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Abstract. We look at the problem of proving inevitability of continuous
dynamical systems. An inevitability property says that a region of the
state space will eventually be reached: this is a type of liveness property
from the computer science viewpoint, and is related to attractivity of sets
in dynamical systems. We consider a method of Maler and Batt to make
an abstraction of a continuous dynamical system to a timed automaton,
and show that a potentially infinite number of splits will be made if the
splitting of the state space is made arbitrarily. To solve this problem, we
define a method which creates a finite-sized timed automaton abstrac-
tion for a class of linear dynamical systems, and show that this timed
abstraction proves inevitability.
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1 Introduction

Dynamical systems can have very complex behavior patterns, and over the years
the mathematics and control communities have developed a lot of theory to
analyze their behavior. In particular, Lyapunov stability theory [8] is important
for proving properties about continuous dynamical systems. One of the elements
of stability theory is the notion of attractivity, which says that trajectories of a
system tend toward a set or a point as time goes to infinity.

From the computer science viewpoint, the related notion to attractivity en-
sures that a set is reached in finite time, and is expressed as the property “we
eventually reach some set in the state space”. This is an inevitability property, a
type of liveness property. In this paper we address the problem of proving such
liveness properties, as there are only a few methods currently defined [5,9,14].

In the computer science community, particularly the hybrid systems commu-
nity, a lot of effort has gone into trying to verify dynamical systems, mostly
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through using model checking methods [3,10,13,16]. One class of such methods
involves abstraction of the system to a discrete system, usually a finite-state au-
tomaton, in order to be able to use discrete model checkers on the abstraction to
prove properties about the original system (for example, see [3]). The properties
that can be proved are typically safety properties, which say that something is
always true. In fact, proving liveness properties in dynamical systems, where
we want something to eventually be true, is not possible by means of a purely
discrete abstraction as there is no guarantee of progress of time.

In order to prove inevitability properties, we need to transfer some information
about the times at which events occur to the discrete system, and so we turn to
using timed automata (TA) for our abstraction. Reachability of TA is decidable,
and so they are a sensible candidate for an abstraction. There are various provers
available for proving properties of TA, themost widely used one beingUppaal [2].

There are a few methods which propose how to abstract a dynamical system
to a timed automaton, including [4,9,11,14,15]. We consider the method of Maler
and Batt [9], who did not specify how the state space of a system should be split
to create the TA, but stated that the accuracy of the model could be improved
indefinitely by increasing the number of splits. However, in most systems arbi-
trary splitting will not be very good at capturing the dynamics of the system,
and we may well be required to make a very large number of splits to verify the
system.

In this work, we advocate dynamically-driven splitting of the state space,
using known properties of the flow of the system to decide how to make the
splits. We identify a terminating splitting method for a class of upper triangular
linear systems which ensures that the resulting timed automaton will always
prove the inevitability property. Our method is most closely related to that of
[14], which abstracts continuous systems to timed automata using the idea of
the method of [9], but the authors in that work use Lyapunov functions to define
the slices considered, whereas we use the original idea of constant variable slices.

2 Overview of Systems and Method Being Considered

In this section, we consider all autonomous n-dimensional continuous dynamical
systems, of the form

ẋ = f(x), (1)

with x = [x1, . . . , xn]
T ∈ IRn and f(x) = [f1(x), . . . , fn(x)]

T , with f : IRn → IRn

smooth. The state space of the system is assumed to be a finite box, which is
defined by the limits x ∈ [s−1 , s

+
1 )× . . .× [s−n , s

+
n ) = S.

The method we consider is from [9]. It is an approximation method defined
to abstract a continuous system to a TA, and is based on minimum and maxi-
mum velocities of a system defining bounds on the time taken to cross a certain
distance in the system. The resulting TA is an over-approximation of the sys-
tem, in the sense that every trajectory in the system is matched in time and
space by one in the abstraction, but additional trajectories may be allowed in
the abstraction (see [9] for more discussion of this).
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The basic idea of [9] is to split the state space into slices by making splits
along lines of the form xi = C, where C is constant. These slices also define
hyper-rectangles (which we refer to as boxes) of the space by the intersection
of a slice in each dimension (see Fig. 1 for the 2-dimensional (2-D) case with
x ∈ IR2).

