aimed at helping the researcher to
plan his/her movements inside and between the worlds, and find a way out when a
kind of dead end is reached. For example, if a generic solution does not work very
well in a situation where it should, the researcher does not need to rush to discard
the solution, or try to modify it. He/she can instead try to find some other type of
situations, or other problems where the solution fits better.

The rest of the paper is structured in the following way. In Sect. 2, we introduce
a number of quasi-formal notions, with the help of which we can define the
meaning of design science research and the ways it could be conducted. In Sect. 3,
we discuss in which circumstances individual problem solving gives opportunities
for design science research. In Sect. 4, we discuss examples of a research that aims
at finding a generic solution from the beginning. Section 4.1 discusses a case
where a researcher moves to the world of generic situation/solutions in order to
find a solution for a problem in a particular real-life situation. The individual

Design Science Research as Movement 39

Fig. 1 Individual SPS-space

situation to-be

test case

situation as-is
problem

solution is then obtained by instantiation of the newly designed generic solution. In
Sect. 4.2, we discuss a case where research starts from finding a generic solution
and proceeds to finding a situation where it could be applied. Section 5 reviews
related works. Section 6 is devoted to the discussion of the material presented.
Section 7 presents plans for future work.

2 Formalizing Design Science Research

In this section we present a set of notions that leads to a quasi-formal definition of
design science research. These notions will be used in the next sections to explain
the ways of how design science research could be conducted. The formalization is
done along the following lines. As the first step, we introduce a space for indi-
vidual (specific) problem solving as consisting of three dimensions: situation as-is,
situation to-be, and problem, see Fig. 1. A point < s, s', P > in this space is called
a test case. A weight of £ 1 is assigned to a test case according to the following
rule:

o +1 is assigned if transforming situation s into s’ solves problem P. In this case s’
is said to be a solution for problem P in situation s.
e —1 is assigned otherwise.

As the next step, we introduce a space for generic problem solving as consisting
of three dimensions: generic situation as-is, generic situation to-be, and generic
problem, see Fig. 2. We consider that a generic situation (as-is or to-be) is rep-
resented by some kind of a template (¢ or ') that defines a set of similar situations,
the template serving as an extension of this set. A point < ¢, ¥, GP > in this space
is called a hypothesis.

As the third step we establish correspondence between the two spaces based on
the following rule test case < s, s', P > serves as representation (or instantiation)
of hypothesis < ¢, ¥, GP > if situation as-is s belongs to the generic situation as-is
defined by template ¢, situation to-be s’ belongs to the generic situation to-be
defined by template #, and problem P belongs to the generic problem GP, see
Fig. 3.

40

Fig. 2 Generic SPS-space

Fig. 3 Correspondence
between the spaces

1. Bider et al.

hypothesis generic situation to-be

generic situation as-is

generic problem

test case situation to-be

situation as-is

problem generic situation to-be

hypothesis

generic situation as-is

generic problem

Based on the correspondence between the two spaces, we can assign a weight to
a hypothesis according to the following rule:

o —1, if there is a test case < s, 5/, P > with weight —1 that represents the given
hypothesis < ¢, ¥/, GP > . In this case, we say that 7 cannot serve as a generic
solution for generic problem GP in generic situation ?.

o 0 if there is one or few test cases < s, ', P > with weight +1 that represent the
given hypothesis < ¢, ¥, GP > . In this case, we call / a potential generic
solution for generic problem GP in generic situation .

o +1 if there are many test cases < s, s’, P > with weight +1 that represent the
given hypothesis < t, ¥, GP > . In this case, we call ¢ a verified solution for
generic problem GP in generic situation .

In the following Sects. 2.1-2.3, we will explain the three steps above in more

details.

2.1 Individual Problem Solving Space

We define a situation as a “state of affairs or combination of circumstances” in a
particular part of the world. A situation has some structure, but we are not
interested in details of it in this paper. As an example of a situation consider the

following:

Design Science Research as Movement 41

“activities at the sales office of SoftMotors in Stockholm”, where SoftMotors is an
imaginary company.

Denote the set of all possible situations s as S. S includes all situations that are
in effect now, the ones that happened in the past, and the ones that could be
imagined in the future.

Transformation of situation s (situation as-is) into situation s” (situation to-be) is
called implementation of s' in s, and is denoted s' « s.

As soon as the transformation happens, the original situation becomes part of
the past, and the new one changes the status of being imaginary (possible) to
becoming part of the present. We consider that this transformation is, normally,
not reversible, i.e., the old situation cannot be restored, and thus no other trans-
formation can be applied to it. For example, if SoftMotors fires all their sales staff
and hire engineers to conduct sales activities instead, we consider the old situation
as not reachable. Even if the old staff is rehired, probably, their trust in SoftMotors
management will not remain the same.

Completing implementation is associated with costs in effort and time. The
closer situation s’ is to s, the smaller is the cost of transformation. It is impossible
to define the concept of closeness in strict terms for a general case. In this paper,
we just consider that the more s and s’ share the same elements and internal
structure, the closer they are, which potentially leads to lower costs of imple-
menting s’ in s. For example, the result of introducing a CRM (Customer Rela-
tionship Management) system at the sales office of SoftMotors (without changing
its staff) can be considered as relatively close to the original situation in which
there was no CRM system in place.

We also consider that there is some limitation on the “length” of a possible
transformation). For example, we may consider that a situation in which Soft-
Motors sales office changes their sales people to engineers as reachable, but the
sales office becoming the engineering department as unreachable. Note, that a
situation not reachable in one transformation may be reachable is several con-
secutive transformations over time. Denote the set of situations reachable from s as
R(s).

A problem P is a set of situations (P C §) considered to be undesirable from
some point of view. As an example, suppose that in the sales office of SoftMotors,
each sales person works on his/her own and never coordinates his/her work with
the colleagues. Management considers this situation as a problem, as prospects
could be lost when a sales person pursuing it becomes temporarily (sick) or per-
manently (leaves the company) unavailable. Formally, this problem can be defined
as a set of situations in which

the progress of pursuing a prospect in the sales office of SoftMotors in Stockholm is visible
only to one sales person.

