
Certain Conjunctive Query Answering in SQL

Alexandre Decan, Fabian Pijcke, and Jef Wijsen

Université de Mons, Mons, Belgium,
{alexandre.decan,jef.wijsen}@umons.ac.be, fabian.pijcke@gmail.com

Abstract. An uncertain database db is defined as a database in which
distinct tuples of the same relation can agree on their primary key. A
repair (or possible world) of db is then obtained by selecting a maxi-
mal number of tuples without ever selecting two distinct tuples of the
same relation that agree on their primary key. Given a query Q on db,
the certain answer is the intersection of the answers to Q on all re-
pairs. Recently, a syntactic characterization was obtained of the class
of acyclic self-join-free conjunctive queries for which certain answers are
definable by a first-order formula, called certain first-order rewriting [15].
In this article, we investigate the nesting and alternation of quantifiers
in certain first-order rewritings, and propose two syntactic simplifica-
tion techniques. We then experimentally verify whether these syntactic
simplifications result in lower execution times on real-life SQL databases.

1 Introduction

Uncertainty can be modeled in the relational model by allowing primary key vi-
olations. Primary keys are underlined in the conference planning database db0

in Fig. 1. There are still two candidate cities for organizing SUM 2016 and
SUM 2017. The table S shows controversy about the attractiveness of Mons,
while information about the attractiveness of Gent is missing. A repair (or

R Conf Year Town
SUM 2012 Marburg
SUM 2016 Mons
SUM 2016 Gent
SUM 2017 Rome
SUM 2017 Paris

S Town Attractiveness
Charleroi C
Marburg A
Mons A
Mons B
Paris A
Rome A

Fig. 1. Uncertain database db0

possible world) is obtained by selecting a maximal number of tuples, without
selecting two tuples with the same primary key value. Database db0 has 8 re-
pairs, because there are two choices for SUM 2016, two choices for SUM 2017,
and two choices for Mons’ attractiveness. The following conjunctive query asks in
which years SUM took place (or will take place) in a city with A attractiveness:

Q0 = {y | ∃z(R(‘SUM’, y, z) ∧ S(z, ‘A’)
)}.

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 154–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CQA in SQL 155

The certain (query) answer is the intersection of the query answers on all re-
pairs, which in this example is {2012, 2017}. Notice incidentally that Q0(db0)
also contains 2016, but that answer is not certain, because in some repairs, the
organizing city of SUM 2016 does not have A attractiveness.

For every database, the certain answer to Q0 is obtained by the following
first-order query:

ϕ0 = {y | ∃zR(‘SUM’, y, z) ∧ ∀z
(
R(‘SUM’, y, z) →

[
S(z, ‘A’)∧
∀v(S(z, v) → v = ‘A’

)
])

}.

We call ϕ0 a certain first-order rewriting for Q0. Certain first-order rewritings are
of practical importance, because they can be encoded in SQL, which allows to
obtain certain answers using standard database technology. However, it is well-
known that not all conjunctive queries have a certain first-order rewriting [4,16],
and it remains an open problem to syntactically characterize the conjunctive
queries that have one. Nevertheless, for conjunctive queries that are acyclic and
self-join-free, such characterization has recently been found [15,17].

In this article, we focus on the class of acyclic self-join free conjunctive queries
that have a certain first-order rewriting. We first provide algorithm NaiveFo
which takes such query as input, and constructs its certain first-order rewrit-
ing. We then provide two theorems indicating that rewritings produced by al-
gorithm NaiveFo can generally be “simplified” by (i) reducing the number of
(alternations of) quantifier blocks and/or by (ii) reducing the quantifier nest-
ing depth. Finally, the implementation of our theory shows that certain SQL
rewriting is an effective and efficient technique for computing certain answers.

This article is organized as follows. Section 2 provides notations and defini-
tions. In particular, we provide measures for describing the syntactic complexity
of a first-order formula. Section 3 discusses related work. Section 4 introduces the
construct of attack graph which is essential for the purpose of certain first-order
rewriting. Section 5 gives the code of algorithm NaiveFo. Section 6 shows how
rewritings can be simplified with respect to the complexity measures of Section 2.
Section 7 reports on our experiments conducted on real-life SQL databases. Sec-
tion 8 concludes the article.

2 Notations and Terminology

We assume a set of variables disjoint from a set dom of constants . We will
assume some fixed total order on the set of variables, which will only serve to
“serialize” sets of variables into sequences in a unique way. If x is a sequence of
variables and constants, then vars(x) is the set of variables that occur in x.

Let U be a set of variables. A valuation over U is a total mapping θ from U
to dom. Such valuation θ is often extended to be the identity on constants and
on variables not in U .