A slice is a part of the state space, restricted only in one dimension. In this
work we allow slices to be of differing widths, defined by a vector of split points
Vertsi in each dimension i.1 Let vi be an index which indicates which slice we
are considering in dimension i, and then the slice is given by

Xi,vi =
[
s−1 , s

+
1

)× . . .× [
Vertsi(vi),Vertsi(vi + 1)

)× . . .× [
s−n , s

+
n

) ⊆ S. (2)

Slices are right-open so that they do not intersect, and so the set of slices for each
i will form a partition of the state space S (this is why S was defined as being
right-open). Similarly, let the index for a box be defined by v = [v1, . . . , vn], then
the box is defined asXv =

⋂n
i=1 Xi,vi ⊆ S. The set of all boxes in the partitioning

of S is denoted by V . To find possible crossings between these boxes we consider
the sign of the velocity on each face between adjacent boxes.

Definition 1 (Automaton Abstraction [9]). The automaton A = (V, δ) is
an abstraction of the system if δ consists of the pairs of boxes with indices v =
[v1, . . . , vi, . . . , vn] and v′ = [v1, . . . , vi + 1, . . . , vn] where fi can take a positive
value on the face between them, or pairs of v with v′ = [v1, . . . , vi − 1, . . . , vn]
where fi can take a negative value on the face between them. �

To make the timed automaton abstraction, we define clocks to keep track of the
times at which crossings are made in each dimension. Within any box Xv, let di
be the width of this box in dimension i, then the maximal time that it can take
to leave this box is over-approximated by the box time, defined as

tv = min
1≤i≤n

(
di

min(|fi|) in box Xv

)
. (3)

If min(|fi|) = 0 in box Xv, then we define tv = ∞.
The times spent in slices of the space can also be limited, both above and

below, in the positive and negative directions. Let di be the size of the dimension
i slice we are considering, and let fi be the minimum velocity in this slice, and

fi be the maximum velocity. Then the minimum (t) and maximum (t) times
that can be spent in this slice in the positive (+) and negative (−) directions
are given in Table 1 (slice times).

If we enter a slice from the lower face in dimension i, then the minimum
time we can take to leave by the opposite face is t+, and the maximum time

to leave by the opposite face is t
+
, and similarly for entering from the upper

face with t− and t
−
. We use these values to bound timed automaton clocks

within slices of the space: there are two clocks per dimension, z+i which bounds

positive direction movements using t+ and t
+
, and z−i which bounds the negative

1 Note that the first and last elements of Verts i are s−i and s+i respectively.
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Fig. 1. Partition into boxes (rect-
angles in the 2-D case).

Fig. 2. Calculate (1) which transitions exist
(denoted by arrows), and (2) the min/max
times on the clocks z, z+1 , z−1 . . ..

Fig. 3. The TA resulting from the method of [9] applied to the dynamical system. In
this case, no slice clock has an upper limit, so they do not appear inside locations.

Table 1. Minimum and maximum times that can be spent in slice i in the positive
and negative directions (respectively)

t+ t
+

t− t
−

0 < fi < fi di/fi di/fi ∞ ∞
fi < fi < 0 ∞ ∞ −di/fi −di/fi
fi < 0 < fi di/fi ∞ −di/fi ∞
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direction movements. We also use a box clock z in the TA to satisfy the conditions
on how long we can stay in each box, using (3).

Figures 1–3 illustrate the abstraction process for an arbitrary 2-D system. This
overview of the method involved should be enough to understand the content of
this paper, but for further details see [9].

3 Problems for General Continuous Systems

There are various reasons why this method does not work well for general contin-
uous systems, some of which we highlight in this section. One very fundamental
reason can be that the trajectories of the system do not fit well with splitting
based on crossing constant variable lines. A particular example of this is for 2-D
linear systems with complex eigenvalues, where the trajectories of the system
are spirals. Even when the real parts of the eigenvalues are negative and the
trajectories go inward, the timed automaton can allow flow round the edge of
the split space without forcing us to move closer to the center of the spiral (see
for example Fig. 3, where the center location should be reached, but the TA
allows flow through the eight locations round the edge indefinitely).

