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Preface

This volume contains the papers presented at the 10th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2012), held on
September 18–20, 2012 in London, UK.

Timing aspects of systems from a variety of computer science domains have
been treated independently by different communities. Researchers interested in
semantics, verification, and performance analysis study models such as timed
automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to
take account of the time taken by controllers to compute their responses after
sampling the environment.

Timing-related questions in these separate disciplines do have their particu-
larities. However, there is a growing awareness that there are basic problems that
are common to all of them. In particular, all these sub-disciplines treat systems
whose behavior depends upon combinations of logical and temporal constraints;
namely, constraints on the temporal distances between occurrences of events.

The aim of FORMATS is to promote the study of fundamental and practical
aspects of timed systems, and to bring together researchers from different dis-
ciplines that share interests in modeling and analysis of timed systems. Typical
topics include (but are not limited to):

– Foundations and Semantics: theoretical foundations of timed systems and
languages; comparison between different models (timed automata, timed
Petri nets, hybrid automata, timed process algebra, max-plus algebra, prob-
abilistic models).

– Methods and Tools: techniques, algorithms, data structures, and software
tools for analyzing timed systems and resolving temporal constraints (schedul-
ing, worst-case execution time analysis, optimization, model-checking, test-
ing, constraint solving, etc.).

– Applications: adaptation and specialization of timing technology in applica-
tion domains in which timing plays an important role (real-time software,
hardware circuits, and problems of scheduling in manufacturing and telecom-
munications).

This year FORMATS received 34 submissions. Each submission was reviewed
by at least 3, and on average 4, Program Committee members. The committee
decided to accept 16 papers for publication and presentation at the conference.
The program also included three invited talks:

– Moshe Vardi, Rice University, USA: Compositional Temporal Synthesis;
– Twan Basten, Eindhoven University of Technology, the Netherlands: Model-

Driven Design-Space Exploration for Software-Intensive Embedded Systems;
– Kim G. Larsen, Aalborg University, Denmark: Statistical Model Checking,

Refinement Checking, Optimization, . . . for Stochastic Hybrid Systems.



VI Preface

For the third time, FORMATS was co-located with the International Con-
ference on Quantitative Evaluation of SysTems (QEST), and the two confer-
ences shared an invited speaker and social events. The two conferences focus
on complementary and tightly related themes. While FORMATS puts emphasis
on fundamental and practical aspects of timed systems, QEST focuses on eval-
uation and verification of computer systems and networks, through stochastic
models and measurements. We would like to thank QEST organizers, in partic-
ular William Knottenbelt, Anton Stefanek, Giuliano Casale, Lucy Cherkasova,
and Holger Hermanns for their pleasant cooperation.

We would like to thank all the authors for submitting to FORMATS. We
wish to thank the invited speakers for accepting our invitation and providing
extended abstracts for the conference proceedings. We are particularly grateful
to the Program Committee members and the other reviewers for their compe-
tent and timely reviews of the submissions and the subsequent discussions, which
were greatly appreciated. Throughout the entire process of organizing the confer-
ence and preparing this volume, we used the EasyChair conference management
system, which provided excellent support. Finally, we gratefully acknowledge the
financial support provided by the Austrian Institute of Technology (AIT), Vi-
enna, Austria, and by the Centre for Discrete Mathematics and its Applications
(DIMAP), University of Warwick, UK.

July 2012 Marcin Jurdziński
Dejan Ničković
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Aldric Degorre, and Dominique Perrin

Playing Optimally on Timed Automata with Random Delays . . . . . . . . . . 43
Nathalie Bertrand and Sven Schewe

Dynamically-Driven Timed Automaton Abstractions for Proving
Liveness of Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Rebekah Carter and Eva M. Navarro-López
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Model-Driven Design-Space Exploration

for Software-Intensive Embedded Systems�

(Extended Abstract)

Twan Basten1,2, Martijn Hendriks1, Lou Somers2,3, and Nikola Trčka4

1 Embedded Systems Institute, Eindhoven, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

3 Océ Technologies B.V., Venlo, The Netherlands
4 United Technologies Research Center, East Hartford, CT, USA

http://dse.esi.nl

Abstract. Software plays an increasingly important role in modern
embedded systems, leading to a rapid increase in design complexity.
Model-driven exploration of design alternatives leads to shorter, more
predictable development times and better controlled product quality.

1 Motivation

Industries in the high-tech embedded domain (including for example professional
printing, lithographic systems, medical imaging, automotive, etc.) are facing the
challenge of rapidly increasing complexity of next generations of their systems.
Ever more functionality is being added, user expectations regarding quality and
reliability increase, an ever tighter integration between the physical processes
being controlled and the embedded hardware and software is needed, and tech-
nological developments push towards networked, multi-processor and multi-core
platforms. The added complexity materializes in the software and hardware em-
bedded at the core of the systems. Important decisions need to be made early in
the development trajectory. Which functionality should be realized in software
and which in hardware? What is the number and type of processors to be inte-
grated? How should storage (both working memory and persistent disk storage)
be organized? Is dedicated hardware development beneficial? How to distribute
functionality? How to parallelize software? How can we meet timing, reliability
and robustness requirements? The decisions should take into account the appli-
cation requirements, cost and time-to-market constraints, as well as aspects like
the need to re-use earlier designs or to integrate third-party components.

� This work was carried out as part of the Octopus project with Océ Technologies
B.V. under the responsibility of the Embedded Systems Institute. This project was
partially supported by the Netherlands Ministry of Economic Affairs under the Bsik
program. This extended abstract is based on earlier papers describing the Octopus
tool set [2] and our philosophy behind model-driven design-space exploration [7]; the
full version of this extended abstract will appear as [3]. Nikola Trčka was employed
by Eindhoven University of Technology when this work was performed.

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://dse.esi.nl
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Fig. 1. Embedded-systems development is an iterative process typically involving sev-
eral costly iterations over physical prototypes. Model-driven DSE avoids these itera-
tions through fast and efficient exploration using models, improving time-to-market
and leading to better controlled product quality.

Industries typically adopt some form of model-based design for the software
and hardware embedded in their systems. Fig. 1 illustrates such a process.
Spreadsheets play an important role in early decision making about design alter-
natives. They provide a quick and easy method to explore alternatives at a high
abstraction level. Executable operational models may then be developed for fur-
ther exploration and/or synthesizing hardware and software. Current industrial
practice uses such models mostly for the latter purpose, focussing on functional
and structural aspects and not on extra-functional aspects such as timing and
resource usage. Promising alternatives are realized in prototypes that include
large parts of the software and hardware that are ultimately also used in the
final system. Parts of the process may be iterated several times.

Design iterations through prototypes are time consuming and costly. Only
a few alternatives can be explored. The number of design alternatives is ex-
tremely large though. The challenge is to more effectively exploit models for
design-space exploration (DSE), avoiding design iterations over prototypes and
extensive performance tuning and re-engineering at the implementation level.
Spreadsheet analysis is suitable for a coarse pruning of options. However, it not
well suited to capture system dynamics due to for example pipelined, parallel
processing, data-dependent workload variations, resource scheduling and arbi-
tration, variations in data granularity, etc. (see Fig. 2). High-level operational
models can capture such dynamics. However, in industry, such models are not yet
extensively used for DSE purposes. An important challenge is therefore to bridge
the gap between spreadsheet type analysis and prototypes for DSE in industrial
development practice. It is crucial to find the right abstractions, methods, and
analysis techniques to support accurate and extensive DSE.

2 Model-Driven Design-Space Exploration

An important characteristic of DSE is that many different questions may need
to be answered, related to system architecture and dimensioning, resource cost
and performance of various design alternatives, identification of performance
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Workload variations

Different workload
granularities

Pipelined, parallel processing
(of a single scanned page)

Suboptimal performance

Fig. 2. An illustrative Gantt chart showing the execution of a printing pipeline. Dy-
namics in the processing pipeline cause hick-ups in print performance due to under-
dimensioning of the embedded execution platform.

bottlenecks, sensitivity to workload variations or spec changes, energy efficiency,
etc. Different models may be needed to address these questions. Models should be
intuitive to develop for engineers from different disciplines (hardware, software,
control), and they should be consistent with each other. Multiple tools may be
needed to support the modelling and analysis. The Embedded Systems Institute
(ESI) and its academic and industrial partners have picked up the challenge
to develop systematic methods and tool support for DSE of software-intensive
embedded systems. Given the characteristics of DSE, our approach is based on
two important principles: separation of concerns and re-use and integration of
existing techniques and tools (see Fig. 3).

ESI coordinates its efforts on model-driven DSE through the Octopus tool set
(http://dse.esi.nl). The tool set architecture (Fig. 3, left) separates the modelling
of design alternatives, their analysis, the interpretation and diagnostics of anal-
ysis results, and the exploration of the space of alternatives. This separation is
obtained by introducing an intermediate representation, the DSE Intermediate
Representation DSEIR, and automatic model transformations to and from this
representation. This set-up allows the use of a flexible combination of models and
tools. It supports domain-specific modelling in combination with generic analysis
tools. Multiple analyses can be applied on the same model, guaranteeing model
consistency among these analyses; different analysis types and analyses based on
multiple models can be integrated in a single search of the design space. Results
can be interpreted in a unified diagnostics framework.

The modelling in Octopus follows the Y-chart paradigm of [1,5] (Fig. 3, right)
that separates the concerns of modelling the application functionality, the em-
bedded platform, and the mapping of application functionality onto the platform.
This separation allows to easily explore variations in some of these aspects, for
example the platform configuration or the resource arbitration, while fixing other
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Analysis
plugins

Domain-Specific
Modelling

DSEIR
(design-space exploration
intermediate representation)

Diagnostics
plugins

Search
plugins

PlatformApplication

Mapping

Analysis

Diagnostics

Fig. 3. Separation of concerns. The Octopus tool set architecture separates modeling,
analysis, search and diagnostics through the intermediate representation DSEIR (left).
Modeling and design-space exploration follow the Y-chart paradigm ([1,5]; figure from
[2]), separating application, platform and mapping aspects (right).

aspects, such as the parallelized task structure of the application. It also facili-
tates re-use of aspect models over different designs.

Intermediate representation DSEIR [7] plays a crucial role in the Octopus
approach. It follows the Y-chart paradigm and is specifically designed for the
purpose of model-driven DSE. DSEIR is realized as a Java library. The current
implementation supports four views: application, platform, mapping, and ex-
periment. DSEIR can be used through a Java interface, an Eclipse-based XML
interface, and an Eclipse-based prototype GUI.

Applications in DSEIR are modelled as task graphs. Tasks communicate via
ports, and their work loads are specified in terms of required services (such as
CPU computation, storage needs). The use of services avoids direct references
to the platform definitions, thus realizing the Y-chart separation of concerns.
A platform consists of a number of resource declarations. Each resource has a
capacity and provides services at a certain speed. The combination of service
speed of a resource and service work load of a task can be used to compute
task execution times. The mapping connects an application to a platform. It
consists of resource allocations and priority specifications. Resource allocations
specify whether or not preemption is allowed. Execution follows the dynamic
priority scheduling paradigm. DSEIR models are all parameterized, with for
example processor speeds, memory sizes, priorities, etc. as parameters. DSEIR
has a well-defined operational semantics. The abstraction level is such that it is
possible to efficiently and effectively capture the system behaviour and dynamics
that is essential for a fast but accurate assessment of design alternatives. The
experiment view of DSEIR allows to define sets of DSE experiments for selected
models and model parameter settings. The analyses to be performed and the
way to handle the output of the experiments can be specified as well.

The current tool set implementation supports modelling directly in DSEIR
[7] as well as modeling of printer data paths for professional printers through a
Domain-Specific Language (DSL) called DPML, the Data-Path Modelling Lan-
guage [6]. Several types of analysis are supported. Performance analysis through
discrete-event simulation is supported via CPN Tools (http://cpntools.org),
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model checking is supported via Uppaal (http://www.uppaal.org), and dataflow
analysis through SDF3 (http://www.es.ele.tue.nl/sdf3). Exploration support is
available through JGAP (http://jgap.sourceforge.net) and the tool set has built-
in support for dividing multiple analyses over the available processors of a multi-
processor machine. Diagnostic support is provided through Excel, Gantt charts
(see Fig. 2) and Pareto analysis [4].

3 Industrial Experiences

We have used Octopus in several case studies at Océ Technologies. These case
studies involve design-space exploration of printer data paths of professional
printers. Professional printing systems perform a variety of image processing
functions on digital documents that support the standard scanning, copying and
printing use cases, as well as many combinations and variations of these use
cases. The printer data path encompasses the complete trajectory of the image
data from source (for example the scanner or the network) to target (the imaging
unit). The case studies show that the Octopus tool set can successfully deal with
several modeling challenges, like various and mixed abstraction levels (from pages
to pixels and everything in between), preemptive and non-preemptive scheduling,
stochastic behavior, dynamic memory management, page caching policies, het-
erogeneous processing platforms with CPUs, GPUs, and FPGAs, realistic PCI
and USB arbitration, etc. Our analyses identified performance bounds for print-
ing pipelines and resource bottlenecks limiting performance, they gave designers
a better understanding of the systems, confirmed design decisions (scheduling,
arbitration, and caching), and suggested small design improvements (buffering,
synchronization). Both DPML and DSEIR models can be made with little effort,
very similar to the time investment needed for a spreadsheet model. An impor-
tant advantage is that one model suffices to use different analysis tools. The
analysis time in CPN Tools and Uppaal using models automatically generated
from DSEIR models was always at least as good as with handcrafted models.

4 Challenges

The first experiences with the Octopus approach to model-driven DSE have been
successful, but many challenges remain, both scientific challenges and challenges
related to industrial adoption of model-driven DSE:

– How do we properly handle combinations of discrete, continuous, and proba-
bilistic aspects? Such combinations materialize from combinations of timing
aspects, user interactions, discrete objects being manipulated, physical pro-
cesses being controlled, failures, wireless communication, etc.

– How can we effectively combine the strengths of different types of analysis,
involving for example model checking, simulation, dataflow analysis, con-
straint programming, SAT/SMT solving, etc.? No single analysis technique
is suitable for all purposes. Integration needs to be achieved without resort-
ing to one big unified model.
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– How do we achieve scalability? Can we support modular analysis and com-
positional reasoning across analysis techniques, across abstraction levels, and
for combinations of discrete, continuous, and probabilistic aspects?

– How to cope with uncertain and incomplete information? Information is of-
ten unavailable early in the design process, environment parameters and user
interactions may be uncontrollable and unpredictable. How do we guarantee
robustness of the end result of DSE against (small) variations in parameter
values? Can we develop appropriate sensitivity analysis techniques?

– How do we cope with the increasing dynamics in modern embedded sys-
tems? Today’s systems are open, connected, and adaptive in order to enrich
their functionality, enlarge their working range and extend their life time, to
reduce cost, and to improve quality under uncertain and changing circum-
stances. System-level control loops play an increasingly important role. What
is the best way to co-design control and embedded hardware and software?

– Can we develop systematic, semi-automatic DSE methods that can cope with
the complexity of next generations of high-tech systems? How do we provide
model consistency when combining multiple models and analysis techniques?

– How do we handle the many different use cases that a typical embedded
platform needs to support? How to support trade-off analysis over the many
objectives that play a role in DSE?

– How do we incorporate DSE in the system development processes? This
involves aspects like model calibration, model validation, and model ver-
sioning, but also linking DSE to code generation, hardware synthesis, and
possibly model-based testing.

– How do we achieve industrial acceptance? Industrially mature DSE tools
are a prerequisite. DSL support, tool chain customization, integration with
other development tools, and training all need to be taken care of.
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Statistical Model Checking,

Refinement Checking, Optimization, . . .
for Stochastic Hybrid Systems�

Kim G. Larsen

Computer Science, Aalborg University, Denmark

Statistical Model Checking (SMC) [19,16,21,23,15] is an approach that has re-
cently been proposed as new validation technique for large-scale, complex sys-
tems. The core idea of SMC is to conduct some simulations of the system, moni-
tor them, and then use statistical methods (including sequential hypothesis test-
ing or Monte Carlo simulation) in order to decide with some degree of confidence
whether the system satisfies the property or not. By nature, SMC is a compro-
mise between testing and classical formal method techniques. Simulation-based
methods are known to be far less memory and time intensive than exhaustive
ones, and are some times the only option.

In a series of recent works [14,13], we have investigated the problem of Sta-
tistical Model Checking for networks of Priced Timed Automata (PTAs), being
timed automata, whose clocks can evolve with different rates, while1 being used
with no restrictions in guards and invariants. In [13], we have proposed a natu-
ral stochastic semantics for such automata, which allows to perform statistical
model checking. Our work has been implemented in Uppaal-smc, providing a
new statistical model checking engine for the tool Uppaal. Uppaal-smc relies
on a series of extensions of the statistical model checking approach generalized
to handle real-time systems and estimate undecidable problems. Uppaal-smc

comes together with a rich modeling and specification language [8,7], as well as
a friendly user interface that allows a user to specify complex problems in an
efficient manner as well as to get feedback in the form of probability distribu-
tions and compare probabilities to analyze performance aspects of systems. Also,
distributed implementations of the various statistical model checking algorithms
has been given with demonstrated linear speed-up [9].

In this talk we will report on the most recent developments of Uppaal-smc

and contemplate on how other branches of Uppaal may benefit from the new
scalable simulation engine ofUppaal-smc in order to improve their performance
as well as scope in terms of the models that are supported.

Stochastic Hybrid Automata. Most recently, we have extended Uppaal-smc

to networks of stochastic hybrid automata, allowing clock rates to depend not

� Work partially supported by the VKR Centre of Excellence MT-LAB, the Sino-
Danish Basic Research Center IDEA4CPS.

1 In contrast to the usual restriction of priced timed automata [2,1].

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 7–10, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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only on values of discrete variables but also on the value of other clocks, ef-
fectively amounting to ordinary differental equations. In particular our original
race-based stochastic semantics extends to this setting with the use of Dirac’s
delta-functions, to allow for the co-existence of (time-wise) stochastic and deter-
minstic components. This extension of Uppaal-smc has already been applied
to a wide range of hybrid systems example from real-time scheduling and mixed
criticality systems [11], energy aware systems [10] and systems biology [12].

Wittness Counter Examples. Based on the real-time scheduling problem of [11],
we will show how statistical model checking may serve as an indispensable tool
for exhibiting concrete (rare) counter examples witnessing non-schedulability in
the setting of stop-watch automata, where the Uppaal verification engine is
over-approximate.

Refinement Checking. Statistical model checking may be used as an alternative
to the game-based engine of Ecdar for checking refinements between model.
In particular, for early development stages, where a desired refinement does not
hold, SMC can provide an efficient quick check, with useful debugging infor-
mation pin terms of the graphical simulation plots provided by the tool. Also,
SMC may estimate the distance between two models, in terms of the probability
measure of the set of runs in their difference.

Controller Synthesis. SMC may be the only way of establishing - to some level of
confidence - that a rich hybrid model is endeed abstracted by a timed (game) au-
tomaton, allowing for subsequent model checking and synthesis possibly in com-
position with other components. Using the framework for energy aware buildings
[10], we will indicate how Uppaal-smc in combination with Uppaal-Tiga may
be used to synthesize and performance-evaluate control strategies from a natural
hybrid model.

Optimizations. The Uppaal-Cora branch [17,3,20] offers an efficient, agent-
based and symbolic engine for solving a large range of optimization problems
given their model as priced timed automata [2]. However, the tool is restricted to
models with a single cost-variable (though extensions have been proposed [18]),
with – for decidability – crucial assumption that the cost-variable is only used
as an observer (thus cannot be used in guards or invariants). This assumption
is lifted slightly in the a sequence of recent work on energy timed automata
[5,4,6], where the cost-variable is required to be within given bounds. We want
to investigate whether the new SMC engine may provide a competitive method
opening the possibility for optimization to a wider range of models.

Meta Modeling. The modeling formalism of Uppaal-smc allows various statisti-
cal model checking algorithms themselves to be modelled and their performance
on given problems to be analysed. This usage ofUppaal-smc as a meta-modeling
and -analysis tool may save significant implementation effort, and has already
been applied to analysis of the distributed implementation of SMC [9] and a
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rewrite-technique for statistical model checking of WMTL [7]. In addition, we
will investigate the potential effect of applying methods for rare-event simulation
such as the RESTART method [22].
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Robustness of Time Petri Nets under Architectural
Constraints�
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Abstract. This paper addresses robustness issues in Time Petri Nets (TPN) un-
der constraints imposed by an external architecture. The main objective is to
check whether a timed specification, given as a TPN behaves as expected when
subject to additional time and scheduling constraints. These constraints are given
by another TPN that constrains the specification via read arcs. Our robustness
property says that the constrained net does not exhibit new timed or untimed be-
haviors. We show that this property is not always guaranteed but that checking
for it is always decidable in 1-safe TPNs. We further show that checking if the
set of untimed behaviors of the constrained and specification nets are the same is
also decidable. Next we turn to the more powerful case of labeled 1-safe TPNs
with silent transitions. We show that checking for the robustness property is un-
decidable even when restricted to 1-safe TPNs with injective labeling, and exhibit
a sub-class of 1-safe TPNs (with silent transitions) for which robustness is guar-
anteed by construction. We demonstrate the practical utility of this sub-class with
a case-study and prove that it already lies close to the frontiers of intractability.

1 Introduction

Robustness is a key issue for the implementation of systems. Once a system is imple-
mented on a given architecture, one may discover that it does not behave as expected:
some specified behaviors are never met or unspecified behaviors appear. Thus, start-
ing from a description of a system, one wants to ensure that the considered system
can run as expected on a given architecture with resource constraints (e.g., processors,
memory), scheduling schemes on machines implementing several components of the
system, imprecision in clocks, possible failures and so on.

We address this issue of robust implementability for systems in which time and con-
currency play a key role. We start with a Petri net model of a concurrent system, which
is constrained by another Petri net defining some implementation details (for example,
the use of resources). We then want to check that such implementation features do not
create or introduce new behaviors, which were not present in the original model. If the
implementation features can only restrict (but not enlarge) the set of original behaviors,
we say the model is robust with respect to the implementation constraints. We lift these
ideas to the timed setting by using the model of time Petri nets. Time Petri nets (TPNs)

� This work was funded by the project ANR ImpRo (ANR-2010-BLAN-0317).
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Fig. 1. Illustrative examples (a) and (b) of TPNs with read-arcs: transitions are represented as
black rectangles, places as circles, arcs as thick lines, read arcs as dotted lines. Transitions can be
labeled by letters (observable actions), or unlabeled (silent moves) and by intervals (constraints).

are Petri nets whose transitions are equipped with timing constraints, given as intervals.
As soon as a transition is enabled, a clock attached to this transition is reset and starts
measuring time. A transition is then allowed to fire if it is enabled and if its clock’s value
lies within the time interval of the transition. When a TPN contains read arcs, places that
are read can enable/disable a transition, but tokens from read places are not consumed
at firing time. In the literature of timed systems (for e.g., [15]), robustness in timed au-
tomata usually refers to invariance of behaviors under small time perturbations. We use
the term “robustness” in a more general context: we consider preservation of specified
behaviors when new architectural constraints (e.g., scheduling policies, resources) are
imposed.

In this paper, we focus our study of robustness to TPNs whose underlying Petri
nets are 1-safe (i.e., have at most one token in any place of a reachable marking). We
consider bipartite architectures: a specification of a distributed system is given as a
TPN, called the ground net and the architectural constraints are specified by another
TPN, called the controller net. The controller net can read places of the ground net,
but cannot consume tokens from the ground net, and vice versa. The net obtained by
considering the ground net in the presence of the controller is called the controlled net.
We first ask if the untimed language of the controlled net is contained in the untimed
language of the ground net. This problem is called untimed robustness. Next, we ask if
the untimed language is exactly the same in the presence of control, which we call the
untimed equivalence problem. Finally the timed robustness problem asks if the timed
language of the controlled net is contained in the timed language of the ground net.

Though our setting resembles supervisory control [12], there are some important
differences. Supervisory control is used to restrict the behaviors of a system in order to
meet some (safety) property P . The input of the problem is the property P , a descrip-
tion of the system, and the output a controller that restricts the system: the behavior
of a system under control is a subset of the original specification satisfying P . In our
setting, there is no property to ensure, but we want to preserve as much as possible the
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specified behaviors. We will show in the example below that architectural contraints
may add behaviors to the specification. This situation can be particularly harmful, es-
pecially when the architecture changes for a system that has been running properly on a
former architecture. New faults that were not expected may appear, even when the over-
all performance of the architecture improves. Detecting such situations is a difficult task
that should be automated. The last difference with supervisory control is that we do not
ask for synthesis of a controller. In our setting, the controller represents the architec-
tural constraints, and is part of the input of the robustness problem. The question is then
whether the ground net preserves its behaviors when controlled.

An example is shown in Figure 1-a, containing a ground netN1, with four transitions
a, a′, b, b′, and a controller C1, that acts as a global scheduler allowing firing of a or b.
In N1, transitions a, a′ and b, b′ are independant. The net N1 is not timed robust w.r.t.
the scheduling imposed by C1: in the controlled net, a can be fired at date 3 which
is impossible in N1 alone. However, if we consider the restriction of N1 to b, b′, the
resulting subnet is timed robust w.r.t C1. Figure 1-b shows a ground net N2 with four
unobservable transitions, and one observable transition c. This transition can be fired
at different dates, depending on whether the first transition to fire is the left transition
(with constraint [1, 2]) or the right transition (with constraint [2, 3]) below the initially
marked place. The net C2 imposes that left and right transitions are not enabled at the
same time, and switches the enabled transition from time to time. With the constraints
imposed by C2, c is firable at date 5 in the controlled net but not at date 6 while it is
firable at both dates 5 and 6 in N2 alone. This example is timed robust w.r.t C2, as it
allows a subset of its original behaviors.

Our results are the following. The problem of untimed robustness for 1-safe TPNs
is decidable. The timed variant of this problem is decidable for 1-safe TPNs, under the
assumption that there are no ε transitions and the labeling of the ground net is injective.
However, with arbitrary labeling and silent transitions the timed robustness problem
becomes undecidable. Further, even with injective labeling, timed robustness is unde-
cidable as soon as the ground net contains silent transitions. We then show a natural
relaxation on the way transitions are controlled and constrained, which ensures timed
robustness. In the untimed setting we also consider the stronger notion of equivalence
of untimed languages and show that checking this property is decidable with or with-
out silent transitions. The paper is organized as follows: Section 2 introduces the TPN
models and the problems considered. Section 3 shows decidability of robustness in the
untimed setting, or when nets are unlabeled. Section 4 shows that this problem becomes
undecidable in the timed setting as soon as silent transitions are introduced. Section 5
shows conditions on ground nets and control schemes ensuring timed robustness. Sec-
tion 6 provides a case-study to show the relevance of these conditions, before conclud-
ing with Section 7. Missing proofs can be found in an extended version available at [1].

As further related work, we remark that several papers deal with control of Petri Nets
where transitions are divided into untimed controllable and uncontrollable transitions.
Among them, Holloway and Krogh [9] first proposed an efficient method to solve a
control problem for a subclass of Petri Nets called safe marked graphs. Concerning
TPNs, [7] propose a method inspired by the approach of Maler [11]. The controller is
synthesized as a feedback function over the state space. However, in all these papers,
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the controller is given as a feedback law, and it is not possible to design a net model of
the controlled system. To overcome this problem, [8] propose a solution using monitors
to synthesize a Petri Net that models the closed-loop system. The method is extended
to real time Supervisory Control in [13]. The supervisor uses enabling arcs (which are
equivalent to read arcs) to enable or block a controllable transition. In [16], robustness
is addressed in a weaker setting called schedulability: given an TPN N , the question is
whether the untimed language of N , and the language of the underlying untimed net
(i.e. without timing constraints) is the same. This problem is addressed for acyclic nets,
or for nets with restricted cyclic behaviors.

2 The Model and the Questions

Let Q+,R+ denote the set of non-negative rationals and reals respectively. Then, I
denotes the set of time intervals, i.e., intervals in R+ with end points in Q+ ∪ {+∞}.
An interval I ∈ I can be open (I−, I+), closed [I−, I+], semi-open (I−, I+], [I−, I+)
or unbounded [I−,+∞), (I−,+∞), where I− and I+ ∈ Q+.

2.1 Time Petri Nets

Definition 1 (place/transition net with read arcs). A time Petri net (TPN for short)
with read arcs is a tuple N = (P, T,W,R, I) where P is a finite set of places, T is
a finite set of transitions, with P ∩ T = ∅, W : (P × T ) ∪ (T × P ) → {0, 1} and
R : (P × T )→ {0, 1} s.t., W−1(1)∩R−1(1) = ∅ are flow relations and I : T → I is
a map from the transitions ofN to time intervals I.

Every TPN can be seen as a union of an untimed Petri Net N = (P, T,W,R) and of a
timing function I . The untimed net N will be called the underlying net ofN .

Semantics. The net defines a bipartite directed graph with two kinds of edges: there
exists a (consume) arc from x to y (drawn as a solid line) iff W (x, y) = 1 and there
exists a (read) arc from x to y (drawn as a dashed line) iff R(x, y) = 1. For all x ∈
P ∪ T , we define the following sets: •x = {y ∈ P ∪ T | W (y, x) = 1} and x• =
{y ∈ P ∪ T | W (x, y) = 1}. For all x ∈ T , we define ◦x = {y ∈ P | R(y, x) = 1}.
These definitions extend naturally to subsets by considering union of sets. A marking
m : P → N is a function such that (P,m) is a multiset. For all p ∈ P , m(p) is the
number of tokens in the place p. A transition t ∈ T is said to be enabled by the marking
m if m(p) > 0 for every place p ∈ (•t ∪ ◦t). en(N,m) denotes the set of transitions
of N enabled by m. The firing of an enabled transition t produces a new marking m′

computed as ∀p ∈ P,m′(p) = m(p)−W (t, p) +W (p, t). We fix a marking m0 of N
called its initial marking. We say that a transition t′ is in conflict with a transition t if
(•t ∪ ◦t) ∩ (•t′) 	= ∅ (firing t′ consumes tokens that enable t).

The semantics of a TPN is usually given as a timed transition system (TTS) [10].
This model contains two kinds of transitions: continuous transitions when time passes
and discrete transitions when a transition of the net fires. A transition tk is said to be
newly enabled by the firing of the firable transition ti from the marking m, and denoted
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↑en(tk,m, ti), if the transition tk is enabled by the new marking (m \ •ti) ∪ t•i but was
not by m \ (•ti). We will denote by ↑en(m, ti) the set of transitions newly enabled by
the firing of ti from m. A valuation is a map ν : T → R+ such that ∀t ∈ T, ν(t) is the
time elapsed since t was last newly enabled. For δ ∈ R+, ν + δ denotes the valuation
that associates ν(t) + δ to every transition t ∈ T . Note that ν(t) is meaningful only if t
is an enabled transition. 0 is the null valuation such that ∀t,0(t) = 0.

The semantics of TPN N is defined as the TTS (Q, q0,→) where a state of Q is a
couple (m, ν) of a marking and valuation of N , q0 = (m0,0) and →∈ (Q × (T ∪
R+) ×Q) is the transition relation describing continuous and discrete transitions. The
continuous transition relation is defined for all δ ∈ R+ by:

(m, ν)
δ−→ (m, ν′) if ν′ = ν + δ and ∀tk ∈ en(m), we have,{

ν′(tk) ≤ I(tk)
+ if I(tk) is of the form [a, b] or (a, b]

ν′(tk) < I(tk)
+ if I(tk) is of the form [a, b) or (a, b)

Intuitively, time can progress iff letting time elapse does not violate the upper constraint
I(t)+ of any transition t (recall that we write I(t)+ for the right endpoint of the interval
I(t)). Now, the discrete transition relation is defined for all ti ∈ T by:

(m, ν)
ti−→ (m′, ν′) if

⎧⎪⎨⎪⎩
ti ∈ en(m),m′ = (m \ •ti) ∪ t•i
ν(ti) ∈ I(ti),

∀tk, ν′(tk) = 0 if ↑en(tk,m, ti) and ν(tk) otherwise.

That is, transition ti can fire if it was enabled for a duration included in the time con-
straint I(t). Firing ti from m resets the clocks of newly enabled transitions.

A run of a TTS is a sequence of the form p1
α1−→ p2

α2−→ . . .
αn−−→ pn where p1 = q0,

and for all i ∈ {2, . . . , n}, (pi−1, αi, pi) ∈→ and αi = ti ∈ T or αi = δi ∈ R+.
Each finite run defines a sequence over (T ∪ R+)∗ from which we can obtain a timed
word over T of the form w = (t1, d1)(t2, d2) . . . (tn, dn) where each ti is a transition
and di ∈ R+ the time at which transition ti is fired. More precisely, if the sequence of
labels read by the run is of the form δ0δ1 . . . δk1t1δk1+1δk1+2 . . . δk2t2 . . . tn, then the
timed word obtained is (t1, d1) . . . (tn, dn) where di =

∑
0≤j≤ki

δj . We define a dated

run of a TPN N as the sequence of the form q1
(d1,t1)−−−−→ q2 . . .

(dn,tn)−−−−→ qn, where di’s
are the dates as defined above and each qi is the state reached after firing ti at date di.

We denote by Ltw(N ) the timed words over T generated by the above semantics.
This will be called the timed (transition) language of N . We denote by Lw(N ) the
untimed language of sequences of transitions obtained by projecting onto the first com-
ponent. Furthermore, given a timed word w over T , if we consider a subset of transitions
X ⊆ T , we can project w onto X to obtain a timed word over X . We will denote this
projected language by Ltw(N )|X . For simplicity, we have not considered final states
in our TTS and hence we define prefix-closed languages as is standard in Petri nets.
However, our results continue to hold with an appropriate definition of final states.

In this paper, we limit the study of robustness to TPNs where the underlying PN
is 1-safe i.e., nets such that ∀p ∈ P, m(p) ≤ 1, for all reachable markings m in the
underlying PN. The reason for using a property of the underlying net is that decid-
ing if an untimed PN is 1-safe is PSPACE-complete [6], whereas checking if a TPN
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is bounded is undecidable [14]. Reachability of a marking m in a 1-safe net is also
PSPACE-complete [6]. For 1-safe Petri nets a place contains either 0 or 1 token, hence
we identify a marking m with the set of places p such that m(p) = 1. In the sequel, as
we always consider 1-safe nets, we will frequently omit saying this explictly.

2.2 The Control Relation

Let us consider two Time Petri nets N = (PN , TN ,WN , RN , IN ,m0
N ) and C =

(PC , TC,WC , RC , IN ,m0
C). C models time constraints and resources of an architecture.

One can expect these constraints to restrict the behaviors of the original net (we will
show however that this is not always the case), that is C could be seen as a controller.
Rather than synchronizing the two nets (as is often done in supervisory control), we
define a relation R ⊆ (PC × TN ) ∪ (PN × TC), connecting some places of C to some
transitions of N and vice versa. The resulting net N (C,R) is still a place/transition net
defined byN (C,R) = (PN ∪PC , TN ∪TC ,WN ∪WC , RN ∪RC∪R, IN ∪IC ,m0

N ∪m0
C).

We call N the ground net, C the controller net and N (C,R) the controlled net.
The reason for choosing this relation is two-fold. Firstly, the definition of control

above preserves the formalism as the resulting structure is a time Petri net as well. This
allows us to deal with a single formalism throughout the paper. Secondly, one can define
several types of controllers. By allowing read arcs from the controller to the ground net
only, we model blind controllers i.e., controllers whose states evolve independently of
the ground net’s state. The nets in Figure 1 are examples of such controlled nets. In
the reverse direction, if read arcs are allowed from the ground net to the controller, the
controller’s state changes depending on the current state of the ground net. For the sake
of clarity, all examples in the paper have blind controllers but our results hold even with
general controllers and bi-directional read arcs.

Our goal is to compare the behaviors of N with its behaviors when controlled by
C under R, i.e., N (C,R). Therefore, the language of (timed and untimed) transitions,
i.e., Ltw(N ),Ltw(C),Lw(N ),Lw(C), are as usual but when talking about the lan-
guage of the controlled net, we will always mean the language projected onto transi-
tions of N , i.e., Ltw(N (C,R))|TN or Lw(N (C,R))|TN . Abusing notation, we will write
Ltw(N (C,R)) (similarly Lw(N (C,R))) to denote their projections onto TN .

2.3 The Robustness Problem

We now formally define and motivate the problems that we consider in this paper.

Definition 2. Given TPNsN and C, and a set of read arcs R ⊆ (PC×TN )∪(PN×TC),
N is said to be untimed robust under (C, R) if Lw(N C,R) ⊆ Lw(N ).

For time Petri nets, the first problem we consider is the untimed robustness problem,
which asks whether a given TPN N is untimed robust under (C, R). This corresponds
to checking whether the controlled net N (C,R) only exhibits a subset of the (untimed)
behaviors of the ground TPN N . The second question addressed is the untimed equiv-
alence problem, which asks if the untimed behaviors of the controlled net N (C,R) and
ground net N are the same, i.e., if Lw(N C,R) = Lw(N ). In fact these questions can



Robustness of Time Petri Nets under Architectural Constraints 17

already be asked for “untimed Petri nets”, i.e., for Petri nets without the timing function
I and we also provide results for this setting.

Note that untimed robustness only says that every untimed behavior of the controlled
net N (C,R) is also exhibited by the ground net N . However some timed behaviors of
the controlled netN (C,R) may not be timed behaviors of the ground netN . For obvious
safety reasons, one may require that a controlled system does not allow new behaviors,
timed or untimed. Thus, we would like to ensure or check that even when considering
timed behaviors, the set of timed behaviors exhibited by the controlled net N (C,R) is
a subset of the set of timed behaviors exhibited by the ground net N . We call this the
timed robustness problem.

Definition 3. Given TPNsN and C, and a set of read arcs R ⊆ (PC×TN )∪(PN×TC),
N is said to be timed robust under (C, R) if Ltw(N C,R) ⊆ Ltw(N ).

One can further ask if the timed behaviors are exactly the same, which means that the
controller is useless. In our setting, it means that the architectural constraints do not
affect the executions of the system, nor their timings. While untimed equivalence of
unconstrained and constrained systems seems a reasonable notion, timed equivalence is
rarely met, and hence seems too restrictive a requirement. We will see in Section 4 that
introducing silent transitions gives a new meaning to these notions.

3 Controlling (Time) Petri Nets

Let us first consider untimed 1-safe Petri nets. Let N be an untimed net, and C be an
untimed controller. We can observe that C can only restrict the behaviors of N , under
any choice of R. Hence N is always untimed robust under (C,R). Furthermore one can
effectively check if the controlled net has the same untimed language as the ground net,
by building their marking graphs, and then checking inclusion. Thus, the robustness and
equivalence problems are decidable for untimed nets.

Proposition 1. Let N , C be two untimed (1-safe) Petri nets. Then,

1. For any R ⊆ (PC × TN ) ∪ (PN × TC), N is untimed robust under (C,R).
2. For a fixed set of read arcs R ⊆ (PC × TN) ∪ (PN × TC) checking if Lw(N) =
Lw(N

(C,R)) is PSPACE-complete.

This property of untimed Petri nets has a counterpart for time Petri nets: let us consider
unconstrained nets N and C, i.e., such that IN (t) = [0,∞) for every t ∈ TN , and
IC(t) = [0,∞) for every t ∈ TC . Let N and C be the underlying nets of N and
C. One can easily show that for any R, Lw(N C,R) ⊆ Lw(N ). As any timed word
w = (a1, d1) . . . (an, dn) in Ltw(N C,R) (resp. in Ltw(N )) is such that a1 . . . an ∈
Lw(N

C,R) (resp. Lw(N )) where each d1, . . . , dn can be arbitrary dates, we also have
Ltw(N C,R) ⊆ Ltw(N ). Thus, unconstrained time Petri nets are also untimed robust.

The question for Time Petri Nets is whether the controlled TPN only restricts the set
of behaviors of the original TPN. Unlike in the untimed case, in the timed setting the
controlled TPN may exhibit more (and even a different set of) behaviors than the ground
TPN, because of the urgency requirement of TPNs. Consider the example in Figure 2.
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Fig. 2. An example of control of TPN through read-arcs leading to new behaviors

The ground net N always fires t in the absence of the controller C but in the presence
of C with R as in the picture, transition t is never fired and t′ is always fired. Thus set
of (timed and untimed) behaviors ofN andN (C,R) are disjoint. Discrepancies between
untimed languages can be checked using the state class graph construction [5,10], from
which we obtain the following theorem.

Theorem 1. For (1-safe) TPNs, the untimed robustness and untimed equivalence prob-
lems are both PSPACE-complete.

Next we consider timed robustness properties for TPNs, for which we obtain the fol-
lowing result.

Theorem 2. For (1-safe) TPNs, the timed robustness problem is decidable.

Proof (sketch). Let N and C be 1-safe TPNs, and R be a set of read arcs. We can
check if Ltw(N (C,R)) ⊆ Ltw(N ) by using the state class timed automaton construc-
tion from [10]. It is shown that from the state class graph construction of a 1-safe TPN,
N , we can build a deterministic timed automaton A over the alphabet TN , called the
state class timed automaton, such that Ltw(N ) = Ltw(A). As a result, Ltw(N ) can be
complemented and its complement is accepted by some timed automaton A′, which is
computed from A (see [2] for complementation of deterministic timed automata). On
the other hand, the state class timed automaton B constructed from N (C,R) is over the
language TN ∪ TC . By projecting this language onto TN , we obtain the timed (tran-
sition) language Ltw(N (C,R)). We remark that the timed automaton corresponding to
the projection, denoted B′, can be easily obtained by replacing all transitions of C in the
timed automatonB by ε-transitions [2,4]. Now we just check ifLtw(B′)∩Ltw(A′) = ∅,
which is decidable in PSPACE [2] (in the sizes of A′ and B′). �

4 Controlling TPNs with Silent Transitions

We now consider ground nets which may have silent or ε-transitions. The (timed and
untimed) language of the ground net contains only sequences of observable (i.e., not
ε) transitions and the robustness question asks if the controller introduces new timed
behaviors with respect to this language of observable transitions. From a modeling per-
spective, robustness means that sequences of important actions remain unchanged in
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the presence of architectural constraints, which is a desirable property to have. Silent
transitions can be used to model unimportant or unobservable transitions in the ground
net. In this setting, it is natural to require that control does not add to the language of
important/observable transitions, while it may allow new changes in other transitions.

An example of such a control is given in the introduction in Figure 1-(b). In that
example, the ground net has a unique critical (visible) action c. All other transitions are
left unlabeled and so we are not interested whether timed or untimed behaviors on those
transitions are different in the ground and controlled nets. Then the timed robustness
problem asks if c can occur in the controlled net at a date when it was not allowed to
occur in the ground net. A more practical example will be studied in detail in Section 6.

With this as motivation, we introduce the class of ε-TPN, which are TPNs where
some transitions may be silent, i.e. labeled by ε. The behavior of such nets is determin-
istic except on silent actions: from a configuration, if a discrete transition that is not
labeled ε is fired, then the net reaches a unique successor marking.

Definition 4. Let Σ be a finite set of labels containing a special label ε.

1. An LTPN over Σ is a structure (N , λ) where N is a TPN and λ : TN → Σ is the
labeling function.

2. An ε-TPN is an LTPN (N , λ) over Σ such that, for all t ∈ TN , if λ(t) 	= ε then
λ(t) 	= λ(t′) for any t′ 	= t ∈ TN .

For an ε-TPN or LTPNN , its timed (resp. untimed) language denotedLtw(N , λ) (resp.
Lw(N , λ)) is the set of timed (resp. untimed) words overΣ\{ε} generated by the timed
(resp. untimed) transition system, by ignoring the ε labels. A TPNN from Definition 1
can be seen as the LTPN (N , λ) over Σ such that for all t ∈ TN , λ(t) = t, that is, λ
is the identity map. An ε-TPN can be seen as an LTPN (N , λ) over Σ = TN ∪ {ε}
such that λ(t) = t or λ(t) = ε for all t ∈ TN . In [3] it was shown that LTPNs are
expressively as powerful as timed automata. As a consequence, we have:

Proposition 2. [3] The universality problem for timed automata reduces to the univer-
sality problem for LTPNs, and hence universality for LTPNs is undecidable.

We are interested in the problem of timed robustness, i.e.,

Definition 5. Given two ε-TPNs (N , λ) and (C, λ′) over Σ and a set of read arcs R
from (PC × TN ) ∪ (PN × TC),

– the controlled ε-TPN (N , λ)(C,R) is defined as the ε-TPN (N (C,R), λ′′) over Σ
where λ′′(t) = λ(t) for t ∈ TN and λ′′(t) = ε for t ∈ TC .

– the timed robustness problem asks if Ltw((N , λ)C,R) ⊆ Ltw(N ).

Note that the labels in C are ignored (i.e., replaced by ε), since robustness only compares
labels of the ground nets. We remark that untimed robustness and even untimed equiv-
alence are decidable for ε-TPNs and LTPNs, since Theorem 1 can be easily adapted to
deal with ε or labels. We now consider timed robustness and show that this problem is
undecidable for ε-TPNs and LTPNs.

Theorem 3. The timed robustness problem is undecidable for ε-TPNs (and LTPNs).
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Fig. 3. Construction of a ε-TPN equivalent to a LTPN

The proof follows in three steps: First we show that LTPNs can be simulated by ε-TPNs.
Thus, ε-TPNs are expressively as powerful as LTPNs. Then, we show that checking
universality of a labeled net can be reduced to checking timed robustness of a related
net. Finally, we use Proposition 2 above, which shows that checking universality of
labeled nets is undecidable. We now prove the first step.

Lemma 1. Given an LTPN (N , λ) over Σ, there exists a ε-TPN (U(N ), λ′) over Σ
such that Ltw(U(N ), λ′) = Ltw(N , λ).

Proof. The construction is depicted in Figure 3. The idea is to have a unique transition
ta for each letter a which is urgent and will be fired for each transition labeled a in the
original net, and use ε-transitions (and extra places) to capture the timing constraints
on the different transitions (of the original net) labeled by a. Note that the place p̄a is
included in addition to ensure that the resulting net remains 1-safe.

Formally, given a LTPN (N , λ) over Σ, we construct the ε-TPN (U(N ), λ′) as fol-
lows. We split each transition t ∈ TN into two transitions t1 and t2 and also add a place
pt in U(N ). Further for each action a ∈ Σ, such that λ(t̂) = a for some transition
t̂ ∈ TN , we add three places pa, p′a, p̄a and a transition ta. Then

– we replace every incoming edge into t in N , say (p, t) for some p, by the edge
(p, t1) in U(N ).

– we replace every outgoing edge from t in N , say (t, p′) for some p′, by the edge
(t2, p

′) in U(N ).
– in U(N ), we add edges from t1 to pt, from t1 to pa, from pa to ta,
– from ta to p′a and from p′a to t2. We also add an edge from p̄a to each transition t1

and from t2 to p̄a such that t is labeled by a. Note that this procedure is applied for
each action a and every transition t labeled by a, so as a result, we can obtain a net
with several outgoing edges from p′a or incoming edges to pa.

– Finally, for the timing constraints, we assign to each t1 in U(N ) the constraint I(t)
assigned to t in N . All other transitions of U(N ) are assigned the constraint [0, 0],
hence forcing them to be urgent.
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Fig. 4. Reducing checking universality of LTPN to checking robustness of a new ε-TPN

Then, λ′ is defined by λ′(ta) = a for each ta, i.e., the transition of U(N ) that was
added above for each a ∈ Σ, and λ′(t̃) = ε for all other transitions t̃ of U(N ). By
construction, (U(N ), λ′) is uniquely labeled. Each transition t of N is simulated by a
sequence of transitions t1, ta, t2 (place p̄a ensures atomicity of this sequence). Then we
can easily show that Ltw(U(N ), λ′) = Ltw(N , λ). �

Next we show a reduction from universality for LTPNs to timed robustness for ε-TPNs.

Lemma 2. The universality problem for LTPNs can be reduced to the timed robustness
problem for ε-TPNs.

Proof. We use a gadget net (Nu, λu) which accepts the universal language of timed
words over Σ. Such a net is shown in Figure 4 (right). The net depicted in the figure is
only over the single discrete alphabet a, but we can by replicating it obtain the universal
net over any finite alphabet. Now, as shown in Figure 4 (left), we construct a ground net
(N1, λ1) which starts with a place and chooses between accepting the timed language
of the LTPN (N , λ) and the universal language by using (Nu, λu).

Formally, this is defined by adding arcs from the last transition on the left (resp.
right) side to the places in the initial marking of N (resp.Nu). Now by adding disjoint
time constraints [1, 1] and [2,∞) on the transitions, we ensure that (N1, λ1) always
chooses the left transition t1 and hence, in the absence of controller, the language ac-
cepted is L1 = {(w1, d1) . . . (wn, dn) ∈ (Σ × R+)∗ | (w1, d1 − 2) · · · (wn, dn − 2) ∈
Ltw(N , λ)}, i.e., the timed language of (N , λ) delayed by 2. In the presence of the
controller (C1, λ0), only transition t2 can be fired (as t1 is disabled by the controller)
and hence, the language accepted is L2 = {(w1, d1) . . . (wn, dn) ∈ (Σ × R+)∗ |
(w1, d1 − 2) · · · (wn, dn − 2) ∈ Ltw(Nu, λu)} - the universal language delayed by 2.

Then checking timed robustness corresponds to checking if L2 ⊆ L1, and check-
ing L2 ⊆ L1 reduces to checking that Ltw(N , λ) contains the universal language, or
equivalently if Ltw(N , λ) is universal, which is undecidable. Note that (N1, λ1) is not
uniquely labeled since every action a definitely occurs in (Nu, λu) and may also occur
more than once in (N , λ). Thus the above proof only shows that checking timed ro-
bustness for LTPNs is undecidable. But now, using Lemma 1, we can build the ε-TPN
(U(N1), λ

′
1) over Σ, with the same timed language as (N1, λ1). Hence by the above

argument checking timed robustness of ε-TPNs is also undecidable. �
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Checking if Ltw(N (C,R)) = Ltw(N ), i.e., timed language equivalence is a weaker
notion in the context of ε-TPNs than in TPNs (as it only requires preserving the times
of “important” observable actions). For instance in Figure 1(b), we may want to check
if c can occur in the controlled net at every date at which it can occur in the ground
net (even if the other ε-transitions are perturbed). Unfortunately, we easily obtain the
undecidability of this problem as an immediate corollary of the above theorem, and
even in restricted settings (see [1]).

5 Ensuring Robustness in TPNs with Silent Transitions

The situation for ε-TPNs is unsatisfactory since checking timed robustness is undecid-
able. Hence, we are interested in restrictions that make this problem decidable, or in
ensuring that this property is met by construction. In this section, we will show that we
can restrict the controlling set of read-arcs to ensure that a net is always timed robust.
Indeed, it is natural to expect that a “good” controller never introduces new behaviors
and we would like to ensure this.

We consider the restriction in which all transitions of the ground nets that have con-
troller places in their preset are not urgent, i.e., the time constraint on the transition
is [α,∞) or (α,∞) for some α ∈ Q+. We call such controlled nets R-restricted ε-
TPNs. We now show that R-restricted ε-TPNs are always timed robust (as in the case
of untimed PNs shown in Proposition 1). That is,

Theorem 4. Let N and C be two ε-TPNs, and R be a set of read arcs such that for
every (p, t) ∈ R ∩ (PC × TN ), I(t)+ =∞, then Ltw(N (C,R)) ⊆ Ltw(N ).

Proof. We start with some notations. Let q(C,R) be a state of N (C,R) and ρ(C,R) be
a dated run of N (C,R). We denote by p̌N (q(C,R)) the projection of q(C,R) obtained
as follows: we keep in the state description, only places of the ground net and clocks
associated with uncontrollable transitions of the ground net. Note that the obtained state
is described by the same variables as a state of N but a priori, may not be reachable
in the ground net N . Similarly, we denote by p̌N (ρ(C,R)) the projection of a dated run
of N (C,R) onto the variables of N i.e. onto transitions of the ground net and states as
defined above. Finally, we denote the last state of the dated run ρ by last(ρ).

We will now prove that for any dated run ρ(C,R) of N (C,R), there exists a dated
run ρ of N such that ρ = p̌N (ρ(C,R)). The proof is done by induction on the number
of transitions in the dated runs. The property obviously holds with no actions (same
initial states: q0 = p̌N (q0

(C,R))). Suppose it holds upto n ≥ 0. Now, consider some run

ρ′
(C,R)

= ρ(C,R) (d,a)−−−→ qf
(C,R) ofN (C,R) such that ρ(C,R) has n transitions.

By induction hypothesis, there exists run ρ of N such that ρ = p̌N (ρ(C,R)). Now
consider transition t (occuring at date d): either t ∈ TC is a transition of the con-
troller and hence is silent in the controlled net by definition, so we can discard it, and
p̌N (ρ′

(C,R)
) = ρ; or t ∈ TN is a transition of the ground net and two cases may arise:

– either t is not controlled, then, two new cases may arise:
(1) either no controlled transitions are in conflict with t in N (C,R) and since

last(ρ) = p̌N
(
last(ρ(C,R))

)
, it can occur in the ground net at the same date d;
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(2) or a controlled transition t′ is in conflict with t in N (C,R) and the controller
blocks t′ and allows the firing of t. But then, by definition, we have I(t′)+ =
∞. Thus, t′ is not urgent in the ground net, i.e., it is always possible to delay it
and hence fire t′ at a date greater than d in the ground net. As a result t can be
fired in the ground net at date d leading to a state qf = p̌N (qf

(C,R));
– or it is controlled, and then we have I(t)+ =∞ and so I(t) = [α,∞) (or (α,∞),

but this is handled similarly so we only consider the closed case) for some α ∈ Q+.
Then, by induction hypothesis the previous transition that newly enables t in the
ground net and the controlled net were fired at the same date d′. Thus
• if there is no transition in conflict with t in the ground net, then in the controlled

net N (C,R), for the run last(ρ(C,R))
(d,a)−−−→ qf

(C,R), we are guaranteed that
d − d′ ≥ α. In ρ, several transitions of the controller may disable and then
re-enable t, hence allowing d to be any date greater that d′ + α. However, as
I+(t) = ∞, for every choice of d in the controlled net, firing t at date d is
allowed in the ground net, leading to a state qf = p̌N (qf

(C,R)) as before.
• Potential conflicts are handled by observing that any delay forced on the ground

net will also be forced on the controlled net. More precisely, if there are tran-
sitions in conflict with t in the ground net N , the problematic cases are when
they either (i) disable t due to urgency or (ii) force t to be delayed by an arbi-
trary amount possibly greater than α (for instance, a conflicting transition may
empty and refill the preset of t after α time units) in N . But now any delay in
firing of t forced on the ground netN will also be forced on the controlled net
N (C,R). Thus, if t is either disabled or forced to be delayed beyond d inN , then
in N (C,R) too it will be disabled/ forced to delay beyond d which contradicts
the assumption that t was firable in N (C,R) at date d. Thus the delay forced in
N (C,R) can only be more than the delay forced in N and hence t is firable at
date d in N (C,R) implies (due to I(t)+ =∞) that t is firable at date d in N .

Then there exists a run ρ′ = ρ
(d,a)−−−→ qf of N such that qf = p̌N (qf

(C,R)) which
concludes the induction. �

Note that while timed robustness is ensured for nets and control schemes that are R-
restricted, timed equivalence remains undecidable for such nets (see [1] for details).
The R-restricted condition in Theorem 4 is quite strong, but relaxing it rapidly leads to
undecidability:

Proposition 3. The timed robustness problem is undecidable for ε-TPNs with at least
one read arc from a place of the controller to any transition t of the ground net such
that I(t)+ 	=∞.

Proof. The proof of Theorem 3 actually gives the result if t is a silent transition. Now,
if t is a non-silent transition, then that proof does not work off-the-shelf anymore and
we need to modify the construction of Fig. 4. The resulting net is shown in Fig.5.

As before, (N , λ) is any LTPN on some alphabet Σ and (Nu, λu) is an ε-TPN uni-
versal on Σ. Apart from those components, (N1, λ1) contains only one non-silent tran-
sition (a 	∈ Σ). This transition furthermore has a controller place in its preset and its
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Fig. 5. Reducing universality to robustness in an ε-TPN

time interval has a finite upper bound. So, using Lemma 1, N1 and N (C,R)
1 can indeed

be transformed into ε-TPNs satisfying our relaxed condition.
From the intial configuration, transition a can fire exactly at date 1. The two ε tran-

sitions at the top of the ground net simulate an arbitrary delay greater than 2, which
can occur only once before firing a. Hence, the timed language of the ground net is the
empty word plus the set of all the words of the form (a, x)w with x = 1 or x ≥ 3 and
w is either the empty word or any timed word in Ltw(N , λ) delayed by x time units.

Similarly, in the controlled net, a can only fire at a date greater than 2. So, the timed
language of the controlled net is the empty word plus the set of all the words of the form
(a, x)w with x ≥ 3 and w is either the empty word or any timed word in Ltw(N , λ)
delayed by x time units, or of the form (a, 3)w′ where w′ is either the empty word or
any timed word in Ltw(Nu, λu) delayed by 3 time units. Thus, the net is timed robust
iff Ltw(Nu, λu) ⊆ Ltw(N , λ), i.e., iff (N , λ) is universal. �

6 A Small Case Study

We consider a heater-cooler system depicted in Figure 6, which improves the hardness
of a particular material by first heating and then cooling it. The heater-cooler is equipped
with two sensors: Toohot is raised when the heater reaches its maximal temperature. If
it occurs, the heating stops automatically. Cold is raised when the temperature is cold
enough in the cooling stage. If it occurs, the cooler stops automatically. The heater-
cooler starts in the heating state and the operator can push the StartCooling button if
the constraints of the system allow it.

We assume architectural constraints imposing that the StartCooling action is not
allowed after 20 t.u. in the heating stage, and if the toohot sensor has been raised, then
it cannot occur before 120 t.u. The constraints are encoded as a controller C, and read
arcs as shown in Figure 6.

We can show that Lw(N C,R) = Lw(N ). Hence, N is untimed robust and even
untimed equivalent under (C, R). The net N is not an ε-TPN (the StartCooling action
label occurs twice), but can be converted to an ε-TPN (by Lemma 1). The resulting
net is R-restricted, so according to Theorem 4, we have Ltw(N (C,R)) ⊆ Ltw(N ) and
thereforeN is timed robust under (C, R).
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Fig. 6. Case Study

7 Conclusion and Discussion

We have defined and studied notions of timed and untimed robustness as well as un-
timed equivalence for time Petri nets. We are interested in checking or/and guaranteeing
these properties. The results are summarized in the table below.

TPN R-restricted ε-TPN ε-TPN LTPN

Untimed robustness Pc (thm 1) G (thm 4) Pc Pc
Untimed equivalence Pc (cor 1) Pc Pc Pc

Timed robustness D (thm 2) G (thm 4) U (thm 3) U (thm 3)
U stands for undecidable, D for decidable, Pc for PSPACE-complete, and G for guaranteed.

Overall, with injective labels and no ε, robustness is decidable. We believe that the
timed robustness problem is also PSPACE-complete (as is the case for the other de-
cidable problems), but we leave the formal development of this complexity analysis
for future work. From a modeling perspective it is important to allow silent transitions.
With silent transitions, the untimed properties are still decidable, but timed properties
become undecidable. To overcome this problem, we proposed a sufficient and practi-
cally relevant condition to guarantee timed robustness which we showed is already at
the border of undecidability. We also showed that while untimed equivalence is easily
decidable in all these cases, timed equivalence is undecidable in most cases. This is
not really a surprise nor a limitation, as asking preservation of timed behaviors under
architectural constraints is a rather strong requirement.

As further discussion, we remark that other criteria can be used for comparing the
controlled and ground nets such as (timed) bisimulation or weak bisimulation. While
these would be interesting avenues to explore, they seem to be more restrictive and
hence less viable from a modeling perspective. Possible extensions could be to de-
fine tractable subclasses of nets, for instance by considering semantic properties of
the net rather than syntactic conditions to ensure decidability. It would also be inter-
esting to consider robustness of nets up to some small delay. Formally, we can fix a
delay as a small positive number δ, and define Lδ

tw(N ) = {(w1, t1) . . . (wn, tn) |
∃(w1, t

′
1) . . . (wn, t

′
n) ∈ Ltw(N ), ∀i ∈ 1 . . . n, |t′i − ti| ≤ δ}. Then a possible ex-

tension of the definitions would be to consider δ-robustness under C, R as the timed
inclusion Ltw(N (C,R)) ⊆ Lδ

tw(N ).
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Abstract. The classical theory of constrained-channel coding deals with
the following questions: given two languages representing a source and
a channel, is it possible to encode source messages to channel messages,
and how to realize encoding and decoding by simple algorithms, most
often transducers. The answers to this kind of questions are based on the
notion of entropy.

In the current paper, the questions and the results of the classical the-
ory are lifted to timed languages. Using the notion of entropy of timed
languages introduced by Asarin and Degorre, the question of timed cod-
ing is stated and solved in several settings.

1 Introduction

This paper is the first attempt to lift the classical theory of constrained-channel
coding to timed languages.

Let a language S represent all the possible messages that can be generated
by a source, and C all the messages that can transit over a channel. Typical
problems addressed by coding theory are:

– Is it possible to transmit any source generated message via the channel?
– What would be the transmission speed?
– How to encode the message before and to decode it after transmission?

The answers given by the theory of channel coding are as follows: to each lan-
guage L is associated a non-negative real number h(L), called its entropy, which
characterizes the quantity of information in bits per symbol. In order to transmit
information in real-time (resp. with speed α) the entropy of the source should
not exceed the one of the channel: h(S) ≤ h(C) (resp. αh(S) ≤ h(C)). For reg-
ular (or more precisely sofic) languages, whenever the information inequalities
above are strict, the theory of channel coding provides a transmission protocol
with a simple encoding and decoding (realized by a finite-state transducer). For
the practically important case when S = Σ∗ and h(S) < h(C), the decoding can
be made even simpler (sliding-window). A typical example is EFMPlus code [12]
allowing writing any binary file (i.e. the source {0, 1}∗, with entropy 1) onto a
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DVD (the channel C = (2, 10)− RLL admits all the words without factors 11,
101 and 011, its entropy is 0.5418, see [9]) with almost optimal rate α = 1/2.

Classical theory of channel coding deals with discrete messages. It is, however,
important to consider data words, i.e. discrete words augmented with data, e.g.
real numbers. In this paper, we develop the theory of channel coding for the most
studied class of data languages: timed languages. Several models of information
transmission are possible for the latter:

– the source is a timed language; the channel is a discrete language. In this
case, lossless encoding is impossible, and we will consider encoding with some
precision ε;

– the source and the channel are timed languages, we are interested in exact
(lossless) encoding;

– the source and the channel are timed languages, some scaling of time data
is allowed.

Our solution will be based on the notion of entropy of timed languages [3]. For
several models of transmission of timed data we will write information inequal-
ities relating entropies of sources and channels with parameters of encodings
(rate, precision, scaling, see below). Such an inequality is a necessary condition
for existence of an encoding. On the other hand, whenever the information in-
equality holds (in its strict form) and the languages are regular (sofic), we give
an explicit construction for simple timed encoding-decoding functions.

Related work. Constrained-channel coding theory for finite alphabets is a well-
established domain; we refer the reader to monographs [13, 9, 8], handbook
chapters [14, 7] and references therein. We started exploring information contents
of timed languages in [2–4] where the notion of entropy was introduced and
related to information measures such as Kolmogorov complexity and ε-entropy.
Technically, we strongly build on discretization of timed languages, especially
[3, 6]. In a less formal way, a vision of timed languages as a special kind of
languages with data [11, 10] was another source of inspiration.

Paper structure. In Sect. 2 we recall basic notions of the discrete theory of
constrained-channel coding. In Sect. 3 we briefly recall some results and con-
structions on volume, entropy and discretization of timed languages. In Sect. 4
we state our main results on timed theory of constrained-channel coding. In
Sect. 5 we discuss the rationale, perspectives and applications of this work.

2 Theory of Channel Coding for Finite Alphabet
Languages

In this section we give an elementary exposition1 of some basic notions and
results from the theory of constrained-channel coding, see [14, 13, 8, 7] for more
details.
1 We avoid here the terminology of symbolic dynamics, standard in the area of coding.
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2.1 Terminology

LetΣ be a finite alphabet. A factor of a word w ∈ Σ∗ is a contiguous subsequence
of its letters. A language L is factorial whenever for each word w ∈ L every factor
of it is in the language. A language L is extensible whenever for each word w ∈ L
there exists a letter a ∈ Σ such that wa ∈ L.

These two conditions are usual in the context of coding and can be justified
in practice as follows. If we can encode (decode) some long word w (e.g. a movie
file), then we want also to encode (decode) its contiguous fragments (e.g. a short
scene in the middle of the movie). On the other hand, some extension of w should
correspond to a longer movie.

A language L, which is regular, factorial and extensible, is called sofic. Sofic
languages can be recognized by finite automata whose states are all initial and
final (this ensures factoriality) and all have outgoing transitions (this ensures
extensibility).

Given a language L, we denote by Ln its sublanguage of words of length n.
The entropy h(L) of a language over a finite alphabet is the asymptotic growth
rate of the cardinality of Ln, formally defined by (all the logarithms are base 2):

h(L) = lim
n→∞

1

n
log |Ln|.

The limit (finite or −∞) always exists if L is factorial. For a sofic language L
recognized by a given automaton, its entropy h(L) can be effectively computed
using linear algebra. In particular if L = Σ∗ for a k-letter alphabet Σ then
h(L) = log k. Finally, the intuitive meaning of the entropy is the amount of
information (in bits per symbol) in typical words of the language.

Most of our coding functions have a special property defined below.

Definition 1 (almost injective). A (partial) function φ : Σ∗ → Γ ∗ is called
almost injective with delay d ∈ IN, if for any n and w,w′ ∈ Σn, and u, u′ ∈ Σd

it holds that

φ(wu) = φ(w′u′)⇒ w = w′.

Intuitively, if such a function is used to encode messages, then knowing the code
of some message wu one can decode w, i.e. the whole message except its last d
symbols. Thus the decoding is possible with delay d. This can be formalized as
follows:

Definition 2 (almost inverse). For an almost injective function φ : Σ∗ → Γ ∗

with delay d its d-almost inverse family of functions ψn : Γ ∗ → Σn is character-
ized by the following property: for any w ∈ Σn and v ∈ Γ ∗,

w = ψn(v)⇔ ∃u ∈ Σd : φ(wu) = v.

Lemma 1. If the domain of an almost injective function φ is extensible and
ψn is its almost inverse, then ψn is a surjection to this domain (constrained to
words of length n).
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2.2 Coding: The Basic Case

Let A and A′ be two alphabets (source and channel alphabets), S ⊂ A∗ and
C ⊂ A′∗ factorial extensible languages and d ∈ IN. The aim is to encode any
source message w ∈ S to a channel message φ(w) ∈ C. The latter message can
be transmitted over the channel.

Definition 3. An (S,C)-encoding with delay d is a function φ : S → C (total
on S but not necessarily onto C) such that

– it is length preserving: ∀w ∈ S, |φ(w)| = |w|,
– it is almost injective with delay d.

The first condition means that the information is transmitted in real-time (with
the transmission rate 1). The second one permits decoding.

A natural question is to find necessary and sufficient conditions on S and C for
an (S,C)-encoding (with some delay) to exist. This question can be addressed by
comparing the entropy of the languages S and C. Roughly, the channel language
should contain at least as much information per symbol as the source language.
Formally, we define the information inequality:

h(S) ≤ h(C). (II1)

Proposition 1. Let S and C be factorial and extensible languages. If an (S,C)-
encoding exists then (II1) necessarily holds.

Proof. Let φ : S → C be an (S,C)-encoding with delay d. By Lemma 1 its almost
inverse ψ maps C onto S. More precisely, for every n we have ψn(Cn+d) = Sn.
Hence, the cardinalities should satisfy: |Sn| ≤ |Cn+d|. Finally we have

lim
n→∞

1

n
log |Sn| ≤ lim

n→∞

1

n
log |Cn+d|

and the expected inequality h(S) ≤ h(C). �

Thus, (II1) is necessary for existence of the coding. For sofic languages (if the
inequality is strict) it is also sufficient. Moreover, the encoding can be realized
by a sort of finite-state machine. We present this fundamental result in the
following form which is essentially the finite-state coding theorem from [14],
Theorem 10.3.7 in [13].

Theorem 1. Let S and C be sofic languages. If the strict version of (II1) holds,
then there exists an (S,C)-encoding realized by a finite-state transducer which is
right-resolving on input and right-closing on output2.

The reader is now motivated to get through a couple of definitions.

Definition 4 (transducer). A transducer is a tuple τ = (Q,A,A′, Δ, I,O)
with a finite set Q of control states; finite input and output alphabets A and A′;
a set of transitions Δ (each transition δ has a starting state ori(δ) and an ending
state ter(δ)); input and output labeling functions I : Δ→ A and O : Δ→ A′.

2 Such a transducer is also called a finite-state (S,C)-encoder.
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b

a

c

a

b

0|b

0|a

1|c

1|b

Fig. 1. A sofic automaton of a channel C and a ({0, 1}∗, C)-encoder

The transducer is said to be right-resolving on input whenever for each state
q ∈ Q every two different edges starting from q have different input labels. For such
a transducer, the input automatonwith a fixed initial state i, i.e.Ai = (Q,A,Δ, I,
i, Q) is deterministic, we denote by Si the language of this automaton.

The transducer is right-closing on output with delay d whenever every two
paths π and π′ of length d+1 with the same output label and the same starting
state q always have the same initial edge π1 = π′

1.
A transducer τ satisfying both properties performs the encoding process in

a natural way: an input word w of S is read from a state i along a path πw,
and this path determines the output word O(πw). The function φi : Si → A′∗

defined as w �→ O(πw) is length preserving and almost injective with delay d.

Example 1. Consider the source language S = {0, 1}∗ and the channel language
C recognized by the sofic automaton on the left of Fig. 1. The language C
is composed by all the words on {a, b, c} that do not contain any block bc.
The entropy of the source is h(S) = 1, and the one of the channel is h(C) =
2 log

[
(1 +

√
5)/2

]
≈ 1.3885. The information inequality h(S) < h(C) holds and

we can encode S in C using the transducer on the right of Fig. 1.

2.3 Other Coding Settings

Similarly to the previous section, other coding settings can be considered. For
example, we can transmit information over a channel with some rate α = p

q , when
q letters of the channel message correspond to p letters of the source message
(the previous section corresponds thus to the case α = 1).

Definition 5. An (S,C)-encoding with rate α ∈ Q+ and delay d is a function
φ : S → C (total on S and not necessarily onto C) such that

– it is of rate α, i.e. ∀w ∈ S, �α|φ(w)|� = |w|;
– it is almost injective (with delay d).

In this setting, the information inequality takes the form:

αh(S) ≤ h(C), (II2)

and it is a necessary and almost sufficient condition for the code to exist:
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Proposition 2. Let S and C be factorial and extensible languages. If an (S,C)-
encoding with rate α exists, then (II2) necessarily holds.

Proposition 3. Let S and C be sofic languages. If a strict inequality (II2) holds,
then an (S,C)-encoding of rate α exists. Moreover, it can be realized by a finite-
state transducer of rate α.

We skip here a natural definition of such a transducer.

3 Preliminaries on Timed Languages

3.1 Timed Alphabets, Words, Languages, and Automata

We call k-M -alphabet a set A = [0,M ]×Σ where Σ is a k-letter alphabet and
M a positive integer bound, so that every letter in A corresponds to a real-
valued delay (seen as data) in [0,M ] and a discrete event in Σ. Timed words
and languages are respectively words and languages over a k-M -alphabet. We
define factor-closed and extensible timed language as in the untimed case.

Timed automata as described below can be used to define timed languages,
which are called regular. First we note Gc,M the set of all c-dimensional M -
bounded rectangular integer guards, i.e. Cartesian products of c real intervals
Ii, i ∈ {1..c}, having integer bounds in {0..M}. A timed automaton is thus a tuple
A = (Q, c,M,Σ,Δ, I, F ) where Q is a finite set of locations; c ∈ IN is the number
of clocks; M ∈ IN is an upper bound on clock values; Σ is a finite alphabet of
events; Δ ⊆ Q × Q × Σ × Gc,M × 2{1..c} is a set of transitions; I : Q → Gc,M

maps each location to an initial constraint; F : Q→ Gc,M maps each location to
a final constraint. A transition δ = 〈ori(δ), ter(δ),L(δ), g(δ), r(δ)〉 ∈ Δ is such
that ori(δ) is its origin location, ter(δ) is its ending location, L(δ) is its label,
g(δ) is the guard that clock values must satisfy for firing δ and r(δ) is the set of
clocks reset by firing it.

A timed word (t1, a1) . . . (tk, ak) is in the language of a timed automaton
if there exists a run (qi,xi)i∈{0..k} with qi ∈ Q and xi ∈ [0,M ]c, such that
x0 ∈ I(q0), xk ∈ F (qk) and such that for all i, there exists δi ∈ Δ satisfying
ori(δi) = qi−1, ter(δi) = qi, L(δi) = ai, xi−1+ti ∈ g(δi) and xi = r(δi)(xi−1+ti)
(i.e. equal to xi−1 + ti where coordinates in r(δi) are substituted by zeros).

A timed automaton is said to be right-resolving if outgoing transitions from
the same location with the same label have pairwise incompatible guards. If we
add the condition of having only one initial state we obtain the classical definition
of determinism of [1]. Languages recognized by right-resolving timed automata
are also said right-resolving. Right-resolving factor-closed and extensible timed
regular languages are called sofic.

An example of timed automaton is given in Fig. 2.

3.2 Volume and Entropy

From now on A denotes a k-M -alphabet [0,M ] × Σ. Let L ⊆ An be a timed
language and n ∈ IN, we denote by Ln the set of timed words of length n
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p q r

c, x ∈ [0, 3], x := 0

a, x ∈ [0, 3] d, x ∈ [0, 2], x := 0

b, x ∈ [0, 2]

Fig. 2. A timed automaton (all the states are initial and final)

in L. For each w = w1 . . . wn ∈ Σn we denote by Lw the (possibly empty)
set of points t = (t1, . . . , tn) ∈ Rn such that (t1, w1) . . . (tn, wn) ∈ Ln. Thus
Ln =

⊎
w∈Σn Lw × {w} (by a slight abuse of notation).

The language L is said to be measurable whenever for all w ∈ Σ∗, Lw is
Lebesgue measurable, i.e. its (hyper-)volume Vol(Lw) is well defined. The volume
is just the n-dimensional generalization of interval length in R, area in R2, volume
in R3,. . . Examples of timed languages and their volume are given later, we also
refer to the papers [3, 6] for more detailed examples. For a timed regular language
L, languages Lw (w ∈ Σ∗) are just finite unions of convex polytopes (see for
instance Fig. 4) and hence measurable [3]. In the sequel, all timed languages
considered are measurable. The volume of Ln and the volumetric entropy of L
are defined respectively as

Vol(Ln) =
∑

w∈Σn

Vol(Lw); H(L) = lim
n→∞

1

n
log Vol(Ln),

and it can be shown that the limit exists for any factorial language.
For our running example on Fig. 2, Lac = {(t1, t2) | t1 + t2 ≤ 3} and Lbd =

{(t1, t2) | t1 + t2 ≤ 2}; and their volumes are respectively 4.5 and 2; and thus
L2(q), the sublanguage of L2 of words accepted by runs starting from q, has
volume 6.5. We have L2n(q) = (L2(q))

n whose volume is 6.5n, the entropy of the
whole language H(L) is thus at least 0.5 log 6.5 (in fact it is exactly 0.5 log 6.5).

3.3 Discretization of Languages and Entropy

Here we adapt some definitions and results from [3, 6]. For a k-M -alphabet
A = [0,M ]×Σ, we denote by Aε its ε discretization: Aε = {0, ε, 2ε, . . . ,M}×Σ.
We remark that Aε is a finite alphabet of size k(Mε + 1). An ε-discrete word is
a timed word whose timed delays are multiples of ε. Given a timed language
L ⊆ A∗, its ε-discretization Lε is the discrete language on Aε composed by
ε-discrete words in L: Lε = L ∩ Aε

∗.
Given an ε-discrete word w = (t1, a1) . . . (tn, an), its ε-North-East-neighbor-

hood is the timed set BNE
ε (w) = {(u1, a1) . . . (un, an) | ui ∈ [ti, ti+ ε], i = 1..n}.

We extend this definition to associate timed languages with languages of ε-
discrete words BNE

ε (Lε) = ∪w∈LεBNE
ε (w).
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We will use discretization in a three-step reduction scheme:

1. discretize the timed languages S,C with a sampling rate ε to obtain Sε, Cε;
2. use classical coding theorem 1 with Sε, Cε;
3. go back to timed languages by taking ε-NE-neighborhood of Sε and Cε.

The following lemma is the main tool for this reduction scheme, it is a variant
of results of [3, 6]:

Lemma 2. Let S be a timed sofic language. If H(S) > −∞ then for all positive
small enough ε, one can compute ε-discrete sofic languages S−

ε and S+
ε that verify

BNE
ε (S−

ε ) ⊆ S ⊆ BNE
ε (S+

ε ), and H(S) + log 1
ε = h(S−

ε ) + o(1) = h(S+
ε ) + o(1).

4 Timed Coding

Similarly to classical results presented in Sect. 2, we will consider several settings
for transmission of timed words over a channel. For every setting we will for-
mulate an information inequality, and show that it is necessary and, with some
additional hypotheses, sufficient for a coding to exist.