Key-Equal Atoms. Every relation name R has a fixed signature, which is a
pair [n, k] with n ≥ k ≥ 1: the integer n is the arity of the relation name and

156 A. Decan, F. Pijcke, and J. Wijsen

{1, 2, . . . , k} is the primary key. If R is a relation name with signature [n, k],
then R(s1, . . . , sn) is an R-atom (or simply atom), where each si is a constant
or a variable (1 ≤ i ≤ n). Such atom is commonly written as R(x,y) where the
primary key value x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. An atom is
ground if it contains no variables. Two ground atoms R1(a1, b1), R2(a2, b2) are
key-equal if R1 = R2 and a1 = a2. The arity of an atom F , denoted arity(F), is
the arity of its relation name.

Database and Repair. A database schema is a finite set of relation names . All
constructs that follow are defined relative to a fixed database schema.

A database is a finite set db of ground atoms using only the relation names
of the schema. Importantly, a database can contain distinct, key-equal atoms.
Intuitively, if a database contains distinct, key-equal atoms A and B, then only
one of A or B can be true, but we do not know which one. In this respect, the
database contains uncertainty. A database db is consistent if it does not contain
two distinct atoms that are key-equal. A repair of a database db is a maximal
(under set inclusion) consistent subset of db.

Conjunctive Queries. A conjunctive query is a pair (q, V) where q = {R1(x1,y1),
. . . , Rn(xn,yn)} is a finite set of atoms and V is a subset of the variables occur-
ring in q. Every variable of V is free; the other variables are bound . This query
represents the first-order formula ∃u1 . . .∃uk

(
R1(x1,y1) ∧ · · · ∧Rn(xn,yn)

)
, in

which u1, . . . , uk are all the variables of vars(x1y1 . . .xnyn)\V . If V = ∅, then Q
is called Boolean. We write vars(q) for the set of variables that occur in q. We de-
note by |q| the number of atoms in q, and we define aritysum(q) =

∑
F∈q arity(F).

Let db be a database. Let Q = (q, V) be a conjunctive query, and let U =
vars(q). Let x = 〈x1, . . . , xm〉 be the variables of V ordered according to the
total order on the set of variables. The answer to Q on db, denoted Q(db), is
defined as follows:

Q(db) = {θ(x) | θ is a valuation over U such that θ(q) ⊆ db}.

In particular, if Q is Boolean, then either Q(db) = {〈〉} (representing true) or
Q(db) = {} (representing false).

We say that Q has a self-join if some relation name occurs more than once
in q; if Q has no self-join, then it is called self-join-free. We write SJFCQ for the
class of self-join-free conjunctive queries.

Certain Conjunctive Query Answering. Let Q = (q, V) be a conjunctive query.
The certain answer to Q on db, denoted Qsure(db), is defined as follows:

Qsure(db) =
⋂

{Q(rep) | rep is a repair of db}.

Let 〈x1, . . . , xm〉 be the ordered sequence of variables in V . We say that the
certain answer to Q is first-order computable if there exists a first-order formula
ϕ(x1, . . . , xm), with free variables x1, . . . , xm, such that for every database db,

CQA in SQL 157

for every a ∈ domm, a ∈ Qsure(db) ⇐⇒ db |= ϕ(a). The formula ϕ, if it
exists, is called a certain first-order rewriting for Q; its encoding in SQL is a
certain SQL rewriting.

Notational Conventions. We use letters F,G,H, I for atoms appearing in a query.
For F = R(x,y), we denote by KeyVars(F) the set of variables that occur in x,
and by Vars(F) the set of variables that occur in F , that is, KeyVars(F) = vars(x)
and Vars(F) = vars(x) ∪ vars(y).

Acyclic Conjunctive Queries. A join tree τ for a conjunctive query Q = (q, V)
is an undirected tree whose vertices are the atoms of q such that whenever the
same variable x occurs in two atoms F and G, then either x ∈ V (i.e., x is free)
or x occurs in each atom on the unique path linking F and G. We will assume
that join trees are edge-labeled, such that an edge between F and G is labeled
with the set

(
Vars(F) ∩ Vars(G)

) \ V . A conjunctive query Q is called acyclic if
it has a join tree [2].

Quantifier Rank and Quantifier Alternation Depth. The quantifier rank of a
first-order formula ϕ, denoted by qr(ϕ), is the depth of the quantifier nesting in
ϕ and is defined as usual (see, for example, [10, page 32]):

– If ϕ is quantifier-free, then qr(ϕ) = 0.
– qr(ϕ1 ∧ ϕ2) = qr(ϕ1 ∨ ϕ2) = max

(
qr(ϕ1), qr(ϕ2)

)
;

– qr(¬ϕ) = qr(ϕ);
– qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ).