42 1. Bider et al.

Let P be a problem, then for each situation s that belongs to P (s € P) we say
that situation s has problem P, or there is a problem P in situation s." Denote the
set of all possible problems P as IT .*

A solution for a problem P in situation s (s € P) is a situation s” such that s’ does
not have problem P, i.e. ¢ P. An example of a solution to the problem above is a
situation in which:

all activities related to pursuing a prospect in the sales office of SoftMotors in Stockholm
are registered in CRM system Oracle on demands and are made visible to all members of
the staff

We call a solution s’ justifiable if the cost of the implementation is reasonable
with respect to the seriousness of the problem P in s that the solution is aimed to
solve.”

We call a solution s" acceptable if it does not contain any other major problem
that is not present in s. For example, the CRM system to be implemented is so
difficult to use that all current sales staff will not be able to handle it, and
everybody leaves.

Testing s' as an acceptable solution for a problem P in s means implementing s’
in s and verifying that:

— 5’ is justifiable for P in s,
— 5’ is really a solution for s, i.e., s'¢ P, and
— s’ is acceptable, i.e., does not include other major problems.

A space with dimensions S (situation-as-is), S (situation-to-be), IT (problem) of
the kind in Fig. 1 is called a Situation-Problem—Solution space, or SPS-space for
short. A point < s, s/, P > in the SPS-space is called a fest case. Testing s' as a
solution for problem P in situation s is considered as assigning a weight to the test
case < s, s', P > in the SPS-space according to the following rule:

— Weight +1 is assigned in the case s’ showed to be justifiable and acceptable
solution for problem P in situation s,
— Weight —1 is assigned otherwise.

! The problem can be defined in very broad terms, however, for all practical purposes only the
intersection between the problem P and a set of situations reachable from s, R(s) is important for
any given situation s.

2 I C P(S), where P(S) is the set of all subsets of set S.

3 Obviously, the first sign of “justifiable” is being “reachable”, i.e. s’ € R(s).

Design Science Research as Movement 43

2.2 Generic Problem Solving Space

A set of situations with similar internal structure is called a generic situation or g-
situation for short, and is denoted as GS. As an example of g-situation, consider
“Activities at sales offices of all companies in Stockholm”, or “Activities at sales
offices of all companies all over the world”. The set of all possible g-situations is
denoted as 2.

As a criterion of similarity for situations in a g-situation, we consider existence
of a pattern/template t that can be found in the internal structure of each situation
that belongs to the given g-situation. Denote all possible templates as 7. We
consider a pattern/template to be a sentence in some formal language that includes
variables and constants. Continuing the example from Sect. 2.1, we can create
several templates of situations:

1. Activities at sales office of company x located at Stockholm

2. Activities at sales office of company x located at y

3. Activities at sales office of company x located at y such that the progress of
pursuing a prospect is visible only to one sales person

4. Activities at sales office of company x located at y not using any CRM system

5. Activities at sales office of company x located at y using CRM on demand from
Oracle to make the progress of pursuing a prospect visible to all members of
staff

6. Activities at sales office of company x located at y using CRM system from
Salesforce to make the progress of pursuing a prospect visible to all members of
staff

7. Activities at sales office of company x located at y using CRM system c to make
the progress of pursuing a prospect visible to all members of staff

We consider that all templates are constructed from a universal set of variables V.
For example, in template (1-8) above, variable x stays for a company.*

Assigning each variable v € V a value is called a mapping. Denote a set of all
possible mappings as M. Let m € M be a mapping and ¢ € T a template, then
situation s obtained from ¢ by substituting variables in ¢ with values according to
m is called instantiation of ¢ via m, and is denoted as s = #(m).

The example considered in Sect. 2.1 is an instantiation of template (2) above,
where map m = {x = SoftMotors, y = Stockholm}.

A class of situations defined by template 7 is denoted as GS(?),
GS(t) = {s = t(m) | m € M}; in other words, GS(¥) includes all possible instanti-
ations of template .

A pair of templates ¢, ¢ defines a class of transformation {s' « s | s = ¢ (m),
s=1tm), m € M}. We will call such class a generic transformation, or

4 Existence of a template presumes existence of an algorithm that generates all situations that
belong to a given template ¢ by assigning values to the variables of the template.

44 1. Bider et al.

g-transformation for short, and denote it as ¢ « 7. A g-transformation ¢ «
t defines a transformation for each situation s from GS(¢) into a situation s’ from
GS(@).

Using templates (1-7) above, we can define the following generic
transformations:

(5) « (4), (6) « (4, (7) < (4), (6) < (5).

The first three transformations, (5) <« (4), (6) « (4), (7) « (4), refer to
introducing a CRM system where it did not exist, the last one, (6) « (5), refers to
changing the existing CRM system from Oracle to Salesforce.

A problem that exists in all instances of some generic situation is called a
generic problem and is denoted as GP. Formally, we can define a generic problem
as follows: let GS(f) € 2 be a g-situation and GP € II be a problem such that
GS(t) < GP, then we say that g-situation GS(¥) has (generic) problem GP, or there
is a (generic) problem GP in g-situation GS@t).?

A generic solution or g-solution for short for a (generic) problem GP in g-
situation GS(¢) (GS(t) C GP) defined by template ¢ is a template 7, such that GS(7')
N GP = . In other words, all situations that belong to GS(#') do not have problem
GP.

For example, templates (5), (6), (7) represent generic solutions for the generic
problem defined by template (3) in situation (4).

A g-solution GS(¢') is called justifiable for GS(¢) if for each m € M, '(m) is
justifiable for situation 7(m). In the same way, a g-solution GS(¢) is called
acceptable if for each m € M, 7(m) is acceptable solution for problem GP in
situation z‘(m).6

A space with dimensions T (template for g-situation as-is), 7" (template for g-
situation to-be), II (generic problem) of the kind in Fig. 2 is called a generic
Situation-Problem—Solution space, or generic SPS-space for short. A point < ¢, 7,
GP > in the generic SPS-space is called a hypothesis.