4.1 Timed Source, Discrete Channel, Approximate Transmission

In practice, timed and data words are often transmitted via discrete (finite al-
phabet) channels. For example, a timed log of events in an operating system (a
timed message) can be stored as a text file (ASCII message). The delays in the
timed word cannot be stored with infinite precision, thus the coding is necessar-
ily approximate. More precisely, the set of timed source messages w of a length n
is infinite, while the set of discrete channel messages of the same length is finite.
For this reason, the coding cannot be injective, and necessarily maps many timed
words to a same discrete word. It is natural to require that all the timed words
with the same code are ε-close to each other. This justifies Def. 6 below. We give
first some notation. For two timed words of same length w = (t1, a1) . . . (tn, an)
and w = (t′1, a

′
1) . . . (t

′
n, a

′
n), the distance dist(w,w′) between w and w′ is equal

to +∞ if a1 . . . an 	= a′1 . . . a
′
n, otherwise it is max1≤i≤n |ti− t′i|. Let A be a k-M

alphabet, Σ′ be a finite alphabet, S be a factorial extensible measurable timed
language on A, C be a factorial extensible language on Σ′, and α, ε be positive
reals and d be a non negative integer.

Definition 6. Similarly to Def. 1 we say that a partial function φ : A∗ → Σ′∗

is almost approximately injective with precision ε and delay d if

∀n ∈ IN, w, w′ ∈ An ∀u, u′ ∈ Ad : φ(wu) = φ(w′u′)⇒ dist(w,w′) < ε.

Its almost inverse is a multi-valued function family ψn : Σ′∗ → An characterized
by the following property: for any w ∈ An it holds that w ∈ ψn(v) if and only if
some u ∈ Ad yields φ(wu) = v.
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Lemma 3. Given an almost approximately injective function φ with precision
ε and delay d, let ψn be its almost inverse family. Then for every v the diameter
of ψn(v) is at most ε. If the domain of φ is extensible, then the image of ψn

coincides with this domain (constrained to length n).

Definition 7. An (S,C)-encoding of a rational rate α, precision ε and delay d
is a function φ : S → C (total on S) such that

– it is of rate α: i.e. ∀w ∈ S, �α|φ(w)|� = |w|;
– it is almost approximately injective with precision ε and delay d.

The information inequality for this setting has the form:

α(H(S) + log(1/ε)) ≤ h(C), (II3)

which corresponds to information contents of S equal to H(S) + log(1/ε), see
the formula for Kolmogorov complexity of timed words in [3].

Proposition 4. For a factorial extensible measurable timed language S and a
factorial extensible discrete language C the following holds. If an (S,C)-encoding
of rate α, precision ε, and some delay d exists then necessarily (II3) must be
satisfied.

Proof. Let φ be an (S,C)-encoding of rate α, precision ε and delay d, and ψ
its almost inverse. By Lemma 3, for every n it holds that Sn = ψn(C
(n+d)/α�).
This leads to an inequality on volumes

Vol(Sn) ≤
∑

v∈C�(n+d)/α�

Vol(ψn(v)).

Any ψ(v) has a diameter ≤ ε and thus is included in a cube of side ε and volume
εn. We have:

Vol(Sn) ≤ εn|C
(n+d)/α�|.
Thus

α

n
log Vol(Sn) ≤

α

n
log εn|C
(n+d)/α�| = α log ε+

�(n+ d)/α�
n/α

|C
(n+d)/α�|
�(n+ d)/α� .

Taking the limit as n tends to infinity we obtain αH(S) ≤ α log ε + h(C) and
then (II3) holds. �

We strengthen a little bit (II3) to have a (partial) converse result for sofic timed
languages.

Proposition 5. For a sofic timed language S with H(S) > −∞, there exists a
function RS such that limx→0 RS(x) = 0 and the following holds. Whenever the
entropy of a sofic discrete language C verifies the inequality α(H(S)+log(1/ε)+
RS(ε)) < h(C), then there exists an (S,C)-encoding of rate α, precision ε and
some delay d. Moreover it can be realized by a “real-time transducer” sketched
below in the proof.
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Proof (Sketch). Let S be a sofic timed language. For ε > 0, let S+
ε be its ε-

discretized over-approximation given by Lemma 2. We define

RS(ε) = h(S+
ε )−H(S)− log(1/ε),

it satisfies the required condition: RS(ε) = o(1) (see Lemma 2). Let C be a sofic
discrete language such that

α(H(S) + log(1/ε) +RS(ε)) < h(C),

we prove that an (S,C)-encoding of rate α, precision ε and some delay d exists.
Lemma 2 gives us

S ⊆ BNE
ε (S+

ε ) and αh(S+
ε ) = α(H(S) + log(1/ε) + RS(ε)) < h(C).

Thus by Prop. 3 an (S+
ε , C)-encoding of rate α and some delay d exists and

can be realized by a finite-state transducer τε of rate α and delay d. If we
replace for each transition its input label (a, kε) by the label a and the guard
t ∈ [kε, (k+1)ε], we obtain a real-time transducer τ with input BNE

ε (S+
ε ) whose

output is in C. The injectivity of τε ensures that τ realizes an approximately
injective function with precision ε. �

4.2 Timed Source, Timed Channel, Exact Transmission

Another natural setting is when a timed message is transmitted via a timed chan-
nel. In this case, the coding can be exact (injective). For the moment we consider
length-preserving transmission (see Sect. 4.4 for faster and slower transmission).

Let A, A′ be a k-M and a k′-M ′ alphabet, S and C factorial extensible
measurable timed languages on these alphabets, and d ∈ IN.

Let � and σ be positive rationals. A function f : A′n → A∗ is said to be
�-Lipshitz whenever for all x, y in its domain, dist(f(x), f(x′)) ≤ � dist(x, x′).
We call a function σ-piecewise �-Lipshitz if its restriction to each cube of the
standard σ-grid on A′n is �-Lipshitz.

We can now state the definition of an (S,C)-encoding:

Definition 8. An (S,C)-encoding with delay d (and step σ) is a function φ :
S → C such that

– it is length preserving: |φ(w)| = |w|,
– it is almost injective (with delay d),
– no time scaling: the almost inverse ψn are σ-piecewise 1-Lipshitz.

The last condition rules out a possible cheating when all the time delays are
divided by 1000 before transmission over the channel. We will come back to this
issue in Sect. 4.3.

The information inequality in this setting takes a very simple form:

H(S) ≤ H(C). (II4)

The necessary condition for existence of a coding has a standard form (for tech-
nical reasons we require the channel to be sofic):
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Proposition 6. If for a factorial extensible measurable timed language S and a
sofic timed language C an (S,C)-encoding of delay d exists, then (II4) holds.

Proof. We consider first the most interesting case when H(C) > −∞. We will
prove that for any ζ > 0 the inequality H(S) ≤ H(C)+ ζ holds. Suppose φ is an
(S,C)-encoding of delay d (and step σ), and ψ its almost inverse. By Lemma 1,
for any natural n we have Sn ⊂ ψn(Cn+d).

Since C is sofic, Lemma 2 applies, and for a fixed ε, each Cn can be covered by
C+

n , a union of Kn,ε cubes of size ε with H(C) + log 1
ε = limn→∞

logKn,ε

n + o(1).
We choose ε dividing σ and small enough such that

H(C) + log
1

ε
> lim

n→∞

logKn,ε

n
− ζ. (1)

Thus we have Sn ⊂ ψn(C
+
n+d), and, passing to volumes we get

Vol(Sn) ≤ Vol(ψn(C
+
n+d)) ≤ Kn+d,εε

n, (2)

indeed, since ψn is 1-Lipshitz on each ε-cube, ψn-image of each such cube has a
diameter ≤ ε and thus a volume ≤ εn. Passing to logarithms, dividing by n and
taking the limit as n→∞ in (2) we get

H(S) ≤ lim
n→∞

logKn+d,ε

n+ d
+ log ε,

and applying inequality (1) we obtain

H(S) ≤ H(C) + log
1

ε
+ ζ + log ε = H(C) + ζ,

which concludes the proof for the case when H(C) > −∞. The remaining case
H(C) = −∞ is a simple corollary of the previous one. �

As usual, when both timed languages S and C are sofic and the information
inequality (II4) strict, the converse holds.

Proposition 7. If for sofic timed languages S and C it holds that H(S) <
H(C), then there exists an (S,C)-encoding (with some delay d). Moreover it can
be realized by a “real-time transducer” described below in the proof.

Proof (Sketch). Let S and C be sofic timed languages whose entropies verify
−∞ < H(S) < H(C). We prove that an (S,C)-encoding with some delay d
exists. Let C−

ε and S+
ε be as in Lemma 2, i.e. such that

S ⊆ BNE
ε (S+

ε ); BNE
ε (C−

ε ) ⊆ C;

H(S) + log
1

ε
= h(S+

ε ) + o(1); H(C) + log
1

ε
= h(C−

ε ) + o(1).

The discretization step ε can be chosen small enough such that h(S+
ε ) < h(C−

ε ).
Thus by Theorem 1 a finite-state (S+

ε , C−
ε )-encoder τε exists.
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Fig. 3. Left: A−
ε : an automaton recognizing C−

ε with ε = 1. Right: its split form.

We replace each transition δε of τε with input label (a, kε) and output label
(b, lε) by a transition δ with input label a, guards t ∈ [kε, (k + 1)ε], output
label b and increment/decrement c(δ) = (l− k)ε. We obtain what we call a real-
time transducer τ . Its input language is BNE

ε (S+
ε ) and its output language is

included in BNE
ε (C−

ε ) ⊆ C. The encoding is performed as follows: a timed word
(t1, a1) . . . (tn, an) is in the input language if there is a path δ1 . . . δn such that
I(δi) = ai and ti satisfies the guard of δi: ti ∈ [kε, (k + 1)ε]; the output timed
word is in this case (t′1, b1) . . . (t

′
n, bn) with t′i = ti + c(δi), bi = O(δi).

The collection of cubes BNE
ε (w), w ∈ S+

ε (resp. w ∈ C−
ε ) forms a partition

of timed languages BNE
ε (S+

ε ) (resp. BNE
ε (C−

ε )), they are cubes of the standard
σ-grid with the step σ = ε. Transducer τ only translates cubes. Translations are
1-Lipshitz and thus the last condition of an (S,C)-encoding holds.

The remaining degenerate case when −∞ = H(S) < H(C) is an easy corollary
of the non-degenerate one. �

Table 1. The coding transducer

ori(δ) ter(δ) I(δ) g(δ) O(δ) c(δ)
q p0 e [0, 1] a 0
q p1 f [0, 1] a 1
q′ p′0 e [0, 1] a 0
q′ r f [0, 1] b 1
p0 q e [0, 1] c 0
p0 q′ f [0, 1] c 0
p′0 q e [0, 1] c 1
p′0 q′ f [0, 1] c 1
p1 q e [0, 1] c 0
p1 q′ f [0, 1] c 0
r q e [0, 1] d 0
r q′ f [0, 1] d 0

The following example illustrates the
construction of the transducer. Let the
source timed language be S = ([0, 1] ×
{e, f})∗ and the channel timed language
C be recognized by the automaton on
Fig. 2. We have seen that the entropy
H(C) is at least 0.5 log 6.5 and thus
H(C) > H(S) = log 2. By Prop. 7 an
(S,C)-encoding exists. To realize this
encoding we take ε = 1. There are four
cubes included in the language C2(q):
([0, 1]× [0, 1]×{ac}, [0, 1]× [0, 2]×{ac},
[1, 0]× [0, 1]×{ac}, [0, 1]× [0, 1]×{bd})
while the cubes to encode (language S2)
are [0, 1]×{ee}, [0, 1]×{ef}, [0, 1]×{fe},
[0, 1]×{ff}. The transducer will repeat-
edly map four “input cubes” to four “output cubes”. We build an automaton for
discrete words C−

ε (as in Lemma 2, such words correspond to “output cubes”) in
Fig. 3, left. Then, as usual in coding, we first split the state p0 and then the state
q (each in two copies) to obtain an automaton with constant outdegree 2 (Fig. 3,
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right). This automaton accepts the same language C−
ε , and can be transformed

to the desired transducer just by adding input letters and increment/decrement
to its transition. The transitions of the transducer are given in Table 1.

4.3 A Variant: Scaling Allowed

In some situations, timed data can be scaled for coding, which leads to a new
term in the information inequality. Let λ > 0 be a rational bound on scaling
factor. We modify Def. 8 by replacing 1-Lipshitz by 1/λ-Lipshitz.

Definition 9. An (S,C)-encoding with delay d, scaling λ and step σ is a func-
tion φ : S → C such that

– it is length preserving: |φ(w)| = |w|,
– it is almost injective (with delay d),
– it has scaling at most λ: the almost inverse ψn are σ-piecewise 1/λ-Lipshitz.

The information inequality for this case becomes:

H(S) ≤ H(C) + logλ. (II5)

The problem of coding with scaling can be easily reduced to the one considered
in the previous section. Indeed, for a timed language C let λC be the same
language with all times multiplied by λ (the entropy of this language is H(λC) =
H(C) + log λ). A function φ is an (S,C)-encoding with scaling λ if and only if
the “λ-scaled” function λφ is an (S, λC)-encoding without scaling. Using this
reduction, the results below are corollaries of Prop. 6-7.

Proposition 8. If for factorial extensible measurable timed language S and sofic
timed C an (S,C)-encoding with scaling λ and delay d exists then (II5) holds.

Proposition 9. If for sofic timed languages S and C (with H(S) > −∞) the
strict version of (II5) holds, then there exists an (S,C)-encoding with scaling λ
(with some delay d). Moreover it can be realized by a “real-time transducer”.

4.4 A Speedup and a Slowdown Lead to a Collapse

For untimed channels, transmission with some rate α 	= 1leads to the factor α in
information inequalities (II2), (II3). Unfortunately, for timed channels this does
not work: any rate α 	= 1 leads to a collapse of the previous theory.

Definition 10. An (S,C)-encoding with rational rate α, delay d and step σ is
a function φ : S → C such that

– its rate is α, i.e. ∀w ∈ A∗, �α|φ(w)|� = |w|;
– it is almost injective (with delay d);
– no time scaling: its almost inverse ψ is σ-piecewise 1-Lipschitz.

For α > 1 no coding is possible, and for α < 1 it always exists. More precisely,
the two following propositions hold.

Proposition 10. For factorial measurable timed languages S and C if H(S) >
−∞ and α > 1, then no (S,C)-encoding with rate α exists.
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Proof (Sketch). The proof follows the same lines as that of Prop. 6. Suppose φ is
such an (S,C)-encoding, and ψ its almost inverse. By Lemma 1, for any natural
n we have Sn ⊂ ψn(C
(n+d)/α�). Each Cn can be covered by C+

n , a union of

Kn,ε cubes of size ε satisfying inequality (1) We have Sn ⊂ ψn(C
+

(n+d)/α�), and,

passing to volumes we get Vol(Sn) ≤ Vol(ψn(C
+

(n+d)/α�)) ≤ K
(n+d)/α�,εε

n.

Passing to logarithms, dividing by n and taking the limit as n→∞ we get

H(S) ≤ α−1 lim
n→∞

logK
(n+d)/α�,ε
�(n+ d)/α� + log ε,

and applying inequality (1) we obtain

αH(S) ≤ H(C) + log(1/ε) + ζ + α log ε = H(C) + ζ − (α− 1) log(1/ε).

Choosing ε small enough makes the inequality wrong. This contradiction con-
cludes the proof. �

Proposition 11. For sofic timed languages S and C (with H(C) > −∞) and
any α < 1 there exists an (S,C)-encoding with rate α (and some delay d).
Moreover it can be realized by a kind of timed transducer.

The construction is non-trivial and uses spare time durations in the channel
message to transmit discrete information.

5 Discussion and Perspectives

In the previous section, we have established several results on timed channel
coding following the standard scheme: a setting of information transmission –
information inequality – coding existence theorem – synthesis of an encoder/de-
coder. We believe that this approach can be applied to various situations of
data transmission (and compression). We also consider it as a justification of our
previous research on entropy of timed languages [2–4]. In this concluding section,
we explain some of our choices and immediate perspectives of this approach.

The Time Is not Preserved. In the central Def. 8 and Prop. 6,7, we con-
sider codings of timed words that preserve the number of events, and not their
duration. This choice is compatible to the general idea of dealing with data
words (in our case, sequences of letters and real numbers), and less so with the
standard timed paradigm. We use again the example of Fig. 2 to illustrate this
feature. For n ∈ IN, the timed word w = [(0.5, e)(0.5, f)]n is encoded to the
timed word w′ = [(0.5, a)(1.5, c)]n, both have 2 events. However, the duration of
w is (0.5 + 0.5)n = n, while the duration of w′ is (0.5 + 1.5)n = 2n.

Other Settings to Explore. It would be still interesting to explore coding func-
tions preserving durations. On the theoretical side, a more detailed analysis for
transmission speeds different from 1, as in Sect. 4.4 would probably lead to infor-
mation inequalities instead of a collapse. Many other settings of transmission of
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Fig. 4. Top: transducers τ1 : S → C and τ2 : C → S. Bottom: languages S2 and C2.

information could be practically relevant: approximated transmission of a timed
source on a timed channel; coding of a discrete source on a timed channel; coding
using transducers of a fixed precision; coding of other kinds of data languages. On
the other hand, more physical models of timed and data channels would be inter-
esting to study, one can think of a discrete channel with a fixed baud rate coupled
with an analog channelwith a bounded frequency bandwidth. Finally, some special
codes, such as sliding-window, error-correcting etc., should be explored for timed
and data languages.

What Is a Timed Transducer? In the classical theory of constrained channel
coding, several kinds of transducers are used for encoding/decoding, such as those
leading to a sliding-block window decoding. In this paper, we have realized our
codes by using some very restricted ad hoc timed transducers. They behave like
timed (in our case, real-time) automata on the input, and “print” letters and real
numbers on the output; we believe that this is the correct approach. However, the
right definition of a natural class of timed transducers adequate to coding remains
an open question. As a preliminary definition, we suggest timed automata that
output, on each transition, a letter and a real number (which is an affine com-
bination of clock values). While reading a timed word, such a transducer would
output another timed word. We illustrate this informal definition with the exam-
ple of mutually inverse transducers τ1 and τ2 (encoder and decoder) on Fig. 4.
Let us consider a run of the transducer τ2 on the timed word (t1, b)(t2, c) . . . We
start from q with x = 0, y = 0, after reading (t1, b) the value of x and y is t1, we
fire the transition, the output is (t1, a), we pass in q where we read (t2, c), the
value of x is t2 and the value of y is t1 + t2, we fire the transition, the output is
(2t2 − (t1 + t2) + 1, a) = (t2 − t1 + 1, a), we pass in p etc.

For τ1, the input language of timed words of length 2 starting from p is
S2(p) = {(t1, b)(t2, c) | t1 ∈ [0, 1], t1+t2 ∈ [1, 2]}, while for the second transducer
it is C2(p) = {(t1, a)(t2, a) | t1 ∈ [0, 1], t2 ∈ [0, 1]}. These two languages are
depicted in Fig. 4, they have the same volume. It would be impossible to realize
this kind of encoding using “rectangular” transducers as in Sect. 4.
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How to Improve Code Synthesis? The encoders in Sect. 4 are not completely
satisfactory: they use non-integer guards even when the source and the target
language are defined using integer timed automata. We believe that this issue
can be avoided using a broader class of transducers as suggested just above.

What about Timed Symbolic Dynamics? The classical theory of constrai-
ned-channel coding uses as a convenient terminology, and as a toolset, a branch
of the theory of dynamical systems called symbolic dynamics. One of us, in [5],
started a formulation of timed languages and automata in terms of symbolic
dynamics. Relating it to timed channel coding remains a future work.

Applications. In practice, when transmitting (or storing) information contain-
ing discrete events and real-valued data, all the information is first converted
to the digital form and next encoded for transmission or storage. Our paradigm
combines both steps and, in principle, provides better bounds and codes. How-
ever, more research is needed to come up with useful practical codes.

Acknowledgment. We thank the anonymous reviewers for valuable remarks
that contributed to substantial improvement of this article.
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Abstract. We marry continuous time Markov decision processes
(CTMDPs) with stochastic timed automata into a model with joint
expressive power. This extension is very natural, as the two original
models already share exponentially distributed sojourn times in locations.
It enriches CTMDPs with timing constraints, or symmetrically, stochastic
timed automata with one conscious player. Our model maintains the
existence of optimal control known for CTMDPs. This also holds for a
richer model with two players, which extends continuous time Markov
games. But we have to sacrifice the existence of simple schedulers:
polyhedral regions are insufficient to obtain optimal control even in the
single-player case.

1 Introduction

Control problems have been widely investigated in the verification community as
a generalisation of the original model-checking problem. Rather than checking
whether a system satisfies a property, the goal is to control the system such
that it fulfils a desired property. In a framework where timing constraints are
essentials, the system can be modelled using timed automata [1], and timed
games have been introduced to solve the control problem [2].

Another popular model for systems with nondeterministic choices and real-
time aspects is the one of continuous time Markov decision processes (CTMDPs),
where the real-time aspects are governed by probability distributions, while the
nondeterministic choices are resolved by a scheduler. Time-bounded reachability
requires that a goal region should be reached within some time-bound, and the
objective is then to build a scheduler that maximises the probability of these
executions. This problem has recently received a lot of attention for CTMDPs
[5,8,15,18,16,13]. A more fundamental question than the quest for the construc-
tion or approximation of optimal schedulers is the question of their existence.

In this paper, we introduce a variant of timed games where delays are ran-
domised rather than being nondeterministic. This model of timed automata
Markov decision processes (TAMDPs) extends the probabilistic semantics for
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timed automata from [3,4] with nondeterminism. Our model also forms an ex-
tension of CTMDPs, roughly, by adding timing constraints to the firability of
transitions. We consider the time-bounded reachability problem and provide a
positive answer to the fundamental question of the existence of optimal sched-
ulers. This result immediately extends to a more general setting with two players,
where controlled and adversarial nondeterminism coexist.

The structure of the optimal schedulers is, however, involved. We show that
it does not suffice to consider regions or, more generally, to divide the space
defined by the relevant clock values into polyhedra, to obtain optimal control.

2 Preliminaries

2.1 Timed Automata

We recall here basics on timed automata, from [1], that will be useful for this
paper. Timed automata are extension of finite automata with real-valued vari-
ables (called clocks) that all evolve at the same speed. Clocks can be tested and
reset to 0.

For a given finite set of clocks X , a valuation v : X → R≥0 maps every clock
to a non-negative real. A guard over X is a finite conjunction of constraints
x ∼ c, with ∼∈ {<,≤,=,≥, >}, for a clock x ∈ X and an integer c ∈ N. Given a
guard g over X and a valuation v ∈ RX

≥0, we write v |= g whenever v satisfies the
constraints expressed by g, and define �g� = {v | v |= g}. The set of all possible
guards over X is denoted G(X). For v ∈ RX

≥0 a valuation and t ∈ R≥0, v + t
denotes the valuation defined by v + t(x) = v(x) + t for every x ∈ X . Moreover,
if X ′ ⊆ X is a subset of clocks and v a valuation, v[X′←0] denotes the valuation
that agrees with v on X \X ′ and is equal to 0 for all clocks in X ′.

Definition 1 (Timed automaton). A timed automaton is a tuple A =
(L,X,E) where

– L is a finite set of locations,
– X is a finite set of clocks, and
– E ⊆ L× G(X)× 2X × L is a finite set of edges.

The semantics of a timed automaton A = (L,X,E) is given in terms of an
infinite-state transition system T = (L × RX

≥0,→,R≥0 × E), where the relation

→ is exactly composed of transitions (�, v)
t,e−−→ (�′, v′) such that the edge e =

(�, g,X ′, �′) ∈ E satisfies v+ t |= g and v′ = (v + t)[X′←0]. A run of A is a finite

sequence of transitions ρ = (�0, v0)
t0,e0−−−→ (�1, v1)

t1,e1−−−→ · · · (�n, vn). We denote

the last state (�n, vn) of run ρ by last(ρ) and the value
�n−1

i=0 ti is called the total
duration of ρ. We write Runs(A) for the set of all runs of A.

In order to encompass CTMDPs in our TAMDP model defined in the next
subsection, we first extend timed automata with discrete probabilities. In prob-
abilistic timed automata, introduced in [14], edges do not result in the reset of
a fixed set of clocks and lead to a fixed location, but rather yield a distribution
δ ∈ Dist(2X × L) over resets and locations.
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Definition 2 (Probabilistic timed automaton). A probabilistic timed au-
tomaton is a tuple A = (L,X,E) where L and X are as for a timed automaton
and E ⊆ L× G(X)× Dist(2X × L) is a finite set of probabilistic edges.

We write (�, v)
t,e,p−−−→ (�′, v′) if from state (�, v+t) and assuming probabilistic edge

e is selected, the next state is (�′, v′) with probability p. The rest of the definitions
is unchanged. In the sequel, we will consider symbolic paths, that is, special sets of
runs in probabilistic timed automata. Given a prefix run ρ ∈ Runs(A), a sequence
of edges e0, · · · , en, together with probabilisties p0, · · · , pn, and a time-bound T ,
the finite symbolic path π(ρ, e0, p0 · · · , en, pn, T ) is defined by:

π(ρ, e0, p0 · · · , en, pn, T ) = {ρ
t0,e0,p0−−−−−→ (�1, v1)

t1,e1,p1−−−−−→ · · · (�n, vn) |
n−1�
i=0

ti ≤ T }.

2.2 MDP Model for Timed Automata

A probabilistic semantics for timed automata [3,4], also referred to as stochas-
tic timed automata, was introduced to address the problem of ‘unrealistic’ sets of
paths, where unrealistic is identified with paths that have a very low probability
(in particular 0-sets). Informally, the semantics of a stochastic timed automaton
consists of an infinite-state infinitely-branching Markov chain (whose underlying
graph is a timed transition system T ), where transitions between states are gov-
erned by the following: first, a delay is sampled randomly among possible delays,
and second, an enabled transition is chosen randomly among enabled ones.

For technical convenience—and following [6]—we require our (probabilistic)
timed automata to be reactive. A (probabilistic) timed automatonA = (L,X,E)
is called reactive if, for each state s = (�, v) of A, there is an edge e ∈ E such that

s
0,e−−→ s′ for some state s′ of A. In words, we require that every state is the source

of some edge, such that A never blocks. A (probabilistic) timed automaton can
easily be made reactive by adding a self loop for all clock valuations where no
guard of any transition leaving a state is satisfied.

A natural way of incorporating some control in stochastic timed automata
is to have nondeterministic, rather than randomised, decisions among enabled
actions. From a state s = (�, v), first a delay t is sampled in R≥0, and then the
controller chooses which probabilistic edge to fire from state (�, v+ t) among the
possible ones.

We thus define the model of timed automata Markov decision processes
(TAMDPs for short).

Definition 3 (Timed automaton MDP). A timed automaton Markov de-
cision process is a tuple M = (L,X,E,Λ), where A = (L,X,E) is a reactive
probabilistic timed automaton and Λ : L→ R≥0 is a rate function.

The semantics of a TAMDP is an infinite-state infinitely branching Markov deci-
sion process, whose states (resp. edges) are states (resp. edges) of the underlying
probabilistic timed automaton A. From a state s = (�, v), the sojourn time in
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location � follows an exponential distribution with rate Λ(�) and some inter-
mediary state (�, v + t) is reached, where nondeterministically an edge e ∈ E
enabled in (�, v+ t) fires. The formal semantics of TAMDPs will be detailed fur-
ther in the next subsection when defining probability measures associated with
(a restricted class of well-behaved) schedulers. Note that runs of M coincide
with runs of its underlying probabilistic timed automaton, thus we still write
Runs(M) for the runs of M. Also, in analogy to the common terminology of
CTMDPs, we sometimes refer to edges (especially when an edge is selected) as
actions.

2.3 Comparison with Existing Models

CTMDPs. Continuous-time Markov decision processes form a restricted class
of TAMDPs where the underlying probabilistic timed automaton has no clock
and is thus a finite automaton. For CTMDPs, it was proven in [16] that optimal
control exists for time-bounded reachability, and that optimal schedulers can be
taken from a restricted class of finitely representable schedulers.

Stochastic timed games. In stochastic timed games [7], locations are parti-
tioned into locations owned by three players, a reachability player (who has
a time-bounded reachability objective), a safety player (who has the opposite
time-bounded safety objective), and an environment player (who makes random
moves). In a location of the reachability or safety player, the respective player
decides both the sojourn time and the edge to fire, whereas in the environ-
ment’s locations, the delay as well as the edge are chosen randomly. For this
model, it was shown that, assuming there is a single player and the underlying
timed automaton has only one clock, the existence of a strategy for a reach-
ability goal almost-surely (resp. with positive probability) is PTIME-complete
(resp. NLOGSPACE-complete). Moreover, for two-player games, quantitative
questions are undecidable.

Stochastic real-time games. In stochastic real-time games [9], states of the arena
are partitionned into environment nodes —where the behaviour is similar to
CTMDPs— and control nodes —where one player chooses a distribution over
actions, which induces a probability distribution for the next state. For this
game model, objectives are given by deterministic timed automata (DTA), and
the goal for player 0 is to maximize the probability that a play satisfies the
objective. The main result concerns qualitative properties, and states that if
player 0 has an almost-sure winning strategy, then she has a simple one, that
can be described by a DTA.

Markovian timed automata. The model closest to ours is the one of Markovian
timed automata (MTA), that, similar to our TAMDPs, consist in an extension
of timed automata with exponentially distributed sojourn time. MTA were first
introduce as an intermediate model to model-check CTMCs or CTMDPs against
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deterministic timed automata specifications [10,11]. In the recent paper [12] ap-
proximations techniques are provided for the optimal time-(un)bounded reacha-
bility probabilities in MTA. In comparison, we focus on the existence of optimal
schedulers/strategies for the same problems.

2.4 Schedulers for TAMDPs

Intuitively, a scheduler is responsible for choosing which edge to fire among
enabled ones after a random delay has been sampled. To make its decision, the
scheduler has access to the all history of the play so far. Formally:

Definition 4 (Scheduler). Let M = (L,X,E,Λ) be a timed automaton
Markov decision process. A scheduler forM is a function σ : Runs(M)×R≥0 →
Dist(E) such that for every en with σ(s0

t0,e0,p0−−−−−→ s1 · · · sn, tn, pn)(en) > 0, there

exists a state sn+1 with sn
tn,en,pn−−−−−→ sn+1.

Prior to defining a meaningful class of schedulers for TAMDPs, let us first recall
the notions of deterministic and memoryless schedulers. A scheduler σ for M
is deterministic if it only makes pure decisions: for all ρ ∈ Runs(M) and all
t ∈ R≥0, σ(ρ, t) is a Dirac distribution (i.e., there exists an e ∈ E such that
σ(ρ, t)(e) = 1). A scheduler σ is memoryless1 if, for all ρ, ρ′ ∈ Runs(M) with
equal total duration and such that last(ρ) = last(ρ′), σ(ρ, t) = σ(ρ′, t) whatever
the delay t ∈ R≥0.

As pointed out in [17], not all schedulers are meaningful, even in the restricted
case of continuous-time Markov decision processes (CTMDPs). In particular,
under some schedulers, the set of runs reaching a given location can be non-
measurable. We follow the approach from [16] and consider a class of schedulers
obtained as the completion of the class of cylindrical schedulers. We only re-
port what is necessary in our context, and refer to [16] for the details of this
construction.

Definition 5 (Cylindrical scheduler). A scheduler σ for M and time-bound
T is cylindrical if there exists a finite partition I of [0, T ] into intervals I0 =

[0, T0] and Ii+1 = (Ti, Ti+1] such that, for every pair of runs ρ = (�0, v0)
t0,e0,p0−−−−−→

(�1, v1) · · · (�n, vn) and ρ′ = (�0, v
′
0)

t′0,e0,p0−−−−−→ (�1, v
′
1) · · · (�n, v′n) and every pair of

delays (tn, t
′
n) ∈ R≥0, as soon as, for all 0 ≤ j ≤ n, tj and t′j belong to the same

interval Ij , then σ(ρ, tn) = σ(ρ′, t′n).

In plain English, a scheduler is cylindrical for a partition I of [0, T ] if it takes
the same decision for runs and delays that are equivalent with respect to I.

The set of cylindrical schedulers can then be extended to measurable sched-
ulers by defining a metric on cylindrical schedulers and then taking the limits of

1 Note that our notion of memoryless scheduler is looser than the usual one: the
scheduler can also base its decision on the elapsed time so far. This particularity is
due to the kind of properties we consider, namely time-bounded reachability.



48 N. Bertrand and S. Schewe

Cauchy-sequences of cylindrical schedulers with respect to that metric (see [16]
for details).

Given a TAMDP M, any measurable scheduler σ yields a probability mea-
sure, denoted Pσ, over Runs(M) with a fixed initial state, or more generally a
fixed initial run. Let us define Pσ over Runs(M, ρ) initiated by a finite prefix
ρ ∈ Runs(M), by first associating a measure with every finite symbolic path
π = π(ρ, e0, p0 · · · en, pn, T ). For every time-bound T ≥ 0, Pσ(ρ, T ) = 1 and in-
ductively for π = π(ρ, e0, p0 · · · en, pn, T ) with ρ ∈ Runs(M) ending in location
�0, scheduler σ assigns the following probability

Pσ(π) =

� T

t=0
σ(ρ, t)(e0) · p0 ·Pσ(π(ρ1, e1, p1 · · · en, pn, T − t)) ·Λ(�0) · e−Λ(	0)t dt,

where ρ1 = ρ
t,e0,p0−−−−→ s1. Mapping Pσ can then be extended in a unique way into

a probability measure over Runs(M, ρ) equipped with the σ-algebra generated
by symbolic paths starting with ρ.

Time-Bounded Reachability Probability. In this paper, we are interested
in time-bounded reachability probabilities. Let us introduce the time-bounded
reachability probability problem. Given a TAMDP M, an initial state (�, v), a
set of goal locations G ⊆ L, and a time-bound T , let ReachM(�, v,G, T ) denote
the set of runs ofM that originate (�, v) and reach the goal within T time-units:

ReachM(�, v,G, T ) = {(�, v) = (�0, v0)
t0,e0,p0−−−−−→ (�1, v1) · · · (�n, vn) ∈ Runs(M) |

∃i ≤ n, �i ∈ G and
�
j<i

tj ≤ T }.

Note that one can easily express ReachM(�, v,G, T ) as a countable union of
symbolic paths starting in (�, v), and it is thus legal to consider its probability un-
der measurable schedulers. The maximum time-bounded reachability probabil-
ity problem consists in maximising the probability of ReachM(�, v,G, T ) among
measurable schedulers, and we write

OptM(�, v,G, T ) = sup
σ

Pσ(ReachM(�, v,G, T )).

A natural question is whether optimal schedulers exist at all, that is, whether
the supremum of the time-bounded reachability probability, OptM(�, v,G, T ),
is taken for some scheduler. If this is the case, it is worth knowing if simple
(e.g., cylindrical, region-based, or, more generally, polyhedral) optimal sched-
ulers exist. In the remainder of the paper, we establish the existence of optimal
schedulers for the time-bounded reachability probability problem for TAMDPs,
and show that polyhedral schedulers are not sufficient.

3 Optimal Schedulers for TAMDPs

In this section, we establish the existence of optimal schedulers for the maxi-
mum time-bounded reachability probability problem in timed automata Markov
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decision processes. In order to do so, we start by providing lower bounds for
OptM(�, v,G, T ) by allowing, in addition to the time-bound, only a fixed num-
ber of steps to reach the goal, and then show that these lower bounds are sharp.

We consider the optimal probability to reach the goal G from (�, v) within T
time-units, with the additional constraint that it should be in no more than N
discrete steps. This probability, which we denote OptNM(�, v,G, T ), optimises the
probability of the following set of runs:

ReachN (�, v,G, T ) = {(�, v) = (�0, v0)
t0,e0,p0−−−−−→ (�1, v1) · · · (�N , vN ) ∈ Runs(M) |

∃i ≤ N, �i ∈ G and
�
j<i

tj ≤ T }.

That is, we have OptNM(�, v,G, T ) = supσ Pσ(Reach
N
M(�, v,G, T )).

For all N ∈ N, OptNM(�, v,G, T ) is obviously a lower bound for

OptM(�, v,G, T ). Moreover,
�
OptNM(�, v,G, T )

�
N∈N

is non-decreasing, and, as

we shall see, the sequence converges to the ordinary optimum OptM(�, v,G, T ).
In order to prove this, we start with the following simple lemma:

Lemma 1. For all ε > 0 there exists an M ∈ N such that, for all N ≥ M and

all measurable schedulers σ, Pσ

�
Reach(�, v,G, T )� ReachN (�, v,G, T )

�
< ε and

Pσ

�
Reach(�, v,G, T )

�
− Pσ

�
ReachN (�, v,G, T )

�
< ε.

Proof. Let λ = max	∈L Λ(�) be the maximal transition rate in M. Given ε > 0,

we choose M such that
�∞

k=M
λk

k! e
−λ < ε. Under any measurable scheduler and

assuming all locations have rate λ, the number of steps taken within T time-
units is Poisson distributed, and the likelihood to perform M or more steps is

bounded from above by
�∞

k=M
λk

k! e
−λ, and therefore smaller than ε. Of course,

this upper bound also applies to the case where rates are smaller or equal λ in
all locations. The set of all runs in M performing M or more steps obviously
contains Reach(�, v,G, T )�ReachN (�, v,G, T ) for every N ≥M , so we conclude

that Pσ

�
Reach(�, v,G, T )� ReachN (�, v,G, T )

�
< ε.

The second claim follows from Pσ

�
Reach(�, v,G, T )

�
−

Pσ

�
ReachN (�, v,G, T )

�
= Pσ

�
Reach(�, v,G, T )� ReachN (�, v,G, T )

�
. �

We can now establish that
�
OptNM(�, v,G, T )

�
N∈N

converges to the optimum:

Lemma 2. limN→∞ OptNM(�, v,G, T ) = OptM(�, v,G, T ).

Proof. The ‘≤’ direction is simple: for all schedulers σ and all N ∈ N,
Pσ

�
ReachN (�, v,G, T )

�
≤ Pσ

�
Reach(�, v,G, T )

�
trivially holds, and conse-

quently OptNM(�, v,G, T ) ≤ OptM(�, v,G, T ).
For the ‘≥’ direction, we show that, for all ε > 0, limN→∞ OptNM(�, v,G, T ) ≥

OptM(�, v,G, T ) − 2ε. Let ε > 0. On one hand, we can always choose a

scheduler σ such that Pσ

�
Reach(�, v,G, T )

�
> OptM(�, v,G, T ) − ε. On the
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other hand, applying Lemma 1, there exists M ∈ N such that, for every

N ≥M , Pσ

�
Reach(�, v,G, T )

�
− Pσ

�
ReachN (�, v,G, T )

�
< ε. As a consequence,

for N large enough, Pσ

�
ReachN (�, v,G, T )

�
> Pσ

�
Reach(�, v,G, T )

�
− ε >

OptM(�, v,G, T )− 2ε, and thus OptNM(�, v,G, T ) > OptM(�, v,G, T )− 2ε. �
From now on, we focus on the under-approximation OptNM(�, v,G, T ), in order
to prove the existence of optimal schedulers for OptM(�, v,G, T ).

Lemma 3. For every state (�, v) in M, the sequence
�
OptNM(�, v,G, T )

�
N∈N

is

characterized inductively by:

Opt0M(�, v,G, T ) = 0 if � /∈ G, (1)

OptNM(�, v,G, T ) = 1 if � ∈ G for all N ∈ N, and otherwise (2)

OptN+1
M (�, v,G, T )=

� T

0

max
e∈E

�
(	,v)

t,e,p−−−→(	′,v′)

p · OptNM(�′, v′, G, T − t)·Λ(�)· e−Λ(	)tdt. (3)

Equation (3), stating that optimality is memoryless, is the only non obvious one.

Proof. The correctness of Equation (3) can be shown by a simple inductive proof
over N . The base case, for N = 0, clearly holds since all the schedulers return
the same probability.

For the induction step, assume the equation holds up to N . Then, for N + 1
step-bounded reachability, the scheduler has to make a decision what action to
choose from (�, v) if a discrete action occurs after delay t. By induction hypoth-
esis, this is to optimise the outcome in case of having T − t time-units and N
steps left. �
Lemma 4. OptNM(�, v,G, T ) ∈ [0, 1], OptM(�, v,G, T ) ∈ [0, 1], and OptNM(�, v+
t, G, T − t) and OptM(�, v + t, G, T − t) are uniformly continuous in t and v.

Proof. First, it is easy to see that OptNM(�, v,G, T ) ∈ [0, 1], for all parameters.
Taking the limit when N tends to infinity, this also holds for OptM(�, v,G, T ).

Let n be the number of clocks and ‖ · ‖ be any norm on valuations2. We now
prove by induction on N that OptNM(�, v+ t, G, T − t) is uniformly continuous in
t and v. Obviously, Opt0M(�, v + t, G, T − t) is constant (for fixed � and G) and
thus uniformly continuous in v and t.

Let us show the uniform continuity of OptNM(�, v + t, G, T − t) in t for all
N ∈ N. Assume |t− t′| < ε, and, w.l.o.g., t < t′. Observe that

OptN+1
M (�, v + t, G, T − t)

=

� T−t

0
max
e∈E

�
(	,v+t)

τ,e,p−−−→(	′,v′)

p ·OptNM(�′, v′, G, T − t− τ)·Λ(�)· e−Λ(	)τdτ

=

� T

t
max
e∈E

�
(	,v)

τ,e,p−−−→(	′,v′)

p · OptNM(�′, v′, G, T − τ)Λ(�)e−Λ(	)(τ−t)dτ .

2 Recall that all norms over Rn are equivalent, so the choice of ‖ · ‖ is arbitrary.
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Thus

���OptN+1
M (�, v + t, G, T − t)− OptN+1

M (�, v + t′, G, T − t′)
���

=
���
� T

t
max
e∈E

�
(	,v)

τ,e,p−−−→(	′,v′)

p ·OptNM(�′, v′, G, T − τ)Λ(�)e−Λ(	)(τ−t)dτ

−
� T

t′
max
e∈E

�
(	,v)

τ,e,p−−−→(	′,v′)

p · OptNM(�′, v′, G, T − τ)Λ(�)e−Λ(	)(τ−t′)dτ
���

≤
� t′

t

max
e∈E

�
(	,v)

τ,e,p−−−→(	′,v′)

p ·OptNM(�′, v′, G, T − τ)Λ(�)e−Λ(	)(τ−t)dτ

+

� T

t′
max
e∈E

�
(	,v)

τ,e,p−−−→(	′,v′)

p ·OptNM(�′, v′, G, T − τ)Λ(�)e−Λ(	)(τ−t)
��1− e−Λ(	)(t−t′)

��dτ

≤
� t′

t
Λ(�)e−Λ(	)(τ−t)dτ +

��1− e−Λ(	)(t−t′)�� � T

t′
Λ(�)e−Λ(	)(τ−t)dτ

= (1− e−Λ(	)(t′−t)) +
��1− e−Λ(	)(t−t′)��(e−Λ(	)(t′−t) − e−Λ(	)(T−t))

≤ (1− e−Λ(	)(t′−t)) +
��1− e−Λ(	)(t−t′)�� = e−Λ(	)(t−t′) − e−Λ(	)(t′−t)

≤ eΛ(	)ε − e−Λ(	)ε,

and we can conclude the uniform continuity of OptN+1
M (�, v + t, G, T − t) in t.

For the uniform continuity in v, we start with the induction hypothesis

∀� ∈ L ∀G ⊆ L ∀ε > 0 ∃δ > 0 ∀v, w ∈ Rn
≥0. ‖v − w‖ < δ

⇒
���OptNM(�, v,G, T )− OptNM(�, w,G, T )

��� < ε.

With such ε and δ, and letting λ = max{Λ(�) | � ∈ L}, we will show that if
‖v − w‖ < ε then |OptN+1

M (�, v,G, T ) − OptN+1
M (�, w,G, T )| < λ(Tε + n�T �δ).

This will be sufficient to establish the induction step by taking δ′ for a given ε
in the same way as choosing δ for λ(n+ 1)�T �ε. In order to do so, let us define

Iwv =
�
τ ∈ [0, T ] | v + τ and w + τ do not satisfy the same guards

�
.

Observe that, provided ‖v − w‖ < δ, the ‘length’
	
τ∈Iw

v
dτ of Iwv is bounded by

n�T �δ. Indeed, v + t and w + t can only have different enabled transitions if for
one of the clocks x the two valuations disagree on x < c (for c ∈ N), and the
interval over which they differ is bounded in length by ‖v − w‖. The number of
such intervals is itself bounded by �T � for clock x. Finally we obtain the bound
n�T �δ when considering the n clocks.
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Let us now turn to the induction step. First we assume without loss of gen-
erality that δ < ε. (Obviously, δ can always be chosen this way.) We then get:

��OptN+1
M (�, v,G, T )− OptN+1

M (�, w,G, T )
�� = �� � T

t=0

Λ(�)e−Λ(	)t



max
e∈E

�
(	,v)

t,e,p−−−→(	′,v′)

p OptNM(�′, v′, G, T−t)−max
e∈E

�
(	,w)

t,e,p−−−→(	′,w′)

p OptNM(�′, w′, G, T − t)
�
dt
��

≤ λ

� T

t=0

��max
e∈E

�
(	,v)

t,e,p−−−→(	′,v′)

p OptNM(�′, v′, G, T − t)

−max
e∈E

�
(	,w)

t,e,p−−−→(	′,w′)

p OptNM(�′, w′, G, T − t)
��dt

≤ λ

�

[0,T ]\Iw
v

max
e∈E

�
(	,v)

t,e,p−−−→(	′,v′)

p
��OptNM(�′, v′, G, T − t)− OptNM(�′, w′, G, T − t)

��dt

+

�
Iw
v

dt
�

(OptNM is in [0, 1])

≤ λ

�

[0,T ]\Iw
v

εdt+

�
Iw
v

dt
�

(induction hypothesis)

≤ λ
�
Tε+ n�T �δ

�
≤ λ(n+ 1)�T �ε

This ends the proof that OptNM is uniformly continuous in v —as the constant
multiplicative factor λ(n+ 1)�T � does not matter— for all N ∈ N.

Finally, we exploit Lemma 2 to show that these properties of uniform conti-
nuity in t and v are inherited by the limit OptM. This can be shown using simple
triangle inequalities. To establish

∀� ∈ L ∀G ⊆ L ∀ε > 0 ∃δ > 0 ∀v, w ∈ Rn
≥0. ‖v − w‖ < δ

⇒
���OptM(�, v,G, T )− OptNM(�, w,G, T )

��� < 3ε,

we first fix an N ∈ N such that ‖OptM − OptNM‖ ≤ ε. Then we spend one ε
for |OptNM(�, v,G, T )−OptNM(�, w,G, T )|, because OptNM is uniformly continuous
in the valuation, and one ε each for |OptM(�, v,G, T ) − OptNM(�, v,G, T )| and
|OptM(�, w,G, T )− OptNM(�, w,G, T )|. �

We can now prove our main theorem using a topological argument that extends
the argument from [16] to the more general case of TAMDPs.

Theorem 1. For every TAMDP M, with initial state (�0, 0
X), reachability ob-

jective G and time-bound T , there exists a measurable scheduler σ such that

Pσ(ReachM(�0, 0
X , G, T )) = OptM(�0, 0

X , G, T ).
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Proof. As a consequence of the continuity of OptM(�, v+ t, G, T − t) in v and t,
we describe in the following an abstract construction of a measurable scheduler
σ that chooses, for all v ∈ [0, T ]X and t, T ′ ∈ [0, T ], an action e that determines

the transition (�, v)
t,e−−→ (�′, v′) that maximises OptM(�′, v′, G, T ′ − t).

For positions outside of [0, T ]X× [0, T ]× [0, T ], the behaviour of the scheduler
does not matter: σ can therefore be fixed to any constant decision for all of these
clock valuations and times.

We fix a location � for the rest of the proof, and write Range for [0, T ]X×[0, T ]×
[0, T ] the range of triples (v, t, T ′) we will consider. In order to determine optimal
decisions, we start with fixing an arbitrary order � on the actions available
in �. Next, we let, for each clock valuation v ∈ [0, T ]X , delay t ∈ [0, T ] and
remaining time T ′ ∈ [0, T ] and action e, val(v, t, T ′, e) =

�
(	,v)

t,e,p−−−→(	′,v′)
p ·

OptM(�′, v′, G, T ′− t), provided e is enabled in (�, v+ t), otherwise we use −∞.
Last we introduce, for all (v, t, T ′), an additional order �v,t,T ′ on the actions,
determined by val(�, v + t, T, e) and using � as a tie-breaker.

We now define the following sets for every action e:

– Me = {(v, t, T ′) ∈ Range | e is maximal w.r.t. �v,t,T ′} is the set of triplets
(v, t, T ′) for which e is maximal with respect to the order �v,t,T ′ .

– Ce = {(v, t, T ′) ∈ Range | ∀δ > 0 ∃(v′, t′, T ′′) ∈ Me. ‖(v, t, T ′) −
(v′, t′, T ′′)‖ < δ} is the closure of Me, and

– De = Ce �
�
f�e

Cf is the set of triplets for which action e is �v,t,T ′-better

than all other actions and there is no �-better action with equal quality.

We define σ as the memoryless scheduler σ such that when the last state is
(�, v), the delay is t, and the remaining time is T ′, σ selects action e such that
(v, t, T ′) ∈ De. To complete the proof, let us show that σ is (1) optimal and (2)
measurable.

To show the first point, we observe that the decision e is optimal in Me by
definition. The fact that e is also optimal in the larger set Ce is a consequence
of the continuity of OptM in v and t. De ⊆ Ce then implies that e is an optimal
decision for all triplets contained in De. Note that optimality among the pure
decisions entails optimality among mixed ones, as the value of mixed decisions
is the convex combination of the values for the respective pure decisions.

To show the second point, we observe that the Me’s partition Range by their
definition, because �v,t,T ′ is a total order. Consequently, the Ce’s cover Range,
and the De’s again partition Range. The Ce’s are closed subsets of Range, and
therefore measurable. By their definition, the De’s inherit this measurability.

Our construction therefore provides us with a measurable scheduler, which is
optimal, deterministic, and memoryless. �

4 Extensions

In this section we consider three potential extensions: the extension to games, the
extension to time-unbounded reachability, and the strengthening of the results to
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schedulers with a simple finite structure. We show in Subsection 4.1 that the first
of these extensions is possible: our results extend to a generalisation to two-player
games. But the results from Theorem 1 do neither extend to time-unbounded
reachability (Subsection 4.2), nor can they be strengthened to a simple class of
schedulers, whose decisions are only based on polyhedral regions (Subsection 4.3).

4.1 Extension to Games

So far, we considered time-bounded reachability objectives for TAMDPs, which
can be seen as a stochastic one-player game, that is, a game with a single player
interacting with a randomised environment. Let us now discuss how to extend our
results to stochastic two-player games by considering timed automata Markov
games (TAMGs for short).

Definition 6 (Timed automaton Markov game). A timed automaton
Markov game is a tuple G = (A, L0, L1, Λ) where A = (L,X,E) is a reactive
probabilistic timed automaton L = L0 � L1 is a partition of the set of locations
and Λ : L→ R≥0 is a rate function.

Naturally, Player 0 owns states with location in L0 and Player 1 is responsible for
the decisions in states with location inL1. The semantics of a TAMG is a stochastic
two-player game. Informally, from a state (�, v) with � ∈ Li (for i ∈ {0, 1}), the
sojourn time in location � follows an exponential distribution with rate Λ(�) and
Player i chooses in the intermediate state �, v + t which enabled edge to fire. The
resolution of nondeterministic choices by the players is governed by strategies. Sim-
ilarly to TAMDPs, for which we introduced cylindrical andmeasurable schedulers,
we consider here cylindrical and measurable strategies for each of the players. We
write σ (resp. τ) for a measurable strategy of Player 0 (resp. Player 1). Any strat-
egy profile (σ, τ) for G with σ and τ measurable strategies induces a probability
measure Pσ,τ over Runs(G) = Runs(A) (assuming an initial state is fixed).

The objective of Player 0 is to maximise the probability to reach a set of goal
locations G ⊆ L within time T . The optimum is thus defined as:

OptG(�, v,G, T ) = sup
σ

inf
τ
Pσ,τ (ReachG(�, v,G, T )).

As announced earlier, the result established for TAMDPs carries over to TAMGs:

Theorem 2. For every TAMG G with initial state (�0, 0
X), reachability objec-

tive G for Player 0 and time-bound T , there exists a measurable strategy profile
(σ, τ) such that

Pσ,τ(ReachG(�0, 0
X , G, T )) = OptG(�0, 0

X , G, T ) =

sup
σ′

Pσ′,τ (ReachG(�0, 0
X , G, T )) = inf

τ ′
Pσ,τ ′(ReachG(�0, 0

X , G, T )).

In order to extend the proof, we proceed in two steps. The first step is the
extension of the lemmata from Section 3. This extension is simple: following the
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same structure, it suffices to replace, in the lemmata and their proofs, the max
by min for all locations of Player 1.

Consequently, we obtain a set of equations that describe the value of the
time-bounded reachability probability. We can then proceed with fixing optimal
measurable strategies for σ only and τ only, respectively, such that their decisions
is locally optimal. Note that the proof of Theorem 1 treats the different locations
independently, so that a restriction to a subset of locations does not affect the
proof at all. The proof is also not affected by swapping max for min for the
locations owned by Player 1.

4.2 Time-Unbounded Reachability

We considered optimisation problem for time-bounded reachability, and justify
now, a posteriori, why the time-bound is crucial for Theorem 1. Indeed, we show
that optimal scheduling policies may not exist for time-unbounded reachability
objectives. The situation thus ressembles the framework of stochastic real-time
games [9] for which it was shown that optimal strategies do not always exist,
using a similar example. To exemplify this, we consider the TAMDPM depicted
on Figure 1 with constant transition rate Λ = 1 and the objective to reach the
goal region G. We argue that this control objective does not admit an optimal
scheduling policy.

It is easy to see that the chances of reaching G from �1 are 0 if the value of
the clock x is greater or equal to 1, and e−ε − e−1 for a clock value ε ∈ [0, 1].
This implies an upper bound on the time-unbounded reachability of 1− e−1. This
value can easily be approximated by choosing a scheduling policy that guarantees
a time-unbounded reachability > 1 − e−1 − ε by progressing to �1 iff the clock
value of x is smaller than ε. (Almost surely such a value is eventually taken.)

While this determines the value of time-unbounded reachability, it does not
provide a scheduling policy that realises this value. If we consider a scheduling
policy that, for any ε ∈]0, 1], provides a positive probability pε to progress to
�1 with a clock valuation ≥ ε, then the likelihood of reaching G is bounded by
1− e−1−pε(1− e−ε). At the same time, this chance being 0 for all ε > 0 implies
that we almost surely never progress to �1. (Progressing with clock valuation 0
can only happen on a 0 set.)

Consequently, no optimal scheduling policy exists.

4.3 Simple Schedulers

Beyond the existence of optimal schedulers, the simplicity of schedulers is also a
concern. In the proof of Theorem 1 we show the existence of an optimal scheduler
which is measurable, deterministic and memoryless. It is an interesting question
whether the optimum can be reached by even simpler schedulers. For CTMDPs,
e.g., timed positional schedulers (whose decisions only depend on the location and
the time that remains) and even cylindrical schedulers (that have only finitely
many intervals of constant decisions) are sufficient [16]. Timed positional sched-
ulers are clearly not sufficient for TAMDPs. (Consider a scheduler that makes the



56 N. Bertrand and S. Schewe

decision of whether to progress to �1 in the example from Figure 1, with 0 to 0.5
time-units left and the clock valuation of x (a) less than 0.5 and (b) greater than 1.
For (a), the optimal decision is clearly to progress, for (b), the optimal decision is
clearly to stay in �0 and reset the clock. A scheduler that does not distinguish these
cases cannot be optimal.) Still the question remains if considering simple regions of
clock valuations suffices. A natural generalisation of finitely many intervals would
be finitely many polyhedra that are distinguished by a scheduler.

Definition 7. LetM be a TAMDP over A a timed automaton with N clocks. A
scheduler σ for M is polyhedral if there exists a finite partition P of (R≥0)

N+1

into polyhedra P1 · · ·Pk such that, for every pair of runs ρ = (�0, v0)
t0,e0,p0−−−−−→

(�1, v1) · · · (�n, vn) and ρ′ = (�0, v
′
0)

t′0,e
′
0,p

′
0−−−−−→ (�′1, v

′
1) · · · (�′m, v′m) and every pair

of delays (tn, t
′
m) ∈ R≥0, as soon as �n = �′m and (vn + tn,

�
i≤n ti) and (v′m +

t′m,
�

i≤m t′i) belong to the same polyhedron Pj, then σ(ρ, tn) = σ(ρ′, t′m).

Note that polyhedral schedulers are in particular memoryless (and timed posi-
tional in the special case of CTMDPs). Polyhedral schedulers are natural in the
context of timed automata since they extend region-based schedulers that are
for example sufficient for timed games [2].

Proposition 1. In TAMDPs, the optimal time-bounded reachability probability
may not be taken by any polyhedral scheduler.

Proof. To prove that polyhedral schedulers are not sufficient to obtain optimal
control in TAMDPs, we consider again the example of Figure 1, where the rate
is constant Λ = 1, the goal location is G and the time-bound is set to 1.

The only non-trivial decision the scheduler has to make in that example is in
location �0, where it has to choose between looping back to �0 (action loop in the
sequel) or moving right to �1 (action progress in the sequel). We are interested
in determining a partition (Dl, Dp) of (R≥0+)

2 representing sets of valuation for
x and remaining time t such that loop is optimal in Dl and progress is optimal
in Dp. We focus on the sub-region [0, 1]2 to show that neither Dl nor Dp can
be composed of finite unions of polyhedra, and consequently optimal schedulers
cannot be polyhedral for this example. For this sub-region, we start with the
following observations:

1. If t ≤ 1−x, then it is always advisable to select progress. The time-bounded
reachability probability in this case is 1− e−t.

2. If t ≥ 1 − x and the selected action is to progress, then the time-bounded
reachability probability is 1− ex−1.

3. If the selected action is to loop, then the time-bounded reachability proba-
bility is 1 − (t + 1)e−t. (When looping, x is reset. After the reset of x, the
guard of the edge from �1 to G is always satisfied in the remaining t ≤ 1
time-units. The chance of reaching G is thus the probability of taking two
or more steps in the remaining t time-units, and the number of such steps is
Poisson distributed with parameter t.)
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�0 �1

G

�2

x := 0
x ≤ 1

x > 1

Fig. 1. A simple TAMDP example

1

x

1

0 t

Dp

Dl

Fig. 2. Illustration of partition (De)e∈E

Consequently, we loop in [0, 1]2 iff (t+1)e−t ≤ ex−1 (modulo 0 sets). Obviously,
this set is not representable by a finite union of polyhedra.

The construction of the partition (Dl, Dp) illustrates the proof of Theorem 1,
where a measurable optimal scheduler is defined. The partition (Dp, Dl) inter-
sected with [0, 1]2 is depicted on Figure 2. The area Dp, below the curve, rep-
resents pairs (t, x) of remaining time and clock valuation, for which progressing
to �1 is the optimal decision. �

5 Conclusion

We have introduced the model of timed automata Markov games that synthe-
sises stochastic timed automata and continuous time Markov games: TAMGs
enhance stochastic timed automata with two conscious players and add tim-
ing constraints to the firing of actions in continuous time Markov games. We
have proven the existence of measurable strategies that optimise the probability
of time-bounded reachability properties. Different to CTMGs, optimal strate-
gies are not necessarily simple: they cannot be represented by finite families
of polyhedral regions. Also, in contrast to the positive result for time-bounded
reachability, we have shown that optimal scheduling policies for time-unbounded
reachability do not always exist.
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18. Zhang, L., Neuhäußer, M.R.: Model Checking Interactive Markov Chains. In: Es-
parza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer,
Heidelberg (2010)



Dynamically-Driven Timed Automaton

Abstractions for Proving Liveness of Continuous
Systems�

Rebekah Carter and Eva M. Navarro-López
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Abstract. We look at the problem of proving inevitability of continuous
dynamical systems. An inevitability property says that a region of the
state space will eventually be reached: this is a type of liveness property
from the computer science viewpoint, and is related to attractivity of sets
in dynamical systems. We consider a method of Maler and Batt to make
an abstraction of a continuous dynamical system to a timed automaton,
and show that a potentially infinite number of splits will be made if the
splitting of the state space is made arbitrarily. To solve this problem, we
define a method which creates a finite-sized timed automaton abstrac-
tion for a class of linear dynamical systems, and show that this timed
abstraction proves inevitability.

Keywords: Continuous-time systems, Abstraction, Automated verifi-
cation, Liveness properties, Timed automata.

1 Introduction

Dynamical systems can have very complex behavior patterns, and over the years
the mathematics and control communities have developed a lot of theory to
analyze their behavior. In particular, Lyapunov stability theory [8] is important
for proving properties about continuous dynamical systems. One of the elements
of stability theory is the notion of attractivity, which says that trajectories of a
system tend toward a set or a point as time goes to infinity.

From the computer science viewpoint, the related notion to attractivity en-
sures that a set is reached in finite time, and is expressed as the property “we
eventually reach some set in the state space”. This is an inevitability property, a
type of liveness property. In this paper we address the problem of proving such
liveness properties, as there are only a few methods currently defined [5,9,14].

In the computer science community, particularly the hybrid systems commu-
nity, a lot of effort has gone into trying to verify dynamical systems, mostly
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through using model checking methods [3,10,13,16]. One class of such methods
involves abstraction of the system to a discrete system, usually a finite-state au-
tomaton, in order to be able to use discrete model checkers on the abstraction to
prove properties about the original system (for example, see [3]). The properties
that can be proved are typically safety properties, which say that something is
always true. In fact, proving liveness properties in dynamical systems, where
we want something to eventually be true, is not possible by means of a purely
discrete abstraction as there is no guarantee of progress of time.

In order to prove inevitability properties, we need to transfer some information
about the times at which events occur to the discrete system, and so we turn to
using timed automata (TA) for our abstraction. Reachability of TA is decidable,
and so they are a sensible candidate for an abstraction. There are various provers
available for proving properties of TA, themost widely used one beingUppaal [2].

There are a few methods which propose how to abstract a dynamical system
to a timed automaton, including [4,9,11,14,15]. We consider the method of Maler
and Batt [9], who did not specify how the state space of a system should be split
to create the TA, but stated that the accuracy of the model could be improved
indefinitely by increasing the number of splits. However, in most systems arbi-
trary splitting will not be very good at capturing the dynamics of the system,
and we may well be required to make a very large number of splits to verify the
system.

In this work, we advocate dynamically-driven splitting of the state space,
using known properties of the flow of the system to decide how to make the
splits. We identify a terminating splitting method for a class of upper triangular
linear systems which ensures that the resulting timed automaton will always
prove the inevitability property. Our method is most closely related to that of
[14], which abstracts continuous systems to timed automata using the idea of
the method of [9], but the authors in that work use Lyapunov functions to define
the slices considered, whereas we use the original idea of constant variable slices.

2 Overview of Systems and Method Being Considered

In this section, we consider all autonomous n-dimensional continuous dynamical
systems, of the form

ẋ = f(x), (1)

with x = [x1, . . . , xn]
T ∈ IRn and f(x) = [f1(x), . . . , fn(x)]

T , with f : IRn → IRn

smooth. The state space of the system is assumed to be a finite box, which is
defined by the limits x ∈ [s−1 , s

+
1 )× . . .× [s−n , s

+
n ) = S.

The method we consider is from [9]. It is an approximation method defined
to abstract a continuous system to a TA, and is based on minimum and maxi-
mum velocities of a system defining bounds on the time taken to cross a certain
distance in the system. The resulting TA is an over-approximation of the sys-
tem, in the sense that every trajectory in the system is matched in time and
space by one in the abstraction, but additional trajectories may be allowed in
the abstraction (see [9] for more discussion of this).
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The basic idea of [9] is to split the state space into slices by making splits
along lines of the form xi = C, where C is constant. These slices also define
hyper-rectangles (which we refer to as boxes) of the space by the intersection
of a slice in each dimension (see Fig. 1 for the 2-dimensional (2-D) case with
x ∈ IR2).

A slice is a part of the state space, restricted only in one dimension. In this
work we allow slices to be of differing widths, defined by a vector of split points
Vertsi in each dimension i.1 Let vi be an index which indicates which slice we
are considering in dimension i, and then the slice is given by

Xi,vi =
[
s−1 , s

+
1

)
× . . .×

[
Vertsi(vi),Vertsi(vi + 1)

)
× . . .×

[
s−n , s

+
n

)
⊆ S. (2)

Slices are right-open so that they do not intersect, and so the set of slices for each
i will form a partition of the state space S (this is why S was defined as being
right-open). Similarly, let the index for a box be defined by v = [v1, . . . , vn], then
the box is defined asXv =

⋂n
i=1 Xi,vi ⊆ S. The set of all boxes in the partitioning

of S is denoted by V . To find possible crossings between these boxes we consider
the sign of the velocity on each face between adjacent boxes.

Definition 1 (Automaton Abstraction [9]). The automaton A = (V, δ) is
an abstraction of the system if δ consists of the pairs of boxes with indices v =
[v1, . . . , vi, . . . , vn] and v′ = [v1, . . . , vi + 1, . . . , vn] where fi can take a positive
value on the face between them, or pairs of v with v′ = [v1, . . . , vi − 1, . . . , vn]
where fi can take a negative value on the face between them. �

To make the timed automaton abstraction, we define clocks to keep track of the
times at which crossings are made in each dimension. Within any box Xv, let di
be the width of this box in dimension i, then the maximal time that it can take
to leave this box is over-approximated by the box time, defined as

tv = min
1≤i≤n

(
di

min(|fi|) in box Xv

)
. (3)

If min(|fi|) = 0 in box Xv, then we define tv =∞.
The times spent in slices of the space can also be limited, both above and

below, in the positive and negative directions. Let di be the size of the dimension
i slice we are considering, and let fi be the minimum velocity in this slice, and

fi be the maximum velocity. Then the minimum (t) and maximum (t) times
that can be spent in this slice in the positive (+) and negative (−) directions
are given in Table 1 (slice times).

If we enter a slice from the lower face in dimension i, then the minimum
time we can take to leave by the opposite face is t+, and the maximum time

to leave by the opposite face is t
+
, and similarly for entering from the upper

face with t− and t
−
. We use these values to bound timed automaton clocks

within slices of the space: there are two clocks per dimension, z+i which bounds

positive direction movements using t+ and t
+
, and z−i which bounds the negative

1 Note that the first and last elements of Verts i are s−i and s+i respectively.
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Fig. 1. Partition into boxes (rect-
angles in the 2-D case).

Fig. 2. Calculate (1) which transitions exist
(denoted by arrows), and (2) the min/max
times on the clocks z, z+1 , z−1 . . ..

Fig. 3. The TA resulting from the method of [9] applied to the dynamical system. In
this case, no slice clock has an upper limit, so they do not appear inside locations.

Table 1. Minimum and maximum times that can be spent in slice i in the positive
and negative directions (respectively)

t+ t
+

t− t
−

0 < fi < fi di/fi di/fi ∞ ∞
fi < fi < 0 ∞ ∞ −di/fi −di/fi

fi < 0 < fi di/fi ∞ −di/fi ∞
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direction movements. We also use a box clock z in the TA to satisfy the conditions
on how long we can stay in each box, using (3).

Figures 1–3 illustrate the abstraction process for an arbitrary 2-D system. This
overview of the method involved should be enough to understand the content of
this paper, but for further details see [9].

3 Problems for General Continuous Systems

There are various reasons why this method does not work well for general contin-
uous systems, some of which we highlight in this section. One very fundamental
reason can be that the trajectories of the system do not fit well with splitting
based on crossing constant variable lines. A particular example of this is for 2-D
linear systems with complex eigenvalues, where the trajectories of the system
are spirals. Even when the real parts of the eigenvalues are negative and the
trajectories go inward, the timed automaton can allow flow round the edge of
the split space without forcing us to move closer to the center of the spiral (see
for example Fig. 3, where the center location should be reached, but the TA
allows flow through the eight locations round the edge indefinitely).

Part of the problem with this abstraction for general continuous dynamical
systems is the fact that the discrete automaton abstraction can allow pairs of
automaton locations where the trajectories can go both ways across the shared
face (see locations marked 1 and 2 in Fig. 2). The timed automaton does not
restrict when these transitions can be taken, as box times are not directional and
slice times only limit the time to reach the opposite face, so these pairs of loca-
tions introduce Zeno behaviour into the abstraction [7]. This kind of behaviour
prevents every trace of the abstraction from reaching the desired final location,
so the inevitability property cannot be proved.

Another potential problem with this method is that it does not guarantee
to calculate finite values of the box times tv, due to the fact that if a zero
velocity occurs in the box v in every dimension, then di/min(|fi|) =∞ in every
dimension. If there is one box in the abstraction which has an infinite box time,
then any trace which reaches this box will never be forced to leave this box even
if the actual trajectories of the system would all leave it in finite time.

Some of the above problems can be remedied by choosing an appropriate
method for splitting the state space. The method of [9] does not specify how we
should choose the splitting, but just tells us the properties of the resulting TA
when a choice has been made. As we see it, there are two ways to do such a
splitting: either we make the splitting arbitrarily (systematically but not based
on the system’s dynamics) and rely on refinement to eventually capture enough
information about a system, or we can use properties of the dynamics to choose
where to split the system. The pros and cons of these are discussed below.

Arbitrary splitting. This approach does not rely on knowledge about the
structure of the dynamical system, and so it can be used for complex sys-
tems no matter where the complexity comes from. The TA created by the
abstraction method of Maler and Batt does approach the actual dynamics
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(theoretically) as more and more splits are made (see [9]). However, due to
the two issues (1) that transitions both ways between pairs of automaton
locations can exist and (2) that there can be an infinite over-approximation
of the time it takes to get across a box, the number of splits required is often
very large, if not infinite, and so we obtain a huge number of locations in
the timed automaton.

Using system properties for splitting. Here we use the dynamics of the
system we are looking at to automatically split the state space in a way
which removes or reduces some of the problems associated with arbitrary
splitting. In specific systems, it should be possible to make a splitting which
can be proved to satisfy desirable properties, for instance that the liveness
property is automatically satisfied. Even in systems where we cannot prove
the liveness property immediately, it may be possible to at least have a
much better starting point for refining the abstraction. The main problems
with this idea are that a splitting method will only work for a certain class
of systems, and that there are no automatic splitting methods in existence
already; methods need to be designed for many different types of systems.

Given the considerations above, in this paper we wish to start the process of
finding dynamically-driven automatic methods to create splittings. We will work
from a theoretical basis to show that certain types of linear systems have a
splitting which proves inevitability by the TA abstraction, with the idea that
future work can extend these methods to be useful for more general systems
(nonlinear, piecewise continuous, or hybrid).

4 Inevitability for Upper Triangular Linear Systems

In this section we consider the class of upper triangular linear dynamical systems,
as a first step to using this method for general systems. We assume that a
splitting has been created which removes some of the problems highlighted in the
previous section. We then show that the timed automaton abstraction created
from this splitting proves an inevitability property. In Sect. 5 we will identify a
method for a sub-class of these systems which creates a splitting with the desired
properties. These two parts together will prove that the sub-class considered in
Sect. 5 can always have an inevitability-proving TA abstraction.

We consider upper triangular linear systems, with no input vector:

ẋ = Ax =

⎛⎜⎜⎜⎝
a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

. . .
. . .

...
0 · · · 0 an,n

⎞⎟⎟⎟⎠x. (4)

We assume that the eigenvalues (the diagonal entries of A) are negative. This
type of system has a unique equilibrium point at zero,2 and the negative eigen-
values mean that this point is stable and attractive, which is asymptotic stability.

2 The equilibrium point xe satisfies the equation ẋ = 0, that is Axe = 0. Invertibility
of A means the only equilibrium point is at xe = 0.



Dynamically-Driven Timed Automaton Abstractions for Proving Liveness 65

This means that some non-empty region L containing the equilibrium point must
be reached within a finite time. From a dynamical systems perspective we know
this property is true, but we want to prove the same property computationally
— the long-term goal of this work is to prove inevitability properties of dynam-
ical systems which cannot be proved by dynamical theory (due to complexity).
In linear temporal logic (LTL), this inevitability property is written �(x ∈ L),
where � is the temporal logic operator meaning “eventually”.3 In this paper, we
will say the system is live if this LTL condition is satisfied for all trajectories.

We note that the only real restriction on the class of linear systems is the
existence of real negative eigenvalues: for any linear system of the form ẋ =
Bx+ b with B having real negative eigenvalues and b any real vector, it can be
transformed to ẋ = Bx without loss of generality, and can then be transformed
to an equivalent upper triangular system by making the Schur decomposition.

4.1 The Assumptions

There are four assumptions we make about the splitting, each with various levels
of difficulty in achieving them. In Sect. 5 we will define a method which can
satisfy these assumptions for a subclass of the systems under study, which shows
these are not unreasonable assumptions to make.

The first assumption is about where the equilibrium point occurs in relation to
the splitting, and is here to give us one (and only one) box that we are interested
in reaching for the inevitability property.

Assumption 1. There is exactly one box L in the splitting which contains the
equilibrium point,4 and the equilibrium is not on the boundary of L. We will
call L the live box.

The second assumption specifies that there are a finite number of boxes in the
abstraction, which is necessary for a useful abstraction.

Assumption 2. The automaton abstraction (Def. 1) of the system has a finite
number of discrete states.

The next assumption has to do with how transitions are allowed in the abstracted
system. We do not want it to be possible to keep transitioning between a pair
of discrete states in the timed automaton, as discussed in Sect. 3.

Assumption 3. The continuous flow across any box face only occurs in one di-
rection. That is, if the box face is xj = C with the other xi’s within the box
limits, then the velocity ẋj across this face will either be always ẋj ≥ 0 or always
ẋj ≤ 0.

The fourth assumption is related to the timing constraints in the TA, ensuring
we leave every box on a trace within a finite time.

Assumption 4. In each box v, except the live box L, the box time tv is finite.

3 See [12] for more information about LTL.
4 This is always true for linear systems, where there is only one equilibrium point.
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4.2 The Theorems

We wish to show that every system of form (4) is proved to satisfy the inevitabil-
ity property by any splitting satisfying the assumptions. To do this we will prove
that the discrete automaton abstraction (Def. 1) of the continuous system only
has finite traces, and that the only location with no outgoing edges (hence the
only possible final location) corresponds to the live box L. We then use the
assumption of finite box time to ensure that L is reached in finite time.

Theorem 1. Assume we have an n-dimensional system of the form of (4) with
negative entries on the diagonal, and an automaton abstraction created by the
method of [9] satisfying Assumptions 1–4. Then the automaton abstraction of
the continuous system only has finite traces.

Proof. Assume (for a contradiction) that we can find a trace of infinite length
in the automaton. As the automaton abstraction must have a finite number
of locations by Assumption 2, any infinite trace must go through at least one
discrete location infinitely often. Hence, for any move in the infinite trace that
is made in the k-th dimension in the positive direction, we must be able to find
a corresponding move in the k-th dimension in the negative direction, and vice-
versa. We now prove, by induction, that this requirement is not satisfied in the
system.

Base Case. In the n-th dimension, the dynamics of the system is ẋn = an,nxn

with an,n < 0. Hence, across any slice boundary in the n-th dimension, if xn > 0
then ẋn < 0, and if xn < 0 then ẋn > 0. Therefore crossing any n-th dimensional
slice boundary can only be done in one direction, and so cannot be reversed as
is necessary for this type of crossing to be present in the infinite trace. Hence
n-th dimensional crossings are not involved in the infinite trace.

Inductive Part. Assume that n − k + 1, . . . , n dimensional crossings are not
involved in the infinite trace, and so the xn−k+1, . . . , xn variables are within
one slice each for this trace. The ẋn−k equation only depends on xn−k, . . . , xn.
Assumption 3 does not allow the sign of ẋn−k to change over the course of a
box face, but since xn−k+1, . . . , xn are within one slice each, any constant value
of xn−k makes the whole slice face the same sign as one of the component box
face. Hence ẋn−k is either completely non-negative or completely non-positive
for a constant value of xn−k. This means it is not possible to reverse a crossing
of a constant xn−k surface in the infinite trace, and so (n − k)-th dimensional
crossings cannot be present in the infinite trace.

Hence, by base case and inductive part, the infinite trace through the automa-
ton abstraction of the system cannot involve transitions in any dimension, which
contradicts the existence of an infinite trace. So the automaton abstraction of
the n-dimensional system under the assumptions only has finite traces. �

Theorem 2. Assume we have a system of form (4) with negative diagonal en-
tries, and an automaton abstraction created by the method of [9] satisfying As-
sumptions 1–4. Then the only location with no outgoing edges in the automaton
abstraction corresponds to the box L containing the equilibrium point xe = 0.
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Proof. Assume there is a location of the automaton abstraction which has no
transitions out of it. Then all the existing transitions are inwards. It is not
possible for whole box sides to have zero flow across them, due to not allowing
splitting at xi = 0 surfaces (by Ass. 1). Therefore the two opposite sides of a
box in dimension i have opposite (inwards) flows, so by continuity of the flow,
the zero surface ẋi = 0 must pass through this box. As this is the case for all
dimensions, then the linearity of the system means the equilibrium point xe must
be in the corresponding box of the partition of the state space. By Assumption 1
the equilibrium point is wholly within one box L, and so the only location with
no outgoing edges is box L. (Note that box L is an invariant set.) �

Theorem 3. Assume we have a system of form (4) with negative diagonal en-
tries, and an automaton abstraction created by the method of [9] satisfying As-
sumptions 1–4. Then all trajectories of the system from all initial boxes get to
the live box L within finite time.

Proof. Theorems 1 and 2 together imply that all traces of the TA lead to the
box L containing the equilibrium point in a finite number of steps. Assumption
4 says that each cube on this route is left within a finite time, and so the total
time for any TA trace to reach the box L is finite. By the over-approximation
of number of trajectories, all trajectories of the original system reach the box L
within finite time (and stay there as L is invariant). �

5 Dynamically-Driven Splitting Method

In this section we define a method to split the state space of a continuous system
such that the TA abstraction created from it satisfies the four assumptions for a
subset of the upper triangular linear systems. Together with the previous section
this proves that we can automatically create a TA abstraction of such systems
which proves inevitability. The method is shown to terminate for this particular
class of systems, and the number of locations in the resulting abstraction is
analyzed.

