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Abstract. Model checking of technical systems is a common and de-
manding task. The behavior of such systems can often be characterized
using hybrid automata, leading to verification problems within the first-
order logic over the reals. The applicability of logic-based formalisms
to a wider range of systems has recently been increased by introducing
quantifiers into satisfiability modulo theory (SMT) approaches to solve
such problems, especially randomized quantifiers, resulting in stochas-
tic satisfiability modulo theory (SSMT). These quantifiers combine non-
determinism and stochasticity, thereby allowing to represent models such
as Markov decision processes. While algorithms for exact model checking
in this setting exist, their scalability is limited due to the computational
complexity which increases with the number of quantified variables. Ad-
ditionally, these methods become infeasible if the domain of the quanti-
fied variables, randomized variables in particular, becomes too large or
even infinite. In this paper, we present an approximation algorithm based
on confidence intervals obtained from sampling which allow for an ex-
plicit trade-off between accuracy and computational effort. Although the
algorithm gives only approximate results in terms of confidence intervals,
it is still guaranteed to converge to the exact solution. To further increase
the performance of the algorithm, we adopt search strategies based on
the upper bound confidence algorithm UCB originally used to solve a
similar problem, the multi-armed bandit. Preliminary results show that
the proposed algorithm can improve the performance in comparison to
existing SSMT solvers, especially in the presence of many randomized
quantified variables.

1 Introduction

In safety analysis, one is often interested in guaranteeing certain behavioral
properties of complex systems. Such systems are usually described using hy-
brid automata, which are capable of expressing the continuous dynamics of an
environment using differential equations, together with discrete/continuous con-
trollers. As the exact dynamics may not be known, these hybrid automata can
contain non-deterministic choices, which have to be resolved. Additionally, due
to environmental influences or failure probabilities, the system is likely to be

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 123–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



124 C. Ellen, S. Gerwinn, and M. Fränzle

exposed to stochastic type of non-determinism leading to probabilistic hybrid
systems1. Safety properties for these systems can be formalized as reachability
problems, that is, unsafe sets of states must not be reached. For the correspond-
ing verification, a common technique is to use bounded model checking [1,2],
which evolves the dynamics of the system up to a given number of transitions
and checks the reachability for this unrolled depth. As transitions usually re-
flect only the switching decision, the reachability problem still has to respect
the continuous dynamics of the system. The formalism of Satisfiability Modulo
Theories (SMT) together with the corresponding solvers can in turn be used to
solve this remaining satisfiability problem.

Recent developments with Conflict-Driven Clause Learning (CDCL) solvers
enabled the analysis of large hybrid systems by learning conflicts which provide
information from one path about a set of other paths. Formally, these hybrid
systems can be modeled and analyzed using a combination of SMT and bounded
model checking [3,4]. Analogous to Markov decision processes, it still remains to
decide which transition path to evaluate in the presence of probabilism and non-
determinism. To this end the formalism of SMT can be extended to Stochastic
Satisfiability Modulo Theory (SSMT) which contains quantifiers that allow the
encoding of different type of transitions [5]. Such SSMT solvers iterate the tree
of possible assignments to the quantified variables and solve the resulting SMT
problems at the leaves. The exponential size of this decision tree is one of the
main problems for SSMT solvers. Therefore, methods are needed which search
the tree efficiently and do not expand the tree completely.

Mathematically, the probability of satisfaction can also be formulated as a
nested optimization. In this formulation, the problem of one existential followed
by a randomized quantifier is known as the multi-armed bandit problem [6],
where bandits are choices of the existential quantifier and expected rewards are
the averages from the randomized quantifiers. For this problem, there exists a
number of algorithms, most notably the Upper Bound Confidence algorithm
(UCB), which has been proven to solve the multi-armed bandit problem in a
minimax-optimal way [7].

In this paper, we present an algorithm which combines a sampling based
approach for the generation of confidence intervals with the exploitation-scheme
of the UCB-algorithm. The resulting algorithm allows for an explicit trade-off
between accuracy (desired confidence level and precision in terms of the width
of the confidence interval) and efficiency (solving of SMT formulas at the leaves
of a decision tree). Additionally, due to the sampling of random variables, the
algorithm is also applicable for randomized quantifiers with large or even infinite
domains.

