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Preface

In many applications nowadays, information systems are becoming increasingly
complex, open, and dynamic. They involve massive amounts of data, generally
issued from different sources. Moreover, information is often inconsistent, incom-
plete, heterogeneous, and pervaded with uncertainty. The annual International
Conference on Scalable Uncertainty Management (SUM) has grown out of this
wide-ranging interest in the management of uncertainty and inconsistency in
databases, the Web, the Semantic Web, and artificial intelligence applications.

The SUM conference series aims at bringing together researchers from these
areas by highlighting new methods and technologies devoted to the problems
raised by the need for a meaningful and computationally tractable management
of uncertainty when huge amounts of data have to be processed. The First In-
ternational Conference on Scalable Uncertainty Management (SUM 2007) was
held in Washington DC, USA, in October 2007. Since then, the SUM conferences
have taken place successively in Naples (Italy) in 2008, again in Washington DC
(USA) in 2009, in Toulouse (France) in 2010, and in Dayton (USA) in 2011.

This volume contains the papers presented at the 6th International Con-
ference on Scalable Uncertainty Management (SUM 2012), which was held in
Marburg, Germany, during September 17–19, 2012. This year, SUM received
75 submission. Each paper was reviewed by at least three Program Committee
members. Based on the review reports and discussion, 41 papers were accepted
as regular papers, and 13 papers as short papers.

In addition, the conference greatly benefited from invited lectures by three
world-leading researchers: Joachim Buhmann (ETH Zürich, Switzerland) on
“Context Sensitive Information: Which Bits Matter in Data?”, Minos Garo-
falakis (Technical University of Crete, Greece) on “HeisenData: Towards Next-
Generation Uncertain Database Systems”, and Lawrence Hunter (University of
Colorado, USA) on “Knowledge-Based Analysis of Genome-Scale Data”. More-
over, Sébastian Destercke (CNRS, Université de Technologie de Compiègne) was
kind enough to accept our invitation for an introductory talk that was con-
ceived as an overview of different approaches to uncertainty modeling in modern
information systems.

In closing, we would like to express our gratitude to several people and insti-
tutions, who all helped to make SUM 2012 a success:

– all the authors of submitted papers, the invited speakers, and all the confer-
ence participants for fruitful discussions;

– the members of the Program Committee, as well as the additional reviewers,
who devoted time to the reviewing process;

– Alfred Hofmann and Springer for providing continuous assistance and ready
advice whenever needed;
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– the European Society for Fuzzy Logic and Technology (EUSFLAT) and the
Marburg Center for Synthetic Microbiology (SYNMIKRO) for sponsoring
and financial support;

– the Philipps-Universität Marburg for providing local facilities;
– the creators and maintainers of the conference management system Easy-

Chair (http://www.easychair.org).

July 2012 Eyke Hüllermeier
Sebastian Link
Thomas Fober

Bernhard Seeger
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Bogdan Trawiński, Tadeusz Lasota, Magdalena Sm ↪etek, and
Grzegorz Trawiński
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Andreas Buschermöhle, Jens Hülsmann, and Werner Brockmann

On Development of a New Seismic Base Isolation System . . . . . . . . . . . . . 574
Sanjukta Chakraborty, Koushik Roy, Chetan Chinta Arun, and
Samit Ray Chaudhuri

Trying to Understand How Analogical Classifiers Work . . . . . . . . . . . . . . . 582
William Fernando Correa, Henri Prade, and Gilles Richard

An Adaptive Algorithm for Finding Frequent Sets in Landmark
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

Xuan Hong Dang, Kok-Leong Ong, and Vincent Lee

Instantiation Restrictions for Relational Probabilistic Conditionals . . . . . 598
Marc Finthammer and Christoph Beierle

Artificial Intelligence for Identification of Material Behaviour
Using Uncertain Load and Displacement Data . . . . . . . . . . . . . . . . . . . . . . . 606

Steffen Freitag

On Cluster Validity for Fuzzy Clustering of Incomplete Data . . . . . . . . . . 612
Ludmila Himmelspach, João Paulo Carvalho, and Stefan Conrad

Evaluation of the Naive Evidential Classifier (NEC): A Comparison
between Its Two Variants Based on a Real Agronomic Application . . . . . 619

Yosra Mazigh, Boutheina Ben Yaghlane, and Sébastien Destercke
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Xtream: A System for Continuous Querying  
over Uncertain Data Streams 

Mohammad G. Dezfuli and Mostafa S. Haghjoo 

Computer Engineering Department,  
Iran University of Science and Technology,  

Tehran, Iran 
{mghalambor,haghjoom}@iust.ac.ir 

Abstract. Data stream and probabilistic data have been recently considered no-
ticeably in isolation. However, there are many applications including sensor da-
ta management systems and object monitoring systems which need both issues 
in tandem. The existence of complex correlations and lineages prevents Proba-
bilistic DBMSs (PDBMSs) from continuously querying temporal positioning 
and sensed data. Our main contribution is developing a new system to conti-
nuously run monitoring queries on probabilistic data streams with a satisfactory 
fast speed, while being faithful to correlations and uncertainty aspects of data. 
We designed a new data model for probabilistic data streams. We also pre-
sented new query operators to implement threshold SPJ queries with aggrega-
tion (SPJA queries). In addition and most importantly, we build a java-based 
working system, called Xtream, which supports uncertainty from input data 
streams to final query results. Unlike probabilistic databases, the data-driven 
design of Xtream makes it possible to continuously query high-volumes of 
bursty probabilistic data streams. In this paper, after reviewing main characte-
ristics and motivating applications for probabilistic data streams, we present our 
new data model. Then we focus on algorithms and approximations for basic op-
erators (select, project, join, and aggregate). Finally, we compare our prototype 
with Orion the only existing probabilistic DBMS that supports continuous dis-
tributions. Our experiments demonstrate how Xtream outperforms Orion w.r.t. 
efficiency metrics such as tuple latency (response time) and throughput as well 
as accuracy, which are critical parameters in any probabilistic data stream man-
agement system. 

Keywords: Probabilistic Stream, Sensor, Uncertainty, Continuous Query, 
Xtream, Orion.  

1 Introduction 

Many applications need to deal with enormous uncertain data streams. Some exam-
ples are sensor [1,2], RFID [3], GPS [4] and scientific [5] data streams. Values of 
attributes in such applications (e.g. sensor data) are error-prone, especially when we 
use outdated readings [6]. Scientific data including estimates, experimental measure-
ments, and hypothetical data is also inherently uncertain. Most applications usually 
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ignore imprecision because handling uncertainty directly is inefficient. The problem 
would be even worse for real-time monitoring of high-rate uncertain input streams 
[7,8].  

There are two different possibilities to deal with inevitable uncertain data: 1) data 
cleaning [9], and 2) handling uncertainty in data modeling and query processing. 
Cleaning data from uncertainties is ideal but not always feasible. Many applications 
prefer to deal with uncertainties and their inherent useful information as diamonds in 
the dirt [1]. Even if data cleaning makes sense for uncertain databases, it is irrelevant 
to real-time data stream processing. Thus, in this paper, we only focus on the second 
approach. Supporting uncertainties needs re-engineering of data model and query 
processing in data management systems. Data model should be designed in a way to 
support probabilistic distributions for attributes, correlations between tuples, and con-
fidence about relevancy of a tuple in a stream. The most important change in query 
processing is supporting probabilistic threshold queries. 

There are some challenges which make probabilistic data stream processing more 
complicated. The first one is correlation (temporal and spatial) between tuples. Sup-
porting complex correlations needs graphical models [2]. However, sometimes it is 
easier for application to ignore these correlations and use a multi-purpose and effi-
cient data management system instead of a graphical-based one. The other challenge 
is efficiency of query processing. Even if we ignore correlations between input tuples, 
it is not easy to always eliminate correlations between intermediate tuples. In this 
case, we have to use intentional semantics instead of extensional semantics [10] 
which vitiate complexity from PTIME to #P-complete [11].  

In this paper, we present data model and query language of our system - Xtream. 
Then we focus on algorithms and approximations for basic operators (select, project, 
join and aggregate). After presenting the architecture of Xtream, we show how it out-
performs Orion [12] regarding PLR benchmark [13]. Thus, our main contribution is 
presenting the first real probabilistic data stream management system and comparing 
it to a famous Probabilistic Data Base Management System (PDBMS) to show how 
changing the query processing into continuous will drastically improves the results. 

Rest of the paper is organized as follows. We describe related work in section 2. 
First we focus on logical aspects of our system and introduce our new data model in 
section 3.  Then we focus on physical aspects of our system and discuss about im-
plementation of basic operators in section 4. In section 5, we evaluate and compare 
our system to Orion which is a PDBMS that supports continuous distributions. Final-
ly, we conclude this paper in section 6. 

2 Related Work 

There is a broad range of related work on probabilistic databases [14,15] motivated by 
many applications need to manage large and uncertain data sets. The major challenge 
studied in probabilistic databases is the integration of query processing with probabil-
istic inference in an efficient way. Most of the Probabilistic Databases (PDBs) are 
using Block Independent-Disjoint (BID) model with lineages based on Possible 
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Worlds Semantics (PWS) [1]. These systems support limited correlations between 
uncertain values. The other variants are graphical-based systems [16] which support 
more correlations. However, they are more complex and less scalable.  

Unlike other PDBs like Trio [17] and MayBMS [15], Orion [12] supports conti-
nuous distributions to cover sensor applications. Supporting continuous distributions 
raises new challenges about semantics as PWS is inherently discrete. Nevertheless, 
Orion states intuitively that it is based on PWS semantics. The main difference be-
tween Orion as a PDBMS and our system is real-time stream processing. Orion is 
good for querying over some historical sensor data but because of the database nature 
of it (in comparison to data streams), it is not a good choice for real-time monitoring 
of sensor data (as we show in our experimental evaluations in § 5). 

Real-time probabilistic stream processing with continuous distributions first consi-
dered in PODS. Tran et al. [18] focused on two applications of object tracking in 
RFID networks and weather monitoring. PODS has a data model based on Gaussian 
Mixture Model (GMM) which supports arbitrary continuous distributions. PODS in-
cludes some join and aggregation algorithms but still it is not a complete system. In 
contrast, we have developed a real prototype for more investigation on different sys-
temic aspects. 

Event queries on indoor moving objects have been discussed in [19]. They used a 
graphical solution based on Hidden Markov Models and Cayuga query language 
which is completely different from SQL-based languages. These differences make 
their system very specific to some applications and somehow isolated from traditional 
databases. Our system is more general and suitable for combining uncertain data 
streams and relational databases and adaptable to wider range of applications. 

To the best of our knowledge, probabilistic data stream management which is a 
new combination of Data Stream Management Systems (DSMSs) and PDBs were 
never considered as a complete system before and researchers only focused on differ-
ent aspects like data model and query processing in isolation. Unlike them, we tried to 
develop a complete generic system for query evaluation on probabilistic data streams 
for the first time.  

3 Probabilistic Data Model 

Data model is the foundation of a data processing system and should be designed in a 
way that allows us to capture input data, process user defined queries and finally 
represent results for the end user. The most important difference between DSMS data 
models and Xtream’s0 data model is supporting probabilistic domains. Although there 
are many useful recent models for supporting probabilistic values in PDBs 
[20,12,17,15], adapting those models to the stream-based nature of Xtream is not 
trivial. In this part, we define different parts of our data model. 

Definition 1. P-Tuple: a P-tuple of type : D , … , D  is a pair ,  in 
which A is , … ,  where  is an attribute in the form of a triple , , .  

 ,  are uncertainty lower and upper bounds respectively.  is a bounded prob-
ability distribution function.  is an event-based lineage. 
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Lineage is an expression based on the event model described in PRA and is a combi-
nation of atomic independent events using  , ,    operators [10]. Using intentional 
semantics based on lineage is strongly necessary in Xtream to compute correct proba-
bilities. The anomaly of ignoring lineage is well described in [1,12,14]. However, 
using lineage poses more difficulties in probability evaluation and makes an abrupt 
change in complexity from PTIME to #P-complete [11]. 

Definition 2. P-Element: a P-element  is a pair ,  where  is an interval , which determines tuple validity period and  is a P-tuple. 

Definition 3. P-Stream: a P-stream  is an infinite list of ordered (non-
decreasingly by start timestamp) P-elements with the same type  . 

Adding membership confidence to a P-tuple makes algorithms more complex. Thus, 
in this paper, we only use lineage in P-tuples and express membership as an additional 
event in lineage. The idea is similar to physical streams in PIPES [21]. We also define 
P-relations as a non-temporal counterpart of P-streams as follows: 

Definition 4. P-Relation: a probabilistic relation  is a finite bag of P-tuples . 

Time snapshot transforms a temporal probabilistic stream into a probabilistic relation 
(to leverage relational algebra). We define time snapshots formally as follows: 

Definition 5. Time Snapshot ( : a time snapshot on P-stream is | , , ,   . 

4 Probabilistic Queries 

In this section we introduce our query language for Xtream. We focus on four basic 
operators (map, filter, join, aggregate) and present definitions, architectures, and algo-
rithms for them. 

4.1 The Map Operator 

The map operator is a general form of project operator in relational algebra. It is a 
stateless operator which reforms a tuple based on some predefined functions and  
always consumes one tuple to generate another one. One of the most important  
challenges about map operator is eliminating some probabilistic attributes which are 
jointly distributed with other attributes [12]. However, in our system, we do not have 
this problem as we assumed that there is no intra-tuple correlation between probabilis-
tic attributes. In the case of using map operator as a simple project operator, the im-
plementation is straightforward (we should only eliminate some certain or uncertain 
attributes). In other cases, user is responsible for defining functions for map operator 
which can compute the distribution of new probabilistic variable based on some input 
certain/uncertain variables. We formally define the map operator below:   
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Definition 6. Map Operator ( ): let , , … ,  be a list of functions and , ,  be a P-tuple where , , … , . The result of map operator on 
and  ( ), is a new P-tuple , ,  with , , … , . 

Note that the schema of tuple will be changed after applying map operator. The only 
unchanged parameters are timestamp and the lineage. 

4.2 The Filter Operator 

The filter operator is similar to select operator in relational algebra but there are some 
tricky points about it. The select operator checks a condition on some certain 
attributes of a tuple and sends it to the output if condition is true. The first problem 
with filter operator is the semantics behind it. At least, there are two important possi-
ble alternatives for filter operator as illustrated in Fig. 1: 1) to pass the tuples un-
touched, or 2) to fit the tuple based on the condition. 

 

Fig. 1. Two alternatives for filter operator 

We choose the second alternative (Fig. 1 (b)) based on WD-PWS semantics [22]. 
There is a noticeable difference between filter and select operators: unlike select, filter 
may change distribution of attributes of the result tuples.  

The second challenge is about conditions which are evaluated to true or false in re-
lational databases. Evaluating conditions on probabilistic attributes is more complex, 
especially when we have several probabilistic attributes. We formally define Filter 
operator below: 

Definition 7. Tailor Function ( ): the result of binary function  on a set of 
attributes  and condition , , , is  in which each probabilistic  
attribute : , ,  on domain D  is changed to : , ,  where D  d 0 d   and 1/ 

. 

Definition 8. Filter Operator ( ): the unary filter operator on input P-stream  
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4.3 The Join Operator 

Join operation on uncertain streams is too costly, albeit very necessary in query 
processing. There are many different join operators in relational algebra (e.g. natural 
join, θ-join, equijoin, inner join, outer join, semi-join, Cartesian product). We define 
their counterparts for our model. In this paper we limit our join operators to the more 
general threshold-based probabilistic θ-join: 

Definition 11. Threshold-based Probabilistic θ-Join ( ): threshold-based prob-

abilistic θ-join of two P-streams, , is a new P-stream . , , |  . .  . . .   . .   , Pr . 

There are two main challenges in implementing join in Xtream: 1) evaluating condi-
tions which combine probabilistic values in theta join, and 2) enormous number of 
results (most of them with ignorable confidences). We limit our join conditions to 
equality, inequality, less-than and greater-than for at most two probabilistic argu-
ments with Gaussian distributions. We also use confidence thresholds and heuristics 
to ignore producing low-confidence results. 

The probability of equality of two continuously distributed probabilistic values is 
always zero (regarding probability theory). Thus, in Xtream, we use resolution based 
equality [6] instead of exact equality. For two probabilistic continuously distributed 
values  and ,  means | |   . Its probability is computed using fol-
lowing formula [6]: 

∞
 (1)

where f is the pdf function and F is the CDF function. However, it is costly to com-
pute an integral. Thus, we use a trick to improve the efficiency of computing proba-
bility of equality. As we mentioned before,  is equal to | |   ; so instead 
of  we compute | |   . Linear combination of two Gaussian 
variables leads to another Gaussian variable. For example, for ,  and , , , . As a result,  is equal 
to  which is computable in a constant time using predefined standard 
normal tables.  

For inequality, we compute the probability easily based on the idea of 1 . In addition,  equals to 0  
which is equal to 0 . 

Figure 2 illustrates the architecture of our binary join operator. Input tuples first go 
to the input queues and would be fetched based on their timestamps to preserve order 
of output tuples. After joining with partner tuples, each tuple should be stored  
temporarily in a state (aka synopsis). We use SweepAreas [21] for our join states. 
SweepAreas provide our join with a fast access to temporal tuples while a sweeping  
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mechanism drops expired and useless tuples. We use a list-based implementation of 
SweepArea as probabilistic joins are a kind of similarity joins. We also use symmetric 
nested-loop join (SNJ). The other alternative for our join algorithm is hash join which 
is irrelevant to similarity-based joins. The final box, threshold filter, drops low-
confidence results based on the determined threshold. Changing threshold is a good 
method to handle overloads. We leave this idea for future.  

 

Fig. 2. The architecture of Xtream binary join operator 

The algorithm of our threshold-based probabilistic θ-Join is presented in Algorithm 1. 

 Algorithm 1. Threshold-based Probabilistic -Join 
 Input: two P-streams , , a predicate , and a threshold . 
 Output: a P-stream .  

1 . ; 
2 let  be a predicate which: , . . ? : ; 
3 let , be two SweepAreas( , , ) for , respectively; 
4 while and  
5 Let  be the next oldest P-tuple from 1,2 ; 
6  2 1; 
7 .purgeElements( , ); // drop elements from where . .  
8 .insert( ); 

9 foreach in .tquery( , , )  // Pr ,  

10 let Pr , ; 

11 let .  . ; 
12 ifPr  

13 . . , . , .  
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4.4 The Aggregate Operator 

Aggregation operators are vital in Xtream because of the probabilistic nature of data. 
They could be either entity-based or value-based. Entity-based aggregations return 
tuples (or some parts of tuples) as their output (e.g. tuple with minimum value for a 
specific attribute) but value-based aggregations return a statistical value based of their 
input tuples (e.g. average value of an attribute of tuples). We only focus on three most 
important value-based aggregations in this paper and leave others for future work. 
Value-based aggregations are applied to a set of tuples, so we define sliding windows 
to provide a set snapshot of streams as follows: 

Definition 12. Time-based Sliding Window ( ): a time-based sliding window, , , returns the set of all P-tuples from P-stream, , with timestamps between  and  where  is a time coordinate starting at 0 and sliding by . 

Definition 13. Tuple-based Sliding Window ( ): a tuple-based sliding window, 
, returns  most recent P-tuples from P-stream .  

Definition 14. Partitioned Sliding Window ( ): a partitioned sliding window ω ,P , first groups tuples based of their  attribute and then returns  most recent 
P-tuples for each group. 

Definition 15. Sum: sum of  attributes of window , , , is equal to ∑ .  where  is expectation. 

Definition 16. Average: average of  attributes of window , , , is equal 

to
∑ .| | . 

Definition 17. Count: count of P-tuples in window , , is equal to | | . 
Temporal validity of tuples and window size are very important in aggregation. For 
temporal tuples, we should remove the effect of expired tuples from aggregation re-
sult which forces us to keep a sketch of previously seen tuples. Aggregation functions 
are also usually required to be applied on a group of tuples. Thus, we should first 
apply a window operator on input stream, then group tuples, and finally apply aggre-
gation function. Although we can apply window operator easily, grouping probabilis-
tic tuples is a bit challenging, as tuples may belong to many groups with different 
probabilities. Thus, it is not possible to physically group tuples. Instead we do it in a 
logical way. 

Figure 3 and Algorithm 2 illustrate our aggregation operator. Each time a new 
tuple comes to the operator, it computes the positive and negative changes on the 
aggregation result based on the new tuple and there is no need to refer to old tuples. 
The positive change (which is computed by  function) will be applied to the current 
aggregation result immediately by  function. The negative change, which 
wipes the effect of expired or dropped tuples out, should be stored temporally in a 
SweepArea. Whenever the operator decides to remove some tuples (because of the 
expiration or window specification), it extracts the negative changes and apply them 
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on the aggregation result. Negative changes are computable using  function. The 
set of , , and  functions can be easily defined for each of our aggregation 
functions. Note that we used sliding windows as embedded components in our opera-
tors as it is more efficient and also more compatible with pipeline architecture. 

Our online data driven approach is much faster than partial aggregation approach 
presented in [21] as it needs a short constant time for each operation (including insert, 
remove, and evaluation). However, it limits us to a smaller number of aggregate  
functions.  

 

Fig. 3. The architecture of Xtream’s aggregate operator 

 
 Algorithm 2. Aggregation 
 Input: a window  on input P-stream , three predefined functions , ,  
 Output: a P-stream  

1 ; 
2 let  be the current average value; ; 
3 let  be the validation predicate of ; 
4 let  be a SweepArea( , , ); 
5 while   
6 Let  be the next oldest P-tuple from  
7 .extractElements( , 1); 
8 while .hasNext() do 
9 .next(); 

10 , ; 
11 .insert( . , ); 
12 , ; 
13  

5 Empirical Study 

We use PLR (Probabilistic Linear Road) benchmark [13] to evaluate our system. PLR 
simulates traffic characteristics of a simple expressway system based on variable  
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tolling to handle traffic congestion of expressways.  The main idea of PLR is to raise 
tolls on crowded expressways to encourage drivers toward alternative roads. In fact, it 
is a probabilistic version for it is ancestor, Linear Road benchmark [23]. In linear 
road benchmark, it is assumed that sensors are accurate which is unrealistic in the 
real-world. Therefore, PLR adds uncertainty to linear road and adapt it for evaluating 
probabilistic stream querying systems. In addition, PLR has changed queries in linear 
road from a historical nature into real-time suitable for stream processing systems. 
We compared Xtream with Orion (ver. 2.0). Orion is the only available probabilistic 
DBMS which supports continuous distributions as well as discrete ones. Orion’s im-
plementation is based on Postgres.  

5.1 Input Data and Configuration 

We use the first 26 minutes data of one highway from PLR benchmark as our input 
stream. The rate of input stream is monotonically increasing so the effect of overload 
appears smoothly during experiments. We have implemented Toll query of PLR to 
compute tolls for different segments based on the last state of vehicle. Every time a 
position report shows a vehicle entering a new segment, the toll reported for that seg-
ment will be charged to the vehicle’s account. Variable tolling prevents congestion in 
different parts of expressways. Toll computation for a segment is based on three fac-
tors: 1) average number of vehicles, 2) average speed, and 3) nearest upstream acci-
dent. Because of the lack of space, we refer the reader to [13] for more details on 
input data types. Generally, the tuples indicate probabilistic positions of vehicles us-
ing Gaussian distributions. 

The following experiments were conducted on a computer with 4 GB RAM, Core 
i7 CPU, running Ubuntu 11.10 and Orion 0.2. Although our system has 8 cores and 
Xtream supports multi-thread processing, we only use one thread to have a fare com-
parison between Xtream and Orion.  

5.2 Evaluation Metrics 

Evaluating probabilistic data stream processing systems is more tricky and complex 
than PDBs or DSMSs. The most important aspects are: 1) efficiency, and 2) accuracy. 
We focus on response time for efficiency and toll error for accuracy.  

The most important point in evaluation is that ideal and real results do not have 
one-to-one relationship. Thus, we use the notion of variation distance between distri-
butions [24] and compute sum of their differences for each time unit. In this way, both 
accuracy and response time affect the metric.  

We also define precision as a probability threshold so that probability values less 
than it would be considered 0 (i.e. impossible). Each application can set its precision. 
We use this notion to ignore small enough probabilities in discretization. Here we 
show how changing precision will affect quality of results and performance.  
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In addition, it is a motivation for overload controlling (adaptation and load shedding) 
in Xtream which is left for future. We use four precisions 0, 0.1, 0.01, and 0.5 in our 
experiments.  

5.3 Efficiency 

We measure response time in Xtream as the difference between system time of input 
tuples and output tuples. In Orion implementation, a periodic ever-running function 
computes tolls for all of the segments. Thus, response times of the results are equal to 
corresponding function run-time. Experiments show that the continuous nature of 
Xtream makes it up to 10 times faster than Orion regarding selected precision (0 to 
0.5). Figure 4 compares average response time for Orion and Xtream with four differ-
ent precisions. To better distinguish between Xtream different versions, we removed 
Orion and depicted the graph in Fig. 5. As illustrated in the graphs, there is a noticea-
ble difference between Orion and Xtream results as time goes by. Figure 6 also illu-
strates the global average response time for Orion and Xtream. Orion looks good 
enough in comparison to Xtream with zero precision in this graph. This is due to the 
number of output results. Although the rate of arriving input stream is monotonically 
increasing (Fig. 7), unlike Xtream (Fig. 8), Orion’s output result rate (i.e. throughput) 
is decreasing (Fig. 9). In fact, fast exponentially increasing response time in Orion 
prevents generating complete results in subsequent periods. As a result, most of the 
output tuples, which are contributing in global average response time, belong to first 
periods (i.e. with short response times). The 2D pie chart in Fig. 10 illustrates the 
huge share of first periods in number of output tuples. Hence, Fig. 4 is a better clue to 
see the real difference between efficiency of Xtream and Orion. The difference be-
tween zero precision and others is also considerable.  
 

Fig. 4. Periodic average response time for 
Xtream and Orion 

Fig. 5. Periodic average response time for 
Xtream with different precisions 
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Fig. 6. Average response time
Orion 
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5.4 Accuracy 

In addition to efficiency, accuracy of results is also important. We compute toll error 
as sum of differences between ideal and real toll functions. In this way, we do not 
need a one-to-one relationship between ideal and real results so we can easily com-
pare two completely different systems (i.e. Xtream and Orion). Approximation error 
as well as response time are both effective in final toll errors. Thus, toll errors present 
accuracy and efficiency of systems in tandem. Figures 12 and 13 illustrate periodic 
and average toll errors for Xtream (with three different precisions) and Orion. Only 
for the case of 0.1 precision and in the first few periods, Orion generates less error. 
The average toll error of Orion is almost 160 times greater than Xtream with zero 
precision and about 20 times with 0.01 precision. The other difference between these 
two systems is that Orion’s error is noticeably increasing but Xtream’s errors are al-
most stable.  

 

Fig. 12. Periodic toll error Fig. 13. Average toll error 

6 Conclusion 

Continuous querying over probabilistic data streams is a new promising and growing 
field for database research community. Managing probabilistic data streams is neces-
sary in developing complex and real-time monitoring systems. These systems should 
take uncertainties into account while dealing with bursty high-volume data streams. 

Our approach to develop a probabilistic data stream management system was to 
start from a DSMS and extend it to support probabilistic data and queries. We started 
from data model and added lineage to tuples. Lineage is necessary to compute correct 
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redefined all of the operators to support uncertainty because even basic operators like 
filter (select) may perform on probabilistic streams in a different way. We used  
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distributions. Then, we implemented all operators in an efficient way to process prob-
abilistic streams.  

In the last part, we used PLR which is an extension of linear road benchmark for 
probabilistic streams and evaluated the idea of floating precisions for toll computation 
query. We showed how changing precision affect quality of results and quality of 
service. We leave automatic precision and expiration tuning as an open problem for 
future work. Moreover, we compared our system, Xtream, with Orion which is the 
only available PDBMS prototype that supports continuous distributions. The results 
show that Xtream is up to 10 times faster than Orion regarding selected precision. 
This noticeable difference in efficiency comes from the different architecture and 
operators in Xtream and Orion. In fact, Xtream is instinctively designed for long-time 
running continuous queries on probabilistic data streams while Orion periodically 
repeats queries based on the last snapshot of data.   
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based on residuated lattices and similarities on attribute domains.

Keywords: Flexible query answering, ranked data tables, complete resid-
uated lattices, similarity, relational algebra.

1 Introduction

As nowadays massive amounts of data are stored in database systems, it becomes
more and more difficult for a database user to exactly retrieve data that are
relevant to him: it is not easy to formulate a database query such that:

1. on the one hand, the user retrieves all the answers that interest him; that is,
false negatives and empty answers are avoided by also giving the user data
that are closely related to his original query,

2. on the other hand, the user does not retrieve too much irrelevant data (that
is, false positives in the form of “overabundant” and “unsatisfactory an-
swers”) – hence avoiding data not related to the user’s original intention.

In this article, we assume the following setting: A user sends a query (expressed
in relational algebra) to a relational database – that is, a set of data tables,
where again each data table consists of a set of attributes and each attribute has
been assigned a fixed domain of values (like strings or integers). However, based
on the previous work in [3], we extend the relational database by ranks: each
tuple in a data table has a rank value to denote how much a tuple matches the
user’s query. Ranks come from an ordinal scale bounded by 0 (no match) and 1
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(full match) and we allow to have imperfect matches represented by intermediate
ranks. These ordinal ranks have a comparative meaning: the higher the rank, the
better it matches the user’s query. Before the user starts querying the database,
all ranks for tuples explicitly contained in the data tables are assumed to be 1,
whereas implicitly all other tuples (not occurring in the data tuples but consisting
of valid combinations of domain values) are ranked 0. By using ordinal ranks,
query answering becomes more flexible in the following sense: The user will not
only retrieve answer tuples with rank 1 (which might not even exist); instead
the user will also retrieve answer tuples with ranks lower than 1 which still may
contain relevant information for him. To obtain the ranks, we will employ a
notion of similarity on each attribute domain: for any two values from a domain
we assume a predefined value that denotes how similar the two domain values
are. In particular, we show how to apply the notion of ranked data tables (RDTs)
and complete residuated lattices

– to rank answer tuples according to their relevance for the user,
– to let a user specify preferences on equality conditions in his queries,
– and to suppress irrelevant answers by a global threshold.

2 Background on Ranked Data Tables

The flexible query answering approach we discuss in this paper is based on a
similarity-based generalization of Codd’s relational model of data [10]. As in the
traditional Codd’s model, we assume a set Y of attributes where each attribute
y ∈ Y has a specific fixed domain denoted Dy. A relation scheme consists of a
finite subset of the attributes R ⊆ Y . Each data table (or relation instance) for a
relation scheme R is a finite set of tuples where a tuple is a map r : R→

⋃
y∈R Dy

such that the value of the tuple for an attribute complies with the domain of the
attribute, that is: r(y) ∈ Dy. The set of all tuples r : R→

⋃
y∈R Dy will also be

denoted by Tupl(R).
An important aspect of Codd’s model is that data tables (relations) represent

both the stored data and results of queries. In fact, in theory there is no distinc-
tion between the two roles as stored data can be seen as results of queries (show
all stored data) and results of queries can again be stored. In both the cases, a
data table D is a finite subset of Tupl(R), i.e., we may think of the tuples in
D as tuples assigned a rank 1 indicating a match. Analogously, the tuples not
present in D can be seen as tuples assigned a rank 0 indicating no match. Clearly,
there is a one-to-one correspondence between data tables D ⊆ Tupl(R) and such
assignments where at most finitely many tuples from Tupl(R) are assigned rank
1. It is natural to interpret the ranks 0 and 1 as truth degrees which come from
a two-element Boolean algebra with the usual interpretation (0 for falsity and
1 for truth) and ordering 0 < 1. From this point of view, we argue that ordinal
ranks which we use here in a more general setting are already present in the
original Codd’s model, only they do not appear explicitly. The primary role of
ranks stems directly from the model – they indicate whether a tuple matches or
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does not match a given query (formulated in a particular query language, e.g. a
relational algebra, and evaluated in a database instance).

Example 1. As a running example we assume a database of book stores and their
stock. That is, we have a table of bookstores storing the name of a bookstore,
the ZIP of the warehouse where the book is on stock, and the ISBN and price of
each book sold in each store; and we have a table of books storing ISBN, title,
and level of presentation. Hence a database instance may look as follows.

Stores rank name zip isbn price

1.0 Bookworm 38457 037-4-592-24599-7 59.95

1.0 Bookworm 38457 834-3-945-25365-9 19.95

1.0 Bookmarket 32784 834-3-945-25365-9 23.95

1.0 BooksBooks 98765 945-7-392-66845-4 89.95

Books rank bookid title level

1.0 037-4-592-24599-7 SQL beginner

1.0 834-3-945-25365-9 Databases advanced

1.0 945-7-392-66845-4 DB systems professional

In this paper, to allow for flexible query answering, we utilize an extension of
Codd’s model which allows us to consider general ranks, not only 0 (false or
no match) and 1 (true or match), coming from a general partially ordered set
which is bounded by 0 and 1. Technically, the extension we use here results from
Codd’s model if we replace the two-valued Boolean algebra which serves as the
structure of truth degrees by a more general structure. Hence, the approach we
use in this paper builds upon Codd’s model which is developed using a weaker
metamathematics. There are several important practical consequences:

Clarity: The model stays purely relational. There is no “ad hoc” ranking module
attached on top of the classic model. The classic model results from the model
used here by a particular choice of the structure of ranks. Namely, if the
structure is bivalent (the two-valued Boolean algebra), our model becomes
the ordinary model with yes/no matches.

Ranked data tables are used instead of the classic data tables as the basic struc-
tures and represent both the results of queries and stored data. Each ranked
data table D (an RDT) is a map assigning to each tuple r ∈ Tupl(R) a
rank denoted D(r). The rank is interpreted as a degree to which r matches
a query. The ranks have ordinal interpretation, D(r1) > D(r2) means that
r1 is a better match than r2, D(r) = 1 means that r matches fully (a given
query), D(s) = 0 means that s does not match the query at all.

Support for imperfect matches: As in Codd’s model, queries are represented by
expressions which are evaluated in database instances (there are several
equivalent query systems like relational algebra and domain relational cal-
culus with range declarations). The fact that a general structure of ranks
is used influences the rules how the queries are evaluated – there is a need
to aggregate values of ranks that can be other than 0 and 1 and thus the
operations of Boolean algebra can no longer do the job. In order to evalu-
ate general queries, the structure of ranks shall be equipped by additional



Applications of Ordinal Ranks to Flexible Query Answering 19

operations for aggregation of ranks. Nevertheless, the evaluation stays truth
functional as in Codd’s model. As a consequence, the results of queries are
given only by the database instance and the structure of ranks.

Equalities replaced by similarities: Equalities on domains are an integral part of
Codd’s model and appear in restrictions (selections), natural joins, the se-
mantics of functional dependencies, etc. In our model, equalities on domains
(tacitly used in Codd’s model) become explicit similarity relations, assigning
to each two elements from a domain Dy of attribute y a degree to which they
are similar. Similarity degrees come from the same scale as ranks and have
the same ordinal interpretation: higher degrees mean higher similarity and
thus higher preference if one is asked to choose between alternatives.

Other important aspects: The model is general and not limited just to data
querying. There are results on various types of similarity-based dependencies
in data [2] that can be exploited in the process of flexible query answering.

We now outline a fragment of the model which is sufficient to discuss flexible
query answering with ordinal ranks. We use the unit interval on the reals L =
[0, 1] in all our examples which will both constitute the ranks of tuples in a data
table as well as similarity degrees between any two values from a domain. In
general, the scale can be an arbitrary set L bounded by 0 and 1. In order to
be able to compare ranks and similarities, we equip L with a partial order ≤ so
that 〈L,≤〉 is a complete lattice. That means, for each subset of L there exists
a supremum and an infimum with respect to ≤ and 〈L,≤〉 can be alternatively
denoted by 〈L,∧,∨, 0, 1〉 where ∧ and ∨ denote the operations of infimum and
supremum, respectively. In case of the real unit interval L = [0, 1] and its natural
ordering, the suprema and infima of finite nonempty subsets of [0, 1] coincide
with their maxima and minima. Moreover, we accompany the complete lattice
with two binary operations that operate on any two elements of L, result in an
element of L and play roles of truth functions of logical connectives “conjunction”
and “implication” which are used in the process of evaluating queries as we
shall see later. These operations are a multiplication ⊗ and a residuum →. We
postulate that 〈L,⊗, 1〉 is a commutative monoid and ⊗ and→ satisfy a so-called
adjointness property: a ⊗ b ≤ c iff a ≤ b → c (for all a, b, c ∈ L). Altogether,
L = 〈L,∧,∨,⊗,→, 0, 1〉 is called a complete residuated lattice.

Remark 1. The conditions for ⊗ and → were derived by Goguen [13] from a
graded counterpart of modus ponens and were later employed in various multiple-
valued logics with truth-functional semantics, most notably in BL [16], MTL [11]
and their schematic extensions. Nowadays, adjointness is considered as a prop-
erty which ensures that ⊗ and→ are truth functions for multiple-valued conjunc-
tion and implication with reasonable properties. The properties are weaker than
the properties of two-valued conjunction and implication but sufficient enough to
have syntactico-semantically complete logics, see [16] and [9] for an overview of
recent results. A particular case of a complete residuated lattice is a two-valued
Boolean algebra if L = [0, 1], ∧ = ⊗ is the truth function of ordinary conjunction,
∨ and → are truth functions of disjunction and implication, respectively.
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Examples of complete residuated lattices include finite as well as infinite struc-
tures. For the real unit interval L = [0, 1] and its natural ordering, all complete
residuated lattices are given by a left-continuous t-norm ⊗, see [1,16]. Moreover,
all complete residuated lattices with continuous ⊗ can be constructed by means
of ordinal sums [8] from the following three pairs of adjoint operations:

�Lukasiewicz a⊗ b = max(a + b− 1, 0) a→ b = min(1− a + b, 1)

Gödel a⊗ b = min(a, b) a→ b = b if a > b; 1 otherwise

Goguen a⊗ b = a · b a→ b = b
a if a > b; 1 otherwise

Recall that an L-set (a fuzzy set) A in universe U is a map A : U → L, A(u)
being interpreted as “the degree to which u belongs to A”. A binary L-relation
(a binary fuzzy relation) B on U is a map B : U ×U → L, B(u1, u2) interpreted
as “the degree to which u1 and u2 are related according to B”. See [1] for details.

Definition 1 (ranked data table). Let R ⊆ Y be a relation scheme. A ranked
data table on R (shortly, a RDT) is any map D : Tupl(R) → L such that there
are at most finitely many tuples r ∈ Tupl(R) such that D(r) > 0. The degree
D(r) assigned to tuple r by D shall be called a rank of tuple r in D.

Remark 2. The number of tuples which are assigned nonzero ranks in D is de-
noted by |D|, i.e. |D| is the cardinality of {r | D(r) > 0}. We call D non-ranked if
D(r) ∈ {0, 1} for all tuples r. The non-ranked RDTs can be seen as initial data,
i.e., relations in the usual sense representing stored data as in the classic model.

In this paper, we consider queries formulated using combinations of relational
operations on RDTs. The operations extend the classic operations by considering
general ranks. For our purposes, it suffices to introduce the following operations:

Intersection: An intersection (a ⊗-intersection) of RDTs D1 and D2 on relation
scheme T is defined componentwise using ⊗: (D1 ⊗ D2)(t) = D1(t) ⊗ D2(t)
for all tuples t. If D1 and D2 are answers to queries Q1 and Q2, respectively,
then D1 ⊗D2 is an answer to the conjunctive query “Q1 and Q2”.

Projection: If D is an RDT on relation scheme T , the projection πR(D) of D onto
R ⊆ T is defined by (πR(D))(r) =

∨
s∈Tupl(T\R)D(rs) for each r ∈ Tupl(R).

Note that rs denotes a usual concatenation of tuples r and s which is a set-
theoretic union of r and s. Projection has the same meaning as in the Codd’s
model and the supremum

∨
aggregating the ranks D(rs) is used because of

the existential interpretation of the projection.
Cross join (Cartesian product): For RDTs D1 and D2 on disjoint relation

schemes S and T we define an RDT D1 �� D2 on S ∪ T , called a cross join
of D1 and D2 (or, a Cartesian product of D1 and D2), by (D1 �� D2)(st) =
D1(s)⊗D2(t). The cross join D1 �� D2 contains tuples which consist of con-
catenations of tuples from D1 and D2. Note that in our model, we can have
|D1 �� D2| < |D1| · |D2| (e.g., if ⊗ is the �Lukasiewicz conjunction).

Renaming attributes: The same operation as in the Codd’s model [19].
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If we apply these operations on non-ranked RDTs, we always obtain a nonranked
RDT. RDTs with ranks other than 0 and 1 result from non-ranked RDTs by
using similarity-based restrictions (selections): Given a nonranked RDT D and a
formula like y ≈ d saying “(the value of the attribute) y is similar to d”, we select
from D only the tuples which match this similarity-based condition. Naturally,
the condition shall be matched to degrees: each tuple from D is assigned a rank
representing the degree to which the tuples matches the condition.

In order to formalize similarity-based restrictions, we equip each domain Dy

with a binary L-relation ≈y on Dy which satisfies the following conditions: (i)
for each u ∈ Dy: u ≈y u = 1 (reflexivity), and (ii) for each u, v ∈ Dy: u ≈y

v = v ≈y u (symmetry). Such a relation shall be called a similarity. Taking into
account similarities on domains, we introduce the following operation:

Restriction (selection): Let D be an RDT on T and let y ∈ T and d ∈ Dy. A
similarity-based restriction σy≈d(D) of tuples in D matching y ≈ d is defined
by

(
σy≈d(D)

)
(t) = D(t) ⊗ t(y)≈y d. Considering D as a result of query Q,

the rank of t in σy≈d(D) is interpreted as a degree to which “t matches the
query Q and the y-value of t is similar to d”. We can consider more general
restrictions σϕ(D), where ϕ is a more complex formula than y ≈ d.

Using cross joins and similarity-based restrictions, we can introduce similarity-
based equijoins such as D1 ��p≈q D2 = σp≈q(D1 �� D2). Various other types
of similarity-based joins can be introduced in our model. Details can be found
in [3].

3 Similarity-Based Ranking of Database Answers

If a user specifies equality conditions in his query to select tuples from the
database, these equality conditions may be too strict to give the user a satisfac-
tory answer. The simplest setting to retrieve more relevant answers for the user
is to replace equality = in each condition with similarity ≈ and then use the
similarity-based algebraic operators to obtain ranks for the answer tuples. The
ranks will be based on the predetermined similarities between domain values.
For simplicity, we concentrate in this paper on selection-projection-join (SPJ)
queries. Other operators like division, union and intersection can be incorpo-
rated like in [3]. We may also introduce in our model a topk operation in much
the same sense as, e.g., in RankSQL [18] but in a truth-functional way. We do
not discuss these issues here because of the limited scope of this paper.

Example 2. For example, we can ask for titles and prices of books sold by a
bookstore with ZIP code 35455 by doing an equi-join over the ISBN:

πtitle,price[σzip=35455(Books ��bookid=isbn Stores)]

Or ask for the name of a bookstore that sells “professional books” entitled
“Databases”:

πname[σlevel=professional,title=Databases(Books ��bookid=isbn Stores)]
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In general, we consider SPJ queries of the form:

πA[σC(ρR(D1) ��E1 · · · ��Em ρR(Dn))] where

– Di is a ranked data table

– C is a conjunction of selection conditions consisting of

• equalities y = d (where y is an attribute in the relation scheme and d is
a constant from its domain Dy)

• equalities y1 = y2 (where y1 and y2 are attributes in the relation scheme
with a common domain Di)

– Ej is a set of join conditions as equalities between attributes y1 = y2 (where
y1 and y2 are attributes in the relation scheme of some Di)

– R is a list of renaming conditions y′ ← y giving attribute y a new name y′

(where y is an attribute in the relation scheme of the appropriate Di but y′

does not occur in any relation scheme)

– A is the set of projection attributes (after renaming according to R)

Example 3. For the example SPJ queries there are no tuples in the example
tables that satisfy the equality conditions. Now assume that similarity is de-
fined on attribute zip as (35455≈38457)=0.9 as well (35455≈32784)=0.8 and
(35455≈98765)=0.2; whereas for bookid and isbn we assume that similarity is
defined by strict equality, that is it is 1 only for exactly the same ISBN and 0
otherwise: (d ≈ d) = 1, but (d ≈ d′) = 0 for d �= d′. To obtain a ranked data
table as a flexible answer for the first query, we replace equality with similarity:

πtitle,price[σzip≈35455(Books ��bookid≈isbn Stores)]

results in the following ranked answer table:

rank title price

0.9(= 0.9 ⊗ 1) SQL 59.95

0.9(= 0.9 ⊗ 1) Databases 19.95

0.8(= 0.8 ⊗ 1) Databases 23.95

0.2(= 0.2 ⊗ 1) DB systems 89.95

By furthermore assuming similarity on the attributes level and zip we can
also relax the second query. For example, let (professional≈advanced)=0.6
and (professional≈beginner)=0.1, as well as (Databases≈DB systems)=0.9
and (Databases≈SQL)=0.7. Then the query

πname[σlevel≈professional,title≈Databases(Books ��bookid≈isbn Stores)]

returns the table

rank name

0.9(= 1 ⊗ 0.9 ⊗ 1) BooksBooks

0.6(= 0.1 ⊗ 0.7 ⊗ 1 ∨ 0.6 ⊗ 1 ⊗ 1) Bookworm

0.6(= 0.6 ⊗ 1 ⊗ 1) Bookmarket
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4 Emphasizing Some Equality Conditions

Extending this simple setting, a user might want to express importance of some
equality conditions in his queries. For one, he might want to express that he
requires equality (that is full similarity to degree 1) in a selection condition.
More generally, a user must be able to express that some conditions are more
important for him – and hence to require a higher degree of satisfaction for these
conditions; whereas for other conditions he is more willing to relax the equality
requirement – and he will be content with a lower degree of satisfaction for these
conditions. In our model, this kind of emphasis mechanism can be implemented
using so-called residuated shifts as follows. Similarity-based restrictions σy≈d(D)
that appear in our queries can be generalized so that we consider a more general
formula of the form a ⇒ y ≈ d instead of y ≈ d. In this setting, we introduce a
similarity-based restriction σa⇒y≈d(D) of tuples in D matching y ≈ d at least to
degree a ∈ L defined with the help of the residuum operator (→) by(

σa⇒y≈d(D)
)
(t) = D(t)⊗

(
a→ t(y)≈y d

)
. (1)

Using adjointness, we get that 1 → a = a for all a ∈ L. Hence, σ1⇒y≈d(D) =
σy≈d(D). On the other hand, 0 → a = 1 for all a ∈ L, meaning σ0⇒y≈d(D) = D.
Due to the monotony of ⊗ and antitony of → in the first argument, we get(

σb⇒y≈d(D)
)
(t) ≤

(
σa⇒y≈d(D)

)
(t)

whenever a ≤ b. By a slight abuse of notation, the latter fact can be written as
σb⇒y≈d(D) ⊆ σa⇒y≈d(D). Therefore, a ∈ L in σa⇒y≈d(D) acts as a threshold
degree, the lower the degree, the lower the emphasis on the condition y ≈ d and,
in consequence, the larger the answer set. In the borderline cases, σ0⇒y≈d(D)
means no emphasis on the condition, σ1⇒y≈d(D) means full emphasis, i.e., the
original similarity-based selection.

Remark 3. Let us comment on the role of degrees as thresholds. Using ad-
jointness, for all a, b ∈ L, we have a ≤ b iff a → b = 1. Applied to (1),
a → t(y)≈y d = 1 iff the y-value of t is similar to d at least to degree a.
Therefore, if D is a result of query Q, then the rank σa⇒y≈d(D)(t) shall be in-
terpreted as a degree to which “t matches Q and the y-value of t is similar to
d at least to degree a”. This justifies the interpretation of a ∈ L as a threshold
degree. The benefit of using a → t(y)≈y d in (1) which is in fuzzy relational
systems [1] called a residuated shift, is that the threshold is exceeded gradually
and not just “exceeded in terms yes/no”. For instance, if a > t(y)≈y d and the
similarity degree t(y)≈y d is sufficiently close to a, the result of a→ t(y)≈y d is
not 1 but it shall be sufficiently close to 1, expressing the fact that the threshold
has almost been exceeded, i.e., that the y-value of t is similar to d almost to
degree a. This is illustrated by the following example.

Example 4. Assume we want to express that a similarity on the ZIP code of
above 0.8 is perfectly fine for us, then the first query looks like this

πtitle,price[σ0.8⇒(zip≈35455)(Books ��bookid≈isbn Stores)]
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and results in the following ranked answer table by evaluating 0.8 → 0.9 to 1.0,
0.8 → 0.8 to 1.0, and 0.8 → 0.2 to 0.2 in the Gödel algebra (this value would be
0.4 in �Lukasiewicz and 0.25 in Goguen algebra):

rank title price

1.0(= (0.8 → 0.9) ⊗ 1) SQL 59.95

1.0(= (0.8 → 0.9) ⊗ 1) Databases 19.95

1.0(= (0.8 → 0.8) ⊗ 1) Databases 23.95

0.2(= (0.8 → 0.2) ⊗ 1) DB systems 89.95

In the second query, if we insist on books with professional level, but we are
indeed interested in books with related titles up to a similarity of 0.5:

πname[σ1⇒(level≈professional),0.5⇒(title≈Databases)(Books ��bookid≈isbn Stores)]

then we get the answer table

rank name

1.0(= (1 → 1) ⊗ (0.5 → 0.9) ⊗ 1) BooksBooks

0.6(= (1 → 0.1) ⊗ (0.5 → 0.7) ⊗ 1 ∨ (1 → 0.6) ⊗ (0.5 → 1) ⊗ 1) Bookworm

0.6(= (1 → 0.6) ⊗ (0.5 → 1) ⊗ 1) Bookmarket

5 Global Relevance Threshold for Subqueries

The results of queries in our model are influenced by the underlying structure
of truth degrees L because the operations of L are used to aggregate ranks.
Hence, different choices of L in general lead to different answer sets. By a careful
choice of the structure of truth degrees, we can allow users to influence the size
of the answer set so that the user can tune the structure to obtain an answer
set of the most desirable size. In this section, we consider a situation where we
want to emphasize answer tuples that satisfy at least some subqueries (similarity
conditions) with a high degree. Opposed to this, answer tuples that satisfy all
subqueries (similarity conditions) with lower degrees than desirable should be
ranked considerably lower. The user might then specify a global threshold (as
opposed to the local thresholds in Section 4) to denote that values above the
threshold are relevant to him whereas values below the threshold are irrelevant.
Interestingly, this idea can be implemented in our model by a choice of the
structure L without altering the relational operations.

Remark 4. Note that the Goguen ⊗ (usual multiplication of real numbers) has
the property that a⊗ b > 0 for all a, b > 0 (⊗ is called strict), see Fig. 1 (right).
The �Lukasiewicz ⊗ does not have this property: for each 0 < a < 1 there is
b > 0 such that a ⊗ b = 0 (⊗ is called nilponent), see Fig. 1 (left). Thus, if
one uses the Goguen operations on [0, 1], each query considered in this paper
has a nonempty answer set provided that all similarities have the property that
d1 ≈y d2 > 0 which can be technically ensured. In practice, the benefit of always
having a nonempty answer set this way is foiled by having (typically) a large
number of answers with very low ranks which match the initial query only to a
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Fig. 1. Contour diagrams: �Lukasiewicz ⊗ (left), ⊗0.5 (middle), Goguen ⊗ (right)

very low degree and are (typically) not interesting for a user. On the contrary,
using the �Lukasiewicz operations instead of the Goguen ones, one can have a
situation where there are subqueries satisfied to high degrees, say a1, . . . , ak but
a1⊗· · ·⊗ak = 0, i.e., the answer tuples will be lost since their rank will be zero.

Considering the behavior of the Goguen and �Lukasiewicz operations mentioned
in Remark 4 and our motivation to separate answers with sufficiently high de-
grees from the rest, we may consider complete residuated lattices L defined on
the real unit interval that act as the Goguen structure on a subinterval (α, 1]
and as the �Lukasiewicz structure on the subinterval [0, α). The degree α ∈ [0, 1]
is then a threshold that can be set by a user saying that “if ranks of answer
tuples exceed the threshold α ∈ L, they shall not vanish from the answer set”.
The combination of Goguen and �Lukasiewicz structure we need for this particu-
lar purpose can be described as a result of algebraic operation called an ordinal
sum [8]. For α ∈ [0, 1], we let

a⊗α b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α +

(a− α)(b − α)

1− α
, if a, b ∈ (α, 1),

max(0, a + b− α), if a, b ∈ (0, α),

min(a, b), otherwise,

a→α b =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if a ≤ b,

α +
(1 − α)(b − α)

a− α
, if 1 > a > b > α,

α− a + b, if α > a > b,

b, otherwise,

for all a, b ∈ [0, 1]. Then, Lα = 〈L,∧,∨,⊗α,→α, 0, 1〉 is a complete residu-
ated lattice (an ordinal sum of an isomorphic copy of a �Lukasiewicz struc-
ture and Goguen structure with the idempotent α ∈ L, see [1,8,16] for details.
Fig. 1 (middle) shows ⊗0.5, i.e., the multiplication of L0.5 which behaves as the
�Lukasiewicz conjunction on [0, 0.5) and the Goguen conjunction on (0.5, 1].

Remark 5. Taking Lα for the structure of degrees has the advantage that the
threshold α ∈ L is not acting as a clear “cut” where answer tuples with a degree
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below the threshold are completely disregarded; instead, it leads to a stepwise
degradation (but potentially with a degree still above 0) depending on how many
subqueries are satisfied by the answer tuple only to a degree below the threshold:
the more subqueries are below the threshold the closer the overall degree will be
to 0. In effect, with this threshold we can flexibly increase or decrease the size
(that is, number of tuples) in the result as it is shown by the following assertions.

The following theorem states that you get more results with a lower threshold and
that results above a certain threshold will be ranked lower by a lower threshold.

Theorem 1. Let DQ
Lα

be a result of an SPJ query Q when Lα is used as the

structure of truth degrees. If α < β, then |DQ
Lβ
| ≤ |DQ

Lα
|. If α < β and a tuple t

satisfies all subqueries of Q to a degree greater than β, then
(
DQ

Lα

)
(t) <

(
DQ

Lβ

)
(t).

Proof (a sketch). The claim follows from fact that a⊗α b = 0 implies a⊗β b = 0
whenever α ≤ β, i.e. α yields a greater (or equally sized) answer set than β. The
second claim is a consequence of a⊗α b < a⊗β b for a, b ∈ (β, 1). ��

Example 5. Consider the following query with four similarity conditions

σtitle≈SQL,level≈beginner,zip≈56571,price≈20.00(Books ��bookid≈isbn Stores)

In the table Books ��bookid≈isbn Stores we have the tuple 〈834-3-945-25365-9,
Databases, advanced, Bookworm, 32784, 834-3-945-25365-9, 19.95〉. With the
following given similarities (SQL≈Databases)=0.7, (beginner≈advanced)=0.4,
(56571≈32784)=0.1, and (20.00≈19.95)=0.9, we see that two similarity condi-
tions are satisfied at high degrees (0.7 and 0.9) while the other two are satisfied
at low degrees (0.4 and 0.1). Comparing the different ⊗ operators we get:

�Lukasiewicz Gödel Goguen ⊗0.5 ⊗0.4 ⊗0.3

0 0.1 0.0252 0 0.1 0.1

We see that for threshold α = 0.5 the tuple is not included in the answer table
(ranked 0); when decreasing the threshold to α = 0.4 it is included (ranked 0.1)
and stays in the answer for the lower threshold α = 0.3.

Another potential tuple is 〈945-7-392-66845-4, DB systems, professional,
BooksBooks, 98765, 945-7-392-66845-4, 89.95〉. With similarities (SQL≈DB
systems)=0.3, (beginner≈professional)=0.1, (56571≈98765)=0.1, as well as
(20.00≈89.95)=0.1, we see that all similarity conditions are satisfied at low de-
grees (0.3 and 0.1). Comparing the different ⊗ operators we get:

�Lukasiewicz Gödel Goguen ⊗0.5 ⊗0.4 ⊗0.3

0 0.1 0.0003 0 0 0

Hence, even for low thresholds the tuple does not occur in the answer table.

6 Related Work

The notion of answering queries in a flexible and user-oriented manner has been
investigated for a long time; see [12] for some recent examples and [21] for an
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extensive study on fuzzy querying (and a query language called SQLf). Other
related work of Bosc et al considers extending the support of a fuzzy membership
function in order to weaken fuzzy conditions in a query [4] where a tolerance
relation can be used to flexibly model closeness in a domain. In [14], Hadjali and
Pivert analyze the use of fuzzy views and study the influence of different fuzzy
implication operators (like Gödel, Goguen and �Lukasiewicz implication) on which
views in a distributed database system are chosen to answer a fuzzy query. Pivert
et al ([22]) handle the empty answer set (EAS) problem and the unsatisfactory
answer set (UAS) problem, where there are either no answers at all or only
answers with a low degree of satisfaction with respect to a user-defined threshold
α. They efficiently determine minimal failing subqueries (MFS) of conjunctive
queries defined by α-cuts; these MFS can give the user some explanation on why
his query failed (that is, the answer set was empty or unsatisfactory). Although
the notion of a threshold is common with our work, in [22] (sub-)queries below
the threshold are totally disregarded, whereas our relevance threshold leads to
more emphasis for answer tuples with some subqueries rated above the threshold
(as opposed to lower ranks for answer tuples with all subqueries rated below it).

Vaneková and Vojtáš [23] provide an implementation of another fuzzy-set-
based modeling of user preferences. They consider searching for data based on
several attributes. A user expresses his search preferences as a membership func-
tion on the attribute domains.

In sum, most of the related works discussed above relies on gradual predicates
or trapezoidal membership functions. In contrast, our approach relies on simi-
larity defined on attribute domains. We argue that it might be equally difficult
to define the membership degrees (see also the FITA/FATI problem discussed
in [15]) for the fuzzy-set-based approaches as it is difficult to define the similar-
ity values on attribute domains which our similarity-based approach relies on;
hence no preference should be given to one or the other approach: while there
are cases where user preferences can be easily modeled by fuzzy sets, in other
cases it might be more natural to use similarities on domains. The paper [5] also
provides a survey of related techniques (including similarity-based approaches)
and argues how they are included in the fuzzy-set-based system. The similarity-
based approaches surveyed there however do not take advantage of lattice-based
fuzzy logic but rely more or less on metric calculations of distances. In this pa-
per we showed how to put similarity-based flexible query answering on a sound
logical foundation.

Preference queries – extensively studied by Chomicki (et al) [6,7,20] – are a
further field of related work: a preference order≺must be predefined on attribute
domains by a user; these attribute preference relations can then be combined
into a tuple preference relation and this tuple preference relation can be used
to return the most-preferred tuples upon a user query for example with the
algebraic “winnow” operator. In particular, a special case of preference relations
can be expressed by a scoring function f that is used to compare two constant
values. The work in [24] extends preferences to work between sets of tuples. The
advantage of preference orders is that they have some desirable properties (like
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transitivity: if A is preferred to B and B is preferred to C then A is also preferred
to C). By iterating the winnow operator [6], a ranking of answer tuples (into
best, second-best, ...) can be obtained; this is similar to our approach where
the similarity degree of each answer tuple gives the user a fine-grained means
of deciding if the tuple is relevant to him. A formal comparison between the
properties of preference queries and the similarity-based approach we propose in
this paper might be an interesting topic of future work.

Moreover, the user can specify dependencies between data – in particular,
dependencies between different relations in the database. These dependencies
can be given by logical rules and can be applied to the query to retrieve other
answers that are relevant for the user under the background knowledge specified
by the set of rules. This operation is known as “Goal Replacement” (e.g., [17]); it
might be worthwhile to study its behavior in similarity-based query answering.

7 Conclusion

We applied similarities on attribute domains to rank tuples in answers to SPJ
queries on relational databases. These ranks allow for flexible query answering
as they have a comparative meaning and help users identify the answer tuples
that match their intention best. Ranks are computed by i) replacing equality
with similarities (Section 3), ii) emphasizing individual equality conditions with
the residuated shift (Section 4), and iii) setting a global threshold to alter the
size of the answer tables using ordinal sums of residuated lattices (Section 5).
Our model has a strong theoretical background in the theory of ranked data
tables where the classical bivalent structure is replaced by a structure with more
than two truth values (that is, a lattice of ranks). Several hints towards future
work have been given in Section 6. An efficient prototypical implementation of
query answering in ranked data tables is under development at the Data Analysis
and Modeling Laboratory of Palacky University; its performance will be closely
analyzed in the future.
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2. Bělohlávek, R., Vychodil, V.: Data Tables with Similarity Relations: Functional
Dependencies, Complete Rules and Non-redundant Bases. In: Li Lee, M., Tan, K.-
L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer,
Heidelberg (2006)
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2 Instituto Tecnológico de Informática, UPV, E-46022 Valencia, Spain

Abstract. Uncertainty and data integrity are closely related. The un-
certainty of data can be modeled and maintained by existing database
integrity technology. The usual requirement that integrity constraints
must always be satisfied needs to be renounced for constraints that model
uncertainty. That is possible due to the recently introduced inconsistency
tolerance of methods for integrity checking, integrity repair and query
answering. Inconsistency tolerance also enables the scaling up of uncer-
tainty management to concurrent transactions.

1 Introduction

Uncertainty in databases is closely related to inconsistency, i.e., lack of integrity,
in two ways. Firstly, the validity of answers in inconsistent databases obviously is
uncertain. Secondly, conditions for stating properties of uncertainty of data can
be modeled as integrity constraints. Thus, each constraint violation corresponds
to some uncertainty in the database, no matter if the constraint models a regular
integrity assertion or some specific uncertainty condition. This paper addresses
both of the mentioned relations between uncertainty and inconsistency.

For instance, the denial ← item(x, y), y < 75% constrains entries x in the
item table to have a probability (certainty) y of at least 75%. Similarly, the con-
straint I =← uncertain(x), where uncertain is defined by the database clause
uncertain(x) ← email(x, from(y)), ∼authenticated(y), bans each email message
x that is uncertain because its sender y has not been authenticated. Likewise,
uncertain could be defined, e.g., by uncertain(x)← item(x, null), indicating an
uncertainty about each item x the attribute of which has a null value.

An advantage of modeling uncertainty by constraints is that the evolution
of uncertainty across updates can then be monitored by inconsistency-tolerant
methods for integrity checking, and uncertainty can then be eliminated by in-
tegrity repairing. For instance, each update U that tries to insert an email by
a non-authenticated sender will be rejected by each method that checks U for
integrity preservation, since U would violate I, in the preceding example. Ditto,
stored email entries with unauthenticated senders or items with unknown at-
tributes can be eliminated by repairing the violations of I in the database.

Conventional approaches to integrity management unrealistically require to-
tal constraint satisfaction before an update is checked and after a repair is done.
However, methods for checking or repairing integrity or uncertainty must be

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 30–43, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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inconsistency-tolerant as soon as data that violate some constraint are admitted
to persist across updates. In [20], we have shown that the total consistency re-
quirement can be waived without further ado for most (though not all) known
methods. Thus, they can be soundly applied in databases with persistent con-
straint violations, i.e. with extant inconsistency and uncertainty.

Rather than pretending that consistent databases certainly remain consistent
across updates (as conventional methods do), inconsistency-tolerant methods
just assure that inconsistency, i.e., uncertainty is not increased, neither by up-
dates nor by repairs. Such increase or decrease is determined by violation mea-
sures [18] (called ‘inconsistency metrics’ in [17]). Some of these measures also
serve to provide answers that have integrity in the presence of uncertainty, by
adopting an inconsistency-tolerant approach proposed in [16], called AHI.

Inconsistency tolerance also enables uncertainty management for concurrent
transactions. For making any guarantees of integrity preservation across con-
current transactions, the usual requirement is that each transaction maps each
consistent state to a consistent successor state. Unfortunately, that excludes any
prediction for what is going to happen in the presence of constraint violations,
i.e., of uncertainty. However, we are going to see that the inconsistency tolerance
of integrity management easily scales up to concurrent transactions, and concur-
rent query answering with AHI remains certain in the presence of uncertainty.

After some preliminaries in Section 2, we recapitulate inconsistency-tolerant
integrity management (checking, repairing and query answering) in Section 3.
In Section 4, we elaborate an example of how to manage uncertainty expressed
by constraints. In Section 5, we outline how inconsistency-tolerant constraint
management scales up to database systems with concurrent transactions. In
Section 6, we address related work. In Section 7, we conclude.

2 Preliminaries

We use terminology and formalisms that are common for datalog [1]. Also, we
assume some familiarity with transaction concurrency control [6].

Throughout the paper, we use symbols like D, I, IC , U for representing a
database, an integrity constraint (in short, constraint), a finite set of constraints
(also called integrity theory) and, resp., an update. We denote the result of
executing an update U on D by DU , and the truth value of a sentence (i.e., a
closed formula) or a set of sentences S in D be denoted by D(S). Any of the
usual database semantics will do for large classes of databases and constraints.

Constraints often are asserted as denials, i.e., clauses with empty head of the
form ←B, where the body B is a conjunction of literals that state what should
not be true in any state of the database. For each constraint I that expresses
what should be true, a denial form of I can be obtained by re-writing ←∼I
in clausal form, as described, e.g., in [15]. Instead of leaving the head of denial
constraints empty, a predicate that expresses some lack of consistency may be
used in the head. For instance, uncertain←B explicitly states an uncertainty
that is associated to each instance of B that is true in the database.

For each formula B, let ∀B denote the universal closure of B.
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3 Inconsistency-Tolerant Uncertainty Management

As argued in Section 1, violations of constraints, i.e., the inconsistency of given
database states with their associated integrity theory, reflect uncertainty. Each
update may violate or repair constraints, and thus increase or decrease the
amount of uncertainty. Hence, checking updates for such increases, and decreas-
ing uncertainty by repairing violated constraints, are essential for uncertainty
management. Also mechanisms for providing answers that are certain in un-
certain databases are needed. In 3.1, 3.2, and 3.3, we recapitulate and extend
measure-based inconsistency-tolerance for integrity checking [17], repairing [18]
and, resp., query answering [16], in terms of uncertainty.

3.1 Measure-Based Uncertainty-Tolerant Integrity Checking

In theory, an update is committed only if all integrity constraints remain totally
satisfied. Since total integrity is rarely achieved, and in particular not in uncer-
tain databases where uncertainty is modeled by constraints, integrity checking
methods that are able to tolerate uncertainty are needed.

In [20], inconsistency-tolerant integrity checking has been formalized and dis-
cussed. In particular, it has been shown that many (but not all) existing integrity
checking methods tolerate inconsistency and thus uncertainty, although most of
them have been designed to be applied only if all constraints are totally satisfied
before any update is checked. In [17], we have seen that integrity checking can
be described by ‘violation measures’ [18], which are a form of inconsistency mea-
sures [25]. Such measures, called ‘uncertainty measures’ below, size the amount
of violated constraints in pairs (D, IC ). Thus, an update can be accepted if it
does not increase the measured amount of constraint violations.

Definition 1. We say that (μ,�) is an uncertainty measure (in short, a mea-
sure) if μ maps pairs (D, IC ) to some metric space (M,�) where � is a partial
order, i.e. a binary relation on M that is antisymmetric, reflexive and transitive.
For E,E′ ∈M, let E≺E′ denote that E�E′ and E �=E′.

In [17, 18, 23, 25], various axiomatic properties of uncertainty measures that
go beyond Definition 1 are proposed. Here, we refrain from that, since the large
variety of conceivable measures has been found to be “too elusive to be captured
by a single definition” [23]. Moreover, several properties that are standard in
measurement theory [4] and that are postulated also for inconsistency measures
in [23, 25] do not hold for uncertainty measures, due to the non-monotonicity of
database negation, as shown in [18]. To postulate a distance function for each
measure, as in [18], is possible but not essential for the purpose of this paper.

Definition 2 captures each integrity checking method M (in short, method) as
an I/O function that maps updates to {ok , ko}. The output ok means that the
checked update is acceptable, and ko that it may not be acceptable. For deciding
to ok or ko an update, M uses an uncertainty measure.
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Definition 2. (Uncertainty-tolerant Integrity Checking (abbr.: UTIC))
An integrity checking method maps triples (D, IC ,U) to {ok , ko}. Each such
method M is called a sound (resp., complete) UTIC method if there is an uncer-
tainty measure (μ,�) such that, for each (D, IC ,U), (1) (resp., (2)) holds.

M(D, IC, U) = ok ⇒ μ(DU , IC) � μ(D, IC) (1)

μ(DU , IC) � μ(D, IC) ⇒ M(D, IC, U) = ok (2)

If M is sound, it is also called a μ-based UTIC method.

The only real difference between conventional integrity checking and UTIC is
that the former additionally requires total integrity before the update, i.e., that
D(IC ) = true in the premise of Definition 2. The range of the measure μ used
by conventional methods is the binary metric space ({true, false},�) where
μ(D, IC ) = true means that IC is satisfied in D, μ(D, IC ) = false that it is
violated, and true ≺ false , since, in each consistent pair (D, IC ), there is a zero
amount of uncertainty, which is of course less than the amount of uncertainty of
each inconsistent pair (D, IC ).

More differentiated uncertainty measures are given, e.g., by comparing or
counting the sets of instances of violated constraints, or the sets of ‘causes’
of inconsistencies. Causes (characterized more precisely in 3.3.1) are defined in
[16, 17] as the data whose presence or absence in the database is responsible for
integrity violations. Other violation measures are addressed in [17].

As seen in [17], many conventional methods can be turned into measure-
based uncertainty-tolerant ones, simply by waiving the premise D(IC ) = true
and comparing violations in (D, IC ) and (DU , IC ). If there are more violations
in (DU , IC ) than in (D, IC ), they output ko; otherwise, they may output ok .
According to [20], the acceptance of U by an uncertainty-tolerant method guar-
antees that U does not increase the set of violated instances of constraints.

More generally, the following result states that uncertainty can be monitored
and its increase across updates can be prevented by each UTIC method, in as
far as uncertainty is modeled in the syntax of integrity constraints.

Theorem 1. Let D be a database and IC an integrity theory that models
uncertainty in D. Then, the increase of uncertainty in D by any update U can
be prevented by checking U with any sound UTIC method.

3.2 Uncertainty-Tolerant Integrity-Preserving Repairs

In essence, repairs consist of updates that eliminate constraint violations [28].
However, violations that are hidden or unknown to the application or the user
may be missed when trying to repair a database. Moreover, as known from
repairing by triggers [9], updates that eliminate some violation may inadvertently
violate some other constraint. Hence, uncertainty-tolerant repairs are called for.
Below, we recapitulate the definition of partial and total repairs in [20]. They
are uncertainty-tolerant since some violations may persist after partial repairs.
But they may not preserve integrity.
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Definition 3. (Repair)
For a triple (D, IC , U), let S be a subset of IC such that D(S) = false . An
update U is called a repair of S in D if DU (S) = true. If DU (IC ) = false, U is
also called a partial repair of IC in D. Otherwise, if DU (IC ) = true, U is called
a total repair of IC in D.

Example 1. Let D = {p(1, 2, 3), p(2, 2, 3), p(3, 2, 3), q(1, 3), q(3, 2), q(3, 3)} and
IC = {← p(x,y,z)∧∼q(x,z), ← q(x,x)}. Clearly, both constraints are violated.
U = {delete q(3, 3)} is a repair of {← q(3, 3)} in D and a partial repair of IC . It
tolerates the uncertainty reflected by the violation of ← p(2, 2, 3)∧∼q(2, 3) in
DU . However, U also causes the violation of ← p(3, 2, 3)∧∼q(3, 3) in DU . Thus,
the partial repair U ′ = {delete q(3, 3), delete p(3, 2, 3)} is needed to eliminate
the violation of ← q(3, 3) in D without causing any other violation.

Example 1 illustrates the need to check if a given update or partial repair is
integrity-preserving, i.e., does not increase the amount of uncertainty. This prob-
lem is a generalization of what is known as repair checking [2]. The problem can
be solved by UTIC, as stated in Theorem 2.

Theorem 2. Let (μ,�) be an uncertainty measure, M a UTIC method based
on (μ,�), and U a partial repair of IC in D. For a tuple (D, IC ), U preserves
integrity w.r.t. μ, i.e., μ(DU , IC ) � μ(D, IC ), if M(D, IC , U) = ok .

For computing partial repairs, any off-the-shelve view update method can be
used, as follows. Let S = {←B1, . . .,←Bn} be a subset of constraints to be
repaired in a database D. Candidate updates for satisfying the view update
request can be obtained by running the view update request delete violated in
D∪{violated←Bi | 0≤ i≤n}. For deciding if a candidate update U preserves
integrity, U can be checked by UTIC, according to Theorem 2.

3.3 Certain Answers in Uncertain Databases

Violations of constraints that model uncertainty may impair the integrity of
query answering, since the same data that cause the violations may also cause the
computed answers. Hence, there is a need of an approach to provide answers that
either have integrity and thus are certain, or that tolerate some uncertainty. An
approach to provide answers that are certain in uncertain databases is outlined
in 3.3.1, and generalized in 3.3.2 to provide answers that tolerate uncertainty.

3.3.1 Answers That Are Certain
Consistent query answering (abbr. CQA) [3] provides answers that are correct in
each minimal total repair of IC in D. CQA uses semantic query optimization [10]
which in turn uses integrity constraints for query answering. A similar approach
is to infer consistent hypothetical answers abductively, together with a set of
hypothetical updates that can be interpreted as integrity-preserving repairs [22].

A new approach to provide answers that have integrity (abbr. AHI) and thus
certainty is proposed in [16]. AHI determines two sets of data: the causes by
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which an answer is deduced, and the causes that lead to constraint violations.
For databases D and queries without negation in the body of clauses, causes are
minimal subsets of ground instances of clauses in D by which positive answers
or violations are deduced. For clauses with negation and negative answers, also
minimal subsets of ground instances of the only-if halves of the completions of
predicates in D [11] form part of causes. In general, causes are not unique.

An answer then is defined to have integrity if it has a cause that does not
intersect with any of the causes of constraint violations, i.e., if it is deducible
from data that are independent of those that violate constraints. Definition 4
below is a compact version of the definition of AHI in terms of certainty. Precise
definitions of causes and details of computing AHI are in [16–18].

Definition 4. Let θ be an answer to a query ←B in (D, IC ), i.e., θ is either
a substitution such that D(∀(Bθ)) = true, where ∀(Bθ) is the universal closure
of Bθ, or D(←B) = true, i.e., θ =no.

a) Let Bθ stand for ∀(Bθ) if θ is a substitution, or for ←B if θ = no.

b) θ is certain in (D, IC ) if there is a cause C of Bθ in D such that C ∩CIC = ∅,
where CIC is the union of all causes of constraint violations in (D, IC ).

3.3.2 Answers That Tolerate Uncertainty
AHI is closely related to UTIC, since some convenient violation measures are
defined by causes: cause-based methods accept an update U only if U does not
increase the number or the set of causes of constraint violations [17]. Similar to
UTIC, AHI is uncertainty-tolerant since it provides correct results in the presence
of constraint violations. However, each answer accepted by AHI is independent
of any inconsistent parts of the database, while UTIC may admit updates that
violate constraints. For instance, U in Example 1 causes the violation of a con-
straint while eliminating some other violation. Now, suppose U is checked by
some UTIC method based on a violation measure that assigns a greater weight
to the eliminated violation than to the newly caused one. Thus, U can be ok -ed,
since it decreases the measured amount of inconsistency.

In this sense, we are going to relax AHI to ATU: answers that tolerate un-
certainty. ATU sanctions answers that are acceptable despite some amount of
uncertainty involved in their derivation.

To quantify that amount, some ‘tolerance measure’ is needed. Unlike uncer-
tainty measures which size the uncertainty in all of (D, IC ), tolerance measures
only size the uncertainty involved in the derivation of given answers or violations.

Definition 5. (ATU)

a) For answers θ to queries ←B in (D, IC ), a tolerance measure maps triples
(D, IC ,Bθ) to (M,�), where M is a metric space partially ordered by �.

b) Let τ be a tolerance measure and th a threshold value in M up to which
uncertainty is tolerable. Then, an answer θ to some query ←B in (D,IC ) is
said to tolerate uncertainty up to th if τ(D, IC ,Bθ) � th .
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A first, coarse tolerance measure τ could be to count the elements of Cθ ∩CIC

where Cθ is the union of all causes of Bθ, and CIC is as in Definition 4. Or, the
application or its designer or the user may assign a specific weight to each element
of each cause, similar to the tuple ranking in [5]. Then, τ can be defined by adding
up the weights of elements in Cθ ∩CIC . Or, application-specific weights could
be assigned to each ground instance I ′ of each I ∈ IC . Then, τ could sum up the
weights of those I ′ that have a cause C′ such that Cθ ∩C′ �= ∅.

For example, τ(D, IC ,Bθ) = |Ctheta ∩CIC | counts elements in Cθ ∩CIC ,
where | . | is the cardinality operator. Or, τ(D,IC ,Bθ) =

∑
{ω(c) | c ∈ Cθ ∩CIC}

adds up the weights of elements in Cθ ∩CIC , where ω is a weight function.

4 Uncertainty Management – An Example

In this section, we illustrate the management of uncertainty by inconsistency-
tolerant integrity management, and discuss some more conventional alterna-
tives. In particular, we compare uncertainty-tolerant integrity management with
brute-force constraint evaluation, conventional integrity checking that is not
uncertainty-tolerant, total repairing, and CQA, in 4.1 – 4.6.

The predicates and their attributes below are open to interpretation. By as-
signing convenient meanings to predicates, it can be interpreted as a model of
uncertainty in a decision support systems for, e.g., stock trading, or controlling
operational hazards in a complex machine.

Let D be a database with the following definitions of view predicates ul, um,
uh that model uncertainty of low, medium and, respectively, high degree:

ul(x) ← p(x, x)

um(y) ← q(x, y), ∼p(y, x) ; um(y)← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)

uh(z) ← p(0, y), q(y, z), z > th

where th be a threshold value greater than or equal to 0. Now, let uncertainty
be denied by the following integrity theory:

IC = {← ul(x), ← um(x), ← uh(x) } .

Note that IC is satisfiable, e.g., by D= {p(1, 2), p(2, 1), q(2, 1)}. Now, let the
extensions of p and q in D be populated as follows.

p(0, 0), p(0, 1), p(0, 2), p(0, 3), . . . , p(0, 10000000),

p(1, 2), p(2, 4), p(3, 6), p(4, 8), . . . , p(5000000, 10000000)

q(0, 0), q(1, 0), q(3, 0), q(5, 0), q(7, 0), . . . , q(9999999, 0)

It is easy to verify that the low-uncertainty denial ← ul(x) is the only constraint
that is violated in D, and that this violation is caused by p(0, 0)∈D.

Now, let us consider the update U = insert q(0, 9999999).

4.1 Brute-Force Uncertainty Management

For later comparison, let us first analyse the general cost of brute-force evaluation
of IC in DU . Evaluating ← ul(x) involves a full scan of p. Evaluating ← um(x)
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involves access to the whole extension of q, a join of p with q, and possibly many
lookups in p and q for testing the negative literals. Evaluating← uh(x) involves a
join of p with q plus the evaluation of possibly many ground instances of z > th.

For large extensions of p and q, brute-force evaluation of IC clearly may last
too long, in particular for safety-critical uncertainty monitoring in real time. In
4.2, we are going to see that it is far less costly to use an UTIC method that
simplifies the evaluation of constraints by confining its focus on the data that
are relevant for the update.

4.2 Uncertainty Management by UTIC

First of all, note that the use of customary methods that require the satisfaction
of IC in D is not feasible in our example, since D(IC ) = false. Thus, conventional
integrity checking has to resort on brute-force constraint evaluation. We are
going to see that checking U by an UTIC method is much less expensive than
brute-force evaluation.

At update time, the following simplifications of medium and high uncer-
tainty constraints are obtained from U . (No low uncertainty is caused by U
since q(0, 9999999) does not match p(x, x).) These simplifications are obtained
at hardly any cost, by simple pattern matching of U with pre-simplified con-
straints that can be compiled at constraint specification time.

← ∼p(9999999, 0) ; ← p(x, 0), ∼p(0, 9999999), ∼q(9999999, x)

← p(0, 0), 9999999 > th

By a simple lookup of p(9999999, 0) for evaluating the first of the three denials,
it is inferred that ← um is violated.

Now that a medium uncertainty has been spotted, there is no need to check
the other two simplifications. Yet, let us do that, for later comparison in 4.3.

Evaluation of the second simplification from left to right essentially equals
the cost of computing the answer x = 0 to the query ← p(x, 0) and successfully
looking up q(9999999, 0). Hence, the second denial is true, i.e., there is no further
medium uncertainty. Clearly, the third simplification is violated if 9999999> th
holds, since p(0, 0) is true, i.e., U possibly causes high uncertainty.

Now, let us summarize this subsection. Validating U by UTIC according to
Theorem 1 essentially costs a simple access to the p relation. Only one more
look- up is needed for evaluating all constraints. And, apart from a significant
cost reduction, UTIC prevents medium and high uncertainty constraint violations
that would be caused by U if it were not rejected.

4.3 Methods That Are Uncertainty-Intolerant

UTIC is sound, but, in general, methods that are uncertainty-intolerant (i.e., not
uncertainty-tolerant, e.g., those in [24, 26]) are unsound, as shown below.

Clearly, p is not affected by U . Thus, D(ul(x)) =DU (ul(x)). Each integrity
checking method that is uncertainty-intolerant, i.e., each conventional approach,
assumes D(IC ) = true. Thus, the method in [24] concludes that the unfolding
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← p(x, x) of ← ul(x) is satisfied in D and DU . Hence, it concludes that also
← p(0, 0), 9999999> th (the third of the simplifications in 4.2). is satisfied in DU .
However, that is wrong if 9999999> th holds. Thus, uncertainty-intolerant in-
tegrity checking may wrongly infer that the high uncertainty constraint ← uh(z)
cannot be violated in DU .

4.4 Uncertainty Management by Repairing (D, IC )

Conventional integrity checking requires D(IC ) = true. To comply with that, all
violations in (D, IC ) must be repaired before each update. However, such repairs
can be exceedingly costly, as argued below.

In fact, already the identification of all violations in (D, IC ) may be pro-
hibitively costly at update time. But there is only a single low uncertainty con-
straint violation in our example: p(0, 0) is the only cause of the violation ← ul(0)
in D. Thus, to begin with repairing D means to request U = delete p(0, 0), and
to execute U if it preserves all constraints, according to Theorem 2.

To check U for integrity preservation means to evaluate the simplifications

← q(0, 0) and ← p(x, 0), q(0, 0), ∼q(0, x)

i.e., the two resolvents of ∼p(0, 0) and the clauses defining um, since U affects no
other constraints. The second one is satisfied in DU , since there is no fact match-
ing p(x, 0) in DU . However, the first one is violated, since DU (q(0, 0)) = true.
Hence, also q(0, 0) must be deleted. That deletion affects the clause

um(y) ← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)

and yields the simplification ← p(0, y), q(y, 0), ∼p(y, 0).
As is easily seen, this simplification is violated by each pair of facts of the form

p(0, o), q(o, 0) in D, where o is an odd number in [1, 9999999]. Thus, deleting
q(0, 0) for repairing the violation caused by deleting p(0, 0) causes the violation
of each instance of the form ← um(o), for each odd number o in [1, 9999999].

Hence, repairing each of these instances would mean to request the deletion
of many rows of p or q. We shall not further track those deletions, since it
should be clear already that repairing D is complex and tends to be significantly
more costly than UTIC. Another advantage of UTIC: since inconsistency can be
temporarily tolerated, UTIC-based repairs do not have to be done at update
time. Rather, they can be done off-line, at any convenient point of time.

4.5 Uncertainty Management by Repairing (DU , IC )

Similar to repairing (D, IC ), repairing (DU , IC ) also is more expensive than to
tolerate extant constraint violations until they can be repaired at some more con-
venient time. That can be illustrated by the three violations in DU , as identified
in 4.1 and 4.2: the low uncertainty that already exists in D, and the medium and
high uncertainties caused by U and detected by UTIC. To repair them obviously
is even more intricate than to only repair the first of them as tracked in 4.4.

Moreover, for uncertainty management in safety-critical applications, it is no
good idea to simply accept an update without checking for potential violations
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of constraints, and to attempt repairs only after the update is committed, since
repairing takes time, during which an updated but unchecked state may contain
possibly very dangerous uncertainty of any order.

4.6 AHI and ATU for Uncertainty Management

Checking and repairing uncertainty constraints involves their evaluation, by
querying them. As already mentioned in 3.3.1, CQA is an approach to cope with
constraint violations for query evaluation. However, the evaluation of constraints
or simplifications thereof by CQA is unprofitable, since consistent query answers
are defined to be those that are true in each minimally repaired database. Thus,
for each queried denial constraint I, CQA will by definition return the empty an-
swer, which indicates the satisfaction of I. Thus, answers to queried constraints
computed by CQA have no meaningful interpretation.

For example, CQA computes the empty answer to the query ← ul(x) and to
← uh(z), for any extension of p and q. However, the only reasonable answers to
← ul(x) and ← uh(z) in D are x = 0 and, resp., x = 9999999, if 9999999> th.
These answers correctly indicate low and high uncertainty in D and, resp., DU .

For computing correct answers to queries (rather than to denials representing
constraints), AHI and ATU are viable alternatives to CQA. A comparison which
turned out to be advantageous for AHI has been presented in [16]. ATU goes
beyond CQA and AHI by providing reasonable answers even if these answers
depend on uncertain data that violate constraints, as we have seen in 3.3.2.

5 Scaling up Uncertainty Management to Concurrency

The number of concurrently issued transactions increases with the number of
online users. So far, we have tacitly considered only serial executions of transac-
tions. Such executions have many transactions wait for others to complete. Thus,
the serialization of transactions severely limits the scalability of applications.
Hence, to achieve high scalability, transactions should be executed concurrently,
without compromising integrity, i.e., without increasing uncertainty.

Standard concurrency theory guarantees the preservation of integrity only
if each transaction, when executed in isolation, translates a consistent state
into a consistent successor state. More precisely, a standard result of concur-
rency theory says that, in a history H of concurrently executed transactions
T1, . . . , Tn, each Ti preserves integrity if it preserves integrity when executed
non-concurrently and H is serializable, i.e., the effects of the transactions in H
are equivalent to the effects of a serial execution of {T1, . . . , Tn}. For convenience,
let us capture this result by the following schematic rule:

isolated integrity + serializability ⇒ concurrent integrity (*)

Now, if uncertainty corresponds to integrity violation, and each transaction is
supposed to operate on a consistent input state, then (*) does not guarantee that
concurrently executed transactions on uncertain data would keep uncertainty at
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bay, even if they would not increase uncertainty when executed in isolation and
the history of their execution was serializable.

Fortunately, however, the approaches and results in Section 3 straightfor-
wardly scale up to concurrent transactions without further ado, as shown for
inconsistency-tolerant integrity checking in [21], based on a measure that com-
pares sets of violated instances of constraints before and after a transaction.

Theorem 3 below adapts Theorem 3 in [21] to measure-based UTIC in gen-
eral. It asserts that a transaction T in a history H of concurrently executing
transactions does not increase uncertainty if H is serializable and T preserves
integrity whenever it is executed in isolation. On one hand, Theorem 3 weakens
Theorem 3 [21] by assuming strict two-phase locking (abbr. S2PL) [6], rather than
abstracting away from any implementation of serializability. On the other hand,
Theorem 3 generalizes Theorem 3 [21] by using an arbitrary uncertainty measure
μ, rather than the inconsistency measure mentioned above. A full-fledged gen-
eralization that would not assume any particular realization of serializability is
possible along the lines of [21], but would be out of proportion in this paper.

Theorem 3. Let H be a S2PL history, μ an uncertainty measure and T a
transaction in H that uses a μ-based UTIC method for checking the integrity
preservation of its write operations. Further, let D be the committed state at
which T begins in H , and DT the committed state at which T ends in H . Then,
μ(DT , IC ) � μ(D, IC ) .

The essential difference between (*) and Theorem 3 is that the latter is
uncertainty-tolerant, the former is not. Thus, as opposed to (*), Theorem 3
identifies useful sufficient conditions for integrity preservation in the presence
of uncertain data. Another important difference is that the guarantees of in-
tegrity preservation that (*) can make for T require the integrity preservation of
all other transactions that may happen to be executed concurrently with T . As
opposed to that, Theorem 3 does away with the standard premise of (*) that all
transactions in H must preserve integrity in isolation; only T itself is required to
have that property. Thus, the guarantees that Theorem 3 can make for individual
transactions T are much better than those of (*).

To outline a proof of Theorem 3, we distinguish the cases that T either ter-
minates by aborting or by committing its write operations. If T aborts, then
Theorem 3 holds vacuously, since, by definition, no aborted transaction could
have any effect whatsoever on any committed state. So, we can suppose that
T commits. Let M be the μ-based method used by T . Since T commits, it fol-
lows that M(D, IC ,WT ) = true, where WT is the write set of T , i.e., DT =DWT ,
since otherwise, the writes of T would violate integrity and thus T would abort.
Since H is S2PL, it follows that there is an equivalent serialization H ′ of H that
preserves the order of committed states in H . Thus, D and DT are also the com-
mitted states at beginning and end of T in H ′. Hence, Theorem 3 follows from
M(D, IC ,WT ) = true and Definition 2 since H ′ is serial, i.e., non-concurrent. �
It follows from Theorem 2 that, similar to UTIC, also integrity repairing scales
up to S2PL concurrency if realized as described in 3.2, i.e., if UTIC is used to
check candidate repairs for integrity preservation.
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Also AHI and ATU as defined in 3.3 scale up to concurrency, which can be seen
as follows. Concurrent query answering is realized by read-only transactions. In
S2PL histories, such transactions always read from committed states that are
identical to states in equivalent serial histories, as described in the proof of
Theorem 3. Hence, each answer can be checked for certainty or for being within
the confines of tolerable uncertainty as described in 3.3.1 or, resp., 3.3.2.

6 Related Work

An early, not yet measure-based attempt to conceptualize some of the material
in 3.1 has been made in [19]. Apart from that, it seems that integrity mainte-
nance and query answering in the presence of uncertain data never have been
approached in a uniform way, as in this paper. That is surprising since integrity,
uncertainty and answering queries with certainty are obviously related.

Semantic similarities and differences between uncertainty and the lack of in-
tegrity are observed in [27]. In that book, largely diverse proposals to handle
data that suffer from uncertainty are discussed. In particular, approaches such
as probabilistic and fuzzy set modeling, exception handling, repairing and para-
consistent reasoning are discussed. However, no particular approach to integrity
maintenance (checking or repairing) is considered. Also, no attention is paid to
concurrency.

Several paraconsistent logics that tolerate inconsistency and thus uncertainty
of data have been proposed, e.g., in [7, 8]. Each of them departs from classical
first-order logic, by adopting some annotated, probabilistic, modal or multival-
ued logic, or by replacing standard axioms and inference rules with non-standard
axiomatizations. As opposed to that, UTIC fully conforms with standard datalog
and does not need any extension of classical logic.

Work concerned with semantic inconsistencies in databases is also going on
in the field of measuring inconsistency [25]. However, the violation measures on
which UTIC is based have been conceived to work well also in databases with
non-monotonic negation, whereas the inconsistency measures in the literature
do not scale up to non-monotonicity, as argued in [18].

7 Conclusion

We have applied and extended recently developed concepts of logical inconsis-
tency tolerance to problems of managing uncertainty in databases.

We have shown that certain forms of uncertainty of stored data can be mod-
eled by integrity constraints and maintained by uncertainty-tolerant integrity
management technology. In particular, updates can be monitored by UTIC, such
that they do not increase uncertainty, and extant uncertainty can be partially
repaired while tolerating remaining uncertainty. Also, we have outlined how
databases can provide reasonable answers in the presence of uncertainty. More-
over, we have highlighted that uncertainty tolerance is necessary and sufficient
for scaling up uncertainty management in databases to concurrent transactions.
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This result is significant since concurrency is a common and indeed indispensable
feature of customary database management systems.

As illustrated in Section 4, the use of uncertainty-tolerant tools is essential,
since wrong, possibly fatal conclusions can be inferred from deficient data by
using a method that is uncertainty-intolerant. A lot of UTIC methods, and some
intolerant ones, have been identified in [20, 17].

In ongoing research, we are elaborating a generalization of the results in Sec-
tion 5 to arbitrarily serializable histories. Also, we are working on scaling up our
results further to replicated databases and recoverable histories. Moreover, we
envisage further applications of inconsistency-tolerant uncertainty management
in the fields of OLAP, data mining, and data stream query processing, in order
to complement our work in [12–14].
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Abstract. In [4] [5], the classical acceptability semantics are general-
ized by preferences. The extensions under a given semantics correspond
to maximal elements of a relation encoding this semantics and defined on
subsets of arguments. Furthermore, a set of postulates is proposed to pro-
vide a full characterization of any relation encoding the generalized sta-
ble semantics. In this paper, we adapt this approach to preference-based
argumentation frameworks with necessities. We propose a full character-
ization of stable and naive semantics in this new context by new sets of
adapted postulates and we present a practical method to compute them
by using a classical Dung argumentation framework.

Keywords: abstract argumentation, acceptability semantics, necessi-
ties, preferences.

1 Introduction

Dung’s abstract argumentation frameworks (AFs) [12] are a very influential
model which has been widely studied and extended in different directions. More-
over, some works (see for example [2], [14]) started recently to bridge the gap
between this model and the logical-based model [7] in which arguments are con-
structed from (possibly inconsistent) logical knowledge bases as couples of the
form (support, claim). Among the various extensions of Dung model we are in-
terested in this paper on two of them : adding information about preferences
and representing support relations between arguments.

We need to handle preferences in argumentation theory because in real con-
texts, arguments may have different strengths. In Dung style systems, adding
preferences may lead to the so-called “critical attacks” that arise when a less
preferred argument attacks a more preferred one. Most of the first proposals
on preference-based argumentation like [1] [6] [16] suggest to simply remove the
critical attacks but the drawback of these approaches is to possibly tolerate non
conflict-free extensions. A new approach proposed in [3] [4] [5] encodes accept-
ability semantics for preference-based argumentation frameworks (PAFs) as a
relation on the powerset of the set of arguments and the extensions under a
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given semantics as the maximal elements of this relation. This approach avoids
the drawback mentioned above and ensures the recovering of the classical ac-
ceptability semantics when no critical attack is present. Moreover, [4] [5] give
a set of postulates that must be verified by any relation encoding the stable
semantics in preference-based frameworks.

At a different level, different approaches have been proposed to enrich Dung
model by information expressing supports between arguments. The bipolar argu-
mentation frameworks (BAFs) [10] [11] add an explicit support relation to Dung
AFs and define new acceptability semantics. Their main drawback is that admis-
sibility of extensions is no more guaranteed. [8] introduces the so-called deductive
supports and proposes to use a meta Dung AF to obtain the extensions. Abstract
dialectical frameworks [9] represent a powerful generalization of Dung AFs in
which the acceptability conditions of an argument are more sophisticated. The
acceptability semantics are redefined by adapting the Gelfond/Lifshitz reduct
used in answer set programming (ASP). The Argumentation Frameworks with
Necessities (AFNs) [17] are a kind of bipolar AFs where the support relation
has the meaning of “necessity”. The acceptability semantics are extended in a
natural way that ensures admissibility without borrowing techniques from LPs
or making use of a Meta Dung model. The aim of this paper is threefold:

– Adapting the approach proposed in [4] [5] for stable semantics to the case of
preference-based AFNs (PAFNs). We show that by introducing some suitable
notions, we obtain new postulates that are very similar to the original ones.

– Giving a full characterization of naive semantics in the context of PAFNs.
Since the naive semantics is the counterpart of justified �Lukaszewicz exten-
sions [15] in default logic and of ι-answer sets [13] in logic programming (see
[18]), this characterization allows a better understanding of these approaches.

– Computing a Dung AF whose naive and stable extensions correspond exactly
to the generalized naive and stable extensions of the input PAFN.

The rest of the paper is organized as follows. In section 2 we recall some basics
of AFs with necessities and/or preferences as well as the approach generalizing
stable semantics by preferences. In section 3 we present some further notions that
are useful to define the new postulates for PAFNs. Section 4 presents the stable
and naive semantics in AFNs seen as dominance relations. Section 5 discusses
the generalization of these semantics by preferences. In section 6 we characterize
PAFNs by classical Dung AFs. Finally, section 7 concludes the paper.

2 Background

2.1 Argumentation Frameworks, Necessities and Preferences

A Dung AF [12] is a pair F = 〈A,R〉 where A is a set of arguments and R
is a binary attack relation over A. A set S ⊆ A attacks an argument b iff
(∃a ∈ S) s.t a R b. S is conflict-free iff (� ∃a, b ∈ S) s.t. a R b. Many acceptabil-
ity semantics have been proposed to define how sets of collectively acceptable
arguments may be derived from an attack network. Among them we will focus
in this paper on the naive and the stable semantics.
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Definition 1. Let F = 〈A,R〉 be an AF and S ⊆ A. S is a naive extension
of F iff S is a ⊆-maximal conflict-free set. S is a stable extension of F iff S is
conflict-free and (∀b ∈ A \ S)(∃a ∈ S) s.t. a R b.

For an AF F = 〈A,R〉, we use the notation ExtN (F ) (resp. ExtS(F )) to denote
the set of naive (resp. stable) extensions of F .

Argumentation frameworks with necessities (AFNs) (see [17] for details) rep-
resent a kind of bipolar extension of Dung AFs where the support relation is a
necessity that captures situations in which one argument is necessary for another.
Formally, an AFN is defined by Γ = 〈A,R,N〉 where A is a set of arguments,
R ⊆ A × A is a binary attack relation over A and N ⊆ A × A is a necessity
relation over A. For a, b ∈ A, a N b means that the acceptance of a is necessary
for the acceptance of b. We suppose that there are no cycles of necessities, i.e.,
� ∃a1, . . . ak for k ≥ 1 such that a1 = ak = a and a1 N a2 . . .N ak.

To give the new definitions of acceptability semantics in AFNs, we need to
introduce the key notions of coherence and strong coherence. The latter plays in
some way the same role of conflict-freeness in Dung AFs.

Definition 2. Let Γ = 〈A,R,N〉 be an AFN and S ⊆ A. S is :

– coherent iff S is closed under N−1, i.e. (∀a ∈ S)(∀b ∈ A) if b N a then b ∈ S.
– strongly coherent iff S is coherent and conflict-free (w.r.t. R).
– a naive extension of Γ iff S is a ⊆-maximal strongly coherent set.
– a stable extension of Γ iff S is strongly coherent and (∀b ∈ A\S) either (∃a ∈

S) s.t. a R b or (∃a ∈ A \ S) s.t. a N b.

For an AFN Γ = 〈A,R,N〉, we use the notation ExtN (Γ ) (resp. ExtS(Γ )) to
denote the set of naive (resp. stable) extensions of Γ .

The main properties of naive and stable extensions in AFs continue to hold for
AFNs, namely : naive extensions always exist; naive extensions do not depend on
the attacks directions; an AFN may have zero, one or several stable extensions
and each stable extension is a naive extension but the inverse is not true. Besides,
for an AFN Γ = 〈A,R,N〉where N = ∅, strong coherence coincides with classical
conflict-freeness and naive and stable extensions correspond to naive and stable
extensions of the simple AF 〈A,R〉 respectively (in the sense of definition 1.).

Finally, a preference-based AF (PAF) (resp. a preference-based AFN (PAFN))
is defined by Λ = 〈A,R,≥〉 (resp. Σ = 〈A,R,N,≥〉) where 〈A,R〉 is an AF (resp.
〈A,R,N〉 is an AFN) and the additional element ≥ is a (partial or total) preorder
on A. a ≥ b means that a it at least as strong as b.

2.2 Stable Semantics as a Dominance Relation in PAFs

The idea of representing acceptability semantics in a PAF as dominance relations
has been first developed in [3] for grounded, stable and preferred semantics
and a full characterization of stable semantics by a set of postulates has been
proposed in [4] [5]. This approach encodes acceptability semantics, by taking
into account the possible preferences, as a relation � on the powerset 2A of the
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set of arguments : for E , E ′ ∈ 2A, E � E ′ means that E is at least as good as E ′. �
denotes the strict version of �. For a PAF Λ = 〈A,R,≥〉, E ⊆ A is an extension
under � iff E is a maximal element wrt �, i.e., for each E ′ ⊆ A, E � E ′. The set
of extensions of Λ under � is denoted by Ext�(Λ). The set of conflict-free sets
of a PAF Λ (resp. an AF F ) is denoted by CF (Λ) (resp. CF (F )).

In [4] [5] the authors give a full characterisation of any dominance relation
encoding stable semantics in PAFs (called pref-stable semantics) by means of
the four postulates below. Let Λ = 〈A,R,≥〉 be a PAF and E , E ′ ∈ 2A :

Postulate 1. : for E , E ′ ∈ 2A, E∈CF (Λ) E′ /∈CF (Λ)
E�E′

Postulate 2. : for E , E ′ ∈ CF (A), E�E′
E\E′�E′\E

E\E′�E′\E
E�E′

Postulate 3. : for E , E ′ ∈ CF (A) s.t. E ∩ E ′ = ∅,
(∃x′ ∈ E ′)(∀x ∈ E) ¬(x R x′ ∧ ¬(x′ > x)) ∧ ¬(x > x′)

¬(E � E ′)

Postulate 4. : for E , E ′ ∈ CF (A) s.t. E ∩ E ′ = ∅,
(∀x′ ∈ E ′)(∃x ∈ E) s.t (x R x′ ∧ ¬(x′ > x)) ∨ (x′ R x ∧ x > x′)

E � E ′

In other words, a dominance relation encodes a pref-stable semantics iff it satis-
fies the previous postulates. Such a relation is called a pref-stable relation. Pos-
tulate 1 ensures the conflict-freeness of extensions. Postulate 2 ensures that the
comparison of two conflict-free sets depends entirely on their distinct elements.
Postulates 3 and 4 compare distinct conflict-free sets and state when a set is
considered as preferred or not to another one. It has been shown that the exten-
sions under any pref-stable relation are the same and that pref-stable semantics
generalizes classical stable semantics in the sense that for a PAF Λ = 〈A,R,≥〉,
if preferences do not conflict with attacks, then pref-stable extensions coincide
with the stable extensions of the simple AF 〈A,R〉.

Different pref-stable relations exist. In [4] [5] the authors show the most gen-
eral pref-stable relation (�g) and the most specific one (�s). The first (resp.
the second) returns exactly the facts E �g E ′ that can be proved by the pos-
tulates 1-4 (resp. whose negation cannot be proved by the postulates 1-4). For
any pref-stable relation � we have : if E �g E ′ then E � E ′ and if E � E ′ then
E �s E ′.

3 Emerging Necessities, Attacks and Preferences

In this section we introduce new notions representing hidden forms of necessities,
attacks and preferences. These new notions are of great importance since they
allow to extend in an easy and natural way the approach presented in [4] [5] for
PAFs to the case of PAFNs.

The first notion is that of extended necessity relation : If a is necessary for b
and b is necessary for c then we can deduce that a is indirectly necessary for c.
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Definition 3. Let Σ = 〈A,R,N,≥〉 be a PAFN. An extended necessity between
a and b is denoted by a N+ b. It holds if there is a sequence a1, . . . , ak for k ≥ 2
such that a = a1 N a2 . . . N ak = b. N+(a) denotes the set of all the arguments
that are related to a by an extended necessity, i.e., N+(a) = {b ∈ A|b N+ a}.
Moreover, we use the notation a N∗ b for any a such that a N+ b or a = b and
we put N∗(a) = N+(a) ∪ {a}.

The interaction between attacks and necessities results in further implicit attacks
that we call the extended attacks. In general, an extended attack between two
arguments a and b holds whenever an element of N∗(a) attacks (directly) an
elements of N∗(b). Indeed, if we accept a then we must accept a′ which excludes
b′ (since a′ attacks b′) and this excludes in turn b.

Definition 4. Let Σ = 〈A,R,N,≥〉 be a PAFN and Γ = 〈A,R,N〉 be its
corresponding simple AFN. An extended attack from an argument a to an ar-
gument b is denoted by a R+ b. It holds iff (∃b′ ∈ N∗(b))(∃a′ ∈ N∗(a)) s.t a′ R b′.

CF+(Σ) (and CF+(Γ )) denotes the set of conflict-free subsets of A wrt R+ and
SC(Σ) (and SC(Γ )) the set of strongly coherent subsets of A. It turns out that
strong coherence is stronger than conflict freeness wrt R+ :

Property 1. Let Σ = 〈A,R,N,≥〉 be a PAFN and S ⊆ A. If S is strongly
coherent then S ∈ CF+(Σ). The inverse is not true.

The different preference-based argumentation approaches more or less agree that
the relevant problem to solve in handling preferences in AFs is that of critical
attacks (a critical attack arises when an argument a attacks an argument b
while b is better than a). It turns out that the interaction between preferences
and necessities does not lead to a similar problem since a necessity between
two arguments does not necessarily contradict the fact that one of these two
arguments is better (or worse) than the second. To understand how preferences
interact with necessities, we have to look at the very meaning of necessity. Indeed,
accepting an argument requires the acceptance of all its (direct and indirect)
necessary arguments. Thus, the input preference assigned to an argument a
represents solely a rough preference. Its effective preference depends on that of all
the elements of the set N∗(a). To induce the effective preference of the arguments
from their input (rough) preference we use the usual democratic relation .

Definition 5. Let Σ = 〈A,R,N,≥〉 be a PAFN and a, b ∈ A. The effective pref-
erence relation between arguments is denoted by �⊆ A×A and defined as follows
: (∀a, b ∈ A) a � b iff (∀b′ ∈ N∗(b) \N∗(a))(∃a′ ∈ N∗(a) \N∗(b)) s.t a′ ≥ b′. �
is the strict version of �,i.e., a � b iff a � b and not b � a.

Finally we assume in the rest of the paper that the set A of arguments is finite
and that there is no a ∈ a s.t. a R+ a.
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Example 1. Consider the PAFN Σ = 〈A,R,N,≥〉 where A = {a, b, c, d}, R =
{(c, a), (b, d)}, N = {(a, b), (c, d)} and a ≥ c, a ≥ d, d ≥ b. The corresponding
AFN 〈A,R,N〉 is depicted in Fig. 1 :

Fig. 1. The AFN corresponding to the PAFN Σ where a ≥ c, a ≥ d, d ≥ b

By applying the previous definitions on this example we obtain :

N+ = N and N∗ = {(a, a), (b, b), (c, c), (d, d), (a, b), (c, d)}.
R+ = {(b, d), (c, a), (c, b), (d, a), (d, b)}.
SC(Σ) = {∅, {a}, {c}, {a, b}, {c, d}}.
CF+(Σ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}}.
�= {(a, a), (b, b), (c, c), (d, d), (a, c), (a, d), (b, a), (b, c), (b, d), (d, c)}.
�= {(a, c), (a, d), (b, a), (b, c), (b, d), (d, c)}.

4 Generalizing Naive and Stable Semantics in AFNs

In this section we give a characterization of any relation �⊆ A×A that encodes
naive or stable semantics in a simple AFN without preferences. The idea is that
one must recover this characterization in the particular case of a PAFN where
no conflict with attacks and necessities is caused by the presence of additional
information about preferences. The characterization given here adapts the origi-
nal one introduced in [4] [5] for the relations encoding stable semantics in simple
AFs to the case where a necessity relation is present and give a new version
dealing with naive semantics.

The following theorem1 states the requirements that any relation encoding
naive or stable semantics must fulfil :

Theorem 1. Let Γ = 〈A,R,N〉 be an AFN and �⊆ 2A × 2A then,

– (∀E ∈ 2A) (E ∈ ExtN (Γ ) ⇔ (E is maximal wrt �N)) iff :
1. (∀E ∈ 2A) if E /∈ SC(Γ ) then (∃E ′ ∈ SC(Γ )) s.t. ¬(E �N E ′).
2. if E ∈ SC(Γ ) and (∀a′ /∈ E)(∃a ∈ E) s.t. (a R+ a′ or a′ R+ a) then

(∀E ′ ∈ 2A) E �N E ′.
3. if E ∈ SC(Γ ) and (∃a′ /∈ E) s.t. (� ∃a ∈ E) and (a R+ a′ or a′ R+ a) then

(∃E ′ ∈ 2A) s.t. ¬(E �N E ′).

1 Because of space limitation, the proofs of theorems and properties are not included
in the paper.
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– (∀E ∈ 2A) (E ∈ ExtS(Γ ) ⇔ (E is maximal wrt �S)) iff :
1. (∀E ∈ 2A) if E /∈ SC(Γ ) then (∃E ′ ∈ SC(Γ )) s.t. ¬(E �S E ′).
2. if E ∈ SC(Γ ) and (∀a′ /∈ E)(∃a ∈ E) s.t. (a R+ a′) then (∀E ′ ∈ 2A) E �S

E ′.
3. if E ∈ SC(Γ ) and (∃a′ /∈ E) s.t. (� ∃a ∈ E) and (a R+ a′) then (∃E ′ ∈ 2A)

s.t. ¬(E �S E ′).

Let Γ = 〈A,R,N〉 be an AFN and E , E ′ ∈ 2A. The relation �N
1 . (resp. �S

1 )
below is an example of a relation encoding naive (resp. stable) semantics in Γ :

E �N
1 E ′ (resp. E �S

1 E ′)iff:

– E ∈ SC(Γ ) and E ′ /∈ SC(Γ ), or
– E , E ′ ∈ SC(Γ ) and (∀a′ ∈ E ′ \ E)(∃a ∈ E \ E ′) s.t (a R+ a′ or a′ R+ a) (resp.
E , E ′ ∈ SC(Γ ) and (∀a′ ∈ E ′ \ E)(∃a ∈ E \ E ′) s.t a R+ a′)

Example 1 (Cont.). Let us consider again the PAFN of example 1 and take the
corresponding simple AFN Γ = 〈A,R,N〉. It is easy to check that the maximal
sets wrt �N

1 are {a, b} and {c, d} and only {c, d} is a maximal set wrt �S
1 . Notice

that the same results are obtained by applying definition 2.

5 Generalizing Naive and Stable Semantics in PAFNs

The objective of this section is twofold. On the one hand we extend the full
characterisation of Pref-Stable-Semantics (the generalization of stable semantics
to PAFs) to the case of PAFNs. We call the resulting semantics the N-pref-
stable semantics. On the other hand we give an additional full characterization
of what we call the N-pref-naive extension which generalizes the naive extensions
in PAFNs. We show that the relationship between stable and naive semantics
in AFNs remains valid for the new generalized semantics and that the original
semantics of simple AFNs are recovered if preferences are not in conflict with
extended attacks. We call N-pref-naive (resp. N-pref-stable) relation any rela-
tion that encodes a N-pref-naive (resp. N-pref-stable) semantics. If there is no
ambiguity we use indifferently the symbol � to denote a N-pref-naive or a N-
pref-stable relation, otherwise we use �N to denote a N-pref-naive relation and
�S to denote a N-pref-stable relation.

Consider the PAFN Σ = 〈A,R,N,≥〉 and the relation �⊆ 2A × 2A. We de-
note by Ext�(Σ) the maximal subsets of arguments wrt � 2. Let us first present
and discuss the set of postulates we will use in characterizing N-pref-naive and
N-pref-stable relations :

Postulate 1’ : Let E , E ′ ∈ 2A. Then : E∈SC(Σ) E′ /∈SC(Σ)
E�E′

Postulate 2’ : Let E , E ′ ∈ SC(Σ). Then : E�E′
E\E′�E′\E

E\E′�E′\E
E�E′

2 We recall that E ∈ Ext�(Σ) iff (∀E ′ ∈ 2A) E � E ′.
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Postulate 3’ : Let E , E ′ ∈ CF+(Σ) s.t.E ∩ E ′ = ∅. Then :

(∃x′ ∈ E ′)(∀x ∈ E) ¬(x R+ x′) ∧ ¬(x′R+x) ∧ ¬(x � x′) ∧ ¬(x′ � x)

¬(E � E ′)

Postulate 3” : Let E , E ′ ∈ CF+(Σ) s.t.E ∩ E ′ = ∅. Then :

(∃x′ ∈ E ′)(∀x ∈ E) ¬(x R+ x′ ∧ ¬(x′ � x)) ∧ ¬(x � x′)

¬(E � E ′)

Postulate 4’ : Let E , E ′ ∈ CF+(Σ) s.t.E ∩ E ′ = ∅. Then :

(∀x′ ∈ E ′)(∃x ∈ E) s.t (x R+ x′) ∨ (x′R+x)

E � E ′

Postulate 4” : Let E , E ′ ∈ CF+(Σ) s.t.E ∩ E ′ = ∅. Then :

(∀x′ ∈ E ′)(∃x ∈ E) s.t (x R+ x′ ∧ ¬(x′ � x)) ∨ (x′ R+ x ∧ x � x′)

E � E ′

Postulates (1’) and (2’) are similar to postulates (1) and (2). They just replace
conflict-freeness by strong coherence. Postulate (1) ensures that maximal ele-
ments of any relation satisfying it are strong coherent sets. Postulate (2’) states
that comparing two strongly coherent sets depends only on their distinct ele-
ments. Notice that if E , E ′ ∈ SC(Σ) then it is obvious that E \ E ′ ∈ CF+(Σ)
but it is not necessarily the case that E \ E ′ ∈ SC(Σ). This is why the rest of
postulates are defined on elements of CF+(Σ).

Postulate (3’) and (3”) are adapted forms of postulate (3). They capture the
case where a set must not be better than another for any N-pref-naive and any
N-pref-stable relation respectively. For N-pref-stable relations (postulate (3”))
the adaptation consists just in replacing the direct attack by the extended one
and the input preference relation by the effective one. The information about
necessities is incorporated to these two notions in order to keep the original form
of this postulate : a set must not be better than another whenever the second
contains an argument that is neither successfully attacked nor strictly less pre-
ferred than any element of the first. For N-pref-naive relations (postulate(3’)), a
form of symmetry is introduced so that the orientation of attacks and preferences
are no more important. Thus, a set must not be better than another whenever
the second contains an element which is neither involved in an attack wrt R+

(whatever its direction) nor compared by � with any element of the first set.
Like postulate (4), postulates (4’) and (4”) capture the case where a set must

be better than another for any N-pref-naive (resp. N-pref-stable) relation. For N-
pref-stable relations (postulate 4”) the adaptation consists again to just replacing
the direct attack by the extended one and the input preference relation by the
effective one. A set must be better than another whenever for each argument b
of the second set there is an argument a in the first set such that either a attacks
b (wrt. R+) and b is not strictly better than a (wrt. �) or b attacks a but a is
strictly better than b. For N-pref-naive relations (postulate(4’)), a set must be
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considered as better than another whenever for each argument of the second set
there is an argument in the first set which is in conflict with it (wrt. R+). The
N-pref-naive and N-pref-stable semantics are then defined as follows.

Definition 6. Let Σ = 〈A,R,N,≥〉 be a PAFN and le us consider a rela-
tion �⊆ 2A × 2A. � encodes N-pref-naive semantics iff it verifies the postulates
1’,2’,3’,4’ and � encodes N-pref-stable semantics iff it verifies the postulates
1’,2’,3”,4”.

All the results obtained for pref-stable semantics in PAFs (in absence of necessi-
ties) are easily generalized to the case of N-pref-stable semantics. Moreover, the
relationship between naive and stable semantics is kept in the generalized seman-
tics. First we have that N-pref-naive and N-pref-stable extensions are strongly
coherent.

Property 2. Let Σ = 〈A,R,N,≥〉 be a PAFN and � be a N-pref-naive or a
N-pref-stable relation. If E ∈ Ext�(Σ) then E ∈ SC(Σ).

It turns out that postulate (3’) is stronger than postulate (3”) and postulate (4”)
is stronger than postulate (4’). This means that N-pref-naive relations derive
more positive facts (of the form E � E ′) and allow less negative facts (of the
form ¬(E � E ′)) than N-pref-stable relations:

Theorem 2. Let Σ = 〈A,R,N,≥〉 be a PAFN and �⊆ A × A. if � satisfies
postulate 3’ then it satisfies postulate 3” and if it satisfies postulate 4” then it
satisfies postulate 4’.

It is not difficult to check that one consequence of this result is that any N-pref-
stable extension is also a N-pref-naive extension.

Corollary 1. Let Σ = 〈A,R,N,≥〉 be a PAFN and �N be a N-pref-naive rela-
tion and �S a N-pref-stable relation. If E ∈ Ext�S (Σ) then E ∈ Ext�N (Σ).

As in the case of pref-stable semantics, all the N-pref-naive (resp. N-pref-stable)
relations share the same maximal elements.

Theorem 3. Let Σ = 〈A,R,N,≥〉 be a PAFN. For any pair of N-pref-naive (or
N-pref-stable relations) �,�′⊆ A×A we have : Ext�(Σ) = Ext�′(Σ).

Although some N-pref-naive relations depend on the preferences (for example the
most specific relation discussed later), the extensions themselves are independent
from the preferences. This is true since there is always a N-pref-naive relation
that is independent from the preferences (for example, the most general one
discussed later in this section) and according to the previous theorem, any other
N-pref-naive relation leads to the same extensions.
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Theorem 4. Let Σ = 〈A,R,N,≥〉 be a PAFN, Γ = 〈A,R,N〉 be its correspond-
ing simple AFN and �N be a N-pref-naive relation then : Ext�N (Σ) = ExtN (Γ )
and �N satisfies conditions 1,2,3 of theorem 1 for naive extensions.

The following theorem states that N-pref-stable semantics generalizes stable se-
mantics for AFNs : if there is no conflict between extended attacks and effective
preferences, the stable extensions of the corresponding AFN are recovered.

Theorem 5. Let Σ = 〈A,R,N,≥〉 be a PAFN and Γ = 〈A,R,N〉 the corre-
sponding AFN. If �S is a N-Pref-Stable relation and (� ∃a, b ∈ A) s.t. a R+b and
b � a, then : Ext�S (Σ) = ExtS(Γ ) and �S satisfies conditions 1,2,3 of theorem
1 for stable extensions.

Since N-pref-naive extensions are independent from preferences and each N-
pref-stale extension is a N-pref-naive extension one can conclude the exact role
of adding or updating preferences in an AFN :

Corollary 2. In a PAFN, preferences have no impact on naive extensions but
they affect the selection function of stable extensions among naive extensions.

N-pref-stable semantics also generalizes pref-stable semantics. Indeed when the
necessity relation is empty the N-pref-stable extensions coinside with the pref-
stable extensions of the corresponding PAF.

Theorem 6. Let Σ = 〈A,R,N,≥〉 be a PAFN with N = ∅, Λ = 〈A,R,≥〉 be its
corresponding simple PAF. If �S is a N-pref-stable relation then : Ext�S (Σ) =
Ext�S (Λ) and �S satisfies the postulates 1,2,3 and 4 characterizing pref-stable
extensions of a PAF.

The most general N-pref-naive relation �N
g of a PAFN Σ = 〈A,R,N,≥〉 coin-

cides with the relation �N
1 (see section 3) which does not depend on the prefer-

ence relation. The most specific relation �N
s is defined as follows3:

(E �N
g E ′) iff (E ′ /∈ SC(Σ)) or (E , E ′ ∈ SC(Σ) and

(∀a′ ∈ E ′ \ E)(∃a ∈ E \ E ′) s.t. (a R+ a′) ∨ (a′ R+ a) ∨ (a � a′) ∨ (a′ � a))

The relation �N
g and �N

s verify the postulates of a N-pref-naive relation and

any other N-pref-naive relation is stronger than �N
g and weaker than �N

s .

Theorem 7. Let Σ = 〈A,R,N,≥〉 be a PAFN. The relations �N
g and �N

s are

N-pref-naive relations and for any N-pref-naive relation �N we have : if E �N
g E ′

then E �N E ′ and if E �N E ′ then E �N
s E ′.

3 We recall that the most general (resp. the most specific) N-pref-naive relation returns
E �N

g E ′ (resp. E �N
s E ′) iff it can be proved (resp. it cannot be proved ) with the

postulates 1’ to 4’ that E is better than E ’(resp.E ’ is better than E). Similar definitions
are used for N-pref-stable relations.
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For a PAFN Σ = 〈A,R,N,≥〉, the most general and the most specific N-pref-
stable relations �S

g and �S
s respectively, are defined as follows:

(E �S
g E ′) iff (E ∈ SC(Σ) and (E ′ /∈ SC(Σ) or E , E ′ ∈ SC(Σ) and

(∀a′ ∈ E ′ \ E)(∃a ∈ E \ E ′) s.t. ((a R+ a′) ∧ ¬(a′ � a)) ∨ ((a′ R+ a) ∧ (a � a′)))

(E �S
s E ′) iff (E ′ /∈ SC(Σ) or (E , E ′ ∈ SC(Σ) and

(∀a′ ∈ E ′ \ E)(∃a ∈ E \ E ′) s.t. ((a R+ a′) ∧ ¬(a′ � a)) ∨ (a � a′))

A similar result of that given by theorem 7 is valid for N-pref-stable relations.

Theorem 8. Let Σ = 〈A,R,N,≥〉 be a PAFN. The relations �S
g and �S

s are

N-pref-stable relations and for any N-pref-stable relation �S we have : if E �S
g E ′

then E �S E ′ and if E �S E ′ then E �S
s E ′.

Example 1 (cont.). Consider again the PAFN of example 1 and its corre-
sponding simple AFN Γ = 〈A,R,N〉. We can easily check that Ext�N (Σ) =
ExtN (Γ ) = {{a, b}, {c, d}} and Ext�S (Σ) = {{a, b}}. We can remark that as
expected, N-pref-naive extensions are not sensible to preferences contrarily to
N-pref-stable extensions. Notice that for this particular example, the relations
�N

g and �N
s (resp. �S

g and �S
s ) agree on the comparison between any two sets

E , E ′ ∈ CF (Σ) and between a set E ∈ CF (Σ) and a set E ′ /∈ CF (Σ). But for
�N

s (resp. �S
s ), we have also E �N

s E ′ (resp. E �N
s E ′) for any E , E ′ /∈ CF (Σ). In

general, �N
s (resp. �S

s ) may have strictly more elements than �N
g (resp. �S

g ).

6 Characterisation in a Dung AF

In this section we give a characterization of N-pref-naive and N-pref-stable se-
mantics in terms of classical naive and stable semantics of a Dung AF.

Under N-pref-naive semantics, E is an extension iff it is in conflict with each
element outside it. Notice that this condition is independent from any preference.

Theorem 9. Let Σ = 〈A,R,N,≥〉 be a PAFN, R+ be the corresponding
extended attack relation, � be the corresponding effective preference relation
and �N be a N-pref-naive relation, then E ∈ Ext�N (Σ) iff E ∈ SC(Σ) and
(∀x′ ∈ A \ E ′)(∃x ∈ E) s.t (x R+ x′) ∨ (x′ R+ x).

A set E is a N-pref-stable extension iff for each element b outside it there is an
element a inside it such that either a attacks b (wrt R+) and b is not strictly
preferred to a (wrt. �) or b attacks a but a is strictly preferred to b :

Theorem 10. Let Σ = 〈A,R,N,≥〉 be a PAFN, R+ be the corresponding
extended attack relation, � be the corresponding effective preference relation
and �S be a N-pref-stable relation, then E ∈ Ext�S (Σ) iff E ∈ SC(Σ) and
(∀x′ ∈ A \ E ′)(∃x ∈ E) s.t (x R+ x′ ∧ ¬(x′ � x)) ∨ (x′ R+ x ∧ x � x′).
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In Practice, The “structural” operations to perform on a PAF Σ = 〈A,R,N,≥〉
to compute N-pref-naive and N-pref-stable extensions are the following :

– Compute the extended attack (R+) and the effective preference (�) relations.
– Compute the Dung AF F = 〈A,Def〉 where Def is a new attack rela-

tion obtained by inversing the direction of any attack of R+ not in ac-
cordance with the preference relation �. In other words, Def = {(a, b) ∈
A×A|(a R+ b and ¬(b � a)) or(b R+ a and a � b)}.

– Use the AF F = 〈A,Def〉 to compute as usual naive and stable extensions.

The N-pref-naive and the N-pref-stable extensions correspond respectively to the
naive and stable extensions of the Dung AF whose set of arguments is that of
the original PAFN and attack relation is R+ after the inversion of any attack
which is not in accordance with the effective preference relation �.

Theorem 11. Let Σ = 〈A,R,N,≥〉 be a PAFN, �N be a N-pref-naive relation,
�S be a N-pref-stable relation, R+ be the extended attack relation, � be the
effective preference relation and F be the AF 〈A,Def〉 where Def is defined by
Def = {(a, b) ∈ A × A|(a R+ b and ¬(b � a)) or(b R+ a and a � b)} then:
Ext�N = ExtN (F ) and Ext�S = ExtS(F ).

Example 1 (cont.). Consider again the PAFN of example 1. The Dung sys-
tem with the extended attack R+ is deicted in Fig. 2-(1). Inversing the di-
rections of attacks wrt R+ that are not compatible with the effective pref-
erence relation � (theses attacks are reperesented by thik arcs in Fig. 2-(1))
allows to compute the Dung AF F = 〈A,Def〉 with the new attack relation
Def = {(a, c), (a, d), (b, c), (b, d)} (see Fig. 2-(2)).

Fig. 2. (1) The Dung AF
〈
A,R+

〉
(before reparation), (2) The Dung AF F = 〈A,Def〉

(after reparation)

We can easily check that Ext�N = ExtN (F ) = {{a, b}, {c, d}} and Ext�S =
ExtS(F ) = {{a, b}}.

7 Conclusion

This paper builds upon the approach proposed in [4] [5] that introduces the in-
teresting idea seeing acceptability semantics as a family of relations on the power
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set of the set of arguments. In our work we have extended this approach to the
case of AFNs that represent a kind of bipolar argumentation frameworks where
the support relation is a necessity. We have shown that a key point to perform
this extension is to replace the input relations of necessities, attacks and prefer-
ences by the new relations of extended necessities, extended attacks and effective
preferences. Thanks to these new notions, the obtained adapted form of stable
semantics in preference-based AFNs is fully characterized by postualtes that are
very similar to those proposed in [4] [5]. We have also extended the approach
to the case of generalized naive semantics which represents the counterpart of
justified extensions in default logics and ι-answer sets in logic programming. We
have also shown how to represent any PAFN as a Dung AF so that a one to one
correspondence is ensured between the (generalized) stable and naive extensions
of the former and the (classical) stable and naive extensions of the second.

It has been shown in [17] that the argumentation frameworks we obtain by
extending the necessity relation so that it can relate sets of arguments to sin-
gle arguments allows to reach the same expressive power of arbitrary LPs. As
a future work we want to use this idea to propose new argumentation-based
approaches to handle preferences in logic programs.
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Stable Semantics in Logic-Based Argumentation
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Abstract. This paper investigates the outputs of abstract logic-based argumenta-
tion systems under stable semantics. We delimit the number of stable extensions a
system may have. We show that in the best case, an argumentation system infers
exactly the common conclusions drawn from the maximal consistent subbases
of the original knowledge base. This output corresponds to that returned by a
system under the naive semantics. In the worst case, counter-intuitive results are
returned. In the intermediary case, the system forgets intuitive conclusions. These
two latter cases are due to the use of skewed attack relations. The results show
that stable semantics is either useless or unsuitable in logic-based argumentation
systems. Finally, we show that under this semantics, argumentation systems may
inherit the problems of coherence-based approaches.

1 Introduction

An argumentation system for reasoning with inconsistent knowledge is built from a
knowledge base using a monotonic logic. It consists of a set of arguments, attacks
among them and a semantics for evaluating the arguments (see [4,10,7,12] for some
examples of such systems).

Stable semantics is one of the prominent semantics proposed in [8]. A set of argu-
ments is acceptable (or an extension) under this semantics, if it is free of conflicts and
attacks any argument outside the set. Note that this semantics does not guarantee the
existence of extensions for a system. In [6], the author studied the kind of outputs that
may be returned under this semantics. However, the focus was on one particular argu-
mentation system: it is grounded on propositional logic and uses ‘assumption attack’
[9]. The results show that each stable extension of the system is built from one maxi-
mal consistent subbase of the original knowledge base. However, it is not clear whether
this is true for other attack relations or other logics. It is neither clear whether systems
that have stable extensions return intuitive results. It is also unclear what is going wrong
with systems that do not have stable extensions. Finally, the number of stable extensions
that a system may have is unknown.

In this paper, we conduct an in-depth study on the outputs of argumentation systems
under stable semantics. We consider abstract logic-based systems, i.e., systems that use
Tarskian logics [15] and any attack relation. For the first time, the maximum number
of stable extensions a system may have is delimited. It is the number of maximal (for
set inclusion) consistent subbases of the knowledge base. Moreover, we show that sta-
ble semantics is either useless or unsuitable for these systems. Indeed, in the best case,
such systems infer exactly the conclusions that are drawn from all the maximal consis-
tent subbases. This corresponds exactly to the output of the same systems under naive

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 58–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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semantics. In the worst case, counter-intuitive results are returned. There is a third case
where intuitive conclusions may be forgotten by the systems. These two last cases are
due to the use of skewed attack relations. Finally, we show that argumentation systems
that use stable semantics inherit the problems of coherence-based approaches [14].

The paper is organized as follows: Section 2 defines the logic-based argumentation
systems we are interested in. Section 3 recalls three basic postulates that such systems
should obey. Section 4 investigates the outcomes that are computed under stable seman-
tics. Section 5 compares our work with existing ones and Section 6 concludes.

2 Logic-Based Argumentation Systems

Argumentation systems are built on an underlying monotonic logic. In this paper, we
focus on Tarski’s monotonic logics [15]. Indeed, we consider logics (L, CN) where L is
a set of well-formed formulas and CN is a consequence operator. It is a function from
2L to 2L which returns the set of formulas that are logical consequences of another set
of formulas according to the logic in question. It satisfies the following basic properties:

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y ⊆fX

CN(Y )1 (Finiteness)
4. CN({x}) = L for some x ∈ L (Absurdity)
5. CN(∅) �= L (Coherence)

A CN that satisfies the above properties is monotonic. The associated notion of consis-
tency is defined as follows:

Definition 1 (Consistency). A set X ⊆ L is consistent wrt a logic (L, CN) iff CN(X) �=
L. It is inconsistent otherwise.

Arguments are built from a knowledge base Σ ⊆ L as follows:

Definition 2 (Argument). Let Σ be a knowledge base. An argument is a pair (X, x)
s.t. X ⊆ Σ, X is consistent, and x ∈ CN(X)2. An argument (X, x) is a sub-argument
of (X ′, x′) iff X ⊆ X ′.

Notations: Supp and Conc denote respectively the support X and the conclusion x of
an argument (X, x). For all S ⊆ Σ, Arg(S) denotes the set of all arguments that can
be built from S by means of Definition 2. Sub is a function that returns all the sub-
arguments of a given argument. For all E ⊆ Arg(Σ), Concs(E) = {Conc(a) | a ∈ E}
and Base(E) =

⋃
a∈E Supp(a). Max(Σ) is the set of all maximal (for set inclusion) con-

sistent subbases of Σ. Finally, Free(Σ) =
⋂
Si where Si ∈ Max(Σ), and Inc(Σ) =

Σ \ Free(Σ).

An argumentation system is defined as follows.

1 Y ⊆f X means that Y is a finite subset of X .
2 Generally, the support X is minimal (for set inclusion). In this paper, we do not need to make

this assumption.
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Definition 3 (Argumentation system). An argumentation system (AS) over a knowl-
edge base Σ is a pair T = (Arg(Σ),R) such thatR ⊆ Arg(Σ)× Arg(Σ) is an attack
relation. For a, b ∈ Arg(Σ), (a, b) ∈ R (or aRb) means that a attacks b.

The attack relation is left unspecified in order to keep the system very general. It is also
worth mentioning that the set Arg(Σ) may be infinite even when the base Σ is finite.
This would mean that the argumentation system may be infinite3. Finally, arguments
are evaluated using stable semantics.

Definition 4 (Stable semantics [8]). Let T = (Arg(Σ),R) be an AS over a knowledge
base Σ, and E ⊆ Arg(Σ) s.t. � a, b ∈ E s.t. aRb.

– E is a naive extension iff E is maximal (for set inclusion).
– E is a stable extension iff ∀a ∈ Arg(Σ) \ E , ∃b ∈ E s.t. bRa.

It is worth noticing that each stable extension is a naive one but the converse is false.
Let Extx(T ) denote the set of all extensions of T under semantics x (n and s will
stand respectively for naive and stable semantics). When we do not need to specify the
semantics, we use the notation Ext(T ) for short.

The extensions are used in order to define the conclusions to be drawn fromΣ according
to an argumentation system T . The idea is to infer a formula x from Σ iff x is the
conclusion of an argument in each extension. Output(T ) is the set of all such formulas.

Definition 5 (Output). Let T = (Arg(Σ),R) be an AS over a knowledge base Σ.
Output(T ) = {x ∈ L | ∀E ∈ Ext(T ), ∃a ∈ E s.t. Conc(a) = x}.

Output(T ) coincides with the set of common conclusions of the extensions. Indeed,
Output(T ) =

⋂
Concs(Ei), Ei ∈ Ext(T ). Note also that when the base Σ contains

only inconsistent formulas, then Arg(Σ) = ∅. Consequently, Exts(T ) = {∅} and
Output(T ) = ∅. Without loss of generality, throughout the paper, we assume that Σ is
finite and contains at least one consistent formula.

3 Postulates for Argumentation Systems

In [5], it was argued that logic-based argumentation systems should obey to some ra-
tionality postulates, i.e., desirable properties that any reasoning system should enjoy.
The three postulates proposed in [5] are revisited and extended to any Tarskian logic
in [1]. The first one concerns the closure of the system’s output under the consequence
operator CN. The idea is that the formalism should not forget conclusions.

Postulate 1 (Closure under CN). Let T = (Arg(Σ),R) be an AS over a knowledge
base Σ. T satisfies closure iff for all E ∈ Ext(T ), Concs(E) = CN(Concs(E)).

The second rationality postulate ensures that the acceptance of an argument should
imply also the acceptance of all its sub-arguments.

3 An AS is finite iff each argument is attacked by a finite number of arguments. It is infinite
otherwise.
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Postulate 2 (Closure under sub-arguments). Let T = (Args(Σ), R) be an AS over
a knowledge base Σ. T is closed under sub-arguments iff for all E ∈ Ext(T ), if a ∈ E ,
then Sub(a) ⊆ E .

The third rationality postulate ensures that the set of conclusions supported by each
extension is consistent.

Postulate 3 (Consistency). Let T = (Arg(Σ),R) be an AS over a knowledge base Σ.
T satisfies consistency iff for all E ∈ Ext(T ), Concs(E) is consistent.

In [1], the conditions under which these postulates are satisfies/violated are investigated.
It is shown that the attack relation should be grounded on inconsistency. This is an
obvious requirement especially for reasoning about inconsistent information.

Definition 6 (Conflict-dependent). Let T = (Arg(Σ),R) be an AS. The attack re-
lation R is conflict-dependent iff ∀a, b ∈ Arg(Σ), if aRb then Supp(a) ∪ Supp(b) is
inconsistent.

4 The Outcomes of Argumentation Systems

As seen before, the acceptability of arguments is defined without considering neither
their internal structure nor their origin. In this section, we fully characterize for the first
time the ’concrete’ outputs of an argumentation system under stable semantics. For that
purpose, we consider only systems that enjoy the three rationality postulates introduced
in the previous section. Recall that systems that violate them return undesirable outputs.
Before presenting our study, we start first by analyzing the outputs of argumentation
systems under the naive semantics. One may wonder why especially since this particular
semantics is not used in the literature for evaluating arguments. The reason is that the
only case where stable semantics ensures an intuitive output is where an argumentation
system returns exactly the same output under stable and naive semantics.

4.1 Naive Semantics

Before characterizing the outputs of an AS under naive semantics, let us start by show-
ing some useful properties. The next result shows that if each naive extension returns a
consistent subbase of Σ, then the AS is certainly closed under sub-arguments.

Proposition 1. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such thatR
is conflict-dependent. If ∀E ∈ Extn(T ), Base(E) is consistent, then T is closed under
sub-arguments (under naive semantics).

A consequence of the previous result is that under naive semantics, the satisfaction of
both consistency and closure under sub-arguments is equivalent to the satisfaction of a
stronger version of consistency.

Theorem 1. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R
is conflict-dependent. T satisfies consistency and closure under sub-arguments (under
naive semantics) iff ∀E ∈ Extn(T ), Base(E) is consistent.
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In case of naive semantics, closure under the consequence operator CN is induced from
the two other postulates: closure under sub-arguments and consistency.

Proposition 2. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
R is conflict-dependent. If T satisfies consistency and is closed under sub-arguments
(under naive semantics), then it is also closed under CN.

An important question now is: what is hidden behind naive semantics? We show that the
naive extensions of any argumentation system that satisfies Postulates 2 and 3 always
return maximal (for set inclusion) consistent subbases of Σ.

Theorem 2. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
naive semantics), then:

– For all E ∈ Extn(T ), Base(E) ∈ Max(Σ).
– For all Ei, Ej ∈ Extn(T ), if Base(Ei) = Base(Ej) then Ei = Ej .

The previous result does not guarantee that all the maximal consistent subbases of Σ
are captured. The next theorem confirms that any maximal consistent subbase of Σ
defines a naive extension of an AS which satisfies consistency and closure under sub-
arguments.

Theorem 3. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
naive semantics), then:

– For all S ∈ Max(Σ), Arg(S) ∈ Extn(T ).
– For all Si,Sj ∈ Max(Σ), if Arg(Si) = Arg(Sj) then Si = Sj .

It follows that any argumentation system that satisfies the two postulates 2 and 3 enjoy
a full correspondence between the maximal consistent subbases of Σ and the naive
extensions of the system.

Theorem 4. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R is
conflict-dependent. T satisfies consistency and is closed under sub-arguments (under
naive semantics) iff the naive extensions of Extn(T ) are exactly the Arg(S) where S
ranges over the elements of Max(Σ).

A direct consequence of the previous result is that the number of naive extensions is
finite. This follows naturally from the finiteness of the knowledge base Σ.

Theorem 5. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R
is conflict-dependent and T satisfies consistency and is closed under sub-arguments
(under naive semantics). If Σ is finite, then T has a finite number of naive extensions.

Let us now characterize the set Output(T ) of inferences that may be drawn from a
knowledge base Σ by an argumentation system T under naive semantics. It coincides
with the set of formulas that are drawn by all the maximal consistent subbases of Σ.
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Theorem 6. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R is
conflict-dependent, T satisfies consistency and is closed under sub-arguments (under
naive semantics). Output(T ) =

⋂
CN(Si) where Si ∈ Max(Σ).

In short, under naive semantics, any ‘good’ instantiation of Dung’s abstract framework
returns exactly the formulas that are drawn (with CN) by all the maximal consistent
subbases of the base Σ. So whatever the attack relation that is chosen, the result will
be the same. It is worth recalling that the output set contains exactly the so-called uni-
versal conclusions in the approach developed in [14] for reasoning about inconsistent
propositional bases.

4.2 Stable Semantics

As for naive semantics, we show that under stable semantics, strong consistency induce
closure under sub-arguments.

Proposition 3. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such thatR
is conflict-dependent. If ∀E ∈ Exts(T ), Base(E) is consistent, then T is closed under
sub-arguments (under stable semantics).

The following theorem shows that satisfying consistency and closure under
sub-arguments amounts exactly to satisfying the strong version of consistency.

Theorem 7. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R
is conflict-dependent. T satisfies consistency and closure under sub-arguments (under
stable semantics) iff ∀E ∈ Exts(T ), Base(E) is consistent.

Like for naive semantics, in case of stable semantics, closure under the consequence
operator CN follows from closure under sub-arguments and consistency.

Proposition 4. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
R is conflict-dependent. If T satisfies consistency and is closed under sub-arguments
(under stable semantics), then it is also closed under CN (under stable semantics).

We now show that the stable extensions of any argumentation system, which satisfies
Postulates 2 and 3, return maximal consistent subbases of Σ. This means that if one
instantiates Dung’s system and does not get maximal consistent subbases with stable
extensions, then the instantiation certainly violates one or both of the two key postu-
lates: consistency and closure under sub-arguments.

Theorem 8. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R is
conflict-dependent. If T satisfies consistency and closure under sub-arguments (under
stable semantics), then:

– For all E ∈ Exts(T ), Base(E) ∈ Max(Σ).
– For all E ∈ Exts(T ), E = Arg(Base(E)).
– For all Ei, Ej ∈ Exts(T ), if Base(Ei) = Base(Ej) then Ei = Ej .
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This result is strong as it characterizes the outputs under stable semantics of a large
class of argumentation systems, namely, those grounded on Tarskian logics.

The previous result does not guarantee that each maximal consistent subbase of Σ
has a corresponding stable extension in the argumentation system T . To put it differ-
ently, it does not guarantee the equality |Exts(T )| = |Max(Σ)|. However, it shows that
in case stable extensions exist, then their bases are certainly elements of Max(Σ). This
enables us to delimit the number of stable extensions that an AS may have.

Proposition 5. Let T = (Arg(Σ), R) be an AS over a base Σ s.t. R is conflict-
dependent and T satisfies consistency and closure under sub-arguments (under stable
semantics). It holds that 0 ≤ |Exts(T )| ≤ |Max(Σ)|.

From this property, it follows that when the knowledge base is finite, the number of
stable extensions is finite as well.

Property 1. If Σ is finite, then ∀T = (Arg(Σ),R) s.t. T satisfies consistency and
closure under sub-arguments (under stable semantics), |Exts(T )| is finite.

The fact that an argumentation system T verifies or not the equality |Exts(T )| =
|Max(Σ)| depends broadly on the attack relation that is chosen. Let �s be the set of
all attack relations that ensure Postulates 2 and 3 under stable semantics (�s = {R ⊆
Arg(Σ)×Arg(Σ) | R is conflict-dependent and (Arg(Σ),R) satisfies Postulates 2 and
3 under stable semantics} for all Σ). This set contains three disjoints subsets of attack
relations: �s = �s1 ∪ �s2 ∪ �s3:

– �s1: the relations which lead to |Exts(T )| = 0.
– �s2: the relations which ensure 0 < |Exts(T )| < |Max(Σ)|.
– �s3: the relations which ensure |Exts(T )| = |Max(Σ)|.

Let us analyze separately each category of attack relations. We start with relations of
the set �s3. Those relations induce a one to one correspondence between the stable
extensions of the argumentation system and the maximal consistent subbases of Σ.

Property 2. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that R ∈
�s3. For all S ∈ Max(Σ), Arg(S) ∈ Exts(T ).

An important question now is: do such attack relations exist? We are not interested in
identifying all of them since they lead to the same result. It is sufficient to show whether
they exist. Hopefully, such relations exist and assumption attack [9] is one of them.

Theorem 9. The set �s3 is not empty.

We show now that argumentation systems based on this category of attack relations
always have stable extensions.

Theorem 10. For all T = (Arg(Σ), R) such thatR ∈ �s3, Exts(T ) �= ∅.

Let us now characterize the output set of a system under stable semantics.
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Theorem 11. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
R ∈ �s3. Output(T ) =

⋂
CN(Si) where Si ∈ Max(Σ).

Note that this category of attack relations leads exactly to the same result as naive se-
mantics. Thus, stable semantics does not play any particular role. Moreover, argumen-
tation systems return the universal conclusions (of the coherence-based approach [14])
under any monotonic logic, not only under propositional logic as in [14].

Let us now analyze the first category (�s1) of attack relations that guarantee the postu-
lates. Recall that these relations prevent the existence of stable extensions.

Theorem 12. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
R ∈ �s1. It holds that Output(T ) = ∅.

These attack relations are skewed, and may prevent intuitive conclusions from being
drawn from a knowledge base. This is particularly the case of free formulas, i.e. in
Free(Σ), as shown next.

Property 3. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
Free(Σ) �= ∅. IfR ∈ �s1, then ∀x ∈ Free(Σ), x /∈ Output(T ).

What about the remaining attack relations, i.e., those of �s2 that ensure the existence of
stable extensions? Systems that use these relations choose a proper subset of maximal
consistent subbases of Σ and make inferences from them. Their output sets are defined
as follows:

Theorem 13. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such that
R ∈ �s2. Output(T ) =

⋂
CN(Si) where Si ∈ Max(Σ) and Si = Base(Ei) with

Ei ∈ Exts(T ).

These attack relations lead to an unjustified discrimination between the maximal con-
sistent subbases of a knowledge base. Unfortunately, this is fatal for the argumentation
systems which use them as they return counter-intuitive results (see Example 1).

Example 1. Assume that (L, CN) is propositional logic and let Σ contain three intu-
itively equally preferred formulas: Σ = {x, x → y,¬y}. This base has three maximal
consistent subbases:

– S1 = {x, x→ y}, S2 = {x,¬y}, S3 = {x→ y,¬y}.

The arguments that may be built from Σ may have the following supports: {x}, {x →
y}, {¬y}, {x, x → y}, {x,¬y}, and {x → y,¬y}. Assume now the attack relation
shown in the figure below. For the sake of readability, we do not represent the conclu-
sions of the arguments in the figure. An arrow from X towards Y is read as follows:
any argument with support X attacks any argument with support Y .

{¬y}
{x, x→ y}

{x,¬y} {x→ y,¬y}
{x→ y} {x}
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This argumentation system has two stable extensions:

– E1 = {a ∈ Arg(Σ) | Supp(a) = {x, x → y} or Supp(a) = {x} or Supp(a) =
{x→ y}}.

– E2 = {a ∈ Arg(Σ) | Supp(a) = {x,¬y} or Supp(a) = {x} or Supp(a) =
{¬y}}.

It can be checked that this argumentation system satisfies consistency and closure under
sub-arguments. The two extensions capture respectively the subbases S1 and S2.

It is worth noticing that the third subbase S3 = {x → y,¬y} is not captured by
any stable extension. Indeed, the set Arg(S3) = {a ∈ Arg(Σ) | Supp(a) = {¬y, x →
y} or Supp(a) = {¬y} or Supp(a) = {x → y}} is not a stable extension. S3 is dis-
carded due to the definition of the attack relation. Note that this leads to non-intuitive
outputs. For instance, it can be checked that x ∈ Output(T ) whereas¬y /∈ Output(T )
and x → y /∈ Output(T ). Since the three formulas of Σ are assumed to be equally
preferred, then there is no reason to privilege one compared to the others!

The example showed a skewed attack relation which led to ‘artificial’ priorities among
the formulas of a base Σ: x is preferred to ¬y and x→ y. The following result confirms
this observation.

Theorem 14. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ. If R ∈ �s2,
then ∃x, x′ ∈ Inc(Σ) such that x ∈ Output(T ) and x′ /∈ Output(T ).

To sum up, there are three categories of attack relations that ensure the three rationality
postulates. Two of them (�s1 and �s2) should be avoided as they lead to undesirable
results. It is worth mentioning that we are not interested here in identifying those re-
lations. Indeed, if they exist, they certainly lead to bad results and thus, should not be
used. The third category of relations (�s3) leads to “correct” results, but argumentation
systems based on them return exactly the same results under naive semantics. Thus, sta-
ble semantics does not play any particular role in the logic-based argumentation systems
we studied in the paper. Moreover, the outputs of the systems coincide with those of the
coherence-based approach [14]. As a consequence, argumentation systems inherit the
drawbacks of this approach. Let us illustrate this issue by the following example.

Example 2. Assume that (L, CN) is propositional logic and let Σ = {x,¬x ∧ y}. This
base has two maximal consistent subbases:

– S1 = {x}
– S2 = {¬x ∧ y}

According to the previous results, any instantiation of Dung’s framework falls in one of
the following cases:

– Instantiations that use attack relations in �s1 will lead to Output(T ) = ∅. This
result is undesirable since y should be inferred from Σ since it is not part of the
conflict.

– Instantiations that use attack relations in �s2 will lead either to Output(T ) =
CN({x}) or to Output(T ) = CN({¬x ∧ y}). Both outputs are undesirable since
they are unjustified. Why x and not ¬x and vice versa?

– Instantiations that use attack relations in �s3 will lead to Output(T ) = ∅. Like
the first case, there is no reason to not conclude y.
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5 Related Work

This paper investigated the outputs of an argumentation system under stable semantics.
There are some works in the literature which are somehow related to our. In [11,13], the
authors studied whether some particular argumentation systems satisfy some of the ra-
tionality postulates presented in this paper. By particular system, we mean a system that
is grounded on a particular logic and/or that uses a specific attack relation. In our paper
the objective is different. We assumed abstract argumentation systems that satisfy the
desirable postulates, and studied their outputs under stable semantics. Two other works,
namely [6] and [3], share this objective. In [6], the author studied one particular sys-
tem: the one that is grounded on propositional logic and uses the “assumption attack”
relation [9]. The results got show that assumption attack belongs to our set �s3. In [3],
these results are generalized to argumentation systems that use the same attack relation
but grounded on any Tarskian logic. Our work is more general since it completely ab-
stracts from the attack relation. Moreover, it presents a complete view of the outputs
under stable semantics.

6 Conclusion

This paper characterized for the first time the outputs (under stable semantics) of any
argumentation system that is grounded on a Tarskian logic and that satisfies very basic
rationality postulates. The study is very general since it keeps all the parameters of a
system unspecified. Namely, Tarskian logics are abstract and no requirement is imposed
on the attack relation except the property of conflict-dependency which is mandatory
for ensuring the consistency postulate. We identified the maximum number of stable ex-
tensions a system may have. We discussed three possible categories of attack relations
that may make a system satisfies the postulates. Two of them lead to counter-intuitive
results. Indeed, either ad hoc choices are made or interesting conclusions are forgotten
like the free formulas. Argumentation systems based on attack relations of the third cat-
egory enjoy a one to one correspondence between the stable extensions and the maximal
consistent subbases of the knowledge base. Consequently, their outputs are the common
conclusions drawn from each maximal consistent subbase. This means that stable se-
mantics does not play any particular role for reasoning with inconsistent information
since the same result is returned by naive semantics. Moreover, the argumentation ap-
proach is equivalent to the coherence-based one. Consequently, it suffers from, the same
drawbacks as this latter.
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Appendix

Proof of Proposition 1. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ
such thatR is conflict-dependent. Assume that T violates closure under sub-arguments.
Thus, ∃E ∈ Extn(T ) such that ∃a ∈ E and ∃b ∈ Sub(a) with b /∈ E . This means that
E ∪ {b} is conflicting, i.e. ∃c ∈ E such that bRc or cRb. SinceR is conflict-dependent,
then Supp(b) ∪ Supp(c) is inconsistent. However, Supp(b) ⊆ Supp(a) ⊆ Base(E) and
thus, Supp(b) ∪ Supp(c) ⊆ Base(E). This means that Base(E) is inconsistent. This
contradicts the assumption.

Proof of Theorem 1. Assume that an AS T satisfies Postulates 2 and 3, then from
Proposition 5 (in [1]) it follows that ∀E ∈ Extn(T ), Base(E) is consistent.

Assume now that ∀E ∈ Extn(T ), Base(E) is consistent. Then, T satisfies consis-
tency (Proposition 4, [1]). Moreover, from Proposition 1, T is closed under
sub-arguments.

Proof of Proposition 2. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such
that R is conflict-dependent. Assume that T is closed under sub-arguments and satis-
fies consistency. Assume also that T violates closure under CN. Thus, ∃E ∈ Extn(T )
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such that Concs(E) �= CN(Concs(E)). This means that ∃x ∈ CN(Concs(E)) and
x /∈ Concs(E). Besides, CN(Concs(E)) ⊆ CN(Base(E)). Thus, x ∈ CN(Base(E)).
Since CN verifies finiteness, then ∃X ⊆ Base(E) such that X is finite and x ∈ CN(X).
Moreover, from Proposition 5 (in [1]), Base(E) is consistent. Then, X is consistent as
well (from Property 2 in [2]). Consequently, the pair (X, x) is an argument. Besides,
since x /∈ Concs(E) then (X, x) /∈ E . This means that ∃a ∈ E such that aR(X, x) or
(X, x)Ra. Finally, sinceR is conflict-dependent, then Supp(a)∪X is inconsistent and
consequently Base(E) is inconsistent. This contradicts the assumption.

Proof of Theorem 2. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such
that R is conflict-dependent. Assume that T satisfies consistency and is closed under
sub-arguments. Let E ∈ Extn(T ). From Proposition 5 (in [1]), Base(E) is consistent.

Assume now that Base(E) is not maximal for set inclusion. Thus, ∃x ∈ Σ \Base(E)
such that Base(E) ∪ {x} is consistent. This means that {x} is consistent. Thus, ∃a ∈
Arg(Σ) such that Supp(a) = {x}. Since x /∈ Base(E), then a /∈ E . Since E is a
naive extension, then ∃b ∈ E such that aRb or bRa. Since R is conflict-dependent,
then Supp(a)∪Supp(b) is inconsistent. But, Supp(b) ⊆ Base(E), this would mean that
Base(E) ∪ {x} is inconsistent. Contradiction.

Let E ∈ Extn(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction of
arguments is monotonic. Let a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E). Assume
that a /∈ E , then ∃b ∈ E such that aRb or bRa. Since R is conflict-dependent, then
Supp(a)∪Supp(b) is inconsistent. Besides, Supp(a)∪Supp(b) ⊆ Base(E). This means
that Base(E) is inconsistent. Contradiction.

Let now Ei, Ej ∈ Extn(T ). Assume that Base(Ei) = Base(Ej). Then,
Arg(Base(Ei)) = Arg(Base(Ej)). Besides, from the previous bullet, Ei =
Arg(Base(Ei)) and Ej = Arg(Base(Ej)). Consequently, Ei = Ej .

Proof of Theorem 3. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ s.t. R
is conflict-dependent. Assume that T satisfies Postulates 2 and 3.

Let S ∈ Max(Σ), and assume that Arg(S) /∈ Extn(T ). SinceR is conflict-dependent
and S is consistent, then it follows from Proposition 5 in [2] that Arg(S) is conflict-free.
Thus, Arg(S) is not maximal for set inclusion. So, ∃a ∈ Arg(Σ) such that Arg(S)∪{a}
is conflict-free. There are two possibilities: i) S ∪ Supp(a) is consistent. But since
S ∈ Max(Σ), then Supp(a) ⊆ S, and this would mean that a ∈ Arg(S). ii) S∪Supp(a)
is inconsistent. Thus, ∃C ∈ CΣ such that C ⊆ S∪Supp(a). Let X1 = C∩S and X2 =
C ∩ Supp(a). From Lemma 3 in [1], ∃x1 ∈ CN(X1) and ∃x2 ∈ CN(X2) such that the
set {x1, x2} is inconsistent. Note that (X1, x1) and (X2, x2) are arguments. Moreover,
(X1, x1) ∈ Arg(S) and (X2, x2) ∈ Sub(a). Besides, since Arg(S) ∪ {a} is conflict-
free, then ∃E ∈ Ext(T ) such that Arg(S) ∪ {a} ⊆ E . Thus, (X1, x1) ∈ E . Since T
is closed under sub-arguments then (X2, x2) ∈ E . Thus, {x1, x2} ⊆ Concs(E). From
Property 2 in [2], it follows that Concs(E) is inconsistent. This contradicts the fact that
T satisfies consistency.

Let now Si,Sj ∈ Max(Σ) be such that Arg(Si) = Arg(Sj). Assume that Si �= Sj ,
thus ∃x ∈ Si and x /∈ Sj . Besides, Si is consistent, then so is the set {x}. Consequently,
∃a ∈ Arg(Σ) such that Supp(a) = {x}. It follows also that a ∈ Arg(Si) and thus
a ∈ Arg(Sj). By definition of an argument, Supp(a) ⊆ Sj . Contradiction.
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Proof of Theorem 4. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such
thatR is conflict-dependent.

Assume that T satisfies Postulates 2 and 3. Them from Theorems 2 and 3, it follows
that there is a full correspondence between Max(Σ) and Extn(T ).

Assume now that there is a full correspondence between Max(Σ) and Extn(T ).
Then, ∀E ∈ Ext(T ), Base(E) is consistent. Consequently, T satisfies consistency.
Moreover, from Proposition 1, T is closed under sub-arguments.

Proof of Theorem 5. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such that
R is conflict-dependent and T satisfies consistency and is closed under sub-arguments.
From Theorem 4, it follows that |Extn(T )| = |Max(Σ)|. Since Σ is finite, then it has a
finite number of maximal consistent subbases. Thus, the number of naive extensions is
finite as well.

Proof of Theorem 6. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such that
R is conflict-dependent. Assume that T satisfies consistency and is closed under sub-
arguments. Then, from Proposition 2, T enjoys closure under CN. Then, from Property 5
in [1], for all E ∈ Extn(T ), Concs(E) = CN(Base(E)). Finally, from Theorem 4, there
is a full correspondence between elements of Max(Σ) and the naive extensions. Thus,
for all Ei ∈ Extn(T ), ∃!Si ∈ Max(Σ) such that Base(Ei) = Si. Thus, Concs(Ei) =
CN(Si). By definition, Output(T ) =

⋂
Concs(Ei) , thus Output(T ) =

⋂
CN(Si).

Proof of Proposition 3. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ
such that R is conflict-dependent. Assume that ∀E ∈ Exts(T ), Base(E) is consistent.
Assume also that T violates closure under sub-arguments. Thus, ∃E ∈ Exts(T ) such
that ∃a ∈ E and ∃b ∈ Sub(a) with b /∈ E . Since E is a stable extension, then ∃c ∈ E
such that cRb. Since R is conflict-dependent, then Supp(b) ∪ Supp(c) is inconsistent.
However, Supp(b) ⊆ Supp(a) ⊆ Base(E). Then, Supp(b)∪ Supp(c) ⊆ Base(E). This
means that Base(E) is inconsistent. This contradicts the assumption.

Proof of Theorem 7. Assume that an AS T satisfies Postulates 2 and 3, then from
Proposition 5 (in [1]) it follows that ∀E ∈ Exts(T ), Base(E) is consistent.

Assume now that ∀E ∈ Exts(T ), Base(E) is consistent. Then, T satisfies con-
sistency (Proposition 4, [1]). Moreover, from Proposition 3, T is closed under sub-
arguments.

Proof of Proposition 4. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such
that R is conflict-dependent. Assume that T is closed under sub-arguments and satis-
fies consistency. Assume also that T violates closure under CN. Thus, ∃E ∈ Exts(T )
such that Concs(E) �= CN(Concs(E)). This means that ∃x ∈ CN(Concs(E)) and
x /∈ Concs(E). Besides, CN(Concs(E)) ⊆ CN(Base(E)). Thus, x ∈ CN(Base(E)).
Since CN verifies finiteness, then ∃X ⊆ Base(E) such that X is finite and x ∈ CN(X).
Moreover, from Proposition 5 (in [1]), Base(E) is consistent. Then, X is consistent as
well (from Property 2 in [2]). Consequently, the pair (X, x) is an argument. Besides,
since x /∈ Concs(E) then (X, x) /∈ E . This means that ∃a ∈ E such that aR(X, x). Fi-
nally, sinceR is conflict-dependent, then Supp(a)∪X is inconsistent and consequently
Base(E) is inconsistent. This contradicts the assumption.
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Proof of Theorem 8. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such that
R is conflict-dependent. Let E ∈ Exts(T ). Since T satisfies Postulates 1, 2 and 3, then
Base(E) is consistent (from Proposition 3). Assume now that Base(E) is not maximal
for set inclusion. Thus, ∃x ∈ Σ \ Base(E) such that Base(E) ∪ {x} is consistent.
This means that {x} is consistent. Thus, ∃a ∈ Arg(Σ) such that Supp(a) = {x}.
Since x /∈ Base(E), then a /∈ E . Since E is a stable extension, then ∃b ∈ E such
that bRa. Since R is conflict-dependent, then Supp(a) ∪ Supp(b) is inconsistent. But,
Supp(b) ⊆ Base(E), this would mean that Base(E)∪{x} is inconsistent. Contradiction.

Let E ∈ Exts(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction
of arguments is monotonic. Let a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E). As-
sume that a /∈ E , then ∃b ∈ E such that bRa. Since R is conflict-dependent, then
Supp(a)∪Supp(b) is inconsistent. Besides, Supp(a)∪Supp(b) ⊆ Base(E). This means
that Base(E) is inconsistent. Contradiction.

Let now Ei, Ej ∈ Exts(T ). Assume that Base(Ei) = Base(Ej). Then,
Arg(Base(Ei)) = Arg(Base(Ej)). Besides, from bullet 2 of this proof, Ei =
Arg(Base(Ei)) and Ej = Arg(Base(Ej)). Consequently, Ei = Ej .

Proof of Proposition 5. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ s.t.
R is conflict-dependent and T satisfies consistency and closure under sub-arguments.
If Exts(T ) = ∅, then |Exts(T )| = 0. If Exts(T ) �= ∅, then |Exts(T )| ≤ |Max(Σ)|
(from Theorem 8).

Proof of Property 2. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such that
R ∈ �s3. Let S ∈ Max(Σ). Since |Ext(T )| = |Max(Σ)|, then from Theorem 8, ∃E ∈
Exts(T ) such that Base(E) = S. Besides, from the same theorem, E = Arg(Base(E)),
thus E = Arg(S). Consequently, Arg(S) ∈ Exts(T ).

Proof of Theorem 9. It was shown under any Tarskian logic that the attack relation
proposed in [9] and called assumption attack verifies the correspondence between stable
extensions and maximal subbases. Thus, assumption attack belongs to �s3.

Proof of Theorem 10. Let T = (Arg(Σ), R) be an AS over a knowledge base Σ such
that R ∈ �s3. Then, |Exts(T )| = |Max(Σ)|. There are two cases: i) Σ contains only
inconsistent formulas, thus Max(Σ) = {∅} and Exts(T ) = {∅} since Arg(Σ) = ∅. ii)
Σ contains at lest one consistent formula x. Thus, ∃S ∈ Max(Σ) such x ∈ S. Since
R ∈ �s3, then Arg(S) ∈ Exts(T ).
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Abstract. Logic-based argumentation systems are developed for reasoning with
inconsistent information. They consist of a set of arguments, attacks among them
and a semantics for the evaluation of arguments. Preferred semantics is favored
in the literature since it ensures the existence of extensions (i.e., acceptable sets
of arguments), and it guarantees a kind of maximality, accepting thus arguments
whenever possible.