5.1 The Class of Systems Considered

The class we now consider are a subclass of upper triangular linear systems of
form (4) with two conditions on them:

– All of the entries on the main diagonal are negative.
– In each row, a maximum of one other non-zero entry is allowed.

These conditions mean that xi’s differential equation is in one of two forms, for
each i = 1, . . . , n, either

ẋi = ai,ixi for ai,i negative, or (5)

ẋi = ai,ixi + ai,jxj for ai,i negative, ai,j 	= 0 and i < j ≤ n. (6)
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This class of systems does have restrictions, but allows various special classes
of systems. In particular, all 2-D systems with negative real eigenvalues can
be transformed by the Schur decomposition to an equivalent dynamical system
of this form. The verification results for such 2-D systems (with state space
limits and live box limits suitably transformed) will prove the desired properties
about the original system. Higher dimensional systems which can be of this form
include systems modelling chains of behaviour, where each xi’s evolution only
depends on itself and the element next in the chain. For example, simplified
models of biological cascades can be expressed in this form [6]. There are also
some piecewise linear models of such cascades, where each element depends only
on itself and the element before it: these can be modelled in the form (5) or (6) for
each xi and each region of dynamics. The method proposed is easily extendible to
piecewise systems of this form provided the divides between different dynamics
in the system occur at constant values of xi (this is the case in [1], for example).

If row i of the matrix has the form (5), this means that we always have the
same value of ẋi for any constant value of xi. So Assumption 3 is always true
on all box faces in dimension i. On the other hand, if row i has the second form
(6), this means that when we try to separate ẋi > 0 from ẋi < 0 on a particular

face xi = C, we get a constant value of xj = −ai,iC
ai,j

where the ẋi = 0 surface

occurs through this face. Therefore, we can choose to split at this point in the
j-th dimension to make sure of separating the positive and negative velocities
in the i-th dimension. This ease of selecting where to split is not available to us
for general upper triangular systems, and is what makes this special class better
for automatic splitting.

5.2 The Splitting Method

The method we propose for splitting systems of this new form is described in
Algorithm 1. The idea is to originally split based on the live box boundaries
which creates a box satisfying Assumption 1 (Step 1), and then to split based
on where a ẋj = 0 surface crosses any constant xj surface (Step 2). After these
two steps the resulting TA abstraction satisfies Assumptions 1 and 3.

Step 3 of the algorithm then finds and divides the boxes where infinite time
has been found, whilst still keeping these other two assumptions intact, in order
to satisfy Assumption 4. It works by finding the intervals of existence of ẋi = 0
surfaces, and splitting between two intervals calculated in dimension i if they do
not intersect. This method is demonstrated on a 2-D example in Fig. 4.

We will now show that this algorithm terminates and quantify the size of
the resulting abstraction, then we will give an overview of the proof of why the
abstraction satisfies Assumptions 1–4.

Termination and Abstraction Size. Firstly we show that FollowSplits termi-
nates. FollowSplits consists of two for loops, the first clearly has a finite number
of executions (n − 1). The second iterates over a finite number of elements of
the list List for i = 1, and each iteration removes an element from the current
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Algorithm 1. Automatic splitting algorithm

Input: Linear dynamical systems with each xi’s dynamics of the form of (5) or (6),
with state space [s−1 , s

+
1 )× . . .× [s−n , s

+
n ), and live box L = [l−1 , l+1 )× . . .× [l−n , l+n ).

Output: A splitting of the system such that the TA abstraction proves inevitability
of the live box.

1: add splits at xi = l−i and xi = l+i for each i � Step 1

2: call FollowSplits � Step 2

3: Calculate box times � Step 3
4: B ← list of boxes with infinite box time (except L)
5: while B is non-empty do
6: for k = 1, . . . , length(B) do
7: V ← get vertices of box B(k)
8: Z ← V (initialize the region where zero surfaces occur: let Z−

i be lower
bound and Z+

i be upper bound in dimension i)
9: for i = n, n− 1, . . . , 1 do
10: if ẋi has an off-diagonal entry then
11: j ← position of the off-diagonal entry in row i of A

12:

[
c−i c+i
c−j c+j

]
← limits of the surface ẋi = 0 in the box

13: if c−j > Z+
j then

14: add split at xj = (c−j + Z+
j )/2 (or nearby if this is xj = 0)

15: break loop
16: else if c+j > Z−

j then

17: add split at xj = (c+j + Z−
j )/2 (or nearby if this is xj = 0)

18: break loop
19: else if c−i > Z+

i then
20: add split at xi = (c−i + Z+

i )/2 (or nearby if this is xi = 0)
21: break loop
22: else if c+i > Z−

i then
23: add split at xi = (c+i + Z−

i )/2 (or nearby if this is xi = 0)
24: break loop
25: end if
26: else(row i does not have an off-diagonal entry)
27: if Z+

i < 0 then
28: add split at Z+

i /2
29: break loop
30: else if Z−

i > 0 then
31: add split at Z−

i /2
32: break loop
33: end if
34: end if
35: end for
36: end for
37: call FollowSplits
38: B ← new list of boxes with infinite box time (except L)
39: end while
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Algorithm 2. FollowSplits sub-algorithm

Input: Current splitting state of the system (including the newly made splits), with a
finite list List of newly made splits that need to be followed down the dimensions.

Output: A new splitting with only one direction of flow across the faces of the boxes.

1: for i = 1, . . . , n− 1 do
2: fi = the sublist of List of constant values for xi (splits in dimension i)
3: for all k ∈ fi do
4: v ← find ẋi velocity at vertices of the splitting surface xi = k
5: if all(v ≥ 0) or all(v ≤ 0) then
6: remove xi = k from List
7: else
8: solve ẋi = 0 when xi = k giving xj = d, for some i < j ≤ n.
9: add split at xj = d
10: add xj = d to List
11: remove xi = k from List
12: end if
13: end for
14: end for

dimension list and possibly adds one to a lower dimension’s list. Since this is
done a finite number of times, each iteration of the inner loop is only done a
finite number of times, and so FollowSplits terminates. The number of splits
that can be added by this is dependent on the size of the current splitting in
each direction (say this size is ci for i = 1 . . . , n), and also dependent on the
size of the newly made splits list (ni for i = 1, . . . , n). The worst case is when
each dimension causes a split in the dimension immediately after it, as the ef-
fect of these splits builds up, so the maximum number of splits (overall) after
FollowSplits in each dimension i = 1, . . . , n is

ci +

i−1∑
j=1

nj . (7)

Now consider Algorithm 1 as a whole. Clearly line 1 of Algorithm 1 performs a
finite number of splits (2 in each dimension), so terminates. Then, line 2 simply
calls FollowSplits on these initial splits, which terminates, with maximum of
2, 4, . . . , 2n splits in each of the 1, 2, . . . , n-th directions respectively.

For Step 3, lines 3–39, we must consider the while loop and the two for loops
inside it. Both for loops iterate over only a finite number of values, so the com-
bination of the two must terminate (given that all individual lines terminate).
So we now need to show that the while loop terminates, which occurs when we
have removed the infinite box time on all boxes except the live box.

The proof that all infinite-time boxes will be removed is a little more involved,
and we need to understand how this algorithm splits the state space of the
system. First we will show that all boxes with infinite time at the start of step 3
must touch the live box L (along an edge or at a corner). Assume not, then there
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(1) Initial Setup: Given live box L
containing the equilibrium point.

(2) After Step 1: Splits made based
on the boundaries of the live box.

(3) After Step 2: Light grey dots in-
dicate where ẋ1 = 0 on x1 constant
lines. Splits made at these points.

(4) After Step 3: An extra split is
added above the lower dot, removing
infinite time in the box marked in (3).

Fig. 4. Applying the splitting algorithm to the example ẋ1 = −x1 − x2 and ẋ2 = −x2,
with the given live box defined slightly off centre around the equilibrium point (equil).
Arrows indicate the allowed directions of flow across box boundaries, and the shaded
region indicates the live box L as it changes size.

is a box B1 which is p > 1 steps away from L in some dimension i. Then, letting
j be the other dimension which occurs in the equation ẋi = ai,ixi + ai,jxj = 0,
we take the projection of this n − 1-dimensional surface to a line in the xi-xj

plane. So if the box B1 has infinite time, this line ẋi = 0 must pass through a
corner of the edge nearest to L, by step 2 and linearity. But then, as this line
also passes through the equilibrium point in the middle of box L, it must have
passed through the middle of an edge xi = C, contradicting that step 2 has been
completed. So all infinite-time boxes must be a maximum of one step away from
L in any dimension, which means that every infinite-time box touches L.
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The rest of the proof is too complex to explain in detail, but is an inductive
argument on the dimensions. Roughly, assume we have a box B1 with infinite
time which cannot be split on the first run through the while loop of Algorithm
1, and this box is offset from L’s slices in the dimensions i1, i2, . . . , ik (where
these are in order smallest to largest). Then, if equation ẋik depends on xik and
xj , then there must be a box B2 with infinite box time which shares a dimension
j edge with B1. If B2 is split by the algorithm, this makes B1 splittable on the
next run through the while loop (after FollowSplits). If B2 is not split, then it
too must have a neighboring box in dimension dependent on the ẋj equation,
and so on. Eventually we reach a splittable box (at dimension n if not before),
which makes the previous box splittable after FollowSplits is completed, and so
at most n − 1 runs through the while loop are necessary to remove all infinite
time boxes, hence Algorithm 1 terminates.

Algorithm 1 creates at most one split for each infinite-time box, with this split
being, in dimension one greater than the largest dimension in which the box is
offset from the live box L (in the worst case). Now, in one dimensional systems,
there are clearly a maximum of two boxes in dimension 1 which are ‘next to’ the
box L. In two dimensions, there are an extra 6, all with their maximal offsets in
dimension 2, and 2 (as before) only offset in dimension 1. By induction we can
find that there are 2× 3i−1 boxes with a highest dimensional offset in dimension
i. Infinite time is not possible with any offset from the central slice in dimension
n, so we only need consider the splits made in dimensions 1 to n− 1.

As each of these possible infinite-time boxes can create a maximum of one
split in the next dimension, this creates 2×3i−2 splits in each of the i = 2, . . . , n
dimensions. When FollowSplits is done, using the formula in (7) and the initial
number of splits 2i for each dimension i = 1, . . . , n, we can compute the number
of splits as: for i = 1, 2 splits, and for i = 2, . . . , n, 2i + 3i−1 − 1 splits. This
makes the maximum number of slices 3 for i = 1 and 2i+ 3i−1 for i = 2, . . . , n.
The total number of boxes is the product of the slices in each dimension, so

NumBoxes = 3×
n∏

j=2

(2j + 3i−1). (8)

Satisfying the Assumptions. We will now give an outline of the proof of why
this algorithm creates an abstraction which satisfies the assumptions.

Assumption 1. Step 1 creates one box containing the equilibrium xe = 0,
under the original specification that the live box should include xe (not on the
boundary). Step 2 can change the size of the box containing the equilibrium, but
cannot add splits exactly at xi = 0 for any i (because of linearity of dynamics),
so the box containing xe does not have it on the boundary. Step 3 similarly can
make splits which affect the box L, but again they are chosen not to be at the
equilibrium.

Assumption 2. There are a finite number of boxes in this splitting, which we
have already quantified.
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Assumption 3. After Step 2 has happened, Assumption 3 is satisfied due to
splitting at the zero values, and then after each change in Step 3 the “FollowS-
plits” function is used, which again makes the TA satisfy this assumption.

Assumption 4. We showed that Algorithm 1 terminates, and in the process
showed that it only terminates when all infinite times on boxes are removed
(apart from L). Hence, this assumption is satisfied.

5.3 The Main Result

The above properties result in the statement that if a TA is created by the
method of [9] using the splitting of Alg. 1, then the proof of inevitability of L
on the TA abstraction will prove the inevitability of L for the original system.
The proof follows from the method of Alg. 1 with the assumptions of Sect. 4.1
and the theorems of Sect. 4.2.

Corollary 1. Given a continuous dynamical system with each xi’s dynamics
of the form (5) or (6), then, by considering the TA abstraction, all possible
trajectories of the linear system will reach box L containing xe = 0. �

6 Conclusions and Future Work

In this work we have defined a method for a class of linear systems which creates
a splitting of the state space. When using this splitting to create a timed au-
tomaton by the method of [9], we have shown that certain properties are true of
the timed automaton. Together these properties mean that the timed automaton
will prove inevitability of the original system reaching a set L around the equi-
librium point xe. The method is easily extendible to a related class of piecewise
linear systems.

Our future goal is to extend this method to more general dynamical systems,
be they linear, nonlinear, piecewise, or hybrid systems. There are various prob-
lems to be overcome with these systems, one of which will be the termination
of the splitting method, as the current method only terminates because of the
special dynamics involved. Hence, part of the future work will be to revise the
splitting method to be more useful for more general systems. For piecewise and
hybrid systems, we aim to develop dynamically-driven splitting methods for con-
sidering the guards/resets (changes between areas of different dynamics), so that
general guards can be considered by the splitting.
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Abstract. We consider the setting of component-based design for real-
time systems with critical timing constraints. Based on our earlier work,
we propose a compositional specification theory for timed automata with
I/O distinction, which supports substitutive refinement. Our theory pro-
vides the operations of parallel composition for composing components at
run-time, logical conjunction/disjunction for independent development,
and quotient for incremental synthesis. The key novelty of our timed
theory lies in a weakest congruence preserving safety as well as bounded
liveness properties. We show that the congruence can be characterised by
two linear-time semantics, timed-traces and timed-strategies, the latter of
which is derived from a game-based interpretation of timed interaction.

1 Introduction

Component-based design methodologies can be encapsulated in the form of com-
positional specification theories, which allow the mixing of specifications and
implementations, admit substitutive refinement to facilitate reuse, and provide
a rich collection of operators. Several such theories have been introduced in the
literature, but none simultaneously address the following requirements: support
for asynchronous input/output (I/O) communication with non-blocking outputs
and non-input receptiveness; linear-time refinement preorder, so as to interface
with automata and learning techniques; substitutivity of refinement, to allow
for component reuse at runtime without introducing errors; and strong algebraic
and compositionality properties, to enable offline as well as runtime reasoning.

Previously [1], we developed a linear-time specification theory for reasoning
about untimed components that interact by synchronisation of I/O actions. Mod-
els can be specified operationally by means of transition systems augmented by
an inconsistency predicate on states, or declaratively using traces. The theory
admits non-determinism, a substitutive refinement preorder based on traces, and
the operations of parallel composition, conjunction and quotient. The refinement
is strictly weaker than alternating simulation and is actually the weakest pre-
congruence preserving freeness of inconsistent states.

In this paper we target component-based development for real-time systems
with critical timing constraints, such as embedded system components, the mid-
dleware layer and asynchronous hardware. Amongst notable works in the liter-
ature, we surveyed the theory of timed interfaces [2] and the theory of timed
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specifications [3]. Though both support I/O distinctions, their refinement rela-
tions are not linear time: in [2], refinement (compatibility) is based on timed
games, and in [3] it is a timed version of the alternating simulation originally
defined for interface automata [4]. Consequently, it is too strong for determin-
ing when a component can be safely substituted for another. As an example,
consider the transition systems P and Q in Figure 3: these should be equivalent
in the sense of substitutivity under any environment, and are equivalent in our
formulation (Definition 5), but they are not so according to timed alternating
simulation.

Contributions. We formulate an elegant timed, asynchronous specification the-
ory based on finite traces which supports substitutive refinement, as a timed
extension of the linear-time specification theory of [1]. We allow for both op-
erational descriptions of components, as well as declarative specifications based
on traces. Our operational models are a variant of timed automata with I/O
distinction (although we do not insist on input-enabledness, cf [5]), augmented
by two special states: the inconsistent state ⊥ represents safety and bounded-
liveness errors, while the timestop state ! is a novel addition representing either
unrealisable output (if the component is not willing to produce that output) or
unrealisable time-delay (if the delay would violate the invariant on that state).

Timestop models the ability to stop the clock and has been used before in em-
bedded system and circuit design [6,7]. It is notationally convenient, accounting
for simpler definitions and a cleaner formalism. By enhancing the automata with
the notion of co-invariant, we can, for the first time, distinguish the roles of in-
put/output guards and invariant/co-invariants as specifying safety and bounded-
liveness timed assumptions/guarantees. We emphasise that this is achieved with
finite traces only; note that in the untimed case it would be necessary to ex-
tend to infinite traces to model liveness. In addition to timed-trace semantics,
we present timed-strategy semantics, which coincides with the former but relates
our work closer to the timed-game frameworks used by [3] and [2], and could in
future serve as a guide to implementation of the theory. Finally, the substitutive
refinement of our framework gives rise to the weakest congruence preserving
⊥-freeness, which is not the case in the formalism of [3].

Related work. Our work can be seen as an alternative to the timed theories of
[2,3]. Being linear-time in spirit, it is also a generalisation of [8], an untimed the-
ory inspired by asynchronous circuits, and Dill’s trace theory [9]. The specification
theory in [3] also introduces parallel, conjunction and quotient, but uses timed al-
ternating simulation as refinement, which does not admit the weakest precongru-
ence. An advantage of [3] is the algorithmic efficiency of branching-time simulation
checking as well as the implementation reported in [10]. We briefly mention other
relatedworks,which include timedmodal transition systems [11,12], the timed I/O
model [5,13] and asynchronous circuits and embedded systems [14,15]. A more de-
tailed comparison based on the technical details of our work is included in Section
5. A full version of this paper including an even greater comparison with related
work, in addition to proofs, is available as [16].
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2 Formal Framework

In this section we introduce timed I/O automata, timed I/O transition systems
and a semantic mapping from the former to the latter. Timed I/O automata are
compact representations of timed I/O transition systems. We also present an
operational specification theory based on timed I/O transition systems, which
are endowed with a richer repertoire of semantic machinery than the automata.

2.1 Timed I/O Automata

Clock constraints. Given a set X of real-valued clock variables, a clock constraint
over X , cc : CC (X ), is a boolean combination of atomic constraints of the form
x �� d and x − y �� d where x , y ∈ X , ��∈ {≤, <,=, >,≥}, and d ∈ N.

A clock valuation over X is a map t that assigns to each clock variable x in
X a real value from R≥0. We say t satisfies cc, written t ∈ cc, if cc evaluates to
true under valuation t . t + d denotes the valuation derived from t by increasing
the assigned value on each clock variable by d ∈ R≥0 time units. t [rs �→ 0]
denotes the valuation obtained from t by resetting the clock variables in rs to
0. Sometimes we use 0 for the clock valuation that maps all clock variables to 0.

Definition 1. A timed I/O automaton (TIOA) is a tuple (C , I ,O ,L, l0,AT ,
Inv , coInv), where:

– C ⊆ X is a finite set of clock variables
– A (= I "O) is a finite alphabet, consisting of inputs I and outputs O
– L is a finite set of locations and l0 ∈ L is the initial location
– AT ⊆ L × CC (C ) × A × 2C × L is a set of action transitions
– Inv : L → CC (C ) and coInv : L → CC (C ) assign invariants and co-

invariants to states, each of which is a downward-closed clock constraint.

We use l , l ′, li to range over L and use l
g,a,rs−−−−→ l ′ as a shorthand for (l , g, a, rs ,

l ′) ∈ AT . g : CC (C ) is the enabling guard of the transition, a ∈ A the action,
and rs the subset of clock variables to be reset.

Our TIOAs are timed automata that distinguish input from output and invari-
ant from co-invariant. They are similar to existing variants of timed automata
with input/output distinction, except for the introduction of co-invariants and
non-insistence on input-enabledness. While invariants specify the bounds be-
yond which time may not progress, co-invariants specify the bounds beyond
which the system will time-out and enter error states. It is designed for the as-
sume/guarantee specification of timed components, in order to specify both the
assumptions made by the component on the inputs and the guarantees provided
by the component on the outputs, with respect to timing constraints.

Guards on output transitions express safety timing guarantees, while guards
on input transitions express safety timing assumptions. On the other hand, in-
variants (urgency) express liveness timing guarantees on the outputs at the
locations they decorate, while co-invariants (time-out) express liveness timing
assumptions on the inputs at those locations.
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Fig. 1. Job scheduler and printer controller

When two components are composed, the parallel composition automatically
checks whether the guarantees provided by one component meet the assumptions
required by the other. For instance, the unexpected arrival of an input at a
particular location and time (indicated by a non-enabled transition) leads to a
safety error in the parallel composition. The non-arrival of an expected input at
a location before its time-out (specified by the co-invariant) leads to a bounded-
liveness error in the parallel composition.

Example. Figure 1 depicts TIOAs representing a job scheduler together with a
printer controller. The invariant at location A of the scheduler forces a bounded-
liveness guarantee on outputs in that location. As time must be allowed to
progress beyond t = 100, the start action must be fired within the range 0 ≤ t ≤
100. After start has been fired, the clock x is reset to 0 and the scheduler waits
(possibly indefinitely) for the job to finish. If the job does finish, the scheduler is
only willing for this to take place between 5 ≤ t ≤ 8 after the job started (safety
assumption), otherwise an unexpected input error will be thrown.

The controller waits for the job to start , after which it will wait exactly 1 time
unit before issuing print (forced by the invariant y ≤ 1 on state 2 and the guard
y = 1). The controller now requires the printer to indicate the job is printed
within 10 time units of being sent to the printer, otherwise a time-out error on
inputs will occur (co-invariant y ≤ 10 in state 3 as liveness assumption). After
the job has finished printing, the controller must indicate to the scheduler that
the job has finished within 5 time units.

Notation. For a set of input actions I and a set of output actions O , define
tA = I "O " R>0 to be the set of timed actions, tI = I " R>0 to be the set of
timed inputs, and tO = O "R>0 to be the set of timed outputs. We use symbols
like α, β, etc. to range over tA.

A timed word (ranged over by w ,w ′,wi etc.) is a finite mixed sequence of
positive real numbers (R>0) and visible actions such that no two numbers are
adjacent to one another. For instance, 〈0.33, a, 1.41, b, c, 3.1415〉 is a timed word
denoting the observation that action a occurs at 0.33 time units, then another
1.41 time units lapse before the simultaneous occurrence of b and c, which is
followed by 3.1415 time units of no event occurrence. ε denotes the empty word.

Concatenation of timed words w and w ′ is obtained by appending w ′ onto
the end of w and coalescing adjacent reals (summing them). Prefix/extension
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are defined as usual by concatenation. We write w � tA0 for the projection of w
onto timed alphabet tA0, which is defined by removing from w all actions not
inside tA0 and coalescing adjacent reals.

2.2 Semantics as Timed I/O Transition Systems

The semantics of TIOAs are given as timed I/O transition systems, which are a
special class of infinite labelled transition systems.

Definition 2. A timed I/O transition system (TIOTS) is a tuple P = 〈I ,O , S ,
s0,→〉, where I and O are the input and output actions respectively, S = (L ×
RC ) " {⊥,!} is a set of states, s0 ∈ S is the designated initial state, and
→⊆ S × (I "O " R>0) × S is the action and time-labelled transition relation.

The states of the TIOTS for a TIOA capture the configuration of the automaton,
i.e. its location and clock valuation. Therefore, each state of the TIOTS is a pair
drawn from L × RC , which we refer to as the set of plain states. In addition,
we introduce two special states ⊥ and !, which are required for the semantic
mapping of disabled inputs/outputs, invariants and co-invariants. In the rest of
the paper, we use p, p′, pi to range over P = L×RC while s , s ′, si range over S .
⊥ is the so-called inconsistent state, arising through assumption/guarantee

mismatches, i.e. safety and bounded-liveness errors. ! is the so-called timestop
state, representing the magic moment from which time stops elapsing and no
error can occur. We assume that ! refines plain states, which in turn refine
⊥. For technical convenience (e.g. ease of defining time additivity and trace
semantics), we require that ! and ⊥ are a chaotic states, i.e. states having
self-loops for each α ∈ tA.

On TIOTSs, a disabled input in a state p is equated to an input transition
from p to ⊥, while a disabled output/delay in p is equated to an output/delay
from p to !. The intuition here comes from the I/O game perspective. The
component controls output and delay, while the environment controls input. ⊥
is the losing state for the environment, so an input transition from p to ⊥ is
a transition that the environment tries to avoid at all cost (unless there is no
choice). ! is the losing state for the component, so an output/delay transition
from p to ! is a transition that the component tries to avoid at any cost. Thus
we can have two semantic-preserving transformations on TIOTSs.

The ⊥-completion of a TIOTS P , denoted P⊥, adds an a-labelled transition
from p to ⊥ for every p ∈ P (= L× RC ) and a ∈ I s.t. a is not enabled at p.1

The !-completion, denoted P�, adds an α-labelled transition from p to ! for
every p ∈ P and α ∈ tO s.t. α is not enabled at p.

Now, the transition relation → of the TIOTS is derived from the execution
semantics of the TIOA.

Definition 3. Let P be a TIOA. The execution semantics of P is a TIOTS
〈I ,O , S , s0,→〉, where:
1 ⊥-completion will make a TIOTS input-receptive, i.e. input-enabled in all states.
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– S = (L× RC ) " {⊥,!}
– s0 = ! providing 0 /∈ Inv(l0), s0 = ⊥ providing 0 ∈ Inv(l0) ∧ ¬coInv(l0)

and s0 = (l0, 0) providing 0 ∈ Inv(l0) ∧ coInv(l0),
– → is the smallest relation satisfying:

1. If l
g,a,rs−−−−→ l ′, t ′ = t [rs �→ 0], t ∈ Inv(l) ∧ coInv(l) ∧ g, then:

(a) plain action: (l , t)
a−→ (l ′, t ′) providing t ′ ∈ Inv(l ′) ∧ coInv(l ′)

(b) error action: (l , t)
a−→ ⊥ providing t ′ ∈ Inv(l ′) ∧ ¬coInv(l ′)

(c) magic action: (l , t)
a−→ ! providing t ′ ∈ ¬Inv(l ′) and a ∈ I .

2. plain delay: (l , t)
d−→ (l , t + d) if t , t + d ∈ Inv(l) ∧ coInv(l)

3. time-out delay: (l , t)
d−→ ⊥ if t ∈ Inv(l) ∧ coInv(l), t + d /∈ coInv(l) and

∃ 0 < δ ≤ d : t + δ ∈ Inv(l) ∧ ¬coInv(l).

Note that our semantics tries to minimise the use of transitions leading to !/⊥
states. Thus there are no delay or output transitions leading to !. However, there
are implicit timestops, which we capture using the concept of semi-timestop (i.e.
semi-!). We say a plain state p is a semi-! iff 1) all output transitions enabled
in p and all of its time-passing successors lead to the ! state, and 2) there exists

d ∈ R>0 s.t. p
d−→ ! or d is not enabled in p. Thus a semi-! is a state in which

it is impossible for the component to avoid the timestop without suitable inputs
from the environment.

The introduction of timestop (!), which can model the operation of stopping
the system clock, is an unconventional aspect of our semantics. Certain real-
world systems have an inherent ability to stop the clock, e.g. [6,7], which are
related to embedded systems and circuit design. When the suspension of clocks
is not meaningful, it is necessary to remove timestop in order to leave the so-
called realisable behaviour. Timestop is useful even for timestop free systems, as
it can significantly simplify operations, such as quotient and conjunction.

TIOTS terminology. We say a TIOTS is deterministic iff s
α−→ s ′ ∧ s

α−→ s ′′

implies s ′ = s ′′, and is time additive providing p
d1+d2−−−−→ s ′ iff p

d1−→ s and

s
d2−→ s ′ for some s . In the sequel, we only consider time-additive TIOTSs.
Given a TIOTS P , a timed word can be derived from a finite execution of

P by extracting the labels in each transition and coalescing adjacent reals. The
timed words derived from such executions are called traces of P . We use tt , tt ′, tti
to range over traces and write s0

tt
=⇒ s to denote a finite execution producing tt

and leading to s .

2.3 Operational Specification Theory

In this section we develop a compositional specification theory for TIOTSs based
on the operations of parallel composition ‖, conjunction ∧, disjunction ∨ and
quotient %. The operators are defined via transition rules that are a variant on
synchronised product.

Parallel composition yields a TIOTS that represents the combined effect
of its operands interacting with one another. The remaining operations must
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Table 1. State representations under composition operators

‖ 
 p0 ⊥

 
 
 

p1 
 p0×p1 ⊥
⊥ 
 ⊥ ⊥

∧ 
 p0 ⊥

 
 
 

p1 
 p0×p1 p1
⊥ 
 p0 ⊥

∨ 
 p0 ⊥

 
 p0 ⊥
p1 p1 p0×p1 ⊥
⊥ ⊥ ⊥ ⊥

% 
 p0 ⊥

 ⊥ ⊥ ⊥
p1 
 p0×p1 ⊥
⊥ 
 
 ⊥

be explained with respect to a refinement relation, which corresponds to safe-
substitutivity in our theory. A TIOTS is a refinement of another if it will work
in any environment that the original worked in without introducing safety or
bounded-liveness errors. Conjunction yields the coarsest TIOTS that is a refine-
ment of its operands, while disjunction yields the finest TIOTS that is refined
by both of its operands. The operators are thus equivalent to the join and meet
operations on TIOTSs2. Quotient is the adjoint of parallel composition, meaning
that P0%P1 is the coarsest TIOTS such that (P0%P1)‖P1 is a refinement of P0.

Let Pi = 〈Ii ,Oi , Si , s
0
i ,→i〉 for i ∈ {0, 1} be two TIOTSs that are both ⊥

and !-completed, satisfying (wlog) S0 ∩ S1 = {⊥,!}. The composition of P0

and P1 under the operation ⊗ ∈ {‖,∧,∨,%}, written P0 ⊗ P1, is only defined
when certain composability restrictions are imposed on the alphabets of the
TIOTSs. P0 ‖ P1 is only defined when the output sets of P0 and P1 are disjoint,
because an output should be controlled by at most one component. Conjunction
and disjunction are only defined when the TIOTSs have identical alphabets (i.e.
O0 = O1 and I0 = I1). This restriction can be relaxed at the expense of more
cumbersome notation, which is why we focus on the simpler case in this paper.
For the quotient, we require that the alphabet of P0 dominates that of P1 (i.e.
A1 ⊆ A0 and O1 ⊆ O0), in addition to P1 being a deterministic TIOTS. As
quotient is a synthesis operator, it is difficult to give a definition using just
state-local transition rules, since quotient needs global information about the
transition systems. This is why we insist on P1 being deterministic3.

Definition 4. Let P0 and P1 be TIOTSs composable under ⊗ ∈ {‖,∧,∨,%}.
Then P0 ⊗ P1 = 〈I ,O , S , s0,→〉 is the TIOTS where:

– If ⊗ =‖, then I = (I0 ∪ I1) \O and O = O0 ∪O1

– If ⊗ ∈ {∧,∨}, then I = I0 = I1 and O = O0 = O1

– If ⊗ = %, then I = I0 ∪O1 and O = O0 \O1

– S = (P0 × P1) " P0 " P1 " {!,⊥}
– s0 = s00 ⊗ s01
– → is the smallest relation containing →0 ∪ →1, and satisfying the rules:

p0
α−→0s

′
0 p1

α−→1s
′
1

p0⊗p1
α−→s ′0⊗s ′1

p0
a−→0s

′
0 a /∈A1

p0⊗p1
a−→s ′0⊗p1

p1
a−→0s

′
1 a /∈A0

p0⊗p1
a−→p0⊗s ′1

2 As we write A  B to mean A is refined by B , our operators ∧ and ∨ are reversed
in comparison to the standard symbols for meet and join.

3 Technically speaking, the problem is a consequence of state quotient being right-
distributive but not left-distributive over state disjunction (cf Table 1).
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We adopt the notation of s0 ⊗ s1 for states, where the associated interpretation
is supplied in Table 1. Furthermore, given two plain states pi = (li , ti) for i ∈
{0, 1}, we define p0 × p1 = ((l0, l1), t0 " t1).

Table 1 tells us how states should be combined under the composition oper-
ators. For parallel, a state is magic if one component state is magic, and a state
is error if one component is error while the other is not magic. For conjunction,
encountering error in one component implies the component can be discarded
and the rest of the composition behaves like the other component. The conjunc-
tion table follows the intuition of the join operation on the refinement preorder.
Similarly for disjunction. Quotient is the adjoint of parallel composition. If the
second component state does not refine the first, the quotient will try to rescue
the refinement by producing ! (so that its composition with the second will
refine the first). If the second component state does refine the first, the quotient
will produce the least refined value so that its composition with the second will
not break the refinement.

An environment for a TIOTS P is any TIOTS Q such that the alphabet of Q
is complementary to that of P , meaning IP = OQ and OP = IQ. Refinement in
our framework corresponds to contextual substitutability, in which the context
is an arbitrary environment.

Definition 5. Let Pimp and Pspec be TIOTSs with identical alphabets. Pimp

refines Pspec, denoted Pspec & Pimp , iff for all environments Q, Pspec ‖ Q is
⊥-free implies Pimp ‖ Q is ⊥-free. We say Pimp and Pspec are substitutively
equivalent, i.e. Pspec ' Pimp, iff Pimp & Pspec and Pspec & Pimp .

It is obvious that ' induces the weakest equivalence on TIOTSs that preserves
⊥-freeness. In the sequel, we give two concrete characterisations of ' and show
it to be a congruence w.r.t. the operators of the specification theory.

The operational definition of quotient requires P1 to be deterministic. For any
TIOTS P , a semantically-equivalent deterministic component can be obtained,
denoted PD , by means of a modified subset construction acting on (P⊥)�. For
any subset S0 of states reachable by a given trace, we only keep those which are
minimal w.r.t. the state refinement relation. So if the current state subset S0

contains ⊥, the procedure reduces S0 to ⊥; if ⊥ /∈ S0 	= {!}, it reduces S0 by
removing any potential ! in S0.

4

Proposition 1. For any TIOTS P, it holds that P ' PD .

Equipped with determinisation, quotient is a fully defined operator on any pair
of TIOTSs. Furthermore, we can give an alternative (although substitutively
equivalent) formulation of quotient as the derived operator (P¬

0 ‖ P1)
¬, where ¬

is a mirroring operation that first determinises its argument, then interchanges
the input and output sets, as well as the ! and ⊥ states.

4 A detailed definition of transforming untimed non-deterministic systems into
substitutively-equivalent deterministic ones is contained in Definition 4.2 of [8].
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Fig. 2. Parallel composition of the job scheduler and printer controller

Example. Figure 2 shows the parallel composition of the job scheduler with the
printer controller. In the transition from B4 to A1, the guard combines the effects
of the constraints on the clocks x and y. As finish is an output of the controller,
it can be fired at a time when the scheduler is not expecting it, meaning that a
safety error will occur. This is indicated by the transition to ⊥ when the guard
constraint 5 ≤ x ≤ 8 is not satisfied.

3 Timed I/O Game

Our specification theory can be seen as an I/O game between a component and
an environment that uses a coin to break ties. The specification of a component
(in the form of a TIOA or TIOTS) is built to encode the set of strategies possible
for the component in the game (just like an NFA encodes a set of words).

– Given two TIOTSs P and Q with identical alphabets, we say P is a partial
unfolding [17] of Q if there exists a function f from SP to SQ s.t. 1) f maps
! to !, ⊥ to ⊥, and plain states to plain states, 2) f (s0P) = s0Q, and 3)

p
α−→P s ⇒ f (p)

α−→Q f (s).
– We say an acyclic TIOTS is a tree if 1) there does not exist a pair of tran-

sitions in the form of p
a−→ p′′ and p′ d−→ p′′, 2) p

a−→ p′′ ∧ p′ b−→ p′′ implies

p = p′ and a = b and 3) p
d−→ p′′ ∧ p′ d−→ p′′ implies p = p′.

– We say an acyclic TIOTS is a simple path if 1) p
a−→ s ′ ∧ p

α−→ s ′′ implies

s ′ = s ′′ and a = α and 2) p
d−→ s ′ ∧ p

d−→ s ′′ implies s ′ = s ′′.
– We say a simple path L is a run of P if L is a partial unfolding of P .

Strategies. A strategy G is a deterministic tree TIOTS s.t. each plain state in G is
ready to accept all possible inputs by the environment, but allows a single move
(delay or output) by the component, i.e. ebG(p) = I "mvG(p) s.t. mvG(p) = {a}
for some a ∈ O or mvG(p) ⊆ R>0, where ebG(p) denotes the set of enabled timed
actions in state p of LTS G, and mvG(p) denotes the unique component move
allowed by G at p.

A TIOTS P contains a strategy G if G is a partial unfolding of (P⊥)�. The
set of strategies contained in P is denoted stg(P). Since it makes little sense to
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Fig. 3. Strategy example

distinguish strategies that are isomorphic, we will freely use strategies to refer
to their isomorphism classes and write G = G′ to mean G and G′ are isomorphic.

Figure 3 illustrates the idea of strategies. For simplicity, we use two un-
timed transition systems P and Q with identical alphabets I = {e, f } and
O = {a, b, c}. The transition systems use solid lines, while strategies use dotted
lines. Plain states are unmarked, while the ! and ⊥ states are labelled as such5.
A subset of the strategies for P and Q are shown on the right hand side of the
respective components. Note that strategies 3 and 4 arise through !-completion.

Comparing strategies. When the game is played, the component tries to avoid
reaching !, while the environment tries to avoid reaching ⊥. Strategies in stg(P)
vary in their effectiveness to achieve this objective, which induces a hierarchy
on strategies that closely resemble one another. We say G and G′ are affine if

s0G
tt
=⇒ p and s0G′

tt
=⇒ p′ implies mvG(p) = mvG′(p′). Intuitively, it means G and

G′ propose the same move at the ‘same’ states. For instance, the strategies 1, 3
and A in Figure 3 are pairwise affine and so are the strategies 2, 4 and B .

Given two affine strategies G and G′, we say G is more aggressive than G′,

denoted G ( G′, if 1) s0G′
tt
=⇒⊥ implies there is a prefix tt0 of tt s.t. s0G

tt0=⇒ ⊥ and

2) s0G
tt
=⇒! implies there is a prefix tt0 of tt s.t. s0G′

tt0=⇒!. Intuitively, it means G
can reach ⊥ faster but ! slower than G′. ( forms a partial order over stg(P), or
more generally, over any set of strategies with identical alphabets. For instance,
strategy A is more aggressive than 1 and 3, while strategy B is more aggressive
than 2 and 4.

When the game is played, the component P prefers to use the maximally
aggressive strategies in stg(P)6. Thus two components that differ only in non-
maximally aggressive strategies should be equated. We define the strategy se-
mantics of component P to be [P ]s = {G′ | ∃ G ∈ stg(P) : G ( G′}, i.e. the
upward-closure of stg(P) w.r.t. (.
5 For simplicity, we allow multiple copies of 
 and ⊥, which are assumed to be chaotic.
6 This is because our semantics is designed to preserve ⊥ rather than 
.
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Game rules. When a component strategy G is played against an environment
strategy G′, at each game state (i.e. a product state pG × pG′) G and G′ each
propose a move (i.e. mvG(pG) and mvG′(pG′ )). If one of them is a delay and
the other is an action, the action will prevail. If both propose delay moves (i.e.
mvG(pG),mvG′(pG′) ⊆ R>0), the smaller one (w.r.t. set containment) will pre-
vail.7

Since a delay move proposed at a strategy state is the maximal set of possible
delays enabled at that state, the next move proposed at the new state after firing
the set must be an action move (due to time additivity). Thus a play cannot
have two consecutive delay moves.

If, however, both propose action moves, there will be a tie, which will be
resolved by tossing the coin. For uniformity’s sake, the coin can be treated as a
special component. A strategy of the coin is a function h from tA∗ to {0, 1}. We
denote the set of all possible coin strategies as H .

A play of the game can be formalised as a composition of three strategies,
one each from the component, environment and coin, denoted GP ‖h GQ. At a

current game state pP × pQ, if the prevailing action is α and we have pP
α−→ s ′P

and pQ
α−→ s ′Q, then the next game state is sP ‖ sQ. The play will stop when it

reaches either ! or ⊥. The composition will produce a simple path L that is a
run of P ‖ Q. Since P ‖ Q gives rise to a closed system (i.e. the input alphabet
is empty), a run of P ‖ Q is a strategy of P ‖ Q.

Thus, strategy composition of P and Q is closely related to their parallel
composition: stg(P ‖ Q) = {GP ‖h GQ | GP ∈ stg(P),GQ ∈ stg(Q) and h ∈ H }.

Parallel composition. Strategy composition, like component parallel composi-
tion, can be generalised to any pair of components P and Q with composable
alphabets. That is, OP∩OQ = {}. For such P andQ, GP ‖h GQ gives rise to a tree
rather than a simple path TIOTS. That is, at each game state pP × pQ, besides
firing the prevailing α ∈ tOP∪tOQ, we need also to fire 1) all the synchronised in-

puts, i.e. e ∈ IP ∩ IQ, and reach the new game state sP ‖ sQ (assuming pP
e−→ sP

and pQ
e−→ sQ) and 2) all the independent inputs, i.e. e ∈ (IP ∪ IQ) \ (AP ∩AQ),

and reach the new game state sP × pQ or pP × sQ. It is easy to verify that
GP ‖h GQ is a strategy of P ‖ Q.

Conjunction/disjunction. Strategy conjunction (&) and strategy disjunction (+)
are binary operators defined only on pairs of affine strategies, by G&G′ = G ∧G′

and G+G′ = G∨G′. If G and G′ are not affine, G∧G′ and G∨G′ may not produce
a strategy. From Figure 3, the disjunction of strategies 1 and 2 will produce a
transition system that stops to output after the a transition.

Refinement. Equality of strategies induces an equivalence on TIOTSs: P and
Q are strategy equivalent iff [P ]s = [Q]s . However, strategy equivalence is too
fine for the purpose of substitutive refinement (cf Definition 5). For instance,

7 Note that all invariants and co-invariants are downward-closed. Thus a delay move
can be respresented as a time interval from 0 to some d ∈ R≥0.
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transition systems P and Q in Figure 3 are substitutively equivalent, but are
not strategy equivalent, because 1, 2, 3 and 4 are strategies of Q (due to upward-
closure w.r.t. (), while A and B are not strategies of P .

However, we demonstrate that substitutive equivalence is reducible to strategy
equivalence providing we perform disjunction closure on strategies.

Lemma 1. Given a pair of affine component strategies G0 and G1, G0 ‖h G and
G1 ‖h G are ⊥-free for a pair of environment and coin strategies G and h iff
G0 + G1 ‖h G is ⊥-free.

We sayΠ+ is a disjunction closure of set of strategiesΠ iff it is the least superset
of Π s.t. G + G′ ∈ Π+ for all pairs of affine strategies G,G′ ∈ Π+. It is easy to
see disjunction closure preserves upward-closedness of strategy sets.

Proposition 2. Disjunction closure is determinisation: [PD ]s = [PD ]+s = [P ]+s .

Lemma 2. For any TIOTS P, [P¬]+s = {GP¬ | ∀ GP ∈ [P ]+s , h ∈ H : GP¬ ‖h
GP is ⊥-free}.

Theorem 1. Given TIOTSs P and Q, P & Q iff [Q]+s ⊆ [P ]+s .

Looking at Figure 3, the disjunction of strategies 1 and 3 produces A, while the
disjunction of strategies 2 and 4 produces B . Thus [P ]+s = [Q]+s .

Relating operational composition to strategies. The operations of parallel compo-
sition, conjunction, disjunction and quotient defined on the operational models
of TIOTSs (Section 2.3) can be characterised by simple operations on strategies
in the game-based setting.

Lemma 3. For ‖-composable TIOTSs P and Q, [P ‖ Q]+s = {GP‖Q | ∃ GP ∈
[P ]+s ,GQ ∈ [Q]+s , h ∈ H : GP ‖h GQ ( GP‖Q}.

Lemma 4. For ∨-composable TIOTSs P and Q, [P ∨ Q]+s = ([P ]+s ∪ [Q]+s )+.

Lemma 5. For ∧-composable TIOTSs P and Q, [P ∧ Q]+s = [P ]+s ∩ [Q]+s .

Lemma 6. For %-composable TIOTSs P and Q, [P%Q]+s = {GP%Q | ∀ GQ ∈
[Q]+s , h ∈ H : GP%Q ‖h GQ ∈ [P ]+s }.

Thus, conjunction and disjunction are the join and meet operations, and quotient
produces the coarsest TIOTS s.t. (P0%P1)‖P1 is a refinement of P0.

Theorem 2. ' is a congruence w.r.t. ‖, ∨, ∧ and % subject to composability.

Summary. Strategy semantics has given us a weakest ⊥-preserving congruence
(i.e. [P ]+s ) for timed specification theories based on operators for (parallel) com-
position, conjunction, disjunction and quotient. Strategy semantics captures
nicely the game-theoretical nature as well as the operational intuition of the
specification theory. In the next section, we give a more declarative characteri-
sation of the equivalence by means of timed traces.
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4 Declarative Specification Theory

In this section, we develop a compositional specification theory based on timed
traces. We introduce the concept of a timed-trace structure, which is an abstract
representation for a timed component. The timed-trace structure contains essen-
tial information about the component, for checking whether it can be substituted
with another in a safety and liveness preserving manner.

Given any TIOTS P = 〈I ,O , S , s0,→〉, we can extract three sets of traces
from (P⊥)�: TP a set of timed traces leading to plain states; TE a set of timed
traces leading to the error state ⊥; and TM a set of timed traces leading to the
magic state !. TE and TM are extension-closed as ! and ⊥ are chaotic, while
TP is prefix-closed. Due to !/⊥-completion, it is easy to verify TE ∪TP ∪TM
gives rise to the full set of timed traces tA∗; thus TP and TE are sufficient.

However, TP and TE contain more information than necessary for our substi-
tutive refinement, which is designed to preserve ⊥-freeness. For instance, adding
any trace tt ∈ TE to TP should not change the semantics of the component.
Based on a slight abstraction of the two sets, we can thus define a trace structure
T T (P) as the semantics of P .

Definition 6 (Trace structure). T T (P) := (I ,O ,TR,TE ), where TR :=
TE ∪ TP the set of realisable traces. Obviously, TR is prefix-closed.

From hereon let P0 and P1 be two TIOTSs with trace structures T T (Pi) :=
(Ii ,Oi ,TRi ,TEi) for i ∈ {0, 1}. Define ī = 1− i .

The substitutive refinement relation & in Section 2.3 can equally be charac-
terised by means of trace containment. Consequently, T T (P0) can be regarded
as providing an alternative encoding of the set [P0]

+
s of strategies.

Theorem 3. P0 & P1 iff TR1 ⊆ TR0 and TE1 ⊆ TE0.

We are now ready to define the timed-trace semantics for the operators of our
specification theory. Intuitively, the timed-trace semantics mimic the synchro-
nised product of the operational definitions in Section 2.3.

Parallel composition. The idea behind parallel composition is that the projection
of any trace in the composition onto the alphabet of one of the components
should be a trace of that component.

Proposition 3. If P0 and P1 are ‖-composable, then T T (P0 ‖ P1) = (I ,O ,TR,
TE ) where I = (I0 ∪ I1) \O, O = O0 ∪O1 and the trace sets are given by:

– TE = {tt | tt � tAi ∈ TEi ∧ tt � tAī ∈ TRī} · tA∗

– TR = TE " {tt | tt � tAi ∈ (TRi \ TEi ) ∧ tt � tAī ∈ (TRī \ TEī)}

The above says tt is an error trace if the projection of tt on one component is
an error trace, while the projection of tt on the other component is a realisable
trace. tt is a realisable trace if tt is either an error trace or a (strictly) plain
trace. tt is a (strictly) plain trace if the projections of tt on to P0 and P1 are
(strictly) plain traces.
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Disjunction. From any composite state in the disjunction of two components,
the composition should only be willing to accept inputs that are accepted by
both components, but should accept the union of outputs. After witnessing an
output enabled by only one of the components, the disjunction should behave like
that component. Because of the way that ⊥ and ! work in Table 1, this loosely
corresponds to taking the union of the traces from the respective components.

Proposition 4. If P0 and P1 are ∨-composable, then T T (P0 ∨ P1) = (I ,O ,
TR0 ∪TR1,TE0 ∪ TE1), where I = I0 = I1 and O = O0 = O1.

Conjunction. Similarly to disjunction, from any composite state in the con-
junction of two components, the composition should only be willing to accept
outputs that are accepted by both components, and should accept the union of
inputs, until a stage when one of the component’s input assumptions has been
violated, after which it should behave like the other component. Because of the
way that both ⊥ and ! work in Table 1, this essentially corresponds to taking
the intersection of the traces from the respective components.

Proposition 5. If P0 and P1 are ∧-composable, then T T (P0 ∧ P1) = (I ,O ,
TR0 ∩TR1,TE0 ∩ TE1), where I = I0 = I1 and O = O0 = O1.

Quotient. Quotient ensures its composition with the second component is a
refinement of the first. Given the synchronised running of P0 and P1, if P0 is in
a more refined state than P1, the quotient will try to rescue the refinement by
taking ! as its state (so that its composition with P1’s state will refine P0’s). If
P0 is in a less or equally refined state than P1, the quotient will take the worst
possible state without breaking the refinement.

Proposition 6. If P0 dominates P1, then T T (P0%P1) = (I ,O ,TR,TE ), where
I = I0 ∪O1, O = O0 \O1, and the trace sets satisfy:

– TE = TE0 ∪ {tt | tt � tA1 	∈ TR1} · tA∗

– TR = TE " {tt | tt ∈ (TR0 \ TE0) ∧ tt � tA1 ∈ (TR1 \ TE1)}.

The above says tt is an error trace if either tt is an error trace in P0 or the
projection of tt on P1 is not a realisable trace. A strictly plain trace must have
strictly plain projections onto P0 and P1.

Mirroring of trace structures is equally straightforward: T T (P0)
¬
= (O0, I0,

tA∗ \TE0, tA
∗ \TR0). Consequently, quotient can also be defined as the derived

operator (T T (P0)
¬ ‖ T T (P1))

¬.

5 Comparison with Related Works

Our framework can be seen as a linear-time alternative to the timed specification
theories of [2] and [3], albeit with significant differences. The specification theory
in [3] also introduces parallel, conjunction and quotient, but uses timed alternat-
ing simulation as refinement, which does not admit the weakest precongruence.
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An advantage of [3] is the algorithmic efficiency of branching-time simulation
checking and the implementation reported in [10].

The work of [2] on timed games also bears conceptual similarities, although
they do not define conjunction and quotient. We adopt most of the game rules
in [2], except that, due to our requirement that proposed delay moves are
maximal delays allowed by a strategy, a play cannot have consecutive delay
moves. This enables us to avoid the complexity of time-blocking strategies and
blame assignment, but does not ensure non-Zenoness8. Secondly, we do not
use timestop/semi-timestop to model time errors (i.e. bounded-liveness errors).
Rather, we introduce the explicit inconsistent state ⊥ to model both time and
immediate (i.e. safety) errors. This enables us to avoid the complexity of having
two transition relations and well-formedness of timed interfaces.

Based on linear time, our timed theory owes much to the pioneering work of
trace theories in asynchronous circuit verification, such as Dill’s trace theory [9].
Our mirror operator is essentially a timed extension of the mirror operator from
asynchronous circuit verification [15]. The definition of quotient based on mir-
roring (for the untimed case) was first presented by Verhoeff as his Factorisation
Theorem [14].

In comparison with our untimed theory [1], our timed extension requires new
techniques (e.g. those related to timestop) to handle delay transitions since time
can be modelled neither as input nor as output. In the timed theory, the set of
realisable traces (TR) is not required to be input-enabled, which is necessary
for the set of untimed traces in [1]. Thus, the domain of trace structures is
significantly enlarged. Furthermore, the timed theory supports the modelling of
liveness assumptions/guarantees, with the checking of such violations reducing
to ⊥-reachability. Therefore, finite traces suffice to model and verify liveness
properties, whereas in contrast, the untimed theory must employ infinite traces
to treat liveness in a proper way.

We briefly mention other related works, which include timed modal transition
systems [11,12], the timed I/O model [5,13] and embedded systems [18,19].

6 Conclusions

We have formulated a rich compositional specification theory for components
with real-time constraints, based on a linear-time notion of substitutive refine-
ment. The operators of hiding and renaming can also be defined, based on our
previous work [8]. We believe that our theory can be reformulated as a timed
extension of Dill’s trace theory [9]. Future work will include an investigation of
realisability and assume-guarantee reasoning.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT, ERC Advanced Grant VERIWARE and EPSRC project EP/F001096.

8 Zeno behaviours (infinite action moves within finite time) in a play are not regarded
as abnormal behaviours in our semantics.
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Abstract. Model checking of timed automata is a widely used
technique. But in order to take advantage of modern hardware, the al-
gorithms need to be parallelized. We present a multi-core reachability
algorithm for the more general class of well-structured transition sys-
tems, and an implementation for timed automata.

Our implementation extends the opaal tool to generate a timed au-
tomaton successor generator in c++, that is efficient enough to compete
with the uppaal model checker, and can be used by the discrete model
checker LTSmin, whose parallel reachability algorithms are now extended
to handle subsumption of semi-symbolic states. The reuse of efficient
lockless data structures guarantees high scalability and efficient mem-
ory use.

With experiments we show that opaal+LTSmin can outperform the
current state-of-the-art, uppaal. The added parallelism is shown to re-
duce verification times from minutes to mere seconds with speedups of
up to 40 on a 48-core machine. Finally, strict BFS and (surprisingly) par-
allel DFS search order are shown to reduce the state count, and improve
speedups.

1 Introduction

In industries developing safety-critical real-time systems, a number of safety
requirements must be fulfilled. Model checking is a well-known method to achieve
this and is critical for ensuring correct behaviour along all paths of execution of
a system. One popular formalism for real-time systems is timed automata [3],
where the time is modelled as a number of resettable clocks. Good tool support
for timed automata exists [9].

However, as the desire to model check ever larger and more complex models
arises, there is a need for more effective techniques. One option for handling
large models has always been to buy a bigger machine. This provided great im-
provements; while early model checkers handled thousands of states, now we can
handle billions. However, in recent years processor speed has stopped increasing,
and instead more cores are added. These cores cannot be taken advantage of by
the normal sequential algorithms for model checking.
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The goal of this work is to develop scaling multi-core reachability for timed
automata [3] as a first step towards full multi-core LTL model checking. A review
of the history of discrete model checkers shows that indeed multi-core reachabil-
ity is a crucial ingredient for efficient parallel LTL model checking (see Sec. 2).
To attain our goal, we extended and combined several existing software tools:

LTSmin is a language-independent model checking framework, comprising,
inter alia, an explicit-state multi-core backend [23,13].

opaal is a model checker designed for rapid prototype implementation of new
model checking concepts. It supports a generalised formof timedautomata [17],
and uses the uppaal input format.

The UPPAAL DBM library is an efficient library for representing timed au-
tomata zones and operations thereon, used in the uppaal model checker [9].

Contributions: We describe a multi-core reachability algorithm for timed au-
tomata, which is generalizable to all models where a well-quasi-ordering on the
behaviour of states exist [19]. The algorithm has been implemented for timed
automata, and we report on the structure and performance of this prototype.

Before we move on to a description of our solution and its evaluation, we first
review related work, and then briefly introduce the modelling formalism.

2 Related Work

One efficient model checker for timed automata is the uppaal tool [9,7]. Our
work is closely related to UPPAAL in that we share the same input format and
reuse its editor to create input models. In addition, we reused the open source
uppaal dbm library for the internal symbolic representation of time zones.

Distributed model checking algorithms for timed automata were introduced in
[11,6]. These algorithms exhibited almost linear scalability (50–90% efficiency)
on a 14-node cluster of that time. However, analysis also shows that static par-
titioning used for distribution has some inherent limitations [15]. Furthermore,
in the field of explicit-state model checking, the DiVinE tool showed that static
partitioning can be reused in a shared-memory setting [5]. While the problem
of parallelisation is considerably simpler in this setting, this tool nonetheless
featured suboptimal performance with less than 40% efficiency on 16-core ma-
chines [22]. It was soon demonstrated that shared-memory systems are exploited
better by combining local search stacks with a lockless hash table as shared
passed set and an off-the-shelf load balancing algorithm for workload distribu-
tion [22]. Especially in recent experiments on newer 48-core machines [18, Sec. 5],
the latter solution was clearly shown to have the edge with 50–90% efficiency.

Linear-time, on-the-fly liveness verification algorithms are based on depth-
first search (DFS) order [20]. Next to the additional scalability, the shared hash
table solution also provides more freedom for the search algorithm, which can
be pseudo DFS and pseudo breadth-first search (BFS) order [22], but also strict
BFS (see Sec. 6.2). This freedom has already been exploited by parallel NDFS
algorithms for LTL model checking [20,18] that are linear in the size of the
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input graph (unlike their BFS-based counterparts). While these algorithms are
heuristic in nature, their scalability has been shown to be superior to their BFS-
based counterparts.

3 Preliminaries

We will now define the general formalism of well-structured transition sys-
tems [19,1], and specifically networks of timed automata under the zone ab-
straction [16].

Definition 1 (Well-quasi-ordering). A well-quasi-ordering & is a reflexive
and transitive relation over a set X, s.t. for any infinite sequence x0, x1, . . .
eventually for some i < j it will hold that xi & xj.

In other words, in any infinite sequence eventually an element exists which is
“larger” than some earlier element.

Definition 2 (Well-structured transition system). A well-structured tran-
sition system is a 3-tuple (S,→,&), where S is the set of states, →: S × S is
the (computable) transition relation and & is a well-quasi-ordering over S, s.t.
if s→ t then ∀s′.s & s′ there ∃t′.s′ → t′ ∧ t & t′.1

We thus require & to be a monotonic ordering on the behaviour of states, i.e.,
if s & t then t has at least the behaviour of s (and possibly more), and we say
that t subsumes or covers s.

One instance of well-structured transition systems arise from the symbolic
semantics of timed automata. Timed automata are finite state machines with
a finite set of real-valued, resettable clocks. Transitions between states can be
guarded by constraints on clocks, denoted G(C).

Definition 3 (Timed automaton). An extended timed automaton is a 7-tuple
A = (L,C,Act, s0,→, IC) where

– L is a finite set of locations, typically denoted by �
– C is a finite set of clocks, typically denoted by c
– Act is a finite set of actions
– s0 ∈ L is the initial location
– →⊆ L×G(C)×Act× 2C ×L is the (non-deterministic) transition relation.

We normally write �
g,a,r−−−→ �′ for a transition, where � is the source location,

g is the guard over the clocks, a is the action, and r is the set of clocks reset.
– IC : L → G(C) is a function mapping locations to downwards closed clock

invariants.

Using the definition of extended timed automata we can now define networks of
timed automata, as modelled by uppaal, see [9] for details. A network of timed
automata is a parallel composition of extended timed automata that enables
synchronisation over a finite set of channel names Chan. We let ch! and ch?
denote the output and input action on a channel ch ∈ Chan.

1 With strong compatibility, see [19].
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Definition 4 (Network of timed automata). Let Act = {ch!, ch?|ch ∈
Chan} ∪ {τ} be a finite set of actions, and let C be a finite set of clocks. Then
the parallel composition of extended timed automata Ai = (Li, C,Act, s

i
0,→i, I

i
C)

for all 1 ≤ i ≤ n, where n ∈ N, is a network of timed automata, denoted
A = A1||A2|| . . . ||An.

The concrete semantics of timed automata [9] gives rise to a possibly uncountable
state space. To model check it a finite abstraction of the state space is needed;
the abstraction used by most model checkers is the zone abstraction [14]. Zones
are sets of clock constraints that can be efficiently represented by Difference
Bounded Matrices (DBMs) [12]. The fundamental operations of DBMs are:

– D ↑ modifying the constraints such that the DBM represents all the clock
valuations that can result from delay from the current constraint set

– D ∩D′ adding additional constraints to the DBM, e.g. because a transition
is taken that imposes a clock constraint (guard clock constraints can also be
represented as a DBM, and we will do so) 2. The additional constraints might
also make the DBM empty, meaning that no clock valuations can satisfy the
constraints.

– D[r] where r ⊆ C is a clock reset of the clocks in r.
– D/B doing maximal bounds extrapolation, where B : C → N0 is the maxi-

mal bounds needed to be tracked for each clock. Extrapolation with respect
to maximal bounds [8] is needed to make the number of DBMs finite. Basi-
cally, it is a mapping for each clock indicating the maximal possible constant
the clock can be compared to in the future. It is used in such a way that
if the value of a clock has passed its maximal constant, the clock’s value is
indistinguishable for the model.

– D ⊆ D′ for checking if the constraints of D′ imply the constraints of D, i.e.
D′ is a more relaxed DBM. D′ has the behaviour of D and possibly more.

Lemma 1. Timed automata under the zone abstraction are well-structured tran-
sition systems: (S,⇒DBM , Act,&) s.t.

1. S consists of pairs (�,D) where � ∈ L, and D is a DBM.
2. ⇒DBM is the symbolic transition function using DBMs, and Act is as before
3. &: S → S is defined as (�,D) & (�′, D′) iff � = �′, and D ⊆ D′.

Remark that part of the ordering & is compared using discrete equality (the
location vector), while only a subpart is compared using a well-quasi-ordering.
Without loss of generality, and as done in [17], we can split the state into an
explicit part S, and a symbolic part Σ, s.t. the well-structured transition system
is defined over S ×Σ. We denote the explicit part as s, t, r ∈ S and the symbolic
part of states by σ, τ, ρ, π, υ ∈ Σ, and a state as a pair (s, σ).

Model checking of safety properties is done by proving or disproving the reach-
ability of a certain concrete goal location sg.

2 The DBM might need to be put into normal form after more constraints have been
added [14].
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Definition 5 ((Safety) Model checking of a well-structured transition
system). Given a well-structured transition system (S × Σ,→,&), an initial
state (s0, σ0) ∈ S ×Σ, and a goal location sg does a path exist (s0, σ0)→ · · · →
(sg, σ

′
g).

In practice, the transition system is constructed on-the-fly starting from (s0, σ0)
and recursively applying → to discover new states. To facilitate this, we extend
the next-state interface of pins with subsumption:

Definition 6. A next-state interface with subsumption has three functions:
initial-state() = (s0, σ0),
next-state((s, σ)) = {(s1, σ1), . . . , (sn, σn)} returning all successors of (s, σ),
(s, σ)→ (si, σi), and
covers(σ′, σ) = σ & σ′ returning whether the symbolic part σ′ subsumes σ.

4 A Multi-core Timed Reachability Tool

For the construction of our real-time multi-core model checker, we made an effort
to reuse and combine existing components, while extending their functionality
where necessary. For the specification models, we use the uppaal XML format.
This enables the use of its extensive real-time modelling language through an ex-
cellent user interface. To implement the model’s semantics (in the form of a next-
state interface) we rely on opaal and the uppaal dbm library.3 Finally, LTSmin

is used as a model checking backend, because of its language-independent design.

Fig. 1. Reachability with subsumption [17]

Fig. 1 gives an overview
of the new toolchain. It
shows how the XML in-
put file is read by opaal
which generates c++

code. The c++ file im-
plements the pins inter-
face with subsumption
specifically for the input
model. Hence, after compilation (c++ compiler), LTSmin can load the object
file to perform the model checking.

Previously, the opaal tool was used to generate Python code [17], but im-
portant parts of its infrastructure, e.g., analysing the model to find max clock
constants [8], can be reused. In Sec. 5, we describe how opaal implements the
semantics of timed automata, and the structure of the generated c++ code.

The pins interface of the LTSmin tool [13] has been shown to enable efficient,
yet language-independent, model checking algorithms of different flavours, inter
alia: distributed [13], symbolic [13] and multi-core reachability [22,24], and LTL
model checking [20,21]. We extended the pins interface to distinguish the new
symbolic states of the opaal successor generator according to Def. 6. In Sec. 6,
we describe our new multi-core reachability algorithms with subsumption.

3 http://people.cs.aau.dk/~adavid/UDBM/

http://people.cs.aau.dk/~adavid/UDBM/
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5 Successor Generation Using Opaal

The opaal tool was designed to rapidly prototype new model checking features
and as such was designed to be extended with other successor generators. It al-
ready implements a substantial part of the uppaal features. For an explanation
of the uppaal features see [9, p. 4-7]. The new c++ opaal successor generator
supports the following features: templates, constants, bounded integer variables,
arrays, selects, guards, updates, invariants on both variables and clocks, com-
mitted and urgent locations, binary synchronisation, broadcast channels, urgent
synchronisation, selects, and much of the C-like language that uppaal uses to
express guards and variable updates.

A state in the symbolic transition system using DBMs, is a location vector and
a DBM. To represent a state in the c++ code we use a struct with a number of
components: one integer for each location, and a pointer to a DBM object from
the uppaal DBM library. Therefore a state is a tuple: (�1, . . . , �n, D).

The initial-state function is rather straightforward: it returns a state struct
initialised to the initial location vector, and a DBM representing the initial
zone (delayed, and with invariants applied as necessary). The structure of the
next-state function is more involved, because it needs to consider the syntactic
structure of the model, as can be seen in Alg. 1.

Alg. 1. Overall structure of the successor generator

1 proc next-state(sin = (�1, . . . , �n, D))
2 out states := ∅
3 for �i ∈ �1, . . . , �n

4 for all �i
g,a,r−−−→ �′i

5 D′ := D ∩ g
6 if D′ �= ∅ �is the guard satisfied?
7 if a = τ �this is not a synchronising transition
8 D′ := D′[r] ↑ �clock reset, delay

9 D′ := D′ ∩ IiC(�
′
i) ∩

⋂
k �=i I

k
C(�k) �apply clock invariants

10 if D′ �= ∅
11 D′ := D′/B(�1, . . . , �

′
i . . . , �n)

12 out states := out states ∪ {(�1, . . . , �′i, . . . , �n, D′)}
13 else if a = ch! �binary sync. sender
14 for �j ∈ �1, . . . , �n, j �= i

15 for all �j
gj ,ch?,rj−−−−−−→ �′j �find receivers

16 if D′′ := D′ ∩ gj �= ∅ �receiver guard satisfied?
17 D′′ := D′′[r][rj ] ↑ �clock resets, delay

18 D′′ := D′′ ∩ IiC(�
′
i) ∩ IjC(�

′
j) ∩

⋂
k �∈{i,j} I

k
C(�k) �apply clock invariants

19 if D′′ �= ∅
20 D′′ := D′′/B(�1, . . . , �

′
i, . . . , �

′
j . . . , �n)

21 out states := out states ∪ {(l1, . . . , l′i, . . . , l′j , . . . , ln, D′′)}
22 return out states
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At l. 4, we consider all outgoing transitions for the current location of each
process (l. 3). If the transition is internal, we can evaluate it right away, and
possibly generate a successor at l. 12. If it is a sending synchronisation (ch!), we
need to find possible synchronisation partners (l. 15). So again we iterate over
all processes and the transitions of their current locations (l. 14–21).

In the generated c++ code a few optimisations have been made, compared to
Alg. 1: The loops on line l. 3 and l. 14 have been unrolled, since the number of
processes they iterate over is known beforehand. In that manner the transitions
to consider can be efficiently found. As an optimisation, before starting the code
generation, we compute the set of all possible receivers for all channels, for the
unrolling of l. 14. In practice there are usually many receivers but few senders
for each channel, resulting in the unrolling being an acceptable trade-off.

When doing the max bounds extrapolation (/) in Alg. 1, we obtain the bounds
from a location-dependent function B : L1×· · ·×Ln → (C → N0). This function
is pre-computed in opaal using the method described in [8].

Some features are not formalised in this work, but have been implemented for
ease of modelling. We support integer variables, urgency that can be modelled
using urgent/committed locations and urgent channels, but also channel arrays
with dynamically computed senders, broadcast channels, and process priorities.
These are all implemented as simple extensions of Alg. 1. Other features are
supported in the form of a syntactic expansion, namely: selects, and templates.

To make the next-state function thread-safe, we had to make the uppaal

DBM library thread-safe. Therefore, we replaced its internal allocator with a
concurrent memory allocator (see Sec. 7). We also replaced the internal hash
table, used to filter duplicate DBM allocations, with a concurrent hash table.

6 Well-Structured Transition Systems in LTSmin

Alg. 2. Reachability with subsumption [17]

1 proc reachability(sg)
2 W := { initial-state() }; P := ∅
3 while W �= ∅
4 W := W \ (s, σ) for some (s, σ) ∈ W
5 P := P ∪ {(s, σ)}
6 for (t, τ ) ∈ next-state((s, σ)) do
7 if t = sg then report & exit
8 if � ∃ρ : (t, ρ) ∈ W ∪ P ∧ covers(ρ, τ )
9 W := W \ {(t, ρ) | covers(τ, ρ)} ∪ (t, τ )

The current section presents
the parallel reachability algo-
rithm that was implemented
in LTSmin to handle well-
structured transition systems.
According to Def. 6, we can
split up states into a dis-
crete part, which is always
compared using equality (for
timed automata this consists
of the locations and vari-
ables), and a part that is com-
pared using a well-quasi-ordering (for timed automata this is the DBM).

We recall the sequential algorithm from [17] (Alg. 2) and adapt it to use the
next-state interface with subsumption. At its basis, this algorithm is a search
with a waiting set (W ), containing the states to be explored, and a passed set
(P ), containing the states that are already explored.
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New successors (t, τ) are added to W (l. 9), but only if they are not subsumed
by previous states (l. 8). Additionally, states in the waiting set W that are sub-
sumed by the new state are discarded (l. 9), avoiding redundant explorations.

6.1 A Parallel Reachability Algorithm with Subsumption

In the parallel setting, we localize all work sets (Qp, for each worker p) and
create a shared data structure L storing both W and P . We attach a status
flag passed or waiting to each state in L to create a global view of the passed
and waiting set and avoid unnecessary reexplorations. L can be represented as
a multimap, saving multiple symbolic state parts with each explicit state part
L : S → Σ∗. To make L thread-safe, we protect its operations with a fine-
grained locking mechanism that locks only the part of the map associated with
an explicit state part s: lock(L(s)), similar to the spinlocks in [22]. An off-the-
shelf load balancer takes care of distributing work at the startup and when some
Qp runs empty prematurely. This design corresponds to the shared hash table
approach discussed in Sec. 2 and avoids a static partitioning of the state space.

Alg. 3 presents the discussed design. The algorithm is initialised by calling
reachability with the desired number of threads P and a discrete goal location sg.
This method initialises the shared data structure L and gets the initial state using
the initial-state function from the next-state interface with subsumption. The
initial state is then added to L and the worker threads are initialised at l. 6.
Worker thread 1 explores the initial state; work load is propagated later.

The while loop on l. 20 corresponds closely to the sequential algorithm, in a
quick overview: a state (s, σ) is taken from the work set at l. 21, its flag is set to
passed by grab if it were not already, and then the successors (t, τ) of (s, σ) are
checked against the passed and the waiting set by update. We now discuss the
operations on L (update, grab) and the load balancing in more detail.

To implement the subsumption check (line l. 8–9 in Alg. 2) for successors
(t, τ) and to update the waiting set concurrently, update is called. It first locks

Alg. 3. Reachability with cover update of the waiting set

1 global L : S → (Σ × {waiting, passed})∗

2 proc reachability(P, sg)
3 L := S → ∅
4 (s0, σ0) := s := initial-state()
5 L(s0) := (σ0,waiting)
6 search(s, sg , 1)|| . . . ||search(s, sg , P )

7 proc update(t, τ)
8 lock(L(t))
9 for (ρ, f) ∈ L(t) do

10 if covers(ρ, τ)
11 unlock(L(t))
12 return true
13 else if f = waiting ∧ covers(τ, ρ)
14 L(t) := L(t) \ (ρ,waiting)
15 L(t) := L(t) ∪ (τ,waiting)
16 unlock(L(t))
17 return false

18 proc search((s0, σ0), sg , p)
19 Qp := if p = 1 then {(s0, σ0)} else ∅
20 while Qp �= ∅ ∨ balance(Qp)
21 Qp := Qp \ (s, σ) for some (s, σ) ∈ Qp

22 if ¬grab(s, σ) then continue
23 for (t, τ) ∈ next-state((s, σ)) do
24 if t = sg then report & exit
25 if ¬update(t, τ)
26 Qp := Qp ∪ (t, τ)

27 proc grab(s, σ)
28 lock(L(s))
29 if σ �∈ L(s) ∨ passed = L(s, σ)
30 unlock(L(s))
31 return false
32 L(s, σ) := passed
33 unlock(L(s))
34 return true
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L on t. Now, for all symbolic parts and status flag ρ, f associated with t, the
method checks if τ is already covered by ρ. In that case (t, τ) will not be ex-
plored. Alternatively, all ρ with status flag waiting that are covered by τ are
removed from L(t) and τ is added. The update algorithm maintains the invari-
ant that a state in the waiting set is never subsumed by any other state in L:
∀s ∀(ρ, f), (ρ′, f ′) ∈ L(s) : f = waiting∧ρ 	= ρ′ ⇒ ρ 	& ρ′ (Inv. 1). Hence, similar
to Alg. 2 l. 8–9, it can never happen that (t, τ) first discards some (t, ρ) from
L(s) (l. 14) and is discarded itself in turn by some (t, ρ′) in L(s) (l. 10), since
then we would have ρ & τ & ρ′; by transitivity of & and the invariant, ρ and ρ′

cannot be both in L(t). Finally, notice that update unlocks L(t) on all paths.
The task of the method grab is to check if a state (s, σ) still needs to be

explored, as it might have been explored by another thread in the meantime. It
first locks L(s). If σ is no longer in L(s) or it is no longer globally flagged waiting
(l. 29), it is discarded (l. 22). Otherwise, it is “grabbed” by setting its status flag
to passed. Notice again that on all paths through grab, L(s) is unlocked.

Finally, the method balance handles termination detection and load balancing.
It has the side-effect of adding work to Qp. We use a standard solution [25].

6.2 Exploration Order

The shared hash table approach gives us the freedom to allow for a DFS or BFS
exploration order depending on the implementation of Qp. Note, however, that
only pseudo-DFS/BFS is obtained, due to randomness introduced by parallelism.

Alg. 4. Strict parallel BFS

1 proc search(s0, σ0, p)
2 Cp := if p = 1 then {(s0, σ0)} else ∅
3 do
4 while Cp �= ∅ ∨ balance(Cp)
5 Cp := Cp \ (s, σ) for some (s, σ) ∈ Cp

6 . . .
7 Np := Np ∪ (t, τ )
8 load := reduce(sum, |Np|, P )
9 Cp, Np := Np, ∅

10 while load �= 0

It has been shown for timed au-
tomata that the number of gener-
ated states is quite sensitive to the
exploration order and that in most
cases strict BFS shows the best re-
sults [11]. Fortunately, we can ob-
tain strict BFS by synchronising
workers between the different BFS
levels. To this end, we first split
Qp into two separate sets that hold
the current BFS level (Cp) and the
next BFS level (Np) [2]. The order
within these sets does not matter,
as long as the current is explored before the next set. Load balancing will only be
performed on Cp, hence a level terminates once Cp = ∅ for all p. At this point, if
Np = ∅ for all p, the algorithm can terminate because the next BFS level is empty.

The synchronising reduce method counts
∑P

i=1 |Ni| (similar to mpi reduce).
Alg. 4 shows a parallel strict-BFS implementation. An extra outer loop iter-

ates over the levels, while the inner loop (l. 4–7) is the same as in Alg. 3. Except
for the lines that add and remove states to and from the work set, which now
operate on Np and Cp. The (pointers to) the work sets are swapped, after the
reduce call at l. 8 calculates the load of the next level.
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6.3 A Data Structure for Semi-symbolic States

In [22], we introduced a lockless hash table, which we reuse here to design a data
structure for L that supports the operations used in Alg. 3. To allow for massive
parallelism on modern multi-core machines with steep memory hierarchies, it is
crucial to keep a low memory footprint [22, Sec. II]. To this end, lookups in the
large table of state data are filtered through a separate smaller table of hashes.
The table assigns a unique number (the hash location) to each explicit state
stored in it: D : S → N. In finite reality, we have: D : S → {1, . . . , N}.

We now reuse the state numbering of D to create a multimap structure for L.
The first component of the new data structure is an array I[N ] used for indexing
on the explicit state parts. To associate a set of symbolic states (pointers to
DBMs) with our explicit state stored in D[x], we are going to attach a linked list
structure to I[x]. Creating a standard linked list would cause a single cache line
access per element, increasing the memory footprint, and would introduce costly
synchronisations for each modification. Therefore, we allocate multi-buckets, i.e.,
an array of pointers as one linked list element. To save memory, we store lists of
just one element directly in I and completely fill the last multi-bucket.

N

L

σD(s)

D(t)

I

τ ρ υ

L.add(s, π)

L′

τ ρ υ

σ π

L′.del(t, τ )

L′′

ρ υ

σ π

Fig. 2. Data structure for L, and operations

Fig. 2 shows three instances of the discussed data structure: L,L′ and L′′.
Each multimap is a pointer (arrow) to an array I shown as a vertical bucket
array. L contains {(s, σ), (t, τ), (t, ρ), (t, υ)}. We see how a multi-bucket with
(fixed) length 3 is created for t, while the single symbolic state attached to s is
kept directly in I. The figure shows how σ is moved when (s, π) is added by the
add operation (dashed arrow), yielding L′. Adding π to t would have moved υ
to a new linked multi-bucket together with π.

Removing elements from the waiting list is implemented by marking bucket
entries as tombstone, so they can later be reused (see L′′). This avoids memory
fragmentation and expensive communication to reuse multi-buckets. For highest
scalability, we allocate multi-buckets of size 8, equal to a cache line. Other values
can reduce memory usage, but we found this sufficiently efficient (see Sec. 7).