Part of the problem with this abstraction for general continuous dynamical
systems is the fact that the discrete automaton abstraction can allow pairs of
automaton locations where the trajectories can go both ways across the shared
face (see locations marked 1 and 2 in Fig. 2). The timed automaton does not
restrict when these transitions can be taken, as box times are not directional and
slice times only limit the time to reach the opposite face, so these pairs of loca-
tions introduce Zeno behaviour into the abstraction [7]. This kind of behaviour
prevents every trace of the abstraction from reaching the desired final location,
so the inevitability property cannot be proved.

Another potential problem with this method is that it does not guarantee
to calculate finite values of the box times tv, due to the fact that if a zero
velocity occurs in the box v in every dimension, then di/min(|fi|) = ∞ in every
dimension. If there is one box in the abstraction which has an infinite box time,
then any trace which reaches this box will never be forced to leave this box even
if the actual trajectories of the system would all leave it in finite time.

Some of the above problems can be remedied by choosing an appropriate
method for splitting the state space. The method of [9] does not specify how we
should choose the splitting, but just tells us the properties of the resulting TA
when a choice has been made. As we see it, there are two ways to do such a
splitting: either we make the splitting arbitrarily (systematically but not based
on the system’s dynamics) and rely on refinement to eventually capture enough
information about a system, or we can use properties of the dynamics to choose
where to split the system. The pros and cons of these are discussed below.

Arbitrary splitting. This approach does not rely on knowledge about the
structure of the dynamical system, and so it can be used for complex sys-
tems no matter where the complexity comes from. The TA created by the
abstraction method of Maler and Batt does approach the actual dynamics



64 R. Carter and E.M. Navarro-López

(theoretically) as more and more splits are made (see [9]). However, due to
the two issues (1) that transitions both ways between pairs of automaton
locations can exist and (2) that there can be an infinite over-approximation
of the time it takes to get across a box, the number of splits required is often
very large, if not infinite, and so we obtain a huge number of locations in
the timed automaton.

Using system properties for splitting. Here we use the dynamics of the
system we are looking at to automatically split the state space in a way
which removes or reduces some of the problems associated with arbitrary
splitting. In specific systems, it should be possible to make a splitting which
can be proved to satisfy desirable properties, for instance that the liveness
property is automatically satisfied. Even in systems where we cannot prove
the liveness property immediately, it may be possible to at least have a
much better starting point for refining the abstraction. The main problems
with this idea are that a splitting method will only work for a certain class
of systems, and that there are no automatic splitting methods in existence
already; methods need to be designed for many different types of systems.

Given the considerations above, in this paper we wish to start the process of
finding dynamically-driven automatic methods to create splittings. We will work
from a theoretical basis to show that certain types of linear systems have a
splitting which proves inevitability by the TA abstraction, with the idea that
future work can extend these methods to be useful for more general systems
(nonlinear, piecewise continuous, or hybrid).

4 Inevitability for Upper Triangular Linear Systems

In this section we consider the class of upper triangular linear dynamical systems,
as a first step to using this method for general systems. We assume that a
splitting has been created which removes some of the problems highlighted in the
previous section. We then show that the timed automaton abstraction created
from this splitting proves an inevitability property. In Sect. 5 we will identify a
method for a sub-class of these systems which creates a splitting with the desired
properties. These two parts together will prove that the sub-class considered in
Sect. 5 can always have an inevitability-proving TA abstraction.

We consider upper triangular linear systems, with no input vector:

ẋ = Ax =

⎛

⎜
⎜
⎜
⎝

a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

. . .
. . .

...
0 · · · 0 an,n

⎞

⎟
⎟
⎟
⎠

x. (4)

We assume that the eigenvalues (the diagonal entries of A) are negative. This
type of system has a unique equilibrium point at zero,2 and the negative eigen-
values mean that this point is stable and attractive, which is asymptotic stability.