This paper proposes the first study on the outcomes under preferred semantics
of logic-based argumentation systems that satisfy basic rationality postulates. It
focuses on systems that are grounded on Tarskian logics, and delimits the number
of preferred extensions they may have. It also characterizes both their extensions
and their sets of conclusions that are drawn from knowledge bases. The results
are disappointing since they show that in the best case, the preferred extensions of
a system are computed from the maximal consistent subbases of the knowledge
base under study. In this case, the system is coherent, that is preferred extensions
are stable ones. Moreover, we show that both semantics are useless in thic case
since they ensure exactly the same result as naive semantics. Apart from this case,
the outcomes of argumentation systems are counter-intuitive.

1 Introduction

An important problem in the management of knowledge-based systems is the handling
of inconsistency. Inconsistency may be present because the knowledge base includes
default rules (e.g. [16]) or because the knowledge comes from several sources of infor-
mation (e.g. [9]).

Argumentation theory is an alternative approach for reasoning with inconsistent in-
formation. It is based on the key notion of argument which explains why a conclusion
may be drawn from a given knowledge base. In fact, an argumentation system is a
set of arguments, an attack relation and a semantics for evaluating the arguments (see
[5,13,14,17] for some examples of such systems). Surprisingly enough, in most exist-
ing systems, there is no characterization of the kind of outputs that are drawn from
a knowledge base. To say it differently, the properties of those outputs are unknown.
These properties should broadly depend on the chosen semantics. It is worth mention-
ing that in all existing systems, Dung’s semantics [11] or variants of them are used.
The so-called Preferred semantics is the most favored one. It enjoys a kind of maxi-
mality which leads to the acceptance of arguments whenever possible. This semantics
was mainly proposed as an alternative for stable semantics which does not guarantee
the existence of stable extensions. While we may find some works that investigate the
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outcomes of particular systems under stable semantics [8], there is no such work un-
der preferred semantics. Thus, the outcomes under this semantics are still completely
mysterious and unexplored.

This paper investigates for the first time the outcomes under preferred semantics of
argumentation systems that are grounded on Tarskian logics [20] and that satisfy the
basic rationality postulates proposed in [1]. We identify for the first time the maximum
number of preferred extensions those systems may have, and characterize both their ex-
tensions and their sets of conclusions that are drawn from knowledge bases. The study
completely abstracts from the logic and the attack relation. The results are disappoint-
ing. They show that in the best case, the preferred extensions of a system are computed
from all the maximal consistent subbases of the knowledge base under study. In this
case, the argumentation system is coherent, i.e., its preferred extensions coincide with
its stable ones. In a companion paper [2], we have shown that stable semantics does not
play any role in this case since the output of a system under this semantics is exactly
what is returned by the same system under naive semantics (i.e., the maximal conflict-
free sets of arguments). Consequently, preferred semantics is also useless in this case. In
all the remaining cases we identified, the argumentation systems return counter-intuitive
results. To sum up, preferred semantics is not commended for instantiations of Dung’s
framework with Tarskian logics.

The paper is organized as follows: we start by defining the logic-based argumenta-
tion systems we are interested in and by recalling the three basic postulates that such
systems should obey. In a subsequent section, we investigate the properties of the pre-
ferred extensions of those systems. Next, we study the inferences that are drawn from a
knowledge base by argumentation systems under preferred semantics. The last section
is devoted to some concluding remarks.

2 Logic-Based Argumentation Systems and Rationality Postulates

In this paper, we consider abstract logic-based argumentation systems; that is systems
that are grounded on any Tarskian logic [20] and that use any attack relation. Such
abstraction makes our study very general.

According to Alfred Tarski, an abstract logic is a pair (L, CN) whereL is a set of well-
formed formulas. Note that there is no particular requirement on the kind of connectors
that may be used. CN is a consequence operator that returns the set of formulas that are
logical consequences of another set of formulas according to the logic in question. It
should satisfy the following basic properties:

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y ⊆fX

CN(Y )1 (Finiteness)
4. CN({x}) = L for some x ∈ L (Absurdity)
5. CN(∅) �= L (Coherence)

The associated notion of consistency is defined as follows: A set X ⊆ L is consistent
wrt a logic (L, CN) iff CN(X) �= L. It is inconsistent otherwise. Besides, arguments are
built from a knowledge base Σ ⊆ L as follows:

1 Y ⊆f X means that Y is a finite subset of X .



74 L. Amgoud

Definition 1 (Argument). Let Σ be a knowledge base. An argument is a pair (X, x)
s.t. X ⊆ Σ, X is consistent, and x ∈ CN(X)2. An argument (X, x) is a sub-argument
of another argument (X ′, x′) iff X ⊆ X ′.

Notations: Supp and Conc denote respectively the support X and the conclusion x of
an argument (X, x). For all S ⊆ Σ, Arg(S) denotes the set of all arguments that can
be built from S by means of Definition 1. Sub is a function that returns all the sub-
arguments of a given argument. For all E ⊆ Arg(Σ), Concs(E) = {Conc(a) | a ∈ E}
and Base(E) =

⋃
a∈E Supp(a). Max(Σ) is the set of all maximal (for set inclusion)

consistent subbases of Σ. Free(Σ) =
⋂
Si where Si ∈ Max(Σ), and Inc(Σ) =

Σ \ Free(Σ). Finally, CΣ denote the set of all minimal conflicts3 of Σ.

An argumentation system for reasoning over a knowledge base Σ is defined as follows.

Definition 2 (Argumentation system). An argumentation system (AS) over a knowl-
edge base Σ is a pair T = (Arg(Σ),R) such thatR ⊆ Arg(Σ)× Arg(Σ) is an attack
relation. For a, b ∈ Arg(Σ), (a, b) ∈ R (or aRb) means that a attacks b.

Throughout the paper, the attack relation is left unspecified.
Arguments are evaluated using preferred semantics [11]. For the purpose of this pa-

per, we also need to recall the definition of stable semantics. Preferred semantics is
based on two requirements: conflict-freeness and defence. Recall that a set E of argu-
ments is conflict-free iff �a, b ∈ E such that aRb. It defends an argument a iff ∀b ∈
Arg(Σ), if bRa, then ∃c ∈ E such that cRb.

Definition 3. Let T = (Arg(Σ),R) be an AS and E ⊆ Arg(Σ).

– E is an admissible extension iff E is conflict-free and defends all its elements.
– E is a preferred extension iff it is a maximal (for set inclusion) admissible extension.
– E is a stable extension iff E is conflict-free and attacks any argument in Arg(Σ)\E .

It is worth recalling that each stable extension is a preferred one but the converse is
not true. Let Extx(T ) denote the set of all extensions of T under semantics x where p
and s stand respectively for preferred and stable. When we do not need to specify the
semantics, we use the notation Ext(T ) for short.

The set of conclusions drawn from a knowledge base Σ using an argumentation
system T = (Arg(Σ),R) contains only the common conclusions of the extensions.

Definition 4 (Output). Let T = (Arg(Σ),R) be an AS over a knowledge base Σ.
Output(T ) = {x ∈ L | ∀E ∈ Ext(T ), ∃a ∈ E s.t. Conc(a) = x}.

In [7], it was shown that not any instantiation of Dung’s abstract argumentation frame-
work is acceptable. Some instantiations like [15,18] may lead in some cases to unde-
sirable outputs. Consequently, some rationality postulates that any system should obey

2 Generally, the support X is minimal (for set inclusion). In this paper, we do not need to make
this assumption.

3 A set C ⊆ Σ is a minimal conflict iff C is inconsistent and ∀x ∈ C, C\{x} is consistent.
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were proposed. Postulates are desirable properties that any reasoning system should en-
joy. In [1], those postulates were revisited and extended to any Tarskian logic. The first
postulate concerns the closure of the system’s output under the consequence operator
CN. The idea is that the formalism should not forget conclusions.

Postulate 1 (Closure under CN). Let T = (Arg(Σ),R) be an AS over a knowledge
base. T satisfies closure iff for all E ∈ Ext(T ), Concs(E) = CN(Concs(E)).

The second rationality postulate ensures that the acceptance of an argument implies also
the acceptance of all its sub-parts.

Postulate 2 (Closure under sub-arguments). Let T = (Args(Σ), R) be an AS. T is
closed under sub-arguments iff for all E ∈ Ext(T ), if a ∈ E , then Sub(a) ⊆ E .

The third postulate ensures that the set of conclusions supported by each extension is
consistent.

Postulate 3 (Consistency). Let T = (Arg(Σ),R) be an AS over a knowledge base Σ.
T satisfies consistency iff for all E ∈ Ext(T ), Concs(E) is consistent.

The following interesting result is shown in [1] under any acceptability semantics.

Proposition 1. [1] Let T = (Arg(Σ),R) be an AS over a knowledge base Σ. If T sat-
isfies consistency and closure under sub-arguments, then for all E ∈ Ext(T ), Base(E)
is consistent.

It was shown in [1] that in order to satisfy these postulates, the attack relation should
capture inconsistency. This is an obvious requirement especially for reasoning about
inconsistent information. Note also that all existing attack relations verify this property
(see [14] for an overview of those relations defined under propositional logic).

Definition 5 (Conflict-dependent). An attack relation R is conflict-dependent iff
∀a, b ∈ Arg(Σ), if aRb then Supp(a) ∪ Supp(b) is inconsistent.

3 Properties of Preferred Extensions

Throughout the paper, we assume argumentation systems T = (Arg(Σ),R) that are
built over a knowledge base Σ. These systems are assumed to be sound in the sense that
they enjoy the three rationality postulates described in the previous section. It is worth
recalling that the attack relation is a crucial parameter in a system since the satisfaction
of the postulates depends broadly on it. For instance, it was shown in [1] that argumen-
tation systems that use symmetric relations may violate the consistency postulate. This
is particularly the case when the knowledge base contains a ternary or a n-ary minimal
conflict (with n > 2). Thus, such symmetric systems [10] should be avoided and are
not concerned by our study.

Our aim in this section is to investigate the properties of preferred extensions of
sound argumentation systems. We will answer the following interesting questions.
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1. What is the number of preferred extensions an AS may have?
2. What is the link between each preferred extension and the knowledge base Σ?
3. Is the set of formulas underlying a preferred extension consistent?
4. What is the real added value of preferred semantics compared to stable semantics?

To put it differently, does preferred semantics solve any problem encountered by
stable one?

We start by showing that the argumentation systems that satisfy consistency and closure
under sub-arguments, satisfy also the strong version of consistency. Indeed, the union
of the supports of all arguments of each preferred extension is a consistent subbase of
Σ. This result is interesting since it is in accordance with the idea that an extension
represents a coherent position/point of view.

Proposition 2. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T
satisfies consistency and closure under sub-arguments. For all E ∈ Extp(T ), Base(E)
is consistent.

Proof. Let T = (Arg(Σ),R) be an AS s.t.R is conflict-dependent and T satisfies con-
sistency and closure under sub-arguments. From Proposition 1, it follows immediately
that for all E ∈ Extp(T ), Base(E) is consistent.

In addition to the fact that the subbase computed from a preferred extension is con-
sistent, we show next that it is unique. Indeed, the subbase computed from one exten-
sion can never be a subset of a subbase computed from another extension. Thus, the
preferred extensions of an argumentation system return completely different subbases
of Σ.

Proposition 3. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T
satisfies Postulates 2 and 3. For all Ei, Ej ∈ Extp(T ), if Base(Ei) ⊆ Base(Ej) then
Ei = Ej .

Proof. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T satisfies
consistency and closure under sub-arguments. Assume that Ei, Ej ∈ Extp(T ) and
Base(Ei) ⊆ Base(Ej). We first show that ∀a ∈ Arg(Base(Ei)), Ej ∪ {a} is conflict-
free. Let a ∈ Arg(Base(Ei)). Assume that Ej ∪ {a} is not conflict-free. Thus, ∃b ∈ Ej
such that aRb or bRa. SinceR is conflict-dependent, then Supp(a)∪Supp(b) is incon-
sistent. Besides, Supp(a) ⊆ Base(Ej). Thus, Base(Ej) is inconsistent. This contradicts
Proposition 2.

Let E = Ej ∪ (Ei \ Ej). From above, it follows that E is conflict-free. Moreover, E
defends any element in Ej (since Ej ∈ Extp(T )) and any element in Ei \ Ej (since Ei ∈
Extp(T )). Thus, E is an admissible set. This contradicts the fact that Ej ∈ Extp(T ).

In [2], we have shown that the subbases computed from the stable extensions of any
argumentation system that satisfies the postulates are maximal (for set inclusion) con-
sistent subbases of Σ. In what follows, we show that this is not necessarily the case for
preferred extensions. Note that this does not mean that a preferred extension can never
return a maximal consistent subbase. The previous result guarantees that the maximal
consistent subbases containing a non-maximal subbase computed from a given exten-
sion will never be returned by any other extension of the same system.
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Proposition 4. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T
satisfies consistency and closure under sub-arguments. Let E ∈ Extp(T ). If Base(E) /∈
Max(Σ), then ∀S ∈ Max(Σ) s.t. Base(E) ⊂ S, �E ′ ∈ Extp(T ) s.t. Base(E ′) = S.

Proof. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T satis-
fies consistency and closure under sub-arguments. Let E ∈ Extp(T ). Assume that
Base(E) /∈ Max(Σ) and that ∃S ∈ Max(Σ) s.t. Base(E) ⊂ S and ∃E ′ ∈ Extp(T ) s.t.
Base(E ′) = S. Thus, ∃x ∈ S \ Base(E ′). Moreover, ∃a ∈ E ′ such that x ∈ Supp(a)
and a /∈ E . Besides, from Proposition 2, it holds that E = E ′. Contradiction.

The non-maximality of the subbases that are computed from preferred extensions is due
to the existence of undecided arguments under preferred semantics. Indeed, in [6] an-
other way of defining Dung’s semantics was provided. It consists of labeling the nodes
of the graph corresponding to the argumentation system with three possibles values:
{in, out, undec}. The value in means that the argument is accepted, the value out means
that the argument is attacked by an accepted arguments, and finally the value undec
means that the argument is neither accepted nor attacked by an accepted argument. It is
thus possible that some formulas appear only in undecided arguments.

Another particular property of preferred extensions is the fact that they may not be
closed in terms of arguments. Indeed, they may not contain all the arguments that may
be built from their bases. Indeed, it is possible that E is a preferred extension of a
system and E �= Arg(Base(E)). Surprisingly enough, the supports and conclusions of
the missed arguments are conclusions of the extensions. Thus, even if an argument of
Arg(Base(E)) does not belong to the extension E , all the formulas of its supports are
conclusions of arguments in the extension, and the same holds for its conclusion.

Proposition 5. Let T = (Arg(Σ),R) be an AS s.t. T is closed under CN and under
sub-arguments. Let E ∈ Extp(T ). For all a ∈ Arg(Base(E)), Supp(a) ⊆ Concs(E)
and Conc(a) ∈ Concs(E).

Proof. Let T = (Arg(Σ),R) be an AS s.t. T is closed under CN and under sub-
arguments. Let E ∈ Extp(T ) and a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E).
Since T is closed under sub-arguments, then Base(E) ⊆ Concs(E) (proved in
[1]). Thus, Supp(a) ⊆ Concs(E). Besides, by monotonicity of CN, CN(Supp(a)) ⊆
CN(Base(E)). Since T is also closed under CN, then Concs(E) = CN(Base(E)) (proved
in [1]). Thus, CN(Supp(a)) ⊆ Concs(E) and Conc(a) ∈ Concs(E).

We show next that the free part of Σ (i.e., the formulas that are not involved in any
conflict) is inferred by any argumentation system under preferred semantics. The rea-
son is that the set of arguments built from Free(Σ) is an admissible extension of any
argumentation systems whose attack relations are conflict-dependent. Thus, this is true
even for systems that do not satisfy the postulates.

Proposition 6. Let T = (Arg(Σ), R) be s.t. R is conflict-dependent. The set
Arg(Free(Σ)) is an admissible extension of T .

Proof. Let (Arg(Σ),R) be s.t. R is conflict-dependent. Let a ∈ Arg(Free(Σ)). As-
sume that ∃b ∈ Arg(Σ) s.t. aRb or bRa. Since R is conflict-dependent, then ∃C ∈
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CΣ such that C ⊆ Supp(a) ∪ Supp(b). By definition of an argument, both Supp(a)
and Supp(b) are consistent. Then, C ∩ Supp(a) �= ∅. This contradicts the fact that
Supp(a) ⊆ Free(Σ). Thus, Arg(Free(Σ)) is conflict-free and can never be attacked.

We show next that the set Arg(Free(Σ)) is contained in every preferred extension. This
is true for any argumentation system that uses a conflict-dependent attack relation. That
is, it is always true.

Proposition 7. Let T = (Arg(Σ), R) be s.t. R is conflict-dependent. For all E ∈
Extp(T ), Arg(Free(Σ)) ⊆ E .

Proof. Let (Arg(Σ),R) be s.t. R is conflict-dependent. Assume that ∃E ∈ Extp(T )
such that Arg(Free(Σ)) �⊆ E . Thus, either E ∪ Arg(Free(Σ)) is conflicting or E does
not defend elements of Arg(Free(Σ)). Both cases are impossible since arguments of
Arg(Free(Σ)) neither attack nor are attacked by any argument.

The next result shows that formulas of Free(Σ) are always drawn from Σ under pre-
ferred semantics.

Proposition 8. Let T = (Arg(Σ),R) be s.t. R is conflict-dependent. It holds that
Free(Σ) ⊆ Output(T ).

Proof. Let T = (Arg(Σ),R) be s.t.R is conflict-dependent. From Proposition 7, ∀E ∈
Extp(T ), Arg(Free(Σ)) ⊆ E . Besides, ∀x ∈ Free(Σ), ({x}, x) ∈ Arg(Free(Σ)),
thus ({x}, x) ∈ E . Consequently, ∀E ∈ Extp(T ), Free(Σ) ⊆ Concs(E). It follows
that Free(Σ) ⊆

⋂
Concs(E) where E ∈ Extp(T ).

In [2], we have shown that formulas of the set Free(Σ) may be missed by argumen-
tation systems under stable semantics. This is particularly the case when the systems
do not have stable extensions. We have also seen that this problem is due to the use
of skewed attack relations. Even if those relations ensure the rationality postulates, the
corresponding systems do not return satisfactory results since they may miss intuitive
conclusions like Free(Σ). The previous results show that since preferred semantics
guarantees the existence of preferred extensions, then it guarantees also the inference
of elements of Free(Σ).

The previous results make it possible to delimit the maximum number of preferred
extensions a system may have. It is the number of consistent subbases of Σ that contain
the free part of Σ and which are pairwise different. Note that this number is less than
the number of consistent subbases of Σ.

Proposition 9. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T
satisfies consistency and closure under sub-arguments. It holds that 1 ≤ |Extp(T )| ≤
|Cons(Σ)| where Cons(Σ) = {S | S ⊆ Σ, S is consistent and Free(Σ) ⊆ S}.

Proof. From Proposition 2, each preferred extension returns a consistent subbase of Σ.
From Proposition 3, it is not possible to have the same subbase several times. Finally,
from Proposition 7, each preferred extension contains Arg(Free(Σ)).
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Until now, we showed that preferred extensions reflect coherent points of view since
they rely on consistent subbases of Σ. We also showed that when Σ is finite, each argu-
mentation system that enjoy the rationality postulates has a finite number of preferred
extensions. Proposition 9 provides the maximum number of such extensions. We thus
answered all our questions.

4 Inferences under Preferred Semantics

In this section, we investigate the characteristics of the set Output(T ) of any argumen-
tation system T that satisfies the postulates. Indeed, we study the kind of inferences
that are made by an argumentation system under preferred semantics. From the results
of the previous section, this set is defined as follows.

Proposition 10. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T
satisfies the three postulates. It holds that Output(T ) =

⋂
CN(Si) s.t. Si ∈ Cons(Σ)

and Si = Base(Ei) where Ei ∈ Extp(T ).

Proof. Let T = (Arg(Σ),R) be an AS s.t. R is conflict-dependent and T satisfies the
three postulates. Let E ∈ Extp(T ). Since T is closed both under CN and under sub-
arguments, then Concs(E) = CN(Base(E)) (result shown in [1]). From Proposition
7, Free(Σ) ⊆ Base(E). Moreover, from Proposition 2, Base(E) is consistent. Thus,
Base(E) ∈ Cons(Σ). From Definition 4, Output(T ) =

⋂
Concs(Ei), Ei ∈ Extp(T ).

Thus, Output(T ) =
⋂
Base(Ei), Ei ∈ Extp(T ).

It is worth noticing that preferred semantics is more powerful than stable semantics
only in case stable extensions do not exist and Free(Σ) �= ∅. Indeed, in this case
the output set of any argumentation system is empty ((Output(T )) = ∅) under stable
semantics. Thus, the free formulas of Σ will not be inferred while they are guaranteed
under preferred semantics. However, this does not mean that outputs under preferred
semantics are “complete” and “intuitive”. We show that some argumentation systems
may miss in some cases some interesting conclusions. Worse yet, they may even return
counter-intuitive ones. Let us illustrate our ideas on the following example.

Example 1. Let us consider the following propositional knowledge base Σ = {x,¬x∧
y}. The two formulas are equally preferred. From Proposition 10, it follows that any
reasonable argumentation that may be built over Σ will have one of the three following
outputs:

– Output1(T ) = ∅. This is the case of systems that have a unique and empty exten-
sion, or those which have two extensions E1 and E2 where Base(E1) = {x} and
Base(E2) = {¬x ∧ y}.

– Output2(T ) = CN({x}). This is the case of systems that have E1 as their unique
extension.

– Output3(T ) = CN({¬x ∧ y}). This is the case of systems that have E2 as their
unique extension.

Let us analyze the three cases. In the first one, the result is not satisfactory. Indeed, one
may expect to have y as a conclusion since it is not part of the conflict in Σ. Assume that
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x stands for “sunny day” and y for “My dog is sick”. It is clear that the two information
x and y are independent. This shows that argumentation systems are syntax-dependent.
The two other outputs (Output2(T ) and Output3(T )) are not satisfactory neither. The
reason in these cases is different. For instance, in Output2(T ), the formula x is inferred
from Σ while ¬x is not deduced. This discrimination between the two formulas is not
justified since the two formulas of Σ are assumed to be equally preferred.

Let us now analyze in detail all the possible situations that may occur. Throughout this
sub-section,�p denotes the set of all attack relations that ensure the three postulates for
any argumentation system, that is for any Σ. Indeed, �p = {R ⊆ Arg(Σ)× Arg(Σ) |
R is conflict-dependent and (Arg(Σ),R) satisfies Postulates 1, 2 and 3 under preferred
semantics} for all Σ. We distinguish two categories of attack relations: those that always
lead to a unique extension (�u) and those that may lead to multiple extensions (�m),
where �p = �u ∪ �m.

Unique Extension. Let us focus on argumentation systems T = (Arg(Σ),R) that
satisfy the three postulates and that use attack relations of the set �u. Thus, Extp(T ) =
{E}. Three possible situations may occur:

Extp(T ) = {∅}: In this case, the output set is empty, and consequently, there is no free
formula, i.e. all the formulas of Σ are involved in at least one conflict.

Property 1. Let T = (Arg(Σ),R) be an AS s.t. R ∈ �u. If Extp(T ) = {∅}, then
Output(T ) = ∅ and Free(Σ) = ∅.

Proof. Since Extp(T ) = {∅}, then from Definition 4 Output(T ) = ∅. From Proposi-
tion 8, it follows that Free(Σ) = ∅.

Note that the fact that Free(Σ) = ∅ does not imply that Extp(T ) = {∅}. At a first glance,
the previous result may seem reasonable since all the formulas in Σ are conflicting and
are all equally preferred. However, Example 1 shows that this is not the case since there
are some interesting formulas that may be missed.

Extp(T ) = {Arg(Free(Σ))}: Argumentation systems that have the unique preferred
extension Arg(Free(Σ)) return as conclusions all the formulas that follow under
CN from Free(Σ).

Property 2. Let T = (Arg(Σ),R) be an AS s.t. R ∈ �u. If Extp(T ) =
{Arg(Free(Σ))}, then Output(T ) = CN(Free(Σ)).

Proof. Let T = (Arg(Σ),R) be an AS s.t. R ∈ �u. Assume that Extp(T ) =
{Arg(Free(Σ))}. Let E = Arg(Free(Σ)). Since T is closed both under sub-
arguments and CN, then Concs(E) = CN(Base(E)) ([1]). Thus, Concs(E) =
CN(Free(Σ)). Besides, Output(T ) = Concs(E), thus Output(T ) = CN(Free(Σ)).

It is worth mentioning that such outputs correspond exactly to the so-called free conse-
quences developed in [4] for handling inconsistency in propositional knowledge bases.
The authors in [4] argue that this approach is very conservative. Indeed, if Free(Σ) is
empty, then nothing can be drawn from Σ. This may lead to miss intuitive formulas as
shown in the next example.
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Example 2. Let us consider the following propositional knowledge base Σ = {x,¬x∧
y, z}. It can be checked that Free(Σ) = {z}. Thus, any reasonable argumentation
system that may be built over Σ and that uses an attack relation of category �u will
have the set CN({z}) as output. However, y should also be inferred from Σ.

Extp(T ) = {E} where Arg(Free(Σ)) ⊂ E : In this case, there is at least one argument
in the extension E whose support contains at least one formula which is involved
in at least one conflict in Σ. However, since Base(E) is consistent, then there are
some formulas involved in the same conflict which are not considered. Then, there
is a discrimination between elements of Σ which leads to ad hoc results as shown
by the following result.

Proposition 11. Let T = (Arg(Σ),R) be an AS s.t. R ∈ �u. If Extp(T ) = {E} and
Arg(Free(Σ)) ⊂ E , then ∃x ∈ Inc(Σ) s.t. x ∈ Output(T ) and ∃x′ ∈ Inc(Σ) s.t.
x′ /∈ Output(T ).

Proof. Let T = (Arg(Σ),R) be an AS s.t.R ∈ �u. Assume that Extp(T ) = {E} and
Arg(Free(Σ)) ⊂ E . Thus, ∃a ∈ E and a /∈ Arg(Free(Σ)). Consequently, Supp(a) �⊆
Free(Σ). Thus, ∃x ∈ Supp(a) and x /∈ Free(Σ). Thus, x ∈ Inc(Σ). Moreover,
since T is closed under sub-arguments, then from [1], Base(E) ⊆ Output(T ), then
x ∈ Output(T ). Besides, {x} is consistent since Supp(a) is consistent. Thus, ∃C ∈ CΣ
such that |C| > 1 and x ∈ C. Since T satisfies consistency, then C �⊆ Output(T ).
Thus, ∃x′ ∈ C such that x′ /∈ Output(T ).

Let us illustrate this result on the following critical example.

Example 2 (Cont): Assume again the propositional knowledge base Σ = {x,¬x ∧
y, z}. Argumentation systems of the previous category may return either E1 or E2 (not
both) such that Base(E1) = {x, z} and Base(E2) = {¬x ∧ y, z}. In the first case,
Output(T ) = CN({x, z}). Thus, x ∈ Output(T ) while ¬x /∈ Output(T ). In the sec-
ond case, Output(T ) = CN({¬x∧y, z}), thus¬x ∈ Output(T ) while x /∈ Output(T ).
Both cases are undesirable since there is no reason to privilege x over¬x and vice versa.
Remember the case where x stands for “sunny day” and y for “my dog is sick”.

Multiple Extensions. Let us now tackle the second category of attack relations: the
ones that may lead to multiple preferred semantics. Let T = (Arg(Σ),R) be an AS s.t.
R ∈ �m and let Extp(T ) = {E1, . . ., En} such that n ≥ 1. We have seen previously that
each preferred extension gives birth to a consistent subbase of Σ. This subbase may be
either maximal (for set inclusion) or not. Moreover, the subbases of some extensions of
the same system may be maximal while those of the remaining extensions not. In what
follows, we study three possible cases.

Case 1: In this case, an argumentation system has at least one preferred extension
whose corresponding base is not maximal (i.e. ∃E ∈ Extp(T ) such that Base(E) /∈
Max(Σ)). The output set may be counter-intuitive since some priority will be given
to some formula. Let us consider the following example.
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Example 3. Let us consider the following propositional knowledge base that contains
four equally preferred formulas: Σ = {x, x → y, z, z → ¬y}. It can be checked that
Free(Σ) = ∅. An argumentation system that fits in Case 1 would have for instance, two
preferred extensions E1 and E2 such that Base(E1) = {x, x → y, z} and Base(E2) =
{z, z → ¬y}. Note that Base(E1) ∈ Max(Σ) while Base(E2) /∈ Max(Σ). The output
of this system is Output(T ) = CN({z}). Thus, z ∈ Output(T ) while the three other
formulas of Σ are not elements of Output(T ). This result is unjustified since all the
formulas of Σ are involved in the conflict and are equally preferred.

Case 2: The bases of all the preferred extensions of an argumentation system are maxi-
mal (for set inclusion). However, not all the maximal consistent subbases of Σ have
a corresponding preferred extension (i.e. ∀E ∈ Extp(T ), Base(E) ∈ Max(Σ) and
|Extp(T )| < |Max(Σ)|). The same problem described in Case 1 is encountered
here. Indeed, some formulas are privileged over others in an ad hoc way. Let us
consider the following example.

Example 3 (Cont): Let us consider again the knowledge base of Example 3. An argu-
mentation system that fits in Case 2 would have for instance, two preferred extensions
E1 and E2 such that Base(E1) = {x, x→ y, z} and Base(E2) = {x, x→ y, z → ¬y}.
Note that both subbases are maximal. It is easy to check that x, x → y ∈ Output(T )
while z, z → ¬y /∈ Output(T ). This result is again unjustified.

Case 3: The bases of all the preferred extensions of an argumentation system are maxi-
mal (for set inclusion). Moreover, any maximal consistent subbases of Σ has a cor-
responding preferred extension in the argumentation system (i.e. ∀E ∈ Extp(T ),
Base(E) ∈ Max(Σ) and |Extp(T )| = |Max(Σ)|). The outputs of such systems
are exactly the common conclusions that are drawn under CN from the maximal
consistent subbases of Σ.

Property 3. Let T = (Arg(Σ),R) be an AS s.t. R ∈ �m. If ∀E ∈ Extp(T ), Base(E)
∈ Max(Σ) and |Extp(T )| = |Max(Σ)|, then Output(T ) =

⋂
Si where Si ∈ Max(Σ).

Proof. This follows from the definition of Output(T ) and the fact that for each pre-
ferred extension E , Concs(E) = CN(Base(E)).

It is worth noticing that this output corresponds to the universal consequences devel-
oped in [19] for handling inconsistency in propositional knowledge bases. Thus, ar-
gumentation systems of this category generalize the coherence-based approach to any
logic. Consequently, they inherit its problems, namely the one described in Example 1
(missing intuitive conclusions). It is also worth recalling that there exist attack relations
that lead to this result. Assumption attack developed in [12] is one of them. Indeed, any
argumentation system that use this relation will have the output described in Property
3. Finally, we have shown in another paper that the stable extensions of any argumenta-
tion system (that satisfies consistency and closure under sub-arguments) return maximal
consistent subbases of Σ. We show next that when all the maximal subbases of Σ have
a corresponding stable extension in a system, then this latter is certainly coherent, i.e.,
its preferred extensions are stable ones.



The Outcomes of Logic-Based Argumentation Systems under Preferred Semantics 83

Attack relation Cases Output Problem
R ∈ �u Extp(T ) = {∅} ∅ M

Extp(T ) = {Arg(Free(Σ))} CN(Free(Σ)) M
Extp(T ) = {E} and Arg(Free(Σ)) ⊆ E CN(S), S ∈ Cons(Σ) U

R ∈ �m ∃Ei s.t. Base(Ei) /∈ Max(Σ)
⋂

i=1.k

CN(Si), {S1, . . . ,Sk} ⊆ Cons(Σ) U

∀Ei, Base(Ei) ∈ Max(Σ) and |Extp(T )| < |Max(Σ)|
⋂

i=1.k

CN(Si), {S1, . . . ,Sk} ⊂ Max(Σ) U

∀Ei, Base(Ei) ∈ Max(Σ) and |Extp(T )| = |Max(Σ)|
⋂

CN(Si), Si ∈ Max(Σ) M

Fig. 1. Outcomes under preferred semantics (M stands for missing conclusions and U for
undesirable ones)

Proposition 12. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ s.t.R ∈ �p.
If |Exts(T )| = |Max(Σ)|, then T is coherent.

Proof. Let T = (Arg(Σ),R) be an AS over a knowledge base Σ such thatR ∈ �p. By
definition of stable semantics, Exts(T ) ⊆ Extp(T ). Assume now that E ∈ Extp(T ).
From Proposition 2, Base(E) is consistent. Thus, ∃S ∈ Max(Σ) such that Base(E) ⊆
S. From Property 4 in [3], it holds that Arg(Base(E)) ⊆ Arg(S). However, E ⊆
Arg(Base(E)) and Arg(S) ∈ Exts(T ). Thus, E ⊆ Arg(S) where Arg(S) ∈ Extp(T ).
This contradicts the fact that E is a preferred extension, thus maximal.

The results of this section show that reasoning under preferred semantics is not recom-
mended. Figure 1 summaries the different outputs that may be encountered under this
semantics.

5 Conclusion

In this paper, we characterized for the first time the outcomes of argumentation systems
under preferred semantics. To the best of our knowledge there is no work that tackled
this issue. In [8], the author studied the outcomes of a very particular system under sta-
ble semantics. In [14], the authors focused on argumentation systems that are grounded
on propositional logic and studied the properties of various systems using specified at-
tack relations. The focus was mainly on the satisfaction of rationality postulates. In this
paper, we assume abstract logic-based argumentations in which neither the underlying
logic nor the attack relations are specified. This abstraction makes our results more gen-
eral and powerful. Moreover, among all the possible instantiations of this setting, we
considered those that satisfy some basic rationality postulates. Indeed, systems that vi-
olate those postulates should be avoided as they certainly lead to undesirable results. A
first important result consists of delimiting the maximum number of preferred exten-
sions a system may have. We have shown that if the knowledge base under study is finite,
then any argumentation system buit over it has a finite number of preferred extensions.
Then, we have shown that from each preferred extension, a (maybe maximal) consis-
tent subbase of the knowledge base is computed. This subbase contains all the formulas
that are not involved in any conflict. We have then shown that in the best case, reason-
ing under preferred semantics may lead to missing some interesting conclusions. This
is mainly due to the fact that argumentation systems are syntax-dependent. Moreover,
they coincide with the coherence-based approach [4,19], thus inherit all its weaknesses.
In the worst case, preferred semantics will lead to undesirable conclusions. The main
problem here is that the attack relation defines some “artificial” priorities between the
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formulas of the knowledge base leading to ad hoc outputs. The only good news is that
preferred semantics performs better than stable one in the sense that it guarantees the
inference of the free formulas (i.e., the formulas that are not involved in any conflict).

To sum up, we have shown (for the large class of argumentation systems we dis-
cussed) that preferred semantics should be avoided.
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Abstract. We propose the formalism of Monadic Second Order Logic (MSO)
as a unifying framework for representing and reasoning with various semantics
of abstract argumentation. We express a wide range of semantics within the pro-
posed framework, including the standard semantics due to Dung, semi-stable,
stage, cf2, and resolution-based semantics. We provide building blocks which
make it easy and straight-forward to express further semantics and reasoning
tasks. Our results show that MSO can serve as a lingua franca for abstract argu-
mentation that directly yields to complexity results. In particular, we obtain that
for argumentation frameworks with certain structural properties the main compu-
tational problems with respect to MSO-expressible semantics can all be solved in
linear time. Furthermore, we provide a novel characterization of resolution-based
grounded semantics.

1 Introduction

Starting with the seminal work by Dung [18] the area of argumentation has evolved
to one of the most active research branches within Artificial Intelligence (see, e.g.,
[6]). Dung’s abstract argumentation frameworks, where arguments are seen as abstract
entities which are just investigated with respect to how they relate to each other, in terms
of “attacks”, are nowadays well understood and different semantics (i.e., the selection of
sets of arguments which are jointly acceptable) have been proposed. In fact, there seems
to be no single “one suits all” semantics, but it turned out that studying a particular
setting within various semantics and to compare the results is a central research issue
within the field. Different semantics give rise to different computational problems,
such as deciding whether an argument is acceptable with respect to the semantics under
consideration, that require different approaches for solving these problems.

This broad range of semantics for abstract argumentation demands for a unifying
framework for representing and reasoning with the various semantics. Such a unifying
framework would allow us to see what the various semantics have in common, in what
they differ, and ideally, it would offer generic methods for solving the computational
problems that arise within the various semantics. Such a unifying framework should be
general enough to accommodate most of the significant semantics, but simple enough
to be decidable and computationally feasible.
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In this paper we propose such a unifying framework. We express several semantics
within the framework, and we study its properties. The proposed unifying framework is
based on the formalism of Monadic Second Order Logic (MSO), which is a fragment of
Second Order logic with relational variables restricted to unary. MSO provides higher
expressiveness than First Order Logic while it has more appealing algorithmic proper-
ties than full Second Order logic. Furthermore, MSO plays an important role in various
parts of Computer Science. For instance, by Büchi’s Theorem, a formal language is reg-
ular if and only if it can be expressed by MSO (this also provides a link between MSO
and finite automata); furthermore, by Courcelle’s Theorem, MSO expressible properties
can be checked in linear time on structures of bounded treewidth.

Main Contributions. The results in this paper can be summarized as follows:

(1) We express a wide range of semantics within our proposed framework, including
the standard semantics due to Dung, semi-stable, stage, cf2, and resolution-based
semantics. For the latter, we present a new characterization that admits an MSO-
encoding without quantification over sets of attacks and thus provides additional
algorithmic implications.

(2) We provide MSO-building blocks which make it easy and straight-forward to ex-
press other semantics or to create new ones or variants.

(3) We also illustrate that any labeling-based semantics can be canonically expressed
within our framework. We show that the main computational problems can be
solved in linear time for all semantics expressible in our framework when restricted
to argumentation frameworks of certain structures. This includes decision problems
such as skeptical and brave acceptance, but also counting problems, for instance,
determining how many extensions contain a given argument.

Our results show that MSO is indeed a suitable unifying framework for abstract ar-
gumentation and can serve as a lingua franca for further investigations. Furthermore,
recent systems [28,29] showed quite impressive performance for evaluating MSO for-
mulas over graphs, thus the proposed framework can be exploited as a rapid-prototyping
approach to experiment with established and novel argumentation semantics.

Finally, we want to emphasise that in contrast to existing work [19,20,21,22] our
goal is not to provide new complexity results for a particular argumentation semantics,
but we propose MSO as a general logical framework for specifying argumentation se-
mantics, having fixed-parameter tractability results as a neat side effect (compared to
other approaches discussed below). Thus, in contrast to previous work, where MSO
techniques were used as an auxiliary tool for achieving tractability results for particular
semantics, our approach intends to raise MSO to a new conceptual level.

Related Work. Using MSO as a tool to express AI formalisms has been advocated
in [26,27]. In terms of abstract argumentation MSO-encodings were given in [19,22]
and implications in terms of parameterized complexity also appeared in [20,21].

Finding a uniform logical representation for abstract argumentation has been sub-
ject of several papers. While [7] used propositional logic for this purpose, [24] showed
that quantified propositional logic admits complexity-adequate representations. An-
other branch of research focuses on logic programming as common grounds for differ-
ent argumentation semantics, see [32] for a survey. Finally also the use of constraint
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satisfaction techniques was suggested [1,8]. All this research was mainly motivated
by implementation issues and led to systems such as ASPARTIX [23]. As mentioned
above, also MSO can serve this purpose, but in addition yields further results “for free”,
in particular in terms of complexity.

2 Background

We start this section by introducing (abstract) argumentation frameworks [18] and re-
calling the semantics we study in this paper (see also [4]).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a set
of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. We say that an argument a ∈ A is defended (in F ) by a set S ⊆ A if, for
each b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Example 1. In the following we use the AF F = ({a, b, c, d, e}, {(a, b), (b, a), (b, c),
(c, d), (d, e), (e, c)}) as running example. The graph representation is given as follows:

a b c d e

Semantics for argumentation frameworks are given via a function σ which assigns to
each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We first consider for σ the func-
tions naive , stb, adm , com , prf , grd , stg , and sem which stand for naive, stable, ad-
missible, complete, preferred, grounded, stage, and semi-stable semantics, respectively.
Towards the definition of these semantics we introduce two more formal concepts.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A ⇒ 2A

of F is defined as FF (S) = { x ∈ A | x is defended by S }. For a set S ⊆ A and an
argument a ∈ A, we write S �R a (resp. a �R S) in case there is an argument b ∈ S,
such that (b, a) ∈ R (resp. (a, b) ∈ R). Moreover, for a set S ⊆ A, we denote the set of
arguments attacked by S as S⊕

R = { x | S �R x }, and resp. S�
R = { x | x �R S },

and define the range of S as S+
R = S ∪ S⊕

R .

Example 2. In our running example FF ({a}) = {a}, FF ({b}) = {b, d}, {a}⊕R = {b},
{b}⊕R = {a, c} and {a}+R = {a, b}, {b}+R = {a, b, c}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of
F . For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S;
– S ∈ stb(F ), if S+

R = A;
– S ∈ adm(F ), if S ⊆ FF (S);
– S ∈ com(F ), if S = FF (S);
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;
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– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+
R ⊂ T+

R ;
– S ∈ stg(F ), if there is no T ∈ cf (F ), with S+

R ⊂ T+
R .

We recall that for each AF F , stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F )
holds, and that each of the considered semantics σ except stb satisfies σ(F ) �= ∅.
Moreover grd yields a unique extension for each AF F (in what follows identified by
grd(F )), which is the least fix-point of the characteristic function FF .

Example 3. Our running example F has four admissible sets, i.e. adm(F ) = {∅, {a},
{b}, {b, d}}, with {a} and {b, d} being the preferred extensions. The grounded exten-
sion is the empty set, moreover com(F ) = {∅, {a}, {b, d}} and stb(F ) = sem(F ) =
stg(F ) = {{b, d}}.

On the base of these semantics one can define the family of resolution-based seman-
tics [3], with the resolution-based grounded semantics being its most popular instance.

Definition 4. Given AF F = (A,R), a resolution β ⊂ R of F is a ⊆-minimal set
of attacks such that for each pair {(a, b), (b, a)} ⊆ R (a �= b) either (a, b) ∈ β
or (b, a) ∈ β. We denote the set of all resolutions of an AF F by γ(F ). Given a
semantics σ, the corresponding resolution-based semantics σ∗ is given by σ∗(F ) =

min
⊆

⋃
β∈γ(F )

{σ((A,R \ β))}.

Example 4. For our example AF F we get the two resolutions {(a, b)} and {(b, a)}. In
the case of resolution based grounded semantics this yields two candidates for exten-
sions grd((A,R \ {(a, b)})) = {b, d} and grd((A,R \ {(b, a)})) = {a}. As they are
not in ⊆-relation both are resolution-based grounded extensions and thus grd∗(F ) =
{{a}, {b, d}}.

Finally, let us consider the semantics cf2, which was introduced in [5] as part of a
general schema for argumentation semantics. cf2 semantics gained some interest as it
handles even and odd length cycles of attacks in a similar way. Towards a definition of
cf2 semantics we need the following concepts.

Definition 5. Given an AF F = (A,R) and a set S ⊆ A. By SCC(F ) we denote the
set of all strongly connected components of F . DF (S) denotes the set of arguments
a ∈ A attacked by an argument b ∈ S occurring in a different component. Finally, for
F = (A,R) and a set S of arguments,F |S := (A∩S,R∩(S×S)) andF−S := F |A\S .

Example 5. To illustrate DF consider our example AF and the set {b, d}. We have two
components {a, b} and {c, d, e} and that b attacks c. Hence c ∈ DF ({b, d}). Also b
attacks a and d attacks e but as both conflicts are within one component they do not add
to the set DF ({b, d}) and we have DF ({b, d}) = {c}.

Definition 6. Given an AF F = (A,R), for S ⊆ A we have that S ∈ cf2 (F ) if
one of the following conditions holds: (i) |SCC(F )| = 1 and S ∈ naive(F ); (ii)
∀C ∈ SCC(F ) : C ∩ S ∈ cf2 (F |C −DF (S)).

Example 6. For our example AF we obtain cf2 (F ) = {{a, e}, {a, d}, {a, c}, {b, d}}.
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Labeling-based semantics. So far we have considered so-called extension-based se-
mantics. However, there are several approaches defining argumentation semantics via
certain kind of labelings instead of extensions. As an example we consider the complete
labelings from [11].

Definition 7. Given an AF F = (A,R), a function L : A → {in, out, undec} is a
complete labeling iff the following conditions hold: (i) L(a) = in iff for each b with
(b, a) ∈ R, L(b) = out; (ii) L(b) = out iff there exists b with (b, a) ∈ R, L(b) = in.

There is a one-to-one mapping between complete extensions and complete labelings,
such that the set of arguments labeled with “in“ corresponds to a complete extension.

Example 7. The example AF has three complete labelings corresponding to the three
complete extensions: the labeling L1 corresponding to ∅ with L1(a) = L1(b) =
L1(c) = L1(d) = L1(e) = undec; the labeling L2 corresponding to {a} with L2(a) =
in, L2(b) = out, and L2(c) = L2(d) = L2(e) = undec; and the labeling L3 corre-
sponding to {b, d} with L1(b) = L1(d) = in and L3(a) = L3(c) = L3(e) = out.

Monadic Second Order Logic. Informally, Monadic Second Order Logic can be seen
as an extension of First Order Logic that admits quantification over sets. First Order
Logic is built from variables x, y, z, . . . referring to elements of the universe, atomic
formulas R(t1, . . . , tk), t1 = t2, with ti being variables or constants, the usual Boolean
connectives, and quantification ∃x, ∀x. MSO1 extends the language of First Order
Logic by set variablesX,Y, Z, . . . , atomic formulas t ∈ X with t a variable or constant,
and quantification over set variables. We further consider MSO2 an extension of MSO1

which is only defined on graphs (which is perfectly fine for our purposes). MSO2 adds
variables XE , Y E , ZE , . . . ranging over sets of edges of the graph and quantification
over such variables. In the following when talking about MSO we refer to MSO2.

For an MSO formula φ we usually write φ(x1, . . . , xp, X1, . . .Xq) to denote that the
free variables of φ are x1, . . . , xp, X1, . . .Xq . For a graph G = (V,E), v1, . . . , vp∈V ,
and A1, . . . Aq ⊆ V , we write G |= φ(v1, . . . , vp, A1, . . . Aq) to denote that the formula
φ holds true for G if xi is instantiated with vi and Xj is instantiated with Aj , 1 ≤ i ≤ p,
1 ≤ j ≤ q.

3 Encoding Argumentation Semantics in MSO

Building Blocks. We first introduce some shorthands simplifying notation when dealing
with subset relations and the range of extensions.

X ⊆ Y = ∀x (x ∈ X → x ∈ Y ) x /∈ X = ¬(x ∈ X)
X ⊂ Y = X ⊆ Y ∧ ¬(Y ⊆ X) x ∈ X+

R = x ∈ X ∨ ∃y(y ∈ X ∧ (y, x) ∈ R)
X �⊆ Y = ¬(X ⊆ Y ) X ⊆+

R Y = ∀x (x ∈ X+
R → x ∈ Y +

R )
X �⊂ Y = ¬(X ⊂ Y ) X ⊂+

R Y = X ⊆+
R Y ∧ ¬(Y ⊆+

R X)

Another important notion that underlies argumentation semantics is the notion of a set
being conflict-free. The following MSO formula encodes that a set X is conflict-free
w.r.t. the attack relation R:

cf R(X) = ∀x, y ((x, y) ∈ R→ (¬x ∈ X ∨ ¬y ∈ X))
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Next we give a building block for maximizing extensions using an (MSO expressible)
order :

max A,P (.),�(X) = P (X) ∧ ¬∃Y
(
Y ⊆ A ∧ P (Y ) ∧X � Y

)
Clearly we can also implement minimization by inverting the order, i.e.,
min A,P (.),�(X) = max A,P (.),�(X).

Standard Encodings. In the following we provide MSO-characterizations for the dif-
ferent argumentation semantics. The characterizations for adm , stb, prf are borrowed
from [19] while those for sem, stg are borrowed from [22].

naiveA,R(X) = max A,cfR(.),⊆(X)

admR(X) = cf R(X) ∧ ∀x, y
(
((x, y) ∈ R ∧ y ∈ X)→
∃z(z ∈ X ∧ (z, x) ∈ R)

)
comA,R(X) = admR(X) ∧ ∀x((x ∈ A ∧ x /∈ X)→

∃y((y, x) ∈ R ∧ ¬∃z(z ∈ X ∧ (z, y) ∈ R)))

grdA,R(X) = min A,comA,R(.),⊆(X)

stbA,R(X) = cf R(X) ∧ ∀x(x ∈ A→ x ∈ X+
R )

prf A,R(X) = max A,admR(.),⊆(X)

semA,R(X) = max A,admR(.),⊆+
R

(X)

stgA,R(X) = max A,cfR(.),⊆+
R

(X)

These characterisations are straight-forward translations of the definitions and thus can
be easily checked to be correct.

Based on the above characterizations, we proceed with encodings for the resolution-
based semantics as follows. Via resR(XE), given as

∀x, y
(
XE ⊆ R ∧ (x, x) ∈ R→ (x, x) ∈ XE∧

(x �= y ∧ (x, y) ∈ R) → ((x, y) ∈ XE ↔ (y, x) �∈ XE)
)
,

we express modified frameworks (A,R \ β) where β is a resolution according to Defi-
nition 4. Now resolution-based semantics are characterised by

σ∗
A,R(X) = ∃XE(resR(XE) ∧ σA,XE (X) ∧ (1)

∀Y ∀Y E(resR(Y E) ∧ σA,Y E (Y ) → Y �⊂X)).

Labeling-based semantics. There are several approaches to define argument semantics
via different kind of argumentation labelings and almost all argumentation semantics
admit a characterization via argument labelings. The general concept behind labelings
is to use a fixed set of labels and assign to each argument a subset of them, or just a
single label. Such labelings are valid if for each argument the assigned labels satisfy
certain (qualitative) conditions concerning the labels of attacking arguments and the la-
bels of the attacked arguments. Additionally one might demand that the set of arguments
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labeled by a specific label is maximal or minimal. All these properties can be easily ex-
pressed in MSO, which we illustrate for complete labelings. We encode an in, out, undec
labeling L as a triple (Lin,Lout,Lundec) where Ll := { a ∈ A | L(a) = l }. To have
these three sets disjoint, one uses the formula ϕ = ∀x ∈ A((x ∈ Lin ∨ x ∈ Lout ∨ x ∈
Lundec) ∧ (x �∈ Lin ∨ x �∈ Lout) ∧ (x �∈ Lin ∨ x �∈ Lundec) ∧ (x �∈ Lundec ∨ x �∈ Lout)).
Now we can give an MSO formula comA,R(Lin,Lout,Lundec) expressing whether such
a triple is a complete labeling:

ϕ ∧ ∀x ∈ X(x ∈ Lin ↔ (∀y ∈ X((y, x) ∈ R→ y ∈ Lout)))

∧ ∀x ∈ X(x ∈ Lout ↔ (∃y ∈ X((y, x) ∈ R ∧ y ∈ Lin)))

Further, one can directly encode preferred labelings, which are defined as complete
labelings with maximal Lin.

prf A,R(Lin,Lout,Lundec) = comA,R(Lin,Lout,Lundec) ∧ ¬∃L′
in,L′

out,L′
undec

(Lin ⊂ L′
in ∧ comA,R(L′

in,L′
out,L′

undec))

MSO-characterization for cf2 . The original definition of cf2 semantics is of recursive
nature and thus not well suitable for a direct MSO-encoding. Hence we use an alter-
native characterisation of cf2 [25]. For this purpose we need the following definitions.

Definition 8. Given an AF F = (A,R), B ⊆ A, and a, b ∈ A, we define a ⇒B
F b

if and only if there exists a sequence (bi)1≤i≤n with bi ∈ B, b1 = a, bn = b and
(bi, bi+1) ∈ R.

The relation ⇒B
F can be encoded in MSO by first defining a relation R̂R,B(u, v) =

(u, v) ∈ R∧u ∈ B∧v ∈ B capturing the allowed attacks and borrowing the following
MSO-encoding for reachability [12]: reachR(x, y) = ∀X(x ∈ X ∧ [∀u, v(u ∈ X ∧
R(u, v) → v ∈ X)] → y ∈ X). Finally we obtain⇒B

R (x, y) = reachR̂R,B
(x, y).

Definition 9. For AF F = (A,R) and sets D,S ⊆ A we define: ΔF,S(D) = { a ∈
A | ∃b ∈ S : b �= a, (b, a) ∈ R, a �⇒A\D

F b }. ΔF,S denotes the least fixed-point of
ΔF,S(.).

Example 8. Consider our example AF F and the set {b, d}. Towards the least fixed-
point ΔF,{b,d} first consider ΔF,{b,d}(∅). The arguments attacked by {b, d} are a, c, e,
but a and e having paths back to their attackers and thus ΔF,{b,d}(∅) = {c}. Next

consider ΔF,{b,d}({c}). Still d attacks e but e �⇒A\{c}
F d. Thus ΔF,{b,d}({c}) = {c, e}

which is also the least fixed-point ΔF,{b,d} of ΔF,{b,d}(.).

One can directly encode whether an argument x is in the operator ΔF,S(D) by

ΔA,R,S,D(x) = x ∈ A ∧ ∃b ∈ S(b �= x ∧ (b, x) ∈ R ∧ ¬ ⇒A\D
F (x, b))} and

thus also whether x is in the least fixed-point ΔF,S , by ΔA,R,S(x) = ∃X ⊆ A(x ∈
X ∧ ∀a(a ∈ X ↔ ΔA,R,S,X(a)) ∧ ¬∃Y ⊂ X(∀b(b ∈ Y ↔ ΔA,R,S,Y (b)))).

Definition 10. For AF F we define the separation of F as [[F ]] =
⋃

C∈SCCs(F ) F |C .
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Example 9. To obtain the separation of our example AF we have to delete all attacks
that are not within an single SCC. That is we simple remove the attack (b, c) and ob-
tain the AF ({a, b, c, d, e}, {(a, b), (b, a), (c, d), (d, e), (e, c)}) as the separation of our
example AF.

The attack relation of the separation of an AF (A,R) is given by R[[(A,R)]](x, y) = x ∈
A ∧ y ∈ A ∧ (x, y) ∈ R∧ ⇒A

R (y, x).
The following result provides an alternative characterization for cf2 semantics.

Proposition 1 ([25]). For any AF F , S ∈ cf2 (F ) iff S ∈ cf (F )∩naive([[F−ΔF,S ]]).

Example 10. For example consider the cf2 extension {a, d} of our running example.
Clearly {a, d} ∈ cf (F ) and as illustrated before ΔF,{b,d} = {c, e}. We obtain [[F −
ΔF,S ]] = ({a, b, d}, {(a, b), (b, a)}) and thus also {a, d} ∈ naive([[F −ΔF,S ]]).

Using the above Proposition we obtain the following MSO characterisation of cf2 .

cf2 (X) = cf R(X) ∧ naive Â,R[[(Â,R)]]
(X) where Â(x) = x ∈ A ∧ ¬ΔA,R,X(x)

4 Algorithmic Implications

Most computational problems studied for AFs are computationally intractable (see, e.g.,
[19]), while the importance of efficient algorithms is evident. An approach to deal
with intractable problems comes from parameterized complexity theory and is based on
the fact, that many hard problems become polynomial-time tractable if some problem
parameter is bounded by a fixed constant. In case the order of the polynomial bound is
independent of the parameter one speaks of fixed-parameter tractability (FPT).

One popular parameter for graph-based problems is treewidth [9] which intuitively
measures how tree-like a graph is. One weakness of treewidth is that it only captures
sparse graphs. The parameter clique-width [17] generalizes treewidth, in the sense that
each graph class of bounded treewidth has also bounded clique-width, but clique-width
also captures a wide range of dense graphs.1

Both parameters have already been considered for abstract argumentation [19,20,21]
and are closely related to MSO by means of meta-theorems. One such meta-theorem
is due to [13] and shows that one can solve any graph problem that can be expressed
in MSO1 in linear time for graphs of clique-width bounded by some fixed constant k,
when given together with a certain algebraic representation of the graph, a so called
k-expression. A similar result is Courcelle’s seminal meta-theorem [15,16] for MSO2

and treewidth (which is also based on a certain structural decomposition of the graph,
a so called tree-decomposition). Together with results from [10,30] stating that also
k-expressions and tree-decompositions can be computed in linear time if k is bounded
by a constant we get the following meta-theorem.

1 As we do not make direct use of them, we omit the formal definitions of treewidth and clique-
width here; the interested reader is referred to other sources [19,20]. We just note that these
parameters are originally defined for undirected graphs, but can directly be used for AFs, as
well.
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Theorem 1. For every fixed MSO formula φ(x1, . . . , xi, X1, . . . Xj , XE
1 , . . . XE

l )
and integer c, there is a linear-time algorithm that, given a graph (V,E) of
treewidth ≤ c, vk ∈ V , Ak ⊆ V , and Bk ⊆ E decides whether (V,E) |=
φ(v1, . . . , vi, A1, . . . Aj , B1, . . . Bl). If φ is in MSO1, then this also holds for graphs of
clique-width ≤ c.

The theorem can be extended to capture also counting and enumeration problems [2,14].
In the next theorem we give fixed-parameter tractability results w.r.t. the parameters

treewidth and clique-width for the main reasoning problems in abstract argumentation.

Theorem 2. For each argumentation semantics σ that is expressible in MSO, the fol-
lowing tasks are fixed-parameter tractable w.r.t. the treewidth of the given AF:

– Deciding whether an argument a ∈ A is in at least one σ-extension (Credulous
acceptance).

– Deciding whether an argument a ∈ A is in each σ-extension (Skeptical accep-
tance).

– Verifying that a set E ⊆ A is a σ-extension (Verification).
– Deciding whether there exists a σ-extension (Existence).
– Deciding whether there exists a non-empty σ-extension (Nonempty).
– Deciding whether there is a unique σ-extension (Unique).

If σ is expressible in MSO1, then the above tasks are also fixed-parameter tractable
w.r.t. the clique-width of the AF.

Proof. The result follows by Theorem 1 and the following MSO-encodings: Credulous
acceptance: φσ

Cred(x) = ∃X (x ∈ X ∧ σR(X)); Skeptical acceptance: φσ
Skept (x) =

∀X (σR(X) → x ∈ X); Verification: φσ
Ver (X) = σR(X); Existence: φσ

Exists =
∃XσR(X); Nonempty: φσ

Exists¬∅ = ∃X∃x(σR(X) ∧ x ∈ X); and Unique: φσ
U =

∃XσR(X)) ∧ ¬∃Y (Y �= X ∧ σR(Y )). We would like to note that these encodings do
not use quantification over edge sets whenever σ is free of such a quantification. ��

MSO is also a gentle tool for studying the relation between different semantics, as
illustrated by Theorem 3.

Theorem 3. For any argumentation semantics σ, σ′ expressible in MSO, the following
tasks are fixed-parameter tractable w.r.t. the treewidth of the given AF.

– Deciding whether σ(F ) = σ′(F ) (Coincidence).
– Deciding whether arguments skeptically accepted w.r.t. σ are also skeptically ac-

cepted w.r.t. σ′ (Skepticism 1).
– Deciding whether arguments credulously accepted w.r.t. σ are also credulously ac-

cepted w.r.t. σ′ (Skepticism 2).
– Deciding whether σ(F ) ⊆ σ′(F ) (Skepticism 3).

If σ is expressible in MSO1 the above tasks are also fixed-parameter tractable w.r.t. the
clique-width of the AF.
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Proof. The result follows by Theorem 1 and the following MSO-encodings: Coinci-
dence: φσ

Coin(x) = ∀X (σR(X) ↔ σ′
R(X)); Skepticism 1: φσ

sk1(x) = ∀x(φσ
Skept (x) →

φσ′
Skept (x)); Skepticism 2: φσ

sk1(x) = ∀x(φσ
Cred (x) → φσ′

Cred(x)); Skepticism 3:
φσ
sk1(x) = ∀X(σA,R(X) → σ′

A,R(X)). ��
One prominent instantiation of the first problem mentioned in Theorem 3 is deciding
whether an AF is coherent, i.e., whether stable and preferred extensions coincide.

Most of the characterizations we have provided so far are actually in MSO1 and
by the above results we obtain fixed-parameter tractability for treewidth and clique-
width. The notable exception is the schema (1) we provided for the resolution-based
semantics. There is no straight forward way to reduce this MSO2 formula into MSO1

(and thus providing complexity results in terms of clique-width) and in general it is
unclear whether this is possible at all. Surprisingly, in the case of resolution-based
grounded semantics one can get rid off the explicit quantification over sets of attacks as
we show next.

5 An MSO1-Characterization for grd∗

We provide a novel characterisation of resolution-based grounded semantics that avoids
the quantification over sets of attacks in schema, as in (1), and thus yields an MSO1-
encoding. To this end we first restrict the class of resolutions we have to consider when
showing that a given set is a complete extension of some resolved AF.

Lemma 1. For each AF F = (A,R) and E ∈ grd∗(F ), there exists a resolution β
with { (b, a) | a ∈ E, b �∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β such that E ∈ com(A,R \ β).

Proof. As E ∈ grd∗(F ) we have that there exists a resolution β′ such that E ∈
grd(A,R \ β′). Now let us define β as { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ∪
(β′ ∩ (A \E ×A \E)). Clearly E is conflict-free in (A,R \ β). Next we show that (i)
E⊕

R\β′ = E⊕
R\β and (ii) E�

R\β′ ⊇ E�
R\β .

For (i), let us first consider b ∈ E⊕
R\β′ . Then there exists (a, b) ∈ R \ β′ with a ∈ E

and by construction also (a, b) ∈ R \ β and thus b ∈ E⊕
R\β . Now let us consider

b ∈ E⊕
R\β . Then there exists (a, b) ∈ R \ β with a ∈ E and by construction either

(a, b) ∈ R \ β′ or (b, a) ∈ R \ β′. In the first case clearly b ∈ E⊕
R\β′ . In the latter

case b attacks E and as E is admissible in (A,R \ β′) there exists c ∈ E such that
(c, b) ∈ R \ β′, hence b ∈ E⊕

R\β′ . For (ii) consider b ∈ E�
R\β , i.e., exists a ∈ E such

that (b, a) ∈ R \ β. By the construction of β we have that (a, b) �∈ R and therefore
(b, a) ∈ R \ β′. Hence also b ∈ E�

R\β′ .

As E ∈ adm(A,R\β′) we have that E�
R\β′ ⊆ E⊕

R\β′ and by the above observations

then also E�
R\β ⊆ E⊕

R\β . Thus E is an admissible set. Finally let us consider an

argument a ∈ A \ E⊕
R\β . In the construction of β the incident attacks of a are not

effected and hence {a}�R\β′ = {a}�R\β . That is E defends a in (A,R\β) iff E defends
a in (A,R \β′). Now as E ∈ com(A,R \β′) we have that a is not defended and hence
E ∈ com(A,R \ β). ��
With this result at hand, we can give an alternative characterization for grd∗.
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Lemma 2. For each AF F = (A,R) and E ⊆ A, E ∈ grd∗(F ) if and only if the
following conditions hold:

1. there exists a resolution β with { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β and
E ∈ com(A,R \ β)

2. E is ⊆-minimal w.r.t. (1).

Proof. Let us first recall that, by definition, the grounded extension is the ⊆-minimal
complete extension and hence grd∗ = com∗.
⇒: Let E ∈ grd∗(F ). Then by Lemma 1, E fulfills condition (1). Further we

have that each set E satisfying (1) is a complete extension of a resolved AF. As by
definition E is ⊆-minimal in the set of all complete extensions of all resolved AFs it is
also minimal for those satisfying (1).
⇐: As E satisfies (1) it is a complete extension of a resolved AF. Now towards a

contradiction let us assume it is not a resolution-based grounded extension. Then there
exists G ∈ grd∗(F ) with G ⊂ E. But by Lemma 1 G fulfills condition (1) and thus
G ⊂ E contradicts (2). ��
In the next step we look for an easier characterization of condition (1).

Lemma 3. For each AF F = (A,R) and E ⊆ A the following statements are
equivalent:

1. There exists a resolution β with { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β and
E ∈ com(A,R \ β).

2. E ∈ com(A,R \ { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }) and grd∗(A \ E+
R , R ∩

((A \ E+
R )× (A \ E+

R ))) = {∅}.

Proof. In the following we will use the shorthands R∗ = R \ { (b, a) | a ∈ E,
{(a, b), (b, a)} ⊆ R } and (A′, R′) = (A \ E+

R , R ∩ ((A \ E+
R )× (A \ E+

R ))).
(1)⇒ (2): Consider a resolution β such that E ∈ com(A,R \ β). We first show that

then also E ∈ com(A,R∗). By construction we have that for arbitrary b ∈ A that (a)
E �R b iff E �R\β b iff E �R∗

b, and (b) b �R\β E iff b �R∗
E. Hence we have

that (i) E ∈ adm(A,R \ β) iff E ∈ adm(A,R∗) and (ii) E+
R = E+

R\β = E+
R∗ . By

definition of complete semantics, E ∈ com(A,R\β) is equivalent to for each argument
b ∈ A \ E there exists an argument c ∈ A such that c �R\β b and E ��R\β c. As
R∗ ⊇ R \ β we obtain that (c, b) ∈ R \ β implies (c, b) ∈ R∗. Using (a) we obtain that
E ∈ com(A,R \ β) implies for each argument b ∈ A \ E existence of an argument
c ∈ A such that (c, b) ∈ R∗ and E ��R∗

c, i.e., E ∈ com(A,R∗).
Now addressing grd∗(A′, R′) = {∅} we again use the assumption E ∈ com(A,R \

β), i.e., each argument which is defended by E is already contained in E, we have that
grd(A \ E+

R\β , R \ β ∩ ((A \ E+
R )× (A \ E+

R ))) = grd(A′, R′ \ β) = {∅}. Note that
β′ = β∩R′ is a resolution of (A′, R′) and that grd(A′, R′\β) = grd(A′, R′\β′) = {∅}.
We can conclude that grd∗(A′, R′) = {∅}.

(1) ⇐ (2): Consider β′ ∈ γ(F ) s.t. grd(A′, R′ \ β′) = {∅}; such a β′ ex-
ists since grd∗(A′, R′) = {∅}. Now consider the resolution β = { (b, a) | a ∈
E, {(a, b), (b, a)} ⊆ R } ∪ β′. Again, by construction of β we have that for arbi-
trary b ∈ A: (a) E �R b iff E �R\β b iff E �R∗

b, and (b) b �R\β E iff
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b �R∗
E. Hence we obtain that E ∈ adm(A,R \ β). Using R = E+

R\β = E+
R∗ we

have grd(A \ E+
R\β , (R \ β) ∩ ((A \ E+

R ) × (A \ E+
R ))) = grd(A′, R′ \ β′) = {∅}.

Thus, E ∈ com(A,R \ β). ��
Finally we exploit a result from [3].

Proposition 2 ([3]). For every AF F = (A,R), grd∗(F ) = {∅} iff for each minimal
SCC S of F at least one one of the following conditions holds: (i) S contains a self-
attacking argument; (ii) S contains a non-symmetric attack; and (iii) S contains an
undirected cycle.

Based on the above observations we obtain the following characterization of resolution-
based grounded semantics.

Theorem 4. For each AF F = (A,R), the grd∗-extensions are the ⊆-minimal sets
E ⊆ A such that:

1. E ∈ com(A,R′) with R′ = R \ { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }).
2. Each minimal SCC S of F̂ = (A \ E+

R , R ∩ A \ E+
R × A \ E+

R ) satisfies one
of the following conditions: S contains a self-attacking argument; S contains a
non-symmetric attack; or S contains an undirected cycle

Proof. By Lemma 3, condition (1) in Lemma 2 is equivalent to E ∈ com(A,R \
{ (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }) and grd∗(A\E+

R , R∩((A\E+
R )×(A\E+

R ))) =
{∅}. The former being condition (1) of the theorem. The latter, due to Proposition 2, is
equivalent to condition (2) of the theorem. ��

Having Theorem 4 at hand we can build an MSO1-encoding as follows. First we
encode the attack relation R′ as R′

E(x, y) = (x, y) ∈ R∧¬(x ∈ E ∧ y �∈ E ∧ (x, y) ∈
R ∧ (y, x) ∈ R). Then the AF F̂ = (Â, R̂) is given by:

ÂA,R,E(x) = x ∈ A ∧ x �∈ E ∧ ¬∃y ∈ E : R′
E(y, x)

R̂E,R(x, y) = (x, y) ∈ R ∧ A∗
A,R,E(x) ∧ A∗

A,R,E(y)

Based on reachability we can easily specify whether arguments are strongly connected
SCR(x, y) = reachR(x, y) ∧ reachR(y, x), and a predicate that captures all argu-
ments in minimal SCCs minSCCA,R(x) = A(x) ∧ ¬∃y (A(y) ∧ reachR(y, x) ∧
¬reachR(x, y)). It remains to encode the check for each SCC.

C1R(x) = ∃y(SCR(x, y) ∧ (y, y) ∈ R)

C2R(x) = ∃y, z(SCR(x, y) ∧ SCR(x, z) ∧ (y, z) ∈ R ∧ (z, y) �∈ R)

C3R(x) = ∃X(∃y ∈ X ∧ ∀y ∈ X [SCR(x, y)∧
∃u, v ∈ X : u �= v ∧ (u, y) ∈ R ∧ (y, v) ∈ R])

CR(x) = C1R(x) ∨ C2R(x) ∨C3R(x)

Finally using Theorem 4 we obtain an MSO1-encoding for resolution-based grounded
semantics:

grd∗
A,R(X) = candA,R(X) ∧ ¬∃Y (candA,R(Y ) ∧ Y ⊂ X)

where candA,R(X) stands for

comA,R′
X

(X) ∧ ∀x(minSCC ÂA,R,E ,R̂E,R
(x) → CR̂E,R

(x)).
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6 Conclusion

In this paper we have shown that Monadic Second Order Logic (MSO) provides a suit-
able unifying framework for abstract argumentation. We encoded the most popular
semantics within MSO and gave building blocks illustrating that MSO can naturally
capture several concepts that are used for specifying semantics. This shows that MSO
can be used as rapid prototyping tool for the development of new semantics.

Moreover, we gave a new characterisation of resolution-based grounded semantics
that admits an MSO1-encoding. This shows that reasoning in this semantics is tractable
for frameworks of bounded clique-width. In fact, the collection of encodings we pro-
vided here shows that acceptance as well as other reasoning tasks are fixed-parameter
tractable for several semantics w.r.t. the clique-width (hence also for treewidth).

For future work we suggest to study whether also other instantiations of the
resolution-based semantics can be expressed in MSO1 (recall that we provided already
a schema for MSO2-encodings). Moreover, it might be interesting to compare the per-
formance of MSO tools with dedicated argumentation systems. Finally, we want to
advocate the use of MSO for automated theorem discovery [31]. In fact, our encodings
allow us to express meta-statements like “does it hold for AFs F that each σ-extension is
also a σ′-extension.” Although we have to face undecidability for such formulas, there
is the possibility that MSO-theorem provers come up with a counter-model. Thus, in a
somewhat similar way as Weydert [33], who used a First Order Logic encoding of com-
plete semantics to show certain properties for semi-stable semantics of infinite AFs,
MSO can possibly be used to support the argumentation researcher in obtaining new
insights concerning the wide range of different argumentation semantics.
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21. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for ab-
stract argumentation. Artif. Intell. 186, 1–37 (2012)
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Abstract. In the last decade, several argument-based formalisms have
emerged, with application in many areas, such as legal reasoning, au-
tonomous agents and multi-agent systems; many are based on Dung’s
seminal work characterizing Abstract Argumentation Frameworks (AF).
Recent research in the area has led to Temporal Argumentation Frame-
works (TAF), that extend AF by considering the temporal availability
of arguments. A new framework was introduced in subsequent research,
called Extended Temporal Argumentation Framework (E-TAF), extend-
ing TAF with the capability of modeling the availability of attacks among
arguments. E-TAF is powerful enough to model different time-dependent
properties associated with arguments; moreover, we will present an in-
stantiation of the abstract framework E-TAF on an extension of De-
feasible Logic Programming (DeLP) incorporating the representation
of temporal availability and strength factors of arguments varying over
time, associating these characteristics with the language of DeLP. The
strength factors are used to model different more concrete measures such
as reliability, priorities, etc.; the information is propagated to the level
of arguments, then the E-TAF definitions are applied establishing their
temporal acceptability.

Keyword: Argumentation, Temporal Argumentation, Defeasible Logic
Programming, Argument and Computation.

1 Introduction

Argumentation represents a powerful paradigm to formalize commonsense rea-
soning. In a general sense, argumentation can be defined as the study of the
interaction of arguments for and against conclusions, with the purpose of de-
termining which conclusions are acceptable [6,21]. Several argument-based for-
malisms have emerged finding application in building autonomous agents and
multi-agent systems. An agent may use argumentation to perform individual rea-
soning to resolve conflicting evidence or to decide between conflicting goals [2,5];
Multiple agents may also use dialectical argumentation to identify and recon-
cile differences between themselves, through interactions such as negotiation,
persuasion, and joint deliberation [18,22,20].
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Reasoning about time is a central issue in commonsense reasoning, thus be-
coming a valuable feature when modeling argumentation capabilities for intel-
ligent agents [3,15]. Recent research has introduced Temporal Argumentation
Frameworks (TAF) extending Dung’s AF with the consideration of argument’s
temporal availability [10,11]. In TAF, arguments are valid only during specific
time intervals (called availability intervals). Thus, the set of acceptable argu-
ments associated with a TAF may vary over time. Even though arguments in
TAF are only available on certain time intervals, their attacks are assumed to
be static and permanent over these intervals.

Recently, in [9] a novel framework, called Extended Temporal Argumenta-
tion Framework (E-TAF) was introduced, enriching a TAF with the capability
of modeling the availability of attacks among arguments. This additional fea-
ture of E-TAF permits to model strength of arguments varying over time, i.e.,
an attack can be only available in a given time interval signifying that the at-
tacking argument is stronger than the attacked one on this attack interval. The
notion of argument strength is a generalization of different possible measures for
comparing arguments, such as reliability, priorities, etc.

In this work, to provide a concrete, fully specified (non-abstract) knowledge
representation and reasoning formalism. We present an instantiation of the ab-
stract framework E-TAF based on the argumentation formalism Defeasible Logic
Programming (DeLP), a logic programming approach to argumentation that has
proven to be successful for real-world applications (e.g., [13,5,7]). This instanti-
ation, called ST-DeLP, incorporates the representation of temporal availability
and strength factors varying over time associated with the elements of the lan-
guage of DeLP, following a different intuition from the one presented in [17]. It
also specifies how arguments are built, and how availability and strength of argu-
ments are obtained from the corresponding information attached to the language
elements from which are built. After determining the availability of attacks by
comparing strength of conflicting arguments over time, E-TAF definitions are
applied to establish temporal acceptability of arguments. Thus, the main contri-
bution of this paper lies on the integration of time and strength in the context
of argumentation systems.

2 Abstract Argumentation

We will summarize the abstract argumentation framework introduced in Dung’s
seminal work [12]; the reader is directed to that reference for a complete pre-
sentation. To simplify the representation and analysis of pieces of knowledge,
Dung introduced the notion of Argumentation Framework (AF) as a convenient
abstraction of a defeasible argumentation system. In the AF , an argument is
considered as an abstract entity with unspecified internal structure, and its role
in the framework is completely determined by the relation of attack it maintains
with other arguments.
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Definition 1 (Argumentation Framework [12]). An argumentation frame-
work (AF ) is a pair 〈AR,Attacks〉, where AR is a set of arguments, and Attacks
is a binary relation on AR, i.e., Attacks ⊆ AR ×AR.

Given an AF , an argument A is considered acceptable if it can be defended by
arguments in AR of all the arguments in AR that attack it (attackers). This
intuition is formalized in the following definitions, originally presented in [12].

Definition 2 (Acceptability). Let AF = 〈AR,Attacks〉 be an argumentation
framework.

- A set S ⊆ AR is called conflict-free if there are no arguments A,B ∈ S such
that (A,B) ∈ Attacks.

- An argument A ∈ AR is acceptable with respect to a set S ⊆ AR iff for each
B ∈ AR, if B attacks A then there is C ∈ S such that (C,B) ∈ Attacks; in
such case it is said that B is attacked by S.

- A conflict-free set S ⊆ AR is admissible iff each argument in S is acceptable
with respect to S.

- An admissible set E ⊆ AR is a complete extension of AF iff E contains
each argument that is acceptable with respect to E.

- A set E ⊆ AR is the grounded extension of AF iff E is a complete extension
that is minimal with respect to set inclusion.

Dung [12] also presented a fixed-point characterization of the grounded semantics
based on the characteristic function F defined below.

Definition 3. Let 〈AR,Attacks〉 be an AF . The associated characteristic func-

tion F : 2AR → 2AR, is F (S) =def {A ∈ AR | A is acceptable w.r.t. S}.

The following proposition suggests how to compute the grounded extension as-
sociated with a finitary AF (i.e., such that each argument is attacked by at most
a finite number of arguments) by iteratively applying the characteristic function
starting from ∅. See [4,16] for details on semantics of AF s.

Proposition 1 ([12]). Let 〈AR,Attacks〉 be a finitary AF . Let i ∈ N∪{0} such
that F i(∅) = F i+1(∅). Then F i(∅) is the least fixed point of F , and corresponds
to the grounded extension associated with the AF .

3 Defeasible Logic Programming

Defeasible Logic Programming (DeLP), is a formalism that combines results of
Logic Programming and Defeasible Argumentation. DeLP provides representa-
tional elements able to represent information in the form of strict and weak
rules in a declarative way, from which arguments supporting conclusions can be
constructed, providing a defeasible argumentation inference mechanism for ob-
taining the warranted conclusions. The defeasible argumentation characteristics
of DeLP supplies means for building applications dealing with incomplete and
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contradictory information in real world, dynamic domains. Thus, the resulting
approach is suitable for representing agents’ knowledge and for providing an
argumentation based reasoning mechanism to these agents.

Below we present the essential definitions of DeLP, see [14] for full details.

Definition 4 (DeLP program). A DeLP program P is a pair (Π,Δ) where
(1) Δ is a set of defeasible rules of the form L —< P1, . . . , Pn, with n > 0, and
(2) Π is a set of strict rules of the form L←− P1, . . . , Pn, with n ≥ 0. In both
cases L and each Pi are literals, i.e., a ground atom A or a negated ground atom
∼A, where ‘∼’ represents the strong negation.

Pragmatically, strict rules can be used to represent strict (non defeasible) infor-
mation, while defeasible rules are used to represent tentative or weak informa-
tion. It is important to remark that the set Π must be consistent as it represents
strict (undisputed) information.

Definition 5 (Defeasible derivation). Let P be a DeLP program and L a
ground literal. A defeasible derivation of L from P consists of a finite sequence
L1, . . . , Ln = L of ground literals, such that for each i, 1 ≤ i ≤ n, Li is a
fact or there exists a rule Ri in P (strict or defeasible) with head Li and body
B1, . . . , Bm, such that each literal on the body of the rule is an element Lj of the
sequence appearing before Li (j ≤ i). We will use P |∼ L to denote that there
exists a defeasible derivation of L from P.

We say that a given set S of DeLP clauses is contradictory if and only if S |∼ L
and S |∼ ∼L for some literal L.

Definition 6 (Argument). Let L be a literal and P = (Π,Δ) be a DeLP
program. An argument for L is a pair 〈A,L〉, where A is a minimal (w.r.t. set
inclusion), non contradictory set of defeasible rules of Δ, such that A|∼ L. We
say that an argument 〈B,L〉 is a sub-argument of 〈A,L〉 iff B ⊆ A.

DeLP provides an argumentation based mechanism to determine warranted con-
clusions. This procedure involves constructing arguments from programs, iden-
tifying conflicts or attacks among arguments, evaluating pairs of arguments
in conflict to determine if the attack is successful, becoming a defeat, and fi-
nally analyzing defeat interaction among all relevant arguments to determine
warrant [14].

Definition 7 (Disagreement). Let P = (Π,Δ) be a DeLP program. Two lit-
erals L and L′ are in disagreement if and only if the set Π ∪ {L,L′} is
contradictory.

Definition 8 (Attack). Let P = (Π,Δ) be a DeLP program. Let 〈A1, L1〉 and
〈A2, L2〉 be two arguments in P. We say that 〈A1, L1〉 counter-argues, rebuts, or
attacks 〈A2, L2〉 at the literal L if and only if there is a sub-argument 〈A,L〉 of
〈A2, L2〉 such that L and L1 are in disagreement. The argument 〈A,L〉 is called
disagreement sub-argument, and the literal L will be the counter-argument point.
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In this work, a complete presentation of the inference mechanism of DeLP is
not necessary since our formalization will be based on an extension of Dung’s
approach to argumentation semantics.

4 Modeling Temporal Argumentation with TAF

A Timed Abstract Framework (TAF) [10,11] is a recent extension of Dung’s for-
malism where arguments are active only during specific intervals of time; this
intervals are called availability intervals. Attacks between arguments are con-
sidered only when both the attacker and the attacked arguments are available.
Thus, when identifying the set of acceptable arguments the outcome associated
with a TAF may vary in time.

To represent time we assume that a correspondence was defined between the
time line and the set R of real numbers. A time interval, representing a period
of time without interruptions, will be represented as a real interval [a − b] (we
use ‘−’ instead of ‘,’ as a separator for readability reasons). To indicate that
one of the endpoints (extremes) of the interval is to be excluded, following the
notation for real intervals, the corresponding square bracket will be replaced
with a parenthesis, e.g., (a− b] to exclude the endpoint a.

To model discontinuous periods of time we introduce the notion of time inter-
vals set. Although a time intervals set suggests a representation as a set of sets
(set of intervals), we chose a flattened representation as a set of reals (the set of
all real numbers contained in any of the individual time intervals). In this way,
we can directly apply traditional set operations and relations on time intervals
sets.

Definition 9 (Time Intervals Set). A time intervals set is a subset S ⊆ R.

When convenient we will use the set of sets notation for time intervals sets;
that is, a time interval set S ⊆ R will be denoted as the set of all disjoint and
⊆-maximal individual intervals included in the set. For instance, we will use
{(1− 3], [4.5− 8)} to denote the time interval set (1− 3] ∪ [4.5− 8)

Now we formally introduce the notion of Timed Argumentation Framework,
which extends the AF of Dung by adding the availability function. This addi-
tional component will be used to capture those time intervals where arguments
are available.

Definition 10 (Timed Argumentation Framework). A timed argumenta-
tion framework (or TAF) is a 3-tuple 〈AR,Attacks, Av〉 where AR is a set of
arguments, Attacks is a binary relation defined over AR and Av is an availability
function for timed arguments, defined as Av : AR −→ ℘(R), such that Av(A) is
the set of availability intervals of an argument A.

Example 1. Consider the TAF Φ = 〈AR,Attacks , Av〉 where:

AR = {A,B,C,D,E, F,G}
Attacks = {(B,A), (C,B), (E,A), (G,E), (F,G), (G,D)}
Av = {(A, {[10 − 50], [80 − 120]}); (B, {[55 − 100]}); (C, {[40 − 90]}); (D, {[10 − 30]});

(E, {[20 − 75]}); (F, {[5 − 30]}); (G, {[10 − 40]})} (See Fig. 1)
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Fig. 1. TAF corresponding to example 1

The following definitions formalize argument acceptability in TAF, and are ex-
tensions of the acceptability notions presented in section 2 for AF . Firstly, we
present the notion of timed argument profile, t-profile, that binds an argument
to a set of time intervals; these profiles constitute a fundamental component for
the formalization of time-based acceptability.

Definition 11 (T-Profile). Let Φ = 〈AR,Attacks, Av〉 be a TAF. A timed
argument profile in Φ, or just t-profile, is a pair ρ = (A, τ ) where A ∈ AR and
τ is a set of time intervals; (A,Av(A)) is called the basic t-profile of A.

Since the availability of arguments varies in time, the acceptability of a given
argument A will also vary in time. The following definitions extend Dung’s orig-
inal formalization for abstract argumentation by considering t-profiles instead
of arguments.

Definition 12 (Defense of A from B w.r.t. S). Let A and B be argu-
ments. Let S be a set of t-profiles. The defense t-profile of A from B w.r.t.
S is ρA = (A, τB

A), where: τBA =def (Av(A)−Av(B))
⋃

{(C,τC)∈S | C Attacks B}
(Av(A) ∩ Av(B) ∩ τC).

Intuitively, A is defended from the attack of B when B is not available (Av(A)−
Av(B)), but also in those intervals where, although the attacker B is available,
B is in turn attacked by an argument C in the base set S of t-profiles. The
following definition captures the defense profile of A, but considering all its
attacking arguments.

Definition 13 (Acceptable t-profile of A w.r.t. S). Consider a set S of
t-profiles. The acceptable t-profile for A w.r.t. a set S is ρA = (A, τA), where
τA =def

⋂
{B Attacks A} τ

B
A and (A, τBA) is the defense t-profile of A from B

w.r.t. S.

Since an argument must be defended against all its attackers that are considered
acceptable, we have to intersect the set of time intervals in which it is defended
of each of its attackers.
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Fig. 2. Representation of the arguments associated with Ex. 2 in a time line

Definition 14 (Acceptability). Let AF = 〈AR,Attacks , Av〉 be a temporal
argumentation framework.

- A set S of t-profiles is called t-conflict-free if there are no t-profiles (A, τA),
(B, τB) ∈ S such that (A,B) ∈ Attacks and τA ∩ τB �= ∅.

- A t-conflict-free set S of t-profiles is a t-admissible set iff for all (A, τA) ∈ S
it holds that (A, τA) is the acceptable t-profile of A w.r.t. S.

- A t-admissible set S is a t-complete extension of TAF iff S contains all the
t-profiles that are acceptable with respect to S.

- A set S is the t-grounded extension of TAF iff S is t-complete and minimal
with respect to set inclusion.

In particular, the fixed point characterization for grounded semantics proposed
by Dung can be directly applied to TAF by considering the following modified
version of the characteristic function.

Definition 15. Let 〈AR,Attacks, Av〉 be a TAF. Let S be a set of t-profiles. The
associated characteristic function is defined as follows: F (S) =def {(A, τ) | A ∈
AR and (A, τ ) is the acceptable t-profile of A w.r.t. S}.

Example 2. Suppose we want to establish the acceptability of A in the TAF Φ pre-
sented in example 1. Let us obtain the t-grounded extension of Φ by applying the fixed
point characterization.

F 0(∅) = ∅
F 1(∅) = {(A, {[10−20), (100−120]}); (C, {[40−90]}); (F, {[5−30]}); (B, {(90−100]});
(E, {(40 − 75]}; (G, {(30 − 40]})}
F 2(∅) = {(A, {[10 − 40], [80 − 90], (100 − 120]}); (C, {[40 − 90]}); (F, {[5 − 30]});
(B, {(90 − 100]}); (E, {[20 − 30], (40 − 75]}); (G, {(30 − 40]})}
F 3(∅) = {(A, {[10 − 20), (30 − 40), [80 − 90), (100 − 120]}); (C, {[40 − 90]});
(F, {[5 − 30]}); (B, {(90 − 100]}); (E, {[20 − 30], (40 − 75]}); (G, {(30 − 40]})}
F 4(∅) = F 3(∅)
Consequently, F 3(∅) is the t-grounded extension of Φ. Next we describe how the tem-
poral availability of A in F 3(∅) was obtained from F 2(∅). By applying definition 12:
τB
A = (Av(A) − Av(B))

⋃
{(C,τC)}(Av(A) ∩Av(B) ∩ τC) =
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= ({[10 − 50], [80 − 120]} − {[55 − 100]})∪
({[10 − 50], [80 − 120]} ∩ {[55 − 100]} ∩ {[40 − 90]}) =
= {[10 − 50], (100 − 120]} ∪ [80 − 90] = {[10 − 50], [80 − 90], (100 − 120]}

τE
A = (Av(A) − Av(E))

⋃
{(G, τG)}(Av(A) ∩Av(B) ∩ τG) =

= {[10 − 20), (30 − 40], [80 − 120]}

By applying definition 13:

τA = ∩{X Attacks A}τ
X
A = τB

A ∩ τE
A =

= {[10 − 50], [80 − 90], (100 − 120]} ∩ {[10 − 20), (30 − 40], [80 − 120]} =

= {[10 − 20), (30 − 40], [80 − 90], (100 − 120]}

5 E-TAF: A TAF Extension with Time Intervals for
Attacks

In this section we present E-TAF [9], an extension of TAF that takes in con-
sideration not only the availability of the arguments but also looks into the
availability of attacks. Adding time intervals to attacks is a meaningful exten-
sion for several domains; consider for example the notion of statute of limitations
common in the law of many countries. A statute of limitations is an enactment
in a common law legal system that sets the maximum time after an event that
legal proceedings based on that event may be initiated. One reason for having a
statute of limitations is that over time evidence can be corrupted or disappear;
thus, the best time to bring a lawsuit is while the evidence is still acceptable
and as close as possible to the alleged illegal behavior. Consider the following
situation: (1) John has left debts unpaid in Alabama, US, during 2008, (2) He
has canceled them in 2009, but paying with counterfeited US dollars, committing
fraud, (3) This fraud was detected on Jan 1, 2010. A possible argument exchange
for prosecuting John could be as follows:

– Arg1: (Plaintiff) John left debts unpaid in Alabama in 2008 [Jan 1, 2008-+∞)
– Arg2: (Defendant) John paid all his debts in Alabama for 2008 [Jan 1,2009-+∞)
– Arg3: (Plaintiff) John did not cancel his debts in Alabama for 2008, as he paid

them with counterfeited US dollars, committing fraud [Jan 1,2010-+∞)

According to the statute of limitations for Alabama,1 the attack from Arg3 to
Arg2 would be valid only until Jan 1, 2012 (for 2 years from the moment it
was discovered). Note that Arg3 is valid by itself (as the fraud was committed
anyway), but the statute of limitations imposes a time-out on the attack rela-
tionship between arguments Arg3 and Arg2. Thus, John would be not guilty of
committing fraud if the dialogue would have taken place in 2012, as the attack
from Arg3 to Arg2 would not apply.

Next we formalize the definition of extended TAF, which provides the elements
required to capture timed attacks between timed arguments.

1 The statute of limitations may vary in different countries; for the case of the U.S.
see e.g. www.statuteoflimitations.net/fraud.html

www.statuteoflimitations.net/fraud.html
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Fig. 3. E-TAF: example

Definition 16 (Extended TAF). An extended timed abstract argumentation
framework (or simply E-TAF) is a 4-tuple 〈AR,Attacks,ARAv ,ATAv〉 where:

– AR is a set of arguments,
– Attacks is a binary relation defined over AR,
– ARAv : AR −→ ℘(R) is the availability function for timed arguments, and
– ATAv : Attacks −→ ℘(R) is the availability function for timed attacks,

where ATAv((A,B)) ⊆ ARAv(A) ∩ ARAv(B).

The condition ATAv((A,B)) ⊆ ARAv(A) ∩ ARAv(B) ensures that the avail-
ability of the attack cannot exceed the availability of the arguments involved.

Example 3. E-TAF= 〈AR,Attacks ,ARAv ,ATAv〉
AR = {A,B,C}
Attacks = {(B,A); (C,B)}
ARAv = {(A, {[10 − 50], [80 − 120]}); (B, {[55 − 100]}); (C, {[40 − 90]})}
ATAv = {((B,A), [80 − 95]); ((C,B), [55 − 85])} (See Fig. 3)

The following definitions are extensions of the definitions 12 and 13, taking into
account the availability of attacks.

Definition 17 (Defense t-profile of A from B). Let S be a set of t-profiles.
Let A and B be arguments. The defense t-profile of A from B w.r.t. S is ρA =
(A, τBA), where τBA = [ARAv(A)−ATAv((B,A))] ∪⋃

{(C,τC)∈S | C Attacks B}(ARAv(A) ∩ ATAv((B,A)) ∩ATAv((C,B)) ∩ τC).

The notion of acceptable t-profile of A w.r.t. S remains unchanged in E-TAF
with respect to the corresponding definition in TAF.

Definition 18 (Acceptable t-profile of A). Let 〈AR,Attacks ,ARAv,ATAv〉
be an E-TAF. Let S be a set of t-profiles. The acceptable t-profile for A w.r.t.
S is ρA = (A, τA), where τA = ∩{B Attacks A}τ

B
A and (A, τB

A) is the defense

t-profile of A from B w.r.t. S.

The formalization of acceptability for TAF directly applies to E-TAF, except for
the conflict-free notion which has to be recast as shown in the next definition.
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Fig. 4. Representation of the temporal attacks relations

Definition 19 (Conflict-freeness. Characteristic function). Let
〈AR,Attacks,ARAv ,ATAv〉 be an E-TAF. A set S of t-profiles is called conflict-
free if there are no t-profiles (A, τA), (B, τB) ∈ S such that (A,B) ∈ Attacks
and τA ∩ τB ∩ ATAv((B,A)) �= ∅. The associated characteristic function for
〈AR,Attacks,ARAv ,ATAv〉 is defined as follows:
F (S) =def {(A, τ) | A ∈ AR and (A, τ ) is the acceptable t-profile of A w.r.t. S}.

Example 4. Suppose we want to establish the acceptability of A in the E-TAF in
example 3. In this case, for simplicity, we will restrict the temporal availability of A to
the interval [80 − 120]. Let us obtain the t-grounded extension of E-TAF by applying
the fixed point characterization:

F 0(∅) = ∅
F 1(∅) = {(A, {(95 − 120]}); (C, {[40 − 90]}); (B, {(85 − 100]})}
F 2(∅) = {(A, {[80 − 85], (95 − 120]}); (C, {[40 − 90]}); (B, {(85 − 100]})}
F 3(∅) = F 2(∅)

Consequently, F 3(∅) is the t-grounded extension of the E-TAF. Next we describe how
the temporal availability of A was obtained in F 3(∅) by applying the definitions 17
and 18 from F 2(∅). By applying definition 17, we get:
τB
A = (ARAv(A) − ATAv(B,A))

⋃
{(C, τC)}(ARAv(A)

∩ATAv((B,A)) ∩ATAv((C,B)) ∩ τC) =
= ({[80 − 120]} − {[80 − 95]}) −{(C, τC)} ({[80 − 120]} ∩ {[80 − 95]} ∩ {[55 − 85]} ∩
{[40 − 90]}) = {(95 − 120]} ∪ {[80 − 85]} = {[80 − 85], (95 − 120]}

By applying definition 18: τA = ∩{X Attacks A}τ
X
A , where τB

A = {[80−85], (95−120]}

6 Temporal Availability and Strength variation on DeLP

In this section we present ST-DeLP, an instantiation of the abstract framework
E-TAF based on the rule-based argumentation framework DeLP. This instan-
tiation incorporates the ability to represent temporal availability and strength
factors varying over time, associated with rules composing arguments. This in-
formation is then propagated to the level of arguments, and will be used to define
temporal availability of attacks in E-TAF.
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This association of temporal and strength information to DeLP clauses is
formalized through the definition of ST-program, presented below.

Definition 20 (ST-program). A ST-program P is a set of clauses of the form
(γ, τ , υ), called ST-clauses, where: (1) γ is a DeLP clause, (2) τ is a set of time
intervals for a ST-clause, and (3) υ : R −→ [0, 1] is a function that determines
the strength factor for a ST-clause.

We will say that (γ, τ , υ) is a strict (defeasible) ST-clause iff γ is a strict (defea-
sible) DeLP clause. Then, given a ST-program P we will distinguish the subset
Π of strict ST-clauses, and the subset Δ of defeasible ST-clauses.

Next we will introduce the notion of argument and sub-argument in ST-DeLP.
Informally, an argument A is a tentative proof (as it relies on information with
different strength) from a consistent set of clauses, supporting a given conclusion
Q, and specifying its strength varying on time. Given a set S of ST-clauses, we
will use Clauses(S) to denote the set of all DeLP clauses involved in ST-clauses
of S. Formally, Clauses(S) = {γ | (γ, τ , υ) ∈ A}.

Definition 21 (ST-argument). Let Q be a literal, and P be a ST-program.
We say that 〈A,Q, τ , υ〉 is an ST-argument for a goal Q from P, if A ⊆ Δ,
where:

(1) Clauses(Π ∪A) |∼ Q
(2) Clauses(Π ∪A) is non contradictory.
(3) Clauses(A) is such that there is no A1 � A such that A1 satisfies conditions (1)

and (2) above.
(4) τ = τ 1 ∩, ...,∩ τn for each ST-clause (γi, τ i, υi) ∈ A.
(5) υ : R −→ [0, 1], such that υ(α) = MIN(υ1(α), ..., υn(α)), for each (γi, τ i, υi) ∈ A,

where α ∈ R.

Definition 22 (ST-subargument). Let 〈A,L, τ1, υ1〉 and 〈B,Q, τ2, υ2〉 be two
arguments. We will say that 〈B,Q, τ2, υ2〉 is a ST-subargument of 〈A,L, τ1, υ1〉
if and only if B ⊆ A. Notice that the goal Q may be a sub-goal associated with
the proof of goal L from A.

As in DeLP, ST-arguments may be in conflict. However in ST-DeLP we must
also take into account the availability of conflicting arguments. Then, two ST-
arguments involving contradictory information will be in conflict only when their
temporal availability intersects.

Definition 23 (Counter-arguments). Let P be an ST-program, and let
〈A1, L1, τ1, υ1〉 and 〈A2, L2, τ2, υ2〉 be two ST-arguments w.r.t. P. We will say
that 〈A1, L1, τ1, υ1〉 counter-argues 〈A2, L2, τ2, υ2〉 if and only if there exists a
ST-subargument 〈A,L, τ , υ〉 (called disagreement ST-subargument) of
〈A2, L2, τ2, υ2〉 such that L1 and L disagree, provided that τ1 ∩ τ2 �= ∅.

To define the acceptability of arguments in ST-DeLP we will just construct an
E-TAF based on the available ST-arguments. The E-TAF defined will capture the
temporal availability and the strength of ST-arguments. Let P be a ST-program.
The E-TAF obtained from P is Ψ = 〈AR,Attacks,ARAv ,ATAv〉 where:
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Fig. 5. Representation of the strength functions υA, υB , υC

– AR represents the set of all the ST-arguments from P .
– Attacks represents the counter-argument relation among ST-arguments.
– ARAv(A) =def τA, where A ∈ AR and τA is the time-intervals set associated

with A in P.
– ATAv((B,A)) =def {α ∈ R | α ∈ τA ∩ τB and υB(α) ≥ υA(α)}

Notice that an attack from B to A is available only in the time intervals where
the strength of B is grater or equal than the strength of A.

Example 5. Let us consider the following ST-program:

P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a —< s, k, {[75 − 140]}, υ1) (t, {[0 − 150]}, υ6)
(k —< m, {[0 − 70], [80 − 120]}, υ2) (j, {[0 − 150]}, υ7)
(∼k ←− p, {[55 − 120]}, υ3) (l, {[0 − 150]}, υ8)
(p —< t, l, {[30 − 100]}, υ4) (∼p —< j, {[40 − 90]}, υ9)
(s, {[0 − 150]}, υ5) (m, {[0 − 150]}, υ10)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the strength functions are defined below:

υ1(α) = 0.5 υ6(α) = 1

υ2(α) = 0.9 υ7(α) = 1

υ3(α) = 1 υ8(α) = 1

υ4(α) =

⎧⎨
⎩

0.3 α < 80
0.7 80 ≤ α ≤ 95
0.3 α > 95

υ9(α) =

⎧⎨
⎩

0.1 α < 55
0.8 55 ≤ α ≤ 85
0.1 α > 85

υ5(α) = 1 υ3(α) = 1

Now we construct the E-TAF corresponding to the previous ST-program.

AR= {A, B, C}, where A stands for 〈A, a, [80, 120], υA〉, B stands for
〈B,∼k, [55, 100], υB〉 and C stands for 〈C,∼p, [40, 90], υC〉 and where the strength func-
tions υA, υB and υC are depicted in Fig. 5.
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Attacks= {(B,A), (C,B)}
ARAv(A) = {[80, 120]} ARAv(B) = {[55, 100]} ARAv(C) = {[40, 90]}
ATAv((B,A)) = {α ∈ R | α ∈ {[80, 95]} and υB(α) ≥ υA(α)} = {[80, 95]}
ATAv((C,B)) = {[55, 85]}

This framework coincides with the E-TAF presented in example 3, Fig. 4, for which
argument acceptability was already analyzed.

7 Conclusions – Related and Future Work

Argumentation based formalisms has been successfully applied for reasoning in a
single agent, and in multi-agent domains. Dung’s AF has been proven fruitful for
developing several extensions with application in different contexts (e.g., [8,1]).
Reasoning about time is a main concern in many areas, e.g., automated agent
deliberation, and recently, an abstract argument based formalization has been
defined, called Temporal Abstract Framework (TAF), that extends the Dung’s
formalism by introducing the temporal availability of arguments into account.

In a recent work, a novel extension of TAF called Extended Temporal Ar-
gumentation Framework (E-TAF [9]) was introduced; this extension takes into
account not only the availability of arguments but also the availability of attacks,
allowing to model strength of arguments varying over time (strength understood
as a generalization of different possible measures for comparing arguments, such
as reliability, priorities, etc.).

In this paper we proposed an instantiation of E-TAF with the argumentation
formalism Defeasible Logic Programming (DeLP), obtaining a formalization we
called ST-DeLP. This instantiation provides a concrete knowledge representation
and reasoning formalism that allows to specify temporal availability and strength
of knowledge at the object language level. This information is propagated to the
level of arguments, and acceptability is analyzed as formalized in E-TAF.

As future work we will develop an implementation of ST-DeLP by using the
existing DeLP system 2 as a basis. The resulting implementation will be exercised
in different domains requiring to model strength varying over time. We are also
interested in analyzing the salient features of our formalization in the context
of other argumentation frameworks, such as the ASPIC+ framework [19], where
rationality postulates for argumentation are explicitly considered.
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Abstract. In this paper, we present a methodology for drift detection and char-
acterization. Our methodology is based on extracting indicators that reflect
the health state of a system. It is situated in an architecture of fault diagno-
sis/prognosis of dynamical system that we present in this paper. A dynamical
clustering algorithm is used as a major tool. The feature vectors are clustered and
then the parameters of these clusters are updated as each feature vector arrives.
The cluster parameters serve to compute indicators for drift detection and char-
acterization. Then, a prognosis block uses these drift indicators to estimate the
remaining useful life. The architecture is tested on a case study of a tank system
with different scenarios of single and multiple faults, and with different dynamics
of drift.

Keywords: Fault Diagnosis, Prognosis, Drift, Dynamical Clustering.

1 Introduction

Incipent faults are undesirable changes in a process behavior. The affected process state
passes from normal to failure through an intermediate state where it is in degraded mode.
This degraded mode is also called faulty mode [6]. Condition-Based Maintenance (CBM)
was introduced to try to maintain the correct equipment at the right time. It enables the
pre-emptive maintenance of systems that are subject to incipient faults. For this purpose,
CBM uses a supervision system (diagnosis/prognosis) in order to determine the equip-
ments health using real-time data [16,26], and act only when maintenance is actually nec-
essary. Prognosis is the ability to predict accurately the Remaining Useful Life (RUL)
of a failing component or subsystem. Prognostics and Health Management (PHM) is
the tool used by a CBM system. The reason is that a PHM provides, via a long-term
prediction of the fault evolution, information on the time where a subsystem or a com-
ponent will no longer perform its intended function. In order to estimate the RUL, it is
important to accurately determine the fault conditions: detection of fault and isolation of
fault. Moreover, it is important to continuously determine the current condition state of a
process when operating online. These requirements are achieved by a diagnosis module.

Approaches for diagnosis have been largely studied in the literature. Globally, we
can cite model-based approaches and data-driven based approaches. The model-based

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 113–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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approach [6] needs an analytical model of the studied process, which is not often trivial
to obtain. Data-driven approaches use directly historical data extracted from the system
[27,13,7]. Amongst them appears the Pattern Recognition (PR) approach in which op-
erating modes of the system are represented by classes or clusters in a feature space. Let
d be the dimensionality of the feature space. Any d-feature vector in this space is called
a pattern [22]. Clusters are similar patterns in restricted regions in the feature space cor-
responding to different functioning modes. In many applications, available historical
training sets of data corresponding to normal and failure functioning modes provide an
initial feature space on which a classification decision model is built.

A drift is a gradual change in the distribution of patterns that is mainly caused by an
incipient fault. For this reason, dynamical clustering appears to be an appropriate way
to follow the evolution of a drift because it allows continuous updates of the distribution
of patterns, thus of the decision model [24,2,12]. The idea behind this approach is to
iteratively update the parameters of clusters in the feature space as new data arrives.
This allows to follow the temporal evolution of a drift, and thus the computation of
Condition Monitoring (CM) data on which a prognosis module relies.

In fact, prognosis approaches rely on the CM data that reflects the defect evolution in
order to estimate the RUL. In general, prognosis approaches can be divided into three
categories [26,4,16,21] according to the defect evolution model; Model-based progno-
sis, data-driven prognosis and experience-based prognosis. In the model-based progno-
sis, the defect evolution law is characterised by a deterministic model or a stochastic
model [7]. It could be directly related to time, such as the crack grow length law (the
Paris-rule) and the pneumatic erosion linear model [14]. It could also be analytically
related to observable variables in a process, such as, in [19], a physical relationship
between fault severity and machine vibration signals was used. In experience-based
approach, prognosis is based on the evaluation of a fiability function (like the bath-
tub curve which is modeled by Weibull distributions) or on stochastic deterioration
function like the gamma function [18]. Finally, data-driven based approaches are used
when no physical model of the defect evolution is available. Data-driven approaches
can be roughly divided into statistical based methods and neural network based meth-
ods [21,3]. Statistical methods for prognosis are based on CM measurements related
to the health condition or state of the physical asset. There are two types of CM mea-
surements: Direct CM (DCM) measurements and Indirect CM (ICM) measurements
[23,7]. The difference is that in the former, the degradation state is directly observable,
but in the latter, the degradation state must be reconstructed. In the case of DCM, the
estimation of the RUL is the estimation of the CM measurements to reach a pre-defined
threshold level. In the case of ICM, it is possible to extract some meaningful indicators
that are able to represent the health state of a system. Then, the estimation of the RUL is
done by exploiting these indicators. The idea is to evaluate their trajectory into a future
horizon [21] until it reaches a failure situation. In order to project the health indicator
into future horizons, time series prediction models can be used, such as exponential
smoothing and regression based models. In [20], an exponential smoothing was used
on sensor measurements to estimate degradation trends. In [28], a logistic regression
was used to asses the machine condition and an ARMA (auto regressive moving aver-
age) model was used for the prediction of the trend of the degraded performance of the
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machine. In [11], fault was reconstructed by Principal Component Analysis (PCA) on
sensor measurements followed by a denoising step using wavelet networks. Then, the
fault trend was recursively identified by a recursive least square auto-regressive (AR)
model.

Our contribution in this paper is to derive indicators for detection and characteriza-
tion of a drift in a process. The computation of these indicators takes place inside an
architecture of diagnosis and prognosis. This architecture is depicted and explained in
the next section. The health state is reconstructed using metrics applied on iteratively
updated cluster parameters. The indicators we compute allow us to detect drift, pinpoint
the fault behind causing the drift, and estimate the RUL.

In section 2, the proposed approach for diagnosis/prognosis is shown and depicted.
To do so, in a first phase, the essential characteristics of a drift are described. Then,
in a second phase, the main functionalities of the dynamical clustering algorithm are
described. Then, the scheme of our architecture is shown. In section 3, we describe the
drift detection method we use and the computation of the indicators characterizing the
drift. In section 4, we show how we exploit these indicators for prognosis purposes. We
conclude in section 5 our work with some perspectives.

2 Architecture for Diagnosis and Prognosis

In this section, our diagnosis/prognosis architecture is shown. In a first place, the main
characteristics of a drift are detailed. Then, the dynamical clustering algorithm we use
is explained. After these two subsections, we show in figure 2 how we relate all these
aspects together in the goal of detecting and characterizing drifts.

2.1 Drift Characteriztion

A drift is the case when the process passes gradually from a normal operating mode
to failure passing by faulty situation. This is reflected in the feature space by a change
in the parameters of the distribution of the patterns [9]. In the literature, many papers
deal with the characterization of drifts [25,29,15]. Concerning diqgnosis and condition
monitoring, the criterias that are interesting to fully characterize a drift are:

1. Severity: it is an indicator that assesses the amplitude of a drift.
2. Speed: the speed is defined as the velocity of change of the severity indicator.
3. Predictability/Direction: when a drift occurs, the distribution of the patterns starts to

change. The patterns gradually start appearing in new regions. When a known fault
is causing the drift, the patterns tend to move towards the failure region correpond-
ing to this fault. In the opposite case, when an unknown fault is causing the drift,
the patterns tend to move towards an unknown region in space. Predictability or di-
rection criteria is the ability to say towards which region patterns are apporaching
in the feature space.

2.2 Dynamical Clustering Algorithm

Our architecture is based on monitoring parameters of clusters who are dynamically
updated at each instant t. The dynamical clustering algorithm we use is AuDyC and it
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stands for Auto-Adaptive Dynamical Clustering. It uses a technique that is inspired from
the mixed Gaussian model [24,2]. The patterns are modeled using Gaussian prototypes
P j characterized by a center MP j ∈ Rd×1 and a covariance matrix ΣP j ∈ Rd×d

where d is the dimensionality of the feature space. Each gaussian prototype forms a
cluster. The parameters of each cluster are its mean and covariance matrix. A minimum
number of Nwin patterns are necessary to define one cluster, where Nwin is a user de-
fined threshold. Each subsequent input feature vector (pattern) is compared to a cluster
database and assigned to a cluster that is most similar to it. After assigment to a cluster,
the parameters of the latter are updated. For more details on the functionalities; the rules
of recursive adaptation and the similarity criteria in AuDyC, please refer to [24,10].

The initial construction of the knowledge base is done using AuDyC. Initially, we
are given:

– Sn: the set of data corresponding to normal operating mode. let NSn = card(Sn)
be the cardinality of Sn.

– Sfi , i = 1, ..., nf : sets of data corresponding to different failure modes. nf is the
number of sets given.

We start the training process with an empty cluster database. The first training set used
for learning is Sn. The first feature vector is inserted in the database as the initial cluster,
denoted Cn(t = 1). Each subsequent input feature vector is assigned to Cn(t) and
the parameters (center and covariance matrix) of the latter are updated. The process
iteratively continues on each feature vector of the training set Sn. After a certain time,
the cluster Cn(t) converge to a region in the feature space. At this point, we define
CN = Cn(NSn) the last cluster that is covering the region corresponding to normal
operating mode. The same is done to the training sets Sfi , i = 1, ..., nf and the result
is the obtainment of Cfi , i = 1, ..., nf , the last clusters covering failure modes (see
figure (1(a)). Finally, we define, for drift detection purpose (as we will see later), S1 =
{μCn(j), j = NSn − n1 + 1, ..., NSn}, where n1 is user defined, a sample of the last
n1 means of clusters corresponding to normal operating mode.

Once this offline model is built, it can be plugged to the online system that is pro-
viding a data stream of patterns. As each pattern is available, it is compared to the
knowledge base model constructed on the training set. Under normal operating condi-
tions, features will be assigned to CN . After each assignment, the parameters (mean
and covariance) of CN are updated, i.e. the cluster is updated and will be denoted Ce(t)
as to say the evolving cluster at time t. We have Ce(t = 0) = CN and under normal
operating mode (without drift), Ce(t) ≈ CN . After the occurence of a drift, there are
three possible cases (see figure 1(b,c,d)) for the trajectory of the mean of Ce(t):

– Towards a known region in case fault is known,
– Towards an unknown region in case of unknown fault,
– Possible change in direction due to multiple faults.

2.3 General Scheme of the Architecture

At this point, we can give an overview of our architecture in figure 2.
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3 Drift Detection and Characterization

3.1 Drift Detection

Methods for detecting drifts have been largely studied in the literature. Under super-
vised learning, this problem is addressed as concept drift and it was highly aborded
[29] (and the references therein). However, in CBM/PHM, the problem of detecting
change is known as anomaly detection. A general review on anomaly detection can be
found in [5]. Example of these techniques are process quality control charts algorithms
such as CUSUM test [1], SPRT (sequential probability ratio test) control charts [8] and
hypothesis tests [17,11].

In this paper, we adopt a drift detection technique that makes use of the cluster means.
Under the assumption that a drift will cause the most recent means of the evolving
clusters to move away from the means of the clusters obtained in the training phase
under normal operating conditions, and since we use a parametric technique (Gaussian
model) to model the data in the feature space, a hypothesis test on the mean can be used
to detect drifts. The samples used for this test are:

– Sample S1: it is the sample of cluster means corresponding to normal operating
mode that was kept in memory from the training set; card(S1) = n1 (refer to
section 2.2).

– Sample S2: S2 = {μCe(j), j = t − n2 + 1, ..., t}. It is the sample of most recent
means of cluster Ce(t) from the online operating time. card(S2) = n2.

Let (μ1, Σ1) be the mean and the covariance matrix of the sample S1 and (μ2, Σ2) be
the mean and the covariance matrix of sample S2 respectively. The null hypothesis is:
Ho : μ1 = μ2. If there is no drift, then Ho will be accepted.

Each of the samples S1 and S2 contains centers of clusters which themselves con-
stitue the mean of Nwin features (refer to section 2.2). Thus, each sample is a distribu-
tion of sample means. For this reason, the distribution of both samples can be considered
normal. Then a Hoteling T 2 test can be conducted under the null hypothesis. The sizes
of the samples (n1 and n2) influence the power of the test. The bigger the samples are,
the more robust the test is. Statistical results show that under normality distribution, a
sample larger than 30 samples is enough [5]. The T 2 statistic is:

T 2 = (μ1 − μ2)TΣ−1
pooled(μ1 − μ2), (1)

Σpooled = (
1

n1
+

1

n2
).(

(n1 − 1)Σ1 + (n2 − 1)Σ2

n1 + n2 − 2
). (2)

We know that n2+n1−d−1
d.(n1+n2−2)T

2 ∼ F(d,n1+n2−d−1), where F(p,q) is the Fisher distribution
with p and q degrees of freedom. We remind that d is the dimensionality of the feature
space. Thus, for a given confidence level α, drift is confirmed if:

T 2 ≤ d.(n1 + n2 − 2)

n2 + n1 − d− 1
F(d,n1+n2−d−1)|α, (3)
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3.2 Drift Characteristization Indicators

Once a drift is detected, computation of drift indicators at each current time step is
necessary. In order to fully characterize a drift, three drift indicators are required:

– Direction indicator: based on the colinearity of the trajectory of the evolving cluster
Ce(t) with known failure clusters.

– Severity indicator: based on the distance of Ce(t) compared to CN and Cfi .
– Speed indicator: based on the derivative of the severity indicator, the speed indicator

reflects the speed of evolution of the fault.

Direction Indicator: It is used to pinpoint the cause of the fault (isolation) by studying
the direction of the movement of the evolving cluster. For this reason, let PCe(t) =
(μe(t), Σe(t)) and PCe(t− 1) = (μe(t− 1), Σe(t− 1)) the parameters of the evolving
clusters at time t and (t− 1) respectively, and PCfi

, i = 1, ..., nf the parameters of the
failure clusters corresponding to failure number i, we will define the following vectors:

– De(t) = μe(t)−μe(t−1)
||μe(t)−μe(t−1)|| , the unitary vector relating the centers of two consecutive

clusters Ce(t).

– Di(t) =
μfi

(t)−μe(t)

||μfi
(t)−μe(t)|| , the unitary vector relating the centers of Ce(t) at time t,

and the center of the failure cluster Cfi .

At each step, let p(t) = max(DT
e (t)Di(t))

1≤i≤nf

, and Γ (t) = arg(max(DT
e (t)Di(t)))

1≤i≤nf

. p(t)

is the maximum of the scalar product between De(t) and all the vectors Di(t). The
closer the value of p(t) is to 1, the more De(t) and Di(t) are closer to be colinear. If
p(t) = 1, then the drift is linear, i.e. the trajectory of the centers of the cluster Ce(t)
is a line. The values of the direction indicator and the rules of assignment at each step
follow this algorithm:

1. First calculate p(t) and Γ (t),
2. If p(t) ≥ pM , where pM is a user-defined threshold, then it is safe to say that the

movement is towards the failure cluster whose number is Γ In this case, we give
a value for direction such that direction = Γ . In the case where p(t) < pM , the
movement of the drift is considered to be towards an unknown region. The value
of direction in this case is 0. The threshold pM is user defined and depends on the
application. The larger its value is, the more the user is assuming a linear drift.

Severity Indicator: The severity indicator must reflect how far the evolving class is
from normal class and how close it is getting to the faulty class. Because the clusters
are Gaussians, the Kullback-Leibler divergence metric is used to compare the clusters.
The equation of this divergence between two multivariate Gaussian prototypes P1 =
(μ1, Σ1) and P2 = (μ2, Σ2) is:

dKL(P1, P2) = 0.5[ln(
|ΣP2|
|ΣP1|

)− d+ tr(Σ−1
P2

ΣP1) + (μP1 −μP2)TΣ−1
P2

(μP1 −μP2)],

(4)
where |Σ| is the determinant of the matrix |Σ|. Two cases are possible:
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– The direction of drift is towards a known failure cluster Cfi : in this case the severity
indicator is denoted svi(t) and is given by:

svi(t) =
dKL(Cn, Ce(t))

dKL(Cn, Ce(t)) + dKL(Ce(t), Cfi)
. (5)

– The direction of the drift is towards an unknown region in space: in this case, the
severity indicator will be the divergence of the evolving class from the normal class
and will be denoted sv(t) = dKL(Cn, Ce(t)).

From equation (5), it is clear that a severity indicator svi(t) can take values ranging
from 0 to 1. Under normal operating conditions, Ce(t) ≈ CN thus svi(t) → 0. Under
failure operating conditions, Ce(t) ≈ Cfi thus svi(t) → 1.

Speed Indicator: The speed indicator is the derivative of the severity indicator. It
reflects the speed of the evolution of clusters. In case of drift isolated, i.e. cluster Ce(t)
is evolving from normal to a known faulty cluster, the speed indicator will be:

spi(t) = svi(t)− svi(t− 1), (6)

whereas in case of drifting towards an unknown region, the speed indicator is not com-
puted.

4 Prognosis

Given the drift indicators, the prognosis module must be able to compute the remaining
useful lifetime (RUL). The severity indicators calculated on the earlier section reflects
the state of health of the system. A recursive auto regressive (RAR) model will be fit
on the severity indicator in order to project it’s path to futur horizon. Two cases are
possible:

– Drifting towards a known failure cluster Ci: in this case, the RAR model for the
corresponding severity indicator svi is used to compute the RUL. The computation
of the RUL is described in the subsection below.

– Drifting towards a unknown failure cluster: in this case, the RUL cannot be com-
puted because the region towards the cluster is evolving is unknown.

4.1 Dynamics of Drift and RUL Computation

Given a severity indicator svi(t), i = 1, ..., nf , the RUL is the time value for which the
equation (7) is satisfied:

svi(t + RUL) = 1. (7)

A RAR model of order m can be written as:

svi(t) =
m∑
j=1

(aj .svi(t− j)) + e(t), (8)
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where aj, j = 1...m are model parameters and e(t) is the model noise, which is as-
sumed to be zero mean and i.i.d. Let

Θi(t) = [a1(t), a2(t), ..., am(t)]T ,

be the parameter vector at time t, and

φi(t) = [svi(t− 1) ... svi(t−m)]T

the vector of the last m values of the severity indicator.
The parameter vector Θi(t) is recursively updated using the recursive least squares

algorithm:

Θ̂i(t) = Θ̂i(t− 1) + Ki(t).(svi(t)− ŝvi(t)), (9)

ŝvi(t) = φT
i (t).Θ̂i(t− 1), (10)

Ki(t) = Qi(t).φi(t), (11)

Qi(t) =
Pi(t− 1)

1 + φT
i (t).Pi(t− 1).φi(t)

, (12)

Pi(t) = Pi(t− 1)− Pi(t− 1).φi(t).φ
T
i (t).Qi(t), (13)

where Θ̂i(0) = 0 and Pi(0) = γI, γ >> 0 an arbitrary positive number.
At a step t, multi step prediction beginning at svi(t) can be obtained in an iterative

way:
ŝvi(k + H) = Θ̂T

i (t)φ̂i(t + H), (14)

where Θ̂i(t) is the estimated parametor vector at time t and φ̂T
i (t + H) = [ŝvi(t +

H − 1), ..., ŝvi(t + H −m)]. In case of non detected drift, RUL has no sense and will
be given the value -1 in our algorithm. In case of drift detected and fault isolated, the
calculation of the RUL follows this algorithm:

H=0,
while ŝvi(t + H) < 0.99

H++; update φ̂T
i (t + H); calculate ŝvi(t + H) (eq (14)); end while

RUL = H .

5 Case Study: Tank System

The database used for the testing our diagnosis/prognosis architecture was simulated
using the benchmark of a tank system. Different scenarios including known faults and
unknown faults were simulated and the results are shown. The tank system is shown in
figure 3. Under normal operating mode, the level of water is kept between two thresh-
olds, hHIGH

1 and hLOW
1 . When the level of water reaches hHIGH

1 , P1 is closed and V2

is opened. When the level of water reaches hLOW
1 , P1 is opened and V2 is closed. The

valve V1 is used to simulate leak in the tank. The surface of the valves V1 and V2 is the
same: SV1 = SV2 = SV and the surface of the pump pipe is SP . The instrumentation
used consists of only one sensor for the level of water in the tank. It is denoted by h1.
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5.1 Considered Faults

In order to test our architecture, three faults are considered; two known faults and one
unknown:

1. Fault1 (known): gradual increase of the surface of the valve V1 leading to a gradual
increase of the flow of water leaking from the tank. This surface increases from
0% × SV to 30% × SV considered as the maximum intensity of leakage. At this
stage, the system is considered in failure. When the surface is between 0% × SV

and 30%× SV , the system is faulty (degraded operation).
2. Fault2 (known): clogging of the pump P1 meaning that the flow of water that the

pump is delivering is decreasing with time. The same principle for the simulation
of V1 is used. A clogging of 30%× SP corresponds to failure.

3. Fault3 (unknown): clogging of the valve V2. The same principle for the simulation
of V1 is used. A clogging of 30%× SV means failure.

5.2 Feature Extraction

At the beginning, three data sets are given. One corresponding to normal operating
mode, and two corresponding to fault1 and fault2 operating modes respectively. In fig-
ure 4, we show the sensor measurements under normal operating mode. We can clearly
see that a cycle is a sequence of a filling period followed by a draining period. The
features extracted from this signal are the time required for the filling T1 and the time
required for draining T2. At the end of each cycle, one feature is extracted thus the time
unit considered will be the cycles denoted by cy.

0.5m 0.3m 
mhHIGH 4.01

mhLOW 1.01

Pump P1 

Valve V1  
used to simulate  

the leak 

Valve V2 is the  
normal operating 

valve of the  
system 

Fig. 3. The tank system

1 cycle 1 cycle 

Fig. 4. Six filling/draining cycles under normal
operating conditions

5.3 Scenarios

Three scenarios were considered:

– Scenario1: only fault1 is considered. The drift is simulated linearly from 0% to
30% in 26cy.

– Scenario2: only fault2 is considered. The drift is simulated linearly from 0% to
30% in 60cy.
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– Scenario3: In this scenario, fault1 and fault3 are considered. After the occurence
of fault1, fault3 is activated with some delay and both faults are thus activated
together. This results to a change in the direction of the drift and the idea behind is
to test the ability of our algorithm to detect this case.

5.4 Results

The parameters of the overall algorithm are: λm = 0.02 and Nwin = 30 (section 2),
α = 99.7%, n1 = 60, n2 = 30, F(d,n1+n2−d−1|α) = 3.6 and pM = 0.85 (section 3).
In all scenarios, drift was started at tdrift = 20cy.

The results for the scenarios are depicted in the figures below.

Beginning of 
The drift 

Detect point 
For scenario1=26 

Detect point 
For scenario2=30 

Fig. 5. Drift detection results for scenarios 1
and 2

Beginning of 
The drift 

Fig. 6. Severity indicator results for scenar-
ios 1 and 2

Fig. 7. Speed indicator results for scenarios
1 and 2

Beginning of 
The drift 

Heading towards 
fault1 

Heading towards 
fault2 

Heading towards 
Unknown region 

Fig. 8. Direction indicator results for scenar-
ios 1, 2 and 3
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Fig. 9. Real RUL vs estimated RUL for
scenario1

Fig. 10. Real RUL vs estimated RUL for
scenario2

The obtained results confirm that our architecture is efficient in handling drifts. We
notice that as speed of a drift is lower, the more time is needed to detect the drift (Fig.
5). The severity indicator ranges from the 0 (normal mode) to 1 (failure mode). In
scenario1, it reaches 1 faster than in scenario2 (Fig. 6). Another conclusion is that,
the error between the estimated RUL and the real RUL converges to zero. The time to
convergence is related to the speed of the drift in the sense that a higher speed of drift
means a faster convergence of the RAR algorithm (Fig. 9,10). In scenario3, the value
of the direction indicator changed from 1 to 0 at t ≈ 47cy indicating a change towards
an unknown region (Fig. 8). Thus, no RUL was calculated for that scenario. Finally, the
speed indicator in scenario1 shows that the speed increases very fast to its maximum
value, whereas in scenario2, the increase of speed is slower (Fig. 7).

6 Conclusion and Perspectives

In this paper, a methodology of condition monitoring and prognosis was established.
It is based on an architecture of diagnosis/prognosis. It was based on monitoring pa-
rameters of a dynamically updated cluster parameters. The methodology was tested on
a benchmark of a tank system. It was showed that under the assumptions developped
in this paper, the methodology has given promising results for different scenarios of
simulation.

Surely, research in this paper must be developped in a stepwise direction. In this
paper, we supposed that a drift led the system directly to failure. This a possible case
in a lot of real scenarios. However, the drift of functionning can stabilize somewhere
before reaching complete failure. The algorithm must be adjusted to take this case into
consideration. Secondly, we intend to test our system on a real database, and compare
it to another methods of the literature.
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Abstract. An approach to apply ensembles of genetic fuzzy systems, built over 
the chunks of a data stream, to aid in residential premises valuation was 
proposed. The approach consists in incremental expanding an ensemble by 
systematically generated models in the course of time. The output of aged 
component models produced for current data is updated according to a trend 
function reflecting the changes of premises prices since the moment of 
individual model generation. An experimental evaluation of the proposed 
method using real-world data taken from a dynamically changing real estate 
market revealed its advantage in terms of predictive accuracy. 

Keywords: genetic fuzzy systems, data stream, sliding windows, ensembles, 
predictive models, trend functions, property valuation. 

1 Introduction 

The area of data stream mining has attracted the attention of many researchers during 
the last fifteen years. Processing data streams represents a novel challenge because it 
requires taking into account memory limitations, short processing times, and single 
scans of arriving data. Many strategies and techniques for mining data streams have 
been devised. Gaber in his recent overview paper categorizes them into four main 
groups: two-phase techniques, Hoeffding bound-based, symbolic approximation-
based, and granularity-based ones [11]. Much effort is devoted to the issue of concept 
drift which occurs when data distributions and definitions of target classes change 
over time [9], [22], [27], [29]. Among the instantly growing methods of handling 
concept drift in data streams Tsymbal distinguishes three basic approaches, namely 
instance selection, instance weighting, and ensemble learning [25], the latter has been 
systematically overviewed in [16],[23]. In adaptive ensembles, component models are 
generated from sequential blocks of training instances. When a new block arrives, 
models are examined and then discarded or modified based on the results of the 
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evaluation. Several methods have been proposed for that, e.g. accuracy weighted 
ensembles [26] and accuracy updated ensembles [4]. 

One of the most developed recently learning technologies devoted to dynamic 
environments have been evolving fuzzy systems [20]. Data-driven fuzzy rule based 
systems (FRBS) are characterized by three important features. Firstly, they are able of 
approximating any real continuous function on a compact set with an arbitrary 
accuracy [6], [13]. Secondly, they have the capability of knowledge extraction and 
representation when modeling complex systems in a way that they could be 
understood by humans [1]. Thirdly, they can be permanently updated on demand 
based on new incoming samples as is the case for on-line measurements or data 
streams. The technologies provide such updates with high performance, both in 
computational times and predictive accuracy. The major representatives of evolving 
fuzzy approaches are FLEXFIS [21] and eTS [2]  methods. The former incrementally 
evolves clusters (associated with rules) and performs a recursive adaptation of 
consequent parameters by using local learning approach. The latter is also an 
incremental evolving approach based on recursive potential estimation in order to 
extract the most dense regions in the feature space as cluster centers (rule 
representatives). 

Ensemble models have been drawing the attention of machine learning community 
due to its ability to reduce bias and/or variance compared with their single model 
counterparts. The ensemble learning methods combine the output of machine learning 
algorithms to obtain better prediction accuracy in the case of regression problems or 
lower error rates in classification. The individual estimator must provide different 
patterns of generalization, thus the diversity plays a crucial role in the training 
process. To the most popular methods belong bagging [3], boosting [27], and stacking 
[28]. Bagging, which stands for bootstrap aggregating, devised by Breiman [3] is one 
of the most intuitive and simplest ensemble algorithms providing good performance. 
Diversity of learners is obtained by using bootstrapped replicas of the training data. 
That is, different training data subsets are randomly drawn with replacement from the 
original training set. So obtained training data subsets, called also bags, are used then 
to train different classification and regression models. Theoretical analyses and 
experimental results proved benefits of bagging, especially in terms of stability 
improvement and variance reduction of learners for both classification and regression 
problems [5], [10]. However, the aforementioned approaches are devoted to static 
environments, i.e. they assume that all training data are available before the learning 
phase is conducted. Once this phase is completed, the learning system is no more 
capable of updating the generated model. It means the system is not adaptive and the 
model cannot evolve over time.When processing a data stream using nonincremental 
method, we cannot apply any resampling technique as bootstrap, holdout or cross-
valitation. Instead, we should try to select a chunk of data coming in within the 
shortest time period possible, and use it to train a model, and validate the model using 
the data coming in the next period. 

The goal of the study presented in this paper was to make an attempt to apply 
a nonincremental genetic fuzzy systems to build reliable predictive models from 
a data stream. The approach was inspired by the observation of a real estate market of 



 An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream 129 

 

in one big Polish city in recent years when it experienced a violent growth of 
residential premises prices. Our method consists in the utilization of aged models to 
compose ensembles and correction of the output provided by component models was 
updated with trend functions reflecting the changes of prices in the market over time. 

2 Motivation and GFS Ensemble Approach 

Property and real estate appraisals play the crucial role in many areas of social life 
and economic activity as well as for private persons, especially for asset valuation, 
sales transactions, property taxation, insurance estimations, and economic and spatial 
planning. The values of properties change with market conditions in the course of 
time and must be periodically updated, and the value estimation is based on the 
current indicators of real estate market, first of all on recent real estate sales 
transactions. The accuracy of real estate valuation models depends on proper 
identifying the relevant attributes of properties and finding out the actual 
interrelationship between prices and attributes. In current sales comparison 
approaches for residential premises, it is necessary to have transaction prices of the 
properties sold whose attributes are similar to the one being appraised. If good 
comparable transactions are available, then it is possible to obtain reliable estimates 
for the prices of the residential premises.  

The approach based on fuzzy logic is especially suitable for property valuation 
because professional appraisers are forced to use many, very often inconsistent and 
imprecise sources of information, and  their familiarity with a real estate market and 
the land where properties are located is frequently incomplete. Moreover, they have to 
consider various rice drivers and complex interrelation among them. An appraiser 
should make on-site inspection to estimate qualitative attributes of a given property as 
well as its neighbourhood. They have also to assess such subjective factors as location 
attractiveness and current trend and vogue. So, their estimations are to a great extent 
subjective and are on uncertain knowledge, experience, and intuition rather than on 
objective data. 

 

 

Fig. 1. Information systems to assist with real estate appraisals 

So, the appraisers should be supported by automated valuation systems which 
incorporate data driven models for premises valuation developed employing sales 
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comparison method. The data driven models, considered in the paper, were generated 
using real-world data on sales transactions taken from a cadastral system and a public 
registry of real estate transactions. The architecture of the proposed system is shown 
in Fig. 1. The appraiser accesses the system through the Internet and input the values 
of the attributes of the premises being evaluated into the system, which calculates the 
output using a given model. The final result as a suggested value of the property is 
sent back to the appraiser. We explore data-driven fuzzy rule-based systems (FRBS) 
as a specific data-driven model architecture used in the framework shown in Fig. 1, 
which were recognized to be able of approximating any real continuous function on 
a compact set with an arbitrary accuracy. Moreover, FRBSs allow for knowledge 
extraction and representation by modeling complex systems in a way understandable 
by humans. So, the interpretability of fuzzy systems is a characteristic that favors this 
type of models because it is often required to explain the behavior of a given real 
appraisal model. 

So far, we have investigated several methods to construct regression models to 
assist with real estate appraisal based on fuzzy approach: i.e. genetic fuzzy systems as 
both single models [14] and ensembles built using various resampling techniques 
[12], [18], but in this case the whole datasets had to be available before the process of 
training models started. All property prices were updated to be uniform in a given 
point of time. An especially good performance revealed evolving fuzzy models 
applied to cadastral data [17], [19]. Evolving fuzzy systems are appropriate for 
modeling the dynamics of real estate market because they can be systematically 
updated on demand based on new incoming samples and the data of property sales 
ordered by the transaction date can be treated as a data stream. In this paper we 
present our first attempt to employ evolutionary fuzzy approach to explore data 
streams to model dynamic real estate market. The problem is not trivial because on 
the one hand a genetic fuzzy system needs a number of samples to be trained and on 
the other hand the time window to determine a chunk of training data should be as 
small as possible to retain the model accuracy at an acceptable level. The processing 
time in this case is not a very important issue because property valuation models need 
not to be updated and/or generated from scratch in an on-line mode. 

Our approach is grounded on the observation of a real estate market in one big 
Polish city with the population of 640 000. The residential premises prices in Poland 
depend on the form of the ownership of the land on which buildings were erected. For 
historical reasons the majority of the land in Poland is council-owned or state-owned. 
The owners of flats lease the land on terms of the so-called perpetual usufruct, and 
consequently, most flat sales transactions refer to the perpetual usufruct of the land. 
The prices of flats with the land ownership differ from the ones of flats with the land 
lease. Moreover, the apartments built after 1996 attain higher prices due to new 
construction technologies, quality standards, and amenities provided by the 
developers. Furthermore, apartments constructed in this period were intended mainly 
for investments and trades which also led to the higher prices. To our study we 
selected sales transaction data of apartments built before 1997 and where the land was 
leased on terms of perpetual usufruct. Therefore the dynamics of real estate market 
concerns more the prices of residential premises rather than other basic attributes of 
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properties such as usable area, number of rooms, floor, number of storeys in 
a building, etc.  

Having a real-world dataset referring to residential premises transactions 
accomplished in the city, which after cleansing counted 5212 samples, we were able 
to determine the trend of price changes within 11 years from 1998 to 2008. It was 
modelled by the polynomial of degree three. The chart illustrating the change trend of 
average transactional prices per square metre is given in Fig. 2.  

 

 

Fig. 2. Change trend of average transactional prices per square metre over time 

 

 

Fig. 3. GFS ensemble approach to predict from a data stream 

The idea of the GFS ensemble approach to predict from a data stream is illustrated 
in Fig. 3. The data stream is partitioned into data chunks according to the periods of a 
constant length tc. In the case of transactional data tc can be equal to one, two, or more 
months. The sliding time window of the length tw is equal to the multiple of tc so that 
tw=jtc, where j=1,2,3,.. . The window determines the scope of training data to generate 
from scratch a property valuation model, in our case GFS. It is assumed that the 
models generated over a given training dataset is valid for the next interval which 
specifies the scope for a test dataset. Similarly, the interval tt which delineates a test 
dataset is equal to the multiple of tc so that tt=ktc, where k=1,2,3,.. . The sliding 
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window is shifted step by step of a period ts in the course of time, and likewise, the 
interval ts is equal to the multiple of tc so that ts=ltc, where l=1,2,3,.. . 

Let us consider a point of time t0 at which the current model GFS0 was generated 
from scratch over data that came in between time t0-tw and t0. In the experiments 
reported in the next section as t0 we took January 1, 2006, which corresponded the 
value of 2.92 on the x axis in the chart in Fig. 2. In this time the prices of residential 
premises were growing quickly due to the run on real estate. The models created 
earlier, i.e. GFS1, GFS2, etc. have aged gradually and in consequence their accuracy 
has deteriorated. They are neither discarded nor modified but utilized to compose an 
ensemble so that the current test dataset is applied to each component GFSi. However, 
in order to compensate ageing, their output produced for the current test dataset is 
updated using trend functions determined over corresponding ageing intervals tai plus 
tw. If all historical data would be saved and available the trend could be also modelled 
over data that came in from the beginning of a stream. 

The idea of correcting the results produced by aged models is depicted in Fig. 4. 
For the time point tgi=t0-tai , when a given aged model GFSi was generated, the value 
of a trend function T(tgi), i.e. average price per square metre, is computed. The price 
of a given premises, i.e. an instance of a current test dataset, characterised by a feature 
vector x, is predicted by the model GFSi. Next, the total price is divided by the 
premises usable area to obtain its price per square metre Pi(x). Then, the deviation of 
the price from the trend value ΔPi(x)=Pi(x)-T(tgi) is calculated. The corrected price per 
square metre of the premises Pi’(x) is worked out by adding this deviation to the trend 
value in the time point t0 using the formula Pi’(x)=ΔPi(x)+T(t0), where T(t0) is the 
value of a trend function in t0. Finally, the corrected price per square metre P’(x) is 
converted into the corrected total price of the premises by multiplying it by the 
premises usable area. Similar approach is utilized by professional appraisers. 

 

Fig. 4. The idea of correcting the output of aged models 

The resulting output of the ensemble for a given instance of the test dataset is 
computed as the arithmetic mean of the results produced by the component models 
and corrected by corresponding trend functions. Moreover, weighting component 
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models in an ensemble can be applied according to time past or estimated model 
accuracy. In the study we applied a simple method proposed in our work in 2006 [15], 
where the weights assigned to a component model are inversely proportional to its 
ageing time: wi=1-i/N, where i is the index of a model, i=0,1,2,..,N-1, and N denotes 
the number of component models encompassed by the ensemble.  

In this paper we present our first attempt to employ evolutionary fuzzy approach to 
explore data streams to model dynamic real estate market. The problem is not trivial 
because on the one hand a genetic fuzzy system needs a number of samples to be 
trained without overfitting and on the other hand the time window to determine 
a chunk of training data should be as small as possible to diminish the ageing impact 
and retain the model accuracy at an acceptable level. The processing time in this case 
is not a decisive factor because property valuation models need not to be updated 
and/or generated from scratch in an on-line mode. Thus, our approach, outlined 
above, raises a challenge to find the trade-off between the length of a sliding window 
delimiting the training dataset and the deteriorating impact of ageing models, 
overfitting, and computational efficiency. Moreover, the issue of how different trend 
functions modeled over different time intervals affect the accuracy of single and 
ensemble fuzzy models could be explored. In addition to this, different weighing 
techniques of component aged models in an ensemble could be investigated. 

3 Experimental Setup and Results 

The investigation was conducted with our experimental system implemented in 
Matlab environment using Fuzzy Logic, Global Optimization, Neural Network, and 
Statistics toolboxes. The system was designed to carry out research into machine 
learning algorithms using various resampling methods and constructing and 
evaluating ensemble models for regression problems.  

Real-world dataset used in experiments was drawn from an unrefined dataset 
containing above 50 000 records referring to residential premises transactions 
accomplished in the Polish big city, mentioned in the previous section, within 11 
years from 1998 to 2008. In this period most transactions were made with non-market 
prices when the council was selling flats to their current tenants on preferential terms. 
First of all, transactional records referring to residential premises sold at market prices 
were selected. Then the dataset was confined to sales transaction data of apartments 
built before 1997 and where the land was leased on terms of perpetual usufruct.  

The final dataset counted the 5213 samples. Five following attributes were pointed 
out as main price drivers by professional appraisers: usable area of a flat (Area), age 
of a building construction (Age), number of storeys in the building (Storeys), number 
of rooms in the flat including a kitchen (Rooms), the distance of the building from the 
city centre (Centre), in turn, price of premises (Price) was the output variable.  

The property valuation models were built by genetic fuzzy systems over chunks of 
data stream determined by the time span of 3, 6, 9, and 12 months, as described in the 
previous section. The parameters of the architecture of fuzzy systems as well as 
genetic algorithms are listed in Table 1. Similar designs are described in [7], [8], [14]. 
As test dataset the chunks of data stream specified by the time intervals of one and 
three months were employed. These intervals followed a time point t0, which was set 
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to January 1, 2006, i.e. the point of 2.92 on the x axis in the chart in Fig. 2. As a 
performance function the mean absolute error (MSE) was used, and as aggregation 
functions of ensembles arithmetic averages were employed. 

Table 1. Parameters of GFS used in experiments 

Fuzzy system Genetic Algorithm 
Type of fuzzy system: Mamdani 
No. of input variables: 5 
Type of membership functions (mf): triangular 
No. of input mf: 3 
No. of output mf: 5 
No. of rules: 15 
AND operator: prod 
Implication operator: prod 
Aggregation operator: probor 
Defuzzyfication method: centroid 

Chromosome: rule base and mf, real-coded 
Population size: 100 
Fitness function: MSE 
Selection function: tournament 
Tournament size: 4 
Elite count: 2 
Crossover fraction: 0.8 
Crossover function: two point 
Mutation function: custom 
No. of generations: 100 

 
The trends were modelled using Matlab function polyfit(x,y,n), which finds the 

coefficients of a polynomial p(x) of degree n that fits the y data by minimizing the 
sum of the squares of the deviations of the data from the model (least-squares fit). 
Due to the relatively short ageing periods, we used in our study linear trend functions 
to model the changes of premises prices.  

The resulting output of the ensemble for a given instance of the test dataset is 
computed as the arithmetic mean of the results produced by the component models 
and corrected by corresponding trend functions. Moreover, weighting component 
models in an ensemble was applied, using the weights inversely proportional to 
ageing time. The weights were determined according to the method described in the 
preceding section and are listed in Table 2, where the number of component models is 
given in the heading and the model indices in the first column. As can be seen the 
weights assigned to respective component GFSs are distinct for different size of 
ensembles. 

Table 2. Weight values decreasing with the age of models  

# 2 3 4 5 6 7 8 9 10 11 12 
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90 0.91 0.92 
2  0.33 0.50 0.60 0.67 0.71 0.75 0.78 0.80 0.82 0.83 
3   0.25 0.40 0.50 0.57 0.63 0.67 0.70 0.73 0.75 
4    0.20 0.33 0.43 0.50 0.56 0.60 0.64 0.67 
5     0.17 0.29 0.38 0.44 0.50 0.55 0.58 
6      0.14 0.25 0.33 0.40 0.45 0.50 
7       0.13 0.22 0.30 0.36 0.42 
8        0.11 0.20 0.27 0.33 
9         0.10 0.18 0.25 

10          0.09 0.17 
11           0.08 

 
The performance of ageing single models created by genetic fuzzy systems (GFS) 

in terms of MAE is illustrated graphically in Figures 5-9. The x axis shows the age of 
models, i.e. the how many months passed from time when respective models were 
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created to the time point t0. The models were generated with training datasets 
determined by sliding windows of tl=3, 6, 9, and 12 months respectively. The 
windows were shifted of ts=3 months. Two the same test datasets, current for t0, 
determined by the interval of 1 and 3 months were employed to all current and aged 
models. Following denotation was used in the legend of Figures 5-9: noT and withT 
mean that output produced by respective models for the current test dataset was not 
updated and updated, respectively, using linear trend functions determined over 
corresponding ageing intervals tai plus tw. In turn, the numbers in round brackets, i.e. 
(i/j), denote a time span for training and test datasets respectively. 

In the charts it is clearly seen that the MAE values for models whose output was 
not corrected by trend functions grow as ageing time increases. The reverse relation 
can be noticed when the results produced by models were updated with trend 
functions. Furthermore, the older models with trend correction reveal better 
performance than the less aged ones. This can be explained by less fluctuations of 
premises prices in earlier time intervals (see Fig. 2). Moreover, the shorter time span 
(starting from t0) of test data the lower MAE value may indicate that data included in 
test sets also undergo ageing. In turn, no significant differences in accuracy can be 
observed between models generated for 3 and 12 month time intervals (see Fig. 9).  

 

 
 

Fig. 5. Performance of ageing models trained over 3 month data windows 

 

 

Fig. 6. Performance of ageing models trained over 6 month data windows 
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Fig. 7. Performance of ageing models trained over 9 month data windows 

 

 

Fig. 8. Performance of ageing models trained over 12 month data windows 

 

 
 

Fig. 9. Performance comparison of ageing models trained over 3 and 12 month data windows  

The performance of ensemble models in terms of MAE is depicted in Figures 10-
12. The ensembles were composed of stepwise growing number of genetic fuzzy 
systems (GFS), presented in Fig. 5 and 8. To a single model, current for t0, more and 
more aged models, built over training data of the same time span, were added. The 
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same test datasets, current for t0, determined by the interval of 1 and 3 months were 
applied to each ensemble. However, in the paper we present only the results for the 
longer period. Following denotation was used in the legend of Figures 10-12: noT and 
withT analogously to Fig. 5-9 indicate whether the output provided by component 
models was updated with trend functions or not. The meaning of the numbers in 
round brackets remains the same. In turn the letter w denotes that component models 
were weighted using the weights inversely proportional to ageing time.  

In the charts can be seen that the MAE values for ensembles where the output of 
component models was corrected by trend functions decrease as the number of GFSs 
grows. The reverse relation can be noticed when the results produced by component 
models were not updated with trend functions. Moreover, adding weights to models 
without trend correction leads to better performance but has no advantageous effect 
on ensembles with trend correction. This can be explained by better accuracy of older 
models with updated output. Finally, the ensembles encompassing models generated 
for 3 month time intervals reveal better accuracy the ones built over 12 month 
windows (see Fig. 12).  
 

 
 

Fig. 10. Performance of ensembles comprising GFSs trained over 3 month data windows 

 

 

Fig. 11. Performance of ensembles comprising GFSs trained over 12 month data windows 
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Fig. 12. Performance comparison of ensembles comprising GFSs trained over 3 and 12 month 
data windows 

4 Conclusions and Future Work 

An approach to apply ensembles of genetic fuzzy systems to aid in residential 
premises valuation was proposed. The approach consists in incremental expanding an 
ensemble by systematically generated models in the course of time. The output of 
aged component models produced for current data is updated according to a trend 
function reflecting the changes of premises prices since the moment of individual 
model generation. An experimental evaluation of the proposed method using real-
world data taken from a dynamically changing real estate market revealed its 
advantage in terms of predictive accuracy.  

However, in the study to date each ensemble has been treated as a black box. 
Further investigation is planned to explore the intrinsic structure of component 
models, i.e. their knowledge and rule bases, as well as their generation efficiency, 
interpretability, overfitting, and outlier issues.  

Moreover, the weighting component models requires more thorough investigation. 
The technique we applied in our study consisted in assigning weights that were 
inversely proportional to component model ageing time. A question arises how big 
differences among individual weights should be and what should they depend on. It is 
planned to explore the weights determined according to the estimated accuracy of 
component models as well as set proportional to the change rate of prices per square 
metre within the sliding time window. 

Another problem to tackle is as follows. When we try to build models from scratch 
over relatively small amount of data it may happen that data coming within the next 
period will not fit a given model. Then we should consider to employ clustering, 
random oracle, or stratification. 

 
Acknowledgments. This paper was partially supported by the Polish National 
Science Centre under grant no. N N516 483840. 



 An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream 139 

 

References 

1. Alonso, J.M., Magdalena, L., González-Rodríguez, G.: Looking for a good fuzzy system 
interpretability index: An experimental approach. International Journal of Approximate 
Reasoning 51, 115–134 (2009) 

2. Angelov, P.P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy 
models. IEEE Transactions on Systems, Man and Cybernetics, part B 34(1), 484–498 
(2004) 

3. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996) 
4. Brzeziński, D., Stefanowski, J.: Accuracy Updated Ensemble for Data Streams with 

Concept Drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. 
LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011) 

5. Bühlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002) 
6. Castro, J.L., Delgado, M.: Fuzzy systems with defuzzification are universal approximators. 

IEEE Transactions on System, Man and Cybernetics 26, 149–152 (1996) 
7. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic 

fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 
(2004) 

8. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy 
Rule-Based Systems. IEEE Tr. on Sys., Man, and Cyb.-Part B 29(6), 703–715 (1999) 

9. Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary 
Environments. IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011) 

10. Fumera, G., Roli, F., Serrau, A.: A theoretical analysis of bagging as a linear combination 
of classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 
1293–1299 (2008) 

11. Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery 2(1), 79–85 (2012) 

12. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of Bagging Ensembles of 
Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., 
Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–
332. Springer, Heidelberg (2011) 

13. Kosko, B.: Fuzzy systems as universal approximators. IEEE Transactions on 
Computers 43(11), 1329–1333 (1994) 

14. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary 
Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International 
Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008) 

15. Król, D., Szymański, M., Trawiński, B.: The recommendation mechanism in an internet 
information system with time impact coefficient. International Journal of Computer 
Science Applications 3(2), 65–80 (2006) 

16. Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., 
Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004) 

17. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving 
Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and 
Soft Computing 17(2-3), 229–253 (2011) 

18. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling 
Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., 
Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg 
(2011) 



140 B. Trawiński et al. 

 

19. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy 
Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 
5123–5142 (2011) 

20. Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and 
Applications. STUDFUZZ, vol. 266. Springer, Heidelberg (2011) 

21. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy 
models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008) 

22. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. 
Artificial Intelligence 154(1-2), 95–126 (2004) 

23. Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning 
in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data 
Engineering 22(5), 730–742 (2010) 

24. Schapire, R.E.: The strength of weak learnability. Mach. Learning 5(2), 197–227 (1990) 
25. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical 

Report. Department of Computer Science, Trinity College, Dublin (2004) 
26. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble 

classifiers. In: Getoor, L., et al. (eds.) KDD 2003, pp. 226–235. ACM Press (2003) 
27. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. 

Machine Learning 23, 69–101 (1996) 
28. Wolpert, D.H.: Stacked Generalization. Neural Networks 5(2), 241–259 (1992) 
29. Zliobaite, I.: Learning under Concept Drift: an Overview. Technical Report. Faculty of 

Mathematics and Informatics. Vilnius University, Vilnius (2009) 
 

 



Navigating Interpretability Issues

in Evolving Fuzzy Systems�

Edwin Lughofer

Johannes Kepler University of Linz, Austria
edwin.lughofer@jku.at

Abstract. In this position paper, we are investigating interpretability
issues in the context of evolving fuzzy systems (EFS). Current EFS ap-
proaches, developed during the last years, are basically providing method-
ologies for precise modeling tasks, i.e. relations and system dependencies
implicitly contained in on-line data streams are modeled as accurately as
possible. This is achieved by permanent dynamic updates and evolution
of structural components. Little attention has been paid to the inter-
pretable power of these evolved systems, which, however, originally was
one fundamental strength of fuzzy models over other (data-driven) model
architectures. This paper will present the (little) achievements already
made in this direction, discuss new concepts and point out open issues
for future research. Various well-known and important interpretability
criteria will serve as basis for our investigations.

Keywords: evolving fuzzy systems, interpretability criteria, on-line
assurance.

1 Introduction

1.1 Motivation and State-of-the-Art

In today’s industrial systems, the automatic adaptation of system models with
new incoming data samples plays more and more a major role. This is due to an
increasing complexity of the systems, as changing environments, upcoming new
systems states or new operation modes not contained in pre-collected training
sets are often not covered by an initial model setup in an off-line stage: in fact,
collecting data samples for all possible system states and environmental behav-
iors would require a huge amount of operator’s time, causing significant expenses
for companies. Evolving models as part of the evolving intelligent system com-
munity [2] are providing methodologies for permanent model updates, mostly in
single-pass and incremental manner, thus being able to dynamically update their
structures in changing environments [28] — in fact, learning in non-stationary
environments can be seen as a comprehensive field of research in this direction
as including evolving as well as incremental data stream learning strategies for
various machine learning and soft computing models/concepts.
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Improved transparency and interpretability of the evolved models may be
useful in several real-world applications where the operators and experts intend
to gain a deeper understanding which interrelations, dependencies exist in the
system in order to enrich their own knowledge and to be able to interpret the
characteristics of the system on a more deeper level. For instance, in quality
control applications, it could be very useful to know which interrelations of sys-
tem variables/features were violated in case of faults; This may serve as valuable
input to fault diagnosis and reasoning approaches [13] for tracing back the ori-
gin of the faults and providing appropriate automatic feedback control reactions
[21]. Another example are decision support [10] systems, where it is sometimes
necessary to know why certain decisions where made by classification models,
especially in medical applications, see for instance [31].

Evolving fuzzy systems (EFS) are a powerful tool to tackle these demands
as they are offering model architectures from the field of fuzzy logic and sys-
tems including components with a clear linguistically interpretable meaning [7].
Indeed, when trained from data, instead of designed manually by an expert,
they are loosing some of their interpretable power, but still maintain some in-
terpretability, especially when specific improvement techniques are applied, see
e.g. [33] [11]. In the evolving sense, so far the main focus has been laid on precise
modeling techniques, which are aiming for high accuracy on new unseen data
and in a mathematical sense for coming close to optimality in an incremental
optimization context — see [18] for a survey of precise EFS approaches. Little
attention has been paid how to assure or at least how to improve interpretability
of these types of models (most of these are only covering techniques for reducing
complexity of models). The upper part in the framework visualized in Figure
1 shows the components which are integrated in current EFS approaches, of-
ten leading to weird fuzzy partitions and confusing rule bases. The lower part
demonstrates fuzzy modeling from the viewpoint of human beings. Their expert
knowledge, usually acquired within a long-term experience by working at the
corresponding system, is used as basis for designing fuzzy rule bases directly by
encoding this knowledge as a combination of linguistic terms and rules.

1.2 Aim of the Paper

Thus, in this paper, we are discussing the (little) achievements already made
in this direction, discuss new concepts and point out open issues for future re-
search. We are aiming for laying a bridge between linguistic and precise fuzzy
modeling in an incremental learning context (indicated by the dashed arrows
in Figure 1). Within this context, well-known interpretability criteria from the
world of batch trained resp. expert-based fuzzy systems will serve as basis for our
investigations, in particular 1) distinguishability and simplicity, 2) consistency,
3) coverage and completeness, 4) feature importance levels, 5) rule importance
levels, and 6) interpretation of consequents, covering both, high-level (rule-based
level) and low-level (fuzzy-set level) interpretation spirits according to [33] (there
investigated within the scope of completely off-line fuzzy models). One impor-
tant point in our investigations will be the on-line capability of concepts for
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Fig. 1. Framework showing precise evolving and linguistic fuzzy modeling components
(based on data and human input)

improving/ensuring the above criteria, in order to be applicable in fast processes
along the incremental learning methods of EFS.

2 Distinguishability and Simplicity

While distinguishability expects the usage of structural components (rules, fuzzy
sets) which are clearly separable as non-overlapping and non-redundant, sim-
plicity goes a step further and expects models with a low complexity, at least as
low as possible in order to still achieve a reasonable accuracy.

2.1 Distinguishability

In current evolving fuzzy systems guided by precise incremental and recursive
modeling techniques, trying to position the structural components following the
natural distribution of the data, a low distinguishability may appear whenever
rules and fuzzy sets are moved, adapted, re-set due to new incoming data samples
from an infinite stream. For instance, consider two data clouds representing two
local distributions of the data which are adequately modeled by two rules in the
fuzzy systems; after some time, the gap between the two clouds is filled up with
new data, which makes the two clouds indistinguishable, and so also the two rules.

Thus, during the last years, several attempts were made to address this issue.
In [16], redundant rules are detected by a similarity measure S expressed by the
sum of the absolute deviations between the normalized coordinates of two rule
(cluster) centers:

S(A,B) = 1− ‖cA − cB‖
p

(1)
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with cA the center of the rule A and p the dimensionality of the feature space; S
is high when two rule centers are close to each other. An approach for removing
redundant fuzzy sets and fuzzy sets with close model values is demonstrated in
[23], where Gaussian fuzzy sets are merged by reducing the approximate merging
of two Gaussian kernels to the exact merging of two of their α-cuts. It uses
the Jaccard index for measuring the degree of overlap between two fuzzy sets,
which turned out to be quite slow in on-line learning settings (two time-intensive
integrals need to be calculated). Thus, Ramos and Dourado investigated a fast
geometric-based similarity measure for detecting redundant fuzzy sets [25]:

S(A,B) = overlap(A,B) =
1

1 + d(A,B)
(2)

with d the geometric distance between two Gaussian membership functions.
Recently, in [20] and [22], joint concepts of detecting and eliminating redun-

dant (antecedent of) rules and fuzzy sets were presented, which can be coupled
with any popular EFS method. The first one assumes Gaussian fuzzy sets as ba-
sic structural component and is therefore able to apply very fast calculations of
the overlap degree between two rules as well as fuzzy sets. This is achieved by us-
ing virtual projections of the antecedent space onto the one-dimensional axis and
aggregate over the maximal component-wise membership degree of intersection
points between two Gaussians:

S(A,B) = overlap(A,B) = Aggpj=1overlapA,B(j) (3)

with

overlapA,B(j) = max(μ(interx(1)), μ(interx(2))) (4)

μ(x) the membership degree to the univariate Gaussian and interx(1, 2) the two
intersection points. In [22], the generalization to arbitrary fuzzy sets is conducted
by defining the overlap degree in form of a two-sided fuzzy inclusion measure.

In all approaches, the overlap resp. similarity degree is normalized to [0, 1],
where 0 means no overlap/similarity and 1 full overlap/similarity. Thus, if S(A,B)
is greater than a threshold (e.g. 0.8), merging of rules (defined by centers cA and
cB, spreads σA and σB) can be conducted in O(p) computation time with p the
dimensionality of the feature space (for details on derviation see [20]):

cnewj =
cAj kA + cBj kB

kA + kB

σnew
j =

√
kA(σA

j )2

kA + kB
+ (cAj − cnewj )2 +

(cnewj − cBj )2

kA + kB
+

kBσ
B
j

kA + kB

knew = kA + kB (5)

where kA denotes the number of samples falling into rule A and kB the number
of samples falling into rule B, kA > kB. This is usually applied to rules updated
during the last incremental learning cycle.
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(a) (b)

Fig. 2. (a): two rules (solid ellipsoids) which are touching each other and are homoge-
neous in the sense that the (volume, orientation of the) merged rule (dotted ellipsoid)
is in conformity with the original two rules; (b): two rules (solid ellipsoids) which are
touching each other and are not homogeneous (merged rule too extremely blown up)

2.2 Simplicity

Simplicity assurance can be seen as an extension, generalization of distinguisha-
bility assurance, as it deals with complexity reduction in a wider sense. In the
well-known SAFIS approach [26], rule pruning is implicitly integrated in the in-
cremental learning algorithm: rules are pruned whenever the statistical influence
of a fuzzy rule measured in terms of its relative membership activation level (rel-
ative to the activation levels of all rules so far) is getting lower than a pre-defined
threshold. In this sense, the rule can be seen as unimportant for the final model
output over past data cycles and therefore deleted. Another attempt for deleting
weakly activated rules is demonstrated in simple eTS [1], where rules with very
low support are deleted.

Here, we want to present an additional possibility by extending the consid-
erations made in the previous paragraph to the case where rules are moving
together, but are not significantly overlapping. Following the similarity-based
criteria in the previous paragraph including geometric properties, we consider
a new geometric-based touching criterion for ellipsoids. The condition whether
two rules A and B overlap or touch can be deduced as follows (proof is left to
the reader):

d(cA, cB) ≤
∑p

k=1 |cA;k − cB;k|(fac ∗ σA;k + fac ∗ σB;k)∑p
k=1 |cA;k − cB;k|

+ ε (6)

The second part of the merge condition is driven by the fact that the two rules
should form a homogenous region when joined together. In order to illustrate
this, the two rules shown in Figure 2 (a) can be safely merged together, wherever
the two rules shown in (b) are representing data clouds with different orienta-
tion, shape characteristics, thus merging has to be handled with care. In fact,
merging these two rules to one (shown by a dotted ellipsoid) would unnaturally
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(a)

Fig. 3. The corresponding two hyper-planes (consequents) of two touching rule an-
tecedents indicating a necessary non-linearity in the approximation surface, as one
hyper-plane shows an up-trend and the other a downtrend in the functional depen-
dency between input features X1, X2 and target Y; thus, a merged rule (indicated by
dotted ellipsoids and hyper-plane) would yield an imprecise presentation and cause a
low model quality in this region

blow up the range of influence of the new rule, yielding an imprecise presen-
tation of the two data clouds, affecting the predictive quality of the model in
that part. Therefore, we suggest to add a smooth homogeneity criterion based
on the volumes of the original and (hypothetically) merged rules antecedents,
characterizing a significant blow up of the merged rules compared to the original
rules.

Vmerged ≤ p(VA + VB) (7)

with p the dimensionality of the feature space and V the volume of an ellipsoid
in main position.

The third part of the merge condition takes into account the consequents
of the rules. In the sense of rules grown together, but not necessarily overlap-
ping, consequents of the rules may point into different directions, accounting
for a necessary non-linearity aspect implicitly contained in the data. In a clas-
sification context, this can be simply verified by comparing the majority class
of two neighboring rules. In a regression context, we have to catch the degree
of continuation of the local trend over the two nearby lying rules. This is es-
sential as a different trend indicates a necessary non-linearity contained in the
functional relation/approximation between inputs and outputs — see Figure 3.
Thus, we propose a similarity measure based on the degree of deviation in the
hyper-planes’ gradient information, i.e. consequent parameter vectors without
the intercept. This can be measured in terms of the angle φ between the two
normal vectors defining the hyper-planes:

Scons(A,B) =
φ

π
(8)

being maximal similar when φ is close to 180 degrees, indicating that the two
hyper-planes the same trend of the approximation surface. Rules fulfilling all
three conditions (only updated rules need to be checked in each incremental
learning cycle) can be merged using (5).
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3 Consistency

The inconsistency of the rule base can be measured in terms of the contradiction
levels of two or more fuzzy rules contained in the rule base. For the sake of
simplicity, we only consider the contradiction between two fuzzy rules, which
can be easily generalized to multiple rule contradictions.