A first-order formula ϕ is said to be in prenex normal form if it has the form
Q1x1 . . . Qnxnψ, where Qi’s are either ∃ or ∀ and ψ is quantifier-free. We say
that ϕ has quantifier alternation depth m if Q1x1 . . . Qnxn can be divided into
m blocks such that all quantifiers in a block are of the same type and quantifiers
in two consecutive blocks are different.

For formulas not in prenex normal form, the number of quantifier blocks is
counted as follows. A universally quantified formula is a formula whose main
connective is ∀. An existentially quantified formula is a formula whose main
connective is ∃. The number of quantifier blocks in a first-order formula ϕ,
denoted qbn(ϕ), is defined as follows.

– If ϕ is quantifier-free, then qbn(ϕ) = 0.
– qbn(ϕ1 ∧ ϕ2) = qbn(ϕ1 ∨ ϕ2) = qbn(ϕ1) + qbn(ϕ2);
– qbn(¬ϕ) = qbn(ϕ);
– if ϕ is not universally quantified and n ≥ 1, then qbn(∀x1 . . . ∀xnϕ) = 1 +

qbn(ϕ); and
– if ϕ is not existentially quantified and n ≥ 1, then qbn(∃x1 . . . ∃xnϕ) =

1 + qbn(ϕ).

For example, if ϕ is ∃x∃y(∃uϕ1 ∧ ∃vϕ2) and ϕ1, ϕ2 are both quantifier-free, then
qbn(ϕ) = 3. Notice that ϕ has a prenex normal form with quantifier alternation
depth equal to 1. Clearly, if ϕ is in prenex normal form, then the quantifier
alternation depth of ϕ is equal to qbn(ϕ).

158 A. Decan, F. Pijcke, and J. Wijsen

Proposition 1. Every first-order formula ϕ has an equivalent one in prenex
normal form with quantifier alternation depth less than or equal to qbn(ϕ).

3 Related Work

Certain (or consistent) query answering was founded in the seminal work by
Arenas, Bertossi, and Chomicki [1]. The current state of the art can be found
in [3]. Fuxman and Miller [8] were the first ones to focus on certain first-order
rewriting of SJFCQ queries under primary key constraints, with applications in
the ConQuer system [7]. Their results have been generalized by Wijsen [15,17],
who obtained a syntactic characterization of those acyclic SJFCQ queries that
allow certain first-order rewriting. It follows from the proof of Corollary 5 in [14]
that acyclicity is also implicit in the work of Fuxman and Miller.

Given a Boolean query Q, CERTAINTY(Q) is the decision problem that takes
as input an (uncertain) database db and asks whether Q evaluates to true on
every repair. Wijsen [16] showed that the class SJFCQ contains Boolean queries
Q such that CERTAINTY(Q) is in P but not first-order expressible. It is an
open conjecture that for every Boolean SJFCQ query Q, it is the case that
CERTAINTY(Q) is in P or coNP-complete. For queries with exactly two atoms,
such dichotomy was recently shown true [9].

Maslowski and Wijsen [12,11] have studied the complexity of the counting
variant of CERTAINTY(Q), denoted �CERTAINTY(Q). Given a database db,
the problem �CERTAINTY(Q) asks to determine the exact number of repairs
of db that satisfy some Boolean query Q. They showed that that for every
Boolean SJFCQ query Q, it is the case that �CERTAINTY(Q) is in P or �P-
complete. The problem �CERTAINTY(Q) is closely related to query answering
in probabilistic data models [5]. From the probabilistic database angle, our un-
certain databases are a restricted case of block-independent-disjoint probabilistic
databases [5,6]. A block in a database db is a maximal subset of key-equal atoms.
If {R(a, b1), . . . , R(a, bn)} is a block of size n, then every atom of the block has
a probability of 1/n to be selected in a repair of db. Every repair is a possible
world, and all these worlds have the same probability.

4 Attack Graph

Let Q = (q, V) be an acyclic SJFCQ query and U = vars(q). For every F ∈ q,
we denote by FD(Q,F) the set of functional dependencies that contains X → Y
whenever q contains some atom G with G �= F such that X = KeyVars(G) \ V
and Y = Vars(G) \ V . For every F ∈ q, we define:

F+,Q = {x ∈ U | FD(Q,F) |= (
KeyVars(F) \ V) → x}.