2 The equilibrium point xe satisfies the equation ẋ = 0, that is Axe = 0. Invertibility
of A means the only equilibrium point is at xe = 0.
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This means that some non-empty region L containing the equilibrium point must
be reached within a finite time. From a dynamical systems perspective we know
this property is true, but we want to prove the same property computationally
— the long-term goal of this work is to prove inevitability properties of dynam-
ical systems which cannot be proved by dynamical theory (due to complexity).
In linear temporal logic (LTL), this inevitability property is written �(x ∈ L),
where � is the temporal logic operator meaning “eventually”.3 In this paper, we
will say the system is live if this LTL condition is satisfied for all trajectories.

We note that the only real restriction on the class of linear systems is the
existence of real negative eigenvalues: for any linear system of the form ẋ =
Bx+ b with B having real negative eigenvalues and b any real vector, it can be
transformed to ẋ = Bx without loss of generality, and can then be transformed
to an equivalent upper triangular system by making the Schur decomposition.

4.1 The Assumptions

There are four assumptions we make about the splitting, each with various levels
of difficulty in achieving them. In Sect. 5 we will define a method which can
satisfy these assumptions for a subclass of the systems under study, which shows
these are not unreasonable assumptions to make.

The first assumption is about where the equilibrium point occurs in relation to
the splitting, and is here to give us one (and only one) box that we are interested
in reaching for the inevitability property.

Assumption 1. There is exactly one box L in the splitting which contains the
equilibrium point,4 and the equilibrium is not on the boundary of L. We will
call L the live box.

The second assumption specifies that there are a finite number of boxes in the
abstraction, which is necessary for a useful abstraction.

Assumption 2. The automaton abstraction (Def. 1) of the system has a finite
number of discrete states.

The next assumption has to do with how transitions are allowed in the abstracted
system. We do not want it to be possible to keep transitioning between a pair
of discrete states in the timed automaton, as discussed in Sect. 3.

Assumption 3. The continuous flow across any box face only occurs in one di-
rection. That is, if the box face is xj = C with the other xi’s within the box
limits, then the velocity ẋj across this face will either be always ẋj ≥ 0 or always
ẋj ≤ 0.

The fourth assumption is related to the timing constraints in the TA, ensuring
we leave every box on a trace within a finite time.

Assumption 4. In each box v, except the live box L, the box time tv is finite.

3 See [12] for more information about LTL.
4 This is always true for linear systems, where there is only one equilibrium point.
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4.2 The Theorems

We wish to show that every system of form (4) is proved to satisfy the inevitabil-
ity property by any splitting satisfying the assumptions. To do this we will prove
that the discrete automaton abstraction (Def. 1) of the continuous system only
has finite traces, and that the only location with no outgoing edges (hence the
only possible final location) corresponds to the live box L. We then use the
assumption of finite box time to ensure that L is reached in finite time.

Theorem 1. Assume we have an n-dimensional system of the form of (4) with
negative entries on the diagonal, and an automaton abstraction created by the
method of [9] satisfying Assumptions 1–4. Then the automaton abstraction of
the continuous system only has finite traces.

Proof. Assume (for a contradiction) that we can find a trace of infinite length
in the automaton. As the automaton abstraction must have a finite number
of locations by Assumption 2, any infinite trace must go through at least one
discrete location infinitely often. Hence, for any move in the infinite trace that
is made in the k-th dimension in the positive direction, we must be able to find
a corresponding move in the k-th dimension in the negative direction, and vice-
versa. We now prove, by induction, that this requirement is not satisfied in the
system.

Base Case. In the n-th dimension, the dynamics of the system is ẋn = an,nxn

with an,n < 0. Hence, across any slice boundary in the n-th dimension, if xn > 0
then ẋn < 0, and if xn < 0 then ẋn > 0. Therefore crossing any n-th dimensional
slice boundary can only be done in one direction, and so cannot be reversed as
is necessary for this type of crossing to be present in the infinite trace. Hence
n-th dimensional crossings are not involved in the infinite trace.