Definition 1. Rule A is contradictory to Rule B if and only if Sante(A,B) ≥
Scons(A,B) with Sante(A,B) ≥ thresh with thresh ∈ [0.5, 1.0].

We suggest the following three-way function for the consistency degree:

Cons(A,B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 Sante ≥ thresh ∧ Sante ≥ Scons

1 Sante ≥ thresh ∧ Sante < Scons

e
−

(
Sante(A,B)
Scons(A,B)

−1)2

( 1
Sante

)2

Sante < thresh

(9)

The last part assures that in case of a low antecedent similarity the consistency
is usually close to 1. The consistency of the overall rule base is then given by
using the aggregation of the consistencies of the single rules:

Consall = AggCi,j=1;i�=jCons(Ai, Bj) (10)

A practicable operator for Agg could be the mean as lying in [0, 1] and indicating
an average expected consistency.

A high consistency level in the rule base in EFS within an incremental learning
context can be achieved by applying the merging strategy as described in the
previous section, using the overlap degree (3) as similarity for the antecedents
and (8) as similarity for the consequents in case of Takagi-Sugeno type models
and (3) as similarity on the two consequent fuzzy sets of the two rules in case
of Mamdani fuzzy systems. Thus, only weak inconsistencies may be left (with
Sante < thresh and Scons << Sante).

4 Coverage and Completeness

Coverage is guaranteed whenever fuzzy sets with infinite support are used (such
as for instance Gaussian membership functions). As long as coverage can be seen
as a special case of ε-completeness (with ε a very small number) in the fuzzy
partition space, we are providing the definition of ε-completeness.

Definition 2. A fuzzy partition containing the fuzzy sets μ1, ..., μC is said to be
ε-complete whenever for two adjacent fuzzy sets μm and μm+1 the overlap degree
is at least ε, with ε > 0 a small positive number.

The number of approaches which are taking this criterion into account and
assuring always significantly covered input states, are quite rare: one of the most
well-known approaches supporting this concept internally during the incremental
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learning scheme, is the SOFNN approach [14]. In fact, the rule evolution machine
itself relies on the concepts of ε-completeness. Another approach which assures
a minimum of overlap between adjacent fuzzy sets is the SAFIS approach, [26].
There, an overlap factor κ is defined and integrated into the ”influence of a fuzzy
rule” concept, which is responsible whether new rules are evolved or not. Here,
we are additionally investigating an enhanced concept directly integrated in the
incremental optimization procedure of non-linear antecedent parameters.

Minimizing the non-linear least squares error measure J =
∑N

k=1(ŷ(k)−y(k))2

fits the non-linear parameters as close as possible to the data streams samples,
thus yielding a precise model. In order to investigate ε-completeness of fuzzy
partitions, the idea is to relax this hard fitting criterion by an additional terms
which punishes those partitions in which fuzzy sets have a lower degree of overlap.
Aggregating this on rule level, we suggest to include the following term in the
optimization problem:

N∑
k=1

∏C
i=1 max(0, ε− μi(xk))

εC
(11)

with N the number of data samples seen so far, C the number of rules in the
system and μi(x) the membership degree of the current sample to rule i; taking
the minimum over the degrees to the fuzzy sets, reflects the minimum complete-
ness over all antecedent parts (fuzzy partitions). If μi(x) is close to 0 for all
rules, the sample is not sufficiently covered and therefore the (11) approaches 1
due to the normalization term εC . Assuming [0, 1] normalized target values y,
the combined optimization criterion becomes:

Jext = α(

N∑
k=1

(yk−
C∑
i=1

li(xk)Ψi(Φnonlin)(xk))2)+β

N∑
k=1

(

∏C
i=1 max(0, ε− μi(xk))

εC
)

(12)
with α and β denoting the importance level of precision versus completeness,
thus being able to tradeoff accuracy and interpretability in a continuous manner,
and Ψi the ith basis functions (normalized membership degree to the ith rule).
By including the derivatives of both terms w.r.t. all non-linear parameters in the
Jacobian, incremental optimization formulas such as the incremental Levenberg-
Marquardt update formulas can be applied in the same manner as in [30]. The
derivatives of the centers and spreads in Gaussian fuzzy sets w.r.t to the first
function are presented in [18], Section 2.7, Chapter 2, the derivatives of the
second term Pun w.r.t. to non-linear parameters Φn are (proof left to the reader):

∂Pun

∂Φn
=

{∑N
k=1

1
εC

∂μn(xk)
∂Φn

∏C
i=1,i�=n max(0, ε− μi(xk)) ε− μn(xk) > 0

0 else
(13)

5 Feature Weights

Feature weights can be seen as important from two viewpoints of interpretability:
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1. They may give rise to the importance of features either in a global or even
in a local sense, thus making the features themselves interpretable for the
process, i.e. telling an expert or operator which features have a higher and
which ones a lower influence on the final model output.

2. They may also lead to a reduction of the rule lengths, as features with
weights smaller than ε (also called out-weighted features) have a very low
impact on the final model output and therefore can be eliminated from the
rule antecedent and consequent parts.

An approach which is addressing incremental feature weighting strategies within
the context of evolving fuzzy classifiers is presented in [19]. It operates on a global
basis, hence features are either seen as important or unimportant for the whole
model, and it is focussed on dynamic classification problems. The basic idea is
that feature weights λ1, ..., λp for the p features included in the learning problem
are calculated based on a stable separability criterion [9]:

J = trace(S−1
w Sb) (14)

with Sw the within scatter matrix modeled by the sum of the covariance matrices
for each class, and Sb the between scatter matrix, modeled by the sum of the
degree of mean shift between classes. For normalization purposes to [0, 1], finally
the feature weights are defined by:

λj = 1− Jj −min1,...,p(Jj)

maxj=1,...,p(Jj)−min1,...,p(Jj)
(15)

hence the feature with the weakest discriminatory power (and therefore maximal
Jj) is assigned a weight value of 0 and the feature with strongest discriminatory
power a weight of 1. The idea is that p criteria J1, ..., Jp are incrementally learned,
where Ji represents (14) by excluding the ith feature, thus a high Ji close to J
using all features points to an unnecessary feature, as the features were dropped
without much affecting the separation power of the feature space.

Another attempt for automatic feature weighting and reduction is demon-
strated in [3] for on-line regression problems, exploiting the Takagi-Sugeno fuzzy
systems architecture with local linear consequent functions. The basic idea is to
track the relative contribution of each feature, compared with the contributions
of all features, to the model output over time.

6 Rule Importance Levels

Rule weights may serve as important corner stones for a smooth rule reduction
during learning procedures, as rules with low weights can be seen as unimportant
and may be pruned or even re-activated at a later stage. Furthermore, rule
weights can be used to handle inconsistent rules in a rule base, see e.g. [24], thus
serving for another possibility to tackle the problem of consistency, compare with
Section 3.
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The usage of rule weights and their updates during incremental learning
phases, was, to our best knowledge, not studied so far in the evolving fuzzy com-
munity (open issue). A possibility would be to integrate the weights as multipli-
cation factors of the rule membership degrees μ into the fuzzy model’s inference
scheme. In this sense, the rule weights are appearing as non-linear parameters,
which may be optimized within incremental procedures such as recursive gra-
dient descent (RGD), recursive Levenberg-Marquardt (RLM) [30] or recursive
Gauss-Newton as applied in [12], according to the least-squares error problem
or also using the punished measure as in (12).

Within an on-line modeling context, the interpretation of updating rule weights
is the following: some rules which seem to be important at the stage when they
are evolved may turn out to be less important at a later stage, without necessarily
become overlapping to other rules (this issue is handled by the distinguishability
considerations in Section 2). Current approaches such as simpleTS [1] or eTS+
[3] tackle this issue by simply deleting the rules from the rule base (based on
some criteria like utility or ages) in order to reduce complexity and enhance
transparency as well as computation time. However, such rules may become im-
portant again at a later stage. Updating the rule weights may help here to find
a smooth transition between out-weighting and reactivation of such rules; also,
some rules may be a bit important and therefore should contribute a little to
the final model output (e.g. with weight 0.3) and also within the optimization
and learning procedures. The importance of rules can be directly linked with the
approximation quality of the evolved fuzzy system through rule weights (as part
of error minimization). This direct link ’rule importance↔system error’ is also
taken into account in the recently published approach by Leng et al. [15].

7 Interpretation of Consequents

Here, we are further investigating the consequents of Takagi-Sugeno type fuzzy
systems [29], which are singletons, hyper-planes, higher order of polynomials or
recently introduced as a linear combination of kernel functions [8]. The interpre-
tation of singletons is quite clear, as they are representing single values, whose
meanings the experts are usually aware of. Higher order polynomials are rarely
used in the fuzzy community, and the interpretation of mixture models with
kernels is from linguistic point of view almost impossible. Thus, we are focussing
on the most convenient and widely used hyper-planes.

Indeed, in literature, see for instance [7] [11] [33], the hyper-plane type con-
sequents are often seen as non-interpretable and therefore excluded from any
linguistic modeling point of view. However, in practical applications they may
offer some important insights regarding several topics:

– Trend analysis in certain local regions: this may be important for on-line con-
trol applications to gain knowledge about the control behavior of the signal:
a constant behavior or rapidly changing behavior can be simply recognized
by inspecting the consequent parameters (weights of the single variables) in
the corresponding local regions.
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– Feature importance levels: as already discussed in Section 5, a kind of local
feature weighting effect can be achieved by interpreting the local gradients as
sensitivity factors w.r.t. to changes of single variables in the corresponding
regions.

– A physical interpretation of the consequent parameters can be achieved when
providing a rule centering approach [6] and interpreting them as Taylor series
expansion.

A pre-requisite to assure all the interpretation capabilities listed above are well-
organized hyper-planes snuggling along the basic trend of the approximation
surface and hence really providing partial functional tendencies; otherwise, they
may point to any direction. The data-driven technique which is able to fulfill this
requirement is the so-called local learning concept, which tries to estimate the
consequent function of each rule separately: for the batch modeling case, the nice
behavior of the local learning of consequent functions was verified in [32]; for the
incremental evolving case, a deeper investigation of this issue was conducted in
[23]. Local learning in incremental on-line mode relies on the concept of recursive
fuzzily weighted least squares [4], whereas global learning relies on the conven-
tional recursive least squares approach [17]. In [5], local learning was compared
with global learning (learning all consequent parameters in one sweep) within
the context of multi-model classifiers: it turned out that local learning was not
only able to extract consequent functions with a higher interpretable capability,
but also more robust fuzzy models in terms of accuracy and numerical stability
during training. Due to these investigations, the older global approach can be
seen as obsolete, more or less.

Smoothening with incremental regularization [27] techniques may further help
to improve the interpretation of consequents, as preventing over-fitting according
to significant noise levels.

8 Conclusion

This paper addresses several issues for improving the (linguistic) interpretability
of evolving fuzzy systems, and does this in a balanced scheme of demonstrating
already well-known techniques, extending the state-of-the-art, providing novel
concepts and finally pointing out some important future topics. New concepts
were presented mainly in the fields of 1.) simplicity by highlighting possible
fast homogenous geometric-based criteria for rule reduction, 2.) by investigating
techniques for assuring ε-completeness of fuzzy partitions and rule bases, and
3.) by introducing rule weights for tracking rule importance levels. Future im-
portant topics to be addressed are 1.) model-based reliability concepts ensuring
enhanced interpretation of model predictions, 2.) steps in the direction of en-
suring local property of EFS (= firing of only 2p rules at the same time, with
p the dimensionality of the feature space), and 3.) analysis and improvement of
interpretability in multi model EFC architectures.
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Abstract. An uncertain database db is defined as a database in which
distinct tuples of the same relation can agree on their primary key. A
repair (or possible world) of db is then obtained by selecting a maxi-
mal number of tuples without ever selecting two distinct tuples of the
same relation that agree on their primary key. Given a query Q on db,
the certain answer is the intersection of the answers to Q on all re-
pairs. Recently, a syntactic characterization was obtained of the class
of acyclic self-join-free conjunctive queries for which certain answers are
definable by a first-order formula, called certain first-order rewriting [15].
In this article, we investigate the nesting and alternation of quantifiers
in certain first-order rewritings, and propose two syntactic simplifica-
tion techniques. We then experimentally verify whether these syntactic
simplifications result in lower execution times on real-life SQL databases.

1 Introduction

Uncertainty can be modeled in the relational model by allowing primary key vi-
olations. Primary keys are underlined in the conference planning database db0

in Fig. 1. There are still two candidate cities for organizing SUM 2016 and
SUM 2017. The table S shows controversy about the attractiveness of Mons,
while information about the attractiveness of Gent is missing. A repair (or

R Conf Year Town
SUM 2012 Marburg
SUM 2016 Mons
SUM 2016 Gent
SUM 2017 Rome
SUM 2017 Paris

S Town Attractiveness
Charleroi C
Marburg A
Mons A
Mons B
Paris A
Rome A

Fig. 1. Uncertain database db0

possible world) is obtained by selecting a maximal number of tuples, without
selecting two tuples with the same primary key value. Database db0 has 8 re-
pairs, because there are two choices for SUM 2016, two choices for SUM 2017,
and two choices for Mons’ attractiveness. The following conjunctive query asks in
which years SUM took place (or will take place) in a city with A attractiveness:

Q0 = {y | ∃z
(
R(‘SUM’, y, z) ∧ S(z, ‘A’)

)
}.

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 154–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The certain (query) answer is the intersection of the query answers on all re-
pairs, which in this example is {2012, 2017}. Notice incidentally that Q0(db0)
also contains 2016, but that answer is not certain, because in some repairs, the
organizing city of SUM 2016 does not have A attractiveness.

For every database, the certain answer to Q0 is obtained by the following
first-order query:

ϕ0 = {y | ∃zR(‘SUM’, y, z) ∧ ∀z
(
R(‘SUM’, y, z) →

[
S(z, ‘A’)∧
∀v
(
S(z, v) → v = ‘A’

)])}.
We call ϕ0 a certain first-order rewriting for Q0. Certain first-order rewritings are
of practical importance, because they can be encoded in SQL, which allows to
obtain certain answers using standard database technology. However, it is well-
known that not all conjunctive queries have a certain first-order rewriting [4,16],
and it remains an open problem to syntactically characterize the conjunctive
queries that have one. Nevertheless, for conjunctive queries that are acyclic and
self-join-free, such characterization has recently been found [15,17].

In this article, we focus on the class of acyclic self-join free conjunctive queries
that have a certain first-order rewriting. We first provide algorithm NaiveFo
which takes such query as input, and constructs its certain first-order rewrit-
ing. We then provide two theorems indicating that rewritings produced by al-
gorithm NaiveFo can generally be “simplified” by (i) reducing the number of
(alternations of) quantifier blocks and/or by (ii) reducing the quantifier nest-
ing depth. Finally, the implementation of our theory shows that certain SQL
rewriting is an effective and efficient technique for computing certain answers.

This article is organized as follows. Section 2 provides notations and defini-
tions. In particular, we provide measures for describing the syntactic complexity
of a first-order formula. Section 3 discusses related work. Section 4 introduces the
construct of attack graph which is essential for the purpose of certain first-order
rewriting. Section 5 gives the code of algorithm NaiveFo. Section 6 shows how
rewritings can be simplified with respect to the complexity measures of Section 2.
Section 7 reports on our experiments conducted on real-life SQL databases. Sec-
tion 8 concludes the article.

2 Notations and Terminology

We assume a set of variables disjoint from a set dom of constants . We will
assume some fixed total order on the set of variables, which will only serve to
“serialize” sets of variables into sequences in a unique way. If x is a sequence of
variables and constants, then vars(x) is the set of variables that occur in x.

Let U be a set of variables. A valuation over U is a total mapping θ from U
to dom. Such valuation θ is often extended to be the identity on constants and
on variables not in U .

Key-Equal Atoms. Every relation name R has a fixed signature, which is a
pair [n, k] with n ≥ k ≥ 1: the integer n is the arity of the relation name and
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{1, 2, . . . , k} is the primary key. If R is a relation name with signature [n, k],
then R(s1, . . . , sn) is an R-atom (or simply atom), where each si is a constant
or a variable (1 ≤ i ≤ n). Such atom is commonly written as R(x,y) where the
primary key value x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. An atom is
ground if it contains no variables. Two ground atoms R1(a1, b1), R2(a2, b2) are
key-equal if R1 = R2 and a1 = a2. The arity of an atom F , denoted arity(F ), is
the arity of its relation name.

Database and Repair. A database schema is a finite set of relation names . All
constructs that follow are defined relative to a fixed database schema.

A database is a finite set db of ground atoms using only the relation names
of the schema. Importantly, a database can contain distinct, key-equal atoms.
Intuitively, if a database contains distinct, key-equal atoms A and B, then only
one of A or B can be true, but we do not know which one. In this respect, the
database contains uncertainty. A database db is consistent if it does not contain
two distinct atoms that are key-equal. A repair of a database db is a maximal
(under set inclusion) consistent subset of db.

Conjunctive Queries. A conjunctive query is a pair (q, V ) where q = {R1(x1,y1),
. . . , Rn(xn,yn)} is a finite set of atoms and V is a subset of the variables occur-
ring in q. Every variable of V is free; the other variables are bound . This query
represents the first-order formula ∃u1 . . .∃uk

(
R1(x1,y1) ∧ · · · ∧Rn(xn,yn)

)
, in

which u1, . . . , uk are all the variables of vars(x1y1 . . .xnyn)\V . If V = ∅, then Q
is called Boolean. We write vars(q) for the set of variables that occur in q. We de-
note by |q| the number of atoms in q, and we define aritysum(q) =

∑
F∈q arity(F ).

Let db be a database. Let Q = (q, V ) be a conjunctive query, and let U =
vars(q). Let x = 〈x1, . . . , xm〉 be the variables of V ordered according to the
total order on the set of variables. The answer to Q on db, denoted Q(db), is
defined as follows:

Q(db) = {θ(x) | θ is a valuation over U such that θ(q) ⊆ db}.

In particular, if Q is Boolean, then either Q(db) = {〈〉} (representing true) or
Q(db) = {} (representing false).

We say that Q has a self-join if some relation name occurs more than once
in q; if Q has no self-join, then it is called self-join-free. We write SJFCQ for the
class of self-join-free conjunctive queries.

Certain Conjunctive Query Answering. Let Q = (q, V ) be a conjunctive query.
The certain answer to Q on db, denoted Qsure(db), is defined as follows:

Qsure(db) =
⋂
{Q(rep) | rep is a repair of db}.

Let 〈x1, . . . , xm〉 be the ordered sequence of variables in V . We say that the
certain answer to Q is first-order computable if there exists a first-order formula
ϕ(x1, . . . , xm), with free variables x1, . . . , xm, such that for every database db,
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for every a ∈ domm, a ∈ Qsure(db) ⇐⇒ db |= ϕ(a). The formula ϕ, if it
exists, is called a certain first-order rewriting for Q; its encoding in SQL is a
certain SQL rewriting.

Notational Conventions. We use letters F,G,H, I for atoms appearing in a query.
For F = R(x,y), we denote by KeyVars(F ) the set of variables that occur in x,
and by Vars(F ) the set of variables that occur in F , that is, KeyVars(F ) = vars(x)
and Vars(F ) = vars(x) ∪ vars(y).

Acyclic Conjunctive Queries. A join tree τ for a conjunctive query Q = (q, V )
is an undirected tree whose vertices are the atoms of q such that whenever the
same variable x occurs in two atoms F and G, then either x ∈ V (i.e., x is free)
or x occurs in each atom on the unique path linking F and G. We will assume
that join trees are edge-labeled, such that an edge between F and G is labeled
with the set

(
Vars(F ) ∩ Vars(G)

)
\ V . A conjunctive query Q is called acyclic if

it has a join tree [2].

Quantifier Rank and Quantifier Alternation Depth. The quantifier rank of a
first-order formula ϕ, denoted by qr(ϕ), is the depth of the quantifier nesting in
ϕ and is defined as usual (see, for example, [10, page 32]):

– If ϕ is quantifier-free, then qr(ϕ) = 0.
– qr(ϕ1 ∧ ϕ2) = qr(ϕ1 ∨ ϕ2) = max

(
qr(ϕ1), qr(ϕ2)

)
;

– qr(¬ϕ) = qr(ϕ);
– qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ).

A first-order formula ϕ is said to be in prenex normal form if it has the form
Q1x1 . . . Qnxnψ, where Qi’s are either ∃ or ∀ and ψ is quantifier-free. We say
that ϕ has quantifier alternation depth m if Q1x1 . . . Qnxn can be divided into
m blocks such that all quantifiers in a block are of the same type and quantifiers
in two consecutive blocks are different.

For formulas not in prenex normal form, the number of quantifier blocks is
counted as follows. A universally quantified formula is a formula whose main
connective is ∀. An existentially quantified formula is a formula whose main
connective is ∃. The number of quantifier blocks in a first-order formula ϕ,
denoted qbn(ϕ), is defined as follows.

– If ϕ is quantifier-free, then qbn(ϕ) = 0.
– qbn(ϕ1 ∧ ϕ2) = qbn(ϕ1 ∨ ϕ2) = qbn(ϕ1) + qbn(ϕ2);
– qbn(¬ϕ) = qbn(ϕ);
– if ϕ is not universally quantified and n ≥ 1, then qbn(∀x1 . . . ∀xnϕ) = 1 +

qbn(ϕ); and
– if ϕ is not existentially quantified and n ≥ 1, then qbn(∃x1 . . . ∃xnϕ) =

1 + qbn(ϕ).

For example, if ϕ is ∃x∃y(∃uϕ1 ∧ ∃vϕ2) and ϕ1, ϕ2 are both quantifier-free, then
qbn(ϕ) = 3. Notice that ϕ has a prenex normal form with quantifier alternation
depth equal to 1. Clearly, if ϕ is in prenex normal form, then the quantifier
alternation depth of ϕ is equal to qbn(ϕ).
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Proposition 1. Every first-order formula ϕ has an equivalent one in prenex
normal form with quantifier alternation depth less than or equal to qbn(ϕ).

3 Related Work

Certain (or consistent) query answering was founded in the seminal work by
Arenas, Bertossi, and Chomicki [1]. The current state of the art can be found
in [3]. Fuxman and Miller [8] were the first ones to focus on certain first-order
rewriting of SJFCQ queries under primary key constraints, with applications in
the ConQuer system [7]. Their results have been generalized by Wijsen [15,17],
who obtained a syntactic characterization of those acyclic SJFCQ queries that
allow certain first-order rewriting. It follows from the proof of Corollary 5 in [14]
that acyclicity is also implicit in the work of Fuxman and Miller.

Given a Boolean query Q, CERTAINTY(Q) is the decision problem that takes
as input an (uncertain) database db and asks whether Q evaluates to true on
every repair. Wijsen [16] showed that the class SJFCQ contains Boolean queries
Q such that CERTAINTY(Q) is in P but not first-order expressible. It is an
open conjecture that for every Boolean SJFCQ query Q, it is the case that
CERTAINTY(Q) is in P or coNP-complete. For queries with exactly two atoms,
such dichotomy was recently shown true [9].

Maslowski and Wijsen [12,11] have studied the complexity of the counting
variant of CERTAINTY(Q), denoted �CERTAINTY(Q). Given a database db,
the problem �CERTAINTY(Q) asks to determine the exact number of repairs
of db that satisfy some Boolean query Q. They showed that that for every
Boolean SJFCQ query Q, it is the case that �CERTAINTY(Q) is in P or �P-
complete. The problem �CERTAINTY(Q) is closely related to query answering
in probabilistic data models [5]. From the probabilistic database angle, our un-
certain databases are a restricted case of block-independent-disjoint probabilistic
databases [5,6]. A block in a database db is a maximal subset of key-equal atoms.
If {R(a, b1), . . . , R(a, bn)} is a block of size n, then every atom of the block has
a probability of 1/n to be selected in a repair of db. Every repair is a possible
world, and all these worlds have the same probability.

4 Attack Graph

Let Q = (q, V ) be an acyclic SJFCQ query and U = vars(q). For every F ∈ q,
we denote by FD(Q,F ) the set of functional dependencies that contains X → Y
whenever q contains some atom G with G �= F such that X = KeyVars(G) \ V
and Y = Vars(G) \ V . For every F ∈ q, we define:

F+,Q = {x ∈ U | FD(Q,F ) |=
(
KeyVars(F ) \ V

)
→ x}.

Example 1. For the Boolean query Q in Fig. 2, we have FD(Q,F ) ≡ {x →
y, x → z}, FD(Q,G) ≡ {u → x, x → y, x → z}, FD(Q,H) ≡ {u → x, x → z},
and FD(Q, I) ≡ {u → x, x → y}. It follows F+,Q = {u}, G+,Q = {x, y, z},
H+,Q = {x, z}, and I+,Q = {x, y}. More elaborated examples can be found
in [15].
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R(u, a, x) = F

S(x, y, z) = G

T (x, y) = H P (x, z) = I

{x}

{x, y} {x, z}

R(u, a, x)

S(x, y, z)

T (x, y) P (x, z)

Fig. 2. Join tree (left) and attack graph (right) for Boolean query Q = (q, ∅) with
q = {R(u, a, x), S(x, y, z), T (x, y), P (x, z)}. It is understood that a is a constant.

Let τ be a join tree for Q. The attack graph of τ is a directed graph whose
vertices are the atoms of q. There is a directed edge from F to some atom G
if for every edge e on the unique path in τ that links F and G, there exists a
variable x in e’s edge label such that x �∈ F+,Q.

Example 2. See Fig. 2 (right). There is a directed edge from F to H because the
edge labels {x} and {x, y} on the path between F and H are not contained in
F+,Q = {u}. The attack graph is acyclic.

It is known [17] that if τ1 and τ2 are two join trees for Q, then the attack graphs
of τ1 and τ2 are identical. The attack graph of Q is then defined as the attack
graph of any join tree for Q. If the attack graph contains a directed edge from
atom F to atom G, then we say that F attacks G. An atom F of Q is said to
be unattacked if the attack graph of Q contains no directed edge that points to
F (i.e., F has zero indegree).

The following result was shown in [15] for Boolean acyclic SJFCQ queries. The
extension to queries with free variables is easy and already indicated in [15].

Theorem 1. Let Q = (q, V ) be an acyclic SJFCQ query. Then, Q has a certain
first-order rewriting if and only if the attack graph of Q is acyclic.

5 Naive Algorithm

Algorithm NaiveFo implements definitions given in [15]. The algorithm takes
two inputs: an acyclic SJFCQ query Q = (q, V ) and a directed acyclic graph
that contains Q’s attack graph. The algorithm computes a certain first-order
rewriting ϕ for Q. For example, the formula ϕ0 in Section 1 was obtained by
applying the algorithm on Q0.

Algorithm NaiveFo is called “naive” because it does not attempt to mini-
mize the alternations or nesting depth of quantifiers. This may be problematic
when the rewritings are translated into SQL for execution, as illustrated by the
following example.
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Function NaiveFo(q,V ,E) Construct certain first-order rewriting

Input: Q = (q, V ) is an acyclic SJFCQ query, where V is the set of free variables of q.
E ⊆ q × q is an acyclic set of directed edges containing the attack graph of Q.

Result: certain first-order rewriting ϕ for Q.
begin

if q = ∅ then
ϕ ← true;

else
choose an atom F = R(x1, . . . , xk, y1, . . . , y�) that is unattacked in E;

V ′ ← V ;
X ← ∅;
foreach i ← 1 to k do

if xi is a variable and xi �∈ V ′ then
V ′ ← V ′ ∪ {xi};
X ← X ∪ {xi};

Y ← ∅;
NEW ← ∅;
foreach i ← 1 to 
 do

if yi is a constant or yi ∈ V ′ then
let zi be a new variable;
NEW ← NEW ∪ {i};

else /* yi is a variable not in V ′ */

let zi be the same variable as yi;
V ′ ← V ′ ∪ {yi};
Y ← Y ∪ {yi};

q′ ← q \ {F};
E′ ← E \ ({F} × q);
V ′ ← V ′ ∩ vars(q′);

ϕ ← ∃X

⎡
⎣∃YR(x1, . . . , xk, y1, . . . , y�)∧

∀z1 . . .∀z�
(
R(x1, . . . , xk, z1, . . . , z�) →

[∧
i∈NEW zi = yi∧

NaiveFo(q′, V ′, E′)

])
⎤
⎦;

return ϕ;
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Example 3. For each m ≥ 1, assume relation name Ri with signature [2, 1],
and let 'm( = {R1(x1, b), . . . , Rm(xm, b)}, where b is a constant. For m ≥ 1, let
�m� = ('m(, ∅), a Boolean query whose attack graph has no edges. Formulas ϕ1,
ϕ2, and ϕ3 are three possible certain first-order rewritings for �m�. The formula
ϕ1 is returned by algorithm NaiveFo, while ϕ2 and ϕ3 result from some syntactic
simplification techniques described in Section 6. In particular, ϕ2 minimizes the
number of quantifier blocks, and ϕ3 minimizes the nesting depth of quantifiers.

ϕ1 = ∃x1

(
R1(x1, b) ∧ ∀z1

(
R1(x1, z1) → z1 = b∧

∃x2

(
R2(x2, b) ∧ ∀z2

(
R2(x2, z2) → z2 = b∧

. . .

∃xm

(
Rm(xm, b) ∧ ∀zm

(
Rm(xm, zm) → zm = b

))
. . .

))))
ϕ2 = ∃x1 . . . ∃xm

( m∧
i=1

Ri(xi, b) ∧ ∀z1 . . . ∀zm
( m∧
i=1

Ri(xi, zi) →
m∧
i=1

zi = b
))

ϕ3 =
m∧
i=1

∃xi

(
Ri(xi, b) ∧ ∀zi

(
Ri(xi, zi) → zi = b

))
Notice that ϕ1, ϕ2, and ϕ3 each contain m existential and m universal quantifiers.
The following table gives the quantifier rank and the number of quantifier blocks
for these formulas; recall that these measures were defined in Section 2.

i qr(ϕi) qbn(ϕi)

1 2m 2m
2 2m 2
3 2 2m

The differences in syntactic complexity persist in SQL. Assume that for each
i ∈ {1, . . . ,m}, the first and the second attribute of each Ri are named A and
B respectively. Thus, A is the primary key attribute. For m = 2, the queries Q1,
Q2, and Q3 in Fig. 3 are direct translations into SQL of ϕ1, ϕ2, and ϕ3.1 The
fact that ϕ2 only has one ∀ quantifier block results in Q2 having only one NOT

EXISTS. Notice further that Q2 requires m tables in each FROM clause, whereas
Q3 takes the intersection of m SQL queries, each with a single table in the FROM

clause.

The foregoing example shows that formulas returned by algorithm NaiveFo can
be “optimized” so as to have lower quantifier rank and/or less (alternations of)
quantifiers blocks. The theoretical details will be given in the next section.

1 In practice, we construct rewritings in tuple relational calculus (TRC), and then
translate TRC into SQL. Such translations are well known (see, e.g., Chapter 3
of [13]). We omit the details of these translations in this article because of space
limitations.
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Q1 = SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (SELECT * FROM R1 AS r12

WHERE r12.A = r11.A
AND (r12.B <> ’b’
OR NOT EXISTS (SELECT * FROM R2 AS r21

WHERE NOT EXISTS (SELECT * FROM R2 AS r22
WHERE r22.A = r21.A
AND r22.B <> ’b’))))

Q2 = SELECT ’true’ FROM R1 AS r11, R2 AS r21
WHERE NOT EXISTS (SELECT * FROM R1 AS r12, R2 AS r22

WHERE r12.A = r11.A AND r22.A = r21.A
AND (r12.B <> ’b’ OR r22.B <> ’b’))

Q3 = SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (SELECT * FROM R1 AS r12

WHERE r12.A = r11.A AND r12.B <> ’b’)
INTERSECT
SELECT ’true’ FROM R2 AS r21
WHERE NOT EXISTS (SELECT * FROM R2 AS r22

WHERE r22.A = r21.A AND r22.B <> ’b’)

Fig. 3. Q1, Q2, Q3 are certain SQL rewritings for �2�

6 Syntactic Simplifications

Consider the second last line of algorithm NaiveFo, which specifies the first-order
formula ϕ returned by a call NaiveFo(q, V, E) with q �= ∅. Since NaiveFo is called
recursively once for each atom of q, the algorithm can return a formula with 2|q|
quantifier blocks and with quantifier rank as high as aritysum(q).

In this section, we present some theoretical results that can be used for
constructing “simpler” certain first-order rewritings. Section 6.1 implies that
NaiveFo can be easily modified so as to return formulas with less (alternations
of) quantifier blocks. Section 6.2 presents a method for decreasing the quantifier
rank. Importantly, our simplifications do not decrease (nor increase) the number
of ∃ or ∀ quantifiers in a formula; they merely group quantifiers of the same type
in blocks and/or decrease the nesting depth of quantifiers.

6.1 Reducing the Number of Quantifier Blocks

Algorithm NaiveFo constructs a certain first-order rewriting by treating one
unattacked atom at a time. The next theorem implies that multiple unattacked
atoms can be “rewritten” together, which generally results in less (alternations
of) quantifier blocks, as expressed by Corollary 1.

Theorem 2. Let Q = (q, V ) be an acyclic SJFCQ query. Let S ⊆ q be a set of

unattacked atoms in Q’s attack graph. Let X =
(⋃

F∈S KeyVars(F )
)
\V . If ϕ is

a certain first-order rewriting for (q, V ∪X), then ∃Xϕ is a certain first-order
rewriting for Q.
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Corollary 1. Let (Q, V ) be an acyclic SJFCQ query whose attack graph is
acyclic. Let p be the number of atoms on the longest directed path in the at-
tack graph of Q. There exists a certain first-order rewriting ϕ for Q such that
qbn(ϕ) ≤ 2p.

Example 4. The longest path in the attack graph of Fig. 2 contains 3 atoms.
From Corollary 1 and Proposition 1, it follows that the query of Fig. 2 has a
certain first-order rewriting with quantifier alternation depth less than or equal
to 6.

6.2 Reducing the Quantifier Rank

Consider query �m� with m ≥ 1 in Example 3. Algorithm NaiveFo will “rewrite”
the atoms Ri(xi, b) sequentially (1 ≤ i ≤ m). However, since these atoms have no
bound variables in common, it is correct to rewrite them “in parallel” and then
join the resulting formulas. This idea is generalized in the following theorem.

Definition 1. Let Q = (q, V ) be an SJFCQ query with q �= ∅. An independent
partition of Q is a (complete disjoint) partition {q1, . . . , qk} of q such that for
1 ≤ i < j ≤ k, vars(qi) ∩ vars(qj) ⊆ V .

Theorem 3. Let Q = (q, V ) be an acyclic SJFCQ query. Let {q1, . . . , qk} be an
independent partition of Q. For each 1 ≤ i ≤ k, let ϕi be a certain first-order
rewriting for Qi = (qi, Vi), where Vi = V ∩ vars(qi). Then,

∧k
i=1 ϕi is a certain

first-order rewriting for Q.

We show next that Theorem 3 gives us an upper bound on the quantifier rank of
certain first-order rewritings. Intuitively, given a join tree τ , we define diameter(τ)
as the maximal sum of arities found on any path in τ . A formal definition follows.

Definition 2. Let Q = (q, V ) be an acyclic SJFCQ query. Let τ be a join tree
for Q. A chain in τ is a subset q′ ⊆ q such that the subgraph of τ induced
by q′ is a path graph. We define diameter(τ) as the largest integer n such that
n = aritysum(q′) for some chain q′ in τ .

Example 5. The join tree τ in Fig. 2 (left) contains three maximal (under set
inclusion) chains: {F,G,H}, {F,G, I}, {G,H, I}. The chains containing F have
the greatest sum of arities; we have diameter(τ) = 3 + 3 + 2 = 8.

Corollary 2. Let Q = (q, V ) be an acyclic SJFCQ query whose attack graph is
acyclic. Let τ be a join tree for Q. There exists a certain first-order rewriting ϕ
for Q such that qr(ϕ) ≤ diameter(τ).

Corollaries 1 and 2 show upper bounds on the number of quantifier blocks or the
quantifier rank of certain first-order rewritings. Algorithm NaiveFo can be easily
modified so as to diminish either of those measures. It is not generally possible
to minimize both measures simultaneously. For example, there seems to be no
certain first-order rewriting ϕ for �m� such that qbn(ϕ) = qr(ϕ) = 2 (cf. the
table in Section 5).
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Schema Arity Number of tuples Size

PAGE[id, namespace, title, . . . ] 12 4,862,082 417 MB
CATEGORY[id, title, . . . ] 6 296,002 13 MB
CATEGORYLINKS[from, to, . . . ] 7 14,101,121 1.8 GB

INTERWIKI[prefix, url, . . . ] 6 662 40 KB

EXTERNALLINKS[from, to, . . . ] 3 6,933,703 1.3 GB

IMAGELINKS[from, to] 2 12,419,720 428 MB

Q4,fr = ∃∗
[
PAGE(x, n, l, . . . ) ∧ CATEGORYLINKS(x, t, . . . )∧
CATEGORY(y, t, . . . ) ∧ INTERWIKI(‘fr’, u, . . . )

]

Q5,fr = ∃∗

⎡
⎣PAGE(x, n, l, . . . ) ∧ CATEGORYLINKS(x, t, . . . )∧
CATEGORY(y, t, . . . ) ∧ EXTERNALLINKS(x, u, . . . )∧
INTERWIKI(‘fr’, u, . . . )

⎤
⎦

Q6,fr = ∃∗

⎡
⎣PAGE(x, n, l, . . . ) ∧ CATEGORYLINKS(x, t, . . . )∧
CATEGORY(y, t, . . . ) ∧ EXTERNALLINKS(x, u, . . . )∧
INTERWIKI(‘fr’, u, . . . ) ∧ IMAGELINKS(x, i)

⎤
⎦

QnB,fr(u) = ∃x∃n∃l∃t∃y

⎡
⎣PAGE(x, n, l, . . . ) ∧ CATEGORYLINKS(x, t, . . . )∧
CATEGORY(y, t, . . . ) ∧ EXTERNALLINKS(x, u, . . . )∧
INTERWIKI(‘fr’, u, . . . )

⎤
⎦

Fig. 4. Database schema and queries

7 Experiments

Databases and Queries We used a snapshot of the relational database con-
taining Wikipedia’s meta-data.2 All experiments were conducted using MySQL
version 5.1.61 on a machine with Intel core i7 2.9GHz CPU and 4GB RAM,
running Gentoo Linux.

The database schema and the database size are shown in Fig. 4 (top).
Attributes not shown are not relevant for our queries. To allow primary key
violations, all primary key constraints and unique indexes were dropped and re-
placed by nonunique indexes. An inconsistent database was obtained by adding
)N/10000* conflicting tuples to each relation with N tuples. Newly added tuples
are crossovers of existing tuples: if R(a1, b1) and R(a2, b2) are distinct tuples,
then R(a1, b2) is called a crossover.

In our experiments, we used eight acyclic SJFCQ queries which are in accor-
dance with the intended semantics of the database schema. All queries are vari-
ations of Q5,fr, which asks: “Is there some page with a category link to some cate-
gory and with an external link to the wiki identified by ‘fr’?”.
To help understanding, we point out that attribute CATEGORYLINKS.to refers
to CATEGORY.title, not to CATEGORY.id. Four queries are shown in Fig. 4
(bottom). Each position that is not shown contains a new distinct variable not
occurring elsewhere. Four other queries are obtained by replacing ‘fr’ with ‘zu’.

2 The dataset is publicly available at
http://dumps.wikimedia.org/frwiki/20120117/ .

http://dumps.wikimedia.org/frwiki/20120117/
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Table 1. Execution time in seconds for eight conjunctive queries and their certain SQL
rewritings according to three different rewriting algorithms: ν=naive, β reduces qbn(·),
and ρ reduces qr(·)

qbn(·) qr(·)
‘fr’ variant on

consistent/inconsistent
database

‘zu’ variant on
consistent/inconsistent

database

Q4 1 4 0.0004/0.0004 0.0004/0.0004

ν4 7 7 0.2106/0.2114 0.2125/0.2117
β4 3 5 > 1 hour > 1 hour
ρ4 5 4 0.2101/0.2108 0.2098/0.2106

Q5 1 5 0.0004/0.0004 0.0004/0.0004

ν5 9 9 0.0019/0.0020 2.1482/2.1472
β5 5 7 0.0014/0.0015 2.1154/2.1152
ρ5 7 6 0.0014/0.0015 2.1304/2.1298

Q6 1 6 0.0004/0.0004 0.0004/0.0004

ν6 11 11 0.0020/0.0021 2.1730/2.1725
β6 5 8 0.0014/0.0015 2.1209/2.1211
ρ6 8 6 0.0015/0.0016 2.1450/2.1439

QnB 1 4 0.0112/0.0095 0.0120/0.0099

νnB 8 8 0.0018/0.0019 2.1379/2.1374
βnB 4 6 0.0015/0.0015 2.1098/2.1103
ρnB 6 5 0.0015/0.0016 2.1272/2.1274

That is, Q4,zu is obtained from Q4,fr by replacing ‘fr’ with ‘zu’. Likewise for Q5,zu,
Q6,zu, and QnB,zu. All queries are Boolean except for QnB ,fr and QnB ,zu. For the
Boolean queries, all ‘fr’ variants evaluate to true on the consistent database,
while the ‘zu’ variants evaluate to false.

Measurements. To measure the execution time tQ,db of query Q on database
db, we execute Q ten times on db and take the second highest execution time.
The average and standard deviation for tQ,db are computed over 100 such mea-
surements. Since the coefficient of variability (i.e., the ratio of standard deviation
to average) was consistently less than 10−4 (except for the problematic queries
β4,fr and β4,zu), standard deviations have been omitted in Table 1.

In Table 1, the symbol ν refers to naive certain SQL rewritings, β refers
to rewritings that decrease the number of quantifier blocks, and ρ refers to
rewritings that decrease the quantifier rank. We have developed software that
takes as input an acyclic SJFCQ query, tests whether it has a certain first-order
rewriting, and if so, returns three certain SQL rewritings (the naive one and two
simplifications). The generated SQL code is obviously awkward; for example,
the SQL query ν6,fr contains 10 nested NOT EXISTS.

The values for qbn(·) and qr(·) were obtained by applying the definitions of
Section 2 on formulas in tuple relational calculus (TRC). The motivation for
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this is that SQL uses aliases ranging over tables, just like TRC. The quantifier
rank of a formula generally decreases when it is translated from first-order logic
into TRC. For example, ϕ = ∃x∃y∃z

(
R(x, y) ∧ S(y, z)

)
is translated into ψ =

∃r∃s
(
R(r) ∧ S(s) ∧ r.2 = s.1

)
, where qr(ϕ) = 3 and qr(ψ) = 2. The quantifier

rank of a Boolean SJFCQ query in TRC is equal to its number of atoms.

Observations. The certain SQL rewritings of Q4,fr (and Q4,zu) show some
anomalous behavior: their execution time is much higher than rewritings of other
queries involving more atoms. Since we have not been able to find the causes
of this behavior in MySQL, we leave these queries out from the discussion that
follows.

The execution times of the certain SQL rewritings on large databases seem
acceptable in practice. A further analysis reveals the following:

– As can be expected, most conjunctive queries (indicated by Q) execute faster
than their certain SQL rewritings (indicated by ν, β, ρ). The nonBoolean
query QnB,fr is the only exception.

– In most rewritings, replacing ‘fr’ with ‘zu’ results in a considerable increase
of execution time. Recall that the ‘fr’ variants of the Boolean queries evaluate
to true on the consistent database, while the ‘zu’ variants evaluate to false.
A possible explanation for the observed time differences is that ‘fr’ variants
of Boolean queries can terminate as soon as some valuation for the tuple
variables in the query makes the query true, whereas ‘zu’ variants have to
range over all possible valuations.

– Execution times on consistent and inconsistent databases are almost identi-
cal. Recall that both databases only have nonunique indexes.

– Syntactic simplifications have a fairly low effect on execution times. Define
the speedup of some simplified rewriting as the ratio of the execution time of
the naive rewriting to that of the simplified one. For example, the speedup
of ρ5,fr on the consistent database is equal to 0.0019

0.0014 ≈ 1.36. All speedups are
between 1 and 1.5.

8 Conclusion

We focused on the class of acyclic SJFCQ queries that have a certain first-order
rewriting. A syntactic characterization of this class is given in [15,17]. We first
implemented this earlier theory in a simple algorithm NaiveFo for constructing
certain first-order rewritings. We then proposed two syntactic simplifications for
such rewritings, which consist in reducing the number of quantifier blocks and
reducing the quantifier rank. Our implementation indicates that certain SQL
rewriting is an effective and efficient technique for obtaining certain answers.
Also, it seems that naive rewritings perform well on existing database technology,
and that syntactic simplifications do not result in important speedups.
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Abstract. This paper proposes a logic framework for modeling the in-
teraction among deductive databases and computing consistent answers
to logic queries in a P2P environment. As usual, data are exchanged
among peers by using logical rules, called mapping rules. The declara-
tive semantics of a P2P system is defined in terms of weak models. Under
this semantics each peer uses its mapping rules to import minimal sets
of mapping atoms allowing to satisfy its local integrity constraints. An
equivalent and alternative characterization of minimal weak model se-
mantics, in terms of prioritized logic programs, is also introduced and
the computational complexity of P2P logic queries is investigated.

1 Introduction

Peer-to-peer (P2P) systems have recently become very popular in the social,
academic and commercial communities. A large amount of traffic in the Internet
is due to P2P applications.

The possibility for the users for sharing knowledge from a large number of
informative sources, have enabled the development of new methods for data
integration easily usable for processing distributed and autonomous data.

Each peer, joining a P2P systems relies on the peers belonging to the same
environment and can both provide or import data. More specifically, each peer
joining a P2P system exhibits a set of mapping rules, i.e. a set of semantic cor-
respondences to a set of peers which are already part of the system (neighbors).
Thus, in a P2P system the entry of a new source, peer, is extremely simple as
it just requires the definition of the mapping rules. By using mapping rules, as
soon as it enters the system, a peer can participate and access all data available
in its neighborhood, and through its neighborhood it becomes accessible to all
the other peers in the system.

Recently, there have been several proposals which consider the integration
of information and the computation of queries in an open ended network of
distributed peers [2, 7, 15] as well as the problem of schema mediation and
query optimization in P2P environments [18, 19, 21, 25].

However, many serious theoretical and practical challenges need an answer.
Previously proposed approaches investigate the data integration problem in a

P2P system by considering each peer as initially consistent, therefore the intro-
duction of inconsistency is just relied to the operation of importing data from

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 168–179, 2012.
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other peers. These approaches assume that for each peer it is preferable to import
as much knowledge as possible.

Our previous works [8, 10–13] follow this same direction. The interaction
among deductive databases in a P2P system has been modeled by importing,
by means of mapping rules, maximal sets of atoms not violating integrity con-
straints, that is maximal sets of atoms that allow the peer to enrich its knowledge
while preventing inconsistency anomalies.

This paper stems from a different perspective. A peer can be initially incon-
sistent. In this case, the P2P system it joins has to provide support to restore
consistency. The basic idea, yet very simple, is the following: in the case of in-
consistent database the information provided by the neighbors can be used in
order to restore consistency, that is to only integrate the missing portion of a
correct, but incomplete database. Then, an inconsistent peer, in the interaction
with different peers, just imports the information allowing to restore consistency,
that is minimal sets of atoms allowing the peer to enrich its knowledge so that
restoring inconsistency anomalies.

The framework here presented deals with inconsistencies that can be Śre-
pairedŠ by adding more information. Inconsistency with respect to functional
dependencies or denial constraints are outside the scope of this work as viola-
tions of these constraints can only be repaired by removing information.

The declarative semantics presented in this paper stems from the observations
that in real world P2P systems peers often use the available import mechanisms
to extract knowledge from the rest of the system only if this knowledge is strictly
needed to repair an inconsistent local database.

The following example will intuitively clarify our perspective.

2P P1

vendor(dan, laptop)
vendor(bob, laptop)

order(laptop)
available(Y) supplier(X,Y)

supplier(X,Y) vendor(X,Y)
order(X), not available(X)

Fig. 1. A P2P system

Example 1. Consider the P2P system depicted in Figure 1. The peer P2 stores
information about vendors of devices and contains the facts vendor(dan, laptop),
whose meaning is ‘Dan is a vendor of laptops’, and vendor(bob, laptop), whose
meaning is ‘Bob is a vendor of laptops’. The peer P1 contains the fact
order(laptop), stating that there exists the order of a laptop, the standard rule
available(Y ) ← supplier(X,Y ), stating that a device Y is available if there is
a supplier X of Y , and the constraint ← order(X), not available(X), stating
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that cannot exist the order of a device which is not available. Moreover, it also
exhibits the mapping rule (whose syntax will be formally defined in the follow-
ing section) supplier(X,Y ) ↽ vendor(X,Y ), used to import tuples from the
relation vendor of P2 into the relation supplier of P1.

The local database of P1 is inconsistent because the ordered device laptop is
not available (there is no supplier of laptops). P1 ‘needs’ to import the minimal
set of atoms in order to restore consistency from its neighbors. �

The paper presents a logic-based framework for modeling the interaction among
peers. It is assumed that each peer consists of a database, a set of standard logic
rules, a set of mapping rules and a set of integrity constraints. In such a context,
a query can be posed to any peer in the system and the answer is provided
by using locally stored data and all the information that can be consistently
imported from its neighbors. In synthesis, the main contributions are:

– A formal declarative semantics for P2P systems, called Minimal Weak Model
semantics, which uses the mapping rules among peers to import only minimal
sets of atoms that make local databases consistent.

– An alternative equivalent semantics, called Preferred Stable Model seman-
tics, based on the rewriting of mapping rules into standard logic rules with
priorities.

– Preliminary results on the complexity of answering queries.

2 Background

We assume that there are finite sets of predicate symbols, constants and vari-
ables. A term is either a constant or a variable. An atom is of the form
p(t1, . . . , tn) where p is a predicate symbol and t1, . . . , tn are terms. A literal
is either an atom A or its negation not A. A rule is of the form H ← B,
where H is an atom (head of the rule) and B is a conjunction of literals (body
of the rule). A program P is a finite set of rules. P is said to be positive if
it is negation free. The definition of a predicate p consists of all rules having
p in the head. A ground rule with empty body is a fact. A rule with empty
head is a constraint. It is assumed that programs are safe, i.e. variables ap-
pearing in the head or in negated body literals are range restricted as they
appear in some positive body literal. The ground instantiation of a program
P, denoted by ground(P) is built by replacing variables with constants in all
possible ways. An interpretation is a set of ground atoms. The truth value of
ground atoms, literals and rules with respect to an interpretation M is as fol-
lows: valM (A) = A ∈ M , valM (not A) = not valM (A), valM (L1, . . . , Ln) =
min{valM(L1), . . . , valM (Ln)} and valM (A ← L1, . . . , Ln) = valM (A) ≥
valM (L1, . . . , Ln) , where A is an atom, L1, . . . , Ln are literals and true > false.
An interpretation M is a model for a program P, if all rules in ground(P) are
true w.r.t. M . A model M is said to be minimal if there is no model N such that
N ⊂ M . We denote the set of minimal models of a program P with MM(P).
Given an interpretation M and a predicate symbol g, M [g] denotes the set of
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g-tuples in M . The semantics of a positive program P is given by its unique
minimal model which can be computed by applying the immediate consequence
operator TP until the fixpoint is reached (T∞

P (∅) ). The semantics of a program

with negation P is given by the set of its stable models, denoted as SM(P). An
interpretation M is a stable model (or answer set) of P if M is the unique mini-
mal model of the positive program PM , where PM is obtained from ground(P)
by (i) removing all rules r such that there exists a negative literal not A in the
body of r and A is in M and (ii) removing all negative literals from the re-
maining rules [16]. It is well known that stable models are minimal models (i.e.
SM(P) ⊆ MM(P)) and that for negation free programs, minimal and stable
model semantics coincide (i.e. SM(P) = MM(P)).

Prioritized Logic Programs
Several works have investigated various forms of priorities into logic languages
[5, 6, 14, 22]. In this paper we refer to the extension proposed in [22]. A (partial)
preference relation � among atoms is defined as follows. Given two atoms e1
and e2, the statement e2 � e1 is a priority stating that for each a2 instance
of e2 and for each a1 instance of e1, a2 has higher priority than a1. If e2 � e1
and e1 �� e2 we write e2 � e1. If e2 � e1 the sets of ground instantiations of
e1 and e2 have empty intersection. This property is evident. Indeed, assuming
that there is a ground atom a which is an instance of e1 and e2, the statements
a � a and a �� a would hold at the same time (a contradiction). The relation
� is transitive and reflexive. A prioritized logic program (PLP) is a pair (P , Φ)
where P is a program and Φ is a set of priorities. Φ∗ denotes the set of priorities
which can be reflexively or transitively derived from Φ. Given a prioritized logic
program (P , Φ), the relation + is defined over the stable models of P as follows.
For any stable models M1,M2 and M3 of P : (i) M1 + M1; (ii)M2 + M1 if a)
∃ e2 ∈M2−M1, ∃ e1 ∈M1−M2 such that (e2 � e1) ∈ Φ∗ and b) � ∃ e3 ∈M1−M2

such that (e3 � e2) ∈ Φ∗; (iii) if M2 +M1 and M1 +M0, then M2 +M0.
If M2 +M1 holds, then we say that M2 is preferable to M1 w.r.t. Φ. Moreover,

we write M2 � M1 if M2 +M1 and M1 �+M2. An interpretation M is a preferred
stable model of (P , Φ) if M is a stable model of P and there is no stable model N
such that N � M . The set of preferred stable models of (P , Φ) will be denoted
by PSM(P , Φ).

3 P2P Systems: Syntax and FOL Semantics

A (peer) predicate symbol is a pair i : p where i is a peer identifier and p is a
predicate symbol. A (peer) atom is of the form i : A where A is a standard atom.
A (peer) literal L is of the form A or not A where A is a peer atom. A (peer)
rule is of the form A ← A1, . . . , An where A is a peer atom and A1, . . . , An

are peer atoms or built-in atoms. A (peer) integrity constraint is of the form
← L1, . . . , Lm where L1, . . . , Lm are peer literals or built-in atoms. Whenever
the peer is understood, the peer identifier can be omitted. The definition of a
predicate i : p consists of all rules having as head predicate symbol i : p. In
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the following, we assume that for each peer Pi there are three distinct sets
of predicates called, respectively, base, derived and mapping predicates. A base
predicates is defined by ground facts; a derived predicate i : p is defined by
standard rules, i.e. peer rules using in the body only predicates defined in the
peer Pi; a mapping predicate i :p is defined by mapping rules, i.e peer rules using
in the body only predicates defined in other peers. Without loss of generality,
we assume that every mapping predicate is defined by only one rule of the form
i : p(X) ← j : q(X) with j �= i. The definition of a mapping predicate i : p
consisting of n rules of the form i : p(Xk) ← Bk with 1 ≤ k ≤ n, can be
rewritten into 2n rules of the form i : pk(Xk) ← Bk and i : p(X) ← i : pk(X) ,
with 1 ≤ k ≤ n. Observe that standard and mapping rules are always positive
whereas negation is allowed in integrity constraints.

Definition 1. A peer P i is a tuple 〈Di,LP i,MP i, ICi〉 where (i) Di is a (local)
database consisting of a set of facts; (ii) LPi is a set of standard rules; (iii)
MPi is a set of mapping rules and (iv) ICi is a set of integrity constraints over
predicates defined in Di, LP i and MP i. A P2P system PS is a set of peers
{P1, . . . ,Pn}. �

Given a P2P system PS = {P1, . . . ,Pn} where P i = 〈Di,LP i,MPi, ICi〉,
we denote as D,LP ,MP and IC respectively the global sets of ground facts,
standard rules, mapping rules and integrity constraints: D = D1 ∪ · · · ∪ Dn,
LP = LP1 ∪ · · · ∪ LPn, MP = MP1 ∪ · · · ∪MPn and IC = IC1 ∪ · · · ∪ ICn.
With a little abuse of notation we shall also denote with PS both the tuple
〈D,LP,MP, IC〉 and the set D∪LP ∪MP∪IC. Given a peer Pi, MPred(P i),
DPred(P i) and BPred(P i) denote, respectively, the sets of mapping, derived
and base predicates defined in Pi. Analogously, MPred(PS), DPred(PS)
and BPred(PS) define the sets of mapping, derived and base predicates in PS.

A peer Pi is locally consistent if the database Di and the standard rules in
LP i are consistent w.r.t. ICi, (Di ∪ LP i |= ICi).

FOL Semantics. The FOL semantics of a P2P system PS = {P1, . . . , Pn}
is given by the minimal model semantics of PS = D ∪ LP ∪ MP ∪ IC. For
a given P2P system PS, MM(PS) denotes the set of minimal models of PS.
As D ∪ LP ∪MP is a positive program, PS may admit zero or one minimal
model. In particular, if MM(D ∪LP ∪MP) = {M} then MM(PS) = {M} if
M |= IC, otherwise MM(PS) = ∅. The problem with such a semantics is that
local inconsistencies make the global system inconsistent.

Preferred Weak Model Semantics. In [8] the authors introduced the pre-
ferred weak model semantics. This semantics is based on the idea to use the
mapping rules to import in each peer as much knowledge as possible without
violating local integrity constraints. Under this semantics only facts not making
the local databases inconsistent are imported, and the preferred weak models
are those in which peers import maximal sets of facts not violating integrity
constraints. This approach assumes that the local databases are originally con-
sistent.
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4 Minimal Weak Model Semantics

The semantics presented in this paper stems from the observations that in real
world P2P systems often the peers use the available import mechanisms to ex-
tract knowledge from the rest of the system only if this knowledge is strictly
needed to repair an inconsistent local database. In more formal terms, each peer
uses its mapping rules to import minimal sets of mapping atoms allowing to
satisfy local integrity constraints.

We introduce a new interpretation of mapping rules, which will now be de-
noted with a different syntax of the form H ↽ B. Intuitively, H ↽ B means
that if the body conjunction B is true in the source peer the atom H can be
imported in the target peer, that is H is true in the target peer only if it implies
(directly or even indirectly) the satisfaction of some constraints that otherwise
would be violated. The following example should make the meaning of mapping
rules crystal clear.

Example 2. Consider again the P2P system presented in Example 1.
As we observed, the local database of P1 is inconsistent because the or-

dered device laptop is not available. The peer P1 has to import some supplier
of laptops in order to make its database consistent. Then, the mapping rule
supplier(X,Y ) ↽ vendor(X,Y ) will be used to import one supplier from the
corresponding facts of P2: supplier(dan, laptop) or supplier(bob, laptop) . P1 will
not import both facts because just one of them is sufficient to satisfy the local
integrity constraint ← order(X), not available(X).

We observe that if P1 does not contain any fact its database is consistent and
no fact is imported from P2. �

Before formally presenting the minimal weak model semantics we introduce some
notation. Given a mapping rule r = A ↽ B, with St(r) we denote the corre-
sponding logic rule A ← B. Analogously, given a set of mapping rules MP ,
St(MP)= {St(r) | r ∈ MP} and given a P2P system PS = D∪LP∪MP∪IC,
St(PS) = D ∪ LP ∪ St(MP) ∪ IC.

In the next two subsections we present two alternative and equivalent char-
acterizations of the minimal weak model semantics. The first semantics is based
on a different satisfaction of mapping rules, whereas the second one is based on
the rewriting of mapping rules into prioritized rules [6, 22].

4.1 Minimal Weak Models

Informally, the idea is that for a ground mapping rule A ↽ B, the atom A could
be inferred only if the body B is true. Formally, given an interpretation M , a
ground standard rule D ← C and a ground mapping rule A ↽ B, valM (C ←
D) = valM (C) ≥ valM (D) whereas valM (A ↽ B) = valM (A) ≤ valM (B).

Definition 2. Given a P2P system PS = D∪LP ∪MP∪IC, an interpretation
M is a weak model for PS if {M} = MM(St(PSM )), where PSM is the program
obtained from ground(PS) by removing all mapping rules whose head is false
w.r.t. M . �
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We shall denote with M [D] (resp. M [LP], M [MP]) the set of ground atoms of
M which are defined in D (resp. LP , MP).

Definition 3. Given two weak models M and N , we say that M is preferable
to N , and we write M + N , if M [MP] ⊆ N [MP]. Moreover, if M + N and
N �+M we write M � N . A weak model M is said to be minimal if there is no
weak model N such that N � M . �

The set of weak models for a P2P PS system will be denoted by WM(PS),
whereas the set of minimal weak models will be denoted by MWM(PS). We
say that a P2P system PS is consistent if MWM(PS) �= ∅; otherwise it is
inconsistent.

Proposition 1. For any P2P system PS, + defines a partial order on the set
of weak models of PS. �

We observe that if each peer of a P2P system are locally consistent then no
mapping atom is inferred. Clearly not always a minimal weak model exists. It
happens when there is at least a peer which is locally inconsistent and there is
no way to import mapping atoms that could repair its local database so that its
consistency can be restored.

Example 3. Consider the P2P system PS presented in Example 2. The weak
models of the system are:

M1 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(dan, laptop), available(laptop)},

M2 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(bob, laptop), available(laptop)}, and

M3 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(dan, laptop), supplier(bob, laptop), available(laptop)},

whereas the minimal weak models are M1 and M2 because they contain minimal
subsets of mapping atoms ( resp. {supplier(dan, laptop)} and {supplier(bob,
laptop)}). �

4.2 Prioritized Programs and Preferred Stable Models

Now we present an alternative characterization of the minimal weak model se-
mantics based on the rewriting of mapping rules into prioritized rules [6, 22]. For
the sake of notation we consider exclusive disjunctive rules of the form A⊕A′ ← B
whose meaning is that if B is true then exactly one of A or A′ must be true.
Note that the rule A⊕A′ ← B is just shorthand for the rules A← B, not A′ and
A′ ← B, not A and the integrity constraint ← A,A′.

Given a pair P = (A,B), where A and B are generic objects, P [1] (resp. P [2])
denotes the object A (resp. B).
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Definition 4. Given a P2P system PS = D ∪ LP ∪MP ∪ IC and a mapping
rule r= i : p(x) ↽ B, then

– Rew(r) denotes the pair (i :p(x)⊕ i :p′(x) ← B, i :p′(x) � i :p(x)), consisting
of a disjunctive mapping rule and a priority statement,

– Rew(MP) = ({Rew(r)[1]| r ∈MP}, {Rew(r)[2]| r ∈MP}) and
– Rew(PS) = (D ∪ LP ∪Rew(MP)[1] ∪ IC, Rew(MP)[2]). �

In the above definition the atom i : p(x) (resp. i : p′(x)) means that the fact
p(x) is imported (resp. not imported) in the peer P i. For a given mapping rule
r, Rew(r)[1] (resp. Rew(r)[2]) denotes the first (resp. second) component of
Rew(r).
Intuitively, the rewriting Rew(r) = (A ⊕ A′ ← B, A′ � A) of a mapping rule
r = A ↽ B means that if B is true in the source peer then two alternative actions
can be performed in the target peer : A can be either imported or not imported;
but the action of not importing A is preferable over the action of importing A.

Example 4. Consider again the system analyzed in Example 3. The rewriting of
the system is: Rew(PS) = {vendor(dan, laptop), vendor(bob, laptop),
order(laptop),

supplier(X,Y )⊕ supplier′(X,Y ) ← vendor(X,Y ),
available(Y ) ← supplier(X,Y ),
← order(X), not available(X)},
{supplier′(X,Y ) � supplier(X,Y )}).

Rew(PS)[1] has three stable models:

M1 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(dan, laptop), supplier′(bob, laptop), available(laptop)},

M2 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier′(dan, laptop), supplier(bob, laptop), available(laptop)}, and

M3 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(dan, laptop), supplier(bob, laptop), available(laptop)},

The preferred stable models are M1 and M2. �

Given a P2P system PS and a preferred stable model M for Rew(PS) we denote
with St(M) the subset of non-primed atoms of M and we say that St(M) is a
preferred stable model of PS. We denote the set of preferred stable models of
PS as PSM(PS). The following theorem shows the equivalence of preferred
stable models and minimal weak models.

Theorem 1. For every P2P system PS, PSM(PS) = MWM(PS). �

5 Discussion

Complexity Results. We consider now the computational complexity of cal-
culating minimal weak models and answers to queries.
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Proposition 2. Given a P2P system PS, checking if there exists a minimal
weak model for PS is a NP-complete problem. �

As a P2P system may admit more than one preferred weak model, the answer
to a query is given by considering brave or cautious reasoning (also known as
possible and certain semantics).

Definition 5. Given a P2P system PS = {P1, . . . ,Pn} and a ground peer atom
A, then A is true under

– brave reasoning if A ∈
⋃

M∈MWM(PS) M ,

– cautious reasoning if A ∈
⋂

M∈MWM(PS) M . �

We assume here a simplified framework not considering the distributed com-
plexity as we suppose that the complexity of communications depends on the
number of computed atoms which are the only elements exported by peers. The
upper bound results can be immediately found by considering analogous results
on stable model semantics for prioritized logic programs. For disjunction-free
(∨− free)1 prioritized programs deciding whether an atom is true in some pre-
ferred model is Σp

2 -complete, whereas deciding whether an atom is true in every
preferred model is Πp

2 -complete [22].

Theorem 2. Let PS be a consistent P2P system, then

1. Deciding whether an atom A is true in some preferred weak model of PS is
in Σp

2 .
2. Deciding whether an atom A is true in every preferred weak model of PS is

in Πp
2 and coNP-hard. �

Related Works. The problem of integrating and querying databases in a P2P
system has been investigated in [3, 7, 15].

In [7] a new semantics for a P2P system, based on epistemic logic, is proposed.
The paper also shows that the semantics is more suitable than traditional se-
mantics based on FOL (First Order Logic) and proposes a sound, complete and
terminating procedure that returns the certain answers to a query submitted to
a peer.

In [15] a characterization of P2P database systems and a model-theoretic
semantics dealing with inconsistent peers is proposed. The basic idea is that if
a peer does not have models all (ground) queries submitted to the peer are true
(i.e. are true with respect to all models). Thus, if some databases are inconsistent
it does not mean that the entire system is inconsistent.

The semantics in [15] coincides with the epistemic semantics in [7].
An interesting approach for answering queries in a Peer to Peer data exchange

system has been recently proposed in [3]. Given a peer P in a P2P system a

1 The symbol ∨ denotes inclusive disjunction and is different from ⊕ as the latter
denotes exclusive disjunction. It should be recalled that inclusive disjunction allows
more than one atom to be true while exclusive disjunction allows only one atom to
be true.
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solution for P is a database instance that respects the exchange constraints and
trust relationship P has with its ‘immediate neighbors’ and stays as close as
possible to the available data in the system.

In [19] the problem of schema mediation in a Peer Data Management System
(PDMS) is investigated. A flexible formalism, PPL, for mediating peer schemas,
which uses the GAV and LAV formalism to specify mappings, is proposed. The
semantics of query answering for a PDMS is defined by extending the notion of
certain answer.

In [25] several techniques for optimizing the reformulation of queries in a
PDMS are presented. In particular the paper presents techniques for pruning
semantic paths of mappings in the reformulation process and for minimizing the
reformulated queries.

The design of optimization methods for query processing over a network of
semantically related data is investigated in [21].

None of the previous proposals take into account the possibility of modeling
some preference criteria while performing the data integration process. New in-
teresting semantics for data exchange systems that goes in this direction has
been recently proposed in [3, 4, 13].

In [3, 4] it is proposed a new semantics that allows for a cooperation among
pairwise peers that related each other by means of data exchange constraints
(i.e. mapping rules) and trust relationships. The decision by a peer on what
other data to consider (besides its local data) does not depend only on its data
exchange constraints, but also on the trust relationship that it has with other
peers.

The data exchange problem among distributed independent sources has been
investigated in [8, 9, 12]. In [8] the authors define a declarative semantics for P2P
systems that allows to import in each peer maximal subsets of atoms which do
not violate the local integrity constraints. The framework has been extended in
[12] where a mechanism to set different degrees of reliability for neighbor peers
has been provided and in [9] in which ‘dynamic’ preferences allow to import, in
the case of conflicting sets of atoms, looking at the properties of data provided
by the peers.

6 Concluding Remarks and Directions for Further
Research

In this paper we have introduced a logic programming based framework for P2P
deductive databases. It is based on the assumption, coherent with many real
world P2P systems, that each peer uses its mapping rules to import minimal
sets of mapping atoms allowing to satisfy its local integrity constraints. We have
presented a different characterization of the semantics based on preferred stable
models for prioritized logic programs. Moreover, we have also provided some
preliminary results on the complexity of answering queries in different contexts.

The approach we follow in this paper does not contrast the previous one in
[8, 10–13]. It is not alternative, but complementary.
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In a more general framework two different forms of mapping rules can be
managed, one allowing to import maximal sets of atoms not violating integrity
constraints (say Max-Mapping rules) and one allowing to import minimal sets
of atoms (say Min-Mapping rules). This second kind of mapping rules also allow
to restore consistency.

Note that, at the present, the logical framework equally trusts its neighbor
peers. No preference is given to the information sources providing data. Our
proposal will be enriched by allowing, in the presence of multiple alternatives,
the selection of data from the most reliable sources.
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Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, given the similarities satisfied by
values in a database, what values should be considered duplicates, and have to be
matched. On the basis of a chase-like procedure for MD enforcement, we can ob-
tain clean (duplicate-free) instances; possibly several of them. The clean answers
to queries (which we call the resolved answers) are invariant under the resulting
class of instances. Identifying the clean versions of a given instance is generally
an intractable problem. In this paper, we show that for a certain class of MDs,
the characterization of the clean instances is straightforward. This is an important
result, because it leads to tractable cases of resolved query answering. Further
tractable cases are derived by making connections with tractable cases of CQA.

1 Introduction
For various reasons, such as errors or variations in format, integration of data from
different sources, etc., databases may contain different coexisting representations of the
same external, real world entity. Those “duplicates” can be entire tuples or values within
them. To obtain accurate information, in particular, query answers from the data, those
tuples or values should be merged into a single representation.

Identifying and merging duplicates is a process called entity resolution (ER) [13, 16].
Matching dependencies (MDs) are a recent proposal for declarative duplicate resolution
[17, 18]. An MD expresses, in the form of a rule, that if the values of certain attributes
in a pair of tuples are similar, then the values of other attributes in those tuples should
be matched (or merged) into a common value.

For example, the MD R1[X1] ≈ R2[X2] → R1[Y1]
.
= R2[Y2] is a symbolic ex-

pression saying that, if an R1-tuple and R2-tuple have similar values for their attributes
X1, X2, then their values for attributes Y1, Y2 should be made equal. This is a dynamic
dependency, in the sense that its satisfaction is checked against a pair of instances: the
first one where the antecedent holds, and the second one where the identification of
values takes place. This semantics of MDs was sketched in [18].

In this paper we use a refinement of that original semantics that was put forth in [23]
(cf. also [24]). It improves wrt the latter in that it disallows changes that are irrelevant to
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the duplicate resolution process. Actually, [23] goes on to define the clean versions of
the original database instance D0 that contains duplicates. They are called the resolved
instances (RIs) of D0 wrt the given set M of matching dependencies. A resolved in-
stance is obtained as the fixed point of a chase-like procedure that starts from D0 and
iteratively applies or enforces the MDs in M . Each step of this chase generates a new
instance by making equal the values that are identified as duplicates by the MDs.

In [23] it was shown that resolved instances always exist, and that they have certain
desirable properties. For example, the set of allowed changes is just restrictive enough to
prevent irrelevant changes, while still guaranteeing existence of resolved instances. The
resolved instances that minimize the overall number of attribute value changes wrt the
original instance are called minimally resolved instances (MRIs). On this basis, given
a queryQ posed to a database instance D0 that may contain duplicates, we defined the
resolved answers wrt Σ as the query answers that are true of all the minimally resolved
instances [23].

The concept of resolved query answer has similarities to that of consistent query an-
swer (CQA) in a database that fails to satisfy a set of integrity constraints [3, 7, 8]. The
consistent answers are invariant under the repairs of the original instance. However,
data cleaning and CQA are different problems. For the former, we want to compute a
clean instance, determined by MDs; for the latter, the goal is obtaining semantically
correct query answers. MDs are not (static) ICs. In principle, we could see clean in-
stances as repairs, treating MDs similarly to static FDs. However, the existing repair
semantics do not capture the matchings as dictated by MDs (cf. [23, 24] for a more
detailed discussion).

The motivation for defining the concept of resolved answers to a query is that even in
a database instance containing duplicates, much or most of the data may be duplicate-
free. One can therefore obtain useful information from the instance without having to
perform data cleaning on the instance. This would be convenient if the user does not
want, or cannot afford, to go through a data cleaning process. In other situations the user
may not have write access to the data being queried, or any access to the data sources,
as in virtual data integration systems [25, 9].

In this paper we show that for a certain sets of MDs whose members depend cycli-
cally on each other, it is possible to characterize the form of the minimally resolved
instances for any given instance. In particular, we introduce a recursively defined pred-
icate for identifying the sets of duplicate values within a database instance. This pred-
icate can be combined with a query, opening the ground for tractability via a query
rewriting approach to the problem of retrieving the resolved answers to the query.

We also establish connections between the current problem and consistent query
answering (CQA) to obtain further tractable cases. When the form of a set of MDs is
such that application of one MD cannot affect the application of another MD in the set,
the resolved instances of a given database instance are similar to repairs of the instance
wrt a set of functional dependencies (FDs). This allows us to apply results on CQA
under FDs [15, 21, 30].

This paper is organized as follows. In Section 2 we introduce basic concepts and
notation of MDs. In Section 3, we define the important concepts used in this paper,
in particular, (minimally) resolved instances and resolved answers to queries. Section
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4 contains the main result of this paper, which is a characterization of the minimally
resolved instances for certain sets of MDs with cyclic dependency graphs. Section 5
makes some connections with CQA. Section 6 concludes the paper and discusses related
and future work. The missing and not already formally published proofs can be found
all in [22].

2 Preliminaries

We consider a relational schemaS that includes an enumerable, possibly infinite domain
U , and a finite setR of database predicates. Elements ofU are represented by lower case
letters near the beginning of the alphabet.S determines a first-order (FO) languageL(S).
An instance D for S is a finite set of ground atoms of the form R(ā), with R ∈ R, say
of arity n, and ā ∈ Un. R(D) denotes the extension of R in D. Every predicate R ∈ S
has a set of attribute, denoted attr(R). As usual, we sometimes refer to attribute A of
R by R[A]. We assume that all the attributes of a predicate are different, and that we
can identify attributes with positions in predicates, e.g. R[i], with 1 ≤ i ≤ n. If the
ith attribute of predicate R is A, for a tuple t = (c1, . . . , cn) ∈ R(D), tDR [A] (usually,
simply tR[A] or t[A] if the instance is understood) denotes the value ci. For a sequence
Ā of attributes in attr(R), t[Ā] denotes the tuple whose entries are the values of the
attributes in Ā. For a tuple t in a relation instance with attribute A, the pair (t, A) is
called a value position (usually simply, position). In that case, t[A] is the value taken by
that position (for the given instance). Attributes have and may share subdomains of U .

In the rest of this section, we summarize some of the assumptions, definitions, nota-
tion, and results from [23], that we will need.

We will assume that every relation in an instance has an auxiliary attribute, a surro-
gate key, holding values that act as tuple identifiers. Tuple identifiers are never created,
destroyed or changed. They do not appear in MDs, and are used to identify different
versions of the same original tuple that result from the matching process. We usually
leave them implicit; and “tuple identifier attributes” are commonly left out when speci-
fying a database schema. However, when explicitly represented, they will be the “first”
attribute of the relation. For example, if R ∈ R is n-ary, R(t, c1, . . . , cn) is a tuple with
id t, and is usually written as R(t, c̄). We usually use the same symbol for a tuple’s
identifier as for the tuple itself. Tuple identifiers are unique over the entire instance.1

Two instances over the same schema that share the same tuple identifiers are said to
be correlated. In this case it is possible to unambiguously compare their tuples, and as
a result, also the instances.

As expected, some of the attribute domains, say A, have a built-in binary similar-
ity relation ≈A. That is, ≈A ⊆ Dom(A) × Dom(A). It is assumed to be reflexive
and symmetric. Such a relation can be extended to finite lists of attributes (or domains
therefor), componentwise. For single attributes or lists of them, the similarity relation
is generically denoted with ≈.

A matching dependency (MD) [17], involving predicate R, is an expression (or rule),
m, of the form

m : R[Ā] ≈ R[Ā] → R[B̄]
.
= R[B̄], (1)

1 An alternative to the use of tuple ids could be the dynamic mappings introduced in [28].
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with Ā = (A1, ..., Ak) and B̄ = (B1, ..., Bk′) lists of attributes from attr(R).2 We
assume the attributes in Ā are all different, similarly for B̄. The set of attributes on
the left-hand-side (LHS) of the arrow in m is denoted with LHS (m). Similarly for the
right-hand-side (RHS). The condition on the LHS of (1) means that, for a pair of tuples
t1, t2 in (an instance of) R, t1[Ai] ≈i t2[Ai], 1 ≤ i ≤ k. Similarly, the expression on
the RHS means t1[Bi]

.
= t2[Bi], 1 ≤ i ≤ k′. Here,

.
= means that the values should

be updated to the same value. Accordingly, the intended semantics of (1) is that, for an
instance D, if any pair of tuples t1, t2 ∈ R(D) satisfy the similarity conditions on the
LHS, then for the same tuples (or tuple ids), the attributes on the RHS have to take the
same values [18], possibly through updates that may lead to a new version of D.

Attributes that appear to the right of the arrow in an element of a set M of MDs
are called changeable attributes. We assume that all sets M of MDs are in standard
form, i.e. for no two different MDs m1,m2 ∈ M , LHS(m1) = LHS(m2). All sets of
MDs can be put in this form. MDs in a set M can interact in the sense that a matching
enforced by one of them may create new similarities that lead to the enforcement of
another MD in M . This intuition is captured through the MD-graph.

Definition 1. [24] Let M be a set of MDs in standard form. The MD-graph of M ,
denoted MDG(M), is a directed graph with a vertex m for each m ∈ M , and an edge
from m to m′ iff RHS(m)∩LHS (m′) �= ∅.3 If MDG(M) contains edges, M is called
interacting. Otherwise, it is called non-interacting (NI). �

3 Matching Dependencies and Resolved Answers
Updates as prescribed by an MD m are not arbitrary. The updates based on m have
to be justified by m, as captured through the notion of modifiable value position in an
instance. Values in modifiable positions are the only ones that are allowed to change
under a legal update. The notion of modifiable position depends on the syntax of the
MDs, but also on the instance at hand on which updates that identify values are to be
applied, because the tuple t in a position (t, A) belongs to that instance. We give an ex-
ample illustrating some issues involved in the definition of modifiability (cf. Definition
2 below).

Example 1. Consider m : R[A] ≈ R[A] → R[B]
.
= R[B] on schema R[A,B], and the

instance R(D) shown below.

R(D) A B
t1 a1 c1
t2 a2 c1
t3 a3 c3
t4 b1 c3
t5 b2 c3

Assume the only non-trivial similarities
are a1 ≈ a2 ≈ a3 and b1 ≈ b2. One might
be tempted to declare positions (ti, B) and
(tj , B) as modifiable whenever ti[A] ≈
tj [A] holds in D. In this case, (t4, B) and
(t5, B) would be classified as modifiable.

2 We consider this class to simplify the presentation. However, the results in this paper also
apply to the more general case of MDs of the form R1[Ā] ≈ R2[B̄] → R1[C̄]

.
= R2[D̄], with

the corresponding attributes in Ā, B̄ (and in C̄, D̄) sharing domains, in particular, similarity
relations [22].

3 That is, they share at least one corresponding pair of attributes.
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However, the values in those positions should not be allowed to change, since t4[B] =
t5[B] and no duplicate resolution is needed. Consequently, we might consider adding
the requirement that ti[B] �= tj [B], which would make (t2, B) and (t3, B) modifiable,
but (t1, B) non-modifiable.

This is problematic, because a legal update would in general lead to t1[B] �= t2[B]
in the new instance (unless the update value for (t2, B) and (t3, B) is chosen to be c1).
This would go against the intended meaning of the MD, which tells us that (t1, B),
(t2, B), and (t3, B) represent the same entity. As a consequence, t1[B] = t2[B] =
t3[B] should hold in the updated instance. �

Example 1 shows that defining modifiability of a value position4 in terms of just a pair
of tuples does not lead to an appropriate restriction on updates. The definition below
uses recursion to take larger groups of positions into account.

Definition 2. Let D be an instance, M a set of MDs, and P be a set of positions (t, G),
where t is a tuple of D and G is an attribute of t. (a) For a tuple t1 ∈ R(D) and C
an attribute of R, the position (t1, C) is modifiable wrt P if there exist t2 ∈ R(D), an
m ∈ M of the form R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄], and an attribute B of B̄, such

that (t2, B) ∈ P and one of the following holds:

1. t1[Ā] ≈ t2[Ā], but t1[B] �= t2[B].
2. t1[Ā] ≈ t2[Ā] and (t2, B) is modifiable wrt P � {(t2, B)}.

(b) The position (t1, B) is modifiable if it is modifiable wrt V � {(t1, B)}, where V is
the set of all positions (t, G) with t a tuple of D and G an attribute of t. �

This definition 2 is recursive. The base case occurs when either case 1. applies (with any
P) or when there is no tuple/attribute pair in P that can satisfy part (a). Notice that the
recursion must eventually terminate, since the latter condition must be satisfied when
P is empty, and each recursive call reduces the size of P .

Example 2. (example 1 continued) Since a2 ≈ a3 and c1 �= c3, (t2, B) and (t3, B)
are modifiable (base case). Since a1 ≈ a2 and (t2, B) is modifiable, with case 2. of
Definition 2, we obtain that (t1, B) is also modifiable.

For (t5, B) to be modifiable, it must be modifiable wrt {(ti, B) | 1 ≤ i ≤ 4}, and
via t4. According to case 2. of Definition 2, this requires (t4, B) to be modifiable wrt
{(ti, B) | 1 ≤ i ≤ 3}. However, this is not the case since there is no ti, 1 ≤ i ≤ 3, such
that t4[A] ≈ ti[A]. Therefore (t5, B) is not modifiable. A symmetric argument shows
that (t4, B) is not modifiable either.

Notice that the recursive nature of Definition 2 requires defining modifiability in
terms of a set of value positions (the set P in the definition). This set allows us to
keep track of positions that have already been “tried”. For example, to determine the
modifiability of (t5, B), we must determine whether or not (t4, B) is modifiable. How-
ever, since we have already eliminated (t5, B) from consideration when deciding about
(t4, B), we avoid an infinite loop. �

4 Not to be confused with the notion of changeable attribute.
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Definition 3. [23] Let D, D′ be correlated instances, and M a set of MDs. (D,D′)
satisfies M , denoted (D,D′) � M , iff: 1. For any pair of tuples t1, t2 ∈ R(D), if there
exists an m ∈ M of the form R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄] and t1[Ā] ≈ t2[Ā], then

for the corresponding tuples (i.e. with same ids) t′1, t
′
2 ∈ R(D′), it holds t′1[B̄] = t′2[B̄].

2. For any tuple t ∈ R(D) and any attribute G of R, if (t, G) is a non-modifiable
position, then t′R[G] = tR[G]. �

Intuitively, D′ in Definition 3 is a new version of D that is produced after a single
update. Since the update involves matching values (i.e. making them equal), it may pro-
duce “duplicate” tuples, i.e. that only differ in their tuple ids. They could possibly be
merged into a single tuple in the a data cleaning process. However, we keep the two
versions. In particular, D and D′ have the same number of tuples. Keeping or eliminat-
ing duplicates will not make any important difference in the sense that, given that tuple
ids are never updated, two duplicates will evolve in exactly the same way as subsequent
updates are performed. Duplicate tuples will never be subsequently “unmerged”.

This definition of MD satisfaction departs from [18], which requires that updates
preserve similarities. Similarity preservation may force undesirable changes [23]. The
existence of the updated instance D′ for D is guaranteed [23]. Furthermore, wrt [18],
our definition does not allow unnecessary changes from D to D′. Definitions 2 and 3
imply that only values of changeable attributes are subject to updates.

Definition 3 allows us to define a clean instance wrt M as the result of a chase-like
procedure, each step being satisfaction preserving.

Definition 4. [23] (a) A resolved instance (RI) for D wrt M is an instance D′, such
that there are instances D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,..., (Dn−1,
Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . We say D′ is stable. (b) D′ is a mini-
mally resolved instance (MRI) for D wrt M if it is a resolved instance and it minimizes
the overall number of attribute value changes wrt D. (c) MRI (D,M) denotes the class
of MRIs of D wrt M . �

Example 3. Consider the MD R[A] ≈ R[A] → R[B]
.
= R[B] on predicate R, and

the instance D. It has several resolved instances, among them, four that minimize the
number of value changes. One of them is D1. A resolved instance that is not minimal
in this sense is D2.

R(D) A B
t1 a1 c1
t2 a1 c2
t3 b1 c3
t4 b1 c4

R(D1) A B
t1 a1 c1
t2 a1 c1
t3 b1 c3
t4 b1 c3

R(D2) A B
t1 a1 c1
t2 a1 c1
t3 b1 c1
t4 b1 c1 �

In this work, as in [23, 24], we are investigating what we could call “the pure case” of
MD-based entity resolution. It adheres to the original semantics outlined in [18], which
does not specify how the matchings are to be done, but only which values must be made
equal. That is, the MDs have implicit existential quantifiers (for the values in common).
The semantics we just introduced formally captures this pure case. We find situations
like this in other areas of data management, e.g. with referential integrity constraints,
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tuple-generating dependencies in general [1], schema mappings in data exchange [5],
etc. A “non-pure” case, that uses matching functions to realize the matchings as pre-
scribed by MDs, is investigated in [11, 12, 4]. Since there is always an RI [23], there is
always an MRI for an instance D wrt M .

The resolved answers to a query are certain for the class of MRIs for D wrt M .

Definition 5. [23] Let Q(x̄) be a query expressed in the first-order language L(S) as-
sociated to schema S of an instance D. A tuple of constants ā from U is a resolved
answer to Q(x̄) wrt the set M of MDs, denoted D |=M Q[ā], iff D′ |= Q[ā], for every
D′ ∈ MRI (D,M). We denote with ResAn(D,Q,M) the set of resolved answers to
Q from D wrt M . �
Example 4. (example 1 cont.) Since the only MRI for the original instanceD is R(D′)=
{〈t1, a1, c1〉, 〈t2, a2, c1〉, 〈t3, a3, c1〉, 〈t4, b1, c3〉, 〈t5, b2, c3〉}, the resolved answers to
the queryQ(x, y) : R(x, y) are {〈a1, c1〉, 〈a2, c1〉, 〈a3, c1〉, 〈b1, c3〉, 〈b2, c3〉}. �
For a query Q and set of MDs M , the resolved answer problem is the problem of
deciding, given a tuple ā and instance D, whether or not ā ∈ ResAn(D,Q,M). More
precisely, it is defined by

RAQ,M := {(D, ā) | ā ∈ ResAn(D,Q,M)}. (2)

4 Hit-Simple-Cyclic Sets of MDs

In general, the resolved answer decision problem is NP-hard.

Theorem 1. [23] The resolved answer decision problem can be intractable for join-
free conjunctive queries and pairs of interacting MDs. More precisely, for the the query
Q(x, z) : ∃yR(x, y, z), and the following set M of MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[C]
.
= R[C]

the resolved answer (decision) problem is NP-hard (in data). �
Generally, intractability of the resolved answer problem arises when choices of update
values made during one update in the chase sequence can affect subsequent updates.
For the case in Theorem 1, when the instance is updated according to m1, the choice
of update values for values in the B column affects subsequent updates made to the
values in the C column according to m2. The resolved answer problem is tractable for
non-interacting sets of MDs, because there is no dependence of updates on previous
updates.

In this section, we define a class of sets of MDs, called hit-simple-cyclic (HSC) sets,
for which the resolved answer problem is tractable for an important class of conjunctive
queries. Specifically, we introduce a recursively-defined predicate that can be used to
identify the sets of values that must be updated to obtain an MRI and the possible values
to which they can be updated. For HSC sets, the interaction of the MDs does not lead
to intractability, as it is the case for the set of MDs in Theorem 1. This is because
the stability requirement of Definition 4 imposes a simple form on MRIs, making it
unnecessary to consider the many possible chase sequences.
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Definition 6. A set M of MDs is simple-cycle (SC) if its MD graph MDG(M) is (just)
a cycle, and in all MDs m ∈M , at most one attribute in LHS(m) is changeable. �

Example 5. For schema R[A,C, F,G], consider the following set M of MDs:

m1 : R[A] ≈ R[A] → R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C] → R[A,F,G]
.
= R[A,F,G].

MDG(M) is a cycle, because attributes in RHS(m2) appear in LHS(m1), and vice-
versa. Furthermore, M is SC, because LHS(m1) and LHS (m2) are singletons. �

SC sets of MDs can be easily found in practical applications. For them, it is easy to
characterize the form taken by an MRI.

Example 6. Consider the instance D and a SC set of MDs below, where the only simi-
larities are: ai ≈ aj , bi ≈ bj , di ≈ dj , ei ≈ ej , with i, j ∈ {1, 2}.

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

m1 : R[A] ≈ R[A] → R[B]
.
= R[B],

m2 : R[B] ≈ R[B] → R[A]
.
= R[A].

If the MDs are applied twice,
successively, starting from D, a
possible result is:

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

→

R(D1) A B
1 b2 d1
2 a2 d1
3 a2 e1
4 b2 e1

→

R(D2) A B
1 a2 e1
2 a2 d1
3 b2 d1
4 b2 e1

It should be clear that, in any sequence of instances D1, D2, . . ., obtained from D by
applying the MDs, the updated instances must have the following pairs of equal values
or matchings (shown through the tuple ids) in Table 1. In any stable instance, the pairs
of values in the above tables must be equal. Given the alternating behavior, this can only
be the case if all values in A are equal, and similarly for B, which can be achieved with
a single update, choosing any value as the common value for each of A and B.

Table 1. Table of matchings

Di i odd A B

tuple (id) pairs (1, 4), (2, 3) (1, 2), (3, 4)

Di i even A B

tuple (id) pairs (1, 2), (3, 4) (1, 4), (2, 3)

In particular, an MRI requires the common value for each attribute to be set to a most
common value in the original instance. For D there are 16 MRIs. �

Example 7. (example 5 cont.) The relation R subject to the given M , has two “keys”,
R[A] and R[C]. A relation like this may appear in a database about people: R[A]
could be used for the person’s name, R[C] the address, and R[F ] and R[G] for non-
distinguishing information, e.g. gender and age. �
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We now define an extension of the class of SC sets of MDs.

Definition 7. A set M of MDs is hit-simple-cyclic iff the following hold: (a) In all
MDs m ∈ M , at most one attribute in LHS(m) is changeable. (b) Each vertex v1 in
MDG(M) is on at least one cycle, or there is a vertex v2 on a cycle with at least two
vertices such that there is an edge from v1 to v2. �
Notice that SC sets are also HSC sets. An example of the MD graph of an HSC set of
MDs is shown in Figure 1.

Fig. 1. The MD-graph of an HSC set of MDs

As the previous examples suggest, it is possible to provide a full characterization of
the MRIs for an instance subject to an HSC set of MDs, which we do next. For this
result, we need a few definitions and notations.

For an SC set M and m ∈ M , if a pair of tuples satisfies the similarity condition
of any MD in M , then the values of the attributes in RHS(m) must be merged for
these tuples. Thus, in Example 6, a pair of tuples satisfying either R[A] ≈ R[A] or
R[B] ≈ R[B] have both their R[A] and R[B] attributes updated to the same value.
More generally, for an HSC set M of MDs, and m ∈ M , there is only a subset of
the MDs such that, if a pair of tuples satisfies the similarity condition of an MD in the
subset, then the values of the attributes in RHS(m) must be merged for the pair of
tuples. We now formally define this subset.

Definition 8. Let M be a set of MDs, and m ∈M . (a) The previous set of m, denoted
PS(m), is the set of all MDs m′ ∈M with a path in MDG(M) from m′ to m. (b) The
previous set PS(M) of a set M of MDs is

⋃
m∈M PS(m). �

When applying a set of MDs to an instance, consistency among updates must be en-
forced. This generally requires computing the transitive closure of similarity relations.
For example, suppose both m1 and m2 have the conjunct R[A]

.
= R[A]. If t1 and t2

satisfy the condition of m1, and t2 and t3 satisfy the condition of m2, then t1[A] and
t3[A] must be updated to the same value, since updating them to different values would
require t2[A] to be updated to two different values at once. We formally define this
transitive closure relation.

Definition 9. Consider an instance D, and set of MDs M = {m1,m2, . . . ,mn}. (a)
For MD m : R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄], Tm is the reflexive, symmetric, transitive

closure of the binary relation that relates pairs of tuples t1 and t2 in D satisfying t1[A] ≈
t2[A]. (b) For a subset M ′ of M , TM ′ is the reflexive, symmetric, transitive closure of
{Tm |m ∈M ′}. �
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In the case of HSC sets of MDs, the MRIs for a given instance can be characterized
simply using the T relation. This result is stated formally below.

Proposition 1. [22] For a set of MDs M and attribute A, let MA be the set of all
m ∈ M such that A ∈ RHS(m). For M HSC and D an instance, each MRI for D wrt
M is obtained by setting, for each attribute A and each equivalence class E of TPS(MA),
the value of all t[A], t ∈ E, to one of the most frequent values for t[A], t ∈ E. �

Example 8. (example 6 cont.) We represent tuples by their ids. We have:

Tm1 = {(1, 2), (3, 4), (2, 1), (4, 3)} ∪ {(i, i) | 1 ≤ i ≤ 4},
Tm2 = {(1, 4), (2, 3), (4, 1), (3, 2)} ∪ {(i, i) | 1 ≤ i ≤ 4},
T{m1,m2} = {(i, j) | 1 ≤ i, j ≤ 4},
TPS(MA) = TPS(m2) = T{m1,m2}, TPS(MB) = TPS(m1) = T{m1,m2}.

The (single) equivalence class of TPS(MA) (TPS(MB)) is {(i, A) | 1 ≤ i ≤ 4}
({(i, B) | 1 ≤ i ≤ 4}). From Proposition 1, the 16 MRIs are obtained by setting
all R[A] and R[B] attribute values to one of the four existing (and, actually, equally
frequent) values for them. �

It is possible to prove using Proposition 1 that, for HSC sets, the resolved answer prob-
lem is efficiently solvable for join-free conjunctive queries like the one in Theorem 1. In
fact, it is shown in [22] that for HSC sets and a significant class of conjunctive queries
with restricted joins, the resolved answer problem is solvable in polynomial time using
a query rewriting technique.

Definition 10. Let Q be a conjunctive query without built-ins, and M a set of MDs.
Q is an unchangeable join conjunctive query if there are no existentially quantified
variables in a join in Q in the position of a changeable attribute. UJCQ denotes this
class of queries. �

Example 9. For schema S = {R[A,B]}, let M consist of the single MD R[A] ≈
R[A] → R[B]

.
= R[B]. Attribute B is changeable, and A is unchangeable. The

query Q1(x, z) : ∃y(R(x, y) ∧ R(z, y)) is not in UJCQ , because the bound and
repeated variable y is for the changeable attribute B. However, the query Q2(y) :
∃x∃z(R(x, y) ∧ R(x, z)) is in UJCQ : the only bound, repeated variable is x which
is for the unchangeable attribute A. If variables x and y are swapped in the first atom of
Q2, the query is not UJCQ. �

Theorem 2. [22] For a HSC (or non-interacting) set of MDs M and a UJCQ queryQ,
there is an effective rewriting Q′ that is efficiently evaluable and returns the resolved
answers to Q. �

The rewritten queries of the theorem are expressed in FO logic with an embedded re-
cursively defined predicate that expresses the transitive closure of Definition 9 (e.g. in
Datalog) plus a the count aggregation operator (of number of different attribute values).
They can be evaluated in quadratic time in data [22].
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5 A CQA Connection

MDs can be seen as a new form of integrity constraint (IC), with a dynamic semantics.
An instance D violates an MD m if there are unresolved duplicates, i.e. tuples t1 and
t2 in D that satisfy the similarity conditions of m, but differ in value on some pairs
of attributes that are expected to be matched according to m. The instances that are
consistent with a set of MDs M (or self-consistent from the point of view of the dynamic
semantics) are resolved instances of themselves with respect to M . Among classical
ICs, the closest analogues of MDs are functional dependencies (FDs).

Now, given a database instance D and a set of ICs Σ, possibly not satisfied by D,
consistent query answering (CQA) is the problem of characterizing and computing the
answers to queriesQ that are true in all repairs of D, i.e. the instances D′ that are con-
sistent with Σ and minimally differ from D [3]. Minimal difference between instances
can be defined in different ways. Most of the research in CQA has concentrated on
the case of the set-theoretic symmetric difference of instances, as sets of tuples, which
in the case of repairs is made minimal under set inclusion, as originally introduced in
[3]. Also the minimization of the cardinality of this set-difference has been investigated
[27, 2]. Other forms of minimization measure the differences in terms of changes of
attribute values between D and D′ (as opposed to entire tuples) [20, 29, 19, 10], e.g.
the number of attribute updates can be used for comparison. Cf. [7, 14, 8] for CQA.

Because of their practical importance, much work on CQA has been done for the
case where Σ is a set of functional dependencies (FDs), and in particular for sets, K, of
key constraints (KCs) [15, 21, 30], with the distance being the set-theoretic symmetric
difference under set inclusion. In this case, on which we concentrate in the rest of this
section, a repair D′ of an instance D becomes a maximal subset of D that satisfies K,
i.e. D′ ⊆ D, D′ |= K, and there is no D′′ with D′ � D′′ ⊆ D, with D′′ |= K [15].

Accordingly, for a FO query Q(x̄) and a set of KCs K, ā is a consistent answer
from D to Q(x̄) wrt K when D′ |= Q[ā], for every repair D′ of D. For fixed Q(x̄)
andK, the consistent query answering problem is about deciding membership in the set
CQAQ,K = {(D, ā) | ā is a consistent answer from D to Q wrt K}.

Notice that this notion of minimality involved in repairs wrt FDs is tuple and set-
inclusion oriented, whereas the one that is implicitly related to MDs and MRIs via the
matchings (cf. Definition 4) is attribute and cardinality oriented.5 However, the connec-
tion can still be established.

For certain classes of conjunctive queries and ICs consisting of a single KC per rela-
tion, CQA is tractable. This is the case for the Cforest class of conjunctive queries [21],
for which there is a FO rewriting methodology for computing the consistent answers.
Cforest excludes repeated relations (self-joins), and allows joins only between non-key
and key attributes. Similar results were subsequently proved for a larger class of queries
that includes some queries with repeated relations and joins between non-key attributes
[30]. The following result allows us to take advantage of tractability results for CQA in
our MD setting.

5 Cf. [23] for a discussion of the differences between FDs and MDs seen as ICs, and their repair
processes.
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Proposition 2. [22] Let D be a database instance for a single predicate R whose set of
attributes is Ā ∪ B̄, with Ā ∩ B̄ = ∅; and m the MD R[Ā] = R[Ā] → R[B̄]

.
= R[B̄].

There is a polynomial time reduction from RAQ,{m} (cf. (2)) to CQAQ,{κ}, where κ

is the key constraint R : Ā→ B̄. �

This result can be easily generalized to several relations with one such MD defined on
each. The reduction takes an instance D for RAQ,{m} and produces an instance D′ for
CQAQ,{κ}. The schema of D′ is the same as for D, but the extension of the relation
is changed wrt D via counting. Definitions for those aggregations can be inserted into
queryQ, producing a rewriting Q ′. Thus, we obtain:

Theorem 3. [22] Let S be a schema with R = {R1[Ā1, B̄1], . . . , Rn[Ān, B̄n]} and
K the set of KCs κi : Ri[Āi] → Ri[B̄i]. Let Q be a FO query for which there
is a polynomial-time computable FO rewriting Q′ for computing the consistent an-
swers to Q. Then there is a polynomial-time computable FO query Q′′ extended with
aggregation6 for computing the resolved answers to Q from D wrt the set of MDs
mi : Ri[Āi] = Ri[Āi] → Ri[B̄i]

.
= Ri[B̄i]. �

The aggregation in Q′′ in Theorem 3 arises from the generic transformation of the in-
stance that is used in the reduction involved in Proposition 2, but here becomes implicit
in the query.

This theorem can be applied to decide/compute resolved answers in those cases
where a FO rewriting for CQA (aka. consistent rewriting) has been identified.

Example 10. The queryQ : ∃x∃y∃z∃w(R(x, y, w)∧S(y, w, z)) is in the class Cforest
for relational predicates R[A,B,C] and S[C,E, F ] and KCs A→ BC and CE → F .
By Theorem 3 and the results in [21], there is a polynomial-time computable FO query
with counting that returns the resolved answers to Q wrt the MDs R[A] = R[A] →
R[B,C]

.
= R[B,C] and S[C,E] = S[C,E] → S[F ]

.
= S[F ], namely,

Q′′ : ∃x∃y∃z∃w[R′(x, y, w) ∧ S(y, w, z) ∧ ∀y′∀w′(R′(x, y′, w′) → ∃z′S(y′, w′, z′)),

where R′(x, y, w) := ∃w′{R(x, y, w′) ∧ ∀y′[Count{w′′ | R(x, y′, w′′)} ≤
Count{w′′ | R(x, y, w′′)}]} ∧

∃y′{R(x, y′, w) ∧ ∀v[Count{y′′ | R(x, y′′, v)} ≤ Count{y′′ | R(x, y′′, w)}]}.
Here, Count{x | E(x)}, for E a first-order expression and x a variable, denotes the
number of distinct values of x that satisfy E in the database instance at hand. This
“resolved rewriting” wrt the MDs is obtained from the consistent rewriting Q′ for Q
wrt the FDs, by replacing R by R′ as indicted above, i.e. using

Q′ : ∃x∃y∃z∃w[R(x, y, w) ∧ S(y, w, z) ∧ ∀y′∀w′(R(x, y′, w′) → ∃z′S(y′, w′, z′)),

S inQ′ could also be replaced by a similar S′ to obtainQ′′. However, in this example it
is not necessary, because the key values are not changed when the MDs are applied, so
the join condition is not affected (the join is on the key values for S, but on the non-key
values for R).

6 This is a proper extension of FO query languages [26, Chapter 8].
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Notice that Q is not in UJCQ because variable y is existentially quantified, partici-
pates in a join, and occurs at the position of the changeable attribute R[B] (cf. Definition
10). Therefore, Theorem 2 cannot be used to obtain a query rewriting in this case. �
The example shows that via the CQA connection we obtain rewritable and tractable
cases of resolved answering that are different from those provided by Theorem 2.

In this paper we have concentrated on tractable cases of resolved query answering.
However, the CQA connection can also be exploited to obtain intractability results,
which we briefly illustrate.

Theorem 4. [22] Consider the relational predicate R[A,B,C], the MD m : R[A] =
R[A] → R[B,C]

.
= R[B,C], and the queryQ : ∃x∃y∃y′∃z(R(x, y, c) ∧R(z, y′, d) ∧

y = y′). RAQ,{m} is coNP -complete (in data). �
This result can be obtained through a reduction and a result in [15, Thm. 3.3]. Notice
that the query in Theorem 4 is not UJCQ .

6 Conclusions

Matching dependencies first appeared in [17], and their semantics is given in [18]. The
original semantics was refined in [11, 12], including the use of matching functions for
matching two attribute values. An alternative refinement of the semantics, which is the
one used in this paper, is given in [23, 24]. Cf. [22] for a thorough complexity analysis,
as well as the derivation of a query rewriting algorithm for the resolved answer problem.

This paper builds on the MD-based approach to duplicate resolution introduced in
[23]. The latter paper introduced the framework used in this paper, and proved that the
resolved answer problem is intractable in some cases. In this paper, we presented a case
for which minimally resolved instances can be identified in polynomial time. From this,
it follows that the resolved answers can be efficiently retrieved from a dirty database in
this case [22]. We also derived other tractable cases using results from CQA.

We used minimal resolved instances (MRIs) as our model of a clean database. An-
other possibility is to use arbitrary, not necessarily minimal, resolved instances (RIs).
This has the advantage of being more flexible in that it takes into account all possible
ways of repairing the database. In some cases, the RIs can be characterized by express-
ing the chase rules in Datalog. Such a direct approach is difficult in the case of MRIs,
because of the global nature of the minimality constraint.
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Abstract. In the theory of belief functions, distances between basic be-
lief assignments are very important in many applications like clustering,
conflict measuring, reliability estimation. In the discrete domain, many
measures have been proposed, however, distance between continuous be-
lief functions have been marginalized due to the nature of these functions.
In this paper, we propose an adaptation inspired from the Jousselme’s
distance for continuous belief functions.

Keywords: Theory of belief functions, continuous belief functions, dis-
tance, scalar product.

1 Introduction

The theory of belief function (also referred to as the mathematical theory of
evidence) is one of the most popular quantitative approach. It is known for its
ability to represent uncertain and imprecise information.

It is a strong formalism widely used in many research areas: medical, image
processing,... It has been used thanks to its ability to manage imperfect infor-
mation.

In the discrete case, information fusion, has known a large success, focusing
on the study of conflict between belief functions. Among these researches, it
has been considered that a distance between two bodies of evidence can be
interpreted as a conflict measure used during combination as presented in [7].
Smets, in [15], extended the theory of belief functions on real numbers thinking
over continuous belief functions by presenting a complete description.

In the discrete case, distances between probability distributions can be con-
sidered as a definition of dissimilarity in the theory of belief functions. Ristic
and Smets in [10], defined a distance based on Dempster’s conflict factor, others
proposed geometrical ones like Jousselme et al. in [5].

In this paper we are interested to adapt the notion of distance to the contin-
uous belief functions, and study the behavior according to two different types of
distributions.
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This paper is organized as follow: in Section 2 we recall some basic concepts
of the theory of belief functions in the discrete case, and present the notion of
distance. Therefore, in Section 3, we introduce the continuous belief functions,
some of their properties and characterization. After this, we propose in Section
4 an adaptation of the Jousselem’s distance using Smet’s formalism. Finally, in
Section 5, the proposed distance is used to measure the distance to the continuous
belief functions where the probability density functions are following in the first
place all the normal then the exponential distribution, and the contribution of
using this distance instead of a classical scalar product.

2 Belief Function Theory Background

This section recalls the necessary background notions related to the theory of be-
lief functions. It has been developed by Dempster in his work on upper and lower
probabilities [1]. Afterwards, it was formalized in a mathematical framework by
Shafer in [11]. This theory is able to deal and represent imperfect (uncertain,
imprecise and /or incomplete) information.

2.1 Discrete Belief Functions

Let us consider a variable x taking values in a finite set Ω = {ω1, · · · , ωn} called
the frame of discernment.

A basic belief assignment (bba) is defined on the set of all subsets of Ω, named
power set and noted 2Ω. It affects a real value from [0, 1] to every subset of 2Ω

reflecting sources amount of belief on this subset. A bba m verifies:∑
X⊆Ω

m(X) = 1. (1)

Given a bba m we can associate some other functions defined as:

– Credibility: measures the strength of the evidence in favor of a set of propo-
sitions for all X ∈ 2Ω \ ∅:

bel(X) =
∑

Y ⊆X,Y �=∅
m(Y ). (2)

– Plausibility: quantifies the maximum amount of belief that could be given
to a X of the frame of discernment for all X ∈ 2Ω \ ∅:

pl(X) =
∑

Y ∈2Ω ,Y ∩X �=∅
m(Y ). (3)

– Commonality: measures the set of bbas affected to the focal elements included
in the studied set, for all X ∈ 2Ω:

q(X) =
∑
Y ⊇X

m(Y ). (4)
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– Pignistic probability transformation: proposed in[12], transforms a bba m
into a probability measure for all X ∈ 2Ω :

betP (X) =
∑
Y �=∅

| X ∩ Y |
| Y |

m(Y )

1−m(∅) . (5)

The bba (m) and the functions bel, pl are different expressions of the same
information.

2.2 Combination Rules

In the belief function theory, Dempster in [1] proposed the first combination
rule. It is defined for two bbas m1,m2, ∀X ∈ 2Ω with X �= ∅ by:

mDS(X) =
1

1− k

∑
A∩B=X

m1(A)m2(B), (6)

where k is generally called the global conflict of the combination or its incon-
sistency, defined by k =

∑
A∩B=∅ m1(A)m2(B) and 1 − k is a normalization

constant.
The Dempster combination rule is not the only one used to combine, Dubois

and Prade proposed a disjunctive one. Smets [14] proposed to consider an open
world, therefore the conjunctive rule is a non-normalized one and for two basic
belief assignments m1,m2 for all X ∈ 2Ω by:

mconj(X) =
∑

A∩B=X

m1(A)m2(B) := (m1 ⊕m2)(X). (7)

and k = mconj(∅) is considered as a non expected solution.
This combination rule is very useful because, in one hand it decreases the

vagueness and, on the other hand, it increases the belief of the observed focal
elements.

3 A Distance between Two Discrete Belief Functions

The aim of this paper is to define a distance between continuous belief functions,
let us begin by introducing some basic concepts relative to distances.

3.1 Properties of the Distance

The distance defined between two elements A and B in a set I satisfies the
following requirement:

– Nonnegativity: d(A,B) ≥ 0.
– Nondegeneracy: d(A,B) = 0 ⇔ A = B.
– Symmetry: d(A,B) = d(B,A).
– Triangle inequality: d(A,B) ≤ d(A,C) + d(C,B).
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3.2 Scalar Product

On a defined set, a distance can be measured with a scalar product between
two vectors f and g. A dot product has a symmetric and a bilinar form, and is
defined positive.

– 〈f, g〉 = 〈g, f〉
– 〈f, f〉 > 0
– 〈f, f〉 = 0 ⇒ f =

−→
0 : the zero vector.

We have 〈f, f〉 = ‖f‖2 which is the square norm of f .
To measure a distance using a scalar product, we use the following expression:

dSP (f, g) =

√
1

2
(‖f‖2 + ‖g‖2 − 2〈f, g〉)) (8)

In the next section, we will present a particular measure based on a scalar
product able to define a distance between two discrete belief functions in the
theory of belief functions.

3.3 A Distance between Two Discrete Belief Functions

The distance introduced in [5] is the most appropriate distance to measure the
dissimilarity between two bbas m1,m2 according to [6] after making a comparison
of distances in belief functions theory. for two bbas: m1,m2 on 2Ω:

d(m1,m2) =

√
1

2
(‖m1‖2 + ‖m2‖2 − 2〈m1,m2〉)) (9)

and 〈m1,m2〉 is the scalar product defined by:

〈m1,m2〉 =

n∑
i=1

n∑
j=1

m1(Ai)m2(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj|

(10)

where n = |2Ω|.
Therefore, d(m1,m2) is considered as an illustration of the scalar product

where the factor 1
2 is needed to normalize d and guarantee that

0 ≤ d(m1,m2) ≤ 1.
According to [6], this metric distance respects all the properties expected by

a distance and it can be considered as an appropriate measure of the difference
or the lack of similarity between two bbas.

This distance is based on the dissimilarity of Jaccard defined as:

Jac(A,B) =
|A ∩B|
|A ∪B| . (11)

Moreover, d(m1,m2) can be called a total conflict measure, which is an interest-
ing property to compute the total conflict based on a measurable distance like
presented in [7].
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4 Continuous Belief Functions

Strat in [17], and Smets in [15] proposed a definition of continuous belief func-
tions. However, using the belief function framework to model information in a
continuous frame is not an easy task due to the complex nature of the focal
elements. Hence Strat decided to assign mass only on the intervals of R. This
representation reduces the number of the propositions and simplifies the com-
putation of the intersections by focusing only on the contiguous intervals.

Smets extented the Transferable Belief Model (TBM) to continuous realm and
defined belief functions over the extended set of reals noted R = R∪{−∞,+∞}.
Comparing to the discrete domain, on real numbers, in [15] bba became basic
belief densities (bbd) defined on an interval [a, b] of R.

4.1 Belief Functions on R

Smets generalized the classical bba into a basic belief density (bbd) noted mI on
the interval I. In the definition of the bbd, all focal elements are closed intervals
or ∅. Given a normalized bbd mI, he defined an other function f on R2, where
f(a, b) = mI([a, b)] for a ≤ b and f(a, b) = 0 whenever a > b.

f is called a probability density function (pdf) on R2.

– Credibility:

belR([a, b]) =

∫ x=b

x=a

∫ y=b

y=x

mR([x, y])dydx. (12)

– Plausibility:

plR([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

mR([x, y])dydx. (13)

– Commonality:

qR([a, b]) =

∫ x=a

x=−∞

∫ y=+∞

y=b

mR([x, y])dydx. (14)

Smets’ approach is based on the description of focal elements from a continuous
function, where the frame of discernment is built having on connected sets of R.

Nguyen shown in [8] that a random set can define a belief function. He intro-
duced the notion of a ”source” made of a probability space and a multivalued
mapping Γ able to define the lower probability (and consequently a basic belief
assignment).

Doré et al. in [2] proposed a similar approach.. They proposed to use Γ to
describe the set of focal elements of a continuous belief function. In this case,
they used probability space to assign a mass to focal sets.
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4.2 Belief Functions Associated to a Probability Density

A probability density function is an expression of an expert’s belief. This prob-
ability can be expressed according to a basic belief density which is described
using a normal (Gaussian), exponential distribution.

In order to choose the most appropriate one among all the belief functions,
we apply the principle of least commitment for evidential reasoning proposed by
Dubois and Prade in [3], and Hsia in [4] this principle can be considered as a
natural approach for selecting the less specific bba from a subset , It consists in
selecting the least committed bba, and supports the idea that one should never
give more support than justified to any subset of Ω.

Among all the belief functions, the consonant, where focal elements are nested
(there is a use of a relation of total ordering). The consonant are considered
as the most appropriate functions because they express the principle of least
commitment.

We are applying this principle to the consonant bbd in our illustration in
section 6, to represent a normal distribution that is having a bell shape.

5 A Distance between Continuous Belief Functions

Traditional distances known for the discrete case cannot be used due to the
nature of the continuous belief functions like described in section4. First of all,
we have shown in section 3.2, a scalar product is able to compute a distance
between two bbd. To handle the problem of the nature of these functions, a
scalar product is defined on R by:

〈f, g〉 =

∫ +∞

x=−∞

∫ +∞

y=−∞
f([x, y])g([x, y])dxdy (15)

In this section, we will introduce a new method to evaluate the similarity based
on Jousselme’s distance with Smets’ formalism on continuous belief functions.
A similarity /dissimilarity measure quantifies how much two distributions are
different. Using the properties of belief functions on real numbers, we are now
able to define a distance between two densities in a interval I.

〈f1, f2〉 = (16)∫ +∞

−∞

∫ +∞

yi=xi

∫ +∞

−∞

∫ yj=+∞

yj=xj

f1(xi, yi)f2(xj , yj)δ(xi, xj , yi, yj)dyjdxjdyidxi

The scalar product of the two continuous pdfs is noted: 〈f1, f2〉 satisfying all
proprieties stated in section 3.2, with a function δ defined as δ : R −→ [0, 1]

δ(xi, xj , yi, yj) =
λ(�max(xi, xj),min(yi, yj)�)

λ(�max(yi, yj),min(xi, xj)�)
(17)

where λ represents the Lebesgue measure used for the interval’s length, and
δ(xi, xj , yi, yj) is an extension of the measure of Jaccard applied for the intervals
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in the case of continuous belief functions where �a, b� refers to (17).

�a, b� =

{
∅, if a > b
[a,b], otherwise.

(18)

Therefore, the distance is defined by:

d(f1, f2) =

√
1

2
(‖f1‖2 + ‖f2‖2 − 2〈f1, f2〉) (19)

This distance can be used between two or more belief functions.
Let’s consider σf a set of bbds. We measure the distance between one bbd and

the n− 1 other one by:

d(fi, σf) =
1

n− 1

n∑
j=1,i�=j

d(fi, fj) (20)

6 Illustrations

As mentioned in the previous section, the result of our work is a distance between
two or several bbds.

In this section we consider the cases of two different kinds of distributions:
the first one is a normal representation and the second is an exponential one.
We use these distributions to deduce the different bbds and then we are able to
measure the distance between two or several continuous belief functions.

The aim here is to have a probability distribution that includes uncertainty,
so we model it using the basic belief densities.

6.1 Basic Belief Densities Induced by Normal Distributions

In this analysis we will focus on a normal probability density function, like
presented [9]. The focal sets of the belief functions are the intervals [μ−x, μ+x]
of R, with μ: the mean of the normal distribution and x ∈ R+ and σ: the
standard deviation. We consider a normal distribution N (x;μ;σ), with x ≥ μ:

ϕ(x) = 2(x− μ)2
1

σ
√

2π3
e

(x−μ)2

2σ , (21)

where ϕ(x) is the basic belief density associated to the Gaussian, when we apply
the principle of least commitment where x is the representation of the intervals
previously mentioned.

This function is null at x = μ, increases with x and reaches a maximum of
4/(σe

√
2π) at x = μ+

√
2σ, then decreases to 0 at x goes to infinity like presented

by Smets in [15].
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6.2 Analysis of a Distance between Belief Densities Induced by
Normal Distributions

In this part, we will make a comparison between two distances one is measured
using a classical scalar product and the other is our adaptation of Jousselme’s
distance for two and several continuous belief functions.

In Figure 1, we consider four pdfs having a normal distribution.

Table 1. Probability density distributions

pdf 1 2 3 4

μ 0 0 4 4

σ 1 0.5 1 0.5

Fig. 1. Four pdfs following normal distribution

First of all we measure the distance between f1 and the rest of the pdfs
using (19). After that measure the average of the distance between all the bbds
according to (20).

The average of the distances is d(f1, σf) = 0.634.
According to the Figure 1, the smaller is the distance, the more similar are the
distributions. The distance between f1 and f4 is the biggest one, this means that
those two distributions are the farest from each other comparing to the distance
between f1, f2, and f1, f3.

The distance between f1 and f2 is the smaller one, this can be explained in
Figure 1 by the fact that f1 is the nearest one tho f2.

In Figure 2, we fix μ1 = 0, σ1 = 0.5, and for the second pdf , 0 ≤ μ2 ≤ 10
with a step 0, 5 and 0.1 ≤ σ1 ≤ 3 with a step =0.1. For the normal distribution,
we only use focal elements where y = 2μ− x if μ1 �= μ2, then the distance based
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Table 2. Distances measured

distance value

d(f1, f2) 0.3873

d(f1, f3) 0.7897

d(f1, f4) 0.8247

Fig. 2. Distance using a classical scalar
product

Fig. 3. Distance using Jaccard based on
scalar product

on the classical scalar product is null. Else, y = 2μ = x, so the scalar product
presented in the continuous domain is:∫ +∞

y=μ

f(y)g(y)dxdy. (22)

After that, we consider the distance presented in (19) for continuous belief
functions.

Classical Scalar Product for Belief Densities Induced by Normal
Distribution: In Figure 2, we notice that there is a remarkable drop in the
value of the distance followed by a discontinuity in the 3D representation. When
μ1 = μ2, the distance based on classical scalar product is not null, we can say
that the standard deviation has an impact on the distance. Moreover, when σ2

decreases, in this case the distance based on the classical scalar product has
a rising values. However, reaching a certain point, especially when σ1 = σ2,
we observe that the distance is null, so here we are in presence of similar
distributions.

Moreover, the distance based on classical scalar product does not have a nor-
malized value d > 1, 4. Unfortunately, the mean does not really have an out-
standing impact on the distance using the classical scalar product as a measure.
Based on that, the distance based on classical scalar product is almost useless in
this case, which can be considered as a bad representation of the distance. All
these elements created a trays’ phenomenon in the obtained Figure 2.
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Continuous Distance for Belief Densities Induced by Normal
Distribution: By varying the values of μ2 between [0, 10] with a step of 0.5
we obtain Figure 3. When μ1 = μ2, and σ1 = σ2, we are dealing with similar
distributions, we obtain a null distance. Otherwise, wa also notice that when
the difference between σ1 and σ2 increases, the distance rises. We have a similar
behavior also when the difference between the means μ1 and μ2, every time, the
similarity between the two distributions drops which is explained by a growth
of the value of the distance.

Comparing to the results obtained with the classical scalar product, we ob-
serve that our distance takes in consideration the standard deviation, that does
have a real impact when computing this measure of similarity.

The difference between them, is the function δ presented in (17). δ, that allows
us to have a more specific distance between two belief functions and use wisely
the mean to have a better measure of the distance.

It is more useful, then and accurate to use our distance proposed in (19).

6.3 Basic Belief Densities Induced by Exponential Distributions

In this section, we will suppose that the probability distribution is following an
exponential density. The specific expression is for the probability density.

f(y) =
y

θ2
e

−y
θ (23)

It is obtained when we use the Least Commitment Principle presented in Section
4.2, on a set of basic belief densities associated to the exponential distribution,
where θ is the mean and the focal elements are in the intervals [0, x].

6.4 Analysis of a Distance between Belief Densities Induced by
Exponential Distributions

We measure the distance between 2 exponential distributions according to a
classical scalar product definition, and our adaptation of Jousselme’s distance
for continuous belief functions.

Figures 4 and 5 show respectively the results obtained after computing the
two distances. We are dealing with two exponential distributions f1, f2, where
θ1 = 1 and θ2 ∈ [0.1, 10] with a discretization step = 0.1.

Classical Scalar Product for Belief Densities Induced by Exponential
Distributions: At the begging of Figure 4, when θ1 = 1 and θ2 = 0.1, the
distance based on classical scalar product has the highest value. When the value
of θ2 increases, the distance between the distributions decreases continually until
it makes a discontinuity when θ1 = θ2 where it has a null value, this means that
f1 = f2.

After that, the value of θ2 gets far from θ1, the probability distribution f2
becomes different from f1 and that generates a non null distance that increases
suddenly just when θ2 gets bigger, then the distance based on classical scalar
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Fig. 4. Distance using a classical scalar Fig. 5. Distance using Jaccard based scalar
product

product decreases and gets stable and reaches a value near to 0.4. Based on these
observations, the distance using the classical scalar product is not really adapted
for continuous belief functions because it creates a discontinuity, and except the
point where θ1 = θ2, the variation of this distance does not reflect the difference
between θ1 and θ2.

Continuous Distance for Belief Densities Induced by Exponential
Distributions: The behavior of the distance in Figure 5 is starting at the
highest value d(f1, f2) = 0.6 with the similar exponential distribution presented
previously. When the value of θ2 gets closer to θ1, d(f1, f2) decreases and reaches
a null value where f1 = f2 (the distributions are similar to each other). Unlike
the the distance based on classical scalar product, the increase of d(f1, f2) is
gradual as θ2 gets bigger values, the distance grows continually.

7 Conclusion

In this paper we have introduced an adaptation of the Jousselme’s distance for
the continuous belief functions according to Smets’ formalism. This measure is
able to define a distance between two or several basic belief density functions.

This distance is based on the function δ, which take into account the impre-
cision of the focal elements, whereas the classical scalar product. This distance
has all the properties of a classical distance.

To illustrate the behavior of the proposed distance in different situations, we
used different probability distributions: a normal and an exponential one, from
which we deduced basic belief densities. Afterwards, we compared our distance
to the results obtained when using a distance based on a classical scalar product.

In future work, we will use the proposed distance in order to define a conflict
measure for continuous belief functions.
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Abstract. Directed evidential graphical models are important tools for
handling uncertain information in the framework of evidence theory.
They obtain their efficiency by compactly representing (in)dependencies
between variables in the network and efficiently reasoning under un-
certainty. This paper presents a new dynamic evidential network for
representing uncertainty and managing temporal changes in data. This
proposed model offers an alternative framework for dynamic probabilistic
and dynamic possibilistic networks. A complexity study of representation
and reasoning in the proposed model is also presented in this paper.

1 Introduction

A wide variety of network-based approaches have been developed for modeling
available knowledge in real-world applications such as probabilistic, possibilistic
and evidential graphical models. Graphical models [4], [7] provide representa-
tional and computational aspects making them a powerful tool allowing effi-
ciently representing knowledge and reasoning under uncertainty which may be
either aleatory or epistemic.

The temporal dimension is another very important aspect which must be
taken into account when reasoning under uncertainty. Several methods have
been developed to address this problem, including those relying on network-
based approaches. Murphy [5] developed dynamic Bayesian networks (DBNs)
that aimed to represent the temporal dimension under the probabilistic formal-
ism. This formalism provides different tools to handle efficiently the aleatory
uncertainty, but not the epistemic uncertainty.
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Recently, Heni et al. [2] proposed dynamic possibilistic networks (DPNs) for
modeling uncertain sequential data.

Weber et al. [12] also introduced dynamic evidential networks (DENs) to
model the temporal evolution of uncertain knowledge. Based on an extension
of the Bayes’ theorem to the representation of the Dempster-Shafer’s belief
functions theory [8], DENs do not fully exploit the abilities of the evidential
formalism.

The aim of the paper is to propose a new network-based approach considering
the temporal dimension: the dynamic directed evidential network with condi-
tional belief functions (DDEVN) and to present a computational complexity of
the graphical representation and the reasoning in the proposed model.

The remainder of this paper is organised as follows. In section 2, we sketch
the directed evidential networks with conditional belief functions (DEVN). We
briefly recall in section 3 the necessary background leading up to the formalism of
dynamic graphical models. In section 4, we introduce the DDEVN which extends
static DEVN to enable modeling changes over time and we give the propagation
algorithm in the DDEVN. Section 5 is devoted to a short illustration of the
new framework in the reliability area. Section 6 presents a complexity study of
DDEVNs.

2 Directed Evidential Networks with Conditional Belief
Functions (DEVN)

In the evidential networks with conditional belief functions (ENCs), first pro-
posed by Smets [10] and studied later by Xu in [13], relations between variables
are represented using conditional belief functions. These models allow to model
only binary relations between variables. To make it possible to represent the
relations for any number of nodes, Ben Yaghlane proposed in [1] the directed
evidential network with conditional belief functions (DEVN).

A DEVN is a directed graphical model formalizing the uncertainty in the
knowledge by the means of the evidence theory framework. For each root node
X in the DEVN, having a frame of discernment ΩX constituted by q mutually
exhaustive and exclusive hypotheses, an a priori belief function M(X) has to be
defined over the 2q focal sets AX

i by the following equation:

M(X) = [m(∅) m(AX
1 )....m(AX

i )....m(AX
2q−1)] . (1)

with

m(AX
i ) ≥ 0 and

∑
AX

i ,AX
i ∈2ΩX

m(AX
i ) = 1 . (2)

where m(AX
i ) is the belief that X verifies the hypotheses of the focal element

AX
i .
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For other nodes, a conditional belief function M [Pa(X)](X) is specified for
each possible hypothesis AX

i knowing the focal sets of the parents of X .
The Belief propagation in the DEVN relies on the use of a secondary compu-

tational data structure called the modified binary join tree [1].

2.1 Modified Binary Join Tree (MBJT)

The modified binary join tree [1], called MBJT, is a refinement of the binary join
tree (BJT) [9]. Unlike the BJT, the MBJT emphasizes explicitly the conditional
relations in the DEVN for using them when performing the inference process [1].

The MBJT construction process is based on the fusion algorithm [9] with
some signifiant modifications described in the following algorithm:

Algorithm 1: Construction of the Static MBJT

Input: a DEVN, an elimination Sequence
Output: a MBJT

1. Determine the subsets that form the hypergraph H from the DEVN
2. Arrange the subsets of H in a binary join tree using the elimination sequence
3. Attach singleton subsets to the binary join tree
4. Make the join tree binary again if it becomes non-binary when attaching a
singleton subset to it
5. Draw rectangles containing the conditional relations between variables in-
stead of circles containing just the list of these variables (to obtain the MBJT)

Note that if we just perform steps 1, 2, 3 and 4, we obtain a BJT. These steps
are more detailed in [9] and more details for the MBJT are given in [1].

3 Basic Backgrounds on Dynamic Directed Networks

A dynamic directed network [2], [6], [12] is a directed graphical model repre-
senting the temporal dimension. Each time step k (k ≥ 0) is represented in the
dynamic directed network by Gk = (Nk,Ek), where Nk is a non empty finite
set of nodes representing all the variables at the time slice k, and Ek is a set of
directed edges representing the conditional independencies between variables of
time slice k.

The transition from time k to time k + 1 is represented by the set E(k, k + 1)
which includes all the directed edges linking two nodes Xk and Yk+1

1 belonging
to the two consecutive time slices k and k+1. Each edge in E(k, k+1) represents
a qualitative dependency between the two nodes it links and denotes a transition
function defined by a conditional value table as follows:

1 Nodes Xk and Yk+1 may represent the same variable or two different variables
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F [Xk](Yk+1) =⎡⎢⎣ f [AXk
1 ](A

Yk+1

1 ) . . . f [AXk
1 ](A

Yk+1

QY
)

. . . . . . . . .

f [AXk

QX
](A

Yk+1

1 ) . . . f [AXk

QX
](A

Yk+1

QY
)

⎤⎥⎦ . (3)

where AXk

i is the i-th state of Xk and A
Yk+1

j is the j-th state of Yk+1.

Dynamic directed graphical models used in [6], [2], [12] are supposed to be:

– Stationary: that means that the transition function defined between the cur-
rent time slice k and the future time slice k + 1 does not depend on k.
Therefore, only one conditional distribution F [Xk](Yk+1) is required to il-
lustrate the temporal dependencies between a node Yk+1 and its parent node
Xk at any two consecutive time slices.

– Markovian: that means that the distribution F (Yk+1) of the variable Y at
the future time step k + 1 depends only on the distributions of its parent
nodes in this time slice and also on the distribution of its parent nodes in
the immediately preceding time step which is the present time step k. Thus,
the future time slice k + 1 is conditionally independent of the past given the
present time slice k [5].

The dynamic directed networks’ representation presents a drawback because of
the new sets of nodes Nk and edges Ek which are introduced in the graphical
model to represent each new time step k. With a large number of time slices, the
graphical structure becomes huge, and as a result the inference process becomes
cumbersome and time consuming. To overcome this problem, the proposed rep-
resentation of dynamic directed models keeps the network in a compact form
with only two consecutive time slices [5].

Thanks to the new representation, a dynamic directed network is simply de-
fined as a couple (GS0,GSk), where GS0 denotes the graphical structure corre-
sponding to the initial time slice k = 0 and GSk denotes a 2-time slices directed
graphical model (2-TDGM) in which only two nodes are introduced to represent
the same variable at successive time steps: the first node is used to model a
variable in the time slice k and the second one is used to represent it at the time
slice k + 1.

The concept of the outgoing interface Ik has been defined in [5] as:

Ik = {Xk ∈ Nk / (Xk, Yk+1) ∈ E(k, k + 1) and Yk+1 ∈ Nk+1}

where Nk is the set of nodes modeling the time slice k, Nk+1 is the set of nodes
modeling the time slice k+1 and E(k, k+1) is the set of edges linking two nodes
Xk and Yk+1 belonging to the successive time slices k and k + 1.
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A 1.5 DDGM is a graph obtained by the elimination of nodes not belonging
to the outgoing interface Ik from the 2-TDGM .

4 Dynamic Directed Evidential Networks with
Conditional Belief Functions (DDEVNs)

A dynamic directed evidential network with conditional belief functions
(DDEVN) is a DEVN taking into account the temporal dimension. DDEVNs
are introduced in a way similar to other dynamic directed networks, in the
sense that the considered problems are those whose dynamics can be modeled
as stochastic processes which are stationary and Markovian.

4.1 Graphical Representaion of Dynamic Directed Evidential
Networks with Conditional Belief Functions

Dynamic directed evidential network with conditional belief functions is defined
as a couple (D0,Dk), where D0 is the DEVN representing the time slice k = 0
and Dk is the triplet (Gk, Gk+1, E(k, k + 1)) denoting a 2-time slice DEVN
(2-TDEVN) with only two successive time slices k and k + 1. The temporal
dependencies between variables are represented in DDEVN by transition-belief
mass using equation 3.

4.2 Inference in Dynamic Directed Evidential Networks with
Conditional Belief Functions

Reasoning is made in the DDEVN through an extension of the exact Interface
algorithm of Murphy [5], [6] to this network.

Starting from an observed situation at the initial time step k = 0 and transi-
tion distributions illustrating the temporal dependencies between two consecu-
tive time slices, a 2-TDEVN allows to compute the belief mass distribution of a
variable X at any time slice k = T thanks to its two slices k and k + 1.

For belief propagation in the DDEVN, two MBJTs are created. The first one,
denoted M0, represents the initial time step k = 0, while the second, denoted
Mk, corresponds to each time slice k > 0.

Depending on the time slice k, the propagation process is performed for com-
puting node marginals, either in MBJT M0 or in MBJT Mk. M0 is used for
computing the marginals of nodes at time slice k = 0, while Mk is used when
computing marginals in a time step k ≥ 1.

As when reasoning in the junction tree [6], [2], the key idea is that when
advancing from the past time step k − 1 to the current time step k, we need to
store the marginals of variables in the outgoing interface Ik that will be useful
as observations introduced in the corresponding nodes in the next inference. By
recursively performing the bidirectional message-passing scheme in Mk, we can
compute the marginals of variables at any time step.
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The construction of the MBJTs are detailed by the algorithms 2 and 3:

Algorithm 2: Construction and initialization of M0

Input: a 2-TDEVN
Output: a MBJT M0, an outgoing interface I0

1. Identify I0 by selecting nodes in the outgoing interface of time slice k = 0
I0 ← {x ∈ N0 / (x, y) ∈ E(0, 1) and y ∈ N1}

2. Eliminate each node belonging to N1 from the 2-TDEVN
3. Construct the MBJT M0 from the resulting structure using Algorithm 1
4. Let P be the set of the given potentials

For i=1 to length(P)
If P(i) is an a priori belief function distribution

assign P(i) to the corresponding singleton node in
M0.

Else
assign P(i) to the corresponding conditional node in
M0.

End if
End for

Algorithm 3: Construction and initialization of Mk

Input: a 2-TDEVN
Output: a MBJT Mk, an outgoing interface Ik

1. Ik ← {x ∈ Nk / (x, y) ∈ E(k, k + 1) and y ∈ Nk+1}
2. Eliminate from the 2-TDEVN each node belonging to Nk and not to Ik (to
obtain a 1.5 DDEVN)
3. Construct the MBJT Mk from the 1.5 DDEVN using Algorithm 1
4. Let P be the set of potentials relative only to variables of time slice k+1

For i=1 to length(P)
If P(i) is an a priori belief function distribution

assign P(i) to the corresponding singleton node in
Mk.

Else
assign P(i) to the corresponding conditional node in
Mk.

End if
End for

Since DDEVNs are a subclass of DEVNs, the inference algorithm developed
for DEVNs can be adapted and applied for reasoning with DDEVNs.
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The propagation process in the DDEVN is given by the algorithm 4:

Algorithm 4: Propagation in the DDEVN

Input: M0 and Mk

Output: marginal distributions
1. Performing the propagation process in M0

2

Let n be the number of singleton nodes in I0
For i=1 to n

node=I0(i);
Marg distr= Marginal distribution(node);
Add Marg Distr to the interface potentials IP0;

End for
2. If k > 0

For i=1 to k
For j=1 to length(IPi−1)
Current potential=IPi−1(j);
Associate Current potential to the corresponding
singleton node in Mk;
End for
Performing the propagation process in Mk;
Let n be the number of singleton nodes in Ii;
For nb=1 to n

node=Ii(nb);
Marg Distr= Marginal Distribution(node);
Add Marg Distr to IPi;

End for
End for

End if
3. If k = 0

Compute Marginals(M0)
3

Else
Compute Marginals(Mk)

End if

5 Illustrative Case Study

For the sake of illustration, let us apply the DDEVN to the reliability analysis
of the well known bridge system [11]. The bridge system consists of five compo-
nents. Each component Ci has two disjoint states ({Up},{Down}): Up, shortly
written U , is the working state and Down, shortly written D, is the fail state.

2 The propagation process is performed as in the static MBJT. For details, the reader
is referred to [1].

3 To compute the marginal for a node, we combine its own initial potential with the
messages received from all the neighbors during the propagation process [1].
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Thus, the frame of discernment of each component is Ω = {Up,Down} and its
corresponding power set is 2Ω = {∅, {Up}, {Down}, {Up,Down}}.

In the classical reliability analysis, the reliability of the bridge system is its
probability to be in the state {Up} during a mission time.

Fig.1 (a) shows the DAG corresponding to the bridge system in which Ci
represents the i-th component of the system, Aj represents the j-th And gate, Oz
represents the z-th Or gate and node R represents the bridge system reliability.

5.1 Application of the DDEVN to the Bridge System Reliability

The bridge system is modeled by the DDEVN shown in Fig.1 (b). Each node
Cik represents the i-th component in the time slice k, node Ozk represents the
z-th Or gate in the time slice k, Ajk represents the j-th And gate in the time
slice k and node Rk represents the state of the system in the k-th time slice.

Fig.1 (c) shows the 1.5 DDEVN created from the 2-TDEVN given in Fig.1 (b)
by removing all nodes in the time slice k not belonging to Ik.

The belief mass distributions of the five components at the time step k+1 which
depend on their distributions at the time step k are represented in tables 1,2,3,4
and 5. Table 7 represents the a priori mass distributions of the components at
the time step 0. The conditional mass distribution relative to node Rk is given
in table 6. The conditional belief mass distributions relative to nodes Ajk and
Ozk are defined equivalent to the logical And and Or gates.

Tables 1, 2, 3 and 4. Conditional Mass Tables M [C1k](C1k+1), M [C2k ](C2k+1),

M [C3k](C3k+1) and M [C4k](C4k+1)

C1k+1\C1k U D U ∪D

U 0.994 0 0.000
D 0.004 1 0.001

U ∪D 0.002 0 0.999

C2k+1\C2k U D U ∪D

U 0.995 0 0.000
D 0.003 1 0.003

U ∪D 0.002 0 0.997

C3k+1\C3k U D U ∪D

U 0.996 0 0.000
D 0.002 1 0.001

U ∪D 0.002 0 0.999

C4k+1\C4k U D U ∪D

U 0.997 0 0.000
D 0.002 1 0.002

U ∪D 0.001 0 0.998
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Tables 5 and 6. Conditional Mass Tables M [C5k](C5k+1) and M [O2k ](Rk)

C5k+1\C5k U D U ∪D

U 0.996 0 0.000
D 0.003 1 0.003

U ∪D 0.001 0 0.997

Rk\O2k U D U ∪D

U 1 0 0
D 0 1 0

U ∪D 0 0 1

Table 7. The a Priori Mass Tables M(C10) , M(C20), M(C30) , M(C40) and M(C50)

Ci0 U D U ∪D

m(Ci0) 1.0 0.0 0.0

Construction and Initialization of M0 and Mk: Using the 2-TDEVN in
Fig.1, the MBJTs M0 and Mk shown in Fig.2 and Fig.3 are constructed by
applying the first three steps of algorithms 2 and 3.

Using the a priori and the conditional mass tables, M0 and Mk are initialized
by assigning each belief function distribution to the corresponding node (the
fourth step of algorithms 2 and 3).

Performing the Propagation Process in the DDEVN: Suppose now that
we wish to compute the reliability of the bridge system at time step k = 1400.
We first perform the inference process in M0 and we compute the marginals of
nodes in the outgoing interface I0 ={C10, C20, C30, C40, C50} (the first step
of algorithm 4).

The marginal distributions of nodes in the outgoing interface I0 will be used
when performing the propagation in the MBJT Mk in the next time slice (k = 1).
They will be repectively introduced in nodes C10, C20, C30, C40 and C50 of Mk.
After performing the inference algorithm, Mk yields the marginals of nodes C11,
C21, C31, C41 andC51 (forming the outgoing interface I1) which are the sufficient
information needed to continue the propagation in the following time slice k = 2.

After carrying out the inference process in the MBJT Mk recursively for 1400
time slices, we obtain the following distribution for node R1400 corresponding
to the reliability of the bridge system M(R1400) = [m(∅) = 0 m({Up}) =
0.000014 m({Down}) = 0.982673 m({Up,Down}) = 0.017313].

6 Complexity Analysis

6.1 Complexity of the MBJTs Construction Process

The complexity of algorithms 2 and 3 used for constructing and initializing M0

and Mk depends on the run-time complexity of the MBJT construction process
described by algorithm 1.
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Fig. 1. The DAG (a), the DDEVN (2-TDEVN) (b) and the 1.5 DDEVN (c) for the
Bridge System

Evaluation of the run-time complexity of the MBJT construction process for
the worst-case scenario is made by examining the structure of algorithm 1. This
algorithm is composed of five steps. Therefore, its running time is the total
amount of time needed to run the five steps.
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Fig. 2. The MBJT M0 for the Bridge System

Fig. 3. The MBJT Mk for the Bridge System

The first step in the MBJT construction process takes O(N2) time to deter-
mine all the subsets of the hypergraph H , where N is the number of nodes in
the network 4.

4 The network used to construct the MBJT is the DEVN in the static case, while it
is the 2-TDEVN in the dynamic case.
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Step 2 is composed of two imbricated loops. The outer loop iterates from S to
2, where S is the number of the hypergraph’s subsets. Starting with S subsets
forming a set named Sets, the algorithm eliminate for a worst case evaluation
two subsets from Sets in each iteration and adds one new subset before passing to
the next iteration, and as a result the number of subsets in Sets decreases by one
from one iteration to another. This outer loop iterates and stops when having just
one subset in Sets, so running the outer loop body consumes O(S) times. When
passing through the outer loop, an instruction allowing to extract from Sets the
subsets containing the variable to be eliminated, is carried out before passing to
run the inner loop. This instruction is run once in each iteration of the outer loop
and consumes S times for the worst-case since on the first pass through the outer
loop, Sets contains S subsets. The inner loop iterates from E to 2, where E is
the number of subsets containing the current variable to be eliminated. In fact,
starting initially with E subsets which form a set called V arsets, the algorithm
eliminates in each iteration two subsets from V arsets and adds another subset
resulting from their union. So |V arsets| decreases by 1 in each iteration. The
inner loop ends when having just one subset in V arsets and this will occur
after E − 1 iterations. The union operation of the two selected subsets used in
each iteration consumes V 2 times, where V is the number of variables in the
largest subset in Sets. As a result, the inner loop takes O(E ∗ V 2). Step 2 takes
O(S ∗ [S + E ∗ V 2]) times.

Step 3 of the MBJT construction process aims at attaching the singleton nodes
not added yet to the BJT constructed in step 2. To attach a singleton node to the
obtained BJT, all the BJT’s nodes are visited in the worst case. Thus, the third
step consumes O(s∗N1) times, where s is the number of singleton nodes not added
yet to the BJT constructed in step2 and N1 is the number of nodes in this BJT.

The computational complexity of making the join tree binary again which is
the fourth step is relative to O(N2

1 ), where N1 is the number of nodes in the
BJT.

The last step carried out to obtain the MBJT takes O(N1 ∗N) times.

6.2 The Computational Complexity of the Inference Process

The MBJT is a structure for local computation of marginals. In each time slice
k, the number of messages exchanged between nodes during the bidirectional
message-passing scheme is 2 ∗ (l − c) = 2 ∗ l − 2 ∗ c, where l is the number of
undirected edges in the MBJT, and c is the number of conditional nodes. In fact,
when having two joint nodes separated by a conditional node denoted by C, the
edge connecting the first joint node and C and the edge that connects C and
the second joint node are regarded as one edge because the conditional node
C will neither send nor receive messages, and only two messages are at most
exchanged in this case between the two joint nodes through the two edges [3]. So
the total number of the exchanged messages when inferring beliefs in DDEVNs
is T ∗ 2 ∗ (l − c), where T is the number of time slices.

The complexity of belief propagation in MBJT is exponential in the maximum
node size and takes per time slice O([j ∗ 2dz] + [c ∗ 2d ∗ dz−1]) times, where j is
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the number of joint nodes in the MBJT, d is the maximum number of states of
variables in the initial network and z is the maximum node size in the MBJT.
Inferring beliefs in DDEVNs is relative to O([J ∗ 2dz] + [C ∗ 2d ∗ dz−1]), where
J=j*T, C=c*T and T is the number of time slices.

7 Conclusion

Inspired by the same aims of DBNs and DPNs and also with the intent to make
the DEVN able to dynamically model a problem under uncertainty, we have
proposed in this paper the dynamic DEVN that we called DDEVN. DDEVN
extends the static DEVN to deal with temporal changes in data. DDEVN was
applied to the reliability study of a well known system, the bridge system, to
show that this new framework is a powerful tool for efficiently modeling the tem-
poral evolution of this system in uncertain reasoning. We have also presented a
computational analysis of the graphical representation and the belief propaga-
tion in DDEVNs. In future work, the development of new algorithms to perform
the propagation process in the DDEVN will be of a great interest.
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Abstract. Belief revision is the process that incorporates, in a consistent way,
a new piece of information, called input, into a belief base. When both belief
bases and inputs are propositional formulas, a set of natural and rational proper-
ties, known as AGM postulates, have been proposed to define genuine revision
operations. This paper addresses the following important issue : How to revise
a partially pre-ordered information (representing initial beliefs) with a new par-
tially pre-ordered information (representing inputs) while preserving AGM pos-
tulates? We first provide a particular representation of partial pre-orders (called
units) using the concept of closed sets of units. Then we restate AGM postulates
in this framework by defining counterparts of the notions of logical entailment
and logical consistency. In the second part of the paper, we provide some exam-
ples of revision operations that respect our set of postulates. We also prove that
our revision methods extend well-known lexicographic revision and natural revi-
sion for both cases where the input is either a single propositional formula or a
total pre-order.

1 Introduction

The problem of belief revision is a major issue in several Artificial Intelligence ap-
plications to manage the dynamics of information systems. Roughly speaking, belief
revision results from the effect of inserting new piece of information while preserving
some consistency conditions. In the logical setting, a simple form of a belief revision
assumes that both initial beliefs, denoted by K , and input information, denoted by μ,
are represented by propositional formulas. In this framework, the revision of K by μ
consists in producing a new formula denoted by K ∗ μ, where ∗ represents a revi-
sion operation. Extensive works have studied and characterized the revision operation
∗ from semantics, syntactic, computational and axiomatics points of views. In partic-
ular, Alchourron, Gärdenfors and Makinson [1] proposed an elegant set of rationality
postulates [14], known as AGM postulates, that any revision operation ∗ should satisfy.
These postulates are mainly based on two important principles: success principle and
minimal change principle. The success principle states that the input μ is a sure piece
of information and hence should be entailed from K ∗μ. The minimal change principle
states that the revised base K ∗ μ should be as close as possible to initial beliefs K .

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 219–232, 2012.
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In particular if K and μ are consistent then K ∗ μ should be simply equivalent to the
propositional conjunction of K and μ.

Since AGM proposal, many extensions [10] have been proposed to take into account
complex belief and inputs. For instance, in the context of uncertain information, a so-
called Jeffrey’s rule [12,7], has been proposed for revising probability distributions. In
evidence theory, revision of mass functions are proposed [26,27]. Similarly, in possi-
bility theory and ordinal conditional functions framework, the so-called transmutation
[33] have been proposed. It modifies the ranking or possibility degrees of interpreta-
tions so as to give priority to the input information. Various forms of ranking revisions
have been suggested in (e.g., [6,13,8,22,9,23,24]).

In the logical setting, belief revision has also been extensively studied. In [8] four
postulates have been added to AGM postulates in order to characterize iterated belief
revision operators which transform a given ordering on interpretations, in presence of
new information, into a new ordering. In [29,3] a lexicographic strategy, associated
with a set of three rationality postulates, have been defined to revise a total pre-order
by a new total pre-order. In [5,4], different strategies have been proposed to revise an
epistemic state represented by a partial pre-order on the possible worlds.

This paper deals with a flexible representation of information where both initial be-
liefs and input are represented by partial pre-orders. Despite its importance in many
applications, there are very few works that address revision methods of a partial pre-
order by a partial pre-order. In [32], revision of partial orders is studied in a standard
expansion and contraction way. But it does not provide concrete revision results because
of the use of certain kinds of selection functions. In a short paper [21], a framework that
studies revision on partial pre-orders is developed and two main revision operators are
proposed. However, there are no postulates addressed in that short paper, neither did
the paper discussed the relationship between the revision operators and various revision
strategies proposed in the literature.

A natural question addressed in this paper is whether it is possible to reuse AGM
postulates while both initial beliefs and inputs are partial pre-orders. The answer is
Yes. The idea is not to change rationality postulates, but to modify the representation
of beliefs and adapt main logical concepts such as logical entailment and consistency.
More precisely, we will follow the representation of partial pre-orders proposed in [21].
A partial pre-oder over a set of symbols is viewed as a closed set of units. Each unit
represents an individual constraint between symbols (a pair of symbols with an order-
ing connective). The revision of partial pre-order by another partial pre-order is then
viewed as revision of closed set of units by another closed set of units. In this paper, we
show that AGM postulates have natural counterparts when initial beliefs and input are
represented by sets of units. We also provide the counterpart of success postulates and
minimal change principle in our frameworks. The reformulation of AGM postulates is
possible once logical entailment is interpreted as set inclusion between sets of units,
and logical consistency is interpreted as the absence of cycles between sets of units as-
sociated with partial pre-orders of inputs and initial beliefs. Additional postulates are
also studied in this paper.

In the second part of the paper, we prove that the two revision operators proposed
in [21] satisfy the proposed postulates for partial pre-order revision as well as some
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rational properties, such as the iteration property. Furthermore, we also prove that our
revision operators are extensions of the well-known lexicographic revision [30] and
natural belief revision [6].

To summarize, this paper makes the following main contributions:

– We propose a set of rationality postulates that the unit-based revision shall follow.
– We prove some important properties among these revision strategies. We also prove

that these revision strategies satisfy certain rationality postulates.
– When reducing to classical belief revision, we prove that our revision strategies ex-

tend some existing revision strategies, such as, lexicographic and natural revisions.

The remainder of the paper is organized as follows. We introduce some necessary no-
tations and definitions in Section 2. In Section 3, we discuss the principles a revision
rule on partial pre-orders shall satisfy and propose AGM-style postulates for partial
pre-orders revision. We then discuss, in Sections 4, two examples of belief revision
strategies, proposed in [21], that satisfy AGM-style postulates and analyse their prop-
erties. Section 5 shows that the well-known lexicographic and natural revision can be
recovered in our frameworks. We then review some related works in Section 6. Section
7 concludes the paper.

2 Notations and Definitions

We use W to denote a finite set of symbols. Let� be a pre-order over W where w � w′

means that w is at least as preferred as w′. Two operators, ≺ and ≈, are defined from
� in a usual sense. Note that as � implies ≺ or ≈ while ≺ (or ≈) is a simple relation,
in this paper, we only focus on simple relations ≺ and ≈. Each w ≺ w′ or w ≈ w′

is called a unit for w �= w′. A partial pre-order is represented by a finite set of units
denoted by S, we use Sym(S) to denote the set of symbols from W appearing in S.

Definition 1. A set of units S is closed iff

– w ≈ w′ ∈ S implies w′ ≈ w ∈ S;
– for any different w1, w2, w3 in W , if w1 R1 w2 ∈ S and w2 R2 w3 ∈ S and

w1 R1 w2 ∧w2 R2 w3 implies w1 R3 w3, then w1 R3 w3 ∈ S, (where Ri is either
≈ or ≺).

We can see that a closed set of units corresponds to a partial pre-order in the usual
sense (i.e., a transitive, reflexive binary relation). A set S can be extended to a unique
minimal closed set based on transitivity and symmetry of ≈ and transitivity of ≺. We
use Cm(S) to denote this unique minimal closed set extended from S.

Example 1. Let S = {w1 ≈ w2, w2 ≺ w3}, then Cm(S) = {w1 ≈ w2, w2 ≈
w1, w2 ≺ w3, w1 ≺ w3}.

S is closed when it cannot be extended further. This is the counterpart of the deductive
closure of a belief base K in classical logics.
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Definition 2. A subset C of S is a cycle if C = {w1 R1 w2, w2 R2 w3, · · · , wn Rn w1}
s.t. ∃Ri, Ri is ≺ for 1 ≤ i ≤ n. C is minimal if there does not exist a cycle C′ s.t.
Cm(C′) ⊂ Cm(C).

If S has a cycle, then S is said to be inconsistent. Otherwise it is said to be consistent
or free of cycles. If S is closed and contains cycles, then all minimal cycles are of the
form {a ≺ b, b ≺ a} or {a ≺ b, b ≈ a}, i.e., only two units.

Any unit w R w′ is called a free unit if w R w′ is not involved in any cycle in
S. The concept of free unit is the counterpart of free formula concept in logic-based
inconsistency handling [2,11].

Example 2. Let S = {w1 ≺ w2, w2 ≈ w3, w3 ≈ w4, w4 ≺ w1, w3 ≺ w1}, then
C1 = {w1 ≺ w2, w2 ≈ w3, w3 ≺ w1} is a minimal cycle whilst C2 = {w1 ≺
w2, w2 ≈ w3, w3 ≈ w4, w4 ≺ w1} is a cycle but not minimal, since the sub sequence
w3 ≈ w4, w4 ≺ w1 in C2 can be replaced by w3 ≺ w1 and hence forms C1.

For any set of units S, we use [S] to count the number of semantically distinct units in
S such that w ≈ w′ and w′ ≈ w are counted as one instead of two. So for S = {w1 ≈
w2, w2 ≈ w1, w3 ≺ w1, w3 ≺ w2}, we have [S] = 3.

Without loss of generality, subsequently, if without other specifications, we assume
that a set of units S and any new input SI are both closed and free of cycles. For
convenience, we use SCC to denote the set of all closed and consistent sets of units
(free of cycles) w.r.t. a given W and {≈,≺}.

3 Principles and Postulates of Unit-Based Revision

3.1 Motivations

Let / be a revision operator which associates a resultant set of units Ŝ = S / SI

with two given sets, one represents the prior state (S) and the other new evidence (SI).
This section provides natural properties, for the unit-based revision operation/, which
restate the AGM postulates [14] in our context. As in standard belief revision (an in-
put and initial are sets of propositional formulas), we also consider the two following
principles as fundamental:

Success Postulate: It states that information conveyed by the input evidence should be
retained after revision. In our context, this also means that an input partial pre-order (or
its associated set of units) must be preserved, namely SI ⊆ S / SI . In particular if
two possible worlds have the same possibility conveyed by the input, then they should
still be equally possible after revision, regardless their ordering in the prior state. This
clearly departs from the work reported in [3] (where a tie in the input could be broken
by the prior state) for instance. In the degenerate case, where the input is fully specified
by a total pre-oder then the result of revision should be simply equal to the input. This
situation is similar to the case where in standard AGM postulates where the input is
a propositional formula having exactly one model (and hence the result of revision is
that formula), or in frameworks of probabilistic revision where applying Jeffrey’s rule
of conditioning to the situation where the input if specified by a probability distribution
simply gives that probability distribution.
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Minimal Change Principle: It states that the prior information should be altered as
little as possible while complying with the Success postulate. This means in our context
that as few of units (individual binary ordering relations) as possible to be removed
from the prior state after revision. Specifying minimal change principle needs to define
the concept of conflicts in our framework. Roughly speaking, two sets of units (here
associated with input and initial beliefs) are conflicting if the union of their underlying
partial pre-orders contains cycles. Some units (from the set of units representing initial
beliefs) should be removed to get rid of cycles, and minimal change requires that this
set of removed units should be as small as possible.

3.2 AGM-Style Postulates for Unit-Based Revision

We now rephrase basic rationality postulates when initial epistemic state and input are
no longer propositional formulas but sets of units. More precisely, we adapt the well-
known AGM postulates (reformulated in [14] (KM)) to obtain a set of revised postulates
in which an agent’s original beliefs and an input are represented as sets of units. These
revised postulates, dubbed UR0-UR6, are as follows:

UR0 S / SI is a closed set of units.
UR1 Cm(SI) ⊆ S / SI .
UR2 If SI ∪ S is consistent,

then S / SI = Cm(SI ∪ S).
UR3 If SI is consistent, then S / SI is also consistent.
UR4 If Cm(S1) = Cm(S2) and Cm(SI1) = Cm(SI2),

then S1 / SI1 = S2 / SI2.
UR5 S / (SI1 ∪ SI2) ⊆ Cm((S / SI1) ∪ SI2) .
UR6 If (S / SI1) ∪ SI2 is consistent,

then Cm((S / SI1) ∪ SI2) ⊆ S / (SI1 ∪ SI2) .

UR0 simply states that S/SI is closed based on the five inference rules on units (Def.
1).

UR1 formalizes the success postulate. Note that the counterpart of logical entailment
here is represented by set inclusion. However it departs from the standard propositional
logic definition of entailment where φ |= μ means that the set of models of φ is included
in the set of models of μ. In our context, a set of units S is said to entail another set of
units S1 if Cm(S1) ⊆ Cm(S).

UR2 indicates that if the prior state and the input are consistent, then the revision
result is simply the minimal closure of the disjunction of the prior state and the input.
Here we need to point out that consistency here is represented by the absence of cy-
cles. Our definition of consistency (between two sets of units) is stronger than that in
logic-based revision (generally defined between two propositional formulae represent-
ing the initial beliefs and an input). That is, in belief revision, consistency is required
between two formulas (initial state vs. input). In this paper, consistency is required for
pre-orders (initial state vs. input) which contain more information than formulas. This
is similar to asking for the consistency between two epistemic states not the consis-
tency between their belief sets. Therefore, UR2 is stronger than its counterpart R2 in
logic-based revision [8]
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R2: if Φ ∧ μ is consistent, then Bel(Φ ◦ μ) ≡ Bel(Φ) ∧ μ,
or its weaker version defined when initial epistemic state is represented by a partial pre-
order [4,5]: if Bel(Φ) |= μ, then Bel(Φ◦μ) ≡ Bel(Φ)∧μ. This is not surprising, since
in our framework, all units play an equal role in the belief change, while in logic-based
revision, only units that determine belief sets play crucial roles1.

Also, here we should point out that we do not define Bel in our framework because in
general, elements (w1, w2) can be more than possible worlds. However, when reducing
to belief revision scenarios, Bel cab be defined in the standard way.

UR3 ensures consistency of the revision result given the consistency of the input.
UR4 is a kind of syntactic irrelevance postulate, in which we use minimal closure

equivalence to replace logical equivalence used in usual syntactic irrelevance postulates.
UR5 and UR6 depict the conditions that the order of revision and disjunction oper-

ations is exchangeable.
In summary, this set of postulates are natural counterparts of KM postulates in our

framework.

Remarks: Most of existing approaches modify AGM postulates to cope with new revi-
sion procedures (e.g. revising total pre-orders). Our approach brings a fresh perspective
to the problem of representing/revising pre-orders in which AGM can be used. Our
results may retrospectively appear to be obvious but note that it has not been consid-
ered before. Actually, it was not obvious that in order to revise a partial pre-order by
another (where a new representation of partial pre-order is needed), one can still use
AGM postulates.

3.3 Additional Postulates

In [25], a postulate proposed for iterated belief revision on epistemic states is defined
as follows.

ER4* Φ ◦E ΨF ◦E ΘF ′
= Φ ◦E ΘF ′

where partition F ′ of W is a refinement of
partition F .

In which ◦E is an epistemic state revision operator, and Φ, ΨF , and ΘF ′
are all epis-

temic states which generalize formula-based belief representations.
In our framework ER4* is rewritten as follows:

UER4* For any S, SI , S
′
I ∈ SCC such that SI ⊆ S′

I , then S / SI / S′
I = S / S′

I .

UER4* states that given a prior set and two new inputs, if the latter input has a finer
structure than the former input, then the latter totally shadows the former in iterated
revision. This is clearly the counterpart of ER4* and represents an important result for
iterated revision.

We also propose additional properties inspired from Darwiche and Pearl’s iterated
belief revision postulates :

1 This is an essential difference between our framework with the framework in [4]. As an in-
stance of this difference, R2 is questioned in [4] and hence is not valid in the framework of [4]
whilst it is valid (after translation) in our framework.
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UCR1 If w1 ≺ w2 ∈ Cm(SI), then w1 ≺ w2 ∈ Cm(S / SI).
UCR2 If w1 ≈ w2 ∈ Cm(SI), then w1 ≈ w2 ∈ Cm(S / SI).
UCR3 If w1 and w2 are incomparable in Cm(SI), then w1 R w2 ∈ Cm(S) iff

w1 R w2 ∈ Cm(S / SI) (R is ≺ or ≈).

Here UCR1-3 are inspired from the semantic expression of DP postulates CR1-CR4.
UCR3 is its counterpart of CR1-CR2 in our framework, and it can be seen as a counter-
part of the relevance criterion [19]. It says that in case two elements are incomparable
in the input, then the ordering between these two elements should be the same in both
initial state and revised state. This is inspired from CR1 and CR2 where the ordering of
models (resp. countermodels) of input is the same in both initial and revised states.

UCR1-2 are inspired from CR3 and CR2, respectively. Also note that UCR1-2 are
implied by UR1.

Note that here any ties (e.g.,w1 ≈ w2) in the input are preserved while in the original
work of [8], they are broken based on the information given by initial beliefs.

4 Examples of Revision Operators for Partial-Preorders

In this section, we give two examples of revision operators, introduced in [21], that
satisfy all postulates.

Match Revision. The key idea of match revision is to remove any units in S which join
at least one minimal cycle in S ∪ SI . Therefore, these units are potentially conflicting
with SI .

Definition 3. (Match Revision Operator, [21]) For any S, SI ∈ SCC , let S′ = Cm(S∪
SI) and let C be the set of all minimal cycles of S′, then the match revision operator
/match is defined as:
S /match SI = Cm(S′ \ (

⋃
C∈C C \ SI)).

Example 3. Let S = {w3 ≺ w2, w2 ≺ w4, w4 ≺ w1, w3 ≺ w4, w3 ≺ w1, w2 ≺ w1}
and SI = {w1 ≺ w2, w4 ≺ w3}, then we have six minimal cycles in Cm(S ∪ SI).
That is

C1 : w1 ≺ w2, w2 ≺ w1, C2 : w1 ≺ w4, w4 ≺ w1,
C3 : w2 ≺ w4, w4 ≺ w2, C4 : w3 ≺ w2, w2 ≺ w3,
C5 : w3 ≺ w4, w4 ≺ w3, C6 : w1 ≺ w3, w3 ≺ w1.

Hence we have: S /match SI = Cm({w1 ≺ w2, w4 ≺ w3}) = {w1 ≺ w2, w4 ≺ w3}.