We still need to deal with locking of explicit states, and storing of the various
flags for symbolic states (waiting/passed). Internally, the algorithms also need to
distinguish between the different buckets: empty, tomb stone, linked list pointers
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struct link or dbm {
bit pointer[60]
bit flag ∈ {waiting , passed}
bit lock ∈ {locked , unlocked}
bit status[2] ∈ {empty , tomb,

dbm ptr , list ptr}
}

Fig. 3. Bit layout of word-
sized bucket

and symbolic state pointers. To this end, we can
bitcram additional bits into the pointers in the
buckets, as is shown in Fig. 3. Now lock(L(s))
can be implemented as a spinlock using the
atomic compare-and-swap (CAS) instruction on
I[s] [22]. Since all operations on L(s) are done af-
ter lock(L(s)), the corresponding bits of the buck-
ets can be updated and read with normal load and
store instructions.

6.4 Improving Scalability through a Non-blocking Implementation

The size of the critical regions in Alg. 3 depends crucially on the |Σ|/|S| ratio; a
higher ratio means that more states in L(t) have to be considered in the method
update(t, τ), affecting scalability negatively. A similar limitation is reported for
distributed reachability [15]. Therefore, we implemented a non-blocking version:
instead of first deleting all subsumed symbolic states with a waiting flag, we
atomically replace them with the larger state using CAS. For a failed CAS, we
retry the subsumption check after a reread. L can be atomically extended using
the well-known read-copy-update technique. However, workers might miss up-
dates by others, as Inv. 1 no longer holds. This could cause |Σ| to increase again.

7 Experiments

To investigate the performance of the generated code, we compare full reach-
ability in opaal+LTSmin with the current state-of-the-art (uppaal).4 To in-
vestigate scalability, we benchmarked on a 48-core machine (a four-way AMD
OpteronTM 6168) with a varying number of threads. Statistics on memory usage
were gathered and compared against uppaal. Experiments were repeated 5 times.

We consider three models from the uppaal demos: viking (one discrete vari-
able, but many synchronisations), train-gate (relatively large amount of code,
several variables), and fischer (very small discrete part). Additionally, we
experiment with a generatedmodel, train-crossing,which has a different struc-
ture from most hand-made models. For some models, we created multiple num-
bered instances, the numbers represent the number of processes in the model.

For uppaal, we ran the experiments with BFS and disabled space optimisa-
tion. The opaal ltsmin script in opaal was used to generate and compile models.
In LTSmin we used a fixed hash table (--state=table) size of 226 states (-s26),
waiting set updates as in Alg. 3 (-u1) and multi-buckets of size 8 (-l8).

Performance & Scalability. Table 1 shows the reachability runtimes of the differ-
ent models in uppaal and opaal+LTSmin with strict BFS (--strategy=sbfs).
Except for fischer6, we see that both tools compete with each other on the

4 opaal is available at
https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen,
LTSmin at http://fmt.cs.utwente.nl/tools/ltsmin/

https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen
http://fmt.cs.utwente.nl/tools/ltsmin/
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Table 1. S , |Σ| ( |Σ|
|S| ) and runtimes (sec) in uppaal and opaal+LTSmin (strict BFS)

|S| uppaal opaal+LTSmin (cores)
T |Σ| |Σ1| |Σ48| T1 T2 T8 T16 T32 T48

train-gate-N10 7e+07 837.4 1.0 1.0 1.0 573.3 297.8 76.7 39.4 21.1 14.4
viking17 1e+07 207.8 1.0 1.5 1.5 331.5 172.5 44.2 22.7 11.9 8.6
train-gate-N9 7e+06 76.8 1.0 1.0 1.0 52.4 28.5 7.7 4.1 2.4 2.0
viking15 3e+06 38.0 1.0 1.5 1.5 67.0 34.8 9.7 5.1 3.0 2.3
train-crossing 3e+04 48.3 20.8 16.1 17.3 24.5 37.2 5.8 2.7 2.0 2.1
fischer6 1e+04 0.1 0.3 50.1 50.1 219.2 129.2 46.4 36.1 32.9 31.8

sequential runtimes, with 2 threads however opaal+LTSmin is faster than up-

paal. With the massive parallelism of 48 cores, we see how verification tasks of
minutes are reduced to mere seconds. The outlier, fischer6, is likely due to the
use of more efficient clock extrapolations in uppaal, and other optimisations,
as witnessed by the evolution of the runtime of this model in [10,4].

We noticed that the 48-core runtimes of the smaller models were dominated
by the small BFS levels at the beginning and the end of the exploration due
to synchronisation in the load balancer and the reduce function. This over-
head takes consistently 0.5–1 second, while it handles less than thousand states.
Hence to obtain useful scalability measurements for small models, we excluded
this time in the speedup calculations (Fig. 4–7). The runtimes in Table 1–2 still
include this overhead. Fig. 4 plots the speedups of strict BFS with the standard
deviation drawn as vertical lines (mostly negligible, hence invisible). Most models
show almost linear scalability with a speedup of up to 40, e.g. train-gate-N10.
As expected, we see that a high |Σ|/|S| ratio causes low scalability (see fischer
and train-crossing and Table 1). Therefore, we tried the non-blocking variant
(Sec. 6.3) of our algorithm (-n). As expected, the speedups in Fig. 5 improve
and the runtimes even show a threefold improvement for fischer.6 (Table 2).
The efficiency on 48 cores remains closely dependent to the |Σ|/|S| ratio of the
model (or the average length of the lists in the multimap), but the scalability is
now at least sub-linear and not stagnant anymore.

We further investigated different search orders. Fig. 6 shows results with
pseudo BFS order (--strategy=bfs). While speedups become higher due
to the lacking level synchronisations, the loose search order tends to reach
“large” states later and therefore generates more states for two of the models
(|Σ1| vs |Σ48| in Table 2). This demonstrates that our strict BFS implementation
indeed pays off.

Finally, we also experimented with randomized DFS search order (-prr
--strategy=dfs). Table 2 shows that DFS causes again more states to be gener-
ated. But, surprisingly, the number of states actually reduces with the parallelism
for the fischer6 model, even below the state count of strict BFS from Table 1!
This causes a super-linear speedup in Fig. 7 and threefold runtime improvement
over strict BFS. We do not consider this behaviour as an exception (even though
train-crossing does not show it), since it is compatible with our observation
that parallel DFS finds shorter counter examples than parallel BFS [18, Sec. 4.3].
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Fig. 5. Speedup non-blocking strict BFS

Design decisions. Some design decisions presented here were motivated by earlier
work that has proven successful for multi-core model checking [22,18]. In par-
ticular, we reused the shared hash table and a synchronous load balancer [25].
Even though we observed load distributions close to ideal, a modern work steal-
ing solution might still improve our results, since the work granularity for timed
reachability is higher than for untimed reachability. The main bottlenecks, how-
ever, have proven to be the increase in state count by parallelism and the cost
of the spinlocks due to a high |Σ|/|S| ratio. The latter we partly solved with a
non-blocking algorithm. Strict BFS orders have proven to aid the former problem
and randomized DFS orders could aid both problems.

Memory usage. Table 3 shows the memory consumption of uppaal (U-S0) and
sequential opaal+LTSmin (O+L1) with strict BFS. From it, we conclude that
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Table 2. |Σ| ( |Σ|
|S| ) and runtimes (sec) with non-blocking SBFS, DFS and BFS

NB SBFS DFS BFS
|Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48

train-gate-N10 1.0 1.0 547.9 14.5 1.0 1.0 647.8 15.6 1.0 1.0 559.3 13.1
viking17 1.5 1.5 320.1 9.2 1.6 1.6 386.5 9.1 1.5 1.5 325.6 7.8
train-gate-N9 1.0 1.0 52.1 2.1 1.0 1.0 61.7 1.7 1.0 1.0 51.9 1.6
viking15 1.5 1.5 64.8 2.5 1.6 1.6 80.2 3.1 1.5 1.5 66.0 2.3
train-crossing 16.1 16.1 24.1 1.8 169.8 179.0 3371.0 297.4 16.1 37.1 24.5 157.5
fischer6 50.1 50.1 201.3 12.0 54.4 39.4 405.1 10.6 50.1 58.1 206.0 32.3

Table 3. Memory usage (MB) of both uppaal (U-S0 and U-S2) and opaal+LTSmin

T D L L2 Q dbm O+L1 O+L48 O+LT
1 O+LT

48 U-S0 U-S2

train-gate-N10 777 5989 499 499 249 1363 8101 8241 2790 3028 6091 3348
viking17 156 1040 536 214 40 87 1704 1931 828 1047 1579 722
train-gate-N9 81 549 50 50 24 61 684 815 214 347 607 332
viking15 32 190 112 44 8 55 364 581 203 423 333 162
train-crossing 0 2 5 7 0 419 426 623 425 622 48 64
fischer6 0 0 5 9 1 176 429 512 290 429 0 4

our memory usage is within 25% of uppaal’s for the larger models (where these
measurements are precise enough). Furthermore, we extensively experimented
with different concurrent allocators and found that TBB malloc (used in this
paper) yields the best performance for our algorithms.5 Its overhead (O+L1 vs
O+L48 in Table 3) appears to be limited to a moderate fixed amount of 250MB
more than the sequential runs, for which we used the normal glibc allocator.

We also counted the memory usage inside the different data structures: the
multimap L (including partly-filled multi-buckets), the hash table D, the com-
bined local work sets (Q), and the DBM duplicate table (dbm). As we expected
the overhead of the 8-sized multi-buckets is little compared to the size of D and
the DBMs. We may however replace D with the compressed, parallel tree table
(T) from [24]. The resulting total memory usage (O+LT ), can now be dominated
by L, .i.e., for viking17. But if we reduce L to a linked list (-l2), its size shrinks
by 60% to 214MB for this model (L2). Just a modest gain compared to the total.

For completeness, we included the results of uppaal’s state space optimisation
(U-S2). As expected, it also yields great reductions, which is the more interesting
since the two techniques are orthogonal and could be combined.

8 Conclusions

We presented novel algorithms and data structures for multi-core reachability
on well-structured transition systems and an efficient implementation for timed
automata in particular. Experiments show good speedups, up to 40 times on a 48-
core machine and also identify current bottlenecks. In particular, we see speedups

5 cf. http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/ for additional data.

http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/
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of 58 times compared to uppaal. Memory usage is limited to an acceptable
maximum of 25% more than uppaal.

Our experiments demonstrate the flexibility of the search order that our par-
allel approach allows for. BFS-like order is shown to be occasionally slightly
faster than strict BFS but is substantially slower on other models, as previously
observed in the distributed setting. A new surprising result is that parallel ran-
domized (pseudo) DFS order sometimes reduces the state count below that of
strict BFS, yielding a substantial speedup in those cases.

Previous work has shown that better parallel reachability [22,24] crucially
enables new and better solutions to parallel model checking of liveness proper-
ties [20,18]. Therefore, our natural next step is to port multi-core nested depth-
first search solutions to the timed automata setting.

Because of our use of generic toolsets, more possibilities are open to be
explored. The opaal support for the uppaal language can be extended and
support for optimisations like symmetry reduction and partial order reduction
could be added, enabling easier modeling and better scalability. Additionally,
lattice-based languages [17] can be included in the c++ code generator. On the
backend side, the distributed [13] and symbolic [13] algorithms in LTSmin can
be extended to support subsumption, enabling other powerful means of veri-
fication. We also plan to add a join operator to the pins interface, to enable
abstraction/refinement-based approaches [17].
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Counterexample-Guided Synthesis of Observation
Predicates

Rayna Dimitrova and Bernd Finkbeiner
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Abstract. We present a novel approach to the safety controller synthesis prob-
lem with partial observability for real-time systems. This in general undecidable
problem can be reduced to a decidable one by fixing the granularity of the con-
troller: finite sets of clocks and constants in the guards. Current state-of-the-art
methods are limited to brute-force enumeration of possible granularities or man-
ual choice of a finite set of observations that a controller can track. We address
this limitation by proposing a counterexample-guided method to successively re-
fine a set of observations until a sufficiently precise abstraction is obtained. The
size of the abstract games and strategies generated by our approach depends on
the number of observation predicates and not on the size of the constants in the
plant. Our experiments demonstrate that this results in better performance than
the approach based on fixed granularity when fine granularity is necessary.

1 Introduction

Controller synthesis, both in the discrete and in the timed setting, has been an active field
of research in the last decades. The timed controller synthesis problem asks to automat-
ically find a controller for an open plant such that the controlled closed loop system sat-
isfies a given property. It naturally reduces to the problem of finding a winning strategy
for the controller player in a two-player timed game between a controller and its envi-
ronment (the plant). This problem is well-understood for the case that the controller can
fully observe the state and evolution of the plant. In reality, however, this assumption is
usually violated due to limited sensors or the inability to observe the internal behavior
of the plant. The controller must therefore win the game under partial observability.

The timed controller synthesis problem is undecidable under partial observability [2].
All known synthesis algorithms therefore rely on some a-priori restriction of the prob-
lem, such as fixing the granularity [2] of the controller by restricting the constants to
which clocks may be compared to in the controller to integral multiples of 1

m , where m
is a predefined constant, or fixing a template for the controller [9]. Alternatively, one can
predefine the observations of the controller [4,3], which amounts to providing a finite set
of predicates over the locations and clocks on which the strategy of the controller may
be based. How to efficiently find these observation predicates is an important research
question, the only known approach being the brute-force enumeration of all possible
granularities (1, 12 ,

1
4 , . . .) until a sufficiently precise one is found.

In this paper, we present the first systematic method for the automatic synthesis of
observation predicates. Before we describe the approach in more detail, let us clarify
the role of the observation predicates. Figure 1 shows, as a toy example, the model of

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 107–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Example of a partially observable plant for a production system. For readability we have
omitted the kick1? and kick2? transitions from all other locations leading to location End.

a production system. The goal is to kick a box from a conveyor belt using a piston,
before the box reaches the end of the belt. The locations On, Producing1, Producing2,
Sensed1, Sensed2, Piston1, Piston2, End and Off of the plant indicate the position of
the box on the belt. The plant produces two types of boxes, where producing a box of
type 1 takes between 4 and 6 seconds and producing a box of type 2 takes between 7
and 8 seconds. However, regardless of its type, the box arrives at the respective location
Piston1 or Piston2 between 9 and 10 seconds after the start. The goal of the controller
is to avoid location End. For that, it has to execute the correct kick1! or kick2! action at
the right time, namely when the box is in the respective location Piston1 or Piston2.

The challenge is that locations On, Produce1 and Produce2 are indistinguishable
by the controller, and so are locations Sensed1, Sensed2, Piston1 and Piston2. The
controller can only detect the presence of a box via a sensor (i.e, it observes the box
entering locations Sensed1 and Sensed2) and use timing information to determine the
time-frame in which the box is in location Piston1 (or Piston2). It cannot observe the
clock x of the plant, but has its own clock y that it can test and reset. A solution to
the synthesis problem is to use a clock y in the controller and activate the piston when
y = 21/2, thus ensuring that the End is never reached as the box is guaranteed to reach
location Piston1 or Piston2 in 9 to 10 seconds after it is sensed and remains there at least
until y = 11. Additionally, in order to activate the correct piston, the controller needs
to distinguish the type of the box. This can be done, again using timing information, by
checking whether or not the box has been sensed by time y = 7. In order to find a correct
controller, we thus need two observation predicates: y = 21/2 and y >= 7. Clearly,
both predicates are necessary: if the controller only observes one of them or only some
other predicate, say, only y = 30, then it is impossible to enforce the specification. Note
also that two predicates play different roles in the control strategy. Predicate y = 21/2
identifies a particular point in time (out of the infinitely many) in which the controller
may choose to take an action, predicate y >= 7 identifies an observation that is needed
in order to be able to decide on the right action. In the following, we distinguish these
two types of observation predicates as action points and decision predicates.

Our method works by successively refining a finite set of observation predicates
based on the analysis of spurious counterexamples. The key is to use timed games with
fixed observations as sound abstractions of the original timed game under incomplete
information. Our method builds on the classic CEGAR loop, where one successively
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incomplete information

perfect information

infinite state space finite state space

infinite-choice
await-time

game I

finite-choice
await-time
game F

Ga(F ,AP)κ(I) κ(F)

fix ξ

κ κ

abstract
w.r.t. AP

Fig. 2. Overview of the abstraction process. An await-time game I, representing the controller
synthesis problem under partial observability, is first abstracted into a finite-choice await-time
game F , and then into a finite-state game Ga(F ,AP). Games I and F have a possibly infinite
state space and are played under incomplete information, game Ga(F ,AP) is finite-state and is
played under perfect information.

refines the abstraction until either no more abstract counterexamples exist or a concrete
counterexample is found. As usual in CEGAR approaches for games [10,8], a spuri-
ous counterexample is a strategy tree for the environment player that is winning in the
abstract game but not in the concrete game. For timed games, the main difficulty in
the characterization of spurious counterexamples is caused by the fact that the number
of moves available to the controller is infinite, corresponding to the infinite number of
points in time when an action can be taken. As a result, the logical characterization
of spurious counterexamples is a quantified formula in the theory of linear arithmetic.
In the paper, we present a novel refinement technique for generating new observation
predicates based on quantifier witnesses that eliminate the given strategy.

Figure 2 gives an overview on the abstraction process. We start with a symbolic rep-
resentation of the timed safety controller synthesis problem with partial observability,
which we call await-time games. Await-time games allow us to represent the infinite
number of choices available to the controller using controllable variables. Correspond-
ing to the two types of observation predicates, action points and decision predicates,
we abstract the initial await-time game in two steps into a finite-state game with perfect
information. First, we use the action points to eliminate (abstract away) the controllable
variables that range over infinite domains. In the resulting finite-choice await-time game
F , the number of moves available to the controller is finite, but the number of states may
still be infinite. In the second step we abstract F w.r.t. a finite set of predicates AP to
obtain a finite-state perfect-information game Ga(F ,AP). This abstraction completely
fixes a finite set of observation predicates the controller can track. Since Ga(F ,AP) is
a finite game, we can apply standard algorithms to solve the game and find a winning
strategies for the winning player. For a winning strategy for the environment player, we
check if the strategy also wins in F and in I. Strategies that are spurious in F can be
eliminated with additional decision predicates, strategies that are concretizable in F but
spurious in I need additional action points. We refine both sets until we find either a
strategy for the controller in Ga(F ,AP) or a counterexample concretizable in I.

Related Work. The classic solution for finite-state discrete games under incomplete
information is due to Reif [11] and is based on a determinization-like translation to
perfect-information games with a knowledge-based subset construction.



110 R. Dimitrova and B. Finkbeiner

Symbolic fixed-point algorithms based on antichains that avoid this determinization
procedure were proposed in [7,5]. While these algorithms are applicable to infinite game
graphs with a given finite region algebra, they require an a priori fixed finite set of
observations that the controller is allowed to track.

Abstraction refinement methods were previously applied to games with perfect in-
formation [10,6] and to safety games with incomplete information [8]. Games under
incomplete information are out of the scope of the first two works. The refinement pro-
cedure from [8] is based on the assumption that the controller can choose a move from
a finite set. Unless a finite set of observations is fixed, this is not the case in real-time
systems where the controller can let an arbitrary amount of time elapse.

To the best of our knowledge, prior to this work there was no approach to controller
synthesis that can handle partial observability for systems that allow for infinitely many
choices of the controller, without fixing a priori a finite set of available observations.

2 Timed Controller Synthesis with Partial Observability

Production system controllers are typically required to satisfy timing requirements for-
mulated as safety properties. In a realistic setting, the information that such controllers
have at their disposal is limited by their interface and sensor capabilities. Thus, all
decisions in the controller’s implementation are made based on (possibly) partial obser-
vations about the state and the evolution of the controller’s external environment.

In this section we recall standard notions and notation and give a definition of the
timed safety control problem with partial observability.

Timed Automata and Transition Systems. Given a set X of real-valued variables,
G(X) is the set of constraints generated by: ϕ := x ∼ c | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2, where
x ∈ X , c ∈ Q and ∼∈ {<,≤, >,≥}. C(X) is the subset of G(X) that consists of true
and conjunctions of constraints of the form x ∼ c. We denote with R≥0 (R>0) the sets
of non-negative (positive) reals and with RX

≥0 the set of total functions from X to R≥0.
For v ∈ RX

≥0, Z ⊆ X and t ∈ R>0 we denote with v[0/Z] and with v+ t the valuations
obtained from v by setting the values of the variables in Z to 0 or adding t to every
value in v, respectively. For v ∈ RX

≥0 and g ∈ G(X) we write v |= g iff v satisfies g.
For a finite or infinite sequence π of elements of some set A we denote with |π| its

length, i.e., the number of elements of π and write |π| = ∞ when π is infinite. For
n ∈ N with n < |π|, we denote with π[n] and π[0, n] the n+1-th element of π and the
prefix of length n+ 1, respectively. For π ∈ A+, last(π) is the last element of π.

A timed automaton [1] is a tuple A = (Loc, X,Σ, Inv, R, l0), where Loc is a finite
set of locations, X is a finite set of real-valued clocks, Σ is a finite set of actions,
Inv : Loc → C(X) is a function mapping each location to an invariant and R ⊆
Loc×Σ × G(X)× 2X × Loc is a finite set of transitions.

The semantics of a timed automaton A is defined by a timed transition system T =
(S, s0, Σ,→), where S = Loc×RX

≥0 is the set of states, s0 = (l0, 0) is the initial state,
and the transition relation→⊆ S × (Σ ∪ R>0)× S is such that ((l, v), σ, (l′, v′)) ∈→
iff v |= Inv(l), v′ |= Inv(l′) and either σ ∈ Σ and there exists (l, σ, g, Z, l′) ∈ R with
v |= g and v′ = v[0/Z], or σ ∈ R>0, v′ = v + σ and l′ = l. We write (l, v)

σ→ (l′, v′)
as a shortcut for ((l, v), σ, (l′, v′)) ∈→.
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Timed Safety Control with Partial Observability. A partially observable plant is a
tupleP = (A, Σc, Σu,Xo,Xu,=

L
o), whereA is a timed automaton,Σc and Σu partition

the set Σ of actions into a set Σc of controllable and a set Σu of uncontrollable actions,
Xo and Xu partition the set X of clocks into a set Xo of observable and a set Xu of
unobservable clocks, and =L

o is an observation equivalence relation on Loc. We require
thatP is input-enabled: each σ ∈ Σc is enabled in every state s in the transition system.
We also assume that at every state a transition from Σu is enabled or time can elapse.

A controller for a partially observable plant operates under incomplete information
about the location the plant is in and about the values of the plant’s clocks. It knows
the equivalence class of Loc w.r.t. =L

o in which the plant currently is. The equivalence
class of a location l ∈ Loc is denoted [l]=L

o
. The controller observes the values of the

observable clocks Xo and doesn’t observe those of the clocks in Xu.
Let us consider a partially observable plant P = (A, Σc, Σu,Xo,Xu,=

L
o) with A =

(Loc, X,Σ, Inv, R, l0) and let Xc be a finite set of clocks with Xc ∩X = ∅.
We note with Xo+c = Xo∪̇Xc the union of the observable clocks of the plant and the

clocks Xc, which are the clocks that belong to the controller. Let Σr = {resetZ | Z ∈
2Xc \ {∅}} be a set of actions disjoint from Σ used to model resets of clocks in Xc. Let
us define S̃ = S × RXc

≥0 and Σ̃ = Σ ∪ R>0 ∪Σr.
A Xc-control strategy for the partially observable plant P is a total function f :

S̃× (Σ̃× S̃)∗ → (Σc ∪ (Σc×Xo+c×Q>0)∪{⊥}∪Σr), which maps finite execution
histories to decisions of the controller, which can either be to execute a controllable
action σ immediately (f(π) = σ) or when an observable clock x reaches the future
time c (f(π) = (σ, x, c)), to remain idle (f(π) = ⊥), or to immediately reset a set of
controllable clocks Z (f(π) = resetZ). We require the following:

– if the controller decides to execute σ ∈ Σc when x reaches c: f(π) = (σ, x, c), then
c is greater than the current value of x, i.e., c > v(x), where last(π) = (l, v, vc);

– if the controller decides to reset clocks Z ⊆ Xc: f(π) = resetZ , then these clocks
have positive values, i.e., vc(x) > 0 for every x ∈ Z , where last(π) = (l, v, vc);

– the value of f changes only when the observation changes or an action in Σc ∪Σr

is executed, i.e., f(π(l, v, vc)σ(l′, v′, v′c)) = f(π(l, v, vc)) whenever σ ∈ R>0 or
σ ∈ Σu and l =L

o l′ and for every x ∈ Xo, v′(x) = 0 only if v(x) = 0;
– f is consistent with the observations of the controller, that is f(π1) = f(π2) for

every π1 ≡ π2, where the equivalence relation ≡ is defined below.

We first define a function obs : S̃×(Σ̃×S̃)∗ → S̃×(S̃×S̃)∗ that maps a sequence π to
the sequence obs(π) that consists of exactly those transitions of π where a controllable
action is taken or a discrete change of the state-based observation occurs. If π = s̃,
then obs(π) = s̃. Otherwise let π = π′(l, v, vc)σ(l

′, v′, v′c). If either σ ∈ Σc ∪ Σr, or
σ ∈ Σu and l 	=L

o l′ or for some x ∈ Xo, v(x) > 0 and v′(x) = 0, then obs(π) =
obs(π′(l, v, vc))((l, v, vc), (l

′, v′, v′c)). Otherwise, obs(π) = obs(π′(l, v, vc)).
For π1, π2 ∈ S̃ × (S̃ × S̃)∗ we define π1 ≡ π2 iff |obs(π1)| = |obs(π2)| and:

– if obs(π1)[0] = (l01, v
0
1 , vc

0
1) and obs(π2)[0] = (l02, v

0
2 , vc

0
2), then we have l01 =L

o l02,
vc

0
1 = vc

0
1 and for every x ∈ Xo it holds that v01(x) = v02(x), and

– for every 0 < i < |obs(π1)| with obs(π1)[i] = ((l1, v1, vc1), (l
′
1, v

′
1, vc

′
1)) and

obs(π2)[i] = ((l2, v2, vc2), (l
′
2, v

′
2, vc

′
2)), we have l1 =L

o l2, l′1 =L
o l′2, vc1 = vc2,

vc
′
1 = vc

′
2, and for every x ∈ Xo, v1(x) = v2(x) and v′1(x) = v′2(x).
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A control strategy f for the plant P defines a set of controlled paths CP(f,P) =

S̃ × ((Σ̃ × S̃)∗ ∪ (Σ̃ × S̃)ω), where π ∈ CP(f,P) iff π[0] = (l0, 0, 0) and for every
0 < i < |π| − 1 with π[i− 1] = (l, v, vc), π[i] = σ and π[i+ 1] = (l′, v′, v′c) we have:

– if σ ∈ R>0, then (l, v)
σ→ (l′, v′), v′c = vc + σ and either f(π[0, i − 1]) = ⊥ or

f(π[0, i− 1]) = (a, x, c) and v′(x) ≤ c (time can elapse only until x reaches c);
– if σ ∈ Σc, then (l, v)

σ→ (l′, v′), v′c = vc and either f(π[0, i−1]) = σ or f(π[0, i−
1]) = (σ, x, c) and v(x) = c (σ is taken immediately or x has reached c);

– if σ ∈ Σu, then f(π[0, i− 1]) 	∈ Σr, (l, v)
σ→ (l′, v′) and v′c = vc;

– if σ = resetZ , then f(π[0, i− 1]) = resetZ , v′c = vc[0/Z], v′ = v, l′ = l.

A location l ∈ Loc is reachable in CP(f,P) iff there exists a finite path π ∈ CP(π)
such that last(π) = (l, v, vc) for some v ∈ RX

≥0 and vc ∈ RXc

≥0.
We can now state the timed safety control synthesis problem with partial observabil-

ity: Given a partially observable plant P = (A, Σc, Σu,Xo,Xu,=
L
o) with underlying

timed automaton A = (Loc, X,Σ, Inv, R, l0), an error location lbad ∈ Loc, for which
[lbad]=L

o
= {lbad}, and a finite set Xc of clocks with Xc ∩ X = ∅, find a finite-state

Xc-control strategy f for P such that lbad is not reachable in CP(f,P) or determine
that there does not exist a Xc-control strategy for P .

3 Await-Time Games

In this section we introduce await-time games and show that the timed safety controller
synthesis problem with partial observability reduces to the problem of finding a winning
strategy for the controller in an await-time game against its environment (the plant).

Let P = (A, Σc, Σu,Xo,Xu,=
L
o) where A = (Loc, X,Σ, Inv, R, l0) be a partially

observable plant fixed for the rest of the paper, together with an error location lbad ∈
Loc, for which [lbad]=L

o
= {lbad}. Let Xc be a fixed finite set of clocks with Xc∩X = ∅.

An await-time game models the interaction between a Xc-control strategy Playerc,
and the partially observable plant P , i.e, the controller’s environment Playere, in a turn-
based manner. Whenever it is his turn, Playerc has the possibility to propose what con-
trollable action should be executed and when. Then, Playere can do one or more transi-
tions executing the actual actions of the plant, i.e., updating the location and all clocks,
respecting the choice of Playerc. Since the controller and the plant synchronize when a
controllable action is executed or a discrete change in the state-based observation has
occurred, the turn is back to Playerc as soon as this happens. More precisely, Playerc
can choose (C1) an action σ ∈ Σc to be executed after a positive delay, or (C2) an
action σ ∈ Σc to be executed without delay, or (C3) to remain idle, or (C4) a set of
clocks from Xc to be reset immediately. Playere can do transitions that correspond to
(E1) the time-elapsing transitions in the plant, (E2) the discrete controllable and (E3)
uncontrollable transitions in the plant, as well as transitions that let Playere (E4) reset
the controllable clocks selected by Playerc, or (E5) give the turn to Playerc.

Formally, an await-time game I(P , lbad,Xc) = (Vc,Vo,Vu, ι, Tc, Te, ϕbad) is a tu-
ple consisting of pairwise disjoint sets Vc, Vo and Vu of controllable, observable and
unobservable variables respectively, and formulas ι, ϕbad, Tc and Te that denote the sets
of initial and error states and the transition relations for Playerc and Playere respectively.
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The states of the game are described by the finite set V = Vc∪̇Vo∪̇Vu of variables.
We assume a designated boolean variable t ∈ Vc that determines which player choses
a successor (i.e, updates his variables) in a given state. The transition relations of the
players are given as formulas over V and the set V ′ of primed versions of the variables.

Playerc updates the variables in Vc, which model the decisions of the controller. A
variable act ∈ Vc with Dom(act) = Σc∪{⊥} indicates the selected controllable action
in cases (C1) and (C2) (and is ⊥ in cases (C3) and (C4)). In case (C1), Playerc also
proposes for at least one clock variable x ∈ Xo+c a positive constant, called await point,
indicating that he wants to execute the selected action as soon as x reaches this value,
which must be strictly greater than the current value of x. For this, Vc contains a subset
SC = {cx | x ∈ Xo+c} of variables, called symbolic constants, ranging over Q≥0. Vc

contains variables wait and reset with Dom(wait) = B and Dom(reset) = 2Xc .
Playere updates the variables in Vo∪̇Vu∪̇{t}. The set Vo contains the clocks in Xo+c

and a variable oloc for modeling the equivalence class of the current location of the
plant. The set Vu contains the clocks in Xu and a variable loc for modeling the plant’s
location. The auxiliary boolean variable er ∈ Vo indicates in which states Playerc can
choose to reset clocks in Xc and the auxiliary boolean variable et ∈ Vu is false in states
where Playere has disabled further time-elapse transitions.

Playerc has incomplete information about the state of the game, which includes the
state of the plant – location and clock valuations. He observes only the variables in
Vo+c = Vc∪̇Vo and is thus oblivious to the current location and valuation of Xu.

Since a controller for a partially observable plant does not observe the plant contin-
uously, but only at the points of synchronization, we need to ensure that Playerc cannot
win the game only by basing his strategic choices on the number of unobservable steps
in the play so far, i.e, that if he can win the game then he can do so with a stuttering in-
variant strategy [4]. To this end, we include in the game I a skip-transition for Playere,
which is enabled in each state that belongs to Playere and allows for making a transition
without changing the values of any variables. This transformation is sound for games
with safety winning conditions defined by a set of bad states. That way, we will ensure
that winning strategies for Playerc correspond to Xc-control strategies for P .

For the rest of the paper, we denote with I the await-time game I(P , lbad,Xc).
The formulas ι and ϕbad assert respectively that all variables are properly initialized

and that loc = lbad. The formulas Tc and Te assert that the players update their variables
according to the rules above. Instead of the respective formulas, we give the transition
relations of the corresponding explicit game G(I) = (Qc, Qe, q0,Tc,Te,=o, B).

(C1) q′(act) ∈ Σc, q′(wait) = true, q′(reset) = ∅, and q′(cx) > 0 for some x ∈ Xo+c,
and for every x ∈ Xo+c with q′(cx) > 0 we have q′(cx) > q(x)

(C2) q′(act) ∈ Σc, q′(wait) = false, q′(reset) = ∅ and q′(c) = 0 for all c ∈ SC

(C3) q′(act) = ⊥, q′(wait) = true, q′(reset) = ∅ and q′(c) = 0 for all c ∈ SC

(C4) q(er) = true (resetting controllable clocks is allowed only after a controllable action or
discrete change of the observation), q(x) > 0 for every x ∈ q′(reset), q′(act) = ⊥,
q′(wait) = false, q′(reset) ∈ 2Xc \ {∅} and q′(c) = 0 for all c ∈ SC

Fig. 3. Transition relation Tc of Playerc: for states q and q′, (q, q′) ∈ Tc iff q(t) = true, q′(t) =
false, q′|(Vo∪Vu) = q|(Vo∪Vu) and one of the conditions (C1), (C2), (C3), (C4) holds
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(E1) q(wait) = true, q(et) = true (time-elapse trans. enabled) and for some σ ∈ R>0:
– (q(loc), q|X)

σ→ (q′(loc), q′|X), q′(oloc) = q(oloc), and q′|Xc = q|Xc + σ,
– if q(act) �= ⊥, then for every x ∈ Xo+c with q(x) < q(cx), we have q′(x) ≤ q(cx)
(cannot let time pass beyond an await point if Playerc chose an action in Σc),
– if q(act) �= ⊥, then q′(et) = false iff q′(x) ≥ q(cx) and q(x) < q(cx) for some
x ∈ Xo+c with q(cx) > 0 (disable time-elapse transitions upon reaching an await point),
– q′(t) = false, q′(er) = q(er)

(E2) q(wait) = false or q(et) = false (time-elapse trans. disabled), q(act) = σ ∈ Σc and:
– (q(loc), q|X)

σ→ (q′(loc), q′|X), q′(oloc) = [q′(loc)]=L
o
, and q′|Xc = q′|Xc ,

– q′(t) = true (the turn is back to Playerc), q′(er) = true, q′(et) = true

(E3) q(reset) = ∅ and for some σ ∈ Σu:
– (q(loc), q|X)

σ→ (q′(loc), q′|X), q′(oloc) = [q′(loc)]=L
o
, and q′|Xc = q′|Xc ,

– q′(t) = true iff q′(oloc) �= q(oloc) or q(x) > 0 and q′(x) = 0 for some x ∈ Xo

(the turn is back to Playerc iff the observation changed), and if q′(t) = true, then
q′(er) = true and q′(et) = true, otherwise q′(er) = q(er) and q′(et) = q(et)

(E4) q(reset) = Z �= ∅ (Playerc chose to reset the clocks in Z) and:
– q′(x) = 0 for every x ∈ Z and q′(x) = q(x) for every x ∈ (X ∪ Xc) \ Z,
– q′(loc) = q(loc), q′(oloc) = q(oloc), q′(t) = true, q′(er) = false, q′(et) = true
(the turn is back to Playerc and resetting controllable clocks is disabled)

(E5) q(wait) = true, q(act) = ⊥, q(et) = false (Playerc chose to remain idle and Playere
has disabled further time-elapse transitions, after making at least one) and:
– q′(loc) = q(loc), q′(oloc) = q(oloc) and q′(x) = q(x) for every x ∈ X ∪ Xc,
– q′(t) = true (give the turn back to Playerc), q′(er) = false, q′(et) = true

Fig. 4. Transition relation Te of Playere: for states q and q′, (q, q′) ∈ Te iff q(t) = false,
q′|(Vc\{t}) = q|(Vc\{t}) and one of the conditions (E1), (E2), (E3), (E4), (E5) holds, or q′ = q

The states of G(I) are valuations of V , i.e., elements of the set Vals(V ) that consists
of all total functions q : V →

⋃
x∈V Dom(x) such that q(x) ∈ Dom(x) for every

x ∈ V . For q ∈ Vals(V ) and U ⊆ V , we denote q|U the projection of q onto U .
The states Q = Qc∪̇Qe = Vals(V ) are partitioned into those Qc = {q ∈ Q | q(t) =

true} that belong to Playerc and those Qe = {q ∈ Q | q(t) = false} that belong to
Playere. The initial state q0 ∈ Qc is the unique state that satisfies ι and the set B of
error states consists of all states in Qe that satisfy ϕbad.

The observation equivalence =o on Q is defined by the partitioning of the variables
in V as follows: q1 =o q2 iff q1|Vo+c = q2|Vo+c .

The transition relation T = Tc∪̇Te is partitioned into the transition relations Tc for
Playerc and Te for Playere, which are defined in Fig. 3 and Fig. 4, respectively.

A path in I is a finite or infinite sequence π ∈ Q∗ ∪ Qω of states such that for all
1 ≤ n < |π|, we have (π[n − 1], π[n]) ∈ T . We call a path π maximal iff π is infinite
or last(π) ∈ B. A play (prefix) in I is a maximal path (finite path) π in I such that
π[0] = q0. The extension of =o to paths is straightforward. We denote with prefsc(I)
(prefse(I)) the set of prefixes π in I such that last(π) ∈ Qc (last(π) ∈ Qe).

A strategy for Playerc is a total function fc : prefsc(I) → Vals(Vc) mapping pre-
fixes to valuations of Vc such that for every π ∈ prefsc(I) there exists q ∈ Q with
(last(π), q) ∈ Tc such that fc(π) = q|Vc , and which is consistent w.r.t. =o: for all
π1, π2 ∈ prefsc(I) with π1 =o π2 it holds that fc(π1) = fc(π2). A strategy for
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Playere is a total function fe : prefse(I) → Vals(Vo ∪ Vu ∪ {t}) such that for ev-
ery π ∈ prefse(I) there is a q ∈ Q with (last(π), q) ∈ Te and fe(π) = q|(Vo∪Vu∪{t}).

The outcome of a strategy fc for Playerc is the set outcome(fc) of plays such that
π ∈ outcome(fc) iff for every 0 < n < |π| with π[n− 1] ∈ Qc it holds that π[n]|Vc =
fc(π[0, n− 1]). A strategy fc for Playerc is winning if for every π ∈ outcome(fc) and
every n ≥ 0, π[n] 	∈ B. The outcome of a strategy fe for Playere is defined analogously
and fe is winning if for every π ∈ outcome(fe) there exists a n ≥ 0 such that π[n] ∈ B.
For a strategy f we denote with prefs(f) the set of all prefixes in outcome(f).

We can reduce the timed safety control synthesis problem with partial observability
to finding a finite-state winning strategy for Playerc in I.

Proposition 1. There exists a finite-state Xc-control strategy for the partially observ-
able plant P with error location lbad, such that lbad is not reachable in CP(f,P) iff
Playerc has a finite-state winning strategy in the await-time game I(P , lbad,Xc).

4 Abstracting Await-Time Games

In this section we describe an abstraction-based approach to solving await-time games.
A finite-state abstract game with perfect information is constructed in two steps. In the
first step we construct an await-time game with fixed action points F by abstracting
away the symbolic constants, and thus leaving Playerc with a finite state of possible
choices in each of its states, and letting Playere resolve the resulting nondeterminism.
In the second step we do predicate abstraction of F w.r.t. a finite set AP of predicates
and thus completely fix the set of (observation) predicates that the controller can track.

Step 1: Fixing the action points. A finite-choice await-time gameF(I, ξ) for the game
I is defined by an action-point function ξ : Xo+c → 2Q>0 . For each clock x ∈ Xo+c,
the set ξ(x) ⊆ Q>0 is a finite set of positive rational constants called action points for
x. The action points for a clock x ∈ Xo+c are used to replace the symbolic constant cx
from I in F(I, ξ) as we describe below.

Formally, F(I, ξ) = (V f
c ,Vo,Vu, ι

f , T f
c , T f

e , ϕbad) is a symbolic game that differs
from I in the set of controllable variables, the formulas for the transition relations and
the formula describing the initial state. We define V f

c = Vc \ SC . Thus, the formula ιf

and the transition formula Tc for Playerc do not contain assignments to SC .
The possible options for Playerc in F are the same as in I except for (C1), which is

replaced by (C1f) where Playerc selects an action σ ∈ Σc to be executed after a delay
determined by Playere. As now Playerc updates only the finite-range variablesV f

c , from
each Playerc-state he can choose among finitely many possible successors.

The nondeterminism resulting from replacing (C1) by (C1f), i.e, regarding exactly
how much time should elapse before the selected controllable action σ is executed, is
resolved by Playere. The action σ can be fired at any time up to (and including) the first
action point reached after a positive amount of time has elapsed. This is achieved by
replacing (E1) by (E1f), where Playere can choose to disable further delay transitions
at any point. Furthermore, according to (E1f) the duration of the time-elapse transitions
is constrained by the action points, regardless of whether Playerc has chosen to execute
a controllable action after a delay or to remain idle. This allows Playerc to remain idle
until reaching an action point and then choose to execute a controllable action.
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By the definition, in the game F(I, ξ) Playere is more powerful than in the game I,
while Playerc is weaker. Thus, F(I, ξ) soundly abstracts the await-time game I.

Proposition 2. For every action-point function ξ : Xo+c → 2Q>0 , if Playerc has a
(finite-state) winning strategy in the finite-choice await-time gameF(I, ξ), thenPlayerc
has a (finite-state) winning strategy in the await-time game I.

Step 2: Predicate abstraction. We now consider a finite set AP of predicates that
contains at least the atomic formulas occurring in some of ιf and ϕbad. We further
require that AP is precise w.r.t. the (finitely many) choices of Playerc in the game F
and w.r.t. every finite-range v ∈ Vo. That is, AP contains all boolean variables from
Vo+c plus the predicate v = d for every finite-range v ∈ Vo+c and d ∈ Dom(v).

We ensure thatAP is precise w.r.t. the action points in F by including the predicates
x ≤ c and x ≥ c for each x ∈ Xo+c and c ∈ ξ(x). Thus, the observable predicates in
AP (i.e., those referring only to variables in Vo+c) are exactly the observation predi-
cates the controller can track in the current abstraction.

We employ the abstraction procedure from [8] to construct a finite-state perfect-
information abstract game Ga(F ,AP) = (Qa

c , Q
a
e , q

a
0 ,T

a
c ,T

a
e , B

a), which is an ex-
plicit safety game. The set of abstract states Qa = Qa

c ∪̇Qa
e is partitioned into the sets of

states Qa
c and Qa

e that belong to Playerc and Playere respectively. The game has a unique
initial state qa0 , and set of error states Ba. The abstract transition relation T a = Ta

c ∪̇Ta
e

is partitioned into Ta
c and Ta

e for the two players and is such that Ta
c ⊆ Qa

c ×Qa
e and

Ta
e ⊆ Qa

e ×Qa and each state in Qa has a successor.
Here a strategy for Playerp, where p ∈ {c, e} is a total function fa

p : prefsp(G
a) →

Qa such that for every π ∈ prefsp(G
a), if fa(π) = q, then (last(π), q) ∈ T a

p .
The soundness of this abstraction guarantees that if Playerc has a winning strategy

fa
c in Ga(F ,AP), then there exists a finite-state concretization fc of fa

c which is a
winning strategy for Playerc in F (and hence Playerc has a winning strategy in I).

5 Counterexample-Guided Observation Refinement

We now present a procedure for automatically refining the observation predicates in
case of a spurious abstract counterexample. This procedure takes into account the two
steps of the abstraction phase. Since the predicate abstraction procedure is part of
the CEGAR-loop from [8], we refer the reader to the interpolation-based refinement
method described there to generate new predicates for AP in the case when the ab-
stract counterexample does not correspond to a counterexample in the game F . In the
following, we focus on the case when the predicate abstraction cannot be further refined
due to the fact that the abstract counterexample does correspond to a counterexample in
the gameF . In this case, we check if it actually corresponds to a concrete counterexam-
ple in the game I. We now define a symbolic characterization of the counterexamples
that are concretizable in I, and develop a refinement procedure for F(I, ξ).

Let ξ : Xo+c → 2Q>0 be an action-point function, and let AP be a finite set of
predicates. Let F = F(I, ξ) be the corresponding finite-choice await-time game, and
let Ga(F ,AP) = (Qa

c , Q
a
e , q

a
0 ,T

a
c ,T

a
e ,=

a
o , B

a) be its abstraction w.r.t. AP . Suppose
that there exists a winning strategy fa

e for Playere in Ga(F ,AP).
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Abstract Counterexample Strategies. A winning strategy fa
e for Playere in

Ga(F ,AP) is an abstract counterexample. For a sequence ρ ∈ (2Q)∗ ∪ (2Q)ω of sets
of states in a game, we define γ(ρ) as the set of paths π such that |π| = |ρ| and for every
0 ≤ i < |π| it holds that π[i] ∈ ρ[i]. For ρ1, ρ2 ∈ (2Q)∗ ∪ (2Q)ω we write ρ1 ⊆ ρ2 iff
|ρ1| = |ρ2| and γ(ρ1) ⊆ γ(ρ2). We denote with κ(I) and κ(F) the perfect-information
games for I and F defined by knowledge-based subset construction [11].

We say that the strategy fa
e is concretizable in F iff there exists a winning strategy

fκ
e for Playere in κ(F) such that for every πκ ∈ prefs(fκ

e ) there exists a πa ∈ prefs(fa
e )

such that πκ ⊆ πa. Concretizability of fa
e in I is defined analogously.

Since Ga(F ,AP) is a finite-state safety game, the strategy fa
e can be represented as

a finite tree Tree(fa
e ) called strategy tree for fa

e , which can be used for constructing a
logical formula characterizing the concretizability of fa

e .
Each node in Tree(fa

e ) is identified by a unique n ∈ N and is labeled with a state in
Qa denoted state(n). For a node n, we denote with children(n) the set of all children of
n, with path(n) the sequence of nodes on the path from the root to n and with pref(n)
the prefix in Ga(F ,AP) formed by the sequence of states corresponding to path(n).

The tree contains a root node 0 labeled with the initial abstract state qa0 . For each
edge from n to m in Tree(fa

e ) it holds that (state(n), state(m)) ∈ T a. If n ∈ Tree(fa
e ),

state(n) 	∈ Ba and state(n) ∈ Qa
e , then there exists a single child m of n in Tree(fa

e )
and state(m) = fa

e (pref(n)). If n ∈ Tree(fa
e ), state(n) 	∈ Ba and state(n) ∈ Qa

c ,
then for every s ∈ Qa with (state(n), s) ∈ Ta

c there exists exactly one child m of n in
Tree(fa

e ) and state(m) = s. If state(n) ∈ Ba then children(n) = ∅.
Counterexample Strategies That are Spurious in F . If the counterexample-analysis
from [8] reports that fa

e is not concretizable in F , we refine the set AP with the pred-
icates generated by the interpolation-based refinement procedure described there and
continue. Otherwise, Playere has a winning strategy in κ(F), which implies that Playerc
does not have a winning strategy in F . This fact does not imply that fa

e is concretizable
in I, as the action-point function ξ might just be too imprecise.

Counterexample Strategies That are Concretizable in I. We now provide a logical
characterization of winning strategies for Playere in Ga(F ,AP) that are concretizable
in I. The result is a linear arithmetic formula with alternating universal and existential
quantifiers corresponding to the alternating choices of the two players. The variables
updated by Playere are existentially quantified and the variables updated by Playerc,
including the symbolic constants, are universally quantified.

The label state(n) of each node n in Tree(fa
e ) is a state in Ga(F ,AP) and is thus a

set of valuations of the abstraction predicatesAP . We associate with state(n) a boolean
combination of elements of AP and thus a formula ψn

st[V
n] (V n consists of indexed

versions of the variables in V and Dom(xn) = Dom(x) for x ∈ V ). The formula
ψn
st[V

n], which is the disjunction of all conjunctions representing the valuations in
state(n), characterizes the set of states in I that are in the concretization of state(n).

As the abstraction is precise w.r.t. the choices of Playerc in F , for each node n in
Tree(fa

e ), state(n) defines a valuation contr(n) = state(n)|V f
c

of the variables in V f
c .

For two nodes n and m such that m ∈ children(n) and state(n) ∈ Qa
p, where

p ∈ {c, e}, we define the formula ψn,m
tr that denotes the transitions in I from states that

satisfy ψn
st: ψ

n,m
tr [V n, V m] ≡ ψn

st ∧ Tp[V n/V, V m/V ′].
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We now turn to the definition of the quantified strategy-tree formula QTF(Tree(fa
e ))

that characterizes the concretizability of fa
e in I. We annotate in a bottom-up man-

ner each node n ∈ Tree(fa
e ) with a quantified linear arithmetic formula ϕn and de-

fine QTF(Tree(fa
e )) = ϕn0 [0/SCn0 ] where n0 is the root of Tree(fa

e ). If path(n) =
n0n1 . . . nr, the formula ϕn will have free variables in SCn∪

⋃r−1
i=0 (V

ni
o+c∪SC ni) and

thus QTF(Tree(fa
e )) will be a closed formula.

The annotation formula ϕn for a node n describes the set of prefixes in κ(I) that are
subsumed by pref(n) and lead to a state from which Playere has a winning strategy in
κ(I) contained in the corresponding subtree of n. Thus, the formula QTF(Tree(fa

e )) is
satisfiable iff Playere has a winning strategy in κ(I) subsumed by fa

e .

– For a leaf node n (with state(n) ∈ Ba) with path(n) = n0n1 . . . nr we define:

ϕn ≡ ∃V n
o ∃V n0

u . . . ∃V nr
u

(( r−1∧
i=0

ψ
ni,ni+1

tr ∧ψnr
st ∧locnr = lbad

)
[contr(n)/V f

c

n
]
)
.

– For a non-leaf node n with state(n) ∈ Qa
e and (single) child m, we define:

ϕn ≡ ∃V n
o

(
ϕm[SCn/SCm, contr(n)/V f

c

n
]
)
.

– For a non-leaf node n with state(n) ∈ Qa
c , we first define a formula ϕn,m for each

node m ∈ children(n). The definition of ϕn,m, i.e., the treatment of the symbolic
constants SCm in ϕm, depends on contr(m), i.e., on the choice made by Playerc in
the gameF . For successors m where Playerc chose to allow Playere to decide when
to execute the controllable action, we quantify universally over the variables in
SCm, adding a condition which restricts their values to ones that are valid choices
of await points for Playerc in I. In order to ensure intermediate action points, we
further require that each cmx is smaller than the smallest action point in ξ(x) that
is larger than the current value of x. This gives a condition θm on the symbolic
constants SCm at node m and we define ϕn,m ≡ ∀SCm(θm → ϕm), where

θm ≡
( ∨
x∈Xo+c

cmx >0
)
∧

∧
x∈Xo+c

(cmx >0→ cmx >xn) ∧
∧

x∈Xo+c

c∈ξ(x)

(
xn<c→ cmx <c

)
.

For successors m where Playerc chose to execute a controllable action immediately,
to reset some controllable clocks, or to remain idle, we substitute SCm by 0, i.e.,
ϕn,m ≡ ϕm[0/SCm] (which agrees with the transition relation Tc in I). Finally:

ϕn ≡ ∃V n
o

( ∧
m∈children(n)

ϕn,m[contr(n)/V f
c

n
]
)
.

The formula QTF(Tree(fa
e )) characterizes the concretizability of fa

e in I. Thus, if
QTF(Tree(fa

e )) is satisfiable, then Playerc has no finite-state winning strategy in I.

Proposition 3. For every winning strategy fa
e for Playere in Ga(F ,AP), the formula

QTF(Tree(fa
e )) is satisfiable iff the strategy fa

e is concretizable in I.

Extracting Refinement Action Points from a Model. We now consider the case when
the formula QTF(Tree(fa

e )) is unsatisfiable. Since QTF(Tree(fa
e )) is a closed formula,

its negation Φ = ¬QTF(Tree(fa
e )) is satisfiable. In Φ all symbolic constants (indexed
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accordingly) are existentially quantified. Our goal is to compute witnesses for the sym-
bolic constants that can be used for refining the action-point function ξ to eliminate in
the resulting finite-choice game the winning strategies for Playere subsumed by fa

e .
Consider a block ∃SCn of existentially quantified symbolic constants in Φ. The

block ∃SCn is preceded by the blocks of universal quantifiers ∀V ni
o for i = 0, . . . , r,

where path(n) = n0n1 . . . nr. Thus, a witness w(c) for a symbolic constant c ∈ SC n

for the satisfiability of Φ is a function w(c) : Vals(V n0
o )× . . .× Vals(V nr

o )→ Q≥0.
Assume for now that we have a tuple of witness functions for the variables in SC n

of the following form. For some k ∈ N>0, there are k positive rational constants
a1, . . . , ak and each ai is associated with some variable x ∈ Xo+c. The functions are
such that we have a case split with k cases according to the valuation v of the observable
variables along the prefix, such that in case i we have w(cx)(v) = ai, where x is the
variable associated with ai and w(cy)(v) = 0 for all other cy ∈ SCn.

Let id : Xo+c → N∩[1, |Xo+c|] be an indexing function for the clock variables Xo+c.
Thus, each ai is associated with an index di ∈ [1, |Xo+c|] of a variable in Xo+c.

Example. Consider an example with Xo+c = {x1, x2}, where in the abstract state
state(nr) we know that the value of xnr

1 is in [0, 5] and the value of xnr
2 is 0, and the

”good” values for SCn are depicted as the gray sets on Fig. 5. The figure shows an
example where k = 3 and each ai is associated with the shown variable-index di. �

More formally, we assume the existence of a function b : Vals(V n0
o ) × . . . ×

Vals(V nr
o ) → N ∩ [1, k], such that for each cnx ∈ SCn, the witness function w(cnx) is

such that for every valuation v ∈ Vals(V n0
o )× . . .×Vals(V nr

o ) we have w(cnx)(v) = ai
for some i iff b(v) = i and di = id(x) and w(cnx)(v) = 0 otherwise.

We can then refine ξ as follows: For each x ∈ Xo+c we add to the set ξ(x) all positive
constants a such that w(cnx)(v) = a for some node n and valuation v. The form of the
function w(cnx) implies that the number of these constants is finite.

For a given k ∈ N>0, we restrict the possible witnesses for SCn to the above form
by strengthening the formula Φ. To this end, we replace the condition θn for SC n that
was used in the construction of Φ a stronger one, θn ∧ θnk where θnk is defined below.

The formula θnk refers to a fresh bounded integer variable bn with domain N∩ [1, k],
and the variables from a set An

k = {an1 , . . . , ank} of k fresh rational variables and from
a set Dn

k = {dn1 , . . . , dnk} of k fresh bounded integer variables. The variable bn is

x2

x1
a1 a2

a3

a1 = 3, d1 = id(x1)

a2 = 6, d2 = id(x1)

a3 = 1, d3 = id(x2)

xnr
1 ∈ [0, 2) �→ cnx1

= 3, cnx2
= 0

xnr
1 ∈ [2, 4) �→ cnx1

= 0, cnx2
= 1

xnr
1 ∈ [4, 5) �→ cnx1

= 6, cnx2
= 0

Fig. 5. Example of witnesses for symbolic constants cnx1
and cnx2
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existentially quantified together with the symbolic constants in SCn. The variables in
An

k and Dn
k are free in the resulting formula. We define the formula θnk as:

θnk ≡ ∃bn
k∧

i=1

(
bn = i→

∧
x∈Xo+c

(
(id(x) = dni → cnx = ani )∧(id(x) 	= dni → cnx = 0)

))
.

The refinement procedure iterates over the values of k ≥ 1, at each step constructing
a formula Φk by replacing each constraint θn in Φ by θn ∧ θnk . For each k ≥ 1, Φk is
a strengthening of Φ and Φk+1 is weaker than Φk. The procedure terminates if a k for
which the formulaΦk is satisfiable is reached. In this case we use the values of the newly
introduced variables fromAn

k to refine the action-point function ξ. Thus, if it terminates,
Algorithm 1 returns a new action-point function ξ′ such that for every x ∈ Xo+c, we
have ξ′(x) ⊇ ξ(x). The new action points for x are extracted from a model for Φk as the
values of those variables ani for which dni is equal to id(x), and they suffice to eliminate
all strategies fκ

e winning for Playere in F that are in the concretization of fa
e .

Algorithm 1. Computation of refinement action points

Input: satisfiable Φ with θni for SCni , for i = 1, . . . ,m; function ξ : Xo+c → 2Q>0

Output: function ξ′ : Xo+c → 2Q>0

ξ′(x) := ξ(x) for every x ∈ Xo+c; sat := false; k := 0;
while sat == false do { k++; construct Φk; sat := check(Φk); }
M = model(Φk);
foreach (n, i) ∈ ({n1...nm} × {1, ..k}) with M(an

i ) > 0 do
forall the x ∈ Xo+c with id(x) = M(dni ) do ξ′(x) := ξ′(x) ∪ {M(an

i )};
end
return ξ′

Proposition 4. Let fa
e be a winning strategy for Playere in Ga(F ,AP). If Algorithm 1

terminates, it returns an action-point function ξ′ such that for the await-time game with
fixed action points F ′ = F(I, ξ′), Playere has no winning strategy fκ

e in κ(F ′) such
that for every πκ ∈ prefs(fκ

e ) there exists a πa ∈ prefs(fa
e ) with πκ ⊆ πa.

6 Results and Conclusions

We developed a prototype implementation of the presented extension of the CEGAR
procedure from [8] to the case of await-time games. We applied our prototype to
the safety controller synthesis problem for the Box Painting Production System and
the Timed Game For Sorting Bricks examples due to Cassez et al. [4]. We encoded the
synthesis problems as await-time games and, starting with empty sets of action points,
applied our method to compute observations for which the plants are controllable.

In Table 1 we report on the results from our experiments preformed on an Intel
Core 2 Duo CPU at 2.53 GHz with 3.4 GB RAM. We present the maximal number
of explored states in the intermediate abstractions, the size of the abstract strategy, the
number of action points in the final game, as well as the number of refinement itera-
tions for the await-time game with fixed action points and the number of refinement



Counterexample-Guided Synthesis of Observation Predicates 121

Table 1. Results from experiments with our prototype on Box Painting Production System and
Timed Game For Sorting Bricks: number of states in largest intermediate abstraction, size of ab-
stract strategy for the controller, number of action points in final abstraction, number of iterations
of the respective refinement loops and running time (in seconds). Results from experiments with
UPPAAL-TIGA with fixed observations (controllable cases): running time (in seconds)

A. States A. Strategy Act. Points OBS Iter. CEGAR Iter. Time TIGA
Paint 626 55 2 2 8 73.50 0.08
Paint-100 573 49 2 2 5 29.65 3.57
Paint-1000 573 49 2 2 5 29.53 336.34
Paint-10000 560 76 2 2 7 54.85 > 1800
Paint-100000 614 55 2 2 7 52.88 > 1800
Bricks 1175 125 3 3 3 24.85 0.05
Bricks-100 1175 175 3 3 3 25.16 2.63
Bricks-1000 1175 176 3 3 3 25.29 302.08
Bricks-10000 1175 176 3 3 3 25.83 > 1800
Bricks-100000 1175 175 3 3 3 25.40 > 1800

iterations of the CEGAR loop. In order to demonstrate that our method performs well
in situations where fine granularity is needed to win the game, i.e., when the constraints
occurring in the plant involve large constants and the differences between certain guards
and invariants are small, we constructed multiple instances of each example. Instances
Bricks−N and Paint−N , where N ∈ {100, 1000, 10000, 100000} were obtained by
adding the constant N to all positive constants occurring in the plants.

The results show that the size of the abstract games and strategies generated by our
approach depend on the number of action points and predicates and not on the size of
the constants in the plant. This is in contrast with approaches based on fixed granularity,
where strategies involve counting modulo the given granularity.

Since the problem of synthesizing observation predicates for timed games under in-
complete information is out of the scope of existing synthesis tools, a relevant compar-
ison is not possible. However, we used the tool UPPAAL-TIGA, which supports timed
games with partial observability and fixed observations, on the problem instances con-
structed as explained above. For the Box Painting Production System we used observa-
tion y ∈ [0, 1) and for the Timed Game For Sorting Bricks we used observation [0, 0.5)
(given as y ∈ [0, 1) by scaling accordingly). One can see in Table 1 that, although on
the small instances the running times are better compared to our approach, on instances
where fine granularity is needed, our approach synthesizes good observations consider-
ably faster than it takes UPPAAL-TIGA to solve the game with given fixed granularity.

Conclusions. We presented a method to automatically compute observation predicates
for timed controllers with safety objectives for partially observable plants. Our approach
is based on the CEGAR-paradigm and can be naturally integrated into the CEGAR-loop
for games under incomplete information. The observation refinement procedure could
be beneficial to methods for solving timed games with fixed observations that are not
necessarily CEGAR-based. The bottleneck in such approaches is the enumeration of
granularities, which leads to a dramatic increase in the number of state-sets, that need to
be explored, and the size of the resulting strategies. As we demonstrated, in some cases,
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when a reasonable number of action points suffices for controllability, our approach can
be extremely successful. This opens up a promising opportunity for synergies between
the CEGAR-paradigm and specialized techniques for timed systems.
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dation (DFG) as part of SFB/TR 14 AVACS and by a Microsoft Research PhD Scholar-
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Abstract. Model checking of technical systems is a common and de-
manding task. The behavior of such systems can often be characterized
using hybrid automata, leading to verification problems within the first-
order logic over the reals. The applicability of logic-based formalisms
to a wider range of systems has recently been increased by introducing
quantifiers into satisfiability modulo theory (SMT) approaches to solve
such problems, especially randomized quantifiers, resulting in stochas-
tic satisfiability modulo theory (SSMT). These quantifiers combine non-
determinism and stochasticity, thereby allowing to represent models such
as Markov decision processes. While algorithms for exact model checking
in this setting exist, their scalability is limited due to the computational
complexity which increases with the number of quantified variables. Ad-
ditionally, these methods become infeasible if the domain of the quanti-
fied variables, randomized variables in particular, becomes too large or
even infinite. In this paper, we present an approximation algorithm based
on confidence intervals obtained from sampling which allow for an ex-
plicit trade-off between accuracy and computational effort. Although the
algorithm gives only approximate results in terms of confidence intervals,
it is still guaranteed to converge to the exact solution. To further increase
the performance of the algorithm, we adopt search strategies based on
the upper bound confidence algorithm UCB originally used to solve a
similar problem, the multi-armed bandit. Preliminary results show that
the proposed algorithm can improve the performance in comparison to
existing SSMT solvers, especially in the presence of many randomized
quantified variables.

1 Introduction

In safety analysis, one is often interested in guaranteeing certain behavioral
properties of complex systems. Such systems are usually described using hy-
brid automata, which are capable of expressing the continuous dynamics of an
environment using differential equations, together with discrete/continuous con-
trollers. As the exact dynamics may not be known, these hybrid automata can
contain non-deterministic choices, which have to be resolved. Additionally, due
to environmental influences or failure probabilities, the system is likely to be
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exposed to stochastic type of non-determinism leading to probabilistic hybrid
systems1. Safety properties for these systems can be formalized as reachability
problems, that is, unsafe sets of states must not be reached. For the correspond-
ing verification, a common technique is to use bounded model checking [1,2],
which evolves the dynamics of the system up to a given number of transitions
and checks the reachability for this unrolled depth. As transitions usually re-
flect only the switching decision, the reachability problem still has to respect
the continuous dynamics of the system. The formalism of Satisfiability Modulo
Theories (SMT) together with the corresponding solvers can in turn be used to
solve this remaining satisfiability problem.

Recent developments with Conflict-Driven Clause Learning (CDCL) solvers
enabled the analysis of large hybrid systems by learning conflicts which provide
information from one path about a set of other paths. Formally, these hybrid
systems can be modeled and analyzed using a combination of SMT and bounded
model checking [3,4]. Analogous to Markov decision processes, it still remains to
decide which transition path to evaluate in the presence of probabilism and non-
determinism. To this end the formalism of SMT can be extended to Stochastic
Satisfiability Modulo Theory (SSMT) which contains quantifiers that allow the
encoding of different type of transitions [5]. Such SSMT solvers iterate the tree
of possible assignments to the quantified variables and solve the resulting SMT
problems at the leaves. The exponential size of this decision tree is one of the
main problems for SSMT solvers. Therefore, methods are needed which search
the tree efficiently and do not expand the tree completely.

Mathematically, the probability of satisfaction can also be formulated as a
nested optimization. In this formulation, the problem of one existential followed
by a randomized quantifier is known as the multi-armed bandit problem [6],
where bandits are choices of the existential quantifier and expected rewards are
the averages from the randomized quantifiers. For this problem, there exists a
number of algorithms, most notably the Upper Bound Confidence algorithm
(UCB), which has been proven to solve the multi-armed bandit problem in a
minimax-optimal way [7].

In this paper, we present an algorithm which combines a sampling based
approach for the generation of confidence intervals with the exploitation-scheme
of the UCB-algorithm. The resulting algorithm allows for an explicit trade-off
between accuracy (desired confidence level and precision in terms of the width
of the confidence interval) and efficiency (solving of SMT formulas at the leaves
of a decision tree). Additionally, due to the sampling of random variables, the
algorithm is also applicable for randomized quantifiers with large or even infinite
domains.

This paper is organized as follows. In Section 2 we give a short introduction
to the SSMT-formalism and briefly review related work on SSMT-solvers as well
as the relevant statistics literature followed by the description of the proposed
algorithm including the bound propagation and the selection rules. In Section 3

1 As an illustrative example for such a system, we use a simple cooling controller
throughout this paper, see Figure 1.
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we evaluate the algorithm on randomly generated SSMT formulas and on the
example hybrid system in Figure 1. We conclude and give an outlook to future
work in Section 4.

2 Methods

As mentioned previously, we are interested in satisfiability problems concerning
probabilistic hybrid systems. which we illustrate with a simple example in Fig-
ure 1. For this particular system, we might be interested in guaranteeing that the
probability of overheating is lower than a given threshold. To this end, we use
satisfiability modulo theory (SMT) to formalize the satisfiability problem, given
a particular path of transitions/decisions (x1, . . . , xn) obtained by unrolling the
dynamics for a given number n of transitions. Note that this does not neces-
sarily imply that the time within a state is fixed. For the example in Figure 1,
transitions are only possible between cooling and not cooling. We denote
the SMT formula which indicates the satisfiability for the given transition by
φ(x1, . . . , xn). The main task for the SMT solver is then to determine the exis-
tence of a satisfying variable assignment for a given SMT formula φ(x1, . . . , xn).
In the cooling example, this corresponds to an assignment of a temperature
trajectory, given a state and a starting temperature.

SSMT is an extension of (SMT) [4] consisting of a decision problem for
first-order logical formulas over a given background theory (e.g., the arithmetic
theories over real numbers, including multiplication). Specifically, an SSMT for-
mula Φ extends an SMT formula φ by adding a prefix of quantified variables
Q1Xi, ..., QnXn. Every quantifier Qi of the prefix binds one variable Xi of φ and

Fig. 1. Example of a probabilistic hybrid system modeling a simple cooling system. A
cooling device can either be in the state cooling or not cooling. Withing the cooling
state, the temperature Θ is decreased constantly whereas in the not cooling state,
the temperature rises. Bold numbers at the edges reflect transition probabilities for the
given probabilistic transitions, which can be activated once the guards (inequalities)
hold. For this system, we might be interested in the probability of overheating (e.g.,Θ >
115◦) within a given time-frame.
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is either randomized (

R

Xi), existential (∃Xi), or universal (∀Xi). Every quanti-
fied variable has a finite domain: Xi. In the randomized case, every value xj ∈ Xi

is associated with a probability P (Xi = xj), modeling the likelihood that the
corresponding transition is chosen. The other quantifier types model different
ways to resolve non-determinism: ∃ by maximizing the probability of satisfying
the remaining formula over all domain values and analogously ∀ by minimizing
the probability (see definition 1).

Definition 1. The semantics on an SSMT formula Φ are defined recursively
using Q for the remainder for the quantifier prefix (cf. [5]):

1. P ( ε : φ ) = 0 if φ is unsatisfiable.
2. P ( ε : φ ) = 1 if φ is satisfiable.
3. P ( ∃XiQ : φ ) = maxx∈Xi P (Q : φ[Xi = x]) .
4. P ( ∀XiQ : φ ) = minx∈Xi P (Q : φ[Xi = x]) .
5. P (

R

XiQ : φ ) =
∑

x∈Xi
P (Xi = x|X\i) · P (Q : φ[Xi = x]) .

Here, we used the shorthand notation X\i for all variables except the i-th one.
From definition 1, we see that the satisfiability problem can be written as a nested
optimization-expectation problem. For example, if Φ consists of one existential
quantifier followed by a randomized one, the satisfiability problem can be written
as follows:

P (∃x
R

yφ(x, y)) = max
x∈X

Ey|x [P (φ(x, y))] = max
x∈X

⎛⎝∑
y∈Y

P (φ(x, y))P (y|x)

⎞⎠ (1)

For the cooling example, this would correspond to first selecting a transition from
a cooling state to one of the randomized states (rectangles in Figure 1) and then
choosing a transition at random, according to the probabilities (bold numbers).
The existential quantifier corresponds to a pessimistic choice of transitions in
terms of consequences with respect to overheating. Note that in equation (1),
we used P (y|x) to indicate that the probability distribution associated with the
random variable Y potentially depends on the value of other variables within the
prefix. Although it is straightforward to extend the formalism developed in this
paper to this general case, we assume independence of the different variables to
simplify the notation.

Equation (1) suggests we should approximate the expectation via a sampling
based scheme, if the set Y is too large. If we use the average of samples generated
according to P (y|x), we observe only a noisy estimate Êy|x of the true underlying
function Ey|x. By using confidence intervals for this estimation, we obtain an un-
certainty estimate for the expectation, i.e., randomized quantifier which has then
to be propagated through other quantifiers to obtain an overall uncertainty esti-
mate on Φ. Computationally, we are interested in an efficient way of calculating
equation (1), that is to efficiently search for promising x to evaluate.



Confidence Bounds for Statistical Model Checking 127

A common representation of an SSMT formula uses a decision tree for the
variables in the quantifier prefix, where the nodes are the variables (in order
of their occurrence in the prefix) and the decisions are the domain values. The
leaves of the tree are replications of φ, where every quantified variable is substi-
tuted according to the path in the decision tree. Therefore, every leaf represents
an SMT problem of its own. As solving these SMT problems at the leaves of
the decision tree is a time-consuming problem, most existing work focuses on
minimizing the number of evaluations of the leaves by carrying information from
one leaf-evaluation to another by using conflict learning.

In the following, we aim at calculating confidence bounds l, u, such that the
following holds:

P (l ≤ P (Φ) ≤ u) ≥ 1− α (2)

Where α is a given confidence level, which specifies the quality of the calculated
bounds. Here, the outer probability originates from random samples generated
during the execution of the algorithm and play the role of classical confidence
intervals, while the inner probability is the quantity we wish to estimate, namely
the probability of satisfaction.

2.1 Related Work

In the following, we briefly review existing work on SSMT solving on the one
hand and on the corresponding statistics literature on the other hand.

SSMT Solving. Based on the iSAT[8] algorithm for SMT problems, an algo-
rithm called SiSAT [5] has been developed to solve SSMT problems efficiently.
It implements a fully symbolic solving procedure based on the traversal of the
prefix tree, using extended CDCL procedures and pruning rules. The computed
probability of satisfaction comes with absolute certainty, that is SiSAT termi-
nates, if the probability is guaranteed to be larger than a given threshold θ or it
has been computed exactly. The pruning rules allow SiSAT to ignore parts of the
quantifier tree if the outcome of the decisions could be inferred or has no impact
on the result (e.g., if the target threshold has already been exceeded or cannot
be reached anymore). Otherwise, the algorithm has to perform an exhaustive
search over the state space. Due to this exhaustive search, the number of leaves
in the tree – and hence the number of SMT problems to solve – depends expo-
nentially on the number of quantified variables in the prefix. Although SiSAT
has to examine exponentially many leaves in the worst case, the memory usage
is still limited, as the tree is searched in a depth-first manner.

Statistical Model Checking. Inspired from classical hypothesis testing based
on a set of data-samples, statistical model checking uses generated traces of
the system under investigation to estimate if a given property holds. This can
be done, if the system is given only in terms of a trace-generator [9,10,11], or if
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more structure of the generative model is known (e.g., a continuous time Markov
chain [12]). Also, additional information, for example in terms of associated costs,
can be incorporated [13,14]. Instead of hypothesis testing, one can also impose
a prior distribution on the probability of satisfaction and update a Bayesian
believe sequentially as new samples are drawn from the generative model [15].
However, all these approaches are only applicable, if no decisions are needed to
resolve other than random non-determinism.

Stochastic Optimization. Problems in the form of equation (1) have been
studied extensively in the statistics literature. This special case of an SSMT
problem is known as the multi-armed bandit problem [6]. Algorithms which solve
this problem approximately have been presented in [7] and also continuous ex-
tensions thereof [16]. The idea is to use the stochastic information obtained from
a sample φ(y, x) ∼ φ(y, x)p(y|x) (or any noisy measurement of the expectation)
to favor those points x which are more likely to attain the maximal expectation.
Due to the sample-based nature of such information, one cannot guarantee hard
bounds for the probability of satisfaction. However, even in the finite sample-size
regime soft-bounds in terms of confidence intervals are available that are based
on Hoeffding’s inequality [17]. Extensions to problems similar to nested quanti-
fiers are available for Markov Decision Processes, most notably the upper bound
confidence algorithm for trees UCT [18,19]. In the UCT case, the search tree is
sequentially expanded if needed. In this roll-out based technique, an estimate of
the probability of satisfaction is needed, when a path is not completely traversed
to the leaves and hence only parts of the variables are assigned specific values.
Additionally, certain drift conditions have to be guaranteed and even if they
hold, only asymptotic bounds for the root node are available.

2.2 Bound Propagation

In this section, we describe how the bounds for the full SSMT formula can be
obtained from bounds for the intermediate values at the leaves of the decision
tree. First, we show how to obtain confidence bounds for the probability of
satisfaction at the root node using bound propagation, and then present search
strategies for an efficient way to decrease these bounds.

As mentioned previously, we are interested in calculating bounds on the prob-
ability of satisfaction. To obtain these bounds (equation (2)), we propagate
bounds together with their confidence level from the leaves of the decision tree
up to the root (see Figure 2). As the bounds together with confidence levels are
propagated from leaves to the root, at each point during the computation, we
need bounds as well as confidence levels at the leaves. Without loss of generality,
the last quantifier in the decision tree is a randomized quantifier, otherwise we
can shift all existential and universal quantifiers into the formula at the leaves
as the probability of satisfaction is either 0 or 1. However, in this case we use
the SiSAT algorithm to compute these remaining SSMT problems. Therefore,
we can obtain the bounds and confidence levels for the leaves of the decision
tree by drawing samples from the probability distribution associated with the
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Fig. 2. Illustration of the bound propagation through the decision tree. Confidence
intervals with confidence level α = α(x1) are obtained at the leaves (here for the random
variable x2) via equation (3). These are propagated to the next level to derive confidence
intervals with worse confidence levels

∑
α. In this illustrative example vi, i = 1, 2, 3

are the possible values for the variable x1. Additionally to the α-confidence intervals,
we could also propagate guaranteed (α = 1) confidence bounds.

randomized quantifier and apply a Hoeffding type of inequality similar to the
UCT algorithm. If we assume that the domain of the randomized quantifier is
finite, we could also get tighter bounds by drawing samples without replacement
and using the appropriate inequality (see [20]). However, as such sampling with-
out replacement increases memory usage for large domains, we use the version
with replacement [17]. Specifically, we set for the lower l and upper u bounds at
the leaves, which depend on the values set for other variables set earlier in the
decision tree x1, . . . , xk−1:

l(x1:k−1) := P̂ (Φ|x1:k−1)− w, u(x1:k−1) := P̂ (Φ|x1:k−1) + w

P̂ (Φ|x1:k−1) =
1

m

∑
xi∼Pk

P
(
φ(x1, . . . , xk−1, xk = xi)

)
P (Φ|x1:k−1) =

∑
xk∈Xk

Pk(xk)P (φ(x1, . . . , xk−1, xk)) ,

(3)

where w specifies the uncertainty in the estimate P̂ of the true (unknown) prob-
ability of satisfaction P . m is the number of samples xi we have drawn from the
probability distribution Pk of the random variable Xk. Here, we have written
Pk(xk) as a shorthand for P (Xk = xk|X1 = x1, . . . , Xk−1 = xk−1). Using these
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setting and applying Hoeffding’s inequality, we have for the confidence level of
the specified width:

P (l(x1:k−1) ≤ P (Φ|x1:k−1)) ≥ 1− e(−2mw2) := 1− 1

2
α(x1, . . . , xk)

P (P (Φ|x1:k−1) ≤ u(x1:k−1)) ≥ 1− e(−2mw2) := 1− 1

2
α(x1, . . . , xk)

(4)

where α is the confidence level, which depends on the number of samples and the
width w. The bound in equation (4) makes a statement about the confidence that
we obtain as a consequence of the random sampling. As mentioned previously, we
could, obtain a “hard bound” (that holds with probability 1) on the probability
of satisfaction if we additionally make use of the explicitly known structure of
the randomized quantifier in terms of the associated probability distribution.
The confidence bounds apply for the random sampling at the leaves. However,
we are interested in calculating bounds for the root of the decision tree. To this
end, we state the following propagation rules from level k to the above level
k − 1:

b(x1, x2, . . . , xk−1) =

⎧⎪⎨⎪⎩
maxxk∈Xk

b(x1, . . . , xk−1, xk) if Qk = ∃Xk

minxk∈Xk
b(x1, . . . , xk−1, xk) if Qk = ∀Xk∑

xk∈Xk
P (xk)b(x1, . . . , xk−1, xk) if Qk =

R

Xk

(5)

α(x1, . . . , xk−1) =
∑

xk∈Xk

α(x1, . . . , xk−1, xk) (6)

Here, b are the bounds, which are function of the decision variables and could be
either lower or upper bounds that we would like to propagate to the preceding
level.