Example 1. For the Boolean query Q in Fig. 2, we have FD(Q,F) ≡ {x →
y, x → z}, FD(Q,G) ≡ {u → x, x → y, x → z}, FD(Q,H) ≡ {u → x, x → z},
and FD(Q, I) ≡ {u → x, x → y}. It follows F+,Q = {u}, G+,Q = {x, y, z},
H+,Q = {x, z}, and I+,Q = {x, y}. More elaborated examples can be found
in [15].

CQA in SQL 159

R(u, a, x) = F

S(x, y, z) = G

T (x, y) = H P (x, z) = I

{x}

{x, y} {x, z}

R(u, a, x)

S(x, y, z)

T (x, y) P (x, z)

Fig. 2. Join tree (left) and attack graph (right) for Boolean query Q = (q, ∅) with
q = {R(u, a, x), S(x, y, z), T (x, y), P (x, z)}. It is understood that a is a constant.

Let τ be a join tree for Q. The attack graph of τ is a directed graph whose
vertices are the atoms of q. There is a directed edge from F to some atom G
if for every edge e on the unique path in τ that links F and G, there exists a
variable x in e’s edge label such that x �∈ F+,Q.

Example 2. See Fig. 2 (right). There is a directed edge from F to H because the
edge labels {x} and {x, y} on the path between F and H are not contained in
F+,Q = {u}. The attack graph is acyclic.

It is known [17] that if τ1 and τ2 are two join trees for Q, then the attack graphs
of τ1 and τ2 are identical. The attack graph of Q is then defined as the attack
graph of any join tree for Q. If the attack graph contains a directed edge from
atom F to atom G, then we say that F attacks G. An atom F of Q is said to
be unattacked if the attack graph of Q contains no directed edge that points to
F (i.e., F has zero indegree).

The following result was shown in [15] for Boolean acyclic SJFCQ queries. The
extension to queries with free variables is easy and already indicated in [15].

Theorem 1. Let Q = (q, V) be an acyclic SJFCQ query. Then, Q has a certain
first-order rewriting if and only if the attack graph of Q is acyclic.

5 Naive Algorithm

Algorithm NaiveFo implements definitions given in [15]. The algorithm takes
two inputs: an acyclic SJFCQ query Q = (q, V) and a directed acyclic graph
that contains Q’s attack graph. The algorithm computes a certain first-order
rewriting ϕ for Q. For example, the formula ϕ0 in Section 1 was obtained by
applying the algorithm on Q0.

Algorithm NaiveFo is called “naive” because it does not attempt to mini-
mize the alternations or nesting depth of quantifiers. This may be problematic
when the rewritings are translated into SQL for execution, as illustrated by the
following example.

160 A. Decan, F. Pijcke, and J. Wijsen

Function NaiveFo(q,V ,E) Construct certain first-order rewriting

Input: Q = (q, V) is an acyclic SJFCQ query, where V is the set of free variables of q.
E ⊆ q × q is an acyclic set of directed edges containing the attack graph of Q.

Result: certain first-order rewriting ϕ for Q.
begin

if q = ∅ then
ϕ← true;

else
choose an atom F = R(x1, . . . , xk, y1, . . . , y�) that is unattacked in E;

V ′ ← V ;
X← ∅;
foreach i← 1 to k do

if xi is a variable and xi �∈ V ′ then
V ′ ← V ′ ∪ {xi};
X← X ∪ {xi};

Y← ∅;
NEW← ∅;
foreach i← 1 to � do

if yi is a constant or yi ∈ V ′ then
let zi be a new variable;
NEW ← NEW ∪ {i};

else /* yi is a variable not in V ′ */

let zi be the same variable as yi;
V ′ ← V ′ ∪ {yi};
Y ← Y ∪ {yi};

q′ ← q \ {F};
E′ ← E \ ({F} × q);
V ′ ← V ′ ∩ vars(q′);

ϕ← ∃X
⎡
⎣
∃YR(x1, . . . , xk, y1, . . . , y�)∧
∀z1 . . .∀z�

(
R(x1, . . . , xk, z1, . . . , z�)→

[∧
i∈NEW zi = yi∧

NaiveFo(q′, V ′, E′)

])
⎤
⎦;

return ϕ;

CQA in SQL 161

Example 3. For each m ≥ 1, assume relation name Ri with signature [2, 1],
and let �m� = {R1(x1, b), . . . , Rm(xm, b)}, where b is a constant. For m ≥ 1, let
�m� = (�m�, ∅), a Boolean query whose attack graph has no edges. Formulas ϕ1,
ϕ2, and ϕ3 are three possible certain first-order rewritings for �m�. The formula
ϕ1 is returned by algorithm NaiveFo, while ϕ2 and ϕ3 result from some syntactic
simplification techniques described in Section 6. In particular, ϕ2 minimizes the
number of quantifier blocks, and ϕ3 minimizes the nesting depth of quantifiers.