Inductive Part. Assume that n − k + 1, . . . , n dimensional crossings are not
involved in the infinite trace, and so the xn−k+1, . . . , xn variables are within
one slice each for this trace. The ẋn−k equation only depends on xn−k, . . . , xn.
Assumption 3 does not allow the sign of ẋn−k to change over the course of a
box face, but since xn−k+1, . . . , xn are within one slice each, any constant value
of xn−k makes the whole slice face the same sign as one of the component box
face. Hence ẋn−k is either completely non-negative or completely non-positive
for a constant value of xn−k. This means it is not possible to reverse a crossing
of a constant xn−k surface in the infinite trace, and so (n − k)-th dimensional
crossings cannot be present in the infinite trace.

Hence, by base case and inductive part, the infinite trace through the automa-
ton abstraction of the system cannot involve transitions in any dimension, which
contradicts the existence of an infinite trace. So the automaton abstraction of
the n-dimensional system under the assumptions only has finite traces. �	
Theorem 2. Assume we have a system of form (4) with negative diagonal en-
tries, and an automaton abstraction created by the method of [9] satisfying As-
sumptions 1–4. Then the only location with no outgoing edges in the automaton
abstraction corresponds to the box L containing the equilibrium point xe = 0.
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Proof. Assume there is a location of the automaton abstraction which has no
transitions out of it. Then all the existing transitions are inwards. It is not
possible for whole box sides to have zero flow across them, due to not allowing
splitting at xi = 0 surfaces (by Ass. 1). Therefore the two opposite sides of a
box in dimension i have opposite (inwards) flows, so by continuity of the flow,
the zero surface ẋi = 0 must pass through this box. As this is the case for all
dimensions, then the linearity of the system means the equilibrium point xe must
be in the corresponding box of the partition of the state space. By Assumption 1
the equilibrium point is wholly within one box L, and so the only location with
no outgoing edges is box L. (Note that box L is an invariant set.) �	
Theorem 3. Assume we have a system of form (4) with negative diagonal en-
tries, and an automaton abstraction created by the method of [9] satisfying As-
sumptions 1–4. Then all trajectories of the system from all initial boxes get to
the live box L within finite time.

Proof. Theorems 1 and 2 together imply that all traces of the TA lead to the
box L containing the equilibrium point in a finite number of steps. Assumption
4 says that each cube on this route is left within a finite time, and so the total
time for any TA trace to reach the box L is finite. By the over-approximation
of number of trajectories, all trajectories of the original system reach the box L
within finite time (and stay there as L is invariant). �	

5 Dynamically-Driven Splitting Method

In this section we define a method to split the state space of a continuous system
such that the TA abstraction created from it satisfies the four assumptions for a
subset of the upper triangular linear systems. Together with the previous section
this proves that we can automatically create a TA abstraction of such systems
which proves inevitability. The method is shown to terminate for this particular
class of systems, and the number of locations in the resulting abstraction is
analyzed.

5.1 The Class of Systems Considered

The class we now consider are a subclass of upper triangular linear systems of
form (4) with two conditions on them:

– All of the entries on the main diagonal are negative.
– In each row, a maximum of one other non-zero entry is allowed.

These conditions mean that xi’s differential equation is in one of two forms, for
each i = 1, . . . , n, either

ẋi = ai,ixi for ai,i negative, or (5)

ẋi = ai,ixi + ai,jxj for ai,i negative, ai,j 
= 0 and i < j ≤ n. (6)
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This class of systems does have restrictions, but allows various special classes
of systems. In particular, all 2-D systems with negative real eigenvalues can
be transformed by the Schur decomposition to an equivalent dynamical system
of this form. The verification results for such 2-D systems (with state space
limits and live box limits suitably transformed) will prove the desired properties
about the original system. Higher dimensional systems which can be of this form
include systems modelling chains of behaviour, where each xi’s evolution only
depends on itself and the element next in the chain. For example, simplified
models of biological cascades can be expressed in this form [6]. There are also
some piecewise linear models of such cascades, where each element depends only
on itself and the element before it: these can be modelled in the form (5) or (6) for
each xi and each region of dynamics. The method proposed is easily extendible to
piecewise systems of this form provided the divides between different dynamics
in the system occur at constant values of xi (this is the case in [1], for example).