This process of propagating intervals is illustrated in Figure 2. In the case of
Figure 2 we have two quantifiers, an existential and a randomized one. Given
that we have drawn samples for the randomized quantifier, we can calculate
confidence intervals via equation (3),(4) for a given confidence level.We can then
combine these confidence intervals to obtain confidence intervals for the value
at the existential quantifier using equation (5). Note that the confidence level
for the “soft” bounds is worse than those at the lower level. In fact, if we want
to reach a desired confidence level at the root of the decision tree, e.g., 95%, we
have to impose a much higher confidence level at the leaves. For example, in the
case of Figure 2, we would have to impose α(x1) =

0.05
3 to get the desired 95%

confidence interval at the top.
We now show that the bounds calculated in equation (5) indeed hold for the

confidence level in equation (6). We start with the bounds in the case of an
existential quantifier. In this case, we can simplify the notation, by ignoring
variables that are fixed for the propagation and therefore writing u(x), l(x) for
the upper and lower confidence bounds for the level that we would like propagate
and α(x) for the corresponding confidence level at the lower level. Similarly,
we write Φ(x) for the true (unknown) values at the leaves of the existential
quantifier. With this notation, we have:
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Lemma 1. Let the lower and upper confidence bound hold for each child x of an
existential quantifier, i.e.,P (Φ(x) > u(x)) ≤ 1

2α(x)∀x. Then the following bound
hold for the existential quantifier node:

P
(
max
x

l(x) ≤ max
x

Φ(x) ≤ max
x

u(x)
)
≥ 1−

∑
x

α(x)

Proof. From the lower level, we know P (Φ(x) > u(x)) ≤ 1
2α(x) for each x indi-

vidually. Applying a simple union bound (cf. [21]), we find:

P
(
max

x
Φ(x) > max

x
u(x)

)
≤ P (∃x : Φ(x) > u(x))

=
∑
x

P (Φ(x) > u(x))︸ ︷︷ ︸
≤ 1

2α(x)

−P (∀x : Φ(x) > u(x))︸ ︷︷ ︸
≥0

≤ 1

2

∑
x

α(x)

(7)

Similarly, we get P (maxx Φ(x) < maxx l(x)) ≤ 1
2

∑
x α(x). Combining upper

and lower bound completes the proof. �

By maximizing the negative value instead of the minimization for the universal
quantifier and inverting the role of upper and lower bound, the same argument
can be made for the case of an universal quantifier. For the case of a randomized
quantifier, we have:

Lemma 2. Using the same notation as in Lemma 1, the following bound holds.

P

(∑
x

P (x)l(x) ≤
∑
x

P (x)Φ(x) ≤
∑
x

P (x)u(x)

)
≥ 1−

∑
x

α(x)

Proof. As ∀x : Φ(x) ≤ u(x)⇒
∑

x P (x)Φ(x) ≤
∑

x P (x)u(x) (∗):

P

(∑
x

P (x)Φ(x) >
∑
x

P (x)u(x)

)
= 1− P

(∑
x

P (x)Φ(x) ≤
∑
x

P (x)u(x)

)
∗
≤ 1− P (∀x : Φ(x) ≤ u(x)) = P (∃x : Φ(x) > u(x))

(7)

≤ 1

2

∑
x

α(x)

The lower bounds follow analogously. �

2.3 Search Strategies

So far, we have not considered any search strategies for the optimized selection of
children to expand at a quantifier node in order to increase the confidence at the
root of the decision tree. By selecting the paths to evaluate in a strategic man-
ner, we aim for gaining as much information as possible about the probability of
satisfaction of the SSMT-formula at hand. To this end, we propose several simple
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search strategies. As an existential quantifier corresponds to a maximum oper-
ation (see definition 1), we select the child with the maximal upper confidence
bound for exploration. Analogously, we select the child with the minimal confi-
dence bound for universal quantifiers. This strategy is known under the upper
confidence bound algorithm. However, additionally to the lower and upper bound
from equation (5), we can calculate the upper bound, according to the number of
times, the current node x has been visited n(x), compared to the overall number
of samples within the current quantifier n analogously to the UCT-algorithm:

μ(x)± =

√
2 log(n)

n(x)
, μ(x) := l(x) +

u(x)− l(x)

2
. (8)

Note that using the bounds from equation (5) typically leads to smaller bounds
compared to the UCB, as it uses more information on the structure below the
node. For leaf-nodes, however, they are identical. For a randomized quantifier,
we propose the following two strategies:

1. Sample a child to explore according to the associated probability distribution
2. Construct a probability distribution by weighting the probability of each

child with the width of its confidence interval

By using combinations of these selection rules, we obtain 4 different selection
rules in total.

2.4 Algorithmic Description

Although we have presented the basic components – initial bounds, bound propa-
gation, and search strategies – of our proposed algorithm in the previous sections,
we present a more detailed algorithmic description in this section. In particu-
lar, this includes how deductions obtained from the solver at the leaves of the
decision tree can be used for pruning and incorporated into the calculation of
the confidence bounds. We explain the three different phases (see Algorithm 1:
selection phase, sampling phase, and propagation phase) in more detail in the
following. First, we partition the decision tree into a three parts: A trailing part
containing all trailing non-randomized quantifiers, a (non-empty) set of random-
ized quantifiers, and a leading part which may contain any quantifier. To lighten
the description, we collapse the randomized quantifiers in the second part to a
single randomized quantifier with more leaves and expand the SMT formula by
adding the trailing non-randomized quantifiers to the formula. Hence, we can
assume for the following a decision tree/SSMT formula in which the last quan-
tifier is a randomized one. Additionally, to obtain the desired confidence level
at the root of the decision tree, we calculate the necessary α for the randomized
part by counting the number of leaves L of the first part of the decision tree:

α(x1, . . . , xn) = 1− 1

L
(1 − α)
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Algorithm 1. Confidence Bound Generation and Propagation

Data: Quantifier Prefix Q1, . . . , Qn,
SMT Forumla φ(x1, . . . , xn),
confidence level α
Result: Confidence interval [p, p] for satisfiability of: Q1, . . . , Qnφ(x1, . . . xn)

with given confidence
while terminal condition not reached do

for i ← 1 to n− 1 do ; // Selection phase

Select xi for Variable Xi|x1, . . . , xi−1;
end
for k ← 1 to m do ; // Sampling phase: draw m samples

sample xk
n ∼ Pn(Xn);

satk � {0, 1}= solveSMT(φ(X1 = x1, . . . , Xn = xk
n))

end
update bounds for u(x1, . . . , xn−1) using eq. (3);
for i ← n− 1 to 1 do ; // Propagation phase

collect l(x1, . . . , xi, Xi+1 = x), u(x1, . . . , xi, Xi+1 = x) for all x;
use deductions to collapse some of these bounds to 0;
use equation (5) to calculate l(x1, . . . , xi), u(x1, . . . , xi);

end

end

Selection Phase. Within the selection phase, the quantifiers of first part are
traversed and a new evaluation is selected based on the type of quantifier and
the valuations so far:

∃, ∀ These quantifiers are decided by selecting the value with the largest or small-
est confidence bounds for existential or universal quantifiers respectively. Ei-
ther the confidence bounds are used directly or they are computed based
on the UCB-rule, see equation (8). Note that for some of the variables the
bounds might be collapsed due to deduction from DPLL solvers for the SMT
formula. The corresponding values will be ignored for the selection rule.R

As mentioned in section 2.3, there are two available selection rules for
randomized quantifiers. To construct a weighted version of the probabil-
ity distribution associated with the randomized variable Xk, we use the
following:

Ps(xk) =
Pw(xk)∑
x Pw(x)

, Pw(xk) = (u(xk)− l(xk))P (xk) (9)

Sampling Phase. In this phase, we generate m samples for last randomized
quantifier. For each generated sample, we solve the remaining SMT formula
and use the resulting data to calculate initial bounds or update the confidence
bounds, if the current node as already been sampled in the past and has been
selected for further evaluation.
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Propagation Phase. After updated confidence bounds for the current path
have been generated in the selection phase, the new information needs to be
propagated to the root node. The updated bounds are propagated according to
equation (5) and the number of visits for each existential and universal quanti-
fier is increased by one. Additional to the evidence from the generated samples,
DPLL solvers provide extra information in terms of deductions indicating sub-
trees which are guaranteed to evaluate to false. This supplemental information
can be incorporated in the propagation of confidence bounds by collapsing the
corresponding bound of the subtree to 0. As bound updates only occur on the
current path, the influence of a deduction is only taken into account for this
path. The effects of deductions for other subtrees not yet sampled will only be
calculated once this subtree is visited.

Terminal Condition. As the algorithmnever reaches a point interval with 100%
confidence, we have to decide when to abort the sampling procedure. By adjust-
ing combinations of confidence level and desired width of the computed confidence
interval, we can set an explicit trade-off between accuracy (width of the interval
together with desired confidence) and speed (number of SMT-evaluations). Some-
times we might be interested in verifying that the probability of satisfaction is
larger, or lower than a certain threshold, independently of the width of the confi-
dence interval. Therefore, we use the following two possibilities: Terminate if ei-
ther the confidence interval for the full formula has reached a given width, or if
the lower (upper) confidence bound has crossed a predefined threshold.

3 Evaluation

The computational complexity of Monte-Carlo sampling based methods usually
do not scale with the dimensionality of the probability distribution at hand,
but scale only with the number of samples (see equation (3)). Therefore, we
expect the bound propagation to work best when the number of randomized
quantified variables for the last part is large, as we obtain the initial confidence
bound within this part. Additionally, as we do not use the full information avail-
able via deductions of the SMT-solver at the leaves of the decision tree, we
expect existing solvers like SiSAT [5] to outperform the bound propagation al-
gorithm in cases of only small proportions of randomized quantified variables.
To test these hypotheses, we first evaluated the bound propagation on scenarios
of randomly generated SMT formulas. Specifically, we used the same genera-
tion mechanism as in [22] called makewff to generate random formulas with
24 variables, 20 clauses and 3 variables per clause. By using these settings, we
generated formulas which are likely to be satisfiable for some yet not all as-
signments. For the quantifier prefix, we tested two different settings, one with
a large proportion of randomized quantifiers and one with a small proportion.
For the first setting, we constructed a quantifier prefix with a high fraction of
randomized quantifiers consisting of twice an ∃ − R

pair followed by 21 ran-
domized quantifiers. The second setting is particularly disadvantageous for the
bound propagation and consisted eight (∃ − ∃ − R

) triplets. For each of these
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Fig. 3. Performance comparison as a function of the width of the confidence interval
with fixed confidence level of 95%. Left: Results for the setting with high fraction of
randomized quantifiers. Right: Disadvantageous setting with more existential quanti-
fiers. The blue line shows the number of evaluations for the SiSAT algorithm (averaged
across 16 randomly generated formulas) and in red the standard deviation over these
repetitions. For each width we compared different selection rules, UCB stands for an
UCB selection rule for the existential quantifier whereas ’direct’ indicates a confidence
bound selection rule on the confidence bounds according to equation (5). ’weighted’
indicates that the probability distribution is weighed with the width of the confidence
interval before a sample is drawn.

settings, we compared the SiSAT algorithm and the bound propagation in terms
of the number of evaluations of the leaves, i.e., number of solver calls averaged
across 16 repetitions (as both the result as well the formula depend on stochastic
quantities). For a fixed confidence level, the number of leaf-evaluations depends
mainly on the width of the confidence interval used as termination condition.
Therefore, we show the performance as a function of the width of the confidence
interval in Figure 3. In the left panel, the results are shown for the advantageous
setting of large proportions of randomized quantifiers, whereas in the right panel
the disadvantageous setting is used. For the second setting (right panel) the prob-
ability of satisfaction can be inferred by only a few SMT-evaluations, as a large
proportion of the tree can be pruned due to deductions made by the SMT solver.
In fact, due to the maximum operation of the existential quantifier, only a few
paths contribute to the root value, i.e., it is sufficient to show the satisfiability of
these few paths. As the bound propagation algorithm still samples some paths
for the trailing randomized quantifier, it needs more SMT evaluations than the
SiSAT algorithm. As the number of randomized variables is small, the sampling
procedure is likely to sample the same valuation multiple times. These samples
can be cached and hence no SMT solver needs to be evaluated. Therefore, we
report only the number of actual SMT evaluations neglecting the evaluations,
that can be obtained from the cache. For the first setting (left panel), both
SiSAT and the four statistical variants need much more evaluations compared
to the setting in the right panel, as in this case nearly all paths contribute to the
root value. For this setting with a large proportion of randomized quantifiers,
the bound propagation decreases the number of SMT evaluations tremendously
compared to the SiSAT algorithm. If we fix, however, the width of the confidence
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104

Fig. 4. Performance comparison as a function of the confidence level chosen. For all
experiments the number of evaluations is counted until the confidence interval reached
a width of ≤ 0.01. Left and right panels show the results for the different settings,
analogous to Figure 3.

Fig. 5. Performance for the illustrative example of Figure 1. Left: Number of SMT
evaluations with fixed level of confidence (95%) used as terminal condition. Right:
Performance of the different search strategies as a function of the confidence level with
fixed width of the confidence interval (0.05). For each combination of existential and
randomized selection rule the statistics over 100 repetitions are plotted.

interval, the number of evaluations depends on the confidence level, see Figure 4.
Analogous to Figure 3, the left and right panel show the results for the different
proportions of the type of quantifiers. For this setting the same overall obser-
vation holds that the bound propagation gives a superior performance for the
first set of quantifiers order (left panel). However, we note, that the width of the
confidence interval has a much bigger impact on the number of SMT evaluations
than the confidence level. Finally, we performed the same type of analysis for the
illustrative example shown in Figure 1, the results for which can be found in Fig-
ure 5. The difficulty in this scenario can be increased by increasing the bounding
depth in the BMC problem, i.e., number of transition. The results plotted in
Figure 5 are obtained by using a bounding depth of 8 steps. For this example,
a similar behavior of the different algorithms can be observed. However, for this
setting, much more information can be obtained through deductions, as can be
seen by the small number of SMT evaluations needed to achieve the goal of the
combination of interval width with a given confidence level. In the right panel
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of Figure 5, we see that the number of SAT evaluations does not vary with the
chosen confidence level. The actual confidence level is 100% due to deductions
available during the processing, hence once the width of the confidence interval
is below the chosen threshold, no more samples are needed to achieve the con-
fidence level. Additionally, it can be observed that the direct confidence bound
selection rule performs better than the UCB strategy, although the difference is
not as big as in the previous setting.

4 Conclusion

We have presented an SSMT-solving algorithm based on statistical methods used
for solving multi-armed bandit problems. As the algorithm allows to specify the
desired accuracy in terms of confidence width and confidence level, the trade-off
between accuracy and computational effort can be adjusted explicitly. By using
the proposed search and sampling strategy, we were able to gain efficiency for
certain SSMT problems. The improvement compared to existing SSMT-solvers
(SiSAT) is larger, the higher the proportion of randomized quantifiers is within
the tree. Indeed, the presented sampling based technique can also be extended
to handle continuous valued random variables and thereby extends the model
class which can be analyzed to hybrid systems including stochastic differential
equations. Importantly, we can also make use of the pruning procedures, which
are typically used in CDCL-based solvers. For the implementation, however, not
all deductions obtained from these solvers can be exploited to prune the decision
tree. Currently, we use the pruning rules to collapse the confidence intervals
with confidence level α, although we could collapse the 100% confidence bounds
thereby allowing to use worse confidence levels in other subtrees. Exploiting more
of these pruning rules is subject to future research.
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Abstract. Recently, hybrid Petri nets with a single general one-shot
transition (HPnGs) have been introduced together with an algorithm to
analyze their underlying state space using a conditioning/deconditioning
approach. In this paper we propose a considerably more efficient algo-
rithm for analysing HPnGs. The proposed algorithm maps the underlying
state-space onto a plane for all possible firing times of the general transi-
tion s and for all possible systems times t. The key idea of the proposed
method is that instead of dealing with infinitely many points in the t-
s-plane, we can partition the state space into several regions, such that
all points inside one region are associated with the same system state.
To compute the probability to be in a specific system state at time τ , it
suffices to find all regions intersecting the line t = τ and decondition the
firing time over the intersections. This partitioning results in a consider-
able speed-up and provides more accurate results. A scalable case study
illustrates the efficiency gain with respect to the previous algorithm.

1 Introduction

In a recent studywe have evaluated the impact of system failures and repairs on the
productivity of a fluid critical infrastructure, in particular, a water treatment plant
[8]. In that study,wehavedevelopedananalysis algorithmfor a class ofHybridPetri
nets [6] with a single general one-shot transition. Despite the current restriction to
a single general one-shot transition this class turns out to be very useful for this
application field. However, the algorithm proposed in [8] requires a discretization
of the support of the distribution that determines the firing time of the general
transition. This is on the one hand computationally very expensive for small step
sizes, and on the other hand may lead to less accurate results for larger step sizes.

This paper presents a considerably more efficient algorithm that partitions the
underlying state space of an HPnG into regions with equivalent markings, de-
pending on the current time t and the firing time of the general transition s. We
provide a graphical representation of these regions, a so-called Stochastic Time
Diagram (STD), which consists of two main parts, namely, the deterministic and
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the stochastic part. In the first part, the evolution of the system and the continu-
ous marking solely depends on t, since the general transition has not fired, yet. In
the second part, however, the continuous marking and the remaining firing time
of deterministic transitions may depend linearly on the values s and t. The main
advantage of our new method is that for each system time, we can easily find all
possible states of the system. Instead of dealing with infinitely many points in the
t-s plane, for computing the probability to be in a specific system state at time τ ,
it suffices to find all regions intersecting the line t = τ and decondition the firing
time of the general transition over the intersections that correspond to a the spe-
cific system state. The partitioning into regions with the same system state avoids
accuracy problems of the old algorithm that stem from a discretization with fixed
step sizes and also significantly decreases the computation time.

The idea of a partitioning the underlying state-space of hybrid systems is not
new and, e.g., the underlying state-space of Timed Automata (TA) [3,2] can
be partitioned into zones, where each zone represents a symbolic system state.
However, due to the fact that all real-valued clocks have an identical drift of
1 the shape of a zone is much more restricted than the shape of the regions
resulting for HPnGs. Similarly, a partitioning of the state-space of hybrid sys-
tems has been introduced in [1]. The difference to our work is that we partition
according to time and the support of the general transition instead of the val-
ues of the continuous variables. Also for Dense-Time Reactive Systems [12,11]
that are a generalization of Timed Petri Nets [5] a partitioning of the state
space into state classes has been introduced. whereas, such systems do not in-
clude continuous variables they allow to equip timed transitions with an interval
indicating their firing time. Again, since time evolves linearly with derivative
1, the shape of state classes is similarly restricted as zones for TA. Dynamical
Systems having Piecewise-Constant Derivatives (PCDs) [4] represent a class of
hybrid systems where the evolution of the continuous variables is piecewise-linear
and the control component of a state is fully determined by the values of the
continuous variables. This also results in a set of regions, where each region is
associated with a constant vector field which identifies the rates at which the
various variables change. Similarly to HPnGs, PCDs allow different slopes for
the continuous variables within one region and more general guards for discrete
transitions. However, in contrast to PCDs, the discrete state of an HPnG is not
fully described by the values of the continuous variables and hence allows for a
more general discrete component.

This paper is further organized as follows: In Section 2 we provide a brief
description of the modelling formalism and system evolution of HPnG and in-
troduce some notation that is used throughout the paper. In Section 3, we intu-
itively describe the idea behind our new algorithm, and illustrate the idea with
a simple example. In Section 4, we formalize the details of the algorithm, and
prove that the partitioning results in polygons. Section 5 addresses the compu-
tation of measures of interests, e.g., the probability of having an empty storage
at a given time. To study the efficiency of the new algorithm, Section 6 compares
the run time with the existing algorithm [8] on a scalable case study.
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2 Hybrid Petri Nets with General One-Shot Transitions

A HPnG is defined as a tuple (P , T ,A,m0,x0, Φ), where P = PD ∪PC is a set
of places that can be divided into two disjoint sets PD and PC for the discrete
and continuous places, respectively. The discrete marking m is a vector that
represents the number of tokens mP ∈ N for each discrete place P ∈ PD and
the continuous marking x is a vector that represents the non-negative level of
fluid xP ∈ R+

0 for each continuous place P ∈ P . The initial marking is given by
(m0,x0).

Four types of transitions are possible, as follows. The set of immediate transi-
tions, the set of deterministically timed transitions, the set of general transitions,
and the set of continuous transitions together form the finite set of transitions
T = T I ∪ T D ∪ T G ∪ T C . Note that in this paper the number of general transi-
tions is restricted to |T G| = 1. Also the set of arcs A consists of four sets: The
set of discrete input and output arcs AD, connects discrete places and discrete
transitions and the set of continuous input and output arcs AC connects contin-
uous places and continuous transitions. The set of inhibitor arcs AI and the set
of test arcs AT , both connect discrete places to all kinds of transitions.

The tuple Φ = (φP
b , φ

T
p , φ

T
d , φ

T
f , φg, φ

A
w , φ

A
s , φ

A
p ) contains 8 functions. Function

φP
b : PC → R+∪∞ assigns an upper bound to each continuous place. In contrast

to the definition of HPnG in [8] in the following φT
p : T D ∪ T I → N specifies a

unique priority to each immediate and deterministic transition to resolve firing
conflicts, as in [10]. Deterministic transitions have a constant firing time defined
by φT

d : T D → R+ and continuous transitions have a constant nominal flow
rate defined by φT

f : T C → R+. The general transition is associated with a
random variable s with a cumulative probability distribution function (CDF)
φg(s), and its probability density function (PDF) is denoted g(s). We assign to
all arcs except continuous arcs the weight: φA

w : A \ AC → N which defines the
amount of tokens that is taken from or added to connected places upon firing of
the transition.

Conflicts in the distribution of fluid occur when a continuous place reaches
one of its boundaries. To prevent overflow, the fluid input has to be reduced to
match the output, and to prevent underflow the fluid output has to be reduced to
match the input, respectively. The firing rate of fluid transitions is then adapted
according to the share φA

s : AC → R+ and priority φA
p : AC → N that is assigned

to the continuous arcs that connect the transition to the place. This is done
by distributing the available fluid over all continuous arcs. Those with highest
priority are considered first and if there is enough fluid available, all transitions
with the highest priority can still fire at their nominal speed. Otherwise, their
fluid rates are adapted according to the firing rate of the connected transitions
and the share of the arc, according to [6]. The adaptation of fluid rates in these
cases, results in a piecewise constant fluid derivative per continuous place.

The state of an HPnG is defined by Σ = (m,x, c,d,G), where vector c =
(c1, . . . , c|T D |) contains a clock ci for each deterministic transition that represents

the time that TD
i has been enabled. Vector d = (d1, . . . , d|PC|) indicates the

drift, i.e., the change of fluid per time unit for each continuous place. Note that
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even though this vector d is determined uniquely by x and m, it is included
in the definition of a state to make it more descriptive. A general transition
is only allowed to fire once, hence, the flag G ∈ {0, 1} indicates whether the
general transition has already fired. So, the initial state of the system is Σ0 =
(m0,x0,0,d0, 0). For a more detailed description HPnGs and their evolution,
we refer to [9].

3 Graphical Representation of the System Evolution

The evolution of an HPnG can be represented by a so-called Stochastic Time
Diagram (STD) that illustrates the system state at each time conditioned on
the firing time of the general transition. Section 3.1 introduces STDs and shows
how to generate this diagram for a simple example in Section 3.2.

3.1 Stochastic Time Diagram

Given an initial state of an HPnG and a predefined value for the firing time of
the general transition (denoted s) the state of the system can be determined
for all the future times t starting from a given initial state. Hence, in order to
characterize the system state, we consider a two-dimensional diagram with t
on the vertical axis and s on the horizontal axis. Each point in this diagram
is associated with a unique system state. A generic version of this diagram is
shown in Figure 1. The stochastic area contains all states for which we assume
that the general transition has fired, i.e., the current system time is larger than
the firing time of general transition, t > s. The deterministic area, in contrast,
represents all states where the general transition has not fired yet, i.e., t < s. In
this area the evolution of the system is independent of parameter s.

To compute measures of interest for HPnGs, the state space needs to be
deconditioned with a probability density function g(s). The main idea of the
proposed method is that instead of dealing with infinitely many points in the t-
s-plane, we can partition the state space into several regions, such that all points
inside one region are associated with the same system state. More formally a
system state Γ is defined as a set of HPnG states with the same discrete marking
m, drift d and general transition flag G, where the continuous marking and the
clock values linearly depend on s and t according to the same equations. Then to
compute the probability to be in a specific system state at time τ , it suffices to
find all regions intersecting the line t = τ that correspond to the specific system
state and integrate g(s) over the intersection. This idea is illustrated for a given
partitioning in Figure 2.

While the generic STD from Figure 1 holds for every HPnG, the partitioning
into invariant regions as shown in Figure 2, depends on the structure of the
model at hand. These invariant regions exist, because the state of the system
does not change until an event occurs. At each system state two types of potential
events should be considered: a fluid place reaching its lower/upper boundary or
an enabled deterministic transition reaching its firing time. Both events induce
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a state change, i.e., the system enters another region. Therefore, the boundary
between regions represents the occurrence of an event. Section 4 presents an
algorithm that constructs the STD for a given HPnG and proves that for HPnGs
all boundaries are linear.

3.2 Reservoir Example

In order to illustrate the above concepts, we construct the STD for an example
HPnG taken from [8]. Using the same graphical representation as in [8], Figure 3
shows an HPnG model of a reservoir that is filled by a pump and drained due
to some demand. The reservoir Cr can contain at most 10 units of fluid (say,
m3) and as long as the discrete places Pp contains a token and the reservoir is
not full, fluid is pumped in with rate 2. As long as Pd contains a token and the
reservoir is not empty, fluid is taken from the reservoir at rate 1. The demand is
deterministically switched off after 5 time units by transition De and the pump
fails according to an arbitrary probability distribution. At t = 0, the reservoir is
empty.

Assuming that the general transition has not been fired, i.e., s > t, there are
two possible events: either transition De fires at time 5 or reservoir Cr reaches
its upper boundary. Since the overall rate of change (drift) of fluid into Cr is 1
in this sense, it takes 10 time units to become full. So the first occurring event
is De, firing at time 5. This event is represented in Figure 4 by the horizontal
line t = 5, labelled De. Then, since transition Fd is no longer enabled, the drift
at Cr becomes 2. Since the reservoir contains 5 units of fluid, it takes 2.5 time
units to reach its upper boundary, which occurs at time 7.5. In Figure 4, this is
shown by line t = 7.5, labelled Cr. After entering the area above this line, no
deterministic event is possible anymore, i.e., we reach an absorbing region.

After partitioning the deterministic area, the line t = s, is divided into three
segments, as illustrated in Figure 4. Then, in order to partition the stochastic
area, all of these segments have to be considered as possible firing times of the
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Fig. 3. Reservoir model
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general transition. Starting from the initial state of the system, first consider
that the general transition fires at time s ∈ [0, 5). Hence, by passing the line
t = s, the system enters the stochastic area. Then two events are possible: either
De fires or Cr reaches its lower boundary. Before the general transition fired,
place Cr had drift 1 and since s time units have passed it now contains s units
of fluid. After the general transition has fired, the transition Fp is disabled, and
the drift at Cr becomes −1.

Now, either the reservoir becomes empty or the deterministic transition fires,
which stops the demand. To find out which of these events is going to occur
first, we have to compare their occurrence time t, which may depend on s. Let
Δt be the time needed for Cr to become empty, we have: Δt = s. The previous
event has occurred at time s, so Δt = t− s and the reservoir becomes empty at
t = 2s. Since transition De fires at time 5, the occurrence time equation of this
event is simply t = 5 and does not depend on s. The minimum of both equations
then determines the next event, as shown in the shaded area in Figure 4. The
procedure forms a polygon over the segment t = s for s ∈ [0, 5). Note that
each side of this polygon represents the occurrence time of an event, hence, the
procedure can be repeated recursively for each of them ,i.e., we can form another
polygon over each side, and continue this procedure until we have obtained the
complete partitioning of the stochastic area, up to the maximum analysis time.
Figure 2 shows the complete STD for the reservoir example with nine different
regions in the stochastic area. After all regions have been determined, measures
of interests can be computed by deconditioning over the distribution function
g(s).

4 Generating the Diagram

We now present a formal algorithm for the generation of the STD. It consists of
two main phases: partitioning the deterministic area (described in Section 4.1),
and partitioning the stochastic area (described in Section 4.2).
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4.1 Partitioning the Deterministic Area

In this phase the evolution of the system is purely deterministic, since by assump-
tion the general transition has not fired yet. Therefore the so-called deterministic
regions are constructed with lines parallel to the s-axis, as shown in Figure 5.
Each deterministic region Ri is determined uniquely by the interval [hi, hi+1),
where hi is the occurrence time of the event that changes the state of the system
from region Ri−1 into region Ri.

The procedure for partitioning the deterministic area is outlined in Algo-
rithm 2. Until the system reaches Tmax, the procedure findNDtEvent, c.f.
Algorithm 3, provides the next event for each marking of the system. During
the evolution of the system at each point, two types of events are possible: an
enabled deterministic transition reaches its firing time or a continuous place
reaches a boundary. We iterate over all continuous places, and find the time at
which each reaches its lower and upper boundaries (lines 2-8, Algorithm 3). Also
for all enabled deterministic transitions we have to find the remaining time to
fire (lines 9-13, Algorithm 3). Finally, the next event is the one with the smallest
remaining time to occur, denoted e and Δte, respectively. A new region Ri is
created and added to the set of deterministic regionsRD(lines 6-8, Algorithm 2).
Then the current system sate is updated (Algorithm 6) and the current system
time is advanced by Δte time units (lines 9-10).

4.2 Partitioning the Stochastic Area

In this phase we partition the area above the line t = s. As shown in Figure 5, in
the previous phase the line t = s has been segmented into several line segments,
by deterministic regions. We iterate over all these line segments, and if the gen-
eral transition was enabled in the system state of the corresponding deterministic
region, it is fired, and the area above the corresponding line segment is further
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Algorithm 1. genDiagram()

1: PS ,RD ← ∅
2: RD ← partDtrmArea(Γ0)
3: for all Ri ∈ RD do
4: if TG in enabled in the Ri.Γ then
5: δ.[sl, sr) ← Ri.[hi, hi+1)
6: δ.eq ← t = s
7: Γ ′ ← update(TG,Δt = s−Ri.hi, Ri.Γ )
8: PS ← PS ∪ partStochArea(δ, Γ ′)

Algorithm 2. partDtrmArea(Γ0)

Require: Initial system state Γ0.
Ensure: Set of deterministic regions.
1: Γ ← Γ0

2: RD ← ∅
3: t ← 0; i ← 0
4: while t < tmax do
5: (e,Δte) ← findNDtEvent(Γ )
6: Ri.[hi, hi+1) ← [t, t+Δte)
7: Ri.Γ ← Γ
8: RD ← RD∪ {Ri}
9: Γ ← update(e,Δt = Δte, Γ );
10: t ← t+Δte; i ← i+ 1

Algorithm 3. findNDtEvent(Γ )

Require: The current system state Γ .
Ensure: Next event and its remaining time to occur.
1: Δtmin ← ∞
2: for all Pi ∈ PC do
3: if Γ .di > 0 then

4: Δte ← φP
b (Pi)−Γ.xi

Γ.di
5: if Γ.di < 0 then
6: Δte ← Γ.xi

Γ.di
7: if Δte < Δtmin then
8: (e,Δtmin) ← (Pi,Δte)
9: for all Ti ∈ T D do
10: if T is enabled then
11: Δte ← φT

d (Ti)− Γ.ci
12: if Δte < Δtmin then
13: (e,Δtmin) ← (Ti, Δte)
14: return (e,Δtmin)
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partitioned. An arbitrary segment δ is defined by equation δ.eq : t = αs+ b and
endpoints δ.[sl, sr). Each segment δ corresponds to an event in a way that the
equation δ.eq represents its occurrence time, and the general transition had to
fire between the endpoints δ.[sl, sr). For example if the general transition fires
when the system is in the deterministic region Ri, we enter the area above the
segment with equation t = s and endpoints [hi, hi+1).

Proposition 1. After firing the general transition at time s, for each system
state the occurrence time of the next events are linear functions of s.

Proof. We prove the proposition by structural induction on associated segments
of events, with firing of the general transition as the basis. W.l.o.g. assume that
before firing the general transition, the system is at the deterministic region
Ri. When the general transition fires at time s, we have been in this region for
Δt = s−hi time units, so at the firing time of the general transition the fluid level
of continuous place PC

k linearly depends on s, as follows x′
k = dk(s−hi)+xk. Also

the clock value of an enabled deterministic transition TD
k is c′k = (s − hi) + ck.

Therefore, at the very moment after firing of the general transition, all fluid
levels and clock values are linear functions of s, and hence the occurrence time
of the next events are linear function of s too, as shown for the general case
below.

As the inductive step, w.r.t. induction hypothesis, suppose that an event has
occurred at time t = αs+β for s ∈ [sl, sr). Recall, that two events are possible: a
continuous place reaches its lower / upper boundary or an enabled deterministic
transition reaches its firing time. Let the fluid level in a continuous place PC

k be
xk = apks+ bpk. The amount of time this place needs to reach one of its boundary
is denoted by Δtpk and can be calculated as follows:

dkΔtpk =

{
φP
b (P )− xk if dk > 0,

−xk if dk < 0.

According to the occurrence of the previous event, we have Δtpk = tpk − (αs+ β)
for s ∈ [sl, sr), where tpk is the occurrence time of this fluid event. As a result,
above the line t = αs + β and s ∈ [sl, sr), the considered fluid event occurs at
time tpk as follows:

tpk =

{
(α − ap

k

dk
)s+ (

−bk+φP
b (PC

k )
dk

+ β) if dk > 0,

(α − ap
k

dk
)s+ (− bk

dk
+ β) if dk < 0.

(1)

The firing time for a deterministic transition can also be derived in a same way.
Let the clock value of the deterministic transition TD

k be ctk = atks + btk. The
firing time can be calculated as follows:

ttk = (α − atk)s+ (φT
d (T

D
k ) + β − btk). (2)

Therefore, occurrence time of both types of events linearly depend on s. Now,
with the same argument, if we set α = 1 and β = 0 the basis of the induction is
also satisfied, and hence the proof is complete. �
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As an immediate result of the above proposition we can state that all regions
in the stochastic area are polygons. Since the system state in these polygons
does not change, we call them invariant polygons in the following. We present
the algorithm for partitioning the area above an arbitrary underlying segment
δ. The algorithm for this procedure is outlined in Algorithm 4. At first, we
check whether the maximum analysis time has not been reached (line 1). Then
we identify the potential events that can occur in the current marking of the
system. For this we consider all continuous places and enabled deterministic
transitions.

The procedure for finding all potential events, at each system state, is called
findPotEvents and shown in Algorithm 5. It uses the same arguments as in
the proof of Proposition 1. In lines 2-7 we iterate over all continuous places, and
for each with a non-zero drift, the time for reaching its boundary is computed,
according to Equation (1). Also in lines 8-11 this is repeated for all enabled
deterministic transitions, according to Equation (2). Finally the set of all events
and the equations of their occurrence time is returned.

In order to find the occurrence times of the next events conditioned on the
value of s ∈ [sl, sr), we have to take the minimum over all these linear equations.
Taking the minimum over a set of lines results in several convex polygon(s) over
the underlying segment δ. Note that, these equations are only valid in the area
above the underlying segment δ. An example with three possible events: e1, e2
and e3 is presented in Figure 6. Event e2 intersects with the underlying segment
at point p, so e2 can not occur for s > p and in the minimum taking procedure
after this point e2 does not have to be considered any more. As a result two
polygons will be formed over the underlying segment.

The procedure that identifies the set of next events over an underlying seg-
ment, is called findNEvents, it simply iterates over all lines indicating the
firing time of potential events and for each s ∈ [sl, sr) finds the minimum line.
It returns a set of segments from which the invariant polygon(s) over the under-
lying segment can be formed by iteration over the set of segments, this is done
in procedure createPolygons. These two procedures are described in detail
in [7].

The procedures findPotEvents, findNEvents and createPolygons,
are called in lines 3-5, in Algorithm 4. Now, having obtained the set of seg-
ments of all next events, we can partition the area above each of these segments.
Through line 6-8 we iterate over all these segments, and recursively call the
function partStochArea for each segment, after updating the system state.

The procedure for updating the system state is provided in Algorithm 6. This
procedure needs the event e and the amount of time Δt that can possibly depend
on s, to advance the marking. In lines 2-3, for each continuous place Pi it alters
the fluid level in that place according toΔt and the fluid drift di. Also in lines 4-5,
it adds Δt to the clock value of each enabled deterministic transition. Moreover,
if the event e is a transition it is fired, in line 8, to update the discrete marking.
Finally we update the fluid drifts for the new marking, by calling the function
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Algorithm 4. partStochArea(δ, Γ )

Require: The underlying segment δ and the current system state Γ .
Ensure: Partitioning of the area above the given underlying segment δ.
1: if δ.sl > Tmax then
2: return
3: potentialSet ← findPotEvents(δ, Γ )
4: nextEvSet ← findNEvents(potentialSet, δ)
5: polygonSet ← polygonSet ∪ createPolygons(nextEvSet, δ, Γ )
6: for all (e, δe) ∈ nextEvSet do
7: Γ ′ ← update(e, Δt = δe.eq −δ.eq, Γ )
8: polygonSet ← polygonSet ∪ partStochArea(δe, Γ

′)
9: return polygonSet

Algorithm 5. findPotEvents(δ, Γ )

Require: The underlying segment δ and the current system state Γ .
Ensure: Set of potential events.
1: potSet ← ∅
2: for all Pi ∈ PC do
3: if Γ.di > 0 then

4: eq ← t = δ.eq − Γ.xi
Γ.di

+
φP
b (Pi)

Γ.di
5: if Γ.di < 0 then
6: eq ← t = δ.eq − Γ.xi

Γ.di

7: potSet ← potSet ∪{(Pi, eq)}
8: for all Ti ∈ T D do
9: if T is enabled then
10: eq ← t = δ.eq − Γ.ci + φT

d (Ti)
11: potSet ← potSet ∪{(T, eq)}
12: return potSet

Algorithm 6. update(e,Δt = as+ b, Γ )

Require: The event e to be committed, the s-dependent equation Δt of time to ad-
vance, and the marking Γ to be updated.

Ensure: Advancement of system marking for the specified time.
1: Γ ′ ← Γ
2: for all Pi ∈ PC do
3: Γ ′.xi ← Γ.xi +Δt× Γ.di
4: for all Ti ∈ T D do
5: if Ti is enabled then
6: Γ ′.ci ← Γ.ci +Δt
7: if e is a transition then
8: Γ ′ ← fire(e, Γ )
9: Γ ′ ← upadteDrifs(Γ ′)
10: return Γ ′
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updateDrifts. This is done according to the new discrete and continuous marking
and rate adaptation in rules described in [9].

Finally, Algorithm 1 generates the STD. First the procedure partDtrmArea

is called, and the deterministic regions are saved in the set RD. Then for each
region Ri, if the general transition is enabled, the segment with equation t = s
with the interval [hi, hi+1) is created (lines 4-6). The marking of the system is
updated in line 7, by calling procedure update. Since the general transition
should be fired we pass TG as argument. Also the time that has passed after
entering region Ri until firing the general transition, is Δt = s − hi, as it is
passed as second argument. Finally the procedure partStochArea is called
with two arguments the created segment and updated system state.

5 Computing Measures

After the STD has been generated, the state of the system depends on the distri-
bution of the firing time of the general transition, g(s) and on the system time.
By deconditioning s over the values of g(s), the state probability distribution
can be derived, as briefly sketched in Section 3.1. In order to compute more
sophisticated measures of interest, we introduce property ψ, see below, which
is defined as a combination of discrete and continuous markings. Note that this
property is an extended version of what has appeared in [8]. The main difference
is that we add negation which makes it complete and the result more expressive:

ψ = ¬ψ | ψ ∧ ψ | np = a | xk ≤ b. (3)

To compute the probability of being in a system state for which property ψ holds
at time τ , at first we have to identify all invariant polygons and deterministic
regions the system can be in, i.e. all regions intersecting line t = τ . Then we
verify whether property ψ holds for any of these regions, and if so determine
the intervals in which the property is satisfied. Finally, g(s) is integrated over
all these regions.

An atomic property which reasons about discrete places, either holds in the
complete invariant polygon or not at all. Recall, that the amount of fluid in a
continuous place may linearly depend on s. Hence, an atomic property explaining
the amount of fluid in a continuous place, may be valid only in a certain part
of the considered polygon. More specifically, let the amount of fluid in the place
P c
k be xk = αs + β. For the computation of the probability to be in a system

state for which xk ≤ b holds, s∗ = (b − β)/α defines the threshold value of s
where the validity of the property changes. In case s∗ lies inside a given polygon,
depending on the sign of α the property is satisfied either before or after s∗.

Let the line t = τ intersect the polygon Pi in the interval [si1, s
i
2], then to

negate a property we need to find the complement of the interval within [si1, s
i
2]

for which the original property holds. For the conjunction of two properties we
need to find the intersection of the two intervals that are associated with the
two original properties. Therefore, a nested property ψ may be satisfied in a set
of intervals.
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Let Pτ be the set of all invariant polygons intersecting the line t = τ . For a
given invariant polygon Pi ∈ Pτ , the set of intervals in which the property ψ
holds is indicated by Si and each interval in this set is denoted [sil, s

i
r). Trivially

Si is empty if the property is not satisfied in Pi. Let Rτ
i denote the deterministic

region for which τ ∈ [hi, hi+1). Also, let Iψ(s, τ) be the characteristic function
for condition ψ at the point (s, τ), which evaluates to 1 or 0 whether ψ holds or
not, respectively. Furthermore, Iψ(Rτ

i ) indicates whether condition ψ is satisfied
in Rτ

i . So, the probability distribution to be in a system state for which property
ψ is satisfied at time τ can be computed as follows:

πψ(τ) =

∫ ∞

0

Iψ(s, τ)g(s)ds

=

∫ τ

0

Iψ(s, τ)g(s)ds +
∫ ∞

τ

Iψ(s, τ)g(s)ds

=
∑

Pi∈Pτ

∫
Si

g(s)ds+ Iψ(Rτ
i )

∫ ∞

τ

g(s)ds

=

⎛⎝ ∑
Pi∈Pτ

∑
[sil ,s

i
r)∈Si

(
φg(s

i
r)− φg(s

i
l)
)⎞⎠+ Iψ(Rτ

i )(1 − φg(τ)) (4)

The above set of equations shows how the partitioning into regions can be used
for smarter deconditioning. Equation (4) consists of two terms. The first term
expresses the probability of holding ψ at time τ , in the stochastic area, by simply
iterating over all invariant polygons intersecting the line t = τ and summing
the probability over all intervals in which the property holds. The second term
expresses the probability of being in Rτ

i if the property ψ holds in it.

6 Case Study

The complexity of the proposed algorithm clearly depends on the structure of
the model. The process of computing measures of interest also linearly depends
on the number of regions. In the following we show the scalability and efficiency
of the proposed method using the case study as in [8]. We scale the number of
transitions and continuous places in the case study, and discuss its influence on
the number of regions and the computation time of the algorithm.

Figure 7, presents a model of a water treatment facility with different phases.
The continuous place Ci represents the storage of a water softening phase. By
design this is a slow process with large storage. The continuous place Cf and
transition Ff , represent a generic water filtering phase. Opposed to the softening
phase this filtration phase is a fast process with small storage. The continuous
place Cs, represents the final storage from which water is distributed to the cus-
tomers with different rates, depending on the time of the day. The deterministic
transition Tb represents a failure at time α, in the softening phase. When it fires,
the continuous transition Fi is disabled and the general transition Gr becomes
enabled. Gr models the time it takes to repair the system failure according to
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Fig. 7. HPnG model for a symbolic water treatment facility

Table 1. Scaling the filtration phases. All
times in milliseconds.

Region-based Param. reach.

#Filters #Region STD MCT Tree MCT

1 327 43 161 10 11106
2 433 80 239 19 13153
3 539 69 294 19 15415
4 663 77 373 22 17188
5 769 86 461 25 19352
6 903 95 509 26 21501
7 1026 106 586 30 23385
8 1159 121 662 31 25875

Table 2. Scaling the demand rates. All
times in milliseconds.

Region-based Param. reach.

#Demands #Region STD MCT Tree MCT

2 202 26 104 15 32348
3 403 76 202 21 43874
4 909 72 431 23 52526
5 1204 82 538 38 66793
6 1624 91 711 49 79479
7 1797 90 681 30 69484
8 2225 115 1004 99 115542
9 2776 125 1195 102 120129
10 3457 143 1451 133 136896

the arbitrary probability density g(s). Note that discrete place Pb restricts the
model such that the failure can occur only once.

The model presented in Figure 7 is made scalable in two ways. First, by cas-
cading more filtration phases, and second by dividing the day into more intervals
with different demand rates. In order to show the efficiency of our algorithm,
we scale the model in these two ways, and for each instance, compute the prob-
ability distribution for the amount of fluid in place Cs. This is an important
measure of interest, because an empty final storage Cs means failure to deliver
water to the consumers. Moreover, to provide a comparison with the parametric
reachability algorithm, as presented in [8], we also calculate this probability dis-
tribution using this algorithm. All the computations have been performed on a
machine equipped with a 2.0 GHz intelR© CORETM i7 processor, 4 GB of RAM,
and Windows 7. The results are shown in Tables 1 and 2.

Scaling in both dimensions increases the number of regions, as shown in the
second column of both tables. The time needed to construct the STD and the
tree with all parametric locations, are given in the third and fifth columns of both
tables. The time needed to compute the measures of interest is denoted MCT
(Measure Computation Time). When scaling the number of filters the generation
of the STD takes about 3 to 4 times longer than the construction of the paramet-
ric locations. This is due to the more involved computations that are necessary
to construct the polygons in the STD. When scaling the number of demands the
generation of the STD takes about 2 to 3 times longer than the construction
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of the parametric locations. This is, however, more than compensated for when
the measures of interest are computed. The new algorithm is, depending on the
size of the model, between 20 and 100 times faster than the algorithm in [8].
Apparently, for smaller models the speed up is larger than for bigger models.
This is because the complexity of the old algorithm is logarithmic in number of
parametric locations. Furthermore, in case a closed form of the CDF exists, the
choice of the distribution does not influence the complexity of the region-based
algorithm. Clearly, the MCT of the parametric reachability algorithm depends
on the chosen discretization step. The results presented in the tables have been
obtained for a discretization step of 0.005. A larger discretization step reduces
the MCT, but also decreases the accuracy of the results. For a discretization
step of 0.005, the maximum difference between the results from both algorithms
is 0.5%. Running the parametric location algorithm with a discretization step of
0.2 leads to approximately the same MCT with both algorithms, the resulting
maximum relative error, however is 3%.

7 Conclusions

This paper presents an algorithm for the analysis of HPnGs that partitions
the state space into regions, where all the states in a given region have the same
deterministic marking and the continuous marking and the remaining firing time
for all states in the same region follow the same linear function of s and t.

The restrictions of the model class to a single one-shot transition and the
requirement of a unique priority assignment to each deterministic and immediate
transition ensure that the computed partitioning is a single two-dimensional
STD. Relaxing the requirement of the unique priority assignment potentially
leads to concurrency between timed transitions. In [8] this has been resolved by
a probabilistic choice between transitions with the same minimum firing time.
Since the firing of different transitions leads to a different further evolution of
the system, a different STD is needed. To compute measures of interest, the
deconditioning then needs to take several STDs into account and weight them
according to the probabilities assigned to the firing of each transition. Future
work will investigate how this can be done efficiently. Also allowing more general
transitions or relaxing the one-shot restriction will change the resulting STD.
Each firing of a general transition will add an extra dimension to the STD and
the deconditioning then needs to be done for several dimension. This is also an
interesting line for future research.

Even though the model class currently is restricted in several ways, it is still
very useful for the application field of fluid critical infrastructures, since the
physical processes are fairly deterministic and stochasticity is only needed to
model failures and repairs. To the best of our knowledge no analyzable model
class exists that allows for an arbitrary amount of continuous places without
resetting the amount of fluid upon discrete changes, as needed in this field.
Furthermore, we would like to emphasis that the presented algorithm presents
an enormous improvement with respect to the parametric reachability analysis
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in [8], it allows for a much quicker analysis and due to the partitioning the
obtained results are also more accurate.
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Abstract. We introduce the novel notion of quasi-equal clocks and use
it to improve the verification time of networks of timed automata. Intu-
itively, two clocks are quasi-equal if, during each run of the system, they
have the same valuation except for those points in time where they are
reset. We propose a transformation that takes a network of timed au-
tomata and yields a network of timed automata which has a smaller set
of clocks and preserves properties up to those not comparing quasi-equal
clocks. Our experiments demonstrate that the verification time in three
transformed real world examples is much lower compared to the original.

1 Introduction

Modelling the local timing behaviour of components and the synchronisation
between them is the natural way to model distributed real-time systems by
networks of timed automata [1]. This is achieved in a straightforward manner
by using independent clocks.

For designs where a set of clocks is intended to be synchronized, e.g., the
class of TDMA-based protocols [2], using independent clocks causes unnecessary
verification overhead for those specifications where the order of resets of syn-
chronised clocks is not relevant. For instance, in network traversal time require-
ments, resetting synchronised clocks does not contribute to the time lapses being
measured. The unnecessary overhead is caused by the interleaving semantics of
timed-automata where the automata do their resets one by one and thereby in-
duce a set of reachable intermediate configurations which grows exponentially in
the number of components in the system. Although the interleaving semantics
of timed-automata offers a practical solution for model checking in tools like
Uppaal [3], it artificially introduces intermediate states that are explored when
verifying models of physical systems, although they may be irrelevant for the
property being verified.

The overhead could be eliminated by manually optimising models for veri-
fication. Nonetheless, modelling without technicalities — in particular without
manual optimizations for verification — is desired to improve on the readability
and maintainability of the models. We aim to bridge the gap between efficiency
and readability by enabling the modelling engineer to use more natural represen-
tations of a system. Unnecessary overhead can be mechanically removed as per
our approach, thus enabling both readable models and efficient model checking.

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 155–170, 2012.
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To this end, we characterise clocks intended to be synchronised in the real
world by the novel notion of quasi-equality. Intuitively, two clocks are quasi-
equal if, during each run of the system, they have the same valuation except
for those points in time where they are reset. We call the properties which,
for a given network of timed automata, are independent from the ordering in
which the quasi-equal clocks are reset, validable. Sets of quasi-equal clocks induce
equivalence classes in networks of timed-automata. We present an algorithm that
replaces all clocks from an equivalence class of quasi-equal clocks by a represen-
tative clock. The result is a network of timed automata with a smaller set of
clocks. It is weakly bisimilar to the original network and thus preserves validable
properties. We show that when performing clock replacement alone, properties
are not necessarily preserved. Our algorithm introduces a new automaton in the
network and uses auxiliary variables and broadcast synchronization channels to
ensure that the semantics of the original network are preserved, up to configura-
tions where quasi-equal clocks have different valuations. The use of our algorithm
can lead to significant improvements in the verification cost of validable proper-
ties compared to the cost of verifying them in the original network.

This paper is organized as follows. In Section 2, we provide basic definitions.
Section 3 introduces the formal definition of quasi-equal clocks, presents the
algorithm that implements our approach on the set of well-formed networks,
and proves its correctness. In Section 4, we compare the verification time of
three real world examples before and after applying our approach. In Section 5,
we draw conclusions and propose future work.

1.1 Related Work

The reduction of the state space to be explored in order to speed up the verifica-
tion of properties of a system, is a well-known research topic. Diverse techniques
have been proposed to achieve such a reduction, many of them by using static
analysis over timed automata [4,5,6,7]. One method that uses static analysis is
presented in [8], originally defined for single automata and later generalized for
networks of timed automata [9]. This method reduces the number of clocks in
single timed automata by detecting equal clocks. Two clocks are equal in a loca-
tion if both are reset at the same time and by the same edge, or both are set to
clocks that are themselves equal in the source location. Equal clocks always have
the same valuation, so just one clock for every set of equal clocks in a given loca-
tion is necessary to determine the behavior of the system at that location. The
case studies we considered for experiments do not have equal clocks therefore
applying the method in [8] would not reduce clocks.

In sequential timed automata [10], one set of quasi-equal clocks is syntacti-
cally declared. Those quasi-equal clocks are implicitly reduced by applying the
sequential composition operator, which also exploits other properties of sequen-
tial timed automata, and thereby achieves further improvements in verification
time.

In [11], clocks are reduced while abstracting systems composed of timed com-
ponents which represent processes. Each process uses one internal clock for its
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internal operations. The approach exploits the fact that each component works
in a sort of sequence in order to process events, and each internal clock is only
used for a small fraction of time during such a sequence, thus only one clock can
be used instead. The networks we consider can in general not be reduced to this
approach as we do not assume a working sequence.

The technique in [4,5] is based on so called observers, which are single compo-
nents representing safety or liveness requirements of a given network of timed au-
tomata. For each location of the observer, the technique deactivates (or ignores)
irrelevant components (clocks or even a whole automaton) if such components
do not play a role in the future evolution of such an observer. The networks of
our experiments do not have observers, therefore we can not use this technique.
However, their case studies may benefit from our approach if observer clocks are
quasi equal to component clocks.

2 Preliminaries

Following the presentation in [12], we here recall timed automata definitions.

Let X be a set of clocks. The set Φ(X ) of simple clock constraints over X is
defined by the grammar ϕ ::= x ∼ y | x−y ∼ c | ϕ1∧ϕ2 where x, y ∈ X , c ∈ Q≥0,
and ∼ ∈ {<,≤,≥, >}. Let Φ(V) be a set of integer constraints over variables V .
The set Φ(X ,V) of constraints comprises Φ(X ), Φ(V), and conjunctions of clock
and integer constraints. We use clocks(ϕ) to denote the set of clocks occurring
in a constraint ϕ. We assume the canonical satisfaction relation “|=” between
valuations ν : X ∪ V → Time ∪ Z and constraints, with Time = R≥0.

A timed automaton A is a tuple (L,B,X,V, I, E, �ini ), which consists of a
finite set of locations L, a finite set B of actions comprising the internal action
τ , finite sets X and V of clocks and variables, a mapping I : L �→ Φ(X ), that
assigns to each location a clock constraint, and a set of edges E ⊆ L × B ×
Φ(X ,V) × R(X ,V) × L. An edge e = (�, α, ϕ, r, �′) ∈ E from location � to �′

involves an action α ∈ B, a guard ϕ ∈ Φ(X ,V), and a reset vector  r ∈ R(X ,V).
A reset vector is a finite, possibly empty sequence of clock resets x := 0, x ∈ X ,
and assignments v := ψint , where v ∈ V and ψint is an integer expression over
V . We write X (A), �ini(A), etc. to denote the set of clocks, the initial location,
etc. of A, and clocks( r) to denote the set of clocks occurring in  r.

A finite sequence A1, . . . ,AN of timed automata with pairwise disjoint sets of
clocks and pairwise disjoint sets of locations together with a set B ⊆

⋃N
i=1 B(Ai)

of broadcast channels is called network (of timed automata). To indicate that N
consists of A1, . . . ,AN , we write N (A1, . . . ,AN ), and we write A ∈ N if and
only if A ∈ {A1, . . . ,AN}. Given a set of clocksX ⊆ X (N ), we use RESX(N ) to
denote the set of automata in N which have an outgoing edge that resets a clock
from X , i.e. RESX(N ) = {A ∈ N | ∃ (�, α, ϕ, r, �′) ∈ E(A)• clocks( r)∩X 	= ∅}.

The operational semantics of the network N is the labelled transition system
T (N ) = (Conf (N ),Time ∪ B, { λ−→| λ ∈ Time ∪ B}, Cini). The set of configura-
tions Conf (N ) consists of pairs of location vectors 〈�1, . . . , �N〉 from ×N

i=1L(Ai)

and valuations of
⋃

1≤i≤N X (Ai)∪V(Ai) which satisfy the constraint
∧N

i=1 I(�i).
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We write �s,i, 1 ≤ i ≤ N , to denote the location which automaton Ai assumes
in configuration s = 〈�s, νs〉 and νs,i to denote νs|V(Ai)∪X (Ai). Between two con-
figurations s, s′ ∈ Conf (N ) there can be three kinds of transitions. There is a

delay transition 〈�s, νs〉 t−→ 〈�s′ , νs′〉 if νs + t′ |=
∧N

i=1 Ii(�s,i) for all t′ ∈ [0, t],
where νs + t′ denotes the valuation obtained from νs by time shift t′. There
is a synchronization transition 〈�s, νs〉 τ−→ 〈�s′ , νs′〉 if there are 1 ≤ i, j ≤ N ,
i 	= j, a channel b ∈ B(Ai) ∩ B(Aj), and edges (�s,i, b!, ϕi,  ri, �s′,i) ∈ E(Ai)
and (�s,j , b?, ϕj ,  rj , �s′,j) ∈ E(Aj) such that �s′ = �s[�s,i := �s′,i][�s,j := �s′,j ],
νs |= ϕi ∧ ϕj , νs′ = νs[ ri][ rj ], and νs′ |= Ii(�s′,i) ∧ Ij(�s′,j). Let b ∈ B be a
broadcast channel and 1 ≤ i0 ≤ N such that (�s,i0 , b!, ϕi0 ,  ri0 , �s′,i0) ∈ E(Ai0).
Let 1 ≤ i1, . . . , ik ≤ N , k ≥ 0, be those indices different from i0 such that
there is an edge (�s,ij , b?, ϕij ,  rij , �s′,ij ) ∈ E(Aij ). There is broadcast transi-
tion 〈�s, νs〉 τ−→ 〈�s′ , νs′〉 in T (N ) if �s′ = �s[�s,i0 := �s′,i0 ] · · · [�s,ik := �s′,ik ],

νs |=
∧k

j=0 ϕij , νs′ = νs[ ri0 ] · · · [ rik ], and νs′ |=
∧k

j=0 Iij (�s′,ij ).

A finite or infinite sequence σ = s0
λ1−→ s1

λ2−→ s2 . . . is called transition
sequence (starting in s0 ∈ Cini) of N . Sequence σ is called computation of N if
and only if it is infinite and s0 ∈ Cini . We denote the set of all computations of
N by Π(N ). A configuration s is called reachable (in T (N )) if and only if there
exists a computation σ ∈ Π(N ) such that s occurs in σ. A timed automaton
or network configuration s is called timelocked if and only if there is no delay
transition in any transition sequence starting at s.

A basic formula over N is either Ai.�, 1 ≤ i ≤ n, � ∈ L(Ai), or a constraint ϕ

from Φ(
⋃N

i=1 X (Ai),
⋃N

i=1 V(Ai)). It is satisfied by a configuration s ∈ Conf (N )
if and only if �s,i = � or νs |= ϕ, respectively. A reachability query EPF over N is
∃♦CF where CF is a configuration formula over N , i.e. any logical connection
of basic formulae. N satisfies ∃♦CF , denoted by N |= ∃♦CF , if and only
if there is a configuration s reachable in T (N ) such that s |= CF . We write
N |=¬timelock ∃♦CF if and only if CF is satisfied by a reachable, not timelocked
configuration of T (N ).

3 Reducing Clocks in Networks of Timed Automata

3.1 Quasi-Equal Clocks

Definition 1 (Quasi-Equal Clocks). Let N be a network with clocks X . Two
clocks x, y ∈ X are called quasi-equal, denoted by x ' y, if and only if for all
computation paths of N , the valuations of x and y are equal, or the valuation of
one of them is equal to 0, i.e., if

∀ s0
λ1−→ s1

λ2−→ s2 · · · ∈ Π(N ) ∀ i ∈ N0 • νsi |= (x = 0 ∨ y = 0 ∨ x = y).

For example, consider a distributed chemical plant controller. At the end of every
minute, the controller fills two containers with gas, one for at most 10 seconds
and one for at most 20 seconds. In Figure 1, a model of the system, the network
N which is composed of automata A1 and A2, is shown. Both automata start
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wait fill

x ≤ 60x ≤ 60

A1:
x ≥ 50

x ≥ 60

x := 0

wait fill

y ≤ 60y ≤ 60

A2:
y ≥ 40

y ≥ 60

y := 0

Fig. 1. The model of a chemical plant controller with quasi-equal clocks

in a waiting phase and after filling the containers, they wait for the next round.
Both clocks, x and y, are reset when their valuation is equal to 60. Yet, in the
strict interleaving semantics of networks of timed automata, the resets occur one
after the other. According to Definition 1, x and y are quasi-equal because their
valuations are only different from each other when one of the clocks has already
been reset and the other still has value 60.

Lemma 1. Let N be a network with clocks X . The quasi-equality relation ' ⊆
X × X is an equivalence relation.

Proof. For transitivity, show (x = 0 ∨ y = 0 ∨ x = y) ∧ (x = 0 ∨ z = 0 ∨ x =
z) ∧ (y = 0 ∨ z = 0 ∨ y = z) by induction over indices in a computation. �
In the following, we use ECN to denote the set {Y ∈ X/' | 1 < |Y |} of equiv-
alence classes of quasi-equal clocks of N with at least two elements. For each
Y ∈ X/', we assume a designated representative rep(Y ) ∈ Y . We may write
rep(x) to denote rep(Y ) if x ∈ Y is the representative clock of Y .

Given a constraint ϕ ∈ Φ(X ,V), we write Γ (ϕ) to denote the constraint that
is obtained by syntactically replacing in ϕ each occurrence of a clock x ∈ X by
the representative rep(x).

3.2 Transformational Reduction of Quasi-Equal Clocks

In the following we present an algorithm which reduces a given set of quasi-equal
clocks in networks of timed automata. For simplicity, we limit the discussion to
the syntactically characterised class of well-formed networks. The syntactical
rules, although restrictive at first sight, still enabled us to apply our approach
to relevant real world examples.

Definition 2 (Well-formed Network). A network N is called well-formed if
and only if it satisfies the following restrictions for each set of quasi-equal clocks
Y ∈ ECN :

(R1) An edge resetting a clock x ∈ Y is not a loop and has a guard of the form
x ≥ CY , and the source location of such an edge has an invariant x ≤ CY

for some constant CY > 0, i.e.,

∃CY ∈ N>0 ∀A ∈ N ∀ (�, α, ϕ, r, �′) ∈ E(A) ∀x ∈ clocks( r) •
(clocks( r) ∩ Y 	= ∅)

=⇒ (ϕ = (x ≥ CY ) ∧ I(�) = (x ≤ CY ) ∧ � 	= �ini(A) ∧ � 	= �′).
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(R2) A location having an outgoing edge resetting a clock x ∈ Y , does not have
other outgoing edges, and such an edge only resets a single clock, i.e.,

∀ e1 = (�1, α1, ϕ1,  r1, �
′
1), e2 = (�2, α2, ϕ2,  r2, �

′
2) ∈ E(N ) •

(�1 = �2 ∧ (clocks( r1) ∪ clocks( r2)) ∩ Y 	= ∅)
=⇒ e1 = e2 ∧ |clocks( r1)| = 1 ∧ ∃x ∈ Y •  r1 = (x := 0).

(R3) An edge resetting a clock x ∈ Y is unique per automaton, i.e.,

∀A ∈ N ∀ (�1, α1, ϕ1,  r1, �
′
1), (�2, α2, ϕ2,  r2, �

′
2) ∈ E(A) •

((clocks( r1) ∪ clocks( r2)) ∩ Y 	= ∅) =⇒ e1 = e2.

(R4) A location having an outgoing edge resetting a clock x ∈ Y has at least
one incoming, non-looped edge, i.e.,

∀A ∈ N ∀ (�2, α2, ϕ2, �r2, �
′
2) ∈ E(A) •

(clocks(�r2) ∩ Y ) �= ∅ =⇒ ∃ (�1, α1, ϕ1, �r1, �
′
1) ∈ E(A) • �′1 = �2 ∧ �1 �= �2.

(R5) The action of an edge resetting a clock x ∈ Y is τ , i.e.,

∀ (�, α, ϕ, r, �′) ∈ E(N ) • (clocks( r) ∩ Y 	= ∅) =⇒ α = τ.

(R6) At most one clock from Y occurs in the constraint of any edge, i.e.,

∀ (�, α, ϕ, r, �′) ∈ E(N ) • |clocks(ϕ) ∩ Y | ≤ 1.

By rules R1, R2, and R3 there is a unique reset edge per equivalence class and
automaton, and a constant describing the reset times of quasi-equal clocks from
the same equivalence class. By R4 guarantees the existence of an edge that can
be used to encode blocking multicast synchronisation. Rules R2, R5, and R6
guarantee that the behaviour of a well-formed network is independent from the
order of resets of quasi-equal clocks.

These rules should be relaxed to cover a broader class of networks of timed
automata. For example, R3 could be weakened to allow quasi-equal clocks with
more than one reset point to be reduced. This would make, however, the trans-
formation algorithm and its prove of correctness more involved.

Our transformation mainly operates on the source and destination locations
of the edges resetting quasi-equal clocks, so-called reset locations.

Definition 3 (Reset Location). Let N be a well-formed network. Let Y ∈
ECN be a set of clocks of N . Let (�, α, ϕ, r, �′) ∈ E(N ) be an edge that resets
a clock from Y , i.e. clocks( r) ∩ Y 	= ∅. Then � (�′) is called reset (successor)
location wrt. Y . We use RLY (RL+

Y ) to denote the set of reset (successor)
locations wrt. Y in N and we set RLN :=

⋃
Y ∈ECN RLY and similarly RL+

N .

In the following we describe the transformation function K. It works with two
given inputs: a well-formed network N and the set of equivalence classes ECN
of quasi-equal clocks in N . K outputs a transformed network N ′ = K(N , ECN )
by performing in N the following steps for each equivalence class Y ∈ ECN :
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wait fill

x ≤ 60x ≤ 60

A′
1:

x ≥ 50

rstY ++

resetY ?
wait fill

x ≤ 60x ≤ 60

A′
2:

x ≥ 40

rstY ++

resetY ?

RR:

rstY = 2 ∧ x ≥ 60, resetY !

rstY := 0, x := 0

Fig. 2. The model of the chemical plant controller after applying K

– Delete each reset of a clock from Y .
– For each edge resetting a clock from Y , replace the guard by true.
– In each invariant and each guard, replace each clock x ∈ Y by rep(x).
– Add to N a broadcast channel resetY and add the input action resetY ? to

each edge resetting a clock from Y .
– Add a counter variable rstY to N and add the increment rstY := rstY + 1

to the reset sequence of each incoming edge of a reset location � ∈ RLY .

As a final step, add a new automatonR with a single location �ini,R if ECN 	= ∅.
For each Y ∈ ECN , add an edge (�ini,R, α, ϕ, r, �ini,R) to R with action resetY !,
guard ϕ = (rstY = nY ∧rep(Y ) ≥ CY ), and reset vector  r = rstY := 0, rep(Y ) :=
0. In the guard ϕ, nY is the number of automata that reset the clocks of Y , i.e.
nY = |RESY (N )|, and CY is the time at which the clocks in Y are reset, i.e.,
the constant CY as described in R1. The result of applying the transformation
to the example from Figure 1 is shown in Figure 2.

Note that well-formedness together with the counter variables rstY enforce
blocking multicast synchronisation, that is, always all automata from RESY (N )
participate in the reset. Furthermore,N ′ is equal to N if there are no quasi-equal
clocks in N .

3.3 A Semantical Characterisation of N ′

Following our discussion, we can distinguish two kinds of configurations in the
transition system of a well-formed network N . A configuration is unstable if
there are quasi-equal clocks with different values, and stable otherwise.

In the following, we observe that our algorithm yields a network whose con-
figurations directly correspond to the stable configurations of N . In addition,
we observe that transition sequences in N ′ correspond to transition sequences
in N where reset phases of different equivalence classes do not overlap. To this
end, we formally define stability of configurations and different notions of reset
sequences, in particular full pure reset sequences, i.e., those where reset phases
do not overlap.

Definition 4 (Stable Configuration). Let N be a well-formed network and
let Y ∈ ECN be a set of quasi-equal clocks.
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A configuration s ∈ Conf (N ) is called stable wrt. Y if and only if all clocks
in Y have the same value in s, i.e., if ∀x ∈ Y • νs(x) = νs(rep(x)).

We use SCY to denote the set of all configurations that are stable wrt. Y and
SCN to denote the set

⋂
Y ∈ECN SCY of globally stable configurations.

Definition 5 (Reset Sequence). Let N be a well-formed network and let Y ∈
ECN be a set of quasi-equal clocks. Let σ = s0

λ1−→ . . .
λn−−→ sn be a transition

sequence of N such that s0 and sn are stable wrt. Y , s1, . . . , sn−1 are unstable
wrt. Y , and the valuation of every clock in Y at sn is 0. Then σ is called Y -reset
sequence. We use RSY to denote the set of Y -reset sequences of N .

A suffix of σ starting at si, 1 ≤ i ≤ n, is called a pure Y -reset sequence if
and only if the valuation for some clock of Y changes with every transition, i.e.
if ∀ i < j ≤ n•νsj−1 |Y 	= νsj |Y . We use RSpure

Y to denote the set of pure Y -reset
sequences of N .

If σ is in RSpure
Y and starts in a globally stable configuration, i.e., s0 ∈ SCN ,

then σ is called a full pure Y -reset sequence. We use RS full
Y to denote the set

of full pure Y -reset sequences of N . The smallest suffix of σ which is not in
RSpure

Y is called an impure Y -reset sequence. We use RS impure
Y to denote the

set of impure Y -reset sequences of N .

Let σ = s0
λ1−→ . . .

λn−−→ sn
λn+1−−−→ sn+1 be a transition sequence of N such that

the prefix of σ up to and including sn is in RSpure
Y and sn and sn+1 coincide on

Y , i.e. νsn |Y = νsn+1 |Y . Then σ is called pure Y -reset sequence-δ.

Proposition 1. For all well-formed networks N , if s0
λ1−→ . . .

λn−−→ sn is a full
pure Y -reset sequence of N , then sn is globally stable, i.e., sn ∈ SCN , and the
valuation at sn of each clock x ∈ Y is 0, i.e., νsn |Y = 0.

Formally, the relation between a stable configuration s ∈ Conf (N ) of a well-
formed network N and a configuration r ∈ Conf (N ′) of the network N ′ =
K(N , ECN ) is characterised by the function reverseQE . It removes the following
from r: the unique location of the automaton R; each counter variable rstY ,
Y ∈ ECN ; and it assigns to each clock x ∈ Y the value of the clock rep(x) ∈ Y .

Definition 6 (reverseQE and Consistency). Let N (A1, . . . ,An) be a well-
formed network and letN ′ = K(N , ECN ). The function reverseQE : Conf (N ′)→
Conf (N ) is defined point-wise as follows. Let r = 〈(�1, . . . , �n, �ini,R), ν〉 ∈
Conf (N ′). Then reverseQE (r) = 〈(�1, . . . , �n), ν̃〉 where

ν̃ =
(
ν ∪

⋃
Y ∈ECN {x �→ ν(rep(x)) | x ∈ Y }

)
\ {rstY �→ ν(rstY ) | Y ∈ ECN }.

The configuration r is called Y -consistent if and only if νr(rstY ) is the number
of reset locations wrt. Y assumed in r, i.e., if νr(rstY ) = |{�1, . . . , �n, �ini,R} ∩
RLY |. We use CONSY to denote the set of Y -consistent configurations of N ′

and CONSN ′ to denote the set
⋂

Y ∈ECN CONSY of consistent configurations.

Proposition 2. Let N be a well-formed network. Then reverseQE is a bijection
between CONSK(N ,ECN ) and SCN .



Reducing Quasi-Equal Clocks in Networks of Timed Automata 163

In the following we define a special transition relation for well-formed networks,
which relates stable configurations by collapsing full pure reset sequences. A
special transition in N corresponds to a single transition in N ′ = K(N , ECN ).

Definition 7 (
λ
=⇒). Let N be a well-formed network and let s, s′ ∈ SCN be two

globally stable configurations of N . There is a transition s
λ
=⇒ s′ if and only if

there is either a delay or τ-transition, or a full pure Y -reset sequence for some
Y ∈ ECN from s to s′ in T (N ), i.e., if

s
λ−→ s′ ∧ λ ∈ Time ∪ {τ}

∨
(
λ = τ ∧ ∃ s0

λ1−→ . . .
λn−−→ sn ∈ RS full

Y • s = s0 ∧ sn = s′
)
.

Configuration s is called ⇒-reachable if and only if there are configurations
s0, . . . , sn ∈ Conf (N ) such that s0 ∈ Cini , sn = s, and s0

λ1=⇒ s1 . . . sn−1
λn=⇒ sn

for some λ1, . . . , λn ∈ Time ∪ {τ}.
Definition 8 (Weak Bisimulation). Let N1 be a well-formed network and
N2 a network with the same set of locations, i.e., L(N1) = L(N2). Let T (Ni) =
(Conf (Ni), Λ, { λ−→i| λ ∈ Λ}, Cini,i), i = 1, 2, be the corresponding transition
systems restricted to Λ = Time ∪ {τ}.

A weak bisimulation is a relation S ⊆ Conf (N1)× Conf (N2) such that

1. ∀ s ∈ Cini,1 ∃ r ∈ Cini,2 • (s, r) ∈ S and ∀ r ∈ Cini,2 ∃ s ∈ Cini,1 • (s, r) ∈ S,
2. for all (s, r) ∈ S,

(a) for all configuration formulae CF over Ni, s |= CF iff r |= Γ (CF ),
(b) if s

λ−→1 s′, there exists r′ ∈ Conf (N2) such that r
λ−→2 r′ and (s′, r′) ∈ S,

(c) if r
λ−→2 r′, there exists s′ ∈ Conf (N1) such that s

λ−→1 s′ and (s′, r′) ∈ S.
The networks N1,N2 are called weakly bisimilar, if and only if there exists a
weak bisimulation S for T (N1) and T (N2).

Proposition 3. Let N be a well-formed network. Let K(N , ECN ) be the network
output by K. Let r ∈ Conf(K(N , ECN )) and s ∈ Conf(N ) be two configurations,
such that s = reverseQE(r). Then, for every � ∈ L(N ), � is the i-th location of
�s if and only if � is the i-th location of �r, i.e., if

∀ � ∈ L(N ) • � = �s,i ⇔ �r,i = �.

Proposition 4. Let N (A1, . . . ,An) be a well-formed network. Let s ∈ Conf (N )
and r ∈ Conf (K(N , ECN )) be two configurations such that s = reverseQE (r).
Let CFN be the set of configuration formulae over N . Then

∀CF ∈ CFN • s |= CF ⇐⇒ r |= Γ (CF ).

Theorem 1. Any well-formed network N is weakly bisimilar to K(N , ECN ).

Proof. {(reverseQE (r), r) | r ∈ CONSK(N ,ECN )} is a weak bisimulation by Def-
inition 8, and Propositions 2, 3 and 4. �
Corollary 1 (Reachability of Stable Configurations). Let s ∈ SCN be a
stable configuration of the well-formed network N . s is ⇒-reachable in T (N ) if
and only if reverseQE−1(s) is reachable in T (K(N , ECN )).

Proof. Theorem 1 and Proposition 2. �
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3.4 Handling Impurities and Unstable Configurations

While Corollary 1 allows us to conclude from reachability of a configuration in
N ′ to the reachability of a corresponding configuration in N , we cannot con-
clude in the opposite direction. The reason is that N ′ misses two things: firstly,
computation paths of N that contain overlapping reset phases are not simulated
by any computation path of N ′, i.e., N ′ would not reach a stable configuration
if it were only reachable by computation paths with overlapping reset phases.
Secondly, reachability of unstable configurations of N is not reflected in N ′.

In the following we approach the two issues as follows. We argue that, under
the additional assumption that the reset edges inN are pre/post delayed, impure
computation paths without timelock can always be reordered into pure ones. Re-
garding unstable configurations, we firstly observe that – not surprisingly – N ′

reflects reachability queries which explicitly ask for stable configurations. In ad-
dition, we syntactically characterise the class of local queries, which are reflected
by N ′ because they cannot distinguish stable and unstable configurations.

Definition 9 (Delayed Edge). An edge e of a timed automaton A in network
N is called delayed if and only if time must pass before e can be taken, i.e., if

∀ s0
λ1−→E1 s1 . . . sn−1

λn−−→En sn ∈ Π(N ) • e ∈ En

=⇒ ∃ 0 ≤ j < n • λj ∈ Time \ {0} ∧ ∀ j ≤ i < n • E(A) ∩ Ei = ∅

where we write si
λi−→Ei si+1, i ∈ N>0, to denote that the transition si

λi−→ si+1 is
justified by the set of edges Ei; Ei is empty for delay transitions, i.e. if λi ∈ Time.

Definition 10 (Reset Pre/Post Delay). Let N be a well-formed network.
We say ECN -reset edges are pre/post delayed in N if and only if all edges
originating in reset or reset successor locations are delayed, i.e. if

∀ e = (�, α, ϕ, r, �′) ∈ E(N ) • � ∈ RLN ∪RL+
N =⇒ e is delayed.

There are sufficient syntactic criteria for an edge e = (�1, α1, ϕ1,  r1, �2) being
delayed. For instance, if (�0, α0, ϕ0,  r0, �1) is the only incoming edge to �1 and
if ϕ0 = (x ≥ C ∧ x ≤ C) and ϕ1 = (x ≥ D ∧ x ≤ D) and C < D, then e is
delayed. It is also delayed if (�0, α0, ϕ0,  r0, �1) is the only incoming edge to �1,
 r0 is resetting x, and ϕ1 = (x > 0).