ϕ1 = ∃x1
(
R1(x1, b) ∧ ∀z1

(
R1(x1, z1) → z1 = b∧

∃x2
(
R2(x2, b) ∧ ∀z2

(
R2(x2, z2) → z2 = b∧

. . .

∃xm
(
Rm(xm, b) ∧ ∀zm

(
Rm(xm, zm) → zm = b

))
. . .

))))

ϕ2 = ∃x1 . . . ∃xm
(m∧

i=1

Ri(xi, b) ∧ ∀z1 . . . ∀zm
(m∧

i=1

Ri(xi, zi) →
m∧

i=1

zi = b
))

ϕ3 =
m∧

i=1

∃xi
(
Ri(xi, b) ∧ ∀zi

(
Ri(xi, zi) → zi = b

))

Notice that ϕ1, ϕ2, and ϕ3 each containm existential andm universal quantifiers.
The following table gives the quantifier rank and the number of quantifier blocks
for these formulas; recall that these measures were defined in Section 2.

i qr(ϕi) qbn(ϕi)

1 2m 2m
2 2m 2
3 2 2m

The differences in syntactic complexity persist in SQL. Assume that for each
i ∈ {1, . . . ,m}, the first and the second attribute of each Ri are named A and
B respectively. Thus, A is the primary key attribute. For m = 2, the queries Q1,
Q2, and Q3 in Fig. 3 are direct translations into SQL of ϕ1, ϕ2, and ϕ3.

1 The
fact that ϕ2 only has one ∀ quantifier block results in Q2 having only one NOT

EXISTS. Notice further that Q2 requires m tables in each FROM clause, whereas
Q3 takes the intersection of m SQL queries, each with a single table in the FROM
clause.

The foregoing example shows that formulas returned by algorithm NaiveFo can
be “optimized” so as to have lower quantifier rank and/or less (alternations of)
quantifiers blocks. The theoretical details will be given in the next section.

1 In practice, we construct rewritings in tuple relational calculus (TRC), and then
translate TRC into SQL. Such translations are well known (see, e.g., Chapter 3
of [13]). We omit the details of these translations in this article because of space
limitations.

162 A. Decan, F. Pijcke, and J. Wijsen

Q1 = SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (SELECT * FROM R1 AS r12

WHERE r12.A = r11.A
AND (r12.B <> ’b’
OR NOT EXISTS (SELECT * FROM R2 AS r21

WHERE NOT EXISTS (SELECT * FROM R2 AS r22
WHERE r22.A = r21.A
AND r22.B <> ’b’))))

Q2 = SELECT ’true’ FROM R1 AS r11, R2 AS r21
WHERE NOT EXISTS (SELECT * FROM R1 AS r12, R2 AS r22

WHERE r12.A = r11.A AND r22.A = r21.A
AND (r12.B <> ’b’ OR r22.B <> ’b’))

Q3 = SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (SELECT * FROM R1 AS r12

WHERE r12.A = r11.A AND r12.B <> ’b’)
INTERSECT
SELECT ’true’ FROM R2 AS r21
WHERE NOT EXISTS (SELECT * FROM R2 AS r22

WHERE r22.A = r21.A AND r22.B <> ’b’)

Fig. 3. Q1, Q2, Q3 are certain SQL rewritings for �2�

6 Syntactic Simplifications

Consider the second last line of algorithm NaiveFo, which specifies the first-order
formula ϕ returned by a call NaiveFo(q, V, E) with q �= ∅. Since NaiveFo is called
recursively once for each atom of q, the algorithm can return a formula with 2|q|
quantifier blocks and with quantifier rank as high as aritysum(q).

In this section, we present some theoretical results that can be used for
constructing “simpler” certain first-order rewritings. Section 6.1 implies that
NaiveFo can be easily modified so as to return formulas with less (alternations
of) quantifier blocks. Section 6.2 presents a method for decreasing the quantifier
rank. Importantly, our simplifications do not decrease (nor increase) the number
of ∃ or ∀ quantifiers in a formula; they merely group quantifiers of the same type
in blocks and/or decrease the nesting depth of quantifiers.

6.1 Reducing the Number of Quantifier Blocks

Algorithm NaiveFo constructs a certain first-order rewriting by treating one
unattacked atom at a time. The next theorem implies that multiple unattacked
atoms can be “rewritten” together, which generally results in less (alternations
of) quantifier blocks, as expressed by Corollary 1.