This paper is organized as follows. In Section 2 we give a short introduction
to the SSMT-formalism and briefly review related work on SSMT-solvers as well
as the relevant statistics literature followed by the description of the proposed
algorithm including the bound propagation and the selection rules. In Section 3

1 As an illustrative example for such a system, we use a simple cooling controller
throughout this paper, see Figure 1.
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we evaluate the algorithm on randomly generated SSMT formulas and on the
example hybrid system in Figure 1. We conclude and give an outlook to future
work in Section 4.

2 Methods

As mentioned previously, we are interested in satisfiability problems concerning
probabilistic hybrid systems. which we illustrate with a simple example in Fig-
ure 1. For this particular system, we might be interested in guaranteeing that the
probability of overheating is lower than a given threshold. To this end, we use
satisfiability modulo theory (SMT) to formalize the satisfiability problem, given
a particular path of transitions/decisions (x1, . . . , xn) obtained by unrolling the
dynamics for a given number n of transitions. Note that this does not neces-
sarily imply that the time within a state is fixed. For the example in Figure 1,
transitions are only possible between cooling and not cooling. We denote
the SMT formula which indicates the satisfiability for the given transition by
φ(x1, . . . , xn). The main task for the SMT solver is then to determine the exis-
tence of a satisfying variable assignment for a given SMT formula φ(x1, . . . , xn).
In the cooling example, this corresponds to an assignment of a temperature
trajectory, given a state and a starting temperature.

SSMT is an extension of (SMT) [4] consisting of a decision problem for
first-order logical formulas over a given background theory (e.g., the arithmetic
theories over real numbers, including multiplication). Specifically, an SSMT for-
mula Φ extends an SMT formula φ by adding a prefix of quantified variables
Q1Xi, ..., QnXn. Every quantifier Qi of the prefix binds one variable Xi of φ and

Fig. 1. Example of a probabilistic hybrid system modeling a simple cooling system. A
cooling device can either be in the state cooling or not cooling. Withing the cooling
state, the temperature Θ is decreased constantly whereas in the not cooling state,
the temperature rises. Bold numbers at the edges reflect transition probabilities for the
given probabilistic transitions, which can be activated once the guards (inequalities)
hold. For this system, we might be interested in the probability of overheating (e.g.,Θ >
115◦) within a given time-frame.
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is either randomized (

R

Xi), existential (∃Xi), or universal (∀Xi). Every quanti-
fied variable has a finite domain: Xi. In the randomized case, every value xj ∈ Xi

is associated with a probability P (Xi = xj), modeling the likelihood that the
corresponding transition is chosen. The other quantifier types model different
ways to resolve non-determinism: ∃ by maximizing the probability of satisfying
the remaining formula over all domain values and analogously ∀ by minimizing
the probability (see definition 1).

Definition 1. The semantics on an SSMT formula Φ are defined recursively
using Q for the remainder for the quantifier prefix (cf. [5]):

1. P ( ε : φ ) = 0 if φ is unsatisfiable.
2. P ( ε : φ ) = 1 if φ is satisfiable.
3. P ( ∃XiQ : φ ) = maxx∈Xi P (Q : φ[Xi = x]) .
4. P ( ∀XiQ : φ ) = minx∈Xi P (Q : φ[Xi = x]) .
5. P (

R

XiQ : φ ) =
∑

x∈Xi
P (Xi = x|X\i) · P (Q : φ[Xi = x]) .

Here, we used the shorthand notation X\i for all variables except the i-th one.
From definition 1, we see that the satisfiability problem can be written as a nested
optimization-expectation problem. For example, if Φ consists of one existential
quantifier followed by a randomized one, the satisfiability problem can be written
as follows:

P (∃x R
yφ(x, y)) = max

x∈X
Ey|x [P (φ(x, y))] = max

x∈X

⎛

⎝
∑

y∈Y
P (φ(x, y))P (y|x)

⎞

⎠ (1)

For the cooling example, this would correspond to first selecting a transition from
a cooling state to one of the randomized states (rectangles in Figure 1) and then
choosing a transition at random, according to the probabilities (bold numbers).
The existential quantifier corresponds to a pessimistic choice of transitions in
terms of consequences with respect to overheating. Note that in equation (1),
we used P (y|x) to indicate that the probability distribution associated with the
random variable Y potentially depends on the value of other variables within the
prefix. Although it is straightforward to extend the formalism developed in this
paper to this general case, we assume independence of the different variables to
simplify the notation.