However, the match revision operator removes too many units from the prior state
S, as we can see from Example 3. In fact, if certain units are removed from S, then
there will be no cycles in S ∪ SI , hence some other units subsequently could have
been retained. That is, there is no need to remove all the conflicting units at once,
but one after the other. This idea leads to the following inner and outer revision
operators.
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Inner Revision. The basic idea of inner revision is to insert each unit of SI one by one
into S, and in the meantime, remove any unit in S that are inconsistent with the inserted
unit. Of course, the revision result depends on the order in which these units from SI

are inserted to S. Hence, only the units that exist in all revision results for any insertion
order should be considered credible for the final, consistent revision result.

For a set of units S, let PMT(S) denote the set of all permutations of the units in
S. For example, if S = {w1 ≺ w3, w2 ≺ w3}, then PMT(S) = {(w1 ≺ w3, w2 ≺
w3), (w2 ≺ w3, w1 ≺ w3)}.
Definition 4. For any S, SI ∈ SCC , let−→t =(t1, · · · , tn) be a permutation in PMT(SI),
then the result of sequentially inserting−→t into S one by one2, denoted as S−→

t
, is defined

as follows:

– Let Si be the resulted set by sequentially inserting t1, · · · , ti one by one. Let S′ =
Cm(Si ∪ {ti+1}) and C be the set of all minimal cycles of S′, then Si+1 = S′ \
(
⋃

C∈C C \ SI).
– S−→

t
= Sn.

The inner revision operator is defined as follows.

Definition 5. (Inner Revision Operator, [21]) For any S, SI ∈ SCC , the inner revision
operator is defined as:

S /in SI = Cm(
⋂

−→
t ∈PMT(SI)

S−→
t

). (1)

Example 4. Let S = {w3 ≺ w2, w2 ≺ w4, w4 ≺ w1, w3 ≺ w4, w3 ≺ w1, w2 ≺ w1}
and SI = {w1 ≺ w2, w4 ≺ w3}, then we have S(w4≺w3,w1≺w2) = {w1 ≺ w2,
w4 ≺ w3, w3 ≺ w1, w4 ≺ w1, w4 ≺ w2, w3 ≺ w2} and S(w1≺w2,w4≺w3) = {w1 ≺
w2, w4 ≺ w3, w3 ≺ w1, w3 ≺ w2, w4 ≺ w2, w4 ≺ w1}. Hence S /in SI = {w1 ≺
w2, w4 ≺ w3, w3 ≺ w1, w3 ≺ w2, w4 ≺ w2, w4 ≺ w1}.

Examining Unit-Based Postulates. For operators /in and /match, we have the fol-
lowing results.

Proposition 1. The revision operators/in and /match satisfy UR0-UR6.

This proposition shows that our revision operators satisfy all the counterparts of AGM-
style postulates proposed in Section 3.

Next we show that our revision operations satisfy UER4* and iteration properties:

Proposition 2. – For any S, SI , S
′
I ∈ SCC such that SI ⊆ S′

I , then S /in SI /in

S′
I = S /in S′

I . We also have S /match SI /match S′
I = S /match S′

I .
– The revision operators /in and /match satisfy UCR1-UCR3.

To summarize, from the Proposition 2, we can conclude that match and inner revision
operator satisfies many of the well-known postulates for belief revision and iterated
belief revision, which demonstrates that these strategies are rational and sound.

2 As two units like w ≈ w′ and w′ ≈ w are in fact the same, in this and the next section, this
type of units are considered as one unit and be inserted together.
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5 Recovering Lexicographic and Natural Belief Revision

Now we come to show that the two well-known belief revision strategies (lexicographic
and natural revision) can be encoded as stated in our framework.

5.1 Recovering Lexicographic Revision

We first assume that an input, representing a propositional formula μ (a typical input in
the belief revision situation), is described by a modular order where:

– each model of μ is preferred to each model of ¬μ,
– models (resp. counter-models) of μ are incomparable.

That is, given μ, the corresponding input representing μ is denoted as Sμ
I = {w ≺ w′ :

∀w |= μ,w′ |= ¬μ}. Clearly for any consistent μ, Sμ
I ∈ SCC .

Then we have the following result.

Proposition 3. For any S ∈ SCC and any consistent μ, we have S /in Sμ
I = Sμ

I ∪
{wRw′ : w,w′ |= μ and wRw′ ∈ S} ∪ {wRw′ : w,w′ |= ¬μ and wRw′ ∈ S}.
Proof of Proposition 3: A sketch of the proof can be shown as follows. Let Ŝ =
S /in Sμ

I , then it is easy to show the following steps:

– Sμ
I ⊆ Ŝ.

The input is reserved in the revision result.
– {wRw′ : w,w′ |= μ and wRw′ ∈ S} ∈ Ŝ, {wRw′ : w,w′ |= ¬μ and wRw′ ∈

S} ∈ Ŝ.
It is easy to see that any unit wRw′ ∈ S such that w,w′ are both models of μ or
both counter-models of μ is consistent with Sμ

I . So any such unit is in Ŝ.
– Ŝ only contains units which can be induced from the above two steps. In fact, we

can find that Sμ
I ∪ {wRw′ : w,w′ |= μ ∧ wRw′ ∈ S} ∪ {wRw′ : w,w′ |=

¬μ ∧ wRw′ ∈ S} already forms a total pre-order over W (and hence is complete)
and obviously it is consistent. �

That is, given the input Sμ
I representing μ, inner revision operator reduces to a lexico-

graphic revision [30] in the belief revision case. Hence obviously it follows the spirit
of AGM postulates [1], Darwiche and Pearl’s iterated belief revision postulates [8], and
the Recalcitrance postulate [30].

In [3] an extension of lexicographic revision of an epistemic state �initial (viewed
as a total pre-order), by an input in the form of another total pre-order, denoted here by
�input, is defined. The obtained result is a new epistemic state, denoted by �lex (lex
for lexicographic ordering), and defined as follows:

– ∀w1, w2 ∈ W , if w1 �input w2 then w1 �lex w2.
– ∀w1, w2 ∈ W , if w1 =input w2 then w1 �lex w2 if and only if w1 �initial w2.

Namely, �lex is obtained by refining �input by means of the initial ordering �initial

for breaking ties in �input.
To recover this type of revision, it is enough to interpret ties in �input as incompa-

rable relations, namely:
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Proposition 4. Let �initial and �input be two total pre-orders and �lex be the result
of refining �input by �initial as defined above. Let Sinitial be the set of all units in
�initial, and Sinput be the set of strict relations in �input, namely, Sinput = {ω1 ≺ ω2

such that ω1 �input ω2} (i.e., ties in �input are not included in Sinput). Then we have
: Sinitial /in Sinput = Cm({ω1 ≺ ω2 such that ω1 �lex ω2}).

The above proposition shows that the lexicographic inference can be recovered when
both initial beliefs and input are total pre-ordered. Of course, our approach goes beyond
lexicographic belief revision since inputs can be partially pre-ordered.

5.2 Recovering Natural Belief Revision

This section shows that inner revision allows to recover the well-known natural belief
revision proposed in [6] and hinted by Spohn [31]

Let �initial be a total pre-order on the set of interpretations representing initial epis-
temic state. Let μ be a new piece of information. We denote by �N he result of applying
natural belief revision of �initial by φ. ω =N ω′ denotes that ω and ω′ are equally plau-
sible in the result of revision. Natural belief revision of �initial by μ consists in con-
sidering the most plausible models of μ in �initial as the most plausible interpretations
in �N . Namely, �N is defined as follows:

– ∀ω ∈ min(φ,�initial), ∀ω′ ∈ min(φ,�initial), ω =N ω′

– ∀ω ∈ min(φ,�initial), ∀ω′ �∈ min(φ,�initial), ω �N ω′

– ∀ω �∈ min(φ,�initial), ∀ω′ �∈ min(φ,�initial), ω �N ω′ iff ω �initial ω
′.

In order to recover natural belief revision we will again apply inner revision. Let us de-
scribe the input. We will denote by φ as a propositional formula whose models are those
of μ which are minimal in �initial. The input is described by the following modular
order �input where :

– each model of φ is preferred to each model of ¬φ, namely : ∀ω, ω′, if ω |= φ and
ω′ |= ¬φ then ω �input ω

′

– models of φ are equally plausible, namely : ∀ω, ω′, if ω |= φ and ω′ |= φ then
ω =input ω

′

– models of ¬φ are incomparable.

Then we have :

Proposition 5. Let �initial be a total pre-order associated with initial beliefs. Let μ be
a proposition formula and �N be the result of revising �initial by μ as defined above.
Let �input be a partial pre-order defined above. Let Sinitial (resp. Sinitial, SN ) be the
set of all units in �initial (resp. �input,�N ). Then we have : Sinitial/inSinput = SN .

The above proposition shows that the natural belief revision can be recovered using
inner revision. And again, our framework goes beyond natural belief revision since
initial beliefs can be partially pre-ordered (while it is defined as totally pre-ordered
in [6]).
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6 Discussions and Related Works

In this section, first we briefly review some related works and then we present some
discussions on the difference between our approach and other revision approaches.

[15] and [17] in fact focus on revising with conditionals. Our unit w ≺ w′ can be
translated into (w|w ∨ w′) in the framework proposed in [17]. However, in [17], they
only consider initial and input epistemic states as ordinal conditional functions which
cannot encode a partial pre-order in general.

In [32], revision of partial orders is studied in a standard expansion and contraction
way, in which contraction uses a cut function which can be seen as a selection function,
and hence the result is not deterministic, whilst all revision operators proposed in this
paper provide deterministic results.

[28] only considers merging of partial pre-orders (which follows a different definition
from this paper) instead of revision, so it departs from the work we investigated in this
paper.

Furthermore, we already showed that our approach can recover, as a particular case,
the lexicographic inference ([29], etc) when both the initial state and the input are either
a propositional formula or a total pre-order.

Lastly, note that our revision operations are totally different from Lang’s works on
preference (e.g. [20]) and Kern-Isberner’s revision with conditionals (e.g., [16]).

Remarks: A key question should be answered is: what is the difference between revi-
sion in this paper and in other papers?

In existing approaches, when a revision strategy is extended to deal with some com-
plex task, two steps are commonly followed:

– generalizing the concept of “theory” (initial state) and input. For instance, in [25],
when the task is to revise an epistemic state, the representation of initial epistemic
state and the input was generalized that can recover almost all common uncertainty
representations. However, in most works, these representations extend the concept
of “propositional formulas” directly.

– extending or modifying AGM postulates, and several of them “get rid” of some
postulates. For instance, in [4], postulate R2 is removed and replaced by other pos-
tulates. [18] has suggested new postulates to deal with the idea improvements and
drop some of the AGM postulates.

In our approach, however, we propose revision operators from a different perspective.

– First, we keep all the AGM postulates even if our aim is to generalize the revision
process to deal with a very flexible structure which is a partial pre-order.

– Second, we consider very different components of the revision operation. Initial
epistemic state is no longer a propositional formula but a set of units. Similarly
for the input. With this change, some standard concepts need to be adapted, in
particular the concepts of consistency and entailment. We can illustrate this by the
following example taken from [4].

Example 5. Let W = {w1, w2, w3, w4}. Consider the following partial pre-order
representing the agent’s initial epistemic state Φ: w3 ≺B w2 ≺B w1 which means
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w3 is the most preferred, w1 is the least preferred, and w4 is incomparable to
others.
Assume that the input is propositional formula μ with models w2 and w4, denoted
as [μ] = {w2, w4} (where [φ] represents the set of models of any propositional
formula φ). The aim is to revise the partial pre-order with μ.

Let us see how the two approaches behave (from representational point of view and
from axiomatic point of view).
In [4], from a representational point of view,
Epistemic state = Partial pre-order Φ
Input = Propositional formula μ
Output = Φ ◦ μ which is a propositional formula
From an axiomatic point of view, the example shows that R2 postulate (see R2 in
Section 3) maybe questionable. That is, in the example, the former approach only
keeps the possible world w4 that is incomparable to others while the latter also
keeps the minimal possible world w2 in the set of comparable possible worlds,
which is more reasonable.
Indeed, in this example:

[Bel(Φ)] = {w : w ∈W ∧ �w′, w′ ≺B w} = {w3, w4},
[μ] = {w2, w4}.

So Bel(Φ) and μ are consistent and hence according to R2, Bel(Φ ◦ μ) = {w4}.
This is questionable as a result.
Therefore, in [4], they consider R2 is no longer valid when epistemic states are
partial pre-orders and they propose different alternatives for this postulate.
In our approach, from a representational point of view,
Epistemic state=Partial pre-orders represented by a set of units, i.e.,S=Cm({w3 ≺
w2, w2 ≺ w1})
Input = Partial pre-orders represented by a set of units, i.e., SI = {w2 ≺
w1, w2 ≺ w3, w4 ≺ w1, w4 ≺ w3})

From an axiomatic point of view, we keep all AGM (or KM) postulates but co-
herence and entailment do not have the same meaning. In our approach, S and SI

are not consistent since in S we have w3 ≺ w2 while in SI we have w2 ≺ w3.
Therefore, the result of revision is not S ∪ SI .
What can we obtain with our approach in this example? We get Ŝ = Cm{w3 ≺
w1, w2 ≺ w3, w4 ≺ w3} in which the expected result is obtained with minimal
models: {w2, w4}.
In fact, in the definition of our revision operation, we do not focus on Bel(Φ),
instead, we focus on small components that compose the partial pre-orders.

7 Conclusion

Although logic-based belief revision is fully studied, revision strategies for ordering
information have seldom been addressed. In this paper, we investigated the issue of
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revising a partial pre-order by another partial pre-order. We proposed a set of rationality
postulates to regulate this kind of revision. We also proved several revision operators
satisfy these postulates as well as some rational properties.

The fact that our revision operators satisfy the counterparts of the AGM style postu-
lates and the iterated revision postulate shows that our revision strategies provide ratio-
nal and sound approaches to handling revision of partial pre-orders. In addition, when
reducing to classical belief revision situation, our revision strategies become the lexi-
cographic revision. This is another indication that our revision strategies have a solid
foundation rooted from the classic belief revision field.

For future work, we will study the relationship between our revision framework and
revision strategies proposed for preferences.
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Abstract. For a given sample set, there are already different methods
for building possibility distributions encoding the family of probability
distributions that may have generated the sample set. Almost all the
existing methods are based on parametric and distribution free confi-
dence bands. In this work, we introduce some new possibility distribu-
tions which encode different kinds of uncertainties not treated before.
Our possibility distributions encode statistical tolerance and prediction
intervals (regions). We also propose a possibility distribution encoding
the confidence band of the normal distribution which improves the ex-
isting one for all sample sizes. In this work we keep the idea of building
possibility distributions based on intervals which are among the smallest
intervals for small sample sizes. We also discuss the properties of the
mentioned possibility distributions.

Keywords: imprecise probabilities, possibility distribution, confidence
band, confidence region, tolerance interval, prediction interval, normal
distribution, distribution free.

1 Introduction

In 1978, Zadeh introduced the possibility theory [31] as an extension of his theory
on fuzzy sets. Possibility theory offers an alternative to the probability theory
when dealing with some kinds of uncertainty. Possibility distribution can be
viewed as a family of probability distributions. Then, the possibility distribution
contains all the probability distributions that are respectively upper and lower
bounded by the possibility and the necessity measure [10]. For a given sample set,
there are already different methods for building possibility distribution which
encodes the family of probability distributions that may have generated the
sample set[3,25,2]. The mentioned methods are almost all based on parametric
and distribution free confidence bands.

In this paper we review some methods for constructing confidence bands for
the normal distribution and for constructing distribution free confidence bands
(γ-C distribution). Then we propose a possibility distribution for a sample set
drawn from an unknown normal distribution based on Frey [15] confidence band
which improves the existing possibility distribution proposed by Aregui et al. [2]
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for all sample sizes. We also introduce possibility distribution which encodes
tolerance intervals, named as γ-Confidence Tolerance Possibility distribution (γ-
CTP distribution). The proposed possibility distribution uses tolerance intervals
to build the maximal specific possibility distribution that bounds each popula-
tion quantile of the true distribution (with a fixed confidence level) that might
have generated our sample set. The distribution obtained will bound each con-
fidence interval of inter-quantiles independently. This latter is different from a
possibility distribution encoding a confidence band, because a possibility distri-
bution encoding a confidence band will simultaneously bounds all population
quantiles of the true distribution (with a fixed confidence level) that might have
generated our sample set. Finally, we consider possibility distributions encoding
prediction intervals (prediction possibility distribution). In this case, each α-cut
will contain the next observation with a confidence level equal to 1−α. Each of
the proposed possibility distributions encodes a different kind of uncertainty that
is not expressed by the other ones. We show that γ-C distribution is always less
specific than γ-CTP distribution which is itself less specific than the prediction
possibility distribution. This is due to the fact that the distributions properties
are less and less strong. Note that the confidence level is usually chosen by the
domain expert.

This paper is structured as follows: we begin with a background on possibility
theory. Then we review possibility distribution encoding confidence bands and
their relationship with confidence regions. In this section we introduce a method
which improves existing possibility distributions. Next we see how to encode
tolerance intervals and prediction intervals by possibility distributions. Finally,
we end with a discussion on the mentioned possibility distributions and some
illustrations.

2 Background

2.1 Possibility Theory

Possibility theory, introduced by Zadeh [31,12], was initially created in order
to deal with imprecision and uncertainty due to incomplete information. This
kind of uncertainty may not be handled by probability theory, especially when
a priori knowledge about the nature of the probability distribution is lacking. In
possibility theory, we use a membership function π to associate a distribution
on the universe of discourse Ω. In this paper, we only consider the case Ω = R.

Definition 1. A possibility distribution π is a function from Ω to (R→ [0, 1]).

The definition of the possibility measure Π is based on the possibility distribu-
tion π such that:

Π(A) = sup(π(x), ∀x ∈ A). (1)

The necessity measure is defined by the possibility measure

∀A ⊆ Ω,N(A) = 1−Π(AC) (2)



Representing Uncertainty by Possibility Distributions 235

where AC is the complement of the set A. A distribution is normalized if : ∃x ∈ Ω
such that π(x) = 1. When the distribution π is normalized, we have :Π(∅) =
0, Π(Ω) = 1.

Definition 2. The α-cut Aα of a possibility distribution π(·) is the interval for
which all the point located inside have a possibility membership π(x) greater or
equal to α.

Aα = {x|π(x) ≥ α, x ∈ Ω}, (3)

2.2 Possibility Distribution Encoding a Family of Probability
Distribution

In fact, one interpretation of possibility theory, based on Zadeh’s [31] consistency
principle of possibility “what is probable should be possible”, is to consider a
possibility distribution as a family of probability distributions (see [10] for an
overview). In the following, we denote f as density function, F as its Cumulative
Distribution Function (CDF) and P as its probability measure. Thus, a possi-
bility distribution π will represent the family of the probability distributions Θ
for which the measure of each subset of Ω’s will be bounded by its possibility
measures :

Definition 3. A possibility measure Π is equivalent to the family Θ of proba-
bility distribution F such that

Θ = {F |∀A ∈ Ω,P (A) ≤ Π(A)}, A ⊆ Ω. (4)

Definition 4. Given a probability density function f(·) with finite number of
modes, we define the interval I∗β defined below as ”smallest β-content interval”
of f .

I∗β = {x|x ∈ f−1[d], ∀d ∈ [c,+ inf)} (5)

where
∫
{x|f(x)≥c} f(x)dx = β and c > 0.

We know that Pr(I∗β) = β and this interval is unique only if f has a finite
number of modes. Now let θ be a set of Cumulative Distribution Function (CDF)
F defined by a possibility distribution function π(·). Thus, an alternative to
equations (4) is:

∀α ∈ [0, 1], ∀F ∈ Θ, I∗F,β ⊆ Aπ,α (6)

where β = 1 − α and Aπ,α is the α-cut of possibility distribution π(·). Thus, a
possibility distribution encodes a family of probability distributions for which
each quantile is bounded by a possibility α-cut. By considering the definition of
necessity, we obtain the following inequalities:

N(A) ≤ P (A) ≤ Π(A), A ⊂ Ω. (7)

Thus by using the possibility and necessity measures, like in the Dempster-Shafer
theory, we can define upper and lower values to describe how an event is likely
to occur.
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2.3 Probability-Possibility Transformation

In many cases it is desirable to move from the probability framework to the pos-
sibility framework. This is why several transformations based on various princi-
ples such as consistency (what is probable is possible) or information invariance
have already been proposed [8,9,22,13,11]. Dubois et al.[14] suggest that when
moving from probability to possibility framework we should use the ”maximum
specificity” principle which aims at finding the most informative possibility dis-
tribution. Formally the maximum specificity principle is defined as follow:

Definition 5. Given the maximum specific possibility distribution (m.s.p.d) π∗

that encodes the probability distribution function F (i.e. ∀A ⊆ Ω,N∗(A) ≤
P (A) ≤ Π∗(A)) we have, for all π such as ∀A ⊆ Ω,N(A) ≤ P (A) ≤ Π(A),
π∗(x) ≤ π(x), ∀x ∈ Ω.

Because the possibility distribution explicitly handles the imprecision and is also
based on an ordinal structure rather than an additive one, it has a weaker repre-
sentation than the probability one. This kind of transformation (probability to
possibility) may be desirable when we are in presence of weak source of knowl-
edge or when it is computationally harder to work with the probability measure
than with the possibility measure. The ”most specific” possibility distribution is
defined for a probability distribution having a finite number of modes and the
equation is as below [11] :

πt(x) = sup(1− P (I∗β), x ∈ I∗β) (8)

where πt is the ”most specific” possibility distribution, I∗β is the smallest β-
content interval [11]. Then, in the spirit of equation 6, given f and its transfor-
mation π∗ we have :

A∗
α = I∗β where α = 1− β.

Figure (1) presents the maximum specific transformation (in blue) of a normal
probability distribution (in green) with mean and variance respectively equal to
0, 1 (N (0, 1)).

Fig. 1. The m.s.p.d for N (0, 1)
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Definition 6. The interval between the lower and upper quantiles of the same
level are called inter-quantiles. The inter-quantile at level p is defined by

[F−1(p), F−1(1− p)], 0 < p < 0.5 (9)

where F−1(·) is the inverse function of the continuous strictly-monotone CDF
F (·).
An inter-quantile at level p contains β proportion of the distribution where
β = 1− 2p. We will call a β-content inter-quantile Iβ , the interval that contains
β proportion of the underlying distribution, we have Pr(Iβ) = β.

Proposition 1. The maximum specific possibility distribution (m.s.p.d) π∗(·)
of unimodal symmetric probability density function f(·) can be built just by cal-
culating the β-content inter-quantile Iβ of f(·) for all the values of β, where
β ∈ [0, 1].

It is evident that for any unimodal symmetric p.d.f f(·), the smallest β-content
interval I∗β of f is also its inter-quantile at level 1−β

2 . Therefore the proposition
1 can be used.

3 Possibility Distribution Encoding Confidence Bands

3.1 Confidence Band

Definition 7. The confidence band for a CDF F is a function which associates
to each x an interval [L(x), U(x)] such as :

P (∀x, L(x) ≤ F (x) ≤ U(x)) ≥ γ where ∀x, 0 ≤ L(x) ≤ U(x) ≤ 1 (10)

In frequentist statistics, a confidence band is an interval defined for each value
x of the random variable X such that for a repeated sampling, the frequency of
F (x) located inside the interval [L(x), U(x)] for all the values of X tends to the
confidence coefficient γ.

Note that given any γ level confidence band, we can use it to infer confidence
intervals of the quantile function Q(β) = F−1(β) = inf{x ∈ R : β ≤ F (x)}, and
that for all β ∈ (0, 1). In other word the confidence band gives simultaneously
confidence intervals for all F−1(β), β ∈ (0, 1). Therefore such confidence inter-
vals derived from confidence bands are Simultaneous confidence Intervals (SMI)
for all population quantiles. We can take advantage of this property to derive
simultaneous γ-confidence intervals for β-content inter-quantiles of the unknown
CDF F (·) and we will denote them by ICβ .

By using proposition (1) and tables of confidence band stated in the statistic
literature [21,15,7,5,20,1], we can encode simultaneous γ-confidence intervals for
β-content inter-quantiles ICβ , of an unknown CDF F (·) by a possibility distribu-

tion represented by πC
γ :

πC
γ (x) = 1− max

x∈IC
1−α

(α) where Aα = ICβ , β = 1− α (11)

By construction, the obtained distribution has the following property:
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Proposition 2. Let πC
γ be a possibility distribution obtained by equation (11)

we have:
P (∀x, ∀α ∈ (0, 1), P (x ∈ Aα) ≥ 1− α) ≥ γ

Suppose that K is a set of estimated CDF F̂ for F , and that in a repeated
sampling the frequency of the function F̂ being equal to the true CDF F
(∀x, F̂ (x) = F (x)), tends to 1 − α. The function set K will be a confidence
band for F (x). This is expressed formally below:

P (∃F̂ ∈ K,F = F̂ ) = 1− α (12)

Equations (10) and (12) are two different views representing confidence band.
In equations (10), the goal is to find a set K composed of estimated cumulative
distribution functions being one ”choice” for estimating the true CDF F . When
F belongs to a parametric family, we can use the confidence region of its pa-
rameter vector to construct its confidence band [21,7,15]. Therefore, confidence
bands build by considering confidence regions are described by equation (12).

3.2 Possibility Distribution Encoding Normal Confidence Bands

As we saw above, we can use the confidence region of parameter of a proba-
bility distribution to infer its confidence band. Cheng and Iles [7] and kanofsky
[21] used this approach to infer the confidence band of the normal distribution.
Aregui et al. [3], proposed to construct possibility distributions for sample set
drawn from a known parametric family with an unknown parameter vector.
Their possibility distribution encoded the Cheng et al. [7] confidence band. In
another paper, Aregui et al. [2] used confidence region for the parameters of the
normal distribution to infer a possibility distribution. This possibility distribu-
tion encodes all normal distributions having their parameters inside the desired
confidence region of the ”true parameters” belonging to the ”real distribution”
that has generated this sample set. As we saw previously, encoding the confidence
region of parameters results in a possibility distribution which encodes the whole
confidence band of the normal distribution. The band encoded by their method
was built by the ”Smallest Mood exact” confidence region [4]. The ”Smallest
Mood exact” region contains exactly the desired confidence level and it was the
the second smallest confidence region (after the ”likelihood-ratio test”) in [4].
This region is easy to obtain and is particularly useful for small sample sizes.
(Note that if we want to construct the m.s.p.d encoding confidence band of a
normal distribution, we have to find the smallest possible SMIs which leads us
to use the tightest confidence band.) In [15], Frey proposed the minimum-area
confidence region and the minimum area based confidence band for the normal
distribution. She showed that her minimum area confidence band improves other
bands for all sample sizes. In the same way we propose a possibility distribution
which encodes the Frey confidence band. In figures (2,3) we compared our pos-
sibility distribution named ”0.95 Frey C.P.D.” (0.95 Frey Confidence Possibility
Distribution) which is encoded in blue with the Mood based and Smallest Mood
based confidence possibility distribution.
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Proposition 3. The Frey normal confidence band improves the confidence band
resulted by the ”Smallest Mood exact” region, in area sense, and this for all
sample sizes.

Sketch of proof : The ”smallest Mood confidence region” is found by the optimal
confidence levels ψ1 and ψ2 for the mean and variance confidence intervals and
also for each sample size such that (1 − ψ1)(1 − ψ1) = γ = 0.95 [4]. We can
observe that the Frey confidence band for γ = 0.95 gives confidence band with
smaller area (integral over all confidence intervals of inter-quantiles) than the
band issued from a Mood confidence region (1−ψ)2 = 0.952 where (1−ψ) = 0.95
and this for all sample sizes. We know that we the confidence band built from
Mood confidence region (1 − ψ)2 where (1 − ψ) = 0.95 is everywhere smaller
than the confidence band built from the ”smallest Mood confidence region” for
γ = 0.95. The statement above holds for every value of γ ∈ (0.01, 1) �

3.3 Possibility Distribution Encoding Distribution Free Confidence
Bands

For distribution free confidence bands, the most known method is the Kol-
mogorof [5] statistic for small sample sizes and the Kolmogorof-Smirnof test
for large sample sizes. Some other methods have also been suggested based on
the weighted version of the Kolmogorof-Smirnof test [1]. Owen also proposed a
nonparametric likelihood confidence band for a distribution function. Remark
that Owen’s nonparametric likelihood bands are narrower in the tails and wider
in the center than Kolmogorov-Smirnov bands and are asymmetric on the em-
pirical cumulative distribution function. Frey [20] suggested another approach
in which the upper and lower bounds of the confidence band are chosen to mini-
mize a narrowness criterion and she compared her results to other methods. The
optimal bands have a nice property : by choosing appropriate weights, you may
obtain bands that are narrow in whatever region of the distribution is of inter-
est. Masson et al. [25], suggested simultaneous confidence intervals of the the
multinomial distribution to build possibility distributions and in another paper,
Aregui et al. [3] proposed the Kolmogorof confidence band [5] to construct pre-
dictive belief functions[26] for sample set drawn from an unknown distribution.
Thus, we propose to use the Frey band to construct the possibility distribution
since it allows to have narrower α-cuts for the α’s of interest.

4 Possibility Distribution Encoding Tolerance Interval

A tolerance interval, is an interval which guarantees with a specified confidence
level γ, to contain a specified proportion β of the population. Confidence bounds
or limits are endpoints within which we expect to find a stated proportion of
the population. As the sample set grows, a parameter’s confidence interval down-
sizes toward zero. In the same way, increasing the sample size leads the tolerance
interval bounds to converge toward a fixed value. We name a 100%β tolerance
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interval(region) with confidence level 100%γ, a β-content γ-coverage tolerance
interval (region) and we represent it by ITγ,β .

Having a sample set which come from a CDF F (·) with unknown parameters
and for a given confidence level γ, we encode all the β-content γ-coverage toler-
ance intervals of F (·), ∀β ∈ (0, 1), by a possibility distribution and we name it ”γ-
confidence tolerance possibility distribution” (γ-CTP distribution represented by
πCTP
γ ). When we do not know the distribution of the sample set, we can use

β-content γ-coverage distribution free tolerance intervals ,∀β ∈ (0, 1), of the un-
known probability distribution in order to build Distribution Free γ-Confidence
Tolerance Possibility (γ-DFCTP distribution represented by πDFCTP

γ ) distribu-

tion. The possibility distributions πCTP
γ and πDFCTP

γ will have by construction,
the following property:

Proposition 4. Let πCTP
γ (or πDFCTP

γ ) be a possibility distribution that en-
codes tolerance intervals, we have:

∀α ∈ (0, 1), P (∀x, P (x ∈ Aα) ≥ 1− α) ≥ γ where Aα = ITγ,β , β = 1− α

Note that, it may also be interesting to fix the proportion β and make the
confidence coefficient vary , γ ∈ (0, 1), to have a β-content tolerance possibility
distribution.

Possibility Distribution Encoding Tolerance Interval for the Normal
Distribution. When our sample set comes from a univariate normal distribu-
tion, the lower and upper tolerance bounds (xl and xu ,respectively) are cal-
culated by formulas (13) and (14) where, X̄ is the sample mean, S the sample
standard deviation, χ2

1−γ,n−1 represents the p-value of the chi-square distribu-
tion with n−1 degree of freedom and Z2

1− 1−β
2

is the squared of the critical value

of the standard normal distribution with probability (1 − 1−β
2 ) [19]. Hence, the

boundaries of a β-content γ-coverage tolerance interval for a random sample of
size n drawn from an unknown normal distribution are defined as follows:

xl = X̄ − kS, xu = X̄ + kS (13)

k =

√√√√ (n− 1)(1 + 1
n )Z2

1− 1−β
2

χ2
1−γ,n−1

(14)

For more details on tolerance intervals see [16].

By using proposition (1), we can find the boundaries of the (1−α)-cut A1−α =
[xl, xu] of the possibility distribution which are calculated by (13), then we obtain
the possibility distribution πCTP

γ as computed below, where Φ(·) is the CDF of
the standard normal distribution.

πCTP
γ (x) = 2(1− Φ

(√√√√χ2
(1−γ,n−1)(

x−X̄
S )2

(n− 1)(1 + 1
n )

)
) (15)
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Possibility Distribution Encoding Distribution Free Tolerance
Interval. Let {x1, x2, · · · , xn} be n independent observations from the random
variable X and let f(x) be its continuous probability density function. A distri-
bution free tolerance region is the region between two tolerance limits where the
probability that this region contains β proportion of the unknown probability
distribution function is equal to γ . The mentioned tolerance limits are functions
L1(x1, x2, · · · , xn) = xr and L2(x1, x2, · · · , xn) = xs constructed based on the
order statistics of the observations.∫ xr

xs

f(x)dx ≥ β, (16)

In order to find the distribution free β-content γ-coverage tolerance interval
(region) of continuous random variable x, we have to find the smallest n and
the order statistics xr and xs for which the probability that equation (16) holds
is greater or equal to γ. Equation (16) has a sampling distribution which was
first defined by Wilks [30] for a univariate random variable with symmetrical
values of r and s. Wilks [30] definition puts the following constraints on r and
s: s = n − r + 1 and 0 < r < s ≤ n. Wald [27] proposed a non-symmetrical
multivariate generalization of the Wilks method. Note that because distribution
free tolerance intervals are based on order statistics, the sample size required
for a given distribution free tolerance interval may increase with the interval’s
confidence level (γ) or the interval’s proportion β. For example, in order to have
95% 0.99-content tolerance interval between the first and last element of a sample
set, using formula in [18], we need n = 473. For the calculation of the sample
size requirement for tolerance intervals. The reader can refer to [16] and [18].

The construction of possibility distribution based on distribution free toler-
ance intervals (region) raises some problems, because for a given sample set
there are many ways to choose the r and s order statistics. If we choose them
symmetrically such that r = n − s + 1, then the possibility distribution which
encodes these intervals does not guarantee that its α-cuts include the mode and
the α-cuts are neither the smallest ones. In fact, for any symmetric unimodal
distribution, if we choose r and s order statistics in a symmetrical way, we will
have tolerance intervals which are also the smallest possible ones and also in-
clude the mode of the distribution (see proposition (1) ). Thus the Distribution
Free γ-Confidence Tolerance Possibility (πDFCTP

γ ) distribution is constructed

by equation below where xr and xs are the limits for the distribution free ITγ,β
of our sample set.

πDFCTP
γ (x) = 1− max

x∈IT
γ,1−α

(α) where Aα = ITγ,β = [xr , xs], β = 1− α

5 Possibility Distribution Encoding Prediction Intervals

Let us now define a prediction interval and its associated possibility distribu-
tion. A prediction interval uses past observations to estimate an interval for what
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the future values will be, however other confidence intervals and credible inter-
vals of parameters give an estimate for the unknown value of a true population
parameter.

Definition 8. Let x1, x2, · · · , xn be a random sample drawn from an arbitrary
distribution, then the interval [xl, xu] is a 100%(1− α) prediction interval such
that:

P (xl ≤ x ≤ xu) = 1− α.

The prediction interval for the next future observation from a normal distribution
is given by [17]:

xn+1 −Xn

S
√

1 + 1/n
∼ tn−1 (17)

IPrev
β = [Xn − t(α

2 ,n−1)S

√
1 +

1

n
,Xn + t(1−α

2 ,n−1)S

√
1 +

1

n
] (18)

So the equation (18) gives a two tailed 1 − α prediction interval for the next
observation xn+1 , where Xn represents the estimated mean from the n past
observations , t(1−α

2 ,n−1) is the 100(1+p
2 )th quantile of Student’s t-distribution

with n− 1 degrees of freedom and β = 1− α.
By using proposition (1) and equation (18), we can infer a prediction possibil-

ity (πPrev) distributions for a sample set which comes from a normal distribution
with an unknown mean and variance. πPrev is computed as below where Tn−1(·)
is the CDF of the Student distribution with n− 1 degree of freedom. Equation
(5) shows the properties of the α-cuts of πPrev.

πPrev(x) = 2(1− Tn−1

(∣∣∣∣ xn+1 −Xn

S
√

1 + 1/n

∣∣∣∣)) (19)

By construction, the obtained distribution has the following property:

Proposition 5. Let πprev be a possibility distribution that encodes prediction
intervals using equation (19) build from a random sample set X = {x1, . . . , xn}
we have:

∀α ∈ (0, 1), P (xn+1 ∈ Aα) ≥ 1− α where Aα = IPrev
β

For distribution free prediction intervals, the reader can find more information
in [16],[23] and [6].

6 Discussion and Illustrations

We have seen three different types of intervals and their encoding possibility
distributions. The most known approach is to choose the possibility distribution
which is encoded by confidence bands. However, depending on the application,
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we might be interested to infer other possibility distributions than the one that
encodes conventional SMIs. We can deduce, from the propositions 2, 4 and 5,
that:

∀x, πC
γ (x) ≥ πCTP

γ (x) ≥ πPrev(x).

The choice of the distributions depends on the application. In this work, because
of the lack of space, we just focused on two-sided intervals. It might be useful to
construct one-sided possibility distributions encoding one-sided intervals. One
can also be interested to encode percentiles of a distribution with a possibility
distribution, but note that instead of using possibility distribution encoding
two-sided percentiles we can use πCTP

γ (two-sided). For more information the
reader can refer to [16]. The reviewed distributions can be used for different
purpose in uncertainty management. Wallis [29] used the Wald et al.[28] normal
tolerance limits to find tolerance intervals for linear regression. In the same
way, we can use our γ-CTP distribution to build probabilistic regression which
encodes tolerance bounds of the response variable. Note that we are not restricted
to linear possibilistic linear regression with homoscedastic and normal errors.
We can also apply our γ-CTP and γ-DFCTP distributions to do possibilistic
non-parametric and parametric regression with homoscedastic or heteroscedastic
errors.

Figure (2) shows the πC
0.95 for a sample set of size 10 with sample mean and

sample variance respectively equal to 0 and 1, figure (2) represents the same
concept for n = 25. This figure illustrates the proposition 3. Indeed, we can
see that our possibility distribution is more informative than the Aregui et al.
possibility distribution.

In figure (5) the blue color is used to represent πPrev for different sample sets
drawn from the normal distribution, all having the same sample parameters,
(X,S) = (0, 1) but different sample sizes. The green distribution represents the
probability-possibility transformation of N (0, 1) .

−10 −5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y2

0.95 Mood C.P.D.
0.95 Smallest Mood C.P.D.
0.95 Frey C.P.D.
N(0,1).

Fig. 2. Possibility distribution encoding
normal confidence band for a sample set
of size 10 having (X̄, S) = (0, 1)
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Fig. 3. Possibility distribution encoding
normal confidence band for a sample set
of size 25 having (X̄, S) = (0, 1)
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Fig. 4. 0.95-confidence tolerance possibil-
ity distribution for different sample sizes
having (X, S) = (0, 1)
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Fig. 5. 0.95-confidence prevision possibil-
ity distribution for different sample sizes
having (X, S) = (0, 1)
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Fig. 6. Distribution free 0.95-confidence
tolerance possibility distribution for a sam-
ple set with size 450 drawn from N (0, 1).
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Fig. 7. Distribution free 0.9-confidence tol-
erance possibility distributions for a sample
set with size 194 drawn from N (0, 1)

In figure (4) we used the previous settings for the πCTP
0.95 . Note that, for

n ≥ 100, the tolerance interval is approximately the same as the maximum likeli-
hood estimated distribution. In figure 6, the blue curves represents the πDFCTP

0.95

for a sample set of size 450, drawn from N (0, 1) and the green distribution rep-
resents the probability-possibility transformation for N (0, 1). In figure (7), we
used two different sample sets with n = 194 to build two different πDFCTP

0.9 .
In this example, in order to reduce the required sample size, we restricted the
biggest β to 0.98.
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7 Conclusion

In this work, we proposed different possibility distributions encoding different
kind of uncertainties. We also proposed a possibility distribution encoding con-
fidence band of the normal distribution which improves the existing one for all
sample sizes. Building possibility distributions which encode tolerance intervals
and prediction intervals are also new concepts that we introduced in this work.
For future works, we propose to build in the same way the possibility distribu-
tions encoding distribution free tolerance regions [27] and tolerance regions for
the multivariate normal distribution [24]. We also propose to use our distribu-
tions for possibilistic regression.

Acknowledgement. We would like to thank Prof. Jesse Frey for her help and
guideline during this work.
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Abstract. Structural systems subject to non-stationary excitations can often 
exhibit time-varying nonlinear behavior. In such cases, a reliable identifica-
tion approach is critical for successful damage detection and for designing an 
effective structural health monitoring (SHM) framework. In this regard, an 
identification approach for nonlinear time-variant systems based on the local-
ization properties of the harmonic wavelet transform is developed herein.  
The developed approach can be viewed as a generalization of the well estab-
lished reverse MISO spectral identification approach to account for non-
stationary inputs and time-varying system parameters. Several linear and  
nonlinear time-variant systems are used to demonstrate the reliability of the 
approach. The approach is found to perform satisfactorily even in the case of 
noise-corrupted data. 

Keywords: nonlinear system, harmonic wavelet, system identification,  
multiple-input-single-output model. 

1 Introduction 

Most structural systems are likely to exhibit nonlinear and time-varying behavior 
when subjected to severe earthquake, wind and sea wave excitations, or to extreme 
events due to climate change such as hurricanes, storms and floods (e.g. 
Kougioumtzoglou and Spanos, 2009). The need to identify the damage in an early 
stage and to ensure the safety and functionality of the structure has made health 
monitoring an important research field (e.g. Farrar and Worden, 2007). It can be 
readily seen that for the purpose of structural health monitoring (SHM) reliable 
identification approaches are necessary to quantify the nonlinear time-varying be-
havior of the structures.  

Regarding nonlinear system identification various interesting approaches have 
been developed such as the ones based on the Volterra-Wiener (VW) representation 
theory (e.g. Bedrosian and Rice, 1971; Schetzen, 1980). Nevertheless, the VW  
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approach requires significant computational effort and appears unattractive for multi-
degree-of-freedom (MDOF) systems.  

An alternative approach utilizes a representation of the nonlinear restoring forc-
es as a set of parallel linear sub-systems. As a result, the identification of a nonlin-
ear system can be achieved by adopting a multiple-input/single-output (MISO) 
linear system analysis approach (e.g. Rice and Fitzpatrick, 1988; Bendat et al., 
1992; Bendat et al., 1995; Bendat, 1998) and by utilizing measured stationary exci-
tation-response data. Several marine/offshore system identification applications 
have been presented based on the aforementioned reverse MISO approach. For 
instance, Spanos and Lu (1995) addressed the nonlinearity induced by the struc-
ture-environment interaction in marine applications, whereas identification of 
MDOF moored structures was performed by Raman et al. (2005) and by Panneer 
Selvam et al. (2006).  In Zeldin and Spanos (1998) the MISO approach was exam-
ined from a novel perspective and it was shown that it can be interpreted as a 
Gram-Schmidt kind of orthogonal decomposition. A more detailed presentation of 
nonlinear system identification techniques can be found in review papers such as 
the one by Kerschen et al. (2006).  

On the other hand, wavelet-based identification approaches (e.g. Kijeswki and 
Kareem, 2003; Spanos and Failla, 2005) appear promising in detecting the evolution-
ary features of structures (e.g. degradation) and can result in effective SHM (e.g. Hou 
et al., 2006). Indicatively, early attempts on wavelet-based identification approaches 
include the work by Staszewski (1998) based on the ridges and skeletons of the wave-
let transform. Further, Lamarque et al. (2000) introduced a wavelet-based formula 
similar to the logarithmic decrement formula to estimate damping. Ghanem and  
Romeo (2000) presented a wavelet-Galerkin approach for identification of linear 
time-variant (LTV) systems. The approach was also applied to nonlinear system iden-
tification (Ghanem and Romeo, 2001). In Chakraborty et al. (2006) the modal param-
eters of a linear MDOF system were identified using a modified Littlewood-Paley 
(LP) wavelet basis function.  

In this paper, a generalization of the reverse MISO identification approach is 
developed based on the harmonic wavelet transform. To this aim, the nonlinear 
system is expressed as a combination of linear sub-systems in the wavelet domain. 
Further, time and frequency dependent generalized harmonic wavelet based fre-
quency response functions (GHW-FRFs) are defined and a conditioning procedure 
is used to de-correlate the inputs of the equivalent MISO system. In this regard, the 
approach can address cases of nonlinear systems with time-varying parameters by 
utilizing non-stationary excitation-response measured data. It is noted that one 
significant advantage of the approach is that the non-stationary processes involved 
can be non-Gaussian in general with an arbitrary evolutionary power spectrum 
(EPS). Various examples of linear and nonlinear time-variant structural systems 
are used to demonstrate the accuracy of the approach. Cases of signals corrupted 
with noise are also included to further highlight the reliability and robustness of 
the approach. 
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2 Harmonic Wavelets 

The family of generalized harmonic wavelets, proposed by Newland (1994), utilizes 
two parameters (m,n) for the definition of the bandwidth at each scale level. One of its 
main advantages relates to the fact that these two parameters, in essence, decouple the 
time-frequency resolution achieved at each scale from the value of the central fre-
quency; this is not the case with other wavelet bases such as the Morlet. 

Generalized harmonic wavelets have a band-limited, box-shaped frequency spec-
trum. A wavelet of ,  scale and position in time attains a representation in the 
frequency domain of the form  
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where  is the total duration of the signal under consideration. The inverse Fourier 
transform of Eq.(1) gives the time-domain representation of the wavelet which is 
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and is in general complex-valued, with magnitude (e.g. Spanos et al., 2005) 
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Newland (1994) showed that a collection of harmonic wavelets spanning adjacent 
non-overlapping intervals at different scales forms an orthogonal basis. The continu-
ous generalized harmonic wavelet transform (GHWT) is defined as 
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and projects any finite energy signal  on this wavelet basis. In Eq.(6) the bar over 
a symbol denotes complex conjugation. Further, the orthogonality properties of such a 
basis allow for perfect reconstruction of the original signal  according to the 
equation (e.g. Newland, 1994; Spanos et al., 2005) 
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where in Eq.(7)  is assumed to be a zero-mean signal. Considering, next, 
Parseval’s theorem and the non-overlapping character of the different energy bands it 
was shown in Spanos and Kougioumtzoglou (2012) that the EPS can be estimated by 
the equation 
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In Eq.(8) the EPS of the process  is assumed to have a constant value in the associat-
ed time and frequency intervals. Similarly, the cross EPS of two random processes  and  can be estimated as (see also Spanos and Kougioumtzoglou, 2011) 
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In fact, in Spanos and Kougioumtzoglou (2012) Eq.(8) was used to obtain estimates 
not only for separable but non-separable in time and frequency EPS as well. Further, 
in Spanos et al. (2005) and in Huang and Chen (2009) EPS estimation applications 
were presented based on expressions similar to Eqs.(8) and (9).  

3 Identification Approach 

3.1 Harmonic Wavelet Based Input-Output Relationships 

Consider a single-degree-of-freedom (SDOF) linear time-variant (LTV) system 
whose motion is governed by the differential equation. 
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( ) ( ) ( )x C t x K t x w t+ + =  ,   (10)

 
where  represents the time-varying damping;  represents the time-varying 
stiffness; and  denotes a zero-mean non-stationary excitation. Applying the 
GHWT on both sides of Eq.(10) yields 
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Further, assuming that the damping and stiffness elements are slowly-varying in time, 
and thus, approximately constant over the compact support of the harmonic wavelet in 
the time domain, Eq.(11) becomes 
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where ( , ) represent the values of the damping and stiffness elements in the 

 translation (time) interval. Focusing next on the GHWT of the velocity and 
applying integration by parts yields 
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Taking into account the compact support of the harmonic wavelet in the time domain 
Eq.(13) becomes 
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Further, considering Eq.(3) and noticing that 
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yields 
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Assuming next that the frequency band is small enough Eq.(16) can be recast in the 
form 
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where 
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Combining Eqs.(14) and (17) and manipulating yields 
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or, equivalently 
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Applying a similar analysis for the GHWT of the acceleration yields 
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Taking into account Eqs.(20-21) Eq.(12) becomes 
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Applying next complex conjugation to Eq.(22) yields 
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Combining Eqs.(22-23) and taking expectations results in 
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Considering next Eq.(24), and taking into account Eq.(8) yields 
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It can be readily seen that Eq.(25) resembles the celebrated spectral input-output rela-
tionship of the linear stationary random vibration theory (e.g. Roberts and Spanos, 
2003). Eq.(25) can be viewed as an equivalent relationship in the harmonic wavelet 
domain. This leads to defining the GHW-FRF as 
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,( , ), ,( , ),, ,

G
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.   (26)

 
Note that the GHW-FRF is defined in the associated time and frequency intervals, or, 
in other words, it is frequency and time dependent. Utilizing next Eq.(26), Eq.(25) can 
take the equivalent form  
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Further, manipulating Eq.(22) and taking expectations yields 
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or, equivalently 

 

( )( , ), ( , ),, ,
xw G ww
m n k m n km n kS H S=

,                                               (29)

 
where Eq.(9) has been considered.  

To recapitulate, harmonic wavelet based auto- and cross-spectral input-output rela-
tionships have been derived and will be used in the ensuing analysis to develop the 
harmonic wavelet based reverse MISO identification approach. 

3.2 Harmonic Wavelet Based Reverse MISO Identification Approach 

Consider a nonlinear SDOF system whose motion is governed by the differential 
equation 
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where .  is an arbitrary nonlinear function which depends on the response dis-
placement and velocity. In the following, it is assumed that the nonlinear function .  can be expressed as a superposition of zero-memory nonlinear transformations 
and linear sub-systems (e.g. Zeldin and Spanos, 1998). Specifically, 
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where  represents polynomial functions;  represents zero-memory nonlinear trans-
formations; and  accounts for the total number of base functions used in the repre-
sentation of the nonlinear restoring force . . The terms  and  associated with the 
unknown structural parameters are interpreted as the inputs  of the MISO system. 
Thus, the composed MISO system can be described by the equation  
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where  denotes the total number of the input variables used in the equivalent MISO 
representation of the nonlinear structural system; and  accounts for possible ex-
traneous noise. Note that in the developed MISO formulation the traditional in-
put/output roles of the excitation/response quantities have been reversed. Applying 
next the GHWT on both sides of Eq.(32) yields 
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It can be readily seen that the unknowns in the system identification problem consist 
of the different GHW-FRFs. In the ensuing analysis, stationary random data MISO 
analysis techniques for identification of linear FRFs (e.g. Bendat, 1998) are properly 
adapted and generalized for the case of GHW-FRFs. 

Obviously, the number of multiple inputs (s) depends on the nature of the nonline-
arity term . ). Without loss of generality, assume that the nonlinear system under 
consideration can be described by the reverse two-input/single output model of 
Fig.(1). Then, Eq.(33) becomes 
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where (A) is simply the reciprocal of the linear GHW-FRF of Eq.(26), namely 
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Note that in the MISO model , ,  and , ,  represent, in general, 
correlated inputs. In Bendat (1998) techniques are described to replace the original set 
of correlated inputs with a new set of uncorrelated inputs determined by using condi-
tioned power spectra (PS) (see also Rice and Fitzpatrick, 1988; Spanos and Lu, 1995). 
The generalization of the therein described techniques to the case of time and fre-
quency dependent harmonic wavelet based EPS is rather straightforward. Specifically, 
the original model can be replaced by an equivalent MISO model with new uncorre-
lated inputs , ,  and , ,   passing through new linear systems  and 

. Their relationship is given by the equations 



 Harmonic Wavelets Based Identification of Nonlinear and Time-Variant Systems 255 

 

( ) ( )2, , , 2, , ,
G G

m n k m n kA L=
,      (36)

 
and 

 

( ) ( ) ( )

1 2

1 1

( , ),
1, , , 1, , , 2, , ,

( , ),

x x
m n kG G G

m n k m n k m n k x x
m n k

S
A L A

S
= −

, 
      (37)

 
where 

 

( )

1

2 2 1

1 1

1 2

2 2

1 1

( , ),
( , ), ( , ),

( , ),
2, , , 2

( , ),

( , ),
( , ),

x w
m n kx w x x

m n k m n kx x
m n kG

m n k x x
m n kx x

m n k x x
m n k

S
S S

S
L

S
S

S

−
=

−
, 

   (38)

 
and 
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4 Numerical Examples 

In the numerical applications following, the non-separable spectrum of the form 
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where 50, is considered to produce the excitation realizations. This spectrum 
comprises some of the main characteristics of seismic shaking, such as decreasing of 
the dominant frequency with time (e.g. Liu, 1970; Spanos and Solomos, 1983). Sam-
ple paths compatible with Eq.(40) are generated using the concept of spectral repre-
sentation of a stochastic process. In this regard, a representation of the non-stationary 
process takes the form (e.g. Spanos and Zeldin, 1998; Liang et al., 2007) 
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where the independent random phases following a uniform distribution over the inter-
val 0,2 . As far as the calculation of the wavelet coefficients is concerned, a compu-
tationally efficient algorithm, which takes advantage of the fast Fourier transform 
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(FFT) scheme, can be found in Newland (1997, 1999). Further, a standard 4th order 
Runge-Kutta numerical integration scheme is utilized for the solution of the govern-
ing nonlinear equations of motion. Also, the effect of noise is taken into considera-
tion. Specifically, Gaussian white noise is added to simulate the measurement noise 
corresponding to signal-to-noise ratio equal to 40 ; that is the standard deviation of 
the added white noise is equal to 10% of the standard deviation of the signal. 

4.1 Duffing Oscillator with Time-Varying Parameters 

A Duffing oscillator with smoothly time-varying parameters is considered next to 
demonstrate the efficiency of the approach to address nonlinear systems. The parame-
ters of the system of Eq.(30) become  

 
2( ) 2 0.01C t t= + ,     (42)

 
2( ) 100 0.1K t t= − ,   (43)

 
and 

 
3[ , ] ( )h u u K t uε= ,   (44)

 
where the nonlinearity magnitude has a value equal to unity.  
 

 

Fig. 1. Comparison between the target value of the squared modulus of the GHW-FRF and 
estimates derived from noiseless and noise corrupted data at different time instants 
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Fig. 2. Comparison between the target value of the stiffness and estimates derived from noise-
less and noise corrupted data 

The squared modulus of the estimated GHW-FRF is plotted in Fig.(1) and com-
pared with the theoretical values for different time instants. Further, the time-varying 
parameters have been estimated by utilizing the real and imaginary parts of the GHW-
FRF of Eq.(35). The stiffness, damping and nonlinearity magnitude estimates are 
plotted in Figs.(2), (3) and (4), respectively. The developed approach captures suc-
cessfully the time-varying character of the parameters values even in the presence of 
noise.  
 

 

Fig. 3. Comparison between the target value of the damping and estimates derived from noise-
less and noise corrupted data 
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Fig. 4. Comparison between the target value of the nonlinearity magnitude and estimates de-
rived from noiseless and noise corrupted data 

5 Concluding Remarks  

Structural systems subject to natural or man-made hazards, and to extreme events due 
to climate change, most often exhibit a time-varying and nonlinear behavior. Thus, 
reliable identification approaches are needed to identify and quantify efficiently the 
time-dependent values of the nonlinear system parameters. The importance of such 
approaches is paramount for further development of health monitoring procedures of 
systems, especially when they are subjected to excitations such as seismic motions, 
winds, ocean waves, impact and blast loads, hurricanes, storms and floods. 

In this paper a harmonic wavelet based identification approach for nonlinear sys-
tems with time-varying parameters has been developed. Specifically, relying on 
measured excitation-response (non-stationary) data and on the localization properties 
of the generalized harmonic wavelet transform time-dependent GHW-FRFs have been 
defined and identified via a conditioning procedure. To this aim, input-output spectral 
relationships have been derived for the linear system case in the harmonic wavelet 
domain. It has been noted that these relationships can be construed as a direct general-
ization of the celebrated spectral input-output relationships of the linear stationary 
random vibration theory (e.g. Roberts and Spanos, 2003). Further, the identified 
GHW-FRFs have been utilized to determine the time-varying parameters of the asso-
ciated system. This has been done in conjunction with an extension of the well-
established reverse MISO spectral identification approach to the harmonic wavelet 
domain. It can be viewed as a generalization/extension of the approach to address 
cases of non-stationary measured data and of nonlinear time-variant systems. One 
significant advantage of the approach is that the non-stationary processes involved in 
the identification approach can be non-Gaussian, in general, with arbitrary evolution-
ary power spectra (EPS). The reliability of the identification approach, a prerequisite 
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for effective SHM frameworks, has been demonstrated for a number of linear and 
nonlinear time-variant structural systems including cases of noise-corrupted data by 
several numerical simulations. 
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Abstract. The assessment of waste repositories are based on predictive
models that are able to forecast the migration of contaminants within
groundwater. The heterogeneity and stochasticity of the media in which
the dispersion phenomenon takes place, renders classical analytical-
numerical approaches scarcely adequate in practice. Furthermore, these
approaches are computationally intensive and limited to small scale ap-
plications.

In this paper, the contaminant transport is described by the linear
Boltzmann integral transport equation and solved by means of a Monte
Carlo particle tracking based approach. The governing parameters of the
stochastic model are calibration on a small-scale analysis based on the
Discrete Fracture Network simulation. The proposed approach is very
flexible and computationally efficient. It can be adopted as an upscaling
procedure and to predict the migration of contaminants through frac-
tured media at scale of practical interest.

Keywords: Monte Carlo Simulation, Upscaling, Uncertainty Quantifi-
cation, Contaminant Transport, Boltzmann Transport Equation.

1 Introduction

The performance of a deep repository for nuclear waste relies on its capacity
to isolate the radionuclides from the biosphere for long time scale [9]. This is
achieved through the use of multi-barrier systems as the waste package, the engi-
neered barriers and the natural barriers formed by the rock where the repository
is built. Fractures are the principal pathways for the groundwater-driven disper-
sion of radioactive contaminants which may escape from subsurface waste repos-
itories. Hence, it is of utmost importance to study the phenomena of transport
of radionuclides in the fractured natural rock matrix at field scale.

The heterogeneity and stochasticity of the media in which the dispersion phe-
nomenon takes place, renders classical analytical-numerical approaches scarcely
adequate in practice. In fractured media, fluid flows mainly through fractures so
that considering the host matrix as a homogeneous continuum is an unacceptable
modelling simplification. In fact, it has been shown (see e.g. [5,6,16]) that the use
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of effective flow parameters, representing the average properties of a set of inde-
pendent transport pathways can not capture the complexity of the phenomena
involved during the transport, which may lead to unjustified conservatism.

Approaches to explicitly incorporate the geometry and properties of discrete
fracture network have been developed since the mid-1990s as a framework for
characterization of contaminated sites on fractured rock (see e.g. [1,2]). How-
ever, a potential practical difficulty lies in the determination of the values of
some model parameters. The task of relating analytically the fractures geomet-
ric properties (i.e. distributions of the fracture lengths, orientations, apertures
etc.) with the velocity field in the fracture network is impracticable in realistic
settings. Furthermore, the characterization of geological media on an engineer-
ing scale is not feasible and the estimated properties are associated with a large
spatial variability and uncertainty.

Therefore, stochastic models are required in order to capture the effect of
the uncertainties associated with the parameters and characteristics of the me-
dia. Particle tracking in stochastically generated networks of discrete fractures
represents an alternative to the conventional advection-dispersion description
of transport phenomena [2,4,15,16]. Numerous discrete fracture network models
have been developed and tested (see e.g. [14,19]). However, the particle tracking
simulation in discrete fracture networks becomes computationally intensive even
for small scales [2,16]. To overcome these difficulties, in the last years a category
of approaches, referred to as “hybrid methods” [1], has emerged for modelling
both the water flow and the contaminant transport. In a hybrid method, a de-
tailed simulation for a sub-domain of the field-scale domain is used to deduce
parameters for a simpler and less computationally demanding model such as e.g.
continuum model.

In this paper a continuum stochastic approach, based on an analogy with
neutron transport is adopted to treat the transport of (radioactive) contami-
nants through fractured media. The resulting stochastic model [8] is evaluated
by means of the Monte Carlo simulation technique whose flexibility allows con-
sidering explicitly the different processes that govern the transport as well as
different boundary conditions. The model parameters are derived directly from
small-scale geometric configuration of the fractures and from the dynamics of
the driving fluid system, as quantitatively described by means of the Discrete
Fracture Network simulation (see e.g. [19]). This hybrid approach provides a
computationally efficient approach for up-scaling the uncertainty quantification
for the diffusion of contaminant in fractured media on the scale of interest needed
for practical applications.

The paper is organized as follows. In Section 2 the stochastic model adopted
for the simulation of contaminant transport through fractured media is intro-
duced. In Section 3 a strategy to estimate the model parameters of the stochastic
model is presented. In Section 4 the proposed approach is applied for upscaling
the uncertainty quantification of the radionuclide transport in fractured media.
Finally, some final remarks are listed in Section 5.
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2 The Stochastic Model

The transport of radionuclides through fractured media can be modelled as a
series of straight movements with sudden changes of direction and speed. The
straight movements correspond to the transport in a fracture, and between frac-
ture intersections, where the water flow is constant. At fracture intersection the
contaminant can enter in a new fracture characterised by different orientation,
aperture and water flow. Consequently, the contaminant is changing its direction
and speed.

An analogy can be made with the transport of neutrons in a non-multiplying
media. Hence, the linear Boltzmann transport equation that is widely used for
neutron transport in reactor design and radiation shielding calculations can be
applied to describe the transport of contaminant through fractured media [8,17].
By doing so, the linear paths in the fractures can be treated as pseudo-mean free
paths and the variations in direction and speed at the intersections can be treated
as “pseudo-scattering” events.

Let C(r,Ω, v, t)drdΩdv be the mean density of radionuclides (contaminants)
at position r, in volume element dr, moving in the solid angle dΩ centered about
the direction Ω, with velocity between v and v + dv, at time t. In the case of a
single radioactive nuclide or contaminant, the quantity C satisfies the following
transport equation [17]: [

Rd
∂

∂t
+ vΩ.∇+ vΣ(r,Ω) + λRd

]
C(r,Ω, v, t) =∫

dΩ′
∫

dv′v′Σ(r,Ω′)g(r; v′ → v;Ω′ → Ω)C(r,Ω′, v′, t) + S(r,Ω, v, t)

(1)

where Rd is the retardation factor, Σ is the probability density of the branching
points (fracture intersections) so that 1/Σ is the pseudo-mean free path, g(·)
is the re-distribution in speed and direction of the particles at the intersection,
λ is the decay constant of the radionuclide and S is an independent source of
radionuclides. The distributions Σ(·), g(·) and S(·) in Eq. (1) encode informa-
tion about the geometry of the fracture network and the hydrodynamics of the
water flow. In particular, the transfer function g(·) describes probabilistically the
direction and speed of motion of the contaminant after a fracture intersection.
The Boltzmann equation (Eq. 1) is an equation that describes the time evolution
of the distribution density function, C(·)dv, in the phase space.

Unfortunately, the parameters required by the proposed model are difficult
to computed. For example, in Ref. [18] an attempt to derive the parameters
appearing in the Boltzmann equation analytically from a purely geometric de-
scription of the fractures networks has been proposed. However, such kind of
approach have very limited applicability. In fact, parameters appearing in the
Boltzmann equation depend not only on the network geometry and configuration
but also on the fluid dynamics in the interconnected network. Hence, in practical
applications these parameters can be only characterised probabilistically.
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2.1 Monte Carlo Solution of the Transport Equation

Eq. (1) can be solved analytically only under strong simplifying assumptions. A
powerful alternative commonly used in neutron transport problems, is based on
Monte Carlo simulation. In this respect, a Monte Carlo particle tracking sim-
ulation method has been proposed to simulate the transport of radionuclides
and contaminants along fractured media. The proposed approach has been al-
ready verified against analytical solution [8]. It is very flexible and applicable to
one-, two- and three-dimensional problems. It allows accounting for the different
physical processes occurring during the transport and for the inhomogeneities
in time and space by properly varying the parameter values. Inhomogeneities in
time is a important aspect in analysis, such as the performance assessments of
waste repositories, in which the properties of the medium are likely to change
over long period of time required by regulation (millions of years).

The Monte Carlo approach consists in simulating a large number of indepen-
dent travel “histories”. Each Monte Carlo history is obtained by simulating the
fate of the contaminant through the fractured medium, i.e. a particle is gener-
ated from a suitable source and then followed up through the fractured medium
until the end of the time interval of concern. In few words, the simulated par-
ticles move within fractures dragged by the water flow. If not adsorbed by the
fracture wall or transformed by radioactive decay, they arrive at the next inter-
section points where they perform “collisions” and entering new fractures with
different geometric properties and flow features, i.e. direction and speed. Each
Monte Carlo history represents one possible function of the ensemble generated
by the stochastic process, made up of what happens to the contaminant during
the time interval of interest, called mission time.

In the following for simplicity and without loss of generality, the approach is
briefly summarized referring to the case of only one kind of contaminant particle,
no radioactive decay and no exchange processes with the fractured host matrix. It
is important to mention that the proposed approach allows to simulate realistic
cases considering radioactive decays (see e.g. [12]), exchange linear non-linear
processes with the host matrix (e.g. [7]).

Let k represent the state of the particle (i.e. its position r, velocity v, flight
directions Ω, characteristic of the fracture, chemical state, etc...) and ψ(k, t)
the incoming transition probability density function that defines the probability
density that the particle makes a transition at time between t and t+ dt and as
a result of the transition it enters state k. The incoming transition probability
density function φ(k, t) can be expanded as a von Neumann series of products of
the transport kernels, K, calculating in correspondence of the points of transition
in a random walk in the phase space:

ψ(k, t) =

inf∑
n=0

ψn(k, t) = ψ0(k, t) +
∑
k′

∫ t

t∗
ψ(k′, t′)K(k, t|k′, t′)dt′ (2)

It can be demonstrated that φ(k, t) is a solution of the linear Boltzmann integral
(see e.g. [11]).
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Estimations of ψ(k, t) can be obtained by means of Monte Carlo method
where a large number of random walk histories are simulated. The average of
the random walks allows to estimate the transition density which is the unknown
in the Boltzmann equation.

Starting from a generic particle identified by the representative point P ′ ≡
(k, t), in the phase space state Ω, the next representative point (i.e. the collision
point) of the particle, P ≡ (k, t), is identified by sampling from the conditional
probabilistic density function (pdf) K(k, t|k′, t′) called “Transport Kernel”.

The “Transport Kernel” can be defined as the product of the “Free Flight
Kernel”, T , and the “Collision Kernel”, C:

K(t, k|k′, t′) = T (t|k′, t′) · C(k|k′, t) (3)

Eq. (3) is the conditional probability density function that the particle undergoes

a collision, i.e. meets an intersection branching point, at time t given that the
previous transition has occurred at time t′ and that the particle entered state k′

as a result of the transition.
In the model considered, the Free Flight Kernel is written as:

T (t|k′, t′) = Λk′ exp−Λk′ (t− t′) (4)

where Λk′ = vk′Σk′ and vk′ represents the contaminant (and water flow) velocity
in the fracture. The reciprocal of Σk′ can be seen as the mean distance between
fracture intersections while the particle is in state k′. Hence, 1/Λk′ represents
the mean time between particle transitions.

The Collision Kernel, C(k|k′, t) defines the conditional probability for the
particle in the state k′ to enter the new state k by effect of the transition at time
t and can be written as:

C(k|k′, t) =
Λkk′

Λk′
(5)

where Λkk′ represents a generic transition rate from the state k′ to the state
k. The transition rates describe the radioactive decays, the physico-chemical
transformations (e.g. the adsorption on the matrix) or a change in speed and
direction. The latter kind of transition represents a scattering function called
“Redistribution Kernel”, R:

C(k|k′, t) = R(t;Ω′ → Ω; v′ → v; b′ → b) (6)

which gives the conditional probability that the particle by effect of scattering
undergone at time t while travelling with velocity v′ along the fracture with
orientation Ω′ and aperture b′, enters in a new fracture in direction Ω, with
aperture b and flow velocity v.

In the following Section an approach to calculate the transport Kernels from
a (detailed) small-scale simulation is presented.
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3 Parameter Identification

The parameters appearing in the Boltzmann equation that govern the contam-
inant transport through fractured media are in general difficult to computed.
They depend not only on the network geometry (e.g. the geometry of the frac-
tures, aperture distribution) but also on the fluid dynamics in the interconnected
network.

In realistic situations, the transport kernel can not be determined directly but
it can be obtained from statistical about the fractured media. More specifically,
the Free Flight Kernel, given by Eq. (5), is proportional to the mean distance
between fracture intersections and encodes geometric and hydrodynamic proper-
ties of the fracture network. It is completely determined by the total transition
rate Λk = v(·)Σ(·) where v represents the velocity of the water in the chan-
nel and Σ the channel length between fracture intersections. These parameters
can depends on other parameters such as the channel aperture b, orientation θ,
position, x, etc.

The Redistribution Kernel, R(v′g → vg, θ
′
g → θg, b

′
g → bg), encodes infor-

mation on how the incoming mass of contaminants is distributed among the
outgoing fluxes. Different models can be used to model the contaminant redis-
tribution. For instance, there are two different dual approaches for describing
mass mixing at the intersection point: “complete mixing”, “static mixing” [3].
In the complete mixing model the contaminant concentration is constant in the
outgoing fluxes (i.e. the probability to take a channel is proportional to the flux
in that channel). In the static mixing the contaminant has the same probability
to be redistributed in the outgoing fluxes (i.e. it is independent of the flux in the
outgoing channels). The different hypotheses that describe the redistribution of
the solute contaminant at the intersection point has a strong influence on the
Redistribution Kernel.

The next Section shows how the transport kernels can be estimated from a
small-scale simulation based on discrete fractured network.

3.1 The Discrete Fracture Network Approach

The fundamental motivation of Discrete Fracture Network modelling is the
recognition that at every scale, groundwater transport in fractured and carbon-
ate rocks tend to be dominated by a limited number of discrete pathways formed
by fractures, karts, and other discrete features. However, despite the importance
of the applications it is not feasible to map accurately at engineering scales of in-
terest fractures and fracture networks in rock masses not least because accurate
field measurement of a single discontinuity is difficult and measurement of all
discontinuities is impossible. In practical applications, the available information
comes from surveys of analogues, such as rock outcrops, or from direct or indirect
observations of the rock mass such as drill cores, borehole imaging, geophysical
surveys or seismic monitoring during fracture stimulation. Such information are
then used to construct a stochastic model of the fractured network.
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Fig. 1. Example of a Discrete Fracture Network simulation over a domain of 20 × 20
meters. (a) Fracture Network; (b) Channel Network where the line size is proportional
to the flux through the fracture.

In the following, we briefly describe the algorithm underlying the Discrete
Fracture Network approach. Starting from the statistical distribution of fracture
properties, such as length, position, orientation and aperture (or transmissivity),
a random realization of fractures is generated by Monte Carlo sampling as shown
in Figure 1 (a). This is called “fracture network”. The intersections between the
sampled fractures are identified as nodes of the network. Then, the fractures
connected to both upstream and downstream boundaries are identified forming
the so-called “channel network”. Hence, isolated fractures and fractures with
dead ends are eliminated from the network.

Given the network boundary conditions such as the hydraulic gradient, the
hydraulic heads at each connected nodes of the channel network are calculated
solving a system of algebraic linear equations obtained from the mass conserva-
tion principle applied at the fracture intersections (i.e. Kirchoff’s law). The water
fluxes in the channels are then computed based on laminar flow law. Hence, the
flow rate and fluid velocity in each fracture channel between two nodes of the
network are directly computed from the hydraulic heads (Figure 1 (b)).

Finally, a particle tracking algorithm is applied to simulate the contaminant
transport through the channel network (Figure 2). Table 1 summarizes the main
parameters used in the Discrete Fracture Network simulations. The results of
the particle tracking can be used to estimate the probabilistic transition kernels
collecting in appropriate counters the quantities of interest.

For instance, it is possible to obtain the velocity distribution of the water flow
in the discrete fracture networks or the fracture orientation (see Figure 3). The
particle redistribution kernel can be computed recording the number of particles
on status k′ (i.e. with velocity v′ in a channel with aperture b′ and orientation
θ′) entering in a status k (i.e. in a channel with aperture b, orientation θ and
velocity v).
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Fig. 2. Particle tracking in the Channel Network of Figure (1) with flux injection
boundary condition and complete mixing at each nodes of the network
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Fig. 3. Probability density functions for (a) the flow velocities, (b), the fracture aper-
ture and (c) the fracture orientation estimate from the Discrete Fracture Network for
the complete and static mixing functions

4 Numerical Results

A typical question addressed in long-term geologic repository design is how much
of the radionuclides which enter the fractured rock under accidental scenarios
is eventually discharged. Particle tracking through stochastically generated net-
work of discrete fractures is largely used to describe the transport in fractured
rock. However, discrete fracture network simulations are computationally very
intensive and limited to small scales. A hybrid method is here used to upscale
the uncertainty quantification on scale of practical interest.
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Table 1. Main parameters used in simulation of transport of radionuclides in a frac-
tured media as shown in Figures (1-5)

Discrete Fractured Networks

Parameter (DFN) Value

Fracture number 242 [-]
Fracture position uniform [-10, 10] [m]
Fracture length lognormal (5, 0.25) [m]
Fracture orientation uniform [0, 2π) [rad]
Fracture aperture lognormal (1e-4,0.25) [m]
Domain 2D (parameter estimation): 20x20 [m]
Domain 2D (verification): 70x70 [m]
X Hydraulic gradient 5 [-]
Y Hydraulic gradient 0 [-]
number of realizations 5000 [-]

number of particle tracking 50 [-]

Boundary condition flux injection
Mixing mode complete mixing

Monte Carlo - Boltzmann Transport Equation

Monte Carlo samples 105 [-]
Mission time 109 [s]

A full Discrete Fracture Network analysis of a subdomain of 20 × 20 meters
is used to estimate the transport kernel for the Monte Carlo random walk simu-
lation. Then, a Monte Carlo simulation is performed to estimated the advection
time required by the contaminant to migrate through a 2D fractured media
of 70 × 70 meters. For a verification purpose the particle tracking analysis on
Discrete Fracture Network on the same scale has been performed. Table 1 sum-
maries the main parameters used in the Discrete Fracture Network simulations
and in the Monte Carlo random walk simulation.

The comparison of the advection time τ required by the radionuclide (con-
taminant) to travel through a fractured medium of size L = 70× 70 is reported
in Figures 4-5. Figure 4 shows the probability distribution function of τ , while
Figure 5 shows the cumulative and the complementary cumulative distribution
of τ , respectively.

The results of Monte Carlo random walk simulation have been verified by
means of a comparison with the results obtained from particle tracking through
stochastically generated networks of discrete fracture in the simplified case of
no radioactive decay and no exchange processes with the fractured host matrix.
The agreement between the results are very satisfactory.

In is important to notice that the particle tracking simulation through discrete
fracture networks is limited to small system sizes due to high computational cost
involved in re-solving the governing system of equations (i.e. the identification
of the connected fractures and the calculation of the hydraulic heads at each
node of the network). On the other hand the computational cost of the proposed
approach is independent on the number of fractures present of the media. In fact,
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the computational cost is proportional to the total number of iterations that the
particles undergo during the transport. Furthermore, the computational time
of the Monte Carlo random walk can be reduced by resorting to the so-called
“forced transport” method that consist in altering the transition probabilities
of particles and forcing their movement through the control session during the
mission time.
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5 Conclusions

The problem of adequately confining the radioactive wastes produced in indus-
trial applications is of paramount importance for the future exploitation of the
advantages of ionizing radiation and radioisotopes, in both the energy and non-
energy related fields. The goal of a repository for nuclear waste is to isolate
the radionuclides from the biosphere for the long time scales required by the
radionuclides to decay to levels of negligible radiological significance. Fractures
are the principal pathways for the groundwater-driven dispersion of radioactive
contaminants which may escape from subsurface waste repositories. It is of ut-
most importance to study the phenomena of transport of radionuclides in the
fractured natural rock matrix at field scale.

In this study, a stochastic approach derived from the transport of neutrons in
non-multiplying media and governed by the linear Boltzmann transport equation
has been adopted to simulate the transport of radionuclides through fractured
media. The corresponding model is evaluated by means of Monte Carlo random
walk simulation, where a large number of particles are followed in their travel
through the fractures, using appropriate probability distribution functions to
characterize their transport processes. Each of this particle history simulate a
random walk representative of the life of the contaminant. The main advan-
tage of the proposed model is its flexible structure which allows one to consider
multidimensional geometries and to describe a wide range of phenomena, by ac-
counting for the individual interactions which each particle may undergo. Thus,
complex retention processes, such as kinetically controlled sorption, radioactive
decay and decay chains, can be included in a straightforward manner at the
spatial scale of practical interest.

It has been shown that the probability distribution functions that govern the
transport of contaminants (i.e. the transport kernels) can be obtained from a
discrete fracture network simulation performed on a modest spatial scale. More-
over, the computation requirements for the proposed approach are a small frac-
tion of those required for classical approach based on particle tracking through
a statistically generated network of fractures [1].

Furthermore, the proposed framework is very general and can be adopted
in different fields as well. As examples, the Boltzmann transport equation, and
its evaluation by means of Monte Carlo approach, has been already adopted to
study the availability and reliability of engineering systems (see e.g. [10]) and in
the design of advanced field effect transistors [13].
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Abstract. Uncertainties are inherent in any structural system. Traditional design 
optimization techniques consider uncertainties implicitly by partial safe factors. 
However, Reliability-Based Design Optimization (RBDO) methods account for 
uncertainties explicitly. These methods find an optimum design that verifies 
several reliability constraints. The objective here is to obtain an economic and 
safe design. This paper describes several RBDO methods and the functions 
programmed to implements these methods. These functions form a package 
added to the well known Structural Reliability Toolbox Finite Element Reliabil-
ity Using Matlab (FERUM). A structural example has been solved with the 
functions implemented: a transmission tower truss.  

Keywords: Structural Reliability, Reliability Based Design Optimization, Dou-
ble Loop Method, Transmission Tower. 

1 Introduction  

Design optimization has undergone a substantial progress. Commercial finite element 
codes have added optimization methods, but, most of these software packages deal 
only with deterministic parameters. However, uncertainties are inherent in design 
variables and parameters such as material properties, loading and geometry parame-
ters. Other type of uncertainty is caused by inaccurate knowledge of the model and is 
named epistemic uncertainty. It is necessary to consider all these type of uncertainties 
in the design of any engineering system to assure reliability and quality. Traditionally, 
these uncertainties have been considered through partial safety factors in structural 
optimization methods. These partial safety factors are established in structural design 
codes, such as Eurocodes and the Spanish Building Technical Code. These methods 
are named “semiprobabilistic” because uncertainties of the design variables are con-
sidered implicitly. However, safety factors do not provide a quantitative measure of 
the safety margin in design and are not quantitatively linked to the influence of differ-
ent design variables and their uncertainties on the overall system performance. 

For a rational design to be made it is crucial to account for uncertainties explicitly. 
Also, any type of dependence or correlation between these uncertainties must be ac-
counted for. The process of design optimization enhanced by the addition of reliabil-
ity constraints is referred as Reliability-Based Design Optimization (RBDO) or  
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Reliabilty-Based Structural Optimization. A large research effort has been carried out 
about RBDO methods during the last thirty years. The main objective of this effort 
has been to reduce the large computational cost needed to obtain an optimum design 
that verifies reliability constraints.  

A selection of RBDO methods have been implemented in Matlab for the Finite 
Element Reliability Using Matlab (FERUM) program. This work was based in ver-
sion 3.1 of FERUM that was developed at the Department of Civil & Environmental 
Engineering in the University of California at Berkeley. This new FERUM_RBDO 
package can solve both analytical and structural problems. This package is ongoing 
and new features are constantly added. The organization of this paper is as follow. 
Section 2 presents the formulation of the RBDO problem more frequently used in 
literature about this topic. A classification of RBDO methods is provided in Section 3. 
These methods are classified in three groups: double loop methods, single loop meth-
ods and decoupled methods. Section 4 contains a brief review of FERUM and ex-
plains the new functions and capabilities added to FERUM to solve RBDO problems. 
Both analytical and structural problems can be solved. Section 5 includes an example 
of a transmission tower. Finally, section 6 contains the conclusions. 

2 Formulation of the RBDO Problem 

A typical RBDO problem is formulated as 

  (1) 

where  is the vector of deterministic design variables.  and  are the 

upper and lower bounds of vector , respectively.   is the vector of random 

design variables.  is the means of random design variables.  and  are the 

upper and lower bounds of vector .  is the vector of random parameters. 

 is the mean value of .  is the objective function,  is the number of con-

straints,  is the number of deterministic design variables,  is the number or ran-
dom design variables and q is the number of random parameters,  is the probability 

of violating the i-th probabilistic constraint and  is the target probability of failure 

for the i-th probabilistic constraint. 
If the First Order Reliability Method (FORM) is used, as usually occurs in practical 

applications, the failure probability  of a probabilistic constraint is given as a func-

tion of the reliability index , written as: 
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where  is the standard Gaussian cumulated distribution function and  is the 

reliability index defined by Hasofer and Lind (1974), which is evaluated by solving 
the constrained optimization problem: 

  (3) 

The solution of this optimization problem  is the minimum distance of a point  
on the failure surface  from the origin of the standard normal space  

and is called the Most Probable Point (MPP) or -point, as . A probabilistic 

transformation  from the original space of physical random variables 

 to the normalized space  is needed.  Usually Nataf transformation or Ro-

senblatt transformation are used. The image of a performance function   is 

.  

The optimization process of Eq. (1) is carried out in the space of the design para-
meters . In parallel, the solution of the reliability problem of Eq. (3) is per-

formed in the normalized space  of the random variables.   
Traditional RBDO method requires a double loop iteration procedure, where relia-

bility analysis is carried out in the inner loop for each change in the design variables, 
in order to evaluate the reliability constraints. The computational time for this proce-
dure is extremely high due to the multiplication of the number of iterations in both 
outer loop and reliability assessment loop, involving a very high number of mechani-
cal analyses. 

3 RBDO Methods  

Due to the prohibitive computational effort of the traditional double loop RBDO 
method, researchers have developed several methods to solve this numerical burden. 
Below, they are briefly described. 

3.1 Double-Loop Methods 

These RBDO formulations are based on improvements of the traditional double-loop 
approach by increasing the efficiency of the reliability analysis. Two approaches have 
been proposed to deal with probabilistic constraints in the double-loop formulation: 
Reliability Index Approach (RIA) and Performance Measure Approach (PMA). 

RIA based RBDO is the traditional or classic RBDO formulation. The RBDO 
problem is solved in two spaces: the spaces of design variables, corresponding to a 
deterministic physical space and the space of Gaussian random variables, obtained by 
probabilistic transformation of the random physical variables. The RIA based RBDO 
problem is stated as: 
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  (4) 

where  is the reliability index of the i-th probabilistic constraint for the structure 

and is the target or allowed reliability index.  The assessment of the reliability 
index  involves solving the optimization problem stated as equation (3). Both, 

standard nonlinear constrained optimization methods and FORM methods like the 
Hasofer-Lind-Rackwitz-Fiesler (HLRF) method or the improved-HLRF method can 
be used. 

The solution of this RBDO problem consists in solving the two nested optimization 
problems. For each new set of the design parameters, the reliability analysis is per-
formed in order to get the new MPP, corresponding to a given reliability level. It is 
well established in the literature that RIA-based RBDO method converges slowly, or 
provides inaccurate results or even fails to converge due to the highly non linear 
transformations involved.   

Lee and Kwak [1] and Tu et al. [2] proposed the use the Performance Measure Ap-
proach (PMA) instead of the widely used RIA. In PMA, inverse reliability analysis is 
performed to search for a point with the lowest positive performance function value 
on a hypersurface determined by the target reliability index Since the inverse reli-

ability analysis is also performed iteratively, the reliability analysis and optimization 
loops are still nested.  

The PMA-based RBDO problem is stated as  

  (5) 

where the performance measure  is obtained from the following reliability minimi-

sation problem:  

  (6) 

The solution of the optimization problem stated in equation (6) is named the Most 
Probable Point of Inverse Reliability (MPPIR). 

The computational expense caused by the nesting of design optimization loop and 
reliability analysis loop makes traditional RBDO impractical for realistic problems 
with large number of variables and constraints. Various techniques have been pro-
posed to improve the efficiency of RBDO.  Some techniques improve the efficiency 
of reliability analysis in the double loop formulation. Other techniques decouple the 
design optimization and the reliability analysis problems. Other methods carried out 
design optimization and reliability analysis in a single loop.   
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3.2 Improvements of Reliability Analysis in Double-Loop Formulation 

PMA-based RBDO is shown to be more efficient and robust than RIA-based RBDO, 
because performance measure methods do not need to obtain the exact value of the 
probability of failure for each inner loop and this implies that computational cost de-
creases. However, several numerical examples using PMA show inefficiency and 
instability in the assessment of probabilistic constraints during the RBDO process. 
B.D. Youn et al [3], [4], [5] have carried out some advanced PMA-based methods. 
These methods are Hybrid Mean Value (HMV) method [3], Enhanced Hybrid Mean 
Value (HMV+) method [4] and Enriched Performance Measure Approach (PMA+) 
[5] and are briefly described here. HMV method is a powerfull method to obtain the 
MPPIR in the inner loop. This method combines two methods: the Advance Mean 
Value (AMV) and the Conjugate Mean Value (CMV) methods and provides accurate 
results for concave and convex nonlinear reliability constraints. However, although 
the HMV method performs well for convex or concave performance functions, it 
could fail to converge for highly nonlinear performance functions. An enhanced 
HMV method, named HMV+ was proposed by B.D. Youn et al [4]. This method 
substantially improves numerical efficiency and stability in reliability analysis of 
highly nonlinear performance functions. The difference between HMV and HMV+ is 
that HMV+ introduces interpolation to improve the MPPIR search.PMA+ is an en-
riched PMA based method, enhancing numerical efficiency while maintaining stability 
in the RBDO process. PMA+ integrates three key ideas, in addition to the HMV+ 
method: launching RBDO at a deterministic optimum design, feasibility checks for 
probabilistic constraints and fast reliability analysis under the condition of design close-
ness. Two parameters are used in PMA+ method. e-active parameter is used to obtain a 
set of constraints close to be activated constraints. Only violated, active and e-active 
constraints are evaluated in the reliability analysis. The other parameter, named e-
closeness, is used to determine when two consecutive designs are close. Then, a fast 
reliability analysis is developed for the e-active constraints.  

3.3 Decoupled Methods or Sequential Methods 

In this kind of RBDO methods the optimization problem and the reliability assess-
ment are decoupled and are carried out sequentially. The reliability constraints are 
replaced by equivalent deterministic (or pseudo-deterministic) constraints, involving 
some additional simplifications. 

Du and Chen [6] proposed the Sequential Optimization and Reliability Assessment 
(SORA) method. This method employs a decoupled strategy where a series of cycles 
of optimization and reliability assessment is employed. In each cycle, design optimi-
zation and reliability assessment are decoupled from each other; no reliability  
assessment is required within the optimization and the reliability assessment is only 
conducted after the optimization. The key concept is to use the reliability information 
obtained in the previous cycle to shift the boundaries of the violated deterministic 
constraints (with low reliability) to the feasible region. Therefore, the design is im-
proved from cycle to cycle and the computation efficiency is improved significantly. 
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3.4 Single Loop Approaches  

RBDO approaches belonging to this group collapse the optimization and the reliabil-
ity problems within a single-loop dealing with both design and random variables. 
Both RIA- and PMA-based single-loop strategies have been developed [7], [8], [9]. 

The single-loop single-vector (SLSV) approach [7], [10] provides the first attempt 
of a truly single-loop approach. It improves the RBDO computational efficiency by 
eliminating the inner reliability loops. However, it requires a probabilistic active set 
strategy for identifying the active constraints, which may hinder its practicality.  

Other single-level RBDO algorithms have also been reported in Argarwal et al. 
[11], Kuschel and Rackwitz [8] and Streicher and Rackwitz [12]. These methods in-
troduce the Karush-Kuhn-Tucker (KKT) optimality conditions at the optima of the 
inner optimization loops as equality constraints in the outer design optimization loop. 
This helps to adopt a well-known strategy for effectiveness in optimization, i.e., satis-
fying the constraints only at the optimum and allowing the solution to be infeasible 
before convergence. However, these RBDO methods based on KKT conditions have a 
great drawback: the large number of design variables. Here, all variables in the prob-
lem are considered design variables. That is, the original design variables, the compo-
nents of the MPP in standard normal space for each reliability constraints and the 
Lagrange multipliers for each optimization sub problem. This can increase the com-
putational cost substantially, especially for practical problems with a large number of 
design variables and a large number of constraints. Furthermore, the approach in [8], 
[11] and [12] requires second-order derivatives which are computationally expensive 
and difficult to calculate accurately. 

Liang et al [13] have development a single-loop RBDO formulation. This method 
has a main advantage: it eliminates the repeated reliability loops without increasing 
the number of design variables or adding equality constraints. It does not require sec-
ond-order derivatives. The KKT optimality conditions of the inner reliability loops 
are explicitly used to move from the standard normal space to the original 
space, where the inequality constraints of the outer design optimization loop are 
evaluated. It converts the probabilistic optimization formulation into a deterministic 
optimization formulation.  This method estimates the MPP for each probabilistic con-
straint using gradient information from the previous iteration. It therefore, eliminates 
the reliability optimization loop of the conventional double-loop RBDO approach.  

A recent paper [14] provides a benchmark study of different RBDO methods. Sev-
eral analytical and structural examples are solved and their results are analyzed there.  

4 Review of FERUM 

The Finite Element Reliability Using Matlab (FERUM) software is a collection of 
Matlab functions used to run Reliability Analysis. The first version of this toolbox 
was released in 1999 at the Structural Engineering Mechanics and Material Division 
of the Department of Civil & Environmental Engineering in the University of Cali-
fornia at Berkeley (UCB). Last release from UCB is the version 3.1 in 2002. This 
code can be downloaded from www.ce.berkeley.edu/FERUM.  

U X
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A few years later, a new version of the FERUM code has been released. This ver-
sion is based on the work carried out at the Institut Français de Mécanique Avancée 
(IFMA) in Clermont-Ferrand, France and is named FERUM 4.1. This software in-
cludes additional functions and improved capabilities. FERUM 4.1 package and the 
FERUM 4.1 User’s Guide can be downloaded from the web page:  
www.ifma.fr/Recherche/Labos/FERUM. 

In the present work some functions have been written to carry out Reliability 
Based Design Optimization (RBDO). Different RBDO methods have been imple-
mented. This collection of functions added to FERUM can be seen as a new package 
and is named as FERUM_RBDO. It is necessary to remind that this new package is 
constantly under development. The following RBDO methods have been imple-
mented in the FERUM_RBDO package: 

 
Double loop methods 
   RBDO - DL - RIA 
   RBDO - DL - HMV 
   RBDO - DL - HMV+ 
   RBDO – DL- PMA+ (Enriched PMA – HMV+ ) 
   RBDO – DL - PMA+ HMV (without interpolation) 
Single – loop methods 
 RBDO – Single Loop Method (Liang et al) 
Decoupled methods 
 RBDO - SORA using HMV 
  RBDO - SORA using HMV+ 

5 Space Truss Example 

Figure 1 shows a 25 bar truss that is often used as a tower to support telecommunica-
tion lines. The problem here is to minimize the volume of the truss subject to twenty-
nine reliability constraints. Four of these constraints are displacement constraints: the 
displacements of the top nodes are limited. The other twenty five constraints are stress 
constraints.   

The bars are manufactured in steel, with tubular sections with diameters ratio
. The materials properties of the steel are constant: the Young module is 

and the allowed stress is . The truss bars are 

grouped in eight groups. In Figure 1 bars belonging to the same group have the same 
index written above them. There exist eight random design variables and they are the 
cross section areas of the bar groups. The truss is subject to random loads. They are 
assumed independent and are applied mainly on the highest nodes.  

Random variables are summarized in Table 1. All the random variables are nor-
mally distributed and independent. It is important to note that FERUM has an  
extensive collection of distributions and other types of distribution could have been 
considered for the random variables. Coefficients of variation of random variables are 
considered constant.  

8.0=ei dd
220700 cmkNE = 25.27 cmkNa =σ
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Then the formulation of the RBDO problem is stated as:  

  (7) 

where the reliability constraints are the subsequent state limit functions: 

Displacement Constraints:  Vertical displacements of the nodes 1 and 2 on coordinate 
axis x and y are limited: 

  (8) 

where  is the displacement of the node  on coordinate axis  and  is 

the allowed displacement. 

Stress constraints:  Maximum stress of the element is limited: 

  (9) 

where is the maximum stress allowed and, in the case of bars in compression, it 
regards the buckling of the bar and takes the value of the Euler’s critical stress. 

A target reliability index  was stated for all the reliability constraints. 

However, RBDO_FERUM allows assigning a different target reliability index for 
each reliability constraints.  

Several methods have been applied to solve the RBDO problem. The probabilistic 
optimum obtained for every methods are showed in Table 2 and 3, where gradients 
can be evaluated using the Direct Difference Method (DDM) and the Finite Forward 
Difference method (FFD) respectively. The efficiency of the different methods is 
measured by the number of iterations of the design optimization loop (ITERS OPT) 
and the number of limit state function evaluations (LSFE) and these data are showed 
in Table 4 (for DDM) and Table 5 (for FFD). 

Although all random variables are normally distributed, RBDO-RIA method does 
not converge. This is caused by the large number of random variables and constraints. 
Double loops RBDO methods provide practically the same probabilistic optimum. 
Single loop and SORA (HMV) methods provide a different probabilistic optimum 
design than double loop methods. Figure 2 shows the evolution of design variables 

 for HMV+ double loop method using FFD. Design variables take values 

close to the final optimum in the 6th iteration. Only 14 iterations were needed to 
search for the optimum with the tolerance required. The SORA (HMV+) method does 
not converge. A zigzag design vector was obtained. 
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Fig. 1. 25 bars space truss 

Table 1. Random Variables in space truss example 

Random 

Variable 
Description Distribution 

Initial  

Mean 
CoV or  

Design  

Variable 

  N 10.0 cm2 0.1  

  N 10.0 cm2 0.1  

  N 10.0 cm2 0.1  

  N 20.0 cm2 0.05  

  N 20.0 cm2 0.05  

  N 25.0 cm2 0.05  

  N 25.0 cm2 0.04  

  N 25.0 cm2 0.04  

  N 30 kN 3 kN - 

  N 50 kN 5 kN - 

  N 100 kN 10 kN - 

  N 30 kN 5 kN - 
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Table 2. Results for the 25 bars space truss RBDO problem (DSA by DDM) 

RBDO Method 
(DDM) 

e_active e-closeness 
Volume 

(m3) 
 

(cm2)

 

(cm2)

 

(cm2) (cm2)

 

(cm2)

 

(cm2) 

 

(cm2) 

 

(cm2) 

DL RIA   Do not converge         

DL HMV   98072.985 2.00 10.25 14.61 2.00 2.00 11.77 12.64 16.07 

DL HMV+   98079.769 2.00 10.23 14.59 2.00 2.00 11.76 12.71 16.04 

DL PMA+ HMV 1.5 0.1 98059.367 2.00 10.25 14.60 2.00 2.00 11.77 12.64 16.07 

DL PMA+ HMV 0.5 0.1 98059.366 2.00 10.25 14.60 2.00 2.00 11.77 12.64 16.07 

DL PMA+ HMV+ 1.5 0.1 98045.694 2.00 10.25 14.58 2.00 2.00 11.77 12.64 16.07 

DL PMA+ HMV+ 0.5 0.1 98046.790 2.00 10.25 14.58 2.00 2.00 11.77 12.64 16.07 

SINGLE LOOP   104556.970 3.03 10.71 13.11 2.00 2.00 13.69 13.91 17.13 

SORA (HMV)   103505.720 3.02 10.64 13.14 2.00 2.00 13.79 14.07 16.04 

SORA (HMV+)   Do not converge         

DDO   84137.938 2.00 8.26 10.38 2.00 2.00 10.20 11.84 14.35 

Table 3. Results for the 25 bars space truss RBDO problem (DSA by FFD) 

RBDO 
Method 

(FFD) 
e_active 

e-
closeness 

Volume 
(m3) 

 

(cm2) 

 

(cm2) 

 

(cm2) 

 

(cm2) 

 

(cm2)

 

(cm2) 

 

(cm2) 

 

(cm2) 

DL RIA   Do not converge         

DL HMV   102059.34 2.00 10.70 14.69 2.00 2.00 12.01 13.87 16.52 

DL HMV+   102001.09 2.00 10.71 14.65 2.00 2.00 12.00 13.87 16.51 

DL PMA+ HMV 1.5 0.1 102057.77 2.00 10.70 14.69 2.00 2.00 12.01 13.87 16.51 

DL PMA+ HMV 0.5 0.1 102057.77 2.00 10.70 14.69 2.00 2.00 12.01 13.87 16.51 

DL PMA+ HMV+ 1.5 0.1 102063.61 2.00 10.70 14.68 2.00 2.00 12.01 13.88 16.51 

DL PMA+ HMV+ 0.5 0.1 102064.31 2.00 10.70 14.68 2.00 2.00 12.01 13.88 16.51 

SINGLE LOOP   107057.16 3.02 11.11 13.18 2.00 2.00 13.80 14.61 17.44 

SORA (HMV)   106176.41 3.01 11.05 13.21 2.00 2.00 13.87 14.75 16.54 

SORA (HMV+)   Do not converge         

DDO   84137.86 2.00 8.26 10.38 2.00 2.00 10.20 11.84 14.35 

 

With regard to efficiency, the results represented in Tables 4 and 5 show that 
PMA+ based RBDO methods are the best. However, a good chose of e-active and e-
closeness parameters must be done. So, using FFD, only 136 evaluations of limit state 
functions were needed to obtain the probabilistic optimum design using the method 
PMA+ (HMV+)  with e-active = 0.5 and e-closeness = 0.1. 

An empirical rule derived from author experience is proposed: to assign a value 
into the range 0.7-1.5 to e-active and a value one or two orders of magnitude larger 
than the convergence tolerance of the iterative algorithms to e-closeness. 

Results include the number of the active probabilistic constraints at the optimum 
design. Also, some lateral bound constraints are active. That is, optimum design 
reaches the lower bounds of design variables ,  and  in double loop methods. 

1A 2A 3A 4A 5A 6A 7A 8A

1A 2A 3A 4A 5A 6A 7A 8A

1A 4A 5A
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There are some differences between results obtained using DDM and results ob-
tained using FFD. For instance: the volume at the probabilistic optimum design ob-
tained using FFD is larger than using DDM: 102000 m3 vs. 98000 m3 for the double 
loop methods. Also, design variables at the optimum are different. The large differ-
ence takes place on design variable . It changes from 12.64 cm2 using DDM to 
13.87 cm2 using FFD.  

 

 

Fig. 2. Evolution of design variables in the DL HMV+ RBDO process 

Table 4. Results for the 25 bars space truss RBDO problem (DSA by DDM) 

RBDO Method 
(DDM) 

e_active e_closeness
ITERS 
OPT 

LSFE 
Active Constraints 

 

DL RIA     Do not converge 

DL HMV   14 1748 9, 13, 19, 24 y 26 

DL HMV+   16 2028 9, 13, 18, 19, 24, 25 y 26 

DL PMA+ HMV 1.5 0.1 11 1169 9, 13, 19, 24 y 26 

DL PMA+ HMV 0.5 0.1 11 353 9, 13, 19, 24 y 26 

DL PMA+ HMV+ 1.5 0.1 14 958 9, 13, 19, 24 y 26 

DL PMA+ HMV+  0.5 0.1 14 214 9, 13, 19, 24 y 26 

SINGLE LOOP   13 377 5, 9, 13, 19, 24 y 26 

SORA (HMV)   14 9648 5, 9, 13, 19, 24 y 26 

SORA (HMV+)     Do not converge 

DDO   79 2291 9, 13, 19, 24 y 26 
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Table 5. Results for the 25 bars space truss RBDO problem (DSA by FFD) 

RBDO Method 
(FFD) 

e_acti
ve 

e_closeness 
ITERS 
OPT 

LSFE 
Active Constraints 

 

DL RIA     Do not converge 

DL HMV   10 1294 9, 19, 24 y 26 

DL HMV+   14 1031 9, 19, 24 y 26 

DL PMA+ HMV 1.5 0.1 8 828 9, 13, 19, 24 y 26 

DL PMA+ HMV 0.5 0.1 8 198 9, 13, 19, 24 y 26 

DL PMA+ HMV+ 1.5 0.1 12 726 9, 13, 19, 24 y 26 

DL PMA+ HMV+ 0.5 0.1 12 136 9, 13, 19, 24 y 26 

LAZO UNICO   15 435 5, 9, 13, 19, 24 y 26 

SORA (HMV)   10 4206 5, 9, 13, 19, 24 y 26 

SORA (HMV+)     Do not converge 

DDO   27 783 9, 13, 19, 24 y 26 

 
Results are verified using Importance Sampling-based Monte Carlo Simulation, 

where the probability density function of sampling is centered in the most probable 
point for every limit state function. Only active constraints are verified because it is 
sure that reliability indexes for inactive constraints are larger than the target reliability 
index ( ). 

The results of the simulation have been written in Table 6. These results show that 
optimum design obtained by Double Loop methods with gradients computed using 
the FFD method is the most accurate. Errors in reliability index at optimum design are 
below 0.5%.  

Table 6. Reliability index for active constrains computed by IS – MCS 

Limit State Function 
Actual Reliability Index for active constraints by IS - MCS   

DDM - DL DDM - SL FFD-DL FFD-SL  

 7.6206 Inf 7.63 Inf 3.00 

 2.6436 2.4305 2.9859 2.7245 3.00 

 2.9460 2.2883 2.9907 2.3414 3.00 

 2.6200 4.9739 2.9945 5.131 3.00 

 1.2900 3.5143 3.0142 4.4375 3.00 

 2.4071 3.6578 2.9846 4.0222 3.00 

6 Conclusions  

New functions to solve Reliability Based Design Optimization problems have been 
added to FERUM software. These functions form a toolbox named FERUM_RBDO.  
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Several RBDO methods have been implemented. Several double loop methods, a 
single loop method and the decoupled method called SORA have been included. The 
author must stress that the implementation of these methods is based only on his own 
interpretation of algorithms published in research papers. 

Both analytical and structural problems can be solved. An example of a transmis-
sion tower is included to show the capabilities of the new toolbox. All the RBDO 
methods implemented have been applied and the results have been analyzed. Also, 
verification of the results has been carried out using Importance Sampling based 
Monte Carlo Simulation.  

Advanced capabilities of FERUM such as the extensive probability distribution li-
brary, the analysis of correlated random variables and different methods of design 
sensitivity analysis can also be used in FERUM_RBDO. Two types of design vari-
ables can be considered: deterministic design variables and random design variables. 

Important properties of RBDO algorithms such as stability, convergence and effi-
ciency can be analyzed. User can run several RBDO problem and obtain his o her 
own conclusions about these properties. 
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Abstract. Many pervasive applications depend on data from sensors
that are placed in the applications physical environment. In these ap-
plications, the quality of the sensor data—e.g., its accuracy or a failed
object detection—is of crucial importance for the application knowledge
base and processing results. However, through the increasing complex-
ity and the proprietary of sensors, applications cannot directly request
information about the quality of the sensor measurements. However, an
indirect quality assessment is possible by using additional simple sensors.
Our approach uses information from these additional sensors to construct
upper and lower bounds of the probability of failed measurements, which
in turn can be used by the applications to adapt their decisions. Within
this framework it is possible to fuse multiple heterogeneous indirect sen-
sors through the aggregation of multiple quality evidences. This approach
is evaluated using sensor data to detect the quality of template matching
sensors.

Keywords: Sensor fusion, Measurement uncertainty, Error probability.

1 Introduction

Sensor data is required in almost all pervasive applications. This implies that the
applications have to trust the measured sensor data. However, sensors underlay
different uncertainties introduced through the physical or chemical principal of
measurement or the internal processing through the sensor. Furthermore, due
to the complexity of current sensors, a direct access to the measuring process is
difficult or even impossible in case of proprietary sensors. The internal function of
complex sensors must be seen as a black box. Different approaches try to improve
improper sensor data through multisensor fusion techniques [1,2]. However, in
this case the application still has no knowledge about the actual quality of the
sensor data and the modification through the quality improvement approaches.
This can lead to undesired results during the processing inside the application
or even lead to failures in connected subsystems. The approach presented in
the following tries to approximate the different uncertainties about the sensor
data. If an application would know about the quality of a given sensor value, it
could use this meta information to adapt its behavior, e.g., by not performing
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an action, by visualizing the uncertainty, or by taking the human in the loop
and asking the user what to do.

Our contribution is the mapping of online sensor measurements to failure
probability intervals, using additional sensors in the environment that measure
related physical or chemical influence factors. In a first step, the sensors are
deployed to measure the environmental factors that influence our sensor. In a
second step, a failure probability model of the complex is created based on the
influence factors. After that, the created model is used to estimate the qual-
ity of the complex sensor. In contrast to other approaches [3,4] that estimate
the quality of the sensor fusion result through conflicts between aggregated sen-
sors, our approach estimate the quality of the actual sensor reading of one sensor
through indirect measurements. Furthermore, our technique allows merging mul-
tiple evidences from other heterogeneous sensors during sensor data processing.
This allows the annotation of sensor data processing results with the combined
failure probability intervals to support an application in the task of decision
making.

The rest of the paper is organized as follows: Section 2 explains the problem
based on a concrete scenario. In Section 3, we explain our approach, which is
based on uncertainties in sensor data and modeling of uncertainties for process-
ing. Furthermore, we show the combination of sensor uncertainties from multiple
sources. An evaluation of the approach based on a logistic scenario can be found
in Section 4. Finally, we conclude and take an outlook on future work.

2 Scenario

In the following, we explain our approach based on a simple scenario (Fig. 1). A
camera vision system monitors the transportation of potential dangerous goods
within a depot. The vision system continuously observes the container that is
transported by a forklift and forwards the status “in position” or “on ground”
to an application that raises an alarm when the container is falling down.

Fig. 1. Observation Scenario
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The camera vision system in this scenario is an example for a complex sensor
that recognizes the container based on a predefined template. It is assumed that
during the monitored transport, the container is always visible to the camera
system, so the system always reports the status where it detects the template
in the camera image. Thus, the case that the container is not in the camera
recorded image is not part of this scenario.

2.1 Uncertainties in Sensor Data

Since a camera vision system heavily depends on environmental influences, re-
sults from the vision system could be wrong. To improve wrong measurements,
we could measure multiple times and perform the average on the results. How-
ever, this is not possible because the application should raise an alarm as fast
as possible leaving no time for multiple measurements.

(a) Correct detection of the template (b) Matching error through the headlights
of the forklift

Fig. 2. Template matching

One of the biggest influences of a camera system is light; especially direct
light from a forklift that blinds the vision system resulting in an overexposure.
Through such an overexposure the vision system could report a wrong status of
the container and the application could probably raise a false alarm as shown in
Fig. 2. To detect influences through environmental factors we can use indirect
sensors in the environment to estimate the quality of the camera vision system.

2.2 Indirect Sensors for Environmental Influence Detection

Indirect sensors in the environment give us additional information about the
current context of the complex sensor. In our scenario, we can use cheap sen-
sors like a light dependent resistor (LDR) as an indirect sensor to measure the
light influence that results in an overexposure of the camera system. While we
could now detect a possible overexposure through the indirect sensors using e.g. a
threshold, we cannot do this for sure. Especially at the margins between a correct
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working state and an overexposure of the vision system an estimation about
the correct function of the system is not possible. As the internal processing of
the vision system itself is unknown to us, we have to estimate the probability
of a failure of our vision system through this influence factor. To estimate the
exact probability of a failure of the system at different light settings we have to
check the results of the system at every possible light setting. However, testing
every setting is time consuming or even impossible in some applications e.g.
due to lack of equipment to simulate the settings. Thus, to approximate the
failure probability we perform a series of measurements D = (ek, xk) with ek ∈
[−1, 1] is a binary variable representing the correctness of the complex sensor
and xk ∈ x1 . . . xn is the value of the indirect sensor in the k-th measurement
with reasonable small bins n to build up a failure model that reports the current
failure probability based on the evidence of the indirect sensors during runtime
as shown in Fig. 3.
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Fig. 3. Architecture

3 Failure Probability Model

Based on the series of measurements for one environmental influence factor e.g.
light from a forklift in our scenario, we can estimate the average failure proba-
bility at the different light settings x ∈ xi from our test series. In this way, it is
possible to assign a probability p(e|x ∈ xi) of a failure on the result of the vi-
sion system based on the information of an indirect sensor. Due to limited data,
we have to deal with the uncertainty in the estimation of the failure probability.
To this end, we construct a failure probability interval by including the standard
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error of the mean (σmean). Thus, our failure probability interval for a given bin
i of light influence is given by pi = [〈pi〉 − σi, 〈pi〉+ σi] at a given light setting.
Under the assumption of a monotone function of the failure probability between
two edges of adjacent bins of light influence, the usage of a failure probability
interval allows us to bound the failure probability within the bin xi ∈ [xi, xi+1]
from the indirect sensor as follows:

p(e|x ∈ xi) ∈ [min p
i
, p

i+1
,max pi, pi+1]

With p
i

being the lower bound of the failure probability interval pi and pi being
the upper bound of the failure probability interval pi respectively. In [5], the au-
thors already showed the approach of indirect measurements through the use of
probability intervals. However, instead of using an interval for the measurement
of the complex sensor based on the measurement of the indirect sensor, we define
an interval on the failure probability based on the measurements of the indirect
sensor. The result of defining a lower and upper bound on the failure probability
for multiple measurement bins is called a p-box of failure probabilities [6]. A p-
box maps a measurement to a probability interval bounded by the probabilities
pi and pi. This approach allows us to annotate the measurements of our vision
system with a lower and upper bound of a failure probability based on the infor-
mation of the light dependent resistor (LDR). While other approaches assume
that all influence factors can be measured directly [7] we make the assumption
that other not measured influence factors perform at normal working conditions
in the field of application. Thus, the effect of these influence factors are covered
by σmean. Based on this annotation an application can decide through the failure
probability bound if the measurement of the complex sensor is sufficient trust-
worthy for continuing or cancellation of an operation, or if additional information
from another source is required, i.e., a human in the loop.

3.1 Variability of Indirect Measurement

Until now, we have described the failure probability of our vision system and
collected evidence for the result of the vision system based on the measurements
of our LDRs. However, we did not consider that our indirect sensors have also
their systematic and random error. Thus, to get a better view on the failure
probability of our vision system, we have to take the variability in the mea-
surements of our LDRs into account, too. As the indirect sensors only measure
one single unit and the internal function is well known, we can assume that the
systematic failure and the bounds of the independent random failure are known
a priori. This allows us to model the variability p(x ∈ xi|x̂) of a measurement x̂
of the indirect sensors through a normal distribution [8]. Taking the variabil-
ity of the indirect sensors into account brings us to the new failure probability
of our complex sensor as a combined probability of the affected failure prob-
ability intervals of the complex sensor through the variability of the indirect
sensors:
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p(e|x̂) =
∑
xi

p(e|x ∈ xi)p(x ∈ xi|x̂)

The combination of the variability of the indirect sensors with the failure in-
tervals of the complex sensor delivers us multiple affected failure probability
intervals with different weights. The weight can be interpreted as a basic prob-
ability assignment (bpa) defined in the Dempster-Shafer Theory of evidence [9]
about all possible failure intervals from our failure model.

Thus, we can see every affected failure probability interval [pi, pi] as a bpa, rep-
resented as m([pi, pi]) = p(x ∈ xi|x̂), for this interval expressed by our indirect
sensor about the current failure situation. The benefit of using the Dempster-
Shafer Theory in our case is the ability to express the believable and the plau-
sible failure probability interval of our complex sensor as the combination of
affected failure probability intervals. The belief Bel(A) of a failure probability
interval A = [p, p] is the sum of all other assignments that are contained in
this failure probability interval. The plausibility Pl(A) of a failure probability
interval A = [p, p] is the sum of all other bpas that intersects with this failure
probability interval.

Bel(A) =
∑

[p
i
,pi]⊆A

m([p
i
, pi])

Pl(A) =
∑

[p
i
,pi]∩A �=∅

m([p
i
, pi])

The belief and the plausibility of a failure probability interval is often interpreted
as the minimum and maximum support for a given failure probability interval
of the complex sensor through the observation of one indirect sensor. However,
there are concerns about this interpretation [10]. Nevertheless, it is widely used
in sensor fusion [11,12].

3.2 Multiple Influence Factors

In our scenario we only used indirect sensors for one environmental influence
factor; however the data quality of complex sensors can depend on more than
one external influence factor that can be observed using other indirect sensors in
the environment. Thus, our complex sensor can be described by different failure
probability boxes from multiple sensors all delivering an assignment about the
current situation. To obtain an accurate approximation of the current quality of
our complex sensor we have to combine all information from all sensors using a
combination rule ⊗ into one associated probability assignment for the complex
sensor.

As mention in [13], different combination rules exist for the combination of
basic probability assignments. As the size of the failure probability interval is
a measure of uncertainty introduced through unmeasurable influence factors for a
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given failure we want to involve the interval size in our combination. To this end,
the combination rule ⊗ is realized using the Zhang rule of combination [14]. In
the Zhang combination rule, the product of the margins of the bpas are scaled
with a measure of intersection r(A,B).

(m1 ⊗m2)(C) = k
∑

A∩B=C

r(A,B)m1(A)m2(B)

With k being a renormalization factor that provides that the sum of the bpas
to add to 1 and a measure of intersection as the ratio of the cardinality of the
intersection of two failure probability intervals divided by the product of the
cardinality of the individual failure probability intervals.

r(A,B) =
| A ∩B |
| A ‖ B |

3.3 Probability Interval Queries

Depending on application, different queries can be performed by the application
on the processed failure probability intervals. These queries include:

1. Maximum bpa of a given failure probability: Returning the plausibility of
the given failure probability.

2. Minimum bpa of a given failure probability: Returning the belief of the given
failure probability.

3. Maximum failure probability of a given bpa: Given a bpa, this query returns
the upper bound of a failure probability interval if one exists.

4. Minimum failure probability of a given bpa: Given a bpa, this query returns
the lower bound of a failure probability interval if one exists.

Using these queries allows an application now to perform multiple actions instead
of just raising an alert. These actions can be e.g. the notification of the forklift
driver in our scenario about a bad performance of the vision system or activating
another sensor system.

4 Evaluation

To evaluate our approach we build up the scenario described in Section 2. In
the scenario we have a surrounding light setting of 75lx. The complex sensor is
realized using a Logitech E3500 webcam and a template matching algorithm to
detect the container transported by a forklift. For the realization we use the tem-
plate matching function cvMatchTemplate with the CV TM CCORR NORMED
method from the OpenCV library. The environmental influence through the
headlights of the forklift is realized through a dimmable 100W lamp under the
object that should be detected by the complex sensor. In the evaluation, the com-
plex sensor continuously captures the environment and tries to find the template
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of the container in the captured image. The template was created through the
captured image at an influence of 100lx through the headlight of the forklift.
In this evaluation we measure the current lux value using a lux meter at the
WebCam and the distance in pixel between the real object in the captured image
and the boundaries of the detected object in the captured image. A distance of
more than 1px between the real object and the detected object is assumed as a
wrong classification of the situation through the complex sensor.

4.1 Calibration

Two light dependent resistors (LDR) near the lens of the camera are acting
as indirect sensors that measure the current lux value. To do so, we measured
the voltage at the two LDRs using voltage dividers that are connected to an
Arduino Mega 2560 mounted at the camera. In this case, the Arduino includes
an AC/DC converter returning the voltage value at the LDRs as a digital value
between 0 and 1024. First, we measured the DC voltage value from the LDRs
at different light settings starting from 85lx up to 205lx in a step size of 5lx to
get the variability of the indirect sensors according to the real lux value. As we
see in Fig. 4 the measurements of the LDRs are nearly linear allowing us to map
the DC value to a lux value using linear regression with l1(v) = 4.79v− 3250.32
for the first LDR and l2(v) = 1.21v− 789.89 for the second LDR. After that, we
can model the variability using a Gaussian distribution with σ1 = 176.90lx and
σ2 = 33.31lx.
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Fig. 4. Variability of the light dependent resistors (LDR) at different light settings

Next, we measure the number of wrong detected positions of the template in
the captured image through the complex sensor at different light settings also
starting at 85lx up to 205lx in a step size of 5lx. Due to the fact that we cannot
simulate each environmental factor in the lab we measured each light setting 600
times. In Fig. 5 the lower line (long dotted green) is the minimal failure proba-
bility, the upper line (short dotted red) shows the maximum failure probability
of the template matching, and the crosses are the average failure probability at
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Fig. 5. Failure probability of the complex sensor and confidence of the template match-
ing algorithm according to environmental influence

the given light setting. Furthermore, the figure includes the correlation confi-
dence (blue error bar) of the OpenCV CV TM CCORR NORMED comparison
method by values between 0 and 1, with a value of 1.0 for a perfect match, on
the right side.

What we see from the resulting data depicted in the figure is that only at
a lux value between 85lx and 175lx the algorithm detects the object at the
right position in the captured image while the confidence level of the OpenCV
algorithm is still high. Furthermore, we have five non-empty failure probability
intervals at 170-175lx, 175-180lx, 180-185lx, 185-190lx, and 190-195lx through
the measurement of wrong classified situations. With an influence through the
headlights above 195lx the algorithm always detects the object at the wrong
position. In addition, in the scenario a lux value between 0lx and 85lx could not
be measured and so the failure probability in this measurement interval has to
be defined as an interval of [0,1], because we have absolute no knowledge about
the possible real failure probability.

4.2 Indirect Sensor Measurement

Based on the constructed failure probability intervals we can now express the
quality of the complex sensor data through the measurements of the LDRs. For
the evaluation we set the value to 185lx resulting in the distribution on the given
failure probability intervals depicted in Fig. 6. In addition, the average failure
probability (green dotted line) from the light setting is illustrated.

Using the information about the assignments of the different failure proba-
bility intervals from the two indirect sensors we can now combine them to one
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Table 1. Failure probability intervals of the complex sensor

Measurement (Lux) p p

[0,85] 0 1
[85,170] 0 0
[170,175] 0 0.0099
[175,180] 0.0033 0.114
[180,185] 0.089 0 .70
[185,190] 0.66 0.96
[190,195] 0.948 1
[195,∞] 1 1
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Fig. 6. Basic probability assignments of the indirect sensors

assignment about the quality of the complex sensor. The result of the combi-
nation of both sensors using Zhang combination rule with k=0.0001842 as the
renormalization factor is illustrated in Fig. 7.

Based on this information we can now annotate the result of the complex
sensor with the knowledge that at least 77.758% of the measurements of the
indirect sensor would indicate a total failure of the complex sensor, while 17.446%
would indicate no failure at all. Further the annotation would inform that at
least 19.367% of the measurements of the indirect sensors would indicate at
least a failure probability interval between 0.0 and 0.4 etc. Thus, an adjacent
application can use the believe of a failure interval of e.g. [0,0.4] to decide to
process the result, [0.4,0.66] to decide to inform the driver of the forklift for
feedback, or [0.66,1] to decide to cancel further operation that would use the
result of the complex sensor. In this case, if the application is pessimistic it
would use the plausibility for the failure interval [0.66,1] which is 80.629% for
the decision support. However, if the application is optimistic it would take the
believe for the failure probability interval [0.66,1] which is 79.775%. In both
cases, the support for the failure probability interval is very high and thus the
application should cancel any further operation based on the combined sensor
information.
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Fig. 7. Combined basic probability assignments of the indirect sensors using Zhang
combination rule with k=0.0001842 as the renormalization factor

5 Conclusion and Outlook

The proposed approach to approximate the quality of complex sensors through
primitive sensors that measure environmental influences on the complex sensor
allows the annotation of measurements through failure probability intervals with
a minimum and maximum likelihood. This approach supports pervasive applica-
tion in decision making through multiple possible queries. The evaluation shows
the basic approach based on the described scenario. To do so, the quality of a
vision system for object detection is approximated through two LDRs mounted
at the vision system that measure the environmental influence through light on
the vision system. In an upcoming evaluation, the approach will be evaluated
using multiple sensors that measure different influences through the environment
on the complex sensor.
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Abstract. This paper proposes a simple strategy for combining binary
classifiers with imprecise probabilities as outputs. Our combination strat-
egy consists in computing a set of probability distributions by solving an
optimization problem whose constraints depend on the classifiers out-
puts. However, the classifiers may provide assessments that are jointly
incoherent, in which case the set of probability distributions satisfying
all the constraints is empty. We study different correction strategies for
restoring this consistency, by relaxing the constraints of the optimization
problem so that it becomes feasible. In particular, we propose and com-
pare a global strategy, where all constraints are relaxed to the same level,
to a local strategy, where some constraints may be relaxed more than
others. The local discounting strategy proves to give very good results
compared both to single classifier approaches and to classifier combina-
tion schemes using a global correction scheme.

1 Introduction

In complex multi-class classification problems, a popular approach consists in
decomposing the initial problem into several simpler problems, training classifiers
on each of these sub-problems, and then combining their results. The advantages
are twofold: the sub-problems obtained are generally easier to solve and thus may
be addressed with simpler classification algorithms, and their combination may
yield better results than using a single classification algorithm.

In this paper, we consider a classical decomposition strategy where each sim-
ple problem is binary; then, each classifier is trained to separate two subsets of
classes from each other. When the binary classifiers return conditional probabil-
ities estimating whether an instance belongs to a given class subset or not, these
conditional probabilities are seldom consistent, due to the fact that they are only
approximations of the (admittedly) true but unknown conditional probabilities.
Usually, this inconsistency problem is tackled by considering some optimization
problem whose solution is a consistent probability whose conditional probabili-
ties are close to each of the estimated ones [5,9]. This consistent probability is
then considered as the final predictive model.

Imprecise probabilities are concerned with the cases where the available in-
formation is not sufficient (or too conflicting) to identify a single probability,
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and are therefore well adapted to the problem mentioned above. Due to their ro-
bustness, imprecise probabilistic models appear particularly interesting in those
cases where some classes are difficult to separate, where some classes are poorly
represented in the training set or when the data are very noisy. In a previous
work [4], we proposed an alternative solution to classifier combination using im-
precise probability theory [8]. In this framework, binary classifiers return lower
and upper bounds instead of a single evaluation. The case of precise outputs is
retrieved when lower and upper bounds coincide.

As even imprecise outputs can turn out to be inconsistent, we initially pro-
posed to apply a global discounting factor (found through a heuristic) to the
classifiers. In this paper, we reformulate the problem so that discounting fac-
tors can be found by the means of efficient linear programming techniques. This
also allows us to easily affect a discounting factor specifically to each classifier,
thus adopting a local correction approach. In Section 2, we remind the necessary
elements about imprecise probabilities and their use in binary classifiers combi-
nation. Section 3 then describes and discusses our discounting strategies, both
the global and local one. Finally, we compare in Section 4 the two strategies for
the special case of one-vs-one classifiers on several classical real data sets.

2 Imprecise Probability: A Short Introduction

Let X = {x1, . . . , xM} be a finite space of M elements describing the possible
values of (ill-known) variables (here, X represents the set of classes of an in-
stance). In imprecise probability theory, the partial knowledge about the actual
value of a variable X is described by a convex set of probabilities P , often called
credal set [6].

2.1 Expectation and Probability Bounds

A classical way to describe this set consists in providing a set of linear constraints
restricting the set of possible probabilities in P (Walley’s lower previsions [8]
correspond to bounds of such constraints). Let L(X ) denote the set of all real-
valued bounded functions over X , and let K ⊆ L(X ). Provided K is not empty,
one can compute expectation and probability bounds on a function f ∈ K.

When one starts from some lower bound E : K → R, it is possible to associate
to it a (convex) set P(E) of probabilities such that

P(E) = {p ∈ PX |E(f) ≥ E(f) for all f ∈ K}, (1)

where PX denotes the set of all probability masses over X .
Alternatively, one can start from a given set P and compute the lower expec-

tation E : L(X ) → R and upper expectation E : L(X ) → R such that

E(f) = sup
p∈P

E(f) and E(f) = inf
p∈P

E(f),

These functions are dual, in the sense that E(f) = −E(−f).
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In Walley’s terminology [8], E is said to avoid sure loss iff P(E) �= ∅, and to
be coherent iff for any f ∈ K we have E(f) = infp∈P(E) E(f), i.e. E is the lower
envelope of P(E).

Lower and upper probabilities of an event A ⊆ X correspond to expectation
bounds over the indicator function 1(A) (with 1(A) (x) = 1 if x ∈ A, and 0
otherwise). When no confusion is possible, we will denote them P (A) and P (A)
and they are computed as

P (A) = inf
P∈P

P (A) and P (A) = sup
P∈P

P (A).

2.2 Imprecise Probabilities and Binary Classifiers

The basic task of classification is to predict the class or output value x of an
object knowing some of its characteristics or input values y ∈ Y, with Y the
input feature space. Usually, it is assumed that to a given input y correspond
a probability mass p(x|y) modeling the class distribution, knowing that the in-
stance y has been observed. Then, classifying the instance amounts to estimating
p(x|y) as accurately as possible from a limited set of labeled (training) samples.
A binary classifier on a set of classes X aims at predicting whether an instance
class belongs to a subset A ⊆ X or to a (disjoint) subset B ⊆ X (i.e., A∩B = ∅).
For probabilistic classifiers, the prediction takes the form of an estimation of the
conditional probability P (A|A∪B, y) that the instance belongs to A (notice that
P (B|A ∪ B, y) = 1 − P (A|A ∪ B, y) by duality).

In the case of imprecise classifiers, the prediction may be expressed as a set
of conditional probabilities, expressed for example as a pair of values bounding
P (A|A∪B) 1. Let us denote by αj , βj the bounds provided by the jth classifier:

αj ≤ P (Aj |Aj ∪ Bj) ≤ βj (2)

and, by complementation, we have

1 − βj ≤ P (Bj |Aj ∪ Bj) ≤ 1 − αj . (3)

Combining binary classifiers then consists in defining a set P of probability
distributions over X compatible with the available set of conditional assessments.
To get a joint credal set from these constraints, we will turn them into linear
constraints over unconditional probabilities. Assuming that P (Aj ∪Bj) > 0, we
first transform Equations (2) and (3) into

αj ≤ P (Aj)
P (Aj ∪ Bj)

≤ βj and 1 − βj ≤ P (Bj)
P (Aj ∪ Bj)

≤ 1 − αj .

These two equations can be transformed into two linear constraints over uncon-
ditional probabilities:

αj

1 − αj
P (Bj) ≤ P (Aj) and P (Ai) ≤ βj

1 − βj
P (Bj),

1 From now on, we will drop the y in the conditional statements, as the combination
always concerns a unique instance which input features remain the same.
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or equivalently

0 ≤ (1 − αj)
∑

xi∈Aj

pi − αj

∑
xi∈Bj

pi, (4)

0 ≤ βj

∑
xi∈Bj

pi − (1 − βj)
∑

xi∈Aj

pi, (5)

where pi := p(xi). Such constraints define the set of probability distributions
that are compatible with the classifier outputs. Then, the probability bounds
on this set may be retrieved by solving a linear optimization problem under
Constraints (4) and (5), for all classifiers. Note that the number of constraints
grows linearly with the number N of classifiers, while the number of variables is
equal to the number M of classes. As the quantity of classifiers usually remains
limited (between M and M2), the linear optimization problem can be efficiently
solved using modern optimisation techniques.

Example 1. Let us assume that N = 3 classifiers provided the following outputs:

P ({x1}|{x1, x2}) ∈ [0.1, 1/3],
P ({x1}|{x1, x3}) ∈ [1/6, 0.4],
P ({x2}|{x2, x3}) ∈ [2/3, 0.8].

These constraints on conditional probabilities may be transformed into the fol-
lowing constraints over (unconditional) probabilities p1, p2, and p3:

1/9p2 ≤ p1 ≤ 1/2p2, 1/5p3 ≤ p1 ≤ 2/3p3, 2p3 ≤ p2 ≤ 4p3,

Note that the induced set of probability distributions is not empty, since p1 =
0.1, p2 = 0.6 and p3 = 0.3 is a feasible solution. Getting the minimal/maximal
probabilities for each class then comes down to solve 6 optimization problems
(i.e., minimising and maximising each of the unconditional probabilities pi, under
the constraints mentioned above), which yields

p1 ∈ [0.067, 0.182] p2 ∈ [0.545, 0.735] p3 ∈ [0.176, 0.31].

Here, we can safely classify the instance into x2. �

Note that, in some cases, the classifiers may provide outputs that are not consis-
tent. This is particularly the case when the classifiers are trained from distinct
(non-overlapping) training sets, or when some of them provide erroneous infor-
mation. Then, P = ∅. A solution may still be found provided by (some of) the
constraints be relaxed in order to restore the system consistency.

2.3 Vacuous Mixture as Discounting Operator

In some situations, it may be desirable to revise the information provided by a
source of information, in particular when the source is known to be unreliable
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to some extent. Then, the knowledge induced by the source may be weakened
according to this degree of unreliability. In most uncertainty theories, this so-
called discounting operation consists in combining the original information with
a piece of information representing ignorance through a convex combination.

In imprecise probability theory, the piece of information representing igno-
rance is the vacuous lower expectation Einf , defined such that for any f ∈ L(X ),

E inf(f) = inf
x∈X

f(x).

Given a state of knowledge represented by a lower expectation E on K, the
ε-discounted lower expectation Eε for any f ∈ K is

Eε(f) = (1 − ε)E(f) + εEinf (6)

with ε ∈ [0, 1]. We may interpret Eε as a compromise between the information E
(which is reliable with a probability 1− ε) and ignorance. Note that we retrieve
E when the source is fully reliable (ε = 0), and ignorance when it cannot be
trusted (ε = 1).

2.4 Decision Rules

Imprecise probability theory offers many ways to make a decision about the
possible class of an object [7]. Roughly speaking, classical decision based on
maximal expected value can be extended in two ways: the decision rule may
result in choosing a single class or in a set of possible (optimal) classes. We will
consider the maximin rule, which is of the former type, and the maximality rule,
of the latter type.

First, let us remind that for any xi ∈ X , the lower and upper probabili-
ties P ({xi}), P ({xi}) are given by the solutions of the constrained optimisation
problem

P ({xi}) = min pi and P ({xi}) = max pi

under the Constraints (4)–(5), and the additional constraints
∑

xi∈X pi = 1,
pi > 0. Then, the maximin decision rule amounts to classify the instance into
class x̂ such that

x̂ := arg min
xi∈X

P ({xi}).

Using this rule requires to solve M linear systems with 2N + M + 1 constraints
and to achieve M comparisons.

The maximality rule follows a pairwise comparison approach: a class is con-
sidered as possible if it is not dominated by another one. Under the maximality
rule, a class xi is said to dominate xj , written xi �M xj , if E(fi→j) > 0 with
fi→j(xi) = 1, fi→j(xj) = −1 and fi→j(x) = 0 for any other element x ∈ X . The
set of optimal classes obtained by this rule is then

X̂ := {xi ∈ X| � ∃xj s.t. xj �M xi}.
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This rule has been justified (and championed) by Walley [8]. Note that finding X̂
requires at most to solve M2 −M linear programs (one for each pair of classes).
Using the maximality rule may seem computationally expensive; however, its
computation is easier in a binary framework, as shows the next property.

Proposition 1. 0.5 < P (xi|xi ∪ xj) ⇒ xj �∈ X̂

Proof. If 0.5 < P (xi|xi ∪xj), then pi > pj according to Equation (4). Assuming
constraints (4) and (5) are feasible, i.e. induce a non-empty set P , computing
E(fi→j) > 0 comes down to solve the following optimisation problem:

min pi − pj (7)

with P ∈ P . Since any probability in P is such that pi > pj, the value of pi − pj

is guaranteed to be positive, hence xj is preferred to xi (xi � xj).

Note that Proposition 1 only holds if the associated constraint has not been
discounted.

3 Discounting Strategies for Inconsistent Outputs

As remarked in Section 2.2, multiple classifiers may provide inconsistent outputs,
in which case the constraints induced define an empty credal set P . In this
section, we explore various discounting strategies to relax these constraints in
order to make the set of probability distributions non-empty.

3.1 ε-Discounting of Binary Classifiers

In this paper, we perform an ε-discounting for each classifier, in order to relax
Constraints (4)–(5) as described by Equation (6). For the jth classifier, we obtain
from Constraints (4)–(5) that Ef

j
= 0 and Efj

= 0 with

f
j
(x) =

⎧⎨
⎩

1 − αj if x ∈ Aj

−αj if x ∈ Bj

0 else
and f j(x) =

⎧⎨
⎩

1 − βj if x ∈ Aj

−βj if x ∈ Bj

0 else
.

This gives the following discounted equations:

εj(−αj) ≤ (1 − αj)P (Aj) − αjP (Bj), (8)

εj(1 − βj) ≥ (1 − βj)P (Aj) − βjP (Bj). (9)

Remark that the two discounted equations are here linear in variables pi and
εj . The constraints become empty when εj = 1 and are then equivalent to state
P (Aj |Aj ∪ Bj) ∈ [0, 1]. This means that there always exists a set of coefficients
{εj}j=1,...,N that makes the problem feasible.
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The question is now how to compute the discounting rates εj , j = 1, . . . , N
such that the constraints induce a non-empty credal set P while minimizing
the discounting in some sense. We propose the following approach to find the
coefficients εj :

min
N∑

j=1

εj

under the constraints∑
xi∈X

pi = 1, 0 ≤ pi ≤ 1 for all i = 1, . . . , M, 0 ≤ εj ≤ 1 for all j = 1, . . . , N,

and Constraints (8)–(9). It is interesting to notice that this new approach is
similar to strategies proposed to find minimal sets of infeasible constraints in
linear programs [2].

3.2 Credal Discounting vs ε-Discounting

In a previous paper [4], we proposed a discounting strategy that was applied
to directly to bounds αj , βj before transforming Equation (2). The obtained
discounted equation for the jth classifier is

(1 − εj)αj ≤ P (Aj |Aj ∪ Bj) ≤ εj + (1 − εj)βj , j = 1, . . . , N.

However, applying such a discounting (or other correction) operation results in
quadratic constraints once Equation (2) is "deconditioned" and transformed in
Constraints (8)–(9). Discounted constraints on P (Bj |Aj ∪ Bj) are obtained by
complementation. Remark further that for each constraint, all the coefficients of
the square terms p2

i and ε2j are zero. This implies that the associated quadratic
form is indefinite. Therefore, computing the minimum-norm vector of coefficients
ε1, . . . , εN by solving an optimisation problem is very difficult, and searching the
space of all solutions is very greedy. To overcome this problem, all the discounting
factors were assumed to be equal, and were computed empirically by searching
the parameter space (if ε1 = · · · = εN , a dichotomic search can be performed).

In the present approach, we have N discounting rates to compute. However,
they may be determined by solving a linear optimization problem under linear
constraints, which may be addressed more efficiently than searching the space
of discounting coefficients.

3.3 Global vs Local Discounting

In this work, we advocate a local discounting approach, where each classifier is
associated with a specific rate εi. In order to illustrate why this approach seems
preferable to a global strategy, where all discounting rates are assumed to be
equal, we concentrate on the one-vs-one problem (i.e., each classifier was trained
to separate a single class from another). Let us now consider the following simple
example:
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Example 2. Consider X = {x1, x2, x3, x4} and the following results:

P (xi|xi, xj) ∈ [0.6, 1]

for all pair 1 ≤ i < j ≤ 4, except for P (x1|x1, x4) ∈ [0, 0.4]. Thus, all classifier
outputs are consistent with p1 > p2 > p3 > p4, except P (x1|x1, x4) from which
one would conclude p4 > p1. Now, if we were to discount all of them in the same
way, we would obtain as a minimal discounting εij = 1/6 (and

∑
εij = 1, with

εij the discounting value of P (xi|xi, xj)), with p1 = p2 = p3 = p4 = 1/4 being
the only feasible solution. Thus, in this case, all the information provided by the
classifiers is lost, and we are unable to choose between one of the four classes.

Now, assume that each classifier is discounted separately from the others;
then, taking ε14 = 1/3 restores consistency (e.g., p1 = 0.5, p2 = 0.31, p3 = 0.2,
p4 = 0.09 is a solution) while still preserving the ordering p1 > p2 > p3 > p4.

4 Experiments

In this section, we present some experiments performed on classical and simu-
lated data sets. We considered both decision rules presented in Section 2.4 to
make decisions. Since the maximality rule provides a set of possible classes, we
need to define a way to evaluate the accuracy of the decision system in this case.
Section 4.1 addresses this topic.

4.1 Evaluating Classifiers Performances

Combined classifiers used with a maximin rule can be directly compared to
classical classifiers or to more classical combinations, as both return a single
class as output. In this case, accuracy is simply measured as a classical accuracy
that will be referred to acc in the following. However, one of the main assets
of imprecise probabilistic approaches is the (natural) ability to return sets of
classes when information is ambiguous or not precise enough to return a single
class. In this case, comparing the imprecise classification output with a classical
unique decision is not straightforward.

A first (naive) solution consists in considering the classification as fully accu-
rate whenever the actual class of an evaluated data point belongs to the predicted
set of possible classes X̂. It amounts to consider that the final decision is left to
the user, who always makes the good choice. The error rate thus computed is an
optimistic estimate of the accuracy of the classifier. This estimate will thereafter
be referred to as set accuracy, or s − acc.

Another solution is to use a discounted accuracy. Assume we have T obser-
vations for which the actual classes xi, i = 1, . . . , T are known, and for which T
sets of possible classes X̂1, . . . , X̂T have been predicted. The discounted accuracy
d − acc of the classifier is then

d − acc =
1
T

T∑
i=1

Δi

g(|X̂i|)
,
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with Δi = 1 if xi ∈ X̂i, zero otherwise and g an increasing function such that
g(1) = 1. Although g(x) = x is a usual choice for the discounted accuracy, it has
recently been shown [11] that this choice leads to consider imprecise classification
as being equivalent to make a random choice inside the set of optimal classes.
This comes down to consider that a Decision Maker is risk neutral, i.e., does not
consider that having imprecise classification in case of ambiguity is an advantage.
This also implies that the robustness of an imprecise classification is rewarded
by concave (or risk-averse) functions g.

In our case, we used the function g(·) = logM (·) that satisfies g(1) = 1 and
takes account of the number of classes. Indeed, in the case of two classes, we
should have g(2) = 2, because predicting two-classes out of two is not infor-
mative. However, as M increases, predicting a small number of classes becomes
more and more interesting. This is why we pick logM .

4.2 Datasets and Experimental Setup

We used various UCI data sets that are briefly presented in Table 1. For each of
these datasets, we considered the classical one-vs-one decomposition scheme, in
which each classifier is trained to separate one class from another. We used as
base classifiers CART decision trees (so that comparisons between the precise
and the imprecise approaches can be done) and the imprecise Dirichlet model [1]
to derive lower and upper conditional probability bounds. This model depends
on a hyper-parameter s that settles how quickly the probability converges to
a precise value. More precisely, if aj , bj are the two classes for the jth binary
classifier, and if naj ,nbj are the number of training data having respectively aj

and bj for classes in the leaf of the decision tree reached by the instance, then
the bounds are

αj =
naj

nj + s
, βj =

naj + s

nj + s
,

where nj = naj + nbj . Then, s can be interpreted as the number of “unseen”
observations, and αj = βj if s = 0.

Table 1. UCI data sets used in experiments

Data set #classes #input #samples
name M features
glass 6 9 214

satimage 6 36 6435
segment 7 19 2310
vowel 11 10 990

waveform 3 8 5000
yeast 10 8 1484
zoo 7 18 101

primary tumor 21 17 339
anneal 5 38 898
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Table 2 summarises the results obtained for s = 4. We compared our method
to a single CART decision tree (DT) and to Naive Bayes classifiers (NB). We
also displayed the accuracy obtained with maximin rule as well as the set ac-
curacy and the discounted accuracy obtained with the maximality rule, both
for the global and local correction methods. We used a 10-fold cross validation.
The significance of the differences between the results was evaluated using a
Wilcoxon-signed rank test at level 95%. The best results (outside set accuracy)
are underlined and results that are not significantly different are printed in bold.
Note that we excluded s-acc since it is strongly biased in favor of imprecise
decisions.

Table 2. UCI data sets used in experiments

Data set NB DT local global
acc s-acc d-acc acc s-acc d-acc

glass 70.55 71.00 74.77 79.59 74.29 73.73 78.55 73.79
satimage 84.34 80.06 87.27 90.43 88.16 86.37 89.15 87.78
segment 96.19 85.88 95.58 97.36 96.63 96.37 96.88 96.50
vowel 78.88 72.10 80.32 82.84 81.32 77.58 77.88 77.27

waveform 71.10 80.94 73.24 81.70 75.11 73.44 81.86 75.28
yeast 48.84 45.33 57.13 68.32 61.94 55.11 62.39 59.19
zoo 95.17 90.17 96.17 96.17 94.59 96.17 96.17 94.59

p. tumor 38.05 48.38 45.75 45.75 45.75 42.22 42.22 42.22
anneal 95.99 93.10 81.74 81.74 81.74 81.86 81.86 81.86

Two main remarks can be made. First, the one-versus-one decomposition
strategy provides good results for most data sets, as it gives better results on 6
data sets out of 9. Second, it is clear that the local discounting strategy gives
significantly better results than the global discounting strategy. The local strat-
egy dominates the global one on most data sets and gives results very close to
the global one otherwise (here, for the “waveform” and “anneal” datasets).

Let us remark that the parameter s, which is directly proportional to the
amount of imprecision, has remained the same for all data sets. However, the re-
sulting imprecision also depends on the data. This partly explains the differences
between the set accuracy and the discounted accuracy obtained on the datasets:
for instance, the resulting imprecision is moderate for “glass” and “yeast”, but
zero for “anneal” and “primary tumor”).

In order to provide an idea of the impact of increasing the overall degree
of imprecision, Figure 1 shows the evolution of the discounted accuracy as a
function of log2(s) (let us remind that since g(|X̂i|) = logM (|X̂i|), the classifier
reaches a score of 0.5 when it retains all the classes for all the instances). It shows
that moderately increasing the imprecision can give better results (the maximum
is reached for s = 8) and that the discounted accuracy starts to decrease once
the degree of imprecision becomes too large. Similar behaviors could be observed
for other data sets.
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Fig. 1. Evolution of d − acc for data set glass

5 Conclusions

We addressed the problem of pattern classification using binary classifier combi-
nation. We adopted imprecise probability theory as a framework for representing
the imprecise outputs of the classifiers. More particularly, we consider classifiers
that provide sets of conditional probability distributions. It encompasses both
cases of precise and imprecise probabilistic outputs (including possibilistic, evi-
dential [3] and credal classifiers [10]). The combination of such classifiers is done
by considering classifier outputs as constraints. We presented a local discounting
approach for relaxing some of these constraints when the classifiers provide in-
consistent outputs. Our strategy computes the discounting rates by solving linear
optimization problems, which can be efficiently solved by standard techniques.

Experiments demonstrate that our method give good results compared to
the single classifier approach. Moreover, it performs almost always better than
the global discounting approach that was presented in a former paper. In fu-
ture works, we wish to extend our experimentation (by using precise classifiers
and genuine imprecise classifiers) and to make a deeper analysis of their results
(e.g., checking in which cases inconsistencies happen, verifying that imprecise
classification correspond to instances that are hard to classify). We also wish to
investigate on the properties of our approach from the point of view of decision
making under uncertainty.
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Abstract. In this paper, we have proposed, developed and experimen-
tally validated our novel subspace data stream clustering, termed Pre-
DeConStream. The technique is based on the two phase mode of mining
streaming data, in which the first phase represents the process of the
online maintenance of a data structure, that is then passed to an offline
phase of generating the final clustering model. The technique works on
incrementally updating the output of the online phase stored in a micro-
cluster structure, taking into consideration those micro-clusters that are
fading out over time, speeding up the process of assigning new data points
to existing clusters. A density based projected clustering model in de-
veloping PreDeConStream was used. With many important applications
that can benefit from such technique, we have proved experimentally the
superiority of the proposed methods over state-of-the-art techniques.

1 Introduction

Data streams represent one of the most famous forms of massive uncertain data.
The continuous and endless flow of streaming data results in a huge amount of
data. The uncertainty of these data originates not only from the uncertain char-
acteristics of their sources as in most of the scenarios, but also from their ubiq-
uitous nature. The most famous examples of uncertain data streams are sensor
streaming data which are available in everyday applications. These applications
start from home scenarios like the smart homes to environmental applications
and monitoring tasks in the health sector [12], but do not end with military
and aerospace applications. Due to the nature, the installation and the running
circumstances of these sensors, the data they collect is in most cases uncertain.
Furthermore, the pervasive flow of data and the communication collision addi-
tionally leverage the certainty of collected data. The latter fact is the reason why
some other types of data streams can also be uncertain although they are not
produced from sensor data (e.g. streaming network traffic data).

Clustering is a well known data mining technique that aims at grouping sim-
ilar objects in the dataset together into same clusters, and dissimilar ones into

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 311–324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



312 M. Hassani et al.

different clusters, where the similarity is decided based on some distance func-
tion. Thus, objects separated by far distances are dissimilar and thus belong
to different clusters. In many applications of streaming data, objects are de-
scribed by using multiple dimensions (e.g. the Network Intrusion Dataset [1] has
42 dimensions). For such kinds of data with higher dimensions, distances grow
more and more alike due to an effect termed curse of dimensionality [5] (cf. the
toy example in Figure 1). Applying traditional clustering algorithms (called in
this context: full-space clustering algorithms) over such data objects will lead to
useless clustering results. In Figure 1, the majority of the black objects will be
grouped in a single-object cluster (outliers) when using a full-space clustering
algorithm, since they are all dissimilar, but apparently they are not as dissimilar
as the gray objects. The latter fact motivated the research in the domain of sub-
space and projected clustering in the last decade which resulted in an established
research area for static data. For streaming data on the other hand, although a
considerable research has tackled the full-space clustering (cf. Section 2.2), very
limited work has dealt with subspace clustering (cf. Section 2.3).
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Fig. 1. An example of subspce clustering

Most full-space stream clustering algorithms use a two-phased (online-offline)
model (e.g CluStream [2] and DenStream [7], cf. Section 2.2). While the on-
line part summarizes the stream into groups called microclusters, the offline
part performs some well-known clustering algorithm over these summaries and
gives the final output as clustering of the data stream. Usually, the offline part
represents the bottleneck of the clustering process, and when considering the
projected clustering which is inherently more complicated compared to the full-
space clustering, the efficiency of a projected or subspace stream clustering algo-
rithm becomes a critical issue. In this paper we present a density-based projected
clustering over streaming data. Our suggested algorithm PreDeConStream tries
to find clusters over subspaces of the evolving data stream instead of search-
ing over the full space merely. The algorithm uses the famous (online-offline)
model, where in the offline phase, it efficiently maintains the final clustering
by localizing the part of the clustering result which was affected by the change
of the stream input within a certain time, and then sustaining only that part.
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Additionally, the algorithm specifies the time intervals within which a guaranteed
no-change of the clustering result can be given.

The remainder of this paper is organized as follows: Section 2 gives a short
overview of the related work from different neighboring areas. Section 3 intro-
duces some required definitions and formulations to the problem. Our algorithm
PreDeConStream is introduced in Section 4, and then thoroughly evaluated in
Section 5. Then we conclude the paper with a short outlook in Section 6.

2 Related Work

In this section, we list the related work from three areas: subspace clustering of
static data, full-space stream clustering, and finally subspace stream clustering.

2.1 Subspace Clustering Algorithms over Static Data

According to [16], one can differentiate between two main classes of subspace
clustering algorithms that deal with static data:

– Subspace clustering algorithms [14] which aim at detecting all possible
clusters in all subspaces. In this algorithm class, each data object can be
part of multiple subspace clusters.

– Projected clustering algorithms [6] which assign each data object to
at most one cluster. For each cluster, a subset of projected dimensions is
determined which represents the projected subspace.

SubClu [14] is a subspace clustering algorithm that uses the DBSCAN [9] clus-
tering model of density connected sets. SubClu computes for each subspace all
clusters which DBSCAN would have found as well if applied on that specific
subspace. The subspace clusters are generated in a bottom-up way and for the
sake of efficiency, a monotonicity criteria [14] is used. If a subspace T does
not contain a cluster, then no higher subspace S with T ⊆ S can contain a
cluster.

PreDeCon [6] is a projected clustering algorithm which adapts the concept
of density based clustering [9]. It uses a specialized similarity measure based on
the subspace preference vector (cf. Definition 6) to detect the subspace of each
cluster. Different to DBSCAN, a preference weighted core point is defined in
PreDeCon as the point whose number of preference dimensions is at most λ and
the preference weighted neighborhood contains at least μ points.

IncPreDeCon [15] is an incremental version of the algorithm PreDeCon [6]
designed to handle accumulating data. It is unable to handle evolving stream
data since it does not perform any removal or forgetting of aging data. Ad-
ditionally, the solution performs the maintenance after each insertion, which
makes it considerably inefficient, especially for applications with limited mem-
ory. The algorithm we present in this paper adopts in some parts of its offline
phase the insertion method of IncPreDeCon, but fundamentally differs from In-
cPreDeCon by maintaining the summaries of drifting streaming data, applying
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PreDeCon on the microcluster level, including a novel deletion method, and
carefully performing the maintenance of the clustering after some time interval
and not after each receiving of an object.

2.2 Full-Space Clustering Algorithms over Streaming Data

There is a rich body of literature on stream clustering. Approaches can be cate-
gorized from different perspectives, e.g. whether convex or arbitrary shapes are
found, whether data is processed in chunks or one at a time, or whether it is
a single algorithm or it uses an online component to maintain data summaries
and an offline component for the final clustering. Convex stream clustering ap-
proaches are based on a k-center clustering [2,11]. Detecting clusters of arbitrary
shapes in streaming data has been proposed using kernels [13], fractal dimen-
sions [17] and density based clustering [7,8]. Another line of research considers
the anytime clustering with the existence of outliers [10].

2.3 Subspace Clustering Algorithms over Streaming Data

Similar to the offline clustering algorithms, two types of stream clustering al-
gorithms exist: subspace and projected stream clustering algorithms. However
there is, to the best of our knowledge, only one subspace clustering algorithm
and two projected clustering ones over streaming data.

Sibling Tree [19] is a grid-based subspace clustering algorithm where the
streaming distribution statistics is monitored by a list of grid-cells. Once a grid-
cell is dense, the tree grows in that cell in order to trace any possible higher
dimensional cluster.

HPStream [3] is a k-means-based projected clustering algorithm for high di-
mensional data stream. The relevant dimensions are represented by a
d-dimensional bit-vector D, where 1 marks a relevant dimension and 0 other-
wise. HPStream uses a projected distance function, called Manhattan Segmental
distance MSD [4], to determine the nearest cluster. HPStream cannot detect
arbitrary cluster shapes and a parameter for the number of cluster k has to be
given by the user, which is in not intuitive in most scenarios. Additionally, as a
k-means based approach, HPStream is a bit sensitive to outliers. The model de-
scribed in this paper is able to detect arbitrarily shaped and numbered clusters
in subspaces and, due to its density-based method, is less sensitive to outliers.

HDDStream [18] is a recent density-based projected stream clustering algo-
rithm that was developed simultaneously with PreDeConStream, and published
after the first submission of this paper. HDDStream performs an online summa-
rization of both points and dimensions and then, similar to PreDeConStream
it performs a modified version of PreDeCon in the offline phase. Different from
our algorithm, HDDStream does not optimize the offline part which is usually
the bottleneck of subspace-stream clustering algorithm. In the offline phase, our
algorithm localizes effects of the stream changes and maintains the old cluster-
ing results by keeping non-affected parts. Additionally, our algorithm defines the
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time intervals where a guaranteed no-change of the clustering result exists, and
organizes the online summaries in multiple lists for a faster update.

3 Problem Formulation and Definitions

In this section, we formulate our related problems and give some definitions and
data structures that are needed to introduce our PreDeConStream algorithm.
In its online phase, our algorithm adopts the microcluster structure used in
most other streaming algorithms [2], [7] with an adaptation to fit our problem
(cf. Definitions 2-4). Later, we introduce a data structure and some definitions
which are related to the offline phase (cf. Definition 5). Since the algorithm uses
a density-based clustering over its online and offline phases, similar notations
that appear in both phases are differentiated with an F subscript for the offline
phase and N for the online phase.

3.1 Basic Definitions

Definition 1. The Decaying Function The fading function [7] used in Pre-
DeConStream is defined as f(t) = 2−λt, where 0 < λ < 1 The weight of the data
stream points decreases exponentially over time, i.e the older a point gets, the
less important it gets. The parameter λ is used to control the importance of the
historical data of the stream.

Definition 2. Core Microcluster A core microcluster at time t is defined as
a group of close points p1, . . . , pn with timestamps t1, . . . , tn. It is represented by
a tuple CMC(w, c, r) with:

1. Weight, w =
∑n

j=1 f(t− tj), with w ≥ μN

2. Center, c =
∑n

j=0 f(t−tj)pj

w

3. Radius, r =
∑n

j=0 f(t−tj)dist(pj ,c)

w , with r ≤ εN

The weight and the statistical information about the stream data decay accord-
ing to the fading function (cf. Definition 1). The maintenance of the microclusters
is discussed in Definition 4. Two additional types of microclusters are also given,
the potential microcluster and the outlier microcluster, to allow the algorithm
to quickly recognize changes in the data stream.

Definition 3. Potential and Outlier microcluster A potential microclus-
ter PMC = (CF 1, CF 2, w, c, r) is defined as follows:

1. Weight, w =
∑n

j=1 f(t− Tj) with w ≥ βμN

2. Linear weighted sum of the points, CF 1 =
∑n

j=1 f(t− Tj)pj

3. linear weighted squared sum of the points, CF 2 =
∑n

j=1 f(t− Tj)p
2
j

4. Center c = CF 1

w

5. Radius r =

√
|CF 2|

w −
(

|CF 1|
w

)2
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An outlier microcluster OMC = (CF 1, CF 2, w, c, r, t0) is defined as PMC with
the following modifications:

1. Weight w =
∑n

j=1 f(t− Tj) with w < βμN

2. An additional entry with the creation time t0, to decide whether the outlier
microcluster is being evolving or is fading out.

The parameter β controls how sensitive the algorithm is to outliers.

Definition 4. Microclusters Maintenance With the progress of the evolving
stream, any core, potential, or outlier microcluster at time t MCt = (CF 1, CF 2,
w) is maintained as follows: If a point p hits MC at time t+ 1 then its statistics
become: MCt+1 = (2−λ ·CF 1+p, 2−λ·CF 2+p2, 2−λ·w+1) Otherwise, if no point
was added to MC for any time interval δt, the microcluster can be updated after
any time interval δt as follows: MCt+δt = (2−λδt · CF 1, 2−λδt · CF 2, 2−λδt · w).

It should be noted that this updating method is different from that in DenStream
[7]. The modification considers the decaying of the other old points available in
MC, even if MC was updated. This makes the algorithm faster in adapting to
the evolving stream data. Additionally, this gives our microcluster structure an
upper bound for the weight (wmax) of the microcluster which will be useful for
the maintenance of the offline part as we will see in Section 3.2.

Lemma 1. The maximum weight wmax of any microcluster MC is 1
1−2−λ .

Proof. Assuming that all the points of the stream hit the same microcluster
MC. The definition of the weight w =

∑t
t′=0 2−λ(t−t′) can be transformed with

the sum formula for geometric series as following:

w =

t∑
t′=0

2−λ(t−t′) =
1− 2−λ(t+1)

1− 2−λ
(1)

Thus, the maximum weight of a microcluster is:

wmax = limt→∞ w = limt→∞
1−2−λ(t+1)

1−2−λ = 1
1−2−λ .

Any newly created microcluster needs a minimum time Tp to grow into a poten-
tial microcluster, during this time the microcluster is considered as an outlier
microcluster. Similarly, there is a minimum time Td needed for a potential mi-
crocluster to fade into an outlier microcluster.

Lemma 2. A) The minimum timespan for a newly created microcluster to grow

into a potential microcluster is: Tp =
⌈
1
λ log2

(
1

1−βμN (1−2−λ)

)
− 1

⌉
.

B) the minimum timespan needed for a potential microcluster to fade into an
outlier microcluster is: Td =

⌈
1
λ log2(βμN )

⌉
.

Proof. A)The minimum timespan needed for a newly created microcluster to
become potential is Tp = tp − t0, where tp is the first timestamp where the
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microcluster becomes potential and t0 the creation time of the outlier microcluster.
According to Def. 3, a microcluster becomes potential when its weight w becomes

w ≥ βμN . Thus, from Equation 1: w =
∑Tp

t′=t0
2−λ(t−t′) = 1−2−λ(Tp+1)

1−2−λ ≥ βμN .

⇒ Tp =
⌈
1
λ log2

(
1

1−βμN (1−2−λ)

)
− 1

⌉
.

B)Let Td = td−tp be the minimum timespan needed for a potential microcluster
to be deleted, where tp is the last timestamp where the microcluster was still
potential, and td is the time when it is deleted. For the deletion, the weight of
an outlier microcluster has to be less than wmin = 1, because the start weight of
a newly created microcluster is 1. Let wp be the last time when the microcluster
was potential, according to Def. 4, Td is the smallest no-hit interval that is
needed for a potential microcluster to become outlier. Thus: Td is the smallest
value which makes: wp · 2−λTd < 1. But we know that wp = βμN ⇒ Td =⌈
1
λ log2(βμN )

⌉
.

Definition 5. Minimum Offline Clustering Validity Interval The mini-
mum validity interval of an offline clustering Tv defines the time within which
PreDeConStream does not need to update the offline clustering since it is still
valid because no change of the status of any microcluster status happened. It is
defined as: Tv = min{Tp, Td}

Definition 6. Subspace Preference Vector wc [6] For each dimension i, if
the variance of the microclusters c of the Euclidean ε-neighborhood NεF (c) is
below a user defined threshold δ, then the i-th entry of the preference subspace
vector wc is set to a constant κ2 1, otherwise the entry is set to 1.

3.2 A Data Structure to Manage the Microclusters

A data structure is needed to manage the updated and non-updated microclus-
ters at each timestamp in an efficient and effective way. The main idea is that
the algorithm does not need to check for all potential microclusters, at each
timestamp, whether the potential microcluster remains potential or fades into
a deleted microcluster. Therefore a data structure is introduced where only a
subset of all the potential microclusters needs to be checked. We group the mi-
croclusters into multiple lists according to their weight. The borders between
these lists are selected as below (cf. also Figure 2) such that all microclusters in
a list that are not hit in the previous timestamp will fade to the lower-weighted
list. Thus, only the weight of the one which was hit needs to be checked. There
are two types of lists: outlier lists loj , and potential lists: lpi . The borders of

the lists are: Wd = 1,Wmin = βμN ,Wmax = 1
1−2−λ . The internal borders are

selected as: wp
i =

wp
i−1

2−λ for the potential lists, and wo
i = 2−λwo

i−1 + 1 for the
outlier lists. It should be noted, that in this case, only the lists around Wmin

from both outlier and potential sides (cf. Figure 2) need to be checked each
Tv to see whether the current offline clustering is still valid as we will see in
Section 4.
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Fig. 2. An example of outlier and potential lists visualized w.r.t. their weights

4 The PreDeConStream Algorithm

Initialisation Phase. In lines 1-4 of Algorithm 1, the minimum timespan Tv

based on the user’s parameter setting is computed. Furthermore, PreDeCon-
Stream needs an initial set of data stream points to generate an initial set of
microclusters for the online part. Therefore a certain amount of stream data
is buffered and on this initial data, the points are found, whose neighborhood
contains at least βμN points in its εF -neighborhood. If a point p is found, a
potential microcluster is created by p and all the points in its neighborhood and
they are removed from the initial points. This is repeated until no new potential
microcluster is found. Finally the generated initial potential microclusters are
inserted into the corresponding lists and the initial clustering is computed with
an adapted version of PreDeCon [6].

Algorithm 1. PreDeConStream(DS, εN , μN , λ, εF , μF , β, τ)

1: Tp ←
⌈

1
λ

log2

(
1

1−βμN (1−2−λ)

)
− 1

⌉
;

2: Td ←
⌈
1
λ

log2(βμN )
⌉
;

3: Tv ← min{Tp, Td};
4: initialisation phase
5: repeat
6: get next point p ∈ DS with the current timestamp tc
7: process(p);
8: maintain microclusters in data structure
9: if (tc mod Tv) == 0 then

10: C ← updateClustering(C);
11: end if
12: if user request clustering is received then
13: return clustering C
14: end if
15: until data stream terminates

Offline: Maintenance of the Resulting Subspace Clustering. In Algo-
rithm 2, the new arriving data points p ∈ DS of the stream data within times-
tamp t are merged with the existing microclusters. In Lines 1-4 of Algorithm 2,
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the nearest potential microcluster cp is searched for in all the lists of the potential
microclusters lp. The algorithm clusters the incoming point p ∈ DS tentatively
to cp to check, if the point actually fits into the potential microcluster cp. If the
radius rp of the temporary microcluster cp is still less than εF , the point can be
clustered into cp without hesitation. If p does not fit into the nearest potential

Algorithm 2. process(data point p)

1: search nearest potential microcluster cp in all the lists lp

2: merge p tentatively into cp
3: if rp ≤ εN then
4: insert p into cp
5: else
6: search nearest outlier microcluster co in all the lists lo

7: merge p tentatively into co
8: if ro ≤ εN then
9: insert p into cp

10: if wo ≥ βμN then
11: insert co into potential list lpmin and remove it from outlier list lomax

12: end if
13: else
14: create new outlier microcluster with p
15: end if
16: end if

microcluster cp, (cf. Lines 5-12 of Algorithm 2), the algorithm searches for the
nearest outlier microcluster co in the outlier lists lo. The algorithm checks again
if its radius ro of co is still less than εN , when the point is tentatively added
to co. If the point fits into co and it is in the highest list of the outliers lo, the
algorithm checks if the weight wo is greater than or equal to βμN . If that is
the case, the microcluster co is inserted into the lowest list lpmin of the potential
microclusters and has to be considered in the offline part. If the point does not
fit into any existing microcluster, a new outlier microcluster is created with this
point and is inserted into the outlier microcluster list lo0, (cf. Line 14).