Theorem 2. Let Q = (q, V) be an acyclic SJFCQ query. Let S ⊆ q be a set of

unattacked atoms in Q’s attack graph. Let X =
(⋃

F∈S KeyVars(F)
)
\V . If ϕ is

a certain first-order rewriting for (q, V ∪X), then ∃Xϕ is a certain first-order
rewriting for Q.

CQA in SQL 163

Corollary 1. Let (Q, V) be an acyclic SJFCQ query whose attack graph is
acyclic. Let p be the number of atoms on the longest directed path in the at-
tack graph of Q. There exists a certain first-order rewriting ϕ for Q such that
qbn(ϕ) ≤ 2p.

Example 4. The longest path in the attack graph of Fig. 2 contains 3 atoms.
From Corollary 1 and Proposition 1, it follows that the query of Fig. 2 has a
certain first-order rewriting with quantifier alternation depth less than or equal
to 6.

6.2 Reducing the Quantifier Rank

Consider query �m� withm ≥ 1 in Example 3. Algorithm NaiveFo will “rewrite”
the atoms Ri(xi, b) sequentially (1 ≤ i ≤ m). However, since these atoms have no
bound variables in common, it is correct to rewrite them “in parallel” and then
join the resulting formulas. This idea is generalized in the following theorem.

Definition 1. Let Q = (q, V) be an SJFCQ query with q �= ∅. An independent
partition of Q is a (complete disjoint) partition {q1, . . . , qk} of q such that for
1 ≤ i < j ≤ k, vars(qi) ∩ vars(qj) ⊆ V .

Theorem 3. Let Q = (q, V) be an acyclic SJFCQ query. Let {q1, . . . , qk} be an
independent partition of Q. For each 1 ≤ i ≤ k, let ϕi be a certain first-order
rewriting for Qi = (qi, Vi), where Vi = V ∩ vars(qi). Then,

∧k
i=1 ϕi is a certain

first-order rewriting for Q.

We show next that Theorem 3 gives us an upper bound on the quantifier rank of
certain first-order rewritings. Intuitively, given a join tree τ , we define diameter(τ)
as the maximal sum of arities found on any path in τ . A formal definition follows.

Definition 2. Let Q = (q, V) be an acyclic SJFCQ query. Let τ be a join tree
for Q. A chain in τ is a subset q′ ⊆ q such that the subgraph of τ induced
by q′ is a path graph. We define diameter(τ) as the largest integer n such that
n = aritysum(q′) for some chain q′ in τ .

Example 5. The join tree τ in Fig. 2 (left) contains three maximal (under set
inclusion) chains: {F,G,H}, {F,G, I}, {G,H, I}. The chains containing F have
the greatest sum of arities; we have diameter(τ) = 3 + 3 + 2 = 8.

Corollary 2. Let Q = (q, V) be an acyclic SJFCQ query whose attack graph is
acyclic. Let τ be a join tree for Q. There exists a certain first-order rewriting ϕ
for Q such that qr(ϕ) ≤ diameter(τ).

Corollaries 1 and 2 show upper bounds on the number of quantifier blocks or the
quantifier rank of certain first-order rewritings. Algorithm NaiveFo can be easily
modified so as to diminish either of those measures. It is not generally possible
to minimize both measures simultaneously. For example, there seems to be no
certain first-order rewriting ϕ for �m� such that qbn(ϕ) = qr(ϕ) = 2 (cf. the
table in Section 5).

164 A. Decan, F. Pijcke, and J. Wijsen

Schema Arity Number of tuples Size

PAGE[id, namespace, title, . . .] 12 4,862,082 417 MB
CATEGORY[id, title, . . .] 6 296,002 13 MB
CATEGORYLINKS[from, to, . . .] 7 14,101,121 1.8 GB

INTERWIKI[prefix, url, . . .] 6 662 40 KB

EXTERNALLINKS[from, to, . . .] 3 6,933,703 1.3 GB

IMAGELINKS[from, to] 2 12,419,720 428 MB

Q4,fr = ∃∗
[
PAGE(x, n, l, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ INTERWIKI(‘fr’, u, . . .)

]

Q5,fr = ∃∗
⎡
⎣
PAGE(x, n, l, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ EXTERNALLINKS(x, u, . . .)∧
INTERWIKI(‘fr’, u, . . .)

⎤
⎦

Q6,fr = ∃∗
⎡
⎣
PAGE(x, n, l, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ EXTERNALLINKS(x, u, . . .)∧
INTERWIKI(‘fr’, u, . . .) ∧ IMAGELINKS(x, i)

⎤
⎦

QnB,fr(u) = ∃x∃n∃l∃t∃y
⎡
⎣
PAGE(x, n, l, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ EXTERNALLINKS(x, u, . . .)∧
INTERWIKI(‘fr’, u, . . .)