Equation (1) suggests we should approximate the expectation via a sampling
based scheme, if the set Y is too large. If we use the average of samples generated
according to P (y|x), we observe only a noisy estimate Êy|x of the true underlying
function Ey|x. By using confidence intervals for this estimation, we obtain an un-
certainty estimate for the expectation, i.e., randomized quantifier which has then
to be propagated through other quantifiers to obtain an overall uncertainty esti-
mate on Φ. Computationally, we are interested in an efficient way of calculating
equation (1), that is to efficiently search for promising x to evaluate.
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A common representation of an SSMT formula uses a decision tree for the
variables in the quantifier prefix, where the nodes are the variables (in order
of their occurrence in the prefix) and the decisions are the domain values. The
leaves of the tree are replications of φ, where every quantified variable is substi-
tuted according to the path in the decision tree. Therefore, every leaf represents
an SMT problem of its own. As solving these SMT problems at the leaves of
the decision tree is a time-consuming problem, most existing work focuses on
minimizing the number of evaluations of the leaves by carrying information from
one leaf-evaluation to another by using conflict learning.

In the following, we aim at calculating confidence bounds l, u, such that the
following holds:

P (l ≤ P (Φ) ≤ u) ≥ 1− α (2)

Where α is a given confidence level, which specifies the quality of the calculated
bounds. Here, the outer probability originates from random samples generated
during the execution of the algorithm and play the role of classical confidence
intervals, while the inner probability is the quantity we wish to estimate, namely
the probability of satisfaction.

2.1 Related Work

In the following, we briefly review existing work on SSMT solving on the one
hand and on the corresponding statistics literature on the other hand.

SSMT Solving. Based on the iSAT[8] algorithm for SMT problems, an algo-
rithm called SiSAT [5] has been developed to solve SSMT problems efficiently.
It implements a fully symbolic solving procedure based on the traversal of the
prefix tree, using extended CDCL procedures and pruning rules. The computed
probability of satisfaction comes with absolute certainty, that is SiSAT termi-
nates, if the probability is guaranteed to be larger than a given threshold θ or it
has been computed exactly. The pruning rules allow SiSAT to ignore parts of the
quantifier tree if the outcome of the decisions could be inferred or has no impact
on the result (e.g., if the target threshold has already been exceeded or cannot
be reached anymore). Otherwise, the algorithm has to perform an exhaustive
search over the state space. Due to this exhaustive search, the number of leaves
in the tree – and hence the number of SMT problems to solve – depends expo-
nentially on the number of quantified variables in the prefix. Although SiSAT
has to examine exponentially many leaves in the worst case, the memory usage
is still limited, as the tree is searched in a depth-first manner.

Statistical Model Checking. Inspired from classical hypothesis testing based
on a set of data-samples, statistical model checking uses generated traces of
the system under investigation to estimate if a given property holds. This can
be done, if the system is given only in terms of a trace-generator [9,10,11], or if
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more structure of the generative model is known (e.g., a continuous time Markov
chain [12]). Also, additional information, for example in terms of associated costs,
can be incorporated [13,14]. Instead of hypothesis testing, one can also impose
a prior distribution on the probability of satisfaction and update a Bayesian
believe sequentially as new samples are drawn from the generative model [15].
However, all these approaches are only applicable, if no decisions are needed to
resolve other than random non-determinism.

Stochastic Optimization. Problems in the form of equation (1) have been
studied extensively in the statistics literature. This special case of an SSMT
problem is known as the multi-armed bandit problem [6]. Algorithms which solve
this problem approximately have been presented in [7] and also continuous ex-
tensions thereof [16]. The idea is to use the stochastic information obtained from
a sample φ(y, x) ∼ φ(y, x)p(y|x) (or any noisy measurement of the expectation)
to favor those points x which are more likely to attain the maximal expectation.
Due to the sample-based nature of such information, one cannot guarantee hard
bounds for the probability of satisfaction. However, even in the finite sample-size
regime soft-bounds in terms of confidence intervals are available that are based
on Hoeffding’s inequality [17]. Extensions to problems similar to nested quanti-
fiers are available for Markov Decision Processes, most notably the upper bound
confidence algorithm for trees UCT [18,19]. In the UCT case, the search tree is
sequentially expanded if needed. In this roll-out based technique, an estimate of
the probability of satisfaction is needed, when a path is not completely traversed
to the leaves and hence only parts of the variables are assigned specific values.
Additionally, certain drift conditions have to be guaranteed and even if they
hold, only asymptotic bounds for the root node are available.