Both patterns occur, e.g., in the FSN case-study (cf. Section 4). There, the
reset location is entered via an edge following the former pattern, and the edges
originating at the reset successor location follow the latter pattern. Thus ECN -
reset edges are pre/post delayed in FSN.

Proposition 5. Let N (A1, . . . ,An) be a well-formed network where ECN -resets
are pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Let s ∈ Conf (N ) be a reachable configuration of N which is not timelocked
and not stable wrt. Y . Then all automata in RESY (N ) are either in a reset or
in a reset successor location in s, i.e.

∀Y ∈ ECN ∀ s ∈ Conf (N ) \ SCY ∀ 1 ≤ i ≤ n •
Ai ∈ RESY (N ) =⇒ �s,i ∈ RLY ∪RL+

Y .
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In order to precisely define the concept of reordering of configurations in
computation paths, we introduce the following notion of congruence of config-
urations. Reordering then means that for each impure computation path there
exists a pure computation path over congruent configurations.

Definition 11 (Congruent Modulo Y )
Let N (A1, . . . ,An) be a well-formed network with variables V. Two configura-
tions s1, s2 ∈ Conf (N ) are called congruent modulo Y ∈ ECN , denoted by
s1 ≡Y s2, if and only if they coincide on values of all variables and if, for each
A ∈ N , either s1, s2 coincide on the location of A and on the values of clocks
from X (A), or A is in a reset location in s1 and in the corresponding reset
successor location in s2, and s2 has the effect of taking a reset edge, i.e. if

νs1 |V = νs2 |V ∧
(
∀ 1 ≤ i ≤ n •

(
�1,i = �2,i ∧ νs1 |X (Ai) = νs2 |X (Ai)

)
∨
∨

j=1,2(�sj ,i ∈ RLY ∧ �s3−j ,i ∈ RL+
Y

∧ ∃ (�sj ,i, α, ϕ, r, �s3−j ,i) ∈ E(Ai) • νsj |X (Ai)[ r] = νs3−j |X (Ai))
)
.

We write s1 ≡Y1,...,Yn s2 if and only if s1 ≡Y1∪···∪Yn s2 for Y1, . . . , Yn ∈ ECN .

Lemma 2. Let N (A1, . . . ,An) be a well-formed network where ECN -resets are
pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Each impure reset sequence which starts in a reachable and ends in a not
timelocked configuration can be “reordered” into a reset sequence-δ of Y , i.e.,

∀Y ∈ ECN ∀ s0
λ1−→ · · · λn−−→ sn ∈ RS impure

Y ∃ r0, . . . , rn ∈ Conf (N ) • r0 = s0 ∧

rn = sn ∧ (∀ 0 ≤ i < n • ri ≡Y s0) ∧ r0
λ2−→ . . .

λn−−→ rn−1 ∈ RSpure
Y ∧ rn−1

λ1−→ rn.

Proof. Proposition 5 and, by Definition 2 (well-formedness), the reset edges wrt.
Y are independent from the edges justifying the transition from s0 to s1. �

In Figure 3 we provide an illustration of the reordering of reset sequences from
Lemma 2. Subfigure a) represents a Y -reset sequence from s0 to s4, where filled
circles represent stable configurations and stars unstable configurations. The
transition marked with (!) represents an impurity. The suffix from s1 to s4 is
an impure Y -reset sequence. Subfigure b) shows the result after reordering. The
sequence from r0 to r4 is a pure Y -reset sequence-δ.

Lemma 3. Let N (A1, . . . ,An) be a well-formed network where ECN -resets are
pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Each reset sequence s0
λ1−→ . . .

λn−−→ sn ∈ RSY of Y where s0 is reachable and
sn is not timelocked can be “reordered” into a computation path

r0
λk1−−→ r1 . . . rn−1

λkn−−→ rn

where k1, . . . , kn is a reordering of 1, . . . , n, r0 = s0, and where there exists an
index 0 ≤ j ≤ n such that s0 ≡Y ri for all 0 ≤ i ≤ j, si ≡Y rki for all j < i ≤ n,

and r0
λk1−−→ . . .

λkj−−→ rj ∈ RSpure
Y .
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a)

b)

...

...

s0 s1 (!) s2 s3 s4

r0 r1 (!)r2 r3 r4

−−−−−−−−−−−−−−−−−−−︸ ︷︷ ︸
impure Y −reset sequence

−−−−−−−−−−−−−−−−−−−−−−−−−︸ ︷︷ ︸
pure Y −reset sequence-δ

...

...

Fig. 3. Reordering of reset sequences

Proof. Apply Lemma 2 inductively from right to left. That is, if the reset se-
quence of Y has m impure reset sequences of Y , we start the reordering with the
m-th impure reset sequence (the shortest one), and finalize with the first (and
longest) impure reset sequence of Y . �

Definition 12 (Stability Query). A configuration formula CF over the well-
formed network N is called stability query iff CF is exactly satisfied in stable
configurations of N , i.e., if ∀ s ∈ Conf (N ) • s |= CF ⇐⇒ s ∈ SCN .

Proposition 6. Let N be a well-formed network.
Then CF =

∧
Y ∈ECN

∧
x∈Y (x− rep(x) = 0) is a stability query over N .

Note that if reset locations are known for a specific network, a stability query
could also be stated in terms of those.

Theorem 2. Let N be a well-formed network where ECN -resets are pre/post
delayed, let CF be a configuration formula and ‘stable’ a stability query over N .
Then

K(N , ECN ) |= ∃♦Γ (CF ) ⇐⇒ N |= ∃♦(CF ) ∧ stable .

Proof. Use Lemma 3 to obtain a transition sequence which⇒-reaches the witness
configuration, then Corollary 1. �

In the following, we bring together Lemmata 2 and 3 to handle computation
paths with arbitrary overlaps of reset phases. This allows us to conclude that
N ′ reflects queries which cannot distinguish stable and unstable configurations.

Lemma 4. Let N (A1, . . . ,An) be a well-formed network where ECN -edges are
pre/post delayed. Let

σ = s0
λ1,1−−−→ s1,1 . . .

λ1,m1−−−−→ s1,m1

λ1−→ s1 . . . sn−1
λn,1−−−→ sn,1 . . .

λn,mn−−−−→ sn,mn

λn−−→ sn

be a transition sequence where s0 is reachable and sn is not timelocked, where
si is globally stable, i.e., si ∈ SCN , 0 ≤ i ≤ n, where for each sub-sequence

σi = si−1
λi,1−−→ si,1 . . . si,mi

λi−→ si, 0 < i ≤ n, either si has a globally stable
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successor, i.e. mi = 0, and λi = τ , or σi is a full pure reset sequence of some
Y ∈ ECN , and where at s0 starts a full pure reset sequence, i.e. m1 > 0.

Then σ can be “reordered” into the transition sequence

σ′ = r0
λ̂1−→ r1 . . . rK−1

λ̂K−−→ rK

λ̂K+1,1−−−−→ rK+1,1 . . . rK+1,mK+1

λ̂K+1−−−→ rK+1 . . . rn−1
λ̂n,1−−−→ rn,1 . . . rn,pn

λ̂n,pn−−−−→ rn

where 1 ≤ i1 < · · · < iK ≤ n are the indices of the configurations with globally
stable successors, where 0 ≤ j1, . . . , jN ≤ n are the indices such that there is a
full pure reset sequence of Yk ∈ ECN between sjk and sjk+1 in σ, and where the
actions not belonging to full pure reset sequences occur first, followed by the full
pure reset sequences of Y1, . . . , YN in this order, i.e. r0 = s0, rk ≡Y1,...,YN sik for

1 ≤ k ≤ K, and rk
λ̂k+1,1−−−−→ rk+1,1 . . . rk+1,mjk

λ̂k+1,mjk−−−−−−→ rk+1 ∈ RSpure
Yjk

.

Proof. Similar to Lemma 2 using the independence of reset edges from other
edges implied by Definition 2, then induction similar to Lemma 3. �

Definition 13 (Local Query). Let N be a well-formed network. A reachability
query ∃♦CF over N is called local query wrt. A ∈ N if and only if CF is in
disjunctive normal form, i.e. CF =

∨n
i=1

∧mi

j=1 BF i,j , and if each atom BF i,j is
of the form A.� with � ∈ L(A), or a constraint ϕ with clocks(ϕ) ⊆ X (A).

Theorem 3. LetN be a well-formed network where ECN -reset edges are pre/post
delayed and let ∃♦CF be a reachability query which is local to A ∈ N .

If there is a configuration reachable in N which satisfies CF and which is not
timelocked, then there is a configuration reachable in K(N , ECN ) which satisfies
Γ (CF ), i.e. N |=¬timelock ∃♦CF =⇒ K(N , ECN ) |= ∃♦Γ (CF ).

Proof. Use Lemma 4 to obtain a stable configuration which satisfies CF , then
Theorem 2 applies. �

4 Experimental Results

We applied our approach manually to three real world case studies, one of
which is an industrial case, and the other two were obtained from the scien-
tific literature. Initially, the six restrictions of well-formedness were motivated
by the industrial case, and later generalised to increase the applicability of our
approach.

CRS-N is the cascaded ride sharing protocol [13] with N sensors organized
in the form of a spanning tree. There exists a sink node that collects data from
every sensor. We verified the local query lessMaxFail, which states that if a
sensor has at least one working communication path, the data sent to the sink
node is correctly aggregated. In lessMaxFail we only use variables and locations
of the sink node.
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Table 1. Row ‘Clk.’ gives the number of clocks in the model, ‘States’ the number of
visited states, ‘M.’ the memory usage in MB, and ‘t (s)’ the runtime in seconds.
(Env.: Intel i3, 2.3GHz, 3GB, Ubuntu 11.04, verifyta 4.1.3.4577 with default options.)

Network Clk. States M. (MB) t (s)

CRS-5 5 14.9k 17.3 0.2
CRS-5K 1 5.0k 16.2 0.1

CRS-6 6 264.5k 74.7 3.0
CRS-6K 1 64.9k 43.1 0.8

CRS-7 7 7,223.8k 1,986.3 142.1
CRS-7K 1 1,266.4k 693.5 19.2

CRS-8 8 - -
CRS-8K 1 2,530.2k 1,543,200 48.7 5 6 7 8

0

50

100

Number of Sensors

t
(s
)

CRS

CRS-K

Network Clk. States M. (MB) t (s)

CSMA-12 14 688.2k 230.1 8.5
CSMA-12K 1 49.3k 36.3 0.5

CSMA-14 16 3,670.1k 1,257.6 57.0
CSMA-14K 1 229.5k 135.6 3.1

CSMA-16 18 18,874.5k 7,051.7 374.3
CSMA-16K 1 1,048.7k 597.5 17.2

CSMA-20 22 - - -
CSMA-20K 1 20,971.7k 10,589.0 563.5 12 14 16 18 20

0

200

400

600

Number of Slaves

t
(s
)

CSMA

CSMA-K

Network Clk. States M. (MB) t (s)

FSN-6 12 2,149.9k 302.1 176.6
FSN-6K 5 0.9k 16.6 0.1

FSN-8 14 5,084.3k 643.1 729.9
FSN-8K 5 0.9k 17.0 0.1

FSN-10 16 17,474.7k 2,069.4 4057.1
FSN-10K 5 0.9k 17.4 0.1

FSN-60K 5 4,239.4k 454.4 318.4

FSN-80K 5 5,604.4k 611.3 543.9 0 10 20 30 40 50 60 70 80

0

2,000

4,000

Number of Sensors

t
(s
)

FSN

FSN-K

CSMA-N is the model of the CSMA/CD protocol [14] with N slaves and one
master. We verified the local query noCollision, which states that no collision
occurs when slaves send data to the master. We have represented the occurrence
of collisions by a location of the master.

FSN-N is a custom TDMA-based wireless fire alarm system with N sen-
sors [15]. We verified the local query 300seconds, which states that a sensor
malfunction is detected by the central unit (main sensor) in at most 300 sec-
onds. In this query we use a clock and a location from the central unit.

Table 1 gives the figures for verification before and after applying the trans-
formation from Section 3.2, the latter figures are indicated by suffix K at the
network name.
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5 Conclusion and Future Work

We have presented a transformation approach to mechanically remove verifica-
tion overhead from networks of timed automata where clocks in the real world
are intended to be synchronized. We formally introduced the notion of quasi-
equal clocks to characterise such clocks. We propose a transformation that goes
beyond simple syntactical replacement. We formally prove the correctness of our
approach and define a class of timed automata networks and reachability queries
for which it is applicable. Although well-formedness imposes a set of restrictions
over the networks where we can apply our approach, this is reasonable since
the semantics of well-formed networks are preserved after transformation, up to
configurations where quasi-equal clocks have different valuations.

Experiments with real-world case studies show the feasibility of reducing
clocks in networks of timed automata based on quasi-equal clocks. Significant
gains in the computational cost of model checking using Uppaal for transformed
models are achieved, once eliminated the unnecessary overhead caused when
well-formed networks generate intermediate configurations by resetting quasi-
equal clocks one by one. We enable an increase in decoupling between modelling
as a design and documentation activity, and model optimization for verification.
Thus, the approach effectively narrows the gap between readable, maintainable
models and model checking efficiency.

In the future, we would like to enlarge the spectrum of networks that can
be treated by our approach by investigating relaxations of the well-formedness
criteria presented. Additionally, we would like to extend the types of queries
supported by the transformation by providing a broader syntax for validable
queries beyond simple reachability. Finally, an automatic detection of quasi-
equal clocks would increase the mechanisation of our approach.
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13. Gobriel, S., Khattab, S., Mossé, D., Brustoloni, J., Melhem, R.: Ridesharing: Fault
tolerant aggregation in sensor networks using corrective actions. the 3rd annual.
In: IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks (SECON), pp. 595–604 (2006)

14. Jensen, H., Larsen, K., Skou, A.: Modelling and analysis of a collision avoidance
protocol using SPIN and Uppaal. In: 2nd SPIN Workshop (1996)

15. Dietsch, D., Feo-Arenis, S., Westphal, B., Podelski, A.: Disambiguation of indus-
trial standards through formalization and graphical languages. In: RE, pp. 265–270
(2011)



SMT-Based Induction Methods for Timed Systems

Roland Kindermann, Tommi Junttila, and Ilkka Niemelä
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Abstract. Modeling time-related aspects is important in many applications of
verification methods. For precise results, it is necessary to interpret time as a
dense domain, e.g. using timed automata as a formalism, even though the sys-
tem’s resulting infinite state space is challenging for verification methods. Fur-
thermore, fully symbolic treatment of both timing related and non-timing related
elements of the state space seems to offer an attractive approach to model check-
ing timed systems with a large amount of non-determinism. This paper presents
an SMT-based timed system extension to the IC3 algorithm, a SAT-based novel,
highly efficient, complete verification method for untimed systems. Handling of
the infinite state spaces of timed system in the extended IC3 algorithm is based
on suitably adapting the well-known region abstraction for timed systems. Ad-
ditionally, k-induction, another symbolic verification method for discrete time
systems, is extended in a similar fashion to support timed systems. Both methods
are evaluated and experimentally compared to a booleanization-based verification
approach that uses the original discrete time IC3 algorithm.

1 Introduction

In many application areas of model checking, such as analysis of safety instrumented
systems, modeling and analyzing in the presence of dense time constructions such as
timers and delays is essential. Compared to finite state systems, such timed systems
add an extra layer of challenge for model checking tools. In many cases, timed au-
tomata [1,2,3] are a convenient formalism for describing and model checking timed
systems. There are many tools, Uppaal [4] to name just one, for timed automata and
model checking algorithms for timed automata have been studied extensively during
the last two decades, see, e.g., [3] for an overview. Most state-of-the-art model check-
ing systems for timed automata use the so-called region abstraction to make a finite
state abstraction of the dense time clocks in the automata. These regions are then ma-
nipulated symbolically with difference bounded matrices or decision diagram structures
(see, e.g., [5]).

In this paper our focus is on model checking of safety instrumented systems (see,
e.g., [6]). Such systems have features that are challenging for the classic timed au-
tomata based approach described above. First, safety instrumented systems do typically
involve a substantial number of timing related issues. However, such systems are often
not best described using automata-like control structures but with a sequential circuit-
like control logic. This makes the use of timed automata rather inconvenient in model-
ing. Second, such systems tend to have a relatively large amount of non-deterministic
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input signals which are computationally challenging for model checking tools based on
explicit state representation of discrete components (i.e. control location and data).

Hence, we are interested in developing model checking techniques that complement
the automata based methods to address these issues. Instead of timed automata, we use
a more generic symbolic system description formalism [7] which can be seen as an ex-
tension of the classic symbolic transition systems [8] with dense time clock variables
and constraints. In our previous work [7,9], we have experimented with (i) SMT-based
bounded model checking (BMC) [10,11], and (ii) BDD-based model checking based on
booleanization of the region abstracted model. These methods were not totally satisfac-
tory as (i) BMC can, in practice, only find bugs, not prove correctness of the system, and
(ii) the BDD-based method does not seem to scale well to realistically sized models.

In order to address the computational challenge to develop model checking tech-
niques that can handle timing as well as a substantial amount of non-deterministic input
signals and prove correctness, we turn to inductive techniques. The motivation here is
the success of temporal induction [12,13] and, especially, of the IC3 algorithm [14]
in the verification of finite state hardware systems. Our approach is to employ SMT
solvers instead of SAT solvers as the basic constraint solver technology and apply sym-
bolic region abstraction to handle the dense time clocks in the models. We extend IC3
to timed systems by using linear arithmetics instead of propositional logic and by lifting
the concrete states found by the SMT solver to symbolic region level constraints that
are further used in the subsequent steps to constrain the search. As a result we obtain a
version of IC3 that does not explicitly construct the symbolic region abstracted system
but still can exclude whole regions of states at once. We also describe an SMT-based
extension of the k-induction algorithm to these kinds of timed systems. In addition, we
develop optimizations that allow us to exclude more regions at a time in the SMT-based
IC3 algorithm, and to use stronger “simple path” constraints in k-induction.

Our experimental results indicate that SMT-based IC3 can indeed prove much more
properties and on much larger models than were possible with our earlier approaches
or with SMT-based timed k-induction. Furthermore, when comparing to the approach
of using the original propositional IC3 on booleanized region abstracted model, we
observe that using richer logics in the SMT framework makes the IC3 algorithm scale
much better for timed systems. However, IC3 seems to perform worse than k-induction
(and thus BMC) in finding counter-examples to properties that do not hold. This is
probably due to its backwards DFS search nature, and leads us to the conclusion of
recommending the use of a portfolio approach combining SMT-based BMC and IC3
when model checking these kinds of safety instrumented systems.

2 Symbolic Timed Transition Systems and Regions

To model timed systems we use symbolic timed transition systems1 (STTS) [7], a
generic formalism allowing modeling of arbitrary control logic structures, data ma-
nipulation, and non-deterministic external inputs. In a nutshell, STTSs can be seen as

1 Not to be confused with similarly named concepts, e.g., the symbolic transition relation of a
timed automaton [15].
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symbolic transition systems [8] extended with real-valued clocks and associated con-
straints; they are also quite similar to the “Finite State Machines with Time” of [16]. By
using encoding techniques similar to those in [10,11], timed automata (and networks of
such) can be efficiently translated into STTS [7].

In the following, we use standard concepts of propositional and first-order logics.
We assume typed (i.e., sorted) logics, and that formulas are interpreted modulo some
background theories (in particular, linear arithmetics over reals); see, e.g., [17] and
references therein. If Y = {y1, ..., yl} is a set of variables and φ formula over Y , then
Y ′ = {y′1, ..., y′l} is the set of corresponding similarly typed next-state variables and φ′

is obtained from φ by replacing each variable yj with y′j . Similarly, if ψ is a formula

over Y ∪ Y ′, then, for each i ∈ N, the formula ψ[i] is obtained by replacing yj with y
[i]
j

and y′j with y
[i+1]
j , of the same types. For example, if ψ = (c′2 ≤ c1 + δ) ∧ x′

1, then

ψ[4] = (c
[5]
2 ≤ c

[4]
1 + δ[4]) ∧ x

[5]
1 .

An STTS (or simply a system) is a tuple 〈X,C, Init , Invar , T, R〉, where

– X = {x1, ..., xn} is a finite set of finite domain state variables,
– C = {c1, ..., cm} is a finite set of real-valued clock variables (or simply clocks),
– Init is a formula over X describing the initial states of the system,
– Invar is a formula over X ∪ C specifying a state invariant (throughout the paper,

we assume the state invariants to be convex, as defined later),
– T is the transition relation formula over X ∪ C ∪X ′, and
– R associates with each clock c ∈ C a reset condition formula rc over X ∪C ∪X ′.

Like in timed automata context, we require that in all the formulas in the system the
use of clock variables is restricted to atoms of the form c �� n, where c ∈ C is a clock
variable, �� ∈ {<,≤,=,≥, >} and n ∈ Z. Observe that, as in the timed automata
context as well, one could use rational constants in systems and then scale them to
integers in a behavior and property preserving way. A system is untimed if it does not
have any clock variables. For the sake of readability only, we do not consider the so-
called urgency constraints [7] in this paper.

The semantics of an STTS is defined by its states and how they may evolve to others.
A state is simply an interpretation over X ∪ C. A state s is valid if it respects the
state invariant, i.e. s |= Invar . A state s is an initial state if it is valid, s |= Init , and
s(c) = 0 for each clock c ∈ C. Given a state s and δ ∈ R≥0, we denote by s + δ the
state where clocks have increased by δ, i.e. (s+ δ)(c) = s(c) + δ for each clock c ∈ C
and (s+δ)(x) = s(x) when x ∈ X . A valid state s may evolve into a successor state u,
denoted by s −→ u, if u is also valid and either of the following holds:

1. Discrete step: (i) the current and next state interpretations evaluate the transition
relation to true, i.e. γ |= T where γ(y) = s(y) when y ∈ X ∪ C and γ(x′) = u(x)
when x′ ∈ X ′, and (ii) each clock either resets or keeps its value: for each clock
c ∈ C, u(c) = 0 if γ |= rc and u(c) = s(c) otherwise.

2. Time elapse step: (i) some amount of time elapses: u = s + δ for some δ ∈ R≥0,
and (ii) the state invariant is respected in the states in between: s+μ is valid for all
0 < μ ≤ δ.
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(a) A part of a timed safety instrumented system, (b) Clock regions
taken from [18]

Fig. 1. Illustrations of safety instrumented systems and regions

A path is a finite sequence s0s1...sl of states such that si −→ si+1 for each consecutive
pair of states in the path. A state is reachable if there is a path from an initial state to
that state. A property P is a formula over the state variables X and clock variables C,
adhering to the same restrictions on the use of clock variables as the system’s formulas.
In this paper we are interested in solving the problem whether the given state property
P is an invariant, i.e. whether P holds in all reachable states of the system.

As in the context of timed automata, we require the state invariants in STTSs to be
convex: for all states s and for all 0 ≤ η ≤ δ it should hold that whenever s |= Invar and
(s+ δ) |= Invar , also (s+ η) |= Invar . Thus, a state invariant cannot become false
and then true again during a time-elapse step, making condition (ii) of time-elapse steps
to always hold. Convexity is easy to test with one call to an SMT solver.

Example 1. Consider an STTS modeling the timer Td in the safety instrumented system
in Fig. 1(a). The STTS has the clock variable d which is reset when a discrete step makes
the signal x1 true, i.e. rd = (¬x1 ∧ x′

1), corresponding to the activation of the timer.
The output signal x2 is initially false, i.e. Init contains the conjunct (¬x2). It changes
to true when the signal x1 does and then stays true for two seconds, captured by the
conjunct (x′

2 ⇔ (¬x1 ∧ x′
1)∨ (x2 ∧ (d < 2))) in the transition relation T . To force the

timer output to be reset after two seconds, Invar contains the conjunct (x2 ⇒ (d ≤ 2)).

Regions. A conceptual tool for handling the infinite state space of an STTS is the
region abstraction [1]. Given an a ∈ R≥0, let fract(a) be its fractional part, i.e. a =
�a�+ fract(a) and 0 ≤ fract(a) < 1. Let mc be the maximum (relevant) value of the
clock c, i.e. the largest constant that c is compared to in Invar , T , R or P . A clock
valuation is an interpretation over C. Two clock valuations v and w belong to the same
equivalence class called region, denoted by v ∼ w, if for all clocks c, d ∈ C

1. either (i) �v(c)� = �w(c)� or (ii) v(c) > mc and w(c) > mc;
2. if v(c) ≤ mc, then fract(v(c)) = 0 iff fract(w(c)) = 0; and
3. if v(c) ≤ mc and v(d) ≤ md, then fract(v(c)) ≤ fract(v(d)) iff fract(w(c)) ≤

fract(w(d)).

Essentially, points 1 and 2 ensure that any clock constraint is either satisfied by all
interpretations within the same region or violated by all interpretations in that region
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and 3 ensures that the next region reached as time passes is the same for all interpre-
tations. Figure 1(b) illustrates the region abstraction for an STTS with two clocks, c
and d, with mc = 3 and md = 2. The thick black lines, thick black dots and the areas
in between the thick black lines each represent a different region. The region in which
�v(c)� = �v(d)� = 1 and 0 < fract(v(c)) < fract(v(d)) is highlighted in gray. Two
states, s and u, are in the same region, denoted by s ∼ u, if they agree on the values of
the state variables and are in the same region when restricted to clock variables.

Due to the restrictions imposed on the use of clock variables, states in the same region
are (i) indistinguishable for predicates, meaning that u |= Init iff s |= Init , u |= Invar
iff s |= Invar , and u |= P iff s |= P whenever s ∼ u, and (ii) forward bisimilar: if
s −→ s′ and s ∼ u, then there exists a u′ such that u −→ u′ and s′ ∼ u′.

Formula Representation with Combined Steps. To simplify the exposition, to reduce
amount of redundancy in paths, and to enable some optimizations, we introduce a for-
mula representation for STTSs that exploits a well-known observation: for reachability
checking, it is enough to consider paths where discrete steps and time elapse steps
alternate, as two consecutive time elapse steps can be merged into one and zero du-
ration time elapse steps can be added in between discrete steps. For a given STTS
〈X,C, Init , Invar , T, R〉, we define the following formulas:

– Învar := Invar ∧
∧

c∈C c ≥ 0. Now s |= Învar for a state s iff s is a valid state
and all clock values are non-negative.

– Înit := Init ∧
∧

c∈C c = ĉ for a fresh, otherwise unconstrained real-valued vari-

able ĉ. Now s |= Înit iff, forgetting the state validity requirements, s is a state
reachable from an initial state with time elapse steps only.

– T̂ := T ∧ δ ≥ 0 ∧
∧

c∈C(rc ⇒ c′ = δ) ∧
∧

c∈C(¬rc ⇒ c′ = c+ δ) with δ being
a fresh real-valued variable. Thus, a state u is reachable from a state s with one
discrete step followed by one time elapse step iff π |= T̂ for the valuation π on
X ∪C ∪X ′∪C′ mapping each z ∈ X ∪ C to s(z) and each z′ ∈ X ′ ∪ C′ to u(z).

3 k-Induction for Timed Systems

The k-induction method [12,13], originally proposed for finite-state systems, induc-
tively proves a reachability property for a system or discovers a counter-example while
trying to prove the property. In the following, we extend k-induction to a complete
verification method for STTS in a similar way as done in [19].

As the base case of an inductive proof, k-induction shows that no bad state can be
reached within k steps starting from an initial state for some k ∈ N. As the induc-
tive step, k-induction shows that it is impossible to have a path consisting of k good
(property-satisfying) states followed by a bad (property-violating) state. Together, these
steps prove that the property holds in any reachable state.

For an untimed system 〈X, ∅, Init , Invar , T, ∅〉, both the base case and inductive
step can be proven using a SAT solver. The base case holds iff the formula Init [0] ∧∧k

i=0 Invar
[i]∧

∧k−1
i=0 T [i]∧

∧k−1
i=0 P [i]∧¬P [k] is unsatisfiable. Likewise, the inductive

step holds iff the formula
∧k

i=0 Invar
[i] ∧

∧k−1
i=0 T [i] ∧

∧k−1
i=0 P [i] ∧ ¬P [k] is unsatisfi-

able. Initially, k-induction attempts an inductive proof with k = 0. If unsuccessful, k is
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increased until the inductive proof succeeds or a counter-example is found while check-
ing the base case. Note that the large overlap both between the formulas for checking
base case and inductive step and between the checks before and after increasing k can
be exploited by incremental SAT solvers [13].

While correct, the described approach is not complete as the induction step is not
guaranteed to hold even if the property checked is satisfied by the system. For finite-
state systems k-induction can be made complete by only considering simple (non-
looping) paths when checking the inductive step. This can be done by adding a quadratic
number disequality constraints to the SAT formula, requiring any pair of states to be dis-
tinct. Experimental evidence, however, suggests that it is beneficial to add disequality
constraints for pairs of states only when observed that they are actually needed [13].

k-Induction for STTS. Both the base case and the inductive step formula can be ap-
plied to an STTS 〈X,C, Init , Invar , T, R〉 simply by replacing Init , T and Invar in
these formulas by Înit , T̂ and Învar and using an SMT solver instead of a SAT solver.
However, unlike for untimed systems, termination is not guaranteed even when adding
disequality constraints. For untimed systems, disequality constraints guarantee termi-
nation because in a finite state system there are no simple paths of infinite length and,
thus, the simple path inductive step check is guaranteed to be unsatisfiable with suffi-
ciently large k. Timed systems, in contrast, typically have no upper bound for the length
of a simple path and, thus, disequality constraints are not sufficient for completeness.
However, the infinite state space of an STTS can be split into a finite number of regions.
Thus, any reasoning made for finite state systems can be applied to regions of states.
In particular, k-induction is complete and correct when only paths that do not visit two
states belonging to the same region are considered in the inductive step [19]. By enforc-
ing this property on inductive step paths using region-disequality constraints, complete
k-induction can be performed using Înit , T̂ and Învar (almost) without modification.

In order to specify that two states of an STTS belong to different regions, region-
disequality constraints need to individually constrain the integer and fractional parts of
clock values. As only some SMT-solvers, such as Yices [20], allow referring to integer
and fractional parts of real-valued variables, we provide a region-disequality constraint
encoding that does not rely on such a feature.2 Instead, we split each clock variable c
(and the difference variable δ) into two variables: cint represents the integer and cfract
the fractional part of c’s value. This “splitting of clocks” requires rewriting of Înit , T̂
and Învar by replacing each atom involving a clock with a formula as follows:

Atom Replacement, n ∈ N Atom Replacement, n ∈ N
c < n cint < n c ≤ n cint < n ∨ (cint = n ∧ cfract = 0)
c > n cint > n ∨ (cint = n ∧ cfract > 0) c ≥ n cint ≥ n
c = n cint = n ∧ cfract = 0 c = ĉ cint = ĉint ∧ cfract = ĉfract
c′ = δ c′int = δint ∧ c′fract = δfract
c′ = c+ δ ((cfract + δfract < 1) ⇒ (c′int = cint + δint ∧ c′fract = cfract + δfract)) ∧

((cfract+δfract ≥ 1) ⇒ (c′int = cint+δint+1∧c′fract = cfract+δfract−1))

2 In [9] we give an alternative encoding for region-disequality constraints in a BMC setting.
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Then, two states with indices i and j can be forced to be in different regions by the
following region-disequality constraint DiffRegion [i,j]:

∨
x∈X

x[i] �= x[j] ∨
∨
c∈C

(c
[i]
int �= c

[j]
int ∧ (¬max[i]

c ∨ ¬max[j]
c ))

∨
∨
c∈C

(¬max[i]
c ∧ ¬(c[i]fract = 0 ⇔ c

[j]
fract = 0))

∨
∨
c∈C

∨
d∈C\{c}

(¬max[i]
c ∧ ¬max

[i]
d ∧ ¬((c[i]fract ≤ d

[i]
fract) ⇔ (c

[j]
fract ≤ d

[j]
fract)))

where the shorthand max
[i]
c := c

[i]
int > mc ∨ (c

[i]
int = mc ∧ cfract > 0) detects whether

the clock c exceeds its maximum relevant value mc.

4 IC3 for Timed Systems

In this section, we first describe the IC3 algorithm [14] for untimed finite state systems
(see also [21] for an alternative, complementary account of the algorithm). We then
introduce a timed system extension using region abstraction and SMT solvers.

Like k-induction, the IC3 algorithm tries to generate an inductive proof for a given
state property P on an untimed system S = 〈X, ∅, Init, Invar , T, ∅〉. But unlike the
unrolling-based approach used by k-induction, proofs generated by the IC3 algorithm
only consists of a single formulaProof satisfying three properties: (a) Proof is satisfied
by any initial state of S, (b) Proof is satisfied by any successor of any state satisfying
Proof , and (c) Proof ⇒ P . Properties (a) and (b) serve as base case and inductive step
for showing that the set of states satisfying Proof is an over-approximation of the states
reachable in S while property (c) proves that any reachable state satisfies P .

In order to generate a proof, the IC3 algorithm builds a sequence of sets of formulas
F0 . . . Fk satisfying certain properties. Eventually, one of these sets becomes the proof
Proof . Each F -set represents the set of states satisfying all its formulas. The properties
satisfied by the sequence are (i) Init ∧ Invar ⇒ F0, (ii) Fi ⇒ Fi+1, (iii) Fi ⇒ P ,
and (iv) Fi ∧ Invar ∧ T ∧ Invar ′ ⇒ F ′

i+1. The basic strategy employed by the IC3
algorithm is to add clauses to the Fi-sets in a fashion that keeps properties (i) to (iv)
intact until Fk ∧ Invar ∧ T ∧ Invar ′ ⇒ P ′. In this situation, k can be increased by
appending {P} to the sequence. The algorithm terminates once Fi = Fi+1 for some
i and provides Fi as a proof. Upon termination, properties (i) and (ii) imply proof-
property (a), property (iv) and the termination condition Fi = Fi+1 imply property (b)
and property (iii) implies property (c). Note that, in practice, property (ii) is enforced
by adding any formula added to a given F -set also to all F -sets with lower index, i.e.
Fi ⊆ Fi−1.

After sketching the basic strategy, we will now take a closer look at the algorithm.
Note, however, that only a simplified version of the algorithm which focuses on aspects
relevant for the extension for STTS is described here. Figure 2(a) shows the main loop
of the IC3 algorithm. Each iteration, the algorithm first checks whether it is currently
possible to extend the sequence of F -sets by appending P . Note that as appending P
will never result in properties (i) to (iii) being violated, it is sufficient to check whether
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1: loop
2: if Fk ∧ Invar ∧ T ∧ Invar ′ ∧ ¬P ′ is

UNSAT then
3: k := k + 1
4: add Fk ← {P} to sequence of F -sets
5: propagate()
6: if Fi = Fi+1 for some i then
7: return true {Property holds}
8: else
9: s ← predecessor of a bad state extracted

from the model
10: success ← blockState(s)
11: if ¬success then
12: return false {Prop. violated}

(a) The main loop of IC3

1: Q ← priority queue containing 〈s, k〉
2: while Q not empty do
3: s, i ← Q.popMin()
4: if i = 0 then
5: return false {Counter-example found}
6: if Fi−1 ∧ ¬s ∧ T ∧ Invar ∧ Invar ′ ∧ s′ is SAT then
7: z ← predecessor of s extracted from model
8: Q.add(〈s, i〉)
9: Q.add(〈z, i − 1〉)

10: else
11: t ← generalize(¬s)
12: Add t to F0 . . . Fi

13: if i < k then
14: Q.add(〈s, i + 1〉)
15: return true

(b) The blockState(s) sub-routine

Fig. 2. The IC3 algorithm

extending the sequence would violate property (iv). A corresponding SAT call is made
in Line 2 of Fig. 2(a). If this call indicates that the sequence can safely be extended, it is
extended in Lines 3 and 4. In the next step, clauses may be propagated from F -sets to
subsequent sets in the sequence. While this step is vital for termination, a more detailed
description is omitted here for space limitations. After propagation, the algorithm’s
termination condition is checked in Line 6.

Of course, the SAT check in Line 2 may as well indicate that the F -sequence may
currently not be extended without violating property (iv). In this case, a state s that
satisfies Fk and has a bad successor can be extracted from the model returned by the
SAT solver. As s prevents the sequence from being extended, the algorithm attempts to
drop s from (the set of states represented by) Fk by adding a clause that implies ¬s.3

The corresponding subroutine call, blockState(s), may need to add further clauses also
to other F -sets than Fk to ensure that the properties of the sequence remain satisfied.

The blockState(s) subroutine, outlined in Fig. 2(b), operates on a list of proof obli-
gations, each being a pair of a state and an index. An obligation 〈s, i〉 indicates that
it is necessary to drop s from Fi before the main loop of the algorithm can continue.
Initially, the only proof obligation is to drop the state provided as an argument from Fk.
For any proof obligation 〈s, i〉, the blockState subroutine in Line 6 checks whether s
has a predecessor z in Fi−1. Such a predecessor prevents s from being excluded from
Fi without violating property (iv). Thus, if a predecessor is found, the obligation 〈s, i〉
can not be fulfilled immediately and is added to the set of open obligations again in
Line 8. Furthermore, z has to be excluded from Fi−1 before s can be excluded from Fi.
Thus, obligation 〈z, i− 1〉 also being added to the open obligations in Line 9.

If the SAT call in Line 6 is unsatisfiable, then s has no predecessor in Fi−1 and
can safely be excluded from Fi without violating property (iv). Then, s is excluded by
adding a generalization of the clause ¬s to Fi. More precisely, the algorithm attempts
to drop literals from ¬s in a way that preserves properties (i) and (iv) before adding the
resulting clause to Fi. Without this generalization step, states would be excluded one at
a time from the F -sets resulting in a method akin to explicit state model checking.

3 Abusing the notation, we interpret a state s as formula
∧

y∈C∪X y = s(y) where appropriate.
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So far, it has been assumed that P holds. If this is not the case, the main loop
will eventually pass a predecessor of a bad state reachable in S to blockState. Then,
blockState essentially performs a backwards depth-first search that eventually leads
to an initial state of S, which is detected in Line 4. It is straightforward to extract a
counter-example from the proof obligations if it is detected that P does not hold.

Note that, while sufficient for explaining our extensions, only a simplified version
of the IC3 algorithm has been described. Most notably, the complete version of the
algorithm additionally aims to satisfy proof obligations for multiple successive F -sets
at a time if possible and performs generalization based on unsatisfiable cores obtained
from SAT calls in various locations. For a description of these techniques as well as
complete arguments for correctness and completeness of the approach refer to [14,21].

Extending IC3 for timed systems. As was the case with k-induction, the key to extend-
ing the IC3 algorithm to timed systems is the region abstraction. Again, we will use an
SMT-solver instead of a SAT-solver and the combined step encoding Înit , Învar , and
T̂ on an STTS will replace Init , Invar and T . To operate on the region level, we lift
each concrete state in a satisfying interpretation returned by the SMT solver into to the
region level in the IC3 algorithm code whenever it is passed back to the SMT solver
again. To do this, given a state s, we construct a conjunction s̃ of atoms such that s̃
represents all the states in the same region as s, i.e. for any state u it holds u |= s̃ iff
u ∼ s. Formally, s̃ is the conjunction of the atoms given by the following rules:

1. For each state variable x ∈ X , add the atom (x = s(x)).
2. For each clock c with s(c) > mc, add the atom (c > mc).
3. For each clock c with s(c) ≤ mc and fract(s(c)) = 0, add the atoms (c ≤ s(c))

and (c ≥ s(c)). Two atoms are added instead of (c = s(c)) so that the clause
generalization sub-routine has more possibilities for relaxing ¬s̃.

4. For each clock c with s(c) < mc and fract(s(c)) 	= 0, add the atoms (c > �s(c)�)
and (c < �s(c)�).

5. For each pair c, d of distinct clocks with s(c) ≤ mc, and s(d) ≤ md,
(a) if fract(s(c)) = fract(s(d)), add the atoms (d ≤ c− �s(c)�+ �s(d)�) and

(d ≥ c− �s(c)�+ �s(d)�), and
(b) if fract(s(c)) < fract(s(d)), add the atom (d > c− �s(c)�+ �s(d)�).

where points 2 to 4 encode condition 1 in the region definition in Sect. 2, 3 and 4 encode
condition 2 and 5 encodes condition 3. Conveniently, unlike in the region-disequality
constraints in k-induction, there is no need to directly access the integral and fractional
parts of clock variables in s̃ because s̃ considers one fixed region. Indeed, all the atoms
concerning clock variables will fall in the difference logic fragment of linear arithmetics
over reals, having very efficient decision procedures available [22,23].

We now let the IC3 algorithm operate as in the untimed case except the satisfiability
calls are changed to operate on the region level. Especially, the formula in Line 6 of
Fig. 2(b) is modified to Fi−1 ∧ ¬s̃ ∧ T ∧ Invar ∧ Invar ′ ∧ s̃′ to operate on the region
level, searching a predecessor in Fi−1 for any state in the same region as s. Likewise,
in Line 11 ¬s̃, a clause representing all states not in the same region as s, is passed to
clause generalization excluding at least all states in the region of s from Fi. Inside the
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clause generalization mechanisms, clock atoms are handled in the same way as state
variable literals. Note that clauses from which clock atoms have been dropped during
generalization correspond to excluding a convex union of regions, called a zone.

Example 2. Consider the STTS for the system in Fig. 1(a) discussed in Ex. 1. For the
state s = {x1 �→ false, x2 �→ true, c �→ 1.4, d �→ 1.65, ...} we obtain the conjunction
s̃ = (¬x1 ∧ x2 ∧ (c > 1)∧ (c < 2)∧ (d > 1)∧ (d < 2)∧ (d > c)∧ ...) that represents
all the states in the region of s. The clause that excludes the whole region of s is simply
(x1 ∨ ¬x2 ∨ (c ≤ 1) ∨ (c ≥ 2) ∨ (d ≤ 1) ∨ (d ≥ 2) ∨ (d ≤ c) ∨ ...).

The soundness of the timed IC3 algorithm can be argued as follows. We say that a
formula φ over X∪C respects regions if for all states s and u, s ∼ u implies that φ |= s
iff φ |= u. By construction, a state property P as well as s̃ and ¬s̃ for any state s all
respect regions. Furthermore, any sub-clause of¬s̃ returned by the clause generalization
sub-routine also respects regions. As a result all clauses in the F -sets respect regions
and, thus, the F -sets exclude whole regions only. Furthermore, the modified formula
Fi−1 ∧¬s̃∧T ∧ Invar ∧ Invar ′∧ s̃′ in Line 6 of Fig. 2(b) is unsatisfiable iff no state in
the same region as s can be reached from the Fi−1-set; thus excluding the whole region
in Line 11 is correct.

Because the number of regions is finite, only a finite number of clauses can be added
to any F -set. As a result, the argument for termination given in [21] can be applied to
the timed IC3 algorithm as well.

5 Optimizations by Excluding Multiple Regions

We now describe optimizations for timed IC3 and k-induction that often allow us to
exclude more regions (i.e., zones of a certain form) at once during clause generalization
and in the region-disequality constraints, respectively. They exclude time-predecessor
regions, i.e. regions from whose states one can reach a certain region by just letting time
pass. For example, all the light gray regions and the
dark gray region (with c = 3 and d > 2) in Fig. 3 are
time-predecessors of the dark gray region. A state u
belongs to a time-predecessor region of another state
s, denoted by u � s, if the states agree on the values
of the state variables and, when restricted to the clock
variables, u belongs to a time-predecessor region of
s; � is formally defined in [24].

c

d

Fig. 3. A time-predecessor zone

Application to IC3. The timed variant of the IC3 algorithm described in Sect. 4 ex-
cludes an entire region from an F -set once a state inside that region (and thus the whole
region) has been found to be unreachable from the previous F -set. In this section, we
will argue that it is actually possible to exclude all the time-predecessor regions at the
same time. By excluding more than one region, the F -sets potentially shrink faster
which can lead to improved execution times. This optimization to the IC3 algorithm is
based on the following lemma, the proof of which can be found in [24]:
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Lemma 1. Let s be a valid state. If none of the states in the region of s can be reached
from an initial state with one time elapse step followed by n combined steps, then none
of the valid states in the time-predecessor regions of s can, either.

Applying Lemma 1 to a state found unreachable by the IC3 algorithm justifies dropping
all the time-predecessor regions at the same time. For this purpose we construct, for a
given state s, a conjunction s̃� representing all the states in the time-predecessor regions
of s. Then s̃� and ¬s̃� can be used instead of s and ¬s in SMT calls and as argument
for clause generalization. For a precise definition of s̃�, please refer to [24].

Example 3. Consider again the STTS for the system in Fig. 1(a) discussed in Ex. 1. For
the state s = {x1 �→ false, x2 �→ true, c �→ 3.0, d �→ 2.7, ...} in the dark gray clock
region in Fig. 3, we get the conjunction s̃� = (¬x1 ∧ x2 ∧ (c ≤ 3)∧ (d > c− 1)∧ ...)
representing all the states in the time-predecessor regions.

Application to k-induction. The idea of excluding time-predecessor regions can also
be applied to k-induction. This is based on the following lemma (again proven in [24]),
stating that a path of combined steps can be compressed into a shorter, region-equivalent
path ending in a region-equivalent state if a state in it is in the time-predecessor region
of a later state:

Lemma 2. Let s0sd
1s1 . . . s

d
i−1si−1s

d
isi . . . s

d
jsj . . . s

d
k be a path such that (i) s0 is an

initial state, (ii) sd
i � sd

j , (iii) each step between sl and sd
l+1 is a time elapse step, and

(iv) each step between sd
l and sl is a discrete step. Then s0s

d
1s1 . . . s

d
i−1si−1u

d
juj . . . u

d
k

with ud
j ∼ sd

j for all j ≤ l ≤ k and uj ∼ sj for all j ≤ l < k is also a path.

Now this implies that in timed k-induction we can use, instead of the region-disequality
formulaDiffRegion [i,j], a stronger formulaDiffRegion

[i,j]

� excluding the state s[i] from

being in a time-predecessor region of the state s[j] when i < j. We omit the details but
this formula can be obtained from the definition of the � relation in a similar way as
the DiffRegion [i,j] formula was obtained from the definition of ∼ in Sect. 3.

6 Experiments

To determine the usefulness of the described methods, they were evaluated experimen-
tally. Specifically, we were interested in the following questions: how do the methods
perform and scale (i) in the area they were designed for, i.e. timed systems with a large
number of state variables and a large number of discrete step successors for most states;
(ii) compared to each other; (iii) compared to using discrete time verification methods
in a semantics-preserving way; and (iv) outside the area they were designed for, i.e.
on models with a small number of state variables and small number of discrete step
successors for most states.

Setup. Timed k-induction and the timed IC3 algorithm were implemented in Python,
each supporting both region encoding variants. Using a more efficient programming
language like C would likely yield only moderate execution time improvements as a
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Table 1. Verification times in seconds for industrial benchmarks. Properties that require parts of
the system that are omitted in the submodels could not be verified on those submodels.
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1 yes 0.55 0.55 0.50 0.53 181.95 0.32 0.33 0.42 0.29 16.43 0.21 0.21 0.29 0.19 8.51
2 yes 0.55 0.51 0.47 0.50 timeout 0.30 0.32 0.33 0.34 timeout 0.21 0.21 0.23 0.22 1459.60
3 yes 0.57 0.56 0.49 0.49 timeout 0.32 0.33 0.36 0.36 timeout 0.22 0.21 0.23 0.24 timeout
4 yes 0.54 0.57 0.48 0.58 timeout 0.33 0.34 0.35 0.34 timeout
5 yes 0.68 0.55 0.62 0.54 191.81 0.32 0.31 0.30 0.31 18.10
6 yes 0.57 0.58 0.60 0.50 timeout 0.34 0.33 0.37 0.38 timeout
7 yes 0.57 0.60 0.51 0.55 timeout
8 no timeout timeout 2.21 2.24 timeout 0.30 0.29 0.35 0.33 timeout 0.21 0.20 0.33 0.23 2367.16
9 no 0.62 0.56 0.70 0.65 194.25 0.32 0.31 0.29 0.27 4.47 0.21 0.23 0.29 0.20 2.05

10 no timeout timeout 2.36 2.15 165.16 0.31 0.32 0.41 0.31 17.07 0.20 0.23 0.21 0.20 8.58
11 no 0.53 0.54 0.62 0.65 169.91 0.33 0.35 0.41 0.32 17.53
12 no timeout timeout 2.21 2.11 timeout 0.32 0.31 0.34 0.33 timeout
13 no timeout timeout 2.24 2.17 timeout 0.32 0.31 0.46 0.35 timeout
14 no 0.57 0.57 0.63 0.65 170.87 0.32 0.36 0.42 0.33 17.80
15 no 0.56 0.59 0.85 0.66 81.07

significant fraction of the time is spent by the SMT solver. As an SMT-solver, Yices [20]
version 1.0.31 was used. All experiments were executed on GNU/Linux computers with
AMD Opteron 2435 CPUs limited to one hour of CPU time and 2 GB of RAM. The
prototype implementation and the benchmarks used are available on the first author’s
website (http://users.ics.aalto.fi/kindermann/).

Industrial benchmark. The first benchmark used is a model of an emergency diesel gen-
erator intended for the use in a nuclear power plant. The full model and two sub-models,
which are sufficient verifying some properties, were used. The numbers of clocks and
state variables are 24 and 130 for the full model, 7 and 64 for the medium size and 6 and
36 for the small sub-model. The industrial model has been studied previously but not as
a whole verified using real time. To allow for discrete time verification using the model
checker NuSMV [25], the model first had to be split into multiple subcomponents that
were then verified individually [26]. To allow for real time verification using the model
checker Uppaal [4], further simplification by removing the possibility of individually
components breaking non-deterministically, which is present in the original model, was
necessary [26]. A booleanization-based attempt to verify the smallest sub-model was
unable to verify all properties [7]. Furthermore, the industrial benchmark was used to
compare different variants of bounded model checking of timed automata [9].

All four variants of the methods introduced in this paper were applied to the in-
dustrial model. Additionally, the original IC3 implementation [14] combined with a
semantics-preserving booleanization approach [7] was used. Evaluating the fully sym-
bolic approach of [16] on this benchmark is left for future as the tool fsmtMC seems to
be not yet publicly available. Table 1 shows the resulting execution times. k-induction
did not exceed 3 seconds for any property. The timed IC3-approaches performed mostly
similarly but timed out four times. Both real-time verification methods performed sig-
nificantly better than the booleanization / IC3 combination, illustrating that using spe-
cialized real time verification methods is worthwhile.

http://users.ics.aalto.fi/kindermann/
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Fig. 4. Time required to verify by numbers of properties for randomly generated properties. A
point (x, y) indicates that for x properties y or less time was needed (each). Effects of using the
extended region encoding were minor, the corresponding lines were omitted for better readability.

Random properties. While the industrial benchmark showed that the methods work
well in the area they were designed for, execution times were generally too small to
compare the different methods and variants. Therefore, 10000 additional random prop-
erties were generated each for the full model and the medium size sub-model. More
precisely, literals containing both clock and state variables and random clauses con-
sisting of up to three such literals were generated. A property was considered to hold,
if the corresponding clause is satisfied by all reachable states. Figure 4 shows a com-
parison of the resulting execution times on the full size model using the basic region
encoding. The results for the medium size model are very similar and have been omitted
due to a lack of space. The booleanization approach performed poorly on the original
properties for the industrial model. Short, non-systematic tests indicated that the same
behavior would have been observed on random properties as well and, consequently,
booleanization-based approaches were not applied to the random properties.

For violated properties, k-induction performed very well, due to its bounded model
checking component. For holding properties timed IC3 performed significantly bet-
ter. Executing both methods (or timed IC3 and BMC) in parallel could combine their
strengths. The plot for timed IC3 for non-holding properties shows a steep vertical
climb, due to the fact that finding counter-examples with three or more states is sig-
nificantly harder than one or two-state counter-examples for the IC3-method. In the
presence of one or two-state counter-examples, the SMT queries made by timed IC3
are the same that would be executed by BMC. If the counter-example has three or more
states, in contrast, the method finds a predecessor of a bad state and then searches an
initial state that is predecessor of the found state. In many cases, such an initial prede-
cessor does not exist. Thus, that in order to find a longer counter-example, the timed
IC3 may need to search for a suitable middle state for the counter-example.

Figures 5(a) and 5(b) compare the execution times on random properties. Even
though timed IC3 generally performed much better on holding properties than k-in-
duction, k-induction was faster for a few properties. For violated properties, in contrast,
k-induction performed consistently better than timed IC3. Figures 5(c) and 5(d) com-
pare basic and extended regions (cf. Sect. 5) for the random properties on the full model
and Fig. 5(e) shows the same comparison for the timed IC3 algorithm on the medium
size model. The k-induction / medium size model results are similar to k-induction /
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full model and are omitted here due to space restrictions. Using time-predecessor re-
gions made no difference for k-induction. For the timed IC3 algorithm, their effect
depended on the size of the model used. On the medium size model, performance
slightly increased while slightly decreasing on the full model. A likely explanation is
the large number of clocks in the full model. While the time-predecessor region encod-
ing uses fewer literals referring to a single clock, it contains more literals comparing
two clocks (cf. [24]). Thus, the clause size grows quicker in the number of clocks for
time-predecessor regions, which eventually outweighs the gain of excluding more states
at once. Figure 5(f) shows the number of SMT-solver queries needed by timed IC3 for
the 1766 properties for which at least 1000 queries were needed. Similarly to the effect
on execution time, using extended regions slightly increased the number of queries.
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Fischer protocol. As a third benchmark, the Fischer mutual exclusion protocol, a stan-
dard benchmark for timed verification, was used. In addition to the five methods used for
the industrial method, Uppaal [4] version 4.0.11, a model checker for networks of timed
automata, was used. Unlike the industrial benchmark, the Fischer protocol is fairly de-
terministic with respect to discrete steps possible from any given state and, thus, could
be expected to favor Uppaal over the fully-symbolic methods. Figure 6 shows the exe-
cution times for verifying the Fischer model with a varying number of processes. While
timed IC3 was, unsurprisingly, significantly slower than Uppaal, it scaled similarly, i.e.
the runtime increased at a similar rate. k-induction timed out at three processes already
while the booleanization-based approach showed rapid runtime growth and timed out
at five processes.

7 Conclusion

This paper introduces two verification methods for symbolic timed transition systems: a
timed variant of the IC3 algorithm and an adapted version of k-induction. Furthermore,
a potential optimization to both methods is devised.

Both methods were able to verify properties on an industrial model verification of
which had been found in previous attempts intractable and outperformed a booleaniza-
tion-based approach significantly. Random properties on the same model revealed that
the timed IC3 variant performs better for satisfied properties while timed k-induction
performs better on violated properties. The experiments suggest that executing timed
IC3 in parallel with bounded model checking would yield excellent performance for
the verification of large, non-deterministic real-time systems.

Additionally, the proposed methods were evaluated on another family of benchmark,
the Fischer mutual exclusion protocol with a varying number of processes. This fam-
ily has only a small amount of non-determinism and the runtime of the methods was
higher than that of the timed automata model checker Uppaal. However, the timed IC3
algorithm was found to have similarly good scaling as Uppaal.

As a final remark, an another extension of IC3 capable of verifying timed systems
has been presented very recently in [27]; they do not use region abstraction directly but
apply interpolants.

Acknowledgments. This work has been financially supported by the Academy of Fin-
land under the Finnish Centre of Excellence in Computational Inference (COIN) and
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Abstract. The behavior of timed automata consists of idleness and ac-
tivity, i.e. delay and action transitions. We study a class of timed au-
tomata with periodic phases of activity. We show that, if the phases
of activity of timed automata in a network are disjoint, then location
reachability for the network can be decided using a concatenation of
timed automata. This reduces the complexity of verification in Uppaal-
like tools from quadratic to linear time (in the number of components)
while traversing the same reachable state space. We provide templates
which imply, by construction, the applicability of sequential composition,
a variant of concatenation, which reflects relevant reachability properties
while removing an exponential number of states. Our approach covers
the class of TDMA-based (Time Division Multiple Access) protocols,
e.g. FlexRay and TTP. We have successfully applied our approach to
an industrial TDMA-based protocol of a wireless fire alarm system with
more than 100 sensors.

1 Introduction

Timed real world applications may include a large number of components. These
components can often be modeled using timed automata [1] and their composi-
tion. The behavior of timed automata consists of idleness and activity, i.e. delay
and action transitions. In many cases the activity of the timed automata (which
model an application) is disjoint i.e. one automaton is active while the other
ones are idle, except at time points where they may synchronize. In timed au-
tomata with disjoint activity their parallel product will introduce many edges
and locations which are not relevant given the disjoint activity assumption (un-
reachable locations). These many edges are unnecessarily evaluated and increase
the verification costs in tools like Uppaal [3].

In this paper, we formalize a notion of timed automata with disjoint activity
and characterize a class of timed automata with periodic cycles of activity. Then,
we define a semantic concatenation operator which, when applied to timed au-
tomata with disjoint activity, produces automata bisimilar to the one obtained
by their parallel composition. The automaton obtained by the concatenation
operator has a reduced number of edges and locations than the one obtained
by the parallel composition operator. Identifying the periodic cyclic phases of
activity of a timed automata, and if these activity phases are disjoint can be
as hard as verifying a property. Therefore, we introduce templates for timed
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c© Springer-Verlag Berlin Heidelberg 2012
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automata which by construction ensure periodic phases of activity. In addition,
a syntactic check in the instances of the templates suffices to ensure that their
corresponding phases of activity are disjoint. We used our approach for verifying
a real world wireless fire alarm system with up to 125 sensors. By using our
approach in Uppaal the verification times decreased from quadratic to linear on
the number of sensors.

An important class of systems which can be verified using our approach is
the class of real-time network protocols which use the Time Division Multiple
Access design principle. Well-known examples in this class of TDMA protocols
include the Bluetooth protocol of [6], the time triggered protocol of [12], and the
time triggered architectures of [11,7,10].

1.1 Related Work

Since the cost of model checking for a network of timed automata increases
exponentially in the number of components, much research has been directed
towards techniques that demonstrate a potentially exponential speedup in in-
teresting applications (see, e.g., [2]). It turns out that, for the class of timed
automata with disjoint activity , the cost increases quadratically in the number
of components (which, as confirmed in our experiments, can be bad enough with
an increasing number of components); thus, the best one can hope for, is to be
able to demonstrate a potentially linear speedup (see Figure 1, page 202). Lit-
tle research has been devoted to the (comparatively modest, albeit occasionally
relevant) goal of a linear speedup; in particular, we are not aware of techniques
that are directly related to our approach. Still, let us note that the technique of
active clock reduction of [4] and its generalisation in [2], which may seem relevant
in this context, are orthogonal to our approach; in fact, when we present our
experimental evaluation, we evaluate the improvement obtained by the syntactic
transformation (for a non-optimized model) with respect to the execution time
for an optimized model which has only one clock.

In [5,9,14] Communication-Closed Layers and timed automata are studied.
The approach presented in [14] and ours are complementary. The main differ-
ences are that the approach in [14] is action based, whereas our approach is time
based. In addition, we consider cyclic timed automata, whereas in [14], automata
can not perform actions after reaching their corresponding final location.

In Section 6 we introduce sequential timed automata and present in Defini-
tion 9 the notion of an overclock for two clocks. We use this notion to reduce
the number of clocks in sequential timed automata. In [8] this notion is general-
ized to quasi-equal clocks and a more general reduction method for quasi-equal
clocks is presented. However, we show that for the context of sequential timed
automata, the Sequentialisation method proposed in Section 6 yields an Au-
tomaton in which verification can be carried out in linear time on the number
of sequential timed automata, whereas by using the method proposed in [8] the
verification will be carried out in quadratic time. This is illustrated in our case
study in Section 7.
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Fig. 1. Timed automata A1 and A2 modeling the behavior of two simplified sensors.
The constants 10, 20 and 30, 40 denote the start resp. the end of the i-th time slot
interval. The i-th sensor waits for the start of its designated time slot, sends its alive
signal and waits for the ack signal from the central unit to arrive before the end.

2 Applications

First, we elucidate our method by explaining it through an example. Next, we
describe how our method could be applied to a Time-Triggered Architecture
system.

2.1 Example: Fire Alarm System

In the simplified (and simplistic) version that we consider for the example of a
TDMA protocol, the wireless fire alarm system is a network of a central unit and
a number n of sensors; here, n = 10. Figure 1 shows two timed automata which
model two (simplified) sensors. The protocol operates in cycles of fixed length of
time, say 100. The cycle is split in n time slot intervals, each of the same length
of time. In each cycle, the central unit listens at the i-th time slot to an alive
message from the i-th sensor. If the alive message is received, the central unit
replies with an ack message.

Figure 2 shows the timed automaton that is ‘equivalent’ to the parallel product
of the timed automataA1 andA2; it is obtained from applying the operation that
we will introduce in Section 6. We note three phenomena that we observe on the
example (and describe the concepts that we will introduce in the corresponding
section in order to investigate the phenomena). These phenomena constitute the
premises of our approach.

(1) The initial location of Ai is visited infinitely often, with a regular period
(in Section 4, we define notions of cyclicity and periodicity of timed automata).

(2) The i-th sensor mostly (but not exclusively!) performs action transitions
at the i-th time slot (in Section 5, we formally characterize the notion of activity
for timed automata, give a semantics-based definition of two timed automata
being sequentialisable, and introduce the concatenation ‘·’ of sequentialisable
timed automata).
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ô ≤ 15 ô ≤ 20
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ô := 0

Fig. 2. The timed automaton A1 �A2 that is ‘equivalent’ to the parallel product of the
timed automata A1 and A2 from Figure 1, obtained from applying the operation that
we will introduce in Section 6.

(3) In the interleaving semantics of the parallel composition of the automata
A1 and A2, the two different (zero-time) action transitions with the reset of the
clock x1 resp. the reset of the clock x2 diverge, i.e., they lead to states where the
values for x1 and x2 are different (in Section 6, when we define the sequential
composition ‘�’ of sequentialisable timed automata, we recover the determinacy
of the behavior of the parallel product through the concept of the overclock, i.e.,
the introduction of a new clock ô).

In addition, we observe that the automaton A1||A2, has an increased number
of edges in comparision to A1 �A2. The reduced number of edges yield a linear
reduction in the verification time, justified by Lemma 3.

2.2 Potential Application: Steer-By-Wire Architecture Using
TTP/C

In order to illustrate the applicability of our method, we propose an informal
model for a system based on the Time-Triggered Architecture.

In the Time-Triggered Architecture every node consist of a local cpu, a Com-
munication Network Interface and a TTP/C controller. The data communication
over TTP/C is organized in TDMA rounds. A TDMA round is divided into slots
and every node is assigned to a slot. A recurring sequence of TDMA rounds con-
stitutes a cluster. The system can be globally monitored based on bus tracing.

A steer-by-wire system would require from 8 to 30 nodes. Interesting proper-
ties to verify might include: If a node fails, is this node detected as malfunctioning
in within a TDMA round; or if a node fails, does the system still satisfy a given
property.

Let us consider that the system has n nodes and one global monitor. The
monitor could be modeled by one timed automaton Am. Every node could be
modeled by Two timed Automata; one for the cpu Acpu and one for the TTP/C
communication ATTP . The automata corresponding to a node could commu-
nicate via shared variables. A TDMA round would have the following form,
Am||Acpu1 || . . . ||Acpun ||ATTP1 || . . . ||ATTPn . Since Automaton ATPPi will only
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perform actions on its corresponding slot for i ∈ {1, . . . , n}, we can apply our
method and obtain: Am||Acpu1 || . . . ||Acpun ||(ATTP1 � . . . � ATTPn). Which we
believe, would lead to an improvement on the verification time. Given a fixed
number of TDMA rounds we can use the above method to construct a cluster.

3 Preliminaries

The formal basis for our work are timed automata [1]. In the following, we
briefly recall the main definitions, our presentation follows [13]. Note that, in
contrast to [13], we do not distinguish transition sequences and (time-stamped)
computation paths. Here, the configurations of the labelled transition system
are already time-stamped.

Let X be a set of clocks. The set Φ(X) of simple clock constraints over X is
defined by the grammar ϕ ::= x ∼ C | x − y ∼ C | ϕ1 ∧ ϕ2 where x, y ∈ X,
C ∈ Q+

0 , and ∼∈ {<,≤,≥, >}. We assume the canonical satisfaction relation
“|=” between valuations of the clocks ν : X→ Time and simple clock constraints,
with Time = R>0.

A Timed Automaton (TA) A is a tuple (L,Σ,X, I, E, �ini), which consists
of a finite set of locations L, with typical element �, a finite set Σ of actions
comprising the internal action τ , a finite set of clocks X, a mapping I : L →
Φ(X), that assigns to each location a clock constraint, and a set of edges E ⊆
L×Σ × Φ(X) × P(X)× L. An edge e = (�, α, ϕ, Y, �′) ∈ E from � to �′ involves
an action α ∈ Σ, a guard ϕ ∈ Φ(X), and a reset set Y ⊆ X.

The operational semantics of the timed automaton A is the labelled transi-
tion system T S(A) = (Conf (A),Time ∪ Σ, { λ−→ | λ ∈ Time ∪ Σ}, Cini). The set
of configurations Conf (A) = {(〈�, ν〉, t) ∈ L × (X → Time) × Time | ν |= I(�)}
consists of time-stamped pairs of a location � ∈ L and a valuation of the clocks
ν : X → Time which satisfies the clock constraint I(�). The set of initial con-
figurations is Cini = {(〈�ini, νini〉, 0)} ∩ Conf (A) where νini(x) = 0 for all clocks
x ∈ X. There is a delay transition from configuration 〈�, ν〉, t to 〈�, ν + t′〉, t+ t′,
i.e. 〈�, ν〉, t t′−→〈�, ν + t′〉, t + t′, if and only if ν + t′′ |= I(�) for all t′′ ∈ [0, t′],
where ν + t′ denotes the valuation obtained from ν by time shift t′. There is an
action transition between 〈�, ν〉, t and 〈�′, ν′〉, t, i.e 〈�, ν〉, t α−→ 〈�′, ν′〉, t, if and
only if there exists an edge (�, α, ϕ, Y, �′) ∈ E with ν |= ϕ, ν′ = ν[Y := 0], and
ν′ |= I(�′), where ν[Y := 0] denotes the valuation obtained from ν by resetting
exactly the clocks in Y . We write �(c), ν(c), and t(c), to denote the location �,
valuation ν, and time-stamp t of a configuration c = 〈�, ν〉, t.

An infinite or maximally finite sequence π = c0
λ0−→ c1

λ1−→ c2 . . . is called a

computation of A if and only if c0 ∈ Cini and (ci, ci+1) ∈ λ−→ for all i ∈ N0. We
write πj to denote the j-th configuration cj = 〈�j , νj〉, tj in π, and λπ

j to denote
the label of j-th transition in π, or simply λj if π is clear from the context. We
write π ∈ T S(A) if and only if π is a computation of A.

The parallel composition of two timed automata Ai = (Li, Σi,Xi, Ii, Ei, �ini,i),
i = 1, 2, with disjoint sets of clocks X1 and X2 yields the timed automa-

ton A1‖A2
def
= (L1 × L2, Σ1 ∪ Σ2,X1 ∪ X2, I, E, (�ini,1, �ini,2)) where I(�1, �2) :=
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c1
c2 c3

. . . cn

t0 α2 α3 αn t1

∈ Fin(A) ∈ Start(A)︸ ︷︷ ︸
∈ Rst(A)

Fig. 3. Start configurations are in the initial location and have an action predecessor
and a delay successor, final configurations a delay predecessor and an action successor.
Configurations on an action-only path between a final and a start configuration are
called restart configurations.

I1(�1) ∧ I2(�2), for each �1 ∈ L1, �2 ∈ L2, and where E consists of handshake
and asynchronous edges defined as follows. There is a handshake transition
((�1, �2), τ, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (�

′
1, �

′
2)) ∈ E if there are complementary actions

α and ᾱ in Σ1 ∪Σ2 such that (�1, α, ϕ1, Y1, �
′
1) ∈ E1 and (�2, ᾱ, ϕ2, Y2, �

′
2) ∈ E2.

For each edge (�1, α, ϕ1, Y1, �
′
1) ∈ E1 and each location �2 ∈ L2, there is an asyn-

chronous transition ((�1, �2), α, ϕ1, Y1, (�
′
1, �2)) ∈ E, and analogously for each

transition in E2.

4 Periodic Cyclic Timed Automata

Timed automata models of, e.g., TDMA-based protocols can be cyclic and peri-
odic in the following sense. Intuitively, a timed automaton is cyclic if the initial
location is visited infinitely often on all computations, the corresponding con-
figurations are called start configuration. A timed automaton is periodic with
period pt if configurations containing the initial location are reached only at
integer multiples of the period and are reached from a unique final location.

In the following, we formally define periodic cyclic timed automata in terms
of the new notions of start, restart, and final configurations (cf. Figure 3).

Definition 1 (Start and Final Configuration). Let A = (L,Σ,X, I, E, �ini)
be a timed automaton. The set Start(A) of start configurations of A consists of
those configuration of T S(A) that are at location �ini and occur in a computation
π ∈ T S(A) as source of a delay transition and as destination of an action
transition, i.e.

Start(A) def
= {c = 〈�ini, ν〉, t ∈ Conf (A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ λm ∈ Time ∧ (λm−1 ∈ Σ ∨m = 0)}.

The set Rst(A) of restart configurations consists of those configuration of T S(A)
that occur in a computation π ∈ T S(A) as action-predecessor of a start config-
uration, i.e.

Rst(A) def
= {c ∈ Conf (A) | ∃π ∈ T S(A),m, i ∈ N0 •m ≤ i ∧ πm = c

∧ πi ∈ Start(A) ∧ πm
λm−−→ . . .

λi−1−−−→ πi ∧ ∀m ≤ j ≤ i • λj ∈ Σ}.
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The set Fin(A) of final configurations consists of the maximal restart configu-
rations of T S(A), that is, restart configurations which are the destination of a
delay transition, i.e.

Fin(A) def
= {c ∈ Rst(A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ (λm−1 ∈ Time ∨m = 0)}.

The set Lrst of restart locations consists of those locations that occur in a restart
configuration, i.e.

Lrst
def
= {� ∈ L | ∃ν : X→ Time, t ∈ Time • 〈�, ν〉, t ∈ Rst(A)}.

Definition 2 (Periodic Cyclic). A timed automaton A = (L,Σ,X, I, E, �ini)
is called periodic cyclic with period pt ∈ Time if and only if each computation
comprises infinitely many start configurations which occur at a regular period of
time and if there is a unique final location �fin, i.e.

peCy(A, pt) def⇐⇒ ∀π ∈ T S(A), p ∈ N0 ∃c = (〈�, ν〉, t) ∈ Start(A), i ∈ N0•
πi = c ∧ t = pt · p ∧

∀π ∈ T S(A), c = (〈�, ν〉, t) ∈ Start(A), i ∈ N0 •
πi = c⇒ ∃p ∈ N0 • t = pt · p ∧

∃�fin ∈ L ∀(〈�, ν〉, t) ∈ Fin(A) • � = �fin.

Theorem 1. Let A1 and A2 be periodic cyclic timed automata with period pt ∈
Time. Then A1‖A2 is periodic cyclic with period pt.

5 Concatenation of Sequentialisable Timed Automata

We say a timed automaton is active at a point in time if there exists a computa-
tion where an action transition is taken at that time. Two periodic cyclic timed
automata A1 and A2 are called sequentialisable if, they have the same period
and within each period, all activity of A1 lies strictly before all activity of A2,
except for integer multiples of the period. In the following, we formally define
activity and sequentialisability. We define the concatenation of two sequential-
isable timed automata and show in Theorem 2 that the result satisfies exactly
the same reachability and leads-to properties as the parallel composition of the
two. In Lemma 3, we discuss the relation between outgoing and enabled edges
in the parallel composition and our concatenation.

Definition 3 (Activity). The set of activity points Active(A) ⊆ Time of a
timed automaton A = (L,Σ,X, I, E, �ini) consists of those points in time at which
action transitions take place in some computation, i.e.

Active(A) def
= {t ∈ Time | ∃π ∈ T S(A), j ∈ N • λj ∈ Σ ∧ t(πj) = t}.
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Definition 4 (Sequentialisable). Two timed automata A1 and A2 are called
sequentialisable if and only if

1. A1 and A2 have disjoint sets of clocks,
2. A1 and A2 are periodic cyclic with period pt ∈ Time, and
3. for each p ∈ N0, within the p-th period, A1 is active strictly before A2, i.e.

sup(Activep(A1)) < inf (Activep(A2))

where Activep(Ai)
def
= Active(Ai) ∩ ]pt · p, pt · (p+ 1)[, i = 1, 2.

Note 1. Within the p-th period, p ∈ N0, the activity points of two sequentialis-
able timed automata A1 and A2 are disjoint, i.e.

Active(A1) ∩ Active(A2) ∩ ]pt · p, pt · (p+ 1)[ = ∅.

If A1 and A2 are sequentialisable. Then on each period, first A1 is active and
reaches its final location while A2 is at its initial location. Subsequently, A2 is
active and reaches its final location while A1 is at its final location. At the end
of the period both A1 and A2 are active at locations corresponding to their reset
configurations.

Lemma 1. Let A1 and A2 be sequentialisable timed automata with period pt.

1. For all points of time different than the integer multiples of pt and within
the activity of A1, A2 is in its initial location �ini2 , i.e.

∀p ∈ N0, t ∈ Time • t ∈ [inf (Activep(A1)), sup(Activep(A1))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(�1, �2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •
πj = 〈(�1, �2), ν〉, t ∧ �2 = �ini2 .

2. For all points of time different than the integer multiples of pt and within
the activity of A2, A1 is in its final location �fin1 , i.e.

∀p ∈ N0, t ∈ Time • t ∈ [inf (Activep(A2)), sup(Activep(A2))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(�1, �2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •
πj = 〈(�1, �2), ν〉, t ∧ �1 = �fin1 .

3. In each computation, both, A1 and A2, are simultaneously at a restart loca-
tion at integer multiples of pt, i.e.

∀p ∈ N0, t ∈ Time • t = pt · p
=⇒ ∀π ∈ T S(A1‖A2) ∃〈(�1, �2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •

πj = 〈(�1, �2), ν〉, t ∧ �1 ∈ Lrst ∧ �2 ∈ Lrst.

For sequentialisable automata A1 and A2 with period pt , Lemma 1 suggests that
for time points different than pt ·p for some p. It is not necessary to compute the
product of the locations on A1 and A2. The following concatenation operator
exploits this fact and computes the product of locations only if both A1 and A2

are active. i.e. at time points pt · p.
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Definition 5 (Concatenation)
Let A1 = (L1, Σ1,X1, I1, E1, �ini1) and A2 = (L2, Σ2,X2, I2, E2, �ini2) be sequen-
tialisable timed automata with period pt ∈ Time. Let �fini denote the final location
and let Lrsti denote the set of restart locations of automaton Ai, i ∈ {1, 2}.

The concatenation of A1 and A2 yields the timed automaton

A1 · A2
def
= (L,Σ1 ∪Σ2,X1 ∪ X2, I, E, �ini)

where

– L = (L1 × {�ini2}) ∪ ({�fin1} × L2) ∪ (Lrst1 × Lrst2)
– I(�1, �2) = I1(�1) ∧ I2(�2), �1 ∈ L1, �2 ∈ L2,
– E = {((�1, �2), α, ϕ1, Y1, (�

′
1, �2)) | (�1, α, ϕ1, Y1, �

′
1) ∈ E1 ∧ �2 ∈ Lrst2}

∪ {((�1, �2), α, ϕ2, Y2, (�1, �
′
2)) | (�2, α, ϕ2, Y2, �

′
2) ∈ E2 ∧ �1 ∈ Lrst1}, and

– �ini = (�ini1 , �ini2).

Definition 6 (Bisimulation). Let A1 and A2 be timed automata and

T Si(Ai) = (Conf (Ai),Time ∪Σi, { λi

−→| λi ∈ Time ∪Σi}, Cinii)

the corresponding labelled transition systems.ArelationR ⊆ Conf (A1)×Conf (A2)
is called bisimulation ofA1 andA2 if and only if it satisfies the following conditions.

1. ∀c1 ∈ Cini1 ∃c2 ∈ Cini2 • (c1, c2) ∈ R and ∀c2 ∈ Cini2 ∃c1 ∈ Cini1)• (c1, c2) ∈ R
2. for all (c1 = (〈�1, ν1〉, t1), c2 = (〈�2, ν2〉, t2)) ∈ R,

(a) ν1 = ν2, t1 = t2,

(b) ∀c1 λ1

−→ c′1 ∃c2
λ2

−→ c2 • (c′1, c′2) ∈ R
(c) ∀c2 λ2

−→ c′2 ∃c1
λ1

−→ c′1 • (c′1, c′2) ∈ R.

A1 is called bisimilar to A2 iff there exists a bisimulation of A1 and A2.

For sequentialisable timed automata A1 and A2, the implications of Lemma 1
and the definition of the concatenation operator imply that the transition system
T S(A1 · A2) corresponds to the reachable part of T S(A1‖A2).

Theorem 2. Let A1 and A2 be sequentialisable timed automata.
Then T S(A1 · A2) is bisimilar to T S(A1‖A2).

Theorem 2, ensures that the start configurations of T S(A1‖A2) are in T S(A1 ·
A2). Therefore, the following theorem holds.

Theorem 3. Let A1 and A2 be sequentialisable timed automata with period pt.
Then A1 · A2 is periodic cyclic with period pt.

Lemma 2 (Bisimulation). Reachability properties are preserved under bisim-
ulation, i.e. given bisimilar timed automata A1 and A2 and a state assertion ϕ,
i.e., an expression over clock constraints and locations, we have

(∃π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∃π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ)

(∀π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∀π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ).
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Definition 7 (Enabled Edges). Let A = (L,Σ,X, I, E, �ini) be a timed au-
tomaton and c ∈ Conf (A) a configuration.