⎤
⎦

Fig. 4. Database schema and queries

7 Experiments

Databases and Queries We used a snapshot of the relational database con-
taining Wikipedia’s meta-data.2 All experiments were conducted using MySQL
version 5.1.61 on a machine with Intel core i7 2.9GHz CPU and 4GB RAM,
running Gentoo Linux.

The database schema and the database size are shown in Fig. 4 (top).
Attributes not shown are not relevant for our queries. To allow primary key
violations, all primary key constraints and unique indexes were dropped and re-
placed by nonunique indexes. An inconsistent database was obtained by adding
�N/10000� conflicting tuples to each relation with N tuples. Newly added tuples
are crossovers of existing tuples: if R(a1, b1) and R(a2, b2) are distinct tuples,
then R(a1, b2) is called a crossover.

In our experiments, we used eight acyclic SJFCQ queries which are in accor-
dance with the intended semantics of the database schema. All queries are vari-
ations of Q5,fr, which asks: “Is there some page with a category link to some cate-
gory and with an external link to the wiki identified by ‘fr’?”.
To help understanding, we point out that attribute CATEGORYLINKS.to refers
to CATEGORY.title, not to CATEGORY.id. Four queries are shown in Fig. 4
(bottom). Each position that is not shown contains a new distinct variable not
occurring elsewhere. Four other queries are obtained by replacing ‘fr’ with ‘zu’.

2 The dataset is publicly available at
http://dumps.wikimedia.org/frwiki/20120117/ .

http://dumps.wikimedia.org/frwiki/20120117/

CQA in SQL 165

Table 1. Execution time in seconds for eight conjunctive queries and their certain SQL
rewritings according to three different rewriting algorithms: ν=naive, β reduces qbn(·),
and ρ reduces qr(·)

qbn(·) qr(·)
‘fr’ variant on

consistent/inconsistent
database

‘zu’ variant on
consistent/inconsistent

database

Q4 1 4 0.0004/0.0004 0.0004/0.0004

ν4 7 7 0.2106/0.2114 0.2125/0.2117
β4 3 5 > 1 hour > 1 hour
ρ4 5 4 0.2101/0.2108 0.2098/0.2106

Q5 1 5 0.0004/0.0004 0.0004/0.0004

ν5 9 9 0.0019/0.0020 2.1482/2.1472
β5 5 7 0.0014/0.0015 2.1154/2.1152
ρ5 7 6 0.0014/0.0015 2.1304/2.1298

Q6 1 6 0.0004/0.0004 0.0004/0.0004

ν6 11 11 0.0020/0.0021 2.1730/2.1725
β6 5 8 0.0014/0.0015 2.1209/2.1211
ρ6 8 6 0.0015/0.0016 2.1450/2.1439

QnB 1 4 0.0112/0.0095 0.0120/0.0099

νnB 8 8 0.0018/0.0019 2.1379/2.1374
βnB 4 6 0.0015/0.0015 2.1098/2.1103
ρnB 6 5 0.0015/0.0016 2.1272/2.1274

That is,Q4,zu is obtained fromQ4,fr by replacing ‘fr’ with ‘zu’. Likewise for Q5,zu,
Q6,zu, and QnB,zu. All queries are Boolean except for QnB ,fr and QnB ,zu. For the
Boolean queries, all ‘fr’ variants evaluate to true on the consistent database,
while the ‘zu’ variants evaluate to false.

Measurements. To measure the execution time tQ,db of query Q on database
db, we execute Q ten times on db and take the second highest execution time.
The average and standard deviation for tQ,db are computed over 100 such mea-
surements. Since the coefficient of variability (i.e., the ratio of standard deviation
to average) was consistently less than 10−4 (except for the problematic queries
β4,fr and β4,zu), standard deviations have been omitted in Table 1.

In Table 1, the symbol ν refers to naive certain SQL rewritings, β refers
to rewritings that decrease the number of quantifier blocks, and ρ refers to
rewritings that decrease the quantifier rank. We have developed software that
takes as input an acyclic SJFCQ query, tests whether it has a certain first-order
rewriting, and if so, returns three certain SQL rewritings (the naive one and two
simplifications). The generated SQL code is obviously awkward; for example,
the SQL query ν6,fr contains 10 nested NOT EXISTS.