We say that test case < s, s', P > corresponds to the hypothesis < ¢, ¢, GP > if
there exists a mapping m € M such that s =#m) and s = ¢(m) and
R(s)NP = R(s)NGP, which is illustrated in Fig. 3. We also say that test
case < s, s', P> represents hypothesis <, ¢, GP >, or hypothesis <1, 7,
GP > generalizes test case <s, s/, P>, and denote this fact as <s, s/,
P><<1,t,GP>.

Let<s, s/, P>be a test case that represents hypothesis <¢, ¢, GP >,
ie,<s s,P>< <11, GP >, to which weight +1 has been assigned. Then we
call <s, s, P> a demonstration for template ¢ to be an acceptable g-solution for
generic problem GP in g-situation GS(7) .

Let < t, 7, GP > be a hypothesis, and r be a representative sets of corre-
sponding test cases such that r = {< s, 5, P > <s,5,P > < <1,¢,GP >, and

5 Using templates, GS(#) has a problem GP if for each m € M, t(m) € GP.

$ Note that our notion of solution template roughly corresponds to the idea of artifact widely
used in the design science literature [2, 3].

Design Science Research as Movement 45

for each pair <s, s'y, p1 >, <3, 52 pPa>€ r, 57 # 55} and to each test
case < s, s', P > € r weight +1 has been assigned. Then we call r a verification for
¢ being an acceptable g-solution for generic problem GP in g-situation GS(¢). We
will not try to clarify the meaning of representative set, just assuming that the
larger is the set the more solid is verification.’

Now, we can assign weights to the hypothesis <z, ¥, GP > from the generic
SPS-space. This is done according to the following rule:

— Positive weight of +1 is assigned if there is a verification for template 7 to be an
acceptable g-solution for problem GP in g-situation GS(f).

— Negative weight of —1 is assigned if there is a corresponding test case in the
individual SPS-space < s, s', P > < < 1, ', GP > with the weight —1 assigned
to it. As was defined in Sect. 2.1, negative weight means that solution s" has
been tried for P in s and showed to be no solution at all, or an unacceptable
solution.

— Weight 0 is assigned if there is at least one demonstration for < ¢, ¥, GP > (and
no negative examples have been found so far).

2.3 Definition of Design Science Research

In terms of the previous subsections design science research can be defined as a set
of activities aimed at choosing a hypothesis in the generic SPS-space and assigning
a weight to it, if it has not been assigned yet, or changing the weight already
assigned to it. In other words, design science research deals with finding, dem-
onstrating and verifying generic solutions. Assignments can be:

— From nothing to 0—demonstrating that a new g-solution can work,

— From 0 to +1—proving that g-solution should work for all situations described
by the as-is template,

— From nothing, O, or +1 to —1—finding that the generic solution does not work
for some situations described by as-is template.

As we see from the list, demonstration and verification are essential parts of the
design science research, which means that the research activities are not con-
centrated only in the generic SPS-space, but researchers also needs to move
between generic and individual SPS-spaces. Here, we need to add one reservation.
As was already mentioned in Sect. 2.3, it is not feasible for a design science

7 Note that we can consider any individual situations s as a generic one GS, where set GS
consists of one element only, GS = {s}. In this case, the template for GS would not contain any
variables. Such interpretation could reduce the number of SPS-spaces to consider from 2 to 1.
Though this solution could be preferable from the pure mathematical point of view, we will not
pursue it in this paper, as we consider the two spaces construction as being easier to explain and
visualized.

46

1. Bider et al.

Fig. 4 The application
domain maturity/solution
maturity matrix adopted from
[4] g Innovative problem solving Invention
= (Improvement) (Invention)
Develop new solutions for Invent new solutions for
.‘E known problems new problems
% Research Opportunity Research Opportunity
=
s
B Routine Problem Solving Transfer
3 (Routine Design) (Exaptation)
Apply known solutions to Extend known solutions to
® known problems new problems (e.g. Adopt
T solutions from other fields)
Research Opportunity

High Low
Application Domain Maturity

researcher to test a generic solution in a number of cases sufficient to verify it. To
provide conditions for sufficient verification, industry/practice should adopt the
solution, so that there will be many cases available for investigation. Investigating
these cases, carried out without the involvement of the original design science
researchers, falls into the scope of empirical research (using qualitative and
quantitative methods). It is this kind of research that can provide final verification
of a generic solution.

3 Starting from Individual Problem Solving

Though not equal to individual problem solving, design science research can be
initiated by finding a solution for a specific problem in a specific situation. Cases
of problem solving that offers opportunities for research are discussed in [4], and
are visualized in the Application Domain Maturity/Solution Maturity matrix.
Below, we formalize the findings from [4] by introducing four different types of
individual problem solving. The matrix, adapted to our terminology, is presented
in Fig. 4. The main difference between our matrix and the original one from [4] is
the names of the quadrants, the original names from [4] are presented in paren-
thesis in Fig. 4.

1. Routine problem solving (see Fig. 5)—finding a solution to a problem P in
situation s via finding a corresponding hypothesis < #, ¥, GP > in the generic
SPS-space with weight +1 (verified generic solution) assigned to it and using
this hypothesis for designing a solution for situation s.

Example: if we consider that introducing a CRM system is a verified generic
solution for the problem of non-cooperation between sales staff, then introducing

Design Science Research as Movement 47

Fig. 5 Routine problem GRS
solving

problem

situation to-be

generic situation to-be

v

hypothesis

generic situation as-is

generic problem

situation to-be

%

Fig. 6 Innovative problem —
solving

problem

s situationas-is

genericsituation to-be

5 genericsituation as-is
hypothesis

generic problem

such a system in the sales office of SoftMotors in Stockholm belongs to the routine
problem solving.

Formally, routine problem solving means finding < ¢, ¥, GP > with weight +1
such that R(s) N P = R(s) N GP and there is a mapping m € M for which s = #(m),
and using 7(m) as a solution for problem P in s.

Routine problem solving in its pure form offers no opportunity for design
science research.

2. Innovative problem solving (see Fig. 6)—finding a solution s’ for a problem
P in situation s that cannot be derived from an already known g-solution.
Innovative problem solving concerns finding a new (or the first) solution for a
known problem.