If row i of the matrix has the form (5), this means that we always have the
same value of ẋi for any constant value of xi. So Assumption 3 is always true
on all box faces in dimension i. On the other hand, if row i has the second form
(6), this means that when we try to separate ẋi > 0 from ẋi < 0 on a particular

face xi = C, we get a constant value of xj = −ai,iC
ai,j

where the ẋi = 0 surface

occurs through this face. Therefore, we can choose to split at this point in the
j-th dimension to make sure of separating the positive and negative velocities
in the i-th dimension. This ease of selecting where to split is not available to us
for general upper triangular systems, and is what makes this special class better
for automatic splitting.

5.2 The Splitting Method

The method we propose for splitting systems of this new form is described in
Algorithm 1. The idea is to originally split based on the live box boundaries
which creates a box satisfying Assumption 1 (Step 1), and then to split based
on where a ẋj = 0 surface crosses any constant xj surface (Step 2). After these
two steps the resulting TA abstraction satisfies Assumptions 1 and 3.

Step 3 of the algorithm then finds and divides the boxes where infinite time
has been found, whilst still keeping these other two assumptions intact, in order
to satisfy Assumption 4. It works by finding the intervals of existence of ẋi = 0
surfaces, and splitting between two intervals calculated in dimension i if they do
not intersect. This method is demonstrated on a 2-D example in Fig. 4.

We will now show that this algorithm terminates and quantify the size of
the resulting abstraction, then we will give an overview of the proof of why the
abstraction satisfies Assumptions 1–4.

Termination and Abstraction Size. Firstly we show that FollowSplits termi-
nates. FollowSplits consists of two for loops, the first clearly has a finite number
of executions (n − 1). The second iterates over a finite number of elements of
the list List for i = 1, and each iteration removes an element from the current
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Algorithm 1. Automatic splitting algorithm

Input: Linear dynamical systems with each xi’s dynamics of the form of (5) or (6),
with state space [s−1 , s

+
1 )× . . .× [s−n , s

+
n ), and live box L = [l−1 , l+1 )× . . .× [l−n , l+n ).

Output: A splitting of the system such that the TA abstraction proves inevitability
of the live box.

1: add splits at xi = l−i and xi = l+i for each i � Step 1

2: call FollowSplits � Step 2

3: Calculate box times � Step 3
4: B ← list of boxes with infinite box time (except L)
5: while B is non-empty do
6: for k = 1, . . . , length(B) do
7: V ← get vertices of box B(k)
8: Z ← V (initialize the region where zero surfaces occur: let Z−

i be lower
bound and Z+

i be upper bound in dimension i)
9: for i = n, n− 1, . . . , 1 do
10: if ẋi has an off-diagonal entry then
11: j ← position of the off-diagonal entry in row i of A

12:

[
c−i c+i
c−j c+j

]
← limits of the surface ẋi = 0 in the box

13: if c−j > Z+
j then

14: add split at xj = (c−j + Z+
j )/2 (or nearby if this is xj = 0)

15: break loop
16: else if c+j > Z−

j then

17: add split at xj = (c+j + Z−
j )/2 (or nearby if this is xj = 0)

18: break loop
19: else if c−i > Z+

i then
20: add split at xi = (c−i + Z+

i )/2 (or nearby if this is xi = 0)
21: break loop
22: else if c+i > Z−

i then
23: add split at xi = (c+i + Z−

i )/2 (or nearby if this is xi = 0)
24: break loop
25: end if
26: else(row i does not have an off-diagonal entry)
27: if Z+

i < 0 then
28: add split at Z+

i /2
29: break loop
30: else if Z−

i > 0 then
31: add split at Z−

i /2
32: break loop
33: end if
34: end if
35: end for
36: end for
37: call FollowSplits
38: B ← new list of boxes with infinite box time (except L)
39: end while
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Algorithm 2. FollowSplits sub-algorithm

Input: Current splitting state of the system (including the newly made splits), with a
finite list List of newly made splits that need to be followed down the dimensions.