The values for qbn(·) and qr(·) were obtained by applying the definitions of
Section 2 on formulas in tuple relational calculus (TRC). The motivation for

166 A. Decan, F. Pijcke, and J. Wijsen

this is that SQL uses aliases ranging over tables, just like TRC. The quantifier
rank of a formula generally decreases when it is translated from first-order logic
into TRC. For example, ϕ = ∃x∃y∃z(R(x, y) ∧ S(y, z)) is translated into ψ =

∃r∃s(R(r) ∧ S(s) ∧ r.2 = s.1
)
, where qr(ϕ) = 3 and qr(ψ) = 2. The quantifier

rank of a Boolean SJFCQ query in TRC is equal to its number of atoms.

Observations. The certain SQL rewritings of Q4,fr (and Q4,zu) show some
anomalous behavior: their execution time is much higher than rewritings of other
queries involving more atoms. Since we have not been able to find the causes
of this behavior in MySQL, we leave these queries out from the discussion that
follows.

The execution times of the certain SQL rewritings on large databases seem
acceptable in practice. A further analysis reveals the following:

– As can be expected, most conjunctive queries (indicated by Q) execute faster
than their certain SQL rewritings (indicated by ν, β, ρ). The nonBoolean
query QnB,fr is the only exception.

– In most rewritings, replacing ‘fr’ with ‘zu’ results in a considerable increase
of execution time. Recall that the ‘fr’ variants of the Boolean queries evaluate
to true on the consistent database, while the ‘zu’ variants evaluate to false.
A possible explanation for the observed time differences is that ‘fr’ variants
of Boolean queries can terminate as soon as some valuation for the tuple
variables in the query makes the query true, whereas ‘zu’ variants have to
range over all possible valuations.

– Execution times on consistent and inconsistent databases are almost identi-
cal. Recall that both databases only have nonunique indexes.

– Syntactic simplifications have a fairly low effect on execution times. Define
the speedup of some simplified rewriting as the ratio of the execution time of
the naive rewriting to that of the simplified one. For example, the speedup
of ρ5,fr on the consistent database is equal to 0.0019

0.0014 ≈ 1.36. All speedups are
between 1 and 1.5.

8 Conclusion

We focused on the class of acyclic SJFCQ queries that have a certain first-order
rewriting. A syntactic characterization of this class is given in [15,17]. We first
implemented this earlier theory in a simple algorithm NaiveFo for constructing
certain first-order rewritings. We then proposed two syntactic simplifications for
such rewritings, which consist in reducing the number of quantifier blocks and
reducing the quantifier rank. Our implementation indicates that certain SQL
rewriting is an effective and efficient technique for obtaining certain answers.
Also, it seems that naive rewritings perform well on existing database technology,
and that syntactic simplifications do not result in important speedups.

CQA in SQL 167

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79. ACM Press (1999)

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983)

3. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2011)

4. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1-2), 90–121 (2005)

5. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

6. Dalvi, N.N., Re, C., Suciu, D.: Queries and materialized views on probabilistic
databases. J. Comput. Syst. Sci. 77(3), 473–490 (2011)

7. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent
databases. In: Özcan, F. (ed.) SIGMOD Conference, pp. 155–166. ACM (2005)

8. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73(4), 610–635 (2007)

9. Kolaitis, P.G., Pema, E.: A dichotomy in the complexity of consistent query an-
swering for queries with two atoms. Inf. Process. Lett. 112(3), 77–85 (2012)

10. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
11. Maslowski, D., Wijsen, J.: A dichotomy in the complexity of counting database

repairs. J. Comput. Syst. Sci. (in press)
12. Maslowski, D., Wijsen, J.: On counting database repairs. In: Fletcher, G.H.L.,

Staworko, S. (eds.) LID, pp. 15–22. ACM (2011)
13. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Com-

puter Science Press (1988)
14. Wijsen, J.: On the consistent rewriting of conjunctive queries under primary key

constraints. Inf. Syst. 34(7), 578–601 (2009)
15. Wijsen, J.: On the first-order expressibility of computing certain answers to con-

junctive queries over uncertain databases. In: Paredaens, J., Gucht, D.V. (eds.)
PODS, pp. 179–190. ACM (2010)

16. Wijsen, J.: A remark on the complexity of consistent conjunctive query answering
under primary key violations. Inf. Process. Lett. 110(21), 950–955 (2010)

17. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans.
Database Syst. 37(2) (2012)

	Certain Conjunctive Query Answering in SQL
	Introduction
	Notations and Terminology
	Related Work
	Attack Graph
	Naive Algorithm
	Syntactic Simplifications
	Reducing the Number of Quantifier Blocks
	Reducing the Quantifier Rank

	Experiments
	Conclusion
	References