Example: Designing and introducing a system to support sales activities at
SoftMotors in Stockholm that is not similar to any known sales support systems
constitutes innovative problem solving. Here, we assume that the system is aimed
to solve the known problem: “the progress of pursuing a prospect is visible only to
one sales person”.

Formally, innovative problem solving can be defined as finding a solution such
that test case < s, s’, P > does not correspond to any known hypothesis < ¢, 7,
GP > in generic SPS-space to which a weight of 0 or +1 has been assigned.

48 I. Bider et al.

Innovative problem solving presents an opportunity for researchers to find a
hypothesis < 7, 7, GP > for which < s, s’, P > is a representation. If found, < 7, 7,
GP > gets the weight of 0, test case <s, s/, P > being regarded as a demon-
stration for it.

3. Transfer—testing a generic solution designed for another problem or the same
problem in different class of situations, or both.

Example: Successful introduction of some Wiki software, developed to solve
other problems, to support sales activities at SoftMotors in Stockholm, could be
considered as an example of transfer.

Formally, transfer means applying hypothesis < ¢, ¢/, GP > (with weight of +1)
to a test case < s, 5, P > such that GP N R(s) # P N R(s) (different problem in
relation to the current situation), or s ¢ GS(¢) (different original situation) or both.

Problem solving of type transfer presents an opportunity for researchers to find
a new hypothesis < t;, ¥, GP, > for which <s, s/, P > is a representation. If
found, < t;, ', GP| > gets the weight of 0, test case < s, s', P > being regarded as
a demonstration for it.

4. Invention—testing a transformation to a new situation s’ without clearly defined
problem in original situation s to solve. This is a process of discovering new
opportunities. After transformation has been completed one can discover which
problem P has been solved by comparing situations s and s'.

Example: We can use the same example as for Innovative problem solving
above, but assume that the sales office of SoftMotors in Stockholm functions very
well, and there are no particular problems to solve. In this case, designing and
introducing a system to support sales activities that is not similar to any known
sales support systems constitutes an invention. The difference between the two
cases is as follows. Innovative problem solving will require validating that the
problem has been solved, while invention will require investigation of which
previously unidentified problems have been solved.

Invention presents an opportunity for researchers to find a new hypothesis < t,7,
GP > in the generic SPS-space for which <s, s’, P > is a representation. If
found, < t, ¢, GP > gets the weight of 0, test case < s, s', P > in the individual
SPS-space being regarded as a demonstration.

Classifying problem solving in four types, as above, constitutes some ideali-
zation of reality. In practice, some mixture of these types is more probable than a
pure adherence to one of them. For example, while following the route of routine
problem solving, one can slightly change the recommended solution making it a
bit innovative. Another example, after introducing a routine solution, one can
discover that besides the original problem, this solution has solved another
problem, therefore making the process a bit of invention.

Design Science Research as Movement 49

4 Generic Problem Solving

Any of the of individual problem solving types presented in the previous section,
except the routine one, can serve as a starting point for initiating design science
research via generalizing a newfound solution and finding a point in the generic
SPS-space that this solution represents. However, starting from the individual
problem solving is not the only way of conducting design science research. The
movement between individual and generic SPS-spaces can be done in many dif-
ferent ways. In this section, we present examples of generic problem solving from
our practice. Note that these examples do not cover all alternatives of generic
problem solving. Section 4.1 discusses a case where a researcher moves to the
world of generic situation/solutions in order to find a solution for a problem in a
particular real-life situation. The individual solution is then obtained by instanti-
ation of the newly designed generic solution. In Sect. 4.2, we discuss a case where
research starts from finding a generic solution and proceeds to finding a situation
where it could be applied.

4.1 Innovative Generic Problem Solving

Term “innovative generic problem solving”, or IG problem solving for short, is
built in association with innovative (individual) problem solving introduced in the
previous section. As the name implies, IG problem solving is aimed at finding an
innovative generic solution for a known generic problem. A generic problem can
be discovered in two ways, either:

1. An individual problem has been discovered in a real-life situation and has been
generalized before an attempt to solve it has been undertaken.

2. Previous research has established the fact of a problem existence via employing
qualitative or/and quantitative empirical methods.

It can also be both, first a researcher identifies a specific problem in a specific
situation and then discovers that the generic problem related to it is already known.

Figure 7 illustrates steps in innovative generic problem solving. If research is
initiated by discovering an individual problem (case 1 in the list above), the
following seven steps could be applied:

1. Establish (refine) the problem P for the given situation s (arrow 1 in Fig. 7)
2. Generalize the situation by creating a template ¢ for which s is instantiation
(arrow 2a), and defining a generic problem GP that includes P (arrow 2b)
Design a solution template ¢ (arrow 3)

Instantiate a solution to a situation to-be s’ (arrow 4)

Implement s’ in s

Evaluate the result and assign a weight to test case < s, s, P > in the individual
SPS-space

SNk W

50 1. Bider et al.

situation to-be

Fig. 7 Generic innovation — \

problem

situation as-is

genericsituation to-be

hypothesis

generic situation as-is

generic problem

7. Promote the result to the hypothesis < ¢, ¥, GP > in the generic SPS-space.
If <s, s/, P>is assigned weight +1 then < ¢, ¢, GP > gets weight 0 (see
Fig. 3), otherwise —1.

If research start with a known generic problem (case 2 in the list presented in
the beginning of this subsection), the process starts with step 3 (see Fig. 7), and
will require additional step between steps 3 and 4 of finding a situation s to which a
solution can be applied. This new step may also be required in a case when, due to
some practical reasons, the generic solution cannot be tested in the original situ-
ation from which the search for a solution has been initiated. For example, the
situation may no longer exist by the time a generic solution has been found.

To illustrate IG problem solving, we will shortly overview a case from our own
practice. In 2003-2006, we were engaged in a research project, called INKA [6]
aimed at investigating effects from the introduction of an integrated business
process support and knowledge management system into operational practice of a
non-profit interest organization. Soon after the first version of the system had been
developed and put into operation, we discovered that very few used it, which made
it impossible to investigate any effects. An investigation was conducted on the
causes of the failure, which resulted in critique of the usability of the system, i.e.,
the system design was not sufficiently intuitive and user-friendly.