2.2 Bound Propagation

In this section, we describe how the bounds for the full SSMT formula can be
obtained from bounds for the intermediate values at the leaves of the decision
tree. First, we show how to obtain confidence bounds for the probability of
satisfaction at the root node using bound propagation, and then present search
strategies for an efficient way to decrease these bounds.

As mentioned previously, we are interested in calculating bounds on the prob-
ability of satisfaction. To obtain these bounds (equation (2)), we propagate
bounds together with their confidence level from the leaves of the decision tree
up to the root (see Figure 2). As the bounds together with confidence levels are
propagated from leaves to the root, at each point during the computation, we
need bounds as well as confidence levels at the leaves. Without loss of generality,
the last quantifier in the decision tree is a randomized quantifier, otherwise we
can shift all existential and universal quantifiers into the formula at the leaves
as the probability of satisfaction is either 0 or 1. However, in this case we use
the SiSAT algorithm to compute these remaining SSMT problems. Therefore,
we can obtain the bounds and confidence levels for the leaves of the decision
tree by drawing samples from the probability distribution associated with the
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Fig. 2. Illustration of the bound propagation through the decision tree. Confidence
intervals with confidence level α = α(x1) are obtained at the leaves (here for the random
variable x2) via equation (3). These are propagated to the next level to derive confidence
intervals with worse confidence levels

∑
α. In this illustrative example vi, i = 1, 2, 3

are the possible values for the variable x1. Additionally to the α-confidence intervals,
we could also propagate guaranteed (α = 1) confidence bounds.

randomized quantifier and apply a Hoeffding type of inequality similar to the
UCT algorithm. If we assume that the domain of the randomized quantifier is
finite, we could also get tighter bounds by drawing samples without replacement
and using the appropriate inequality (see [20]). However, as such sampling with-
out replacement increases memory usage for large domains, we use the version
with replacement [17]. Specifically, we set for the lower l and upper u bounds at
the leaves, which depend on the values set for other variables set earlier in the
decision tree x1, . . . , xk−1:

l(x1:k−1) := P̂ (Φ|x1:k−1)− w, u(x1:k−1) := P̂ (Φ|x1:k−1) + w

P̂ (Φ|x1:k−1) =
1

m

∑

xi∼Pk

P
(
φ(x1, . . . , xk−1, xk = xi)

)

P (Φ|x1:k−1) =
∑

xk∈Xk

Pk(xk)P (φ(x1, . . . , xk−1, xk)) ,

(3)

where w specifies the uncertainty in the estimate P̂ of the true (unknown) prob-
ability of satisfaction P . m is the number of samples xi we have drawn from the
probability distribution Pk of the random variable Xk. Here, we have written
Pk(xk) as a shorthand for P (Xk = xk|X1 = x1, . . . , Xk−1 = xk−1). Using these
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setting and applying Hoeffding’s inequality, we have for the confidence level of
the specified width:

P (l(x1:k−1) ≤ P (Φ|x1:k−1)) ≥ 1− e(−2mw2) := 1− 1

2
α(x1, . . . , xk)

P (P (Φ|x1:k−1) ≤ u(x1:k−1)) ≥ 1− e(−2mw2) := 1− 1

2
α(x1, . . . , xk)