We use out(c) to denote the set of outgoing edges in c, i.e. the edges e =
(�, α, ϕ, Y, �′) ∈ E where � = �(c).

Edge e is called enabled if and only if its guard is satisfied and the effect of
resets satisfies the clock constraint of the destination of e, i.e., if ν(c) |= ϕ and
ν(c)[Y := 0] |= I(�′). We use enab(c) to denote the set of edges enabled in c.

Note 2. Let A1, . . . ,An be timed automata with pairwise disjoint edge sets and
let c = 〈(�1, . . . , �n), ν〉, t ∈ Conf (A1‖ . . . ‖An) be a configuration.

1. Enabled edges are in particular outgoing, i.e. enab(c) ⊆ out(c).
2. The set of outgoing edges in the parallel composition is determined by the

components, i.e.

out(c) =
⋃

1≤i≤n

out(〈�i, ν|Xi〉, t), enab(c) =
⋃

1≤i≤n

enab(〈�i, ν|Xi〉, t),

thus (with disjoint edge sets)

|out(c)| = Σ1≤i≤n|out(〈�i, ν|Xi〉, t)|, |enab(c)| = Σ1≤i≤n|enab(〈�i, ν|Xi〉, t)|.

Since, outgoing edges are evaluated, a reduction on the number of outgoing edges
yields a reduction on time complexity. This reduction can go from quadratic to
linear time, as the following lemma shows.

Lemma 3. Let A1, . . . ,An be sequentialisable timed automata with period pt
with disjoint edge sets and with exactly one outgoing edge per location.

1. Let c ∈ Conf (A1‖ . . . ‖An) be a configuration of the parallel composition of
A1, . . . ,An where the time-stamp is not an integer multiple of the period pt,
i.e. where �p ∈ N0 • t(n) = p · pt.
Then |out(c)| = n and |enab(c)| = 1.

2. Let c ∈ Conf (A1 · . . . ·An) be a configuration of the concatenation of A1, . . . ,
An where the time-stamp is not an integer multiple the period pt.
Then |out(c)| = |enab(c)| = 1.

6 Sequential Composition of Sequential Timed Automata

As the decision whether a given pair of timed automata is sequentialisable is
in general at least as difficult as the considered analysis problem, we provide a
syntactical pattern such that instances of the pattern are sequentialisable and
such that a specialized sequential composition applies.

Definition 8 (Sequential Timed Automaton). A sequential timed automa-
ton (STA) is a tuple

A = (L,Σ,X, I, E, �ini, �fin, sta, fin, pt , efin, x̂)
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where A0
def
= (L,Σ,X, I, E, �ini) is a timed automaton, �fin is a final location,

sta, fin ∈ Q+
0 are start and final time, pt ∈ Q+

0 is a period, efin ∈ E is an edge
of the form (�fin,∅, x̂ ≥ pt , Y ∪ {x̂}, �ini) x̂ ∈ X is a master clock, which satisfies
the following syntactical constraints:

– the start time is positive and strictly smaller than the final time, which is
strictly smaller than the period, i.e.

0 < sta ∧ sta < fin ∧ fin < pt , (saActive)

– the initial location is left if x̂ reaches the start time, i.e.

I(�ini) = x̂ ≤ sta, (saStart)

∀(�, α, ϕ, Y, �′) ∈ E • � = �ini =⇒ ϕ = x̂ ≥ sta, (saStartTime)

– locations connected by an edge to the final location are only assumed until x̂
reaches the final time, i.e.

∀(�, α, ϕ, Y, �′) ∈ E • �′ = �fin ⇒ I(�) = x̂ ≤ fin, (saFinalTime)

– the final location is only assumed until x̂ reaches the period, i.e.

I(�fin) = x̂ ≤ pt , (saPeriod)

– the master clock is reset exactly on edge efin, i.e.

∀(�, α, ϕ, Y, �′) ∈ E • x̂ ∈ Y ⇒ (�, α, ϕ, Y, �′) = efin, (saOneReset)

– �fin and �ini are connected exactly by edge efin, i.e.

∀(�, α, ϕ, Y, �′) ∈ E • � = �fin∧ �′ = �ini =⇒ (�, α, ϕ, Y, �′) = efin, (saOneFin)

and the following semantical constraint:

– whenever the initial location is assumed, the final location is finally reached,
i.e.

∀π ∈ T S(A0), j ∈ N0, 〈�, ν〉, t ∈ Conf (A0) • πj = 〈�, ν〉, t ∧ � = �ini

=⇒ ∃k ∈ N0, 〈�′, ν′〉, t′ ∈ Conf (A0) •
k ≥ j ∧ πk = 〈�′, ν′〉, t′ ∧ �′ = �fin

(saCyclic)

Let A′ be the automaton obtained by replacing synchronization transitions in A
by internal transitions. Then, saCyclic can be checked for A′ in a model checker.
Figure 4 depicts a purely syntactically restricted template which ensures the
instances to be sequential automata.

Theorem 4. Let (L,Σ,X, I, E, �ini, �fin, sta, fin, pt , efin, x̂) be a sequential timed
automaton. Then (L,Σ,X, I, E, �ini) is periodic cyclic with period pt.
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�ini

�2 �3

�4

�i

�fin

x̂ ≤ sta x̂ ≤ pt

x̂ ≤ c2 x̂ ≤ c3

x̂ ≤ c4

x̂ ≤ fin

x̂ ≥ sta

x̂ ≥ c21

x̂ ≥ c22

x̂ ≥ ci

x̂ ≥ cj

x̂ ≥ pt

x̂ := 0

Fig. 4. A syntactical pattern for sequential timed automata

Before applying the sequential operator we must be sure that the activity
phases of the automata are disjoint. In sequential automata sequentialisability
can be syntacticaly proven, as the following lemma shows.

Lemma 4. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 and A2 are sequentialisable.

Consider the parallel product or the concatenation of n sequential automata (see
Figure 4) which are sequentialisable. The automaton will include a diamond like
structure corresponding to the product of the n final locations. This structure
will have 2n locations. In this locations the master clocks x̂1, . . . , x̂n will not
be equal, but note that this happends in zero time. Therefore, we define a new
clock overclock ô which preserves the quasi-equalitiy of the clocks, and allows to
further optimize the resulting automaton.

Definition 9 (Overclock). Let A1 and A2 be timed automata with clocks x1

and x2, respectively. A clock ô of A1 or A2 is an overclock for x1 and x2 in
A1‖A2 if and only if

∀π ∈ T S(A1‖A2), j ∈ N0〈(�1, �2), ν〉, t ∈ Conf (A1‖A2) • πj = 〈(�1, �2), ν〉, t
=⇒ ν |= (x1 = ô ∧ x2 = ô) ∨ �1 ∈ Lrst1 ∨ �2 ∈ Lrst2 .

Lemma 5. Given sequential timed automata, A1,A2 with period pt and mas-
terclocks x̂1, x̂2 respectively. Then, there exist an overclock ô for x̂1 and x̂2.

The diamond structure which we described above, will have 2n locations and n!
zero time interleaving sequences, which occur at time points pt · p for p ∈ N+.
Note that clocks x̂1, . . . , x̂n are always equal up to the time points pt · p. The
sequential composition operator which we define below, will remove this diamond
structure and will replace all the clocks by an overclock.

Definition 10 (Sequential Composition). Let Ai,

Ai = (Li, Σi,Xi, Ii, Ei, �inii , �fini , stai, fini, pt , efini , x̂i), i = 1, 2,

be sequential timed automata.
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Then the sequential composition of A1 and A2 yields the tuple

A1 �A2
def
= (L,Σ1 ∪Σ2,X1 ∪ X2, I, E, (�ini1 , �ini2), (�fin1 , �fin2), sta1, fin2, pt , efin, ô)

where

– the master clock ô is an overclock for x̂1, x̂2.
– the set of locations consists of pairs where A2 assumes an initial or A1

assumes a final location, i.e.

L = ((L1 \ {�fin1})× {�ini2}) ∪ ({�fin1} × L2),

– the final edge efin is

((�fin1 , �fin2),∅, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (�ini1 , �ini2))

given the final edges efini = (�fini ,∅, ϕi, Yi, �inii), i = 1, 2,
– the clock constraint of location (�1, �2) is the conjunction of the corresponding

clock constraints in A1 and A2 where substitute each x̂1 and x̂2 is syntacti-
cally substituted by ô, i.e.

I(�1, �2) = (I1(�1) ∧ I(�2))[x̂1/ô, x̂2/ô],

– the set of edges comprises efin and compositions of A1 and A2 edges where
x̂1 and x̂2 are substituted by x̂ in guards and reset sets, i.e.

E = {efin} ∪ {((�1, �ini2), α, ϕ̃1, Ỹ1, (�
′
1, �ini2)) | (�1, α, ϕ1, Y1, �

′
1) ∈ E1 \ {efin1}}

∪ {((�fin1 , �2), α, ϕ̃2, Ỹ2, (�fin1 , �
′
2)) | (�2, α, ϕ2, Y2, �

′
2) ∈ E2 \ {efin2}}

where ϕ̃i = ϕi[x̂1/ô, x̂2/ô], i = 1, 2, and Ỹi = Yi[x̂1/ô, x̂2/ô], i = 1, 2.

Theorem 5. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 �A2 is periodic cyclic with period pt.

In Section 5, we have shown that For sequential automata A1, . . . ,An which are
sequentialisable A1|| . . . ||An and A1 · · · · · An are bisimilar. In what follows, we
will show that A1|| . . . ||An and A1 � . . .�An are weak-bisimilar (which reflects the
effect of removing the diamond like structure in the sequential composition of
the n sequential automata). We use the following definition in order to simplify
a definition of weak-bisimulation.

Definition 11 (Action Reachability). Let A be a timed automaton and c, c′ ∈
Conf (A) configurations. We say c′ is reachable in A from c via action transi-
tions, denoted by actReach(c, c′,A), if and only if

actReach(c, c′,A) def⇐⇒ ∃c0, c1, c2, . . . , cn ∈ Conf (A), i ∈ N0 • c0 = c ∧ cn = c′

∧ ∀0 ≤ j < n ∈ N0 • cj
λj−→ cj+1 ∧ λj ∈ Σ.
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Definition 12 (Weak-bisimulation). Let A1 and A2 be sequential automata
with ô ∈ X1 and x̂1, x̂2 ∈ X2 such that ô is an overclock for x̂1, x̂2 and let

T Si(Ai) = (Conf (Ai),Time ∪Σi, { λi

−→| λi ∈ Time ∪Σi}, Cinii), i = 1, 2,

be the corresponding labelled transition systems.
A relation W ⊆ Conf (A1)×Conf (A2) is called weak-bisimulation of A1 and

A2 if and only if it satisfies the following conditions.

1. ∀c1 ∈ Cini1 ∃c2 ∈ Cini2•(c1, c2) ∈ W and ∀c2 ∈ Cini2 ∃c1 ∈ Cini1)•(c1, c2) ∈ W
2. for all (c1 = (〈�1, ν1〉, t1), c2 = (〈�2, ν2〉, t2)) ∈ W,

(a) β(ν1) = ν2, t1 = t2 with β(ν) = ν|ô ∪ {νx̂1 �→ ν(ô), νx̂2 �→ ν(ô)},
(b) ∀c1 λ1

−→ c′1 • (∃c2
λ2

−→ c′2 • (c′1, c′2) ∈ W) ∨ (�(c1) = �fin1∧

∃c′′2 • actReach(c2, c′′2 ,A2) ∧ �(c′′2) = �ini2 ∧ (c′1, c
′′
2 ) ∈ W),

(c) ∀c2 λ2

−→ c′2 ∃c1
λ1

−→ c′1 • (c′1, c′2) ∈ W ∨ (�(c2) = �fin2∧

∃c′′2 • actReach(c2, c′′2 ,A2) ∧ �(c′′2) = �ini2 ∧ (c′1, c
′′
2 ) ∈ W),

A1 is called weak-bisimilar to A2 iff there is a weak-bisimulation of A1 and A2.

Theorem 6. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 �A2 is weak-bisimilar to A1‖A2.

7 Case Study

For the example in Section 2.1, we have used a simplified version of a fire alarm
system which monitors the well functioning of n sensors by sending and receiving
alive messages. For our case study, we consider a real world fire alarm system
which we denote by FAS (the system is being developed by a German company;
an anonymized version of a model of the system will be made public). The FAS
monitors n sensors using m channels. In order, for FAS to obtain an EU quality
certificate it has to be conform, among others, with the following condition: If
a sensor is malfunctioning, it has to be recognized in less than 300 seconds. We
denote this property by AG less300 .

In addition, the certifying institution is able to (i) block an arbitrary channel
for any number of seconds, then (ii) release the blocked channel for at least 1
second and repeat (i), (ii) any number of times.

In order to model the above mentioned situations, we constructed a sensor
switcher SW which non-deterministically turns off any sensor. We constructed a
channel blocker CB, which models the blocking of channels as described above.
Now, let FAS -CB denote the fire alarm system together with the channel blocker
CB. Let FAS -SW be FAS together with the sensor switcher. Let FAS -CB-SW
be FAS together with the channel blocker and a sensor switcher.
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Table 1. Verification times (AMD Opteron 6174 2.2GHz, 64Gb RAM) and visited
states for satisfied properties ϕ1 = (AG not deadlock) and ϕ2 = (AG less300) for the
fire alarm system with 125 sensors using Uppaal, and verification times of FAS -CB-SW
for property (AG less300) over number of sensors

System Q
Broadcast Sequential
t (s) states t (s) states

FAS -CB-SW
ϕ1 1103.9 5947.4k 318.1 5971.5k
ϕ2 2240.5 11508.3k 704.2 11614.5k

FAS -CB
ϕ1 196.4 1184.7k 120.3 1189.5k
ϕ2 272.6 165.7k 150.3 1666.9k

FAS -SW
ϕ1 13.7 104.1k 87.4 104.7k
ϕ2 10.62k 145.5 87.4 146.4k

FAS
ϕ1 2.5 20.7k 87.5 20.8k
ϕ2 1.3 20.7k 85.6 20.8k
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Table 1, show the verification results for the satisfied properties AG not dead-
lock and AG less300 for the corresponding system with 125 sensors by using
Uppaal. The times include the parsing time of Uppaal templates. The attempt
of modeling a sensor, with its own clock, did not scale to more than 10 sen-
sors. Therefore, our modelers manually optimized the system, such that all 125
sensors share one clock, and synchronizations are performed via a broadcast
channel. This optimized systems correspond to the column Broadcast. In addi-
tion, the system FAS -CB-SW Broadcast corresponds to the system obtained by
applying the technique presented in [8].

We observe that for a large state space, sequential is much faster that broad-
cast as expected by Lemma 3. However, for small state space such as FAS broad-
cast is faster; in this context, note that the parsing time for the large template
consisting of 125 sequentialized automata is taking about 85 sec.

Considering the verification times of the system FAS -CB-SW and property
AG less300 for 10, 20, . . . , 120, and finally 125 sensors, the curve for broadcast
is comparable with the statement of Lemma 3 (cf. Table 1).

8 Conclusion and Future Work

We have presented an approach for optimizing the timed model checking method
for the class of timed automata with disjoint activity. We have presented a syn-
tactic transformation, by which parallel composition of its component automata
is replaced by the application of a new sequential composition operator. The
approach uses the syntactic transformation as a preprocessing step with an ex-
isting timed model checking method. We have implemented the approach (using
Uppaal) and applied it to verify a wireless fire alarm system with more than
100 sensors. The experimental evaluation indicates the practical potential of the
approach for improving upon the time cost in a useful manner.
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For future work we may consider richer forms of expressing the property of
sequentialisability, for example by means of handshaking communication.
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Abstract. We revisit the synthesis of timed controllers with partial ob-
servability. Bouyer et al. showed that timed control with partial observ-
ability is undecidable in general, but can be made decidable by fixing the
granularity of the controller, resulting in a 2ExpTime-complete problem.
We refine this result by providing a detailed complexity analysis of the
impact of imposing a bound on the size of the controller, measured in
the number of locations. Our results identify which types of bounds are
useful (and which are useless) from an algorithmic perspective. While
bounding the number of locations without fixing a granularity leaves the
problem undecidable, bounding the number of locations and the granu-
larity reduces the complexity to NExpTime-complete. If the controller
is restricted to be a discrete automaton, the synthesis problem becomes
PSpace-complete, and, for a fixed granularity of the plant, evenNPTime-
complete. In addition to the complexity analysis, we also present an effec-
tive synthesis algorithm for location-bounded discrete controllers, based
on a symbolic fixed point computation. Synthesis of bounded controllers
is useful even if the bound is not known in advance. By iteratively increas-
ing the bound, the synthesis algorithm finds the smallest, and therefore
often most useful, solutions first.

1 Introduction

The theory of timed automata has made it possible to extend the algorithms
for automatic verification and controller synthesis from discrete systems to real-
time systems. An open challenge is, however, to effectively synthesize real-time
controllers under partial observability, i.e., in situations where there are some
events in the plant that the controller cannot observe.

Since the synthesis problem of real-time controllers under partial observability
is in general undecidable [4], synthesis algorithms must focus on restricted classes
of controllers. Bouyer et al. studied, for example, the synthesis problem with fixed
granularity, where the number of clocks and the precision of the guards is limited
in advance [11,4]. While this restriction ensures decidability, it unfortunately
does not suffice to obtain an effective algorithm, because the synthesis problem
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Table 1. Overview on the complexities of bounded synthesis for timed controllers with
partial observability. The results written in bold face are established in this paper,
the other results are taken from [4].

���������Bound
Granularity

Unspecified Fixed Discrete

Unbounded Undecidable 2ExpTime-complete 2ExpTime-complete

Locations Undecidable NExpTime-complete
PSpace-complete /
NPTime-complete

Clocks Undecidable 2ExpTime-complete —

remains intractably expensive (2ExpTime-complete). Finding restrictions on
the timed controllers that lead to a significant reduction in complexity thus
remained an open question.

In this paper, we undertake a systematic study of the impact of various re-
strictions on the complexity of the controller synthesis problem. We introduce a
bound on the size of the controller and limit the search to only those controllers
that fall below the bound. In the setting of discrete systems, this idea is known as
bounded synthesis [30]. For plants given as timed automata, natural adaptations
of the bounded synthesis approach are to search for a controller with a bounded
number of locations.

We analyze the complexity of the bounded synthesis problem under different
types of bounds, and under different restrictions on the granularity. The results
are summarized in Table 1. Some restrictions do not help: bounding the number
of locations without fixing a granularity leaves the problem undecidable. Fixing
both the granularity and a bound on the number of locations, however, reduces
the complexity from 2ExpTime-complete to NExpTime-complete. Most inter-
esting is the restriction to discrete controllers, where all clocks are located in
the plant and the untimed controller only reacts to discrete events. Here, the
complexity reduces to PSpace, i.e., the problem is exactly as hard as standard
model checking. If the granularity of the plant is fixed, the complexity reduces
further to NPTime.

Related Work. In his seminal work on discrete two-player games [27], Reif
introduced the knowledge-based subset construction to transform a game with
imperfect information to a game with perfect information. The construction
causes an exponential blow-up. The (fully observable) timed controller synthesis
problem in the framework of timed automata [1] was defined by Maler et al. by
introducing two-player timed games [23,2]. The decidability of the problem was
shown by demonstrating that the standard discrete attractor construction [31]
on the region graph suffices to obtain timed controllers. Henzinger and Kopke
showed that this construction is theoretically optimal by proving that the syn-
thesis problem for safety properties is ExpTime-complete [16]. Controller syn-
thesis against external specifications given as nondeterministic timed automata
was considered by D’Souza and Madhusudan [11]. They were the first who
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discovered that fixing the granularity of the controller leads to decidability.
Bouyer et al. extended this work by introducing partial observability for the
controller [4]. A more pragmatic approach was investigated by Cassez et al. by
restricting the choices and the observability of the controller so that the imple-
mentation of zone-based synthesis algorithms becomes possible [7]. An extension
of this work uses alternating timed simulation relations to efficiently control
partially observable systems [9]. An alternative restriction is to only consider
controllers that match a given template. We recently obtained promising exper-
imental results with an implementation that searches for such controllers using
automatic abstraction refinement [14].

The idea of a-priori fixing syntactic properties of the system that should be
synthesized resembles bounded synthesis [30] from the (fully observable, pure
discrete) LTL synthesis community. Symbolic implementations based on SMT-
solving [15], antichains [13], or BDDs [12] followed. In these works, one fixes
the maximal number of states that the synthesized system may have. Recently,
Kupferman et al. continued this line of research by distinguishing between bound-
ing the system and/or the environment [19]. Following a similar idea, Lustig et al.
proposed synthesizing systems based on component libraries [22].

Laroussinie et al. investigated the impact of bounding the number of clocks
for model checking timed automata [20]. Chen and Lu extended this work to
the fully observable synthesis setting by bounding the number of clocks in the
plant [10], which is in contrast to this paper, where we impose bounds on the
controller. For STRIPS planning, Rintanen [28] investigated the impact of no
and partial observability on finding discrete plans.

Contributions of the Paper

– We provide the theoretical foundation for an extension of the bounded syn-
thesis approach to the setting of real-time control. Our results identify which
types of bounds are useful (and which are useless) from an algorithmic per-
spective.

– We provide matching lower and upper bounds for the complexity of the vari-
ous synthesis problems, extending the complexity analysis of Bouyer et al. [4]
to a complete picture of the controller synthesis problem for timed systems
under partial observability. The proofs require nontrivial extensions of the
techniques used in the literature that may also be of interest in other set-
tings. For example, the proof of the NExpTime lower bound of Theorem 6
is based on an insightful connection between timed automata and the theory
of problems on succinctly specified graphs.

– We demonstrate that bounded synthesis can be implemented in the setting
of standard fixpoint-based verification tools for real-time systems. For this
purpose, we present a construction that computes the set of discrete location-
bounded controllers symbolically as a least fixed point.

Outline. We first recall the foundations of timed automata and timed controller
synthesis with partial observability in Sections 2 and 3, respectively. In Section 4,
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we investigate the impact of bounding the locations of the controller. Finally,
Section 5 introduces discrete controllers and investigates the impact of bounded
and unbounded synthesis in this setting. For each lemma and theorem newly
established in this paper, we give a brief description of the proof idea in the
main part of the paper. The detailed versions of the proofs as well as their
underlying technical constructions can be found in the appendix.

2 Timed Automata

In this section, we recall the timed automaton model by Alur and Dill.

Definition. A timed automaton [1] is a tuple A = (L, l0, Σ,Δ,X), where L is
a finite set of (control) locations, l0 ∈ L is the initial location, Σ is a finite set
of actions, Δ ⊆ L × Σ × C(X) × 2X × L is an edge relation, X is a finite set
of real valued clocks, and C(X) is the set of clock constraints over X . A clock
constraint ϕ ∈ C(X) is of the form

ϕ ≡ true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1,

where x is a clock in X , ϕ1 and ϕ2 are clock constraints from C(X), and c is a
constant in �≥0 encoded in binary. A clock valuation t : X → �≥0 assigns a
nonnegative value to each clock and can also be represented by a |X |-dimensional
vector t ∈ R, where R = �X

≥0 denotes the set of all clock valuations. We write

l
a,ϕ,λ−−−→ l′ to refer to a tuple (l, a, ϕ, λ, l′) in Δ. We say that A is deterministic

if, for any two distinct edges l
a,ϕ,λ−−−→ l′ and l

a′,ϕ′,λ′
−−−−−→ l′′, it holds that a = a′ ⇒

ϕ ∧ ϕ′ ≡ false. Following the setting of [2], we assume that timed automata
are strongly nonzeno, i.e., there are no cycles where an infinite time-convergent
sequence of transitions is possible.

The (timed) states of a timed automaton are pairs (l, t) of locations and clock
valuations. Timed automata have two types of transitions: timed transitions,
where only time passes and the location remains unchanged, and discrete tran-
sitions, where no time passes, the current location may change and some clocks
can be reset to zero. In a timed transition, denoted by (l, t)

a−→ (l, t+ a · 1), the
same nonnegative value a ∈ �≥0 is added to all clocks. A discrete transition,

denoted by (l, t)
a−→ (l′, t′) for some a ∈ Σ, corresponds to an edge (l, a, ϕ, λ, l′) of

Δ such that t satisfies the clock constraint ϕ, written as t |= ϕ, and t′ = t[λ := 0]
is obtained from t by setting the clocks in λ to 0.

We say that a state s is forward reachable if there is an n ∈ � and a finite
sequence of transitions of the form s0

a1−→ s1 . . . sn−1
an−−→ sn such that s0 = (l0,0)

is the initial state (where 0 is the zero vector), sn = s, and for all 1 ≤ i ≤ n, si =

(li, ti) are states and si−1
ai−→ si are transitions of the automaton, respectively.

We say that the sequence a1a2 . . . an ∈ (Σ ∪ �≥0)
∗ is a timed prefix of A and

we define L(A) as the set of all timed prefixes leading to states that are forward
reachable.
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Granularity. The granularity of a timed automaton defines its timing re-
sources [11]. Formally, a granularity is represented by a tuple μ = (Y,m, cmax ),
where Y is a finite set of clocks, m ∈ �≥1, and cmax ∈ �≥0. We say that a timed
automaton A = (L, l0, Σ,Δ,X) is μ-granular if X = Y and, for each constant
c ∈ �≥0 appearing in the clock constraints of the guards of the edges in Δ, it
holds that c is an integer multiple of 1

m and c ≤ cmax . We call the value of a
clock x ∈ X maximal if it is strictly greater than cmax .

Composition. Timed automata can be syntactically composed into networks,
in which the automata run in parallel and synchronize on shared actions. For
two timed automata A1 = (L1, l

1
0, Σ1, Δ1, X1) and A2 = (L2, l

2
0, Σ2, Δ2, X2),

the parallel composition A1‖A2 is the timed automaton (L1 × L2, (l
1
0, l

2
0), Σ1 ∪

Σ2, Δ,X1 ∪X2), where Δ is the smallest set that contains

– (l1, l2)
a,ϕ1∧ϕ2,λ1∪λ2−−−−−−−−−−→ (l′1, l

′
2),

if a ∈ Σ1 ∩Σ2, l1
a,ϕ1,λ1−−−−−→ l′1 ∈ Δ1 and l2

a,ϕ2,λ2−−−−−→ l′2 ∈ Δ2,

– (l1, l2)
a,ϕ1,λ1−−−−−→ (l′1, l2),

if a ∈ Σ1 \Σ2, l1
a,ϕ1,λ1−−−−−→ l′1 ∈ Δ1, and

– (l1, l2)
a,ϕ2,λ2−−−−−→ (l1, l

′
2),

if a ∈ Σ2 \Σ1, l2
a,ϕ2,λ2−−−−−→ l′2 ∈ Δ2.

If A1 is (X,m, cmax )-granular and A2 is (X ′,m′, c′max )-granular, then the com-
bined granularity of A1‖A2 is (X ∪X ′,m ·m′,max(cmax , c

′
max )).

Finite Semantics. The decidability of the reachability problem of timed
automata relies on the existence of the region equivalence relation [1] on R
which has a finite index. In the following, we fix a μ-granular timed automaton
A = (L, l0, Σ,Δ,X) with μ = (X,m, cmax ). We say that two clock valuations
t1, t2 ∈ R are in the same clock region, denoted t1 ∼ t2, if

– the set of clocks with maximal value is the same in t1 and in t2
(i.e., ∀x ∈ X : t1(x) > cmax ⇔ t2(x) > cmax ), and

– m · t1 and m · t2 agree (1) on the integer parts of the clock values, (2) on
the relative order of the fractional parts of the clock values, and (3) on the
equality of the fractional parts of the clock values with 0. That is, for all
clocks x and y with nonmaximal value, it holds that
(1) �m · t1(x)� = �m · t2(x)�,
(2) fr(m · t1(x)) ≤ fr (m · t1(y))⇔ fr (m · t2(x)) ≤ fr(m · t2(y)), and
(3) fr(m · t1(x)) = 0 iff fr(m · t2(x)) = 0,
where fr(m · ti(x)) = m · ti(x)− �m · ti(x)� for i ∈ {1, 2}.

We denote with [t] = {t′ ∈ R | t ∼ t′} the clock region t belongs to. We say that
two states s1 = (l1, t1) and s2 = (l2, t2) of A are region-equivalent, denoted by
s1 ∼ s2, if their locations are the same (l1 = l2) and the clock valuations are in
the same clock region (t1 ∼ t2), and denote with [(l, t)] = {(l, t′) ∈ L×R | t ∼ t′}
the equivalence class of region-equivalent states that (l, t) belongs to.
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Regions are a suitable semantics for the abstraction of timed automata be-
cause they essentially preserve the set of time-abstracted prefixes: if there is a
discrete transition s

a−→ s′ from a state s to a state s′ of a timed automaton, then
there is, for all states t with t ∼ s, a state t′ with t′ ∼ s′ such that t

a−→ t′ is a
discrete transition with the same label. For timed transitions, a slightly weaker

property holds: if there is a timed transition s
d−→ s′ from a state s to a state s′,

then there is, for all states t with t ∼ s, a state t′ with t′ ∼ s′ such that there is

a timed transition t
d′
−→ t′ (but possibly with d′ 	= d).

The finite semantics of a timed automaton A = (L, l0, Σ,Δ,X) is the finite
directed graph �A�μ = (Q, q0, T ) where

– the symbolic state set Q = {[(l, t)] | (l, t) ∈ L × R} of �A�μ is the set of
equivalence classes of region-equivalent states of A, with

– the initial state q0 = [(l0, t0)], and

– the set T = {(q, q′) ∈ Q × Q | ∃t ∈ q, t′ ∈ q′, a ∈ Σ ∪ �≥0. t
a−→ t′} of

transitions.

The finite semantics of a timed automaton A is also sometimes called the region
graph of A.

The finite semantics is reachability-preserving:

Lemma 1. [1] For a timed automaton A = (L, l0, Σ,Δ,X) there is a finite
path from a state (l, t) to a state (l′, t′) if, and only if, there is a finite path from�
(l, t)

�
to
�
(l′, t′)

�
in �A�μ.

Reachability Model Checking. The decidability of checking reachability
properties for timed automata relies on the existence of the so called region
abstraction that yields a finite semantics. Applying this abstraction on a given
timed automaton gives a finite automaton whose number of states is linear in
the locations and exponential in the granularity:

Lemma 2. [1] For a μ-granular timed automaton A = (L, l0, Σ,Δ,X) with
μ = (X,m, cmax ), there always exists a finite automaton A′ which preserves the
reachability information of the states of A. Furthermore, the number of states of
A′ is bounded by

|L| · |X |! · 2|X| ·
�

x∈X

O(m · cmax )

= |L| · |X |! · O(m · cmax )
|X|.

For a given timed automaton A, we define Reach(A) as the set of all states
forward reachable of A. For a set of states B, characterizing the bad states of
A, we use Safe(A,B) as an abbreviation for Reach(A) ∩ B = ∅. We assume
that B can be compactly represented by a Boolean predicate over the locations
and clock values of A. The model checking problem (MC) is to decide whether
Safe(A,B) is true. For deciding MC, the region abstraction is a theoretically
optimal state space representation:
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Theorem 1. [1] For a timed automaton A and a set of bad states B, deciding
Safe(A,B) is PSpace-complete.

3 Timed Control with Partial Observability

In this section, we recall some known results for timed controller synthesis, which
form the starting point of our investigation.

Plants and Controllers. A partially observable plant is a tuple
(P,Σin, Σ

obs
out , X

obs), where P is a timed automaton (L, l0, Σ,Δ,X), Σin and Σobs
out

are the input and observable output actions, respectively, with Σin "Σobs
out ⊆ Σ,

and Xobs ⊆ X are the observable clocks. For a partially observable plant
P = (P,Σin, Σ

obs
out , X

obs), with P = (Lp, l
p
0, Σp, Δp, Xp), a controller for P is

a deterministic timed automaton C = (Lc, l
c
0, Σc, Δc, Xc) with Xc ∩Xp = Xobs

and Σc = Σin ∪Σobs
out such that C does neither

(1) reset plant clocks : for each l
a,ϕ,λ−−−→ l′ ∈ Δc, we require that λ ∩Xp = ∅;

(2) inhibit plant actions : for all timed prefixes w ∈ L(P‖C) with w.u ∈ L(P )
and u ∈ Σobs

out , we require that w.u ∈ L(P‖C); nor
(3) introduce timelocks : for all timed prefixes w ∈ L(P‖C), we require that there

is a d ∈ �≥0 and a c ∈ Σin such that w.d.c ∈ L(P‖C).

We treat the case where the controller has complete information as a special
case. We say that (P,Σin, Σ

obs
out , X

obs) is fully observable, if

(1) P is deterministic,
(2) Σin ∪Σobs

out = Σ, and
(3) Xobs = X .

For a (partially or fully observable) plant P = (P,Σin, Σ
obs
out , X

obs) and a set of
bad states B, the controller synthesis problem is to synthesize a controller C such
that Safe(P‖C,B). Recall that we require timed automata (so the controllers)
to be non-zeno. This way, we rule out trivial solutions consisting of a (physically
unmeaningful) zeno controller that achieves its safety objective just by executing
discrete actions infinitely often in a bounded amount of time.

Controller Synthesis. For the fully observable setting, Maler et al. showed
that the controller synthesis problem can be reduced to solving a finite two-
player safety game (which is known to be PTime-complete [17]) on the finite
semantics of the given plant. They also showed that a fully informed controller
can always be expressed in the granularity of the plant:

Lemma 3. [23] For a fully observable plant P = (P,Σin, Σ
obs
out , X

obs), where P
is μ-granular, and a set of bad states B, if there is a controller C for P, such
that Safe(P‖C,B), then there is a μ-controller C′ (i.e., with no own clocks) such
that Safe(P‖C′, B).
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Henzinger and Kopke proved that the game-theoretic synthesis algorithm based
on the finite semantics is theoretically optimal.

Theorem 2. [16] For a fully observable plant P and a set of bad states B, syn-
thesizing a controller C for P , such that Safe(P‖C,B), is ExpTime-complete.

Bouyer et al. showed that in the presence of partial observability, the general
timed synthesis problem becomes undecidable, even when a bound is imposed
on the number of clocks of the controller.

Theorem 3. [4,3] For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs) and
a set of bad states B, the following holds:

(1) Synthesizing a controller C for P, such that Safe(P‖C,B), is undecidable.
(2) For a given integer constant k ∈ �≥1, synthesizing a controller C for P with

k clocks, such that Safe(P‖C,B), is undecidable.

However, an important result of their work is that by imposing a granularity
bound on the controller, one achieves decidability.

Theorem 4. [4,3] For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a
granularity μ, and a set of bad states B, synthesizing a μ-controller C for P,
such that Safe(P‖C,B), is 2ExpTime-complete.

Inspired by the last theorem, our paper continues this line of research by inves-
tigating finer bounds on the controller.

This concludes the recalling of the results that can be found in the literature.
Based on these results, we start with our investigation.

4 Location-Bounded Controllers

This section starts the presentation of our new results. First, we investigate the
impact of bounding only the number of locations while leaving the granularity
unspecified. It turns out that this does not bring decidability.

Theorem 5. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and an integer k ∈ �≥1, synthesizing a controller C for P with k
locations, such that Safe(P‖C,B), is undecidable.

The proof is based on a reduction from the halting problem of a given two-
counter Minsky machine, which is known to be undecidable [24]. The basic idea
is to let the synthesis algorithm generate a controller that simulates an accepting
run of the machine, or to report that no such controller/run exists. Following
the standard construction proposed in [3] (which, in turn, is an extension of the
one proposed in [1]) we let the plant nondeterministically and unobservably for
the controller verify that he faithfully performs the simulation. The challenge
in obtaining the undecidability result of Theorem 5 is to reduce the halting
problem to the existence of a controller with a bounded number of locations. In
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the appendix, we give a novel encoding where the computation of the Minsky
machine is entirely stored in the clock values. The proof thus reduces the halting
problem to the existence of a controller with a single location.

When bounding the locations of the controller and its granularity, the com-
plexity for controller synthesis drops from 2ExpTime-complete (cf. Theorem 4)
to NExpTime-complete.

Theorem 6. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity μ, a set of bad states B, and a bound k ∈ �, synthesizing a μ-controller
C for P with k locations, such that Safe(P‖C,B), is NExpTime-complete.

We note that this result does not depend on the (unary or binary) encoding of
k and μ. The proof of the NExpTime lower bound is based on a novel proof
technique that uses clocks to represent bits for querying an edge relation of a
succinctly represented graph. The key idea is to represent exponentially many
nodes via only polynomially many clocks. We provide a polynomial-time re-
duction from Succinct graph coloring, which is known to be NExpTime-
complete [21,26,32]. In our reduction, we use an answer of the synthesis prob-
lem to decide whether there is a k-coloring of a given undirected graph that is
succinctly represented (i.e., the graph’s edge relation E is given by a Boolean
function).

In the (possibly infinite) interaction between plant and controller, the plant
nondeterministically selects a node n and queries a color c from the controller.
Then, the plant selects a second node n′ and queries a color c′. If n and n′

are connected via E and c and c′ are the same, the plant enters a bad state.
Otherwise, the colors of another two nodes are queried, and so on. A selected
node is communicated to the controller by letting him read the values of the
clocks representing that node.

For showing the NExpTime upper bound, one can provide a nondeterministic
algorithm that guesses a controller in exponential time, and then validates that
the guess was correct. For a granularity μ = (X,m, cmax ), the number of distinct
atomic constraints is bounded by

γ =
�

x∈X

O(m · cmax ) = O(m · cmax )
|X|,

which is single exponential (recall that m and cmax are given in binary using
polynomially many bits). Now, in each location admitted to C, for each atomic
constraint and each event from Σ, we have to decide (1) which clocks to reset
and (2) in which location to change next. Note that, because we require C to be
deterministic, we only have to make this decision once for every atomic constraint.
Hence, since this choice has to be repeated for every location admitted to C, the
number of possible controllers is bounded by

�
k · 2|X|

�γ·|Σ|·k

and a single controller can thus be represented using

γ · |Σ| · k ·
�
�log k�+ |X |

�
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(i.e., only single exponentially) many bits. The validation relies on model check-
ing, which is, according to Theorem 1, in PSpace ⊆ NExpTime. Note that, from
a complexity-theoretic point of view, this is the best one can do, since any de-
terministic algorithm would have a double exponential worst-case running time,
unless NExpTime = ExpTime.

Concerning the size of the representation of the smallest feasible controller, if
there is one at all, the following theorem states that it is highly unlikely1 that a
small controller always exists.

Theorem 7. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a granu-
larity μ, a set of bad states B, and a bound k ∈ �, if there is a μ-controller C for
P with k locations, such that Safe(P‖C,B), then C cannot always be represented
polynomially, unless NExpTime = PSpace.

5 Discrete Controllers

In this section, we investigate the impact of restricting the controller to be a pure
discrete system communicating synchronously with an arbitrary timed plant.

Definition. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), we say
that a controller C = (Lc, l

c
0, Σc, Δc, Xc) is discrete, if |Xc| = 1 and for each

l
a,ϕ,λ−−−→ l′ ∈ Δc it holds that λ = Xc and either

(1) a ∈ Σobs
out and ϕ ≡ true, or

(2) a ∈ Σin and ϕ ≡ x ≤ 0, assuming Xc = {x}.

Intuitively, discrete controllers only react to discrete observations of the plant.
They are not allowed to measure the time between two observed events.

We want to point out that discrete controllers differ from controllers with a
fixed sampling rate considered in [16,8]. Obviously, the only meaningful bound
which one can impose on discrete controllers is to restrict the number of locations.
In the following, we investigate the bounded and the unbounded case.

5.1 Bounded Case

Requiring that the controller should be discrete, and, additionally, bounding the
number of locations of the controller, reduces the complexity of the synthesis
problem from 2ExpTime-complete (cf. Theorem 4) to PSpace-complete. The
problem is thus exactly as hard as model checking (cf. Theorem 1).

Theorem 8. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), a set of
bad states B, and a bound k ∈ �, synthesizing a discrete controller C for P with
k locations, such that Safe(P‖C,B), is PSpace-complete.

1 As it is common belief that PSpace � ExpTime � NExpTime.



214 H.-J. Peter and B. Finkbeiner

The lower bound immediately follows from the PSpace-hardness of timed model
checking, which is easily seen to be a special case.

Containment in NPSpace (which is known to coincide with PSpace [29])
can be established through the following nondeterministic algorithm. As the
synthesized controller must be discrete and since every controller should be de-
terministic, a number of bits polynomial in |Σin ∪ Σobs

out | · log k suffices to fully
describe a controller. Hence, our algorithm can just guess these bits in polyno-
mial time and then use timed model checking as an oracle to verify the guess.
In summary, our algorithm is in NPTime

MC ⊆ NPSpace = PSpace.

An Effective Synthesis Algorithm. To illustrate the practical relevance of
the PSpace upper bound, we now describe an effective deterministic algorithm
for the synthesis of bounded discrete controllers. The algorithm is based on
a symbolic fixed point iteration. We use (a polynomial number of) Boolean
variables to represent the structure of the controller (i.e., which locations are
connected via an edge with a certain action). Sets of locations are represented
using Boolean functions over a set of O(log k) location variables.

Let R be the set of states of the finite semantics of the plant, S be the set of
all possible controller structures, and L be the set of all locations for all possible
structures. Our algorithm incrementally computes a partial function f : R →
S → L such that, for each location l ∈ f(r, s), the combined plant/controller
state (r, l) is backward reachable assuming that the controller is of structure s. In
an actual implementation, one would represent f as a mapping from regions to
tuples from 2S × 2L, which, in turn, can be efficiently represented using discrete
symbolic data structures (such as binary decision diagrams).

Initially, f maps each bad region to true (representing all controllers and
locations) and each other region to false (representing no controllers and no
locations). In each step of the fixed point iteration, we backpropagate from each
region r the annotated pair of controller structures/locations over all transitions
leading to r. When backpropagating a pair, represented by a Boolean formula ϕ,
over a transition t, the resulting formula ϕ′ is obtained by computing the weakest
predecessors of ϕ. For the source region r′ of t, we update f(r′) := f(r′) ∨ ϕ′.

Once the fixed point is reached, we can derive the feasible controller structures
from the annotation of the initial region. For this purpose we quantify the con-
junction of the annotation of the initial region with the initial controller location
existentially over the location variables. The set of structures characterized by
the resulting Boolean function are the infeasible controllers. Hence, the negation
yields the feasible controllers.

Since, according to Lemma 2, there are only single-exponentially many re-
gions, and since a particular region is visited at most single-exponentially often
(because there are only single-exponentially many controllers), we obtain in total
a single-exponential running time (note that the two exponents multiply). We
can therefore conclude that, unless PTime = PSpace, the time-complexity of
the deterministic algorithm matches the complexity established in Theorem 8.
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Inspired by the argumentation for the upper bound in Theorem 8, one might
ask for the complexity of the synthesis problem if we impose a polynomial bound
on the finite semantics of the plant. We can show that, in this case, the synthesis
problem even becomes NPTime-complete.

Lemma 4. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs), where the
number of regions of P is polynomial in the size of P , a set of bad states B, and
a bound k ∈ �, synthesizing a discrete controller C for P with k locations, such
that Safe(P‖C,B), is NPTime-complete.

The lower bound can be shown by a reduction from Graph coloring, which
is known to be NPTime-hard. The reduction goes analogously to the one for
establishing the lower bound for Theorem 6 with the difference that, here, we
use polynomially many locations (and no clocks) to represent the explicitly given
graph in the plant.

Before we prove containment in NPTime, let us first ascertain the follow-
ing fact that immediately follows from the well-known result that reachability
checking on explicitly represented graphs is NLogSpace-complete:

Lemma 5. [18] For a given directed graph G = (V,E) with nodes V and edges E,
and a set of bad nodes V ′ ⊆ V , finding a lasso (i.e., a path leading to and
comprising some cycle in G), which avoids any nodes in V ′, is NLogSpace-
complete.

Now, the NPTime upper bound of Lemma 4 can be established by the following
nondeterministic algorithm that runs in polynomial time. Analogously to estab-
lishing the upper bound for Theorem 8, we first guess a controller in polynomial
time. But now, the model checking procedure runs on a region graph of only
polynomial size and, according to Lemma 5, requires only logarithmic space.
Thus, the problem is in NPTime

NLogSpace = NPTime.
It is straight forward to see that, according to Lemma 2, the number of regions

is only exponential in the granularity, but linear in the number of locations. Also,
note that no plant clocks were used in establishing the NPTime lower bound
for the last lemma. Consequently, we can state the following corollary.

Corollary 1. For a fixed granularity μ, the problem of synthesizing a bounded
discrete safety controller for a partially observable μ-granular plant is NPTime-
complete.

5.2 Unbounded Case

It turns out that the restriction to discrete controllers does not pay off in the
unbounded case. In fact, we obtain the same 2ExpTime complexity bounds
(cf. Theorem 4) as for the general synthesis problem already investigated in the
literature [11,4,3].
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Theorem 9. For a partially observable plant P = (P,Σin, Σ
obs
out , X

obs) and a set
of bad states B, synthesizing a discrete controller C for P with an unspecified
number of locations, such that Safe(P‖C,B), is 2ExpTime-complete.

The upper bound follows immediately from the upper bound established in The-
orem 4. However, we additionally provide a deterministic algorithm that runs in
double exponential time. First, we obtain a new plant automaton P ′ by enriching
P by a fresh clock x, which is reset to 0 on every edge with an action a ∈ Σin. On
every edge of P ′ with an action a ∈ Σobs

out , we strengthen the guard with x ≤ 0.
Then, we construct the region graph of P ′, which, according to Lemma 2, is of
single exponential size. We hide unobservable action and delay transitions by re-
placing them by ε-transitions. Finally, we obtain an equivalent finite game with
perfect information by constructing the so-called belief space [27], which leads to
a second exponential blowup. Since solving pure discrete safety games is PTime-
complete [17,16], we conclude that our algorithm requires double exponential
time.

The AExpSpace = 2ExpTime lower bound, which is more technically in-
volved, is established by a reduction from the halting problem of an alternating
Turing machine whose tape length is bounded exponentially in the size of the
input. In our reduction, the Turing machine reaches its final state iff there exists
a safe controller. Similar to a proof presented by Rintanen in the reachability
planning setting [28], instead of storing the contents of the whole tape, we let the
plant, unobservable for the controller, select a dedicated tape cell that should be
watched. Unlike in the pure discrete setting of [28], we use polynomially many
clocks (instead of Boolean variables) to represent the bits of some integer vari-
ables encoding the exponentially large index of the watched tape cell and the
current position of the tape head.

Also different to [28], as our interest lies in safety controllers, we need to
avoid that a controller is synthesized that never reaches the final state by in-
finitely looping through some other states. For this, we introduce a counter that
keeps track of the number of steps executed so far. Since the maximal number of
steps without visiting a state twice corresponds to the number of possible con-
figurations, we can use this maximal number as a general bound, beyond which
the plant immediately enters a bad state. Unfortunately, as this number is dou-
ble exponential in the number of bits (i.e., clocks), we cannot use just another
integer variable to represent the step counter (because this variable would com-
prise exponentially many bits). Instead, we let the plant force the controller to
faithfully produce the correct sequence of bits of the step counter. Again, instead
of remembering all bits, we let the plant nondeterministically and unobservably
for the controller select a dedicated bit that should be watched, whose correct
incrementation is verified.

We point out that, for establishing the lower bound, the 2ExpTime-hardness
proof given in [11], where the controller is timed and can observe all clocks, does
not apply to our setting of discrete controllers with partial observability.
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6 Conclusion

In this paper, we have extended the bounded synthesis approach [30] to timed
systems. We have established the complexity of timed control with partial observ-
ability under different types of bounds, and under different restrictions on the
granularity. Our results in particular identify the synthesis of discrete controllers
(over timed plants with limited observability) as a special case with significant
practical relevance and, at the same time, very reasonable complexity: synthe-
sizing discrete controllers is no harder than model checking, and can, in fact, be
implemented with a symbolic fixed point iteration similar to BDD-based model
checking [5,6]. Our results thus draw a much more optimistic picture for the
synthesis of realistic controllers than previous work on the unbounded synthesis
problem, where the introduction of real-time was shown to cause an exponential
blow-up and partial observability was shown to make the problem undecidable.

The bounded synthesis approach is useful both when a reasonable bound is
fixed a priori and when no bound is known in advance and the algorithm must,
instead, search for the right bound. Bounded synthesis with iteratively increas-
ing bounds is a complete method for the unbounded synthesis problem, with
the significant advantage over previously studied approaches that the smallest
solutions are found first.
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Abstract. This paper addresses Zeno runs, i.e., transition sequences
that can execute arbitrarily fast, in the context of model checking with
the UPPAAL tool. Zeno runs conflict with real-world experience where
execution always takes time and they may introduce timelocks into the
models. We enhance previous work on static detection of Zeno runs by
extending synchronization exploitation using a synchronization matrix
that not only ensures valid synchronization partners exist but also that
their number is correct. Additionally, we introduce two data-variable
heuristics into the analysis as in most models data-variable constraints
prevent certain Zeno runs. The analysis is implemented in a tool called
ZenoTool and empirically evaluated using 13 benchmarks. The evaluation
shows that our analysis is more accurate in 3 cases and never less accurate
than the analysis results of previous work and that performance and
memory overhead are at the same time very low.

Keywords: Zeno Runs, Timed Automata, UPPAAL.

1 Introduction

Timed automata [3] provide an easy-to-use, graphical way to model systems
that need to adhere to timing constraints. However, specifications may suffer
from erroneous states, e.g., timelocks, which are blocking states analogous to
deadlocks in untimed systems. The potential occurrence of Zeno runs—paths in
the timed automata system that execute infinitely many action transitions in
finite time—complicates the matter as timelocks involving them (so-called Zeno
timelocks) can not be detected by standard deadlock detection methods. Model-
checking tools like UPPAAL can verify liveness properties to ensure the absence
of Zeno runs. However, the verification process needs to explore the whole state
space of the system, which might render the verification of complex systems
infeasible. This paper therefore explores static analysis techniques to enlarge the
class of systems that can be proved safe in regards to Zeno runs. We improve the
accuracy of the static Zeno run detection technique developed by Gómez and
Bowman [14], which uses the strong non-Zenoness (SNZ) property introduced
by Tripakis [27], by refining the used method to exploit synchronization. In

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 220–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Static Zeno Run Detection 221

addition, we introduce two heuristics that enhance the method by considering
data-variable valuations.

In brief, our analysis works as follows. First, we extract all simple loops in
the timed automata system by modifying an existing cycle detection algorithm
[24–26] to process multiple edges between the same locations correctly. Those
loops are checked for their strong non-Zenoness property by inspecting relevant
clock assignments and constraints. Next, loops are declared safe or unsafe based
on external updates to clock variables that may invalidate the SNZ property.
We then determine whether valid synchronization scenarios involving a loop
exist by solving linear (in)equation systems using our synchronization matrix,
and dismiss loops without one. The synchronization matrix represents the syn-
chronization capabilities of all unsafe loops and also considers the number of
partners required in contrast to the synchronization-group approach [14]. Con-
cerning data-variable heuristics, we introduce one that extends the safety prop-
agation to data variables such that loops are considered safe if they depend on
data-variable valuations that can only be obtained from safe loop iterations. The
second heuristics eliminates loops that can not iterate at run time because of
conflicting constraints requiring different variable valuations.

We implemented the analysis in a tool named ZenoTool, along with several
models from different case studies from the literature [23]. We also implemented
the synchronization-group approach [14] and compared it with the results of our
method. Of the 13 models analyzed, our analysis is in 3 cases more accurate.
Specifically, one model benefits from the introduction of the synchronization ma-
trix and the two other improvements are attributed to the data-variable heuris-
tics. The memory overhead is less than 15% and the hit in performance is less
than 17% on average in spite of the fact that we employ more machinery.

This paper is organized as follows. Section 2 introduces UPPAAL’s timed
automata model as well as Zeno runs. Section 3 presents the analysis by Gómez
and Bowman including the strong non-Zenoness property and the notion of loop
safety. Section 4 introduces our synchronization-matrix approach and Section 5
deals with the data-variable heuristics. Section 6 focuses on our implementation
and the empirical results, Section 7 summarizes related work, and, at last, Section
8 concludes the paper and suggests further research.

2 Zeno Runs in UPPAAL Networks

2.1 UPPAAL’s Timed Automata Model

The timed automata model used by UPPAAL is an extended model of the one
proposed by Alur and Dill [3]. A system may consist of multiple, possibly con-
current components and every component is modeled as a finite state machine:
a set of locations and edges with an initial location forming a directed graph.
Communication between concurrent components is achieved by synchronization
on user-defined channels and shared, bounded data variables. Timing constraints
are realized by special clock variables, which take values in the positive reals:
All clock variables advance simultaneously at the same rate but can be reset
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individually upon firing of an edge. Edges represent action transitions of the
system. Basic annotations on edges are updates to variables including clocks
(resets), basic boolean expressions on (time) variables (guards), and synchroniza-
tion labels. Guards state whether or not an edge may be fired at a certain state.
Synchronization labels relate multiple edges and indicate that certain edges fire
synchronously. UPPAAL defines binary synchronization (1-to-1 relation) where
both edges must be available (required synchronization) and broadcast synchro-
nization (1-to-many relation) where receivers need not be available (optional
synchronization). Time transitions are implicitly possible in locations. They can
therefore be annotated with so-called invariants. The system may only remain in
a location while the clock invariant is satisfied. We now formalize relevant parts
of the underlying model. For more detail we refer to the paper by Bowman and
Gómez [14].

A timed automaton is a tuple A = (L, l0,Lab, E, I,V). L denotes the set of
locations; l0 ∈ L is the initial location of the timed automaton and Lab the set
of synchronization labels used by the automaton. E is the set of edges and I a
mapping function, which may assign an invariant to locations. V is the set of
variables the timed automaton uses. As it is common, edges (l, a, g, u, l′) ∈ E

will also be written in the format l
a,g,u−−−→ l′, where a is the synchronization label,

g the guard, and u the update.
A network of timed automata is an aggregation of n single automata N =

〈A1, . . . , An〉, where Ai = (Li, l0,i,Labi, Ei, Ii,Vi). A location in the network
is represented by the location vector containing the positions in the individual
components l̄ = 〈l1, . . . , ln〉, li ∈ Li.

The semantics ofN is given by a timed transition system (S, s0, ({ε}∪ IR+), T ),
where S = 〈l̄, v〉 is the set of reachable states using a location l̄ and a variable
valuation function v that maps variables to their current actual values. States are
reachable if they can be reached by execution of the underlying network of timed
automata. The initial system state is given by s0, and T ⊆ S × ({ε} ∪ IR+)× S
is the transition relation that links source and destination states with an action
indicator (ε) or a time delay (IR+). We use s

γ
=⇒ s′, γ ∈ ({ε} ∪ IR+), to denote

state transitions.

2.2 Zeno Runs and Zeno Timelocks

Wrong usage of synchronization, false time constraints, or invalid application of
urgency may introduce flaws into a model. Dead- and timelocks are one category
of effects that may arise. Timelocks occur in specifications if time is unable to
progress further due to constraints. Zeno timelocks are especially difficult to
track down because they can not be detected by standard deadlock detectors
as only the delay of time is blocked and action transitions are still possible. We
now give a short formalization of Zeno runs and Zeno timelocks.

At first, we define a run ρ := s1
γ1
=⇒ s2

γ2
=⇒ . . . , si ∈ S, γi ∈ {ε} ∪ IR+ to

be a path in the timed transition system. A run may be finite, ending in a state
sn ∈ S, or infinite. A run ρ is time-divergent if the sum of all delays occurring
in ρ is infinite.



Static Zeno Run Detection 223

Definition 1 (Zeno run). A run ρ is a Zeno run if ρ is infinite and ρ is not
time-divergent.

The definition characterizes an infinite path in the transition system where time
converges and thus infinite actions are executed in finite time. Such behavior is
impossible in real systems and one needs to be closely examine whether a Zeno
run approximation is appropriate in a certain model.

Definition 2 (Zeno timelock). A state s is a Zeno timelock if all runs starting
in s are not time-divergent and for all finite runs starting in s a Zeno run exists
that starts with the complete transition sequence of the corresponding finite run.

The definition ensures that upon reaching a Zeno timelock state s all runs are
not time-divergent and additionally all finite runs can be extended to Zeno runs
with the intend of excluding normal deadlocks. An example of a Zeno timelock
is given in Fig. 1. The single transition is not constrained and can be executed
at all times. Thus, Zeno runs are possible. Time, however, can not advance past
five time units and therefore all states in the system are Zeno timelocks.

Initial
t <= 5

Fig. 1. Zeno run and Zeno timelock

3 Strong Non-zenoness and Loop Safety

Strong non-Zenoness (SNZ) is a static property of loops in a timed transi-

tion system. A loop or elementary cycle is a transition sequence 〈l0
a1,g1,u1−−−−−→

l1 . . . ln−1
an,gn,un−−−−−→ ln〉, where l0 = ln and li 	= lj for all 0 ≤ i 	= j ≤ n. Observ-

able loops are loops that synchronize on a channel. Furthermore, a run covers a
loop if all edges of the loop are fired infinitely often in the run. SNZ was intro-
duced by Tripakis [27] to classify loops according to their ability to contribute
to Zeno runs. A loop is strongly non-Zeno if a clock variable t is bounded from
below by a guard (t ≥ n, n ≥ 1) and reset in the same loop (t = 0). This con-
stellation ensures that time needs to pass when the loop is iterated. The guard
only becomes enabled after a sufficient amount of time has passed as the clock
is reset every iteration.

Gómez and Bowman modified the definition of strong non-Zenoness to al-
low more loops to be classified accurately [9]. Additionally, they restricted the
number of loops to analyze in the network to elementary cycles only. They also
proposed the exploitation of synchronization such that not all loops in a network
need to be strongly non-Zeno for it to be considered free from Zeno runs.

Advanced modeling features of UPPAAL however may invalidate SNZ. Non-
zero clock updates, updates of the form t = k where k > 0, may render lower
bounds on clocks meaningless when inferring strong non-Zenoness. Even though
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a clock is bound from below and reset in a loop a Zeno run may occur if the
valuation of the clock still satisfies the lower-bound imposing guard after the
clock is reset. Also, non-zero clock updates introduce an order dependency when
multiple updates to the same clock occur in a loop. A definition of strong non-
Zenoness considering non-zero updates is given in the following.

Let Φ be a clock constraint and g a guard. Φ ∈ g denotes a constraint Φ that
can be inferred from the guard g. Let x and y be clocks, let m be a natural
number including zero (m ∈ IN0), and u be an update annotation on an edge.
We use x = m ∈ u to denote an update u that sets the valuation of x to m.
In addition, if e is an edge in a loop lp annotated with a guard g and n is a
natural number (n ∈ IN), we define x�n ∈ g to express that either x - n ∈ g
(-∈ {=, >,≥}) or x− y - n ∈ g (-∈ {>,≥}). Using those definitions we define
xlb to be the lower bound for x in g if x�xlb

∈ g and there is no x′
lb > xlb such

that x�x′
lb
∈ g. At last, we use U(p, q) to denote the set of updates that occur

on the edges on the path from p to q (〈p a1,g1,u1−−−−−→ e1 . . . en−1
an,gn,un−−−−−→ q〉). We

rephrase the SNZ definition [14] as follows:

Definition 3 (Strongly non-Zeno loop). A loop lp is strongly non-Zeno
(SNZ) if there exists a clock x with lower bound xlb, an edge eu with an up-
date u, and an edge eg with a guard g in lp, and there are natural numbers m,
m′ that adhere to the following constraints:

x = m ∈ u clock reset (1)

m < xlb valid reset (2)

∀u ∈ U(eu, eg)(�x = m′ ∈ u(m′ ≥ xlb)) lower bound invalidation (3)

Equation (1) ensures the clock variable x is reset in the loop. Equation (2) assures
the clock variable is reset to a value lower than the corresponding lower bound
and thus time has to pass when iterating the loop. At last, (3) guarantees that
there is no update to the clock variable on the path from eu to eg that invalidates
the clock reset. A clock x that complies with those constraints is called an SNZ
witness for the loop lp.

In UPPAAL an SNZ loop, however, may still contribute to a Zeno run. Ex-
ternal updates to non-local clock variables may render possible infinitely fast
iterations. If a global clock variable is an SNZ witness for a loop other loops may
assign values to the clock variable that satisfy the constraint of the SNZ loop. If
such an external update can execute infinitely fast the SNZ loop also is prone to
Zeno runs as no time is required to fulfill the clock constraint. A safety property
to accommodate external updates is given next.

Definition 4 (Safe loop). A loop lp in an UPPAAL specification is considered
safe from Zeno runs if it is a strongly non-Zeno loop (SNZ) and either the loop
has a local SNZ witness or all external updates to an SNZ witness of lp originate
from safe loops.1

1 Requiring updating external loops to be safe instead of strongly non-Zeno with a
local witness [14] makes the safety property transitive.
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Proposition 1. Any run that covers a safe loop lp is time-divergent.

Proof. A run that covers a strongly non-Zeno loop is time-divergent by definition
unless the SNZ witness clock is externally updated infinitely often without de-
lays. Such updates must originate from loops that exhibit Zeno runs themselves.
But such updates are impossible as a safe loop only receives updates from safe
loops by definition. Thus, safe loops are free from Zeno runs. �

4 Synchronization Matrices

We now introduce our synchronization-matrix approach. First we discuss the
representation of loops, then the construction of the synchronization matrix,
and finally the equation system that determines the set of safe loops.

4.1 Loop Modeling

At first, we assign appropriate modeling vectors to all observable, unsafe loops.
Let U refer to the set of observable, unsafe loops and let Sync(S) be the set
of synchronization channels used in a set of loops S. We denote the set of all
synchronization channels used in unsafe, observable loops L = Sync(U). In ad-
dition, we define Base(lp) to be the ordered base vector set and Broad(lp) the
ordered broadcast vector set for a loop lp, and BCh to be the set of broad-
cast synchronization channels. A vector v in either set has one component per
used synchronization channel and those components take values in the integral
numbers (v ∈ ZZ|L|). We refer to individual vector components by xchannel. In
our notation, c denotes a channel, a[] an array, e an expression, c! a sending
channel, and c? a receiving one.

Vectors are assigned to loops in the following way. Initially, for every lp ∈ U
the set Base(lp) consists of a single zero vector. The set Broad(lp) is empty. We
then iterate over all loops lp ∈ U and for every synchronization label lb used in
the loop the sets are updated using the matching following rule:

1. binary channel (send/receive), broadcast channel (receive)
(c /∈ BCh) ∨ (lb = c?)
For every vector v ∈ Base(lp), increase xc by 1, if lb is of the form c!, or
decrease xc by 1, if lb is of the form c?.

2. broadcast channel (send)
c ∈ BCh ∧ lb = c!

If not already in the set, add a vector v to Broad(lp), where xc is set to 1.
3. unresolved binary channel array (send/receive), unresolved broadcast channel

array (receive)
((�c ∈ a[c ∈ BCh]) ∨ (lb = a[e]?)) ∧ e unresolved
For every channel c ∈ a, create a copy Cc of Base(lp). Then, for every vector
v ∈ Cc, increase xc by 1, if lb is of the form a[e]!, or decrease xc by 1, if lb
is of the form a[e]?. The resulting base vector set is the union of all copies:
Base(lp) =

⋃
c Cc.
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4. unresolved broadcast channel array (send)
∀c ∈ a[c ∈ BCh] ∧ lb = a[e]! ∧ e unresolved
For every channel c ∈ a if not already in the set, add a vector v to Broad(lp),
where xc is set to 1.

Fig. 2 shows one loop per rule. Assume the following channel variables: a is a
binary channel, b is a broadcast channel, c is a binary channel array of size
two, and d is a broadcast channel array of size two. All loops are unsafe and
observable. We use the following form of vectors to represent the loops: v =
(xa, xb, xc[0], xc[1], xd[0], xd[1])

T . The resulting loop models are:

– Loop A: Base(lp) = { (1, 0, 0, 0, 0, 0)T }, Broad(lp) = ∅
– Loop B: Base(lp) = { (0, 0, 0, 0, 0, 0)T }, Broad(lp) = { (0, 1, 0, 0, 0, 0) }
– Loop C: Base(lp) = { (0, 0, 1, 0, 0, 0)T , (0, 0, 0, 1, 0, 0)T }, Broad(lp) = ∅
– Loop D: Base(lp) = { (0, 0, 0, 0, 0, 0)T },

Broad(lp) = { (0, 0, 0, 0, 1, 0)T , (0, 0, 0, 0, 0, 1)T }

DCBA

d[e]!c[e]!b!a!

Fig. 2. Synchronization cases during loop model construction

4.2 Matrix Construction

Based on the loop models we now create the synchronization matrices, which
will be used to calculate valid synchronization scenarios. The matrix has the
following form:

S =

(
M
C

)
=

⎛⎜⎜⎜⎜⎜⎝
M1 M2 . . . Mn

C1 0 . . . 0
0 C2 . . . 0
...

...
. . .

...
0 0 . . . Cn

⎞⎟⎟⎟⎟⎟⎠ (4)

Mi are model matrices for all unsafe, observable loops and Ci are associated
constraint matrices. The model matrices Mi can be constructed from the loop
models:

Mi =
(
v1 . . .vn b1 . . . bm b1 . . . bm

)
,vj ∈ Base(lpi), bk ∈ Broad(lpi) (5)

The constraint matricesCi relate the broadcast vectors to the base vectors. They
are divided into three parts in the same way as the model matrices Mi. They
are of the form

Ci =

(
0 s · I −1 · I

li . . . li Li 0

)
(6)
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Here, 0 is the zero matrix, s is the total number of synchronization labels, I is
the identity matrix, li is the base-link vector, and Li is the base-link matrix of
the loop. The upper blocks in Ci model broadcast-link constraints and the lower
blocks model base-link constraints. Together, the constraints model the 1-to-n
synchronization behavior of broadcast channels. For the construction of the base
link vectors and matrices, we iterate through all synchronization labels lb in the
loop lpi and add values to li and rows to Li if one of the following rules applies:

1. broadcast channel (send) (c ∈ BCh ∧ lb = c!)
Add the number of sending synchronization labels of the form c! in the loop
lpi to li. Add a zero row to Li and set the value xp to -1. The index p refers
to the position of the vector v ∈ Broad(lpi), where xc = 1.

2. unresolved broadcast channel array (send) (∀c ∈ a[c ∈ BCh] ∧ lb = a[e]!)
Add the number of sending synchronization labels of the form a[e]! in the
loop lpi to li. Add a zero row to Li and set the values xj , j ∈ P , to -1. The
set P of indices refers to the positions of the vectors vj ∈ Broad(lpi), where
xc = 1 and c is a channel in the array a.

Equation (7) shows the synchronization matrix S for the example model shown
in Fig. 2. Vertical bars separate different loops and dashed vertical bars separate
the base vectors from the broadcast vectors. The horizontal double bar separates
the model matrices from the constraint matrices and the simple horizontal bars
separate the loop constraint matrices.

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1

0 0 4 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 −1 0
0 0 0 0 0 0 0 0 4 0 −1
0 0 0 0 0 0 1 −1 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

Loop A only sends on the binary channel a and is therefore modeled with a single
base vector in the first column. Loop B only sends on the broadcast channel b
and thus is modeled in columns 2-4 by the empty base vector and the duplicated
broadcast vector. The vectors are linked using a broadcast-link constraint and a
base-link constraint. Columns 5 and 6 model loop C that sends on an unresolved
binary channel array c with 2 elements. Two base vectors are created as syn-
chronization is possible on c[0] or c[1]. Lastly, loop D sends on an unresolved
broadcast channel array d. Accordingly, the zero base vector is kept and for ev-
ery channel in the array one broadcast vector was created and then duplicated.
The broadcast link constraints bind the duplicates together. In the last row the
base-link constraint ensures only either d[0] or d[1] can synchronize per loop
iteration.
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Correctness argument The synchronization matrix is a nearly exact
representation of the synchronization capabilities in UPPAAL.2 All required
synchronization partners for a loop are captured by its base vector set. Optional
synchronizations are possible due to the broadcast vectors and are restricted by
the binding constraints such that broadcast synchronizations may synchronize
with all potential receivers per loop iteration.

4.3 Synchronization Scenarios

Using the synchronization matrix S we can construct valid synchronization sce-
narios involving all loops. Loops for which no valid synchronization scenario
exists can not exhibit Zeno runs and may be removed from the analysis result
set. The (in)equation system that needs to be solved is given in (8):

Mx∗
M = 0, Cx∗

C ≥ 0, S =

(
M
C

)
, x∗ =

(
x∗
M

x∗
C

)
(8)

The equation system is further constrained insofar the components of the so-
lution vector x∗ may only take values in the natural numbers including zero
(x∗ ∈ (IN0)n). Upon successful solution calculation, the solution vector contains
information about how often every loop needs to iterate to provide a matching
synchronization partner for every synchronization label.

To decide whether or not a valid synchronization scenario exists for a certain
loop lp, we solve the (in)equation system once for every base vector of lp. Each
time, we require the component value of the solution vector x∗ of a different
base vector of lp to be greater than zero to ensure the solution will involve the
loop. If a solution exists, the loop may contribute to Zeno runs, otherwise it is
eliminated from the result set of the analysis.

Correctness Argument. For a model to exhibit Zeno runs a synchronizing set
of loops that can iterate indefinitely without delays must exist. Such an infinite
iteration is periodic as the underlying automata system is finite, and we can
characterize the iteration using the number of iterations of each participating
loop per period. For a loop to contribute to a Zeno run thus a sound character-
ization involving the loop must exist. We construct sound characterizations for
every unsafe loop and thus can exclude some loops upon construction failure.

5 Data-Variable Heuristics

Data variables play an important role during execution of a timed transition
system in UPPAAL but have not yet been analyzed for their influence on Zeno

2 We unify sending and receiving synchronizations by counting them positive and
negative respectively. This simplification introduces false positives if a loop sends
and receives on the same channel. An extension of the loop vectors to two numbers
per channel could solve this problem.
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runs. They may, for example, disable edges or dynamically provide upper and
lower bounds for time constraints and thus modify the behavior of a model
significantly. During a static analysis exact values for data variables generally
can not be inferred directly. However, techniques using data-flow analysis can
restrict the set of possible valuations for a data variable at certain states. Such
restrictions may render possible the elimination of loops that can not iterate due
to those data variable constraints and thus improve the accuracy of the Zeno
run analysis even further.

In this paper we do not apply a fully-fledged data-flow analysis to UPPAAL’s
timed automata system. Instead, we opted for an ad-hoc approach that evaluates
loop constellations and variable valuations on a case-by-case basis to eliminate
impossible Zeno runs. The next two subsections present two such heuristics.

5.1 Safely Dependent Loops

Consider the timed automaton given in Fig. 3. The automaton consists of a
single component that models the Fischer synchronization protocol [19]. The
component uses two variables and two constants: x is a local clock variable, id is
a global integer variable, pid is a unique, constant integer value that is greater
than zero to identify the component, and k is a global, constant integer value
greater than zero. The automaton has two loops:

1. Loop: A → req → wait → cs → A

2. Loop: req → wait → req

The first loop is a safe loop. The second loop is neither safe nor strongly non-
Zeno. However, the second loop has a safe data-variable dependency: the data
variable id is required to be zero (id == 0) for the loop to iterate. In addition,
the loop itself sets the value of id to a value that does not satisfy the guard
(id = pid) and thus the loop can not iterate on its own indefinitely. Instead,
the loop depends on external influence on the data variable id. In this example,
a valuation of id that satisfies the guard is only reachable if the first, safe
loop is executed. Therefore, the second loop can also be considered safe because
iterations of the second loop always require a safe loop iteration of the first loop
ensuring time divergence. We improve the accuracy of our analysis by removing
loops that have such a dependency. The dependency can be defined as follows.

Definition 5 (Safely dependent loop). A loop lp is safely dependent if there
exists an update u and a guard g in lp such that g is never satisfied after u
is executed, regardless of the previous variable valuations, and every reachable
variable valuation that satisfies g originates from an update on an edge that is
part of safe loops only.

Proposition 2. Any run that covers a safely dependent loop lp is time-
divergent.

Proof. A run ρ that covers a safely dependent loop lp not only covers lp but also
at least one loop lp′ that provides a variable valuation that satisfies the guard g
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wait

req
x<=k

A

cs

id== 0 x = 0

x<=k

x = 0,
id = pid id== 0

x = 0

x>k && id==pid

id = 0

Fig. 3. Fischer protocol automaton

in lp. As all loops that provide such a valuation are safe by definition, ρ covers
a safe loop lp′ and thus ρ is time-divergent. �

5.2 Conflicting Loops

When specifying a model in UPPAAL the user may create loops in the system
that cannot execute during model execution due to data constraints. However,
those loops are still considered for Zeno run detection during static analysis.
Fig. 4 shows a model with such an impossible loop. The model uses two local
variables; x is an integer variable and t is a clock variable. The interesting loop
is Zero → One → Zero because this loop can not iterate at run time as the two
guards need conflicting valuations of x (x == 0, x == 1), but x is a local variable
and can thus not be modified from an external source. The system is therefore
free from Zeno runs. We improve the accuracy of our analysis by removing loops
that have such a conflict. The conflict can be defined as follows.

One

Zero

RandomInitial x == 0x == 1

x == 1

x == 0

i : int[0,1] t > 0 t = 0, x = i

Fig. 4. Model with an impossible loop

Definition 6 (Conflicting loops). A loop lp is conflicting if there exist two
edges e1 and e2 with respective guards g1 and g2 involving local variables such
that no variable valuation exists that satisfies g1 and after sequential execution
of the updates on a path from e1 to e2 also satisfies g2.

Proposition 3. There is no run that covers a conflicting loop lp.

Proof. For a conflicting loop lp there is no variable valuation that satisfies a
guard in lp and, after updates have been applied, also satisfies a different, second
guard in lp. Accordingly, a run can only cover one of both edges of lp but never
both. Therefore, a covering run for lp does not exist. �
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6 ZenoTool: Implementation and Evaluation

We implemented the analysis in a stand-alone software called ZenoTool [23] us-
ing C++. ZenoTool is a command-line program reading UPPAAL 4.0 model
specification files. To determine the accuracy and efficiency of ZenoTool’s anal-
ysis we analyzed 13 models that cover a broad spectrum of use cases and thus
allows determining general qualities of ZenoTool.

We measured ZenoTool’s run time by executing the analysis ten consecutive
times and saving the fastest, the slowest, and the average run times. Valgrind’s
massif tool was used to find the peak heap memory consumption of ZenoTool.3

All experiments were done using an Intel Core 2 Duo CPU running at 3.33GHz
with 8GB of RAM on an Ubuntu 11.10 system.

In more detail, our test suite contains three example models distributed with
UPPAAL, namely the train-gate8 model, the fischer6 model, and the bridge
problem. Another four, the csmacd2 and csmacd32 models, the fddi32 model,
and the bocdp model, are used to benchmark UPPAAL’s performance but were
developed in scientific case studies [10, 15, 30]. The remaining models were de-
rived from scientific case studies [8, 9, 12, 20, 21, 29]. Eight of the models are
free from Zeno runs and the remaining five exhibit Zeno runs in one or multiple
ways.

Table 1. ZenoTool analysis accuracy. The table shows the number of loops prone
to Zeno runs that ZenoTool found. The Zeno run column indicates whether or not a
model is free from Zeno runs (✓: free, ✗: not free). The � symbol indicates a certain
analysis configuration was not applicable for a model. D indicates usage of the safely
dependent loop heuristic; C indicates usage of the conflicting loop heuristic. The Sync
Matrix columns show the results of our approach while the Sync Groups columns show
results obtained using the synchronization-group method.

Model Zeno Runs Sync Groups Sync Matrix

bridge.xml ✓ 0 0 0 0 0 0 0 0
lipsync.xml ✓ 0 0 0 0 0 0 0 0

train-gate8.xml ✓ 0 � � � 0 � � �
fddi32.xml ✓ 0 0 0 0 0 0 0 0
bocdp.xml ✓ 0 0 0 0 0 0 0 0
tdma.xml ✓ 2 2 2 2 2 2 2 2

gearbox.xml ✓ 7 7 7 7 7 7 7 7
csmacd.xml ✗ 4 4 4 4 4 4 4 4
csmacd2.xml ✗ 7 7 7 7 3 3 3 3
csmacd32.xml ✗ 97 97 97 97 97 97 97 97
fischer6.xml ✓ 6 0 6 0 6 0 6 0
bmp.xml ✗ 2 1 2 1 2 1 2 1

zeroconf.xml ✗ 14 � � � 14 � � �
Heuristics Used D C D D C D

C C

3 Note that additionally to the heap memory some static memory will be used, which
is not accounted for here.
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Table 2. ZenoTool analysis performance. The sync-group method uses no heuristics;
the sync-matrix method uses both heuristics. Gómez and Bowman’s results of liveness
checks in UPPAAL are given for reference. The ⊥ symbol indicates calculations did
not finish within reasonable time. Our values are all rounded up. The given memory
consumption is the peak heap memory consumption. ZenoTool additionally needs a
certain amount of static memory that is not accounted for here. The � symbol again
indicates that a certain analysis configuration was not applicable for a model.

Sync groups Sync matrix UPPAAL
Model min max avg mem min max avg mem time vmem

bridge.xml 6 10 9 587 10 11 10 671 - -
lipsync.xml 11 11 11 792 11 13 12 881 1 53

train-gate8.xml 9 15 12 620 � � � � 1496 762
fddi32.xml 77 86 80 1911 79 85 81 2011 ⊥ ⊥
bocdp.xml 172 183 175 1140 176 189 179 1221 ⊥ ⊥
tdma.xml 87 88 88 866 87 98 89 951 - -

gearbox.xml 19 21 20 872 25 28 26 955 11644 68
csmacd.xml 10 12 11 629 8 13 10 723 5204 60
csmacd2.xml 11 11 11 633 9 15 10 721 - -
csmacd32.xml 48 51 49 1881 95 98 96 1961 1 5
fischer6.xml 11 12 11 562 11 17 15 641 ⊥ ⊥
bmp.xml 11 15 12 684 13 14 13 764 1 1

zeroconf.xml 14 22 18 704 � � � � 1676 315

Units [msecs] [kB] [msecs] [kB] [secs] [MB]

Concerning the five models that can exhibit Zeno runs all loops responsible
for the occurrence of Zeno runs were found. Note that models with Zeno run
approximations are not necessarily harmful but such approximations need to
be carefully examined. Of the eight Zeno run free models ZenoTool proved six
directly safe. For the remaining two the analysis returned a handful of false
positives making inferring the absence of Zeno runs by hand easy. Thus all eight
models were classified correctly with little or no manual work at all.