Online: Processing of the Data Stream. In Lines 1-10 of Algorithm 3, for
each newly created potential microcluster cp, its subspace preference vector wcp

is computed. Furthermore, for each potential microcluster cq ∈ NεF (cp), the
preference subspace vector of each cq is updated and checked if its core member
property has changed. If that is the case, it is added to the UPDSEEDi set. In
Lines 11-19 of Algorithm 3, all the potential microclusters are found which are
affected by removing the potential microclusters which faded out in the online
part. For each potential microcluster cq ∈ NεF (cd), the preference subspace vec-
tor of each cq is updated and added to UPDSEEDd if the core member property
of cq has changed because of deleting cd out of its εF -neighborhood. If all the
affected potential microclusters were found, UPDSEEDi and UPDSEEDd can
be merged to UPDSEED. Finally in Lines 20-22, the potential microclusters
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Algorithm 3. updateClustering(C)

1: for all cp ∈ Inserted PMC do
2: compute the subspace preference vector wcp

3: for all cq ∈ NεF (cp) do
4: update the subspace preference vector of cq
5: if core member property of cq has changed then
6: add cq to AFFECTED CORESi

7: end if
8: end for
9: compute UPDSEEDi based on AFFECTED CORESi

10: end for
11: for all cd ∈ Deleted PMC do
12: for all cq ∈ NεF (cd) do
13: update the subspace preference vector of cq
14: if core member property of cq has changed then
15: add cq to AFFECTED CORESd

16: end if
17: end for
18: compute UPDSEEDd based on AFFECTED CORESd

19: end for
UPDSEED ← UPDSEEDi ∪ UPDSEEDd

20: for all cp ∈ UPDSEED do
21: call expandCluster() of PreDeCon [6] by considering the old cluster structure;
22: end for

of UPDSEED need to be reinserted into the clustering. Starting from a poten-
tial microcluster in UPDSEED, the function expandClusters() of the algorithm
PreDeCon [6] is called under consideration of the existing clustering. This is re-
peated until all the potential microclusters cp ∈ UPDSEED are clustered into
a cluster or marked as noise.

5 Experimental Evaluation

In this section, the experimental evaluation of PreDeConStream is presented.
PreDeConStream, as well as the two comparative algorithms, HPStream as a
k-means based projected algorithm and DenStream as a fullspace density based
algorithm, were implemented in Java. All the experiments were done on a Linux
operating system with a 2.4 GHz processor and 3GB of memory.

Datasets. For the evaluation of PreDeConStream several datasets were used:
1. Synthetic Dataset: SynStream3D consists of 3-dimensional 4000 objects with-
out noise that form at the beginning two arbitrarily shaped clusters over full
space. After some time, the data stream evolves so that for each cluster different
dimensions of both clusters become irrelevant.
2. Synthetic Dataset: N100kC3D50R40 generated similar to [7] with 100000 data
objects forming 3 clusters with 40 relevant dimensions out of 50.
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3. Real Dataset: Network IntrusionDetection data set KDDCUP’99 (KDDcup)[1]
used to evaluate several stream clustering algorithms [3,7] with 494021 TCP con-
nections, each represents either a normal connection, or any of 22 different types
of attacks (cf. Figure 4). Each connection consists of 42 dimensions.
4. Real Dataset: Physiological Data, ICML’04 (PDMC) is a collection of ac-
tivities which was collected by test subjects with wearable sensors over several
months. The data set consists of 720792 data objects, each data object has 15
attributes and consists of 55 different labels for the activities and one additional
label if no activity was recorded.

Evaluation Measure and Parameter Settings. To evaluate the quality
of the clustering results, the cluster purity measure [3,7] is used. For the effi-
ciency, the runtime in seconds was tested. In PreDeConStream the offline pa-
rameters εF and μF specify the density threshold that the clusters must exceed
in the offline algorithm part. A lower bound for εF is the online parameter εN . In
the experiments, εF was set to at least 2× εN . Unless otherwise mentioned, the
parameters for PreDeConStream were set similar to [7] as follows: decay factor
λ = 0.25, initial data object Init = 2000, and horizon H = 5.

Experiments. Purity and runtime were tested for the three algorithms.

A. Evaluation of Clustering Quality: Using the SynStream3D dataset for
both PreDeconStream and Denstream, the online parameters are set to εN = 4,
μN = 5 and λ = 0.25. For PreDeConStream, the maximal preference dimension-
ality is set to τ = 2 and μF = 3. The stream speed was set to 100 points per time
unit. With this speed setting, the data stream evolves at timestamp 26, i.e. one
dimension for each cluster becomes irrelevant. It can be seen from Figure 3(a)
that the cluster purity of PreDeConStream and DenStream is 100% until the
data stream changes, which is not the case for HPStream. This is because both
can detect clusters with arbitrarily cluster shapes. Beginning from time unit: 26
the stream evolvs such that in each cluster one dimension is no longer relevant
and thus DenStream as a fullspace clustering algorithm, does not detect any
cluster. Similarly, Figure 3(b) shows the purity results of both algorithms over
the N100C3D50R40 dataset. It can be seen that PreDeConStream outperforms
HPStream. The time units are selected in such a way that the changes of the
cluster purity can be observed when the stream evolves. It can be observed that
HPStream has problems with detecting the changes in the stream. That is be-
cause the radius of the projected clusters might be too high and the new points
are clustered wrong. PreDeConStream adapts to the changes in the stream fast
and keeps a high cluster purity. On the Network Intrusion data set, the stream
speed was set to 1000 points per time unit. Since the Network Intrusion data set
was already used in [3,7], the same parameter settings are chosen for DenStream
and HPStream as in [3,7]. Since PreDeConStream also builds on a microcluster
structure, similar parameters settings for the online part of PreDeConStream
are chosen, to have a fair comparison. For PreDeConStream: β = 1.23, μF = 5,
and τ = 32. For all the three algorithms, the decaying factor λ is set to 0.25.
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Fig. 3. Clustering purity for: (a) SynStream3D dataset, (b) N100C3D50R40 dataset

Figure 5(a) shows the purity results for the KDDcup Dataset. It can be seen
that PreDeConStream produces the best possible clustering quality. For the
evaluation, measurements at timestamps where some attacks exist were selected.
The data recordings at timestamp 100 and all the recordings within the horizon
5 were only attacks of the type “smurf”. At this time unit any algorithm could
achieve 100% purity. The attacks that appeared within horizon H = 5 in different
timestamps are listed in Figure 4. By comparing Figures 4 and 5(a), one can

Normal or Objects within horizon H = 5 at time unit
attack Type 150 350 373 400

normal 4004 4097 892 406

satan 380 0 0 0

buffer overflow 7 1 2 0

teardrop 99 99 383 0

smurf 143 0 819 2988

ipsweep 52 182 0 0

loadmodule 6 0 0 1

rootkit 1 0 0 1

warezclient 307 0 0 0

multihop 0 0 0 0

neptune 0 618 2688 1603

pod 0 1 99 0

portsweep 0 1 117 1

land 0 1 0 0

sum 5000 5000 5000 5000

Fig. 4. Labels of KDDcup data stream within the horizon H = 5, stream speed = 1000

observe that PreDeConStream is also resistant against outliers. At the timestamp
350 and 400 there were some outlier attacks within the horizon which affected
other algorithms less than PreDeConStream.

Figure 5(b) shows the purity results over the Physiological dataset. The stream
speed = 1000 and H = 1 . Again, the timestamps were selected in such a way
that there are different activity labels within one time unit. It can be seen from
Figure 5(b) that PreDeConStream has the highest purity.

B. Evaluation of Efficiency: The real datasets are used to test the efficiency
of PreDeConStream against HPStream. The parameters were set the same way
as for the previous experiments on these datasets and the results are shown in
Figure 6. Although it is unfair to compare the runtime of a completely density-
based approach against a k-means based one, but Figures 6(a) and 6(b) show
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Fig. 5. Clustering purity for: (a) KDDcup dataset, (b) PDMC dataset
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Fig. 6. Runtime results for: (a) KDDcup dataset with a clustering request at each
time unit, (b) PDMC dataset with a clustering request at each 20th time unit, and (c)
PDMC dataset with different clustering request intervals

a considerable positive effect of our clustering maintenance model when the
clustering requests frequency decreases. Usually, clustering requests are not ex-
tremely performed at each timestamp or even at each 20th timestamp. This
fact motivated a further experiment where we tested the performance of the two
algorithms for different clustering frequencies. The result which is depicted in
Figure 6(c) confirms our assumption. Due to its clustering maintenance model,
PreDeConStream performs better with higher clustering requests intervals. A
further experimental evaluation of PreDeConStream was done in [20].

6 Conclusions and Future Work

In this paper we presented a novel algorithm termed PreDeConStream. Based
on the two phase process of mining data streams, our technique builds a micro-
cluster-based structure to store an online summary of the streaming data. The
technique is based on subspace clustering targeting applications with high di-
mensionality of data. For the first time we have utilised projection, density-based
clustering, and cluster fading. As a result our technique has proved experimen-
tally its superiority over state-of-the-art techniques. In the future we plan to
deploy the technique in a real sensor network testbed, in order to prove its feasi-
bility. Furthermore, a thorough experimental study with different configuration
of clusters in the network is planned.
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Abstract. This paper addresses the task of helping investigators iden-
tify characteristics in credit-card frauds, so as to establish fraud profiles.
To do this, a clustering methodology based on the combination of an
incremental variant of the linearised fuzzy c-medoids and a hierarchical
clustering is proposed. This algorithm can process very large sets of het-
erogeneous data, i.e. described by both categorical and numeric features.
The relevance of the proposed approach is illustrated on a real dataset
containing next to one million fraudulent transactions.

Keywords: Incremental clustering, Hybrid Clustering, Bank Fraud,
Credit Card Security.

1 Introduction

With the generalisation of credit and debit cards as modes of payment, credit-
card frauds in e-commerce and other mail-order or distant transactions have
become a major issue for all banks and card-issuers. For instance, according to
the 2011 annual Banque de France report [1], whereas the overall 2010 fraud rate
in France is as low as 0.074%, corresponding to an amount of e 368.9 million, the
frauds in domestic card-not-present payments (i.e. made online, over the phone
or by post) represent 0.26% of this type of transaction, about three and a half
times more. These frauds represent 62% of all fraud cases in terms of value.

As a consequence, the analysis and automatic detection of fraudulent transac-
tions has become a largely studied field in the machine learning community [2–4],
in particular in the case of e-commerce. This task is both essential from an appli-
cation point of view, as mentioned above, and scientifically highly challenging,
because of its difficulty, part of which is due to the quantity of data that must
be processed and the extreme class imbalance.

From a machine-learning standpoint two problems should be separated, namely
fraud detection and fraud characterisation. The former aims at predicting whether
or not a given transaction should be accepted, so as to decline tentative frauds
as they take place. Its objective is, therefore, to differentiate fraudulent and gen-
uine transactions and it is, thus, part of the supervised-learning framework. As
such, it should be formulated as a discrimination task in a highly imbalanced

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 325–336, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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two-class setting. This particular problem can use the card history to identify
frauds as transactions that differ from the card-holder habits.

The second machine-learning problem, fraud characterisation, endeavours to
identify distinct fraudster profiles which can then be conceived as operational
procedures and used as investigative tools in the apprehension of fraudsters or
to assist in fraud detection. The objective is, therefore, to identify, in a set of
frauds, distinct subtypes of frauds exhibiting similar properties. It is part of the
unsupervised-learning framework and is essentially a clustering task applied to
the set of all fraudulent transactions. It should be noted that, in this case, card
history is of no use, since fraudster profiles are independent from card-holder
habits and, therefore, frauds need only be compared to other frauds and not to
legitimate transactions.

In this paper, we consider the latter type of approach and propose a hybrid in-
cremental clustering methodology to address this task. This method exhibits the
following characteristics: first, it ensures a rich description of the identified fraud-
ster profiles and allows a multi-level analysis, through the hierarchical structure
of the extracted clusters it yields. Second, the method allows the processing of
large datasets. Indeed, even if frauds represent a small minority of all transac-
tions, they are still very numerous. This is the reason why we propose to combine
a hierarchical clustering step, to organise the identified clusters in a dendrogram
but with a very high computational cost, to a preliminary data-decomposition
step, through an efficient partitioning step. For the partitioning step, we propose
an incremental approach which processes the dataset in smaller subsets. Third,
the method can deal with heterogeneous data, i.e. data whose features can be
either categorical or numeric. Indeed, apart from the amount which is a number,
transactions are, for instance, described by the country where they take place
or the general category of transacted product. Finally, on a more general level,
the method is robust, that is, it does not suffer from its random initialisation.

In the next section, we describe the methodology proposed to address this
task. Section 3 then presents the experimental results obtained on real data.

2 Proposed Methodology

Clustering data that are both in vast amounts and of a hybrid nature imposes
constraints on candidate algorithms. In this section, we outline the main ap-
proaches dealing with these issues and we describe in more detail the linearised
Fuzzy c-Medoids [5] on which the proposed methodology relies. We then detail
the proposed methodology.

2.1 Related Work

Clustering Large Data Sets. Very large datasets, having become more and
more common, have given rise to a large diversity of scalable clustering algo-
rithms.

One way to tackle the problem is to make existing algorithms go faster with
specific optimisations. For instance, acceleration of the k-means method and
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its variants can be achieved using improved initialisation methods to reduce
the number of iterations [6, 7]. For the Partitioning Around Medoids (pam [8])
approach, clarans [9] or the linearised fuzzy c-medoids algorithm [5], detailed
below, alleviate computational costs by updating medoids in their vicinity.

Another approach, incremental clustering, iteratively applies a clustering al-
gorithm on data subsamples which are processed individually. The samples are
extracted from the dataset (e.g. randomly) or they can be imposed by a tempo-
ral constraint, when the data is available as time goes by. One variant proposes
to build a single sample, guaranteeing its representativeness, so that the results
of a single application of a clustering algorithm can be considered as meaningful
for the entire dataset [10].

In the general case, however, each sample is clustered and these partial results
are then merged into the final partition of the dataset [11]. This fusion can be
performed progressively by including in the clustering step of a given sample the
results from the previous steps: a sample is summarised by the extracted clus-
ters and this summary is processed together with the next sample [12–14]. The
incremental variant of dbscan [15] proposes an efficient strategy to determine
the region of space where the cluster structure identified in the previous samples
should be updated and then locally applies the dbscan algorithm. Alternatively,
the fusion can be performed at the end, when all samples have been processed,
for instance by applying an additional clustering step to the centres obtained
from each sample. Birch [16], for example, incrementally performs a precluster-
ing step to build a compact representation of the dataset, based on structured
summaries that optimise memory usage along user-specified requirements. The
centres obtained after scanning the whole dataset then undergo a clustering pro-
cess. Cure offers a compromise between hierarchical and partitioning clustering,
by both using cluster representative points and applying cluster fusion [17]. Both
approaches, progressive and closing fusions, can also be combined [18].

Clustering Heterogeneous Data. Hybrid data, data described by both nu-
meric and categorical attributes, define another case where specific clustering al-
gorithms are required. Such data rule out the usage of all mean-centred clustering
techniques, in particular the very commonly applied k-means and its variants.

Two main approaches can be distinguished for this problem: so-called rela-
tional methods which rely on the pairwise dissimilarity matrix (e.g. based on
the pairwise distances) and not on vector descriptions of the data. This type of
approach includes, in particular, hierarchical clustering methods, density-based
methods [19] as well as relational variants of classic algorithms [20, 21].

On the other hand, medoid-based methods [5, 8] constitute variants of the
mean-centered methods that do not define the cluster representative as the av-
erage of its members, but as its medoid, that is, the data point that minimises
the possibly weighted distance to cluster members.

Linearised Fuzzy c-Medoids. The linearised fuzzy c-medoids algorithm, de-
noted l-fcmed in the following, combines several properties of the previously



328 M.-J. Lesot and A. Revault d’Allonnes

listed algorithms: it can process data that are both in vast amounts and of a
hybrid nature [5]. Indeed, it belongs to both accelerated techniques and medoid-
based methods. Moreover, being a fuzzy variant of such algorithms, it offers
properties of robustness and independence from random initialisation.

More formally, if xi, i = 1, . . . , n are the data points, c the desired number
of clusters, vr, r = 1, . . . , c the cluster centres and uir the membership degree
of datum xi to cluster r, the algorithm alternatively updates the membership
degrees and the cluster centres using the following equations:

uir =

[
c∑

s=1

(
d(xi, vr)

d(xi, vs)

) 2
m−1

]−1

vr = argmin
k∈N(vr)

n∑
i=1

um
rid(xk, xi) (1)

where m is the so-called fuzzifier, d a suitable metric and N(vr) the neighbour-
hood of centre vr. The latter is defined as the p data maximising membership
to cluster r.

The membership degrees are, thus, updated as in the fuzzy c-means and the
cluster centres as the data points that minimise the weighted distance to clus-
ter members. To reduce the computational cost, l-fcmed searches for a suitable
medoid update close to each current medoid, in N(vr), instead of computing
the minimum over the whole dataset. Both updates are iterated until medoid
positions stabilise.

The l-fcmed parameters are c, the number of clusters, m, the fuzzifier, and p,
the neighbourhood size. The algorithm also depends on the chosen metric d.

2.2 Global Architecture

To cluster fraudulent transactions, we propose a two-step methodology, illus-
trated in Figure 1, inspired from the existing approaches described above: before
performing a hierarchical clustering, because of its high computational cost, we
operate a segmentation using a partitioning algorithm. Because of its advantages,
listed in the previous section, we choose to use the linearised fuzzy c-medoids,
or rather we propose an incremental extension to further limit computational
strains, which we describe in the following.

The second step then uses a hierarchical clustering method to generalise the
obtained clusters. Its output dendrogram allows the data analyst to choose the
desired level of compromise between homogeneity and generality.

2.3 Incremental Partitioning Step

Following the classic incremental methodology, instead of performing the parti-
tioning clustering on the whole dataset, we operate l-fcmed iteratively on ran-
domly selected samples of size nl. As detailed below, we propose to introduce two
substeps to improve its efficiency in the considered global architecture: medoid
selection and unaffected fraud allocation.
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Fig. 1. Global architecture of the proposed methodology

Medoid Selection. The aim of the partitioning step is to purposefully build
an over-segmentation to summarise the data while minimising the loss of infor-
mation, as it is a preliminary step to the hierarchical clustering step. We thus
force a compactness constraint on the over-segmented clusters, in order to keep
only the most homogeneous, discarding the rest.

To select the clusters Cr, r = 1, . . . , c, whose medoids are highly representative
of their assigned data, we propose to keep those of sufficient size and exhibiting
a very high homogeneity level. The latter is evaluated by a measure of the
dispersion of members of Cr that could, for instance, be relative to the cluster
diameter, diam(Cr) = maxxi,xj∈Cr d(xi, xj). The selection criterion can thus be
formalised as:

size(Cr) = |Cr| > τ and disp(Cr) ≤ ξ (2)

where τ is the minimal acceptable size and ξ a user-set compactness threshold.
All data in the discarded clusters is then put back into the general pool

of transactions to be clustered. They thus become candidates for the random
sample selection of following iterations of the partitioning step.

Unaffected Fraud Allocation. Before iterating to the next sample, we scan
the data that are yet to be clustered, so as to add unaffected frauds to the iden-
tified clusters. This cluster augmentation has a double advantage: first, it avoids
the discovery in subsequent iterations of clusters similar to the selected ones, i.e.
it avoids cluster duplication or redundancy. It therefore simplifies the posterior
fusion step. Moreover, it further alleviates computational costs by reducing the
size of the frauds to cluster in following iterations.

This is done by selecting, from the pool of unclustered data, those frauds
which can be allocated to the selected clusters without degrading their quality,
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that is, frauds which are sufficiently close to the medoid and are in the allowed
dispersion. Formally an unaffected fraud x is assigned to cluster Cr if:

d(x, vr) < disp(Cr) (3)

This step can be seen as similar to the extension step performed by [10] but,
in our case, it remains a tentative extension, that is, only performed under the
condition that it does not deteriorate cluster dispersion.

Having built a compact and homogeneous partition of a subset of the data
through over-segmentation, medoid selection and cluster augmentation, the pro-
cess is repeated until no further cluster meets the required standards.

2.4 Hierarchical Step

Once all homogeneous clusters satisfying the constraints have been created, a hi-
erarchical clustering with complete linkage is operated on the resulting medoids.
Because we have heavily reduced the volume of data with our partitioning, this
step is computationally acceptable. The resulting hierarchy offers a progressive
agglomeration of clusters and allows for the selection of a suitable compromise
between cluster density and number of clusters. The selection of this compromise
is made by the visual examination of the hierarchy dendrogram.

3 Experimental Results

3.1 Data and Experimental Setup

We applied the proposed hybrid incremental clustering methodology to a dataset
made of 958 828 fraudulent transactions. These correspond to transactions that
were rejected by the actual card-holders who, in this way, label the data and
identify the transactions to be considered as frauds.

Each fraud in the dataset is described as a combination of numeric and cat-
egorical features. The first type of attributes includes the amount of the trans-
action in euros, a positive real number. The second type includes the country
where the transaction took place and the merchant category code of the product.

The distance d between two transactions t1 and t2, represented as vectors of
their features, is defined as the average of the distances on each attribute, i.e.
d(t1, t2) = 1/q

∑q
i=1 di(t1i, t2i), where di is the distance for attribute Ai. This

is either di = dcat, if Ai is categorical, or di = dnum if it is numeric. Each is
defined as follows:

dcat(x, y) =

{
1 if x �= y
0 otherwise

dnum(x, y) =
|x− y|

max(x, y)

The distance for categorical attributes dcat is binary: it equals 0 if the two values
to be compared are identical, and 1 in all other cases. The distance for numeric
attributes is defined as a relative gap: the assumption behind this is that a
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difference of 2e in amount, for instance, should not have the same impact if the
compared amounts are around 5e or if they are closer to 1 000e.

Regarding the parameters , we use the following setup: each sample contains
nl = 50 000 randomly selected data. l-fcmed is initialised randomly and applied
with the high value c = 4 000 because we want an over-segmentation. We use
the common value m = 2 for the fuzzifier. The size of the neighbourhood around
the medoids in which the following is selected is p = '50 000/4 000(.

Medoid selection, as presented in equation 2, depends on cluster size and
dispersion. The minimal size required is set at τ = 10. Since it bears on all
attributes, we write the dispersion metric disp(C) as the vector of its attributes’
dispersions. For categorical attributes, the number of different values repre-
sents dispersion; for numeric attributes, dispersion is best represented by their
standard-deviation normalised by their mean value. Formally supposing that for
attribute A we write its value in x as A(x), and its average value in cluster C as
AC =

∑
x∈C A(x)/|C|, we may write these dispersions as:

dispcat(C) = |{A(x)|x ∈ C}| dispnum(C) =
1

|C|

√∑
x∈C(A(x) −AC)2

AC

(4)

In this way, disp(C) is the vector of all dispersions and ξ is also a vector giving
local thresholds, which we set at ξcat = 1, limiting the categorical attributes to
a single value in the selected clusters, and ξnum = 0.01.

The cut threshold, for the hierarchical clustering, is set to 0.5, based on a
visual inspection of the dendrogram (see Figure 4) to achieve an acceptable
compromise between the final number of clusters and their homogeneity.

3.2 Incremental Partitioning Step: Results

The evolution of the incremental partitioning step is illustrated on Figures 2
and 3. Figure 2 shows the number of frauds assigned at each iteration, before
the allocation of unaffected frauds. It should be observed that this number,
starting at 18 373, represents 36.7% of the processed 50 000 points. This small
proportion of selected data illustrates how the compactness constraint rejects
a large amount of clusters and data. After this initial high value, the amount
of selected fraudulent transactions decreases very rapidly. The curve presents
an obvious asymptote around 500, i.e. around less than 1% of the considered
50 000 lines of data. This, in itself, is a satisfactory justification for stopping the
partitioning step after the illustrated 50 iterations.

The left graph in Figure 3 shows the cumulative number of clusters selected
at each iteration. At the first iteration, 394 clusters are selected as being qual-
ity clusters. By the end of the process 4 214 have been identified. The inflexion
of the curve indicates that the number of newly discovered quality clusters de-
creases with the number of iterations, another explanation for stopping after
fifty iterations of the partitioning step.

The right graph in Figure 3 shows the cumulative number of assigned data
after reallocation at each iteration, i.e. the total number of transactions that have
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Fig. 2. Evolution of the incremental partitioning step: number of assigned transactions
(on the y-axis), at each iteration (on the x-axis)
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Fig. 3. Evolution of the incremental partitioning step: (left) cumulative number of
selected clusters, at each iteration, (right) cumulative number of assigned data after
reassignment at each iteration

been assigned to any of the created clusters. 322 115 transactions are assigned at
the very first iteration, which indicates a high redundancy in the considered data:
many transactions are identical or very close one to another in the considered
description space, and thus fulfil the strict homogeneity condition imposed on the
assignment step. At each further iteration, the number of assigned transactions
drastically decreases, the last iterations bringing very little gain. This curve,
thus, also argues in favour of ending iterations of the partitioning.

As a result of these different choices, the incremental partitioning step pro-
duces, in the end, 4 214 clusters containing 642 054 frauds.

3.3 Hierarchical Step: Results

Figure 4 shows the dendrogram obtained after applying a hierarchical clustering
to the medoids obtained in the partitioning step. The same distance is used for
medoids as for transactions.

Visual inspection of the dendrogram prompts a cut above a cost of 0.5. Indeed,
cutting the dendrogram at 0.5 yields 156 clusters, which represents a reasonable
compromise between cluster homogeneity and number of clusters. The resulting
clusters have a small diameter and their number, 156 as compared to the original
958 828 transactions, is a cognitively manageable amount of data to study for
the human analyst.
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3.4 Final Results

To take a closer look at the resulting clusters, we start off by studying the
distribution of cluster sizes globally.

Figure 5 shows the cluster sizes in decreasing order and also shows a high
disparity. In particular, the greatest cluster represents 23% of affected frauds on
its own, whereas the second largest is only one third of the largest. More gener-
ally, the fifty largest clusters cover 92% of all affected frauds. In the following we
successively comment the hundred and six smallest and the fifty largest clusters.

Analysis of the Smaller Clusters. On average the smaller clusters, the ones
after the first fifty, only contain 471 frauds, i.e. 7� of the affected frauds. It
could, therefore, be argued that they contain too little information and that it not
necessary to study them further. Indeed, the fraud profiles they are associated to
may seem too anecdotal. However, some of these clusters, or groups of clusters,
may still warrant the analyst’s attention because of some striking characteristics.



334 M.-J. Lesot and A. Revault d’Allonnes

In this way, 9 clusters, representing 1 745 transactions, are each composed
of exact replicas of a single transaction, that is, identical amount, country and
activity. Even if the largest of these clusters only has 535 frauds, their being
identical marks them as potential parts of a particular modus operandi, which
any analyst might wish to investigate further.

Another trigger which might tingle an analyst’s curiosity is exhibited by clus-
ter 147, which has a mean amount of 914e, an oddly high value compared to
the average fraud value of about 112e. Moreover, all its transactions are linked
to the same country and activity. This activity only appears in this cluster. For
these reasons, even if cluster 147 only has 72 transactions, a closer study of these
transactions seems appropriate to find other similarities, such as the identity of
the seller or the dates on which they took place, for instance.

Analysis of the Larger Clusters. The fifty largest clusters represent the most
notable fraudster profiles. Indeed, they are singularly homogeneous: just two of
them, clusters 26 and 44, are not described by a single country and activity.

If we take a closer look at these two atypical clusters, we see that cluster 26
associates 4 546 frauds to three distinct merchant activities. Of these three ac-
tivities, two are heavily outnumbered by the dominant one, the latter having
4 402 frauds, or 96.8% of the cluster, when the other two represent 80 and 64
transactions, that is, 1.8% and 1.4% respectively. Furthermore, these two mi-
nority activity types do not appear in any other cluster. The dominant activity
does appear in five other clusters but with different countries, whereas cluster 26
only has one country. This cluster’s homogeneity is also apparent in its amount
distribution, since the range it covers is [10, 13.16].

The other mixed cluster, cluster 44, has 1 670 fraudulent transactions and two
countries. Once again, one of the countries is dominated by the other, represent-
ing just 104 individuals or 6.2% of the cluster population, and is only present in
this cluster. These compactness anomalies are, therefore, slight and explainable.

If we turn back to the general population of large clusters, the 96% with only
one activity and one country, we see that compactness does not constrain size.
Indeed, the largest of all clusters, with 147 831 frauds, equivalent to 23% of all
affected frauds, belongs to this category. Regarding the amounts, this cluster
spreads over the [1, 480] interval, a reasonable size compared to the global span
of the data over [0, 10 276]. The left part of Figure 6 shows the histogram of its
amounts and also shows how the distribution is concentrated on small values.

Another illustration of the first fifty clusters’ quality, is given by cluster 12.
This cluster, still defined over a single country and activity, has 8 828 frauds with
amounts on the interval [0.99, 83.73]. The right part of Figure 6 offers a view on
their dispersion. Looking at this distribution, we see that it could be subdivided
into homogeneous subintervals, probably the ones given by the partitioning step,
later joined by the hierarchical clustering. Cluster 12, thus, illustrates the use
of this fusion step: instead of studying individually all 93 original clusters – the
clusters fused during the hierarchical step to form cluster 12 – the analyst can
focus on a generalised view, yet still be able to identify potentially interesting
subgroups. The analyst may yet explore these subgroups by choosing to cut
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Fig. 6. Histogram of the amounts (left) for the largest cluster (population: 147 831;

bin-width: 9.58e), (right) for 12th largest cluster (population: 8 828; bin-width: 1.65e)

the dendrogram at a lower value. This inspection can be made locally by con-
centrating on the branch which actually contains the interesting clusters. This
granularity refocusing ability, local or not, emanating from the cluster hierarchy,
is an added benefit and justification for the proposed global architecture of the
clustering method.

4 Conclusion

In this paper, we proposed a methodology for the identification of the character-
istics of credit-card frauds, through the identification of distinct fraud profiles.
It is based on the combination of an incremental variant of the fuzzy c-medoids
with hierarchical clustering, and it is thus able to process very large hetero-
geneous data. We illustrated the relevance of the proposed approach on a real
dataset describing next to one million online fraudulent transactions.

Ongoing work aims at enriching the interpretation of the obtained profiles,
in particular by the construction of typical transactions representing each fraud
profile, so as to ease their characterisation. To that aim, the use of fuzzy proto-
types is considered, in order to underline the specificity of each profile as opposed
to the others.
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Abstract. Rand index is one of the most popular measures for comparing two
partitions over a set of objects. Several approaches have extended this measure
for those cases involving fuzzy partitions. In previous works, we developed a
methodology for correspondence analysis between partitions in terms of data
mining tools. In this paper we discuss how, without any additional cost, it can
be applied as an alternate computation of Rand index, allowing us not only to
compare both crisp and fuzzy partitions, but also classes inside these partitions.

Keywords: fuzzy partitions, fuzzy data mining tools, Rand index.

1 Introduction

Fuzzy models have been extensively used in pattern recognition. In particular, cluster-
ing techniques have been extended to determine a finite set of groups or categories,
that can be fuzzy (elements being associated to each cluster with a degree of mem-
bership), to describe a set of objects with similar features. Developed algorithms have
been successfully applied in a wide range of areas including image recognition, signal
processing, market segmentation, document categorization and bioinformatics.

The main problems arising the comparison of two fuzzy partitions of a given set are
the following: (1) the number of clusters in both partitions are not necessarily the same,
(2) the measures for comparing two equivalent partitions, that can be represented by
matrices A and B, must be invariant under row permutations.

As far as we know, most of current approaches are only suitable for comparing a
fuzzy partition with a crisp one, where the latter represents the “true” partition of data.
But in nearly all real cases, there is no such crisp partition giving a perfect matching.

There are three kinds of approaches for evaluating the partitions quality: internal,
external and relative criteria [27]. Internal criterion is used for evaluating a partition
separately, usually for measuring the grade of fit between the partition and the input
data. External measures compare the obtained partition with a reference partition that
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pertains to the data but which is independent of it. Relative measures, also known as rel-
ative indices, assess the similarity between two partitions computed by different meth-
ods. Our approach belongs to this last group. Our goal in this paper is to define an
alternative to the popular Rand index [29], by means of a family of data mining tools,
applied to both crisp and fuzzy correspondence analysis between partitions.

The paper is organized as follows. In the following section, we mention some com-
parison methods between partitions, specially those related to fuzzy cases. Then, we
summarize the models for data mining employed as tools for analyzing some types of
correspondences, described in the next section. After this, there is our problem approach
in terms of the data mining measures applied to correspondence analysis. Finally, some
future trends in this work to come are defined as well as we present our conclusions.

2 Rand Index and Other Comparison Measures

Comparison methods include those measures that compare two partitions. When com-
paring a resulting partition by a clustering process with a referential one, which is
considered to be the “true” partition, we will call it an external method. External in-
dices [27] give the expert an indication of the quality of the resulting partition, while
when comparing two different partitions we obtain a grade of how similar they are. If
both partitions come from different clustering processes the method is considered as
relative.

There are many indices to be reviewed for crisp partitions [22] (see also [2]). For
fuzzy partitions we will refer to the most important approaches developed until now.
Many of them are generalizations of crisp measures.

The Rand index [29] proposed by Rand in 1971 is given in terms of the number of
pairwise comparisons of data objects. It is one of the most popular indices. Given A and
B two crisp clusters we set:

– a, pairs belonging to the same cluster in A and to the same cluster in B.
– b, pairs belonging to the same cluster in A but to a different cluster in B.
– c, pairs belonging to a different cluster in A but to the same cluster in B.
– d, pairs belonging to different clusters in both A and B.

Then, the Rand index is given by the proportion between the number of agreements and
the total number of pairs:

IR(A,B) =
a + d

a + b + c + d
(1)

Campello [13] extends the Rand index for comparing fuzzy partitions. For that purpose,
he rewrites the original formulation in terms of the fuzzy partitions. Let X and Y be two
fuzzy partitions defined over the set of objects O, we consider:

• X1 = {(o,o′) ∈O×O that belong to the same cluster in X}.
• X0 = {(o,o′) ∈O×O that belong to different clusters in X}.
• Y1 = {(o,o′) ∈ O×O that belong to the same cluster in Y}.
• Y0 = {(o,o′) ∈ O×O that belong to the different clusters in Y}.
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The Rand index is rewritten in terms of the previous four quantities: a = |X1∩Y1| ,b =
|X1∩Y0|, c = |X0∩Y1| ,d = |X0∩Y0|. In the fuzzy case the sets Xi,Yi are defined by
means of a t-norm ⊗ and a t-conorm ⊕. Let Xi(o) ∈ [0,1] the degree of membership
of element o ∈ O in the i-th cluster of X . Analogously Yi(o) ∈ [0,1] is the degree of
membership of element o ∈O in the i-th cluster of Y

• X1(o,o′) =
k⊕

i=1

Xi(o)⊗Xi(o′) • X0(o,o′) =
k⊕

1≤i�= j≤k

Xi(o)⊗Xj(o′)

• Y1(o,o′) =
l⊕

i=1

Yi(o)⊗Yi(o′) • Y0(o,o′) =
l⊕

1≤i�= j≤l

Yi(o)⊗Yj(o′)

The four frequencies taking part in equation (1) are then formulated in terms of the
intersection of these sets using the sigma-count principle:

a = ∑
(o,o′)∈O×O

X1(o,o′)⊗Y1(o,o′) b = ∑
(o,o′)∈O×O

X1(o,o′)⊗Y0(o,o′)

c = ∑
(o,o′)∈O×O

X0(o,o′)⊗Y1(o,o′) d = ∑
(o,o′)∈O×O

X0(o,o′)⊗Y0(o,o′)
(2)

This is not the only generalization of the Rand index. We can find in the literature the
approaches of Frigui et al. [21], Brouwer [11], Hüllermeier and Rifqi [23] and Anderson
et al. [2]. In [3,2] the reader may find a more extensive comparison of the cited indices.
We will resume the main differences between them:

– Campello was interested in comparing a fuzzy partition with a non-fuzzy one, but
its proposal is formulated for comparing two fuzzy partitions.

– Frigui et al. present generalizations for several indices including the Rand index.
They also restrict the approach when one of the partitions is a crisp one. When
using product for the t-norm and sum for the t-conorm for the Campello’s approach
we obtain this particular case [21].

– Brouwer presents another generalization by defining a relationship called bonding
that describes the degree to which two objects are in the same cluster. Then, bond-
ing matrices are built using previous relation and the cosine distance [11].

– Hüllermeier and Rifqi’s approach is defined for every two fuzzy partitions by defin-
ing a fuzzy equivalence relation on the set of objects O. This fuzzy relation is then
used for defining the degree of concordance or discordance between two objects
o,o′ ∈ O. The distance obtained using the resulting index satisfies the desirable
properties for a pseudo-metric and in some special cases it is a metric [23].

A very similar index was proposed by several authors: the so-called Jaccard coeffi-
cient [24] where the participation of the quantity d is suppressed in Campello’s index.

The Fowlkes-Mallows index proposed in [20] can be defined as in equation (3) ob-
taining a value of 1 when clusters are good estimates of the groups.

IF(A,B) =
a√

(a + b)(a + c)
(3)
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Previous indices, as well as the Adjusted Rand index of Hubert and Arabie [22], the C
statistics [25] and the Minkowski measure [26] can be defined in terms of the four fre-
quencies a,b,c,d and they are related to Rand index. All these indices allow uniquely
the evaluation of hard (crisp) clustering partitions, but some authors [13,14,2] have ex-
tended all of them in a unified formulation. The first attempt of Campello [13] relies
solely on the redefinition of the four frequencies using basic fuzzy set concepts, but it
has the shortcoming that one of the partitions must to be hard for keeping the important
property of reaching their maximum (unit value) when comparing equivalent partitions.
A more recent approach [14] settles this shortcoming by defining a fuzzy transfer dis-
tance between two fuzzy partitions. In addition, Campello also addresses the problem
of how to compare two partitions from different subsamples of data.

Anderson et al. [2] developed a method to generalize comparison indices to all possi-
ble cases concerning two different partitions: crisp, fuzzy, probabilistic and possibilistic
and for every index that can be expressed in terms of the four mentioned frequencies.

A different proposal by Di Nuovo and Catania [27], called DNC index, is based on a
defined measure called degree of accuracy which is intended to measure the degree of
association of a partition with its reference partition representing the real group.

A quite different approach is that developed by Runkler [31] which is based on the
similarities between the resultant subsets by the partitions. The subset similarity index
is computed in terms of the similarities between all the partitions subsets. This index is
reflexive and invariant under row permutations which are desirable properties.

3 Crisp and Fuzzy Data Mining Tools

3.1 Association Rules

Given a set I (“set of items”) and a database D constituted by set of transactions (“T-
set”), each one being a subset of I, association rules [1] are “implications” of the form
A ⇒ B that relate the presence of itemsets A and B in transactions of D, assuming
A,B⊆ I, A∩B = /0 and A,B �= /0.

The ordinary measures proposed in [1] to assess association rules are confidence
(the conditional probability P(B|A)) and support (the joint probability P(A∪B)). An
alternative framework [8,16] measures accuracy by means of Shortliffe and Buchanan’s
certainty factors [33], showing better properties than confidence, and helping to solve
some of its drawbacks. Let supp(B) be the support of the itemset B, and let Conf(A⇒B)
be the confidence of the rule. The certainty factor of the rule is defined as

CF(A 	 B) =

⎧⎪⎨⎪⎩
Conf(A⇒B)−supp(B)

1−supp(B)
if Conf(A⇒ B) > supp(B

Conf(A⇒B)−supp(B)
supp(B)

if Conf(A⇒ B) < supp(B)

0 otherwise.

(4)

The certainty factor yields a value in the interval [-1, 1] and measures how our belief
that B is in a transaction changes when we are told that A is in that transaction.
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3.2 Formal Model for Mining Fuzzy Rules

Many definitions for fuzzy rule can be found in the literature, but in this work, we will
apply the formal model developed in [17,19], which allows us to mine fuzzy rules in a
straightforward way extending the accuracy measures from the crisp case. Its formal-
ization basically underlies in two concepts: the representation by levels associated to a
fuzzy property (RL for short) and the four fold table associated to the itemsets A and B
in database D, noted by M = 4 f t(A,B,D).

A RL associated to a fuzzy property P in a universe X is defined as a pair (ΛP,ρP)
where ΛP = {α1, . . . ,αm} is a finite set of levels verifying that 1 = α1 > · · · > αm >
αm+1 = 0 and ρP : ΛP →P(X) is a function which applies each level into the crisp
realization of P in that level [32]. The set of crisp representatives of P is the set ΩP =
{ρP(α) |α ∈ ΛP}. The values of ΛP can be interpreted as values of possibility for a
possibility measure defined for all ρP(αi) ∈ ΩP as Pos(ρP(αi)) = αi. Following this
interpretation we define the associated probability distribution m : ΩP → [0,1] as in
equation (5) which give us information about how representative is each crisp set of the
property P in ΩP.

mP(Y ) = ∑
αi |Y=ρ(αi)

αi−αi+1 (5)

For each Y ∈ ΩP, the value mP(Y ) represents the proportion to which the available
evidence supports claim that the property P is represented by Y . From this point of
view, a RL can be seen as a basic probability assignment in the sense of the theory of
evidence, plus a structure indicating dependencies between the possible representations
of different properties.

The four fold table associated to the itemsets involved in a rule A⇒ B detaches the
number of transactions in D satisfying the four possible combinations between A and B
using the logic connectors ∧ (conjunction) and ¬ (negation). So, M = 4 f t(A,B,D) =
{a,b,c,d} where a is the number of rows of D satisfying A∧B, b the number of rows
satisfying A∧¬B, c represents those satisfying ¬A∧B and d those satisfying the last
possibility ¬A∧¬B [30,18]. Note that |D|= a + b + c + d = n. The validity of an asso-
ciation rule is assessed by using M by means an operator≈ (interestingness measure)
called 4ft-quantifier. In particular, known measures of support and confidence are 4ft-
quantifiers defined as follows:

Supp(A⇒ B) =≈S (a,b,c,d) =
a

a + b + c + d

Conf(A⇒ B) =≈C (a,b,c,d) =
a

a + b

(6)

and we can use them to define the certainty factor ≈CF (a,b,c,d) in terms of the four
frequencies of M (see [18] for its shorter form).

Using these two models we have proposed [19] a framework for fuzzy rules that
ables us to extend the interestingness measures for their validation from the crisp to the
fuzzy case. Summarizing the model, we can represent the fuzzy sets appearing in the
fuzzy rule by the associated RLs (ΛÃ,ρÃ), (ΛB̃,ρB̃) and for every level in ΛÃ∪ΛB̃ we
define the associated four fold table as Mαi = (ai,bi,ci,di) whose values are computed
using the previous RLs (see [19] for more details).
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Using Mαi and the probability distribution of equation (5) we extend the accuracy
measures for fuzzy rules from the crisp case [19]:

∑
αi∈ΛÃ∪ΛB̃

(αi−αi+1)(≈ (ai,bi,ci,di)) (7)

The model is a good generalization of the crisp case, allowing the use of equation (7)
in the fuzzy definition of measures in equation (6) as, respectively, FSupp(A ⇒ B),
FConf(A⇒ B), and FCF(A⇒ B) (see [19] for a complete discussion).

3.3 Approximate Dependencies

Let RE = {At1, . . . ,Atm} be a relational scheme and let r be an instance of RE such that
|r|= n. Also, let V,W ⊂ RE with V ∩W = /0. A functional dependency V →W holds in
RE if and only if

∀t,s ∈ r i f t[V ] = s[V ] then t[W ] = s[W ] (8)

Approximate dependencies can be roughly defined as functional dependencies with ex-
ceptions. The definition of approximate dependence is then a matter of how to define
exceptions, and how to measure the accuracy of the dependence [10]. We shall follow
the approach introduced in [15,9], where the same methodology employed in mining
for association rules is applied to the discovery of approximate dependencies.

Since a functional dependency ‘V →W ’ can be seen as a rule that relates the equal-
ity of attribute values in pairs of tuples (see equation (8)), and association rules relate
the presence of items in transactions, we can represent approximate dependencies as
association rules by using the following interpretations of the concepts of item and
transaction:

– An item is an object associated to an attribute of RE . For every attribute Atk ∈ RE
we note itAtk the associated item.

– We introduce the itemset IV to be IV = {itAtk |Atk ∈V}
– Tr is a T-set that, for each pair of tuples < t,s >∈ r× r contains a transaction ts∈ Tr

verifying itAtk ∈ ts ⇔ t[Atk] = s[Atk] It is obvious that |Tr|= |r× r|= n2.

Then, an approximate dependence V →W in the relation r is an association rule IV ⇒
IW in Tr [15,9]. The support and certainty factor of IV ⇒ IW measure the interest and
accuracy of the dependence V →W .

3.4 Fuzzy Approximate Dependencies

In [7] a definition integrating both approximate and fuzzy dependencies features is
introduced. In addition to allowing exceptions, the relaxation of several elements of
equation (8) is considered. In particular, we associate membership degrees to pairs
< attribute,value > as in the case of fuzzy association rules, as well as the equality
of the rule is smoothed as a fuzzy similarity relation.

Extending the crisp case above, fuzzy approximate dependencies in a relation are
defined as fuzzy association rules on a special fuzzy T-set obtained from that relation.
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Let IRE = {itAtk |Atk ∈ RE} be the set of items associated to the relational schema RE .
We define a fuzzy T-set T̃r as follows: for each pair of rows < t,s > in r× r we have a
fuzzy transaction ts in T̃r defined as

∀itAtk ∈ T̃r, ts(itAtk ) = min(Atk(t),Atk(s),SAtk (t(Atk),s(Atk))) (9)

This way, the membership degree of a certain item itAtk in the transaction associated
to tuples t and s takes into account the membership degree of the value of Atk in each
tuple (Atk(t)) and the similarity between them (SAtk ). The latter represents the degree
to which tuples t and s agree in Atk. According to this, let X ,Y ⊆ RE with X ∩Y = /0
and X ,Y �= /0. The fuzzy approximate dependence[7] X →Y in r is defined as the fuzzy
association rule IX ⇒ IY in T̃r.

Analogously to the crisp case, we measure the importance and accuracy of the fuzzy
approximate dependence X → Y as the support and certainty factor of the fuzzy associ-
ation rule IX ⇒ IY (see section 3.2).

4 Correspondence Analysis in Terms of Data Mining Tools

Correspondence analysis [6] describes existing relations between two nominal
variables, by means of a contingency table, obtained as the cross-tabulation of both
variables. It can be applied to reduce data dimension, prior to a subsequent statistic
processing (classification, regression, discriminant analysis, . . .). In particular, it can be
helpful in the integration or matching of different partitions over a set of objects.

4.1 Crisp Correspondences

In [5], we introduced an alternate methodology to classic correspondence analysis, cen-
tered in the interpretation of a set of rules and/or dependencies. For that, we represent
the possible correspondences between objects as a relational table, where the value of
a cell for a given object (row) and partition (column) means the class in the partition
where the object is.

Let O be a finite set of objects, and A = {A1,A2, . . . ,Ap}, B = {B1,B2, . . . ,Bq}
two partitions of O, i.e., Ai,B j ⊆ O and Ai,B j �= /0, Ai1 ∩Ai2 = /0 ∀i1, i2 ∈ {1, . . . , p} and
B j1 ∩B j2 = /0 ∀ j1, j2 ∈ {1, . . . ,q}. Also,

⋃
Ai∈A Ai =

⋃
B j∈B B j = O.

We represent partitions A and B by means of a table, rA B (see table 1), and we
shall use the notation for relational databases. Each row (tuple) and column (attribute)
of rA B will be associated to an object and a partition, respectively. This way, we assume
|rA B |= |O|.

We shall note to the tuple associated to object o, and XP the attribute associated to
partition P . The value for tuple to and attribute XP , to[XP ], will be the class for o
following P , i.e., to[XP ] ∈P .

Let us remark that we are interested not only in perfect correspondences, but also in
those with possible exceptions. Hence, we are concerned with measuring the accuracy
of correspondences between partitions.

Definition 1 ([5]). Local correspondence. Let Ai ∈ A and B j ∈ B. There exists a
local correspondence from Ai to B j when Ai ⊆ B j.
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Table 1. Table rA B

Object tuple XA XB

o1 to1 A1 B2
o2 to2 A2 B2

o3 to3 A1 B1
· · · · · · · · · · · ·

The analysis of local correspondences can be performed by looking for association
rules in the table rA B . Rules [XA = Ai]⇒ [XB = B j] and [XB = B j]⇒ [XA = Ai] tell
us about possible local correspondences between classes Ai and B j.

Definition 2 ([5]). Partial correspondence. There exists a partial correspondence from
A to B, noted A 	 B, when ∀Ai ∈A ∃B j ∈B such that Ai ⊆ B j.

Definition 3 ([5]). Global correspondence. There exists a global correspondence be-
tween A and B, noted A ≡B, when A 	 B and B 	 A .

The analysis of partial correspondences can be performed by looking for approximate
dependencies in rA B [5]. If the dependence XA → XB holds, there is a partial corre-
spondence from A to B. The certainty factor of the dependence measures the accuracy
of the correspondence. As we are interested in using the same measure to assess global
correspondences, this leads to define the certainty factor of A ≡B as the minimum
between CF(A 	 B) and CF(B 	 A ), since it is usual to obtain the certainty factor
of a conjunction of facts as the minimum of the certainty factors of the facts.

4.2 Fuzzy Correspondences

Consider the case of establishing correspondences between diseases and symptoms.
A certain disease can be described by several symptoms, at a given degree, and also a
symptom can be related to different diseases. Since the original correspondence analysis
[6] is not able to manage such cases in which partitions boundaries are not so clear,
we extended the alternate methodology discussed in section 4.1 in order to manage
correspondences between fuzzy partitions [12].

Let O = {o1, . . . ,on} be again a finite set of objects. Let Ã = {Ã1, . . . , Ãp} and
B̃ = {B̃1, . . . , B̃q} be two fuzzy partitions over O. Let T̃

Ã B̃
(Table 2) be the fuzzy

transactional table associated to O, each transaction representing an object, that is,
|T̃

Ã B̃
|= |O|. Given o∈O, Ãi ∈ Ã and B̃ j ∈ B̃, we noted for Ãi(o) (respectively, B̃ j(o))

the membership degree of o in Ãi (respectively, B̃ j). Each object must belong to at least

one class of each partition, that is, ∀o ∈ O,∃P̃i ∈ P̃/P̃i(o) > 0, and each class must
contain at least one object, that is, Ãi, B̃ j �= /0.

As we manage fuzzy partitions, we can relax the condition of disjoint classes within
a partition. Also, we do not consider the case of partitions being necessarily normalized.

Definition 4 ([12]). Fuzzy local correspondence. Let Ãi ∈ Ã and B̃ j ∈ B̃. There exists
a fuzzy local correspondence from Ãi to B̃ j, noted Ãi ⇒ B̃ j, if Ãi ⊆ B̃ j, that is, ∀o ∈ O,
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Table 2. Fuzzy transactional table T̃
Ã B̃

Object Ã1 . . . Ãp B̃1 . . . B̃q

o1 Ã1(o1) . . . Ãp(o1) B̃1(o1) . . . B̃q(o1)

o2 Ã1(o2) . . . Ãp(o2) B̃1(o2) . . . B̃q(o2)

o3 Ã1(o3) . . . Ãp(o3) B̃1(o3) . . . B̃q(o3)

· · · · · · · · · · · · · · · · · · · · ·

Ãi(o) ≤ B̃ j(o). This time, we can obtain fuzzy local correspondences in terms of fuzzy
association rules.

When analyzing fuzzy partial and global correspondences, we must manage not classes,
but partitions. It would be necessary to define a membership degree of an object in a
partition, that is, Ã (o). This defines a multidimensionality problem, already addressed
in [12], and it is a pending task currently under researching. For sake of simplicity,
we will reduce to the case in which an object is associated to only one class in every
partition, for example, that with the highest membership degree.

We shall represent partitions Ã and B̃ by means of a fuzzy relational table, r̃
Ã B̃

(Table 3). Each row (object) is related to a column (partition) with a certain member-
ship degree. The value corresponding to tuple to and attribute X

Ã
, to[X

Ã
], will be the

class for o according to partition Ã , that is, to[X
Ã

] ∈ Ã . We shall note as X
Ã

(o) the

membership degree of o in to[X
Ã

]. As discussed before, we shall note this as Ã (o).

Table 3. Fuzzy relational table, r̃
Ã B̃

Object X
Ã

X
B̃

to1 Ãi1,Ã (o1) B̃ j1,B̃(o1)

to2 Ãi2,Ã (o2) B̃ j2,B̃(o2)

to3 Ãi3,Ã (o3) B̃ j3,B̃(o3)

· · · · · · · · ·

Definition 5 ([12]). Fuzzy partial correspondence. There exists a fuzzy partial corre-
spondence from Ã to B̃, noted Ã 	 B̃, when ∀Ãi ∈ Ã ∃B̃ j ∈ B̃ such that Ãi ⊆ B̃ j,

that is, ∀o ∈O/to[Ã ] = Ãi implies to[B̃] = B̃ j and Ã (o)≤̇B̃(o).

≤̇ defines a vectorial order relation that, for this particular case, corresponds to a classic
order relation.

Definition 6 ([12]). Fuzzy global correspondence. There exists a fuzzy global corre-
spondence between Ã and B̃, noted Ã ≡ B̃, when Ã 	 B̃ and B̃ 	 Ã .

Fuzzy partial and global correspondences relate fuzzy partitions, and both can be ob-
tained by means of fuzzy approximate dependencies.
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5 Our Proposal. Discussion

In this section, we give an alternate approach to Rand index which is valid for both crisp
and fuzzy partitions, in terms of the measures employed in the tools described in section
3, and using the tabular representation described in section 4. Hence, let O be again a
finite set of objects, |O|= n, with A = {A1,A2, . . . ,Ap} and B = {B1,B2, . . . ,Bq}, two
different partitions over O.

Analogously to the approach described in [15,9] for approximate dependencies, let
T be a transactional table where each row represents an ordered pair of objects (o,o′) ∈
O×O, |T |= n(n−1)

2 . Let IA (resp., IB) be an item that indicates that both objects o,o′

belong to the same class in partition A (resp., B). According to this, we can redefine
the Rand index parameters, a,b,c,d in terms of the support measure as:

– a = |T | · supp(IA ∩ IB),
– b = |T | · (supp(IA )− supp(IA ∩ IB)),
– c = |T | · (supp(IB)− supp(IA ∩ IB)), and
– d = |T | · (1− supp(IA ∪ IB)) = |T | · (1− supp(IA )− supp(IB)+ supp(IA ∩ IB)).

Thus, we can rewrite the Rand index as,

IR(A ,B) =
a + d

a + b + c + d
=
|T | · (supp(IA ∩ IB)− (1− supp(IA ∪ IB)))

|T | =

= 1− (supp(IA ) + supp(IB)− 2supp(IA ∩ IB))

(10)

Let us notice in first place, how, from this expression, it is trivial that IR(A ,B) =
IR(B,A ), since only support is involved in equation 10. Moreover, it is easy to see that
these parameters are proportionally equivalent to those of the four fold table used in the
model described in section 3.2, allowing us to relate IR(A ,B) in some way with the
measures of support, confidence, and certainty factor (see definitions for 4ft-quantifiers
≈S (a,b,c,d), ≈C (a,b,c,d), and ≈CF (a,b,c,d), respectively).

Following this, and taking into account our approach for correspondence analysis
(section 4.1), we can establish a direct relation between Rand index and the measure-
ment of partial and global correspondences between two different partitions (by means
of approximate dependencies). Even more, we can define a similar measure to analyze
not only these types of correspondences, but also local correspondences (by means of
association rules).

As for the case of fuzzy partitions, our model for fuzzy correspondences (section 4.2)
also allows to obtain measures as informative as the Rand index, again considering both
partitions (in terms of fuzzy approximate dependencies) as well as classes (as relations
expressed as fuzzy association rules).

Then, according to equation (10), we can redefine the Rand index in terms of the sup-
port measure, allowing us to distinguish several interpretations of this measure, based
on the data mining tool used as source. Let us consider the following family of indices:

– IAR(Ai,B j), for comparing classes Ai ∈A and B j ∈B, from association rules,
– IAD(A ,B), for comparing partitions A and B, from approximate dependencies,
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– IFAR(Ãi, B̃ j), for comparing fuzzy classes Ãi ∈ Ã and B̃ j ∈ B̃, from fuzzy associa-
tion rules, and

– IFAD(Ã ,B̃), for comparing fuzzy partitions Ã and B̃, defined in terms of fuzzy
approximate dependencies.

Let us remark that our approach allows not only to take into account these proposed
measures, but also the already well-defined and popular measures of support, confi-
dence and certainty factor. A very interesting issue could be a deeper study of the com-
bined information obtained by all these values.

From our point of view, these definitions open a new framework in the problem of
partition comparison, specially in those cases where the boundaries between classes are
unclear, able to be managed by means of fuzzy partitions. In [5], we briefly discussed
some interesting properties as, for example, that of how our approach can be applied to
the study of relations between more than two partitions. The analysis of the relevance
of this and some other properties is a pending task, and future works will be devoted to
their study and development.

5.1 A Brief Example

In order to illustrate our proposal, but due to lack of space, we are showing a little exam-
ple of our methodology, extending the results over the same dataset used in [12]. Here,
fuzzy correspondence analysis between different partitions over a set of 211 agricul-
tural zones is addressed and discussed. The first fuzzy partition was obtained as widely
discussed in [4] from users (farmers) knowledge, and classified the examples into 19
classes. Let userclass = {Ã1, . . . , Ã19} be this classification. A scientific classification
was previously presented in [28]. Here, a total of 21 land types, called soil maps units,
are found, only 19 being suitable for olive trees cultivation. Let sciclass = {B̃1, . . . , B̃21}
be this other classification.

Fuzzy local correspondences between classes were computed between userclass and
sciclass, and those more interesting (CF > 0.65) are shown in table 4. Each cell in the
table shows the CF for the fuzzy local correspondence (fuzzy association rule) of the
type B̃ j ⇒ Ãi (as discussed in [12], the inverse fuzzy local correspondences were found
to be not interesting regarding CF). It must be remarked that these results were validated
and properly interpreted by soil experts.

Table 5 shows the IFAR value for the same correspondences in table 4. Let us recall
that I(A ,B) = I(B,A ) for any two partitions (or classes, as it is the case). That is,
this index tells us about the relation between A and B, but gives no information about
the direction of this relation. From our point of view, this relation is not necessarily
symmetric, since one partition class can be partially included in other partition class,
but the opposite might not hold. In this sense, these first results suggest that CF measure
seems to be more valuable than IFAR. Hence, a more exhaustive and complete analysis
of the relation between these measures, considering additional sets of examples, appears
to be necessary, and will be properly addressed in a future extension of this work.
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Table 4. Fuzzy local correspondences between sciclass (rows) and userclass (columns) classes,
B̃ j ⇒ Ãi (CF > 0.65)

A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A14 A15 A16 A17

B1 0.722 0.783 0.687 0.672 0.690
B3 0.870 0.859 0.793 0.660 0.689 0.655 0.771 0.783 0.759
B5 0.684 0.733 0.795 0.744 0.686 0.736
B6 0.895 0.913 0.792 0.675 0.661 0.784 0.803 0.813
B8 0.886 0.932
B9 0.650 0.719 0.687 0.712 0.675
B10 0.653 0.718 0.728 0.715 0.705 0.711
B11 0.691 0.764 0.743 0.721 0.653 0.676 0.670 0.813 0.666
B13 0.700 0.662 0.687
B15 0.761 0.760 0.842 0.737 0.687 0.681 0.683 0.674 0.664
B16 0.744 0.853 0.812 0.756 0.729 0.734 0.769 0.688 0.696 0.808
B20 0.803 0.868 0.871 0.667 0.802 0.742 0.700 0.706 0.811 0.770

Table 5. Rand index IFAR(Ãi, B̃ j) for fuzzy local correspondences between sciclass (rows) and
userclass (columns) classes

A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A14 A15 A16 A17

B1 0.241 0.292 0.292 0.341 0.416
B3 0.354 0.331 0.283 0.299 0.402 0.438 0.333 0.336 0.398
B5 0.346 0.341 0.326 0.354 0.346 0.363
B6 0.297 0.277 0.234 0.271 0.366 0.289 0.291 0.358
B8 0.288 0.270
B9 0.317 0.305 0.339 0.357 0.346
B10 0.289 0.241 0.286 0.381 0.294 0.346
B11 0.293 0.281 0.244 0.285 0.422 0.420 0.290 0.307 0.357
B13 0.287 0.427 0.347
B15 0.332 0.311 0.293 0.315 0.316 0.365 0.316 0.380 0.434
B16 0.292 0.280 0.242 0.281 0.376 0.419 0.293 0.337 0.288 0.364
B20 0.235 0.284 0.428 0.281 0.341 0.287 0.626 0.568 0.560 0.411

6 Further Works and Concluding Remarks

Many measures based on the Rand index have been proposed and developed for the
study of partitions comparison. A subset of them can be applied also in those cases in-
volving fuzzy partitions. In this work, we have applied a previously developed method-
ology for correspondence analysis, in terms of fuzzy data mining tools, to the problem
of partition comparison, expressed in the form of a measure such as the Rand index.
Our approach offers the advantage of being capable of managing both crisp and fuzzy
partitions, and, in addition, it allows to compare not only different partitions, but also
classes inside these partitions. We have shown an example combining an accuracy mea-
sure as CF with the Rand index. Moreover, we have seen how CF, in comparison to
Rand index, allows to determine the direction in which the relation between partitions
(or classes) is stronger.

Finally, some interesting properties arise from the proposed measures, and a deeper
and more complete study and development will be the main topic in future extensions of
this work. Practical works covering the discussion of our methodology applied to real
world problems, as fuzzy image segmentation (for the comparison of different meth-
ods), and classification in medical cases, are also in progress..
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An Iterative Scaling Algorithm for Maximum

Entropy Reasoning in Relational Probabilistic
Conditional Logic�
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Abstract. Recently, different semantics for relational probabilistic con-
ditionals and corresponding maximum entropy (ME) inference operators
have been proposed. In this paper, we study the so-called aggregation
semantics that covers both notions of a statistical and subjective view.
The computation of its inference operator requires the calculation of the
ME-distribution satisfying all probabilistic conditionals, inducing an op-
timization problem under linear constraints. We demonstrate how the
well-known Generalized Iterative Scaling (GIS) algorithm technique can
be applied to this optimization problem and present a practical algorithm
and its implementation.

1 Introduction

There exist many approaches which combine propositional logic with probability
theory to express uncertain knowledge and allow uncertain reasoning, e. g. Bayes
Nets and Markov Nets [17] or probabilistic conditional logic [18]. Some of these
approaches have been extended to first-order logic, e. g. Bayesian logic programs
[14], Markov logic networks [8], and relational probabilistic conditional logic
[10,13] which introduces relational probabilistic conditionals. Recently, different
semantics for relational probabilistic conditionals and corresponding maximum
entropy (ME) inference operators have been proposed. One of these approaches
is the so-called aggregation semantics presented in [13]. This semantics has some
nice properties, as it allows to cover both notions of a statistical and a subjective
point of view. It can also handle statements about exceptional individuals with-
out running into imminent inconsistencies. The following example taken from
[13] (and inspired by [7]) illustrates some difficulties which can arise from a
knowledge base in probabilistic first-order logic.

Example 1. Let X,Y denote variables and let el(X) mean that X is an elephant,
ke(X) means that X is a zookeeper, and likes(X,Y ) expresses that X likes Y .

r1 : (likes(X,Y ) | el(X) ∧ ke(Y )) [0.6]

r2 : (likes(X, fred) | el(X) ∧ ke(fred)) [0.4]

r3 : (likes(clyde , fred) | el(clyde) ∧ ke(fred)) [0.7]
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E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 351–364, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The first probabilistic rule (or probabilistic conditional) r1 expresses that for an
arbitrary chosen elephant and keeper (from some given population), there is a
0.6 probability that the elephant likes the keeper. But r2 states that there is
an (exceptional) keeper fred , for whom there is just a 0.4 probability that an
arbitrary elephants likes him. Rule r3 makes a statement about two exceptional
individuals, i. e. the probability that the elephant clyde likes the keeper fred
is even 0.7. Rule r1 expresses statistical knowledge which holds in some given
population, whereas r3 expresses individual belief, and r2 is a mixture of both.
A simple semantical approach would be to ground all first-order rules (according
to a given universe) and define semantics on grounded probabilistic rules. But
in the above example, this would already cause severe problems, because the
grounding (likes(clyde , fred) | el(clyde) ∧ ke(fred)) [0.6] of r1 is in conflict with
r3 and also with the grounding of (likes(clyde , fred) | el(clyde) ∧ ke(fred)) [0.4]
of r2. However, the aggregation semantics is capable of handling such conflicts if
an appropriate universe is provided, so that the probabilities of exceptional and
generic individuals can be balanced.

The model-based inference operator ME� for aggregation semantics presented
in [13] is based on the principle of maximum entropy. The principle of maximum
entropy exhibits excellent properties for commonsense reasoning [16,11,12] and
allows to complete uncertain and incomplete information in an information-
theoretic optimal way, and also the ME-based inference operator ME� features
many desirable properties of a rational inference operator [13]. However, up to
now no practical implementation of ME� inference has been developed. The
determination of ME�(R) for a set R of probabilistic conditionals requires the
calculation of the ME-distribution satisfying all probabilistic conditionals in R.
This induces a convex optimization problem, so general techniques for solving
convex optimization problems could be applied to compute a solution. Instead
of employing such general techniques, in this paper we present the first practical
algorithm for computing ME�(R) which is tailor-made for the problem. We
employ and adapt the technique of the well-known Generalized Iterative Scaling
(GIS) algorithm [6], which allows to compute the ME-distribution under a set
linear constraints. We use the general GIS technique as a template to develop
a concrete algorithm which takes a set R as input and computes ME�(R). We
also present a practical implementation of our algorithm.

The rest of the paper is structured as follows. In Sec. 2 we give a brief overview
of aggregation semantics and introduce feature functions in Sec. 3. Using these
feature functions, in Sec. 4 the ME-inference operator ME� is defined in terms
of an optimization problem. In Sec. 5 we demonstrate how this optimization
problem can be transformed into a normalized form so that the Generalized It-
erative Scaling (GIS) technique can be applied, yielding a concrete algorithm
determining ME�. In Sec. 6 we present a practical implementation of our al-
gorithm, and in Sec. 7 we conclude and point out further work. Due to lack of
space, full technical proofs for all propositions of this paper are given in [9].
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2 Background: Aggregation Semantics

We consider a first-order signature Σ := (Pred,Const) consisting of a set of first
order predicates Pred and a finite set of constants Const. So Σ is a restricted
signature since it only contains functions with an arity of zero. Let p/k denote
the predicate p ∈ Pred with arity k. The set of atoms A over Pred with respect
to a set of variables Var and Const is defined in the usual way by p(t1, . . . , tk) ∈
A iff p/k ∈ Pred, ti ∈ (Var ∪Const) for 1 ≤ i ≤ k. For better readability we will
usually omit the referring indices.

Let L be a quantifier-free first-order language defined over Σ in the usual way,
that is, A ∈ L if A ∈ A, and if A,B ∈ L then ¬A,A ∧B ∈ L. Let A ∨B be the
shorthand for ¬(¬A∧¬B). If it is clear from context, we use the short notation
AB to abbreviate a conjunction A ∧B .

Let gnd(A) be a grounding function which maps a formula A to its respective
set of ground instances in the usual way.

Definition 1 (Conditional). Let A(X), B(X) ∈ L be first-order formulas
with X containing the variables of A and B. (B(X)|A(X)) is called a con-
ditional. A is the antecedence and B the consequence of the conditional. The set
of all conditionals over L is denoted by (L|L).

Definition 2 (Probabilistic Conditional). Let (B(X)|A(X)) ∈ (L|L) be
a conditional and let d ∈ [0, 1] be a real value. (B(X)|A(X)) [d] is called a
probabilistic conditional with probability d. If d ∈ {0, 1} then the probabilistic
conditional is called hard, otherwise it is a called soft. The set of all probabilistic
conditionals over L is denoted by (L|L)prob.

A set of probabilistic conditionals is also called a knowledge base. (Probabilistic)
conditionals are also called (probabilistic) rules. If it is clear from context, we
will omit the “probabilistic” and just use the term “conditional”.

Let H denote the Herbrand base, i.e. the set containing all ground atoms
constructible from Pred and Const. A Herbrand interpretation ω is a subset of
the ground atoms, that is ω ⊆ H. Using a closed world assumption, each ground
atom pgnd ∈ ω is interpreted as true and each pgnd �∈ ω is interpreted as false;
in this way a Herbrand interpretation is similar to a complete conjunction in
propositional logic. Let Ω denote the set of all possible worlds (i. e. Herbrand
interpretations), that is, Ω := P(H) (with P denoting the power set).

Definition 3 (Set of Grounding Vectors). For a conditional
(B(X)|A(X)) ∈ (L|L), the set of all constant vectors a which can be
used for proper groundings of (B(X)|A(X)) is defined as:
Hx(A,B) := {a = (a1, . . . , as) | a1, . . . , as ∈ Const

and (B(a)|A(a)) ∈ gnd ((B(X)|A(X)))}

Let P : Ω → [0, 1] be a probability distribution over possible worlds and let PΩ

be the set of all such distributions. P is extended to ground formulas A(a), with
a ∈ Hx(A), by defining P (A(a)) :=

∑
ω|=A(a) P (ω).
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Definition 4 (Aggregation Semantics Entailment Relation [13]). The
entailment relation |=� between a probability distribution P ∈ PΩ and a proba-
bilistic conditional (B(X)|A(X)) [d] ∈ (L|L)prob with

∑
a∈Hx(A,B) P (A(a)) > 0

is defined as:

P |=� (B(X)|A(X)) [d] iff

∑
a∈Hx(A,B)

P (A(a)B(a))∑
a∈Hx(A,B)

P (A(a))
= d (1)

Note that both sums of the fraction run over the same set of grounding vectors
and therefore the same number of ground instances, i. e. a particular probability
P (A(a)) can be contained multiple times in the denominator sum. If P |=� r
holds for a conditional r, we say that P satisfies r or that P is a model of r.

Thus, the aggregation semantics resembles the definition of a conditional prob-
ability by summing up the probabilities of all respective ground formulas. The
entailment relation |=� is extended to a set R of probabilistic conditionals by
defining

P |=� R iff ∀r ∈ R : P |=� r

Let S(R) := {P ∈ PΩ : P |=� R} denote the set of all probability distributions
which satisfy R. R is consistent iff S(R) �= ∅, i. e. there exists a probability
distribution which satisfies all conditionals in R. Accordingly, a probabilistic
conditional r is called consistent (or satisfiable), if there exists a distribution
which satisfies r.

3 Feature Functions

For propositional conditionals, the satisfaction relation can be expressed by using
feature functions (e. g. [10]). The following definition introduces feature functions
for the relational case where the groundings have to be taken into account.

Definition 5 (Feature Function). For a probabilistic conditional

ri := (Bi(X)|Ai(X)) [di] define the functions v#i , f#
i : Ω → N0 with

v#i (ω) :=
∣∣∣{a ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)

}∣∣∣ and

f#
i (ω) :=

∣∣∣{a ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)
}∣∣∣ (2)

v#i (ω) indicates the number of groundings which verify ri for a certain ω ∈ Ω,

whereas f#
i (ω) specifies the number of groundings which falsify ri.

The linear function function σi : Ω → R with

σi(ω) := v#i (ω)(1 − di)− f#
i (ω)di (3)

is called the feature function of the probabilistic conditional ri.
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Proposition 1. Let (Bi(X)|Ai(X)) [di] be a probabilistic conditional and let
σi be its feature function according to Definition 5. Then it holds for P ∈ PΩ

with
∑

a∈Hx(A,B) P (A(a)) > 0:

P |=� (Bi(X)|Ai(X)) [di] iff
∑
ω∈Ω

P (ω)σi(ω) = 0 (4)

Proof. For ease of readability, we omit the index i of conditional ri.

P |=� (B(X)|A(X)) [d]

iff
∑

a∈Hx(A,B)

P (A(a)B(a)) = d
∑

a∈Hx(A,B)

P (A(a))

iff
∑

a∈Hx(A,B)

P (A(a)B(a)) = d
∑

a∈Hx(A,B)

[
P (A(a)B(a)) + P

(
A(a)B(a)

)]
iff

∑
a∈Hx(A,B)

[
(1− d)P (A(a)B(a))− dP

(
A(a)B(a)

)]
= 0

iff

⎛⎜⎜⎝(1− d)
∑

a∈Hx(A,B)

∑
ω∈Ω:

ω|=A(a)B(a)

P (ω)

⎞⎟⎟⎠ − d
∑

a∈Hx(A,B)

∑
ω∈Ω:

ω|=A(a)B(a)

P (ω) = 0

iff

⎛⎜⎜⎝(1− d)
∑
ω∈Ω

∑
a∈Hx(A,B):
ω|=A(a)B(a)

P (ω)

⎞⎟⎟⎠ − d
∑
ω∈Ω

∑
a∈Hx(A,B):
ω|=A(a)B(a)

P (ω) = 0

iff
∑
ω∈Ω

(
v#(ω)(1 − d)P (ω)− f#(ω)dP (ω)

)
= 0

iff
∑
ω∈Ω

(
v#(ω)(1 − d)− f#(ω)d

)
P (ω) = 0

iff
∑
ω∈Ω

σ(ω)P (ω) = 0 (5)

Proposition 1 shows that under aggregation semantics a conditional induces a
linear constraint which has to be met by a satisfying probability distribution.
The expected value E(σi, P ) of a function σi under a distribution P is defined
as E(σi, P ) :=

∑
ω∈Ω σi(ω)P (ω). Thus (5) states that the expected value of the

feature function σi must be 0 under every satisfying distribution.

4 ME-Inference for Aggregation Semantics

The entropy H(P ) := −
∑

ω∈Ω P (ω) logP (ω) of a probability distribution P
measures the indifference within the distribution. From all distributions satis-
fying R, the principle of maximum entropy (ME ) [16,11] chooses the unique
distribution with maximum entropy as a model for R. The ME-model of R



356 M. Finthammer

is employed to perform model-based inference and therefore it is also called
ME-inference operator. The ME-inference operator ME� based on aggregation
semantics is introduced in [13] as follows:

Definition 6 (ME� Inference Operator [13]). Let R be a consistent set of
probabilistic conditionals. The ME-inference operator ME� based on aggregation
semantics is defined as

ME�(R) := arg max
P∈PΩ :P |=�R

H(P ) (6)

In [21] it is shown that (6) has a unique solution and induces a convex optimiza-
tion problem, since the solutions to P |=� R form a convex set and H(P ) is a
strictly concave function. Thus, ME�(R) is well defined.

To avoid cumbersome distinctions of cases, in the following we consider only
soft probabilistic conditionals. Therefore, for the rest of the paper let

R := {r1, . . . , rm} (7)

be a consistent set of m soft probabilistic conditionals

ri = (Bi(X)|Ai(X)) [di] , with di ∈ (0, 1), 1 ≤ i ≤ m (8)

and let σi denote the feature function of ri according to Definition 5.

Proposition 2. For any consistent set of soft probabilistic conditionals R as
given by (7) and (8), there exists a positive probability distribution which satisfies
R.

From Definition 6 and Proposition 1 it follows that the determination of ME�(R)
requires to solve the following optimization problem with objective function
H(P ) and m linear constraints induced by the m conditionals of R:

Definition 7 (Optimization Problem OptAgg(R)). Let σi, 1 ≤ i ≤ m,
be the feature functions for R. Then the optimization problem OptAgg(R) is
defined as:

maximize H(P )

subject to
∑

ω∈Ω P (ω)σi(ω) = 0, 1 ≤ i ≤ m∑
ω∈Ω P (ω) = 1

P (ω) ≥ 0, ∀ω ∈ Ω

(9)

The two latter constraints ensure that the solution is a proper probability
distribution.

Proposition 3. The optimization problem OptAgg(R) for a given set R has
a unique solution that coincides with ME�(R).
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5 Computing the Maximum Entropy Distribution

There exist several algorithms to calculate the solution of a general convex opti-
mization problem [4], i. e. these algorithms can be applied to a convex optimiza-
tion problem with an arbitrary (convex) objective function. In this paper, we
deal with an algorithm which is tailor-made for a convex optimization problem
of the form (9), i. e. for a convex optimization problem with entropy H(P ) as
objective function. Since this algorithm is specialized to entropy optimization,
it can take advantage of certain characteristics of the entropy function, whereas
general algorithms for convex optimization problems can just utilize the convex-
ity of the objective function.

5.1 Generalized Iterative Scaling

The so-called Generalized Iterative Scaling (GIS) algorithm presented in [6] com-
putes the ME-distribution under linear constraints, i. e. it iteratively calculates a
sequence of distributions which converges to the solution. To be precise, the GIS
algorithm allows to compute the distribution with minimum relative entropy
(also see [5] for an alternative proof of the algorithm). The relative entropy (also
called Kullback-Leibler divergence or information divergence) between two distri-

butions P and Q is defined as K(P,Q) :=
∑

ω∈Ω P (ω) log P (ω)
Q(ω) . Let PU (ω) := 1

|Ω|
for all ω ∈ Ω denote the uniform distribution over Ω. It is easy to see that
K(P, PU ) = log |Ω| − H(P ) holds, i. e. entropy is just a special of relative
entropy.

Proposition 4. Let S be a set of probability distributions over Ω. Then it holds:
arg minP∈S K(P, PU ) = arg maxP∈S H(P )

Therefore, instead of maximizing the entropy of a distribution, we will consider
minimizing the relative entropy of a distribution with respect to the uniform
distribution. The general from of the optimization problem solved by the GIS
algorithm is as follows:

Definition 8 (Optimization Problem OptGis(EQ)). Let Q ∈ PΩ be a
given probability distribution. For i = 1, . . . ,m, let ai : Ω → R be a given
function and let hi ∈ R be its given expected value, so that the equation system
(denoted by EQ) of linear constraints

∑
ω∈Ω P (ω)ai(ω) = hi, i = 1, . . . ,m, in-

duced by the functions and their expected values can be satisfied by a positive
probability distribution. Then the optimization problem OptGis(EQ) is defined
as:

minimize K(P,Q)

subject to
∑

ω∈Ω P (ω)ai(ω) = hi, i = 1, . . . ,m∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(10)
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If the preconditions of Definition 8 are met, the GIS algorithm can be applied
to compute the solution to the optimization problem OptGis(EQ). Since the
constraints in (9) have been induced by a consistent set of soft probabilistic
conditionals, they can be satisfied by a positive distribution according to Propo-
sition 2. So in principle, the GIS algorithm can be applied to compute the solu-
tion to the optimization problem OptAgg(R), since this matches the form of
an optimization problem OptGis(EQ).

5.2 Transforming OptGis(EQ) into a Normalized Form

The concrete application of the GIS algorithm to OptGis(EQ) requires a trans-
formation into a normalized form meeting some additional requirements.

Definition 9 (Optimization Problem OptGisNorm(ÊQ)). Let Q ∈ PΩ be
a given probability distribution. For i = 1, . . . , m̂, let âi : Ω → R be a given func-
tion and let ĥi ∈ R be its given expected value, so that the induced equation system
(denoted by ÊQ) of linear constrains

∑
ω∈Ω P (ω)âi(ω) = ĥi, i = 1, . . . , m̂, can

be satisfied by a positive probability distribution. If

âi(ω) ≥ 0, ∀ω ∈ Ω, i = 1, . . . , m̂, (11)
m̂∑
i=1

âi(ω) = 1, ∀ω ∈ Ω (12)

ĥi > 0, i = 1, . . . , m̂ (13)
m̂∑
i=1

ĥi = 1 (14)

hold, then the optimization problem OptGisNorm(ÊQ) is defined as:

minimize K(P,Q)

subject to
∑

ω∈Ω P (ω)âi(ω) = ĥi, i = 1, . . . , m̂∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(15)

In [6] it is shown in general that an optimization problem OptGis(EQ) can
always be transformed appropriately to meet the requirements (11) – (14) of
OptGisNorm(ÊQ). Note that in [6] for this transformation the additional re-
quirement is made that each function ai in OptGis(EQ) has at least one non-
zero value, thereby assuring that (13) holds in OptGisNorm(ÊQ) after the
transformation. Here, we do not need this additional requirement on the func-
tions ai since we will show that in our context (13) holds anyway.

In the following, we will demonstrate how the constraints from (9) in
OptAgg(R) can be transformed into a set of normalized constraints meeting
the normalization requirements (11) to (14).
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Let
G#

i := |Hx(Ai,Bi)|
be the number of groundings of a conditional ri ∈ R, 1 ≤ i ≤ m, and let

G# :=
m∑
i=1

G#
i (16)

denote the total number of groundings of all conditionals in R.

Definition 10 (Non-Negative Feature Function). For each feature func-
tion σi of a conditional ri ∈ R of the optimization problem OptAgg(R), let the
non-negative feature function σ′

i : Ω → R+
0 be defined as

σ′
i(ω) := σi(ω) + diG

#
i , ∀ω ∈ Ω (17)

and the expected value of σ′
i, denoted by ε′i, is set to

ε′i := diG
#
i (18)

Proposition 5. For a feature function σ′
i and its expected value ε′i according to

Definition 10 the following holds:

0 ≤ σ′
i(ω) ≤ G#

i , ∀ω ∈ Ω (19)∑
ω∈Ω P (ω)σi(ω) = 0 ⇔

∑
ω∈Ω P (ω)σ′

i(ω) = ε′i (20)

Definition 11 (Normalized Feature Function). For each feature function
σi of a conditional ri ∈ R of the optimization problem OptAgg(R), let the
normalized feature function σ̂i : Ω → [0, 1] be defined as

σ̂i(ω) :=
σ′
i(ω)

G#
=

σi(ω) + diG
#
i

G#
, ∀ω ∈ Ω (21)

and the expected value of σ̂i, denoted by ε̂i, is set to

ε̂i :=
ε′i
G#

=
diG

#
i

G#
(22)

Proposition 6. For a feature function σ̂i and its expected value ε̂i according to
Definition 11 the following holds:

0 ≤ σ̂i(ω) ≤ 1, ∀ω ∈ Ω (23)

0 ≤
m∑
i=1

σ̂i(ω) ≤ 1, ∀ω ∈ Ω (24)

∑
ω∈Ω

P (ω)σi(ω) = 0 ⇔
∑
ω∈Ω

P (ω)σ̂i(ω) = ε̂i (25)

ε̂i > 0 (26)

0 <

m∑
i=1

ε̂i < 1 (27)
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The definition of ε̂i in (22) immediately implies that (26) must hold, because di,

G#
i , and G# are positive values.

Definition 12 (Correctional Feature Function). Let σ̂1, . . . , σ̂m and
ε̂1, . . . , ε̂m be as in Definition 11. Then the additional correctional feature func-
tion σ̂m̂ with m̂ := m + 1 is defined as

σ̂m̂(ω) := 1−
m∑
i=1

σ̂i(ω) (28)

and the corresponding additional correctional expected value ε̂m̂ is set to

ε̂m̂ := 1−
m∑
i=1

ε̂i (29)

Proposition 7. For the additional correctional feature function σ̂m̂ and ex-
pected value ε̂m̂ from Definition 12 it holds:

0 ≤ σ̂m̂(ω) ≤ 1, ∀ω ∈ Ω (30)

m̂∑
i=1

σ̂i(ω) = 1, ∀ω ∈ Ω (31)

ε̂m̂ > 0 (32)

m̂∑
i=1

ε̂i = 1 (33)

5.3 Normalized Optimization Problem

The above definitions of normalized feature functions σ̂1, . . . , σ̂m and a correc-
tional feature function σ̂m̂ (and their expected values ε1, . . . , εm and ε̂m̂) allows
us to define the following optimization problem, which represents the optimiza-
tion problem OptAgg(R) in a normalized form, meeting all requirements to
apply the GIS algorithm technique:

Definition 13 (Optimization Problem OptAggNorm(R)). Let σ̂i(ω), ε̂i,
m̂, σ̂m̂(ω), and ε̂m̂ be as in Definition 11 and 12. Then the optimization problem
OptAggNorm(R) is defined as:

minimize K(P, PU )

subject to
∑

ω∈Ω P (ω)σ̂i(ω) = ε̂i, 1 ≤ i ≤ m̂∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(34)
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Proposition 8. The optimization problems OptAgg(R) and
OptAggNorm(R) have the same solution.

Proposition 9. The optimization problem OptAggNorm(R) yields an in-
stance of the optimization problem OptGisNorm(ÊQ), i. e. in particular, the
feature functions and expected values of OptAggNorm(R) satisfy the corre-
sponding requirements (11) – (14) in Definition 9.

The following proposition is a direct consequence of Propositions 8 and 9:

Proposition 10. For any consistent set R of soft conditionals, the GIS
algorithm technique can directly be applied to the optimization problem
OptAggNorm(R) to compute its solution P ∗. Since P ∗ is also the solution
to the optimization problem OptAgg(R), the computation delivers the infer-
ence operator ME�(R) = P ∗.

5.4 GIS Algorithm for Aggregation Semantics

Based on the basic template for a GIS algorithm in [6], we present a practi-
cal GIS algorithm which computes the solution P ∗ of the optimization prob-
lem OptAggNorm(R). So according to Proposition 10, the algorithm delivers
ME�(R) as result. The pseudo-code of the GIS algorithm for aggregation se-
mantics is depicted in Fig. 1.

The algorithm starts with the uniform distribution as initial distribution.
In the k-th iteration step, for each feature function σ̂i the current ratio
β(k),i between its given expected value ε̂i and its current expected value∑

ω∈Ω P(k−1)(ω)σ̂i(ω) under the current distribution P(k−1) is determined. So
β(k),i is the factor required to scale P(k−1) appropriately so that the expected
value ε̂i of σ̂i would be met exactly. Since the actual scaling of P(k−1) has to be
performed with respect to all scaling factors β(k),1, . . . , β(k),m̂, the scaled distri-
bution P(k) cannot fit all expected values immediately, but it is guaranteed by
the GIS approach that a distribution iteratively computed that way converges
to the correct solution. Note that the constraint

∑
ω∈Ω P (ω) = 1, which is con-

tained in each of the above optimization problems, is not explicitly encoded as a
constraint in the GIS algorithm in Fig. 1. Instead, the scaled probability values
P

′
(k)(ω) are normalized in each iteration step, so that P(k) is a proper probability

distribution (which is important to determine the correct β(k+1),i with respect to
P(k)). The GIS algorithm iteratively calculates a sequence of distributions which
converges to the solution of the optimization problem. So in practice, an abor-
tion condition must be defined which allows to stop the iteration if the solution
has been approximated with a sufficient accuracy. A practical abortion condition
is, e. g. to stop after iteration step k if |1 − β(k),i| < δβ holds for all 1 ≤ i ≤ m̂,
with δβ being an appropriate accuracy threshold, i. e. if there is no more need to
scale any values because all scaling factors are almost 1 within accuracy δβ . Al-
ternatively, the iteration could stop after step k if |P(k)(ri)− di| < δr, 1 ≤ i ≤ m
holds (with P(k)(ri) denoting the probability of conditional ri under distribution
P(k)), i. e. if the probability of each conditional under the current distribution
P(k) matches its prescribed probability di within accuracy δr.
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Input: a consistent set R of m soft probabilistic conditionals

Output: inference operator ME�(R) := P ∗

Algorithm

– Let P(0) := PU

– Let σ̂1, . . . , σ̂m, σ̂m̂ be normalized feature functions
and ε̂1, . . . , ε̂m, ε̂m̂ be expected values constructed from R (according to Def. 13)

– Initialize iteration counter: k := 0
– Repeat until an abortion condition holds:

• Increase iteration counter: k := k + 1
• Calculate the scaling factor β(k),i of each feature function σ̂i:

β(k),i :=
ε̂i∑

ω∈Ω

P(k−1)(ω)σ̂i(ω)
, 1 ≤ i ≤ m̂

• Scale all probabilities appropriately:

P
′
(k)(ω) := P(k−1)(ω)

m̂∏
i=1

(
β(k),i

)σ̂i(ω)
, ∀ω ∈ Ω

• Normalize the probability values:

P(k)(ω) :=
P

′
(k)(ω)∑

ω∈Ω

P
′
(k)(ω)

, ∀ω ∈ Ω

– Let P ∗ := P(k) denote the final distribution of the iteration.

Fig. 1. GIS Algorithm for Aggregation Semantics

6 Implementation

The GIS algorithm for aggregation semantics has successfully been implemented
as a plugin for the KReator system [2], which is an integrated development en-
vironment for representing, reasoning, and learning with relational probabilistic
knowledge. Our first implementation of the GIS algorithm is a straight-forward
implementation of the pseudo-code from Fig. 1, with further optimizations being
referred to further refinements. The following example will be used to illustrate
the runtime behavior of the implementation:

Example 2. Suppose we have a zoo with a population of monkeys. The predicate
Fe(X,Y ) expresses that a monkey X feeds another monkey Y and Hu(X) says
that a monkey X is hungry. The knowledge base Rmky contains conditionals
which express generic knowledge as well as one conditional stating exceptional
knowledge about a monkey Charly:

r1 : (Fe(X,Y ) | ¬Hu(X) ∧ Hu(Y )) [0.80] r2 : (Fe(X,Y ) | Hu(X)) [0.001]

r3 : (Fe(X, charly) | ¬Hu(X)) [0.95] r4 : (Fe(X,X) | 4) [0.001]

r5 : (Fe(X,Y ) | ¬Hu(X) ∧ ¬Hu(Y )) [0.10]
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Considering the above example together with set Const = {andy, bobby, charly}
of constants, the corresponding Herbrand base contains 12 ground atoms. There-
fore |Ω| = 212 = 4, 096 elementary probabilities have to be computed in every
iteration step of the algorithm. Using the values of all scaling factors as abortion
condition (as suggested in Sec. 5.4) with an accuracy threshold of δβ = 0.001,
the GIS algorithm requires 20,303 steps to compute a solution with sufficient ac-
curacy. On a computer with an Intel Core i5-2500K CPU (4 cores, 3.3 Ghz) the
computation of the ME-distribution P ∗ takes 14 seconds. To additionally check
the accuracy of the calculated distribution P ∗, the probabilities of the condi-
tionals from Rmky have been recalculated under P ∗. Comparing these proba-
bilities with the prescribed probabilities of the conditionals reveals an deviation
of δr = 0.0017 at most. Performing the same computation with an improved
accuracy of δβ = 0.0001 results in 81,726 iteration steps taking 59 seconds and
revealing an improved deviation of δr = 0.00017 as well. Once the distribution
P ∗ has been computed, it can be (re-)used for probabilistic inference. That way,
arbitrary queries like e. g. q := (Fe(andy, bobby) | Hu(charly)) can be addressed
to the knowledge base and the answer (i. e. the queries’s probability under P ∗)
is determined immediately, e. g. P ∗(q) = 0.21.

7 Conclusion and Future Work

In this paper, we investigated the aggregation semantics for first-order proba-
bilistic logic and its ME-based inference operator ME�. We illustrated how the
convex optimization problem induced by ME� can be expressed in terms of fea-
ture functions. We developed an approach allowing us to use a GIS algorithm
technique for solving this optimization problem and presented the pseudo-code
of a concrete algorithm which employs GIS to calculate ME�(R), i. e. the ME-
optimal probability distribution which satisfies all conditionals in R. A realiza-
tion of this algorithm has been integrated in a plugin for aggregation semantics
in the KReator system, being the first practical implementation of ME� in-
ference. In our ME� inference algorithm and its implementation there are many
opportunities for extensions and improvements. For instance, in a future ver-
sion, we will consider also hard conditionals so that deterministic knowledge
can be expressed in R. Our current work also includes considering decomposed
distributions by employing junction trees and sophisticated propagation tech-
niques, as proposed in [1,20,15,19], or using the Improved Iterative Scaling (IIS)
algorithm from [3]. Furthermore, we will exploit the equivalence of worlds re-
garding their ME-probability, thereby allowing to significantly reduce the size of
the distribution which has to be computed by the GIS algorithm; a prototypical
implementation of this approach already shows very promising results.
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Abstract. Conditional independence provides an essential framework to
deal with knowledge and uncertainty in Artificial Intelligence, and is fun-
damental in probability and multivariate statistics. Its associated impli-
cation problem is paramount for building Bayesian networks. Saturated
conditional independencies form an important subclass of conditional in-
dependencies. Under schema certainty, the implication problem of this
subclass is finitely axiomatizable and decidable in almost linear time. We
study the implication problem of saturated conditional independencies
under both schema certainty and uncertainty. Under schema certainty,
we establish a finite axiomatization with the following property: every
independency whose implication is dependent on the underlying schema
can be inferred by a single application of the so-called symmetry rule to
some independency whose implication is independent from the underly-
ing schema. Removing the symmetry rule from the axiomatization under
schema certainty results in an axiomatization for a notion of implication
that leaves the underlying schema undetermined. Hence, the symmetry
rule is just a means to infer saturated conditional independencies whose
implication is truly dependent on the schema.

1 Introduction

The concept of conditional independence is important for capturing structural
aspects of probability distributions, for dealing with knowledge and uncertainty
in Artificial Intelligence, and for learning and reasoning in intelligent systems
[12,13]. Application areas include natural language processing, speech process-
ing, computer vision, robotics, computational biology, and error-control coding.
A conditional independence (CI) statement represents the independence of two
sets of attributes relative to a third: given three mutually disjoint subsets X ,
Y , and Z of a set S of attributes, if we have knowledge about the state of X ,
then knowledge about the state of Y does not provide additional evidence for
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the state of Z and vice versa. Traditionally, the notation I(Y, Z | X) has been
used to specify such CI statement. An important problem is the S-implication
problem, which is to decide for an arbitrary set S, and an arbitrary set Σ ∪ {ϕ}
of CI statements over S, whether every probability model that satisfies every
CI statement in Σ also satisfies ϕ. The significance of this problem is due to its
relevance for building a Bayesian network [11,12,13]. The S-implication prob-
lem for CI statements is not finitely axiomatizable by a set of Horn rules [14].
However, it is possible to express CI statements using polynomial likelihood
formulae, and reasoning about polynomial inequalities is axiomatizable [8]. Re-
cently, the S-implication problem of stable CI statements has been shown to
be finitely axiomatizable, and coNP -complete to decide [12]. Here, stable means
that the validity of I(Y, Z | X) implies the validity of every I(Y, Z | X ′) where
X ⊆ X ′ ⊆ S−Y Z. An important subclass of stable CI statements are saturated
conditional independence (SCI) statements. These are CI statements I(Y, Z | X)
over S = XY Z where S is the union of X , Y and Z. Geiger and Pearl have estab-
lished a finite axiomatization for the S-implication problem [7]. For SCI state-
ments we prefer to write I(Y | X) instead of I(Y, Z | X) since Z = S−XY . The
notion of saturated conditional independence I(Y | X) over S is very closely
related to that of a multivalued dependency (MVD) X 
 Y over S, studied in
the framework of relational databases [1,9]. Here, a set X of attributes is used to
denote the X-value of a tuple over S, i.e., those tuple components that appear
in the columns associated with X . Indeed, X 
 Y expresses the fact that an X-
value uniquely determines the set of associated Y -values independently of joint
associations with Z-values where Z = S −XY [4]. Thus, given a specific occur-
rence of an X-value within a tuple, so far not knowing the specific association
with a Y -value and a Z-value within that tuple, and then learning about the
specific associated Y -value does not provide any information about the specific
associated Z-value. Previous research has established an equivalence between the
S-implication problem for SCI statements I(Y | X) and the S-implication prob-
lem for MVDs X 
 Y [15]. Utilizing results for MVDs [1,5] the S-implication
problem of SCI statements is decidable in almost linear time [6]. In this paper
we will refine the known equivalences between the implication of SCI statements
and MVDs. The following example provides a motivation for our studies.

Example 1. Suppose S consists of the attributes Emp, Child, Project. Declaring
I(Child | Emp) means that given an employee, we do not learn anything new
about her children by learning anything new about a project she is involved in.
Due to the symmetry rule [7] the SCI statement I(Project | Emp) is S-implied
by I(Child | Emp). Strictly speaking, however, S-implication here means that
I(Project | Emp) is implied by both I(Child | Emp) and S together, but not by
I(Child | Emp) alone. Indeed, if S′ results from S by adding the attribute Hobby,
then I(Project | Emp) is not S′-implied by I(Child | Emp). ��
The last example illustrates the need to distinguish between different notions
of semantic implication. The first notion is that of S-implication. The literature
on CI statements has dealt with this notion exclusively. An alternative notion
addresses uncertainty about the underlying set S of attributes. The associated
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implication problem asks if for every given set Σ ∪{ϕ} of SCI statements, every
probability model – for any suitable set S – that satisfies Σ also satisfies ϕ.

Example 2. The SCI statement I(Child | Emp) {Emp,Child,Project}-implies
I(Project | Emp), but I(Child | Emp) does not imply I(Project | Emp). ��

Contribution. In this paper we make three main contributions. Firstly, we
show that Geiger and Pearl’s finite axiomatization G for the S-implication of
SCI statements cannot distinguish between implied and S-implied SCI state-
ments. That is, there are implied SCI statements for which every inference by
G applies the symmetry rule; giving incorrectly the impression that the impli-
cation of the SCI statements depends on S. Moreover, there are S-implied SCI
statements for which every inference by G requires applications of the symmetry
rule at times different from the last inference step only. Secondly, we establish a
finite axiomatization CS such that every implied SCI statement can be inferred
without any application of the symmetry rule; and every S-implied SCI state-
ment can be inferred with only a single application of the S-symmetry rule, and
this application is done in the last step of the inference. Finally, we establish a
finite axiomatization C for the implication of SCI statements. As C results from
CS by removal of the symmetry rule, the results show that the symmetry rule is
only necessary to infer those SCI statements that are S-implied but not implied.
These results are in analogy to those developed for relational MVDs [2,3,10].

Organization. We review the framework and some results on CI statements
in Section 2. We show that Geiger and Pearl’s axiomatization does not reflect
the role of the symmetry rule to infer S-implied SCI statements that are not
implied. In Section 3 we establish an axiomatization for S-implication that does
reflect the role of the symmetry rule. The axiomatization for the implication of
SCI statements under schema uncertainty is established in Section 4. In Section
5 we outline results for an alternative definition of SCI statements, motivated
by the definition of MVDs. We conclude in Section 6.

2 Geiger and Pearl’s Axiomatization for SCI Statements

In this section we adopt the framework for conditional independence statements
from [7]. We adapt their axiomatization G for the S-implication of saturated
statements by rewriting it into a format suitable to study the role of the sym-
metry rule. Finally, we show that the axiomatization does not reflect the role of
the symmetry rule to infer S-implied saturated statements that are not implied.

We denote by A a countably infinite set of distinct symbols {a1, a2, . . .}, called
attributes. A finite subset S ⊆ A is called a schema. Each attribute ai can be
assigned a finite set dom(ai). This set is called the domain of ai and each of its
elements is a value for ai. For X = {s1, . . . , sk} ⊆ S we say that x is a value
of X , if x ∈ dom(s1) × · · · × dom(sk). For a value x of X we write x(y) for the
projection of x onto Y ⊆ X . For finite X,Y ⊆ A we write XY for the set union
of X and Y .



368 J. Biskup, S. Hartmann, and S. Link

A probability model over S = {s1, . . . , sn} is a pair (dom, P ) where dom is a
domain mapping that maps each si to a finite domain dom(si), and P : dom(s1)×
· · ·×dom(sn) → [0, 1] is a probability distribution having the Cartesian product
of these domains as its sample space.

Definition 1. The expression I(Y, Z | X) where X,Y and Z are disjoint subsets
of S such that S = XY Z is called a saturated conditional independence (SCI)
statement over S. We say that the SCI statement I(Y, Z | X) holds for (dom, P )
if for every values x,y, and z of X, Y and Z, respectively,

P (y, z,x) · P (x) = P (y,x) · P (z,x).

Equivalently, (dom, P ) is said to satisfy I(Y, Z | X). ��

SCI statements interact with one another, and these interactions have been for-
malized by the following notion of semantic implication.

Definition 2. Let Σ ∪ {ϕ} be a set of SCI statements over S. We say that Σ
S-implies ϕ if every probability model over S that satisfies every SCI statement
σ ∈ Σ also satisfies ϕ. ��

The S-implication problem is the following problem.

PROBLEM: S-implication problem
INPUT: Schema S, Set Σ ∪ {ϕ} of SCI statements over S
OUTPUT: Yes, if Σ S-implies ϕ; No, otherwise

For Σ we let Σ∗
S = {ϕ | Σ S -implies ϕ} be the semantic closure of Σ, i.e., the

set of all SCI statements S-implied by Σ. In order to determine the S-implied
SCI statements we use a syntactic approach by applying inference rules. These
inference rules have the form

premises

conclusion

and inference rules without any premises are called axioms. An inference rule is
called S-sound, if the premises of the rule S-imply the conclusion of the rule. We
let Σ 5R ϕ denote the inference of ϕ from Σ by the set R of inference rules. That
is, there is some sequence γ = [σ1, . . . , σn] of SCI statements such that σn = ϕ
and every σi is an element of Σ or results from an application of an inference
rule in R to some elements in {σ1, . . . , σi−1}. For Σ, let Σ+

R = {ϕ | Σ 5R ϕ} be
its syntactic closure under inferences by R. A set R of inference rules is said to
be S-sound (S-complete) for the S-implication of SCI statements, if for every S
and for every set Σ of SCI statements over S, we have Σ+

R ⊆ Σ∗
S (Σ∗

S ⊆ Σ+
R).

The (finite) set R is said to be a (finite) axiomatization for the S-implication of
SCI statements if R is both S-sound and S-complete.

Table 1 contains the set G of inference rules that Geiger and Pearl established
as a finite axiomatization for the S-implication of SCI statements.

Instead of writing I(Y, Z | X) for an SCI statement over S it suffices to write
I(Y | X) since Z = S −XY . The symmetry rule in G may then be replaced by
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Table 1. Geiger and Pearl’s axiomatization G of S-implication for SCI statements

I(S −X, ∅ | X)

I(Y,Z | X)

I(Z,Y | X)
(saturated trivial independence, T ′) (symmetry, S ′)

I(ZW,Y | X) I(Z,W | XY )

I(Z, YW | X)

I(Y,ZW | X)

I(Y,Z | XW )
(weak contraction, W ′) (weak union, U ′)

Table 2. A different axiomatization GS of S-implication for SCI statements

I(∅ | X)

I(Y | X)

I(S −XY | X)
(saturated trivial independence, T ) (S-symmetry, SS)

I(Y | X) I(Z | XY )

I(Z | X)

I(Y | X)

I(Y − Z | XZ)
(weak contraction, W) (weak union, U)

a rule that infers I(S −XY | X) from I(Y | X). Indeed, the set CS of inference
rules from Table 2 forms a finite axiomatization for the S-implication of SCI
statements.

Proposition 1. GS is a finite axiomatization for the S-implication of SCI
statements.

Proof (Sketch). Let S ⊆ A be a finite set of attributes. Let Σ = {I(Y1 |
X1), . . . , I(Yn | Xn)} and ϕ = I(Y | X) be a (set of) SCI statement(s) over S.
We can show by an induction over the inference length that Σ 5GS ϕ if and only
if Σ′ = {I(Y1, S −X1Y1 | X1), . . . , I(Yn, S −XnYn | Xn)} 5G I(Y, S−XY | X).
Hence, the S-soundness (S-completeness) of GS follows from the the S-soundness
(S-completeness) of G. ��

Example 3. Consider the SCI statement I(Child | Emp) over S =
{Emp,Project,Child}. It models the semantic property that for a given employee
we do not learn anything new about the employee’s child by learning something
new about any other attribute (here: Project) of the employee modeled by S.
Now, I(Child | Emp) S-implies the SCI statement I(Project | Emp). It can be
inferred by a single application of the S-symmetry rule SS to I(Child | Emp).
However, while I(Child | Emp) expresses a semantic property, the SCI statement
I(Project | Emp) does not necessarily correspond to any semantically meaning-
ful constraint. It may merely be a consequence that results from the symmetry
between Project and Child, given Emp and S. ��
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The last example motivates the following definition. It addresses the property
of an inference system to first infer all those SCI statements, implied by a set
of SCI statements alone, without any application of the symmetry rule, and,
subsequently, apply the symmetry rule once to some of these SCI statements to
infer any implied SCI statement that also depends on the underlying schema.

Definition 3. Let SS denote a set of inference rules that is S-sound for the S-
implication of SCI statements, and in which the S-symmetry rule SS is the only
inference rule that is dependent on S. We say that SS is symmetry-preserving,
if for every S, and every set Σ ∪ {ϕ} of SCI statements over S such that ϕ is
S-implied by Σ there is some inference of ϕ from Σ by SS such that the S-
symmetry rule SS is applied at most once, and, if it is applied, then it is applied
in the last step of the inference only. ��

One may ask whether Geiger and Pearl’s system GS is symmetry-preserving.

Theorem 1. GS is not symmetry-preserving.

Proof. Let S = {A,B,C,D} and Σ = {I(B | A), I(C | A)}. One can show
that I(BC | A) /∈ Σ+

{T ,W,U}. Moreover, for all Y such that D ∈ Y , I(Y | A) /∈
Σ+

{T ,W,U}, see Lemma 1 from Section 4.

However, I(BC | A) ∈ Σ+
GS

. Consequently, in any inference of I(BC | A)
from Σ by GS the S-symmetry rule SS must be applied at least once, but is not
just applied in the last step as {D} = S − {A,B,C}. ��

Example 4. Consider the schema S = {E(mp),C(hild),P(roject),H(obby)}. Let
Σ consist of the two SCI statements I(C | E) and I(P | E). Using GS we can
infer I(CP | E) from Σ as follows:

I(P | E)

U : I(P | CE)

I(C | E) SS : I(H | CE)

W : I(H | E)

SS : I(CP | E)

.

This inference leaves open the question whether I(CP | E) is implied by Σ
alone, i.e., whether the applications of the S-symmetry rule are unnecessary to
infer I(CP | E). ��

3 A Finite Symmetry-Preserving Axiomatization

Theorem 1 has shown that axiomatizations are, in general, not symmetry-
preserving. We will now establish a finite symmetry-preserving axiomatization
for the S-implication of SCI statements. For this purpose, we consider the two
S-sound inference rules of additive contraction A and intersection contraction
I, as shown in Table 3.
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Table 3. A finite symmetry-preserving axiomatization CS

I(∅ | X)

I(Y | X)

I(S −XY | X)
(saturated trivial independence, T ) (S-symmetry, SS)

I(Y | X) I(Z | XY )

I(Z | X)

I(Y Z | X)

I(Y | XZ)
(weak contraction, W) (weak union, U)

I(Y | X) I(Z | XY )

I(Y Z | X)

I(Y | X) I(Z | XW )

I(Y ∩ Z | X)
Y ∩W = ∅

(additive contraction, A) (intersection contraction, I)

Theorem 2. Let Σ be a set of SCI statements over S. For every inference γ
from Σ by the system

GS = {T ,W ,U ,SS}

there is an inference ξ from Σ by the system

CS = {T ,W ,U ,A, I,SS}

with the following properties

1. γ and ξ infer the same SCI statement,

2. in ξ the S-symmetry rule SS is applied at most once, and

3. if SS is applied in ξ, then it is applied as the last rule.

Proof. The proof is done by induction on the length l of γ. For l = 1, the
statement ξ := γ has the desired properties. Suppose for the remainder of the
proof that l > 1, and let γ = [σ1, . . . , σl] be an inference of σl from Σ by GS .
We distinguish between four different cases according to how σl is obtained from
[σ1, . . . , σl−1].

Case 1. σ1 is obtained from the saturated trivial independence axiom T , or
is an element of Σ. In this case, ξ := [σl] has the desired properties.

Case 2. We obtain σl by an application of the weak union rule U to a premise
σi with i < l. Let ξi be obtained by applying the induction hypothesis to γi =
[σ1, . . . , σi]. Consider the inference ξ := [ξi, σl]. If in ξi the S-symmetry rule SS
is not applied, then ξ has the desired properties. If in ξi the S-symmetry rule SS
is applied as the last rule, then the last two steps in ξ are of the following form:

I(Y | X)

SS : I(S −XY | X)

U : I(S −XY Z | XZ)

.
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However, these steps can be replaced as follows:

I(Y | X)

U : I(Y − Z | XZ)

SS : I(S −XY Z | XZ)

.

The result of this replacement is an inference with the desired properties.
Case 3. We obtain σl by an application of the weak contraction rule W to

premises σi and σj with i, j < l. Let ξi and ξj be obtained by applying the induc-
tion hypothesis to γi = [σ1, . . . , σi] and γj = [σ1, . . . , σj ], respectively. Consider
the inference ξ := [ξi, ξj , σl]. We distinguish between four cases according to the
occurrence of the S-symmetry rule SS in ξi and ξj .

Case 3.1. If the S-symmetry rule SS does not occur in ξi nor in ξj , then ξ has
the desired properties.

Case 3.2. If the S-symmetry rule SS occurs in ξi as the last rule but does not
occur in ξj , then the last step of ξi and the last step of ξ are of the following
form:

I(Y | X)

SS : I(S −XY | X) I(Z | X(S −XY ))

W : I(Z | X)

.

Note that Z ⊆ Y . However, these steps can be replaced as follows:

I(Y | X) I(Z | X(S −XY ))

I : I(Z | X)
.

The result of this replacement is an inference with the desired properties.
Case 3.3. If the S-symmetry rule SS occurs in ξj as the last rule but does not

occur in ξi, then the last step of ξj and the last step of ξ are of the following
form:

I(Z | XY )

I(Y | X) SS : I(S −XY Z | XY )

W : I(S −XY Z | X)

.

However, these steps can be replaced as follows:

I(Y | X) I(Z | XY )

A : I(ZY | X)

SS : I(S −XY Z | X)

.

The result of this replacement is an inference with the desired properties.
Case 3.4. If the S-symmetry rule SS occurs in ξi as the last rule and occurs

in ξj as the last rule, then the last steps of ξi and ξj and the last step of ξ are
of the following form:

I(Y | X) I(Z | X(S −XY ))

SS : I(S −XY | X) SS : I(S − (XZ(S −XY )) | X(S −XY ))

W : I(S − (XZ(S −XY ))︸ ︷︷ ︸
=Y −Z

| X)
.
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However, these steps can be replaced as follows:

I(Y | X) I(Z | X(S −XY )) I(Y | X)

I : I(Y ∩ Z | X) U : I(Y − (Y ∩ Z) | X(Y ∩ Z))

W : I(Y − (Y ∩ Z)︸ ︷︷ ︸
=Y −Z

| X)
.

The result of this replacement is an inference with the desired properties.
Case 4. We obtain σl by an application of the S-symmetry rule SS to a

premise σi with i < l. Let ξi be obtained by applying the induction hypothesis
to γi = [σ1, . . . , σi]. Consider the inference ξ := [ξi, σl]. If in ξi the S-symmetry
rule SS is not applied, then ξ has the desired properties. If in ξi the S-symmetry
rule SS is applied as the last rule, then the last two steps in ξ are of the following
form.

I(Y | X)

SS : I(S −XY | X)

SS : I(S − (X(S −XY ))︸ ︷︷ ︸
=Y

| X)

The inference obtained from deleting these steps has the desired properties. ��

Example 5. Recall Example 4 where S = {E(mp),C(hild),P(roject),H(obby)},
and Σ consists of the two SCI statements I(C | E) and I(P | E). The inference of
I(CP | E) from Σ by GS did not reveal whether applications of the S-symmetry
rule are necessary to infer I(CP | E) from Σ. Indeed, no inference of I(CP | E)
from Σ by GS can provide this insight, see the proof of Theorem 1. Using CS

we can obtain the following inference of I(CP | E) from Σ:

I(P | E)

I(C | E) U : I(P | EC)

A : I(CP | E)

.

Indeed, the S-symmetry rule unnecessary to infer the SCI statement I(CP | E)
from Σ. ��

Examples 4 and 5 indicate that the implication of I(CP | E) by Σ does not
depend on the fixed schema S. Next we will formalize a stronger notion of im-
plication for SCI statements. Theorem 3 shows that the set C := CS − {SS} of
inference rules is nearly S-complete for the S-implication of SCI statements.

Theorem 3. Let Σ ∪ {I(Y | X)} be a set of SCI statements over schema S.
Then I(Y | X) ∈ Σ+

CS
if and only if I(Y | X) ∈ Σ+

C or I(S−XY | X) ∈ Σ+
C . ��

Theorem 3 indicates that C can be used to infer every SCI statement whose im-
plication is independent from the schema S. Another interpretation of Theorem
3 is the following. In using C to infer S-implied SCI statements, the fixation of
the underlying schema can be deferred until the last step of an inference.
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Table 4. An axiomatization C of implication for SCI statements

I(∅ | X)

I(Y | X) I(Z | XY )

I(Y Z | X)
(saturated trivial independence, T ) (additive contraction, A)

I(Y | X) I(Z | XY )

I(Z | X)

I(Y Z | X)

I(Y | XZ)
(weak contraction, W) (weak union, U)

I(Y | X) I(Z | XW )

I(Y ∩ Z | X)
Y ∩W = ∅

(intersection contraction, I)

4 Axiomatizing a Stronger Notion of Implication

In this section we will introduce a notion of implication for SCI statements that
is independent from the underlying schema. We will then show that the set C
of inference rules forms a finite axiomatization for this notion of implication.
On the one hand, this allows us to distinguish between those SCI statements
that are S-implied and those that are implied. On the other hand, the notion of
implication can be applied whenever there is some uncertainty about the under-
lying schema, e.g., whether additional attributes will be required in the future,
or some attributes are unknown. This degree of uncertainty may commonly be
required in practice.

A probability model is a triple (S, dom, P ) where S = {s1, . . . , sn} ⊆ A is a
finite set of attributes, dom is a domain mapping that maps each si to a finite
domain dom(si), and P : dom(s1) × · · · × dom(sn) → [0, 1] is a probability
distribution having the Cartesian product of these domains as its sample space.

The expression I(Y | X) where X and Y are finite, disjoint subsets of A is
called a saturated conditional independence (SCI) statement. We say that the
SCI statement I(Y | X) holds for (S, dom, P ) if XY ⊆ S and for every values
x,y, and z of X , Y and Z = S −XY , respectively,

P (y, z,x) · P (x) = P (y,x) · P (z,x).

Equivalently, (S, dom, P ) is said to satisfy I(Y | X). For an SCI statement
I(Y | X) let Attr(ϕ) := XY , and for a finite set Σ of SCI statements let
Attr(Σ) :=

⋃
σ∈Σ Attr(σ).

Definition 4. Let Σ ∪ {ϕ} be a finite set of SCI statements. We say that Σ
implies ϕ if every probability model (S, dom, P ) with Attr(Σ ∪ {ϕ}) ⊆ S that
satisfies every SCI statement σ ∈ Σ also satisfies ϕ. ��
In this definition the underlying schema is left undetermined. The only require-
ment is that the SCI statements must apply to the probability model. The im-
plication problem for SCI statements can be stated as follows.
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PROBLEM: Implication problem
INPUT: Set Σ ∪ {ϕ} of SCI statements
OUTPUT: Yes, if Σ implies ϕ; No, otherwise

Implication is a stronger notion than S-implication.

Proposition 2. Let Σ∪{ϕ} be a finite set of SCI statements, such that Attr(Σ∪
{ϕ}) ⊆ S. If Σ implies ϕ, then Σ S-implies ϕ, but the other direction does not
necessarily hold.

Proof. The first statement follows directly the definitions of implication and
S-implication. For the other direction, let S = {Emp,Child,Project}, Σ =
{I(Child | Emp)} and let ϕ be I(Project | Emp). Clearly, Σ S-implies
ϕ. However, Σ does not imply ϕ as the following probability model shows.
Let S′ = S ∪ {Hobby} and P (Homer, Lisa, Cooling System, TV) = 0.5 =
P (Homer, Lisa, Safety, Beer). This model satisfies Σ, but violates ϕ. ��

The notions of soundness and completeness with respect to the notion of im-
plication from Definition 4 are simply adapted from the corresponding notions
in the context of fixed schemata S by dropping the reference to S. While the
saturated trivial independence axiom T , the weak contraction rule W , the weak
union rule U , the additive contraction rule A, and the intersection contraction
rule I are all sound, the S-symmetry rule SS is S-sound, but not sound.

We shall now prove that C forms a finite axiomatization for the implication
of SCI statements. For this purpose, we prove two lemmata in preparation. The
correctness of the first lemma can easily be observed by inspecting the inference
rules in C. For each of the rules, every attribute that occurs on the left-hand side
of the bar in the conclusion of the rule, already appears on the left-hand side of
the bar in at least one premise of the rule.

Lemma 1. Let Σ = {I(Y1 | X1), . . . , I(Yn | Xn)} be a finite set of SCI state-
ments. If I(Y | X) ∈ Σ+

C , then Y ⊆ Y1 ∪ . . . ∪ Yn. ��

For the next lemma one may notice that the attributes that do not occur in
Attr(Σ) can always be introduced in the last step of an inference, by applying
the weak union rule U .

Lemma 2. Let Σ be a finite set of SCI statements. If I(Y | X) ∈ Σ+
C , then

there is an inference γ = [σ1, . . . , σl] of I(Y | X) from Σ by C such that every
attribute occurring in σ1, . . . , σl−1 is an element of Attr(Σ).

Proof. Let W := Attr(Σ), and ξ̄ = [I(V1 | U1), . . . , I(Vl−1 | Ul−1)] be an infer-
ence of I(Y | X) from Σ by C. Consider the sequence

ξ := [I(V1 ∩W | U1 ∩W ), . . . , I(Vl−1 ∩W | Ul−1 ∩W )] .

We claim that ξ is an inference of I(Y ∩W | X∩W ) from Σ by C. For if I(Vi | Ui)
is an element of Σ or was obtained by an application of the saturated trivial
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independence axiom T , then I(Y ∩W | X ∩W ) = I(Y | X). Moreover, one can
verify that if I(Vi | Ui) is the result of applying one of the rules U ,W ,A, I, then
I(Vi ∩W | Ui ∩W ) is the result of the same rule applied to the corresponding
premises in ξ.

Now by Lemma 1 we know that Y ⊆ W , hence Y ∩W = Y . However, this
means that we can infer I(Y | X) from I(Y ∩W | X∩W ) by a single application
of the weak union rule U :

I(Y ∩W | X ∩W )

I((Y ∩W )−X︸ ︷︷ ︸
=Y

| (X ∩W ) ∪X︸ ︷︷ ︸
=X

)
.

Hence, the inference [ξ, I(Y | X)] has the desired properties. ��

We are now prepared to prove that C forms a finite axiomatization for the
implication of SCI statements.

Theorem 4. The set C = {T ,W ,U ,A, I} of inference rules forms a finite ax-
iomatization for the implication of SCI statements.

Proof. Let Σ = {I(Y1 | X1), . . . , I(Yn | Xn)} be a finite set of SCI statements
and I(Y | X) an SCI statement. We have to show that

I(Y | X) ∈ Σ∗ if and only if I(Y | X) ∈ Σ+
C .

Let T := X ∪ Y ∪ Attr(Σ). In order to prove the soundness of C we assume
that I(Y | X) ∈ Σ+

C holds. Let (S, dom, P ) be a probability model that satisfies
every element of Σ, and where T ⊆ S holds. We must show that (S, dom, P ) also
satisfies I(Y | X). According to Lemma 2 there is an inference γ of I(Y | X)
from Σ by C such that U ∪ V ⊆ T ⊆ S holds for each SCI statement I(V | U)
that occurs in γ. Since each rule in C is sound we can conclude (by induction)
that each SCI statement occurring in γ is satisfied by (S, dom, P ). In particular,
(S, dom, P ) satisfies I(Y | X).

In order to prove the completeness of C we assume that I(Y | X) /∈ Σ+
C .

Let S ⊆ A be a finite set of attributes such that T is a proper subset of S,
i.e., T ⊂ S. Consequently, S − XY is not a subset of T . Hence, by Lemma 1,
I(S−XY | X) /∈ Σ+

C . Now from I(Y | X) /∈ Σ+
C and from I(S−XY | X) /∈ Σ+

C

we conclude that I(Y | X) /∈ Σ+
CS

by Theorem 3. Since CS is S-complete for the
S-implication of SCI statements it follows that Σ does not S-imply I(Y | X).
Hence, Σ does not imply I(Y | X) by Proposition 2. ��

Example 6. Recall Example 5 where S = {E(mp),C(hild),P(roject),H(obby)},
and Σ consists of the two SCI statements I(C | E) and I(P | E). The inference
of I(CP | E) from Σ by CS in Example 5 is actually an inference by C. Hence,
I(CP | E) is implied by Σ, as one would expect intuitively. ��
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5 Results for Alternative SCI Statements

We will now outline a different strategy to prove desirable properties of axioma-
tizations. The previous proofs are developed from the point of view of SCI state-
ments and the axiomatization for their S-implication problem, as established by
Geiger and Pearl. An alternative proof strategy can be developed from the point
of view of multivalued dependencies (MVDs). For this purpose, we define that an
alternative SCI statement over S is an expression I(Y, Z | X) where X,Y, Z ⊆ S
such that S = XY Z. Here, the attribute sets are not necessarily disjoint. The
definition of the satisfaction of an alternative SCI statement by a probability
model is the same as for SCI statements. As before we write I(Y | X) instead
of I(Y, S − Y | X). One may show that the set GS = {T ,W,U ,SS} in Table 5
forms a finite axiomatization for S-implication of alternative SCI statements.

Table 5. Inference rules for the S-implication of alternative SCI statements

I(∅ | ∅)

I(Y | X)

I(S − Y | X)
(saturated trivial independence, T ) (S-symmetry, SS)

I(Y | X) I(Z | Y )

I(Z − Y | X)

I(Y | X)

I(Y U | XUV )
(weak contraction, W) (weak union, U)

I(Y | X) I(Z | Y )

I(Y Z | X)

I(Y | X) I(Z | W )

I(Y ∩ Z | X)
Y ∩W = ∅

(additive contraction, A) (intersection contraction, I)

The set GS , where each alternative SCI statement I(Y | X) is interpreted as
the MVD X 
 Y over S, is the exact axiomatization of S-implication for MVDs
from [2]. The results in [2], established for MVDs, then establish the following
analogue results for alternative SCI statements.

Theorem 5. Let Σ be a set of alternative SCI statements over S. For every
inference γ from Σ by the system GS = {T ,W ,U ,SS} there is an inference ξ
from Σ by the system CS = {T ,W,U ,A, I,SS} with the following properties

1. γ and ξ infer the same alternative SCI statement,
2. in ξ the S-symmetry rule SS is applied at most once, and
3. if SS is applied in ξ, then it is applied as the last rule. ��

One may then also introduce alternative SCI statements and their implication
over undetermined schemata.

Theorem 6. The set C = {T ,W ,U ,A, I} of inference rules forms a finite ax-
iomatization for the implication of alternative SCI statements. ��
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6 Conclusion

SCI statements form an important subclass of CI statements, as their implication
problem is finitely axiomatizable and decidable in almost linear time. We have
observed a difference between SCI statements S-implied by a given set of SCI
statements, and those implied by the given set of SCI statements alone. Geiger
and Pearl’s axiomatization for S-implication cannot distinguish between these
two notions. We have established an axiomatization for S-implication in which
implied SCI statements can be inferred without applications of the symmetry
rule. We have further introduced a notion of implication in which the underlying
schema is left undetermined, and established a finite axiomatization for this
notion. The results show that the symmetry rule is a mere means to infer SCI
statements that are S-implied, but not implied by a given set of SCI statements.
These results have analogues in the theory of MVDs in relational databases.
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Abstract. We present a notion, relative independence, that models in-
dependence in relation to a predicate. The intuition is to capture the
notion of a minimum of dependencies among variables with respect to
the predicate. We prove that relative independence coincides with condi-
tional independence only in a trivial case. For use in second-order prob-
ability, we let the predicate express first-order probability, i.e. that the
probability variables must sum to one in order to restrict dependency to
the necessary relation between probabilities of exhaustive and mutually
exclusive events. We then show examples of Dirichlet distributions that
do and do not have the property of relative independence. These distri-
butions are compared with respect to the impact of further dependencies,
apart from those imposed by the predicate.

Keywords: Imprecise probability, second-order probability, dependency.

1 Introduction

One commonly used model of imprecise probability [1] is to utilize convex sets of
probability distributions, also known as credal sets [2, 3]. The main idea is that the
imprecision models epistemic uncertainty [4] and that more information usually
means less epistemic uncertainty. When using credal sets for belief updating [5], i.e.,
when a prior credal set is updated to a posterior based on some piece of information,
one does not usually consider the existence of a second-order probability distribution
over these sets, i.e., probability distributions over probability distributions [6–8].

Still, such type of information is often implicitly used. As an example, one
proposed method for deciding on a single state1 based on a posterior credal
set is to use the centroid distribution of the set [9, 10], i.e., the expected value
of a uniform second-order distribution. However, even though one adopts the
uniform distribution as ones’ second-order belief over the prior credal set, the
corresponding belief over the posterior is not likely to be uniform [11]. Hence,
there is in principle no reason for using the centroid distribution as a basis for
decision making.

1 Imprecision usually means that there exist several optimal decisions.
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c© Springer-Verlag Berlin Heidelberg 2012



380 D. Sundgren and A. Karlsson

With its potential for expressing structure, second-order probabilities can be
useful for decision making. It can however be problematic to define a distribution
that correctly represents the information at hand; singling out a particular dis-
tribution that corresponds to imprecise information can appear as too hard. But
some structural knowledge may be available, e.g. that there are no contingent
dependencies among the probabilities.

In Section 4, we will see that second-order distributions, e.g. the uniform
distribution, that do not factorise into marginals have dependencies other than
those caused by probabilities summing to one. A second-order probability dis-
tribution can never be the product of its marginal distributions, i.e. the joint
distribution and the marginals are not coupled by the product copula [12], since
first-order probability values are dependent by definition. But we argue that de-
pendence can be restricted and that such relative independence is tantamount
to the joint distribution being a normalized product of marginals. It is shown
in [13] that there exists one unique distribution within the Dirichlet family that
factors into marginals.

In this paper we motivate factorisation into marginals through the concept of
relative independence. In particular, we will explore and describe the effects of
conditioning with respect to a number of members within the Dirichlet family,
including the uniform Bayes-Laplace [14], Perks [15] and Jeffreys [16]. In the cases
presented in this paper there are three outcomes and Jeffreys prior coincides
with the Dirichlet distribution that factors into marginals. We will see that
when relative independence does not hold, dependencies take the form of a bias
towards probability vectors with certain relations among the variables.

To select a second-order distribution among many for expressing some im-
precise probabilities we need to know something about the dependencies that
may or may not hold among the probabilities. We argue that the unique family
of second-order distributions that factor into marginals models lack of contin-
gent dependencies, or independence relative to summing to one. For contrast we
demonstrate some contingent dependencies that appear with other distributions.

The paper is organized as follows: in Section 2, we make acquaintance with
the Dirichlet distribution as second-order probability distribution and take note
of the special case of the Dirichlet distribution that factors into marginals. In
Section 3 we generalize the idea of independence to independence relative to
a predicate and in Section 4 we show concrete examples of how dependencies
show themselves when first-order probabilities are not relatively independent
and in what sense this type of independence in second-order probability retains
important aspects of absolute independence, i.e. independence in the classical
sense.

2 Preliminaries

In Section 4 we will explore some commonly used Dirichlet distributions, e.g.
Bayes-Laplace[14], Jeffreys [16] and Perks [15]. The Dirichlet family of distribu-
tions is characterized by the following definition.
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Definition 1. The Dirichlet distribution of order n with parameters α1, . . . , αn >
0 has probability density function with respect to Lebesgue measure on Rn−1 given
by

f(x1, . . . , xn−1;α1, . . . , αn) =
Γ (
∑n

i=1 αi)
∏n

i=1 x
αi−1
i∏n

i=1 Γ (αi)
,

where xn = 1−
∑n−1

i=1 xi. The marginal distributions are Beta distributions with
density functions

fi(xi) =
Γ (
∑n

i=1 αi)x
αi−1
i (1 − xi)

(
∑

j �=i αj)−1

Γ(αi)Γ
(∑

j �=i αj

) .

The Perks prior has
∑n

i=1 αi = 1, in Jeffreys
∑n

i=1 αi = n/2 and Bayes-Laplace
has αi = 1. All these are symmetric, i.e. all αi:s are equal.

The Dirichlet family of distributions are then second-order probability dis-
tributions by definition as soon as the variables are interpreted as probability
values.

It was shown in [13] that the only continuous second-order probability distri-
butions that factors into marginals are Dirichlet distributions with αi = 1/(n−1)
and the corresponding contracted distributions that comes from restricting the
support to ai < xi < 1 −

∑
j �=i aj , where ai are arbitrary lower bounds of xi

with
∑n

i=1 ai ≤ 1. For the purposes of this paper it serves no purpose to have
lower bounds ai > 0, so we set ai = 0, i = 1, . . . , n and use only a non-shifted
Dirichlet distribution that is also a Dirichlet distribution in the proper sense,
with parameter values αi = 1/(n − 1). In our examples we have n = 3 and
the Dirichlet distribution that factors into marginals then have αi = 1/2 which
makes it coincide with Jeffreys prior.

3 Relative Independence

When there are three possible exhaustive and mutually exclusive outcomes of an
event and the respective probabilities of the outcomes are x1, x2 and x3, we have
that x1 + x2 + x3 = 1, ruling out independence. If x1 increases, x2 + x3 must
decrease by the same amount. There might be other dependencies among the
xi, e.g. that x1 = x2/2 or that x1 and x2 are approximately equal. But what if
one wishes to model that x1 +x2 +x3 = 1 is the only dependency? Is it possible
to isolate a dependency and claim a form of independence apart from this?

The question is what the characteristic traits of distributions of independent
random variables are and whether these traits can be preserved in distributions
of dependent random variables. We approach this question by inspiration from
the uniform joint distribution of independent variables. Two particular features
of the uniform joint distribution is that it (1) factors into marginals and (2) the
shape of the distribution is preserved in the sense that the marginals themselves
are uniform. The idea is now to introduce only the constraint that variables sum
to one and keep as much as possible of the original structure of a distribution
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of independent variables, in line with the two mentioned features. In order to
achieve this we introduce the concept of relative independence with the more
general constraint of a dyadic predicate Q(A,B). In general, since Pr(R(A)|A) =
R(A) for a predicate R(·) and event A, we get

Pr (A ∩B|Q(A,B)) =
Pr(Q(A,B)|A ∩B) Pr(A ∩B)

Pr(Q(A,B))

=
Q(A,B) Pr(A ∩B)

Pr(Q(A,B))
.

(1)

But if the events A and B are independent unconditioned on Q, then

Pr(A ∩B) = Pr(A) Pr(B), (2)

hence

Pr (A ∩B|Q(A,B)) =
Q(A,B) Pr(A) Pr(B)

Pr (Q(A,B))
. (3)

Definition 2. Two events A and B are independent relative to a predicate Q,
where Pr(Q(A,B)|A∩B) = 0 or 1, iff the prior product of marginals Pr(A) Pr(B)
is conjugate when updating on the predicate Q, i.e.

Pr (A ∩B|Q(A,B)) =
Q(A,B) Pr(A) Pr(B)

Pr (Q(A,B))
.

We recall that conjugate means that the posterior Pr(A∩B|Q(A,B)) and prior
Pr(A ∩B) = Pr(A) Pr(B) belong to the same family of distributions.

The concept we want to capture here is that updating on a predicate makes a
minimal difference so that properties held by the prior distribution are at least in
some degree held by the posterior. The predicate symbol Q is to be interpreted
as a 0/1-valued function, the indicator function of the set {(A,B)|Q(A,B)}, i.e.
Q(A,B) = 1 if the predicate Q holds for A and B, and 0 otherwise.

Now, if A and B are independent relative to some predicate, A and B are in-
dependent only when the predicate is true independently of A and B. Otherwise
if the predicate Q(A,B) can be true or false depending on A and B, conditioning
on Q causes a dependency between A and B. In other words, Pr(Q(A,B)) = 1
if and only if A and B are absolutely independent, i.e., absolute independence
is a special case of relative independence with

Pr(A ∩B|Q(A,B)) = Pr(A) Pr(B) . (4)

If A and B are independent, Pr(A|B) = Pr(A), but if A and B are independent
relative to a predicate we can only say that the conditional joint probability is
proportional to the product of marginals so that Pr(A|B) ∝ Pr(A). That is, con-
ditioning on B makes a difference but the conditional probability is independent
of B:s probability.

In Figure 1 there are 16 squares of which 8 are marked with black and 4 with
grey. Two squares are both black and grey. Hence Pr(B) = 1/2,Pr(G) = 1/4
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Fig. 1. Unconditional independence and relative independence

and Pr(B ∩ G) = 1/8. Further, Pr(B) Pr(G) = 1
2
1
4 = 1

8 = Pr(B ∩ G), so B for
black and G for grey are independent.

But if we condition on being in the second row (the predicate Q in Definition
2) independence is lost; Pr(B|row 2) = 3/4,Pr(G|row 2) = 1/2 and Pr(B ∩
G|row 2) = 1

2 �=
3
4
1
2 . However,

Pr(B ∩G|row 2) =
Pr(B) Pr(G)

Pr(row 2)
=

1
4
1
2
1
4

=
1

2
.

We say that black and grey are independent relative to being on row 2.

3.1 The Relation of Relative Independence to Conditional
Independence

Since relative independence is a type of independence that deals with condition-
ing it may come natural to consider when relative independence can coincide
with conditional independence. Simply put, it can be said that in the case of
relative independence, events are independent before conditioning but absolute
independence is lost when events are conditioned. But with conditional indepen-
dence there may or may not be unconditional independence but the events are
independent after conditioning.

In fact, if we condition on a predicate Q, independence relative to Q coin-
cides with conditional independence given Q if and only if Q is a tautology, i.e.
Pr(Q) = 1. Recall that events A and B are conditionally independent given Q
if Pr(A ∩B|Q) = Pr(A|Q) Pr(B|Q).

Theorem 1. Two events A and B are both conditionally independent on Q and
independent relative to Q if and only if Pr(Q) = 1.

Proof. If Pr(Q) = 1 then Pr(C|Q) = Pr(C) for all events C. Therefore condi-
tional and relative independence are equivalent when conditioning is on Q such
that Pr(Q) = 1. Since

Pr(A ∩B|Q) = Pr(A|Q) Pr(B|Q) = Pr(A) Pr(B) =
Pr(A) Pr(B)

Pr(Q)
,
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A and B are independent relative to Q if and only if A and B are conditionally
independent given Q.

On the other hand, assume that for some events A,B and predicate Q, rel-
ative independence Pr(A ∩ B|Q) = Pr(A) Pr(B)/Pr(Q), as well as conditional
independence Pr(A ∩B|Q) = Pr(A|Q) Pr(B|Q) holds. Then

Pr(A) Pr(B) = Pr(A ∩B|Q) Pr(Q)

by relative independence. But Pr(A ∩ B|Q) = Pr(A|Q) Pr(B|Q) since A and B
are conditionally independent given Q. Thus

Pr(A) Pr(B) = Pr(A|Q) Pr(B|Q) Pr(Q) = Pr(A|Q) Pr(B ∩Q) . (5)

Likewise we see that Pr(A) Pr(B) = Pr(B|Q) Pr(A ∩Q).
That is,

Pr(A) Pr(B) = Pr(A|Q) Pr(B ∩Q) = Pr(A ∩Q) Pr(B|Q) .

But Pr(A ∩Q) Pr(B|Q) = Pr(A ∩Q) Pr(B ∩Q)/Pr(Q), so

Pr(Q) =
Pr(A ∩Q) Pr(B ∩Q)

Pr(A) Pr(B)
=

Pr(Q|A) Pr(A) Pr(Q|B) Pr(B)

Pr(A) Pr(B)

= Pr(Q|A) Pr(Q|B) .

(6)

Now, since Pr(A) Pr(B) = Pr(A|Q) Pr(B ∩ Q) by Equation (5) and further
Pr(B ∩Q) ≤ Pr(B) we have that Pr(A|Q) ≥ Pr(A). But then

Pr(Q|A) =
Pr(A|Q) Pr(Q)

Pr(A)
≥ Pr(Q) . (7)

In the same way we achieve

Pr(Q|B) ≥ Pr(Q) . (8)

Thus, by Equations (6), (7) and (8), Pr(Q) ≥ (Pr(Q))2 and either Pr(Q) =
0 or Pr(Q) = 1. But the conditional probability Pr(A ∩ B|Q) is undefined if
Pr(Q) = 0, so if both relative and conditional independence holds conditioned
on Q, Pr(Q) = 1. �

4 Examples

Now we turn our attention to the problem of how different second-order proba-
bility distributions contain dependencies between first-order probability values.
First-order probability variables can never be independent but as we already
stated they can display independence relative to summing to one. In this sec-
tion we try to illustrate both relative independence and cases where first-order
probabilities are not relatively independent.



On Dependence in Second-Order Probability 385

For ease of presentation we limit ourselves to the case of three possible outcomes.
Let the probabilities of the three outcomes be x1, x2 and x3, then a second-order
probability distribution for these is a probability distribution with support on the
set {(x1, x2, x3) : x1, x2, x3 > 0, x1 + x2 + x3 = 1}. If xi = 0 we could just
exclude the corresponding outcome and remove xi from the set of variables. In the
special case where the second-order distribution that factors into marginals is a
proper Dirichlet distribution the parameters are equal to 1/(n − 1), where n is
the number of variables s.t.

∑n
i=1 xi. With n = 3 we therefore have α1 = α2 =

α3 = 1/2 for the distribution that factors into marginals and hence represents
relative independence. We will compare this distribution to some other Dirichlet
distributions and for simplicity we choose symmetric distributions, that is with
α1 = α2 = α3, in those cases also and refer to the parameters as simply α. The
probability density function of a Dirichlet distribution with parametersα1 = α2 =
α3 will below be denoted by superscript α, fα.

Let us compare a Dirichlet distribution with α = 1/2 with Dirichlet distribu-
tions with parameters less than and greater then 1/2. Recall that with α = 1/2,
we have relative independence with respect to the predicate x1 +x2 +x3 = 1, for
other values of α relative independence does not hold. It might be that α = 1/2
is a balancing point and that dependence works in one direction for α < 1/2
and in an other direction for α > 1/2. Parameters α = 1 is an interesting spe-
cial case since it amounts to the uniform joint distribution. So we look at the
two special parameter values α = 1/2 (i.e. Jeffreys [16], factors into marginals
when n = 3) and α = 1 (Bayes-Laplace [14]), and two outliers, as it were,
α = 1/3 < 1/2 (α = 1/3 being Perks prior [15]) and α = 2 > 1. We have the
symmetric Dirichlet distributions with n = 3 and α1 = α2 = α3 = α2:

fα(x1, x2, x3) =
Γ(3α)

Γ(α)3(x1x2x3)1−α
. (9)

Then with α = 1/3, 1/2, 1 and 2 we obtain

f1/3(x1, x2, x3) =
1

Γ(1/3)3(x1x2x3)2/3
, (10)

f1/2(x1, x2, x3) =
Γ(3/2)

Γ(1/2)3
√
x1x2x3

, (11)

f1(x1, x2, x3) =
Γ(3)

Γ(1)3(x1x2x3)0
= 2 , (12)

f2(x1, x2, x3) =
Γ(6)x1x2x3

Γ(2)3
= 120x1x2x3 . (13)

The corresponding marginal densities for x are

fα
i (x) =

xα−1(1− x)2α−1Γ(3α)

Γ(α)Γ(2α)
, (14)

2 Note that x3 = 1 − x1 − x2, x3 is written for convenience.
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f
1/3
i (x) =

1

x2/3(1− x)1/3Γ(1/3)Γ(2/3)
, (15)

f
1/2
i (x) =

1

2
√
x
, (16)

f1
i (x) = 2(1− x) , (17)

f2
i (x) = 20x(1− x)3 . (18)

In these four examples of second-order probability distributions we want to show
different dependence behavior. Recall that the only distribution that fulfills
relative independence with respect to x1 + x2 + x3 = 1 is when α = 1/2.
One question of interest is how this type of independence is manifested. In
the case of independence in the strict sense, or absolute rather than relative,
the product of the marginal distributions is enough to build the joint distri-
bution and conditioning on a variable makes no difference. We would have
f(x1, x2, x3) = f1(x1)f2(x2)f3(x3) and f(x1, x2|x3) = f1(x1)f2(x2) if x1, x2, x3

were independent. If on the contrary x1, x2 and x3 are dependent, the ratio
f(x1, x2|x3)/f1(x1)f2(x2) is not equal to one; the ratio tells us in a sense what
is missing from the conditional probability f(x1, x2|x3) when the marginal den-
sities f1 and f2 have been taken into account.

For ease of presentation we reduce dimensions by considering the conditional
probability f(x1, x2|x3) with x3 = 0.2 arbitrarily chosen, i.e. f(x1, 0.8−x1|x3 =
0.2). Let us then use the second-order derivative to explore if there is any bias to-
wards particular probability vectors after dividing with the product of marginals,
i.e.

gα(x1) =
fα(x1, 0.8− x1|x3 = 0.2)

fα
1 (x1)fα

2 (0.8− x1)
=

fα(x1, 0.8− x1, x3 = 0.2)

fα
1 (x1)fα

2 (0.8− x1)fα
3 (x3 = 0.2)

. (19)

Since

gα(x1) =
Γ(2α)3

Γ(3α)2
(0.8(1− x1)(0.2 + x1))

1−2α
(20)

and

dgα

dx1
=

Γ(2α)30.81−2α

Γ(3α)2
(1− 2α)(0.8− 2x1) ((1− x1)(0.2 + x1))

−2α
(21)

the second-order derivative of gα with respect to x1 equals

d2gα

dx2
1

=
Γ(2α)30.81−2α

Γ(3α)2
2(2α− 1)((1− x1)(x1 + 0.2))−2α−1[

4α(0.4− x1)2 + (1 − x1)(x1 + 0.2)
]
.

(22)
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And since 0 < x1 < 1, 1 − x1 > 0, α > 0 and 0.2 + x1 > 0.2 > 0, the second-
order derivative in Equation (22) is negative when α < 1/2 and positive when
α > 1/2. In other words, when α < 1/2, gα(x1) is concave, giving a bias for
values of x1 and x2 that are close. But when α > 1/2 the ratio gα(x1) is convex
with a resulting bias for values that are far apart.

Let us show some figures that demonstrates this bias. The graphs in Figure 2
below show gα(x1) in Equation (19).
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Fig. 2. gα(x1) plotted over x1

In these four examples of second-order probability distributions it is only when
α = 1/2 in Figure 2(b) that fα(x1, x2|x3 = 0.2) ∝ fα

1 (x1)fα
2 (x2). What does

this proportionality mean? That x3 has a given value restricts the possible values
of x1 and x2 so that x1 + x2 = 1 − x3, so x1 and x2 cannot be independent,
but there is no dependence on the proportion of x1 and x2 in the case where the
joint distribution factors into marginals. That the value of x3 is given restricts
the remaining variables in the same way as the sum of variables otherwise is
restricted by x1 + x2 + x3 = 1. x1 and x2 are independent relative to x1 + x2 =
1 − x3 in the parlance of Definition 2. The normalising denominator is in this
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case the probability that x1 and x2 have a given sum when drawn from their
respective marginal distribution f1 and f2.

If x1, x2 and x3 were independent, f(x1, x2|x3) would be equal to f1(x1)f2(x2).
We can always write f(x1, x2|x3) as f1(x1)f2(x2)g(x1), where

g(x1) =
f(x1, x2|x3)

f1(x1)f2(x2)
(23)

needs only x1 (or x2) as single variable since x2 = 1−x3−x1 and x3 was given.
In the case of independence, g(x1) = 1, if x1 and x2 are independent relative
to a predicate such as the sum of x1 and x2 being given by x1 + x2 = 1 − x3,
g(x1) = 1/Pr (x1 + x2 = 1− x3) where x1 ∼ f1 and x2 ∼ f2. If x1 and x2 are
relatively independent but not independent this constant is not equal to one.

In a sense the function g describes dependency, when the densities of x1 and x2

have been taken into account, the graphs in Figure 2 aim to show what remains
apart from the marginal densities f1 and f2 to describe the conditional joint
distribution f(x1, x2|x3). In the case of real independence, nothing remains, the
marginals f1 and f2 are enough, g = 1, in the case of relative but not absolute
independence, g is constant �= 1, something remains other than f1 and f2, but
the value of g(x1) is not dependent on the value of x1. When α < 1/2, the joint
distribution conditioned on x3 = 0.2 has lower density value for x1 close to 0.4
than the product of marginals has but with α > 1/2 the conditional joint denisty
is higher then the product of marginals at points where x1 ≈ 0.4.

A look at the graphs of the marginal density functions, see Figure 3, might
shed some more light on the compensation factor g.

In 3(a) the marginal density functions have probability mass divided at two
regions away from the mass centre. The product of marginals consequently have
most mass near the boundary of the probability simplex, as in a convex bowl
shape. The joint probability density function for Perks prior is likewise bowl
shaped, but with a flatter shape, with more probability mass for central points
than the product of marginals would indicate, hence the concavity of g1/3.

In contrast, with high parameter values such as α = 2 and a concave joint
distribution with a peak at the center of the simplex the variables are dependent
in the sense that the marginal density functions are so concentrated on the mean
1/n that the product of marginals gives more weight to the simplex centroid than
the joint distribution does. The convex shape of g2 compensates by favouring
distant variable pairs.

That g1 is convex just as g2 means that the Bayes-Laplace prior models the
same type of dependency as a Dirichlet distribution with α = 2 does even though
the joint distribution is flat and uniform without a peak. But since the marginals
of Bayes-Laplace, in Figure 3(c) the density for n = 3 is shown, disappear at
xi = 1, the product of marginals has density zero at the simplex corners and is
concave. To bridge the gap between the concave product of marginals and the
uniform joint, the compensating factor g1 must be convex, see Figure 2(c).
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Fig. 3. Marginal density functions fα
i

5 Summary and Conclusions

We have introduced the notion of relative independence, i. e. that random vari-
ables are displaying some of the properties of independent random variables
without necessarily actually being independent. Variables are then independent
relative to a predicate that may cause dependency, but dependency is in a sense
restricted precisely to the predicate. More specifically, the joint probability con-
ditioned on a predicate is proportional to the product of marginal probabilities
where the normalising factor is equal to the probability of fulfilling the predicate.
Since the notion of relative independence involves conditioning it might come
natural to believe that relative independence is either a special case or a general-
isation of conditional independence. But we proved that relative and conditional
independence coincides only in a trivial case. In short, in conditional indepen-
dence, independence holds under conditioning but in relative independence there
is unconditional independence.

Relative independence was then applied to second-order probability. The ran-
dom variables being first-order probability values of an exhaustive and mutually
exclusive set of events and the predicate the consequent constraint that the
variables sum to one. A joint probability distribution over such variables is a
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second-order probability distribution, and a second-order distribution can never
equal the product of marginal distributions since the variables are not indepen-
dent. But when relative independence holds the joint distribution is proportional
to the product of marginal distributions.

Just as statistical dependencies can only be described trough probability dis-
tributions, second-order distributions are needed for expressing contingent de-
pendencies, or the lack of them, between first-order probabilities. With, say, the
centroid distribution or interval probabilities there is no language for contin-
gent dependencies among probabilities. Conversely, an argument against using
second-order probability distributions is that it would be impossible to choose
between the feasible second-order distributions, see e.g. [17]. But if the modeller
has some information about dependency relations between the probabilities, such
dependency constraints restrict the choice of second-order distribution even to
the point of uniqueness.

As is known since [13], there is a special case of the Dirichlet distribution that
factors into marginals and thus fulfills relative independence, a special case that
can be generalized by introducing a new set of parameters that are lower bounds
on the first-order probability values. Now, if relative independence retains some
features of independence in that dependence is limited and controlled, what
other dependencies occur among random variables that are not even relatively
independent?

To answer this question, we first considered independence in the conventional
sense, or absolute rather than relative independence. If random variables are
independent the local, marginal distributions, are enough to build the joint dis-
tribution. But with dependent variables the marginal distributions do not tell
the whole story, something remains to bind together the variables in whatever
dependency they share. This binding together can be described by copulas, [12],
in the particular case of relative independence, product copulas. But for the
purposes of this article we merely wish to point out the gap between joint and
marginal distributions. The ratio of the joint distribution and the product of
marginals tell us about the dependency, what more that is needed to describe
the joint distribution when the marginals have been accounted for.

Similarly, with relatively independent random variables, the marginal distri-
butions alone are not enough to build the joint distribution (unless the relative
independence is absolute as in Equation (4), p. 382), but together with the
constant probability of the predicate being fulfilled we do have enough infor-
mation for the joint distribution. The ratio between the joint and the product
of marginal distributions is not equal to one, but it is constant. We looked at
second-order probability distributions with three first-order variables under the
constraint of summing to one. Then independence relative to summing to one
means that after taking the product of marginal distributions, you just have to
normalize to produce the joint distribution. It does not matter what proportion
the variables have to each other, e. g. if they are all nearly equal, or if one of
them is nearly zero. But with the second-order distributions that do not factor
into marginals there was a bias for or against variables that had values close to
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each other after having taken the product of marginals, i.e. displaying a form of
dependency apart from what is required by summing to one.
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Abstract. Standard temporal models assume that observation times
are correct, whereas in many real-world settings (particularly those in-
volving human data entry) noisy time stamps are quite common. Serious
problems arise when these time stamps are taken literally. This paper in-
troduces a modeling framework for handling uncertainty in observation
times and describes inference algorithms that, under certain reasonable
assumptions about the nature of time-stamp errors, have linear time
complexity.

1 Introduction

Real-world stochastic processes are often characterized by discrete-time state-
space models such as hidden Markov models, Kalman filters, and dynamic
Bayesian networks. In all of these models, there is a hidden (latent) underly-
ing Markov chain and a sequence of observable outputs, where (typically) the
observation variables depend on the corresponding state variables. Crucially, the
time of an observation variable is not considered uncertain, so that the observa-
tion is always attached to the right state variables.

In practice, however, the situation is not always so simple—particularly when
human data entry is involved. For example, a patient in an intensive care unit
(ICU) is monitored by several sensors that record physiological variables (e.g.,
heart rate, breathing rate, blood pressure); for these sensors, the time stamps
are reliable. In addition, the ICU nurse records annotated observations of patient
state (“agitated,” “coughing,” etc.) and events (“suctioned,” “drew blood,” “ad-
ministered phenylephrine,” etc.). Each such annotation includes an accurate data
entry time (generated by the data recording software) and a manually reported
event time that purports to measure the actual event time. For example, at 11.00
the nurse may include in an hourly report the assertion that phenylephrine was
administered at 10.15, whereas in fact the event took place at 10.05.

Such errors matter when their magnitude is non-negligible compared to the
time-scale of the underlying process. For example, phenylephrine is a fast-acting
vasopressor that increases blood pressure in one or two minutes. In the situation
described above, a monitoring system that takes the reported event time of
10.15 literally would need to infer another explanation for the rapid rise in blood
pressure at 10.06 (perhaps leading to a false diagnosis) and might also infer that
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the drug injected at 10.15 was not in fact phenylephrine, since it had no observed
effect on blood pressure in the ensuing minutes. Such errors in observation times
would also cause serious problems for a learning system trying to learn a model
for the dynamical system in question; moreover, reversals in the apparent order
of events can confuse attempts to learn causal relations or expert policy rules.
It would be undesirable, for example, to learn the rule that ICU nurses inject
phenylephrine in response to an unexplained rise in blood pressure.

Similar examples of potentially noisy time stamps are found in manual data
entry in biological labs, industrial plants, attendance logs, intelligence opera-
tions, and active warfare. These examples share a common trait—a sequence of
manually entered observations complements continually recorded observations
(spectrometer readings, CCTV footage, surveillance tapes, etc) that are tem-
porally accurate. The process of reconstructing historical timelines suffers from
“time-stamp” errors in all observation sequences—carbon dating, co-located ar-
tifacts, and contemporary sources may give incorrect or inexact (“near the end
of the reign of . . .”) dates for events.

In this work, we present an extension of the hidden Markov model that allows
for time-stamp errors in some or all observations. As one might expect, we include
random variables for the data entry time, the manually reported event time,
and the actual event time, and these connect the observation variable itself to
the appropriate state variables via multiplexing. Of particular interest are the
assumptions made about the errors—for example, the assumption that event
ordering among manually reported events in a given reporting stream is not
jumbled. We show that, under certain reasonable assumptions, inference in these
models is tractable—the complexity of inference is O(MS2T ), where M is the
window size of the time stamp uncertainty, S is the state space size of the HMM
and T is the length of the observation sequence.

There has been a lot of work on state space models with multiple output
sequences. Some authors have modeled observation sequences as non-uniform
subsamples of single latent trajectory ([6,4]) and thereby combined information
sources. Others, namely [1,2] (asynchronous HMMs (AHMMs)) and [5] (pair
HMMs), have proposed alignment strategies for the different sequences using a
common latent trajectory. AHMMs ([1]) are closely related to our work. How-
ever, the assumptions they make for the generative model of the less frequent
observation sequence are different from ours and are not suited to the appli-
cations we have described. Also, in our case, the annotations come with noisy
time stamps, which help us localize our search for the true time stamp. We also
handle missing reports and false reports, which cannot be modeled in AHMMs.

The paper begins (Section 2) with the basic modeling framework for uncer-
tainty in observation times. Section 3 presents a modified forward–backward
algorithm for the basic model. Section 4 extends the model to accommodate
unreported events and false reports of events, and Section 5 describes an exact
inference algorithm for this extended model. The complexity of the exact algo-
rithm is analyzed in Section 6 and some simplifications and approximations are
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proposed. Section 7 presents some experiments to highlight the performance of
the different algorithms.

2 Extending HMMs

A hidden Markov model (HMM) is a special case of the state space model where
the latent variable is discrete. As shown in Figure 1(a), X = {X1, X2, . . . , XT } is
a Markov process of order one and Xt is the hidden (latent) variable at time step
t. There are two different observation sequences. Y is the variable observed at
every time step (and is assumed to have the correct time stamp). Yt corresponds
to the observation at time t. Yt1:t2 refers to the sequence of Yt from t = t1 to
t = t2 (t1 ≤ t2). In the ICU, Y could be the various sensors hooked up to the
patient. The other sequence of observations is less frequent and can be thought of
as analogous to annotations or manual entries of events. In a sequence of T time-
steps, there are K annotations (K < T ) which mark K events. mk represents
the (potentially erroneous) time stamp of the report corresponding to the kth

event. ak represents the actual time of occurrence of the kth event. dk is the
time at which the time stamp data for the kth (i.e. mk) event was entered. In
the ICU example from Section 1, mk is 10:15, ak is 10:05 and dk is 11:00. dk
can be a parameter for the error model of the time stamp (i.e. p(mk|mk−1, ak)).
For instance, the noisy time stamp mk can be no greater than dk, if we exclude
anticipatory data entry. Mk is the window of uncertainty of the kth event and
denotes the possible values of ak (around mk). So, if we assume that the nurse
can err by at most 15 minutes, Mk is from 10:00 to 10:30.

A key assumption is that the time stamps of events are chronologically ordered.
This restriction is analogous to the monotonicity of the mapping in time imposed

Y1 Y2 Y3 YT

X1 X2 X3 XT

a1 a2 aK

m1 m2 mK

d1 d2 dK

(a)

ai ai+1 aI

mk mk+1 mK

θi θi+1 θI

Φk Φk+1 ΦK

(b)

Fig. 1. (a) The extended hidden Markov model with actual and measured times of
events. All X’s are potential parents of each ak and the connections depend on the
values of Xi. Certain dependencies are denoted by solid lines, while value-dependent
ones are dotted. (b) The generalized noisy time stamp hidden Markov model with
actual and measured times of events. X and Y have been omitted for simplicity (they
are identical to Figure 1(a)). Dependencies are only shown completely for φj and mj .
Color coding indicates definite dependencies (black) and value-dependent ones (gray).
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on sequence matching in dynamic time warping [9]. Thus, mk is strictly greater
than mk−1. This assumption holds vacuously if the events are identical and
non-distinguishable. It also holds in several real-life scenarios.

The next important point is that there is a deterministic relationship between
ak’s and X. For clarity of presentation, let us consider the case where Xt is
a binary random variable. Xt = 1 is the state corresponding to an event or
annotation and Xt = 0 is the state representing a non-event. The generalization
to the case where the state space is of size S is straight-forward and is presented
in the supplementary material. ak is the smallest i such that

∑i
j=1 Xj = k. The

complete likelihood model is as follows:

p(X1:T , Y1:T , a1:K ,m1:K) =

p(X1)p(Y1|X1)

T∏
t=2

p(Xt|Xt−1)p(Yt|Xt)p(a1:K |X1:T )

K∏
k=1

p(mk|mk−1, ak)

For notational convenience, assume m0 = 0. Since the ak’s are deterministically
determined by the sequence X, p(a1:K |X1:T ) is zero for all a1:K instantiations
except the one which corresponds to the given X1:T chain. Also, only those
X1:T instantiations which have exactly K events will have non-zero probability
support from the evidence m1:K . In a later model, we will relax these constraints.

For now, we assume that every annotation corresponds to an event and every
event has been recorded/annotated. Thus, it is justified to only consider latent
variable trajectories with exactly K events. The inference task is to compute the
posterior distributions of Xi and ak conditioned on all the evidence available
(namely Y and m1:K). In the next section we describe an efficient algorithm for
this task.

3 The Modified Forward-Backward Algorithm

The notation used in this section will be very similar to the standard notation
used in the α − β forward backward algorithm as presented in [3]. α(ak = t) =
p(ak = t, Y1:t,m0:k) and will be simply written as α(ak) when the context is
clear. Thus, α(ak) denotes the joint probability of all given data upto time ak
and the value of ak itself. β(ak) = p(Yak+1:T ,mk+1:K |ak,mk) represents the
conditional probability of all future data given the value of ak and mk. Let
L(ak, ak+1) = p(ak+1, Yak+1:ak+1

|ak). This likelihood term can be simplified by

L(ak, ak+1) = p(ak+1, Yak+1:ak+1
|ak)

=
∑

Xak+1:ak+1

p(ak+1, Xak+1:ak+1
, Yak+1:ak+1

|ak)

=
∏

t=ak+1:ak+1

p(Yt|Xt)p(Xt|Xt−1),

where Xak+1:ak+1
= {0, 0, . . . , 0, 1} since p(ak+1|ak, Xak+1:ak+1

) = 0 for every
other Xak+1:ak+1

sequence. The α update step is
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α(ak) = p(ak, Y1:ak
,m0:k)

=
∑
ak−1

∑
X1:ak

p(ak, ak−1, X1:ak
, Y1:ak

,m0:k)

= p(mk|mk−1, ak)
∑
ak−1

α(ak−1)L(ak−1, ak).

The backward (smoothing) step is as follows:

β(ak) = p(Yak+1:T ,mk+1:K |ak,mk)

=
∑
ak+1

p(ak+1, Yak+1:T ,mk+1:K |ak,mk)

=
∑
ak+1

β(ak+1)p(mk+1|mk, ak+1)L(ak, ak+1).

Given these definitions, the standard rule for computing the posterior still holds.

γ(ak) = p(ak|Y1:T ,m0:K) ∝ α(ak)β(ak).

3.1 Computing γ(Xi) from γ(ak)

The final step of the algorithm would be to compute the conditional distributions
of the hidden state variables Xi from γ(ak). This computation is straight-forward
since Xi can only be 1 if in a chain, there exists a k such that ak = i. It should also
be noted that ak = i denotes that Xi is the kth 1 in the sequence. Therefore, the
X sequences contributing to γ(ak = i) and γ(ak′ = i) are disjoint when k �= k′.
So the probability of an event at time i is just equal to the probability of any of
the K events occurring at time i. The posterior distribution of Xi is given by

γ(Xi) = p(Xi = 1|Y1:T ,m0:K) =

K∑
k=1

γ(ak = i)

3.2 Tractable Error Models for mk

In our analysis, we have conditioned the error model of mk on the time stamp
of the previous report mk−1 and the actual time of the kth event ak. The time
of data entry dk can also be a parameter in this conditional distribution and
we could additionally condition on ak−1. We cannot include any previous events
or reports since that would destroy the first-order Markovian dynamics that we
need for our analysis. However, with the allowed parameters, very flexible error
models can be created. mk−1 as a parent can be used to model an expected
gap between two reports. ak, ak−1 and mk−1 together could be used to specify a
(stochastic) relationship between the relative timings of events and their reports.
Two sample error models are shown in Figure 2.
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Fig. 2. Sample probability distributions for p(mk|mk−1, ak). The possible values of
mk are bounded by mk−1 (to satisfy the monotonicity constraint) and dk (to exclude
anticipatory entries), with some bias for ak.

3.3 Complexity of the Algorithm

Our analysis has assumed that there are K events in T time steps. Let us also
assume (for simplicity) that all uncertainty windows are of the same size, i.e.
∀k, |Mk| = M . Let the maximum possible interval between t1 ∈ Mk and t2 ∈
Mk+1 be Ik. Then the computation of (L(t1, t2) for all values of {t1, t2 : t1 ∈
Mk, t2 ∈Mk+1, t1 < t2} is an O(M2 + Ik) operation.

Once the relevant L(t1, t2) and α(ak) values have been computed, the compu-
tation of α(ak+1) is an O(M2) operation. Thus the total complexity of the modi-
fied forward step is O(KM2+

∑
k Ik). If we assume that only a constant number

of uncertainty windows can overlap, then
∑

k Ik = O(T ) and MK ≤ O(T ). Thus,
the total complexity expression simplifies to O(MT ). The modified backward (or
β) step has a similar complexity. Computing γ(ak) and γ(Xi) are both O(MK)
operations. Thus, the overall complexity is O(MT ).

If we consider an HMM with S + 1 states, where state S corresponds to the
annotation state, then the computation of L(t1, t2) becomes an (M2S2+MS2Ik)
operation. The other steps have the same complexity as in the previous analysis,
so the overall complexity becomes O(MS2T ). Thus, we see an M -fold increase
in the inference complexity over a regular HMM.

The space complexity is O(KM2) for storing the relevant L(t1, t2) values and
O(KM) for storing the α, β and γ values. Thus, it is independent of the state
space size. The algorithm can be trivially extended to handle cases with more
than one type of event.

4 Unreported Events and False Reports

The model in section 2 assumes that every event is reported (with a possibly
erroneous time stamp). However, in real life, events often go unreported. An
example of this in the ICU setting would be a nurse forgetting to make an entry
of a drug administration because the recording was done in a batch fashion.
Many events in history might go unreported by a historian if she does not come
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across sufficient evidence which warrants a report. Thus, negligence and igno-
rance would be primary causes for unreported events. Precisely speaking, an
unreported event is an event (some Xt = 1) which does not generate an mk.

Previously, we also assumed that every report corresponds to an actual event.
This is also often violated in reality. False reports can occur when one event is
entered twice (making one of them a false report) or more. Misinterpretation of
observations could also lead to false reporting as in the case of historians often
drawing contentious conclusions. In the model, a false report would correspond
to an mk which was not generated by any event.