(4)

where α is the confidence level, which depends on the number of samples and the
width w. The bound in equation (4) makes a statement about the confidence that
we obtain as a consequence of the random sampling. As mentioned previously, we
could, obtain a “hard bound” (that holds with probability 1) on the probability
of satisfaction if we additionally make use of the explicitly known structure of
the randomized quantifier in terms of the associated probability distribution.
The confidence bounds apply for the random sampling at the leaves. However,
we are interested in calculating bounds for the root of the decision tree. To this
end, we state the following propagation rules from level k to the above level
k − 1:

b(x1, x2, . . . , xk−1) =

⎧
⎪⎨

⎪⎩

maxxk∈Xk
b(x1, . . . , xk−1, xk) if Qk = ∃Xk

minxk∈Xk
b(x1, . . . , xk−1, xk) if Qk = ∀Xk∑

xk∈Xk
P (xk)b(x1, . . . , xk−1, xk) if Qk =

R

Xk

(5)

α(x1, . . . , xk−1) =
∑

xk∈Xk

α(x1, . . . , xk−1, xk) (6)

Here, b are the bounds, which are function of the decision variables and could be
either lower or upper bounds that we would like to propagate to the preceding
level.

This process of propagating intervals is illustrated in Figure 2. In the case of
Figure 2 we have two quantifiers, an existential and a randomized one. Given
that we have drawn samples for the randomized quantifier, we can calculate
confidence intervals via equation (3),(4) for a given confidence level.We can then
combine these confidence intervals to obtain confidence intervals for the value
at the existential quantifier using equation (5). Note that the confidence level
for the “soft” bounds is worse than those at the lower level. In fact, if we want
to reach a desired confidence level at the root of the decision tree, e.g., 95%, we
have to impose a much higher confidence level at the leaves. For example, in the
case of Figure 2, we would have to impose α(x1) =

0.05
3 to get the desired 95%

confidence interval at the top.
We now show that the bounds calculated in equation (5) indeed hold for the

confidence level in equation (6). We start with the bounds in the case of an
existential quantifier. In this case, we can simplify the notation, by ignoring
variables that are fixed for the propagation and therefore writing u(x), l(x) for
the upper and lower confidence bounds for the level that we would like propagate
and α(x) for the corresponding confidence level at the lower level. Similarly,
we write Φ(x) for the true (unknown) values at the leaves of the existential
quantifier. With this notation, we have:
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Lemma 1. Let the lower and upper confidence bound hold for each child x of an
existential quantifier, i.e.,P (Φ(x) > u(x)) ≤ 1

2α(x)∀x. Then the following bound
hold for the existential quantifier node:

P
(
max
x

l(x) ≤ max
x

Φ(x) ≤ max
x

u(x)
)
≥ 1−

∑

x

α(x)

Proof. From the lower level, we know P (Φ(x) > u(x)) ≤ 1
2α(x) for each x indi-

vidually. Applying a simple union bound (cf. [21]), we find:

P
(
max

x
Φ(x) > max

x
u(x)

)
≤ P (∃x : Φ(x) > u(x))

=
∑

x

P (Φ(x) > u(x))
︸ ︷︷ ︸

≤ 1
2α(x)

−P (∀x : Φ(x) > u(x))
︸ ︷︷ ︸

≥0

≤ 1

2

∑

x

α(x)

(7)

Similarly, we get P (maxx Φ(x) < maxx l(x)) ≤ 1
2

∑
x α(x). Combining upper

and lower bound completes the proof. �	
By maximizing the negative value instead of the minimization for the universal
quantifier and inverting the role of upper and lower bound, the same argument
can be made for the case of an universal quantifier. For the case of a randomized
quantifier, we have:

Lemma 2. Using the same notation as in Lemma 1, the following bound holds.

P

(
∑

x

P (x)l(x) ≤
∑

x

P (x)Φ(x) ≤
∑

x

P (x)u(x)

)

≥ 1−
∑

x

α(x)

Proof. As ∀x : Φ(x) ≤ u(x) ⇒∑
x P (x)Φ(x) ≤∑x P (x)u(x) (∗):

P

(
∑

x

P (x)Φ(x) >
∑

x

P (x)u(x)

)

= 1− P

(
∑

x

P (x)Φ(x) ≤
∑

x

P (x)u(x)

)

∗≤ 1− P (∀x : Φ(x) ≤ u(x)) = P (∃x : Φ(x) > u(x))
(7)

≤ 1

2

∑

x

α(x)