Comparing our approach to our re-implementation of the synchronization-
group approach [14], our synchronization-matrix method yielded an improve-
ment in accuracy only for a single model. The conflicting loops data heuristics
did not find a single conflicting loop, which was not surprising since all the mod-
els are well thought-out. However, the safely dependent heuristics eliminated
seven loops in two different models. In one case the heuristics managed to prove
the absence of Zeno runs, which the synchronization-group method was not able
to do directly. Table 1 summarizes the accuracy results.

For our performance checks we compared the synchronization-group approach
without heuristics to our synchronization-matrix method using both data heuris-
tics. This setup emphasizes that ZenoTool’s performance scales well even if the
work load is additionally increased because of the data heuristics. Our perfor-
mance results can be seen in Table 2.

Generally, all analyses run in less than a second even for complex models.
Thus, time is not a major factor when using ZenoTool. Memory consumption is



Static Zeno Run Detection 233

also quite low. When taking a closer look at the performance results comparing
the synchronization-group method to ours the run-time differences are nearly
negligible. Only the csmacd32 model shows a significant difference in run time.
There, our synchronization-matrix approach including the heuristics takes nearly
twice the time than the original method. This is an expected result because the
(in)equation solving process in this case is not trivial.

Generally, we had expected more performance hits, but ZenoTool uses the
GNU Linear Programming Kit (GLPK) to solve the constrained (in)equation
system and at least our current benchmark set suggests that most of the models
generate equation systems that are easy to solve for the GLPK; thus, run time
does not increase significantly. Models that benefit from the synchronization
matrix accuracy improvement probably will perform worse than our results show.

The performance of the data-variable heuristics depends on the accuracy of
the previous analysis result set. As most experiment models returned small sets
of unsafe loops the heuristics had only a small negative effect on ZenoTool’s
run time. Yet, models that have many unsafe loops that appear to be unsafe if
one does not consider data variables might also see a drop in performance. Still
ZenoTool’s performance is very satisfactory.

7 Related Work

Zeno behavior is studied in many contexts in the literature. Abadi and Lamport
examine it in a real-time context using variables for time [1]. Concerning timed
automata, not only the detection but also the prevention of timelocks is explored.
Proposals include Timed I/O Automata [11, 18], Discrete Timed Automata [13],
and Timed Automata with Deadlines (TAD) [6, 7]. Büchi emptiness checks, i.e.,
the discovery of non-Zeno runs that satisfy an acceptance condition, are also a
topic of research [17, 28]. Obviously, timed systems cannot only be modeled by
timed automata [3] but in various other ways, including timed Petri nets [22]
and hybrid systems [2, 16]. Progress verification methods using these modeling
constructs appear in the literature as well [4, 5].

8 Conclusion and Future Work

In this paper we enhanced the Zeno run detection method introduced by Gómez
and Bowman by introducing a newly developed synchronization matrix. In con-
trast to the synchronization-group method, which only checks for available syn-
chronization partners, our approach considers the number of necessary synchro-
nization partners and thus improves safety propagation. In addition, we devel-
oped two data-variable heuristics. The safely dependent loop heuristics extends
the concept of safety propagation to data variables assuring that variable valu-
ations necessary for Zeno run iterations can only be attained by executing safe
loops. The conflicting loop heuristics removes loops that are unable to iterate be-
cause of conflicting data-variable requirements. ZenoTool, a command-line tool
implementing these analysis methods, was developed and applied to several case
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studies to empirically evaluate the improvements [23]. The experiment results
validate the expected gain in analysis accuracy while only taking a small hit
in performance. Models that benefit most from our analysis have loops that
synchronize on multiple channels possibly multiple times.

In the future ZenoTool could be improved in several ways. The data-vari-
able heuristics would benefit from a fully-fledged data-flow analysis module to
broaden the applicable cases. Additionally, an interface linking UPPAAL and
ZenoTool could be developed to eliminate Zeno loops that are unreachable at
run time. From a practical point it is also important to make ZenoTool feature-
complete as the implementation currently lacks complete support for the fol-
lowing 5 constructs of UPPAAL 4.0: user-defined functions, data records, scalar
variables, complex expressions, and selection statements.
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Frequencies in Forgetful Timed Automata

Amélie Stainer

University of Rennes 1, Rennes, France

Abstract. A quantitative semantics for infinite timed words in timed
automata based on the frequency of a run is introduced in [6]. Unfortu-
nately, most of the results are obtained only for one-clock timed automata
because the techniques do not allow to deal with some phenomenon of
convergence between clocks. On the other hand, the notion of forgetful
cycle is introduced in [4], in the context of entropy of timed languages,
and seems to detect exactly these convergences. In this paper, we investi-
gate how the notion of forgetfulness can help to extend the computation
of the set of frequencies to n-clock timed automata.

1 Introduction

Timed automata have been introduced in [1]. This model is commonly used to
represent real-time systems. A timed automaton is roughly a finite automaton
equipped with a finite set of continuous clocks which evolve synchronously, are
used in guards and can be reset along the transitions. The usual semantics of
timed automata for infinite timed words is the Büchi semantics also presented
in [1]. Recently, several works propose to add quantitative aspects in verification
problems, such as costs [2,5] or probabilities [9,3].

In particular, one can refine the acceptance condition by considering the pro-
portion of time elapsed in accepting locations. A quantitative semantics for in-
finite timed words based on this notion of frequency has thus been introduced
in [6]. Lower and upper bounds of the set of frequencies of one-clock timed au-
tomata are computed using the corner-point abstraction, a refinement of the
classical region abstraction, introduced in [7]. These bounds can be used to de-
cide the emptiness of the languages with positive frequencies and the universal-
ity for deterministic timed automata. Furthermore, the universality problem is
proved to be non primitive recursive for non-deterministic timed automata with
one clock and undecidable with several clocks. The techniques from [6] do not
extend to timed automata with several clocks, and all counterexamples rely on
some phenomenon of convergence between clocks along cycles. Beyond zenoness
(when time converges along a run), other convergence phenomena between clocks
were first discussed in [8]. Similarly to zenoness, these convergences correspond
to behaviors that are unrealistic from an implementability point of view. A way
to detect cycles with no such convergences (called forgetful cycles) has been re-
cently introduced in [4]. This notion of forgetfulness was used to characterize
timed languages with a non-degenerate entropy.

M. Jurdziński and D. Ničković (Eds.): FORMATS 2012, LNCS 7595, pp. 236–251, 2012.
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In this paper, we naturally propose to investigate how forgetfulness can be
exploited to compute frequencies. First, we show that forgetfulness of a cycle in
a one-clock timed automaton is equivalent to not forcing the convergence of the
clock, that is the clock is reset or not bounded. Note that forgetfulness does not
imply that all runs are non-Zeno. With this assumption, the set of frequencies
can be exactly computed using the corner-point abstraction. Then, we show
that in n-clock forgetful timed automata where time diverges necessarily along
a run, the set of frequencies can also be computed thanks to the corner-point
abstraction. On the one hand, the result for timed automata for which all cycles
are forgetful (strong forgetfulness) is as constructive as the theorem of [6] over
one-clock timed automata. On the other hand, to relax strong forgetfulness and
consider timed automata whose simple cycles are forgetful, the proof relies on
a set of canonical runs whose frequencies cover the set of all frequencies in the
timed automaton.

Our contribution can also be compared with that of [7] on double priced timed
automata, that is, timed automata with costs and rewards. Indeed, frequencies
are a particular case of cost and reward functions. In [7], either a run of minimal
ratio or an optimal family (i.e. ε-optimal runs for all ε > 0) is computed, whereas,
assuming forgetfulness, the exact set of frequencies can be computed, not only
the optimal ones. Our techniques might thus prove useful for double priced timed
automata and maybe more generally in other contexts.

The paper is structured as follows. In the next section we introduce the model
of timed automata, the quantitative semantics based on frequencies, forgetful-
ness and the corner-point abstraction as a tool to study frequencies. In Section 3,
we propose a characterization of forgetfulness in one-clock timed automata and
provide an expression for the set of frequencies for this restricted class. Last, Sec-
tion 4 deals with n-clock timed automata and explains how to use forgetfulness
to ensure that, when time diverges, the set of frequencies of a timed automaton
and the set of ratios in its corner-point abstraction are equal.

All the details omitted, due to space constraints, in this paper, can be found
in the research report [13].

2 Preliminaries

In this section, we recall the definition of timed automata with the quantitative
semantics based on frequencies introduced in [6]. Then the corner-point abstrac-
tion is presented, firstly to define forgetfulness, and secondly as a tool to compute
frequencies in timed automata.

2.1 Timed Automata and Frequencies

Given a finite set X of clocks, a valuation is a mapping v : X → R+. The
valuation associating 0 with all clocks is written 0 and v + t is the valuation
defined, for every clock x of X by (v + t)(x) = v(x) + t. For X ′ ⊆ X , v[X′←0]

denotes the valuation equal to 0 for the clocks of X ′ and equal to v for the other
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clocks. On the other hand, a guard over X is a finite conjunction of constraints
of the form x ∼ c where x ∈ X , c ∈ N and ∼∈ {<,≤,=,≥, >}. The set of guards
over X is noted G(X). Moreover, for a valuation v and a guard g, v satisfies g
with the usual definition, is written v |= g.

Definition 1 (timed automaton). A timed automaton is a tuple A = (L,L0,
F,Σ,X,E) such that: L is a finite set of locations, L0 ⊆ L is the set of initial
locations, F ⊆ L is the set of accepting locations, Σ is a finite alphabet, X is a
finite set of clocks and E ⊆ L×G(X)×Σ × 2X × L is a finite set of edges.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, S0, SF , (R+ × Σ),→) where S = L × RX

+ is the set of states, S0 =
L0×{0} is the set of initial states, SF = F×RX

+ is the set of accepting states and
→⊆ S×(R+×Σ)×S is the transition relation composed of all moves of the form

(�, v)
τ,a−−→ (�′, v′) such that τ > 0 and there exists an edge (�, g, a,X ′, �′) ∈ E

with v + τ |= g and v′ = (v + τ)[X′←0].
A run of a timed automaton A is a finite or infinite sequence of moves starting

in an initial state. In the sequel, unless otherwise stated, the run is assumed to

be infinite. Thus, an infinite run ρ = s0
τ0,a0−−−→ s1

τ1,a1−−−→ s2
τ2,a2−−−→ · · · is said to

be Zeno if (
∑

0≤j≤i τj)i∈N is bounded.

Definition 2 (frequency). Given A = (L,L0, F,Σ,X,E) a timed automaton

and ρ = (�0, v0)
τ0,a0−−−→ (�1, v1)

τ1,a1−−−→ (�2, v2) · · · an infinite run of A, the fre-

quency of F along ρ, denoted freqA(ρ), is defined as lim supn→∞

∑
{i≤n|�i∈F} τi
∑

i≤n τi
.

Note that, as in [6], the limit sup is an arbitrary choice. In the sequel, our goal
is to compute the set of frequencies of the infinite runs of A, which is written
Freq(A). To do so, we sometimes distinguish FreqZ(A) and FreqnZ(A) which
respectively denote the sets of frequencies of the Zeno and non-Zeno runs of A.
For example, Fig. 1 represents a timed automaton A with F = {�1} (accepting
locations are colored in gray), such that Freq(A) = FreqnZ(A) = [0, 1[. Indeed,
there is no Zeno runs in A and there is an underlying constraint along the cycle
which ensures that delays elapsed in the accepting location are decreasing. This
implies that frequencies of an infinite run in A is of the form 1−ε

ε with ε ∈]0, 1].

�0 �1 �2
0<x<1,a,{y}

0<x<1,a,{x}

y=1,a,{y}

Fig. 1. A timed automaton A to illustrate the notion of frequency

2.2 Corner-Point Abstraction and Forgetfulness

Given the maximal constant M appearing in a timed automaton A, the usual
region abstraction forms a partition of the valuations over X , the clocks of A.
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In the following definition, �t� and {t} are respectively the integer part and the
fractional part of the real t. The region equivalence ≡A over valuations of X is
defined as follows: v ≡A v′ if (i) for every clock x ∈ X , v(x) ≤M iff v′(x) ≤M ;
(ii) for every clock x ∈ X , if v(x) ≤ M , then �v(x)� = �v′(x)� and {v(x)} = 0
iff {v′(x)} = 0 and (iii) for every pair of clocks (x, y) ∈ X2 such that v(x) ≤M
and v(y) ≤ M , {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}. The equivalence classes
of this relation are called regions and RegA denotes the set of regions for the
timed automaton A. For each valuation v of the clocks of A, there is a single
region containing v, denoted by R(v). A region R′ is a time-successor of a region
R if there exists v ∈ R and t ∈ R+ such that v + t ∈ R′ and R′ 	= R. The
set of the time-successors of a region is naturally ordered, and the mapping
timeSucc : RegA → RegA associates with any region, its first time-successor.
The particular case of the region {⊥X} where all the clocks are larger than M
is fixed as follows : timeSucc({⊥X}) = {⊥X}.

Given a timed automaton, one can build a timed automaton having only
region guards while preserving the set of frequencies. In fact, we need to extend
the guards with constraints of the form x − y ∼ c where x, y ∈ X , c ∈ N and
∼∈ {<,≤,=,≥, >}, but both models are known to be equivalent. In the sequel,
timed automata are thus assumed to be split in regions and all the transitions
can be fired. Moreover, in order to take into account that zero delays are not
allowed in the semantics, transitions with a constraint of the form x = 0 are
removed and transitions with a punctual constraint (of the form x = c) arrive
directly in the time-successor (with constraint x > c) if x is not reset.

The corner-point abstraction is a refinement of the region abstraction, where
states are formed of a region with one of its extremal points. Thus, an A-pointed
region (pointed region for short) is a pair (R,α) where R is a region and α an
integer valuation (∈ (N≤M ∪ ⊥)X , ⊥ if the clock is not bounded in this region)
belonging to the closure of R (for the usual topology), in this case, α is said to
be a corner of R. The set of A-pointed regions is written Reg•A. The operations
defined on the valuations of a set of clocks are extended in a natural way to the
corners, with the convention that M +1 = ⊥ and ⊥+1 = ⊥. Then the timeSucc
function can be extended to pointed regions:

timeSucc(R,α) =

{
(R,α+ 1) if α+ 1 is a corner of R
(timeSucc(R), α′) otherwise

where ∀x, α′(x) = α(x) if x is bounded in timeSucc(R) and else α′(x) = ⊥.

Using this mapping, the construction of the corner-point abstraction is very
similar to the usual region automaton.

Definition 3 (corner-point abstraction). The corner-point abstraction of a
timed automaton A (corner-point of A for short) is the finite automaton Acp =
(Lcp, L0,cp, Fcp, Σcp, Ecp) where Lcp = L × Reg•A is the set of states, L0,cp =
L0×{({0}, 0)} is the set of initial states, Fcp = F ×Reg•A is the set of accepting
states, Σcp = Σ∪{ε}, and Ecp ⊆ Lcp×Σcp×Lcp is the finite set of edges defined
as the union of discrete transitions and idling transitions:
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– discrete transitions: (�, R, α)
a−→ (�′, R′, α′) if there exists a transition �

g,a,X′
−−−−→

�′ in A, such that R = g and (R′, α′) = (R[X′←0], α[X′←0]),

– idling transitions: (�, R, α)
ε−→ (�, R′, α′) if (R′, α′) = timeSucc(R,α).

In particular, as a consequence of ⊥ + 1 = ⊥, there is an idling loop on each
state whose region is {⊥X}. The projection of a (finite or infinite) run ρ =

(�0, v0)
τ0,a0−−−→ (�1, v1)

τ1,a1−−−→ · · · of A, denoted by Proj(ρ), is the set of runs of
Acp such that for all indices i, the i-th discrete transition goes from a state
(�i, R(vi + τi), α) to a state (�i+1, R(vi+1), α

′) and for all clocks x ∈ X , the

number μi(x) of idling transitions of the form (�, R, α)
ε−→ (�, R, α+ 1) since the

last reset of x has to be equal to �vi(x) + τi� or �vi(x) + τi�. Note that if x is
bounded in a region R(vi + τi), then μi(x) can be recovered from the associated
corner α. Given ε > 0, we say that a (finite or infinite) run ρ mimics up to
ε > 0 a (finite or infinite) run π in Proj(ρ) if, for all indices i, the i-th discrete
transition of π goes from a state (�i, R(vi), α) such that, for all clock x ∈ X , if
α(x) 	= ⊥ then |vi(x) + τi − α(x)| < ε and otherwise |vi(x) + τi − μi(x)| < ε
(written ||vi + τi − α|| < ε abusing notations).

In the sequel we often consider cycles of the graph of A (cycles of A for short),
that is some sequences �0�1 · · · �n = �0 such that for all 0 ≤ i ≤ n−1 there exists
an edge from �i to �i+1 in A. Similarly to runs, we define the projection of a
cycle C of A, denoted by Proj(C). If C is a simple cycle with no region ⊥X ,
Proj(C) is the subgraph of Acp covered by the projection of any finite run of
A along C. If C is a simple cycle with some regions ⊥X , we simply add the
idling loops associated with each states of the form (�, {⊥X},⊥X). To define the
projection of a cycle C which is not simple, we first unfold the timed automaton
A to obtain an equivalent simple cycle.

Forgetfulness was originally defined in [4] using the orbit graph. We choose
here to give an alternative definition of forgetfulness based on the corner-point
abstraction, which is less succinct, but will show useful for computing frequen-
cies.

Definition 4 (forgetfulness)

– A cycle C in a timed automaton is forgetful if Proj(C) is strongly connected;
– A timed automaton is forgetful if all its simple cycles are forgetful;
– A timed automaton is strongly forgetful if all its cycles are forgetful.

Roughly speaking, forgetful cycles are cycles where some choices of current delays
cannot impact forever on the future delays. These cycles can forget previous
delays in their long term behaviors. Fig. 1 represents a timed automaton, inspired
by [8], that is not forgetful. Indeed, the projection of the single cycle of this timed
automaton is the subgraph with bold edges in its corner-point represented in
Fig. 2, it is clearly not strongly connected. In fact, if from location �1 an a is
read with x close to 0, it becomes impossible to read an a with x close to 1 in
the future. More precisely, delays in �1 are smaller and smaller. Note that in
Fig. 2, we did not draw the edges labelled by ε which lead to states from which
no discrete transition can be fired in the future.
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�0,{0}, �

�0,((0,1)
2,{x}={y}), �

�0,((0,1)
2,{x}={y}), �

�1,((0,1)
2,{x}>{y}), �

�1,((0,1)
2,{x}>{y}), ��1,((0,1)

2,{x}>{y}), �

�1,(0,1)×{0}, �

�1,(0,1)×{0}, �

�2,{0}×(0,1), �

�2,{0}×(0,1), �

�2,((0,1)
2,{y}>{x}), �

�2,((0,1)
2,{y}>{x}), �

�2,((0,1)
2,{y}>{x}), ��2,(0,1)×{1},�

�2,(0,1)×{1}, �

ε

ε
a

a
ε

a

ε

εεa

ε ε

a

a

εε

a

Fig. 2. Corner-point of the timed automaton from Fig. 1

We then define the notion of aperiodicity of a forgetful cycle and forgetful
aperiodic timed automata.

Definition 5 (aperiodicity)

– A forgetful cycle C in a timed automaton is aperiodic if for all k ∈ N, the
cycle obtained by the concatenation of k iterations of C is forgetful.

– A forgetful timed automaton is aperiodic if all its simple cycles are aperiodic;

Strong forgetfulness trivially implies aperiodicity, whereas forgetfulness does not.
Indeed Fig. 3 represents a timed automaton which is forgetful and periodic.
The summary of its corner-point illustrates the periodicity. The cycle formed of
two iterations of the simple cycle is not strongly connected, it has two distinct
connected components. The projection of a forgetful cycle C in Acp is strongly
connected, then given any state s of Acp in Proj(C), there are some simple cycles
containing s. Intuitively, such a cycle corresponds to a number of iterations of
C in A, this is the number of non-consecutive occurrences of states sharing the
same location of A as s. Thus, we can characterize the aperiodicity of a forgetful
cycle by a notion of pseudo aperiodicity of its projection.

�1

�2

�3

y=1,{y,z} x=1,{x,y}

z=1,{x,z}

�2,(0,1)×{0}×{0}, ��1,{0}×(0,1)×{0}, �

�1,{0}×(0,1)×{0}, �

�3,{0}×{0}×(0,1), ��3,{0}×{0}×(0,1), �

�2,(0,1)×{0}×{0}, �

Fig. 3. A forgetful and periodic timed automaton

Proposition 1. A forgetful cycle C is aperiodic if and only if (∗) the greatest
common divisor, over the simple cycles D of Proj(C), of the numbers of iterations
of C corresponding to D, is 1.

The characterization (∗) of aperiodicity allows one to check it in the corner-point
abstraction. The notion of aperiodicity will be a key for the relaxation of strong
forgetfulness in the second part of Section 4.3.
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2.3 The Corner-Point Abstraction as a Tool for Frequencies

In the corner-point, the idling transitions which do not change the current region
correspond to an elapse of one time unit. In the same way as in [6], these abstract
delays are used to abstract the frequencies in a timed automaton by ratios in its
corner-point abstraction. To do so, the corner-point is equipped with costs and
rewards as follows:

– the reward of a transition is 1 if it is of the form (�, R, α)
ε−→ (�, R, α′) and 0

otherwise;
– the cost of a transition is 1 if the reward is 1 and the location � is accepting

and 0 otherwise.

In particular, the loops on the states whose region is {⊥X} have reward 1.
Thanks to these costs and rewards, the ratio of an infinite run of the corner-
point can be defined, similarly to the frequency in the timed automaton, as the
limit sup of the ratios of the accumulated costs over the accumulated rewards. An
infinite run in the corner-point is said reward-converging (resp. reward-diverging)
if the accumulated reward is finite (resp. not bounded). This notion is close to
zenoness of runs in a timed automaton even if some Zeno runs could be projected
to reward-diverging runs in the corner-point abstraction and, the other way
around, non-Zeno runs could be projected to reward-converging runs. Thus, we
write Rat(Acp), Ratr−d(Acp) and Ratr−c(Acp) for the sets of the ratios of the
infinite runs in Acp, the reward-diverging runs in Acp and the reward-converging
ones. We also say reward-diverging for a cycle of Acp whose accumulated reward
is positive.

A cycle of Acp is said accepting (resp. non-accepting) if all its locations are
accepting (resp. non-accepting) and it is said mixed if it has both accepting and
non-accepting locations.

In the sequel, we often use the following results established in [6] and [7].

Lemma 1 ([6]). For every run ρ in a one-clock timed automaton A, there are
two runs π and π′ in Proj(ρ) respectively minimizing and maximizing the ratio
such that: Rat(π) ≤ freqA(ρ) ≤ Rat(π′).
These runs are respectively called the contraction and the dilatation of ρ.

Lemma 2 ([6]). Let {S1, · · · , Sk} be the set of SCCs ofAcp. The set Ratr−d(Acp)
of ratios of reward-diverging runs inAcp is equal to

⋃
Si∈SCC [mi,Mi]wheremi and

Mi are the minimal and the maximal ratios for reward-diverging cycles in Si.
Moreover, if A has a single clock, then FreqnZ(A) = Ratr−d(Acp).

Lemma 3 ([7]). Consider a transition (�, R, α) → (�′, R′, α′) in Acp, take a
valuation v ∈ R such that δ(v) < ε and |v(x) − α(x)| = μv(x) with μv(x) =
min{|v(x) − p| |p ∈ N}, νv(x, y) = min{|v(x) − v(y) − p| |p ∈ N} and δ(v) =
max({μv(x)} ∪ {νv(x, y)}). There exists a valuation v′ ∈ R′ such that (�, v) →
(�′, v′) in A, δ(v′) < ε and |v′(x)− α′(x)| = μv′(x).

In particular, the latter lemma implies by induction that any run in Acp can be
mimicked in A up to any ε > 0.
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3 Computation of the Set of Frequencies in a One-Clock
Timed Automaton

One-clock timed automata have simpler clock behaviors than the general model.
In fact, having a single clock in a timed automaton is quite close to forgetfulness
in the sense that each time the clock is reset, the timed automaton forgets
all the timing information. In this section, we present a new characterization
of forgetfulness and we show the equivalence between forgetfulness and strong
forgetfulness when there is a single clock. Last, we propose an expression for the
set of frequencies of forgetful one-clock timed automata.

In a one-clock timed automaton, a reset of the clock along a cycle is linked to
forgetfulness. The following lemma states the precise characterization of forgetful
cycles inspired by this observation.

Proposition 2. Let C be a cycle of a one-clock timed automaton. Then, C is
forgetful if and only if the clock is reset or not bounded along C.

In fact, Proposition 2 implies that the cycle obtained by concatenation of any
sequence of forgetful cycles in a one-clock timed automaton is also forgetful.
Indeed, if the clock is reset or not bounded along each cycle of the sequence, it
is clearly the case for the sequence itself.

Corollary 1. A one-clock timed automaton is forgetful iff it is strongly forgetful.

Recall that, as illustrated in Fig. 1, Corollary 1 (as well as Proposition 2) does
not hold for n-clock timed automata.

Let us now consider the set of the frequencies in a one-clock timed automaton.
By Lemma 2, if there are only non-Zeno runs in a timed automaton, then the
set of the frequencies equals to the set of the ratios in the corner-point. Firstly,
the particular case where a timed automaton has a reward-converging cycle in
its corner-point containing both accepting and non-accepting locations is easy
to treat as stated in the following proposition.

Proposition 3. Let A be a forgetful one-clock timed automaton. If there is a
mixed reward-converging cycle in its corner-point Acp, then FreqZ(A) =]0, 1[ and
FreqnZ(A) = [0, 1].

Now, for the general case, it is possible to consider only timed automata which
do not have such cycles in their corner-point. This allows us to give a general
expression for the set of frequencies of a forgetful one-clock timed automaton.
For readability, let us define some notations. Given C a cycle of A having a
reward-converging cycle in its projection, we write p(C) for the set of ratios of
cycle-free prefixes ending in reward-converging cycles of Proj(C) and c(C) for
the set of ratios of co-reachable reward-diverging cycles. By convention, we let
max(∅) = −1 and min(∅) = 2. Then, we define M(C) = max(p(C) ∪ c(C)),
m(C) = min(p(C) ∪ c(C)),

M(Acp) = max{M(C) | C acc. cycle of A with a r.-c. cycle in Proj(C)} and

m(Acp) = min{m(C) | C non-acc. cycle of A with a r.-c. cycle in Proj(C)}.
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�0

�1

�′1
�2

x=1,a,x:=0x=100,a,x:=
0

x=100,a,x:=
0x=1,a,x:=0

0<x<1,a

Fig. 4. A non-forgetful counterexample for Theorem 1

Theorem 1. Let A be a forgetful one-clock timed automaton. If there is a mixed
reward-converging cycle in Acp, then FreqZ(A) =]0, 1[ and FreqnZ(A) = [0, 1].
Otherwise: Freq(A) = Ratr−d(Acp) ∪

[
0,M(Acp)

[
∪
]
m(Acp), 1

]
.

Proof. The first part of Theorem 1 is established in Proposition 3, let us now
assume that there is no mixed reward-converging cycles in Acp. By Lemma 2,
for non-Zeno runs: FreqnZ(A) = Ratr−d(Acp). The rest of the proof is based on
the following lemma dealing with plain reward-converging cycles.

Lemma 4. Let C be a cycle of a one-clock forgetful timed automaton A:

– If Proj(C) contains a non-accepting reward-converging cycle, then the set of
frequencies of the infinite runs of A ending in C is

[
0,M(C)

[
.

– If Proj(C) contains an accepting reward-converging cycle , then the set of
frequencies of the infinite runs of A ending in C is

]
m(C), 1

]
.

Back to the proof of the second part of Theorem 1, the inclusion from right to
left is straightforward from the non-Zeno case and Lemma 4.

Thanks to the equality in the non-Zeno case, the inclusion from left to right is
only needed for the subset FreqZ(A). Let thus ρ be a Zeno run. It can be projected
on a reward-converging run in the corner-point. This projection necessarily ends
in a strongly connected subgraph of the corner-point having zero rewards and
containing only accepting locations or only non-accepting locations. We study
the case where all the locations of the end are non-accepting, the other case
is symmetric. By Lemma 4, the prefix of ρ corresponding to the prefix of the
projection before the infinite suffix in the subgraph has a frequency smaller than
M(C) for a cycle C having a reward-converging projection. To conclude, the
frequency of ρ is smaller than the prefix because all the locations of the suffix
are non-accepting. �

Note that if the timed automaton is not forgetful, the form of the set of the fre-
quencies can be very different from the expression given in Theorem 1.
Fig. 4 gives an example of non-forgetful timed automaton such that Freq(A) =]
1

101 ,
2

102

[
∪

]
100
101 ,

101
102

[
. There is no reward-diverging run in Acp, M(Acp) = −1

because there is no accepting reward-converging cycle in Acp and m(Acp) =
1

101 ,
hence the expected set of frequencies would be ] 1

101 , 1]. The difference with for-
getful timed automata is that the accumulated delays in �2 cannot diverge,
therefore it is not possible to increase the frequency as much as necessary. In
particular, there is no infinite run of frequency 1. More generally, this example
illustrates a simple manner to obtain, for the set of frequencies, any finite union
of open intervals included in [0, 1].
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4 Extension to n-Clock Timed Automata

There is a real gap between one-clock timed automata and n-clock timed au-
tomata. For example, in [10], the reachability problem for one-clock timed au-
tomata is proved to be NLOGSPACE-complete, whereas it becomes NP-hard
with two clocks. As an other example, the language inclusion problem which is
undecidable in the general case [1], becomes decidable with at most one clock [11].
In this section, we use forgetfulness and time divergence to compute the set of
frequencies in n-clock timed automata. Note that these assumptions are strong
but can be justified by implementability concerns.

4.1 Forgetfulness in n-Clock Timed Automata

The goal is to find some reasonable assumptions to obtain a class of timed
automata whose sets of frequencies are exactly sets of ratios of their corner-point
abstractions. We do not want to complexity our problem dealing with Zeno runs
as we did in one-clock timed automata for which the Zeno case is already non-
trivial. More precisely, we want to extend the result FreqnZ(A) = Ratr−d(Acp)
of [6], from one-clock timed automata to n-clock timed automata. To do so,
we first assume that timed automata are strongly non-Zeno, that is in every
cycle there is one clock which is reset and lower guarded by a positive constant.
This implies that there is no reward-converging run in its corner-point (strong
reward-divergence [7]). For one-clock timed automata strong non-zenoness is
strictly stronger than forgetfulness and implies that Freq(A) = FreqnZ(A) =
Ratr−d(Acp). Unfortunately, this assumption is not sufficient for n-clock timed
automata. For example, the timed automaton in Fig. 5, taken from [6], is strongly
non-Zeno and such that Freq(A) =]0, 1] 	= {0} ∪ {1} = Rat(Acp). In fact, this
timed automaton is a typical example of forgetful timed automaton. Delays in �1
have to be larger and larger along cycles, which ensures that frequency 0 cannot
be reached in A. On the contrary, in Acp, either the accumulated reward in �1
is 0 (ratio 0) or there is one idling transition with reward 1 from a state of Acp

with location �1 and in the future, there always are such transitions in states of
the form (�1, R, α) (ratio 1). Therefore, except over one-clock timed automata,
forgetfulness and strong reward-divergence are not comparable.

�0 �1 �2
0<x<1,a,y:=0

x>1,a,x:=0

y=1,a,y:=0

Fig. 5. A non-forgetful strongly non-Zeno timed automaton

The following theorem is the first illustration of the utility of forgetfulness to
compute the set of frequencies in timed automata with several clocks.

Theorem 2. Let A be a strongly non-Zeno and forgetful timed automaton. Then
Freq(A) ⊆ Rat(Acp).
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Proof (sketch). The idea is that the infinite run consisting in an infinite iteration
of the cycle of minimal ratio in Acp has a ratio smaller than the frequency of
any infinite run in A. Symmetrically, there is a run of ratio larger than the
frequency of any infinite run in A. The theorem is thus straightforward if there
is a single SCC in Acp. Otherwise, forgetfulness is the key to obtain the inclusion
Freq(A) ⊆ Rat(Acp) instead of simple bounds. Indeed, given an infinite run ρ
ending in an SCC of A, by forgetfulness of the cycles, all the projections of ρ end
in the same SCC of Acp. The proof can thus be done in this SCC by neglecting
the prefix thanks to time divergence. �

In the sequel, we see how strongly non-zenoness and forgetfulness can be use-
ful to obtain the other inclusion. The problem is not trivial even under these
assumptions and the proof techniques could certainly be interesting in different
contexts. This section allows to understand several subtleties of forgetfulness.

4.2 Techniques to Compute the Frequencies

In this section, we explain the technical aspects which allow the extension to
n-clock timed automata. First, thanks to Lemma 3 we know that any infinite
run in a corner-point Acp can be mimicked up to any ε > 0. This lemma implies
that respective lower and upper bounds of the sets of ratios and frequencies are
equal, but as seen with the timed automaton in Fig. 5, Freq(A) can be very
different from Rat(Acp) when A is not forgetful. Second, the following lemma es-
tablished in [12] expresses the preservation of some barycentric relations between
valuations along cycles.

Lemma 5 ([12]). Let A be a timed automaton and an edge (�, g, a,X ′, �′) such
that (�, v)→ (�′, v′) and (�, w)→ (�′, w′) with R(v) = R(w) and R(v′) = R(w′),
then for any λ ∈ [0, 1] (�, λv + (1− λ)w)→ (�′, λv′ + (1 − λ)w′).

Naturally, this lemma can be extended to finite sequences of edges by induction.
The combination of both lemmas helps us to prove that if along a given cycle

one can go from every corner to a fixed corner α, then along this cycle one can
go as close to α as necessary in A. This way of reducing the distance to corners is
the key for the extension to n-clock timed automata. Indeed, when time diverges
(non-zenoness), if an infinite run ρ in A mimics an infinite run π of Acp up to
ε converging to 0 along ρ (i.e. for all ε there is a suffix of ρ which mimics the
corresponding suffix of π up to ε), then freqA(ρ) = Rat(π).

Lemma 6. Let A be a timed automaton and ρ = (�0, v0)
τ0,a0−−−→ (�1, v1)

τ1,a1−−−→
· · · τn−1,an−1−−−−−−−→ (�0, vn) with R(v0) = R(vn) =: r be a finite run of A. If given a
corner αn of the region r and for all (�0, r, α) there is a finite run from (�0, r, α)

to (�0, r, αn) in Proj(ρ), then for all ε > 0, there exists ρ′ = (�0, v0)
τ ′
0,a0−−−→

(�1, v
′
1) · · ·

τ ′
n−1,an−1−−−−−−−→ (�0, v

′
n) such that Proj(ρ′) = Proj(ρ) and ||v′n − αn|| < ε.

Proof. Let us start by fixing, for all corners α, a valuation vεα in r which is very
close to α. Thanks to these valuations, we then define a barycentric expression
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for v0. Let Ωr the set of the corners of r. As the closure of r is the convex
hull of Ωr (for the usual topology of RX), there exists (vεα ∈ r)α∈Ωr and (λα ∈
[0, 1])α∈Ωr such that

∑
α∈Ωr

λα = 1, v0 =
∑

α∈Ωr
λαv

ε
α and ||vεα − α|| < ε. By

assumptions, there are some paths in Proj(ρ) going from each α to αn. Thanks
to Lemma 3, there are some finite runs from each of our valuations vεα very
close to the corners α to some valuations vεα,αn

very close to a common corner
αn. Formally, there exists (vεα,αn

∈ r)α∈Ωr and some finite runs (ρα)α∈Ωr from
(�0, v

ε
α) to (�0, v

ε
α,αn

) in A with ||vεα,αn
− αn|| < ε. Then, by Lemma 5, there

is a finite run ρ′ from (�0, v0) to the state with location �0 and the valuation
equal to the barycenter of the valuations vεα,αn

which is very close to αn by the
triangle inequality. Formally, there is a finite run ρ′ from (�0, v0 =

∑
α∈Ωr

λαv
ε
α)

to (�0,
∑

α∈Ωr
λαv

ε
α,αn

). To conclude, ρ′ is as needed because, by the triangle
inequality, ||

∑
α∈Ωr

λαv
ε
α,αn

− αn|| ≤
∑

α∈Ωr
λα||vεα,αn

− αn|| < ε. �

To use Lemma 6, we need to find a cycle in Acp which allows, in some sense, to
synchronize all the corners of a region to a common one. Indeed, each run in Acp

corresponds to a run in A, the existence of ρ is not a real constraint. Moreover,
Lemma 6 does not depend on forgetfulness of timed automata. The following
lemma illustrates how forgetfulness can help to use Lemma 6.

Lemma 7. Let A be a timed automaton, X its set of clocks and a sequence
(ci)1≤i≤K with K = 2|X|+1, of forgetful cycles containing the location � of A
such that all the cycles obtained by concatenation of the cycles of a subsequence
(ck)1≤i≤k≤j≤K are forgetful. Then for all pairs of corners (α, α′) of the region

R associated to �, there is a finite run of the form (�, R, α)
π1−→ (�, R, α1)

π2−→
· · · (�, R, αK−1)

πK−−→ (�, R, α′) such that for all indices i, πi corresponds to one
iteration of ci.

Proof. Abusing notations we write π ∈ Proj(c) for ”π corresponds to one iter-
ation of c” Consider the subset construction with s0 = {(�, R, α)} and si+1 =

{(�, R, β′) | ∃(�, R, β) ∈ si, ∃π′
i ∈ Proj(ci), s.t. (�, R, β)

π′
i−→ (�, R, β′)}.

First, there are at most |X | + 1 corners in R, hence there are at most K =
2|X|+1 subsets of (�, R, all) := {(�, R, α) |α corner of R}. Second, by forgetfulness
of the ci’s, if si = (�, R, all) then for all j > i, sj = (�, R, all). Third, there is no
other cycles in the subset construction. Indeed, if there exists indices i < j such
that si = sj 	= (�, R, all) := {(�, R, α) |α corner of R} then the cycle obtained
by concatenation of cycles ci+1, · · · , cj is not forgetful, which contradicts strong
forgetfulness.

As a consequence, the subset construction loops in (�, R, all) forever after a
cycle-free prefix whose length is thus smaller than K. Hence, there is a finite run
of the form (�, R, α)

π1−→ (�, R, α1)
π2−→ · · · (�, R, αK−1)

πK−−→ (�, R, α′) such that
for all indices i, π ∈ Proj(ci). �

In the next sections we use these two lemmas to prove that our assumptions are
sufficient to ensure the existence of such synchronizing cycles along infinite runs
that we want to mimic in A.
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4.3 Frequencies in n-Clock Forgetful Timed Automata

We first consider the case of strongly forgetful timed automata. Thanks to
Lemma 6 and by observing the consequences of forgetfulness of all the cycles
in a timed automaton, we obtain a theorem which is as constructive as the
corresponding result for one-clock timed automata from [6].

Theorem 3. Let A be a strongly non-Zeno strongly forgetful timed automaton.
Then, for every infinite run π in the corner-point of A, there exists an infinite
run ρπ in A such that π ∈ Proj(ρπ) and freqA(ρπ) = Rat(π).

The idea is to prove, for every run π in Acp, the existence of synchronizing cycles
infinitely often along π which allow to mimic it up to an ε converging to 0.

Proof. Along the infinite run π of Acp, there is a pair (�, R) which appears
infinitely often, possibly with different corners. Let (�, R, αi)i∈N be a sequence
of the occurrences of (�, R) and (πi)i∈N the sequence of factors of π leading
respectively from (�, R, αi) to (�, R, αi+1). Each πi corresponds to a forgetful
cycle ci in A hence by Lemma 7, for all pairs (α, α′) of corners of the region R,

there is a finite run of the form (�, R, α)
π′
1−→ (�, R, α1)

π′
2−→ · · · (�, R, αK−1)

π′
K−−→

(�, R, α′) with K = 2|X|+1 and such that for all indices i, π corresponds to
one iteration of ci. In particular, this finite run belongs to the projections of
exactly the same runs as π1 · π2 · · ·πK . As a consequence, for any finite run

ρ = (�, v0)
τ0,a0−−−→ (�1, v1)

τ1,a1−−−→ · · · τn−1,an−1−−−−−−−→ (�, vn) with R(v0) = R(vn) = R
and such that π0.π1 · · ·πK ∈ Proj(ρ), for any corner βn of the region R and for
all (�, R, α) there is a finite run from (�, R, α) to (�, R, βn) in Proj(ρ). Hence,
Lemma 6 can be applied to such finite runs. Then, for any ε and given ρi a
mimicking of π until (�, R, αi), Lemma 6 ensures the existence of a extension of
ρi to ρi+K mimicking π until (�, R, αi+K), such that ||v −αi+K || < ε where v is
the last valuation of ρi+K . In words, it is possible to fix some finite factors along
π which allow to go as close as necessary from a corner of π along a mimicking ρ.
Out of these factors, the distance to the corners of π can be preserved (Lemma 3).
To conclude, these factors can be placed infinitely often to allow the convergence
of the distance to the corner of π to 0, but as rarely as necessary to be neglected
in the computation of the frequency. �

Theorem 3 implies that the set of ratios Rat(Acp) is included in the set of frequen-
cies Freq(A). This implies, together with Theorem 2, that if A is a strongly non-
Zeno and strongly forgetful timed automaton, then Freq(A) is equal to Rat(Acp).
Strong forgetfulness is a realistic assumption from an implementability point of
view, but is not satisfactory because of its difficulties to be checked. Indeed,
checking if a cycle is forgetful can be done thanks to the corner-point, but there
is an unbounded number of cycles in a timed automaton and we do not know
any property which would allow, in general, to avoid to check them all. As a
consequence, it is important to relax this assumption. We did not succeed in
proving that strong forgetfulness can be relaxed in Theorem 3. Nevertheless, the
inclusion Rat(Acp) ⊆ Freq(A) still holds when strong forgetfulness is replaced by
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forgetfulness and aperiodicity, both of which can be checked on the corner-point
abstraction.

Theorem 4. Let A be a strongly non-Zeno, forgetful and aperiodic timed au-
tomaton. Then, Rat(Acp) ⊆ Freq(A).

Proof (sketch). The idea is to prove that, for every rat ∈ Rat(Acp), there exists
an infinite run πrat in Acp of ratio rat and such that there exists a infinite run
ρπ of A with freqA(ρπ) = Rat(πrat) and πrat ∈ Proj(ρπ). Thanks to Lemma 2
and by reward-divergence, we have the following expression for the set of the
ratios Rat(Acp) = Ratr−d(Acp) =

⋃
Si∈SCC [mi,Mi]. In fact, for all i, each value

rat ∈ [mi,Mi] is the ratio of a run πrat in Acp which alternates with the suitable
proportions some cycles ci of ratio mi and Ci of ratio Mi in Si. The prefix to
go to ci and the finite runs to go from a cycle to the other are neglected in
the computation of the ratio by performing sufficiently many iterations at each
step. Such a πrat can be mimicked up to any ε > 0 (Lemma 3). We thus use
Lemmas 7 and 6 to decrease ε. The finite runs to go from Ci to ci are simply
concatenated with 2|X|+1 iterations of ci. The cycle ci corresponds, in Acp to a
cycle (simple or a concatenation of a single simple cycle) ĉi. Aperiodicity entails
that the concatenations of ĉi are forgetful. Hence, Lemma 7 ensures that the
finite run constituted of 2|X|+1 iterations of ci is synchronizing and Lemma 6
that ε can decrease each time that πrat goes from Ci to ci. �

We thus obtain the following result as a corollary of Theorems 2 and 4.

Corollary 2. Let A be a strongly non-Zeno, forgetful and aperiodic timed au-
tomaton. Then, Freq(A) = Rat(Acp).

Strong forgetfulness implies aperiodicity, hence Theorem 3 cannot help to estab-
lished this equality in a more general case. However, note that Theorem 4 does
not imply Theorem 3. In Theorem 3, not only the inclusion Rat(Acp) ⊆ Freq(A)
is established, but also for all infinite runs π in Acp there exists an infinite run ρ
in A with π ∈ Proj(ρ) and freqA(ρ) = Rat(π). In Theorem 4, this is only proved
for some infinite runs π of Acp.

4.4 Discussion About Assumptions

As explained above, our will to relax the strong forgetfulness is due to its diffi-
culties to be checked. Strong forgetfulness clearly implies at once forgetfulness
and aperiodicity, but a first open question is whether the other implication is
true. Indeed, we did not find any example of forgetful aperiodic timed automa-
ton which is non-strongly forgetful. We think that, either there are some one but
probably with more than two clocks which is difficult to visualize, or the impli-
cation is true and proving this statement could lead to fundamental advances in
the understanding of the corner-point abstraction.

An other open question is whether the hypothesis of aperiodicity in Theorem 4
can be relaxed. We use this hypothesis in the proof, but could not find coun-
terexamples. We built some examples of periodic timed automata as in Fig. 3 ,
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but periodic timed automata seem to be degenerated and in particular, based on
punctual guards which implies bijections between runs in the timed automaton
and those in its corner-point abstraction.

5 Conclusion

A quantitative semantics based on frequencies has recently been proposed for
timed automata in [6]. In this paper, we used the notion of forgetfulness in-
troduced in [4] to extend the results about frequencies in timed automata. On
the one hand, thanks to forgetfulness we can compute the set of frequencies in
one-clock timed automata even with Zeno behaviors, whereas only the bounds
of this set was computed in [6]. On the other hand, with forgetfulness and time-
divergence inspired by [7], we compute the set of frequencies in a class of n-clock
timed automata, whereas techniques of [6] were not applicable. In the future, we
would like to investigate more deeply the difference between forgetfulness and
strong forgetfulness with the hope to extend Theorem 3. Moreover, Theorem 2 is
less constructive than the equivalent result for one-clock timed automata which
use notions of contraction and dilatation of a run. It would be interesting to
see if forgetfulness could help to extend these constructions to n-clock timed
automata. Finally, our main tool presented in Lemma 6 can be easily used for
the scheduling problem in timed automata with costs and rewards studied in [7].
Thus, we can prove that in strongly non-Zeno forgetful timed automata, there
is always an infinite run whose ratio is optimal. We hope that Lemma 6, which
is fundamental, will be useful for a lot of problems for which the corner-point is
suitable.

Acknowledgements. I am very grateful to Nathalie Bertrand for useful discus-
sions and detailed proofreadings of this paper. Moreover, I would like to thank
the reviewers for their very interesting remarks.
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Abstract. Mcta is a directed model checking tool for concurrent sys-
tems of timed automata. This paper reviews Mcta and its new devel-
opments from an implementation point of view. The new developments
include both heuristics and search techniques that define the state of the
art in directed model checking. In particular, Mcta features the pow-
erful class of pattern database heuristics for efficiently finding shortest
possible error traces. Furthermore, Mcta offers new search techniques
based on multi-queue search algorithms. Our evaluation demonstrates
that Mcta is able to significantly outperform previous versions of Mcta

as well as related state-of-the-art tools like Uppaal and Uppaal/Dmc.

1 Introduction

Model checking of real-time systems is an interesting and important research
issue in theory and in practice. In this context, Uppaal [2,3] is a state-of-the-
art model checker for real-time systems that are modeled as timed automata [1].
Uppaal offers several approaches to successfully tackle the state explosion prob-
lem. However, to efficiently find short error traces in large concurrent systems
of timed automata, additional search techniques are desired.

Mcta [19] is a tool for model checking large systems of concurrent timed
automata. Mcta is optimized for falsification, i. e., for the efficient detection
of short error traces in faulty systems. Therefore, Mcta applies the directed
model checking approach [9]. Directed model checking is a version of model
checking that applies a distance heuristic and a special search algorithm to guide
the search towards error states. Distance heuristics compute a numeric value
for every state s encountered during the search, reflecting an estimation of the
length of a shortest trace from s to an error state. These values are used by the
underlying search algorithm (e. g., the well-known A∗ algorithm [11,12]) to guide
the search. Overall, most of the proposed distance heuristics can be computed
automatically based the description of the input system. Therefore, directed
model checking is a fully automatic approach as well. For the special setting
when admissible distance heuristics are applied (i. e., distance heuristics that
are guaranteed to never overestimate the real error distance), directed model
checking allows for optimal search, i. e., in this case, directed model checking
computes shortest possible error traces with the A∗ search algorithm. This is
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desirable because shorter error traces allow one to better understand the reason
for the bug.

In this paper, we review Mcta and its new developments from an implemen-
tation point of view. In particular, we provide an overview of Mcta’s lightweight
and flexible architecture. This architecture is tailored to engineering an efficient
model checker based on heuristic search methods. The current version of Mcta

(Mcta-2012.05 or Mcta-2012 for short) supports both optimal and subopti-
mal search methods. In the setting of optimal search, Mcta-2012 features a
powerful admissible pattern database heuristic. To get a feeling of the power of
Mcta-2012’s heuristic search methods in an optimal search setting, we provide
a snapshot of Mcta-2012’s performance in Table 1. The problems D1–D6 stem
from an industrial real-time case study (see Sec. 6 for details). A dash indicates
that the corresponding tool exceeded the memory limit of 4GByte. We observe
that Mcta-2012 shows superior performance.

Table 1. Snapshot of Mcta-2012’s performance in an optimal search setting. The table
provides the best runtime in seconds for Mcta-2012, for Mcta-0.1 (corresponding to
the predecessor of Mcta-2012 that has been released in 2008 [19]), for Uppaal/Dmc,
and for Uppaal-4.0.13.

Instance Mcta-2012 Mcta-0.1 Uppaal/Dmc Uppaal-4.0.13

D1 10.2 81.2 84.7 90.5
D2 12.2 433.4 255.3 539.0
D3 12.3 487.0 255.6 548.4
D4 13.9 288.0 256.7 476.4
D5 60.1 – – –
D6 66.4 – – –

Furthermore, in the setting of suboptimal search, Mcta now features search
algorithms that extend classical directed model checking by applying a multi-
queue approach using several open queues instead of only one. This approach
can be applied with arbitrary distance heuristics.

Mcta is written in C++ and Python. It is released under the GPL and can be
obtained from the website http://mcta.informatik.uni-freiburg.de/. The
website particularly provides a binary of Mcta, the source code, relevant bench-
mark problems, and related papers. Subsequently, when we want to distinguish
between the new and the earlier version of Mcta, the new version is called
Mcta-2012, whereas the earlier version that corresponds to the last tool paper
[19] is called Mcta-0.1 (as also indicated on the website).

The remainder of the paper is organized as follows. In Sec. 2, we give the
preliminaries that are needed for this work. In Sec. 3, we present Mcta’s basic
architecture, based on which the newly developed components and their imple-
mentation are described in detail in Sec. 4 and Sec. 5. Furthermore, an exper-
imental evaluation is given in Sec. 6. Finally, we conclude the paper in Sec. 7
and give an overview of next development steps.

http://mcta.informatik.uni-freiburg.de/
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2 Preliminaries

In this section, we introduce the preliminaries that are needed for this paper.
In Sec. 2.1, we give a brief introduction to the timed automata formalism. In
Sec. 2.2, we describe the classical directed model checking approach that Mcta

is based on.

2.1 Timed Automata

We consider a class of timed automata that is extended with bounded integer
variables. A timed automaton A consists of a finite set of locations and a set
of edges that connect (some of) A’s locations. Every location features a clock
invariant represented as a conjunction of clock constraints x ≺ n for a clock
x and an integer n ∈ N, where ≺∈ {<,≤}. Furthermore, edges are annotated
with guards, effects and a synchronization label from a global synchronization
alphabet Σ. The guard of an edge consists of a clock and an integer guard,
consisting of clock and integer constraints, respectively. The effect of an edge
consists of a list of clocks (to be reset) and a list of integer assignments. A
(parallel) system of timed automata is defined as a set M = {A1, . . . ,An} of
timed automata.

The operational semantics of a system M of timed automata is defined as
follows. As the explicit size of M’s state space is infinite, we use a symbolic
representation of the state space that is sound and complete. This representation
is based on zones. In this setting, a global state consists of a discrete part and a
symbolic part. It is defined as a tuple s = 〈L, V, Z〉, where L is a function that
evaluates for every automaton inM the current location in s and V is a function
that evaluates for every integer variable the current value in s. L and V define
the discrete part of s. Furthermore, Z is the zone of s, i. e., a conjunction of
clock constraints that describes the possible values of the clock variables in s. Z
defines the symbolic part of s. We define a transition inM either as a set of one
edge that has a special internal void label (asynchronous communication), or as
a set of two edges from different automata with the same synchronization label
from Σ. Guards and effects of transitions are defined accordingly. A transition
t is applicable in a state s if the location, integer and clock guards of t are
satisfied in s. In this case, the successor state t[s] of s is defined as the state
s where the locations and the integer values are first changed according to the
effect of t, and the zone of t[s] is defined as an update of the zone of s according
to the clock guard and the clock resets of t. Finally, the resulting zone of t[s]
is maximized while preserving consistency with the location invariants of the
destination locations of t. The resulting state space of M is called the zone
graph of M.

2.2 Directed Model Checking

In general, depending on the distance heuristic and the search algorithm, directed
model checking influences the order in which the state space is traversed. For a
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system of timed automataM, directed model checking is performed on the zone
graph of M. The basic model checking algorithm of Mcta is shown in Fig. 1.

1 function dmc(M, h, ϕ):
2 open = empty priority queue
3 closed = ∅
4 open.insert(s0, priority(h, s0))
5 while open �= ∅ do:
6 s = open.getMinimum()
7 if s |= ϕ then:
8 generateErrorTrace(s)
9 closed = closed ∪ {s}

10 for each transition t of M that is applicable in s do:
11 if t[s] �∈ closed then:
12 open.insert(t[s], priority(h, t[s]))
13 return True

Fig. 1. Mcta’s basic directed model checking algorithm

For a given system M, a distance heuristic h, and an error property ϕ (i. e.,
a negated invariant property), Mcta performs a reachability algorithm on the
zone graph ofM. Therefore,Mctamaintains a priority queue open that contains
encountered states for which the successor states have not yet been computed,
and a closed list that contains the explored states, i. e., the states for which the
successor states have already been computed. Starting with the initial state s0,
Mcta iteratively computes successor states and evaluates them with a priority
function. For all encountered states, the priority function computes a priority
value which is determined by the distance heuristic h and the applied search
algorithm. According to the priority value, Mcta iteratively removes a best
state s from open and checks if s is an error state (line 6–8). If this is the case,
an error trace in generated by back-tracing from s (therefore, Mcta additionally
stores information in the states about how they have been reached). If s is not an
error state, s is stored in closed, and the successors of s are computed, evaluated
and inserted into open if they are not already explored.

At this point, it is important to note that the algorithm in Fig. 1 should be
read on a conceptual, rather than on an implementation level. For example, on
an implementation level, the closed list is a special kind of hash table (rather
than a set) that supports a certain inclusion test for states. We will come back
to these points in Sec. 3, specifically for a discussion on Mcta’s data structures,
distance heuristics and search algorithms.

3 Mcta’s Architecture and Features

In this section, we give an overview of Mcta’s overall architecture and Mcta’s
features. Therefore, in Sec. 3.1, we present a high-level overview of the modules
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Mcta consists of. In Sec. 3.2 and Sec. 3.3, we specifically describe Mcta’s
distance heuristics and search algorithms.

3.1 Mcta’s Basic Architecture

Mcta consists of the modules parser, system, search, and heuristics. The input
of Mcta consists of a file that contains a description of the timed automata
system, and a file that contains the property to check. The property to check
is a CTL formula of the form ∃♦ϕ, where ϕ is a conjunction of constraints
that speaks about automata and variables (i. e., ϕ describes the error states).
Currently, Mcta supports a part of Uppaal’s input language.

The parser module of Mcta uses Uppaal’s timed automata parser library
(UTAP), which is released under the LGPL and freely available at
http://www.uppaal.org/. After parsing the input, Mcta generates an internal
representation of the input system and the property. The corresponding algo-
rithms and data structures to build this representation are part of the system
module. The system representation is used by the search module which performs
a search on the zone graph of this representation using a distance heuristic and a
search algorithm (according to the algorithm given in Fig. 1).Mcta offers several
kinds of distance heuristics and search algorithms (see Sec. 3.2 and Sec. 3.3 for
an overview). In our setting, a distance heuristic is a function h : S → N ∪ {∞}
that returns for each state of S an estimation of its error distance. The distance
heuristics are implemented in the heuristics module. The overall architecture of
Mcta is depicted in Fig. 2.

parser system

searchheuristics

System

Property SAT

Error Trace

UTAP UDBM

Fig. 2. Mcta’s basic architecture

The search module is central to Mcta. It consists of the search engine, which
implements the global while loop of Fig. 1, and uses dedicated data structures for
states, for the open queue and for the closed list. For the internal representation
of zones,Mcta usesUppaal’s difference bound matrices library (UDBM), which
is released under the GPL and freely available at http://www.uppaal.org/. The
open queue and the closed list are special kinds of hash tables. Overall, the design
of the search engine is lightweight, which is supposed to simplify the implementa-
tion of new search algorithms. Furthermore, the interface to the heuristics module
is intended to simplify the implementation of new distance heuristics.

http://www.uppaal.org/
http://www.uppaal.org/
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3.2 The Heuristics Module

The heuristics module of Mcta-2012 features several distance heuristics to guide
the search. To estimate the error distance of a state s, the distance heuristics
compute an abstract error trace π# that starts in an abstraction of s, and use
the length of π# as the estimation for the length of a concrete error trace from
s. We give a short description of the different approaches in the following.

1. The dU and dL distance heuristics [8] are based on the local graph distances
of the automata of the input system. Synchronization, integer variables and
clock variables are ignored.

2. The hL and hU distance heuristics [17] are based on the monotonicity ab-
straction, which abstracts the original semantics of the system. The mono-
tonicity abstraction assumes that variables are set-valued and, once they
obtain a value, keep this value forever. The sets that contain the collected
values grow monotonically over transition application, hence the name of
the abstraction. The hL and hU distance heuristics compute abstract error
traces based on this abstraction.

3. A pattern database heuristic based on downward pattern refinement [18].
We do not go into detail here but refer the reader to Sec. 4.

Compared to the earlier version Mcta-0.1, the hU heuristic and the pattern
database heuristic based on downward pattern refinement are new developments.

3.3 The Search Module

In this section, we focus on a description of Mcta’s search algorithms that are
the essential part of the search module. The search algorithms make use of the
estimated error distances provided by the distance heuristic.

1. The standard greedy search algorithm [22] and A∗ search algorithm [11,12],
including the uninformed search algorithms depth-first and breadth-first
search.

2. The notion of useless transitions provides an approach to evaluate transitions
(rather than just evaluating states) [26,25]. Transitions t are called useless
in a state s if no shortest error trace starts in s with t. This criterion is
approximated such that it can be computed efficiently. For this approach,
the current version of Mcta maintains two open queues q0 and q1, where q1
maintains states that are reached by a useless transition, and q0 maintains
the remaining states. The q1 queue is accessed only if q0 is empty.

3. Iterative-context bounding [20] is an approach that stems from the area
of software model checking. In our setting, it corresponds to an iterative
deepening search algorithm that prefers states that are reached with low
number of context switches, i. e., with a low number of transition applications
of different automata.
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4. Context-enhanced directed model checking [24] is a further technique to
additionally prioritize transitions during directed model checking. Similar to
the iterative context bounding algorithm, it gives preference to states that
are reached by a transition that interferes with previously applied transitions.
In contrast, context switches are defined and exploited in a different way.

In comparison toMcta-0.1, the implementation of the iterative context-bounding
approach and the implementation of context-enhanced directed model checking
are new developments. Both of these algorithms are based onmultiple open queues.
We will describe their implementation in Sec. 5.

4 Mcta’s Pattern Database Heuristics

In this section, we describe Mcta’s implementation for pattern database (PDB)
heuristics in general, and the implementation of an extended version of down-
ward pattern refinement in particular. We assume the reader is roughly familiar
with pattern databases, and only give a short introduction. Pattern database
heuristics are a class of admissible distance heuristics that come from the area
of Artificial Intelligence [4,7]. For an input system M and a subset P of the
system components of M (the so-called pattern), a pattern database PDB is a
data structure that contains the abstract states ofM|P , whereM|P denotes the
projection abstraction of M that is obtained by abstracting away all systems
components that are not contained in P . Furthermore, for all abstract states
in the PDB, the corresponding abstract error distance is stored. The PDB is
computed once prior to directed model checking. During directed model check-
ing, the PDB is used as a distance heuristic hP by mapping every encountered
concrete state s to a corresponding abstract state s#. The distance value hP(s)
of s is defined as the corresponding abstract error distance of s#.

4.1 Mcta’s Architecture for Pattern Databases

Assuming that a pattern P is given, we present Mcta’s framework for the com-
putation of pattern databases (see Sec. 4.2 how Mcta computes a suitable pat-
tern). Mcta performs three steps to compute the pattern database for P : Ab-
stracting the system, then computing the entire abstract state space S#, and
finally, computing the abstract error distances for the abstract states in S#.

Abstracting the System. First, for the given input systemM and the pattern
P , Mcta computes a projection abstraction of M based on P by abstracting
away all system components that do not occur in P . Therefore, Mcta applies
the abstractor tool which also comes with the current Mcta-2012 release. The
abstractor tool works as follows. For integer and clock variables v to be ab-
stracted, the abstractor removes v from the guards and effects of the transitions
of M. If there is an edge with an effect such that the new value of v depends
on a variable in P , then v is abstracted away, too. Moreover, for an automaton
A to be abstracted, the abstractor replaces A with a new automaton A′ that
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only consists of one location. Moreover, A′ contains loop edges for all edges of
A where the guard is abstracted, but the effects and synchronization labels are
kept. Doing so, we obtain an overapproximationM|P of the original systemM.

Computing the Abstract State Space. Second, for the obtained abstrac-
tion M|P of the original system M, the entire reachable state space of M|P is
computed in a forward manner and dumped into a file. For the traversal of the
abstract state space, an extended version of the original search engine is used.
This extended version specifically takes into account that if a state s that is al-
ready in the closed list is encountered again (i. e., on a different trace), the (new)
transition that led to s is stored additionally. The abstract states and transitions
are stored in a serialized form. Moreover, abstract error states are stored with
a special error flag. Overall, we end up with a file that contains all the abstract
states (where abstract error states are specifically indicated) together with all
the abstract transitions.

Computing the Abstract Error Distances. Finally, based on the file that
contains the abstract state space, we apply the external tool Pdbgen to generate
the final pattern database. Pdbgen comes with the current Mcta-2012 release
and computes the abstract error distances for a given abstract state space. This is
done in a backwards manner via a version of Dijkstra’s algorithm. More precisely,
Pdbgen starts by assigning the error distance zero to all the abstract error
states, and by assigning infinity to all the other states. In the following, Pdbgen
iteratively checks the predecessor states and updates the distance value if it is
reached more cheaply than before. The output is a file that contains the serialized
abstract states together with their abstract error distances. This is the pattern
database which can be fed into Mcta to be used as a distance heuristic. We
finally remark that, doing this 3-step process to compute the PDB, we avoid the
expensive regression operation on the zone graph.

4.2 Running Mcta with Extended Downward Pattern Refinement

To compute the pattern, Mcta uses the external tool Mcta-Pdb that is imple-
mented in Python. Mcta-Pdb acts as a wrapper around the pattern generator
Pdbgen and Mcta. More precisely, Mcta-Pdb first generates the underlying
pattern. The pattern is generated with an algorithm based on downward pattern
refinement [18]. In addition to the originally proposed hdpr distance heuristic,
Mcta-2012 applies explicit search in intermediate abstractions to deal with clock
variables more explicitly. Doing so leads to a more-fine grained approach to se-
lect clocks than proposed in the original paper (where all clock variables have
been selected for the pattern by default). For the resulting pattern, the above
described 3-step process is performed. Finally, Mcta-Pdb calls Mcta with the
resulting pattern database. To apply Mcta with the pattern database heuris-
tic based on downward pattern refinement, select the following command line
parameters.

mcta-pdb --dprc --astar SYSTEM PROPERTY
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5 Multi-Queue Search Algorithms

In this section, we describe Mcta’s implementation for multi-queue search al-
gorithms. After giving a brief conceptual description in Sec. 5.1, we present
Mcta’s general framework for this approach in Sec. 5.2. In the subsequent sec-
tions, we specifically describe the implementation of two multi-queue search al-
gorithms from the literature, namely iterative context bounding [20] in Sec. 5.3,
and context-enhanced directed model checking [24] in Sec. 5.4.

5.1 The General Approach

In the setting where not only a distance heuristic, but also an additional quality
measure to guide the search is available, there is the question of how to exploit
this additional information. In such cases, a popular approach is to maintain mul-
tiple open queues instead of only one. Within this approach, states are pushed
into different open queues according to the additional quality measure, and or-
dered in this queue according to the original distance heuristic. The “best” state
to explore next is then defined as the “best” state according to the distance
heuristic in the “best” open queue according to the additional quality measure.
For example, multi-queue approaches have been successfully applied in the area
of AI planning for combining distance heuristics [23] (i. e., in this case, the ad-
ditional quality measure is another distance heuristic), or for additionally eval-
uating transitions rather than only evaluating states [14,13,25]. Furthermore, in
the area of model checking, similar approaches have been proposed to evaluate
transitions based on iterative context bounding [20], interference contexts [24],
and the notion of useless transitions [26].

For the rest of this section, we assume a setting where a distance heuristic
(to evaluate states) and a technique to evaluate transitions is available. The
idea is to exploit this additional information by preferably exploring states that
are estimated to be near to an error state (which corresponds to low distance
values as before) and that are reached by a transition that is estimated to guide
the search properly towards an error state. More precisely, the evaluation of
transitions determines the open queue in which the resulting successor state is
maintained, and (as in the classical approach) the distance heuristic determines
the ordering of the states in the queues. Formally, the priority function from the
algorithm in Fig. 1 becomes a function with domain N×N, i. e., it does no longer
only assign a natural number to states s, but additionally a natural number for
the transition that led to s to determine in which open queue s is maintained.

5.2 Mcta’s Architecture for Multi-Queue Search Algorithms

The high-level architecture of Mcta to maintain several open queues is best
described by the following template functions. They show how an extended open
queue that internally consists of multiple open queues is accessed to get and
insert states. The algorithmic design is rather straight forward and depicted in
Fig. 3.
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1 function insert(s, h):
2 k = evaluate predecessor transition t of s
3 qk.insert(s, h(s))

1 function getMinimum():
2 determine open queue qk to access
3 return qk.getMinimum()

Fig. 3. Multi-queue accessing functions

In the above algorithm, we assume that an upper bound on the number of
queues can be computed (see Sec. 5.3 and Sec. 5.4 how this is done for the
individual approaches). In contrast to the classical approach in Fig. 1, the insert
function computes a natural number k to determine the quality of the transition
that led to the state s that is inserted. This number in turn determines the index
of the queue in which s is inserted. Furthermore, getMinimum() returns the best
state of the open queue that is accessed next; note that it depends on the applied
search algorithm how this queue is actually determined.

5.3 Implementation of Iterative Context Bounding

Iterative context bounding (ICB) has been proposed for the purpose of testing
multithreaded programs [20]. Roughly speaking, ICB performs an iterative deep-
ening search with the objective to minimize the number of context switches, i. e.,
the number of execution points on a trace where the scheduler forces the active
thread to change.

Mcta implements this approach by considering threads as automata. There-
fore, a context switch occurs if two consecutive transitions on a trace belong to
two different automata. ICB can be combined with arbitrary distance heuristics
as well as uninformed search (where the latter corresponds to the original ap-
proach). Mcta applies a special search engine that maintains two open queues
q0 and q1 (i. e., k ∈ {0, 1} in Fig. 3). The insert function is implemented as
follows. For a state s and an applicable transition t in s, the successor state is
inserted into q0 if the edge(s) of t and the edge(s) of the predecessor transition
of s belong to the same automata. The getMinimum() function is implemented
by always accessing q0 until q0 gets empty. If this is the case, then q0 and q1 are
exchanged, reflecting that the number of context switches has been increased by
one. In case q1 is empty, too, we report that no error state is reachable.

Running Mcta with Iterative Context Bounding. To run Mcta with it-
erative context bounding, use the --icb=1 flag when Mcta is called. We remark
that Mcta supports additional options to define a context, but we do not go
into detail here. A short description of these parameters is given when Mcta is
called with the --help option.
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5.4 Implementation of Context-Enhanced Directed Model Checking

Context-enhanced directed model checking is a further multi-queue search ap-
proach [24]. In contrast to iterative context-bounding, contexts are essentially
defined based on interference of transitions, where transitions t and t′ interfere
if t writes a variable that is read by t′, or t′ writes a variable that is read by t, or t
and t′ write a common variable. Moreover, during the search, more than two open
queues are maintained in general. The approach is based on preferably exploring
states that are reached by transitions that interfere with previously applied tran-
sitions. More precisely, states are preferably explored if they are reached with
a transition with low interference distance to the previously applied transition,
where the interference distance of t and t′ is defined as the smallest k ∈ N, k ≥ 1,
such that there are transitions t1, . . . , tk with the property that t interferes with
t1, t1 interferes with t2, . . . , and tk interferes with t′.

In Mcta, context-enhanced directed model checking is implemented as fol-
lows. First, for every transition t in the system, the interference distance of t is
computed to every other transition in the system. This is a all pairs-shortest-
path problem for which we apply the Floyd Warshall algorithm [10]. The re-
sulting interference distances are stored in a 2-dimensional vector. The maximal
interference distance N for two transitions defines the number of open queues
(obviously, N is defined because systems have a finite number of transitions).
More precisely, we maintain a global open queue Q that consists of a vector of
open queues q0, . . . , qN . The insert function in Fig. 3 is defined as follows. For a
state s′ that is supposed to be inserted into Q, Mcta determines the interference
distance k of the predecessor transition t′ of s′ and the predecessor transition
of the predecessor state of s′, where s′ is inserted into queue qk. In the special
case that the effect of t′ satisfies a constraint of the property that is subject to
model checking, s′ is inserted in q0. The getMinimum() function determines the
smallest non-empty queue in Q to get the next state.

Running Mcta with Iterative Context Bounding. To run Mcta with
the context-enhanced directed model checking approach, use the --ce flag when
Mcta is called. We remark that Mcta supports additional options for this
setting, but we do not go into detail here. A short description of these parameters
is given when Mcta is called with the --help option.

6 Mcta’s Performance

In this section, we present an experimental evaluation of Mcta-2012 on large and
challenging real-time benchmarks. Specifically, some of these benchmarks stem
from industrial real-time case studies. To evaluate the performance of Mcta-
2012, a bug has been inserted in all of them.

The case study “Single-Tracked Line Segment” [15] (the problem instances
C1, . . . , C9 and D1, . . . , D9) models a distributed real-time controller for a seg-
ments of tracks where trams share a piece of track. The distributed controller is
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supposed to ensure that never two trams that drive in opposite directions are si-
multaneously given permission to enter the shared piece of track. The controller
was modeled in terms of PLC automata [6], which is an automata-like notation
for real-time programs. With the tool Moby/RT [21], the PLC automata sys-
tem has been transformed into abstractions of its semantics in terms of timed
automata. For the evaluation of Mcta-2012, we chose the property that never
both directions are given permission to enter the shared segment simultaneously.

As a further set of benchmarks, we used a case study called “Mutual Ex-
clusion” (problem instances M1, . . . ,M4 and N1, . . . , N4). As suggested by the
name, in this case study, mutual exclusion has to be established for real-time
systems. It is based on a protocol that is described by Dierks [5]. We refer the
reader to the website of Mcta for a more detailed description. All of these
benchmarks can also be obtained from the Mcta website.

The experiments have been performed on an AMD Opteron Processor 6174
with 2.2GHz system and 4GByte of memory. We compare Mcta-2012 in an
optimal search setting with the best technique described in the last tool paper
[19] (corresponding to Mcta-0.1). We also provide results for the tools Uppaal-
4.0.13 and Uppaal/Dmc [16]. Uppaal provides an efficient implementation of
breadth-first search, whereas the other tools apply the directed model checking
approach. Note that in this paper, we do not compare to Uppaal’s randomized
depth first search (rdfs) because rdfs is not guaranteed to find shortest possible
error traces (see the earlier tool paper of Mcta [19] for a comparison of subop-
timal search techniques including Uppaal’s rdfs). We used the options that lead
to the best experimental results for each tool. In particular, for Mcta-2012, we
used extended downward pattern refinement as described in Sec. 4.2. The results
are given in Table 2. For Mcta-12 and Uppaal/Dmc, the best search options
to find shortest error traces are PDB approaches; therefore, for these tools, the
pure search time in the concrete state space is reported additionally.

The results clearly indicate that Mcta-2012 mostly outperforms the other
directed model checking tools on these problems. Moreover, we observe that
these problems are large and complex because even Uppaal, which provides a
very efficient implementation of breadth-first search, cannot solve all of them.
Furthermore, we observe that the preprocessing of Mcta-2012 often takes most
of the overall model checking time. However, the preprocessing time mostly pays
off, specifically compared to the uninformed search provided byUppaal, but also
compared to the other directed model checking tools. For the M instances, the
pure search time of Mcta-2012 is still comparable to the search time of most of
the other tools. Moreover, in these instances, we observe that the overall number
of explored states as well as the number of explored states per second is lower
for Uppaal than for Mcta-2012. Although we do not know the exact reason, we
suppose that this is the case because Uppaal uses a more efficient representation
of the zone graph. We finally remark that we have also successfully verified
correct systems with Mcta-2012. This is possible because admissible heuristics
h can be used as a pruning method: If h(s) = ∞ for a state s, then the real
error distance of s is infinity as well, and hence, s can safely be pruned (recall
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Table 2. Results with the A∗ search algorithm. Abbreviations: “Mcta-12”: Mcta-
2012, “Mcta-08”: Mcta-0.1, “U/dmc”: Uppaal/Dmc, “runtime”: overall runtime in-
cluding any preprocessing in seconds, “explored states”: number of explored concrete
states, dashes indicate out of memory (> 4GByte). For Mcta-12 and U/dmc that
rely on PDBs, the pure search time in the concrete (i. e., time without preprocessing)
is reported in parenthesis.

runtime in seconds explored states trace

Inst. Mcta-12 Mcta-08 U/dmc Uppaal Mcta-12 Mcta-08 U/dmc Uppaal length

M1 2.2 (0.3) 0.6 3.0 (0.2) 0.5 29029 41455 190 14290 47

M2 2.9 (0.9) 2.6 3.2 (0.2) 2.1 99528 164856 4417 51485 50

M3 3.7 (1.7) 3.0 3.4 (0.4) 2.2 165336 189820 11006 52987 50

M4 8.2 (6.2) 13.5 4.0 (1.0) 8.8 549999 724030 41359 186435 53

N1 2.6 (0.1) 2.7 18.0 (0.4) 3.8 3606 93951 345 28196 49

N2 3.1 (0.6) 14.7 12.1 (0.5) 17.1 26791 438394 3811 100078 52

N3 4.2 (1.7) 19.1 14.7 (4.5) 17.5 70439 547174 59062 102124 52

N4 13.0 (10.4) 95.3 34.3 (27.8) 76.4 388076 2317206 341928 370459 55

C1 1.3 (0.1) 0.2 0.8 (0.1) 0.2 98 12458 130 21008 54

C2 1.4 (0.1) 0.7 1.1 (0.7) 0.5 98 32751 89813 55544 54

C3 1.4 (0.1) 0.8 0.8 (0.0) 0.6 98 37126 197 74791 54

C4 1.4 (0.1) 7.5 0.9 (0.1) 6.0 312 301818 1140 553265 55

C5 1.5 (0.1) 60.9 1.0 (0.1) 53.1 1178 2174789 7530 3977279 56

C6 1.5 (0.1) 605.6 1.1 (0.3) 514.3 2619 20551913 39436 33526538 56

C7 1.6 (0.1) – 1.7 (0.8) – 4247 – 149993 – 56

C8 1.6 (0.2) – 1.7 (0.9) – 5416 – 158361 – 56

C9 1.7 (0.2) – 1.7 (0.8) – 13675 – 127895 – 57

D1 10.2 (0.3) 81.2 84.7 (65.0) 90.5 2789 1443874 4610240 4048866 78

D2 12.2 (0.4) 433.4 255.3 (5.4) 539.0 5086 6931937 4223 21478364 79

D3 12.3 (0.4) 487.0 255.6 (5.4) 548.4 5161 7900038 2993 21553760 79

D4 13.9 (0.3) 288.0 256.7 (5.4) 476.4 1023 4660652 2031 18487819 79

D5 60.1 (6.4) – – – 122204 – – – 102

D6 66.4 (10.5) – – – 426571 – – – 103

D7 67.1 (7.9) – – – 180132 – – – 104

D8 68.3 (6.2) – – – 28285 – – – 104

D9 71.4 (6.3) – – – 12186 – – – 105

that admissible heuristics never overestimate the real error distance). For more
details, including experimental results, we refer the reader to the literature [18].

7 Conclusion

In this paper, we have reviewed Mcta and its new developments from an im-
plementation point of view. The new developments include heuristics and search
techniques for both optimal and suboptimal search. We have observed that
Mcta-2012 is very useful in efficiently finding shortest possible error traces in
faulty systems. For the future, we specifically aim at developing new admissible
distance heuristics. A main issue for research will be to effectively find the sweet
spot of the trade-off to be as accurate as possible on the one hand, and as cheap
to compute as possible on the other hand.
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