We wish to extend our model to handle both of these artifacts. To this end, we
introduce some new variables in the original model. Let us still assume that there
are K reports of events. In addition, let us hypothesize I actual events. I can be
chosen using prior knowledge about the problem (the rate of false reports and
missed reports). For each hypothesized event ai, we introduce a binary variable
θi. θi = 0 indicates that the event ai is unreported, while θi = 1 indicates that ai
has been reported and thus generates some mk. Θ = {θ1, . . . , θI} denotes the set
of all θi. Now, for each report mk, we introduce a new variable φk whose range
is {0, 1, . . . , I}. If the report mk is generated by the event ai then φk = i. In
other words, φk is the index of the (reported) event corresponding to the report
mk. As is obvious, p(φk = i|θi = 0) = 0. φk = 0 means mk is a false report. Φ
is the set of all φj . The generalized model is shown in Figure 1(b).

The deterministic relationship between X and a remains unaffected. The prior
on θi can be problem-specific. For our analysis, we assume it is a constant. Let
p(θi = 0) = δi. The conditional probability table for φj is as follows:

p(φk|φk−1, θ1:I) =

{
εk, if φk = 0
1− εk, if φk = i, θi = 1, θφk−1:i−1 = 0

The prior probability of a false report (modeled currently with a constant εk)
can also be modeled in more detail to suit a specific problem. However, if mk

is not a false report (currently an event with probability 1 − εk), then φk is
deterministically determined by φk−1 and Θ. When φk = 0, mk is no longer
parameterized by aφk

. The new distribution is represented as p̃(mk|mk−1).

5 Exact Inference Algorithm for the Generalized Model

We shall briefly explore the effect of a particular choice of I in Section 7. For in-
ference in this generalized model, there is an added layer of complexity. We now
have to enumerate all possible instances of Θ and Φ. A meaningful decomposition
of the posterior distribution (in the lines of the the standard forward-backward
algorithm) and using dynamic programming could be a potential solution. All el-
ements of Θ are independent and hence enumerating all possibilities is infeasible.
Φ is a better proposition because there are dependencies that can be exploited -
either the report is false (i.e. φk is 0) or it corresponds to an event after the previ-
ous reported actual event (i.e. φk > φk−1). We will use this key fact to divide all
possible instantiations of Φ into some meaningful sets. Our main objective is to
compute the posterior distribution p(ai|Y1:T ,m1:K), from which we can compute
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the posterior distribution of each Xi as described in Section 3.1. The posterior
distribution for ai is

γ(ai) = p(ai|Y1:T ,m0:K)

∝ p(ai, Y1:T ,m0:K)

=
∑
Φ

p(ai,Φ, Y1:T ,m0:K).

Now we will describe a way to partition the possible instantiations of Φ which
will then be used to formulate the forward and backward steps.

5.1 Partitioning the Φ Sequences

Theorem 1. For any i, such that 0 < i ≤ I, consider the following sets of φ
sequences: S0 = {φ1 > i}; S1 = {φ1 ≤ i and φ2 > i}; S2 = {φ2 ≤ i and
φ3 > i}; . . . SK = {φK ≤ i}

The sets S0,S1, . . . ,SK are disjoint and exhaustively cover all valid instanti-
ations of Φ.

Proof. Intuitively, the set Sk corresponds to all the cases where the first i events
generate the first k reports and the k + 1th report is a true report.

Clearly, any sequence in S0 cannot belong to any other set. Any sequence
φ belonging to S1 will have φ2 > i and hence cannot belong to S2. Also, any
sequence belonging to Sk will have φk ≤ i, which would imply φ2 ≤ i. Thus φ
cannot be in any Sk for k ≥ 2. Similar arguments can be presented to show that
∀k1, k2,Sk1 ∩ Sk2 = ∅. One important point to note is that all sequences in S1
have φ2 �= 0, which means that φ2 is not a false report in those cases.

Let φ be a valid instantiation of Φ. Now we have to show that every φ lies
in some Sk. The sequence φ = {0, 0, . . . , 0} lies in SK . In every other sequence,
there is at least some φj > 0. If φj > i, then that sequence belongs to Sj−1.
Thus, we have proved that the proposed partition of all valid instances of Φ
is both disjoint and exhaustive. Note that this partition is not unique, and the
pivot (currently set to i) can be any value between 1 and I. ��

5.2 Defining Forward-Backward Steps

Now we can use the partitions Sk to define an efficient dynamic program to
compute the posterior distribution of ai. As we saw earlier,

γ(ai) ∝
∑
Φ

p(ai,Φ, Y1:T ,m1:K)

=
K∑

k=0

∑
φ∈Sk

p(ai, φ, Y1:T ,m1:K)

=
∑
φ∈S0

p(ai, φ, Y1:T ,m1:K) +

K∑
k=1

∑
φ∈Sk

p(ai, φ, Y1:T ,m1:K)
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Let us denote
∑

φ∈Sk
p(ai, φ, Y1:T ,m1:K) by Pk. We can compute Pk by further

decomposing it.

Pk =
∑
φk≤i

∑
φk+1>i

p(ai, φk, φk+1, Y1:T ,m1:K)

=
∑
φk≤i

p(ai, φk, Y1:ai ,m1:k)
∑

φk+1>i

p(Yai+1:T ,mk+1:K , φk+1|ai,mk)

= α(ai,mk)β(ai,mk)

Due to lack of space, we skip the detailed derivation of the update equations for
the α and β expressions. Intuitively α(ai,mk) is the probability of the trajectories
where the first k reports are associated with the first i events, whereas β(ai,mk)
is the probability of the trajectories where the last K − k reports are associated
with the last I−i events. The initialization steps for α and β are straightforward.
The order in which the α and β variables are computed is identical to other well-
known dynamic programs of a similar structure ([7,10]).

5.3 Computing γ(ai) and γ(Xt)

Once α(ai,mk) and β(ai,mk) are computed for ∀i, k s.t. i ∈ {1, 2, . . . , I} and
k ∈ {0, 1, . . . ,K}, we can compute γ(ai) and γ(Xt) by the following

γ(ai) =
K∑

k=0

α(ai,mk)β(ai,mk); γ(Xt) =
I∑

i=1

γ(ai = t)

5.4 Multiple Report Sequences

Consider a scenario where there are R historians and each of them have their own
set of annotations of historical events replete with time stamp conflicts. Since
all historians do not concur on which events took place, there are instances of
missed reports as well as false reports (assuming there is a set of actual events
that took place). A simplifying assumption we make is that the historians reach
their conclusions independently based solely upon the latent state sequence (X)
and do not consult one another.

In this case, the addition to the generalized model from Section 4 is that the

single report sequence m1:K is now replaced by R report sequences m(r) = m
(r)
1:Kr

,
where r ∈ {1, 2, . . . , R}. The key feature of the model which makes inference
tractable (and very similar to the single report sequence case) is that given the
hidden state sequence X, m(r1) is independent of m(r2).

The posterior distribution of ai is computed as follows:
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γ(ai) =
∑

Φ(1):(R)

p(ai,Φ
(1):(R),m(1):(R), Y1:T )

= p(ai, Y1:T )
R∏

r=1

∑
Φ(r)

p(Φ(r),m(r)|ai, Y1:T )

∝ p(ai, Y1:T )
−R+1

R∏
r=1

∑
Φ(r)

p(Φ(r),m(r), ai, Y1:T )

= p(ai, Y1:T )−R+1
R∏

r=1

γ(a
(r)
i )

The γ(a
(r)
i ) will be computed as before. p(ai, Y1:T ) is proportional to p(ai|Y1:T )

which can be computed using a standard forward-backward algorithm. γ(Xt) is
computed as before.

6 Complexity and Simplifications

The algorithm presented in the previous section, while exact, is computation-
ally very expensive. We now analyze the computational complexity of the exact
algorithm and present some simplifications and possible approximation schemes.

6.1 Complexity Analysis

In the model where ai corresponded to mi, an uncertainty window resulted
from the error model p(mi|mi−1, ai). If the error model suggested that mi could
only be within M/2 time units of ai on either side, then this resulted in an
uncertainty window of size M for ai centered at mi. However, when events can
go unreported and reports can be false, the uncertainty window of ai becomes
much larger since we no longer know which (if any) mk it corresponds to. The
safe bet is to assume that 0 < ai < T as long as it satisfies the monotonicity
constraint (i.e. ai−1 < ai < ai+1). Thus, the uncertainty window in the worst
case is O(T ).

If there are I hypothesized events and K reports (in the single report sequence
case), then the complexity of the α computation step is O(IKT 2). This is of
course prohibitively expensive. However, there is a simplifying case.

6.2 Shifts in Data Entry

In the ICU setting, the nurse often enters data once an hour. A safe assumption
is that all report(s) generated during the period between consecutive data entries
correspond to the events in that same period. Let there be Ī hypothesized events
and K̄ reports in the time span T̄ between two data entries. Then we can run
the exact inference algorithm locally within the time span. The computational
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complexity will be O(ĪK̄T̄ 2) for one time span. Over the entire time period T
there will be T/T̄ such time spans. Thus, the total computational complexity
reduces to O(ĪK̄T̄ T ) which is much more tractable. If the time span T̄ is a
constant, then the inference complexity is linear in T .

6.3 Approximate Inference

Another possible way to reduce the inference complexity is to not consider all
possible trajectories of Φ. If the probability of a missed report (δi) and false
report (εk) are small, then α(ai,mk) and β(ai,mk) have significant non-zero
values only when i and k are close to one another. We could potentially zero
out all α and β values corresponding to |i − k| > c where c is some threshold.
This would naturally reduce the uncertainty window of event ai which can now
only be associated with some mk where i− c ≤ k ≤ i + c. This means it suffices
if I = K + c. If the reduced window size is O(Mc) then the computational
complexity of the algorithm becomes O((K + c)KM2

c + T ).

7 Experiments

For our experiments, we have primarily focused on simulations. The main reason
for this choice is that we do not know the ground truth (correct time stamp of
events) in the ICU data that we have been working on. Conversely we know the
ground truth for our simulations and hence can evaluate our posterior inference
results.

7.1 Simple Model Simulations

We set up an HMM with two states whose emission distributions were Gaussian
with means μ0 = −1 and μ1 = −3 and standard deviation 0.5. The error model
was p(mk|mk−1, ak) ∼ N (ak, σ) with the window-size M = 15. The Gaussian
was truncated at mk−1 and dk. A standard HMM treats the time stamps as
accurate (equivalent to a noise model with σ = 0). With this model, we generated
data for T = 1000 for different values of σ (increasing steps of 0.5 from 0 to 5.
We repeated this exercise 20 times to generate more simulations and remove
random effects. All results are averaged over the 20 simulations and the bars
indicate one standard deviation.

Increase in Likelihood. One objective of using the HMM with the noisy time
stamp error model extension is to provide a better explanation for the data. This
can be measured in terms of the likelihood. The average log likelihood of the
data computed by a standard HMM and the noisy time stamp model are shown
in Figure 3(a). The inference algorithms were run with the same transition and
observation parameters used to generate the data.

The difference in the two likelihoods increases as the variance of the time
stamp noise increases, since this makes noisy time stamps more likely. The trend
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Fig. 3. (a) Average log likelihood of the simulated data using the two models. (b)
Average log likelihood for models with various window sizes M . (c) % of high confidence
correct time stamp inferences for varying window sizes. (d) Almost all time stamps
are predicted with at least 60% accuracy. (e) Average time taken by the inference
algorithms for different M . (f) Heat map of Q.

was similar for other values of {μ0, μ1} and the two plots came closer as the two
means became similar. Also, noteworthy is the fact that the likelihood of the
data under the noisy model changes very little even as the noise increases - thus
indicating robustness.

Next, we ran the inference algorithm with different window sizes (M = 17,
19 and 21). The likelihood of the data did not change significantly as shown
in Figure 3(b). The time taken by the inference algorithm is also linear in the
window size M as shown in Figure 3(e).

Accuracy of Posterior Inference. Another objective of the model is to ac-
curately infer the correct time stamps of events. This will lead to better learning
of the event characteristics. After computing the posterior distribution γ(X), we
looked at γ(Xt) corresponding to all t which were correct time stamps of events
(i.e. ai). Figure 3(c) shows the percentage of events where the γ(Xt) value ex-
ceeds .95. The percentage varies between 85% and 100% with the performance
degrading as the noise in the time stamp increases. We can also see that the
accuracy is not sensitive to the window size used in the inference.

Figure 3(d) shows that there are almost no correct time stamps t where the
γ(Xt) value goes below .6. Thus, we do not miss any event completely. However,
there are also some rare false positives. These result because the observation at
the event’s correct time stamp is not peaked enough to warrant a time stamp
movement hypothesis in terms of likelihood.
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Fig. 4. (a) Higher number of hypothesized events I has a high recall of correct time
stamps. (b) Prediction accuracy of the diagonal approximation scheme. δ = .05 (c) δ
= .3.

7.2 Model with Missing and False Reports

We generated simulation data using the generalized model for T = 100 and
various values of δ and ε. For all settings, higher values of I had a high recall as
seen in Figure 4(a). Although it would seem like a safe bet to set I high, this also
leads to a lot of false positives, since a lot of events have to be hypothesized and
accounted for. One possible approach to find a good I could be the likelihood
measure. We consistently found that the data likelihood peaked at the value of
I which corresponded to the correct number of events.

Another observation we made for small values of δ and ε was that most of the α
and β values were concentrated along the diagonal. e take a look at the following
matrix Q where Q(i, k) =

∑
t=1:T α(ai = t,mk)β(ai = t,mk) in Figure 3(f).

α and β entries were only considered along the (skewed) diagonal and c di-
agonals around that - the scheme described in Section 6.3. As we increase c
from 0 (only the skewed diagonal) to larger values (more diagonals), our time
stamp prediction accuracy increases as shown in Figure 4(b) and (c). However,
the accuracy in the presence of these approximations is more when δ is smaller.

8 Conclusion

In this paper, we have proposed two model extensions of the HMM to deal with
noisy time stamps of events. These models have inference algorithms quite similar
in structure to the forward-backward algorithm used for inference in HMMs. It
is easy to see how this model can be used in an EM setup to learn the error
model p(mk|mk−1, ak) or the transition model for X or the emission model for
Y. The algorithm is linear in T with one-to-one correspondence between events
and reports. In other cases, certain reasonable assumptions can get it back to
linear time. Noisy time stamps are pervasive in data - especially data recorded by
humans (machines can also occasionally have logging errors). Algorithms which
try to learn about human expertise will always have to deal with such data.

Looking ahead, it will be interesting to consult with doctors and run exper-
iments on real data from the ICU. Another interesting direction is to model
events which have a finite duration (and hence potential overlap). Such events
could also be modeled with continuous time Bayesian networks (CTBNs) [8].
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Abstract. Silhouettes were defined as measures of clustering quality in the con-
text of crisp partitions. This study extends the work that generalized silhouettes 
to fuzzy partitions in a natural profound manner. As opposed to constructing 
silhouettes for each data point, described here is the construction of silhouettes 
for each cluster center in terms of center-to-point distances rather than point-to-
point distances. 

Keywords: intra-distances, inter-distances, intra-scores, inter-scores, validity 
index, clustering, cluster validity, fuzzy, crisp, compactness, separation, intra-
inter, hcm, fcm, point-wise, ground truth clustering, silhouette. 

1 Introduction 

Cluster analysis is concerned with the structure of a given dataset or more precisely: 
the grouping structure of the objects. Clustering algorithms, equipped with some no-
tion of similarity, group the data points (objects) in clusters such that points within 
one cluster are similar to each other and dissimilar to points in other clusters. Such 
goal has become a common description of the clustering problem [10, 3, 11, 20]. 
However, beyond this description and in most clustering applications, the end-goal is 
to identify meaningful groups of points that have something in common, for example, 
proteins of similar functionality, documents on the same topic or images which share 
common content. Manual (expert) grouping in such applications is substantially labor 
and time intensive especially for large datasets. Rather, a complete grouping of the 
points might be unknown; as in the case of protein functionality that predicts the  
functional behavior of a protein based on its similarity to other proteins of known 
functionality. In this respect it is of interest to note the following. Pairwise similari-
ties-dissimilarities are usually modeled by a distance measure. A clustering algorithm 
either takes, as input, the set of pairwise distances, or a combination of data represen-
tation and a measure. The granularity of the clustering process depends on whether 
the algorithm operates on point pairwise distances, point cluster-prototype distances 
or just cluster-wise distances. Cluster analysis output is thus determined by the dis-
tance measure. 
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The unknown correct clustering consistent with the end-goal is the only ground 
truth assumed about the problem. Hence it is referred as the ground truth clustering1. 
Obtaining satisfactory results with respect to the end-goal, clearly, depends on the 
choice of the distance measure. For instance, in the application of clustering images 
by facial expression, a measure that binds images because they show the same expres-
sion should be employed rather than a measure based on individuals appearing in the 
photo collection. This has encouraged investigators to treat the clustering problem in a 
semi-supervised setting to learn the measure useful for achieving the ground truth 
clustering [8, 2]. The properties of the distance measure that can be used by a cluster-
ing algorithm to cluster well are given as part of a theoretical framework in [1]. Con-
sider for example, the trivial property, namely single cutoff, with all distances being 
below a given cutoff value having their endpoints in the same ground cluster or in 
different clusters if they are larger. A distance measure with such property is the most 
efficient in recovering the ground truth clustering by a simple greedy algorithm. Other 
properties beside single cutoff are briefly described in [5]. Relevant to the task of 
learning a distance measure is the selection of certain features to define the feature 
space. Different measures impose different weights on the features, in turn, determin-
ing feature contribution in the pairwise similarities. Thus, one can focus on selecting 
the features relevant to the task instead of learning a distance measure. Changing the 
features definitely changes the grouping structure of a given dataset, an observation 
well investigated in [15]. 

With a distance measure, it is convenient to talk about compactness and separation 
instead of similarity and dissimilarity. The goal of clustering can be restated as the 
search for optimally compact and separated clusters. In its essence is the desire to 
have member data points of each cluster within small proximity from, equivalently 
similar to, each other and only points that are farther apart separated in different clus-
ters. A clustering algorithm normally realizes a measure of compactness, separation or 
both as a clustering criterion and implements a mechanism to optimize this measure, 
mainly in cluster assignment of data points. For instance in the c-means approach to 
clustering, Lloyd’s algorithm [12] is popularly used to minimize a within-cluster va-
riance criterion, a measure of compactness. The term, c-means (k-means), was first 
coined with theoretical analysis of the asymptotic behavior of the model in [13]. Mi-
nimizing c-means criterion is identical to maximizing a measure of separation for the 
same number of clusters [21]. Since the algorithm produces a clustering into c disjoint 
subsets characterized by hard (crisp) membership values, it is also referred as hard c-
means (HCM). Modeling structures with overlapping clusters is possible by perform-
ing fuzzy c-means (FCM) clustering that generates fuzzy membership values [7, 4]. 
The fuzzy values, ranging between zero and one, indicate grades of membership. A 
partition, either crisp or fuzzy, can be succinctly represented as a membership matrix 
of rows and columns that correspond to clusters and data points respectively. 

                                                           
1  According to Google Scholar, the first occurrence of the term is in 1993 with more frequent 

use in the recent years. 
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2 Cluster Validity 

Clustering is complicated by several issues related to data representation, similarity 
measure, clustering scheme (criterion and mechanism) and mainly cluster number. 
Most clustering algorithms require the user to specify a priori the number of clusters 
[9]. The problem should benefit from domain knowledge to guide the selection of 
each design element in the context of the end-goal so the results do not fall short of 
expectations. However, what is known about the ground-truth clustering might be 
vague; for instance, it is uncertain which topic taxonomy to adopt in a topic-driven 
clustering application. Even if the representation or the similarity measure, with  
respect to the end-goal, is universally known the cluster number remains an open 
challenge of an answer that varies from a given dataset to another. Consider again 
clustering images by facial expression, a collection might contain images only of 
smiling faces. Choosing the cluster number too large causes the separation of similar 
points. On the other hand, specifying a too small cluster number causes the grouping 
of dissimilar points in the same cluster. Moreover, different types of clustering, based 
on different models, can be obtained on the same dataset, crisp versus fuzzy for ex-
ample. Despite these challenging issues, the partitions of interest are those composed 
of compact and well separated clusters that best meet our expectations i.e. the ground-
truth clustering, if any. 

When performing cluster analysis, there are different grouping structures to con-
sider. On one hand, there is the ground-truth structure, the desired clustering. On the 
other, the underlying structure is established once the pairwise distances or a combi-
nation of data representation and a measure are selected. In the absence of an end-
goal, identifying the underlying structure becomes the main goal behind clustering the 
dataset. A clustering algorithm takes as input the pairwise distances or the data repre-
sentation in some feature space with a measure and fits the underlying structure by the 
best concrete model possible, a partition. When performing HCM clustering, the pro-
duced partition is the Voroni tessellation that minimizes HCM criterion for the speci-
fied number of clusters c (centroidal Voroni tessellation). The produced partition is 
one candidate structure that might align with the underlying structure of the dataset. 
Different candidate partitions, can be obtained in the same setting (representation, 
measure, distances, algorithm, parameters, etc.) or in a different setting. HCM  
convergence is determined by the initialization step since it is based on local search 
optimization; thus it might generate different partitions in the same setting. The clus-
tering function, the criterion, to guide the generation of plausible clustering results 
should account for compactness and separation. Thus, evaluating a measure of com-
pactness and separation on a given partition is a typical assessment of its clustering 
quality; such measure becomes the validation function. The partition that is best sup-
ported by the underlying structure can be selected from a pool of candidate partitions 
by means of a validity index (validation function). Of interest to this study is the vali-
dation of fuzzy partitions, using silhouette-based indices in particular. 
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3 Silhouette-Based Cluster Validity 

The notion of silhouette as a measure of clustering quality was first introduced by 
Rousseeuw in [18]. The measure is evaluated at each data point and therefore it is the 
finest in granularity in its assessment compared to other indices. The clustering quali-
ty of one cluster is measured by taking the average silhouette over the member points. 
When it comes to the validation of fuzzy partitions, the construction of silhouettes is 
not directly applicable since it requires partitions into disjoint clusters. Still, sil-
houettes can be evaluated on fuzzy partitions by carrying out a defuzzification of the 
membership matrix. However, this discards the modeling of cluster overlapping,  
defeating the purpose of performing fuzzy clustering rather than crisp clustering. 
Moreover, it is possible for different fuzzy partitions on the same dataset to evaluate 
to the same silhouette values, provided they are converted to the same crisp partition 
by means of defuzzification. Such fuzzy partitions can be obtained on one dataset by 
slightly changing the exponent parameter, , when performing FCM clustering. The 
following sections present the basic average silhouette index, an extension of the av-
erage index to fuzzy partitions, a generalization of the individual silhouettes to fuzzy 
partitions and then a less rigorous but computationally appealing version of the gene-
ralized index which is the main contribution of this study. 

3.1 The Average Silhouette Index 

To illustrate the construction of silhouettes [18], consider the data point  with an 
HCM clustering of the dataset shown in Fig. 1. Based on the arrangement of the data 
points in the figure, it can be said that  is well-clustered since it is grouped in clus-
ter  with points within relatively small proximity. Also  is separated from the 
points that are relatively distant, which are assigned to clusters different than , 
namely  and . Such clustering is satisfactory since it conforms literally to the goal 
as stated in the very beginning of this article. Again, and from the perspective of , 
the goal is two-fold: to group  with its similar points in the same cluster, and to 
assign its dissimilar points to the other clusters. Two measures are defined to make an 
assessment of each sub-goal: a measure of compactness  and a measure of separa-
tion . The average distance between  and the points in cluster , is assigned to 

 and the average distance between  and the points in  is assigned to , pro-
vided it is smaller than the average distance obtained over the points in . Note that 

 is an average over intra-distances (within-cluster, within ) and  is an average 
over a subset of inter-distances (between-cluster, between  and ). 

Since both measures are defined in terms of distances, a good clustering of  is 
assumed only if the compactness distance  is much smaller than the separation 
distance . Hence, a clustering algorithm should minimize  and maximize . 
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Fig. 1. HCM clustering of a small dataset of nine points 

Remark 1. If  denotes the cluster to which  has been assigned, several separation 
distances (averages) can be found with respect to each cluster that is different from  

 but only the smallest is assigned to . This is critical for  to detect the case of 
separating  from its similar points when the cluster number starts to become rela-
tively large. 
 
Remark 2. Only a subset of inter-distances is involved in the computation of , as 
opposed to the computation of , this is necessary in order to avoid a monotone be-
havior with the cluster number since more distances become inter-distances. 

The silhouette  of  combines both   and  in one measure 

   ,  . (1) 

Equation (1) evaluates to values in 1, 1 . The difference  , if positive, 
indicates good clustering of  and poor clustering if negative. Values about zero 
either emerge from misclustering or the point being in overlapping regions. Dividing 
the difference by the maximum among the terms facilitates ease of interpretation 
(strong, weak or no structure) and reflects the fact that similarity and dissimilarity are 
perceived from distance values relative to each other rather than absolute magnitudes. 
For instance, a distance of 100 in one dataset might indicate similarity, or dissimilari-
ty in another dataset. Since partitions produced by clustering algorithms cannot be any 
better than the underlying structure, silhouettes near +1 are attained only in the pres-
ence of a strong underlying structure. Let U  be a crisp membership matrix; 

 indicates the membership of  in cluster . The number of points and clusters 
are denoted by  and  respectively. The average silhouette over the whole dataset 

 is given by 

  ∑  . (2) 

While the average silhouette over a cluster  is given by 
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  ∑   | | ∑  .  ∑  ;        0, 1 . (3) 

Average silhouettes can be used to judge the behavior of clustering algorithms. Algo-
rithms that tend to produce partitions of zero average silhouettes just carry random 
clustering of the points. ‘Mischievous’ algorithms are the ones with output of negative 
averages, clustering inconsistent with the pairwise distances. 

3.2 The Extended Average Silhouette Index 

Equation (3) is a reasonable start when considering the extension of the silhouette 
approach to the fuzzy case i.e. fuzzy partitions. But first, one must consider how to 
calculate  in the case of fuzzy clusters, in particular, how to calculate the quantities 

 and  . Crisp clustering, exclusive hard cluster assignment of the data points, is 
necessary for the computation of  and . A fuzzy partition U ; 0,1 , 
can be converted into a crisp partition U ; 0,1 , by means of defuzzifi-
cation. For example, this can be done by exclusively assigning each point to the clus-
ter that has the highest fuzzy membership value. That is, with respect to the data point 

 

  1;      , 1, … , .0;                                otherwise. (4) 

Effectively then, this discards information of cluster overlapping. An attempt to in-
corporate the fuzzy membership values is given by [6]. The average silhouette given 
in (2) is redefined as the center of gravity of silhouettes evaluated using U . Each 
silhouette is weighted by the difference of the two highest fuzzy membership values 
of the associated point. More precisely, let  and  denote cluster indices with 
the two highest fuzzy membership values associated with . Then, the extended av-
erage index is defined as 

   ∑  .  ∑  . (5) 

In [19], it was made clear that the partition coefficient [14], a measure based merely 
on membership values, is irrelevant to the problem of cluster validity. This result also 
applies to the weighting terms, ( ). More on the performance of the 
extended index is given in the experimental section. 

3.3 Generalized Intra-Inter Silhouettes 

A natural generalization of the construction of silhouettes to fuzzy partitions is given 
in [16]. The rationale behind this generalization is based on a distance view of the 
clustering problem and the problem of cluster validity. A crisp clustering of the data 
points is essentially a clustering of the associated pairwise distances into intra-
distances and inter-distances. This clustering can be modeled by associating two 
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scores to each distance, namely intra-score and inter-score that assume only the values 
0 and 1. It is straightforward to draw these values from a crisp clustering of the points; 
a distance becomes intra-distance, hence intra-score of 1 and inter-score of 0, if the 
endpoints are assigned to the same cluster and inter-distance otherwise. Since com-
pactness is determined by the set of intra-distances while separation is determined by 
inter-distances, it is desirable to have small intra-distances and large inter-distances, 
as much as possible. The intuition suggests that a fuzzy clustering of the data points 
should impose a fuzzy clustering of the distances i.e. each distance is both intra-
distance and inter-distance with some grades of membership (scores). Obtaining fuzzy 
scores seems plausible considering that fuzzy logic and sets generalize their classical 
counterparts. Indeed, evaluating fuzzy logical connectives on point membership val-
ues, treating them as truth values, computes the intra- and inter-scores either crisp or 
fuzzy as shown in the definition below. 

Definition 1. Let ,  denote the distance between the data points  and 
 ; 1  . Let  ; 1  , denote a cluster and  be the member-

ship of  to cluster  . The intra-score for  with respect to cluster  is defined 
as 

     . (6) 

The inter-score for  with respect to clusters  and  ; 1  , is de-
fined as 

            . (7) 

Remark 3. It is assumed that each  has zero intra- and inter-scores. Accordingly, 
the scores can be represented by (  x ) zero diagonal matrices, namely, IntraDist  and InterDist    ; 1 , 1

 and 1 ,  . 
The compactness distance  and the separation distance  of each data point  

are now defined as weighted means of the associated pairwise distances using 

 min  ∑ ,   .  ∑ ,  | ∑ , 0 ,    1   , (8) 

 min  ∑ ,   .  ∑ ,  | ∑ , 0 ,     1  . (9) 

At this point the silhouette  of  can be computed using (1). 

Remark 4. The standard min/max operators are used in (6) and (7) for the fuzzy con-
junction and disjunction. 

The average generalized silhouette, , computed using (2) over all of the data 
points is a measure of the dataset clustering quality. Those interested in the validation 
of a particular cluster might consider computing a weighted mean over the whole 
dataset or just an average over some alpha-cut of the associated fuzzy subset. The 
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performance of the generalized index is tested and compared with the performance of 
other cluster validity indices in [17]. 

4 Center-Wise Intra-Inter Silhouettes 

An index that involves fewer distances and hence fewer scores, necessary for sil-
houette construction, is proposed here. Silhouettes are constructed only for each clus-
ter center over center-to-point distances. The scores given by (6) and (7) are directly 
fetched from the membership matrix. Each center  is treated as a core point of the 
associated fuzzy subset  i.e. 1 . Accordingly, each center-to-point dis-
tance has at most one nonzero intra-score; since using (6) ,    0   0 ;          . 
For the same reason,  is a core point, each center-to-point distance has at most 
( 1) nonzero intra-scores; using (7) ,           0   0    0 ;        ,   . 
Given the fuzzy (  x ) membership matrix, the distances associated with  can be 
directly assigned values that appear in the  row of the matrix as intra-scores while 
the remaining rows give the inter-scores. Thus, (8) and (9) can be reformulated to take 
advantage of the fact that (6) and (7) are not needed anymore. With respect to the 
center of cluster  , ,   and  are directly computed by 

 
∑   .    ,  ∑  , (10) 

 min  ∑   .    ,  1 ∑ 1   | 1  . (11) 

The silhouette  of  is then computed by (1). 

Example 1. Consider the dataset and its FCM clustering shown in Fig. 2. The mem-
bership matrix and center-to-point distance matrix are given in Table 1 and Table 2 
respectively. Consider the distance ,  , the associated inter-scores are computed 
using (6) as the following ,    0  0.50 0 , ,    1   0.32 0.32 , ,    0   0.18 0 . 
The inter-scores using (7) are ,            
                              0   0.32   1   0.50 0.50 , ,           0   0.18    0  0.50 0 , 
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,           1   0.18    0   0.32 0.18 . 
Thus ,  has only one nonzero intra-score that is the membership of  in  
( ) and two nonzero inter-scores (  and ). This is the case for all distances 
associated with . Thus  is the weighted mean with weights obtained directly 
from  and  is the minimum among weighted means obtained using  and . 
Similarly, with respect to distances associated with , the values of  become in-
tra-scores while  and  give the inter-scores. It is straightforward to compute the 
center-wise intra-inter silhouettes. The silhouettes and the involved terms are given in 
Table 3. An individual center silhouette is a rough assessment of clustering quality of 
the associated cluster. The average, denoted by , measures the clustering quality 
of the whole dataset. 

 

Fig. 2. FCM clustering of 7 points with cluster centers shown as stars 

Table 1. Membership matrix of the FCM clustering shown in Fig. 2 

           
 0.17 0.20 0.22 0.74 0.50 0.20 0.23 1 0 0 
 0.14 0.18 0.20 0.15 0.32 0.68 0.64 0 1 0 
 0.69 0.62 0.58 0.11 0.18 0.12 0.13 0 0 1 

Table 2. Center-to-Point distance matrix of FCM clustering shown in Fig. 2 

        
 14.35 15.81 12.65 0.30 1.94 6.92 6.81 
 18.52 19.35 16.41 7.03 4.86 0.58 0.84 
 0.79 1.68 1.86 14.35 14.96 17.99 18.89 
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Table 3. Silhouettes of FCM clsuter centers shown in Fig. 2, the values are rounded 

    
 5.54 min {7.41, 11.99} 0.25 
 5.58 min {8.22, 14.86} 0.32 
 4.75 min {11.91, 13.87} 0.60 

5 Experimental Results and Discussion 

This section investigates the performance of the proposed index, compared to other 
indices in conjunction with FCM clustering. A final remark on the use of silhouette-
based indices is to point out that they measure the quality (compactness and separa-
tion) of a given clustering with respect to the distance (similarity-dissimilarity) meas-
ure used in clustering, see Fig. 3. It is the job of the practitioner to choose a distance 
measure appropriate for achieving the desired clustering while it is the job of the clus-
tering algorithm to find the optimal clustering with respect to the chosen distance 
measure. Clustering structures of varying qualities are found considering different 
settings or even in the same setting (parameter values and constraints) where sil-
houettes are used to find the best clustering among them with respect to the clustering 
distance. 

 

Fig. 3. (a) The desired clustering of points arranged in two circular rings, with average silhouette 
value of 0.22. (b) HCM clustering of the same dataset in the same space that has a better average 
silhouette value of 0.32. (c) Same dataset represented by the 1st two eigenvectors of the graph 
Laplacian obtained using a Gaussian similarity function. Points of the inner ring and the outer 
ring from (a) appear at the bottom and the top of (c) respectively. The structure in (c) has the best 
average silhouette value, of 0.99, and hence it is straightforward for HCM to detect the two rings 
in (a) using the Euclidean distance on the dataset representation given by (c).  

Example 2. Different FCM partitions using 2, … ,9 and a fuzzifier (FCM expo-
nent)  1.5 were obtained on a dataset sampled from a mixture of four bivariate 
Gaussians. Only the clustering into 3 and 4 clusters are shown in Fig. 4. 



416 M. Rawashdeh and A. Ralescu 

 

 
Fig. 4. FCM clustering (m = 1.5) of the dataset described in Example 2 into (a) 3 and (b) 4 
clusters 

The performance of the basic average silhouette , the extended average sil-
houette , the average generalized silhouette  and the average generalized 
center-wise silhouette  is shown in Fig. 5. Despite the fact that the basic index 
and the extended index are based on the same silhouettes, computed from the defuzzi-
fied partition (U ), they disagree in how they score the clustering into 3 and 4 clusters. The extended index scores 3 higher than 4 due to the incor-
porated weights. The points in the middle region (Fig. 4a) do not have significant 
membership to any of the three clusters, hence the low weights and the insignificant 
contribution to the final average silhouette. Clearly, the extended index does not pro-
vide a meaningful assessment of clustering quality. The center-wise index scores 4 slightly higher than 3, showing a performance consistent with the basic 
and generalized point-wise indices. 

 
Fig. 5. The performance of silhouette-based indices, number of clusters versus index score, on 
FCM output described in Example 2 

Example 3. FCM partitions into 2, … ,9 clusters on the same dataset from the 
previous example were obtained but using a fuzzifier 3. Again, only the cluster-
ing into 3 and 4 clusters are shown in Fig. 6. 

FCM, by specifying higher values for  , is expected to produce ‘fuzzier’ parti-
tions, justified by the limiting behavior of the FCM model as  approaches infinity 
[14], mainly, 
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lim 1 ;      1 , 1 . 
Moreover, this limit is valid regardless the underlying structure latent in the dataset. 
In other words, partitions near the fuzziest partition are obtained on any dataset for 
any number of clusters by specifying too high values for . The generalized sil-
houette-based indices detect well such increase in the amount of overlapping, caused 
by specifying a higher value for , and evaluate the corresponding clustering to low-
er scores. This explains why the curves of both  and  in Fig. 7 lie entirely 
below their counterparts in Fig. 5 while  and  barely show any change. Such 
change in performance is consistent with the fact that increasing  allows FCM to 
carry out some sort of loose computation of the membership values, not fully account-
ing for the geometric similarities-dissimilarities among the points. In turn, FCM pro-
duces partitions of increased amount of overlapping (fuzziness). According to  
(Fig. 7) the clustering into 3 is slightly better than 4 justified by noting that 
the setting tolerates more overlapping in the dataset. Similar evaluation is shown by 
the rough, less accurate, index . It is apparent that  just ignores the effect of 
increasing  due to defuzzifcation, while,  is not reliable in its assessment since 
it treats points unequally by ignoring those of bad clustering quality. 

 

Fig. 6. FCM clustering (m = 3) of the same dataset from Example 2 into (a) 3 and (b) 4 clusters 

 
Fig. 7. The performance of silhouette-based indices, number of clusters versus index score, on 
FCM output described in Example 3 
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Table 4. Comparing number of distances, scores and silhouette terms involved in  and 
, | X | denotes the size of set X  

Index |distances| |intra-scores| |inter-scores| | | 

 2  2 .  2 . 2   

  .  .  . . 1   

6 Conclusions 

The silhouette approach provides a powerful and effective device to address the issue 
of cluster validity. Its performance comes from the fact that it is computed for each 
data point. At the same time, for the same reason its complexity tends to be rather 
large, as it considers all the pairwise distances in a dataset. It is then quite natural to 
seek to improve its complexity by defining silhouettes over cluster centers. This paper 
considers the generalized center-wise silhouettes. This approach requires fewer terms 
compared to the point-wise silhouettes as shown in Table 4. For instance, for 100 points and 3 clusters there is a difference of 23547 terms, not counting 
compactness ( ), separation ( ) or intermediate terms involved in the computation of 
the intra-inter scores. Nevertheless, the proposed index  shows a reasonable 
performance as a ‘true’ fuzzy cluster validity index and it is useful in situations 
wheres time complexity and memory usage are major issues. Otherwise, the genera-
lized point-wise index  is still recommended. 
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Abstract. In this paper we deal with data stated under the form of a
binary relation between objects and properties. We propose an approach
for clustering the objects and labeling them with characteristic subsets
of properties. The approach is based on a parallel between formal con-
cept analysis and graph clustering. The problem is made tricky due to
the fact that generally there is no partitioning of the objects that can be
associated with a partitioning of properties. Indeed a relevant partition
of objects may exist, whereas it is not the case for properties. In order to
obtain a conceptual clustering of the objects, we work with a bipartite
graph relating objects with formal concepts. Experiments on artificial
benchmarks and real examples show the effectiveness of the method,
more particularly the fact that the results remain stable when an in-
creasing number of properties are shared between objects of different
clusters.

Keywords: formal concept analysis, bipartite graph, graph clustering.

1 Introduction

For making sense of complex data, one may need to cluster them, and if possible,
to provide labels for the clusters. In this paper we are interested in data that
take the form of a binary relation between a set of objects and a set of properties.
Several families of approaches exist for such a task: one may use bi-clustering
(or two-mode clustering) approaches [3], formal concept analysis (FCA for short)
methods, and hybridization of them.

In previous work, the authors have emphasized the parallelism between FCA
operators and two views of graph clustering, referring respectively to the search
for maximal bi-cliques and to the search of maximal connected components [12].
Moreover, since the number of formal concepts is usually very large, we have
proposed a preliminary approach for providing an approximate conceptual view
of data by taking inspiration from the recent literature on graph clustering (often
called community detection problem). More precisely, we have proposed a two-
step procedure: i) random walks are used for providing an approximate and
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more robust view of the formal context leading to a smaller number of formal
concepts, ii) these concepts are then fused when they have a sufficient overlap
[13]. However, this two-step method requires the tuning of threshold parameters.

In this paper we propose a new approach based on bipartite graphs between
objects and concepts, rather than on bipartite graphs between objects and prop-
erties, as it was the case in the step i) of the previous method. Moreover no
threshold are any longer needed. Our goal is now to look for a partition of the
set of objects, while properties may remain shared between different clusters of
objects. The paper is organized as follows. After a background on FCA and its bi-
partite graph counterpart (Section 2), we present the new approach in Section 3,
and suggest a way of labeling the clusters of objects in Section 3.3. Experiments
are reported in Section 4 that show the effectiveness of the method on artificial
benchmarks and on a real dataset. Comparison with related works (Section 5)
and concluding remarks (Section 6) end the paper.

2 Background: From Formal Concept Analysis to
Clustering

In this section we first recall the standard notion of FCA, as well as the notion
of independent sub-contexts, and then give their counterpart in the setting of
bipartite graphs where we interpret them in clustering terms.

2.1 Formal Concepts and Independent Subcontexts

Let R be a binary relation between a set O of objects and a set P of Boolean
properties. We note R = (O,P, R) the tuple formed by these objects and prop-
erties sets and the binary relation. It is called a formal context [11]. The notation
(x, y) ∈ R means that object x has property y. Let R(x) = {y ∈ P|(x, y) ∈ R}
be the set of properties of object x. Similarly, R−1(y) = {x ∈ O|(x, y) ∈ R} is
the set of objects having property y.

Formal concept analysis [11] defines two set operators, here denoted (.)Δ

and (.)−1Δ, called intent and extent operators respectively, s.t. ∀Y ⊆ P and
∀ X ⊆ O :

XΔ = {y ∈ P|∀x ∈ X, (x, y) ∈ R} (1)

Y −1Δ = {x ∈ O|∀y ∈ Y, (x, y) ∈ R} (2)

XΔ is the set of properties possessed by all objects in X . Y −1Δ is the set of
objects having all properties in Y . These two operators induce an antitone Galois
connection between 2O and 2P. This means that the following property holds

X ⊆ Y −1Δ ⇔ Y ⊆ XΔ.

A pair such that XΔ = Y and Y −1Δ = X is called a formal concept [11]. X is
its extent and Y its intent. In other words, a formal concept is a pair (X,Y )
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such that X is the set of objects having all properties in Y and Y is the set
of properties shared by all objects in X . It can be shown that formal concepts
correspond to maximal pairs (X,Y ) such that

X × Y ⊆ R.

A recent parallel between formal concept analysis and possibility theory[8] has
led to emphasize the interest of an other remarkable set operator (.)Π , and their
two respective duals. The new operator and the already defined intent operator
can be written as follows, ∀X ⊂ O :

XΠ = {y ∈ P|R−1(y) ∩X �= ∅} (3)

XΔ = {y ∈ P|R−1(y) ⊇ X} (4)

Note that (4) is equivalent to the definition of operator (.)Δ in (1). XΠ is the
set of properties that are possessed by at least one object in X . XΔ is the set
of properties shared by all objects in X .

Operators (.)−1Π , (.)−1Δ are defined similarly on a set Y of properties by
substituting R−1 to R and by inverting O and P. (Y )−1Π , (Y )−1Δ are respec-
tively, the set of objects having at least one property in Y and the set of objects
that have all the properties in Y .

This new operator lead to consider a new connection[9] that corresponds to
pairs (X,Y ) such that XΠ = Y and Y −1Π = X (while (.)Δ leads to formal
concepts, as already said). Pairs (X,Y ) such that XΠ = Y and Y −1Π = X
do not define formal concept, but independent sub-contexts. Indeed, it has been
recently shown[9] that pairs (X,Y ) of sets exchanged through the new connection
operator, are subsets such that

(X × Y ) ∪ (X × Y ) ⊇ R,

just as formal concepts correspond to maximal pairs (X,Y ) such that

X × Y ⊆ R.

In Figure 1, two examples of formal concepts are the pairs ({a1, a2, a3, a4, b1},
{2, 7}) and ({c1, c2}, {4, 5, 6, 8}). On the other hand, if we forget the fact that the
object a2 verify the property 10, the pairs ({a1, a2, a3, a4, b1, b2, b3, b4, c1, c2},
{1, 2, 3, 4, 5, 6, 7, 8}) and ({d1, d2}, {9, 10, 11}) are two independent sub-contexts.

Thus, in the setting of formal concept analysis, by means of two companion
connections, two key aspects of the idea of clustering are at work. On the one
hand, independent sub-contexts are characterized, and on the other hand inside
each sub-context, formal concepts (X,Y ) are identified where each pair (x, y)
such that x ∈ X, y ∈ Y are in relation (while no pair (x, y) such that x ∈
X ′, y ∈ Y ′ or x ∈ X ′, y ∈ Y ′ are in relation if (X ′, Y ′) and (X ′, Y ′) are two
independent subcontexts). In particular, two formal concepts belonging to two
different sub-contexts are clearly well-separated. The relation with clustering is
made still clearer in the next sub-section by providing a bipartite graph reading
of FCA.
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1 2 3 4 5 6 7 8 9 10 11

a1 × × × × ×
a2 × × × × ×
a3 × × × ×
a4 × × × ×
b1 × × × × ×
b2 × × ×
b3 × × ×
b4 × × × ×
c1 × × × ×
c2 × × × × ×
d1 × × ×
d2 × ×

Fig. 1. A formal context R and the corresponding bipartite graph

2.2 Formal Concept Analysis, Bipartite Graphs and Clustering

For every formal context R = (O,P, R), one can build an undirected bi-graph
G = (Vo, Vp, E) s.t. there is a direct correspondence between: the set of ob-
jects O and a set Vo of “o-vertices”, the set of properties P and a set Vp of
“p-vertices”, and between the binary relation R and a set of edges E. In other
words, there is one o-vertex for each object, one p-vertex for each property, and
one edge between an o-vertex and a p-vertex if and only if the corresponding
object possesses the corresponding property (according to R).

The operators (.)Π and (.)Δ can then be rewritten in the following way:

XΠ = ∪x∈XΓ (x) (5)

XΔ = ∩x∈XΓ (x) (6)

where Γ (x) denotes the set of neighbors of the vertex x. These notations are
interesting since only the neighborhood of vertices of X is involved. It permits
to immediately understand operators (.)Π and (.)Δ in terms of neighborhood
in the bi-graph: XΠ is the union of neighbors of vertices of X whereas XΔ is
the intersection of these neighbors. The same expressions apply to (.)−1Π and
(.)−1Δ, changing X by Y (and x by y).

The connections induced by (.)Δ and (.)Π can also be understood in the
graph setting framework: the first connection corresponds to maximal bi-cliques
whereas the second one two maximal connected components [12]. Indeed on the
bi-graph G = (Vo, Vp, E), with X ⊆ Vo and Y ⊆ Vp, we have:

Proposition 1. X = Y −1Δ and Y = XΔ, iff X ∪ Y is a maximal bi-clique.

Proposition 2. For a pair (X,Y ) the two following propositions are equivalent:

1. X = Y −1Π and Y = XΠ and there is no strict subset X ′ ⊂ X and Y ′ ⊂ Y
such that X ′ = Y ′−1Π , Y ′ = X ′Π .

2. X ∪ Y is a maximal connected component (which counts at least 2 vertices).
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It is worth noticing that the two connections correspond to extreme definitions
of what a cluster (or a community) could be:

1. a group of vertices with no link missing inside.
2. a group of vertices with no link with outside.

One the one hand a maximal bi-clique is a maximal subset of vertices with a
maximal edge density. Vertices cannot be moved closer, and in that sense one can
not build a stronger cluster. On the other hand, a set of vertices disconnected
from the rest of the graph can not be more clearly separated from other vertices.
It corresponds to another type of cluster. In fact, only the smallest of such
sets are really interesting, and they are nothing else than maximal connected
components. These two extreme definitions were already pointed out for clusters
in unipartite graphs [19].

3 Looking for Meaningful Clusters of Objects

In this section we motivate the need for a new clustering procedure which enables
us to obtain meaningful clusters of objects, even if the objects in different clusters
share many properties.

3.1 Preliminary Discussion

As said in the introduction, our primary purpose is to cluster the set of consid-
ered objects into distinct subsets on the basis of their properties. However the
application of a graph clustering method on the bipartite graph (associated to
the formal context) generally fails. It is due to the fact that the method when
tentatively gathering objects in separate clusters, often fails to do it since ob-
jects in different potential clusters usually share many common properties. In
other words, bipartite graph clustering looks for a partition of the graph vertices.
When applied to the object-properties graph it puts into correspondence subsets
of objects with subsets of properties, i.e. they look for a partition of objects and
a partition of properties such that each set of objects is in correspondence with
a set of properties. This is illustrated on the Figure 2(a) for the formal context
example of Figure 1. As can be seen, the method isolates the cluster {d1, d2},
but fails to discriminate more, leaving the rest of the objects in the same clus-
ter. Indeed, it will have been desirable to separate these remaining objects in
3 clusters, namely {a1, a2, a3, a4}, {b1, b2, b3, b4} and {c1, c2}, as revealed by a
careful examination of the formal context of Figure 1.

Besides, it can be checked that there are 30 formal concepts in the formal
context of Figure 1. Note that it is usually observed that FCA returns a rather
large number of formal concepts, in particular with noisy data or when ex-
ceptions are present. Moreover there is no immediate way of using the lattice
of concepts for building a partition of the objects. However, as can been seen
in Figure 1 the 3 subsets of objects that the method have failed to separate
(Figure 2(a)) form the “approximate” concepts ({a1, a2, a3, a4}, {1, 2, 3, 7, 8}),
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(a) objects-properties graph, (b) objects-concepts graph

Fig. 2. For the relation given in Figure 1, results of Infomap [18] graph clustering
method either on the basic objects-properties graph (a) or on the objects-concepts
graph (b). On the two graphs circles are objects, for (a) squares are properties and for
(b) triangles are concepts.

({b1, b2, b3, b4}, {2, 3, 4, 5}) and ({c1, c2}, {4, 5, 6, 7, 8}). By approximate concepts
[9], we mean that, up to a few missing crosses, we have large formal concepts
(X,Y ) (i.e., they correspond in Figure 1 to “approximate” X × Y rectangles).
This suggests to investigate a “conceptual” clustering of the objects by dealing
with the objects-formal concepts bipartite graph.

3.2 Clustering Objects-Concepts Bipartite Graphs

We now describe the method we propose more precisely. First, a preliminary step
consists in building all the formal concepts associated to the objects-properties
graph, using a formal concept extraction method, e.g. [10].

Second, a bipartite graph between objects and concepts is built such that each
object o ∈ O is connected to a concept (X,Y ) iff o ∈ X , then the corresponding
edge is weighted by w = |Y | the number of properties of the corresponding
concept. This weighting is introduced in order to favor “large” concepts, which
are expected to be more “meaningful”. Indeed concepts with a small number
of properties are likely to connect “too many” objects. Note that the top and
bottom concepts are ignored, if they contain zero objects or zero properties.

The vertices of this bipartite graph are then partitioned by using the graph
clustering Infomap method [18]. Infomap is recognized as one of the best methods
of graph clustering [16]. It consists in searching for the clusters that best compress
the description length of the trajectory of a random walk through the whole
graph. This trajectory is described in a two-level way in function of the clusters:
when the walker enters a cluster, the name of the cluster is used, but then only the
name of the current vertex inside the cluster is retained. In this way, short length
names may be used for naming different vertices that are in different clusters
leading to shorter trajectory descriptions, at the condition that clusters are such
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that random walkers tend to stay inside clusters. This intuitively fits the idea that
random walkers are “trapped” when entering a cluster, since a cluster can only
be weakly related to other clusters. This idea has been used in different manners
in the recent graph clustering (or community detection) literature [19,6]. Note
that Infomap has not been specifically designed for bipartite graphs. However,
nothing in the underlying mathematics is specific to uni-partite graphs either,
and prevents to use it for bipartite graphs. Infomap does not specifically take into
account the fact that the graph is bipartite. In fact, this is an advantage because
we are looking for something which is a kind independent sub-contexts in the
formal context defined by the relation linking objects and formal concepts. Thus,
we obtain both a partition of objects and an associated partition of (formal)
concepts.

As can be seen in Figure 2(b), the application of Infomap on the objects-
concepts graph now yields the 4 expected clusters of objects, in the example of
Figure 1.

3.3 Labeling Clusters

In order to label each cluster of objects with a subset of relevant properties, we
use the following simple method.

For each cluster of objects we look for two particular concepts: namely the
concept (X∗, Y ∗) which is associated with the largest subset of objects (of the
corresponding objects cluster) and the concept (X∗, Y∗) which is associated with
the smallest superset of objects. In formal terms, let C = (X,S) be a cluster of
objects X with the associated set S of concepts, i.e. S = {(X ′

1, Y
′
1), (X ′

2, Y
′
2), ...}.

Let be T the set of all formal concepts. Then we compute the two noticeable
formal concepts that are defined as follows:

(X∗, Y ∗) ∈ T s.t.

{
X∗ ⊇ X
�(Xj , Yj) ∈ T s.t. X∗ ⊃ Xj ⊇ X

(7)

(X∗, Y∗) ∈ T s.t.

{
X∗ ⊆ X
�(Xj , Yj) ∈ T s.t. X∗ ⊂ Xj ⊆ X

(8)

One can check that X∗ ⊆ X∗, and Y∗ ⊇ Y ∗. Therefore the two sets of properties
Y ∗ and Y∗ can be used for labeling the cluster. Note that we are sure that all
the properties of Y ∗ are shared by all the objects of the cluster.

4 Experiments and Discussions

For evaluating (and illustrating) the proposed procedure we consider two kinds
of benchmark, one generated artificially and a real example available in the
literature.
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4.1 Evaluation on Artificial Benchmarks

In order to build a benchmark for object clustering procedure, we built formal
contexts in the following way. We take n groups of k objects, each group is
associated with mown properties that only objects of this group may satisfy, and
with mshared properties that may be verified by objects of s other groups. For
each group of objects, an object of the group satisfies each property in the group
with a probability μ. An example of such a context is given in Table 1.

Table 1. An example of formal context artificially generated by the procedure de-
scribed in Section 4.1, with n = 3, k = 3, mown = 2, mshared = 4, s = 1, μ = 0.8

A0 A1 B0 B1 C0 C1 AB0 AB1 BC0 BC1 CA0 CA1

a0 × × × × ×
a1 × × × ×
a2 × × × × ×
b0 × × × ×
b1 × × × × × ×
b2 × × × ×
c0 × × × × ×
c1 × × × × × ×
c2 × × × ×

The Figures 3(a) and 3(b) present the results of the clustering on the objects-
properties graph (the curve O ↔ P, in blue) and on the objects-concepts graph
(the curve O ↔ C, in red). To evaluate the accuracy of our algorithm against the
correct partition of objects we use the normalised mutual information (NMI).
A value of 0 indicate that the two partitions are totally dissimilar, whereas a
value of 1 indicate that the two partitions are identical. This is a commonly
use measure in graph clustering literature [5]. Each point indicated the average
value obtained on 50 realizations, the standard deviation is indicated by the
vertical error bar on each point. As shown in Figure 3(a), the results remain
stable with our approach when an increasing number of properties are shared
between objects in different clusters, while it is not the case if we work with the
objects-properties graph only.

4.2 The UCI Zoo Dataset

The UCI Zoo dataset describes 101 animals on 16 Boolean-valued attributes and
one numerical attribute (the number of legs). We transformed this numerical
attribute in 7 Boolean attributes (no legs, one leg, two legs, ...). For each animal
the type is indicated, there are 7 types of animals: mammal, bird, reptile, fishes,
amphibians, insects, invertebrates. This data set can be downloaded from the
UCI Machine Learning Repository1.

1 http://archive.ics.uci.edu/ml/datasets/Zoo

http://archive.ics.uci.edu/ml/datasets/Zoo
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Fig. 3. Normalised Mutual Information (NMI) [5] value of Infomap clustering method
on objects-properties graph (curve O ↔ P in blue) and on objects-concepts graph
(curve O ↔ C in red). Benchmark contexts are built with the following parameters:
n = 5, k = 10, mshared = 6, s = 2

Table 5 shows the result of the clustering over the objects-properties graph,
while Table 5 shows the results on the objects-concepts graph. One can see that
the clustering method fails on the objects-properties graph, whereas the partition
given on the objects-concepts graph retrieves the types of animals almost exactly.
Moreover, the labels Y ∗ and Y∗ coincide in several cases.

5 Related Works

We focus our discussion on the literature either related to bipartite graph cluster-
ing or to clustering of objects according to a binary relation between objects and
properties. The first group makes explicit reference to the graph representation
whereas the second one doesn’t.

Let us start with representatives of the vast amount of literature in the second
group. In [14], the authors use a measure of quality for clustering objects based
on Kullback-Leibler entropy which is optimized by means of a genetic algorithm.
However, such a black box method does not provide a means for labeling the
clusters. In [1] A FCA-based method is proposed, where potentially interesting
concepts are selected and then the underlying formal context is revised. It en-
ables the extraction of new descriptors which allows for the reuse of concepts in
an incremental way. This leads to a method taking inspiration from inverse res-
olution in inductive logic programming which enables the extraction of clusters
with associated properties, in the Zoo dataset example. Note that there exist
a lot of methods that look for bi-clustering (also named co-clustering, or two-
mode clustering) which consist in finding a partition of objects that is in direct
correspondence with a partition of properties, see [3] for a state of the art.



Clustering Sets of Objects Using Concepts-Objects Bipartite Graphs 429

Table 2. Results of the clustering of the objects-concepts graph (NMI = 0.81)

Y ∗ = {backbone, breathes,hair,milk, toothed}
Y∗ = {backbone, breathes,hair,milk, tail, toothed}

Mammals: aardvark, lynx, leopard, bear, boar, puma, lion, cheetah, raccoon,
mink, pussycat, mongoose, wolf, polecat, antelope, calf, elephant,
oryx, goat, deer, reindeer, buffalo, pony, giraffe, vole, mole, hare,
cavy, hamster, opossum, sealion, girl, wallaby, gorilla, fruitbat, squir-
rel, vampire

Y ∗ = {0legs}
Y∗ = {0legs, aquatic, eggs}

Fishes: stingray, pike, piranha, catfish, herring, dogfish, tuna, chub, bass, sole,
seahorse, carp, haddock

Invertebrates: clam, seawasp
Reptiles: seasnake

Y ∗ = {2legs, backbone, breathes, eggs, feathers, tail}
Y∗ = {2legs, backbone, breathes, eggs, feathers, predator, tail}

Birds: flamingo, gull, skimmer, sparrow, wren, skua, hawk, crow, duck, vul-
ture, lark, swan, pheasant, kiwi, rhea, ostrich, penguin

Y ∗ = Y∗ = {4legs, eggs}
Amphibians: newt, frog2, frog1, toad

Reptiles: tortoise, tuatara
Mammals: platypus

Invertebrates: crab

Y ∗ = Y∗ = {0legs, aquatic, backbone, breathes, catsize, fins,milk,
predator, toothed}

Mammals: porpoise, dolphin, seal

Y ∗ = Y∗ = {6legs, breathes, eggs}
Insects: flea, ladybird, moth, gnat, wasp, honeybee, housefly, termite

Y ∗ = Y∗ = {0legs, breathes, eggs}
Reptiles: slowworm, pitviper

Invertebrates: worm, slug

Y ∗ = Y∗ = {2legs, airborne, backbone, breathes, domestic, eggs, feathers, tail}
Birds: chicken, parakeet, dove

Y ∗ = {aquatic, eggs, predator}
Y∗ = {6legs, aquatic, eggs, predator}

Invertebrates: crayfish, starfish, lobster

Y ∗ = Y∗ = {8legs, breathes, predator, tail, venomous}
Invertebrates: scorpion

Y ∗ = Y∗ = {8legs, aquatic, catsize, eggs, predator}
Invertebrates: octopus
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Table 3. Results of the clustering of the objects-properties graph (NMI = 0.02)

Mammals: aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer,
dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare,
leopard, lion, lynx, mink, mole, mongoose, opossum, oryx, platy-
pus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal,
sealion, squirrel, vampire, vole, wallaby, wolf

Birds: chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich,
parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vul-
ture, wren

Fishes: bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha,
seahorse, sole, stingray, tuna

Invertebrates: clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, worm
Insects: flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
Reptiles: pitviper, seasnake, slowworm, tortoise, tuatara

Amphibians: frog1, frog2, newt, toad

Invertebrates: starfish

Another family of methods came from the literature concerning bipartite
graph clustering. In [7] a spectral method is used for finding a partition of a
bipartite graph that minimized the cut size, i.e. the number of edges running
between clusters. The main drawback of such approaches is that the number of
clusters has to be known in advance, and the methods tend to create clusters
having almost the same size, which rarely makes sense with real data sets.

In [2], the authors proposed an adaptation of Newman modularity [4] to the
case of bipartite graph. The Newman modularity is a measure of quality of a par-
tition of a graph vertices, a relevant partitioning is usually found by optimizing
this quality measure using various heuristics.

Most of these methods lead to a partition of objects and properties, and
therefore do not manage to partition objects when properties are shared be-
tween many clusters. Note that this issue has been partially addressed in [17],
where the authors proposed a measure of quality (inspired from the Newman
modularity) of a bipartite graph clustering that allows the fact that there is no
direct correspondence between properties cluster and object clusters.

Finally, note that in [15] the authors propose an approach that consists in
partitioning a bipartite graph between objects and hypercliques (which can be
understood as a set of properties that are satisfied by almost the same objects).
This method is in a spirit similar to the method we proposed. However they use
a partitioning method that amounts to minimizing a cut measure, which suffers
from the main drawbacks as the one used in [7].

6 Conclusion

Starting with a binary relation linking objects and properties, formal concept
analysis enables us to obtain formal concepts on the one hand, but also indepen-
dent sub-contexts on the other hand, as recalled at the beginning of this paper.
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Then, the independent sub-contexts may be viewed as separating clusters of ob-
jects and properties, inside which formal concepts identify homogeneous families
of objects. But due to noisy data, due to the existence of exceptions, and more
generally due to the fact that the same property may be shared by a variety of
objects, it is difficult to cluster a set of objects in a meaningful way directly on a
formal context. In the paper, we have proposed to handle the problem in a new
formal context where the properties are replaced the formal concept obtained
from the initial formal context. Then we have shown on artificial benchmarks
and on a real data set that looking for clusters in this higher level formal context
makes possible to obtain clusters that can then be interpreted in terms of two
nested sets of properties where the smallest one contains only properties that
are shared by all the objects in the cluster. As can be seen on the real data set,
the two nested sets of properties may be equal, and then a perfect characteriza-
tion of the cluster is obtained. More experiments would be necessary to evaluate
possible variants of this general approach.
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Abstract. Duplicate detection is an important process for cleaning or integrat-
ing data. Since real-life data is often polluted, detecting duplicates usually comes
along with uncertainty. To handle duplicate uncertainty in an appropriate way,
indeterministic duplicate detection approaches, i.e. approaches in which ambigu-
ous duplicate decisions are probabilistically modeled in the resultant data, have
been developed. To rate the goodness of a duplicate detection approach, its detec-
tion results need to be evaluated in their quality. In this paper, we propose several
semantics to apply traditional quality evaluation measures to indeterministic du-
plicate detection results and exemplarily present an efficient evaluation for one of
these semantics. Finally, we present some experimental results.

Keywords: indeterministic duplicate detection, probabilistic duplicate detection,
quality evaluation, probabilistic clustering, entity resolution.

1 Introduction

Duplicate detection [4,8] is an important task in cleaning a single data source or in
meaningfully combining data from different sources. Due to deficiencies like missing
data, typos or data obsolescence, it often cannot be determined with absolute certainty
from the data itself that two or more representations belong to the same real-world en-
tity. This principally hinders duplicate detection and is a crucial source of uncertainty.
Most current duplicate detection approaches [4] acknowledge many kinds of uncer-
tainty and often apply fuzzy matching techniques, but in the end they still are determin-
istic: finally an absolute decision needs to be taken either by (1) deferring the situation
to domain experts which is expensive and time consuming, or (2) choose the most likely
configuration thereby risking a wrong choice with all consequences this may have.

To better deal with uncertainty in duplicate detection, several approaches [2,6,9] have
been proposed that avoid ambiguous decisions, but instead try to model all significantly
likely configurations in the resultant data. Hence any query answer or other derived data
will reflect the inherent uncertainty. Since in such approaches duplicate decisions are
handled in an indeterministic way, we refer to them as an indeterministic duplicate de-
tection. This concept may protect against negative impact resulting from false duplicate
decisions made under ambiguous circumstances.

For effectively comparing deterministic- and indeterministic duplicate detection ap-
proaches new methods for quality evaluation are required, because existing evaluation
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measures are not designed to deal with indeterministic results. As we think, the qual-
ity of an indeterministic duplicate detection result generally depends on the intended
handling of the datas’ inherent uncertainty. For that reason, in this paper we define dif-
ferent semantics for evaluating the quality of indeterministic duplicate detection results
and propose strategies to compute these evaluations in an efficient way.

The paper is structured as follows. In Section 2, we formally introduce the concepts
of deterministic duplicate detection and indeterministic duplicate detection. Moreover,
we present measures for evaluating the quality of deterministic duplicate detection re-
sults. In Section 3, we introduce different semantics on how the quality of an indeter-
ministic duplicate detection result can be scored and exemplarily discuss one of them
in detail. In Section 4, we present an efficient quality computation for this semantics.
Section 5 shows some experimental results. In Section 6 we present related work. Fi-
nally, Section 7 concludes the work.

2 Duplicate Detection

Duplicate detection [8,4] is the process of identifying multiple representations in a
database relation referring to the same real-world entity.

Definition 1 (Real World): We postulate a real world, denoted by W, as the set of all ex-
isting real-world entities. The mapping ω :R→W maps tuples of a database relation
R on entities of W.

In our linguistic use, two tuples t1, t2 ∈ R are called duplicates, iff ω(t1) = ω(t2).

2.1 Deterministic Duplicate Detection

Deterministic duplicate detection is a partitioning of the input relation into clusters
(equivalence classes or partition classes) such that all tuples of one cluster refer to the
same real-world entity and hence are duplicates.

Definition 2 (Deterministic Duplicate Detection): Deterministic duplicate detection is
a function δdet that maps a relation R to a clustering C = {C1, . . . , Cl} such that⋃
C = R (each tuple is assigned to a cluster) and (∀C1, C2 ∈ C) : C1 ∩ C2 = ∅ (the

clusters are disjoint). The duplicate detection is considered to be perfect, iff:

• (∀C ∈ C ∀t1, t2 ∈ C) : ω(t1) = ω(t2) , i.e., all tuples of one cluster represent the
same real-world entity (the duplicate detection is correct⇒ precision=1)

• (∀C1, C2 ∈ C ∀t1 ∈ C1 ∀t2 ∈ C2) : C1 �= C2 ⇒ ω(t1) �= ω(t2), i.e., all tuples
of different clusters represent different real-world entities (the duplicate detection
is complete⇒ recall=1)

To evaluate the quality of a duplicate detection process performed on R, its resultant
clustering C is compared with the clustering Cgold which would result from a perfect
duplicate detection process (called the gold standard) onR.

As a running example throughout this paper, we consider a duplicate detection on a
relation REx with the ten tuples t1, . . . , t10. Figure 1 presents the gold standard and a
certain clustering resultant from a non-perfect deterministic duplicate detection process.
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Fig. 1. The gold standard and a non-perfect deterministic clustering result on REx
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Fig. 2. The possible clusterings Ci ∈ ΓEx of our sample probabilistic clustering CEx = (ΓEx, PEx)

2.2 Indeterministic Duplicate Detection

In contrast to a deterministic duplicate detection approach where two tuples have to be
declared as duplicates or not, in an indeterministic approach duplicate decisions can
be made in a probabilistic way, i.e. tuples can be declared as duplicates with a given
probability. For example, the two tuples t1 and t2 can be declared to be duplicates with
a probability of 60% (and hence to be non-duplicates with a probability of 40%).

The result of an indeterministic duplicate detection is a probability distribution on a
set of possible clusterings where each clustering corresponds to a deterministic dupli-
cate detection result.

Definition 3 (Indeterministic Duplicate Detection): Indeterministic duplicate detection
is a function δidet that maps a relationR to a probabilistic clustering C=(Γ, P ) where:

• Γ is a set of possible clusterings so that (∀C ∈ Γ ) : (∃δdet) : C = δdet(R),

• P : Γ → (0, 1],
∑

C∈Γ P (C) = 1 is a probability distribution on Γ

A sample probabilistic clustering CEx = (ΓEx = {C1, . . . , C12}, PEx) of our sample in-
put relationREx = {t1, . . . , t10} is graphically presented in Figure 2.

Definition 4 (Cross Product of Probabilistic Clusterings): The cross product of two prob-
abilistic clusterings Ci = (Γi, Pi) and Cj = (Γj , Pj) is the probabilistic clustering
Cij = Ci × Cj = (Γij , Pij) where Γij = {Ci ∪ Cj | Ci ∈ Γi, Cj ∈ Γj} and the prob-
ability of each resultant possible clustering C = Ci ∪ Cj is Pij(C) = Pi(Ci) · Pj(Cj).

The n-ary cross product is defined accordingly.
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Fig. 3. The four factors of CEx: CF1, CF2, CF3 and CF4

Because the data of individual clusterings often considerably overlaps and it is some-
times even impossible to store them separately (in our experiments we work on proba-
bilistic clusterings with |Γ |→7.6 · 1044), a succinct representation has to be used. For
that reason, a probabilistic clustering is usually represented in a factorized way.

Definition 5 (Factorization of a Probabilistic Clustering): A factorization of a proba-
bilistic clustering C = (Γ, P ) defined on a relation R is a set of probabilistic cluster-
ings (called factors) F(C) = {CF1, . . . ,CFn} where each factor is defined on a tuple
set Fi ⊂ R (called factor set) so that the following three requirements are satisfied:
• Each tuple t ∈ R is covered by a factor (the factorization is lossless):

⋃
CF∈F(C) F

• The overall probabilities of the individual clusterings are preserved (the factoriza-
tion is probability correct): (∀CF ∈ F(C) ∀CF ∈ CF ) : PF (CF ) =

∑
C∈Γ,CF⊆C

P (C)

• Each two factors CFi and CFj are independent to each other (the factorization is
correct): (∀C1 ∈ CFi ∀C2 ∈ CFj) : PFi(C1) · PFj(C2) =

∑
C∈Γ,C1∪C2⊆C P (C).

This implies that each two factors CFi and CFj are defined on disjoint factor sets,
i.e. Fi ∩ Fj = ∅.

The factorization is complete, iff none of its factors can be further factorized. Due to a
factorization is correct and lossless, Theorem 1 is valid:

Theorem 1. A probabilistic clustering C = (Γ, P ) can be rebuilt from the cross prod-
uct of its factors: C = ×CF∈F(C)CF

Proof. The proof directly results from the definition of the cross product and the defi-
nition of a correct and lossless factorization.

Due to the number of possible clusterings is usually overwhelming, existent approaches
of indeterministic duplicate detection [2,6,9] are designed in a way that they already
produce a factorized representation as output.

Figure 3 shows the four factors of our sample probabilistic clustering CEx = (ΓEx,
PEx) along with their factor sets and their sets of possible clusterings.
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2.3 Quality Evaluation Measures

Existing quality measures for deterministic duplicate detection [5,7,11] can be classified
into decision-based evaluation measures and cluster-based evaluation measures.

Decision-Based Evaluation. Traditional approaches for duplicate detection [8] are
based on pairwise tuple comparisons. For that reason, the quality of a duplicate de-
tection approach is often measured based on the pairwise duplicate decisions made by
this approach. The two most known decision-based evaluation measures are recall and
precision [11] which originate from the area of information retrieval.

Before a decision-based evaluation measures can be applied to a clustering, the clus-
tering needs to be transformed into a set of pairwise decisions. A transformation from
a clustering C to the corresponding set of duplicate decisions1 (the set of proposed
matches M and the set of proposed unmatches U ) can be defined as:

M(C) = {(ti, tj) | ti, tj ∈ R ∧ (∃C ∈ C) : {ti, tj} ⊆ C} (1)

U(C) = {(ti, tj) | ti, tj ∈ R ∧ (� ∃C ∈ C) : {ti, tj} ⊆ C} (2)

From these two sets three decision classes, the true positives (TP), the false positives
(FP), and the false negatives (FN) can be derived as:

TP(C, Cgold) = M(C) ∩M(Cgold) (3)

FP(C, Cgold) = M(C) ∩ U(Cgold) = M(C)−M(Cgold) (4)

FN(C, Cgold) = U(C) ∩M(Cgold) = M(Cgold)−M(C) (5)

Using these three classes, recall (Rec) and precision (Prec) can be defined as:

Rec(C, Cgold) =
|TP(C, Cgold)|
|M(Cgold)| =

|TP(C, Cgold)|
|TP(C, Cgold)|+ |FN(C, Cgold)| (6)

Prec(C, Cgold) =
|TP(C, Cgold)|
|M(C)| =

|TP(C, Cgold)|
|TP(C, Cgold)|+ |FP(C, Cgold)| (7)

A third measure that combines precision and recall into a single quality score by com-
puting their harmonic mean is the F1-score:

F1-score(C, Cgold) = 2 · Rec(C, Cgold) · Prec(C, Cgold)

Rec(C, Cgold) + Prec(C, Cgold)
(8)

=
2 · |TP(C, Cgold)|

2 · |TP(C, Cgold)|+ |FP(C, Cgold)|+ |FN(C, Cgold)| (9)

Further decision-based evaluation measures are proposed in [5,7]. When clear from
context, we often simply use TP, FP, FN, Rec, Prec and F1-score instead of TP(C, Cgold),
FP(C, Cgold), FN(C, Cgold), Rec(C, Cgold), Prec(C, Cgold) and F1-score(C, Cgold).

1 Note, most often only the positive duplicate decisions need to be computed.
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Cluster-Based Evaluation. In measures for cluster-based evaluation the quality of
a duplicate detection process is scored by the similarity of its final clustering to the
perfect clustering. The more similar both clusterings (partitions) are, the better is the
process’s quality. The most of these approaches [11], e.g. the Rand Index, the Adjusted
Rand Index, and the Talburt-Wang Index, are based on the partition overlap of the two
clusterings to be compared. According to [11], the partition overlap V of two partitions
CA and CB is the set of all nonempty intersections between the clusters of CA and the
clusters of CB and is defined as:

V (CA, CB) = {Ai ∩Bj | Ai ∈ CA, Bj ∈ CB ∧ Ai ∩Bj �= ∅} (10)

Whereas the Rand Index and the Adjusted Rand Index are computationally intensive,
the Talburt-Wang Index (short TWI) is simply to calculate, because it does not use the
size of the overlaps, but only the number of overlaps:

TWI(CA, CB) =

√
|CA| · |CB|

|V (CA, CB)| (11)

In this paper, we will use the TWI as a representative for cluster-based evaluation mea-
sures. Table 1 depicts the quality scores of the twelve possible clusterings of our sample
probabilistic clustering CEx w.r.t. the four presented evaluation measures.

Table 1. Quality scores of the possible clusterings of CEx

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 min max exp

Rec .333 .333 .333 .333 .667 .667 .667 .667 .667 .667 .667 .667 .333 .670 .600
Prec 1.00 .500 .333 .250 1.00 .667 .500 .400 .667 .500 .400 .333 .250 1.00 .648
F1-score .500 .400 .333 .286 .800 .667 .571 .500 .667 .571 .500 .444 .286 .800 .592
TWI .882 .881 .831 .778 .935 .875 .875 .810 .875 .810 .810 .740 .740 .935 .864

3 Quality of Indeterministic Duplicate Detection Results

In this section, we analyze the different types of on-top applications which can process
indeterministic duplicate detection results and define specific quality semantics for each
of them (Section 3.1). For exemplary reasons, we go then into detail with one of these
semantics in Section 3.2. A closer consideration of the other semantics is intended for
future publications.

3.1 Quality Semantics

The quality of data generally depends on its intended use, i.e. a database can be of good
quality w.r.t. a given application and can be of bad quality w.r.t. another one. The same
holds for the quality of a duplicate detection process, because its goodness is automati-
cally a quality yardstick of the data resulting from deduplication, i.e. the more error the
duplicate detection process produces, the worse is the quality of the resultant data.

We identify four different ways of handling uncertainty in data processing and hence
classify four different types of on-top applications (see Figure 4):
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Fig. 4. The four types of database applications along with their corresponding quality semantics

1. Traditional Database Applications (Uncertainty Ignorance): Most of tradi-
tional database applications cannot process probabilistic data and need certain data
as input. In this case, uncertainty must be ignored by evaluating queries only on
one of the possible worlds (most meaningful: one of the most probable worlds).

2. Probabilistic Database Applications (Uncertainty Preservation): Another way
an application can handle data uncertainty is to consider any kind of uncertainty
during query evaluation and to produce an uncertain query result. Evaluating a
query on a probabilistic database follows the principles of the possible world se-
mantics [10]. This means that the query is evaluated in each world individually and
each result represents a possible world of the probabilistic query answer.

3. Certain Query Answer based Applications (Uncertainty Consideration): A lot
of applications require query answers as input, which are (nearly) dead certain. For
that reason consistent query answering [1] (also known as certain query answering
or sure information answering) need to be applied to the uncertain data. In this case,
uncertainty is resolved by processing a query only on the certain facts, or at least
on the facts which are certain with a given level of tolerance, of the probabilistic
database. It is important to note that indeterministic duplicate detection allows a
more correct evaluation of certain query answering than it is possible by querying a
deterministic duplicate detection result, because the query answering algorithm can
distinct between ambiguous duplicate decisions and certain duplicate decisions.

4. Uncertainty Analyzing Applications (Uncertainty Aggregation): The last type
includes applications which are designed to directly analyze the uncertainty of
the data, as for example to compute the minimal/maximal/expected number of
database tuples which satisfy a specific selection criterion (e.g.: What is the mini-
mal/maximal/expected number of persons living in Germany). In this case, aggre-
gation functions are used to resolve data uncertainty.

Since the quality of an indeterministic duplicate detection result essentially depends on
the way the resultant datas’ inherent uncertainty is processed by an on-top application,
we define the following four corresponding quality semantics:
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1. Most Probable World Semantics (short MPWS): The most probable world se-
mantics is designed to score the quality of an indeterministic duplicate detection
result w.r.t. traditional database applications. If the application picks one of the
most probable clusterings (worlds) randomly, it is most meaningful to score the fi-
nal quality as the average quality of the most probable clusterings. Of course, if any
other selection criterion is used, another quality definition can be more meaningful.
For our sample probabilistic clustering CEx the two possible clusterings C5 and C9
are most probable. These clusterings along with the final quality scores are pre-
sented in Figure 5.
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Fig. 5. CEx: its most probable clusterings (a), its gold standard (b) and the quality scores (c)

2. Possible World Semantics (short PWS): If the data is processed according to
the possible world semantics, it seems most meaningful to define the quality of an
indeterministic duplicate detection result as a probability distribution on all possible
scores (the possible worlds of the datas’ quality). Moreover, this approach allows
a subtle analysis of the probabilistic clustering’s quality. For example, it allows
to determine to what probability is the quality score greater than a user specific
threshold. Nevertheless, this semantics is computationally intensive.
For our sample probabilistic clustering CEx, the resultant probability distribution on
possible F1-scores is presented in Figure 6.
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(0.256)
(0.176)
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(0.1925)

quality (F1-score)

Fig. 6. Probability distribution on possible F1-scores of CEx

3. Certain World Semantics (short CWS): The certain world semantics is tailor-
made for applications based on certain query answers. Thus, in the CWS the quality
of the duplicate detection result is only scored on clustering information which is
postulated to be certain. The CWS is extensively discussed in Section 3.2.

4. Aggregated World Semantics (short AWS): For uncertainty analyzing applica-
tions, it is most meaningful to score the final quality of an indeterministic duplicate
detection result by the quality of the analysis result and hence by aggregating (e.g.
by min, max or exp) the quality scores of all its possible clusterings. This semantics



Evaluating Indeterministic Duplicate Detection Results 441

allows a rough analysis of the datas’ quality. For example it allows to query: What
is the worst case scenario (minimal quality score), the expected scenario (expected
quality score), and the best case scenario (maximal quality score). The aggregated
quality scores of CEx are listed in Table 1.

It is important to note that these semantics are no competitors in general, but each of
them fits best for a specific application scenario.

3.2 Certain World Semantics

In the certain world semantics we evaluate the quality only on the facts postulated to be
dead certain (or more probable than 1−ε respectively). We have to differentiate between
a cluster-based interpretation and a decision-based interpretation. Whereas the cluster-
based interpretation considers only clusters with a certain existence, the decision-based
interpretation considers certain duplicate decisions.

Cluster-Based Interpretation. Intuitively, a cluster C with |C| > 1 can be considered
to be certain, if in each possible clustering there exists a cluster C′ with C ⊆ C′.
However, under a closer consideration, we will see that this intuitive definition is not
appropriate, because a certain cluster {t1, t2, t3} not only means that t1, t2 and t3 are
certainly duplicates, but it also implicitly means that these three tuples are certainly no
duplicates with any other tuple what in reality muss not be a certain fact at all.

As a consequence, we consider the certain clustering componentCcert.ε(C) of a prob-
abilistic clustering C = (Γ, P ) to be the set of clusters which belong to every possible
clustering of C with a probability equal to 1-ε or greater.

Definition 6 (Certain Clustering Component): Let C = (Γ, P ) be a probabilistic clus-
tering. The certain clustering component of C with the tolerance setting ε is a traditional
clustering defined as:

Ccert.-ε(C) = {C |
∑

C∈Γ,C∈C
P (C) ≥ 1− ε} (12)

By definition, the certain clustering component of a probabilistic clustering C = (Γ, P )
can be contain less tuples than R and hence less tuples than the gold standard. To
enable a meaningful execution of a cluster-based evaluation measure as the Talburt-
Wang index, we have to modify Cgold so that it shares the same tuples as Ccert.-ε(C). For
that purpose, we discard all clusters from Cgold which do not have a tuple belonging to
Ccert.-ε(C) and then drop from the remaining clusters all tuples which do not belong to
any cluster of Ccert.-ε(C). Formally, the modifications are defined as:

Tcert.-ε(C) =
⋃
Ccert.-ε(C) = {t | (∃C ∈ Ccert.-ε(C)) : t ∈ C} (13)

C∗gold = {C ∩ Tcert.-ε(C) | C ∈ Cgold} − ∅ (14)

Let q be the cluster-based quality measure to score, the quality of the probabilistic
clustering C to Cgold using q under the CWS with the tolerance setting ε is scored as:

q(C, Cgold)CWS,ε = q(Ccert.-ε(C), C∗gold) (15)
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As an example consider Figure 7. The certain clustering component of CEx with the tol-
erance setting ε = 0.3 is Ccert.-0.3(C) = {{t3}, {t7, t8}, {t9}, {t10}}. The modified gold
standard is C∗gold = {{t3}, {t7, t8}, {t9}, {t10}}. Thus, the F1-score as well as the TWI
of CEx are 1.0. In contrast, by using the tolerance setting ε = 0.4 the certain clustering
component is equivalent to C9 and the gold standard remained unchanged. Thus, the
resultant scores of CEx are 0.667 (F1-score) and 0.875 (TWI).
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Fig. 7. Ccert.-ε(C) and C∗
gold for the tolerance settings ε = 0.3 and ε = 0.4

Decision-Based Interpretation. The set of certain decisions of a probabilistic cluster-
ing C is the set of decisions which are postulated with a probability greater than 1− ε.

Definition 7 (Certain Duplicate Decisions): Let C = (Γ, P ) be a probabilistic cluster-
ing. The set of certain positive (negative) duplicate decisions of C with the tolerance
setting ε are defined as:

Mcert.-ε(C) = {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈M(C)
P (C) ≥ 1− ε} (16)

Ucert.-ε(C) = {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈U(C)
P (C) ≥ 1− ε} (17)

= {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈M(C)
P (C) ≤ ε} (18)

The three decision classes TP, FP, and FN can be then computed as follows:

TPcert.-ε(C, Cgold) = Mgold ∩Mcert.-ε(C) (19)

FPcert.-ε(C, Cgold) = Mcert.-ε(C)−Mgold (20)

FNcert.-ε(C, Cgold) = Mgold ∩ Ucert.-ε(C) (21)

Recall, precision and F1-score are then computed according to Equations 6-9 by using
TPcert.-ε, FPcert.-ε, and FNcert.-ε instead of TP, FP, and FN.

Let q be the decision-based quality measure to score, let m be the evaluation method
performed in q having the three decision classes TP, FN, and FP as input: q(C, Cgold) =
m(TP(C, Cgold), FP(C, Cgold), FN(C, Cgold)). The quality of C to Cgold using q under the
CWS with the tolerance setting ε is scored as:

q(C, Cgold)CWS,ε = m(TPcert.-ε(C, Cgold), FPcert.-ε(C, Cgold), FNcert.-ε(C, Cgold)) (22)

The sets of certain decisions of CEx with ε = 0.2 are (for illustration see Figure 8):

Mcert.-0.2(CEx) = {(t1, t4), (t7, t8)}, and

Ucert.-0.2(CEx) = {(a, b) | a, b ∈ REx} − {(t1, t2), (t1, t4), (t2, t4), (t5, t6), (t7, t8)}
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(t1,t4) (t7,t8) (t1,t2) (t2,t4) (t5,t6) (t9,t10) (t1,t5)(t1,t3)

1.0
1-ε=0.8

ε=0.2

Mcert.-0.2 Ucert.-0.2
probability to
be a match

Fig. 8. Mcert.-0.2(CEx) and Ucert.-0.2(CEx) for the tolerance setting ε = 0.2

Hence: TPcert.-0.2 = {(t1, t4), (t7, t8)}, FPcert.-0.2 = ∅, and FNcert.-0.2 = {(t3, t5)}. The
F1-score of CEx using the CWS with the tolerance setting ε = 0.2 is thus 0.8.

An important fact of the CWS is that the equations M = FN+TP and U = FP+TN
are not valid anymore and other quality measures, e.g. the number of false decisions
(FN + FP), can capture quality aspects which are not captured by precision, recall or
F1-score anymore.

Tolerance Setting. It is to note that a tolerance setting ε ≥ 0.5 has to be used carefully,
because it can lead to inconsistent duplicate clusterings, i.e. a tuple can belong to mul-
tiple clusters (cluster-based interpretation) or two tuples can be declared as a match and
as an unmatch at the same time (decision-based interpretation).

4 Efficient Quality Computation for the Certain World Semantics

The certain world semantics proposed in the previous section is defined on a complete
probabilistic clustering C. However, as discussed in Section 3.1, instead of C usually its
factors are available. To rebuild C from its factors is most often not practical. For that
reason, in this section, we figure out how the quality of a probabilistic clustering C can
be scored based on the quality scores of its factors.

Cluster-Based Interpretation

Theorem 2. The certain clustering component of a probabilistic clustering C = (Γ, P )
can be computed by the union of the certain clustering components of its factors:

Ccert.-ε(C) =
⋃

CF ∈F(C)
Ccert.-ε(CF ) (23)

Proof. All factor sets are disjoint. Hence any possible cluster belongs to a single factor.
By Definition 5, for every subset (cluster) C of the factor set F of a factor CF =
(ΓF , PF ) holds:

∑
C∈ΓF ,C∈C PF (C) =

∑
C∈Γ,C∈C P (C). Hence a cluster is certain for

C, if it is certain for its corresponding factor.

Due to Theorem 2, the costs for computing the certain clustering component of a prob-
abilistic clustering can be reduced to the costs required for computing the certain clus-
tering component of its factor with the greatest number of possible clusterings.
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Decision-Based Interpretation

Theorem 3. The set of certain matches Mcert.-ε of a probabilistic clustering C = (Γ, P )
can be computed by the union of the corresponding sets of its factors:

Mcert.-ε(C) =
⋃

CF ∈F(C)
Mcert.-ε(CF ) (24)

Proof. Two tuples can be only a match, i.e. be in a same cluster, if they belong to the
same factor set. By Definition 5, for every two tuples {ti, tj} of the factor set F of a
factor CF = (ΓF , PF ) holds:

∑
C∈ΓF ,{ti,tj}∈C PF (C) =

∑
C∈Γ,{ti,tj}∈C P (C). Hence

a tuple pair is certainly a match in C, if it is certainly a match in its corresponding factor.

Theorem 4. The decision classes TPcert.-ε and FPcert.-ε of a probabilistic clustering
C=(Γ, P ) can be computed by the union of the corresponding classes of its factors:

TPcert.-ε(C, Cgold) =
⋃

CF ∈F(C)
TPcert.-ε(CF , Cgold) (25)

FPcert.-ε(C, Cgold) =
⋃

CF ∈F(C)
FPcert.-ε(CF , Cgold) (26)

Proof. We prove the theorem only for TPcert.-ε (FPcert.-ε can be proved accordingly).

TPcert.-ε(C, Cgold) = Mgold ∩Mcert.-ε(C)
(Theorem 3)

= Mgold ∩
⋃

CF ∈F(C)
Mcert.-ε(CF )

=
⋃

CF ∈F(C)
(Mgold ∩Mcert.-ε(CF )) =

⋃
CF∈F(C)

TPcert.-ε(CF , Cgold)

In contrast to TPcert.-ε and FPcert.-ε, the decision class FNcert.-ε cannot be restricted to
the individual factors, because it could happen that some true duplicates do not belong
to the same factor set. However, we can distinct between inter-factor false negatives
(FNinter), i.e. a not detected duplicate pair which tuples belong to different factors (e.g.
the tuple pair (t3, t5) in our running example) and intra-factor false negatives (FNintra),
i.e. a not detected duplicate pair which tuples belong to the same factor.

All inter-factor false negatives are dead certain decisions, because they do not belong
to a same cluster in any possible clustering C ∈ Γ . Thus, the set (and hence number)
of inter-factor false negatives is the same for all possible clusterings of C and can be
simply computed from the factor sets: FNinter(C, Cgold) = FN({F | CF ∈ F(C)}, Cgold).
In contrast, the set of intra-factor false negatives results per definition from the union of
the false negative decisions of each factor where each factor CF is only compared with
the tuple-equivalent part of the gold standard: CFgold = {C ∩ F | C ∈ Cgold}.

Using FNinter and FNintra
cert.-ε, the class of certain false negatives can be computed by:

FNcert.-ε(C, Cgold) = FNinter(C, Cgold) ∪ FNintra
cert.-ε(C, Cgold) (27)

= FN({F | CF ∈ F(C)}, Cgold) ∪
⋃

CF ∈F(C)
FNcert.-ε(F, CFgold) (28)
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Thus, the number of certain TP, certain FP and certain FN can be simply computed as:

|TPcert.-ε(C, Cgold)| =
∑

CF∈F(C)
|TPcert.-ε(CF , Cgold)| (29)

|FPcert.-ε(C, Cgold)| =
∑

CF∈F(C)
|FPcert.-ε(CF , Cgold)| (30)

|FNcert.-ε(C, Cgold)| = |FNinter(C, Cgold)|+
∑

CF∈F(C)
|FNcert.-ε(CF , CFgold)| (31)

In summary, the costs for computing the number of certain TP, certain FP and certain
FN and hence the costs for computing the recall, the precision and the F1-score of the
certain facts of a probabilistic clustering can be reduced to the costs required for com-
puting the certain TP, certain FP and certain FN of its factor with the greatest number
of possible clusterings.

5 Experimental Evaluation

To experimental evaluate our quality semantics, we use a duplicate detection scenario
extensively discussed in [9]. In this scenario, on a real-life CD data set several inde-
terministic duplicate detection processes have been performed. Each process is char-
acterized by its number of indeterministically handled decisions (#inDec). In Figure 9,
we present the F1-score and the TWI of these processes each scored with our different
quality semantics (PWS is not considered, because it does not supply a single value).

The most probable world was the same for all processes and hence the MPWS re-
turned a constant result. Moreover, the quality of the MPWS was equivalent to the
quality of a deterministic approach (#inDec =0). The minimal (maximal) possible score
was always lower (greater) than by using MPWS and decreased (increased) with grow-
ing uncertainty. The CWS without tolerance (ε = 0) performed the better than the
MPWS, the more uncertainty was modeled in the indeterministic result. Only for less
uncertainty, the CWS was worse than MPWS using the F1-score. In general, the TWI
was not that restrictive than the F1-score (all scores were between 0.984 and 0.998),
but show similar results than the F1-score. Solely the CWS was always better than the
MPWS (sometimes even better than the maximal possible quality score).
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Fig. 9. F1-score and TWI of several indeterministic duplicate detection results
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6 Related Work

Quality evaluation of deterministic duplicate detection results has been considered in
several works [5,7,11], but none of them take an uncertain clustering into account.
De Keijzer et al. propose measures for scoring the quality of uncertain data [3]. The
expected precision and the expected recall for scoring the quality of uncertain query
results are similar to a variant of our aggregated world semantics. Further semantics,
especially the certain world semantics are not covered by this work. Moreover, they
restrict themselves to probabilistic results with independent events (in our case, deci-
sions), which is not useful for duplicate detection scenarios.

7 Conclusion

Duplicate detection usually comes along with a high degree of uncertainty and often
it cannot be determined with absolute certainty whether two tuples are duplicates or
not. Indeterministic duplicate detection approaches have been proposed to handle un-
certainty on duplicate decisions by storing multiple possible duplicate clusterings in the
resultant data. In this paper, we introduced a framework for scoring the quality of in-
deterministic duplicate detection results. For that purpose, we presented four different
quality semantics, each defined for a special class of data processing tasks.

In this paper, we only went into computation details for a single semantics. In future
work, we aim to focus on an efficient computation of the remaining three semantics.
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3 Université Paris Descartes

LIPADE - France
julien.rossit@parisdescartes.fr

Abstract. In the last decade, several approaches were introduced in literature
to merge multiple and potentially conflicting pieces of information. Within the
growing field of application favourable to distributed information, data fusion
strategies aim at providing a global and consistent point of view over a set of
sources which can contradict each other. Moreover, in many situations, the pieces
of information provided by these sources are uncertain.

Possibilistic logic is a well-known powerful framework to handle such kind
of uncertainty where formulas are associated with real degrees of certainty be-
longing to [0, 1]. Recently, a more flexible representation of uncertain informa-
tion was proposed, where the weights associated with formulas are in the form
of intervals. This interval-based possibilistic logic extends classical possibilistic
logic when all intervals are singletons, and this flexibility in representing uncer-
tain information is handled without extra computational costs. In this paper, we
propose to extend a well known approach of possibilistic merging to the notion
of interval-based possibilistic knowledge bases. We provide a general semantic
approach and study its syntactical counterpart. In particular, we show that conve-
nient and intuitive properties of the interval-based possibilistic framework hold
when considering the belief merging issue.

1 Introduction

The problem of belief merging [Lin96] arises when a situation requires to take into ac-
count several pieces of information obtained from distinct and often conflicting sources
(or agents). This kind of situations frequently appears in many usual frameworks, such
as distributed databases, multi-agent systems, or distributed information in general (e.g.,
semantic web), and leads to perform some combination operations on available in-
formation to extract a global and coherent point of view. Roughly speaking, merg-
ing operators introduced in literature strongly rely on the representation of available
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information. In the last decade, several approaches were proposed to merge pieces of
information provided without explicit priority [KPP02, EKM10, EKM12] or to the con-
trary to merge prioritized information [BK03, GLB06].

From a semantic point of view, these approaches are generally divided in two steps:
first locally rank interpretations using some scales (depending on the considered frame-
work, possibilistic distributions or κ-functions for instance), then aggregating these lo-
cal rankings among all the bases to obtain a global total pre-order over considered
interpretations (see [KPP02] for more details). The result of merging is finally obtained
by considering preferred interpretations according to this global total pre-order.

In our framework, the pieces of information provided by each source may be uncer-
tain. In this paper, these pieces of information, encoded by the means of propositional
formulas, are called beliefs. Possibilistic logic [DLP94] is a well-known framework
which allows to conveniently represent and reason with such uncertain pieces of infor-
mation: uncertainty is represented by real numbers, belonging to [0,1], associated with
each piece of information. Moreover, uncertainty is also represented at the semantic
level by associating a possibility degree with each possible world (or interpretation).
An inference mechanism was proposed in [Lan00] to derive plausible conclusions from
a possibilistic knowledge base K , which needs log2(m) calls to the satisfiability test of
a set of propositional clauses (SAT), where m is the number of different degrees used
in K .

However, in many situations, providing a precise weight to evaluate the certainty as-
sociated with a belief can be a difficult problem (e.g., when scales are provided by an
expert). In [BHLR11], a flexible representation was introduced to allow the expression
of an imprecision on possibilistic degrees associated with beliefs, where weights asso-
ciated with formulas are in the form of intervals of [0, 1]. An interesting result is that
handling this flexibility is done without extra computational costs with respect to the
classical framework. A natural question concerns now the ability of this framework to
keep such properties while considering more sophisticated issues, like the belief merg-
ing problem.

Several approaches to merge classical possibilistic belief bases were introduced in
[BDPW99, BK03, QLB10]. Resulting possibilistic merging operators were analyzed
in [BDKP00], where they are sorted into different classes depending on the configura-
tion of the bases to merge. We can distinguish:

– conjunctive operators, exploiting symbolic complementarities between sources;
– disjunctives operators, which deal with conflicting but equally reliable sources;
– idempotent operators, suitable when sources to merge are not independent;
– reinforcement operators, which consider the repetition of pieces of information

among sources to merge as a confirmation;
– adaptive and average operators, which adopt a disjunctive attitude in case of con-

flicts and a reinforcement behaviour in the other cases.

In this paper, we extend this approach to the framework of interval-based possibilistic
logic. More precisely, we extend the strategies introduced in [BDKP02] by adapting
possibilistic aggregation operators to deal with intervals. In particular, we show that
intuitive intervals characterization principles and computational properties introduced
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in [BHLR11] still stand when considering the problem of belief merging. Section 3 in-
troduces a general semantic approach, which relies on aggregation operations over in-
tervals at the level of possibility distributions. In particular, we focus on the well-known
minimum-based, maximum-based and product-based operations. Finally, Section 4
provides a syntactic counterpart to our semantic approach.

2 Background and Notations

In this paper, we consider a finite propositional language L. We denote by Ω the finite
set of interpretations of L and by ω an element of Ω.

2.1 Possibilistic Logic

Possibility Distributions. A possibility distribution, denoted by π, is a function from
Ω to [0, 1]. π(ω) represents the degree of compatibility (or consistency) of the interpre-
tation ω with the available knowledge. π(ω) = 1 means that ω is fully consistent with
the available knowledge, while π(ω) = 0 means that ω is impossible. π(ω) > π(ω′)
simply means that ω is more compatible than ω′. A possibility distribution π is said to
be normalized if there exists an interpretation ω such that π(ω) = 1. Otherwise, the
distribution is inconsistent and is called subnormalized.

A possibility distribution allows to define two functions from L to [0, 1] called pos-
sibility and necessity measures, denoted by Π and N , and defined by:

Π(ϕ) = max{π(ω) : ω ∈ Ω, ω |= ϕ} and N(ϕ) = 1−Π(¬ϕ)

Π(ϕ) measures to what extent the formula ϕ is compatible with the available knowl-
edge while N(ϕ) measures to what extent it is entailed.

Given a possibility distribution π encoding some available knowledge, a formula ϕ
is said to be a consequence of π, denoted by π |=π ϕ, iff Π(ϕ) > Π(¬ϕ).

Possibilistic Knowledge Bases. A possibilistic formula is a tuple 〈ϕ, α〉 where ϕ is
an element of L and α ∈ (0, 1] is a valuation of ϕ representing N(ϕ). Note that no
formula can be of type 〈ϕ, 0〉 as it brings no information. Then, a possibilistic base
K = {〈ϕi, αi〉, 1 ≤ i ≤ n} is a set of possibilistic formulas.

An important notion that plays a central role in the inference process in the one of
strict α-cut. A strict α-cut, denoted by Kα, is a set of propositional formulas defined
by Kα = {ϕ : 〈ϕ, β〉 ∈ K and β > α}. The strict α-cut is useful to measure the
inconsistency degree of K defined by Inc(K) = max{α : Kα is inconsistent }.

If Inc(K) = 0 then K is said to be completely consistent. If a possibilistic base
is partially inconsistent, then Inc(K) can be seen as a threshold below which every
formula is considered as not enough entrenched to be taken into account in the inference
process. More precisely, we define the notion of core of a knowledge base as the set of
formulas with a necessity value greater than Inc(K), i.e.,

Core(K) = KInc(K) = {ϕ : 〈ϕ, α〉 ∈ K and α > Inc(K)}
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A formula ϕ is a consequence of a possibilistic base K , denoted by K 5π ϕ, iff
Core(K) 5 ϕ.

Given a possibilistic base K , we can generate a unique possibility distribution where
interpretations ω satisfying all propositional formulas in K have the highest possible
degree π(ω) = 1 (since they are fully consistent), whereas the others are pre-ordered
w.r.t. highest formulas they falsify. More formally:

∀ω ∈ Ω, πK(ω) =

{
1 if ∀〈ϕ, α〉 ∈ K, ω |= ϕ
1−max{αi : 〈ϕi, αi〉 ∈ K,ω � ϕi} otherwise.

The following completeness and soundness result holds:

K 5π ϕ iff πK |=π ϕ.

2.2 Merging Possibilistic Belief Bases

Let us consider a multi-set of possibilistic belief bases E = {K1, . . . ,Kn} and their
associated possibilistic distributions π1, . . . , πn, each of these bases representing the
local point of view associated with a single source. The aim of belief merging is to
compute an unique possibilistic distribution, denoted π⊕, representing a global and con-
sistent point of view among pieces of information provided by sources, even if some of
these sources contradict each others. The most common approach to merge possibilis-
tic knowledge bases is the one presented in [BDKP00, BDKP02]. These strategies are
close to the ones introduces in [KPP02] in the case of merging classical non prioritized
propositional belief bases.

Generally speaking, most common belief merging operators, denoted Δ, are divided
in two steps. First, all interpretations are rank ordered with respect to individual sources.
In the framework of possibilistic logic, this step is performed quite straightforwardly
since each possibilistic belief base induces an unique possibilistic distributions over in-
terpretations. Then, ranks individually computed are aggregated among all belief bases
to merge, using an aggregation operator denoted ⊕, to associate a global rank to each
considered interpretations: these ranks allow to induce a global order, denoted in this
paper <π⊕ , where preferred interpretations are usually considered as models of the re-
sult of merging, denoted Δ⊕(E). This distribution finally induces a possibilistic belief
base, denoted K⊕, representing the result of merging. Obviously, several aggregation
operators are possible, depending on expected properties for the result of merging.

In the context of possibilistic logic, several aggregation function were discussed
in [BDKP02] to compute the value of π⊕(ω) from the νE(ω) = 〈π1(ω), . . . , πn(ω)〉
vector. These operators were divided into several categories: conjunctive (adequate
when the sources are consistent), disjunctive (adequate when the sources are conflict-
ing), idempotent (ignoring the redundancies) and reinforcement (seeing redundancies
as confirmation).

Generally speaking, any function ⊕ which respects the following conditions can be
considered a possibilistic aggregating function:

1. ⊕(1, . . . , 1) = 1
2. If ∀1 ≤ i ≤ n, ai ≥ bi then ⊕(a1, . . . , an) ≥ ⊕(b1, . . . , bn)
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Note that clearly, many aggregation operators are possible to combine initial distri-
butions, offering different behaviours in computing the result of merging. The most
common operators used in the context of the possibilistic merging are the following
ones:

– the minimum:⊕min(π1, . . . , πn) = min(π1, . . . , πn);
– the product:⊕prd(π1, . . . , πn) = n

√
Ππi;

– the maximum:⊕max(π1, . . . , πn) = max(π1, . . . , πn);
– the dual product:⊕dpr(π1, . . . , πn) = 1− n

√
Π(1− πi);

– the probabilistic sum: ⊕prs(π1, . . . , πn) = 1−Π(1− πi);
– the averaging:⊕ave(π1, . . . , πn) = Σπi/n.

In particular, this paper focuses on the minimum-based, the maximum-based and the
product-based merging operators.

Moreover, a syntactic counterpart of possibilistic merging operators was introduced
in [BDPW99, BDKP02]. Namely, authors show that the result of merging can be char-
acterized by the belief base B⊕ defined as follows:

B⊕ = {(Dj, 1−⊕(x1, . . . , xn)) : j = 1, . . . , n}

where Dj are disjunctions of size j between formulas φi obtained from each Ki and
xi = 1− αi if φi ∈ Dj , xi = 1 otherwise.

Desterecke et al. [DDC09] proposed another way of merging possibilistic bases on
the ground of maximal coherent subsets which is closer to what is usually done in
propositional logic.

2.3 Interval-Based Possibilistic Logic

Interval-based possibilistic logic was introduced in [BHLR11]. This framework can be
described as a generalization of possibilistic logic, where uncertainty associated to be-
liefs is represented by the means of an interval of I = [α, β] ⊆ [0, 1] instead of a
number. The intuitive meaning behind this interval is that the real value of uncertainty
is unknown and belong to the interval. A more detailed discussion on imprecise possi-
bilisties can be found in [CRP12].

The set of intervals of [0, 1] is denoted by I. An interval based possibility distribu-
tion, denoted by πI , is then also described by the means of intervals of I. This induces a
partial pre-ordering among the set of interpretations of Ω. More precisely, an interpreta-
tion ω is said to be preferred to ω′, denoted by ω � ω′, iff β < α′ where πI(ω) = [α, β]
and πI(ω′) = [α′, β′].

A first approach to compute possibility and necessity measures is to use the notion
of compatible possibility distribution. Formally, a classical possibility distribution π is
said to be compatible with πI iff ∀ω ∈ Ω, π(ω) ∈ πI(ω). The non finite set of all com-
patible possibility distributions obtained from πI is denoted by Cmp(πI). Possibility
and necessity measures are then defined as follows:

ΠI(ϕ) = [minπ∈Cmp(πI) Π(ϕ),maxπ∈Cmp(πI) Π(ϕ)]
NI(ϕ) = [minπ∈Cmp(πI) N(ϕ),maxπ∈Cmp(πI) N(ϕ)]
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As it is shown in [BHLR11], these measures can be characterized by the means of
operations on intervals:

ΠI(ϕ) = M{πI(ω) : ω ∈ Ω,ω |= ϕ}
NI(ϕ) = 17ΠI(¬ϕ)

whereM{I1, . . . , In} = [max{α1, . . . , αn},max{β1, . . . , βn}] with Ii = [αi, βi] and
17 [α, β] = [1− β, 1 − α].

Interval-Based Possibilistic Bases. A syntactic representation of interval-based pos-
sibilistic logic is obtained by associating necessity-values, in the form of intervals, to
formulas. An interval-based possibilistic base, denoted IK, is thus defined as:

IK = {〈ϕ, I〉, ϕ ∈ L and I ∈ I}

Likewise possibility distributions, a compatible possibilistic base can be obtained from
an interval-based possibilistic base by replacing each interval-based possibilistic for-
mula 〈ϕ, I〉 by a standard possibilistic formula 〈ϕ, δ〉 where δ ∈ I . The non-finite set of
all possible standard possibilistic bases compatible with an interval-based possibilistic
base IK is denoted by Cmp(IK). Two particular compatible bases are IK lb = {〈ϕ, α〉 :
〈ϕ, [α, β]〉 ∈ IK}, IKub = {〈ϕ, β〉 : 〈ϕ, [α, β]〉 ∈ IK}, which are respectively ob-
tained by selecting either lower or upper bounds of intervals.

Like in the standard possibilistic logic, interval-based possibilistic bases can be par-
tially inconsistent. As it is shown in [BHLR11], the interval-based inconsistency degree
can be equivalently computed in the two following ways:

Inc(IK) = {Inc(K) : K ∈ Cmp(IK)}
= [Inc(IK lb), Inc(IKub)]

This central notion allows to characterize the interval-based syntactic inference which
can intuitively be defined by considering all compatible bases:

IK |=c φ iff Core(IK) 5 φ iff ∀K ∈ Cmp(IK), Core(K) 5 φ

where Core(IK) = {ϕ : 〈ϕ, I〉 ∈ IK and Inc(IK) � I}.

3 A Semantic Approach to Interval-Based Possibilistic Merging

In this section, we propose a general semantic approach to merge interval-based possi-
bility distributions. Let E = {IK1, . . . , IKn} be a multi-set of n interval-based possi-
bilistic bases. From E, we can derive a family of interval-based possibility distributions
πI
1 . . . πI

n , each IKi inducing an unique interval-based possibility distribution πI
i . This

step allows to locally rank order each interpretation ω of Ω with respect to each IKi.
To compute the result of merging E, we now need to aggregate all intervals associated
to each interpretation ω to obtain a global ordering over Ω. We introduce the notion of
interval-based aggregation operator, denoted by⊕I , and then denote by πI

⊕ the interval-
based possibility distribution obtained by aggregating all distributions obtained from E
with ⊕.
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In this framework, the real uncertainty value associated to a formula is unknown, and
may be any value of the interval. Therefore, a first approach to define an aggregation
operator on intervals is to take into account each possible combination of all existing
standard distributions compatible with interval-based distributions to consider. Namely:

Definition 1. Let πI
1 , . . . , π

I
n be interval-based possibility distributions and let ⊕ be

a possibilistic aggregation operator, then an interval-based possibilistic aggregation
operator⊕I based on ⊕ can be defined as follows:

⊕I(πI
1 (ω), . . . , πI

n(ω)) =
⋃

πi∈Cmp(πI
i )

{⊕(π1(ω), . . . , πn(ω))}.

However, the previous definition is not helpful computationally speaking. Indeed, the
number of compatible possibility distributions being infinite, computing the result of
merging is a difficult problem. We introduce a first characterisation of aggregating inter-
vals, when considering the minimum-based, the maximum-based and the product-
based operations, which only relies on considering lower and upper bounds of intervals.
Moreover, the following proposition shows that in these cases, the value respectively as-
sociated to each interpretation ω of Ω by πI

⊕ constitutes an interval. Namely:

Proposition 1. LetπI
1 , . . . , π

I
n ben interval-based possibility distributions, let⊕I be an

interval-based aggregation operator relying on the minimum-based, the maximum-
based or the product-based classical possibilistic operator and let πI

⊕ be the interval-
based possibility distribution obtained by considering⊕I , then:

πI
⊕(ω) = ⊕I(πI

1 (ω), . . . , πI
n(ω)) = [⊕(α1, . . . , αn),⊕(β1, . . . , βn)]

where for each i = 1 . . . n, πI
i (ω) = [αi, βi].

Obviously, many other definitions of ⊕I are possible. We then propose three intuitive
requirements for an interval-based aggregation operator. Formally:

1. ⊕I(I1, . . . , In) is an interval;
2. ⊕I([1, 1], . . . , [1, 1]) = [1, 1];
3. If ∀1 ≤ i ≤ n, Ii � I

′
i then ⊕I(I1, . . . , In) �⊕I(I ′1, . . . , I

′
n).

The first requirement means that the result of aggregating some intervals should also be
an interval. The second requirement says that if each source agrees that ω is fully pos-
sible, then the result of aggregation should confirm it. The last says that if each source
prefers ω to ω′, then the result of aggregation should prefer so. The following result
shows that any interval-based aggregation operator based on a classical aggregation
operator straightforwardly ensures the two last requirements. Namely:

Proposition 2. Let ⊕ be a n-ary function from [0, 1]n to [0, 1]. If ⊕ is a possibilistic
aggregation operator, then ⊕I (given by Definition 1) satisfies conditions 2 and 3.

In a general case, Condition 1 is not guaranteed. However, when considering the
minimum-based, the maximum-based or the product-based aggregation operations,
the three requirements are satisfied. Namely:
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Proposition 3. Let⊕min,⊕max and⊕prd be respectively the n-ary minimum-based,
the maximum-based and the product-based classical aggregation operations. Then
⊕I

min, ⊕I
max and ⊕I

prd satisfy conditions 1-3, and are interval-based possibilistic ag-
gregation operators.

One can remark that this approach of aggregating interval-based possibility distribu-
tions generalizes aggregation operations defined in the classical case, since in the ex-
treme case, where all intervals provided by sources are only singletons, the possibility
distribution ⊕I recovers the results provided by ⊕. More formally:

Proposition 4. In the case where intervals within each πI
i obtained from E only con-

sist in singletons (namely for all πI
i obtained from E, for all ω, πI

i (ω) = [α, α]) then:
i) each πI

i obtained from E has a unique compatible possibility distribution πi and
ii) πI

⊕(ω) = ⊕I(πI
1 (ω), . . . , πI

n(ω)) = ⊕(π1(ω), . . . , πn(ω)), where is⊕I an interval-
based aggregation operator based on the classical aggregation operator ⊕, and each
πi is the unique classical distribution compatible with the respective interval-based
distribution πI

i .

Let us illustrate these definitions with the following example:

Example 1. Let π1, π2 and π3 be three possibility distributions such that:

ω π1 π2 π3

ω1 [.1, .3] [.4, .6] [.7, .9]
ω2 [.4, .5] [.4, .5] [.4, .5]
ω3 [.4, .5] [.7, .8] [1, 1]
ω4 [.1, .2] [.1, .5] [.1, .8]

Considering merging operators relying respectively on the minimum-based, the
product-based and the maximum-based operations, we obtain the following results:

ω ⊕min ⊕prd ⊕max

ω1 [.1, .3] [.303, .545] [.7, .9]
ω2 [.4, .5] [.4, .5] [.4, .5]
ω3 [.4, .5] [.654, .736] [1, 1]
ω4 [.1, .2] [.1, .430] [.1, .8]

Note that considering the interval-based comparative relation �, πI
⊕ only induces a par-

tial pre-order over interpretations ω of Ω (different comparative relations are possible
but are out of the scope of this paper, see [BHLR11] for more details). This result al-
lows to provide a result for the merging of E without focusing on each combination of
all possible classical distributions compatible with considered interval-based distribu-
tions. As a corollary, this result also shows that aggregating interval-based possibility
distribution can be achieved within only two calls to classical aggregating operations,
respectively on lower and upper bounds of intervals.

In the classical possibilistic case, merging operators, relying on standard aggregation
operators, are divided into several non-exclusive families. Since these definitions do not
hold anymore when considering interval-based possibilistic degrees, we thus provide
their counterparts in the interval based possibilistic framework. Formally:
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Definition 2. Let I = [α, β] and I ′ = [α′, β′] be intervals and let ⊕I be a possibilistic
merging operator, then ⊕I is said to be:

1. conjunctive iff ∀I ∈ I, I ⊕I [1, 1] = [1, 1]⊕I I = I
2. disjunctive iff ∀I ∈ I, I ⊕I [1, 1] = [1, 1]⊕I I = [1, 1]
3. idempotent iff ∀I ∈ I, I ⊕I I = I
4. reinforcement iff ∀I, I ′ ∈ I s.t. I, I ′ �= [1, 1] and I, I ′ �= [0, 0] then

(I ⊕I I ′)α ≤ min(Iα, I
′
α) and (I ⊕I I ′)β ≤ min(Iβ , I

′
β)

5. averaging iff ∀I ∈ I,min(Iα, I
′
α) ≤ (I ⊕I I ′)α ≤ max(Iα, I

′
α) and

min(Iβ , I
′
β) ≤ (I ⊕I I ′)β ≤ max(Iβ , I

′
β)

where Iα and Iβ are respectively the lower bound and the upper bound of an interval
I .

From these definitions, and from previous results introduced in this paper, one can re-
mark that several families of interval-based aggregation operators extend properties as-
sociated with the classical families on which they are based. Namely:

Proposition 5. Let π1, . . . , πn be n interval-based possibility distributions and let ⊕I

be a possibilistic merging operator. If ⊕ is conjuctive (resp. disjunctive, or idempotent)
then ⊕I is conjuctive (resp. disjunctive, or idempotent).

Let us illustrate this fact with the following example:

Example 2. Let us consider again Example 1. On this example, we have:

– The interpretation ω3 is associated with merged value of [1, 1] for the disjunctive
operator⊕I

max;
– The interpretation ω2 has a merged value of [.4, .5] for the idempotent operators
⊕I

min, ⊕I
prd,⊕I

max.

4 A Syntactic Counterpart

In this section, we provide some syntactic counterparts to the general semantic approach
introduced previously.

The definitions given in the previous section allow to define, from the sources, a
possibility value for every interpretations. The result of the merging operation is thus
define as the interpretations maximal according to their possibility values.

Definition 3. Let IK1, . . . , IKn be interval-based possibilistic knowledge bases where
π1, . . . , πn being their respective interval-based possibility distributions and let ⊕I

o be
a possibilistic merging operator, then:

ΔI
o (IK1, . . . , IKn) = {π(ω) = ⊕I

o (π1, . . . , πn)}

There is also a syntactic counterpart to this definition. One can build an interval-based
possibilistic base out of the sources the following way:
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Definition 4. Let IKi = {〈ϕ, Iji 〉} be interval-based possibilistic knowledge bases and
let ⊕I

o be a possibilistic merging operator, then:

�I
o (IK1, . . . , IKn) = {(Dj, 17⊕I

o (x1, . . . , xn)) : j = 1, . . . , n}

and Dj are disjunctions of size j between formulas ϕi taken from different IKi and
xi = 17 [αi, βi] if ϕi ∈ Dj and xi = [1, 1] otherwise.

The consequences from the syntactic merging operation are equivalent to the results of
the semantic merging operation.

Proposition 6. Let IKi = {〈ϕ, Iji 〉} be interval-based possibilistic knowledge bases,
let φ be a formula and let ⊕I

o be a possibilistic merging operator, then:

ΔI
o (IK1, . . . , IKn) |= φ iff �I

o (IK1, . . . , IKn) 5 φ

Now, let us instantiate three particular cases of Definition 4, namely with⊕I
min (interval-

based idempotent conjunctive merging), ⊕I
max (interval-based idempotent disjunctive

merging),⊕I
prd (interval-based product-based conjunctive merging).

We restrict ourselves to the case of two knowledge IK1 and IK2 (since all operations
are associative and commutative).

For the interval-based idempotent conjunctive operation, we have:

ΔI
min(IK1, IK2) = {〈ϕi, [1, 1] �min([1, 1] � Ii, [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1] �min([1, 1] � Ij , [1, 1])〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1] �min([1, 1] − Ii, [1, 1] − Ij)〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= {〈ϕi, I1〉 : 〈ϕi, I1〉 ∈ IK1}
∪ {〈ψj , Ij〉 : 〈ψj , Ij〉 ∈ IK2}
∪ {〈ϕi ∨ ψj ,max(Ii, Ij)〉 :

〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

we can check that is equivalent to

ΔI
min(IK1, IK2) = IK1 ∪ IK2

For the interval-based idempotent disjunctive operation, we have:

ΔI
max(IK1, IK2) = {〈ϕi, [1, 1] �max([1, 1] � Ii, [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1] �max([1, 1] � Ij , [1, 1])〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1] �max([1, 1] − Ii, [1, 1] − Ij)〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= {〈ϕi, [0, 0]〉 : 〈ϕi, I1〉 ∈ IK1}
∪ {〈ψj , [0, 0]〉 : 〈ψj , Ij〉 ∈ IK2}
∪ {〈ϕi ∨ ψj ,min(Ii, Ij)〉 :

〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

we can check that is equivalent to

ΔI
max(IK1, IK2) = {〈ϕi ∨ ψj ,min(Ii, Ij)〉 : 〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}
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For the interval-based product-based conjunctive merging operation, we have:

ΔI
prd(IK1, IK2) = {〈ϕi, [1, 1] � (([1, 1] � Ii) × [1, 1])〉 : (ϕi, Ii) ∈ IK1}

∪ {〈ψj , [1, 1] � ([1, 1] × ([1, 1] � Ij))〉 : (ψj , Ij) ∈ IK2}
∪ {〈ϕi ∨ ψj , [1, 1] � (([1, 1] � Ii) × ([1, 1] � Ij))〉 :

(ϕi, Ii) ∈ IK1 and (ψj , Ij) ∈ IK2}
= IK1 ∪ IK2

∪ {〈ϕi ∨ ψj , [αi + αj − αi × αj , βi + βj − βi × βj ]〉 :
〈ϕi, I1〉 ∈ IK1 and 〈ψj , Ij〉 ∈ IK2}

Example 3. Let E = {IK1, IK2} be a belief profile with IK1 = {〈a, [.5, .7]〉,
〈¬a ∨ b, [.4, .8]〉} and IK2 = {〈¬b ∨ a, [.2, .3]〉, 〈¬b, [.6, .7]〉}. The interval-based pos-
sibility distribution is given in the following table.

ωi πI(IK1) πI(IK2) ⊕I
min ⊕I

max ⊕I
prd

a ∧ b [1, 1] [.3, .4] [.3, .4] [1, 1] [.547, .632]
a ∧ ¬b [.2, .6] [1, 1] [.2, .6] [1, 1] [.447, .774]
¬a ∧ b [.3, .5] [.3, .4] [.3, .4] [.3, .5] [.3, .447]
¬a ∧ ¬b [.3, .5] [1, 1] [.3, .5] [1, 1] [.547, .707]

In the following, we give the resulting base for our three main operators, the result of
the disjunction of a ∨ ¬b and ¬b ∨ a and ¬a ∨ b and ¬b are not given as they produce
4.

– �I
min(IK1, IK2) = IK1 ∪ IK2 ∪ {〈a ∨ ¬b ∨ a, [.5, .7]〉, 〈a ∨ ¬b, [.6, .7]〉}

– �I
max(IK1, IK2) = {〈a ∨ ¬b ∨ a, [..2, .3]〉, 〈a ∨ ¬b, [.5, .7]〉}

– �I
prd(IK1, IK2) = IK1 ∪ IK2 ∪ {〈a ∨ ¬b ∨ a, [.368, .542]〉, 〈a ∨ ¬b, [.553, .7]〉}

One can easily verify that the syntactic and semantic operators have the same conse-
quences.

5 Conclusion

This paper addressed a first approach for merging interval-based possibilistic belief
bases. More precisely, we have extended the possibilistic merging operators introduced
in the classical case to handle the concept of interval-based possibilistic degrees. This
way, our study shown that convenient and intuitive properties associated to this frame-
work still hold when dealing with more tricky issues, in particular the problem of belief
merging.

As a work on progress, we study the links between our framework and results intro-
duced in [DP11]. A future work is to consider the belief revision problem in the context
of interval-based possibilistic logic. This problem consists in integrating a higher pri-
ority information in a belief base, such that this information must be deduced from the
base after the process. Despite this problem is a particular case of merging, namely a
belief base is merged with a higher priority piece of information, it still raises some
difficult issues.
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De Baets, B. (eds.) Eurofuse 2011. AISC, vol. 107, pp. 31–42. Springer, Heidelberg
(2011)

[DDC09] Destercke, S., Dubois, D., Chojnacki, E.: Possibilistic information fusion using
maximal coherent subsets. Transactions on Fuzzy Systems 17(1), 79–92 (2009)

[DLP94] Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, vol. 3, pp. 439–513 (1994)

[DP11] Dubois, D., Prade, H.: Generalized Possibilistic Logic. In: Benferhat, S., Grant, J.
(eds.) SUM 2011. LNCS, vol. 6929, pp. 428–432. Springer, Heidelberg (2011)

[EKM10] Everaere, P., Konieczny, S., Marquis, P.: Disjunctive merging: Quota and gmin
merging operators. Artificial Intelligence Journal 174(12-1), 824–849 (2010)

[EKM12] Everaere, P., Konieczny, S., Marquis, P.: Compositional belief merging. In: Pro-
ceedings of International Conference on Principles of Knowledge Representation
and Reasoning (to appear, 2012)

[GLB06] Guilin, Q., Liu, W., Bell, D.A.: Merging stratified knowledge bases under con-
straints. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 348–
356 (2006)
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Abstract. Terrain networks (or complex networks) is a type of relational infor-
mation that is encountered in many fields. In order to properly answer questions
pertaining to the comparison or to the merging of such networks, a method that
takes into account the underlying structure of graphs is proposed. The effective-
ness of the method is illustrated using real linguistic data networks and artificial
networks, in particular.

1 Introduction

Complex networks [1,19] are graphs with non-trivial topological features. In the follow-
ing we prefer to call them “terrain networks” to emphasize the fact that they represent
practical data, supposed to have some underlying structure. Moreover, it is a counterpart
of the French “graphe de terrain”. Such networks can be observed in many areas ranging
from computer sciences to biology, linguistics, and social sciences. Examples of such
graphs are synonymy networks between words, social relation networks between peo-
ple, or protein interaction networks. One of their main features is to be globally sparse
and locally dense. In other words, while their number of edges is relatively small, they
exhibit a rather high transitivity (or clustering) coefficient (defined by the ratio of the
number of 3-cliques over the number of paths of length 2). Moreover their diameter, i.e.
the average minimal path length between pairs of vertices, is very small [19] and the
degree distribution follows approximately a power law [1].

Since terrain networks are more and more common pieces of information, general in-
formation processing issues, such as comparison or fusion of two networks, make sense
for them and become increasingly important. In this paper, we consider the particular
case of special interest where the two graphs have the same vertices. This means that
the two graphs represent data pertaining to the same items, objects, or agents. Gener-
ally speaking, the comparison of graphs may be envisaged in different ways. One may
compare two graphs either at the edges and vertices level [8,11,16,18,20], or in terms
of global structural property measures [10,12]. None of these two classes of methods
appear to be fully satisfactory for comparing terrain networks sharing the same vertices.
Indeed, the former do not take into account the latent similarity information since they
work in a too local way, while the latter only deals with global properties without any
reference to the fact that the graphs share common vertices.

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 459–472, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Terrain networks depart from other graphs often encountered in AI. Indeed, graph
representations are associated with taxonomies or ontologies, or with Bayesian nets.
They encode various forms of generic knowledge, possibly pervaded with uncertainty,
which can be applied to factual pieces information describing the particular situations to
reason about. This contrasts with terrain networks which gather what may be called data
information. They are made of collections of pieces of factual information, but we are
no longer primarily interested in just answering requests pertaining to particular indi-
viduals. The emphasis is rather on the way the pieces of information are related together
and are organized in cluster-like structures. Thus, for instance, the proximity between
two graphs is not only a matter of identity of edges, but should also take into account
the neighborhood structures of vertices. For example, a non-edge may “virtually” exist
as an edge if there are short paths linking its vertices.

In this paper, we propose a general procedure that labels each pair of vertices in a
graph, i.e., each edge, as well each non-edge, in terms of two categories: the edge (or
the non-edge) is “confirmed”, or is “not-confirmed” (in Section 2). Thus, the existence,
or the non-existence of an edge between two vertices is confirmed, or not according
to their neighborhood situation that in some sense support or not this existence, or
non-existence. Then, we show the interest of such labeled graphs for comparing (in
Section 3) or merging (in Section 4) terrain network information. Related work is dis-
cussed in Section 5.

2 What a Data Information Graph May Mean

In this section, data information graphs, issued from terrain networks, are considered as
knowledge representation entities, which can be manipulated in order to lay bare some
hidden part of the information. In such graphs, the information conveyed is not just
made of a collection of links existing between certain pairs of vertices, but should also
take into account the graph topology in the neighborhood of pairs of vertices. Before
presenting a labeling procedure whose purpose is to confirm (or not) each edge and
each non-edge in a graph in order to bring back the graph topology information, we
first restate general knowledge representation concerns by examining in what respect a
graph may be correct or complete.

2.1 Correctness and Completeness of a Graph

If the information given by a graph is correct and complete, any edge expresses the
certainty of the existence of a relation between the two associated vertices, and the
absence of edge between two vertices asserts that there is no relation between them.
However, if a graph is only correct, each edge is there for sure, but the absence of an
edge may be as much the result of missing information as acknowledging the certainty
of the absence of link. Conversely, if a graph is only complete, no edge are missing, but
some may be questionable. Then the absence of an edge reflects the certainty that there
is no relation.

Also note that in case some prior knowledge exists about the graph, it may be used
for revising it. Thus knowing, for instance, that the graph should represent a transitive
relation, two situations would be of interest. If the graph is correct but incomplete, then
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it can be replaced by its transitive closure. If the graph is incorrect but complete, we
may try to remove a minimal number of edges to make the relation transitive (but in
general the solution is not unique!). However, in the following we do not assume the
availability of such strong prior knowledge.

When comparing or merging two graphs, assuming that the information conveyed by
each of them is correct, and/or complete is a crucial issue. Indeed in such operations,
knowing of which edge, or non-edge one may be certain is clearly important. When
a graph is correct and complete, any edge (resp. non-edge) is certain and has a status
denoted 1! (resp. 0!). When a graph is incorrect and incomplete, any edge (resp. non-
edge) is uncertain and has a status denoted 1? (resp. 0?). Table 1 sums up the four
possible cases. More generally, the status of edges or non-edges in a graph may differ
from one pair of vertices to another. Indeed it may be interesting to have such a binary
“uncertainty” information for each edge and non-edge. Thus, for instance, a graph may
be complete and correct, except for some pairs of vertices.

Table 1. Four possible cases of graph correctness and completeness, and there counterpart in
terms of edges and non-edges certainty

edge non-edge
correct and complete 1! 0!
incorrect but complete 1? 0!
correct but incomplete 1! 0?
incorrect and incomplete 1? 0?

In a similar spirit, in the next section, we propose a method for providing a similar
type of status to each edge, or non-edge in a graph, and thus laying bare information that
is not explicitly given with the graph. According to the neighborhood (possibly taken
in a broad sense) of each pair of vertices, the corresponding edge (resp. non-edge) will
be labeled 1? (resp. 0?) and regarded as “uncertain”, or will be labeled 1! (resp. 0!) and
regarded as “confirmed”. Mind however that this is not genuine uncertainty informa-
tion, but rather a way to bring back some “global information” to a local level. Indeed,
roughly speaking the idea is to label with 0? the non-edge that are inside clusters, and to
label with 1? the edges outside clusters, thus acknowledging the “imperfect transitivity”
that may exist in the graph (and which is at work in the clusters).

2.2 Labeling Edges and Non-edges for Reflecting the Graph Topology

In a graph, two vertices may be regarded as being “close” according to the graph topol-
ogy between them, independently of the existence or not of a direct edge between them.
For example, in the Figure 1 the pair a is not an edge, but the two vertices are close in
the graph in the sense that there are 3 paths of length 2 between them. This contrasts
with the situation of the non-edge b. Conversely the pair d is an edge, but the two ver-
tices are relatively distant since there is no path between them other than this edge itself.
Lastly, the edge c is “strengthened” by the existence of 3 paths of length 2 between its
two vertices.

The above observation is important when comparing and fusing two graphs (the
problems considered in the next sections). Indeed, if a pair of vertices is an edge in one
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Fig. 1. A toy example of non-edge labeled “0?” (a) or “0!” (b), and edges labeled “1?” (d)
or “1!” (c)

graph but not in the other one, the situation is not the same if this edge is like d or like
c in Figure 1 (and similarly for the non-edge, if it is like a or like b). So, we propose to
label each pair of vertices according to their closeness to be judged from the topology
of the graph in the neighborhood of the two vertices, using the conventions summarized
in Table 2. Several ways of evaluating closeness may be considered.

Table 2. Labeling procedure of edges and non-edges, according to a closeness evaluation of pairs
of vertices

edge closeness label
0 0 0! not an edge, and not close in the graph.
0 1 0? not an edge, but close in the graph.
1 0 1? an edge, but not close in the graph.
1 1 1! an edge, and close in the graph.

Evaluating Closeness. We now describe two methods that one may think of for eval-
uating closeness of a pair of vertices on an undirected graph G = (V,E) (with V the
vertex set and E the edge set).

Triangle. A very simple method could be to consider as “close” every pair of vertices
that are connected by a path of length 2. An edge will be confirmed (i.e. 1!) if it is sup-
ported by at least one path of length 2 ; or “unconfirmed” if there is no path of length 2
between the two corresponding vertices (i.e. 1?). Similarly a pair of non adjacent ver-
tices, will be labeled as unconfirmed (i.e. 0?) if they are connected by at least one path
of length 2, or as “confirmed” (i.e. 0!) if they are not connected by a path of length 2.

Confluence. Short length random walks may provide a more accurate method for mea-
suring the closeness of two vertices in a graph [6,7,13]. Let G = (V,E) be an undirected
and reflexive1 graph. Let us imagine a walker wandering on G:

– At a time t ∈ N, the walker is on one vertex u ∈ V ;
– At time t + 1, the walker can reach any neighboring vertex of u, with a uniformly

distributed probability.

1 i.e. each vertex is connected to itself. If such self-loops do not exist in the data, they may be
generally added without loss of information.
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Table 3. Number and proportion of each label for edges and non-edges on 3 different terrain
networks (V.rob, V.pwn, V.wikt) and one random network (robR, Erdös Rényi random graph
of the same size than V.rob, average on 20 realizations)

V.rob V.pwn V.wikt robR

tr
ia

ng
le

1! 20442 76.9% 37473 91.6% 2886 34.8% 187.0 0.7%
1? 6125 23.1% 3446 8.4% 5407 65.2% 26380.0 99.3%
0? 395555 1.5% 527336 0.8% 33685 0.1% 190910.8 0.7%
0! 26636924 98.5% 65884901 99.2% 26884813 99.9% 26841568.2 99.3%

5
-c

on
fl

. 1! 22726 85.5% 36760 89.8% 2864 34.5% 4032.2 15.2%
1? 3841 14.5% 4159 10.2% 5429 65.5% 22534.8 84.8%
0? 2844964 10.5% 3744489 5.6% 250177 0.9% 4795066.4 17.7%
0! 24187515 89.5% 62667748 94.4% 26668321 99.1% 22237412.6 82.3%

1
0

-c
on

fl
. 1! 23143 87.1% 36887 90.1% 2980 35.9% 4657.2 17.5%

1? 3424 12.9% 4032 9.9% 5313 64.1% 21909.8 82.5%
0? 5282868 19.5% 7350176 11.1% 513214 1.9% 8292114.4 30.7%
0! 21749611 80.5% 59062061 88.9% 26405284 98.1% 18740364.6 69.3%

2
0

-c
on

fl
. 1! 22405 84.3% 36741 89.8% 3056 36.9% 39.8 0.1%

1? 4162 15.7% 4178 10.2% 5237 63.1% 26527.2 99.9%
0? 8055282 29.8% 12241791 18.4% 948772 3.5% 10567375.4 39.1%
0! 18977197 70.2% 54170446 81.6% 25969726 96.5% 16465103.6 60.9%

This process is called a simple random walk [3]. It can be defined by a Markov chain
on V with a |V | × |V | transition matrix [G]:

[G] = (gu,v)u,v∈V , with gu,v =

⎧⎨⎩
1

dG(u)
if (u, v) ∈ E,

0 else.

where dG(u) = |{v ∈ V/(u, v) ∈ E}| is the degree of vertex u in the graph G. Since
G is reflexive, each vertex has at least one neighbor (itself) thus [G] is well-defined.
Furthermore, by construction, [G] is a stochastic matrix: ∀u ∈ V,

∑
v∈V gu,v = 1. The

probability P t
G(u�v) of a walker starting on vertex u to reach a vertex v after t steps is:

P t
G(u�v) = ([G]t)u,v (1)

One can then prove [7], with the Perron-Frobenius theorem [17], that if G is connected
(i.e., there is always at least one path between any two vertices), reflexive and undi-
rected, then ∀u, v ∈ V :

lim
t→∞

P t
G(u � v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V dG(x)

(2)

It means that when t tends to infinity, the probability of being on a vertex v at time
t does not depend on the starting vertex but only on the degree of v. In the following
we will refer to this limit as πG(v). If G is composed of several connected components
then for any pair (u, v) of vertices, we have two possible cases:
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– u and v are in the same connected component G′ = (V ′, E′), with V ′ ⊆ V and
E′ ⊆ E, then equation 2 applies to this subgraph:

lim
t→∞

P t
G(u � v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V ′ dG(x)

(3)

– u and v are in distinct components, then for all t, P t
G(u � v) = 0, therefore

limt→∞ P t
G(u � v) = 0.

So the probability P t
G(u � v) converges to a limit that only depends of vertex v degree.

However the way this probability converges to the limit heavily depends on the topology
of the graph between the two vertices. If u and v are connected by many short paths the
probability will converge to the limit by above, whereas if there is no short path between
the two vertices it will converge to the limit by below. Indeed when t is small the more
interconnections there are between u and v, the higher the probability of reaching v
from u. Therefore we define the t-confluence Γ (G, u, v, t) between two vertices u, v
on a graph G as follows:

Γ (G, u, v, t) =

⎧⎪⎪⎨⎪⎪⎩
P t
G(u�v)

πG(v)
if u and v are in the same

connected component,

0 else.

(4)

We propose to consider as “close” each pair of non adjacent vertices (u, v) having a t-
confluence greater than 1. In other words, we consider u and v as close if the probability
of reaching v from u in a t step random walk is greater than the probability to be on v
after an infinite walk. (u, v) is then labeled 0?. Conversely non-adjacent vertices (u, v)
having a t-confluence smaller than 1 are labeled 0!.

In order to measure the closeness of an edge (u, v), the t-confluence is computed on
the graph G where the considered edge has been removed. This removal is important,
otherwise almost all edges would have a strong confluence, as the edge may be used by
the random walker to go from u to v in few steps. The idea is to measure the closeness of
the two vertices according to the graph structure and, this independently of the existence
of an edge between them. Therefore, an edge (u, v) is labeled 1! if it has a t-confluence
on the graph G′ = (V,E \ {(u, v)}) greater than 1. In other words, without going
through this edge, a random walker is more likely to be in v after t steps starting from
u, than to be on v after un infinite walk. Conversely an edge (u, v) is labeled 1? if the
t-confluence of (u, v) on the graph G′ = (V,E \ {(u, v)}) is smaller than 1.

There are other possible ways of evaluating the closeness. Any measure of similarity
between two vertices in a graph may be use, and in particular the ones developed to ad-
dress the problem of link prediction [9]. However we are interested in binary evaluation
of similarity between to vertices, and there is rarely a natural threshold of gradual simi-
larity measure. Also any robust graph clustering method [15] may be used: two vertices
can be considered as close if and only if they are in a common cluster. However, note
that the idea of short random walks proposed by [7] has been used in graph clustering
method [13].
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Illustration. On the toy example of Figure 1, with the t-confluence labeling procedure,
as one may expect, all edges are confirmed (1!), except edge d, and all non-edges are
confirmed (0!), except the pair a. It has been verified for t between 2 and 20. With
the triangle method, the results are the same except that many other non-edges are
labeled 0?. Indeed edge d creates many paths of length 2 between pairs of vertices that
are not adjacent. Note that, for the same pairs of vertices, these paths of length 2 do not
lead to a value of the t-confluence larger than 1.

Table 3 gives the number of pairs for each label on 3 different terrain networks3,4

(the graph characteristics are given in table 10) and on one random network. Labels
are computed according to the “triangle” method, abd with the 5, 10 and 20-confluence
methods. As can be seen, the orders of magnitude of the four different labeled categories
of pairs of edges are similar with the different methods. We note that most of the edges
are confirmed in the two first terrain networks. This is not the case on the 3rd one where
only about one third are confirmed. This is due to the fact that the synonyms network
extracted from Wiktionary is very incomplete [14], which is not the case for the two
previous networks that are based on linguistic resources that have been established for
a long time. In the case of random network, the reported results are the average of the
results obtained for 20 random networks of the same size, and we can notice that almost
none of the edges are confirmed.

Note that if a vertex is connected to a large part of all the vertices, the triangle method
would abusively consider as close all the pairs of neighbors of this vertex. This would
not be generally the case with the random walk method.

Note also that these labeling methods may be restricted if one know, for instance,
that the graph is fully correct. Indeed it will mean that every edge exists even if it is not
confirmed by the topology. Therefore the labeling procedure could then be only applied
to non-edges, and all edges are labeled 1!. Conversely, if one knows that the graph is
complete, and thus all non-edges are certain and labeled 0!, while edges are labeled
according to the graph topology.

3 Comparing Graphs Having the Same Vertex Set

Comparing graphs is important in order to determine to what extent they contain the
same information. In the following, we assume that the two graphs have the same set
of vertices. In practice, this assumption mean that we compare two pieces of network
information pertaining to the same set of objects or agents. For example, if a first graph
represents friendship relation among a set of people, and a second one represents co-
working relation inside the same set of people, one may be interested to know to what
extent these two relations are similar, or if one relation is included (or “almost” in-
cluded) in the other.

In the following subsection, we propose a naive method for comparing two graphs by
counting the number of matches “at the edge level”. We shall see the limitation of this
method. We then use the labeling method described in the previous section to compare
graphs in a more robust way.
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3.1 Classical Agreement Measure between Edges

A simple method for comparing two graphs (having the same set of vertices) is to
count on how many edges and no-edges they agree. Table 4 summarizes the 4 different
cases: ok+ is the number of edges present in both graphs, ok− the number of non-edges
present in both graphs, whereas ko1is the number of pairs that are linked by an edge in
the first graph, but not in the second one, and ko2the number of pairs that are linked by
an edge in the second graph, but not in the first one.

Table 4. Fusion of two graphs G1 = (V,E1) and G2 = (V,E2)

E1 E1

E2 ok+ ko1
E2 ko2 ok−

We use Cohen’s kappa coefficient [4] as a simple measure of agreement between
two graphs. It is a inter-judge agreement measure. Here we consider each graph as a
judge that annotates each pair of vertices either as “edge” or “non-edge”. It is defined
as follows:

Kappa(G1, G2) =
p0 − pe
1− pe

(5)

with:
p0 =

1

ω
.(ok+ + ok−) =

1

ω
.(|E1 ∩ E2|+ |E1 ∩ E2|) (6)

pe =
1

ω2
.(|E1|.|E2|+ |E1|.|E2|) (7)

It has the advantage to take into account the agreement on edges (ok+) and on non-
edges (ok−), without being influenced by the strong difference that exists in a terrain
network between the size of these two sets (graphs are usually sparse, and thus there
are many more non-edges than edges). Another alternative could be to measure the
agreement only on edges, by using Jaccard coefficient

Jaccard(G1, G2) =
|E1 ∩ E2|
|E1 ∪ E2|

=
ok+

ko1 + ko2 + ok+
(8)

between the two sets of edges. However we observe that these two measures behave in
similar ways in the experimentations.

The column “edges” in Table 7 gives the values of the kappa and Jaccard coeffi-
cients on two pairs of synonymy networks. One can already note that this value are
low, which seems to attest a low agreement between synonymy networks. We comment
these results more in detail in the section 3.3.

To demonstrate that the two above coefficients alone are insufficient for account-
ing for a global topological similarity of the graphs beyond the exact comparison pair
of vertices by pair of vertices, we consider the following experiment. We build a graph
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(a) g = (V,E) (b) g1 = (V,E1) (c) g2 = (V,E \ E1)

Fig. 2. Artificial graphs with 3 clusters. g1 and g2 are subgraph of g and share the same 3 clusters
but they have no edge in common.

g = (V,E) with 3 groups of 30 vertices, where edges are built randomly with a prob-
ability 0.4 between two vertices of the same group, and 0.01 between vertices of two
different groups. We then build a new graph g1 = (V,E1) by randomly choosing half
of the edges of g, and a new graph g2 = (V,E2) such that E2 = E \E1. These 3 graphs
are plotted in Figure 2. The kappa measure between the two graphs g1 and g2 is neg-
ative (≈ −7.5 on 20 realizations) and the Jaccard measure equals 0. This would mean
that these two graphs are completely dissimilar, which is true in the sense that they
have no edges in common, however it is clearly wrong with respect to the topological
“organization” they share. Indeed two vertices that are in the same group in the first
graph will also be in the same group in the two other graphs. The above comparison
methods have the drawback of only comparing graphs as “bag of edges”, thus ignoring
the topological structure created by these edges. We propose in the next section to use
the labeling method presented in section 2.2 in order to propose a similar comparison
method which does not suffer of this drawback.

3.2 Using the Graph Topology Information

The labeling procedure described in Section 2.2 brings back topology information on
each pair of vertices. We use this labeling procedure for comparing the two graphs,“pairs
of vertices by pairs of vertices”, without now missing the graph topology information.
More precisely, if a pair is an edge confirmed by the structure in a graph (label 1!), but is
a non-edge not confirmed by the structure in the other graph (label 0?) we consider that
the two graphs do not disagree on this pair. Indeed the two vertices are topologically
“close” in both graphs, even if they are adjacent in one, but not in the other. Similarly, if
a pair is an unconfirmed edge in one graph (label 1?) and a confirmed non-edge in the
other (label 0!), we consider that the two graphs agree on this pair as the two vertices are
not “close” in any of the two graphs. The table 5 summarized the 16 different possible
cases for a pair of vertices. We can now use the same kappa or Jaccard coefficients as in
the previous section, but now by counting as agreeing pairs those labeled 0? in a graph
and 1! in the other, or 0! in one and 1? in the other.

When we compare the two random graphs described in the previous subsection (see
Figure 2) with this method that takes into account topology information, they appear
to have a kappa (and a Jaccard) coefficient much higher than initially. Table 6 gives
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Table 5. Comparison of two labeled graph

1! 1? 0? 0!

1! ok+ ok+ ok+ ko1
1? ok+ ok+ ko1 ok−

0? ok+ ko2 ok− ok−

0! ko2 ok− ok− ok−

⇒
1 0

1 ok+ ko1
0 ko2 ok−

average comparison results for 20 random graphs using either the triangle or the 5-
confluence method. We can see that they have no edges in common (by construction)
but many of the edges present and confirmed (1!) in one graph are pairs of “close”
vertices in the other (0?). We can also note that, as expected, the confluence method
gives better results.

Table 6. Robust comparison of the graphs g1 and g2 of the Figure 2. Average value on 20
realizations.

(a) triangle, kappa = 0.651

1! 1? 0? 0!

1! 0.0 0.0 127.3 58.9
1? 0.0 0.0 58.1 35.2
0? 128.7 59.8 390.2 302.3
0! 55.2 35.5 313.5 2440.2

(b) 5-confluence, kappa = 0.881

1! 1? 0? 0!

1! 0.0 0.0 229.2 5.0
1? 0.0 0.0 31.9 13.3
0? 207.2 54.2 775.1 67.5
0! 3.1 14.4 58.1 2545.7

3.3 Comparison of Synonymy Networks

We illustrate the method proposed here on the comparison of pairs of synonymy net-
works. In such networks, one may expect that almost all edges are correct, even if few
ones are “questionable”, and that a large part of the non-edges are not related at all,
even if some pairs of words are very close (but not really synonymous). We consider
the networks V.rob and V.lar, two synonymy networks between French verbs2 and the
networks V.wikt and V.pwn, two synonymy networks between English verbs3. Table 7
gives the comparison results for the 2 French synonymy networks (V.rob, V.lar) and
the 2 English synonymy networks (V.wikt and V.pwn). Since these different networks
do not have exactly the same lexical coverage, the comparison is based on the com-
mon sets of vertices. As can be seen, there is only a weak agreement between pairs of
graphs, when they are compared by the classical agreement measure. This may not be

2 V.rob and V.lar are two synonymy networks between French verbs. There where digitalized
from paper dictionaries (Robert and Larousse dictionaries) by an IBM/ATILF research unit
partnership http://www.atilf.fr/spip.php?article208

3 V.wikt and V.pwn two synonymy networks between English verbs. V.wikt has been ex-
tracted from the English wiktionary by [14] whereas V.pwn is built from Princeton Wordnet
[5] synsets. A synset is a set of interchangeable words that denotes a meaning or a particular
usage. The vertices of the network V.pwn are the lemmas of the verbs present in Wordnet, and
there is an edge (x, y) ∈ E if and only if x and y belong to at least one common synset

http://www.atilf.fr/spip.php?article208
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expected, especially for the French graphs since they are obtained from authoritative
general purpose dictionaries. Once the topology information is taken into account, we
observe a strong agreement between the French graphs (up to 95 %) in the sense that
almost all the edges of one graph are retrieved in the other as 0? labeled non-edges.
In other words, most of the initial disagreements pertain to pairs of vertices that are
close in both graphs (even if they are not adjacent in one). For the English graph, the
agreement remains relatively weak. This is due to the fact that the wiktionary is very
sparse, and not built at all in the same way as Wordnet. In Wordnet each edge reflects
a common belonging to a synset, while the wiktionary graph edges are built by non
expert contributors (without special care about synsets).

Table 8 provides similar comparisons on fictitious random graphs having the same
overlaps as the French and English pairs of graphs previously considered. The obtained
results strongly contrast with the previous ones, as expected. The random graphs still
finally reach another form of strong agreement (now on “non-edges”), but only because
the initial disagreement pertain to pairs that are not close in both graphs even if they are
adjacent in one graph.

Table 7. Synonymy network comparison. Column “edges” gives the measures without the label-
ing procedure. (0?, 1!) (resp. (0!, 1?)) indicates the number of pairs of vertices labeled 0? (resp.
0!) in one graph and 1! (resp. 1?) in the other.

edges triangle 5-confl. 10-confl. 20-confl.

V
.r
ob

vs
.V

.l
a
r Kappa 0.518 0.876 0.937 0.953 0.946

Jaccard 0.350 0.781 0.882 0.910 0.898
(0?, 1!) - 11769 16310 17401 16878
(0!, 1?) - 2860 1129 881 1050

V
.w

ik
t

vs
.V

.p
w
n Kappa 0.202 0.498 0.600 0.636 0.673

Jaccard 0.113 0.332 0.429 0.467 0.507
(0?, 1!) - 2511 3878 4485 5027
(0!, 1?) - 2246 1919 1667 1641

Table 8. Graphs comparison results on Erdös Rényi random network having the same initial
overlaps as the real networks. Average on 20 realizations.

edges triangle 5-confl. 10-confl. 20-confl.

ro
bR

vs
.l
a
rR

kappa 0.518 0.850 0.803 0.763 0.719
Jaccard 0.351 0.739 0.671 0.617 0.562
(0?, 1!) - 801.4 1193.0 1097.8 0.2
(0!, 1?) - 16001.4 13734.2 12235.0 12209.9

w
ik
tR

vs
.p

w
n
R Kappa 0.203 0.716 0.592 0.541 0.595
Jaccard 0.113 0.558 0.420 0.371 0.424
(0?, 1!) - 13.1 68.5 165.1 106.5
(0!, 1?) - 11865.0 10734.4 9919.4 10678.6
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4 Fusing Graphs

The same idea can also be used when merging two graphs. Let G1 = (V,E1) and
G1 = (V,E2) be two graphs. A first type of merging could be to add, to the intersection
of the two edge sets, the pairs of vertices that are labeled 1! in one graph and 0? in the
other, i.e.,

E′
∩ = (E1 ∩ E2) ∪ {pairs labeled (1!, 0?)}

Another type of merging (more tolerant) consists in removing the pairs of vertices la-
beled 1? in one graph and 0! in the other from the union of the edge sets of the two
graphs, i.e.,

E′
∪ = (E1 ∪ E2) \ {pairs labeled (1?, 0!)}

These two fusion procedures are such that the resulting edge sets E′
∩ and E′

∪ satisfy the
following inclusions:

E1 ∩ E2 ⊂ E′
∩ ⊂ E′

∪ ⊂ E1 ∪ E2

This is illustrated with two graphs about e-mail relations between people. More pre-
cisely, we build an ego-centric social network from someone mailbox: each e-mail ad-
dress u (which means more or less a person) is connected to another e-mail address v,
iff u is the author of -at least- one mail having v as recipient (“To” or “CC”). It may
be worth of interest to fuse such a graph built from all e-mails during a given year with
the same graph built from e-mails of the previous year: we can then see which parts
of the graph have been stable during these two years. The results corresponding to two
social networks built from the e-mails of one person are shown in Table 9. Note that

Table 9. Example of fusion of two social networks built from the e-mails of one of the paper’s
author for two different years. Pedigrees of these graphs are in Table 10: mail10 and mail11.

1! 0? 0!
1! 65 16 32
0? 13 80 99
0! 38 110 1377

|E1 ∩E2| = 65
|E′

∩| = 94
|E′

∪| = |E1 ∪E2| = 164

Table 10. Pedigrees of 6 different terrain networks, n and m are respectively the number of
vertices and edges, 〈k〉 is the average degree of vertices, nlcc and mlcc are the number of vertices
and edges in the largest connected component,C is the transitivity coefficient of the graph, Llcc

is the average shortest path between any two nodes of the largest connected component, λ is
the coefficient of the best fitting power law of the degree distribution and r2 is the correlation
coefficient of the fit.

n m 〈k〉 nlcc mlcc C Llcc λ r2

V.rob 7357 26567 7.48 7056 26401 0.12 4.59 −2.01 0.93
V.lar 5377 22042 8.44 5193 21926 0.17 4.61 −1.94 0.88

V.wikt 7339 8353 2.84 4285 6093 0.11 8.98 −2.40 0.94
V.pWN 11529 40919 8.16 9674 39459 0.24 4.66 −2.10 0.92

mail10 385 603 3.14 383 602 0.10 3.71 −1.11 0.73
mail11 391 671 3.45 389 671 0.06 3.32 −0.93 0.55
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here the second fusing method E′
∪, will give the same result as E1 ∪ E2 since there is

no edges labeled 1? as all the edges may be considered as “sure” since they rely on at
least one existing e-mail. As can be seen 29 edges (16 + 13) are restored on top of the
edge sets intersection. Thus, they should not be count among the real change that took
place between the two years.

5 Related Work

In the literature, the idea of graph comparison may refer to various problems and ap-
proaches. A first group of works deals with approaches that evaluate to what extent two
graphs are isomorphic, or looks for approximate isomorphisms between two graphs.
Measuring how two graphs are similar is a common problem for querying graph data-
bases. Some methods [8,18] use an edit distance between graphs. Other approaches
measure the size of the maximal common subgraph[16,20]. A related problem is to find
a matching, or approximate matching between two graphs [11]. It consists in looking
for a correspondence between vertices of one graph and vertices of the other such that
the two graphs appears as similar as possible. The kappa and Jaccard measures (be-
tween not-labeled graphs) proposed in section 3.1 are comparable to such approaches
in the “very” particular case where graphs have exactly the same vertices, and where
each vertex cannot be put in correspondence with another one but itself. Besides, [2]
proposes a different way of measuring graph similarity. This method gives a similarity
score between any vertex of one graph and any vertex of a second graph. It applies be-
tween any pair of graphs, and does not consider any correspondence between vertices
of the two graphs. So it may be applied when the two graphs are on the same set of ver-
tices, however this knowledge is not taken into account by the method. A second group
of works proposes to compare graphs by global statistical features [10], or compare
graphs by measuring the number of occurrences of small particular sub-graphs [12].
To the best of our knowledge there was no work interested in comparing two graphs
having the same set of vertices and taking into account the graph structure, if we except
maybe [6].

6 Concluding Remarks

This paper has presented a method that provides an augmented view of a undirected
graph which acknowledges its underlying structure. This augmented view turns to be
useful when comparing or fusing graphs, as illustrated in this paper, when we need to
go beyond a purely “edge” by “edge” pairing. An obvious line for further research is
the extension of the approach to weighted and/or directed graphs.
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Abstract. Knowledge is an important component in many intelligent systems.
Since items of knowledge in a knowledge base can be conflicting, especially if
there are multiple sources contributing to the knowledge in this base, signifi-
cant research efforts have been made on developing inconsistency measures for
knowledge bases and on developing merging approaches. Most of these efforts
start with flat knowledge bases. However, in many real-world applications, items
of knowledge are not perceived with equal importance, rather, weights (which
can be used to indicate the importance or priority) are associated with items of
knowledge. Therefore, measuring the inconsistency of a knowledge base with
weighted formulae as well as their merging is an important but difficult task. In
this paper, we derive a numerical characteristic function from each knowledge
base with weighted formulae, based on the Dempster-Shafer theory of evidence.
Using these functions, we are able to measure the inconsistency of the knowledge
base in a convenient and rational way, and are able to merge multiple knowl-
edge bases with weighted formulae, even if knowledge in these bases may be
inconsistent. Furthermore, by examining whether multiple knowledge bases are
dependent or independent, they can be combined in different ways using their
characteristic functions, which cannot be handled (or at least have never been
considered) in classic knowledge based merging approaches in the literature.

Keywords: Knowledge Bases, Characteristic Function, Inconsistency Measure,
Merging, Evidence Theory.

1 Introduction

Logic based knowledge representation is used in many cases, such as software require-
ments [20], expert systems [22], belief merging [9]. In most of the applications, logic
based knowledge bases (KB) are flat, that is all formulae in the base are equally im-
portant. However, in some applications, such as requirement engineering [21], some
formulae can be more important than others. So ranked or stratified knowledge bases
are commonly deployed. The importance of a formula can also be modelled by attach-
ing a numerical value to the formula, which in some case is explained as a weight.

When a numerical value is attached to a logical formula, this value can be explained
in many different ways according to the semantics of this value. Some typical explana-
tions are belief degrees, preference degrees, truth degrees, trust degrees. In this paper,
we consider a numerical value as a weight indicating the importance (or priority) of
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this formulae w.r.t other formulae in the same knowledge base and we study both flat
KBs in which all the logical formulae are viewed as equally important and weighted
knowledge bases in which each formula is associated with a weight.

It should be noted that the meaning of a knowledge base having weights attached
to them is different from the weighted knowledge bases discussed in [10], in which a
weighted knowledge base means that a knowledge base as a whole is attached with a
weight representing the relative degree of importance (or reliability) of the source from
which the knowledge base is derived.

There are two frequently studied topics for knowledge bases. One is on measuring
the inconsistency of a knowledge base (e.g., [20,8]) and the other is the merging of mul-
tiple knowledge bases e.g., [9,12,13]). Most of these approaches deploy logic-based
formalisms, even when priorities or degrees of certainty are involved. An interesting
phenomenon is that although these two issues are closely related (if we view the aim
of merging is to obtain a consistent knowledge base), their solutions usually follow dif-
ferent paths. Therefore, a natural question is: can we develop an underlying formalism
which can handle both of the issues simultaneously?

Another potential problem on merging multiple knowledge bases is that, so far in
the literature, merging of knowledge bases does not really consider any possible depen-
dency relationship among knowledge bases, which subsequently causes the difficulty
of justifying a merging result. For example, if two experts have provided their knowl-
edge in terms of weighted formulae, and one expert has been heavily influenced by
another, then their knowledge bases are not totally independent. That is if K1,K2 are
the two knowledge bases from these two experts, and they are represented as K1 =
K2 = {(α, 0.8), (β, 0.2)}, then the merging result K should be identical to either of
them, if K1 and K2 are dependent. On the other hand, if K1 and K2 are independent,
then we should expect that the weight on α being increased and the weight on β being
decreased. Formally, K should be {(α, x), (β, y)} such that x > 0.8 and y < 0.2. That
is, whether some knowledge bases have a dependent relationship should influence how
merging should be carried out. However, this issue has not been explicitly discussed in
classical logic based approaches for merging knowledge bases in the literature. Thus,
another question could be asked here is: can we reflect the information on dependency
relationship among knowledge bases when performing merging?

In this paper, we provide positive answers for both questions mentioned above. We
propose a characteristic function for a knowledge base with formulae having weights,
and a flat knowledge base is treated as a special case where all formulae having the
same weight. The characteristic function entails all the information of a knowledge
base provides and hence can be used to measure the inconsistency of the knowledge
base and to handle the merging of multiple knowledge bases. Characteristic functions
are defined in the form of basic probability assignments in the Dempster-Shafer (DS)
theory [3,4,23,15,16].

Example 1. In [18,19,17], an intelligent surveillance system was designed and devel-
oped. In this project, interested events are recognized from analyzing data coming from
different sources (e.g., cameras) and these event descriptions usually contain uncer-
tain information, such as, an gender-profile event describes a passenger as a Male with
70% probability and the rest is unknown. Hence DS theory is introduced to model the
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uncertainty implied in the events and combination approaches are applied to combine
gender recognition events descriptions from multiple sources. Furthermore, a knowl-
edge base is developed which contain inference rules for inferring high-level events
from a set of elementary recognized events.

Rules are elicited from domain experts. Each expert provides its knowledge contain-
ing multiple rules, each of which is attached with a weight indicating its importance.
Examples of simple rules are as follows:

Let a denote a passenger A is a male, b denote A is shouting, c denote A is dangerous,
and d denote A is an old lady. Then an expert’s knowledge could containK = {(a∧b→
c, 0.8), (d∧b→ ¬c, 0.2)} which is semantically explained as if a passenger A is a Male
and A is shouting, then passenger A is dangerous, if a passenger A is an old lady and A
is shouting, then passenger A is not dangerous.

Here, numerical values 0.8 and 0.2 are the weights of these two rules, which says
that a rule indicating a dangerous event is more important than otherwise1.

When different experts provide their knowledge in terms of such knowledge base
with weighted formulae, we need to merge them. This can be achieved by using their
corresponding characteristic functions.

This characteristic function approach also absorbs some nutrients from papers such as
[1,13,14], etc., in which methods of inducing probability measures from knowledge
bases are studied that demonstrates the demand and usefulness of quantitative methods
on managing knowledge bases.

The main contribution of this paper is as follows:

– From a knowledge base with weighted formulae, a unique basic belief assignment
(bba) can be recovered. To the best of our knowledge, there is no paper having
emphasized this point.

– We show that the associated bba could be used to measure the inconsistency of
the knowledge base and to merge multiple knowledge bases in a quantitative way
that is beyond the usual approaches in the knowledge base inconsistency measure /
merging fields.

– We show that merging of knowledge bases can take into account dependencies
between knowledge bases using this approach.

The rest of the paper is organized as follows. In Section 2, we recall some basic concepts
and notations of propositional language, knowledge bases and the evidence theory. In
Section 3, we define the characteristic function of a knowledge base. In Section 4, we
provide an inconsistency measure of a knowledge base and show some rational proper-
ties of this inconsistency measure. In Section 5, we discuss various merging methods of
knowledge bases using their characteristic functions. Finally, in Section 6, we conclude
the paper.

1 It should be noted that this weight about the importance of the rule should not be confused
with a statistical value (such as 0.8) showing the likelihood of how dangerous a shouting male
passenger could be. The later is explained as that when a male passenger is shouting, there is
80% chance this will lead to a dangerous consequence.
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2 Preliminaries

2.1 Knowledge Bases

Here we consider a propositional language LP defined from a finite set P of propo-
sitional atoms, which are denoted by p, q, r etc (possibly with sub or superscripts). A
proposition φ is constructed by atoms with logical connectives¬,∧,∨ in the usual way.
An interpretation w (or possible world) is a function that maps P onto the set {0, 1}.
The set of all possible interpretations on P is denoted as W . Function w ∈ W can be
extended to any propositional sentence in LP in the usual way, w : LP → {0, 1}. An
interpretation w is a model of (or satisfies) φ iff w(φ) = 1, denoted as w |= φ. We use
Mod(φ) to denote the set of models for φ.