The lower bounds follow analogously. �	

2.3 Search Strategies

So far, we have not considered any search strategies for the optimized selection of
children to expand at a quantifier node in order to increase the confidence at the
root of the decision tree. By selecting the paths to evaluate in a strategic man-
ner, we aim for gaining as much information as possible about the probability of
satisfaction of the SSMT-formula at hand. To this end, we propose several simple



132 C. Ellen, S. Gerwinn, and M. Fränzle

search strategies. As an existential quantifier corresponds to a maximum oper-
ation (see definition 1), we select the child with the maximal upper confidence
bound for exploration. Analogously, we select the child with the minimal confi-
dence bound for universal quantifiers. This strategy is known under the upper
confidence bound algorithm. However, additionally to the lower and upper bound
from equation (5), we can calculate the upper bound, according to the number of
times, the current node x has been visited n(x), compared to the overall number
of samples within the current quantifier n analogously to the UCT-algorithm:

μ(x)± =

√
2 log(n)

n(x)
, μ(x) := l(x) +

u(x)− l(x)

2
. (8)

Note that using the bounds from equation (5) typically leads to smaller bounds
compared to the UCB, as it uses more information on the structure below the
node. For leaf-nodes, however, they are identical. For a randomized quantifier,
we propose the following two strategies:

1. Sample a child to explore according to the associated probability distribution
2. Construct a probability distribution by weighting the probability of each

child with the width of its confidence interval

By using combinations of these selection rules, we obtain 4 different selection
rules in total.

2.4 Algorithmic Description

Although we have presented the basic components – initial bounds, bound propa-
gation, and search strategies – of our proposed algorithm in the previous sections,
we present a more detailed algorithmic description in this section. In particu-
lar, this includes how deductions obtained from the solver at the leaves of the
decision tree can be used for pruning and incorporated into the calculation of
the confidence bounds. We explain the three different phases (see Algorithm 1:
selection phase, sampling phase, and propagation phase) in more detail in the
following. First, we partition the decision tree into a three parts: A trailing part
containing all trailing non-randomized quantifiers, a (non-empty) set of random-
ized quantifiers, and a leading part which may contain any quantifier. To lighten
the description, we collapse the randomized quantifiers in the second part to a
single randomized quantifier with more leaves and expand the SMT formula by
adding the trailing non-randomized quantifiers to the formula. Hence, we can
assume for the following a decision tree/SSMT formula in which the last quan-
tifier is a randomized one. Additionally, to obtain the desired confidence level
at the root of the decision tree, we calculate the necessary α for the randomized
part by counting the number of leaves L of the first part of the decision tree:

α(x1, . . . , xn) = 1− 1

L
(1 − α)
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Algorithm 1. Confidence Bound Generation and Propagation

Data: Quantifier Prefix Q1, . . . , Qn,
SMT Forumla φ(x1, . . . , xn),
confidence level α
Result: Confidence interval [p, p] for satisfiability of: Q1, . . . , Qnφ(x1, . . . xn)

with given confidence
while terminal condition not reached do

for i← 1 to n− 1 do ; // Selection phase

Select xi for Variable Xi|x1, . . . , xi−1;
end
for k← 1 to m do ; // Sampling phase: draw m samples

sample xk
n ∼ Pn(Xn);

satk � {0, 1}= solveSMT(φ(X1 = x1, . . . , Xn = xk
n))

end
update bounds for u(x1, . . . , xn−1) using eq. (3);
for i← n− 1 to 1 do ; // Propagation phase

collect l(x1, . . . , xi, Xi+1 = x), u(x1, . . . , xi, Xi+1 = x) for all x;
use deductions to collapse some of these bounds to 0;
use equation (5) to calculate l(x1, . . . , xi), u(x1, . . . , xi);

end

end

Selection Phase. Within the selection phase, the quantifiers of first part are
traversed and a new evaluation is selected based on the type of quantifier and
the valuations so far:

∃, ∀ These quantifiers are decided by selecting the value with the largest or small-
est confidence bounds for existential or universal quantifiers respectively. Ei-
ther the confidence bounds are used directly or they are computed based
on the UCB-rule, see equation (8). Note that for some of the variables the
bounds might be collapsed due to deduction from DPLL solvers for the SMT
formula. The corresponding values will be ignored for the selection rule.R

As mentioned in section 2.3, there are two available selection rules for
randomized quantifiers. To construct a weighted version of the probabil-
ity distribution associated with the randomized variable Xk, we use the
following:

Ps(xk) =
Pw(xk)∑
x Pw(x)

, Pw(xk) = (u(xk)− l(xk))P (xk) (9)

Sampling Phase. In this phase, we generate m samples for last randomized
quantifier. For each generated sample, we solve the remaining SMT formula
and use the resulting data to calculate initial bounds or update the confidence
bounds, if the current node as already been sampled in the past and has been
selected for further evaluation.
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Propagation Phase. After updated confidence bounds for the current path
have been generated in the selection phase, the new information needs to be
propagated to the root node. The updated bounds are propagated according to
equation (5) and the number of visits for each existential and universal quanti-
fier is increased by one. Additional to the evidence from the generated samples,
DPLL solvers provide extra information in terms of deductions indicating sub-
trees which are guaranteed to evaluate to false. This supplemental information
can be incorporated in the propagation of confidence bounds by collapsing the
corresponding bound of the subtree to 0. As bound updates only occur on the
current path, the influence of a deduction is only taken into account for this
path. The effects of deductions for other subtrees not yet sampled will only be
calculated once this subtree is visited.

Terminal Condition. As the algorithmnever reaches a point interval with 100%
confidence, we have to decide when to abort the sampling procedure. By adjust-
ing combinations of confidence level and desired width of the computed confidence
interval, we can set an explicit trade-off between accuracy (width of the interval
together with desired confidence) and speed (number of SMT-evaluations). Some-
times we might be interested in verifying that the probability of satisfaction is
larger, or lower than a certain threshold, independently of the width of the confi-
dence interval. Therefore, we use the following two possibilities: Terminate if ei-
ther the confidence interval for the full formula has reached a given width, or if
the lower (upper) confidence bound has crossed a predefined threshold.

3 Evaluation

The computational complexity of Monte-Carlo sampling based methods usually
do not scale with the dimensionality of the probability distribution at hand,
but scale only with the number of samples (see equation (3)). Therefore, we
expect the bound propagation to work best when the number of randomized
quantified variables for the last part is large, as we obtain the initial confidence
bound within this part. Additionally, as we do not use the full information avail-
able via deductions of the SMT-solver at the leaves of the decision tree, we
expect existing solvers like SiSAT [5] to outperform the bound propagation al-
gorithm in cases of only small proportions of randomized quantified variables.
To test these hypotheses, we first evaluated the bound propagation on scenarios
of randomly generated SMT formulas. Specifically, we used the same genera-
tion mechanism as in [22] called makewff to generate random formulas with
24 variables, 20 clauses and 3 variables per clause. By using these settings, we
generated formulas which are likely to be satisfiable for some yet not all as-
signments. For the quantifier prefix, we tested two different settings, one with
a large proportion of randomized quantifiers and one with a small proportion.
For the first setting, we constructed a quantifier prefix with a high fraction of
randomized quantifiers consisting of twice an ∃ − R

pair followed by 21 ran-
domized quantifiers. The second setting is particularly disadvantageous for the
bound propagation and consisted eight (∃ − ∃ − R

) triplets. For each of these
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Fig. 3. Performance comparison as a function of the width of the confidence interval
with fixed confidence level of 95%. Left: Results for the setting with high fraction of
randomized quantifiers. Right: Disadvantageous setting with more existential quanti-
fiers. The blue line shows the number of evaluations for the SiSAT algorithm (averaged
across 16 randomly generated formulas) and in red the standard deviation over these
repetitions. For each width we compared different selection rules, UCB stands for an
UCB selection rule for the existential quantifier whereas ’direct’ indicates a confidence
bound selection rule on the confidence bounds according to equation (5). ’weighted’
indicates that the probability distribution is weighed with the width of the confidence
interval before a sample is drawn.