After this discovery, the user interface of the system was totally redesigned [7]
and the users were once more invited to use the system. The result was negative
this time as well, i.e., very few used the system. However, nobody was criticizing
the system design any longer. The situation was plainly explained by a statement
from one of the supposed users: “I am sure that the system is very good, but I do
not know what I should use it for”. As nobody was “blaming” the system, the
attention of our research group was moved to search for the reasons of failure
elsewhere.

As the research focus in the project was not in the introduction process itself,
we tried to apply routine problem solving first. However, our search for a generic
solution in the literature gave no result. Solutions recommended for conducting an
organizational change where related to planning it in the right way from the very
beginning. This was not the case in our project. We were in the middle of not so

Design Science Research as Movement 51

Engage Plan for Gradually Continuously
Strategies authoroties short-term increasescope adjust perfor-
wins of system use mancegoals
[K6) k7] [sva]
Project Project :tru;tul'/e:f‘or Reward
- raining/help-|
Tools Plan organisation systems
k3] k2] desk/support [sv2]
[sY1]

Parameters N N N
y Ty Ny V¥
1. Organisa- 2. Previous 3. Alignment 4. Strategic 5. Tactical 6. Operational | | 7. Motivation 8. System
tional culture experiences of system understanding || understanding | | understanding [V1-4] :
of changes || and org[sY3] WHY WHEN HOW I:> use
Align Communicate Communicate Carryout Tie performance
Actions system and system vision training gainsto
organisation needs [K4] [KS; SY1] system use
[SY3] [K1] [K8]

Fig. 8 Element of A*

successful system introduction that we could not “rewind”. The only way to
proceed for us was to invent a solution ourselves.

A solution was designed as a general methodology for conducting a system
introduction process that was possible to apply even in the middle of unsuccessful
introduction [8] (In Swedish). The methodology was called A*—Assess-Adjust-
Apply. The main idea behind A® is a number of measurable parameters that can be
assessed at any point of introduction process, and a number of means of control
that can be employed for influencing the values of these parameters, see Fig. 8.
The means are grouped into three categories: actions, tools and strategies. The
process is driven by periodic assessment of parameters and choosing means of
controls to proceed based on the values of these parameters.

A’ was tested in the original situation with some success. We were able to
higher the usage of the system to some degree. However, due to the reason outside
our control, i.e. changes in the management of the interest organization with which
we worked, we could not fully complete our testing.

Summarizing the above, we started with a situation with a problem—intro-
duction process that “stammered”. We generalized the problem and devised a
generic solution for it—a way of conducting the introduction process that drives
the system usage up. We (partly) applied this generic solution to the original
situation. Right now, we are still looking for new situations where A® can be
applied to subject our generic solution to additional tests.

52 1. Bider et al.

A

Human-Assisting Human-Assisted

Fig. 9 Human-assisting vs Human-assisted systems
4.2 Generic Invention

We consider generic invention as a generalization of invention in the individual
SPS-space described in Sect. 3, which amounts to testing a new solution in a given
situation without having any specific problem to solve. Accordingly, generic
invention means finding a generic solution for an unknown generic problem. What
is more, generic invention can start without full understanding of in which situ-
ations the solution is to be applied, which should be found at a later stage. To give
an example of a generic invention, we overview a case from our own practice
described in details in [9].

In the middle of 1980th one of the authors with a number of collaborators was
engaged in a research project, called CHAOS, aimed at developing a theoretical
framework for designing of what we then called “human-assisted systems”. The
idea was explained with two pictures presented in Fig. 9, one representing tradi-
tional at the time human-assisting systems (left part of Fig. 9), the other one a new
paradigm of “human-assisted systems (right part of Fig. 9). The project acronym
CHAOS stood for Concurrent Human-Assisted Object Systems.

In a human-assisting system, a computer helps a human being to perform
certain tasks, e.g., to write a letter, print an invoice, complete a transaction, etc.
The relations between these tasks, and the aim of the whole process, are beyond
the understanding of the computer, but are a prerogative of the human participant.
In a human-assisted system, the roles are somewhat reversed, the computer has
some knowledge about the process and keeps it running as long as it can. When the
system cannot perform a task on its own or figure out what to do next, it will ask
the human participant for assistance. The human-assisted system frees human
beings from tedious, routing work, like searching for information, bookkeeping,
reporting, allowing them to concentrate on things at which they are best, i.e.
decision making.

The main idea of human-assisted systems was that the users and the system
should work in a symbiosis. The symbiosis should be flexible which means such
cooperation between the system and its users where the distribution of responsi-
bilities between them may change in time. It means that the points of interaction
between the system and its users may change, thus we need to have a model in

Design Science Research as Movement 53

which such changes do not require substantial modifications. The latter requires
having a model in which both human and system actions are represented uniformly
on equal footing.

The project was of theoretical nature. We had one example in mind though,
creating a computer programmer’s secretary, a system that would help a pro-
grammer to managed his/her job, i.e., to ensure that the programmer does not
forget to compile and test after making changes in the source code. The “secre-
tary” should considerably extend the capability of the tools like make/build that
existed at the time. The project continued for 2 years, from 1984 to 1986, and
produced a model that consisted of the following components:

A set of atoms,

— A set of objects

A code of laws and

A set of connectors, each connector hanging on a group of objects that must
obey a certain law.

Objects have complex structure expressed by including in their “bodies” a set
of connectors that hang on other objects making the latter sub-objects to the
former. An object’s body can also include a connector hanging on the object itself.
The dynamics of the objects-connectors model can be defined by a machine in
which a connector is regarded as a processing unit that monitors its operands. A
connector:

Awakes when one of its operands has been changed,
Checks whether the law still holds by reading the condition,
Restores it when it has been broken,

Falls asleep.

A law can be fully deterministic, or not. Non-determinism can concern the
condition of awakening, or rules of restoring the low, or both. A connector with a
non-deterministic law is called a boundary connector. A boundary connector
cannot do its job alone. Some help is needed, and here is where human being are
introduced in the model. Humans are parts of boundary connectors to help when to
awake, or/and how to restore the state of the objects entrusted to this connector.