Output: A new splitting with only one direction of flow across the faces of the boxes.

1: for i = 1, . . . , n− 1 do
2: fi = the sublist of List of constant values for xi (splits in dimension i)
3: for all k ∈ fi do
4: v ← find ẋi velocity at vertices of the splitting surface xi = k
5: if all(v ≥ 0) or all(v ≤ 0) then
6: remove xi = k from List
7: else
8: solve ẋi = 0 when xi = k giving xj = d, for some i < j ≤ n.
9: add split at xj = d
10: add xj = d to List
11: remove xi = k from List
12: end if
13: end for
14: end for

dimension list and possibly adds one to a lower dimension’s list. Since this is
done a finite number of times, each iteration of the inner loop is only done a
finite number of times, and so FollowSplits terminates. The number of splits
that can be added by this is dependent on the size of the current splitting in
each direction (say this size is ci for i = 1 . . . , n), and also dependent on the
size of the newly made splits list (ni for i = 1, . . . , n). The worst case is when
each dimension causes a split in the dimension immediately after it, as the ef-
fect of these splits builds up, so the maximum number of splits (overall) after
FollowSplits in each dimension i = 1, . . . , n is

ci +

i−1∑

j=1

nj . (7)

Now consider Algorithm 1 as a whole. Clearly line 1 of Algorithm 1 performs a
finite number of splits (2 in each dimension), so terminates. Then, line 2 simply
calls FollowSplits on these initial splits, which terminates, with maximum of
2, 4, . . . , 2n splits in each of the 1, 2, . . . , n-th directions respectively.

For Step 3, lines 3–39, we must consider the while loop and the two for loops
inside it. Both for loops iterate over only a finite number of values, so the com-
bination of the two must terminate (given that all individual lines terminate).
So we now need to show that the while loop terminates, which occurs when we
have removed the infinite box time on all boxes except the live box.

The proof that all infinite-time boxes will be removed is a little more involved,
and we need to understand how this algorithm splits the state space of the
system. First we will show that all boxes with infinite time at the start of step 3
must touch the live box L (along an edge or at a corner). Assume not, then there
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(1) Initial Setup: Given live box L
containing the equilibrium point.

(2) After Step 1: Splits made based
on the boundaries of the live box.

(3) After Step 2: Light grey dots in-
dicate where ẋ1 = 0 on x1 constant
lines. Splits made at these points.

(4) After Step 3: An extra split is
added above the lower dot, removing
infinite time in the box marked in (3).

Fig. 4. Applying the splitting algorithm to the example ẋ1 = −x1− x2 and ẋ2 = −x2,
with the given live box defined slightly off centre around the equilibrium point (equil).
Arrows indicate the allowed directions of flow across box boundaries, and the shaded
region indicates the live box L as it changes size.

is a box B1 which is p > 1 steps away from L in some dimension i. Then, letting
j be the other dimension which occurs in the equation ẋi = ai,ixi + ai,jxj = 0,
we take the projection of this n − 1-dimensional surface to a line in the xi-xj

plane. So if the box B1 has infinite time, this line ẋi = 0 must pass through a
corner of the edge nearest to L, by step 2 and linearity. But then, as this line
also passes through the equilibrium point in the middle of box L, it must have
passed through the middle of an edge xi = C, contradicting that step 2 has been
completed. So all infinite-time boxes must be a maximum of one step away from
L in any dimension, which means that every infinite-time box touches L.
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The rest of the proof is too complex to explain in detail, but is an inductive
argument on the dimensions. Roughly, assume we have a box B1 with infinite
time which cannot be split on the first run through the while loop of Algorithm
1, and this box is offset from L’s slices in the dimensions i1, i2, . . . , ik (where
these are in order smallest to largest). Then, if equation ẋik depends on xik and
xj , then there must be a box B2 with infinite box time which shares a dimension
j edge with B1. If B2 is split by the algorithm, this makes B1 splittable on the
next run through the while loop (after FollowSplits). If B2 is not split, then it
too must have a neighboring box in dimension dependent on the ẋj equation,
and so on. Eventually we reach a splittable box (at dimension n if not before),
which makes the previous box splittable after FollowSplits is completed, and so
at most n − 1 runs through the while loop are necessary to remove all infinite
time boxes, hence Algorithm 1 terminates.