settings, we compared the SiSAT algorithm and the bound propagation in terms
of the number of evaluations of the leaves, i.e., number of solver calls averaged
across 16 repetitions (as both the result as well the formula depend on stochastic
quantities). For a fixed confidence level, the number of leaf-evaluations depends
mainly on the width of the confidence interval used as termination condition.
Therefore, we show the performance as a function of the width of the confidence
interval in Figure 3. In the left panel, the results are shown for the advantageous
setting of large proportions of randomized quantifiers, whereas in the right panel
the disadvantageous setting is used. For the second setting (right panel) the prob-
ability of satisfaction can be inferred by only a few SMT-evaluations, as a large
proportion of the tree can be pruned due to deductions made by the SMT solver.
In fact, due to the maximum operation of the existential quantifier, only a few
paths contribute to the root value, i.e., it is sufficient to show the satisfiability of
these few paths. As the bound propagation algorithm still samples some paths
for the trailing randomized quantifier, it needs more SMT evaluations than the
SiSAT algorithm. As the number of randomized variables is small, the sampling
procedure is likely to sample the same valuation multiple times. These samples
can be cached and hence no SMT solver needs to be evaluated. Therefore, we
report only the number of actual SMT evaluations neglecting the evaluations,
that can be obtained from the cache. For the first setting (left panel), both
SiSAT and the four statistical variants need much more evaluations compared
to the setting in the right panel, as in this case nearly all paths contribute to the
root value. For this setting with a large proportion of randomized quantifiers,
the bound propagation decreases the number of SMT evaluations tremendously
compared to the SiSAT algorithm. If we fix, however, the width of the confidence
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Fig. 4. Performance comparison as a function of the confidence level chosen. For all
experiments the number of evaluations is counted until the confidence interval reached
a width of ≤ 0.01. Left and right panels show the results for the different settings,
analogous to Figure 3.

Fig. 5. Performance for the illustrative example of Figure 1. Left: Number of SMT
evaluations with fixed level of confidence (95%) used as terminal condition. Right:
Performance of the different search strategies as a function of the confidence level with
fixed width of the confidence interval (0.05). For each combination of existential and
randomized selection rule the statistics over 100 repetitions are plotted.

interval, the number of evaluations depends on the confidence level, see Figure 4.
Analogous to Figure 3, the left and right panel show the results for the different
proportions of the type of quantifiers. For this setting the same overall obser-
vation holds that the bound propagation gives a superior performance for the
first set of quantifiers order (left panel). However, we note, that the width of the
confidence interval has a much bigger impact on the number of SMT evaluations
than the confidence level. Finally, we performed the same type of analysis for the
illustrative example shown in Figure 1, the results for which can be found in Fig-
ure 5. The difficulty in this scenario can be increased by increasing the bounding
depth in the BMC problem, i.e., number of transition. The results plotted in
Figure 5 are obtained by using a bounding depth of 8 steps. For this example,
a similar behavior of the different algorithms can be observed. However, for this
setting, much more information can be obtained through deductions, as can be
seen by the small number of SMT evaluations needed to achieve the goal of the
combination of interval width with a given confidence level. In the right panel



Confidence Bounds for Statistical Model Checking 137

of Figure 5, we see that the number of SAT evaluations does not vary with the
chosen confidence level. The actual confidence level is 100% due to deductions
available during the processing, hence once the width of the confidence interval
is below the chosen threshold, no more samples are needed to achieve the con-
fidence level. Additionally, it can be observed that the direct confidence bound
selection rule performs better than the UCB strategy, although the difference is
not as big as in the previous setting.

4 Conclusion

We have presented an SSMT-solving algorithm based on statistical methods used
for solving multi-armed bandit problems. As the algorithm allows to specify the
desired accuracy in terms of confidence width and confidence level, the trade-off
between accuracy and computational effort can be adjusted explicitly. By using
the proposed search and sampling strategy, we were able to gain efficiency for
certain SSMT problems. The improvement compared to existing SSMT-solvers
(SiSAT) is larger, the higher the proportion of randomized quantifiers is within
the tree. Indeed, the presented sampling based technique can also be extended
to handle continuous valued random variables and thereby extends the model
class which can be analyzed to hybrid systems including stochastic differential
equations. Importantly, we can also make use of the pruning procedures, which
are typically used in CDCL-based solvers. For the implementation, however, not
all deductions obtained from these solvers can be exploited to prune the decision
tree. Currently, we use the pruning rules to collapse the confidence intervals
with confidence level α, although we could collapse the 100% confidence bounds
thereby allowing to use worse confidence levels in other subtrees. Exploiting more
of these pruning rules is subject to future research.
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