As we mentioned above, a connector can both be included in the body of an
object, and “hang” on this object. This allows an object to reconfigure itself based
on changes in other objects. Such reconfiguration can include adding new con-
necters or removing the existing ones, including the one that completes the
reconfiguration itself. The model itself was published later as a theoretical plat-
form [10, 11].

It took several years to figure out in which situations the objects-connectors
model could be applied. At that time the author who had participated in the
CHAOS project worked for a small Swedish IT-consulting company. The com-
pany had developed a system to assist salespersons in the pharmaceutical industry,
and the author’s task was to support and further develop this system.

54 I. Bider et al.

A salesperson in this industry was driving around the country, meeting doctors
at various hospitals and leaving them samples of new drugs. The system was
intended to keep order in his/her business, e.g., plan the trips, have a track of which
samples where left in which hospital, and when it is time to follow up the pre-
viously made contact. It also helped to gather statistics and analyze sales potential.
The business, hence the system, was built around such concepts as, activity, plan
activity, report execution of activity, plan follow-up activities, like a phone call.

While working with the system, the author built a model of the sales business in
the pharmaceutical domain in terms of objects-connectors model. In this model, a
sales lead on which a sales-person is working is represented as an object. As sub-
objects, the model includes a hospital, and a doctor to whom this particular lead is
related. A planned activity is represented by a boundary connector that wakes up at
the deadline point and asks the salesperson to complete it. While executing the
activity, the sales person writes a report and plans further activities. In terms of the
model, the boundary connector that represents a planned activity removes itself
from the body of the lead-object adding at the same time some other connectors
(i.e., new planned activities) to it. Part of these activities are calculated based on
the fixed rules, others are added manually by the sales person behind the “steering
wheel” of the boundary connector that represent an activity under execution.

Creating a model as above gave an idea of one generic situation for which the
objects-connectors model could be applied. It could be used for building IT-
systems that support business processes. This was tested in several areas with some
successes and failures, details of which are reported in [9].

The case above represents a generic invention that consisted of creating a high-
level model without having a well-formulated individual or generic situation in
mind. An application area for this model was discovered later and more or less by
chance. Note, however, that it was not actually a pure chance, as the authors were
looking for a generic situation where the model could fit.

5 Related Research

Design science has been proposed as a distinct paradigm in information systems
research. In [2], the design science paradigm is contrasted to the behavioral sci-
ence paradigm. Behavioral science aims at creating theories that explain and
predict human and organizational phenomena in the context of information sys-
tems. Design science, on the other hand, is the scientific study of artifacts within
practices as they are developed and used by people with the goal of solving
practical problems. Historically, design science originates from the engineering
disciplines and the sciences of the artificial [2]. Its study object is the creation and
use of artifacts that can advance individual as well as organizational and societal
flourishing. A main tenet of design science is that knowledge and understanding of
a practical problem and its solution can be acquired through the creation and use of
an artifact, e.g., an IT system, a model or a method.

Design Science Research as Movement 55

In design science, the artifact represents a general solution to a class of prob-
lems [3]. In this chapter we have introduced the concept of generic problem,
generic solution as well as generic situation. We interpret design science research
as a movement between two worlds: the world of real (individual) situations and
real solutions, and the world of generic (abstract) situations and solutions. This
movement between these two worlds is also described in the work of Lee and
others [12], but the two worlds in this work are called the instance domain and the
abstract domain. In [12], moving from an instance problem and an instance
solution to an abstract problem and an abstract solution is called abstraction, and is
seen as a way of theorizing in Design Science. Moving from an abstract problem
and an abstract solution to an instance problem and an instance solution is called
de-abstraction.

In comparison with our approach, [12] does not use the concept of situation. We
believe that adding this concept extends the options for a researcher to proceed
when a particular test case shows negative results. Besides an option to modify the
proposed solution/artifact, the researcher can search for a different, in some
respect, situation where the solution/artifact may work.

Designing artifacts can be viewed as a search process through a solution
space, [13]. According to this view, the designer starts with setting up a solution
space consisting of possible solutions to a given problem. The designer then makes
a first design decision, thereby pruning away parts of the solution space. He/she
continues and makes further design decisions, which further narrow the space. The
process goes on and can be viewed as a systematic exploration of the solution
space. At each step, the designer is guided in her decision making by some criteria
and requirements on the artifact. This guidance can sometimes take the form of a
goodness or utility function, which can be used to determine which design deci-
sions to make. The author of [13] has even argued that the search process can be
more or less automated using Al techniques. Though this has not proved feasible,
the view of design as a search process is useful in supporting communication,
planning and structuring of design work. Our work is akin to that of [13] but differs
in that we introduce a space that is spanned by the dimensions of solutions as well
as problems and situations.

In the work of Anderson and others [4], four cases of problem solving that give
opportunity for research are presented. These four cases have been formalized in
Section 3 according to our basic concepts. The chapter also introduces other types
of movement between individual and generic SPS-spaces, such as innovative
generic problem solving, see Sect. 4.1. The work by Sein and others in [14] points
out that IT artifact are typically developed and shaped by their interaction with an
organizational context. Therefore, design science research needs to interleave
concurrently the activities of creating an artifact, introducing it into an organiza-
tion, and evaluating it. The basic assumptions of this approach are reflected in our
notions of moving between the individual and generic SPS-spaces.

56 1. Bider et al.

Fischer and Gregor [15] argue for a more thorough investigation of reasoning
logic of models for carrying out design science research. They present an idealized
model of the hypothetico-deductive method, including the contexts of discovery
and justification, and forms of reasoning. Our chapter can be interpreted as a
attempt to investigate the reasoning logic in design science.

6 Discussion

In this section, we discuss how the notions introduced in this paper could be used
for explaining and conducting design science research. We do not intend to ana-
lyze all aspects of design science research process, the aim being just to demon-
strate how the proposed apparatus could be used in various stages of the process.