Algorithm 1 creates at most one split for each infinite-time box, with this split
being, in dimension one greater than the largest dimension in which the box is
offset from the live box L (in the worst case). Now, in one dimensional systems,
there are clearly a maximum of two boxes in dimension 1 which are ‘next to’ the
box L. In two dimensions, there are an extra 6, all with their maximal offsets in
dimension 2, and 2 (as before) only offset in dimension 1. By induction we can
find that there are 2× 3i−1 boxes with a highest dimensional offset in dimension
i. Infinite time is not possible with any offset from the central slice in dimension
n, so we only need consider the splits made in dimensions 1 to n− 1.

As each of these possible infinite-time boxes can create a maximum of one
split in the next dimension, this creates 2×3i−2 splits in each of the i = 2, . . . , n
dimensions. When FollowSplits is done, using the formula in (7) and the initial
number of splits 2i for each dimension i = 1, . . . , n, we can compute the number
of splits as: for i = 1, 2 splits, and for i = 2, . . . , n, 2i + 3i−1 − 1 splits. This
makes the maximum number of slices 3 for i = 1 and 2i+ 3i−1 for i = 2, . . . , n.
The total number of boxes is the product of the slices in each dimension, so

NumBoxes = 3×
n∏

j=2

(2j + 3i−1). (8)

Satisfying the Assumptions. We will now give an outline of the proof of why
this algorithm creates an abstraction which satisfies the assumptions.

Assumption 1. Step 1 creates one box containing the equilibrium xe = 0,
under the original specification that the live box should include xe (not on the
boundary). Step 2 can change the size of the box containing the equilibrium, but
cannot add splits exactly at xi = 0 for any i (because of linearity of dynamics),
so the box containing xe does not have it on the boundary. Step 3 similarly can
make splits which affect the box L, but again they are chosen not to be at the
equilibrium.

Assumption 2. There are a finite number of boxes in this splitting, which we
have already quantified.
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Assumption 3. After Step 2 has happened, Assumption 3 is satisfied due to
splitting at the zero values, and then after each change in Step 3 the “FollowS-
plits” function is used, which again makes the TA satisfy this assumption.

Assumption 4. We showed that Algorithm 1 terminates, and in the process
showed that it only terminates when all infinite times on boxes are removed
(apart from L). Hence, this assumption is satisfied.

5.3 The Main Result

The above properties result in the statement that if a TA is created by the
method of [9] using the splitting of Alg. 1, then the proof of inevitability of L
on the TA abstraction will prove the inevitability of L for the original system.
The proof follows from the method of Alg. 1 with the assumptions of Sect. 4.1
and the theorems of Sect. 4.2.

Corollary 1. Given a continuous dynamical system with each xi’s dynamics
of the form (5) or (6), then, by considering the TA abstraction, all possible
trajectories of the linear system will reach box L containing xe = 0. �

6 Conclusions and Future Work

In this work we have defined a method for a class of linear systems which creates
a splitting of the state space. When using this splitting to create a timed au-
tomaton by the method of [9], we have shown that certain properties are true of
the timed automaton. Together these properties mean that the timed automaton
will prove inevitability of the original system reaching a set L around the equi-
librium point xe. The method is easily extendible to a related class of piecewise
linear systems.

Our future goal is to extend this method to more general dynamical systems,
be they linear, nonlinear, piecewise, or hybrid systems. There are various prob-
lems to be overcome with these systems, one of which will be the termination
of the splitting method, as the current method only terminates because of the
special dynamics involved. Hence, part of the future work will be to revise the
splitting method to be more useful for more general systems. For piecewise and
hybrid systems, we aim to develop dynamically-driven splitting methods for con-
sidering the guards/resets (changes between areas of different dynamics), so that
general guards can be considered by the splitting.
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