For convenience, let form({w1, · · · , wn}) be the formula whose models are exactly
w1, · · · , wn, and also form(A) denote a formula μ such that Mod(μ) = A.

A flat knowledge base K is a finite set of propositional formulas. K is consistent iff
there is at least one interpretation that satisfies all the propositional formulas in K .

A weighted knowledge base K is a finite set of propositional formulas, each of which
has a numerical value, called weight, attached to it i.e., {(μ1, x1), · · · , (μn, xn)} where
∀i, 0 < xi ≤ 1. In fact, the requirement xi ∈ [0, 1] can be relaxed to allow xi taking
any positive numerical value. In that case, a normalization step will reduce each xi to a
value within [0, 1]. Obviously, if all xis are equivalent, then a weighted knowledge base
is reduced to a flat knowledge base. Conversely, a flat knowledge base can be seen as
a weighted knowledge base, e.g., K = {(μ1,

1
n ), · · · , (μn,

1
n )}. Therefore, for conve-

nience, in the rest of the paper, we refer to all knowledge bases as weighted knowledge
bases.

For a weighted knowledge baseK = {(μ1, x1), · · · , (μn, xn)}, we let K̂ = {μ1, · · · ,
μn} be its corresponding flat knowledge base in which the weights of all the formulae
of K are removed. For a formula μ, we write μ ∈ K if and only if μ ∈ K̂. In addition,
K is consistent if and if K̂ is consistent.

If a classical knowledge base K̂ is inconsistent, then we can define its minimal in-
consistent subsets as follows [2,7]:

MI(K̂) = {K̂ ′ ⊆ K̂|K̂ ′ 5 ⊥ and ∀K̂ ′′ ⊂ K̂ ′, K̂ ′′ �5 ⊥}.

A free formula of a knowledge base K̂ is a formula of K̂ that does not belong to
any minimal inconsistent subset of the knowledge base K̂ [2,7]. A free formula in a
weighted knowledge base K is defined as a free formula of K̂.

2.2 Evidence Theory

We also recall some basic concepts of Dempster-Shafer’s theory of evidence.
Let Ω be a finite set called the frame of discernment (or simply frame). In this paper,

we denote Ω = {w1, . . . , wn}.

Definition 1. A basic belief assignment (bba for short) is a mapping m : 2Ω → [0, 1]
such that

∑
A⊆Ω m(A) = 1.
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A bba m is also called a mass function when m(∅) = 0 is required. A vacuous bba m
is such that m(Ω) = 1.

If m(A) > 0, then A is called a focal element of m. Let F (m) denote the set of the
focal elements of m. That is, if A is a focal elements of m, then A ∈ F (m).

Let⊕ be the conjunctive combination operator (or Smets’ operator [24]) for any two
bbas m,m′ over Ω such that

(m⊕m′)(C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m(A)m′(B), ∀ C ⊆ Ω.

Particularly, we have:

(m⊕m′)(∅) =
∑

A⊆Ω,B⊆Ω,A∩B=∅
m(A)m′(B). (1)

A simple bba m such that m(A) = x,m(Ω) = 1−x for some A �= Ω is denoted as Ax.
The vacuous bba can thus be denoted as A0 for any A ⊂ Ω. By abuse of notations, we
also use μx to denote the simple bba Ax where A = Mod(μ). Note that this notation,
i.e., Ax, is a different from the one defined in [5] such that Ax in our paper should be
denoted as A1−x based on explanations in [5].

3 Characteristic Functions

In this section, we define characteristic functions for knowledge bases.
A first and direct thought for characteristic function of a knowledge base K =

{(μ1, x1), · · · , (μn, xi)} is to define it as follows.

m′
K(Mod(μi)) = xi, 1 ≤ i ≤ n.

But this characteristic function definition brings many problems. For example, it is dif-
ficult to use this characteristic function to measure inconsistency of a single knowledge
base. Since the usual way of defining inconsistency of a mass function is its empty mass.
Hence, a simple definition of the inconsistency of K could be:

Inc′(K) = (m′
K ⊕m′

K)(∅).

That is, the internal inconsistency of K is the empty mass when K interacts with itself,
i.e., m′

K ⊕m′
K .

But it does not give reasonable results. For instance, if m′
K is such that m′

K({w1,
w2}) = m′

K({w1, w3}) = m′
K({w2, w3}) = 1

3 , then we have (m′
K⊕m′

K)(∅) = 0. But
the corresponding knowledge base K̂ = {(form({w1, w2}), 13 ), (form({w1, w3}), 1

3 ),
(form({w2, w3}), 13 )} is not consistent since form({w1, w2}) ∧ form({w1, w3}) ∧
form({w2, w3}) 5 ⊥.

Therefore, we define our characteristic function for a weighted knowledge base as
follows.

Definition 2. For any weighted knowledge base K = {(μ1, x1), · · · , (μn, xi)}, its cor-
responding characteristic function is mK such that mK = ⊕n

i=1μ
xi

i .
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This characteristic function makes use of both the formulae (μi) in K and their weights
(xi), which produces a bba that is a kind of characterization of K . More precisely,
the defined characteristic function mK is unique for K . That is, if K1 and K2 are
logically different2, then mK1 should also be different from mK2 . This is ensured by
the following result [5]:

A bba m such that m(Ω) > 0 can be uniquely decomposed into the following form:

m = ⊕φ:Mod(φ)⊂Ωφ
xφ , xφ ∈ [0, 1]. (2)

That is, if mK1 = mK2 , then based on Equation 2, they have the same decomposition
and hence the same knowledge base (in a sense that vacuous information is ignored).
Equation 2 also demonstrates that the bba mK encodes all the information contained in
K . In fact, we can easily recover K from mK with a few steps. Since recovering K is
not the main focus of this paper, and due to the space limitation, the details of how to
recover μi and xi from mK is omitted here. Interested readers could be refer to [5].

A simple result about this characteristic function is shown as follows.

Proposition 1. For any weighted knowledge base K and any x such that 0 < x ≤ 1,
we have mK = mK

⋃
{�,x}.

That is, vacuous information does not change the characteristic function. This is an intu-
itive result and it does not contradict the former statement that mK induces a unique K ,
since vacuous information in K could somehow be ignored. For example, if someone
tells you: tomorrow will be either sunny or not sunny. Obviously this piece of vacuous
information could be ignored.

4 Inconsistency Measure

In this section, we use the characteristic function of a knowledge base to measure its
inconsistency. In addition, we prove that this inconsistency measure satisfies a set of
rational properties proposed in [7].

Definition 3. For any weighted knowledge base K , the inconsistency measure of K is
defined as:

Inc(K) = mK(∅).
Taking mK(∅) as the inconsistency measure for K is very natural since in DS theory,
mK(∅) is a largely used to measure the degree of conflict between beliefs of agents3.

Now we show that this definition of inconsistency satisfies some intuitive properties.
In [7], a set of properties that an inconsistency measure I for a knowledge base shall
have is proposed as follows.

Definition 4. ([7]) An inconsistency measure I is called a basic inconsistent measure
if it satisfies the following properties:

for any flat knowledge bases K,K ′ and any two formulae α, β:

2 That is, two different but logically equivalent formulas are considered equivalent here.
3 While in several papers, most notably in [11], it is argued that mK(∅) is not enough for an

inconsistency measure for bbas. However, in most applications, mK(∅) is still being used to
measure the inconsistency between bbas.
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Consistency. I(K) = 0 iff K is consistent
Normalization. 0 ≤ I(K) ≤ 1

Monotony. I(K
⋃

K ′) ≥ I(K)

Free Formula Independence. If α is a free formula of K
⋃
{α}, then I(K

⋃
{α}) =

I(K)

Dominance. If α 5 β and α �5 ⊥, then I(K
⋃
{α}) ≥ I(K

⋃
{β})

For weighted knowledge bases, the above definition should be adapted to:

Definition 5. An inconsistency measure I is called a basic inconsistent measure for
weighted knowledge bases if it satisfies the following properties:

for any weighted knowledge bases K,K ′, any two formulae α, β and any real x,
0 < x ≤ 1:

Consistency. Inc(K) = 0 iff K is consistent.
Normalization. 0 ≤ Inc(K) ≤ 1.
Monotony. Inc(K

⋃
K ′) ≥ Inc(K).

Free Formula Independence. If α is a free formula of K
⋃
{(α, x)}, then Inc(K

⋃
{(α, x)}) = Inc(K).

Dominance. If α 5 β and α �5 ⊥, then Inc(K
⋃
{(α, x)}) ≥ Inc(K

⋃
{(β, x)}).

We prove that our inconsistency measure satisfies all the above properties. In addition,
we show that our inconsistency measure satisfies a Strong Free Formula Independence
property as follows.

Strong Free Formula Independence. Inc(K
⋃
{(α, x)}) = Inc(K) if and only if α

is a free formula of K
⋃
{(α, x)}.

Proposition 2. For any weighted knowledge base K , Inc(K) is a basic inconsistency
measure. In addition, Inc(K) satisfies the Free Formula Independence property.

Proof of Proposition 2

Consistency. Inc(K) = 0 iff K is consistent.
Inc(K) = 0 iff ∀μi ∈ K ,

⋂n
i=1 μi �5 ⊥ iff K is consistent.

Normalization. 0 ≤ Inc(K) ≤ 1.
Obvious.

Monotony. Inc(K
⋃

K ′) ≥ Inc(K).
We show that for any formula α and 0 < x ≤ 1, Inc(K

⋃
{(α, x)}) ≥ Inc(K). In

fact, we have

Inc(K
⋃
{(α, x)}) = m(K

⋃
{(α,x)})(∅)

= mK(∅) +
∑

A∈F(mK),A �=∅,A∩Mod(α)=∅
mK(A)× x

≥ mK(∅)
= Inc(K),
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hence without loss of generality, assume K ′ = {(α1, x1), · · · , (αn, xn)}, we then
have

Inc(K) ≤ Inc(K
⋃
{(α1, x1)})

≤ · · ·
≤ Inc(K

⋃
K ′)

Free Formula Independence. If α is a free formula of K
⋃
{(α, x)}, then Inc(K

⋃
{(α, x)}) = Inc(K).
If α is a free formula of K

⋃
{(α, x)}, then there does not exist A ∈ F (mK) and

A �= ∅, s.t., A ∩Mod(α) = ∅, hence we have

Inc(K
⋃
{(α, x)}) = mK(∅) +

∑
A∈F(mK),A �=∅,A∩Mod(α)=∅

mK(A)× x

= mK(∅)
= Inc(K).

Dominance. If α 5 β and α �5 ⊥, then Inc(K
⋃
{(α, x)}) ≥ Inc(K

⋃
{(β, x)}).

It is straightforward from a simple fact that for any A ∈ F (mK) and A �= ∅, if
A ∩Mod(β) = ∅, then A ∩Mod(α) = ∅, hence

Inc(K
⋃
{(β, x)}) = mK(∅) +

∑
A∈F(mK),A �=∅,A∩Mod(β)=∅

mK(A) × x

≤ mK(∅) +
∑

A∈F(mK),A �=∅,A∩Mod(α)=∅
mK(A)× x

= Inc(K
⋃
{(α, x)})

Strong Free Formula Independence. Inc(K
⋃
{(α, x)}) = Inc(K) if and only if α

is a free formula of K
⋃
{(α, x)}.

It is obvious from the prove of Free Formula Independence property. �

It is worth pointing out that our inconsistency measure can be naturally used to deal
with weighted knowledge bases in addition to flat knowledge bases, while the existing
inconsistency measures based on minimal inconsistency subsets or from a classic logic-
based approach are incapable of tackling with weighted knowledge bases.

Example 2. Let K1 = {(α, 0.8), (α ∨ β, 0.2)} and K2 = {(α, 0.6), (β, 0.3), (α ∨
β, 0.1)}. Then the characteristic function of K1, i.e., mK1 , is such that

mK1(α) = 0.8,mK1(α ∨ β) = 0.2.

Hence it is easy to see that Inc(K1) = 0.
Then the characteristic function of K2, i.e., mK2 , is such that

mK2(∅) = 0.18,mK2(α) = 0.42,mK2(β) = 0.12,mK2(α ∨ β) = 0.28.

Hence we easily get Inc(K2) = 0.18.
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5 Merging

In this section, we discuss the merging of weighted knowledge bases using their char-
acteristic functions. Since characteristic functions are in the form of bbas, the merging
methods are hence based on combination rules of bbas in DS theory. There are many
different combination rules for bbas, which are similar to the many different merging
strategies for knowledge bases. For simplicity, here we only mention Dempster’s rule
and Didier & Prade’s hybrid rule.

For convenience and convention, if there is no confusion, in the following we may
use both sets and formulae, e.g., m(∅) = 0.4,m(φ) = 0.6, etc., just be noted that any
propositional formulae used in these situations, like φ, are in fact standing for Mod(φ).
Conversely, when we write K = {(A, 0.5), (B, 0.3)}, it simply means
K = {(form(A), 0.5), (form(B), 0.3)}. This short-hand notation is simply for mak-
ing the mathematical formulas shorter and does not suggest any technical changes.

The subsequent definitions use combination rules of bbas, but as our aim is to merge
knowledge bases, we will call them merging methods. Therefore, in the following, each
definition defines a merging method for merging weighted knowledge bases using their
characteristic functions. Also note that the merging methods only give the characteristic
function for the merged knowledge base since from this function, its corresponding
knowledge base can be easily induced (Equation (2), cf. [5] for details).

Definition 6. (Dempster’s Merging, [3,4,23]) Let K1,K2 be two knowledge bases and
mK1 ,mK2 be their characteristic functions, respectively, then the characteristic func-
tion mK12 of the merged knowledge base by Dempster’s combination rule is such that:

mDem
K12

(A) =

∑
B,C⊆Ω,B∩C=Am1(B)m2(C)

1−
∑

B,C⊆Ω,B∩C=∅ m1(B)m2(C)
, ∀A ⊆ Ω,A �= ∅,

mDem
K12

(∅) = 0.

Definition 7. (Dubois and Prade’s Merging, [6]) Let K1,K2 be two knowledge bases
and mK1 ,mK2 be their characteristic functions, respectively, then the characteristic
function mK12 of the merged knowledge base by DP’s combination rule is such that:

mDP (∅) = 0

mDP (A) =
∑

B,C⊆Ω,B∩C=Am1(B)m2(C)

+
∑

B,C⊆Ω,B∪C=A,B∩C=∅m1(B)m2(C), ∀A ⊆ Ω,A �= ∅

In Dempster’s merging, weights of conflicting formulae are proportionally distributed
to formulae resulted from intersection of non-conflicting formulae. Instead, in Dubois
& Prade’s Merging, weights of conflicting formulae are added to the disjunction of the
conflicting formulae.

Example 3. (Example 2 Continued) In Example 2, we have that the characteristic
function of K1, i.e., mK1 , is such that mK1(α) = 0.8,mK1(α ∨ β) = 0.2, and the
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characteristic function of K2, i.e., mK2 , is such that mK2(∅) = 0.18,mK2(α) =
0.42,mK2(β) = 0.12,mK2(α ∨ β) = 0.28, then we can get the following merging
results using the above merging methods.

Dempster’s Merging. mDem
K12

is such that

mDem
K12

(α) = 0.89,mDem
K12

(β) = 0.03,mDem
K12

(α ∨ β) = 0.08

DP’s Merging. mDP
K12

is such that

mDP
K12

(α) = 0.788,mDP
K12

(β) = 0.024,mDP
K12

(α ∨ β) = 0.188

Note that the above merging methods are not idempotent but have a reinforcement
effect. That is, in general, we do not have Δ(K,K) = K when Δ is a merging op-
erator defined by one of the above merging methods. Reinforcement merging is ratio-
nal when the knowledge bases to be merged are from distinct sources. However, for
knowledge bases from nondistinct sources (i.e., sources providing possibly overlapping
knowledge [5]), we intuitively require the merging to be idempotent. To the best of our
knowledge, we do not see any idempotent merging methods for knowledge bases in the
literature, here we provide an idempotent merging method based on the cautious rule
of combination introduced in [5].

Definition 8. (Denœux’s Cautious Merging) Let K1,K2 be two knowledge bases and
mK1 ,mK2 be their characteristic functions, s.t., mK1 = ⊕A⊂ΩA

x1
A and mK2 =

⊕A⊂ΩA
x2
A , respectively, then the characteristic function mK12 of the merged knowl-

edge base by Denœux’s cautious combination rule is such that (again notice that our
AxA setting is different from Denœux’s):

mDen
K12

= ⊕A⊂ΩA
max(x1

A,x2
A), ∀A ⊂ Ω.

Example 4. (Example 2 Continued) In Example 2, the characteristic function of K1,
i.e., mK1 , is such that mK1(α) = 0.8,mK1(α ∨ β) = 0.2, and the characteristic
function of K2, i.e., mK2 , is such that mK2(∅) = 0.18,mK2(α) = 0.42,mK2(β) =
0.12,mK2(α ∨ β) = 0.28, then the characteristic function of the merging result using
Denœux’s merging method, i.e., mDen

K12
, is as follows.

mDen
K12

(∅) = 0.24,mDen
K12

(α) = 0.56,mDen
K12

(β) = 0.06,mDen
K12

(α ∨ β) = 0.14.

From the characteristic functions, the corresponding knowledge base for mDen
K12

is:

KDen = {(α, 0.8), (β, 0.3)}.

For Denœux’s merging method, we have the following result.

Proposition 3. Let two knowledge bases K1,K2 be K1 = {(μ1, x1), · · · , (μn, xn)}
and K2 = {(φ1, y1), · · · , (φm, ym)}, then the merging result of K1 and K2 using
Denœux’s merging method is K12 = {(ψ1, z1), · · · , (ψt, zt)} such that K12 is a subset
of K1

⋃
K2 satisfying the following conditions:
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– if μi ≡ 4, 1 ≤ i ≤ n, then (μi, xi) �∈ K12; if φj ≡ 4, 1 ≤ j ≤ m, then
(φj , yj) �∈ K12,

– if μi ≡ φj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and xi > yj (resp. yj > xi), then (φj , yj) �∈
K12 (resp. (μi, xj) �∈ K12),

– all other elements of K1 or K2 are in K12.

Proof of Proposition 3: From K1 = {(μ1, x1), · · · , (μn, xn)} and
K2 = {(φ1, y1), · · · , (φm, ym)}, we get mDen

K1
= ⊕n

i=1μ
xi

i and mDen
K2

= ⊕m
j=1φ

yj

j .
Let {φj1 , · · · , φja} be the set of all formulae each of which is in K2 but not in K1,

then we have mDen
K1

= ⊕n
i=1μ

xi

i ⊕ φ0
j1
⊕ · · · ⊕ φ0

ja
.

Similarly, let {μi1 , · · · , μib} be the set of all formulae each of which is in K1 but not
in K2, we have mDen

K2
= ⊕m

j=1φ
yj

j ⊕ μ0
i1
⊕ · · · ⊕ μ0

ib
.

Hence from Definition 8, it is straightforward to see that the merged characteristic
function corresponds to the knowledge base K12 which is exactly the same as stated in
Proposition 3. �

Proposition 3 makes it convenient to solve the merging of nondistinct knowledge bases.
For instance, from Proposition 3, it is easy to obtain KDen = {(α, 0.8), (β, 0.3)} from
K1 = {(α, 0.8), (α ∨ β, 0.2)} and K2 = {(α, 0.6), (β, 0.3), (α ∨ β, 0.1)}.

In the literature, a basic assumption for knowledge base merging is that the knowl-
edge bases to be merged should be consistent. This assumption is often not applicable
in practice, as argued in many research work discussing the inconsistency of a knowl-
edge base (e.g., [20,7,8]). An obvious advantage of our merging methods is that they
do not require this assumption. That is, even for inconsistent knowledge bases, it is
still possible to merge them and obtain rational fusion results. The second advantage is
that we can deal with knowledge bases from nondistinct sources. Usually logic-based
merging methods do not consider whether the knowledge bases to be combined are
from distinct sources. In this paper, however, if the information sources are known to
be distinct, then Dempster’s merging method, Smets’s, Yager’s, or Dubois and Prade’s
merging method can be chosen, whilst if the sources are known to be nondistinct, then
Denœux’s merging method can be selected. This differentiation of merging methods
based on dependency relationship among knowledge bases is obviously more suitable.
Of course, proper methods should be developed to judge whether two knowledge bases
are dependent or not, but this topic is beyond the scope of this paper.

6 Conclusion

In this paper, we introduced a bba based characteristic function for any weighted knowl-
edge base which take flat knowledge bases as a special case. We then used the character-
istic function to measure the inconsistency of the knowledge base and proved that this
inconsistency measure follows a set of rational properties. We also deployed the charac-
teristic functions to merge multiple knowledge bases. Different merging methods were
provided corresponding to different combination rules of bbas. These merging methods
could provide some advantages than the existing merging methods, e.g., the ability to
merge inconsistent knowledge bases, the use of distinctness information of knowledge
sources, etc.
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An obvious future work is to apply these methods in intelligent surveillance appli-
cations. In addition, extending this approach to stratified/prioritized/ranked knowledge
bases is also an interesting topic with the help of the non-Archimedean infinitesimals
[13]. Furthermore, providing comparisons with related works, e.g., our inconsistency
measure vs. inconsistency measures in [7]; our merging methods vs. the existing merg-
ing methods and merging postulates [9], etc., is a promising issue.
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Abstract. The incessant need for energy has raised its cost to unexpected 
heights. In response to this situation, many projects have been started in order to 
save energy. In this context, RIDER project tries to develop a weak system de-
pendency of energy management framework which could be applied for differ-
ent systems. Particularly, our RIDER Decision Support System (DSS) focuses 
on proposing generic control rules and optimization techniques for energy man-
agement systems. Therefore, the DSS aims to compute the most relevant target 
values (i.e., setpoints) to be provided to the energy control system and then, im-
proving thermal comfort sensation or reducing energy costs. Literature proposes 
reusable system independent statistical models for thermal comfort. However, 
they are not easily interpretable in terms of a preference model which makes 
control not intuitive and tractable. Since thermal comfort is a subjective multi-
dimensional concept, an interpretable and reusable preference model is intro-
duced in this paper. Multi Attribute Utility Theory (MAUT) is used for this. 

Keywords: Thermal comfort, preference model, energy control, MAUT, Cho-
quet integral. 

1 Problematic Introduction 

Total building energy consumption accounts for about 40% of total energy demand 
and more than one half is used for space conditioning: heating, cooling, and ventila-
tion [1] [2] [3]. In the EU, about 57% of total energy consumption is used for space 
heating, 25% for domestic hot water, and 11% for electricity [4]. In response to this 
situation, many projects have been started in order to save energy. Recent studies 
have investigated efficient building control in order to find strategies that provide a 
comfortable environment from thermal, and indoor-air quality points of views, and 
minimize energy consumption at the same time [5]. Nevertheless, these optimization 
systems are strongly dependent on the energy management framework and cannot 
be applied for other systems. Indeed, they are conceived by the energy manager  

                                                           
*  This research is part of the FUI RIDER project, “Research for IT Driven EneRgy efficien-

cy” (rider-project.com). 
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depending on one building characteristics. So, its associated optimization routines are 
directly implemented on its control system and cannot be reused for further energy 
management. Additionally, these optimization routines are not supposed to be inter-
preted by human operators since they are integrated in regulation loops which made 
them necessarily dependent on the SCADA system (supervisory control and data 
acquisition). In order to solve this problem and satisfy the weak energy system de-
pendency which is required by the RIDER project, control rules should neither be too 
specific nor integrated in control loops. They must rather be a high level supervision 
rules which can be suggested to the energy manager. That’s why; we propose that the 
RIDER DSS core functionalities should rather provide qualitative recommendations 
such as suggesting the most relevant target values to the energy control system. This 
approach ensures, the control rules interpretability, as well as, the weak dependency 
of the DSS w.r.t. the energy system and its control. 

This research is part of the RIDER project and deals only with its optimization as-
pects. In this paper, we focus on a specific optimization aspect based on human’s 
thermal sensation. In fact, the notion of comfort is subjective and multidimensional. 
Subjectivity entails that comfort cannot be modeled in a deterministic way and its 
multidimensionality comes from the fact that many variables can be considered in its 
definition: temperature but also hygrometry, radiant temperature and air velocity. 
These remarks explain why providing efficient energy management for optimal com-
fort may be considered as a multicriteria decision-making process in uncertain envi-
ronment, and must be modeled as such [6]. 

The next sections discuss about the modeling and the implementation of an original 
thermal comfort function and formalize, as well, some RIDER optimization problem 
based on the aforementioned comfort function. 

This paper is organized as follows. Section 2 discusses about most common ther-
mal comfort models and their relevance when they are used in optimization process. It 
explains our choice to have a model which interprets the comfort statistical model on 
the MAUT framework. Section 3 summarizes Labreuche’s method to identify our 
thermal comfort model, the way that this method was applied and extended to build a 
comfort overall utility function in our complex context, and finally shows the useful-
ness of this new formalization to infer comfort control rules. Finally, section 4 formu-
lates some control problems based on the new thermal comfort preference model. 

2 Optimization and Comfort 

Even when no malfunctioning is detected in a heating system, i.e., temperature values 
in a building match their setpoints, two users may be more or less tolerant with regard 
to the setpoint variations and thus not equally satisfied. It can be explained by the 
more or less tolerant user’s requirements are but also by other parameters than tem-
perature which may differ from one situation to another and then contribute to differ-
ent thermal sensation. This illustrates that thermal comfort (and not only temperature) 
should be the variable to be controlled by the RIDER DSS in order to ensure building 
occupants’ satisfaction. However, comfort is a complex and subjective concept that 
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cannot be modeled as a deterministic variable. That’s why, in literature, the most 
well-known thermal comfort is based upon a statistical approach [7] [8]. 

2.1 Thermal Comfort Model Overview 

2.1.1 Comfort as a Statistical Model 
The Predicted Mean Vote PMV  [7] is the most used statistical thermal comfort in-
dex. It defines the mean thermal sensation vote on a standard 7 level scale from a 
group of approximately1300 persons. It is written as a function of 4 thermal environ-
mental variables: air temperature Ta, air humidity Hy, air velocity Va, and mean ra-
diant temperature Tr. It also includes 2 human parameters: metabolic rate Me and 
cloth index Ci. The PPD (Predicted Percentage Dissatisfied) index is based on the
PMV one and indicates the percentage of thermal dissatisfied persons. Both PMV and
PPD indexes have been used since 1995 by the NF EN ISO 7730 standard to describe 
ergonomics of thermal environments [8].  

Such a thermal comfort representation verifies the RIDER DSS weak dependency 
constraint from one hand, and captures the inherent subjectivity and uncertainty re-
lated to thermal sensation from the other hand. The statistical based thermal comfort 
modeling is the result of a sample-ballot which makes it reusable for various applica-
tion contexts. Whereas comfort is intuitively related to a preference model, the for-
malism in [7] and [8] is far away from any classical preference modeling framework.
PMV and PPD  indexes are considered as if they were outputs of any behavioral 
model associated to a physical process. In particular, interactions among comfort 
attributes are considered as if they were physical ones which is not the case. The mo-
notony of PMV and PPD  with regard to attributes variations, is not obvious and 
can only be numerically computed. As a consequence, interpreting such a model to 
support control rules design for a human operator is not so intuitive. 

2.1.2 Comfort as a Preferential Model 
The representation of preferences is a central topic in decision-making and measure-
ment theory [9]. Usually, it amounts to find a real-valued overall utility function U
such that for any pair of alternatives , 'x x X∈  where X is a set of alternatives, 

'x x (x is preferred to x’) iff ( ) ( ')U x U x≥ . When alternatives are N-dimensional 

(attribute i N∈ takes its values in i
X ), i.e.,

1

n

i

i

X X
=

= ∏ , a widely studied model is the 

decomposable model of Krantz et al. [10], where U has the form

1 1 1( , .., ) ( ( ),.., ( ))n n nU x x g u x u x=  where iu are real-valued functions. Assuming that   

is a weak order on X , it is known that a representation with g being strictly increas-

ing can be found iff   satisfies independence and X  is separable [9]. The MAUT 
[11] [12] is based upon the utility theory which is a systematic approach to quantify 
individual preferences. Utility theory consists in interpreting any measurement as a 
satisfaction degree in [0,1]  where 0 is related to the worst alternative and 1 to the best 
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one. Measurements are thus made commensurate and interpretable. In this way, a 
utility ( )i iu x  is attached to each measurement ix . 

Indirect interviewing methods such as MACBETH (Measuring Attractiveness by a 
Categorical Based Evaluation TecHnique) are generally applied to identify attribute 
elementary functions ( )i iu x in a weighted average aggregation model. However, 

when aggregation operators do not fulfill the weak difference independence property 
then constructing elementary utilities functions is more complicated [13]. Indeed, this 
property allows building the value function on attribute i  by asking questions direct-
ly regarding the preference of the decision maker on the attribute value range iX (in-

dependently of other attributes values) rather than from questions regarding options in 
X . An extension of MACBETH for a Choquet integral aggregation function that 

respect weak difference dependence has been proposed in [14] [15]. 
When comfort can be written under the decomposable form ( ,..., )U Ta Me =  

( ( ), ..., ( ))Ta Meg u Ta u Me it makes thermal sensation more interpretable w.r.t attributes 

variations and avoids the coexistence of antagonist behavioral rules. For instance, 
comfort may be improved when humidity increases for one given ambient tempera-
ture whereas it can be disturbed by an increasing humidity for another ambient tem-
perature. The coexistence of such behavioral rules makes difficult for the energy 
manager to directly imagine attribute variations in order to control the energy system. 
Whereas co-monotony of comfort U  and 

Hyu  holds everywhere in HyX . Then, 

identifying the elementary utility functions iu would greatly facilitate the design of 

control rules. Moreover, in the real thermal comfort perception, there is no physical 
correlation between attributes. Interactions between attributes should rather be consi-
dered as preferential interactions related to criteria associated to attributes [13] [16]. 
Fuzzy integrals provide adequate models to capture such interactions. It is then ob-
vious that a preferential model of thermal comfort would be more appropriate for 
semantic reasons. 

2.1.3 Discussion 
Let us now introduce these models in optimization issues. Optimization problem (1) 
and its dual (2) ―where ( , , , , , )Cost Ta Hy Tr Va Ci Meδ δ δ δ δ δ function evaluates the 

cost of the attributes variations ( , , , , , )Ta Hy Tr Va Ci Meδ δ δ δ δ δ  and *PPD (resp. *C ) is 
a comfort setpoint (resp. a budget threshold)― formalize efficient comfort improve-
ment issues. 

( , , , , , )

( , , ,

, , ) *

min Cost Ta Hy Tr Va Ci Me

PPD Ta Ta Hy Hy Tr Tr

Va Va Ci Ci Me Me PPD

δ δ δ δ δ δ
δ δ δ

δ δ δ
+ + +

+ + + ≤







 (1)

100 ( , ,

, , , )

( , , , , , ) *

max Ta Ta Hy Hy

Tr Tr Va Va Ci Ci Me Me

Cost Ta Hy Tr Va Ci Me C

PPD δ δ
δ δ δ δ
δ δ δ δ δ δ

+ +

+ + + +

≤

−





 (2) 

Let PPD∇


 the gradient when ( ,..., ) *PPD Ta Me PPD= . It provides attributes that 

their local variations impact the most significantly the comfort variation (maximal 

component of PPD∇


). However, there are some practical and computational  
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drawbacks to this formulation. First, the gradient is generally not of common sense 
for the energy manager to be use in optimization process. Then, there is no informa-
tion regarding the neighborhood in which this result is valid: maximal component of 

PPD∇


 may change rapidly i.e. it depends on non linearity of PPD and this notion is 
meaningless for the energy manager. Finally, we cannot a priori know whether we 
have to increase or decrease an attribute value to improve PPD . It necessitates com-
puting the derivative. It depends on , , , , ,Ta Hy Tr Va Ci Me attribute values and the mo-

notony of PPD relatively to these attributes, which is not easily understandable for the 
energy manager. However, a preferential based thermal comfort modeling solves the 
aforementioned drawbacks thanks to the co-monotony between utility functions iu

and thermal comfort overall evaluation U , and offers as well a more relevant control 
system for thermal comfort attributes. 

In order to ensure the RIDER DSS weak dependency, the thermal comfort model 
has also to fulfill this condition. The statistical thermal comfort modeling satisfies 
already the weak dependency condition and can be applied for different systems whe-
reas the preferential thermal comfort modeling, it depends on the way with which 
utility functions iu have been identified i.e. utility functions should result from statis-

tical techniques like in [7] and [8] which would roughly make the interviewing me-
thod more complex. 

So, to grant to the comfort preferential based model the ability to be system inde-
pendent without having to proceed by the statistical way, we propose to identify utili-
ty functions from the existent statistical model PPD . Labreuche [17] has proposed an 
original approach to compute both the utilities and the aggregated overall utility func-
tion

1
( , .., )

n
U x x when U is a Choquet integral without any commensurateness assump-

tion. It is important to highlight that using a Choquet integral facilitates optimization 
problem solving ((1) and (2)) thanks to its linearity by simplex. Next section describes 
the Choquet integral and gives a short description of Labreuche’s method [17] in or-
der to identify utility functions and the Choquet integral parameters. 

2.2 Measurements Overall Utility without Commensurateness Hypothesis 

2.2.1 The Choquet Integral 
The Choquet integral family provides adequate models to capture decisional beha-
viors when there are preferential interactions between criteria. They enable accom-
modating both the relative importance of each criterion and the interactions among 
them [18] [19]. In our preference model, an interaction occurs between any two crite-
ria once they need to be satisfied simultaneously (i.e., positive synergy) or when their 
simultaneous satisfaction is seen as a redundancy (negative synergy). 

 
1

( ) ( )1 2 ( ) ( 1) ( )
1

( ) ., ,..., ( ). ( )
i

n

i i

n

n i i i
i

uU C u u u u u Aμ μμ
=

−
=

= = Δ= −   (3) 

U , in (3), is the aggregate utility of the elementary utility profile 
1

( , ..., )
n

u u u= (to 

simplify 
i

u abusively denotes ( )
i iu x when no misinterpretation is possible) where 



Comfort as a Multidimensional Preference Model for Energy Efficiency Control Issues 491 

 

: 2 [0,1]Cμ →  is a fuzzy measure on the subsets of criteria in C ; (.) indicates a per-

mutation, such that the elementary utilities (.)u  are ranked: (1) ( )0 1
n

u u≤ ≤ ≤ ≤  

and { }( ) ( ) ( ), ..,k
i i nA c c= . This expression can also be rewritten as in the last part of (3) 

where
( ) ( ) ( 1)i i i
μ μ μ

+
Δ = − and ( ) ( )( )i iAμ μ= , ( 1) 0nμ + = . 

Note that a simplex { }(.) (1) ( )[0,1] / 0 1n
nH u u u= ∈ ≤ ≤ ≤ ≤   corresponds to the 

ranking (.), where the Choquet integral assumes a linear expression. Such a remark 
proves that optimization problems that involve a Choquet integral can be solved with 
linear programming techniques within simplexes. 

2.3.2 Construction of Choquet Integral and Elementary Utilities without Any 
Commensurateness Assumption 

Since we want to represent PPD with the decomposable model of Krantz, weak sepa-
rability property has to be first verified. A preference relation   is said weak separa-
ble iff, it verifies (4) for every attribute i N∈ where N denotes the attribute set, 

, 'i i ix x X∈ two possible values of i , and \ \, '
n

j

j i

N i N i Xy y
≠

∈∏ two possible alternatives 

described for andk N k i∀ ∈ ≠ . 

 ( ) ( ) ( ) ( )\ \ \ \ \ \, ' , , ' , , ' , , ' ' , 'i i N i N i i N i i N i i N i i N ix x y y x y x y x y x y∀ ⇔   (4) 

Labreuche [17] supposes that the weak separability property is verified for the overall 
utility function U ( PPD in our case) and suggests a method to check commensurate-
ness among attributes i and k . For this, he proposes to analyze the gradient function 
related to ix w.r.t kx variations. It returns on studying the function

( ) ( )\: ,i k i N if x U x x U xε+ −  where 0ε > . If if is a constant function, then there is 

no interaction between attributes i and k  (it means that even when there is a ranking 
change between utilities related to i and k  their “weights” in (3) do not change in 
the new simplex). And, thus, attributes i and k  do not interact. Otherwise, if if  is 

not a constant function, then attributes i and k interact with each other (the “weight” 
in (3) depends on their ranking). In this case, i  and k  are considered as commensu-
rate and it is possible, then to compute the value *

k kx X∈ for the attribute k  where 

( ) ( )*
k i ik

u u xx = [17]. At the end of this step, subsets of commensurate attributes 

jS N⊆ are constructed, where j
j

S N= and , ji k S∀ ∈ , i  and k  are commensurate. 

Once jS
 
are identified, the utility functions iu and capacities jμ can be computed. 

According to [20], iu cannot be built from one attribute regardless to the other ones. 

iu ’s construction in [17] is thus based on the overall utility U . [17] supposes that 

U is continuous and all iu functions are strictly increasing over ( , ii X∀ =  in [17]). 
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In order to build iu and μ two reference vectors ,
j j

j

S S k
k S

X
∈

∈∏Ο G should be com-

puted for each attribute subset jS . They refer respectively to an unacceptable (Null) 

situation level and a Good situation level. For vectors 
jSΟ (resp. 

jSG ), the first 

attribute value O
lx  (resp. G

lx ) is chosen by the decision maker and the others O
k lx ≠  

(resp. G
k lx ≠ ) are computed such as ( ) ( )O O

k l lk l l
u ux x≠ ≠ = (resp. ( ) ( )G G

k l lk l l
u ux x≠ ≠ = ) for

jk S∀ ∈ and k l≠ . To make sure that 
jSG corresponds to a better situation than

jSΟ , 
G
k lx ≠  must be preferred to O

k lx ≠ . 

Based on the identified reference vectors, a utility function iυ is defined by (5), 

where ( ) 0O
i ixυ = , ( ) 1G

i ixυ = , AΟ is the restriction of ( )1 ,...,O O
N nx x=Ο  to A N⊂

(resp. AG is the restriction of ( )1 ,...,G G
N nx x=G to A N⊂ ).  

 \

\

( , ) ( )
, , ( )

( , ) ( )
O G i N i N

i i i i i G
i N i N

U x U
x x x x

U x U
υ −

 ∀ ∈ =  −
O O

O O
 (5) 

Since several solutions for 
jSΟ and 

jSG may be envisaged, a normalization condition 

is required: when ( )\( , ) ( ) 1
j jj

S N S NS
U U− = G Ο Ο  is checked, then normalized utili-

ties iu and normalized capacities
jSμ are respectively (6) and (7): 

( ) ( ) ( )i i i i Nu x x Uυ= + O      (6) 
\, ( ) ( , ) ( )

jj S A N A NA S A U Uμ∀ ⊂ = −G O O  (7) 

Finally, the Choquet integral (see (3)) that represents the overall utility U of the nor-
malized utilities iu based upon the generalized capacity μ given by (8) is achieved: 

 ( ), ( ) ( )
jj

S jS
A N A A Sμ μ∀ ⊂ = ∩  (8) 

3 Decomposable Form of the Aggregation Model of Comfort 

Interactions between , , , , , and Ta Hy Tr Va Ci Me are preference interactions rather than 

physical correlations [16]. In fact, preferences are perfect to model human perception 
or opinion about comfort which is a subjective concept and cannot be treated like a 
physical process output as in [8]. Choquet integral is a relevant solution to model 
preference interactions among thermal comfort attributes and confers to the comfort 
aggregated concept its semantic interpretability. Also, the simplex piecewise linearity 
of Choquet integral facilitates optimization processes. So, to solve problems described 
by (1) and (2), approximating the PPD with a Choquet integral, is then of interest. It 
first reduces the PPD complexity by giving the possibility to have a linear formula-
tion. Second, it allows easy prediction of PPD variation with regards to one attribute 
fluctuation since we have elementary utility functions. 

In order to simplify the Choquet comfort modeling, we suppose that people hosted 
by a same building have almost the same activity level and are dressed pretty much 
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the same depending on seasons. Considering those assumptions, Ci and Me attributes 
can be removed from the model variables (they are seen as constant parameters in-
stead of variables). Thus, depending on seasons and the activity nature of a building, 
both Ci  and Me are evaluated by average values i.e., 1.2Me met=  for average 

administrative employees and 0.7Ci clo=  for a shirt/pant dressing sample [8]. 

3.1 Weak Separability Assumption and Choquet Integral-Based Local Model 

In order to write the PPD  function as an overall utility function, it’s necessary to 
check, first, the weak separability property (4) among its attributes , , , andTa Hy Tr Va

which, intuitively, seems to be not the case. Here is a counterexample of the weak 

separability non-satisfaction computed for the vector ( ), , ,Ta Hy Tr Va , ( )23,50,23,0.2

( )25,50,23,0.2 however ( ) ( )23,100,23,0.2 25,100,23,0.2/ . Therefore, we can say that 

( ), , ,PPD Ta Hy Tr Va defined for [ ]10,30Ta∈ ° , [ ]10,40Tr∈ ° , [ ]0,100%Hy∈ , and 

[ ]0,  1 /Va m s∈ [8] is not a weak separable function. Second, the monotony assump-

tion of Labreuche’s construction must be checked. Again, intuitively, this assumption 
cannot be proved for the considered areas of , , , andTa Hy Tr Va . It is obvious that an 

increasing temperature is appreciated until an upper threshold. Above this threshold, 
people get hot and their thermal sensation progressively decreases. This fact implies 
that the elementary utility function of the ambient temperature [ ]Ta : 10,30° [0,1]u →  

has at least one monotony change. 
Fig., 1 and 2, illustrate respectively the PPD curve for ( 23Tr = ° , 25%Hy = ,

1.2Me met= , 0.7Ci clo= , [ ]10,30Ta∈ ° and [ ]0,1 /Va m s∈ ) and ( 23Tr = ° ,

[ ]0,100%Hy∈ , 1.2Me met= , 0.7Ci clo= , [ ]10,30Ta∈ ° and 0.2 /Va m s= ). Iso-

temperature curves of both figures have the same shape for respectively all Va and 
Hy values. So, we can realize that the minimal PPD is reached for slightly different 

Ta values, which means that the weak separability property is not verified in the con-
sidered PPD  domain. Fig., 1 and 2, show, also, that PPD function has two different 
monotonies w.r.t. Ta values which means that Tau cannot be considered as strictly 

increasing for [ ]10,30Ta∈ ° . Since none of the two required assumptions is verified, 

we cannot build an overall Choquet integral for all PPD attributes domains. However, 
these assumptions can be checked for different local domains and, then, a Choquet 
integral can be computed for each of these domains. Based on this, we have to identi-
fy domains in which the shape of the PPD function has the same monotony and veri-
fies, as well, the weak separability property i.e., according to figures 1 and 2, for

[ ]25,30Ta∈ ° , we have both assumptions verified. So it is possible to compute a 

Choquet integral defined locally for [ ]25,30Ta∈ ° . Hence, the PPD function can local-

ly be approximated by a Choquet integral. This technique allows the computation of 
local preference models for the thermal comfort. It means that depending on  
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Performances of these models and their relative local domain of validity are pre-
sented by table 1. Average approximation errors between the local Choquet approxi-
mation and the PPD function are computed based on 9261 different simulations and 
it never exceeds 8.6% on Ta Hy Va× × valid domains. It is important to bring back that 

these models are computed for an average activity of employees 1.2Me met= and a 

shirt/pant clothing model 0.7Ci clo= . TrTr
comfort

xU = described by table 1 approximates the

PPD function only in its associated valid local domain. 

Table 1. Valid local domains and average error for the Choquet approximation 

Tridimensional 
model of comfort 

Valid local domain Mi 
Choquet Approx-

imation error 

M1:
Tr 15
comfort

CU = °  

1  
[ ] [ ] [ ]Ta 15,25° ,Hy 50,100% ,Va 0.125,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
7.8% 

2 
[ ] [ ] [ ]Ta 25,30° ,Hy 50,100% ,Va 0.25,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
 4.2% 

M2:
Tr 20
comfort

CU = °  1 
[ ] [ ] [ ]Ta 15,27° ,Hy 25,100% ,Va 0.125,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
 8.6% 

M3:
Tr 23
comfort

CU = °  

1 
[ ] [ ] [ ]Ta 15,22° ,Hy 25,100% ,Va 0.1857,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
 7.2% 

2 
[ ] [ ] [ ]Ta 22,28° ,Hy 50,100% ,Va 0.25,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
 5.03% 

M4:
Tr 25
comfort

CU = °  

1 
[ ] [ ] [ ]Ta 14,22° ,Hy 25,100% ,Va 0.1875,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
8.3% 

2 
[ ] [ ] [ ]Ta 22,27° ,Hy 50,100% ,Va 0.25,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
 3.9% 

M5:
Tr 30
comfort

CU = °  

1 
[ ] [ ] [ ]Ta 10,19° ,Hy 25,100% ,Va 0.1875,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
4.6% 

2 
[ ] [ ] [ ]Ta 19,29° ,Hy 25,100% ,Va 0.1875,1m/s

( ) , ( ) , ( )Ta Hy Vau Ta u Hy u Va

∈ ∈ ∈

  
4.5% 

In all computed local approximations, , , andTa Hy Va have been checked as  

commensurate which means that utilities and capacity approximations are all based on 
two reference vectors

1SΟ and
1SG associated to the unique commensurate  

subset { }1 , ,S Ta Hy Va= . According to [17], the Choquet integral is unique when 
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commensurate subsets are composed with the coalition of all attributes. In this case, it 
can be checked that all our local constructions are unique [17]. Utilities and capacity 
functions require to be normalized. Because there is only one commensurate subset, 

checking the normalization condition ( ) ( )( )1 1
. 1S SPPD PPDα =−G Ο is easy but must 

be verified in each local domain. 
The next section describes how these 5 tridimensional comfort models can be use-

ful to control one building thermal comfort. 

3.3 Interpretable Control Rules  

The computation of these local Choquet integrals with [17] implies that we have si-
multaneously built utility functions for each attribute , , andTa Hy Vau u u in each domain 

of validity. These last can then be used in order to build control rules. Thanks to the 
utility functions, from each local Choquet integral model, the influence of each 

attribute variation , , andTa Hy Vaδ δ δ on the TrTr
comfort

xU = monotony can be computed. Of 

course, these influences models are not as precise as we hoped for because they result 
from the interpolation of two local Choquet integral models; but they still useful to 
give helpful control recommendations. In fact, the non-existence of a unique overall 
Choquet integral defined for the whole PPD domain inhibits all comparison between 
utilities in two different local domains. However, it is not such a problematic thing 
because, for each local domain, we are yet able to identify its valid rules i.e., (9) is an 
identified thermal comfort control rule for the local model M3 (fig. 3). It models the 

attribute Hy influence upon Tr 23
comfortU = ° for the local domain M3. Then this rule can be 

formulated as a recommendation when environmental conditions satisfy the local 

domain M3. The “gains” related to these relationships are the ( )iμΔ  Choquet integral 

parameters (3) for M3. Hence, the energy manager knows the negative or positive 
influence of any attribute upon comfort function in any domain, the polyhedrons in 
which this influence is valid, and the expected impact from an attribute variation. It 
allows enunciating control rules such as (9). 

 

[ ] [ ] [ ]

3.2 3.2

3.2

3

3.2

M : 22, 28 , 50,100 ,and 0.25,1

f then because ( ) and 

. .

where is the approximation gradient of ( ) w.r.t in .

comfort Hy

M M
comfort Hy

M
Hy Hy

Ta Hy Va

i Hy U u Hy

U g Hy

g u Hy x M

δ μ δ

∈ ∈ ∈

= Δ

  
 (9) 

Hence, thanks to the PPD  approximation by local Choquet integrals, we obtain a set of 
rules for the thermal comfort control. These rules can directly be applied by the energy 
manager as suggested just above because they are interpretable rules in term of satis-
faction degrees (like comfort itself) which is part of our work objectives. The Choquet 
integral based models can also be included in optimization problems to efficiently 
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improve comfort or reduce energy costs automatically as it is explained in the next 
section. This can be achieved thanks to the Choquet integral linearity by simplex. 

4 Some Control Problems Based on the Piecewise Choquet 
Integral 

The model of comfort is now built in the control of the energy system of a building 
floor. Let us suppose that the control variables are ambient temperature and airflow of 
all the offices at this floor. There is a General Air Treatment (GAT) ―a central heat-
ing exchanger―for the whole building and additional individual heating exchangers 
in the offices. Basic control functions are already implemented in the GAT. 

In RIDER DSS, comfort appears as an overall performance of the control problem. 
It must help the energy manager to satisfy each individual comfort expectation with a 
minimal cost. Indeed, persons do not have the same expectations w.r.t thermal com-
fort, on one hand, and one office heat loss depends on its exposure to sunlight, and its 
neighboring offices isolation characteristics, on the other hand. 

RIDER DSS supports the energy manager to manage significantly different tem-
perature setpoints in each office at the floor in order to warranty the comfort levels 
and minimize as well the energy cost. Then, in order to satisfy both requirements: cost 
and comfort constraints, RIDER DSS aims to compute adequate setpoints to be pro-
vided to the GAT control system. In this paper, we consider that RIDER DSS manag-
es only the energy system performances (utilities related to measurements) without 
worrying about the way these performances are achieved (GAT control). RIDER DSS 
aims to prove that reasoning using an aggregated comfort objective function already 
provides substantial savings. Let us consider some tractable issues by RIDER DSS: 

─ Control. The control issue may be used to adjust the thermal sensation of an unsa-
tisfied officer and whenever any disturbance distracts from the comfort expecta-
tion; 

─ Adaption. Thermal sensation is not the same in the north sided offices of the 
building and the south sided ones. Furthermore the sunlight exposure varies every 
day and during the day; 

─ Anticipation. Season changes and occupation rates, are proceeding to phenomena 
that directly impact energy management. 

For instance, (10) is a formalization of a simple control problem based on the comfort 
preference model F  that has been identified from the PPD model in this paper. This 
formalization aims to control variables Ta and Va (the offices airflow) in order to 
improve the thermal sensation of an unsatisfied office occupant ( )comfort k without 

decreasing the comfort of its neighboring offices 'k when ( )Ta k  and ( )Va k change. 

 

( )

( ) ( ( ), ( ), ( ), ( ), , ) *

( ) 0

' , ( ') ( ')

min Ta k

Comfort k F Ta Ta k Hy k Tr k Va Va k Ci Me Comfort

Ta k

k k Comfort k setpoint k

δ
δ δ

δ
= + + =

≥

∀ ≠ ≥








 (10) 
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Because F has been approximated with Choquet integrals, this optimization problem 
can be locally linearized and, so, becomes an easily tractable problem [21]. Further-
more, the gain between comfort degree and Taδ or Vaδ variations is locally a constant 
computed with Ta and Va related utility functions and also the Choquet integral 
parameters in the simplex search space. This gain value makes the improvement in-
terpretable for control purposes. Finally, domains of validity of the Choquet integral 
based approximations provide the necessary bounds to reason with a constant gain. 

Similarly, the adaptation and anticipation problems can be easily formalized as the 
control one and their resolution are also simplified thanks to the local linearity of the 
Choquet integral expression. 

5 Conclusion 

This work focuses on proposing generic optimization techniques for energy manage-
ment systems based on a thermal comfort preference model. It explains why and how 
associating comfort to a MAUT preference model for energy management issues. The 
introduced thermal comfort model can be easily generalized for different building 
occupants and simplifies the energy control issues. In fact, thanks to the MAUT, the 
interpretation of attributes influences on the thermal sensation in term of utility func-
tions makes the multidimensional comfort control process more tractable. The intro-
duction of MAUT techniques in energy control completely shifts the energy control 
paradigm. For example, the aggregated model for comfort allows designing new low-
er temperature setpoints that could not be envisaged even in advanced multivariable 
control techniques. Indeed, relationships between attributes are preferential interac-
tions and not physical influences: each attribute can be controlled independently but 
any change of an attribute entails a variation of its local utility that may have conse-
quences on the comfort overall utility. RIDER aims to prove that reasoning using an 
aggregated comfort objective function provides substantial savings. Within the 
MAUT, it can reasonably be imagined that temperature setpoints of a building could 
be decreased from one to two degrees. It represents a substantial economic gain that is 
probably much more significant than any optimization of the energy manager control 
system. Furthermore, the control recommendations resulting from this model are ob-
viously transferable to any energy facilities. 
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Abstract. As privacy-preserving data publication has received much
attention in recent years, a common technique for protecting privacy is
to release the data in a sanitized form. To assess the effect of saniti-
zation methods, several data privacy criteria have been proposed. Dif-
ferent privacy criteria can be employed by a data manager to prevent
different attacks, since it is unlikely that a single criterion can meet the
challenges posed by all possible attacks. Thus, a natural requirement
of data management is to have a flexible language for expressing differ-
ent privacy constraints. Furthermore, the purpose of data analysis is to
discover general knowledge from the data. Hence, we also need a for-
malism to represent the discovered knowledge. The purpose of the paper
is to provide such a formal language based on probabilistic hybrid logic,
which is a combination of quantitative uncertainty logic and basic hybrid
logic with a satisfaction operator. The main contribution of the work is
twofold. On one hand, the logic provides a common ground to express
and compare existing privacy criteria. On the other hand, the uniform
framework can meet the specification needs of combining new criteria as
well as existing ones.

Keywords: Data privacy, information systems, probabilistic logic, hy-
brid logic, k-anonymity, logical safety.

1 Introduction

Privacy-preserving data publication has received much attention in recent years.
When data is released to the public for analysis, re-identification is considered a
major privacy threat to microdata records, which contain information about spe-
cific individuals. Although identifiers, such as names and social security numbers
are typically removed from the released microdata sets, it has been long recog-
nized that several quasi-identifiers, e.g., ZIP codes, age, and sex, can be used
to re-identify individual records. The main reason is that the quasi-identifiers
may appear together with an individual’s identifiers in another public database.
Therefore, the problem is how to prevent adversaries inferring private informa-
tion about an individual by linking the released microdata set to some public or
easy-to-access database.
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To address the privacy concerns about the release of microdata, data is often
sanitized before it is released to the public. For example, generalization and sup-
pression of the values of quasi-identifiers are widely used sanitization methods.
To assess the effect of sanitization methods, several data privacy criteria have
been proposed. One of the earliest criteria was the notion of k-anonymity[12,13].
Although k-anonymity is an effective way to prevent identity disclosure, it was
soon realized that it was insufficient to ensure protection of sensitive attributes.
To address the attribute disclosure problem, a logical safety criterion was pro-
posed in [6]. The criterion was later expanded to the epistemic model in [14]
and the well-known l-diversity criterion in [8,9]. Different privacy criteria can
be employed by a data manager to prevent different attacks, since it is unlikely
that a single criterion can meet the challenges posed by all possible attacks.
Thus, a natural requirement of data management is to have a flexible language
for expressing different privacy constraints. Furthermore, the purpose of data
analysis is to discover general knowledge from the data. Hence, we also need a
formalism to represent the discovered knowledge. The purpose of the paper is
to provide such a formal language based on probabilistic hybrid logic that can
represent discovered knowledge as well as data security constraints. Probabilis-
tic hybrid logic is a fusion of a hybrid logic with a satisfaction operator[1] and
a logic for reasoning about quantitative uncertainty[4]. The syntax of the pro-
posed logic is comprised of well-formed formulas of both logics, and its semantics
is based on epistemic probability structures with the additional interpretation
of nominals. To express privacy requirements, we have to represent knowledge,
uncertainty, and individuals. While existing probabilistic logic[5,7,4] can only
represent knowledge and uncertainty, the incorporation of hybrid logic into the
framework facilitates the representation of individuals.

The remainder of this paper is organized as follows. In Section 2, we review the
definitions of microdata and sanitized information systems for privacy-preserving
data publication. In Section 3, we introduce the syntax and semantics of proba-
bilistic hybrid logic. An axiomatization of the logic is also presented. While the
axioms are valid for general probabilistic hybrid logic models, we need additional
specific axioms for released data. In Section 4, and formulate the additional ax-
ioms based on sanitized information systems. We also use examples to explain
how privacy constraints and discovered knowledge can be expressed with the
proposed logic. Finally, Section 5 contains some concluding remarks.

2 Information Systems

In database applications, microdata, such as medical records, financial trans-
action records, and employee data, are typically stored in information systems.
Am information system or data table [10]1 is formally defined as a tuple T =
(U,A, {Vf | f ∈ A}), where U is a nonempty finite set, called the universe, and
A is a nonempty finite set of attributes such that each f ∈ A is a total function
f : U → Vf , where Vf is the domain of values for f . In an information system,

1 Also called knowledge representation systems or attribute-value systems in [10].
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the information about an object consists of the values of its attributes. Thus,
for a subset of attributes B ⊆ A, the indiscernibility relation with respect to B
is defined as follows:

indT (B) = {(x, y) ∈ U2 | ∀f ∈ B, f(x) = f(y)}.

Usually, we omit the symbol T in the indiscernibility relation when the un-
derlying information system is clear from the context. We also abbreviate an
equivalence class of the indiscernibility relation [x]ind(B) as [x]B. Note that an
information system is equivalent to a data matrix defined in [3].

The attributes of an information system can be partitioned into three subsets
[11]. First, we have a subset of quasi-identifiers , the values of which are known
to the public. For example, in [12,13], it is noted that certain attributes like
birth-date, gender, and ethnicity are included in some public databases, such
as census data or voter registration lists. These attributes, if not appropriately
sanitized, may be used to re-identify an individual’s record in a medical data
table, thereby causing a violation of privacy. The second kind is the subset
of confidential attributes , the values of which we have to protect. Note that
confidential attributes can also serve as quasi-identifiers in some cases. However,
since the values of confidential attributes are not easily accessible by the public,
in this paper, we simply assume that the set of quasi-identifiers is disjoint with
the set of confidential attributes. The remaining attributes are neutral attributes
(also called Non-confidential outcome attributes in [3]) that are neither quasi-
identifying, nor confidential. Hereafter, we assume that the set of attributes A =
Q∪C ∪N , where Q, C, N are pairwise disjoint, Q is the set of quasi-identifiers,
C is the set of confidential attributes, and N is the set of neutral attributes.
Sometimes, the set of attributes is defined such that it contains identifiers that
can be used to identify a person’s data record. However, for simplicity, we equate
each individual with his/her identifier, so the universe U can be considered as
the set of identifiers. Furthermore, since identifiers are always removed in a
released data table, U simply denotes a set of serial numbers for a de-identified
information system.

Example 1. Table 1 is a simple example of an information system. The quasi-
identifiers of the information systems are “Date of Birth” and “ZIP”. The con-
fidential attributes are “Income” and “Health Status”. The values of “Health
Status” indicate“normal”(0), “slightly ill”(1), and “seriously ill”(2). ”Height” is
a neutral attribute.

A common technique for protecting privacy is to release the information sys-
tem in a sanitized form. Formally, we define sanitization as an operation on
information systems.

Definition 1. Let T = (U,A, {Vf | f ∈ A}) be an information system. Then, a
sanitization operation σ = (ι, (sf )f∈A) is a tuple of mappings such that

– ι : U → U ′ is a 1-1 de-identifying mapping, where |U ′| = |U |, and
– for each f ∈ A, sf : Vf → V ′

f is a sanitizing mapping, where V ′
f ⊇ Vf is the

domain of generalized values for f .
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Table 1. An information system in a data center

U Date of Birth ZIP Height Income Health Status

i1 24/09/56 24126 160 100K 0

i2 06/09/56 24129 160 70K 1

i3 23/03/56 10427 160 100K 0

i4 18/03/56 10431 165 50K 2

i5 20/04/55 26015 170 30K 2

i6 18/04/55 26032 170 70K 0

i7 12/10/52 26617 175 30K 1

i8 25/10/52 26628 175 50K 0

The application of σ on T results in a sanitized information system σT =
(U ′, A′, {V ′

f | f ∈ A}) such that A′ = {f ′ | f ∈ A}; and for each f ∈ A,

f ′ = sf ◦ f ◦ ι−1, where ◦ denotes the functional composition. Note that the
de-identifying mapping ι is invertible because it is a bijection.

The universe U ′ in a sanitized information system is regarded as the set of
pseudonyms of the individuals. We assume that V ′

f is a superset of the original
domain Vf , so a sanitizing mapping may be an identity function. A sanitization
operation σ = (ι, (sf )f∈A) is truthful if for each f �∈ Q, sf = id is the identity
function; and it is proper if ι(indT (Q)) = {(ι(x), ι(y)) | (x, y) ∈ indT (Q)} is a
proper subset of indσT (Q). That is, indT (Q) corresponds to a strictly finer par-
tition2 than indσT (Q) does. In this paper, we only consider truthful sanitization
operations. Moreover, in most cases, proper sanitization is necessary for the pro-
tection of privacy. A special sanitization, called trivial sanitization, is commonly
used as the baseline of privacy assessment[2]. Formally, a sanitization operation
is trivial if, for all f ∈ Q, |sf (Vf )| = 1. The suppression of all quasi-identifiers
can achieve the effect of trivial sanitization.

Example 2. In privacy research, generalization is a widely-used sanitization
operation. For example, the date of birth may only be given as the year and
month, or only the first two digits of the ZIP code may be given. A concrete
generalization of the information system in Table 1 is presented in Table 2. The
first column of the table shows the pseudonyms of the individuals. Note that the
sanitization is truthful and proper.

When a sanitized information system is released, the sanitizing mappings are
usually known to the public, but the de-identifying mapping must be kept secret.
In fact, when a sanitization is truthful and the adversary knows the values of
the quasi-identifiers, the adversary can easily infer the sanitizing mappings. For
example, in the previous sanitized information system, it is easy to see how
“ZIP” and “Date of Birth” are generalized.

2 Recall that each equivalence relation corresponds to a partition.
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Table 2. A sanitized information system

d1 09/56 24*** 160 100K 0

d2 09/56 24*** 160 70K 1

d3 03/56 10*** 160 100K 0

d4 03/56 10*** 165 50K 2

d5 04/55 26*** 170 30K 2

d6 04/55 26*** 170 70K 0

d7 10/52 26*** 175 30K 1

d8 10/52 26*** 175 50K 0

3 Probabilistic Hybrid Logic

3.1 Syntax

Hybrid logics are extensions of standard modal logics with nominals that name
individual states in possible world models[1]. The simplest hybrid language is
the extension of the basic modal language with nominals only. More expressive
variants can include the existential modality E, the satisfaction operator @, and
the binder ↓. The simplest hybrid language is denoted by H and its extensions
are named by listing the additional operators. For example, H(@) is the simplest
hybrid language extended with the satisfaction operator @. On the other hand,
the probabilistic logic LQU

n proposed in [4] consists of (linear) likelihood formulas
of the form

r1la1(ϕ1) + · · ·+ rklak
(ϕk) > s,

where r1, . . . , rk, s are real numbers, a1, . . . , ak are (not necessarily distinct)
agents, and ϕ1, . . . , ϕk are well-formed formulas of the probabilistic language.
The proposed probabilistic hybrid logic is a straightforward fusion of H(@) and
LQU
n . The following definition gives the syntax of the language.

Definition 2. Let PROP = {p1, p2, . . .} (the propositional symbols), AGT =
{a1, a2, . . .} (the agent symbols), and NOM = {i1, i2, . . .} (the nominals) be pair-
wise disjoint, countably infinite sets of symbols. The well-formed formulas of the
probabilistic hybrid logic PH(@) in the signature 〈PROP, AGT, NOM〉 are given by
the following recursive definition:

WFF ::= 4 | p | i | ¬ϕ | ϕ ∧ ψ | 〈a〉ϕ | @iϕ | r1la1(ϕ1) + · · ·+ rklak
(ϕk) > s,

where p ∈ PROP; i ∈ NOM; a, a1, . . . , ak ∈ AGT; ϕ, ϕ1, . . . , ϕk ∈ WFF; and
r1, . . . , rk, s are real numbers.

As usual, we abbreviate ¬(¬ϕ ∧ ¬ψ), ¬(ϕ ∧ ¬ψ), and ¬〈a〉ϕ as ϕ ∨ ψ, ϕ ⊃ ψ,
and [a]ϕ respectively. In addition, (ϕ ⊃ ψ)∧ (ψ ⊃ ϕ) is abbreviated as (ϕ ≡ ψ);
and several obvious abbreviations can be applied to likelihood formulas, e.g.,
r1la1(ϕ1) + · · ·+ rklak

(ϕk) < s denotes (−r1)la1(ϕ1) + · · ·+ (−rk)lak
(ϕk) > −s.
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A formula is pure if it does not contain any propositional symbols, and nominal-
free if it does not contain any nominals. In a likelihood formula, la(ϕ) is called a
likelihood term. A formula whose outermost likelihood terms only involve agent
a is called an a-likelihood formula; that is, an a-likelihood formula is of the form
r1la(ϕ1) + · · ·+ rkla(ϕk) > s. A set of wffs Σ is called a theory in PH(@).

3.2 Semantics

The semantics of PH(@) is based on the epistemic probability frame introduced
in [4]. Before stating the definition, we review the notion of probability space.

Definition 3. A probability space is a triple (W,X , μ), where X is an algebra3

over W and μ : X → [0, 1] satisfies the following two properties:

– P1. μ(W ) = 1,
– P2. μ(U ∪ V ) = μ(U) + μ(V ) if U and V are disjoint elements of X .

The subsets in the algebra X are called the measurable subsets of W . In general,
not all subsets of W are measurable; however, for our application, it suffices to
consider the case of X = 2W . Thus, hereafter, we assume all probability spaces
are measurable, i.e., X = 2W ; consequently, a probability space is simply written
as a pair (W,μ).

Definition 4. An epistemic probability frame is a tuple
F = (W, (Ra)a∈AGT, (PRa)a∈AGT), where W is a set of possible worlds (states)
and for each a ∈ AGT

– Ra ⊆W ×W is a binary relation (the accessibility relation) on W , and
– PRa is probability assignment, i.e., a function that associates a probability

space (Ww,a, μw,a) with each world w.

Definition 5. Let F = (W, (Ra)a∈AGT, (PRa)a∈AGT) be an epistemic probability
frame. Then, an epistemic probability structure (or PH(@) model) based on F
is a pair M = (F, π), where π : PROP ∪ NOM→ 2W is an interpretation such that
for all nominals i ∈ NOM, π(i) is a singleton. In this case, we also say that F is
the underlying frame of M.

By slightly abusing the notation, we can identify a singleton and its element.
Thus, when π(i) = {w}, we use π(i) to denote both {w} and w.

Definition 6. Let M = (W, (Ra)a∈AGT, (PRa)a∈AGT, π) be a PH(@) model and
w ∈W be a possible world. Then, the satisfaction relation is defined as follows:

1. M, w |= 4
2. M, w |= p iff w ∈ π(p) for p ∈ PROP∪ NOM

3. M, w |= ¬ϕ iff M, w �|= ϕ

3 That is, X satisfies the following conditions (i) X ⊆ 2W , (ii) W ∈ X , and (iii)X is
closed under union and complementation.
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4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
5. M, w |= 〈a〉ϕ iff there is a w′ such that (w,w′) ∈ Ra and M, w′ |= ϕ
6. M, w |= @iϕ iff M, π(i) |= ϕ
7. M, w |= r1la1(ϕ1) + · · · + rklak

(ϕk) > s iff r1μw,a1(|ϕ1| ∩ Ww,a1) + · · · +
rkμw,ak

(|ϕk| ∩Ww,ak
) > s, where |ϕi| = {u |M, u |= ϕi} is the truth set of

ϕ in the model M.

Let Σ be a theory. Then, we write M, w |= Σ if M, w |= ϕ for all ϕ ∈ Σ.
A wff ϕ is said to be true in a model, denoted by M |= ϕ, if M, w |= ϕ for
all w ∈ W ; and a wff ϕ is valid , denoted by |= ϕ, if M |= ϕ for all PH(@)
models M. Moreover, a wff ϕ is satisfiable if there exists a model M and a world
w ∈ W such that M, w |= ϕ; and it is a local logical consequence of a theory Σ,
denoted by Σ |=loc ϕ, if for all models M and worlds w ∈W , M, w |= Σ implies
M, w |= ϕ. Finally, a wff ϕ is a global logical consequence of a theory Σ, denoted
by Σ |=glo ϕ, if for all models M, M |= Σ implies M |= ϕ.

3.3 Axiomatization

The axiomatization of PH(@) in Figure 1 consists of axioms and rules of both
hybrid logic[1] and probabilistic logic[4]. It is essentially a modular combination
of the two logics, since no additional interaction axioms are introduced. As usual,
a derivation in the axiomatic system is a sequence of wffs ϕ1, · · · , ϕm such
that each ϕi is either an instance of an axiom schema, or follows from previous
formulas by the application of an inference rule. The derivation ϕ1, · · · , ϕm is
also a proof of the last wff ϕm. A wff ϕ is provable in an axiomatization, denoted
by 5 ϕ, if there is a proof of ϕ in the system. A provable wff is also called a
theorem of the system. Let Σ be a theory and ϕ be a wff. Then, we write Σ 5 ϕ
and say that ϕ is derivable from Σ if there exists ϕ1, · · · , ϕk ∈ Σ such that
(ϕ1 ∧ · · · ∧ ϕk) ⊃ ϕ is a theorem of the system.

4 Information System Theory

4.1 Models of Sanitized Information Systems

To specify an information system and its sanitization, we have to use a fixed
language. Let us consider an information system T = (U,A, {Vf | f ∈ A}),
where A = Q∪N ∪C and a truthful sanitization operation σ = (ι, (sf )f∈A). In
addition, let σT = (U ′, A′, {V ′

f | f ∈ A}) be defined as above. We assume that
U = {i1, · · · , in} and U ′ = {d1, · · · , dn}. Then, the signature of our language
comprises

– PROP = {(f, v) | f ∈ A, v ∈ V ′
f},

– AGT = {a0, a1}, and
– NOM = U ∪ U ′.

In Pawlak’s decision logic[10], a propositional symbol (f, v) is called a descrip-
tor , which means that the value of attribute f of an individual is v. We consider
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1. Axiom schemas:

(CT) All substitution instances of tautologies of the propositional calculus
(Ineq) All substitution instances of valid linear inequality formulas
(K�) [a](ϕ ⊃ ψ) ⊃ ([a]ϕ ⊃ [a]ψ)
(K@) @i(ϕ ⊃ ψ) ⊃ (@iϕ ⊃ @iψ)
(Selfdual@) @iϕ ≡ ¬@i¬ϕ
(Ref@) @ii
(Agree) @i@jϕ ≡ @jϕ
(Intro) i ⊃ (ϕ ≡ @iϕ)
(Back) 〈a〉@iϕ ⊃ @iϕ
(QU1) la(ϕ) ≥ 0
(QU2) la(�) = 1
(QU3) la(ϕ ∧ ψ) + la(ϕ ∧ ¬ψ) = la(ψ)

2. Inference rules:
(Modus ponens, MP):

ϕ ϕ ⊃ ψ

ψ

(Gen�):
ϕ

[a]ϕ

(Gen@):
ϕ

@iϕ

(GenQU):
ϕ ≡ ψ

la(ϕ) = la(ψ)

(Name): if i does not occur in ϕ
@iϕ

ϕ

(BG): if j �= i and j does not occur in ϕ

@i〈a〉j ⊃ @jϕ

@i[a]ϕ

Fig. 1. The axiomatization of PH(@)
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two agents a0 and a1; and we assume that agent a0 only receives the trivially
sanitized information system, and a1 receives the system σT . The set of nom-
inals is partitioned into two subsets such that each ij denotes an individual’s
identifier and each dj represents the individual’s pseudonym. The PH(@) mod-
els compatible with the sanitization of an information system are then defined
as follows.

Definition 7. A PH(@) model M = (W,R0, R1,PR0,PR1, π) with the above-
mentioned signature is a model of σT if it satisfies the following conditions:

– W = {w1, · · · , wn};
– for R0 and R1:

• R0 = W ×W ,

• R1 = {(wj , wk) | (dj , dk) ∈ indσT (Q), 1 ≤ j, k ≤ n};
– for the probability assignments:

• PR0 associates a probability space (W,μ0) with each world such that
μ0({w}) = 1

n for any w ∈ W ,

• PR1 associates a probability space (R1(w), μw,1) with each world w such
that μw,1({w′}) = 1

|R1(w)| for any w′ ∈ R1(w) = {w′ ∈ W | (w,w′) ∈
R1};

– and for the interpretation π:

• π(dj) = wj for dj ∈ U ′,

• π(ij) ∈ R1(π(ι(ij))) for ij ∈ U and π(ij) �= π(ik) if j �= k for 1 ≤ j, k ≤
n,

• π((f, v)) = {wj | f ′(dj) = v}.

The models of σT reflect the adversary’s uncertainty about the identities of
the individuals. The possible worlds stand for the individuals. Although, the
pseudonym of each individual is fixed, as specified by the interpretation π, the
adversary is uncertain about the identifiers of the individuals. The information
that an adversary can obtain is determined by the values of the individuals’
quasi-identifiers, so an identifier ij may refer to any individual that are indis-
cernible with π(ι(ij)) (i.e. the individual corresponding to the pseudonym of ij)
based on the quasi-identifiers. This is specified by the second clause of the in-
terpretation π. With trivial sanitization, all individuals are indiscernible, so the
accessibility relation R0 is the universal relation. On the other hand, the sanitiza-
tion operation σ results in the indiscernibility relation indσT (Q), so the relation
R1 is its isomorphic copy over the domain of possible worlds. Furthermore, we
assume that the indifference principle applies to individuals, so both probabil-
ity assignments associate a unform distribution with each possible world. Since
the two probability assignments are characterized completely by the accessibility
relations and R0 is simply the universal relation, we can omit these three com-
ponents from a model of σT and write it as a simple hybrid model (W,R1, π).
A wff ϕ is valid in σT , denoted by σT ϕ, if it is true in all models of σT .
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1. General axiom schemas of information systems:

(Ref�) @i〈a〉i
(Sym�) @i〈a〉j ⊃ @j〈a〉i
(Tran�) (@i〈a〉j ∧ @j〈a〉k) ⊃ @i〈a〉k
(Uni�) @i〈a0〉j
(Cons) @i〈a〉j ≡ @i(la(j) > 0)
(Unif) @i〈a〉j ⊃ @i(la(i) = la(j))
(SVA) (f, v1) ⊃ ¬(f, v2) if v1 �= v2

2. Specific axioms for σT :

(DC) (
∨n

j=1 dj) ∧ (
∨n

j=1 ij)

(UI) ¬@ij ik for 1 ≤ j �= k ≤ n
(UP) ¬@djdk for 1 ≤ j �= k ≤ n
(Rec) @dj

∧
f∈A(f, f ′(dj)) for 1 ≤ j ≤ n

(RelP) @d(([a1]
∨

dj∈[d]Q
dj) ∧

∧
dj∈[d]Q

〈a1〉dj) for d ∈ U ′/Q
(Connect) @i[(

∧
dj∈[ι(i)]Q

〈a1〉dj) ∧ [a1](
∨

dj∈[ι(i)]Q
dj)] for i ∈ U

Fig. 2. The PH(@) theory of a sanitized information system

4.2 Theories of Sanitized Information Systems

While the axiomatization for general PH(@) models is presented in Figure 1,
the models for information systems are special kinds of PH(@) models. Thus,
additional axioms are needed to characterize the special constraints imposed on
general PH(@) models. The axioms can be separated into two groups. The first
group consists of axiom schemas valid for all information systems, while the
second group contains specific axioms for the given information system and its
sanitization. The additional axioms are shown in Figure 2, where we use U ′/Q
to denote the quotient set of U ′ with respect to indσT (Q). That is, we select a
unique representative from each equivalence class of indσT (Q) arbitrarily and
let U ′/Q denote the set of all such representatives. In addition, we use [d]Q to
denote the equivalence class of indσT (Q) that contains d.

Axioms (Ref�), (Sym�), and (Tran�) reflect the fact that each Ra in the
models of σT is an equivalence relation. Thus, [a] is an epistemic modality or
S5 modality in terms of conventional modal logic systems. Indeed, the intended
meaning of [a]ϕ is that agent a knows ϕ. In traditional modal logic, the S5
modalities are typically characterized by the following three axioms:

T: [a]ϕ ⊃ ϕ
4: [a]ϕ ⊃ [a][a]ϕ
5: ¬[a]ϕ ⊃ [a]¬[a]ϕ.

However, due to the extra expressivity of nominals in hybrid logic, we can repre-
sent these constraints by pure formulas. Furthermore, because the agent a0 only
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has minimal information about the trivial sanitization, the accessibility relation
R0 corresponding to a0’s knowledge is the universal relation. The axiom (Uni�)
simply indicates this fact.

Axioms (Cons) and (Unif) correspond to constraints on the relationship be-
tween Ra and PRa. The axiom (Cons) represents a consistency constraint. It
requires that, if PRa = (Ww,a, μw,a), then Ww,a = Ra(w) = {u | (w, u) ∈ Ra}.
The axiom (Unif) stipulates that the probability assignments associate a uniform
distribution with each possible world. Formally, it means that if (w, u) ∈ Ra,
then μw,a({w}) = μw,a({u}). This, together with the domain closure axiom in
the second group, captures the fact that μw,a is a uniform distribution over
Ra(w). These axioms imply the following natural constraints proposed in [4]:

1. uniformity: if u ∈ Ww,a, then PRa(w) = PRa(u);
2. state determined probability (SDP): if (w, u) ∈ Ra, then PRa(w) = PRa(u);

and
3. consistency: Ww,a ⊆ Ra(w).

Obviously, (Cons) implies a stronger consistency requirement than that in [4].
Under our consistency requirement, the uniformity and state determined prob-
ability are equivalent. Since (Unif) implies that, for each w, μw,a is a uniform
distribution over Ra(w), it is clear that the state determined probability con-
straint holds. Consistency, SDP, and uniformity are characterized in [4] by the
axioms KP1, KP2, and KP3 respectively:

KP1: [a]ϕ ⊃ (la(ϕ) = 1)
KP2: ϕ ⊃ [a]ϕ if ϕ is an a-likelihood formula
KP3: ϕ ⊃ (la(ϕ) = 1) if ϕ is an a-likelihood formula or the negation of an

a-likelihood formula.

However, as in the case of S5 modalities, we can also characterize these properties
by using pure formulas.

The last axiom (SVA) in the first group is the single-valued attribute axiom,
which means that each attribute is a single-valued function from the universe
of individuals to the domain of values. Sometimes, this axiom can be relaxed if
the domain of values has some kind of structure. For example, if the attribute is
disease and the domain of values include “AIDS”, “Flu”, “Cancer”, “Infection
with virus” and so on, then the value “Flu” implies the value “Infection with
virus”. In such cases, the values of an attribute may be not completely mutually
exclusive and we can represent the relationship between the values by a formula
of the form (f, v1) ⊃ (f, v2).

In the second group of axioms, we delimit the domain of individuals and repre-
sent their properties according to the sanitized information system. The domain
closure axiom (DC) means that each individual is named by an identifier and
a pseudonym. The unique identifier axiom (UI) (resp. unique pseudonym ax-
iom (UP)) indicates that two different identifiers (resp. pseudonyms) will not
refer to the same individual. The axiom (Rec) represents the information con-
tained in each record of the table σT , and connects each pseudonym with its
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corresponding attribute values. The axiom (RelP) encodes the indiscernibility
relation indσT (Q). Because of the reflexivity, symmetry, and transitivity axioms
in the first group, we only need to specify an axiom for each equivalence class of
indσT (Q) (via each element in the quotient set U ′/Q). The last axiom connects
identifiers to pseudonyms. Due to the uncertainty caused by the sanitization, an
identifier is exactly connected to all pseudonyms that are indiscernible with its
own pseudonym.

Let Σ(σT ) denote the set of all instances of the axioms in Figure 2. Then, it
is straightforward to verify the following theorem.

Theorem 1. A PH(@) model M with the above-mentioned signature is a model
of σT iff M |= Σ(σT ).

The following is a direct corollary of the theorem:

Corollary 1. Let ϕ be a wff. Then, σT ϕ iff Σ(σT ) |=glo ϕ.

4.3 Applications

We have shown that the language of PH(@) is expressive enough to describe
an information system and its sanitization. In the following, we use examples
to explain how it can be used to express privacy constraints and knowledge
discovered from information systems.

Example 3. According to [12,13], σT satisfies the k-anonymity criterion if
|[d]Q| ≥ k for any d ∈ U ′. This is easily expressed in PH(@) language. For-
mally, a sanitized information system σT satisfies the k-anonymity criterion
iff σT (la1(i) ≤ 1

k ) for i ∈ U . The formula means that an individual can
be identified with probability at most 1

k . In particular, it can be derived that
@d(la1(i) ≤ 1

k ) is valid in σT for any d ∈ [ι(i)]Q, which means that, given
any record whose quasi-identifiers are indiscernible from i’s quasi-identifiers, the
adversary will be able to recognize i with probability at most 1

k .

Example 4. The logical safety criterion was proposed in [6] to prevent homo-
geneity attacks. Subsequently, it was articulated into an epistemic model for
privacy protection in the database linking context [14]. Recall that, in modal
logic, the modality-free formulas are called objective formulas. Let Γ denote the
set of all nominal-free objective formulas, i.e., the set of descriptors closed under
Boolean combinations. The logical safety criterion allows a flexible personalized
privacy policy, so each individual can specify the information that he/she wants
to keep confidential. More precisely, Sec : U → 2Γ is such a specification func-
tion. According to the semantics of decision logic[10], a pseudonym d satisfies
a descriptor (f, v) with respect to σT , denoted by d |=σT (f, v), if f ′(d) = v,
and the satisfaction relation is extended to all formulas in Γ as usual. We nor-
mally omit the subscript σT . It is said that the adversary knows the individual
i has property ϕ, denoted by i |= Kϕ if, for d ∈ [ι(i)]Q, d |=σT ϕ. Then, σT
satisfies the logical safety criterion if Sec(i) ∩ {ϕ | i |= Kϕ} = ∅ for i ∈ U .
Thus, a sanitized information system σT satisfies the logical safety criterion iff
σT @i¬[a1]ϕ (or equivalently σT @ila1(ϕ) < 1) for i ∈ U and ϕ ∈ Sec(i).
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Example 5. To discover general rules from an information system is the main
purpose of data analysis. The rules usually exhibit some kind of dependency
between different attributes in the following form:∧

f∈B

(f, vf ) −→ (g, vg),

where B ⊂ A and g ∈ A\B. The rule means that if for each attribute f ∈ B, the
value of f is vf , then the value of attribute g is vg. The formulas

∧
f∈B(f, vf )

and (g, vg) are respectively called the antecedent and consequent of the rule. Two
important measures, support and confidence, are used to assess the significance
of the discovered rules. The support of a formula is defined as the proportion of
objects in the information system that satisfy the formula and the support of a
rule is simply the support of the conjunction of its antecedent and consequent.
On the other hand, the confidence of a rule is the result of dividing its support
by the support of its antecedent. Hence, a rule ϕ −→ ψ with support at least r1
and confidence at least r2 can be represented in our logic as

la1(ϕ ∧ψ) ≥ r1 ∧ la1(ϕ ∧ψ) ≥ r2la1(ϕ).

5 Concluding Remarks

In this paper, we propose a probabilistic hybrid logic that can specify data
privacy constraints and represent discovered knowledge at the same time. The
main contribution of the logic is twofold. On one hand, the uniformity of the
framework can explicate the common principle behind a variety of privacy re-
quirements and highlights their differences. On the other hand, the generality of
the framework extends the scope of privacy specifications. In particular, we can
specify heterogeneous requirements between different individuals, so it is possi-
ble to achieve personalized privacy specification. For example, someone may feel
that “slight illness” is sensitive, while others may not care. Consequently, it is
desirable that the specification language can express each individual’s require-
ment. Through the use of the satisfaction operator @i, our logic provides such a
personalized privacy specification. For example, we can use @i¬[a1]ϕ∧@j¬[a1]ψ
to express different privacy requirements of individuals i and j.

Although we have shown that the logic is expressive enough to specify many
existing privacy policies, we have not utilized its full power yet. For example,
nested modalities rarely play a role in our examples, since we only consider a
single agent with sanitized information and a dummy baseline agent. However, if
we consider the setting of multi-party computation, where several agents share
information about the individuals, an agent’s knowledge about other agents’
knowledge may be crucial for inferring private information. In such a setting,
nested modal formulas can represent more sophisticated privacy constraints.
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Abstract. Gender profiling is a fundamental task that helps CCTV systems to
provide better service for intelligent surveillance. Since subjects being detected
by CCTVs are not always cooperative, a few profiling algorithms are proposed
to deal with situations when faces of subjects are not available, among which
the most common approach is to analyze subjects’ body shape information. In
addition, there are some drawbacks for normal profiling algorithms considered
in real applications. First, the profiling result is always uncertain. Second, for a
time-lasting gender profiling algorithm, the result is not stable. The degree of
certainty usually varies, sometimes even to the extent that a male is classified
as a female, and vice versa. These facets are studied in a recent paper [16] us-
ing Dempster-Shafer theory. In particular, Denoeux’s cautious rule is applied for
fusion mass functions through time lines. However, this paper points out that if
severe mis-classification is happened at the beginning of the time line, the re-
sult of applying Denoeux’s rule could be disastrous. To remedy this weakness,
in this paper, we propose two generalizations to the DS approach proposed in
[16] that incorporates time-window and time-attenuation, respectively, in apply-
ing Denoeux’s rule along with time lines, for which the DS approach is a special
case. Experiments show that these two generalizations do provide better results
than their predecessor when mis-classifications happen.

Keywords: Gender Profiling, Gender Recognition, Evidence Theory, Cautious
Rule.

1 Introduction

Nowadays, CCTV systems are broadly deployed in the present world, e.g., Florida
School Bus Surveillance project [1], the First Glasgow Bus Surveillance [21], Federal
Intelligent Transportation System Program in the US [20], Airport Corridor Surveil-
lance in the UK [19,17,18,13], etc. However, despite the wide-range use of CCTVs, the
impact on anti-social and criminal behaviour has been minimal. For example, assaults
on bus and train passengers are still a major problem for transport operators. That is,
surveillance systems are not capable of reacting events of interest instantly.

A key requirement for active CCTV systems is to automatically determine the threat
posed by each individual to others in the scene. Most of the focus of the computer
vision community has been on behaviour/action recognition. However, experienced se-
curity analysts profile individuals in the scene to determine their threat. Often they can
identify individuals who look as though they may cause trouble before any anti-social

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 514–524, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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behaviour has occurred. From criminology studies, the vast majority of offenders are
young adolescent males. Therefore, key to automatic threat assessment is to be able to
automatically profile people in the scene based on their gender and age. In this paper,
we focus on the former.

Although it is a fundamental task for surveillance applications to determine the gen-
der of people of interest, however, normal video algorithms for gender profiling (usually
face profiling) have three drawbacks. First, the profiling result is always uncertain. Sec-
ond, for a time-lasting gender profiling algorithm, the result is not stable. The degree of
certainty usually varies, sometimes even to the extent that a male is classified as a fe-
male, and vice versa. Third, for a robust profiling result in cases were a person’s face is
not visible, other features, such as body shape, are required. These algorithms may pro-
vide different recognition results - at the very least, they will provide different degrees
of certainties. To overcome these problems, in [16], an evidential (Dempster-Shafer’s
(DS) theory of evidence) approach is proposed that makes use of profiling results from
multiple profiling algorithms using different human features (e.g., face, full body) over
a period of time, in order to provide robust gender profiling of subjects in video. Exper-
iments show that this approach provides better results than a probabilistic approach.

DS theory [2,22,8,9] is a popular framework to deal with uncertain or incomplete
information from multiple sources. This theory is capable of modelling incomplete
information through ignorance. For combining difference pieces of information, DS
theory distinguishes two cases, i.e., whether pieces of information are from distinct,
or non-distinct, sources. Many combination rules are proposed for information from
distinct sources, among which are the well-known Dempster’s rule [22], Smets’ rule
[23], Yager’s rule [24], and Dubois & Prade’s hybrid rule [4], etc. In [3], two combi-
nation rules, i.e., the cautious rule and the bold disjunctive rule, for information from
non-distinct sources are proposed. Therefore, gender profiling results from the same
classifier, e.g. face-based, at different times are considered as from non-distinct sources
while profiling results from different classifiers are naturally considered as from distinct
sources.

In [16], for gender profiling results from the same classifier at different time points,
Denoeux’s cautious rule [3] is used to combine them. For profiling results from dif-
ferent classifiers (i.e., face profiling and full body profiling), Dempster’s rule [2,22] is
introduced to combine them. And finally, the pignistic transformation is applied to get
the probabilities of the subject being male or female.

However, if severe mis-classification happens at the beginning of the time line, the
result of applying Denoeux’s rule could be disastrous. For instance, if a subject is clas-
sified as a female with a certainty degree 0.98, and later on it is classified as a male
with certainty degrees from 0.85 to 0.95, then by Denoeux’s cautious rule, it will be
always classified as a female. In order to remedy this weakness, in this paper, we pro-
pose two generalizations on applying Denoeux’s rule through time lines, in which one
uses time-window and the other uses time-attenuation, respectively. In the time-window
generalization, Denoeux’s rule is applied only for the most recent n frames where n is
a pre-given threshold depending on the time length. In the time-attenuation general-
ization, the certainty degree is reduced gradually by time at a pre-defined attenuation
factor. Experiments show that these two generalizations do provide better results when
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mis-classifications happen, but they have to pay the price of performing less accurate in
other situations than the fusion method proposed in [16]. In summary, we can say these
two generalizations are more robust than their predecessor.

The rest of the paper is organized as follows. Section 2 provides the preliminaries on
Dempster-Shafer theory. Subsequently, Section 3 introduces the two generalizations of
the DS approach. In Section 4, we discuss the difficulties in gender profiling in terms of
scenarios. Section 5 provides experimental results which shows our generalizations per-
form better than its predecessor and a classic fusion approach as well as single profiling
approaches. Finally, we conclude the paper in Section 6.

2 Dempster-Shafer Theory

For convenience, we recall some basic concepts of Dempster-Shafer’s theory of evi-
dence. Let Ω be a finite, non-empty set called the frame of discernment, denoted as,
Ω = {w1, · · · , wn}.
Definition 1. A basic belief assignment(bba) is a mapping m : 2Ω → [0, 1] such that∑

A⊆Ω m(A) = 1.

If m(∅) = 0, then m is called a mass function. If m(A) > 0, then A is called a focal
element of m. Let Fm denote the set of focal elements of m. A mass function with
only a focal element Ω is called a vacuous mass function.

From a bba m, belief function (Bel) and plausibility function (Pl) can be defined to
represent the lower and upper bounds of the beliefs implied by m as follows.

Bel(A) =
∑

B⊆A m(B) and Pl(A) =
∑

C∩A �=∅ m(C). (1)

One advantage of DS theory is that it has the ability to accumulate and combine evi-
dence from multiple sources by using Dempster’s rule of combination. Let m1 and m2

be two mass functions from two distinct sources over Ω. Combining m1 and m2 gives
a new mass function m as follows:

m(C) = (m1 ⊕m2)(C) =

∑
A∩B=C m1(A)m2(B)

1−
∑

A∩B=∅ m1(A)m2(B)
(2)

In practice, sources may not be completely reliable, to reflect this, in [22], a discount
rate was introduced by which the mass function may be discounted in order to reflect
the reliability of a source. Let r (0 ≤ r ≤ 1) be a discount rate, a discounted mass
function using r is represented as:

mr(A) =

{
(1− r)m(A) A ⊂ Ω
r + (1− r)m(Ω) A = Ω

(3)

When r = 0 the source is absolutely reliable and when r = 1 the source is completely
unreliable. After discounting, the source is treated as totally reliable.

Definition 2. Let m be a bba on Ω. A pignistic transformation of m is a probability
distribution Pm over Ω such that ∀w ∈ Ω,Pm(w) =

∑
w∈A

1
|A|

m(A)
1−m(∅) where |A| is

the cardinality of A.
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Let ⊕ be the conjunctive combination operator (or Smets’ operator [23]) for any two
bbas m,m′ over Ω such that

(m⊕m′)(C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m(A)m′(B), ∀ C ⊆ Ω. (4)

A simple bba m such that m(A) = x,m(Ω) = 1− x for some A �= Ω will be denoted
as Ax. The vacuous bba can thus be noted as A0 for any A ⊂ Ω. Note that this notation,
i.e., Ax, is a bit different from the one defined in [3] in which Ax in our paper should
be denoted as A1−x in [3].

Similarly, for two sets A,B ⊂ Ω, A �= B, let AxBy denote a bba m such that
m = Ax ⊕ By where ⊕ is the conjunctive combination operator defined in Equation
(4). For these kinds of bbas, we call them bipolar bbas. A simple bba Ax could be seen
as a special bipolar bba AxB0 for any set B ⊆ Ω, B �= A.

It is easy to prove that any m = AxBy is:

m(∅) = xy,m(A) = x(1 − y),m(B) = y(1− x),m(Ω) = (1− x)(1 − y) (5)

In addition, when normalized, m in Equation 5 is changed to m′ as follows.

m′(A) =
x(1 − y)

1− xy
,m′(B) =

y(1− x)

1− xy
,m′(Ω) =

(1− x)(1 − y)

1− xy
(6)

For two bipolar bbas Ax1By1 and Ax2By2 , the cautious combination rule proposed in
[3] is as follows.

Lemma 1. (Denœux’s Cautious Combination Rule) Let Ax1By1 and Ax2By2 be two
bipolar bbas, then the combined bba by Denœux’s cautious combination rule is also a
bipolar bba AxBy such that: x = max(x1, x2), y = max(y1, y2).

Also, according to [3], for m1 = Ax1By1 and m2 = Ax2By2 , the combined result by
Equation (2) is1

m12 = Ax1+x2−x1x2By1+y2−y1y2 (7)

3 Two Generalizations

In this section, we discuss two generalizations for the Cautious rule, i.e., the time-
window approach and the time-attenuation approach. Let ⊕C be the operator defined
by the Cautious rule.

Definition 3. (Time-Window Cautious Combination Rule) Let Ax1By1 , · · · , AxnByn

be n successive bipolar bbas, then the combined bba by Time-Window cautious combi-
nation rule of window size t is mt = Axn−t+1Byn−t+1 ⊕C · · · ⊕C AxnByn .

That is, a time-window cautious rule of window size t only combines the recent t bbas.

1 In [3], the combined result is m12 = Ax1x2By1y2 , but recall that we use a slightly different
notation from [3].
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Definition 4. (Time-Attenuation Cautious Combination Rule) Let Ax1By1 ,· · · ,AxnByn

be n successive bipolar bbas, then the combined bba by Time-Attenuation cautious com-
bination rule of attenuation factor t, 0 < t < 1, is mt = Ax1t

n−1

By1t
n−1 ⊕C · · · ⊕C

AxnByn .

That is, in a time-attenuation cautious rule of attenuation factor t, the coefficient is
reduced by t each time. Hence if a male is mis-classified as a female with a certainty
degree 0.98, and hence is represented as M0F 0.98, will be attenuated gradually that it
will not affect the cautious combination result for long since 0.98tn will grow smaller
when 0 < t < 1 and n increases.

4 Gender Recognition Scenario

In this section, we provide a detailed description of a gender profiling scenario, which
lends itself naturally to a DS approach.

Figure 1 shows three images taken from a video sequence that has been passed
through a video analytic algorithm for gender profiling. In this sequence, a female wear-
ing an overcoat with a hood enters the scene with her back to the camera. She walks
around the chair, turning, so that her face becomes visible, and then sits down.

(a) (b) (c)

Fig. 1. Three images taken from a video sequence

Fig. 1(a) shows that the subject is recognised by the full body shape profiling as a
male. Note that her face is not visible. In Fig. 1(b), the subject is classified as female by
the full body shape profiling algorithm. In Fig. 1(c), as she sits down, with her face vis-
ible, the face profiling algorithm classifies her as female, whilst the full body profiling
classifies her as male. Note that the full body profiling algorithm is not as reliable as the
face profiling algorithm. Conversely, full body profiling is always possible whilst the
face information can be missing. That is why these two profiling algorithms should be
considered together. In addition, as full body profiling is not as robust, discount opera-
tions should be performed on the algorithm output (cf. Equation (3)). The discount rate
is dependent on the video samples and the training efficiency. For every video frame
in which a body (face) is detected, gender recognition results are provided. The full
body profiling algorithm and the face profiling algorithm, provided a person’s face is
detected, report their recognition results for every frame of the video, e.g., male with
95% certainty.
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For a frame with only a body profiling result, for instance Fig. 1(a), the corresponding
mass function m for body profiling will be Mx where M denotes that the person is
classified as a male and x is the mass value of m({M}). The corresponding mass
function for face profiling is M0F 0 where F denotes that the person is classified as a
female, or the vacuous mass function. Alternatively, we can refer to this as the vacuous
mass function.

Similarly, for a frame with both body profiling and face profiling, for instance Fig.
1(c), the corresponding mass function for body profiling will be Mx (or in a bipolar
form MxF 0) and the mass function for face profiling is F y (or in a bipolar formM0F y)
where x, y are the corresponding mass values. As time elapses, fusion of bipolar bbas
by the cautious rule or its two generalizations are introduced, as shown by Lemma 1 and
Definition 3 and Definition 4. And when it comes to present the final profiling result,
we use Dempster’s rule to combine the two fused bipolar mass functions from the two
recognition algorithms, respectively. Namely, for the two bipolar bbas m1 = Mx1F y1

and m2 = Mx2F y2 , it is easy to get that the combined result m12 by Dempster’s rule
is (normalized from the result of Equation 7):

m12({M}) =
(x1 + x2 − x1x2)(1 − y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12({F}) =
(1− x1)(1− x2)(y1 + y2 − y1y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12(Ω) =
(1− x1)(1− x2)(1 − y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
.

Finally, we use the pignistic transformation (Def. 2) for the final probabilities. That
is, p({M}) = m12({M}) + m12(Ω)/2 and p({F}) = m12({F}) + m12(Ω)/2.
Obviously, we will say the subject is a male if p({M}) > p({F}), and a female
if p({M}) < p({F}). In very rare cases that p({M}) = p({F}), we cannot know
whether it is male or female.

The following example illustrates the computation steps.

Example 1. Let us illustrate the approach by a simple scenario with four frames, and
there is a mis-classification in the first frame. In the first frame, the corresponding both
body profiling (m1

b) and face profiling (m1
f ) results as m1

b = M0.6 and m1
f = F 0.9

(mis-classification). In the second frame, there is only a body profiling (m2
b) result which

is m2
b = M0.7. Frame three is associated with body profiling (m3

b) and face profiling
(m3

f ) results as m3
b = F 0.4 and m3

f = M0.6, and frame four is associated with body
profiling (m4

b) and face profiling (m4
f ) results as m4

b = M0.6 and m4
f = M0.6.

By Lemma 1, the fusion results by the cautious rule are mb = M0.7F 0.4 and mf =
M0.6F 0.9.

By Definition 3 with window size 2, the fusion results by the time-window cautious
rule are mW

b = M0.6F 0.4 and mW
f = M0.6.

By Definition 4 with attenuation factor 0.95, the fusion results by the time-attenuation
cautious rule are mA

b = M0.6F 0.38 and mA
f = M0.6F 0.77.

Then by Equation 7, we get mbf = M0.88F 0.94, which, when normalized, is equiv-

alent to mbf ({M}) = 0.88(1−0.94)
1−0.88∗0.94 = 0.31, mbf ({F}) = 0.94(1−0.88)

1−0.88∗0.94 = 0.65,
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mbf (Ω) = (1−0.88)(1−0.94)
1−0.88∗0.94 = 0.04. And finally we get p({M}) = 0.33 and p({F}) =

0.67 which indicates that the subject is a female.
Similarly, we have mW

bf = M0.84F 0.4, and hence mW
bf ({M}) = 0.84(1−0.4)

1−0.84∗0.4 = 0.76,

mW
bf ({F}) = 0.4(1−0.84)

1−0.84∗0.4 = 0.10, mW
bf (Ω) = (1−0.84)(1−0.4)

1−0.84∗0.4 = 0.14 and pW ({M}) =

0.83 and pW ({F}) = 0.17, which indicates that the subject is a male.
Also, we have mA

bf = M0.88F 0.857, and hence mA
bf ({M}) = 0.88(1−0.857)

1−0.88∗0.857 =

0.51, mA
bf ({F}) = 0.857(1−0.88)

1−0.88∗0.857 = 0.42, mA
bf (Ω) = (1−0.88)(1−0.857)

1−0.88∗0.857 = 0.07 and
pA({M}) = 0.55 and pA({F}) = 0.45 which also supports that the subject is a male.

5 Experimental Results

In this section we compare fusion results obtained by a classic approach, a Dempster-
Shafer theory approach proposed in [16] and two of its generalization approaches. As
there are no benchmark datasets for both body and face profiling, we simulate the out-
put of both body and face classifiers on a sequence containing a male subject. For the
body classifier, the probability of any frame being correctly classified as male/female is
roughly 60-90%. For the face classifier, only 75% of the available frames are randomly
allocated as containing a face. For each of these frames the probability of the frame
being correctly classified as being male/female is 85-100%. In both cases the values for
m({M}) and m({F}) are uniformly sampled from the ranges 0.6-0.9 and 0.85-1.0 for
the body and face classifiers outputs respectively.

As mentioned before, for gender profiling results from the same classifier at differ-
ent time points, we use the cautious rule to combine them. For profiling results from
different classifiers (i.e., face profiling and full body profiling), we use Dempster’s rule
to combine them. And finally, we apply the pignistic transformation (Def. 2) to get the
probabilities of the subject being male or female.

Classic fusion in the computer vision community [25] takes the degrees of certainty
as probabilities, i.e., they consider the face profiling and the full body profiling output
ptf and ptb indicating the probabilities of faces and full bodies being recognized as males
at time t. Then it uses ptb,f = ctfp

t
f +ctbp

t
b to calculate the final probability ptb,f at time t,

where ctf and ctb are the weights of the face and full body profiling at time t, proportional
to the feasibility of the two algorithms in the last twenty frames. As full body profiling is
always feasible, suppose face profiling can be applied n times in the last twenty frames,
then we have:

cb =
20

20 + n
, cf =

n

20 + n
.

For this experiment, the performance of the DS and classic fusion schemes were char-
acterised by the true positive rate:

TPR =
NPR

N

where NPR is the number of frames in which the gender has been correctly classified
and N is the total number of frames in which the body/face is present. According to
the training on the sample videos, the discount rate r for the full body profiling is set to
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Table 1. Comparison of TPR for body classification, face classification, classic fusion, DS fusion
and its two adaptions - Mis-Classification Cases

Methods N NPR TPR (%)
Full Body 2900 1606 55.4

Face 2159 2002 92.7
Classic Method 2900 2078 71.7
DS Approach 2900 2380 82.1

Time-Attenuation (0.95) 2900 2194 75.7
Time-Attenuation (0.99) 2900 2431 83.8

Time-Window (5) 2900 2586 89.2

0.3. For comparison, we calculate the TPR value for the body classifier alone, the face
classifier, the DS fusion scheme and the classic fusion scheme.

Here, we first apply the approaches to 58 simulations each with 50 frames (so there
are 2900 total frames), where a mis-classification happens at the beginning. The com-
parison results are presented as follows.

From Table 1, we can see that the two generalizations provide better results than the
DS fusion scheme, except when the attenuation factor is 0.95. This may be because
setting the attenuation factor to 0.95 reduces the certainty degrees too quickly.

An example simulation result comparing the classic, DS, Time-Attenuation (0.99)
and Time-Window (5) approaches is shown in Fig. 2.

Fig. 2. An Example Simulation

Now we apply the approaches to 20 simulations each with 150 frames (so there
are 3000 total frames), where we do not assume mis-classification happened at the
beginning. The comparison results are presented as follows.

From Table 2, we can see that the two generalizations perform worse than the DS
fusion scheme. This is not surprising since the former do not always hold the highest
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Table 2. Comparison of TPR for body classification, face classification, classic fusion, DS fusion
and its two adaptions - General Cases

Methods N NPR TPR (%)
Full Body 3000 1792 59.7

Face 2229 2125 95.3
Classic Method 3000 2490 83.0
DS Approach 3000 2899 96.6

Time-Attenuation (0.95) 3000 2126 70.9
Time-Attenuation (0.99) 3000 2401 80.0

Time-Window (5) 3000 2395 79.8
Time-Window (20) 3000 2552 85.1

certainty degree as in the DS fusion scheme. Table 2 also shows that when the attenua-
tion factor or the window size increases, the results improve. Actually, if the attenuation
factor is one or the window size equals to the number of frames, then these two gen-
eralizations will provide the same results as the DS fusion one, or we can see the DS
fusion scheme is a special case of these two generalizations.

6 Conclusion

In this paper, we have proposed two generalized fusion methods to combine gender pro-
filing classifier results by modifying the application of the Cautious rule, i.e., the time-
window fusion method and the time-attenuation fusion method. Experimental results
show that these two generalizations provide more robust results than other approaches,
especially to their predecessor DS fusion scheme.

From the experimental results, it suggests that the time-window fusion scheme per-
forms slightly better than the time-attenuation fusion scheme. But we think this conclu-
sion still depends on the choice of attenuation factor, window size and frame size.

For future work, we plan to apply the fusion schemes to profiling classifier results
generated from real video sequences. Also, for the time-attenuation generalization, we
are trying to use the well-known attenuation approach used in machine learning as:

x′
n = x′

n−1(1− α) + xnα,

whereα is an attenuation factor, and see whether this will be a better choice. In addition,
we are also exploiting ideas from knowledge base merging [5,11,6,7], statistical fusion
[10,12] and calculi on sequential observations [14,15].
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Abstract. Reliability studies and system health predictions are mostly
based on the use of probability laws to model the failure of components.
Behavior of the components of the system under study is represented by
probability distributions, derived from failure statistics. The parameters
of these laws are assumed to be precise and well known, which is not
always true in practice. Impact of such imprecision on the end result can
be crucial, and requires adequate sensitivity analysis. One way to tackle
this imprecision is to bound such parameters within an interval. This
paper investigates the impact of the uncertainty pervading the values of
law parameters, specifically in fault tree based Safety analysis.

Keywords: fault trees, Imprecise probabilities, Interval analysis.

1 Introduction

This work takes place in the context of an Airbus project called @MOST . The
main aim of the @MOST project is to improve the schedule of operational and
maintenance activities of the aircrafts. This is achieved by using some extended
safety models and by predicting the expected failures. These predictions are
based upon the safety analysis of underlying system models.

One of the objectives of safety analysis is to evaluate the probability of unde-
sired events. In our previous work [1], we studied how to evaluate the imprecision
of this probability when the undesired event is described by a fault tree, and the
probabilities of elementary events are imprecise numbers. In the usual approach,
the fault tree is a graphical representation of a Boolean formula F , representing
all the conditions of occurrence of the undesired event under study, as a func-
tion of some atomic events. Those atomic events represent the failures of the
components of the system, or possibly some of its configuration states. All of
them are supposed to be stochastically independent. Then the probability of the
undesired event can be computed from the probabilities of the atomic events, by
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means of Binary Decision Diagrams (BDDs) [3]: that allows an easy probability
computation for very large Boolean functions.

In safety analysis, as well in reliability studies, the probabilities of the atomic
events are time-dependent, and generally described by means of some standard
probability distributions [4], e.g. exponential or Weibull laws. Their parameters
are supposed to be precisely known numbers, but actually, they generally come
from statistical observations of failure times. They are derived by means of data
fitting methods and regression analysis: for example, the paper [5] explains how
to use different methods, like least squares or the actuary method, in order to
find the best parameters of a Weibull law that fit some samples.

In this paper, we investigate the impact of imprecision in parameters of prob-
ability distributions commonly used in safety analysis, by using intervals values
for the parameters. First of all, we study the impact on the probability dis-
tributions themselves: p-boxes [6] are obtained, i.e. minimum and maximum
probability distributions bounding the real one. In a second step, an extension
of the algorithm described in paper [1] is used to evaluate the imprecise prob-
ability of a Boolean formula depending on several p-boxes. In this work, we
compute the output p-box attached to undesired events.

The paper is organized as follow: section 2 introduces the basic concepts
of reliability. Sections 3 and 4 present the resulting ranges of the cumulative
distribution of an atomic event for, respectively, exponential law and Weibull
law. At last, section 5 explains the computation of the range of undesired event
probability across time (cumulative distribution), in function of the distributions
of the atomic events leading to this undesired event. A case study illustrates
this section. Finally, the last section presents some conclusions and future work.

2 Basics of Reliability Study

The reliability R(t) of a system, also called the survival function, is the proba-
bility that the system does not fail before time t. It can be expressed as:

R(t) = P (T > t) (1)

where T is a random variable representing the failure date.
The probability of failure of a system before time t, called failure distribution

FT (t) = P (T ≤ t), is the complement of its reliability:

FT (t) = 1−R(t) (2)

The failure density function fT (t) expresses the probability that the system fails
between t and t + dt:

fT (t)dt = P (t ≤ T < t + dt) (3)

The failure rate λ of a system is the frequency of its failure. It is a function of the
system health state, and in general it is time dependent. λ is often considered
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as proportional to the probability that a failure occurs at a specified time point
t, given that no failure occurred before this time:

λ(t)dt = P (t ≤ T ≤ t + dt | T > t) (4)

This conditional probability can be written as:

λ(t)dt =
fT (t)dt

R(t)
=
−R′(t)

R(t)
, (5)

where R′(t) is the derivative of R(t) with respect to the time.
The solution of this differential equation is:

ln(R(t)) =

∫ t

0

λ(u)du + c,where c is a constant. (6)

Hence, the reliability expressed in terms of the failure rate has the expression:

R(t) = e−
∫ t
0
λ(u)du (7)

In the following text, we will present two particular cases of failure rates in
equation (7), leading to the following distributions:

– exponential distribution,
– Weibull distribution.

Furthermore, we will study the impact of the lack of knowledge about failure
rates on those distributions.

In reliability studies, the probabilities of all events are assumed to be well
known, which is not always verified in practice. Making this assumption has
shown some limitation, therefore, some researchers started to work on other
methods, using intervals instead of precise values. Utkin and Coolen, for ex-
ample, worked on imprecise reliability using imprecise probability theory, with
upper and lower expectations instead of a single probability value [2]. They
studied imprecise monotonic fault trees, and also the impact of some compo-
nents failure over the system under study by means of imprecise importance
measures [].

In this paper, the goal is to compute the probability distribution of an unde-
sired event described by any binary fault tree, monotonic or not. Those kinds
of fault trees are often obtained from automatic fault tree generation software,
or systems with reconfiguration states. The impact of imprecision about the
distribution of the undesired event depends on the architecture of the system,
and on the imprecision about the parameters of the probability distributions
of its elementary components. Hence, the first step is to study the impact of
imprecise parameters on the commonly used probability distributions.

3 The Exponential Distribution

Recall that the reliability analysis of an aircraft takes into account, among oth-
ers, the electronic components. Their probabilities of failure are modeled with
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Fig. 1. a) Exponential density function b) Cumulative distribution

constant failure rates λ(t) = λ, because they do not have any burn-in nor any
wear-out periods, respectively at their beginning and their end of life. More-
over, when the failure rate is constant, equation (7) becomes R(t) = e−λt, i.e.,
an exponential distribution.

The probability density function is given by:

fT (t) = λe−λt (8)

And is represented in Fig. 1.a). Its cumulative distribution, depicted in Fig. 1.b)
is given by:

FT (t) = 1− e−λt (9)

3.1 Exponential Law with Imprecise Failure Rate

If the only information available about the failure rate λ is an interval containing
it, then there are different probability distributions representing the failure of
the component, as will be presented in the sequel.

The goal is to find the range of the cumulative distribution, when the failure
rate is imprecise: λ ∈ [λ, λ]. In interval analysis, knowing the monotonicity of a
function makes the determination of its range straightforward.

The function 1 − e−λt is strictly increasing with λ, hence the range of the
cumulative distribution, when λ is varying, for every t > 0 and λ > 0, is given
by the expression:

FT (t) = {1− e−λt, s.t. λ ∈ [λ, λ]} = [1− e−λt, 1− e−λt] (10)

The range of the cumulative distribution with respect to some values of λ and
in time interval t = [0, 10] is represented in Fig. 2.a).

For the probability density function, it is a little bit more complex. The
derivative with respect to λ of the function fT (t) is:

∂

∂λ
fT (t) = (1− λt)e−λt (11)
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Fig. 2. a) Range of the cumulative distribution b) Range of the probability distribution
(0.1 < λ < 0.3, 0 < t < 10)

This means that the function will be increasing with respect to λ when λt < 1,
and decreasing otherwise. The range of the function will depend on λ and t, as
illustrated on Fig. 2.b).

In the following, we give different interpretations of the probability of failure
of a component, as used in fault tree analysis.

3.2 Occurrence of an Atomic Failure before Time t

In the quantitative analysis of a safety model, each component (or type of compo-
nent) of this model will have its own failure rate, and its own failure probability.
The main goal of this analysis is to ensure that, at each time t, the probability
that the system has failed remains below a certain value. We are interested
in the probability of failure of a component or system before time t, hence the
cumulative distribution will be used for our computations.

When the parameter λ is imprecise, and its possible values are known to lie
within the interval [λ, λ], the probability distribution will be contained in the
p-box [6]:

{P, P (T < t) ∈ [1− e−λt, 1− e−λt]}, (12)

where a p-box is an ordered pair of cumulative distributions, representing the
probability family. This family (12) contains more probability distributions than
those with an exponential distribution. However it is enough to use the p-box
when computing probability bounds of events of the form T < t. But it will not
be the case for computing other indicators, e.g. the variance.

3.3 Occurrence of an Atomic Failure between t1 and t2

In some cases, it can also be useful to compute the probability that the event
will occur between two dates t1 and t2. This can be expressed as the conditional
probability t1 < T < t2 given that T does not occur before t1:

P (T < t2|T ≥ t1) =
e−λt1 − e−λt2

1− e−λt1
(13)
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When λ ∈ [λ, λ], the partial derivative of P (T < t2|T ≥ t1) with respect to λ
must be computed in order to find the p-box of the probability distribution.

∂

∂λ
P (T < t2|T ≥ t1) =

t2e
−λt2 − t1e

−λt1

(1− e−λt1)2
(14)

By noticing that the function xe−λx is decreasing with x when λ is fixed, we can
deduce that ∂

∂λP (T < t2|T ≥ t1) is strictly negative. Hence, P (T < t2|T ≥ t1)
is decreasing with respect to λ, and the p-box containing the probability that
the event occurs between t1 and t2 is:

P (T < t2|T ≥ t1) ∈
[
e−λt1 − e−λt2

1− e−λt1
,
e−λt1 − e−λt2

1− e−λt1

]
. (15)

3.4 Case of Periodic Preventive Maintenance

It is also possible to represent schedules of preventive maintenance by means of
probability distributions. Indeed, some components are preventively replaced or
repaired with a period of length θ: this maintenance task will reset the prob-
ability of failure to 0 after θ flight hours (FH). The cumulative distribution
representing this probability of failure in this case is a periodic function that can
be written as:

for k ∈ N, P (T < t) = 1− e−λ(t−kθ), if t ∈ [kθ, (k + 1)θ] (16)

If the failure rate λ is imprecise, then the probability of failure is the same as in
the section 3.2 on the interval [0, θ]:

for k ∈ N, P (T < t) ∈ [1− e−λ(t−kθ), 1− e−λ(t−kθ)], if t ∈ [kθ, (k + 1)θ] (17)

If both the failure rate and the period are imprecise, then it is still possible
to compute the range of the resulting cumulative distribution: we can consider
that the period θ can be any value in the interval of time [θ1, θ2]. In this case,
the size of the interval probability will grow very quickly with the size of the
interval [θ1, θ2]. The minimum and maximum cumulative distributions, denoted
by P (F < t) and P (F < t), are given for k ∈ N by the following expressions:

P (T < t) =

{
0 for kθ1 < t < kθ2
1− e−λ(t−kθ1), for t ∈ [kθ2, (k + 1)θ1]

P (T < t) = 1− e−λ(t−kθ1), for t ∈ [kθ2, (k + 1)θ2]

An example of those p-boxes for λ ∈ [0.5, 0.6] and T ∈ [θ1, θ2] is shown on Fig. 3.

4 The Weibull Distribution and Imprecise Parameters

In the case of a hardware component, it can be useful to model its burn-in period
(i.e. the fact that the failure rate is high at the beginning but will decrease after
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Fig. 3. An example of periodic maintenance with θ ∈ [θ1, θ2] and λ ∈ [0.5, 0.6]

Fig. 4. Bathtub Curve

some time) and its wear-out phase (i.e. the fact that after some time, the failure
rate of the component increases). Therefore, the failure rate has the shape of a
bathtub curve, as shown on Fig.4.

In order to model the reliability in this case, the Weibull law is used. It is a
two parameters law, described by the formula:

R(t) = e−( t
η )β (18)

where η is the scale parameter and β the shape parameter.
The probability density function of a Weibull law is given by the expression:

fT (t) =
β

η
(
t

η
)β−1e−( t

η )β (19)

And its cumulative distribution is:

FT (t) = 1− e−( t
η )β (20)

From equation (5), the expression of the failure rate as a function of t is:

λ(t) = β.
1

ηβ
.tβ−1 (21)
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In order to get a bathtub curve, we will chose:

– a value β1 < 1 for the burn-in phase (t0 to t1),

– β = 1 for the useful life (t1 to t2),

– a value β2 > 1 for the wear-out phase (t > t2).

In the wear-out phase, the reference origin of the failure rate and the cumulative
function is not 0, hence in order to be able to shift the distribution to starting
time t2, a location parameter γ should be added:

FT (t) = 1− e−( t−γ
η )β (22)

Despite the fact that the parameter β is different for each phase of the bathtub
curve, the failure rate is a continuous function. Therefore, there will be a con-
straint for each change of phase, that will ensure the continuity. When the scale
parameter η remains the same for all the phases, this constraint is expressed as
below: {

β1.
1

ηβ1
.tβ1−1
1 = 1

η

β2.
1

ηβ2
.(t2 − γ)β2−1 = 1

η

⇔
{
β1.(

t1
η )β1−1 = 1

β2.(
(t2−γ)

η )β2−1 = 1
(23)

Like the failure rate curve, the global cumulative distribution will be composed
of three pieces of cumulative distributions with different parameters. To ensure
the continuity of the global one, the cumulative distribution of each new phase
should start from the last value of the previous phase.

When the parameters of a Weibull law are imprecise, they should still verify
the constraints of β for each phase, and the ones expressing the continuity of λ(t)
(equation 23). Fig. 5 shows the variation of the failure rate with the variation
of η for the three different phases of the bathtub curve.

. a) β1 < 1 . b) β = 1 . c) β2 > 1

Fig. 5. Variation of the Weibull distribution with η

The imprecision pervading the parameters β and η of the Weibull law affects
the value of the time points where the phases change in the bathtub curve (t1
and t2), due to equation (23). These time points become themselves intervals.

In order to find the range of the cumulative distribution with the different
parameters, the monotonicity study of the function will also be required, as in
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section 3. In this case, we have a two parameter function, hence we compute its
gradient.

−→∇P (T < t) =

∣∣∣∣∣ ∂
∂ηP (T < t)
∂
∂βP (T < t)

=

∣∣∣∣∣β. tβ

ηβ+1 e
−( t

η )β

ln( t
η ).( t

η )βe−( t
η )β

(24)

By noticing that t, η, β and e−( t
η )β are always positive, we can conclude that the

partial derivative ∂
∂ηP (T < t) is positive. But the partial derivative ∂

∂βP (T <

t) is positive when η > t and negative otherwise, because of the term ln( t
η ).

Equation (23) implies that for η > t1, hence P (T < t) is decreasing with respect
to β for t < t1. This means that the p-box of a Weibull distribution will be:

[1− e
−( t

η )β
, 1− e−( t

η )β ], for t ∈ [0, t1] (25)

Between t1 and t2, β is fixed to 1, hence the bounds for the cumulative distri-
bution are:

[1− e
− t−t1

η + P (T < t1), 1− e−
t−t1

η + P (T < t1)], for t ∈ [t1, t2] (26)

When t > t2, the quantity (t2− γ) is computed through equation (23). Now the
partial derivatives are similar to the ones in equation (24), replacing t by t− γ.
Hence the condition for ∂

∂βP (T < t) being positive is that t < γ + η, so we get
the range of the cumulative distribution:

[1− e
−( t−γ

η )β
+ P (T < t2), 1− e−(

t−t2
η )β + P (T < t2)], for t < γ + η (27)

[1− e
−( t−γ

η )β
+ P (T < t2), 1− e−(

t−t2
η )β + P (T < t2)], for t > γ + η (28)

Once we know the impact of imprecise parameters on one probability distri-
bution, we can use it in the computation of the probability distribution of an
undesired event described by a fault tree.

5 Range of a Undesired Event Probability across Time

In the case of fault tree analysis, the probability of a undesired event is described
with a Boolean formula F , function of N Boolean variables Vi, i = 1 . . .N rep-
resenting the failure (or states) of its components. When the probability of Vi is
represented by a probability distribution with an imprecise parameter, we have
a p-box for the probability of the undesired event. The variables Vi are supposed
to be stochastically independent, and they can follow different probability dis-
tributions. Also, their parameters can be of different types: some can be precise,
when the information is available and well known, some can be imprecise.

The goal will be to find the p-box describing the undesired event probability
across time from the p-boxes of the variables Vi. The best way to carry out this
computation is to discretize the time, and to find for each t and for each Vi,
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the associated interval I(t, Vi). Of course, if all input probability distributions
are precise, the probability of the undesired event will be precise. When Ti is
a random variable representing the failure time of the component Vi, we have
that:

Ii(t, Vi) = [P (Ti < t), P (Ti < t)]

Let us consider two variables V1 and V2 with exponential laws, and respective
imprecise parameters λ1 ∈ [0.1, 0.14] and λ2 ∈ [0.1, 0.2]. The two first graphs of
Fig. 6 depicts the intervals Ii(t = 6, Vi) associated to these variables.

Fig. 6. Example of aggregation of two exponential p-boxes with F = V1 ∨ V2

For the same time point, the range of the probability of variable Vi is given
by the interval Ii(t, Vi). So, for this time t, the algorithm presented in [1] can
be used to compute the probability of the undesired event.

In order to compute the range of the cumulative distribution of the undesired
event for all time instants, we apply the algorithm for all k time instants, k = To

Ts
,

where To is the observation interval and Ts is the time step. An example of the
result given by the algorithm for an undesired event described by the Boolean
formula F = V1 ∨ V2, and for a time step of 1, is depicted on the last graph of
Fig. 6.
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5.1 Case Study: Safety Model of a Primary/Backup Switch

In this case study, the analysis process of Safety models used in the @MOST
project will be described. We will take the example of a small system allowing
a reconfiguration: a Primary/Backup Switch. It is constituted of three compo-
nents:

– A primary supplier
– A back-up supplier
– A switch that selects the active supplier between the primary or the backup

one

When a fault occurs in the Primary supplier, then it switches to the Back-up
supplier. But it may also happen that the Switch gets stuck: in this case, it will
be impossible to switch to Backup supplier.

The software Cécilia OCAS is used to model the architecture and the behavior
of the system thanks to the AltaRica language, which is mode-automata based.
From this description, some algorithms [7] will extract fault trees or Minimal
Cut Sets for any undesired event selected by the user by means of observers.
Fig.7 shows the OCAS model of the Primary/Backup Switch.

Fig. 7. a) OCAS model of the Primary/Backup Switch b)Fault tree associated to event
Obs.KO

In the following, we will study the undesired event corresponding to the fact
that the whole system is down, written as Obs.KO. The OCAS tool extracts the
fault tree associated to this event, as displayed on Fig.7.

Therefore, this fault tree is equivalent to the Boolean formula:

Obs.KO = P.Fail ∧ (B.Fail ∨ (S.stuck ∧ ¬S.activeB)),

where P.Fail stands for a failure of the Primary supplier and B.Fail for a failure
of the Backup supplier. S.stuck represents the fact that the Switch is stuck and
is not able to activate the Backup, and S.activeB is the activation order of the
Switch.
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The sensitivity analysis algorithm is applied to the fault tree, with the follow-
ing imprecise parameters for the distributions:

– P.Fail possesses an exponential distribution with an imprecise failure rate
λ = 10−4 + /− 50% and a precise periodic maintenance of period θ = 30 FH

– B.Fail possesses an exponential distribution with an imprecise failure rate
λ = 10−4 + /− 10% and a precise periodic maintenance of period θ = 35 FH

– S.stuck possesses an exponential distribution with a precise λ = 10−5

– An activation order of the Switch occurs after t = 80 FH

On Fig. 8, we can observe the minimum and maximum cumulative distributions
of the event Obs.KO, for a duration of 100 flight hours (around three or four
months for a commercial aircraft). The picture lays bare the effect of periodic
maintenance on those distributions.

Fig. 8. Evolution of the p-box of the event Obs.KO for a duration of 100 FHs

The study of this p-box can give crucial information about the probability of
undesired events, such as Obs.KO : when the area between the minimum curve
and the maximum curve is tight, computations are reliable. The larger it is, the
more uncertainty we will get. But even under uncertainty, it can still be possible
to ensure safety, if the upper probability of the undesired event is below a legal
threshold. For instance, in our case study, the maximum probability is always
less than 1.8× 10−5 for 100 flight hours, with this maintenance schedule.

In safety analysis, the requirements to meet for each failure are described in
the Failure Mode and Effects Analysis document (FMEA, [10]). They are clas-
sified with respect to their probability of occurrence, their severity and some
other features. This classification defines the legal probability threshold to be
met. In the example, the event Obs.KO meets a requirement of an event oc-
curring less than 10−4 over the 100 first flight hours, but not the threshold of
10−5. In case a threshold of 10−5 is required by the FMEA for this event, then
we must change the maintenance schedule in order to meet this requirement.
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The algorithm allows to test easily several scenarios of maintenance, in order
to find one that ensures the threshold of 10−5. With a periodic maintenance
of the primary supplier every 19 flight hours instead of 25, and of the backup
supplier every 22 flight hours instead of 35, this requirement can be met despite
the uncertainty about the inputs, as shown on Fig. 9.

Fig. 9. A different scenario of maintenance schedule

The obtained p-box is also compatible with the fuzzy extension of FMEA [11].
In this case, a linguistic description of the occurrence scale is assumed, and the
threshold to meet for the occurrence parameter is a linguistic term described
by a membership function over an ad hoc scale. After casting the probability
interval on such a scale, we can compute the necessity and the plausibility of a
fuzzy level of occurrence at each time t. This pair of evaluation expresses the
compatibility of the probability interval and the linguistic occurrence threshold.

6 Conclusion

Being able to model the impact of incomplete information on probabilistic safety
analysis is very useful for maintenance management. It allows the user to se-
lect the best representation for available data, in order to get a faithful advice.
Precise data can be used when they are available, but they do not need to be
assumed so when they are not. Consequently, more facets of uncertainty can be
taken into account, and especially the difference between the variability of fail-
ure times and the lack of knowledge on distribution parameters.This difference
can be very crucial in a decision process, where confidence about the results of
computations plays a decisive role.

The computation time of this algorithm is exponential with respect to logical
variables that appears both in positive and negative forms in the fault tree (in
practice there are very few of them [1]). Hence our methodology for risk analysis
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in maintenance management looks scalable. Further experiments should be run
to demonstrate this point.

Future work will take into account the uncertainty of parameters represented
by means of fuzzy intervals, using the concept of α-cuts ([9]). In fact a fuzzy
set can be considered as a collection of nested (classical) intervals, called α-cuts.
For each α-cut, the range of the undesired event is computed. The issue is then
to find an algorithm to compose all these ranges into a fuzzy cumulative distri-
bution.

Acknowledgments. The authors would like to thank Christel Seguin (ON-
ERA, France) and Chris Papadopoulos (AIRBUS Operations Ltd., UK) for the
discussions about the application.
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Abstract. Fault tree analysis is a widespread mathematical method
for determining the failure probability of observed real-life systems. In
addition to failure probability defined by wear, the system model has
to take into account intrinsic and extrinsic system influences. To make
allowance for such factors, we draw on an implementation by Rebner
et al. to compute the lower and upper bounds of the failure probability
of the top event based on interval analysis implemented in MATLAB
using INTLAB. We present a new verified implementation in C++ to
reduce the trade-off between accuracy and computation time, describe
the new implementation by giving an illustrative example based on work
by Luther et al. and show the advantages of our new implementation.

Keywords: fault tree analysis, DSI, C-XSC, CUDA.

1 Introduction

Fault tree analysis is a widespread mathematical method for describing and com-
puting the failure probabilities of observed systems, such as nuclear power plants
or complex dynamic processes [1, 2]. Because of the deterministic behavior of
the underlying failure probabilities, it is not possible to describe intrinsic and
extrinsic influences on the observed systems. Real-life systems combine sure and
unsure failure probabilistics as shown by various calamities in the last decade.
To introduce unsure data into fault tree analysis, we draw on interval arith-
metic [3, 4], which serves as a basis for our implementation. It is well known
that traditional implementations of fault tree analysis on modern computer sys-
tems do not consider failures reasoned in floating-point arithmetic, for example,
round-off and approximation errors, which occur because of the finite nature
of machine numbers [5, 6]. In [7] we introduced a verified fault tree algorithm
written in MATLAB using the interval library INTLAB [8] to serve as a basis
for interval arithmetic and directed rounding when computing the lower and
upper bounds of failure probability based on the work of Carreras et al. [9]. One
disadvantage of this implementation is the computation time needed to arrive
at the verified solution. In this paper, we present a new implementation of the
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algorithms described in [7, 10] using NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) [11], which can carry out high-performance computing using
multithreading functionality and, in its latest implementation, conduct floating-
point computation based on the IEEE754 floating-point standard [12] on the
NVIDIA graphics card. This paper is structured as follows. First, we introduce
the basic theory of interval arithmetic, fault tree analysis and CUDA to build
the basis for Sect. 3, which describes the new implementation. Then, we com-
pare our solutions to those obtained with the implementation in [7]. We close by
recapitulating the main results and discussing future research.

2 Basic Theory

In this section, we describe the fundamentals of interval arithmetic and high-
performance computing using NVIDIA’s Compute Unified Device Architecture
(CUDA) to verify computation on the graphical processor unit (GPU). We close
this section with a short introduction to fault tree analysis.

2.1 Interval Arithmetic

In this paper, we use the term verification in the sense of using arithmetic that
provides mathematical proofs to compute or to include the right solution. One
well-established way to obtain verified results is interval arithmetic.

Let x = [x,x] | x ≤ x ≤ x, x, x and x ∈ R be a real interval from the set IR.
The set of arithmetic operations ◦ = {+,−,÷, ·} on the intervals x ∈ IR and
y ∈ IR is defined as

x ◦ y =
[
min

{
x ◦ y,x ◦ y,x ◦ y,x ◦ y

}
,max

{
x ◦ y,x ◦ y,x ◦ y,x ◦ y

}]
.

The result of such an operation is an interval that includes all possible combi-
nations of the operation x ◦ y | x, y ∈ R with x ∈ x and y ∈ y. In the case of
division, y must not enclose zero.

To obtain verified enclosures on a computer system based on the IEEE754
floating-point standard, we draw on the set of machine intervals (IM). A ma-
chine interval can be obtained from a real interval by using directed rounding,
that is, by rounding the infimum of a real interval downwards (:) and the supre-
mum upwards (;) to the next floating-point number in the set of the utilized
machine numbers (M). Furthermore, we utilize the Boolean intersection function
(inter(x, y)) to define an interval mass assignment in Sect. 2.3:

inter(x, y) =

{
true , if x ∩ y = y

false , if x ∩ y = ∅
for x ∈ IR or IM, y ∈ R or M.

To obtain such behavior in C++, we utilize the C-XSC library [13, 14, 15],
which provides interval arithmetic, rigorous interval standard, vector and matrix
functions, and a broad range of verified algorithms based on the C++ standard
of 1998.
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One disadvantage of using interval arithmetic is the dependency problem [16].
This obstacle leads to an overestimation of the functions range because of the in-
dependent occurrence of the same interval several times in the same formula. To
avoid such behavior, we draw on floating-point arithmetic with directed round-
ing. Besides tighter intervals, this approach leads to a faster computation time.

2.2 Compute Unified Device Architecture

CUDA is a GPU computing framework for NVIDIA graphic cards that provides
floating-point operations conforming to the IEEE754 standard in double pre-
cision for addition, multiplication, division, reciprocity, fast multiply-add and
square roots calculations. These operations are available for graphic cards with
a compute capability greater than or equal to 2.0. For these operations, the
user can define the rounding mode to infinity, minus infinity, zero and the next
floating-point number.

The advantage of the CUDA framework is the huge amount of processor cores
available for computing arithmetic functions in parallel, in contrast to regular
central processor units (CPU). To use this advantage, the algorithm has to be
split into sub-problems, which can be distributed to each available thread. Each
thread belongs to a block. A block is a logical quantity defining a set of threads,
for example, 256 threads belong to one block. Each block has a memory, called
shared memory, that can be accessed more rapidly than the main memory of the
GPU. To obtain a fast computation, the programmer has to make use of these
memory structures. Moreover, each block has a unique identification number,
which is defined by its Cartesian coordinates. The identification of each thread
in a block is also implemented using Cartesian coordinates.

Besides logical graduation of threads and blocks, the basic hardware imple-
mentation is based on warps [11]. The Single Instruction, Multiple Threads
(SIMT) architecture of CUDA-based GPUs manages and executes threads in
groups of 32, which are called warps. Because a warp executes one instruction at
a time, the greatest efficiency is obtained by using 32 threads for each block. One
central problem of such an architecture is the thread-safe execution of operations,
which leads to a slower runtime, but gives the user the advantage of writing on
the same memory structure, for example, accumulation into one register. CUDA
does not include thread-safe arithmetic functions based on the IEEE754 stan-
dard for double precision floating-point number with directed rounding. This
leads to an implementation of such functions on the CPU. In the case of iter-
ative and non-parallel operations, the CPU computes the solution much faster
than an individual thread of the GPU.

In this paper, we use an NVIDIA Geforce GTX 560 with one gigabyte work-
ing memory with a compute capability of 2.1 on an Intel Core2 Quad Q9450 @
2.66GHz based architecture with four gigabytes of main memory. We also use
Windows 7 32-bit, Visual Studio 2010, MATLAB 7.12.0 (R2011b), INTLAB V6
and C-XSC v. 2.5.2 to obtain the results in this paper. A higher performance
using C-XSC can be obtained by using Linux, such as Ubuntu 11.10. This dis-
tinction occurs because MS Visual Studio is not able to use inline assembler
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code written for the GNU compiler collection (gcc), which leads to increased
computation time using software-emulated rounding operations.

2.3 Fault Tree Analysis

Fault tree analysis (FTA) is a mathematical tool for describing and computing
system failure probability by dividing the observed system into its subsystem
down to the required level of detail. This is done by using a top-down algorithm
starting at the top event that describes the observed system failure and following
it down through the logically related system parts to the leaves of the tree, which
constitute the smallest entities of the subsystems. In our case, we observe logical
AND and OR gates. Joining two system parts with an AND gate describes a
system failure in which both subsystems have to fail. In the case of an OR gate,
only one subsystem has to fail. To describe the logical junctures between sub-
systems, each subsystem is characterized by an uncertain epistemic failure prob-
ability [17], which is expressed as an interval and not as a distribution function
of the failure probability. If the user prefers to assume a probability distribution
over the interval, we utilize beta- and normal distributions with uncertainty [18]
to provide the necessary flexibility. This common approach, however, leads to
a kind of aleatory uncertainty since the distribution is a subjective assumption
but the lack of knowledge leads to an inexact or uncertain parameter set for the
distribution. In this paper, we draw on failure probabilities like those used by
Carreras et al. [9] to model failure probabilities for each observed subsystem.

In this paper, we make use of the example defined by Carreras et al. [9, 10, 19],
which describes a robot with three joints. Each joint consists of a motor and two
independent working sensors describing the actual angle of the joint. The robot
is in ”failure” state if two or more joints are broken. A joint is broken if the
associated sensors are broken or the motor is broken.

Before defining the algorithms to obtain the solutions of the logical gates, we
have to introduce the approach to obtain the lower and upper bounds of the
failure probability of the top event. We split the interval p = [0, 1] of failure
probability into n intervals and the first f intervals into l subintervals. The finer
intervals near zero are a compromise between computation time and the accuracy
of the solution [19]. The more intervals are defined, the more time will be spent
on computation. As described in [7], each interval has a mass assignment. Each
logical gate has two inputs representing the scale structure mentioned and the
mass assigned to each interval. Let A = {A1 . . .Ax|x = n − l + (l · f)} be the
set of intervals defining the scale; the mass assignment (m) for each interval is
defined as:

m : Ai → [0, 1],

n∑
i=1

m(Ai) = 1, m(∅) = 0 for all i = 1 . . . n.

In the case of our new verified implementation, we utilize intervals to bound the
mass assignment for each interval. In this case, we have to extend the definition
of the formula to an interval mass assignment (IMA) m for all i = 1 . . . n:
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m : Ai → [0, 1], inter

(
n∑

i=1

m(Ai), 1

)
= true, m(∅) = [+0,+0].

To obtain the solution for each gate, we have to associate each interval of input
scale A with input scale B and each mass assignment of A and B as described
in [7]. For reasons of clarity and comprehensibility, we use the notation ”·” to
denote an AND gate and ”+” to denote an OR gate. The usual probabilistic rules
of computing are used to compute the logical gates. Let x and y be scale elements
of two independent scales with IMAs mx and my, which have to be propagated
through an AND gate. In this case, the result is the interval z = [x · y,x · y]
with IMA mz = mx ·my. This new probability has to be fitted into the scale.
An illustrative example is shown in [10]. To obtain a lower bound, the bounds
of the interval have to be rounded downwards, while the IMA has to be rounded
upwards, and vice versa for the upper bound [7]. In the case of the OR gate, only
one bound has to be computed, while the IMA is computed in the same way as
computing the AND gate. To obtain the lower bound of the above-defined scale
elements, we compute x + y− (x · y), while computing x + y− (x · y) to obtain
a lower bound.

Having provided these definitions, we will next illustrate our new
implementation.

3 Implementation

In this section, we describe the new implementation of the verified FTA algo-
rithm using high-performance computing supplied by CUDA and verified interval
arithmetic provided by C-XSC.

As described in Sect. 2, the main problem with this algorithm is the trade-
off between accuracy and computation time. To reduce the computation time
while keeping the accuracy, we utilize the ability of CUDA to obtain correctly
rounded solutions with error bounds defined by the IEEE754 floating-point stan-
dard. To obtain a fast and verified implementation, we assign the computation
of the mass and the solution interval for each gate to one CUDA thread, using
CUDA compiler intrinsic IEEE754-compliant algorithms, such as dx r(. . .).
Here, x ∈ {add, mul, fma, rcp, div, sqrt} represents the arithmetic functions
addition, multiplication, fused multiply-add (x + (y · z)), reciprocal ( 1.0

x ), divi-
sion and square root, and r ∈ {rn, rz, ru, rd} representing the rounding modes
rounding to the next floating-point number, zero, infinity and minus infinity.

One central disadvantage of GPU computing is the allocation of memory
on the GPU and the cloning of the data stored in the main memory into the
memory of the GPU. In cases where there is a large amount of data and a
small computation effort, computation on the CPU is favored because of the
computation time. Moreover, the restriction of memory size on the GPU has to
be considered. In our case, we can allocate one gigabyte of data on the GPU,
which leads to an implementation optimizing the memory. Where there are a
large number of scale intervals, we have to subdivide the algorithm into smaller
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parts to clear the GPU memory between the computations of each part. To do
so, we decided to split the algorithm into two steps: The first is to compute the
bounds obtained by the AND and the OR gates; the second is to compute the
mass assignment to each interval. This separation of tasks reduces the amount
of GPU memory used.

Let us begin by discussing the OR-gate implementation. As shown in [7, 10,
19], we have to distinguish between lower and upper bound computation. We
only need to discuss the lower bound computation, because the computation of
the upper bound is relevant only in the opposite rounding mode. In contrast
to the AND gate, only one bound has to be computed using directed rounding.
Let x and y be two scale elements and mx and my be the corresponding IMAs;
then, the lower bound is computed as

lb = :
[
:
(
x + y

)
−;

(
x · y

)]
with x,y ∈ [0, 1],

and the mass assignment as

mlb = ; (mx ·my) with mx, my ∈ [0, 1].

The lower bound (best-case scenario) is obtained by rounding the corresponding
mass assignment towards infinity, which is justified by the fact that a small
number of robots (rounding down the bound) with a high failure probability is
preferable to a large number of robots with a high failure probability.

The CPU computes the assignment of the mass to scale elements because no
thread-safe addition with IEEE754 support is provided by CUDA. Next, we will
demonstrate the implementation of the OR kernel in CUDA, which computes
the mass and the bound in parallel for each combination of x and y. A kernel
is a GPU-related function that is executed n times on n different threads.

__global__ void or_Kernel(...){

// Get coordinates of the actual block

int blockRow = blockIdx.y;

int blockCol = blockIdx.x;

// Get coordinates of the actual thread

int i = threadIdx.y;

int j = threadIdx.x;

...

// Create shared variables

__shared__ double sol_mass[BLOCK_SIZE][BLOCK_SIZE];

__shared__ double sol_interval[BLOCK_SIZE][BLOCK_SIZE];

// Compute mass assignment and corresponding bound

sol_mass[i][j] = __dmul_ru(m_x[i],m_y[j]);

sol_bound[i][j] = __dadd_rd(__dadd_rd(x[i],y[j]),

__dmul_ru(__dmul_ru(-1.0,x[i]),y[j]));

...
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// Write mass assignment and bounds into the solution arrays

SetElement(sol_mass_output,i,j,sol_mass[i][j]);

SetElement(sol_interval_output,i,j,index[i][j]);

}

Because of the available space, we use ”. . . ” to indicate an uninterrupted text
line or a section of code of no interest. In this example, we use shared memory to
obtain a fast computation. Each thread of the OR kernel computes one element
of mass assignment (sol mass) and the bound (sol bound) addressed by i and
j, which are the Cartesian coordinates of the threads inside the actual block.
The solutions of this computation are two arrays filled with ((n− f) + (f · l))2
floating-point numbers in double format. The function setElement(. . .) writes
the solution from each thread to the output parameter. Because each thread
writes only one element, we do not need thread-safe functions. Another kernel
computes the correct position depending on the computed bound to assign the
mass to the correct scale element.

To fasten the computation of the AND gate, we draw on three kernels to
compute the right mass, bounds and indices. Let x and y be two scale elements
and mx and my be the corresponding IMAs; then, the two bounds are computed
as

bound1 = :(x · y) with x, y ∈ [0, 1],

bound2 = :(x · y) with x, y ∈ [0, 1],

and the mass assignment as

mlb = ; (mx ·my) with mx, my ∈ [0, 1].

The direction of the rounding modes to obtain bound1 and bound2 are equal to
the direction of the computation of the bound for the OR-gate. The following
program code illustrates the computation of the mass with CUDA.

__global__ void mass_Kernel(...){

// Get coordinates of the actual block

int blockRow = blockIdx.y;

int blockCol = blockIdx.x;

// Get coordinates of the actual thread

int i = threadIdx.y;

int j = threadIdx.x;

// Get subvector for each input

double* m_x = subVector(mass1, blockCol);

double* m_y = subVector(mass2, blockRow);

// Get corresponding part of the solution vector

double* solution = subVector(sol_mass,blockRow,blockCol);
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// Create shared variable

__shared__ double sol_mass[BLOCK_SIZE][BLOCK_SIZE];

// Compute mass assignment

sol_mass_sh[i][j]=__dmul_ru(m_x[j],m_y[i]);

// Write mass assignment into the solution array

and_SetElement(solution,i,j,sol_mass[i][j]);

}

The computation of the lower and upper bounds is straightforward in the ex-
ample of the OR gate. To obtain verified results, assigning the computed mass
to the scale, we draw on interval arithmetic by C-XSC that provides verified
bounds on mass assignments for each scale element.

4 Performance

In this section, we report on the accuracy and computation time of the fault
tree analysis described above. In addition to failures in computation, which occur
when using floating-point arithmetic [5, 6], rounding failures by INTLAB, CUDA
and C-XSC were observed. Solutions provided by C-XSC and INTLAB on a x86
computer architecture are always identical, while some solutions differ when a 64-
bit version of the libraries is used; this results from different processor registers
being used by C-XSC and INTLAB for directed rounding. In this paper, we draw
on an x86-based architecture. To compare the solutions of directed rounding by
C-XSC and CUDA, we define a small test using one million random floating-point
numbers in [0, 1] accumulated by using addition, multiplication and division. If
using the GPU provides correct rounding, we expect the same solutions as those
computed by INTLAB and C-XSC. Our tests have shown that CUDA provides
correct solutions by using directed rounding defined by the IEEE754 floating-
point standard.

To test our new implementation, we use two different scales. First, we utilize
a scale with n = 200, f = 20 and l = 100 and, to obtain a more significant
benchmark, the second scale is more finer partitioned with parameters n = 5000,
f = 100, l = 60. In Table 1, we compare the solutions of the first benchmark
obtained by our new implementation (Columns 2 and 3) with those obtained
by the MATLAB implementation introduced in [7] in the present version 3.5.2
(Columns 4 and 5) for lower bound (LB) and upper bound (UB) computation.
The results have to be interpreted as follows. Ninety-five percent of the robots
produced have an error probability of p = [2.725 · 10−2, 2.805 · 10−2]. Thus, p
percentage of 95 percentages of all robots produced will fail in the first thousand
operation hours. Conversely, 0.95−0.95·p = [0.9233, 0.9241] percent of all robots
will not fail in this timeframe.
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In this example, we compute the same results as MATLAB with two differ-
ences: for x = 0.45 and x = 0.95. While the new implementation encloses the
MATLAB solutions for x = 0.45, the new approach leads to a tighter interval
for x = 0.95.

Table 1. Solutions obtained with n = 200, f = 20 and l = 100

x LB UB MATLAB LB MATLAB UB

0.16 1 · 10−4 4 · 10−4 1 · 10−4 4 · 10−4

0.25 3 · 10−4 6 · 10−4 3 · 10−4 6 · 10−4

0.38 6.5 · 10−4 1 · 10−3 6.5 · 10−4 1 · 10−3

0.45 9 · 10−4 1.3 · 10−3 9 · 10−4 1.25 · 10−3

0.84 7.05 · 10−3 7.7 · 10−3 7.05 · 10−3 7.7 · 10−3

0.95 2.725 · 10−2 2.805 · 10−2 2.725 · 10−2 2.825 · 10−2

To compare the computation times, we draw on the wall-clock time used by
MATLAB and C++ and the accurate timing used by CPU and CUDA, using
CUDA events to obtain a reproducible benchmark solution. The solutions ob-
tained are provided in Table 2. We recognize a performance improvement of up
to 99 percent for lower and upper bound computation. To compare the compu-
tation times, we refer to the wall-clock time spent on computing the results.

Table 2. Comparison of the computation times for lower and upper bound in MATLAB
and C++ (n = 200, f = 20, l = 100)

CPU time [s] CUDA time [s] Wall-clock time [s]

C++ implementation (LB) 14 14 7

MATLAB (LB) 5102 – 1685

C++ implementation (UB) 14 14 7

MATLAB (UB) 5154 – 1712

The computation times for the the second benchmark are shown in Table 3.

Table 3. Comparison of the computation time of lower and upper bound in MATLAB
and C++ with finer scale elements (n = 5000, f = 100, l = 60)

CPU time [s] CUDA time [s] Wall-clock time [s]

C++ implementation (LB) 721 591 721

MATLAB (LB) 147661 – 48070

C++ implementation (UB) 654 526 654

MATLAB (UB) 142248 – 46160

The solutions for p in benchmark two are identical to the solutions obtained
by the MATLAB implementation. In this example, we obtain an efficiency en-
hancement of up to 98 percent in wall-clock time.
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To compute the results in this section, we utilized the DSI toolbox in the
present version 3.5.2 [18].

5 Conclusion

In this paper, we have presented a new implementation approach to fault tree
analysis using the CUDA framework to obtain high-performance computing of
verified probabilistics. First, we gave a short introduction to interval arithmetic,
CUDA and fault tree analysis to provide a basis for the subsequent sections. We
next gave examples of the new implementation followed by a comparison of the
computation accuracy of CUDA, C-XSC and INTLAB for random probabilistic
values in [0, 1]. We ended our paper by benchmarking our new approach against
the MATLAB- and INTLAB-based implementation, which showed that, by using
the new approach, we obtained a gain in algorithm efficiency.

As future research, we plan to optimize the Dempster Shafer with Intervals
toolbox (DSI) for MATLAB [18] using CUDA and C-XSC routines.
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Abstract. Deterministic seismic hazard analysis (DSHA) is an approach for 
evaluating site-specific seismic hazard that is influenced by the maximum  
hazard from the controlling sources affecting the specific study site. In its  
conventional form, DSHA does not consider sources other than the largest 
“controlling” source and it does not account for the time factors owing to the 
uncertainty of earthquakes occurrences in time. Under certain condition, ignor-
ing these factors can lower the conservatism of the hazard estimate, especially 
when other non-controlling sources generate hazards nearly equivalent to that 
of the controlling source or when the structure’s design life is longer than the 
controlling source earthquake’s return period. This study discusses several limi-
tations of conventional DSHA and provides a modified approach for DSHA 
which we believe should supplement the conventional method. An example is 
presented to demonstrate how conventional DSHA can be un-conservative for 
certain problem types. 

Keywords: DSHA, non-controlling sources, return period, design life. 

1 Introduction 

Seismic hazard analysis (SHA) is considered an engineering solution to the uncertain 
earthquake process [1]. Understanding the site-specific seismic hazard is needed for 
earthquake resistant design. Seismic hazard can be determined from either determinis-
tic or probabilistic frameworks, which include the two most commonly used methods: 
deterministic seismic hazard analysis (DSHA) and probabilistic seismic hazard analy-
sis (PSHA). These methods have been prescribed for developing site-specific earth-
quake resistant design by numerous codes and guidelines [2].  

The limitations of the two approaches are also well established [3-8]. Debates con-
cerning the pros and cons of each method are common and all too often only wea-
kened the case for one or another method, without offering concrete improvements to 
either. In reality, as Mualchin [9] previously stated, no seismic hazard analysis is 
perfect and the key to performing this work successfully is understanding the funda-
mental differences and limitation of each, before then selecting one or both approach-
es for your study.  
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DSHA looks at multiple seismic sources and determines the maximum seismic ha-
zard from the single source which creates the largest hazard for the site. A benchmark 
DSHA example (Fig. 1) from a well-regarded geotechnical earthquake engineering 
textbook [10] included three seismic sources surrounding the site. Those sources in-
clude a line, an area and a point sources, each resulting in deterministic seismic ha-
zards expressed in peak ground accelerations (PGAs) of 0.74 g, 0.99 g and 0.04 g, 
respectively, at one standard deviation above the mean (84th percentile). Therefore, 
the maximum value of 0.99 g is considered the PGA for the DSHA, making the area 
source the controlling source for this example.  

 

Fig. 1. Benchmark DSHA example (after Kramer, 1996) 

However, what would happen if each of the three sources generates seismic ha-
zards with similar PGA, such as 0.99 g, 0.98 g, and 0.97 g? Compared to 0.99 g, 0.74 
g and 0.04 g in the benchmark example, obviously this hypothetical situation would 
be under higher risk in terms of seismic hazard. However, since the conventional 
DSHA does not consider non-controlling sources, both situations would result in the 
same PGA using the conventional DSHA. Let’s use an example to further demon-
strate the potential deficiency in DSHA. What if a site is affected by 30 sources in the 
surrounding instead of three? It is risky to conclude that two situations have the same 
seismic hazard, simply because the maximum hazard from the controlling source is 
the same. 

The uncertainty of earthquake occurrence with time is well understood, with an  
example being the Parkfield section of the San Andreas Fault [9]. The reasons why 
conventional DSHA chooses not to account for such uncertainty are reasonable consi-
dering that this information is not very well understood, but at the same time this 
approach makes conventional DSHA insufficient for certain situation. For example, 
consider two sources, each having the same maximum magnitude but with different 
periods supported by geological evidence. Logically, structures constructed near the 
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source with a shorter return period will demand a more robust design. Apart from 
earthquake time factors, conventional DSHA also does not account for engineering 
time factors. Clearly, a “permanent” structure should be designed more conservatively 
than a “temporary” structure, since the former is expected to experience more earth-
quakes throughout its service life.  

This paper discusses the influence of non-controlling sources and time factors on 
deterministic seismic hazard analysis, and the characteristics which are not otherwise 
accounted for using conventional DSHA. A modified DSHA approach is presented 
considering these important characteristics and an example is presented to illustrate 
the need and use of the modified approach. 

2 DSHA Overviews and Example 

The benchmark DSHA example discussed previously from a well-regarded geotech-
nical earthquake engineering textbook [10] is shown in Fig. 1. The figure shows that 
the shortest source-to-site distances are 24 km, 25 km and 60 km for the line, area and 
point sources, respectively. Substituting the shortest distances and maximum magni-
tudes into the ground motion model (see Appendix I), the respective 84th percentile 
PGAs can be obtained. DSHA usually uses the 84th percentile over the 50th percentile 
to account for ground-motion-model uncertainty [4]. As a result, the DSHA estimate 
of the maximum hazard in the example comes from the area source, which is there-
fore the controlling source in this example. The DSHA estimate is influenced by only 
the single controlling source, and is independent of the quantity and magnitude of 
non-controlling sources.  

3 At-Least-One-Motion Exceedance Probability, *)
~

Pr( yY >  

Prior to demonstrating the influence of the aforementioned factors on DSHA, we first 
introduce the criterion to assess a motion (e.g. PGA) by examining its exceedance 
probability. The exceedance probability is the probability that at least one motion will 
exceed a given motion. It is calculated using the following expression. Pr 1 Pr( Pr( Pr(  (1)

Where  denotes any given possible motion, either from controlling sources or non-
controlling sources.  estimated through a ground motion model is known to follow 
a lognormal  distribution, so the probability distribution Pr(  in Eq. (1) can 
be easily established (Appendix I).  

As a result, the original and modified DSHA estimates can be compared with the 
same criterion. The criterion is logically sound for engineering designs, since failure 
of engineered structures is caused when one motion exceeding the design motion. 

4 Non-controlling Seismic Sources 

For the example shown in Fig. 1, Eq. (1) can be reorganized to account for the three 
sources described in the example, such that Pr  is as follows: 
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Pr 1 Pr Pr Pr  (2)

Where ,  and  denote the motions from the area, line and point source, respec-
tively; ,  and   (integer) are the respective number of earthquakes, equal to 
one with conventional DSHA which does not account for the earthquake rate.  

 

Fig. 2. Comparison in hazard curves with and without accounting  for non-controlling sources 

Fig. 2 shows the relationship between the exceedance probability and a given PGA, 
for each source from the example and for the three sources combined. The conven-
tional DSHA estimate of 0.99 g using the 84th percentile corresponds to 16 percent 
exceedance probability. At that exceedance probability, the PGA estimate from the 
three combined sources (which includes two non-controlling sources) increases to 
1.11 g. Alternatively, the PGA estimate (0.99 g) becomes less conservative, asso-
ciated with a 22 percent exceedance probability compared to the original 16 percent. 
Using either method of comparison, the example demonstrates the decreased conser-
vatism in DSHA when non-controlling sources are considered.  

5 Time Factors 

Conventional DSHA does not consider time factors, such as return period and design 
life. Given a return period for the maximum earthquake equal to r with design life 
equal to t, the mean earthquake rate during the structure life becomes t/r. It is  
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common to use a Poisson distribution to model a rare event, such as earthquake, in 
time or space [10-12]. Given a mean earthquake rate of t/r, the Poisson probability 
density is as follows: 

Pr !  (3)

Where n (integers from 0 to infinity) denotes the number of earthquakes. Combining 
Eqs. (2) and (3), the general form Pr  is as follows: Pr 1 ∏ ∑ ! Pr                (4) 

Where  is the number of seismogenic sources,  is mean earthquake rate for the 
i-th source and is equal to / , and  is the motion of the i-th source. Using a Tay-
lor expansion, Eq. (4) can be reorganized as follows (detailed derivation given in 
Appendix II): Pr 1 ∏ P     (5)

 

Fig. 3. Comparison in hazard curves of the original and modified DSHA 

Since the DSHA example in Fig. 1 does not provide design life (t) or return period (r), 
we conducted the following calculations using three hypothetical conditions: 1) return 
period five-time as large as design life, i.e., r = 500 yrs; t = 100 yrs, 2) return period 
equal to design life, i.e., r = 100 yrs; t = 100 yrs, and 3) return period half of design 
life, i.e., r = 100 yrs; t = 200 yrs. Using Eq. (5), the hazard curves are shown on  
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Fig. 3. The exceedance probabilities at 0.99 g correspond to 4.4 percent, 20 percent, 
and 36 percent, for Conditions 1 through 3, respectively. For reaching the same ex-
ceedance probability equal to 16 percent the new PGA estimates are 0.53 g, 1.08 g 
and 1.33 g, for Conditions 1 through 3, respectively. This calculation also demon-
strates and verifies the negative effect on DSHA when certain time factors, such as 
large t/r, are encountered.  

Notice that at low PGA (say 0.06 g) discontinuous points are generated in the ha-
zard curves for Conditions 1 and 2, as shown on Fig. 3. This is believed to be due to 
the nature of computation, possibly owing to the relatively small maximum magni-
tude (5.0) from the point source. To verify the postulation, a sensitivity study using a 
larger magnitude for the point source equal to 7.0 was conducted.  

6 Discussions and Conclusions 

The benchmark example illustrated that without accounting for these non-controlling 
sources and time factors, under certain situations the conventional DSHA is not as 
conservative as the modified approach, especially for Condition 3 with a large mean 
earthquake rate (t/r) during the service life of structures.  

When the return period is five-time as large as the design life, the DSHA estimate 
(0.99 g) is indeed becoming more conservative (4.4 percent exceedance probability) 
than originally suggested (16 percent exceedance probability). As a result, the con-
ventional DSHA should provide adequate conservatism when the return period of the 
maximum-magnitude earthquakes is long relative to the service life of structures be-
ing designed, and when the number of seismic sources affecting the site is limited. 
Under such circumstances, the conventional DSHA can be used either with or without 
modification. 

On the other hand, special attention is needed when the return period is less than or 
equal to the design life and when many sources are involved in analysis. For this con-
dition, with the conventional DSHA being demonstrated and proved not as conserva-
tive as expected, we suggest using the modified DSHA approach presented in this 
paper or another seismic hazard approach, such as PSHA. Decision makers should not 
confine themselves to just one approach, since for all seismic hazard analysis methods 
each present their own challenges and limitations. As is shown in the paper, there are 
times when the conventional DSHA should be supplement with other methods of 
analysis.  

Appendix I 

The ground motion model used in the example is as follows: 

57.0;)25ln(8.1859.074.6ln ln =+×−+= YRMY σ  (6)

Where M and R are earthquake magnitude and source-to-site distance (km), respec-
tively; Y denotes peak ground acceleration in gal. Since Y follows a lognormal  
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distribution (or lnY follows a normal distribution), the cumulative probability for a 
given motion y* is as follows [11]: 








 −
Φ=≤

Y

Yy
yY

ln

ln*ln
*)Pr(

σ
μ

 (7)

Where  and  are the mean and standard deviation of lnY, both computed 
from Eq. (6).  

Appendix II 

Derivations of Eq. (5) are as follows: 
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Owing to the Taylor expansion: 
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Abstract. Starting from a typology of argumentative forms proposed
in linguistics by Apothéloz, and observing that the four basic forms can
be organized in a square of oppositions, we present a logical language,
somewhat inspired from generalized possibilistic logic, where these basic
forms can be expressed. We further analyze the interplay between the
formulas of this language by means of two hexagons of oppositions. We
then outline the inference machinery underlying this logic, and discuss
its interest for argumentation.

1 Introduction

In a work still largely ignored in Artificial Intelligence, the linguist Apothéloz [1]
established a catalogue of argumentative forms more than two decades ago; see
also [11]. In particular, he advocated the difference between statements such as
“y is not a reason for concluding x” and “y is a reason against concluding x”,
which may be viewed as two different negative forms that are in opposition with
the more simple statement “y is a reason for concluding x”. It has been noticed
in philosophical logic for a long time that the existence of two negation systems
gives birth to a square of oppositions [10]. This has led Salavastru [12] to present
a reading of Apothéloz’ typology of argumentative forms in terms of square of
oppositions a few years ago, and to propose a propositional logic translation
of the basic argumentative statements. However, propositional logic is not rich
enough for offering a representation setting for such a variety of statements.

In the following, after a brief reminder on the square of oppositions, we first
reexamine Salavastru’s proposal and identify several weaknesses. We first restate
the argumentative square of opposition properly, and then introduce the basic
elements of a kind of conditional logic language, somewhat inspired by gener-
alized possibilistic logic [5], in which we can get a more suitable translation of
the argumentative square. This square can in fact be extended into a more com-
plete hexagon of opposition [3], which makes clear that its underlying structure
is based on the trichotomy “y is a reason for concluding x”, “y is a reason for
concluding ¬x”, “y is neither a reason for concluding x, nor for concluding ¬x”.
We then outline the inference machinery of the proposed logic, emphasize the
difference between “y is a reason for concluding x” and “x follows logically from
y”, which leads to build another hexagon of opposition. We discuss the potential
interest of the proposed logic for argumentation, and finally mention some pos-
sible extensions for handling nonmonotonic reasoning and graded argumentative
statements in the spirit of possibilistic logic.
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2 Argumentative Square

Apothéloz [1] points out the existence of four basic argumentative forms:

- i) “y is a reason for concluding x” (denoted C(x) : R(y)),
- ii) “y is not a reason for concluding x” (C(x) : −R(y)),
- iii) “y is a reason against concluding x” (−C(x) : R(y)), and
- iv) “y is not a reason against concluding x” (−C(x) : −R(y)).

Interestingly enough, several of these forms have not been considered in Artifi-
cial Intelligence research. As can be seen several forms of opposition are present
in these statements, where two negations are at work. A key point in this cate-
gorization is indeed the presence of two kinds of negation, one pertaining to the
contents x or y, and the other to the functions R or C. It has been observed that
such a double system of negations gives birth to a formal logical structure called
square of opposition, which dates back to Aristotle’s time (see, e.g., [10] for a
historical and philosophical account). We first briefly recall what this object is,
since it has been somewhat neglected in modern logic.