6.1 Tracking the Progress of Design Science Research

As it has been discussed in the introduction, design science research in IS is aimed
at generating and testing hypothesis related to the future use of technology in
organizations. In our conceptual quasi-formal model of Sect. 2:

o Generating a hypothesis equals to finding a new point < ¢, ¥, GP > in the
generic SPS-space that has not been investigated at all, or only partly investi-
gated in the past.

e Testing the hypothesis equals to:

¢ Finding a test case < s, §', P > in the individual SPS-space such that it repre-
sents hypothesis < 1,7, GP > ,ie.. <s,5, P> & <t 1, GP>

e Implementing s’ in s

o Evaluating whether s’ is an acceptable solution for problem p in situation s.

As was discussed in Sects. 3 and 4, the order in which the steps above are
completed can differ from case to case. For example, in one case, hypothesis
generation can precede testing (Sect. 4), and in the next case, it could be vice versa
(Sect. 3).

With the help of our notions, the final state of the design science research
process could be represented as an octo-tuple < ¢, ¢, GP, s, s', P, i, w > , where i is
a boolean variable that shows whether the solution s’ has been implemented in s,
w is the weight (i.e., +1, 0 or —1) assigned to <s, s/, P > . If we allow any
component of the octo-tuple to be undefined, (denote this fact as “?”), then the
octo-tuple can be used to represent an intermediate state of the research process.
Below, we present two examples of intermediate states along with descriptions of
steps they warrant for continuing the research process:

Design Science Research as Movement 57

- <272 %s, 9, P, true, +1 > —research that starts from the individual problem
solving, e.g., invention, and requires generalization as its next step

- <,7,2,22,72,7,2, 7 > —research that starts with discovering a generic solution
for a problem unknown. This state warrants discovering a generic situation
where the solution could be applied. This is the case with generic invention as
described in Sect. 4.2.

Finding a way for representing the state of the design science research process
allows us to consider this process as any other business process, at least from the
state-oriented point of view [16]. The main concept of the state-oriented view on
business processes is a state of the process instance. The state is defined as a
position in some state space. A state space is considered multidimensional, where
each dimension represents some important parameter (and its possible values) of
the business process. Each point in the state space represents a possible result of
the execution of a process instance. If we add the time axis to the state space, then
a trajectory (curve) in the space—time will represent a possible execution of a
process instance in time. A process type is defined as a subset of allowed trajec-
tories in space—time. The goal of a process instance is defined as reaching a certain
area (surface) in the state space called the set of final states. When a process
instance is not in a final state, action should be planned aimed at moving nearer to
the nearest final state.

The octo-tuple <1, ¢, GP, s, s', P, i, w > introduced above can be used to
represent a position of a research process instance in the process state space. The
goal of an instance then can be defined as eliminating all question marks “?” from
the tuple.

6.2 In Search for Solutions: Requirements

When design science research comes to a state where the original situation (spe-
cific or generic) has been specified, and the problem (specific or generic) has been
identified, the next logical step is looking for a solution. In the terms of octo-tuples
introduced in the previous section, this can be identified as:

-<77%s, 7, P,? 7> —individual problem solving

- <t ? GP,s, 7, P,? ?7>—generic problem solving that starts with an indi-
vidual situation and problem, see Sect. 3

-<t? GP, 7,7 17 7, 7> —generic problem solving that starts with a generic
situation and generic problem, see Sect. 3.

Search for a solution is a creative process that is impossible to fully predict and/
or regulate. However, some general steps in this process can be recommended, one
of them being related to specifying requirements in terms of [17] or objectives in
terms of [1]. In the terms of this paper, requirements can be considered as a way of

58 1. Bider et al.

reducing the set of situations, or templates of situations among which the solution
can be found. Such reduction can be achieved based on two considerations:

® Reachability of solution—taking into consideration whether it is possible to
implement a solution in a given situation as-is. For example, moving the
SoftMotors office from Stockholm to the Moon could be considered as not
reachable, while moving it to India could be considered as reachable.

e Unintended consequences—taking into consideration other known problem that
a solution might bring about. For, example, all sales staff may leave the office if
a cumbersome CRM system is introduced to support sales activities.

Determining requirements of the first type, reachability of solution, could be
facilitated by formalizing the idea of distance between situations. Though the
concept of distance is practically impossible to define in general terms, it might be
done in a specific domain to which the given problem belongs.

Determining requirements of the second type, unintended consequences, could
be facilitated by constructing a generic situations-problems space in which all
problematic points are marked.

Both types of requirements help to narrow down the search in the solution space
in terms of [13].

6.3 Implementing Solution

When a design science research process has reached one of the following states:

- <t t,GP,s, s, P, 72 7>,
-<L N s, S, P>,
<N s N>,
—-<tt, s 8,27 7>,

it is time for implementing s” (solution) in s (original situation). Dependent on the
distance between s and ', this could be a simple, or quite a complicated process.
There can be a known method for implementation, or the method needs to be
devised before the solution could be implemented. An example of situation where
it needed to be devised is presented in Sect. 4.1. The designing of the imple-
mentation method described in Sect. 4.1 has been completed according to the
design science approach. Here, we have an example of recursive decomposition
where implementation of a solution creates a new problem to solve.

Design Science Research as Movement 59

6.4 Evaluating Solutions

When a design science research process has reached one of the following states:

- <t t,GP,s, s, P, true, 7 >,
- <22 %s, 8, P, true, 7 >,
- <0 s, 8,2, true, ? >,
—<tut, s, 8,2, true, T>

it is time for evaluating the results [2]. With a well define problem, this step can be
a relatively simple one. When the problem is loosely defined or unknown (marked
by “?”), the evaluation could be quite a complicated process on its own, which can
bring about a new problem to solve. An example of such a case is presented in
[18], which discusses the research on measuring effects from introduction of
business process support systems.

For evaluating purpose, one might need to apply empirical research methods as
discussed in [2, 17].

6.5 Generalizing

When a design science research process has reached one of the following states:

- <2 s, 8, P, true, +1>,
- <2 %s, 8, P, true, 7>,
-<L N s, s, P YT,
-<27 s, 8, P, 2 >

it could be time for generalizing the result going from a solution for a particular
problem in an individual situation to solving a generic problem in a generic
situation. This step is called abstraction in design science literature [12].

To complete generalization, one needs to find out whether the problem exists in
other situations. The latter could be done via literature search, as we have done in the
case described in Sect. 4.1. If the literature search produces no results, the question
should be solved via field studies according to the methods of empirical research.
The latter case constitutes another example (from the one discussed in Sect. 6.4) of
usage of other methods in design science research as discussed in [2, 17].

6.6 Finding a Way Out

When a design science research process has reached state < 1, ¢, GP, s, 5/, P, true,
—1 >, the researcher needs to decide how to proceed. As we are dealing with
research, not with problem solving as such, the choice is not limited to trying to
find another generic solution 7’ for the original generic problem GP. For example,

60 I. Bider et al.

the researcher can investigate whether the solution will be satisfactory for another
set of original situations by changing template ¢ to some other template f.
Alternatively, or at the same time, the researcher can search for other problems
that the suggested solution can solve.

7 Conclusion: Plans for the Future

The authors had two personal motivations/goals for initiating research reported in
this paper:

e Firstly, as we actively use design science approach in our own research, we were
interested in a better understanding of it.

e Secondly, our university department encourages bachelor, master and PhD
students to conduct their research and write their theses in accordance to design
science. To do this effectively, they need guidelines that give them clear view on
all alternatives that the design science paradigm offers.

While we feel that with this work we have achieved some success in pursuing
the first goal, achieving the second goal needs additional work. We plan to con-
tinue our work in the direction of creating readable (not formal) guidelines for
conducting design science research based on the ideas and quasi-formal notions
presented in this paper. This can be considered as a test for the model of the design
science research process presented in this paper.

References

1. Peffers, K., Tuunanen, T., Rothenberger, M.A., & Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of Management Information
Systems, 24(3), 45-78.

2. Hevner, A.R., March, S.T., & Park, J. (2004). Design science in information systems
research. MIS Quarterly, 28(1), 75-105.

3. Baskerville, R.L., Pries-Heje, J., & Venable, J. (2009). Soft design science methodology.
DESRIST 2009, New York, NY: ACM, pp. 1-11.

4. Anderson, J., Donnellan, B., & Hevner, A. (2011). Exploring the relationship between design
science research and innovation: a case study of innovation at Chevron. Communications in
Computer and Information Science. New York, NY: Springer.

5. Neuman, W. L. (2006). Social research methods. Qualitative and quantitative approaches.
Boston: Pearson.

6. Andersson, B., Bider, 1., & Perjons, E. (2004). Integration of business process support with
knowledge management—a practical perspective. Practical aspects of knowledge
management (PAKM, 2004), LNCS 3336, New York, NY: Springer, pp. 227-238.

7. Andersson, T., Bider, 1., & Svensson, R. (2005) Aligning people to business processes.
Experience report. Software Process Improvement and Practice (SPIP), Vol. 10, No 4,
pp. 403—413.

Design Science Research as Movement 61

8.

10.

11.

12.

13.
14.

15.

16.

18.

Bider, 1., & Perjons, E. (2006). Accessing an ongoing introduction of an IT system in
operational practice (In Swedish), Inka project report, available at (2012-07-01): http://
www.ibissoft.se/projects/inka/INKA_rapport_II.pdf.

. Bider, 1. (2011). In search for a good theory: commuting between research and practice in

business process domain. LNBIP, Vol. 81, New York, NY: Springer, pp. 16-30.

Bider, I., Khomyakov, M., & Pushchinsky, E. (2000). Logic of change: semantics of object
systems with active relations. Automated Software Engineering (ASE), 7(1), 9-37.

Bider, 1., & Khomyakov, M. (2003). New technology—great opportunities. How to exploit
them. In: Filipe, J. (ed.), Enterprise information systems 1V, Kluver, pp. 11-20.

Lee, J. S., Pries-Heje, J.,& Baserville, R. (2011). Theorizing in Design Science Research.
DESRIST 2011, LNCS 6629, New York, NY: Springer, pp. 1-16.

Simon, H. (1969). The sciences of the artificial. MIT Press, Cambridge, Mass.

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design
research. MIS Quarterly, 35(1), 37-56.

Fischer, C., & Gregor, S. (2011). Forms of reasoning in the design science process. DESRIST
2011, LNCS 6629, pp. 17-31.

Khomyakov, M., & Bider, 1. (2000). Achieving workflow flexibility through taming the chaos.
OOIS 2000—6th international conference on object oriented information systems, New York,
NY: Springer, pp. 85-92.

. Wieringa, R. J. (2009). Design science as nested problem solving. In: Proceedings of the 4th

international conference on design science research in information systems and technology,
Philadelphia: ACM, pp. 1-12.

Bider, 1., & Perjons, E. (2007). Effects from introduction of business process support systems
and how they can be measured. In B. Pernici & J. A. Gulla (Eds.), CAiSE’07 workshop
proceedings (pp. 369-377). Trondheim, Norway: Tapir Academic Press.

http://www.ibissoft.se/projects/inka/INKA_rapport_II.pdf
http://www.ibissoft.se/projects/inka/INKA_rapport_II.pdf

	3 Design Science Research as Movement Between Individual and Generic Situation-Problem--Solution Spaces
	Abstract
	1…Introduction
	1.1 Motivation
	1.2 Design Science in Information Systems Research
	1.3 Artifacts in IS Design Science Research
	1.4 Moving Between the Two Worlds

	2…Formalizing Design Science Research
	2.1 Individual Problem Solving Space
	2.2 Generic Problem Solving Space
	2.3 Definition of Design Science Research

	3…Starting from Individual Problem Solving
	4…Generic Problem Solving
	4.1 Innovative Generic Problem Solving
	4.2 Generic Invention

	5…Related Research
	6…Discussion
	6.1 Tracking the Progress of Design Science Research
	6.2 In Search for Solutions: Requirements
	6.3 Implementing Solution
	6.4 Evaluating Solutions
	6.5 Generalizing
	6.6 Finding a Way Out

	7…Conclusion: Plans for the Future
	References