It has been noticed for a long time that a statement (A) of the form “every a
is p” is negated by the statement (O) “some a is not p”, while a statement like
(E) “no a is p” is clearly in even stronger opposition to the first statement (A).
These three statements, together with the negation of the last statement, namely
(I) “some a is p”, give birth to the square of opposition in terms of quantifiers
A : ∀a p(a), E : ∀a ¬p(a), I : ∃a p(a), O : ∃a ¬p(a), pictured in Figure 1.
Such a square is usually denoted by the letters A, I (affirmative half) and E, O
(negative half). The names of the vertices come from a traditional Latin reading:
AffIrmo, nEgO). Another standard example of the square of opposition is in
terms of modalities: A : �r, E : �¬r, I : ♦r, O : ♦¬r (where ♦r ≡ ¬�¬r).
As can be seen from these two examples, different relations hold between the
vertices. It gives birth to the following definition:

Definition 1 (Square of opposition). Four statements A,E,O, I make a
square of opposition if and only if the following relations hold:

- (a) A and O are the negation of each other, as well as E and I;
- (b) A entails I, and E entails O;
- (c) A and E cannot be true together, but may be false together, while
- (d) I and O cannot be false together, but may be true together.

Note the square in Fig. 1 pressupposes the existence of some s (non empty
domain). r �≡ ⊥,4 is assumed in the modal logic case.

The observation that two negations are at work in the argumentative state-
ments classified by Apothéloz [1] has recently led Salavastru [12] to propose to
organize the four basic statements into a square of opposition; see also [9]. How-
ever, his proposal is debatable on one point, as we are going to see. Indeed,
taking C(x) : R(y) for vertex A, leads to take its negation C(x) : −R(y) for O.
Can we take −C(x) : R(y) for E? This first supposes that A and E are mutually
exclusive, which is clearly the case. Then, we have to take the negation of E for
I, i.e. −C(x) : −R(y). We have still to check that A entails I and E entails O, as
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Fig. 1. Square of opposition

well as condition (d) above. If y is a reason for not concluding x, then certainly
y is not a reason for concluding x, so E entails O; similarly y is a reason for
concluding x entails that y is not a reason for not concluding x, i.e. A entails
I. Finally, y may be a reason neither for concluding x nor for not concluding x.
This gives birth to the argumentative square of opposition of Figure 2. It can
be checked that the contradiction relation (a) holds, as well as the relations (b),
(c), and (d) of Definition 1.

Proposition 1. The four argumentative forms A = C(x) : R(y), E = −C(x) :
R(y), O = C(x) : −R(y), I = −C(x) : −R(y) make a square of opposition.

Note that we should assume that C(x) : R(y) is not self-contradictory (or self-
attacking) in order that the square of opposition really makes sense. In proposi-
tional logic, this would mean that x ∧ y �= ⊥.

This square departs from the one obtained by Salavastru [12] where vertices
A and I as well as E and O are exchanged: In other words the entailments
(b) are put in the wrong way. This may come from a misunderstanding of the
remark made in [1] that the rejection C(x) : −R(y) is itself a reason for not
concluding x, which can be written −C(x) : R(C(x) : −R(y)). But this does
not mean that C(x) : −R(y) entails −C(x) : R(y) since it may be the case, for
instance, that C(−x) : R(y). Salavastru made another similar mistake regarding
the link between A and I. He assumed that I entails A. It can be seen on a simple
example that this implication is false, and is rather in the other way round: “The
fact that Paul is a French citizen (fr) is not a reason for not concluding that
he is smart (st). This is clearly a statement of the form −C(sm) : −R(fr). The
question now is: does this statement entail the argument C(sm) : R(fr) (i.e. the
fact that Paul is French is a reason to conclude that he is smart)? The answer
is certainly no. However, the converse is true. That is C(sm) : R(fr) implies
−C(sm) : −R(fr).

A: C(x) : R(y) E: −C(x) : R(y)

O: C(x) : −R(y)I: −C(x) : −R(y)

Fig. 2. An informal, argumentative square of opposition
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Salavastru [12] also proposed a propositional logic reading of the informal
square of opposition of Figure 2. This square is in terms of logical binary con-
nectives and is pictured in Figure 3 (where ↑ here denotes Sheffer’s incom-
patibility operator, which corresponds to the negation of the conjunction, i.e.
y ↑ x = ¬y ∨ ¬x). In Salavastru’s view “y is a reason for concluding x” is
modeled by y → x, which corresponds to a strong reading of the consequence
relation. Then “y is a reason for not concluding x” is understood as the incom-
patibility of y and x, while “y is not a reason for not concluding x” is just their
conjunction, i.e. two symmetrical connectives w.r.t. x and y, which may seem
troublesome. Still from a formal point of view, this makes a perfect square of
opposition. Indeed y ∧ x entails y → x (and y �→ x entails y ↑ x), but as already
said, “y is not a reason for not concluding x” does not entail “y is a reason for
concluding x” (and modeling “y is a reason for concluding x” by the symmetri-
cal formula y ∧ x would look strange). In fact, propositional logic is not enough
expressive for providing a logical language for reasoning about arguments.

A: y ∧ x E: y �→ x

O: y ↑ xI: y → x

Fig. 3. Salavastru’s logical square of opposition for argumentation

3 Towards a Logical Language for Argumentative
Reasoning

Let x, y, z, x′, y′, ... denote any propositional logic formula. The basic building
block of the proposed logical language is made of pairs of the form (x, y) to be
read “y is a reason for x”, or “x is supported by y”. It will stand for C(x) :
R(y). In fact, this may be viewed as a formula of the logic of supporters [8], a
counterpart of possibilistic logic [4], where the certainty level (usually belonging
to an ordered chain) of a proposition x is replaced by its support (belonging
to a Boolean lattice of propositions). The logic of supporters is a lattice-based
generalization of possibilistic logic. See [8] for a detailed account of its semantics.
In particular, if (x, y) and (x, y′) hold, (x, y ∨ y′) holds as well: if y and y′ are
reasons for concluding x, y ∨ y′ is also a reason for concluding x.

As in standard possibilistic logic, the logic of supporters only allows for con-
junctions of such pairs, and we have (x∧x′, y) = (x, y)∧ (x′, y). This means that
if y is a reason for concluding x and for concluding x′, then y is a reason for
concluding x ∧ x′, and conversely. But, as immediately revealed by the kind of
statements we have to handle, we need a two layer propositional-like language.
Indeed, we need to express negations of such pairs, namely ¬(x, y) to express
C(x) : −R(y). We also need disjunctions between such pairs as we are going to
see, by completing the square of oppositions into an hexagon.
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Indeed, it is always possible to complete a square of opposition into a hexagon
by adding the vertices Y =def I ∧ O, and U =def A ∨ E. This completion of a
square of opposition was proposed and advocated by a philosopher and logician,
Robert Blanché (see, e.g., [3]). It fully exhibits the logical relations inside a
structure of oppositions generated by the three mutually exclusive situations A,
E, and Y , where two vertices linked by a diagonal are contradictories, A and E
entail U , while Y entails both I and O. Moreover I = A∨Y and O = E∨Y . The
interest of this hexagonal construct has been especially advocated by Béziau [3]
in the recent years for solving delicate questions in paraconsistent logic modeling.
Conversely, three mutually exclusive situations playing the roles of A, E, and Y
always give birth to a hexagon [6], which is made of three squares of opposition:
AEOI, AY OU , and EY IU .1

Definition 2 (Hexagon of opposition). Six statements A,U,E,O, Y, I make
a hexagon of opposition if and only if A, E, and Y are mutually exclusive two
by two, and AEOI, AY OU , and EY IU are squares of opposition.

A: (x, y)

U: ¬(¬x, y)

E: ¬(x, y) ∧ ¬(¬x, y)

O: ¬(x, y)

Y: (¬x, y)

I: (x, y) ∨ (¬x, y)

Fig. 4. Possible argumentative relations linking a reason y to a conclusion x

Figure 4 exhibits the six possible epistemic situations (apart complete igno-
rance) regarding argumentative statements relating y and x. Indeed it provides
an organized view of the six argumentative statements, namely: A: “y is a rea-
son for concluding x” represented by (x, y); Y: “y is a reason for concluding ¬x”
represented by (¬x, y), O: “y is not a reason for concluding x” represented by
¬(x, y); U: “y is not a reason for concluding ¬x” represented by ¬(¬x, y); com-
pleted by I: “y is conclusive about x/¬x” represented by (x, y) ∨ (¬x, y); and
E: “y is not conclusive about x/¬x” represented by ¬(x, y) ∧ ¬(¬x, y). Thus,
matching the square of Fig. 2 with the square AEOI in the hexagon of Figure 4
reveals that −C(x) : R(y) is represented by ¬(x, y)∧¬(¬x, y), i.e. “y is a reason
for not concluding about x” is also understood here as a reason “y is a reason
for not concluding about ¬x”.

1 Note that, if we complete Salavastru’s square of Figure 2 into a hexagon, we obtain
U = y and Y = ¬y, which corresponds to the simple affirmation and negation of y,
where x is no longer involved, which is not very satisfactory.
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This leads to consider a logic, we call LA, which is a propositional-like logic
where all literals are replaced by pairs, e.g. ¬(x, y), ¬(x, y) ∨ (x′, y′), (x, y) ∧
(x′, y′) are wffs in LA (but not ¬z ∧ (x, y)). At the higher level, the pairs (x, y)
are manipulated as literals in propositional logic, e.g., (x, y) ∧ ¬(x, y) is a con-
tradiction, and

(x, y),¬(x, y) ∨ (x′, y′) 5 (x′, y′)

is a valid rule of inference. LA is a two-layer logic, just as the generalized possi-
bilistic logic [5] is w.r.t. the standard possibilistic logic [4].

At the internal level, x, y are themselves propositional variables, and LA
behaves as possibilistic logic: (x, y) ∧ (x′, y) ≡ (x ∧ x′, y) as already said, and

(¬x ∨ x′, y), (x ∨ z, y′) 5 (x′ ∨ z, y ∧ y′)

is a valid inference rule.
Moreover, we have: if x 5 x′ then (x, y) 5 (x′, y). So when x 5 x′, if “y is a

reason for x” then “y is a reason for x′”. Writing x 5 x′ as (¬x∨x′,4), the above
rule follows from the previous one: (¬x∨x′,4), (x, y) 5 (x′,4∧y) and (x′,4∧y) ≡
(x′, y). Thus (x, y) 5 (x ∨ x′, y). Besides, 5 ((x, y) ∨ (x′, y)) → (x ∨ x′, y) (where
→ is the material implication). Note that the converse implication does not hold
in general. Indeed y may be a reason for x ∨ x′, without being a reason for x or
being a reason for x′.

Note also that (¬x, y), (x, y′) 5 (⊥, y∧y′) is a contradiction only if the reasons
y and y′ are not mutually exclusive. Generally speaking, one has to to distinguish,
between

– (⊥, y) (with y �= ⊥) which is a contradiction;
– (x,⊥) (which can be obtained, e.g. from (x ∨ y, z) and (¬y,¬z)), which

expresses that x has no support.

This should not be confused with the case where x would be equally supported
by opposite reasons: (x, z) and (x,¬z) which entails that (x,4). Besides, (4, x)
holds for any propositional formula x �= ⊥. Finally, it can be checked that:

Proposition 2. The 6 LA formulas in Fig. 4 make a hexagon of opposition.

Then, it can be seen in Fig. 4 that the argumentative form C(x) : −R(y) is
equal to the disjunction of the forms C(¬x) : R(y) and −C(x) : R(y), which is
satisfactory. Indeed (¬x, y) entails ¬(x, y) (since (x, y), (¬x, y) 5 (⊥, y)).

We have only outlined how LA behaves. It is worth noticing that LA is ex-
pressive enough for allowing the use of negation in three places:

– (x,¬y) i.e., “¬y is a reason for x”;
– (¬x, y), i.e., “y is a reason for ¬x”, and
– ¬(x, y) “y is not a reason for x”, i.e., in particular it is possible that ¬x holds

while y holds.

Besides, we can also build another hexagon by considering two distinct argumen-
tative relations linking a reason y to a conclusion x positively; see Fig. 5. Indeed,
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A: (¬y ∨ x,�)

U : ¬(x, y) or (¬y ∨ x,�)

E: ¬(x, y)

O:¬(¬y∨x,�)

Y : (x, y) and ¬(¬y ∨ x,�)

I : (x, y)

Fig. 5. Hexagon showing the interplay between a strong and a weak argumentative
link between y and x

note the difference between (x, y) and (¬y ∨ x,4) which uncontroversially ex-
presses that x entails y. Due to their structural differences they will not play the
same role in LA: (¬y∨x,4) is stronger than (x, y), since (¬y∨x,4), (y, y) 5 (x, y)
(note that (y, y), i.e.“y is a reason for concluding y” always holds).

Before concluding this short paper, let us suggest what kinds of attacks may
exist between arguments in this setting. Let us take an example (adapted from
[1]). Let us consider an argument such has “Mary little worked (= y), she will
fail her exam (= x)” will be represented by (y,4) ∧ (x, y). It may be attacked
in different ways:

– by adding (¬y,4) (No “Mary worked a lot”);
– by adding ¬(x, y) (“working little is not a reason for failing one’s exam”);
– by adding (¬x, y) (not very realistic here, although one might say “working

little is a reason for not failing the exam (since one is not tired)”);
– by adding (¬x, y ∧ z) (“Mary is gifted”).

Note that the handling of this latter attack would require a nonmontonic in-
ference mechanism, which may be encoded in a way taking lesson from the
possibilistic logic approach [2], here based on the (partial) ordering defined by
the propositional entailment: (x, y) should be drown if it exists a reason y′, more
specific than y, for concluding x′ in a way opposite to x, i.e. we have both (x, y)
and (x′, y′), with x and x′ inconsistent, y′ 5 y (and y �5 y′).

4 Concluding Remarks

Starting from linguistics-based evidence about argumentative statements, we
have outlined the description of a two-layer logic, LA, for handling arguments, in
conformity with a rich structure of oppositions which has been laid bare in terms
of squares and hexagons. LA parallels generalized possibilistic logic. A more
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formal study of LA is the next step, as well as a comparison with other formal
approach to argumentation. More lessons have to be taken from generalized
possibilistic logic for handling the strength of arguments in a weighted extension,
or for taking advantage of its relation to logic programming [7].
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Abstract. In supervised learning different sources of uncertainty in-
fluence the resulting functional behavior of the learning system which
increases the risk of misbehavior. But still a learning system is often the
only way to handle complex systems and large data sets. Hence it is im-
portant to consider the sources of uncertainty and to tackle them as far
as possible. In this paper we categorize the sources of uncertainty and
give a brief overview of uncertainty handling in supervised learning.

Keywords: Supervised Learning, Uncertainty, Regression,
Classification.

1 Introduction

Learning systems are more and more applied to reproduce properties of a set
of given data. Two main tasks in this field are regression and classification.
The type of the output is the key difference between these two: Whereas in
regression tasks the output is continuous and ordered, the output is discrete and
has not necessarily an ordinal relation in classification. In both categories often
a supervised learning scenario with a set of training data consisting of tuples of
input IT and output OT is given as a representation of a desired function f . The
learning system is hence operated in two modes. First, at training the parameter
vector α is determined. Here a set of training data can be incorporated altogether
defining an approximation f̃ ∈ F̃ from a set of possible approximations F̃ .
Second, at evaluation time the resulting approximator f̃ is used to assign an
output O to a given input I through O = f̃(I, α). This is done on the basis
of a single input I every time a result is required. Such a learning system is
hence subject to different sources of uncertainty, both within the training and
evaluation phase which may result in a possibly wrong output at evaluation time
and thus increasing the risk of an unsafe system behavior.

2 Sources of Uncertainty

A supervised learning system is subject to uncertainties at different levels, be it
aleatoric uncertainties stemming from variability, e.g. from noise or unobserved
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influences, or epistemic uncertainties if no information is available, e.g. due to
sensor faults or missing knowledge. A more abstract view regarding uncertainties
in clustering and classification is presented in [12]. In this paper we categorize
the sources of uncertainty regarding their possible consequences for supervised
learning. On the one hand the available data at training and evaluation are
subject to uncertainties and on the other hand the learning algorithm and its
parameter vector α introduce uncertainties which all accumulate at a given out-
put O. From this perspective the sources can be structured into the following
five categories:

Uncertainty of training input IT : The training input IT defines where in input
space the approximation f̃ is trained to give a certain output value OT . As these
data are often given by sensor readings or as output signals of prior processing
modules, the training inputs contain different uncertainties. For sensors it is
possible that e.g. sensor-noise, drift or a fault lead to a gradually or totally wrong
input IT . Or, prior processing modules, like simple filter algorithms or even
other learning systems in a cascaded structure, that again depend on uncertain
information which propagates to their outputs generate the next uncertain input
IT . Thus it gets ambiguous, where the approximation should be trained within
the input space to a certain value OT .

Uncertainty of training output OT : The training output OT defines an output
value, the approximation should give at a certain point IT in the input space. In
regression tasks, these training outputs OT are subject to similar uncertainties
as the training input data IT . Additionally, in classification often the reference
to give correct class labels can be uncertain as well, especially in complex clas-
sification tasks. This is related to the confidence in the correctness of a given
label. Again, this results in an uncertainty, but about what the approximation
should be trained to for a certain input.

Uncertainty of approximation f̃ : The approximation f̃ is done by some structure
out of F̃ which is only capable of representing a limited set of functions, e.g.
polynomials of a certain degree or a limited number of Gaussians. Either this
structure is not expressive enough, or the structure is too expressive causing
the well known over-fitting problem. Additionally the learning algorithm, which
chooses f̃ ∈ F̃ , and its optimization criterion can be uncertain. The settings of
this learning algorithm, e.g. the learning rate or a regularization term, can be
chosen suboptimal and thus lead to systematic remaining errors. Consequently,
it is uncertain, if a suitable approximation f̃ of the desired function f can be
found with the chosen setup.

Uncertainty of parameter vector α: Corresponding to the approximation struc-
ture, the parameter vector α determined by training is influenced in many ways.
For some algorithms it is necessary to have a random initialization which has
impact on the result. And as many training algorithms present the training data
in some order and not as a complete batch, this order might influence the result-
ing parameter vector α as well. Additionally, the training input data IT need
not cover the complete input space, so that some parameters might not be set
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up properly as not enough information is present. Similarly, the training data
may contain conflicts, e.g. overlapping class areas or different output values OT

at close input points. Furthermore, often the learning algorithm is confronted
with local minima and its convergence cannot be guaranteed. Hence, the finally
determined parameter vector α of the approximation f̃ is uncertain.

Uncertainties of evaluation input I: In contrast to training, at evaluation time,
the input I defines where in input space the approximation f̃ should be evalu-
ated. These input data again have the same sources of uncertainty as the training
input IT . But now for a fixed parameter vector α, there is uncertainty, where
the approximation f̃ should be evaluated.

3 Resulting Problems

All sources of uncertainty mentioned in the previous chapter influence the un-
certainty of the output value at evaluation time and hence the risk of choosing a
wrong output. This risk can be divided in two categories. Either the uncertain-
ties result in (some degree of) ignorance so that it is not known which output
O should be given as not enough training data supplied information for the
respective point I in input space. Or the uncertainties result in (some degree
of) conflict so that multiple outputs O are possible as the available data are
contradictory. Both categories are gradual in nature as ignorance increases with
distance of evaluation point I to training points IT in input space and conflict
increases with the amount of plausible outputs in output space. This notion of
conflict and ignorance was introduced in [11] for classification problems, but can
also be easily applied for other supervised learning tasks.

If the output O is uncertain and its uncertainty cannot be compensated within
the learning system, an information about its degree of uncertainty is valuable
to increase safety by successive processing modules. This way it is possible to ex-
plicitly react to uncertainties and maintain a safe operation of the whole system.
Hence it is of interest not only to minimize the uncertainty of the approximator,
but also to express remaining degrees of uncertainty of the output O. So the
important questions are:

1. How do the sources of uncertainty influence the uncertainty of an output O?
2. How can the influence of any uncertainty be measured or modeled?
3. How is it possible to deal with uncertainties within the approximator?
4. How can the uncertainty of the output be measured or modeled?
5. How can information about output uncertainty be used in further processing?

As it is at least necessary to represent the uncertainty of internal parameters to
estimate the uncertainty of the output, this information can as well be useful
to rate the model. Together with the information about conflict and ignorance
hereby it is possible to determine where new data is required and where further
refinement of the model is needed. This is closely related to the problem of active
learning [24].
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4 Explicit Uncertainty Handling in Learning Systems1

For regression, uncertain input values have been dealt with in feed forward
neural networks in a statistical way [25,26]. Missing but also uncertain dimen-
sions of inputs IT and I were considered at learning as well as evaluation time
by integrating the probability weighted output across the uncertain dimension.
This way an input with high uncertainty can be blended out, if its influence on
the output is low. For the assumption of Gaussian input distribution, an ana-
lytical solution of the integral is possible [8] making the approach more feasible.
This leads to the field of Gaussian processes, where the uncertainty is treated by
assuming the output O to be normally distributed [23] and reflecting its uncer-
tainty by its variance. Recent work on Gaussian processes included a separate
treatment of input- and output-uncertainties, thus additionally representing the
variance of the training input data IT [4].

Two uncertainty measures were introduced for radial basis function networks
[16]. They reflect the local density of training data IT and the variability of the
output values OT , depending on the used network, thus representing uncertainty
of the approximation f̃ and the parameter vector α. In the approach of [17], the

uncertainty of f̃ is addressed indirectly by the introduction of a risk averting
error criterion as a gradual blending between the minimax and the least-squares
criteria.

Another approach of explicitly representing uncertainties in regression uses
evidence theory [5]. Here the uncertainty of a neural network output O is ex-
pressed by lower and upper expectations. The width of this interval reflects the
uncertainty resulting from the relative scarcity of training data, i.e. one kind of
approximation uncertainty. A successive work additionally incorporates explicit
uncertainties of the training output OT [20]. Another approach to on-line uncer-
tainty estimation is applied for Takagi-Sugeno fuzzy systems in [19]. It estimates
the local training input density and the global training output variance, i.e. the
uncertainty of f̃ and α, to add error bars to the output O.

In previous work [3], we addressed the influence of all uncertainty categories
on the local uncertainty of the output O in an incremental learning setup and
investigated different measures to reflect those uncertainties in a uniform way.
These uncertainty measures are used by a new extended on-line learning method,
called trusted learner, to enhance the incremental learning process [2]. Thus the
approximation is adjusted more quickly when it is uncertain and the on-line
learning is not influenced by initial parameters.

For classification, the uncertainty of an output O, i.e. the class label, can
be estimated by all major classification algorithms [15,18], e.g. by discriminant
measures. For neural networks and also for rule based classifiers, a class dis-
tribution is the result of the actual approximator and a downstream evaluation
algorithm determines the final class label afterwards, e.g. simply taking the class

1 As this is a short paper only some representative methods are discussed here.
The general techniques for dealing with uncertainties are neither described in this
overview, but a structured overview can be found in [14].
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with the highest probability or plausibility value. All this discriminant measures
implicitly address the uncertainty in IT and α but do not distinguish between
them in detail. For distance based algorithms like k-nearest neighbor, the infor-
mation about the uncertainty is inherent in the distances to the involved points.
The same holds for the distances to the class borders, e.g. a hyperplane, in all
algorithms that fit these borders to the training data (support vector machines,
all linear methods, etc.). Nevertheless this uncertainty measure is not as expres-
sive as a complete class distribution. This distribution can be used to combine
different or differently trained classifiers. Their combination with respect to their
class distribution leads to a more robust classification [9].

Statistical information about uncertainty of the training input data IT , like
the probability density function, are used to adjust the rules of a rule-based
classifier in [22]. Certain training data are weighted higher in the rule generation
process and during the rule optimization. The uncertainty in the classification
structure f̃ , i.e. the rule base, of a fuzzy classifier due to conflict and ignorance
is explicitly assessed by [10] to build more reliable classifiers. The classification
output O is augmented with two gradual measures for conflict and ignorance,
which are derived from the firing strength of the fuzzy classification rules. In
the context of active learning, the method of uncertainty sampling requests data
in parts of the input space with a high degree of uncertainty [21] to deal with
aspects of uncertainty in α. The degree of uncertainty is computed here from
the entropy of the class membership probabilities.

In the framework of evidence theory, the k-nearest neighbor-algorithm is for-
mulated for an uncertain output O in [6] similar to the regression variant of [5].
For support vector machines, the effects of input data noise are studied in [27].
A measure for this uncertainty is computed via probability modeling. With a re-
formulation of the support vector machine this information is used to determine
the optimal classifier. For noisy input data in neuronal networks the uncertainty
(modeled as a Gaussian distribution) can be used as an additional parameter
of the perceptrons activation function to improve performance [7]. These ap-
proaches deal with training input uncertainty IT , but only due to noise.

In previous work [1] we extended the support vector machine-algorithm to
cope with arbitrary input uncertainty for input I during the evaluation phase
by fading out uncertain dimensions gradually. A more advanced approach to deal
with epistemic uncertainties in fuzzy classifiers during the evaluation is proposed
in [13]. Using the concept of conflict and ignorance and gradual dimension re-
duction the classifier provides a classification result, as long as its structure can
obtain it without conflict. We show there that this approach improves the classi-
fication performance for a more general class of uncertainties, namely a gradual
ignorance about the input I.

5 Conclusion

In summary, several approaches can be found dealing with different sources
of uncertainty. Especially input uncertainties, at training as well as evaluation
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time, have been subject to research and the uncertainty of the resulting output
is represented in many approaches. But no approach deals with all sources of
uncertainty at once in one combined framework. Accordingly, it is currently
not possible to regard all sources of uncertainty influencing a learning system
adequately. Yet, with a combined framework, the uncertainty could be minimized
further and an explicit representation of the output and model uncertainty can
be determined. This way the user of a learning system (be it another processing
module or a human) is able to incorporate additional knowledge in the decision
process to make the total system behavior more robust and safe. So more research
needs to be done to address all sources of uncertainty in supervised learning as
a whole.

Moreover, current approaches are mostly based on statistical analysis of data.
This statistical approach often is difficult to follow in practice. With an increasing
amount of data the computational complexity grows and the need for on-line
methods arises to deal with this complexity. On the other hand, if only little
data are available the statistical relevance is low. If, in addition, the process
that is modeled by the supervised learning system is time-variant it is hard to
decide which data can be used for statistical analysis. Furthermore, tasks such
as approximation based adaptive control result in training data that are drawn
according to a continuously changing state and thus do not hold the (often
made) assumption of independently and identically distributed training data.
Thus for several domains with growing interest, e.g. with big or expansive data,
non independently drawn data, unbalanced datasets, and dynamic environments,
it is essential to develop methods which estimate uncertainty of on-line learning
systems themselves on-line along the learning process. We are convinced that the
field of on-line learning under uncertainties will be a key concept in upcoming
applications.
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Abstract. Various base isolation schemes have been implemented to isolate a 
structure from intense base excitations. In this paper, performance of a friction 
sliding bearing with nonlinear restoring mechanism is studied on a three-storey 
steel moment-resisting frame building under varying seismic hazard conditions. 
The performance of the proposed system is compared with that of the fixed-
base and with only the friction sliding bearing. For this purpose, the effective-
ness of the proposed isolation system is evaluated in terms of the residual  
displacement, peak inter-storey drift and the maximum base displacement. It is 
envisioned that a system as proposed here, if optimized for a target hazard sit-
uation, will result in a cost-effective solution.  

Keywords: Non-linear spring, Friction sliding bearing.  

1 Introduction 

Seismic base isolation is becoming a cost effective way to mitigate the seismic vulne-
rability of various structures and bridges. Over the years, many types of base isolation 
devices have been proposed. Although these devices have pros and cons, the selection 
of these devices is mainly decided based on their expected performance under earth-
quake motions of various hazard levels and more importantly, their cost of installa-
tions. Sliding base isolation system has widely been used as a cost effective choice to 
reduce seismic vulnerability of the structures and bridges. While this type of isolation 
system is insensitive to dominant frequency of ground motion, it does not possess a 
restoring mechanism. As a result, a structure isolated with this type of device requires 
a large base plate to accommodate excessive base displacement in addition to end 
barriers to prevent the structure from the falling of the plate. Further, high frequency 
shock waves are generated when the isolator hits the barrier during strong earthquakes 
resulting in damage to non structural component s and systems. In this study, the con-
cept of nonlinear restoring mechanism is employed to improve the performance of a 
conventional sliding isolation system. The nonlinear restoring mechanism has been 
achieved by designing nonlinear springs for which the stiffness increases with an 
increase in displacement. An extensive parametric study involving time history analy-
sis of structure and subjected to a suite of ground motions with different hazard levels 
is conducted to evaluate the effectiveness of the proposed isolation system. It is ob-
served from the results of the parametric study that the proposed isolation system  
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(Sliding bearing with nonlinear spring) reduces the earthquake response of the struc-
ture in terms of residual and peak base displacement demands while keeping the peak 
inters story drift within the safe limit. It is envisioned that the proposed isolation sys-
tem when tested experimentally, can be used as a better choice over the conventional 
sliding bearing. 

2 Spring Model 

In this section a brief description of the spring model as well as the mathematical 
formulation is presented. The desired behavior of the spring as described earlier can 
be achieved by a conical spring with uniform pitch. The conical spring with increas-
ing diameter towards the bottom provides a varying flexibility each loop. Therefore 
the bottom loop grounds first as the force on the conical spring increases followed by 
other loops with reducing diameter and also decrease in the active number of loops. 
Thus the stiffness of the spring increases gradually along with the increase in dis-
placement of the coil. Working characteristics can be divided into two regions- work-
ing region with linear characteristics where no coil is grounded and working region 
with progressive characteristics after the contact of the first active coil. 

The variation of the loop diameter of the conical spring along with the length can 
be considered to be linear or some other types of variation also can be assumed. Here 
two types of variations are studied. One spring is considered with a linear reduction in 
the diameter along the length and other one having logarithmic spiral type of variation 
in diameter along length. 

 

Fig. 1. A typical spring conical spring model showing different component  

U Td TGJ dx   (1) 

From Castigliano’s Theorem  δ UF T TFGJ dx=
FGJ r dθN     (2)

The equation of logarithmic spiral is given by from equation  
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    r D e DD N   (3) 

For deflection in between two different angle θ1 and θ2 the deflection can be estimated 
from equation 2 as below. δ FGJ D e DD N dθ (4)

FD NG   DD DD N DD N (5)

FD NG   DD DD N DD N (6)

 

 

Fig. 2. The force displacement plot of the spring with logarithmic variation of diameter 

Similarly the equation for the linear variation is given by  r D DN θ D
(7)

δ FD NG N 1 DD N θ dθ  (8)

where d=diameter of the wire the spring made of steel, G= Shear modulus, N=Total 
number of loop, n1 and n2 = the loop number the deflection to be calculated, Ds= Di-
ameter of the tapered section, De= Diameter of the larger side, and F=Force to be 
applied.  
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Fig. 3. The force displacement plot of the spring with linear variation of diameter 

The two types of springs exhibited similar types of stiffness behavior with a very 
flat range at the beginning and a very high stiffness at larger deformation. Both the 
plot of the springs as shown in Figure 2 and Figure 3 considered same parameters as 
stated above for the spring design. However the spring with linear diameter variation 
is considered further because of its feasibility and higher stiffness at larger deforma-
tion as compared to the spring with logarithmic variation. 

3 Numerical Model 

Steel moment resisting frame building with four storeys’s and originally with fixed 
base is considered.  The buildings consist of American standard steel sections with 
uniform mass distribution over their height and a non uniform distribution of lateral 
stiffness. The beams and columns were assigned with various W sections and the 
materials used were uniaxial material, `Steel01' with (kinematic) hardening ratio of 
3%. All these elements were modeled as Beam with hinges with length of plastic 
hinges taken as 10% of the member length and each of the nodes were lumped with a 
mass of 16000 kg. The damping was given as 2% Rayleigh damping for the first two 
modes. The base isolator was modeled using Flat slider bearing element. The nonli-
near force deformation behavior is considered by using an elastic bilinear material 
with the properties as per the spring design as mentioned earlier. The numerical mod-
eling of the FSB isolation was done in OpenSees using flat slider bearing element, 
defined by two nodes. A zero length bearing element which is defined by two nodes is 
used to model the same. These two nodes represent the flat sliding surface and the 
slider. The bearing has unidirectional (2D) friction properties for the shear deforma-
tions, and force-deformation behaviors defined by uniaxial materials in the remaining 
two (2D) directions. Coulomb’s friction model is used with a friction coefficient equal 
to 0.05 yield displacement as 0.002. To capture the uplift behavior of the bearings, 
user specified no-tension behavior uniaxial material in the axial direction is used. P-
Delta moments are entirely transferred to the flat sliding surface. The numerical  
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modeling of the nonlinear spring element was done in OpenSees using zero length 
elements. The force-deformation behavior of element was defined by 40 different 
Elastic bilinear materials. 

This study utilizes 60 ground motions (SAC, 2008) for the nonlinear time history 
analysis. Among these ground motions, 20 represents a hazard level of 2% in 50 
years, 20 of them represents a hazard level of 10% in 50 years and remaining 20 
represents a hazard level of 50% in 50 years. These ground motions include both rec-
orded as well as simulated one and scaled to match response spectrum of a particular 
hazard level. They were mainly developed for the analysis of a steel moment resisting 
frames in Los Angeles area, USA. These motions cover a broad range of peak ground 
accelerations (PGA) between 0.11g and 1.33g, peak ground velocity (PGV) between 
21.67cm/sec and 245.41 cm/sec, and peak ground displacements (PGD) between 5.4 
cm and 93.43 cm in addition to wide band frequency content and a wide range of 
strong motion duration. Some of them even possess strong near fault pulse. In this 
study the steel moment resisting frame building considered was designed in such a 
way that the fundamental period of the building is similar to that of existing buildings 
in California. Therefore, the ground motions are reasonably considered here for the 
structure to be analyzed. 

4 Result and Discussion 

Nonlinear time history analysis of the structure with flat sliding bearing plus nonli-
near spring is carried out for a particular value of coefficient of friction (μ=0.05). The 
results obtained from the analysis are compared with the nonlinear analysis results of 
the structure with fixed base and sliding base with no restoring mechanism. The pa-
rameters used for the comparisons are -peak inter-storey drift ratio of the structure, 
residual displacement of the structure and the maximum base displacement. Statistical 
comparison is performed to observe the pattern of the above parameters. For this sta-
tistical comparison mean, maximum and the standard deviation values are calculated 
and are summarized in a tabular form. The results are further subcategorized in three 
parts depending on the hazard level. These parameters are the measures of damage 
that a structure undergoes after an earthquake. FEMA-356 has specified three perfor-
mance levels, these beings the immediate occupancy (IO), the life safety (LS) and the 
collapse prevention (CP). These are associated with the inter-storey drift limits of 
0.7%, 2.5% and 5%, respectively. These limits are said to be appropriate for the per-
formance evaluation of pre-Northridge steel moment frames. FEMA-356 prescribes a 
basic safety objective (BSO), which comprises a dual-level performance objective. It 
requires LS performance for a 10% in 50-year event and CP performance level for a 
2% in 50-year earthquake. According to these guidelines, the drifts should be such 
that for LA01- LA20 ground motions, the structures should be safe in Life Safety; 
LA21-LA40, the buildings should not be crossing the performance level of Collapse 
Prevention and Immediate Occupancy in case of LA41-LA60. LA01-LA20, LA21-
LA40 and LA41-LA60 are corresponding to ground motion representing hazard level 
of 2%, 10% and 50% respectively. 
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Peak Inter-storey Drift Ratio- It is observed (Table) that the inter storey drift ratio is 
exceeding the allowable range as prescribed by FEMA-356 for the fixed base build-
ing. At a particular coefficient of friction, the peak inter-storey drift ratio of the struc-
ture having flat sliding bearing with nonlinear spring are almost similar compared to 
the flat sliding bearing without nonlinear spring and this range is well inside the limit 
for a specific hazard level. . A rather decreasing pattern is observed for the case of 
sliding isolator with spring. 
 

Table 1. Peak interstorey drift ratio at different hazard level for different base condition 

Coefficient of 
friction(μ)=0.05 

Comparison of Peak inter-storey drift ratio in percentage 

10% in 50 years (La01-
La20) 

2% in 50 years (La21-La40)
50% in 50 years (La41-

La60) 

Mean peak 
inter-storey 
drift (%) 

Mean+SD of 
peak inter-
storey drift (%)

 

Mean peak 
inter-storey 
drift (%) 

Mean+SD  of 
peak inter-
storey drift(%) 

 

Mean peak 
inter-storey 
drift (%) 

Mean+SD  of 
peak inter-
storey drift (%) 

 

FB 3.22 4.62 6.97 9.68 1.47 2.15 

SI_no spring 0.411 0.493 0.478 0.571 0.349 0.411 

SI_with spring 
0.323 

 
0.373 

 
0.399 

 
0.468 

 
0.291 

 
0.333 

 

 
Residual displacement- This is an important parameter for this study to unfold the 
importance of the necessity of nonlinear spring in a sliding bearing. The residual  
displacement acts as an important measure of post-earthquake functionality in deter-
mining whether a structure is safe and usable to the occupants. The large residual 
displacement alters the new rest position of the structure which results in high cost of 
repair or replacement of non-structural elements. Restricting the large residual dis-
placements also helps in avoiding the pounding effect. From the results discussed 
above, it has been observed that the effect of sliding bearing with and without nonli-
near spring does not differ much. However there is a large reduction in the residual 
displacement in all the hazards levels considered for the study. The range of reduction 
in residual displacement when compared with sliding bearing without spring are 74% 
to 76% for hazard level of 2% in 50 years, 40% to 60% for hazard level of 10% in 50 
years and 54% to 60 % for hazard level of 50% in 50 years. Therefore the non-linear 
spring is found to be very effective for this factor. Thus the large reduction in the 
residual displacement of the structure due to the incorporation of nonlinear springs in 
the sliding bearing systems depicts its importance. 
 
Base Displacement- The comparison of the base displacement at different hazard 
levels shows reduction in displacement for the non-linear spring as compared with the 
case without nonlinear spring with sliding bearing. The trend is same as that obtained 
for residual displacement. However the % of reduction is much less here for all the 
three hazard level. 
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Table 2. Peak maximum residual displacement at different hazard level for different base 
condition 

Coefficient of 
friction(μ)=0.05 

Comparison of maximum residual displacement 
 

10% in 50 years (La01-La20) 2% in 50 years (La21-La40) 50% in 50 years (La41-La60) 

Mean of peak 
base dis-
placement 

Mean+SD  of 
peak base 
displacement 

Mean of peak 
base dis-
placement 

Mean+SD  
of peak base 
displacement 

Mean peak 
inter-
storey drift 
(%) 

Mean+SD  of 
peak base 
displacement 

SI_no spring 0.149 
0.269 

 
0.478 0.887 0.082 0.205 

SI_with spring 
0.054 

 
0.106 

 
0.123 

 
0.215 

 
0.041 

 
0.093 

 

 

Table 3. Peak maximum base displacement at different hazard level for different base condition 

Coefficient of 
friction 
(μ)=0.05 

Comparison of maximum base displacement 
 

10% in 50 years (La01-La20) 2% in 50 years (La21-La40) 50% in 50 years (La41-La60) 

Mean of 
peak base  
displacement 

Means + SD 
of peak base 
displacement 

Mean of peak 
base dis-
placement 

Mean + SD 
of peak base 
displacement

Mean peak 
inter-storey 
drift (%) 

Mean + SD  of 
peak base dis-
placement 

SI_no spring 0.327 
0.459 

 
0.774 1.158 0.136 0.249 

SI_with spring 
0.194 

 
0.329 

 
0.725 

 
1.121 

 
0.118 

 
0.200 

 

 

Table 4. %reduction in the response by the provision of non-linear spring 

% decrement in the residual displacement and maximum base displacement considering 

non-linear spring along with sliding bearing with respect to the base with only sliding bearing 

 
10% in 50 years 

(La01-La20) 

2% in 50 years 

(La21-La40) 

50% in 50 years 

(La41-La60) 

Residual dis-

placement 
62% 75% 52% 

Base displacement 35% 5% 16% 
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5 Conclusion  

In this paper, the seismic performance of a steel moment-resisting frame structure 
resting on sliding type of bearing with restoring force device as a conical non-linear 
spring is studied. The results showed that the structure with fixed base is subjected to 
huge peak inter-storey drift outside the allowable range that needed to be checked. 
The provision of sliding isolator is effective in reducing inter storey drift. However it 
results into a large amount of residual and base displacement. The provision of a 
properly designed non-linear spring with a very small stiffness at the beginning is 
found to be very effective in reducing residual displacement to a great extent. The 
reduction in base displacement is also obtained at a lesser extent. The peak storey drift 
also reduced to a very small extent by the provision of this kind of spring. The pro-
posed isolation system, if optimized for various target performance levels, will result 
in a cost-effective solution. 
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Abstract. Based on a formal modeling of analogical proportions, a new type of
classifier has started to be investigated in the last past years. With such classifiers,
there is no standard statistical counting or distance evaluation. Despite their dif-
ferences with classical approaches, such as naive Bayesian, k-NN, or even SVM
classifiers, the analogy-based classifiers appear to be quite successful. Even if this
success may not come as a complete surprise, since one may imagine that a gen-
eral regularity or conformity principle is still at work (as in the other classifiers),
no formal explanation had been provided until now. In this research note, we lay
bare the way analogy-based classifiers implement this core principle, highlighting
the fact that they mainly relate changes in feature values to changes in classes.

Keywords: analogical proportion, classification, regularity.

1 Introduction

An analogical proportion is a statement of the form “a is to b as c is to d” (denoted
a : b :: c : d) and may be thought as a symbolic counterpart to a numerical proportion
of the form a

b = c
d . Different proposals have been made for modeling an analogical

proportion in a lattice setting, or in terms of a measure of analogical dissimilarity, or
in a logical manner [8,3,4]. Based on the second viewpoint and despite a complexity
which is cubic in the size of the training set, analogical proportion-based binary classi-
fiers have been implemented providing very good results, with accuracy rate in excess
of 95% (with significance at a level of 0.05), on 8 binary attributes benchmarks coming
from the UCI repository [3]. A multi-valued logic extension [5] of this binary view has
been implemented in a more general classifier [6,7], able to work with discrete and nu-
merical attributes and still providing accurate results (on UCI repository benchmarks).
The success of the analogy-based classifiers is quite intriguing since they do not rely on
any statistical counting, nor take into account any distance or metrics on the set of items
they are dealing with. This paper is a step toward a formal explanation of this state of
fact, highlighting that analogical inference mainly relies on the observation of links be-
tween changes in descriptive features and changes in classes. Features are assumed to be
binary in this study. So, the purpose is not to provide a new algorithm, but rather to get
a deeper understanding of the reasons why analogy may be successful for classification.
This paper is structured as follows: Section 2 provides the background on the Boolean
view of analogical proportions. In section 3, we provide a brief discussion of the clas-
sification problem, and then show that the analogy-based inference is equivalent to the
application of simple rules acknowledging the fact that a given change in some feature

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 582–589, 2012.
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values always leads to the same change in classification, or on the contrary that a given
change in some feature values never affects the classification. In section 4, we illustrate
and further discuss how such rules behave for completing the partial specification of
some of Boolean functions.

2 Background on Analogical Proportions

Let us briefly recall how an analogical proportion “a is to b as c is to d”, can be logically
defined by equating the dissimilarities between a and b with the ones between c and d.
This equality tells us that “a differs from b as c differs from d" and conversely. Then the
analogical proportion is defined as in [4]:

a : b :: c : d = (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d).

With this definition, we recover the fundamental properties of analogical proportions,
namely symmetry (a : b :: c : d implies c : d :: a : b), and central permutation
(a : b : c : d implies a : c :: b : d). As a Boolean formula, an analogical proportion
can be viewed through its truth table displayed in Figure 1 (the lines leading to false
are discarded). It appears that each line of the table encapsulates an identity or absence
of change between the 2 pairs of data (a, b) and (c, d): for instance, with 1100 there
is no change on both sides, or with 1010 the change is the same on both sides. These
patterns correspond to forms of regularity between pairs of data: from this “regularity
viewpoint”, 1001 or 1000 are not satisfactory for instance. In a numerical proportion,

a b c d
0 0 0 0
1 1 1 1
0 1 0 1
1 0 1 0
0 0 1 1
1 1 0 0

Fig. 1. Analogical proportion truth table

−→a 0 1 1 0 −→a 0 1 1 0 1
−→
b 1 0 1 0

−→
b 1 0 1 0 1

−→c 0 1 1 0 −→c 0 1 1 0 0
−→x 1 0 1 0 −→x 1 0 1 0 0

Fig. 2. Two Boolean vector examples

the 4th number can be computed from the 3 others via the “rule of three”. The situation
is somewhat similar in the Boolean setting, and it can be checked on the truth table that
the analogical equation a : b :: c : x is solvable iff ((a ≡ b) ∨ (a ≡ c)) = 1. In that
case, the unique solution x is a ≡ (b ≡ c) [4]. The solution of the equation a : b :: c : x,
when solvable, is a copy of the value of b or of the value of c. This is due to the fact that
we deal with only 2 distinct values, 0 and 1.

Analogical proportions can be extended to Boolean vectors that represent descrip-
tions of situations in terms of n binary features, by

−→a :
−→
b :: −→c :

−→
d iff ∀i ∈ [1, n], ai : bi :: ci : di.

In terms of “regularities”, we encapsulate in a single formula n regularities. Clearly,
−→a :

−→
b :: −→c : −→x is solvable iff ∀i ∈ [1, n], ai : bi :: ci : xi is solvable. But, when
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solvable, the solution −→x of this equation is not in general
−→
b or −→c (for n ≥ 2). This

can be seen on the examples in Figure 2, with n = 4 and n = 5 respectively. Indeed,
while in the first case −→x =

−→
b , in the second one, the solution −→x is neither −→a , nor−→

b , nor −→c . Note that for solving the equation in this latter example, we use the last
line of the analogy truth table. The 2 last lines of this truth table play a special role,
since they allow to obtain a solution for an analogical proportion equation which is not
necessarily a complete copy of one of the 3 first elements of the proportion: in that case,
all the elements of the proportion may be distinct. With the multiple-valued extension
of analogical proportions [5] (for handling real-valued attributes), we can observe a
similar behavior of the proportions in all respects.

The inference principle in use in any of the analogical proportion-based classifiers
states that when the attributes of 4 items −→a ,

−→
b ,−→c ,−→d are all in analogical proportion,

then it should be also the case for the classes of these items, which is formalized as:

−→a :
−→
b :: −→c :

−→
d

cl(−→a ) : cl(
−→
b ) :: cl(−→c ) : cl(

−→
d )

If−→a ,
−→
b ,−→c are just classified examples and

−→
d a new data to be classified, the predicted

label for
−→
d is the solution of the analogical equation cl(−→a ) : cl(

−→
b ) :: cl(−→c ) : x. In

some sense, we assume that the regularities observed on the data attributes and encap-
sulated via the proportions are preserved for the labels. Implementing this principle for
classification purpose is done via the algorithmic scheme of Figure 3. On real datasets,

input: a set TS of classified examples,
d new data with cl(d) unknown;
search for all triples (a,b,c) in TS such that:

cl(a):cl(b)::cl(c):x is solvable with solution x0
a:b::c:d holds

if all solutions agree with x0 then cl(d)=x0;
output: cl(d)

Fig. 3. Algorithmic scheme

this principle has to be relaxed to take into account two facts:

– analogical proportion may hold only for a large part of the attributes, but not for all
of them (some attributes could be irrelevant to the problem), i.e. we maximize the
number of true proportions, i.e. the number of regularities.

– in the case of real-valued attributes, it is quite rare to get an exact proportion and we
have to deal with approximate proportions. We then follow the lines of [7] where
real-valued attributes are interpreted as fuzzy logic truth values and the truth value
of a : b :: c : d becomes 1 − |(a− b)− (c− d)| for the simplest case where a ≤ b
and c ≤ d, or b ≤ a and d ≤ c . All the previous explanations remain valid.

Ultimately, the analogy-based classifiers maximize the number of approximate propor-
tions (i.e. regularities) for predicting the class of a new instance. As explained now, the
regularities that are considered here depart from the ones underlying other classifiers.
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3 How Analogical Proportion-Based Classifiers Work

Let us first restate the classification problem. Let X be a set of data: each piece of
data −→x = (x1, . . . , xi, . . . , xn) ∈ X is a vector of n feature values representing some
object wrt the set of considered features (here assumed binary). Each piece of data −→x
is to be associated with a unique label or class cl(−→x ) ∈ C. The space of classes C is
finite with p (≥ 2) elements. cl is known on a subset E ⊂ X . The classification problem
amounts to propose a plausible value of cl(−→y ) for any −→y ∈ X \ E, on the basis of
the available information, namely the training set T S = {(−→x , cl(−→x )) |−→x ∈ E} whose
elements are called examples. We also suppose that each label of C is present in T S , i.e.
∀c∈C, ∃(−→x , cl(−→x ))∈T S ∧ cl(−→x ) = c. The extrapolation of the value of the function
cl for −→y ∈ X \ E on the basis of T S , requires 2 minimal assumptions:

– i) the description of the objects is rich enough in terms of features to insure that
the knowledge of the n feature values uniquely determines cl(−→y ) for any instance
−→y ∈ X , and

– ii) the knowledge of T S is enough for this task, i.e. cl is not more “complicated”
than what T S may suggest.

In other words, whatever the technique in use, for −→y ∈ X \ E, assigning the label c to
−→y (i.e. considering cl(−→y ) as c) should not make T S

⋃
{(−→y , c)} less ‘regular’ than

T S . The new classified data (−→y , c) should be “conform” to T S.

3.1 General Analysis of the Binary Features Case

A simple idea for guessing cl(−→y ) for−→y = (y1,..., yi, ..., yn) ∈ X\E is to consider how
examples having similar feature values are classified. This is valid for both binary and
real-valued features. Let us focus on the binary case (where feature similarity reduces
to identity), and denote

Ri(y) = {c|∃(−→x , cl(−→x ))∈T S ∧ xi = y ∧ cl(−→x ) = c}

the set of observed classes associated to the value y for feature i (xi is the i-th compo-
nent of−→x ). Similarly, let R−1

i (c) = {y|∃(−→x , cl(−→x ))∈T S∧xi = y ∧ cl(−→x ) = c} the
set of observed values for feature i associated with class c. Given an instance−→y ∈ X\E,
the principle that items having feature values identical to the values of classified exam-
ples should be classified in the same way, leads us to assume that only the class(es) in
Ri(yi) is / are possible for −→y if it has value yi for feature i. Taking into account all the
features, we get cl(−→y ) ∈

⋂
i Ri(yi) (or equivalently cl(−→y ) �∈

⋃
j{c | yj �∈ R−1

j (c)}),
provided that

⋂
i Ri(yi) �= ∅, which means in particular that for any i, Ri(yi) �= ∅, i.e.,

the value yi has been observed for attribute i in T S . Naive Bayesian classifiers refine
this view by choosing the class that maximizes a product of likelihood functions, which
may be understood as an intersection of fuzzy sets [2].

When features are not independent (non-interactive in the sense of possibility theory
[10]), instead of dealing feature by feature, one should rather group features and con-
sider the set of possible classes associated to the value of tuples of features, e.g. in the
case of 2 features,Ri,j(y, z) = {c|∃(−→x , cl(−→x ))∈T S∧xi = y ∧xj = z ∧ cl(−→x ) = c}
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where Ri,j(y, z) ⊆ Ri(y) ∩ Rj(z). At the extreme, cl(−→y ) = {c|∃(−→x , cl(−→x )) ∈
T S ∧ x1 = y1 ∧ . . . ∧ xn = yn ∧ cl(−→x ) = c}, which means, if this set is not
empty, that a vector fully identical to −→y is already in T S. For going beyond this trivial
situation, one is led to relax the requirement of the identity of the feature values to the
largest possible subset of features: this is the idea of k-nearest neighbors methods (see
[9] for an analogy-oriented discussion of such methods).

3.2 Change Analysis within Pairs of Examples

In the analogical proportion-based approach to classification, we no longer consider the
function cl : X → C in a static way, from a pointwise viewpoint, but rather how this
function varies over T S. The main idea is to establish a link between some change
in feature values for pairs of examples together with the change (or the absence of
change) for their class. Dealing with such pairs (x, cl(x)) and (x′, cl(x′)) (from now
on for alleviating the notation, we no longer make the vectors explicit), we relate dif-
ferences between cl(x) and cl(x′) to differences between x and x′, thus dealing with
some counterpart of the idea of derivative!1

Given two examples (x, cl(x)) and (x′, cl(x′)), let Dis(x, x′) denote the set {i ∈
[1, n]|xi �= x′

i} of indexes where x and x′ differ. Dis(x, x′) is the disagreement set
between x and x′, while its complement Ag(x, x′) = [1, n] \ Dis(x, x′) is the set
of indexes where x and x′ coincide (agreement set). For instance when n = 5, x =
10101, x′ = 11000, Dis(x, x′) = {2, 3, 5} and Ag(x, x′) = {1, 4}. Dis(x, x′) enjoys
obvious properties: i) Dis(x, x′) = Dis(x′, x), ii) Dis(x, x′) = ∅ iff x = x′, iii)
knowing Dis(x, x′) and x allows us to compute x′. Dis(x, x′) is the counterpart of the
indicators x ∧ x′ and x ∧ x′ that appear in the definition of the analogical proportion.
Associated to Dis(x, x′) is a unique disagreement pattern pd(x, x′) which is just the
sequence of pairs (feature value, feature index) in x which differ in x′: in our previous
example this is 021315 where 0, 1, 1 are the respective values of features 2, 3, 5 in x.

Let us now suppose that cl(x) �= cl(x′): one may think that the set Dis(x, x′) is
in some sense the cause for the label change between x and x′. But, it would be too
adventurous since we have exactly 2|Dis(x,x′)| potential disagreement patterns, and the
observation of x and x′ does not give any hint about patterns other than the current one
pd(x, x′). It is more cautious to consider that the particular change in the pattern, i.e.
going from pd(x, x′) = 021315 in x to 120305 in x′ is the real cause for the class change
between x and x′, since the remaining features 1 and 4 are identical (agreement set).

3.3 Induction of Rules and Link with the Analogical Proportion-Based Inference

Obviously, one may consider that a particular disagreement pattern causes a particular
change of class only if there is no contradiction when observing all the examples in
T S , i.e. there should not exist 2 other examples z and z′ having the same disagreement

1 It is also worth mentioning that graded analogical proportions valued in [0, 1] [5], agrees with
the idea of interpolation between two points between (a, f(a)) and (d, f(d)) in [0, 1]2. Indeed,
then we have a : b :: c : d = 1− |(b− a)− (d− c)| for a ≤ b and c ≤ d, and if a : x :: x : d
holds at degree 1, f(a) : f(x) :: f(x) : f(d) holds at degree 1 for f(x) = (f(a) + f(d))/2.
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pattern (i.e., pd(z, z′) = pd(x, x′)), but having the same class. Put in a formal way, this
amounts to state the following: If it is the case that

- ∃x, x′ ∈ E such that x �= x′, cl(x) = c and cl(x′) = c′ with c �= c′

- �z, z′ ∈ E such that pd(z, z′) = pd(x, x′) and cl(z) = cl(z′) = c

then the following change rule is inferred:
∀y, y′ ∈ E, if pd(y, y′) = pd(x, x′) and cl(y) = c then cl(y′) = c′.

Let us note that this rule is obviously valid on E and is just a generalization to the whole
data set X . It is clear that pd(y, y′) = pd(x, x′) implies Dis(y, y′) = Dis(x, x′) but
the reverse is false. Thus, when such a regularity is discovered, we generalize it by
establishing a rule, assuming that the whole universe is not more sophisticated than the
observable data. The application of this rule enables us to compute cl(y′) for y′ ∈ X\E,
provided that there exists y ∈ E such that pd(y, y′) = pd(x, x′) and cl(x) = cl(y). It
is remarkable that the application of such a rule, which acknowledges the existence of
regularities in the data set, is nothing but the application of the analogical proportion-
based extrapolation rule. Indeed x : x′ :: y : y′ holds feature by feature, since

– on Dis(y, y′) = Dis(x, x′), due to pd(y, y′) = pd(x, x′), for each feature, we have
either the pattern 1 : 0 :: 1 : 0 or the pattern 0 : 1 :: 0 : 1;

– on Ag(y, y′) = Ag(x, x′) for each feature, we have a pattern that corresponds to
one of the 4 other lines of the truth-table of the analogical proportion;

– this leads to assume that cl(x) : cl(x′) :: cl(y) : cl(y′) holds as well, i.e. cl(y′) =
cl(x′)=c′ since cl(x)=cl(y)=c.

The exploitation of regularities in change that can be found in the data set is thus en-
capsulated in the analogical proportion-based extrapolation principle.

Clearly, the same reasoning can be applied when there is no label change, i.e. cl(x) =
cl(x′): In that case, it means that the particular change in feature values does not induce
a change of the class. Provided that the two conditions below hold:

- ∃x, x′ ∈ E such that x �= x′, cl(x) = cl(x′) = c
- �y, y′ ∈ E such that pd(y, y′) = pd(x, x′) and cl(y) = cl(x) �= cl(y′)

the following no-change rule is inferred:
∀y, y′ ∈ E, if pd(y, y′) = pd(x, x′) and cl(y) = c then cl(y′) = c.

Due to the central permutation property, when x :x′ ::y :y′ holds, which may allow us to
generate a change rule, then x :y ::x′ :y′ holds as well which may lead to a no-change
rule. However, one cannot consider only one type of rule, since for a given training set,
one may be applicable, while the other is not.

4 Completion Algorithm and Experiments

Now we are in position to complete a training set T S according to change or no −
change rules in the above sense. Non classified data should behave in “conformity”
with T S, i.e. fit with these rules. We proceed as follows: first we extract all the rules
from the available classified data T S , then given a new element y′ /∈ E, we tentatively
look for another element y ∈ E, to be paired with y′ in such a way a rule applies to
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the pair (y, y′). We repeat this process with all suitable y and if all the applicable rules
provide the same class c, we allocate this label c to y′. It is what we call unanimous
classification. When it is not possible, we allocate the label c to y′ as provided by the
majority of the applicable rules. It remains undecided if there is no majority.

We have then implemented a simple classifier dealing with 6 dimensions Boolean
vectors. Each vector −→x = (x1, . . . , x6) is associated to a class. The class of −→x is a
Boolean function of its attributes. In the experiment, we go from a dataset where we
have a lot of useless information (or noise) (with cl(x) = x1 ∨ x2) to a dataset where
almost all the attributes are necessary to predict the class (cl(x) = (x1 ∧ x4) ∨ (x2 ∧
x3) ∨ x5). We also consider cl(x) = (x1 ∧ x4) ∨ (x2 ∧ x3) and cl(x) = x1 XOR x2.
We can then build the 5 corresponding data sets (each one has 64 lines). The testing
protocol is:

- we extract 32 lines from each dataset: they constitute T S, such that there is at least
one case of the 2 classes 0 and 1; we avoid to have some feature equal for the 32 lines.

- using the generated rules, we complete T S on the 32 remaining instances.
The results of the experiments are given in Table 2 with the Boolean function to be esti-
mated, the average number of correctly classified data (among 32), either unanimously
or majoritarily, the average number of wrongly classified data (among 32), either unani-
mously or majoritarily, the average number of undecided cases. We can observe that all
the instances are classified. Table 1 provides the average number of change rules and of
no change rules generated from the training sets for each Boolean function. Up to 16%
of instances may be wrongly classified. Correct classification is obtained mainly thanks
to a majority-based choice (even if a number of instances are classified unanimously,
except for the x1 XOR x2 example where this number is close to 0). The classification
is almost never unanimously wrong. Undecided cases are quite rare. These results are
really encouraging, but would need to be confirmed on a larger number of benchmarks.

It is clear that this simple algorithm may be the basis of a lazy learning technique:
starting from our classified data E, a subset of Bn, we first extract the set of rules as
described in the algorithm. We then complete the set E as far as we can by just using
the rules to classify the remaining data in Bn \E, then getting Eext. Given a new piece
of data to be classified, if d ∈ Eext, then d is classified, else we cannot classify d this
way.

Table 1. Average value (on 10 different training sets) of the number of rules generated

x1∨ x2 x1∨(x2∧x3) (x1∧x4)∨(x2∧x3)∨ x5 (x1∧x4)∨(x2∧x3) x1XOR x2

change rules gener. 32 28 30.2 33.9 32
no change rules gener. 30.9 44.1 27.5 21.3 30.9

Table 2. Results (cross-validation on 10 different training sets of 32 instances)

x1∨x2 x1∨(x2∧x3) (x1∧x4)∨(x2∧x3)∨x5 (x1∧x4)∨(x2∧x3) x1XORx2

unanim. right classif. 7 11. 17 6.1 6.3 0.4
majorit. right classif. 24.2 16.8 20.3 22 26.6

unanim. wrong classif. 0 0.1 0 0 0
majorit. wrong classif. 0.9 3.1 5 3 4.1

undecided 0 0.3 0.4 0.6 0.9
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5 Concluding Remarks

This paper constitutes a first attempt to understand the core logic underlying the analogy-
based classifiers and why this common-sense reasoning may lead to successful proce-
dures. Nevertheless, more investigations remain to be done to get a completely clear
picture. Considering pairs of items (analogical proportions make parallels between such
pairs), and observing regularities on pair’s features (without counterexample) is the ba-
sis for reproducing both contextual permanence in particular changes or absences of
change. This implicitly amounts to build analogical patterns. On the same basis, ana-
logical proportions have been used [1] to solve IQ tests that amounts to find the contents
of the 9th cell in a 3×3 table, positioning the ability to establish links between observed
changes as an important feature of human mind.
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Abstract. We consider a CPU constrained environment for finding ap-
proximation of frequent sets in data streams using the landmark window.
Our algorithm can detect overload situations, i.e., breaching the CPU ca-
pacity, and sheds data in the stream to “keep up”. This is done within a
controlled error threshold by exploiting the Chernoff-bound. Empirical
evaluation of the algorithm confirms the feasibility.

1 Introduction

Many new applications now require compute of vast amount of data. The data
is fast changing, infinitely sized and has evolving changing characteristics. Data
mining them over limited compute resources is thus a problem of interest. As data
rates change to exceed compute capacity, the machinery must adapt to produce
results on time. The way to achieve this is to incorporate approximation and
adaptability into the algorithm.

We introduce an algorithm that addresses approximation and adaptability for
finding frequent sets. While this paper reports the method of finding frequent
sets in landmark windows, we have in fact developed three methods of finding
frequent sets for the landmark window, forgetful window, and sliding window [6].
All three methods are able to adjust their compute according to available CPU
capacity and the data rate seen in the stream. All three methods achieved this
outcome by shedding load to keep up with the data rate. A significant contri-
bution of our approach is that we imposed an error guarantee on the load shed
action using a probabilistic load shedding algorithm. In this paper, we report
one of the three algorithms developed.

2 Related Works

The study of load shedding in data streams first begun in query networks as
a formulation of query plans, where “drop operations” are inserted [3,7,10]. In
data mining models for data streams, those that considers load shedding to
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deal with overload situations include [5] and [2]. Nevertheless, these works do
not deal with counting frequent sets. In works addressing frequent sets mining,
we can classify them into three categories. Those that count frequent sets in
a landmark window, e.g., [12]; those that count frequent sets in a forgetful (or
decaying) window, e.g., [4,8]; and those that count frequent sets in a sliding
window, e.g., [9]. These techniques all focus on summarising the data stream
within the constraints of the main memory. In contrast, our work addressed
CPU limits and also provided an error guarantee on the results.

The closest work to what we are proposing is found in [1] where sampling of
the entire database is performed. Multiple samples are taken as [1] runs in a
grid setting. The sampling is controlled via a probability parameter that is not
a function of CPU capacity. Further, the approximate results are also not guar-
anteed by an error limit. Therefore, this contrasts with our proposed algorithm,
where we ‘sample’ only in overload situations and the degree of sampling is con-
trolled by the CPU capacity rather than a pre-set probability parameter. We
operate our algorithm on a single compute – not over the grid, and we provide
an error guarantee to our results.

3 Algorithm StreamL

We assume a data stream being transactions {t1, t2, . . . , tn, . . . }, where ti ⊆ I =
{a1, a2, . . . , am} and aj is a literal to a data, object, or item. We further denote
tn as the current transaction arriving in the stream. A data stream {t1, . . . } is
conceptually partitioned into time slots TS0, TS1, . . . , TSi−k+1, . . . , TSi, where
TSn holds transactions that arrived at interval (or period) n.

Definition 1. A landmark window is all time slots between the given interval
n and the current time slot i, i.e., TSn, TSn+1, . . . , TSi−1, TSi. And in terms
of transactions, it will be transactions in those time slots. A landmark window
hence allows a analyst to perform analytic over a specific period. A data stream of
call statistics for example, would benefit from a landmark window where analysis
on the past 24 or 48 hours of calls can be obtained. In this case, the last 24 hours
would be the landmark window’s size.

Definition 2. An itemset X is a set of items X ∈ (2I − {∅}). An (-itemset is
an itemset that contains exactly ( items. Given X ⊆ I and a transaction ti, ti
supports (or contains) X if and only if X ⊆ ti.

Definition 3. Given an itemset X of size ( (i.e., an (-itemset), a set of all its
subsets, denoted by the power set P(X), is composed of all possible itemsets that
can be generated by one or more items of the itemset X, i.e., P(X) = {Y |Y ∈
(2X − {X}) ∧ (Y �= ∅)}. An immediate subset Y of X is an itemset such that
Y ∈ P(X) and |Y | = ((− 1).1

Definition 4. The cover of X in DS is defined as the set of transactions in DS
that support X, i.e., cover(X,DS) = {ti|ti ∈ DS, X ⊆ ti}.
1 |Y | denotes the number of items in Y .
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Definition 5. The frequency of X, denoted by freq(X), is the number of trans-
actions in DS that contain X, i.e., freq(X) = |cover(X,DS)|, and its support,
supp(X), is the ratio betweeb freq(X) and |DS|.

3.1 Workload Estimation

As indicated, our algorithm has two unique characteristics. The first is adapt-
ability to the time-varying characteristics of the stream. In this case, the issue is
to detect overload situations. The first instance when an overload occur lie not
in detecting the increased rate of transaction arrivals. Rather, it is a combina-
tion of arrival rate and the number of literals present in each transaction. We
denote the measure reflecting arrival rate and transaction size as L. Under an
overloaded situation, figuring the exact L is not a pragmatic solution. Instead
we favour an estimation technique for L that is computationally affordable in
overloaded situations.

The intuition to estimate L lie in the exponentially small number of maximal
frequent sets (MFS) compared to usual frequent sets [11]. Let m be the number
of MFS in a transaction t and denote Xi as a MFS, 1 � i � m. Then the time
to determine L2 for each transaction is given as

L =

m∑
i=1

2|Xi| −
m∑

i,j=1

2|Xi
⋂

Xj | (1)

and for n transactions over a single time unit, we have the following inequality
for load shedding decision

P × r ×
∑n

i=1 Li

n
≤ C (2)

where P ∈ (0, 1] is repeatedly adjusted to hold the inequality. Hence, the LHS
of the inequality also gives the maximum rate for transactions to be processed
within a time unit, i.e., at P = 1. The process capacity of the system is denoted
as C. Hence, the objective is to find all frequent sets while guaranteeing that the
workload is always below C.

3.2 Chernoff Bound Load Shedding

Clearly when load is shed, the consequence is the loss of accuracy in the frequency
of an itemset. Therefore, it makes sense to put an error guarantee on the results
so that analysis can be made with proper context. We achieved this in our
algorithm with the Chernoff bound.

Recall that P = 1 sets the arrival rate to its maximum. If this breaches C,
then we must adjust P for P < 1 is when transactions are dropped to meet CPU

2 Of course, computing L directly will be expensive and impractical. Instead, the
implementation uses a prefix tree, where the transaction in question is matched to
estimate the number of distinct frequent sets.
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constraints. If N are all the transactions, then n represents the sampling of N
transactions with N − n the number of transactions dropped. For each itemset
X , we compare the frequency for n sampled transactions against the frequency
for the original N transactions.

The existence of X in a transaction is a Bernoulli trial that can be represented
with a variable Ai such that Ai = 1 if X is in the i-th transaction and Ai = 0
otherwise. Obviously, Pr(Ai = 1) = p and Pr(Ai = 0) = 1 − p with Pr(.) being
the probability of a condition being met. Thus, n randomly drawn transactions
are n independent Bernoulli trials. Further, let r (a binomial random variable)
be the occurrence of Ai = 1 in the n transactions with expectation np. Then,
the Chernoff bound states that for any ε > 0 and ε = pε, we have

Pr{|r − np| ≥ nε} ≤ 2e−nε2/2p (3)

If sE(X) = r/n is the estimated support of X computed from n sampled trans-
actions, then the Chernoff Bound tells us how likely the true support sT (X)
deviates from its estimated support sE(X) by ±ε. If we want this probability to

be � δ, the sampling size should be at least (by setting δ = 2e−nε2/2p)

n0 =
2p ln(2/δ)

ε2
(4)

3.3 Algorithmic Steps

In landmark windows, we compute answers from a specific time in the past to the
latest transaction seen. For ease of exposition, we assume the first transaction
within a landmark window to be t1. Hence, we can conceptually compute as if the
entire stream is seen, i.e., dropping the time boundary. Further, we conceptually
divide the stream into buckets; each holding Δ transactions. To keep results
within a given threshold, we set Δ = n0 (Equation. 4).

Due to resource limits, we do not count all itemsets. Rather, we identify
the candidates that will become frequent and track those. With the conceptual
buckets, we use a deterministic threshold γ(< σ) to filter unlikely frequent sets.
If an itemset’s support falls below γ, then it is unlikely to become frequent in
the near future. Since an approximate collection of frequent sets are produced,
this must be within the promised error guarantee. As transactions are only read
once, there is a higher error margin with longer frequent sets as a potential
candidate is only generated after all its subsets are significantly frequent, i.e.,
the downward closure property.

To counter this, an array that tracks the minimum frequency thresholds is
used to tighten the upper error bound. We set m to the longest frequent sets of
interest to the user. The array thus must satisfy a[i] < a[j] for 1 ≤ i < j ≤ m,
a[1] = 0 (for 1-itemsets) and a[m] ≤ γ × Δ. A j-itemset is thus generated if
its immediate subsets in the current bucket is � a[j]. During load shedding, we
set each bucket to Δ transactions to bound the true support error probability
to no more than ε. As will be discussed next, the support error of frequent sets
discovered is guaranteed to be within γ and ε.
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The StreamL algorithm uses a prefix tree S to maintain frequent sets dis-
covered from the landmark window. Each node in S corresponds to an itemset
X represented by items on a path from the root to the node, where Item is last
literal in X ; fc(X) is the frequency of X in the current bucket; and fa(X) is the
accumulated frequency of X in the stream.

Further, let bc be the most current bucket in the stream. Hence, bc = 1 upon
initialisation and is incremented each time Δ transactions are processed. The
algorithmic steps of StreamL is thus given below.

1. Periodically detect capacity C and if no overload, set P = 1. Otherwise, set
P to maximal value identified in Equation 2.

2. Process transaction tn with probability p as follows
Increment if X ⊆ tn is in S, then fc(X) = fc(X) + 1
Insert, where |X | = 1 ∀X ⊆ tn∧X /∈ S → insert X into S with b(X) = bc

and fc(X) = 13;
Insert, where |X | > 1 Insert X into S when all following conditions hold

– All immediate subsets of X are in S;
– �Y (Y is any immediate subsets of X) s.t. b(Y ) < bc and fc(Y ) ≤

a[|X |], i.e., no Y is inserted into S from previous buckets but its
frequency in bc is insufficiently significant;

– �Y s.t. b(Y ) = bc and fc(Y ) ≤ (a[|X |]−a[|Y |]), i.e., no Y is inserted
into S in bc and after which its frequency is � (a[|X |]− a[|Y |]).

In cases where X is not inserted into S, all its supersets in tn need not
be further checked.

Prune S and update frequency After sampling Δ transactions, remove
all itemsets (except 1-itemsets) in S fulfilling fa(X) + fc(X) + b(X) ×
a[|X |] ≤ bc × a[|X |]. If an itemset is removed, all its supersets are also
removed. This does not affect itemsets insert into bucket bc since their
immediate subsets have became sufficiently frequent. For unpruned item-
sets, their frequencies are updated as fa(X) = fa(X)+fc(X)×P−1 and
fc(X) = 0. To compensate the effects of dropping transactions, X ’s fre-
quency is scaled by P−1 to approximate its true frequency in the data
stream. Finally, we update bc = n/Δ + 1.

3. At any point when results are requested, StreamL scans S to return 1-
itemsets satisfying fa(X) + fc(X) × P−1 � σ × n and (-itemsets satisfying
fa(X) + fc(X)× P−1 + b(X)× a[|X |] � σ × n.

3.4 Error Analysis

We now present the accuracy analysis on the frequency estimates produced by
our algorithm. For each itemset X4, we denote its true frequency by fT (X) and

3 The immediate subsets of a 1-itemset is ∅ which appears in every transaction. All
1-itemsets are therefore inserted into S without condition. For the same reason, they
are also not pruned from S .

4 We note that we will not discuss the error for 1-itemsets as their support will be
precisely counted in the absence of load shedding. Therefore the true and estimated
support are the same for these itemsets.
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estimated frequency by fE(X) = fa(X) + fc(X) using synopsis S. Respectively,
sT (X) and sE(X) denote its true and estimated supports.

Lemma 1. Under no load shedding (i.e., P = 1), StreamL guarantees if X is
deleted at bc, its true frequency fT (X) seen so far is � bc × a[|X |].

Proof. This lemma can be proved by induction. Base case when bc = 1: nothing
is deleted at the end of this bucket since an itemset is inserted into S only if
its immediate subsets are sufficiently significant. Therefore, any itemset X not
inserted into S in the first bucket will not have their true frequency greater
than a[|X |]; i.e., freqT (X) � a[|X |]. Note that the maximal error in counting
frequency of an inserted itemset X (at this first bucket) is also equal to a[|X |].
This is because X is inserted into S and started counting frequency only after
all X ’s subsets gain enough a[|X |] on their occurrences.

When bc = 2: Likewise, itemsets inserted into this bucket are not deleted
since they are in S only after their subsets are confirmed significant. Only
itemsets inserted in the first bucket might be removed as they can become
infrequent. Assume that X is such itemset, its error is at most a[|X |]. On
the other hand, fE(X) is its frequency count since being inserted in the first
bucket. Thus, fT (X) � fE(X) + a[|X |]. Combing with the delete condition:
fE(X) + a[|X |] � bc × a[|X |], we derive fT (X) � bc × a[|X |].

Induction case: Suppose X is deleted at bc > 2. Then, X must be inserted
at some bucket bi + 1 before bc; i.e., b(X) = bi + 1. In the worst case, X could
possibly be deleted in the previous bucket bi. By induction, fT (X) � bi× a[|X |]
when it was deleted in bi. Since a[|X |] is the maximum error at bi+1 and fE(X) is
its frequency count since being inserted in bi+1, it follows that fT (X) is at most
fE(X)+bi×a[|X |]+a[|X |] = fE(X)+(bi+1)×a[|X |]; or fT (X) � fE(X)+b(X)×
a[|X |]. When combined with the deletion rule fE(X)+b(X)×a[|X |] � bc×a[|X |],
we get fT (X) � bc × a[|X |].

Theorem 1. Without load shedding, StreamL guarantees that the true support
of any X ∈ S is limited within the range: sE(X) � sT (X) � sE(X) + γ.

Proof. By definition fE(X) is the counting of X since it was inserted into S.
Therefore the true frequency of X is always at least equal to this value, i.e.,
fE(X) ≤ fT (X). We now prove that fT (X) ≤ fE(X) + b(X)× a[|X |].

If X is inserted in the first bucket, its maximal frequency error is a[|X |].
Therefore, fT (X) � fE(X) + a[|X |]; In the other case, X is possibly deleted
some time earlier in the first bi buckets and then inserted into S at bi + 1. By
Lemma 1, fT (X) is at most bi×a[|X |] when such a deletion took place. Therefore,
fT (X) � fE(X) + a[|X |] + bi × a[|X |] = fE(X) + b(X)× a[|X |]. Together with
the result above, we derive fE(X) � fT (X) � fE(X) + b(X) × a[|X |]. On the
other hand, we define a[i] < a[j] for 1 ≤ i < j ≤ m and a[m] ≤ Δγ. And since
Δ × b(X) is always smaller than the number of transactions seen so far in the
stream, i.e., Δ×b(X) ≤ n, we have a[|X |]×b(X) ≤ n×γ. Dividing the inequality
above for n, the theorem is proven.
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Theorem 2. With load shedding, StreamL guarantees that sE(X)−ε ≤ sT (X) ≤
sE(X) + γ + ε with a probability of at least 1− δ.

Proof. This theorem can be directly derived from the Chernoff bound and The-
orems 1. At periods where the load shedding happens, the true support of X is
guaranteed within ±ε of the counting support with probability 1 − δ when the
Chernoff bound is applied for sampling. Meanwhile, by Theorems 1, this count-
ing support is limited by sE(X) ≤ sT (X) ≤ sE(X) + γ. Therefore, getting the
lower bound in the Chernoff bound for the left inequality and the upper bound
for the right inequality, we derive the true support of X to within the range
sE(X)− ε ≤ sT (X) ≤ sE(X) + γ + ε with a confidence of 1− δ.

4 Empirical Evaluation

We summarise our results here but refer the reader to our technical reports for
an in-depth discussion to meet space constraints.

We used the IBM QUEST synthetic data generator for our test. The first data
set T10.I6.D3M has an averaged transaction length of T = 10, average frequent
set length of I = 6 and contains 3 million transactions (D). The other two data
sets are T8.I4.D3M and T5.I3.D3M. On all three datasets, we are interested in
a maximum of L = 2000 potentially frequent sets with N = 10, 000 unique
items. As our algorithm is probabilistic, we measure the recall and precision on
finding the the true frequent sets. The experiment is repeated 10 times for each
parameter setting to get the average reading.

To test accuracy, we assume a fixed CPU capacity and varied the load shed
percentage between 0% and 80%. A shed load of 50% for example corresponds to
an input stream rate that is twice the CPU capacity. When P = 1, the algorithm
behaves like its deterministic cousins with recall of 100% but its precision is not
100%. This lack of precision is due to false positives as a result of over estimating
true occurrences by γ × nw. When load is shed, the false positives and false
negatives increase as reflected in the precision and recall. This is as expected
since less transactions are processed during a load shed and the action impacts
accuracy. The important point though is that the accuracy of the results across
our experiments show that it is highly maintained – in two of the three data sets,
both measures were above 93%. We also observed that as load sheds increases
beyond 60%, there is a general huge drop of accuracy so we note the practical
extend of shedding possible.

To test the adaptability of our algorithm, we create a hybrid data set by
concatenating the first 1 million transactions from T5.I3.D3M, T8.I4.D3M and
T10.I6.D3M respectively. We note from the experiments that the time to com-
pute the statistics for managing CPU capacity is negligible compared to finding
frequent sets. The cost of maintaining the statistics is also linearly proportioned
to the time across support thresholds experimented. From the results seen, we
can conclude that we can use the statistics collected to identify the appropriate
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amount of data for shedding. On the results seen, the adaptability of our algo-
rithm is practically reasonable as the cost to achieve a response to the load is
relatively small.

5 Conclusions

We considered computing frequent sets in streams under unpredictable data rates
and data characteristics that affect CPU capacity. Our unique contribution is a
parameter to control the stream load imposed on CPU capacity through load
shedding. Additionally, we bound the error to a Chernoff bound to ensure that
the error is guaranteed to within a certain threshold.
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Abstract. The role of instantiation restrictions for two recently pro-
posed semantics for relational probabilistic conditionals employing the
maximum entropy principle is discussed. Aggregating semantics is ex-
tended to conditionals with instantiation restrictions. The extended
framework properly captures both grounding and aggregating semantics
and helps to clarify the relationship between them.

1 Introduction

Relational probabilistic conditionals of the from if A, then B with probability d,
formally denoted by (B|A)[d], are a powerful means for knowledge representation
and reasoning when uncertainty is involved. As an example, consider the common
cold scenario from [3] that models the probability of catching a common cold,
depending on a persons’s general susceptibility and his contacts within a group
of people. The knowledge base RCC contains:

c1 : (cold(U)|4)[0.01]
c2 : (cold(U)|susceptible(U))[0.1]
c3 : (cold(U)|contact(U, V ) ∧ cold(V ))[0.6]

Conditional c1 says that the general probability of having a common cold is
just 0.01. However, if a person U is susceptible, then the probability of having
a common cold is much higher (namely 0.1 as stated in conditional c2), and c3
expresses that if U has contact with V and V has a common cold, then the
probability for U having a common cold is 0.6.

At first glance, RCC makes perfect sense from a commonsense point of view.
However, assigning a formal semantics to RCC is not straightforward. In the
propositional case, the situation is easier. For a ground probabilistic conditional
(B|A)[d], a probability distribution P over the possible worlds satisfies (B|A)[d]
iff P (A) > 0 and P (B|A) = d, i.e., iff the conditional probability of (B|A)
under P is d (see e.g. [7]). When extending this to the relational case with
free variables as in RCC , the exact role of the variables has to be specified.
While there are various approaches dealing with a combination of probabilities
with a first-order language (e.g. [6,5], a recent comparison and evaluation of
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some approaches is given [1]), in this paper we focus on two semantics that
both employ the principle of maximum entropy [10,7] for probabilistic relational
conditionals, the aggregation semantics [8] proposed by Kern-Isberner and the
logic FO-PCL [4] elaborated by Fisseler. While both approaches are related in the
sense that they refer to a set of constants when interpreting free variables, there
is also a major difference. FO-PCL needs to restrict the possible instantiations
for the variables occurring in a conditional by providing constraint formulas
like U �= V or U �= a in order to avoid inconsistencies. On the other hand,
aggregation semantics is only defined for conditionals without such instantiation
restrictions, and it does not require them for avoiding inconsistencies. However,
the price for avoiding inconsistencies in aggregation semantics is high since it
can be argued that it may lead to counter-intuitive results. For instance, when
applying aggregation semantics of [8] to RCC and the set of constants DCC =
{a, b}, under the resulting maximum entropy distribution P ∗ the conditional
(cold(a)|contact(a, b)∧cold (b)) has the surprisingly low probability of just 0.027.

In this paper, we elaborate the reasons for this behaviour, discuss possible
work-arounds, and point out why instantiation restrictions would be helpful. We
propose a logical system PCI that extends aggregation semantics to conditionals
with instantiation restrictions and show that both the aggregation semantics of
[8] and FO-PCL [4] come out as special cases of PCI, thereby also helping to
clarify the relationship between the two approaches.

The rest of this paper is organized as follows: In Section 2, we motivate the
use of instantiation restrictions for probabilistic conditionals. In Section 3, the
logic framework PCI is developed and two alternative satisfaction relations for
grounding and aggregating semantics are defined for PCI by extending the cor-
responding notions of [4] and [8]. In Section 4, the maximum entropy principle is
emloyed with respect to these satisfactions relations; the resulting semantics co-
incide for knowledge bases that are parametrically uniform. Finally, in Section 5
we conclude and point out further work.

2 Motivation for Instantiation Restrictions

Simply grounding the relational knowledge base RCC given in Section 1 easily
leads to an inconsistency. Using DCC = {a, b} yields the four ground instances

caa3 : (cold(a)|contact(a, a) ∧ cold(a)))[0.6]

cab3 : (cold(a)|contact(a, b) ∧ cold(b)))[0.6]
cba3 : (cold(b)|contact(b, a) ∧ cold(a)))[0.6]

cbb3 : (cold(b)|contact(b, b) ∧ cold(b)))[0.6]

for c3. E.g., the ground instance caa3 is unsatisfiable since for any probability dis-
tribution P , the conditional probability of P (q|p ∧ q) must be 1 for any ground
formulas p, q. As FO-PCL uses a grounding semantics requiring that all admis-
sible ground instances of a conditional c must have the probability given by c,
all FO-PCL conditionals have additionally a constraint formula restricting the
admissible instantiations of free variables. For instance, attaching U �= V to c3
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and the trivial constraint 4 to both c1 and c2 in RCC yields the knowledge
base Rfo-pcl

CC . Under FO-PCL semantics, Rfo-pcl
CC is consistent, where a probability

distribution P satisfies an FO-PCL conditional r, denoted by P |=fopcl r iff all
admissible ground instances of r have the probability specified by r.

In contrast, the aggregation semantics, as given in [8], does not consider in-
stantiation restrictions, since its satisfaction relation (in this paper denoted by
|=no-ir

� to indicate no instantiation restriction), is less strict with respect to prob-
abilities of ground instances: P |=no-ir

� (B|A)[d] iff the quotient of the sum of all
probabilities P (Bi ∧Ai) and the sum of P (Ai) is d, where (B1|A1), . . . , (Bn|An)
are the ground instances of (B|A). In this way, the aggregation semantics is
capable of balancing the probabilities of ground instances resulting in higher
tolerance with respect to consistency issues. The knowledge base RCC is con-
sistent under aggregating semantics, but while the maximum entropy distribu-
tion PME for RCC induced by aggregation semantics assigns probability 1.0
to both caa3 and cbb3 , as is required for any probability distribution, we have
PME(cab3 ) = PME(cba3 ) = 0.027. This low probability is enforced by that fact
that PME aggregates the probabilities over all ground instances of c3, including
caa3 and cbb3 . The satisfaction condition PME(c3) = 0.6 requires

PME(caa3 ) = PME(cold(a)∧contact(a,a)∧cold(a))
PME(contact(a,a)∧cold(a)) = 0.0057

0.0057 = 1.0

PME(cab3 ) = PME(cold(a)∧contact(a,b)∧cold(b))
PME(contact(a,b)∧cold(b)) = 0.0001

0.0039 = 0.027

PME(cba3 ) = PME(cold(b)∧contact(b,a)∧cold(a))
PME(contact(b,a)∧cold(a)) = 0.0001

0.0039 = 0.027

PME(cbb3 ) = PME(cold(b)∧contact(b,b)∧cold(b))
PME(contact(b,b)∧cold(b)) = 0.0057

0.0057 = 1.0

so that
PME(c3) = 0.0057+0.0001+0.0001+0.0057

0.0057+0.0039+0.0039+0.0057 = 0.6

holds. In this example, we could add the deterministic conditional
(contact(U,U)|4)[0.0], yielding a probability of PME(cab3 ) = 0.6, and this is
actually done in [11] for RCC . However, adding such sentences to a knowledge
base may be seen to be not adequate, and moreover, such a work-around is not
always possible.

Example 1 (Elephant Keeper). The elephant keeper example, adapted from [2]
and also [3], models the relationships among elephants in a zoo and their keepers.
REK consists of the following conditionals:

ek1 : (likes(E,K) | 4)[0.9]
ek2 : (likes(E, fred) | 4)[0.05]
ek3 : (likes(clyde, fred) | 4)[0.85]

Conditional ek1 models statistical knowledge about the general relationship be-
tween elephants and their keepers, whereas ek2 represents knowledge about the
exceptional keeper Fred. ek3 models subjective belief about the relationship be-
tween the elephant Clyde and Fred. From a common-sense point of view, the
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knowledge base REK makes perfect sense: ek2 is an exception from ek1, and ek3
is an exception from ek2. However, REK together with a set of constants may
be inconsistent under aggregation semantics. This is due to the fact that ek3
must be considered when satisfying ek2 and that both ek2 and ek3 influence the
satisfaction of ek1, but aggregating over all probabilities may not be possible if
there are not enough constants. For REK , there is no obvious way of adding
conditionals in order to guarantee consistency under aggregating semantics.

Example 2 (Elephant Keeper with instantiation restrictions). In FO-PCL,
adding K �= fred to ek1 and E �= clyde to ek2 in REK yields the knowledge
base R′

EK

ek′1 : 〈(likes(E,K) | 4)[0.9], K �= fred〉
ek′2 : 〈(likes(E, fred) | 4)[0.05], E �= clyde〉
ek′3 : 〈(likes(clyde , fred) | 4)[0.85], 4〉

that avoids any inconsistency.

3 PCI Logic

We develop a logical framework PCI (probabilistic conditionals with
instantiation restrictions) that uses probabilistic conditionals with and without
instantiation restrictions and that provides different options for a satisfaction
relation. The current syntax of PCI uses the syntax of FO-PCL [3,4]; in future
work, we will extend PCI to also include additional features like specifying pred-
icates to be irreflexive on the syntactical level. In order to precisely state the
formal relationship among |=no-ir

� , |=fopcl, and the satisfaction relations offered
by PCI, we first define the needed PCI components.

As FO-PCL, PCI uses function-free, sorted signatures of the form Σ =
(S,D,Pred). In a PCI-signature Σ = (S,D,Pred), S is a set of sorts, D =⋃

s∈S D(s) is a finite set of (disjoint) sets of sorted constant symbols, and Pred is
a set of predicate symbols, each coming with an arity of the form s1×. . .×sn ∈ Sn

indicating the required sorts for the arguments. Variables V also have a unique
sort, and all formulas and variable substitutions must obey the obvious sort
restrictions. In the following, we will adopt the unique names assumption, i. e.
different constants denote different elements. The set of all terms is defined as
TermΣ := V∪D. Let LΣ be the set of quantifier-free first-order formulas defined
over Σ and V in the usual way.

Definition 1 (Instantiation Restriction). An instantiation restriction is a
conjunction of inequality atoms of the from t1 �= t2 with t1, t2 ∈ TermΣ. The set
of all instantiation restriction is denoted by CΣ.

Definition 2 (q-, p-, r-Conditional). Let A,B ∈ LΣ be quantifier-free first-
order formulas over Σ and V.

1. (B|A) is called a qualitative conditional (or just q-conditional). A is the
antecedence and B the consequence of the qualitative conditional. The set of
all qualitative conditionals over LΣ is denoted by (LΣ |LΣ).
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2. Let (B|A) ∈ (LΣ |LΣ) be a qualitative conditional and let d ∈ [0, 1] be a real
value. (B|A)[d] is called a probabilistic conditional (or just p-conditional)
with probability d. The set of all probabilistic conditionals over LΣ is denoted
by (LΣ |LΣ)prob.

3. Let (B|A)[d] ∈ (LΣ |LΣ)prob be a probabilistic conditional and let C ∈ CΣ be
an instantiation restriction. 〈(B|A)[d], C〉 is called a instantiation restricted
conditional (or just r-conditional). The set of all instantiation restricted

conditionals over LΣ is denoted by (LΣ |LΣ)probCΣ
.

Instantiation restricted qualitative conditionals are defined analogously. If it is
clear from the context, we may omit qualitative, probabilistic, and instantiation
restricted and just use the term conditional.

Definition 3 (PCI knowledge base). A pair (Σ,R) consisting of a PCI-
signature Σ = (S,D,Pred) and a set of instantiation restricted conditionals

R = {r1, . . . , rm} with ri ∈ (LΣ |LΣ)probCΣ
is called a PCI knowledge base.

For an instantiation restricted conditional r = 〈(B|A)[d], C〉, ΘΣ(r) denotes
the set of all ground substitutions with respect to the variables in r. A ground
substitution θ ∈ ΘΣ(r) is applied to the formulas A,B and C in the usual way,
i. e. each variable is replaced by a certain constant according to the mapping
θ = {v1/c1, . . . , vl/cl} with vi ∈ V , ci ∈ D, 1 ≤ i ≤ l. So θ(A), θ(B), and θ(C)
are ground formulas and we have θ((B|A)) := (θ(B)|θ(A)).

Given a ground substitution θ over the variables occurring in an instantiation
restriction C ∈ CΣ , the evaluation of C under θ, denoted by [[C]]θ, yields true iff
θ(t1) and θ(t2) are different constants for all t1 �= t2 ∈ C.

Definition 4 (Admissible Ground Substitutions and Instances). Let
Σ = (S,D,Pred) be a many-sorted signature. and let r = 〈(B|A)[d], C〉 ∈
(LΣ |LΣ)probCΣ

be an instantiation restricted conditional. The set of admissible
ground substitutions of r is defined as

Θadm
Σ (r) := {θ ∈ ΘΣ(r) | [[C]]θ = true}

The set of admissible ground instances of r is defined as

gndΣ(r) := {θ(B|A)[d] | θ ∈ Θadm
Σ (r)}

For a PCI-signature Σ = (S,D,Pred), the Herbrand base HΣ with respect to
Σ is the set of all ground atoms constructible from Pred and D. Every subset
ω ⊆ HΣ is a Herbrand interpretation, defining a logical semantics for R. The set
ΩΣ := {ω | ω ⊆ HΣ} denotes the set of all Herbrand interpretations. Herbrand
interpretations are also called possible worlds.

Definition 5 (PCI Interpretation). The probabilistic semantics of (Σ,R)
is a possible world semantics [6] where the ground atoms in HΣ are binary
random variables. A PCI interpretation P of a knowledge base (Σ, R) is thus
a probability distribution P : ΩΣ → [0, 1]. The set of all probability distributions
over ΩΣ is denoted by PΩΣ .
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Currently, the PCI framework offers two different satisfaction relations: |=pci
G is

based on grounding as in FO-PCL, and |=pci
� extends aggregation semantics to

r-conditionals.

Definition 6 (PCI Satisfaction Relations). Let P ∈ PΩ

and let 〈(B|A)[d], C〉 ∈ (LΣ |LΣ)probCΣ
be an r-conditional with∑

θ∈Θadm
Σ (〈(B|A)[d],C〉) P (θ(A)) > 0. The two PCI satisfaction relations |=pci

G and

|=pci
� are defined by:

P |=pci
G 〈(B|A)[d], C〉 iff

P (θ(A ∧B))

P (θ(A))
= d

for all
θ ∈ Θadm

Σ (〈(B|A)[d], C〉) (1)

P |=pci
� 〈(B|A)[d], C〉 iff

∑
θ∈Θadm

Σ (〈(B|A)[d],C〉)

P (θ(A ∧B))

∑
θ∈Θadm

Σ (〈(B|A)[d],C〉)

P (θ(A))
= d (2)

We say that P (PCI-)satisfies 〈(B|A)[d], C〉 under grounding semantcis iff

P |=pci
G 〈(B|A)[d], C〉. Correspondingly, P (PCI-)satisfies 〈(B|A)[d], C〉 under

aggregating semantcis iff P |=pci
� 〈(B|A)[d], C〉.

As usual, the satisfaction relations |=pci
" with ; ∈ {G, /} are extended to a set

of conditionals R by defining

P |=pci
" R iff P |=pci

" r for all r ∈ R.

The following proposition states that PCI properly captures both the
instantiation-based semantics |=fopcl of FO-PCL [3] and the aggregation seman-
tics |=no-ir

� of [8] (cf. Section 2).

Proposition 1 (PCI captures FO-PCL and aggregation semantics). Let
〈(B|A)[d], C〉 be an r-conditional and let (B|A)[d] be a p-conditional, respectively.
Then the following holds:

P |=pci
G 〈(B|A)[d], C〉 iff P |=fopcl 〈(B|A)[d], C〉 (3)

P |=pci
� 〈(B|A)[d],4〉 iff P |=no-ir

� (B|A)[d] (4)

4 PCI Logic and Maximum Entropy Semantics

If a knowledge base R is consistent, there are usually many different models sat-
isfying R. The principle of maximum entropy [10,7] chooses the unique distribu-
tion which has maximum entropy among all distributions satisfying a knowledge
base R. Applying this principle to the satisfaction relations |=pci

G and |=pci
� yields

P
ME�
R = arg max

P∈PΩ :P |=pci
� R

H(P ) (5)

with ; being G or /, and where
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H(P ) = −
∑
ω∈Ω

P (ω) logP (ω)

is the entropy of a probability distribution P .

Example 3 (Misanthrope). The knowledge base RMI adapted from [3] models
friendship relations within a group of people with one exceptional member, a
misanthrope. In general, if a person V likes another person U, then it is very
likely that U likes V, too. But there is one person, the misanthrope, who generally
does not like other people:

mi1 : 〈(likes(U, V )|likes(V, U)))[0.9], U �= V 〉
mi2 : 〈(likes(a, V )|4)[0.05], V �= a〉

Within the PCI framework, consider RMI together with constants D = {a, b, c}
and the corresponding ME distributions PMEG

RMI
and P

ME�
RMI

under grounding and
aggregation semantics, respectively.

Under P
ME�
RMI

, all six ground conditionals emerging from mi1 have probability

0.9, for instance, PMEG
RMI

(likes(a, b) | likes(b, a)) = 0.9.

On the other hand, for the distribution P
ME�
RMI

, we have P
ME�
RMI

(likes(a, b) |
likes(b, a)) = 0.46 and P

ME�
RMI

(likes(a, c) | likes(c, a)) = 0.46, while the other four
ground conditionals resulting from mi1 have probability 0.97.

Example 3 shows that in general the ME model under grounding semantics of a
PCI knowledge base R differs from its ME model under aggregating semantics.
However, if R is parametrically uniform [3,4], the situation changes. Paramet-
ric uniformity of a knowledge base R is introduced in [3] and refers to the fact
that the ME distribution satisfying a set of m ground conditionals can be rep-
resented by a set of m optimization parameters. A relational knowledge base R
is parametrically uniform iff for every conditional r ∈ R, all ground instances
of r have the same optimization parameter (see [3,4] for details). For instance,
the knowledge base R′

EK from Example 2 is parametrically uniform, while the
knowledge base RMI from Example 3 is not parametrically uniform. Thus, if R
is parametrically uniform, just one optimization parameter for each conditional
r ∈ R instead of one optimization parameter for each ground instance of r has
to be computed; this can be exploited when computing the ME distribution.
In [9], a set of transformation rules is developed that transforms any consistent
knowledge base R into a knowledge base R′ such that R and R′ have the same
ME model under grounding semantics and R′ is parametrically uniform.

Using the PCI framework providung both grounding and aggregating seman-
tics for conditionals with instantiation restrictions, we can show that the ME
models for grounding and aggregation semantics coincide if R is parametrically
uniform.

Proposition 2 (R parametrically uniform implies PMEG
R = P

ME�
R ). Let R

be a PCI knowledge base. If R is parametrically uniform, then PMEG
R = P

ME�
R .



Instantiation Restrictions for Relational Probabilistic Conditionals 605

5 Conclusions and Further Work

In this paper, we considered two recently proposed semantics for relational prob-
abilistic conditionals. While FO-PCL uses instantiation restrictions for the free
variables occurring in a conditional, aggregation semantics avoids inconsistencies
by aggregating probabilites over the ground instances of a conditional. While the
latter allows more flexibility, we pointed out some shortcomings of aggregating
semantics that surface especially if the set of constants in the underlying uni-
verse is small relative to the number of exceptional individuals occurring in a
knowledge base. Based on these observations, we developed the framework PCI
that extends aggregation semantics so that also instantiation restrictions can
be taken into account, but without given up the flexibility of aggregating over
different probabilities. PCI captures both grounding semantics and aggregating
semantics without instantiation restrictions as special cases. For the case that a
knowledge base is parametrically uniform, grounding and aggregating semantics
coincide when employing the maximum entropy principle. In future work, we will
extend our investigations also to the averaging [11] and other ME semantics.
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Abstract. A concept is presented for identification of time-dependent
material behaviour. It is based on two approaches in the field of arti-
ficial intelligence. Artificial neural networks and swarm intelligence are
combined to create constitutive material formulations using uncertain
measurement data from experimental investigations. Recurrent neural
networks for fuzzy data are utilized to describe uncertain stress-strain-
time dependencies. The network parameters are identified by an indi-
rect training with uncertain data of inhomogeneous stress and strain
fields. The real experiment is numerically simulated within a finite ele-
ment analysis. Particle swarm optimization is applied to minimize the
distance between measured and computed uncertain displacement data.
After parameter identification, recurrent neural networks for fuzzy data
can be applied as material description within fuzzy or fuzzy stochastic
finite element analyses.

Keywords: artificial neural network, particle swarm optimization, fuzzy
data, finite element analysis, material behaviour.

1 Introduction

The application of new materials in engineering practice as well as the evalu-
ation of existing structures require knowledge about their behaviour. Material
tests can be performed. As a result of experimental investigations, data series
(processes) for measured structural actions and responses are available. However,
often only imprecise information can be obtained due to varying boundary con-
ditions, inaccuracies in measurements and measurement devices, and incomplete
sets of observations. Imprecise measurements can be described by the uncertainty
model fuzziness, see e.g. [14]. Time-dependent structural actions and responses
are quantified as fuzzy processes.

Commonly, constitutive models are used to describe material behaviour by
means of stress-strain relationships. Optimization approaches can be applied
to determine unknown parameters of predefined models using stress and strain
patterns from experimental data. An alternative is the application of artificial
intelligence for identification of constitutive material behaviour. Artificial neural

E. Hüllermeier et al. (Eds.): SUM 2012, LNAI 7520, pp. 606–611, 2012.
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networks can be used to describe material behaviour, see e.g. [8]. Similar to
constitutive models, they can be implemented as material formulation within
the finite element method (FEM), see e.g. [7].

In [2], an approach for uncertain material formulations (stress-strain-time de-
pendencies) is presented, which is based on recurrent neural networks for fuzzy
data [3]. For parameter identification (network training), a modified backprop-
agation algorithm is used. In this paper, particle swarm optimization (PSO) [9]
is applied for network training. The PSO approach presented in [4] is utilized,
which can deal with fuzzy network parameters. This also enables to create spe-
cial network structures with dependent network parameters considering physical
boundary conditions of investigated materials.

Whereas in prior works stress and strain processes are required for network
training, a new concept is introduced using measured uncertain load and displace-
ment processes of specimens. This indirect training approach requires a numerical
simulation of the experiment. A finite element analysis (FEA) is performed to com-
pute displacements due to the applied forces. PSO is applied to minimize the dis-
tance between experimentally and numerically obtained uncertain displacements
resulting in appropriate fuzzy or deterministic network parameters.

2 Artificial Neural Networks for Constitutive Material
Behaviour

Artificial neural networks can be utilized to describe constitutive material be-
haviour, i.e. relationships between stresses and strains. Whereas feed forward
neural networks can be used for nonlinear elastic behaviour, recurrent neural
networks are suitable to capture time-dependent phenomena (viscoelasticity),
see e.g. [18]. Recurrent neural networks consist of an input layer, a number of
hidden layers and an output layer. The neurons of each layer are connected by
synapses to the neurons of the previous layer. In contrast to feed forward neural
networks, hidden and output neurons are also connected to context neurons to
store the material history. Recurrent neural networks can be applied to map
the components of the time-varying strain tensor onto the components of the
time-varying stress tensor or vice versa. For 3D material formulations, six input
and output neurons are required representing the six independent stress and
strain components of the respective tensors. Accordingly, the number of input
and output neurons is three for 2D formulations and one for 1D formulations.
The number of hidden layers and neurons can be defined with respect to the
complexity of the material formulation. In general, fully or partially connected
network architectures with symmetric substructures can be created [4] in order
to reflect special material characteristics, e.g. anisotropy, orthotropy or isotropy.

In order to deal with imprecise data, recurrent neural networks for fuzzy data
have been developed, see e.g. [3]. The network outputs can be computed using
α-cuts and interval arithmetic. If neural networks are applied as material for-
mulation within a fuzzy or a fuzzy stochastic FEA, an α-level optimization (e.g.
according to [16]) is required to calculate the fuzzy stress components (network
outputs), see [2].



608 S. Freitag

Determination of the tangential stiffness matrix of the neural network based
material formulation requires to evaluate the partial derivatives of the network
outputs with respect to the network inputs. This is obtained by multiple appli-
cations of the chain rule, see [2].

3 Identification of Network Parameters

The deterministic or fuzzy network parameters can be identified using imprecise
load and displacement data obtained from experimental investigations. For direct
network training, patterns of input and output data (i.e. components of the strain
and stress tensors) are required. An optimization can be performed minimizing
the averaged total training error

Eav =
1

H

H∑
h=1

[
1

Nh

Nh∑
n=1

[n]E

]
, (1)

where h = 1, . . . , H are the training patterns and Nh is the number of time steps
per pattern. The error of each time step n can be computed by

[n]E =
1

K · S

K∑
k=1

S∑
s=1

[(
[n]
sl σk − [n]

sl σ
∗
k

)2
+
(
[n]
suσk − [n]

suσ
∗
k

)2]
, (2)

which contains a distance measure for neural network computed fuzzy stress
components [n]σ̃k and experimentally obtained fuzzy stress components [n]σ̃∗

k

represented by their lower l and upper u interval bounds of each α-cut s. In
Equation (2), K is the number of stress components and S is the number of
α-cuts.

In general, it is difficult to determine all components of the stress and strain
tensors from measurements of displacements and forces. Boundary conditions
are often not fulfilled to assume homogeneous stress and strain fields in the
specimens. As an alternative, an indirect training approach is presented.

3.1 Finite Element Simulation of Experiments

The load-displacement behaviour of specimens can be simulated numerically
using the FEM. For constitutive material models, an inverse analysis can be
performed to identify unknown material parameters, see e.g. [11] and [17]. Dis-
placements at measurement points of real and virtual specimens can be used to
solve an optimization task. The objective is the minimization of the difference
between computed and measured displacements in order to find the material
parameters of an a priory defined material model.

This concept can be adapted to identify deterministic or fuzzy network pa-
rameters. In [5], an indirect training approach (autoprogressive algorithm) is
presented for feed forward neural networks. Deterministic stress and strain data
are required within the used gradient based backpropagation network training.
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They are computed adaptively within a FEA taking the difference between com-
puted and measured displacements into account. This approach may be extended
to recurrent neural networks for fuzzy data.

If optimization strategies without using gradient information are applied for
network training, deterministic or fuzzy network parameters can be identified
indirectly by minimizing the difference between computed and measured dis-
placements. Swarm intelligence [10] can be used to solve this optimization task.

3.2 Particle Swarm Optimization

PSO [9] is a biosocial motivated search algorithm. It can be used for training of
feed forward neural networks, see e.g. [12] and [13]. In [4], a PSO approach using
fuzzy or interval numbers is presented for training of feed forward and recur-
rent neural networks. Using PSO for training of recurrent neural networks en-
ables to modify all network parameters during training. This is an improvement
compared to backpropagation training, where only parameters of the forward
connections can be updated. Additionally, individual network structures with
dependent parameters can be created in order to consider physical boundary
conditions of investigated materials, e.g. anisotropy, orthotropy or isotropy.

The PSO approach presented in [4] can also be applied to determine determin-
istic or fuzzy network parameters indirectly using uncertain load and displace-
ment data. A swarm consists of p = 1, . . . , P particles representing identical
network architectures with different sets of network parameters. The following
procedure is repeated until the functional value of the objective function (1) of a
particle is less than a predefined value or a maximal number of runs is reached.

For each particle of the swarm, a numerical simulation of the experiment is
performed to compute fuzzy displacement processes at selected measurement
points q = 1, . . . , Q. The fuzzy FEM is applied using a recurrent neural network
for fuzzy data as material formulation, see Section 2. For each time step n and
each component q, an α-level optimization according to [16] is carried out. The
computed fuzzy displacement components [n]ṽq are compared with experimen-
tally obtained displacements [n]ṽ∗q . In contrast to Equation (2), the error of time
step n is defined by

[n]E =
1

Q · S

Q∑
q=1

S∑
s=1

[(
[n]
sl vq −

[n]
sl v

∗
q

)2
+
(
[n]
su vq − [n]

su v
∗
q

)2]
. (3)

The objective function (1) is evaluated for each particle. The parameter set of
the particle with the least value of the objective function is stored as global best
of all runs. The individual best parameter sets of each particle are updated, if
the value of the objective function is less than the current individual best.

The new parameter set of each particle is computed based on information of
its own search history, information of other particles, and random influences. In
general, information between particles in the swarm can be shared differently,
see e.g. [1]. If a fully connected swarm topology is selected, each particle gets
information from all other particles and also transmits its search experience to
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all other particles of the swarm. Details are presented in [4] for the update of
deterministic, interval, and fuzzy parameters.

4 Application for Structural Analysis

Experimental investigations with different loading scenarios and boundary con-
ditions are required to get realistic material formulations. Validation of neural
network based material formulations is realized by additional load-displacement-
time dependencies which are not used for parameter identification.

After identification of deterministic or fuzzy network parameters, the neural
network based material formulation can be applied for several tasks in structural
analysis, e.g. reliability assessment, structural design, and lifetime prediction.

Fuzzy response processes of arbitrary structures can be computed within fuzzy
FEA. The same computational approach (α-level optimization) as used for in-
direct network training can be applied, see [16].

The proposed neural network based material formulation is based on the un-
certainty model fuzziness. However, it can also be applied within the generalized
uncertainty model fuzzy randomness [15]. This enables to perform fuzzy stochas-
tic FEA, see e.g. [6] and [19] resulting in fuzzy stochastic structural responses
such as fuzzy failure probabilities. Due to the high computational effort (e.g.
Monte Carlo simulation with FEA), the fuzzy stochastic analysis can be realized
with numerical efficient surrogate models.

5 Conclusion

A new concept has been presented for identification of uncertain material be-
haviour. Fuzzy load and displacement processes of real and virtual experiments
can be used to create uncertain stress-strain-time dependencies based on recur-
rent neural networks. PSO is applied to determine fuzzy or deterministic network
parameters. Recurrent neural networks for fuzzy data can be used as material
formulation within fuzzy or fuzzy stochastic FEA.

Acknowledgments. The author gratefully acknowledges the support of the
Deutsche Forschungsgemeinschaft (DFG – German Research Foundation) within
the project (FR 3044/1-1) in the framework of a research fellowship.
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Abstract. In this study, we address the problem of finding the optimal
number of clusters on incomplete data using cluster validity functions.
Experiments were performed on different data sets in order to analyze to
what extent cluster validity indices adapted to incomplete data can be
used for validation of clustering results. Moreover we analyze which fuzzy
clustering algorithm for incomplete data produces better partitioning
results for cluster validity.
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1 Introduction

Clustering is an unsupervised learning technique for automatic exploring the
distribution of objects in a data set. A great number of well-performing algo-
rithms for assigning data objects into a pre-defined number of hard or fuzzy
partitions has been previously proposed in the literature. However, since the
quality of the resulting partitioning of a data set produced by clustering algo-
rithms strongly depends on the assumed number of clusters, the determination
of that parameter is a crucial problem in cluster analysis. A widely used method
for estimating the optimal number of clusters consists in comparing the clus-
tering solutions obtained for different numbers of clusters using Cluster Validity
Indices (CVIs).

In [1], we addressed the question of to what extent the optimal number of
clusters can be found when validating partitionings obtained on data with miss-
ing values. We adapted different cluster validity functions to incomplete data
and used them for validation of clustering results obtained by fuzzy clustering
methods for incomplete data. The experimental results showed that the optimal
number of clusters could only be found for small percentages of missing values in
data. Since in that study both the clustering algorithms and the cluster validity
indices were adapted for incomplete data, in this work we address the problem of
finding what factors cause such poor performance: the adaption of the clustering
algorithms, the adaption of the validity functions, or the loss of information in
data itself.
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2 Cluster Validity for Clustering of Incomplete Data

Since cluster validity indices are computed using partitioning results obtained
by clustering algorithms, the determined optimal number of clusters depends on
both clustering methods and CVIs. In this study, we focus on three approaches
for adapting the fuzzy c-means algorithm (FCM) [2] that handle missing values in
different ways and therefore produce different partitioning results. We validated
the clustering results using three cluster validity functions that consider different
aspects of an optimal partitioning.

Table 1. Cluster Validity Indices
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2.1 Approaches for Fuzzy Clustering of Incomplete Data

Partial Distance Strategy (PDS): Pursuing the available case approach, the
membership degrees of incomplete data items to clusters are calculated using
the partial distance function [3]. The cluster prototypes are calculated only on
the basis of all available feature values of data items.

Optimal Completion Strategy (OCS): In this approach missing values are
used as additional components to minimize the objective function [3]. They are
estimated depending on all cluster prototypes in an additional iteration step of
the algorithm.

Nearest Prototype Strategy (NPS): The idea of this approach is to com-
pletely substitute missing values of an incomplete data item by the corresponding
values of the cluster prototype to which it has the smallest partial distance [3].

2.2 Cluster Validity Indices for Incomplete Data

Normalized Partition Coefficient (NPC) rates a partitioning of a data set
as optimal if data items are clearly assigned into clusters [4]. Since it uses only
membership matrix for calculation, NPC can be applied in case of incomplete
data without any changes.

Fuzzy Hypervolume (FHV) considers the compactness within clusters. It
rates a fuzzy partitioning as optimal if the clusters are of minimal volume [5].
We adapted FHV to incomplete data according to [6].

Fukuyama-Sugeno (FS) index combines compactness and separation between
clusters [7]. We adapted this index using partial distance function.

Table 1 summarizes original and adapted versions of CVIs, respectively. Note
that in case of complete data these CVIs reduce to their original versions.
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(a) (b)

Fig. 1. Test data: (a) Data Set 1, (b) Data Set 2

3 Experimental Results

3.1 Test Data and Experimental Setup

We tested the described clustering algorithms and CVIs on several data sets
with different numbers of clusters. Due to the lack of space we only describe the
experimental results for two artificial data sets. Both data sets consist of 2000
data points generated by compositions of five 3-dimensional Gaussian distribu-
tions. Both data sets have the same mean values, and the second data set has
larger standard deviations. The five clusters build two groups of three and two
differently sized clusters. While all clusters in Data Set 1 are clearly separated
from each other, there is some overlap between clusters within two groups in
Data Set 2 (see Figure 1). We generated incomplete data sets by removing val-
ues in all dimensions with probabilities of 10%, 25% and 40% according to the
most common missing completely at random (MCAR) failure mechanism.

We first clustered the complete data sets with basic FCM with different num-
bers of clusters. Due to the hierarchical structure of clusters, many CVIs like
NPC determined two clusters in the data sets and only obtained their max-
ima/minima for c = 5. Only FHV and Fukuyama-Sugeno indices could correctly
determine the optimal number of clusters in both data sets (cf. Table 2 (left)).
In the first experiment we isolated and tested the performance of the adapted
CVIs by evaluating them on incomplete data using partitioning results produced
by FCM on complete data. In the second experiment, we validated partitioning
results obtained by three fuzzy clustering algorithms for incomplete data using
NPC and adapted FHV and Fukuyama-Sugeno indices.

3.2 Experimental Results

Table 2 (right) shows the performance results for the adapted FHV and
Fukuyama-Sugeno index on incomplete data using membership degrees and clus-
ter prototypes obtained by FCM on complete data. Even for a large percentage
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Table 2. Cluster validity results of clusterings produced by FCM and using complete
(left) and incomplete data (right)

Data set 1

CVIs NPC FHV FS

c = 2 0.797 53.92 -201147

c = 3 0.681 47.00 -226881

c = 4 0.671 36.76 -223743

c = 5 0.708 26.03 -273846

c = 6 0.593 29.58 -224122

c = 7 0.543 33.12 -216209

c = 8 0.503 35.01 -210778

Data set 2

c = 2 0.739 115.32 -170471

c = 3 0.574 127.26 -190852

c = 4 0.513 117.56 -172540

c = 5 0.517 103.55 -202799

c = 6 0.438 113.03 -168654

c = 7 0.401 123.33 -163122

c = 8 0.370 129.23 -148879

Data set 1

10% 25% 40%

CVIs NPC FHV FS NPC FHV FS NPC FHV FS

c = 2 0.797 53.69 -201057 0.797 53.04 -202566 0.797 53.28 -202774

c = 3 0.681 46.96 -226893 0.681 46.35 -227429 0.681 46.25 -228392

c = 4 0.671 36.75 -223765 0.671 36.34 -224061 0.671 37.44 -223602

c = 5 0.708 26.02 -273874 0.708 26.17 -273982 0.708 26.25 -273696

c = 6 0.593 29.49 -224104 0.593 29.49 -224225 0.593 29.95 -223999

c = 7 0.543 33.04 -216195 0.543 33.24 -216272 0.543 33.47 -216121

c = 8 0.503 34.87 -210756 0.503 35.25 -210845 0.503 35.56 -210695

Data set 2

c = 2 0.739 115.26 -170322 0.739 114.49 -171419 0.739 113.38 -171207

c = 3 0.574 126.87 -190913 0.574 125.50 -191817 0.574 125.71 -191694

c = 4 0.513 117.67 -172435 0.513 117.02 -172921 0.513 116.67 -172399

c = 5 0.517 103.52 -202719 0.517 104.46 -202751 0.517 102.89 -202688

c = 6 0.438 112.90 -168610 0.438 114.17 -168645 0.438 112.17 -168549

c = 7 0.401 123.64 -163081 0.401 123.99 -163137 0.401 121.72 -163050

c = 8 0.370 129.90 -148835 0.370 129.43 -148922 0.370 126.94 -148835

Table 3. CV results of clusterings produced by PDSFCM on incomplete data

Data set 1

10% 25% 40%

CVIs / SM NPC FHV FS HR DCP NPC FHV FS HR DCP NPC FHV FS HR DCP

c = 2 0.767 52.07 -202354 0.92 0.386 0.718 48.87 -204958 0.83 0.942 0.676 45.59 -208001 0.75 1.415

c = 3 0.663 44.83 -221928 0.92 0.264 0.638 40.53 -214374 0.83 0.834 0.608 35.14 -208274 0.74 1.500

c = 4 0.631 35.21 -217267 0.92 0.320 0.589 31.26 -212744 0.83 1.019 0.551 28.17 -205824 0.77 1.309

c = 5 0.655 25.28 -257279 0.93 0.131 0.582 24.30 -235732 0.85 0.490 0.544 21.98 -223380 0.79 0.777

c = 6 0.564 27.53 -217062 0.93 1.324 0.546 23.52 -215449 0.86 2.077 0.529 19.79 -211834 0.80 2.586

c = 7 0.535 28.72 -217460 0.93 0.370 0.510 24.80 -205263 0.86 2.984 0.522 18.99 -209022 0.81 3.484

c = 8 0.485 31.46 -192622 0.93 0.585 0.495 24.81 -196666 0.86 2.527 0.512 18.15 -201974 0.82 2.834

Data set 2

c = 2 0.704 112.26 -171335 0.93 0.328 0.664 106.23 -176452 0.83 0.803 0.613 95.68 -178915 0.76 1.648

c = 3 0.568 118.47 -190622 0.92 0.494 0.556 106.71 -191540 0.83 1.266 0.551 90.34 -194736 0.75 2.430

c = 4 0.494 111.05 -171356 0.92 0.688 0.483 99.94 -174912 0.84 1.481 0.522 77.33 -194253 0.77 2.901

c = 5 0.490 98.35 -195190 0.93 0.449 0.458 91.95 -189805 0.85 1.074 0.500 69.04 -203955 0.79 2.802

c = 6 0.432 103.47 -170006 0.92 1.495 0.440 87.91 -177594 0.85 2.696 0.499 63.86 -200461 0.80 5.145

c = 7 0.399 111.52 -162272 0.91 1.692 0.429 88.24 -175516 0.86 2.662 0.488 59.29 -196055 0.80 5.655

c = 8 0.371 116.83 -150911 0.93 1.051 0.408 88.00 -166817 0.86 2.539 0.478 57.29 -192358 0.81 5.133
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Table 4. CV results of clusterings produced by OCSFCM on incomplete data

Data set 1

10% 25% 40%

CVIs / SM NPC FHV FS HR DCP NPC FHV FS HR DCP NPC FHV FS HR DCP

c = 2 0.823 51.69 -210773 0.93 0.592 0.855 49.60 -219748 0.82 0.866 0.894 45.57 -238787 0.74 1.700

c = 3 0.723 44.48 -235427 0.92 0.428 0.776 40.31 -223027 0.81 0.817 0.822 36.63 -220472 0.70 1.439

c = 4 0.703 35.76 -229871 0.93 0.429 0.766 31.45 -252634 0.83 0.953 0.812 30.64 -257025 0.75 1.904

c = 5 0.727 25.77 -266899 0.92 0.331 0.764 25.41 -276824 0.84 0.875 0.796 26.26 -282493 0.79 1.510

c = 6 0.629 27.71 -229573 0.93 0.863 0.675 25.31 -251324 0.85 1.994 0.733 22.71 -262295 0.79 2.348

c = 7 0.565 31.34 -218060 0.92 1.268 0.627 26.47 -225223 0.85 2.532 0.692 23.73 -262888 0.79 3.438

c = 8 0.533 31.31 -202013 0.93 1.499 0.600 27.22 -236880 0.86 1.369 0.685 21.92 -238827 0.80 3.228

Data set 2

c = 2 0.769 111.23 -179969 0.92 0.578 0.811 106.30 -193870 0.82 1.106 0.854 96.01 -206988 0.72 1.836

c = 3 0.621 116.74 -197556 0.91 0.529 0.682 105.11 -192125 0.80 1.227 0.747 93.24 -217406 0.72 1.620

c = 4 0.555 110.89 -183545 0.91 0.603 0.624 102.55 -204446 0.82 1.686 0.696 82.51 -215742 0.75 3.593

c = 5 0.548 98.65 -205569 0.92 0.821 0.593 94.77 -200758 0.83 2.059 0.672 76.69 -220553 0.76 4.626

c = 6 0.485 102.08 -187271 0.92 1.708 0.553 91.57 -200363 0.84 2.421 0.639 72.47 -222156 0.77 4.636

c = 7 0.441 111.22 -167158 0.90 1.856 0.525 91.63 -202853 0.83 4.485 0.621 72.18 -221035 0.77 5.379

c = 8 0.415 116.64 -160721 0.92 1.707 0.494 94.11 -197417 0.84 3.840 0.593 71.99 -217658 0.79 4.223

Table 5. CV results of clusterings produced by NPSFCM on incomplete data

Data set 1

10% 25% 40%

CVIs / SM NPC FHV FS HR DCP NPC FHV FS HR DCP NPC FHV FS HR DCP

c = 2 0.823 51.69 -210876 0.92 0.593 0.861 47.72 -227244 0.83 1.307 0.897 43.58 -243307 0.73 1.875

c = 3 0.721 44.60 -237804 0.93 0.560 0.789 39.54 -241932 0.79 1.463 0.850 32.30 -265685 0.71 2.342

c = 4 0.711 34.23 -236103 0.92 0.596 0.777 29.24 -255258 0.82 1.535 0.829 23.71 -277435 0.75 2.296

c = 5 0.739 24.74 -283561 0.93 0.538 0.784 22.59 -291786 0.85 1.314 0.834 18.82 -310182 0.78 2.391

c = 6 0.641 26.24 -239114 0.92 1.972 0.718 21.10 -266387 0.85 2.511 0.787 17.65 -298662 0.79 2.749

c = 7 0.586 28.70 -226936 0.91 2.542 0.673 22.55 -252513 0.85 2.695 0.773 16.72 -295092 0.79 4.018

c = 8 0.552 29.61 -212591 0.92 0.904 0.656 22.58 -263830 0.85 3.261 0.746 16.12 -281954 0.80 4.449

Data set 2

c = 2 0.769 111.09 -180745 0.92 0.624 0.816 102.95 -199409 0.81 1.334 0.861 90.60 -217180 0.74 2.313

c = 3 0.629 115.80 -199406 0.91 0.811 0.680 101.05 -226658 0.82 1.741 0.788 81.79 -239796 0.70 3.610

c = 4 0.565 107.06 -187282 0.90 1.268 0.653 89.67 -216146 0.81 2.513 0.740 68.93 -249989 0.74 3.899

c = 5 0.562 94.92 -213702 0.91 1.283 0.637 80.94 -236234 0.83 2.607 0.736 57.98 -279220 0.75 4.239

c = 6 0.496 98.50 -190611 0.91 1.905 0.605 76.24 -234962 0.83 3.917 0.714 53.74 -265106 0.76 5.960

c = 7 0.467 104.23 -184992 0.92 1.540 0.583 77.43 -231260 0.83 4.213 0.696 52.55 -269111 0.76 6.051

c = 8 0.436 108.10 -170956 0.92 1.847 0.556 76.29 -216932 0.84 3.755 0.685 48.31 -263907 0.77 6.604
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of missing values in data sets, the values for both CVIs only slightly differ from
the values obtained on complete data sets and both FHV and FS index could
perfectly recognize the optimal number of clusters. That means that the adapted
versions of FHV and FS maintain the properties of the original CVIs and the
loss of values in data set does not have much effect on the performance of CVIs.

Tables 3, 4, 5 show validating partitioning results obtained by PDSFCM, OCS-
FCM and NPSFCM on incomplete data. The additional columns give Hüller-
meier/Rifqi index (HR) [8] between the membership matrices and Frobenius
norm distance between the cluster prototyps (DCP) produced on complete and
incomplete data. Although the values for CVIs differ from the original ones, all
CVIs determined the same optimal number of clusters for small percentages of
missing values as in the case of complete data. However, it is already possible to
state some differences between the clustering algorithms: while PDSFCM slightly
underestimates, OCSFCM and NPSFCM overestimate the values for NPC. This
can be explained by the fact that OCSFCM and NPSFCM estimate missing
values closer to the cluster prototypes achieving a compacter and clearer parti-
tioning of a data set. Due to this fact, the values of NPC increase with increasing
percentage of missing values in the data sets. Dealing with missing values in this
way plays a central role in the case of overlapping clusters for a large percentage
of missing values because the structure of the original data set can be changed for
different numbers of clusters. The values for Hüllermeier/Rifqi index and DCP
also show that the partitionings produced by PDSFCM on incomplete data are
slightly more similar to the partitionings produced on complete data.

Comparing the performance of cluster validity indices the best results were
obtained by Fukuyama-Sugeno index. It only failed for a large percentage of
missing values on the data set with overlapping clusters. As we already stated in
[1], FHV tends to overestimate the number of clusters with increasing number
of missing values in a data set. That can be explained by the fact that clustering
algorithms compute cluster prototypes close to available data items that are
taken into account for calculation of FHV. Thus, with increasing number of
clusters the distances between data items and cluster prototypes get smaller
and the value for FHV as well. This property of FHV disqualifies this CVI
for validating clustering results obtained on data with a large percentage of
missing values unless the cluster prototypes can be well determined by clustering
algorithms.

4 Conclusions and Future Work

In this study, we analyzed different kinds of cluster validity indices for finding the
optimal number of clusters on incomplete data. In experiments, we showed that
the partitioning results produced by clustering algorithms for incomplete data
are the critical factor for cluster validity. We also showed that cluster validity
indices that consider only one of the aspects of an optimal partitioning, e.g. only
the compactness within clusters are more affected by the partitioning results
produced by clustering algorithms on incomplete data. Because of that such
CVIs fail to work for a high percentage of missing values in a data set.
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As future work it is our intention to focus on the adapting CVIs to incomplete
data that combine compactness and separation between clusters.
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Abstract. We introduce the notion of naive evidential classifier. This
classifier, which has a structure mirroring the naive Bayes classifier, is
based on the Transferable Belief Model and uses mass assignments as its
uncertainty model. This new method achieves more robust inferences,
mainly by explicitly modeling imprecision when data are in little amount
or are imprecise. After introducing the model and its inference process
based on Smet’s generalized Bayes theorem (GBT), we specify some pos-
sible methods to learn its parameters, based on the Imprecise Dirichlet
Model (IDM) or on predictive belief functions. Some experimental results
on an agronomic application are then given and evaluated.

1 Introduction

When modeling and processing uncertainty, computing on multivariate spaces is
an important issue. If X1, . . . , XN is a set of variables assuming their values over
some finite spaces X1, . . . ,XN , defining directly a joint uncertainty model over
the Cartesian product X1× . . .×XN and making some inferences with this model
is often impossible in practice. The use of graphical models based on network
architecture can solve this problem by decomposing the joint uncertainty model
into several pieces of conditional models. This decomposition is possible thanks
to conditional independence property. Note that outside their computational
tractability, another attractive feature of such models is their readability for
non-experts, thanks to their graphical aspects.

The aim of this paper is first to introduce the notion of the Naive Evidential
Classifier (NEC) as the counterpart of the Naive Bayes (NB) in evidential the-
ory. It uses the directed evidential network structure (DEVN) proposed by Ben
Yaghlane in [1] and preforms inference by using the modified binary join tree
(MBJT) algorithm, which uses the disjunctive rule of combination (DRC) and
the generalized Bayesian theorem (GBT), both proposed by Smets in [2].

In Section 2, we briefly present the Basics of NEC. Section 3 then provides
some details about the practical instanciation and use of the NEC structure.
Finally, Sections 4 and 5 present some preliminary experiments on an agronom-
ical problem and on an UCI data set. Due to lack of spaces, only the essential
elements are provided, and the reader is referred to references for details.
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2 Naive Evidential Classifier (NEC)

NEC is the TBM counterpart of the Naive Bayes (NB) classifier. Thereby, it is
a graphical model having two parts: a qualitative and a quantitative one. Recall
that the aim of a classifier is learn a mapping from input values X1, . . . , XN ∈
X1 × . . .×XN to an output class C ∈ C from available (training) data, in order
to predict the classes of new instances.

2.1 Graphical Structure

NEC maintains the same graphical presentation as NB. In the figure 1, the root
C is class to predict and the leafs from X1 to Xn present features.

Fig. 1. A generalized presentation of the naive evidential classifier NEC

2.2 Quantitative Part of NEC

Each edge represents a conditional relation between the two nodes it connects.
To each edge will be associated conditional mass distribution1, while to each
node will be associated a prior mass as follows:

– A prior mass distribution m(C) in the root (class) node.
– Both a prior mass distribution m(X) and a conditional mass distribution

mX [C](xi) in each leaf node associated to an edge.

Section 3 explains how these masses can be learnt. The propagation of beliefs
for NEC, ensured by a Modified Binary Join Tree Structure, is illustrated in
Figure 2 for nodes C and X2. We refer to [1] for details.

3 Learning and Decision

3.1 Learning

Mass distributions in the model can be elicited from experts or constructed from
observed data (the usual case in classification). We propose two methods to in-
fer such distributions: the Imprecise Dirichlet model (IDM) [3] and Denoeux’s
multinomial model [4], obtaining respectively the NEC1 and NEC2 paremeteri-
zation.

The imprecision of mass distributions obtained by each methods is governed
by hyperparameters, respectively the positive real number v ∈ R+ for the IDM
and the confidence level α ∈ [0, 1] for Denoeux’s model. The higher these pa-
rameters, the higher the imprecision of mass distributions.

1 Recall that a mass distribution m : 2|X| → [0, 1] on X is such that m(∅) = 0,∑
E⊆X m(E) = 1 and induces a belief and a plausibility measure such that bel(A) =∑
E⊆A m(A) and pl(A) = 1 − bel(Ac).
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Fig. 2. The propagation process in the MBJT using the GBT and the DRC

3.2 Classification and Evaluation

As imprecision is an interesting feature of evidence theory, we propose an im-
precise classification based on pairwise comparisons [5]. Using the mass on C
obtained for an instance x1, . . . , xN by propagation on the NEC, a class c1 is
told to dominate c2, denoted by c1 � c2 if the belief of c1 is larger than the belief
of c2 (bel(c1) ≥ bel(c2)) and the plausibility of c1 is larger than the plausibility
of c2 (pl(c1) ≥ pl(c2)) for all the distributions. The retained set Ωm of possible
classes is then the one of non-dominated classes, i.e. Ωm = {c ∈ C| � ∃c′, c′ � c}.
Evaluations are then made through the use of set accuracy and of discounted
accuracy (see [6]). Roughly speaking, if ĉ is the true class, set-accuracy counts
1 each time ĉ ∈ Ωm, while the discounted accuracy counts 1/|Ωm| with |Ωm| the
cardinality of Ω. Both counts 0 when ĉ �∈ Ωm, and classical accuracy is recovered
when |Ωm| = 1.

4 Application of the NEC in Durum Wheat Industry

In this section we present preliminary results on an agronomic application of
NEC consisting in the prediction of the semolina milling value of the durum
wheat. Being able to predict this value from easy to measure parameters would
be very valuable both for farmers and industrials, the former because it would
help in grain selection, the latter to quickly assess wheat quality.

The database contains 260 samples issued from IATE experimental mill, where
the output class was the semolina value (discretized in four classes specified
by experts) and the input parameters were the Hectolitre Weight (HLW), The
Thousand Kernel Weight(TKW) and Vitreousness. NEC1 and NEC2 are both
evaluated according to set and discounted accuracy measures, and a ten-fold
cross validation method was used.

Figures 3 and 4 show the variations of set- and discounted- accuracy as a
function of the parameters v (IDM) and α (Denoeux’s model). A first remark is
that NEC1 tends to have worse performances than NEC2, an observation that
can be explained by the fact that the IDM is more ”simple” than Denoeux’s
model. Hence NEC 1 is easier to compute, while NEC2 gives better predictions.
Another noticeable fact is that set-accuracy does not necessarily decrease as the
model gets more imprecise (Figure 4 left). This is due to the non-motonicity of
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Fig. 3. Discounted Accuracy as a Function of v and α

Fig. 4. Set Accuracy as a Function of v and α

the used decision rule (i.e., a more imprecise m does not mean a bigger Ωm),
and this could be solved by choosing another (more imprecise) rule such as
interval-dominance [5].

Figure 5 displays the confusion matrix for both classifiers (where the precise
classification was chosen as the most plausible, i.e., c = arg maxc∈C pl({c})).
Again, both classifiers appear to be at odds, and it is difficult to say which is
better. However, as is supported by the relatively low level of well-classed items,
this difficulty to differentiate probably also comes from the poor explanatory
power of input variables, and more refined modelling (planned in the future) as
well as tests on other data sets would be needed to make further conclusions.

Finally, to choose the best configuration, we propose to retain the best one
according to discounted accuracy (as it reflects balance between imprecision and
prediction quality), that is to say the NEC1 classifier with v = 53.

5 A Comparison between NEC1 and the Naive Bayes
Classifier

The proposed comparison is based on the confusion matrix returned by NEC1
and the Naive Bayes Classifier. Figure 6 displays the confusion matrix for both
classifiers applied to the IATE experimental mill database. Figure 7 displays
the confusion matrix for both classifiers applied to LENSES database, from
UCI repository, which contains 24 samples, where the output class is the type
of lenses fitted to the patient (the patient should be fitted with hard contact
lenses, soft contact lenses or should not be fitted with contact lenses) and the
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Fig. 5. Confusion Matrix: (a)given by NEC1 with v = 53; and (b)given by NEC2 with
α = 0.0000001

Fig. 6. Confusion Matrix(IATE experimental mill database): (a)given by NEC1 with
v = 53; and (b)given by Naive Bayes Classifier

Fig. 7. Confusion Matrix (LENSES database): (a)given by NEC1 with v = 15.5; and
(b)given by Naive Bayes Classifier
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input parameters are the age of the patient, the spectacle prescription, astigmatic
and the tear production rate.

For the IATE experimental mill database, NEC1 is better than the Naive
Bayes Classifier (PCC = 38, 85% ≥ 36, 54%) while for the LENSES database
the Naive Bayes Classifier is better than NEC1 (PCC = 70, 83% ≥ 66, 66%).

6 Conclusion

In this paper, we have introduced the idea of Naive Evidential Classifier as
well as tools to instantiate and evaluate it. A preliminary application has been
achieved on an agronomical problem. Considering the quality of available data,
first results are encouraging, however much work remains to be done:

– concerning the model itself, it would be desirable to realx the independence
assumption and use an augmented tree model;

– concerning the application, a refined statistical analysis of the data may
allow to extract more relevant information or identify subgroups of interest
(e.g., differentiating big and small grains or varieties of wheat);

– concerning the general evaluation of the model, it remains to apply it to
usual benchmarks and to confront it to other classical classifiers.
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Abstract. The principle of maximum entropy inductively completes the
knowledge given by a knowledge base R, and it has been suggested to
view learning as an operation being inverse to inductive knowledge com-
pletion. While a corresponding learning approach has been developed
when R is based on propositional logic, in this paper we describe an
extension to a relational setting. It allows to learn relational FO-PCL
knowledge bases containing both generic conditionals as well as specific
conditionals referring to exceptional individuals from a given probability
distribution.

1 Introduction

In the area of learning, different motivations, scenarios, and approaches have
been investigated, especially in classical Data Mining [6]. The field of Statisti-
cal Relational Learning [5] explicitly focuses on relational dependencies. Corre-
spondingly, also different success and quality criteria are used.

In [7], Kern-Isberner advocates a view on learning from a knowledge rep-
resentation point of view. There, knowledge representation with probabilistic
conditionals of the form if ψ then φ with probability ξ, formally denoted by
(φ|ψ)[ξ], are considered. A probability distribution P over the possible worlds
satisfies (φ|ψ)[ξ] iff P(ψ) > 0 and P(φ|ψ) = ξ. Among all distributions satisfying
a knowledge base R consisting of a set of conditionals, the principle of maximum
entropy [11,7,9] selects the uniquely determined distribution P∗ = ME(R) hav-
ing maximum entropy. Thus, ME(R) inductively completes the knowledge given
by R in an information-theoretically optimal way. Based on this scenario, in [7]
it is argued that learning can be seen as an operation being inverse to induc-
tive knowledge completion: Given a probability distribution P , the objective of
the process of conditional knowledge discovery [7,8] is to find a set CKD(P) of
probabilistic conditionals such that ME(CKD(P)) = P , cf. Fig. 1. Conditional
knowledge discovery has been implemented in the CondorCKD system [8,4].
Here, we propose an extension of the CKD approach to a relational setting. We
use relational probabilistic conditionals as they are used in the logic FO-PCL
developed in [2,3].
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R P∗

inductive knowledge completion

conditional knowledge discovery

Fig. 1. Conditional knowledge discovery as inverse to inductive knowledge completion

Example 1. Suppose we want to find out about the social behavior of a popula-
tion of monkeys. A monkey X may be hungry, denoted by h(X). At feeding time,
hungry monkeys will eat their food, otherwise they might allow another mon-
key to eat it which will be expressed by al (X,Y ) with X �= Y . Constraints like
X �= Y on the variables restrict the variable bindings in terms of our intended
meaning and avoid inconsistencies that would be obtained by simply considering
all groundings of a conditional. The set RMk with

r1 : 〈(al (X,Y )|h(X))[0.9], X �= Y,X �= c〉
r2 : 〈(al (c, Y )|h(c))[0.2], Y �= c〉

is an FO-PCL knowledge base where r1 expresses generic knowledge, while r2 in-
volves knowledge about an exceptional individual monkey c who allows another
monkey to eat his food only with probability 0.2, even if he is not hungry.

After briefly sketching the basics of FO-PCL and the idea of inverting inductive
knowledge completion, we present the successive phases of our learning method
and illustrate them using the scenario from Ex. 1. Basically, it follows a bottom-
up approach. Starting with a set of most specific conditionals, redundancies
between the conditionals are detected by algebraic means. These redundancies
are used to generalize conditionals, thereby reducing the set of conditionals.
Exceptional individuals are identified afterwards using statistical methods.

2 Background

2.1 FO-PCL

For the representation of relational knowledge we consider FO-PCL [2,3]. A
restricted many-sorted first-order logic built over signatures of the form Σ =
(S ,Const ,Pred). S is a set of sorts, Const a set of sorted constants, and Pred a
set of sorted predicate symbols. Formulas are built up over a signature Σ and a
set of sorted variables V in the usual way using conjunction (where φψ abbrevi-
ates φ∧ψ), disjunction and negation, but no quantifiers. An FO-PCL conditional
R = 〈(φ | ψ)[ξ],C 〉 consists of two formulas over Σ and V , the consequence φ
and the antecedence ψ, a probability ξ ∈ [0, 1], and a constraint formula C using
equality as the only predicate symbol. A set R of such conditionals is called an
FO-PCL knowledge base. An instance of an FO-PCL conditional is called ad-
missible if its constraint function evaluates to true. The grounding operator gnd
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maps each FO-PCL conditional R to the set of its admissible instances gnd(R),
in the following just called instances.

The Herbrand base H(R) of R includes all ground predicates appearing in
grounded conditionals of R. A Herbrand interpretation is a subset of H(R),
and Ω denotes the set of all Herbrand interpretation, also called (possible)
worlds. A probability distribution P : Ω → [0, 1] satisfies a ground conditional
(φ | ψ)[ξ] iff P(φψ) = ξ · P(ψ), where the probability of a formula is the sum
of the probabilities of Herbrand interpretations in Ω satisfying the formula, i.e.,
P(F ) =

∑
ω∈Mod(F ) P(ω). P satisfies an FO-PCL conditional R iff it satisfies

each ground instance in gnd(R), and it satisfies an FO-PCL knowledge base R
iff it satisfies each conditional in R. The maximum entropy distribution ME(R)
is the uniquely determined distribution having maximum entropy and satisfying
R, where H(P) = −

∑
ω∈Ω P(ω) logP(ω) is the entropy of P .

Example 2. A possible signature ΣMk for RMk from Ex. 1 uses a single
sort S = {Monkey}, three constants Const = {a, b, c} of sort Monkey
and two predicate symbols Pred = {h(Monkey), al (Monkey ,Monkey)}.
Then the ground instances of r1 are (al (a, b)|h(a))[0.9], (al (a, c)|h(a))[0.9],
(al(b, a)|h(b))[0.9], (al (b, c)|h(b))[0.9], and the ground instances of
r2 are (al (c, a)|h(c))[0.2], (al(c, b)|h(c))[0.2]. Hence H(RRMk

) =
{al(a, b), al(a, c), al(b, a), al(b, c), al(c, a), al (c, b), h(a), h(b), h(c)}.

Note that each of the ground predicates in H(RRMk
) can be viewed as a binary

propositional variable from {ha, hb, hc , ala,b, ala,c, al b,a, al b,c, alc,a, alc,b}. So the
representation is essentially propositional.

2.2 Inverting Maximum Entropy Reasoning

Given a knowledge base R consisting of n propositional conditionals (φi | ψi)[ξi],
one can apply the method of lagrange multipliers to show that there are n + 1
non-negative real values ai such that the ME-optimal probability distribution P
satisfying R is given by P(ω) = a0

∏n
i=1(

∏
ω|=φiψi

a1−ξi
i

∏
ω|=φiψi

a−ξi
i ). Each

ai ∈ R+
0 is a factor corresponding to the i-th conditional with 00 := 1, and a0

is a normalizing constant. Depending on whether the world verifies or falsifies a
conditional, the corresponding factor affects the probability with exponent 1−ξi
or −ξi. If the conditional is inapplicable in the world, i.e., ω |= ψi, it does not
influence the probability at all. So basically there are three factors corresponding
to each conditional, namely a positive, a negative and a neutral effect.

In [7] this idea is expanded to an algebraic framework. For each conditional
two abstract symbols α+, α− representing the positive and negative effect are
introduced. The conditional structure of worlds with respect to the knowledge
base R is σR(ω) =

∏n
i=1(

∏
ω|=φiψi

α+
i

∏
ω|=φiψi

α−
i ), which is an abstraction of

the numerical representation above.

Example 3. Consider three binary variables A,B,C and a knowledge base
R := {(B | A)[0.8]} consisting of a single conditional. For each world ω, the
following table shows how the probability P(ω) is determined by the factor a1
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corresponding to the conditional, and in the third column the conditional struc-
ture σR(ω) of ω is given:

ω P(ω) σR(ω)

ABC 0.18 = a0 · a0.21 α+

ABC 0.18 = a0 · a0.21 α+

ABC 0.04 = a0 · a−0.8
1 α−

ABC 0.04 = a0 · a−0.8
1 α−

ω P(ω) σR(ω)

ABC 0.14 = a0 1

ABC 0.14 = a0 1

ABC 0.14 = a0 1

ABC 0.14 = a0 1

Worlds having the same conditional structure must have the same probability.
If conversely the same probability implies the same structure, the distribution
is called a faithful representation of R [7].

Example 4. We continue the previous example. The three different probabilities

constituted are 0.18, 0.04 and 0.14. In particular we have P(ABC)

P(ABC)
= 1. Assuming

faithfulness, we can conclude σR(AB C)

σR(AB C)
= 1 for our searched knowledge base R.

Because of the independency of the abstract symbols, we can separate the known
basic conditionals with respect to their consequence literal [7]. We consider the
basic conditionals with consequence B: b1 := (B | AC), b2 := (B | AC), b3 :=
(B | AC), b4 := (B | AC). Evaluating the world product above with respect to

their conditional structure σB yields 1 = σB(AB C)

σB(AB C)
=

b+1
b+2

, hence b+1 = b+2 . Hence

both conditionals b1 and b2 have the same effect on the probability distribution
and therefore can be combined to a single conditional. We obtain (B | AC ∨
AC) = (B | A) which is indeed the original conditional in R. Other equations
can be used to shorten and remove the remaining basic conditionals in a similar
way. In general equations can be much more complex and new effects for the
shortened conditionals have to be considered. We refer to [7] for a comprehensive
analysis.

3 Learning FO-PCL Knowledge Bases

3.1 Learning Input

We describe our domain of interest by an FO-PCL signature Σ. As sketched
in Sec. 1, our initial learning input is a probability distribution over the worlds
induced by Σ.

Example 5. The relationships among the three monkeys from Ex. 2 are described
by the nine grounded predicates

h(a), h(b), h(c), al(a, b), al(a, c), al(b, a), al(b, c), al(c, a), al(c, b).

Each observation is given by a Herbrand interpretation; e.g.,
{h(b), h(c), al (a, b), al(a, c)} describes the situation where b and c are hungry, a
is not hungry, and a allows b and c to eat his food. A set of such interpretations
induces an empirical probability distribution like:



An Approach to Learning Relational Probabilistic FO-PCL Knowledge Bases 629

h(a) h(b) h(c) al(a, b) al(a, c) al(b, a) al(b, c) al(c, a) al(c, b) P(ω)

0 1 1 1 1 0 0 0 0 0.10
1 0 1 0 0 1 1 0 0 0.10
1 1 0 0 0 0 0 0 0 0.06
1 1 0 0 0 0 0 1 1 0.01

. . .

3.2 Language Bias and Background Knowledge

In principle, a structure over grounded predicates as in Sec. 3.1 can be viewed
as propositional, and we could apply CondorCKD to find a set of propositional
conditionals R representing P . However, if we do not take information about the
underlying relational structure into account, we might end up with conditionals
like (al(a, b)|al(c, d)) which may be sufficient to represent the probability distri-
bution, but that are not desirable from a learning perspective. Therefore we will
restrict our language appropriately.

As in [7], we consider only single-elementary conditionals, i.e., conditionals
whose consequence consists of a single literal and the antecedence is a conjunction
of literals. Basically, this representation is as expressive as the Horn clauses
usually considered in ILP [10]. Furthermore, in a first phase, we will learn free
conditionals only, i.e. conditionals containing only variables; in a later phase,
specific knowledge about individuals will be identified. As often done in ILP, we
can consider restricted rules where each variable appearing in the antecedence
has to appear in the consequence, too.

The relational learning systems CLAUDIEN and ICL use the template lan-
guage DLAB instead [1]. If background knowledge about the structure of the
conditionals to be learned is available, we can use a similar approach. A tem-
plate conditional is a pair consisting of a non-probabilistic conditional and a
constraint formula. Given a template template((φ|ψ),C ) each FO-PCL condi-
tional 〈(φ | ψ′)[ξ],C 〉 with a sub-conjunction ψ′ of ψ and arbitrary ξ ∈ [0, 1] is
covered and so are its ground instances.

Example 6. The template template((al(X,Y )|h(X) h(Y )), X �= Y ) covers the
following four FO-PCL conditionals and all their ground instances:

〈(al (X,Y )|h(X) h(Y ))[ξ], X �= Y 〉 〈(al (X,Y )|h(X))[ξ], X �= Y 〉
〈(al (X,Y )|h(Y ))[ξ], X �= Y 〉 〈(al (X,Y )|4)[ξ], X �= Y 〉

3.3 Relational CondorCKD

As explained in Section 2.2, CondorCKD starts with a set of most specific con-
ditionals, the so-called basic conditionals [7]. Then P is examined to detect de-
pendencies between conditionals by algebraic means, and equations on possible
effects of conditionals are resolved. If a conditional turns out to be non-effective
w.r.t. the observed distribution, it is removed. If conditionals similar to each
other turn out to have the same effect w.r.t. the observed distribution, they
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Algorithm 1. RCondorCKD

1: procedure RCKD( P , Bias)
2: R ← createBasicConditionals (Bias)
3: D ← findDependencies(P)
4: while d ∈ D can be resolved do
5: Resolve d and decrease R
6: end while
7: R ← postprocess (R)
8: return R
9: end procedure

are combined pairwise to more general conditionals. Algorithm 1 sketches our
relational version of CondorCKD.

RCondorCKD takes an empirical distribution P and a language bias and
computes a set of conditionals reflecting dependencies between the observed
individuals. Starting with the basic conditional set generated with respect to
our language bias, the initial set of conditionals is shortened by deleting or
combining conditionals as sketched above. If no more shortenings are possible,
we compute the probabilities and detect knowledge about specific individuals in
a post-processing step. In the following we describe the steps in more detail.

Since the shortening operations of CondorCKD are based on algebraic equa-
tions and are defined on unquantified conditionals, we use a wild card symbol ∗
for probabilities. The basic conditional set is the set of most specific conditionals
w.r.t. our language bias.

Example 7. Using the template template((al (X,Y )|h(X) h(Y )), X �= Y ) from
Example 6 and template((h(X)|al (X,Y ) h(Y )), X �= Y ) for our monkey exam-
ple, yields the following basic conditional set:

〈(al(X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 〈(h(X) | al(X,Y ) h(Y ))[∗], X �= Y 〉
〈(al(X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 〈(h(X) | al(X,Y ) h(Y ))[∗], X �= Y 〉
〈(al(X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 〈(h(X) | al(X,Y ) h(Y ))[∗], X �= Y 〉
〈(al(X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 〈(h(X) | al(X,Y ) h(Y ))[∗], X �= Y 〉

Each ground instance g of a free conditional r corresponds to a propositional
conditional and therefore can be handled similar to the propositional case. As
a first approach, suppose each ground instance of c turns out to be redundant,
i.e., can be removed; then removing c is perfectly justified. Similarly, if each
ground instance of a free conditional r1 can be combined with exactly one ap-
propriate ground instance of another free conditional r2, then combining the free
conditionals r1 and r2 is justified.

Example 8. Suppose there are only two monkeys a, b and we discover that the
ground instances (al (a, b) | h(a) h(b)) and (al (b, a) | h(b) h(a)) can be deleted.
Then we can delete the free conditional 〈(al (X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 since
all its ground instances are redundant.
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Further, suppose we detect that (al (a, b) | h(a) h(b)) can be combined with
(al(a, b) | h(a) h(b)) to (al(a, b) | h(a)). Additionally suppose (al (b, a) | h(b) h(a))
can be combined with (al (b, a) | h(b) h(a)) to (al (b, a) | h(b)). Then we can
replace the corresponding free conditionals 〈(al (X,Y ) | h(X) h(Y ))[∗], X �= Y 〉
and 〈(al (X,Y ) | h(X) h(Y ))[∗], X �= Y 〉 by 〈(al (X,Y ) | h(X))[∗], X �= Y 〉, since
this is justified for all their ground instances.

The condition for taking into account each ground instance in these reduction
steps may be too restrictive. It can be replaced by a bold option being content
with a justified shortening for a single instance, or by a threshold-based option.
These options are similar to the heuristics already implemented in CondorCKD
for shortening propositional conditionals [8,4].

3.4 Identifying Exceptional Individuals

We now have a knowledge base of unquantified, free conditionals. The probabil-
ity of each of their ground instances is evaluated using the empirical distribution
P . While this might result in different probabilities for the ground instances, the
probabilities for what can be considered prototypical elements will be within a
small interval. It could also be possible that the probabilities separate the con-
ditionals into different groups. In this case, it might be appropriate to introduce
new types in the FO-PCL signature to realize a kind of clustering. However, for
the time being we suppose there is one representative group and maybe some
outliers.

In order to classify the probabilities, we can use standard measures as used in
descriptive statistics. For each free conditional we compute the lower and upper
quartile Q1, Q3 and the median Q2 of the ground instances. The user may define
a threshold τ > 0, such that each instance with probability differing more than
(1 + τ) · (Q3−Q1) from the median will be considered exceptional. Specific indi-
viduals can be separated from the general conditional by appropriate constraint
formulas. Then the probability of the general conditional can be computed as
the mean or the median of the non-exceptional ground instances.

Example 9. Suppose there are five monkeys a, b, c, d, e and we learned the free
conditional 〈(al(X,Y )|h(X))[∗], X �= Y 〉. Further suppose we computed the me-
dian Q2 = 0.9 and the lower and upper quartiles Q1 = 0.8, Q3 = 0.95. For τ = 0.5
each conditional with a probability lower than 0.9− 1.5 · (0.95− 0.8) = 0.675 is
classified as exceptional. Suppose for monkey c we obtain (al(c, t) | h(c))[0.2] for
t ∈ {a, b, d, e}. Since each ground conditional for X = c is exceptional, we split c
from the general conditional. Supposing that for the remaining ground instances
we have a mean of 0.9, the learned FO-PCL knowledge base will contain the
conditionals

〈(al (X,Y )|h(X))[0.9], X �= Y,X �= c〉
〈(al (c, Y )|h(c))[0.2], Y �= c〉

which correspond to the conditionals in RMk from Example 1.
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4 Conclusions and Further Work

Employing the view of learning as an operation inverse to inductive knowledge
completion put forward by Kern-Isberner [7,8], we developed an approach how
CondorCKD can be extended to the relational setting. We demonstrated how
relational probabilistic FO-PCL knowledge bases containing both generic condi-
tionals as well as conditionals referring to exceptional individuals can be learned
from a given probability distribution.

Several of the intermediate steps which we could only briefly describe here can
be optimized by exploiting the relational structure of the data. We will also in-
vestigate to which extent we can use this information to refine the neighborhood
graph among worlds considered in [8]. While major parts of our approach have
already been implemented, we will use a full implementation of RCondorCKD
to experimentally evaluate our approach.
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Abstract. In the literature, little attention has been paid to the devel-
opment of solvers for systems of mathematical fuzzy logic, even though
there is an important number of studies on complexity and proof theory
for them. In this paper, extending a recent approach by Ansótegui et al.,
we present ongoing work on an efficient and modular SMT-based solver
for a wide family of continuous t-norm based fuzzy logics. The solver is
able to deal with most famous fuzzy logics (including BL, �Lukasiewicz,
Gödel and Product); and for each of them, it is able to test, among others,
satisfiability, tautologicity and logical consequence problems. Note that,
unlike the classical case, these problems are not in general interdefinable
in fuzzy logics. Some empirical results are reported at the end of the
paper.

1 Introduction

In the literature, with a few exceptions mainly for �Lukasiewicz logics [13,15,4,14],
little attention has been paid to the development of efficient solvers for systems
of mathematical fuzzy logic, even though there is an important number of studies
on complexity and proof theory for them (see [12,9,10,1,6]). This is a problem
that limits the use of fuzzy logics in real applications. In [2], a new approach
for implementing a theorem prover for �Lukasiewicz, Gödel and Product fuzzy
logics using Satisfiability Modulo Theories (SMT) has been proposed. The main
advantage of this approach based on SMT is the modularity of being able to
cope with several fuzzy logics.

In this paper, we extend this approach in order to be able to cope with
more logics (including Basic Fuzzy Logic BL): we study the implementation
and testing of a general solver for continuous t-norm based fuzzy logics. We
have generalized the solver so it can perform satisfiability, theoremhood and log-
ical consequence checks for any of a wide family of these fuzzy logics. Also, we
have changed the coding for product logic from the one of [2] to one based on
Presburger Arithmetic (Linear Integer Arithmetic), and this has dramatically
enhanced its performance.
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Structure of the paper. Section 2 introduces the propositional logics considered,
and gives a brief introduction to SMT. Section 3 describes the SMT-based solver
proposed in this paper. Section 4 starts with an explanation of the design of
the experiments we ran on our solver, and then the results are analyzed in
Section 4.1. Section 5 presents the conclusions and future work.

2 Preliminaries

2.1 Continuous t-norm Based Fuzzy Logics

Continuous t-norm based propositional logics correspond to a family of many-
valued logical calculi with the real unit interval [0, 1] as set of truth-values and
defined by a conjunction &, an implication → and the truth-constant 0, inter-
preted respectively by a continuous t-norm ∗, its residuum ⇒ and the number 0.
In this framework, each continuous t-norm ∗ uniquely determines a semantical
propositional calculus L∗ over formulas defined in the usual way (see [10]) from
a countable set {p, q, r, . . .} of propositional variables, connectives & and → and
truth-constant 0. Further connectives are defined as follows:

¬ϕ is ϕ→ 0,
ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ ∨ ψ is ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
ϕ ≡ ψ is (ϕ→ ψ)&(ψ → ϕ).

L∗-evaluations of propositional variables are mappings e assigning to each propo-
sitional variable p a truth-value e(p) ∈ [0, 1], which extend univocally to com-
pound formulas as follows: e(0) = 0, e(ϕ&ψ) = e(ϕ) ∗ e(ψ) and e(ϕ → ψ) =
e(ϕ) ⇒ e(ψ). Actually, each continuous t-norm defines an algebra [0, 1]∗ =
([0, 1],min,max, ∗,⇒, 0), called standard L∗-algebra.

From the above definitions it holds that e(¬ϕ) = e(ϕ) ⇒ 0, e(ϕ ∧ ψ) =
min(e(ϕ), e(ψ)), e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) and e(ϕ ≡ ψ) = e(ϕ→ ψ) ∗ e(ψ →
ϕ). A formula ϕ is a said to be a 1-tautology (or theorem) of L∗ if e(ϕ) = 1
for each L∗-evaluation e. The set of all 1-tautologies of L∗ will be denoted as
TAUT ([0, 1]∗). A formula ϕ is 1-satisfiable in L∗ if e(ϕ) = 1 for some L∗-
evaluation e. Moreover, the corresponding notion of logical consequence is defined
as usual: T |=∗ ϕ iff for every evaluation e such that e(ψ) = 1 for all ψ ∈ T ,
e(ϕ) = 1.

Well-known axiomatic systems, like �Lukasiewicz logic (�L), Gödel logic (G),
Product logic (Π) and Basic Fuzzy logic (BL) syntactically capture different
sets TAUT ([0, 1]∗) for different choices of the t-norm ∗ (see e.g. [10,6]). Indeed,
the following conditions hold true, where ∗�L, ∗G and ∗Π respectively denote the
�Lukasiewicz t-norm, the min t-norm and the product t-norm:

ϕ is provable in �L iff ϕ ∈ TAUT ([0, 1]∗�L)
ϕ is provable in G iff ϕ ∈ TAUT ([0, 1]∗G)
ϕ is provable in Π iff ϕ ∈ TAUT ([0, 1]∗Π)
ϕ is provable in BL iff ϕ ∈ TAUT ([0, 1]∗) for all continuous t-norms ∗.
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Also, taking into account that every continuous t-norm ∗ can be represented
as an ordinal sum of �Lukasiewicz, Gödel and Product components, the calculus
of any continuous t-norm has been axiomatized in [8]. All these completeness
results also hold from deductions from a finite set of premises but, in general,
they do not extend to deductions from infinite sets (see [6] for details).

2.2 Satisfiability Modulo Theories (SMT)

The satisfiability problem, i.e. determining whether a formula expressing a
constraint has a solution, is one of the main problems in theoretical computer
science. If this constraint refers to Boolean variables, then we are facing a well-
known problem, the (propositional) Boolean satisfiability problem (SAT).

On the other hand, some problems require to be described in more expressive
logical languages (like those of the first order theories of the real numbers, of
the integers, etc.), and thus a formalism extending SAT, Satisfiability Modulo
Theories (SMT), has also been developed to deal with these more general decision
problems. An SMT instance is a first order formula where some function and
predicate symbols have predefined interpretations from background theories.

The more common approach [16] for the existing SMT solvers is the integra-
tion of a T -solver, i.e. a decision procedure for a given theory T , and a SAT
solver. In this model, the SAT solver is in charge of the Boolean formula, while
the T -solver analyzes sets of atomic constraints in T . With this, the T -solver
checks the possible models the SAT solver generates and rejects them if incon-
sistencies with the theory appear. In doing so, it gets the efficiency of the SAT
solvers for Boolean reasoning, long time tested, and the capability of the more
concrete T -oriented algorithms inside the respective theory T .

The current general-use library for SMT is SMT-LIB [3], and there are several
implementations of SMT-solvers for it. For our experiments, we use Z3 [7], which
implements the theories we need for our purposes:

– QF LIA (Quantifier Free Linear Integer Arithmetic), which corresponds to
quantifier free first order formulas valid in (Z,+,−, 0, 1),

– QF LRA (Quantifier Free Linear Real Arithmetic), which corresponds to
quantifier free first order formulas valid in (R,+,−, {q : q ∈ Q}),

– QF NLRA (Quantifier Free non Linear Real Arithmetic), which corresponds
to quantifier free first order formulas valid in (R,+,−, ·, /, {q : q ∈ Q}).

3 A SMT Solver for Continuous t-norm Based Fuzzy
Logics

Inspired by the approach of Ansótegui et. al in [2], we aim at showing in this
short paper that a more general solver for fuzzy logics can be implemented using
an SMT solver. The main feature of the solver is its versatility, so it can be
used for testing on a wide range of fuzzy logics (like BL, �Lukasiewicz, Gödel,
Product and logics obtained through ordinal sums) and also for different kinds
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of problems, like tautologicity and satisfiability but also logical consequence, or
getting evaluations for a given formula (i.e., obtaining variable values that yield
a formula a certain truth degree given some restrictions).

It is well-known that every continuous t-norm can be expressed as an ordinal
sum of the three main continuous t-norms ∗�L, ∗G and ∗Π . The fact that the
three basic t-norms are defined using only addition and multiplications over the
real unit interval was used in [2] to develop a solver for theoremhood in these
three logics using QF LRA and QF NLRA. The case of BL was not considered
in [2] because its usual semantics is based on the whole family of continuous
t-norms, and not just on a single one. However, thanks to a result of Montagna
[11] one can reduce proofs over BL, when working with concrete formulas, to
proofs over the logic of an ordinal sum of as many �Lukasiewicz components as
different variables involved in the set of formulas plus one. This trick is the one
we use in our solver for the implementation of BL.

We have implemented a solver that allows the specification, in term of its
components, of any continuous t-norm; and the use of BL too. We also allow
finitely-valued �Lukasiewicz and Gödel logics, and all these logics can be also
extended with rational truth-constants. Also, we have considered interesting to
add to our software more options than just testing the theoremhood of a formula
in a certain logic. In our solver, we can check whether a given formula (possibly
with truth-constants) is a logical consequence of a finite set of formulas (possibly
with truth-constants as well).

On the other hand, for the particular case of Product logic we have employed
a new methodology. This is so because the previous approach, directly coding
Product logic connectives with product and division of real numbers, has serious
efficiency problems (inherited from QF NLRA). Indeed, it is already noted in
[2] that these problems appear with really simple formulas. To overcome these
problems, we have used an alternative coding based on QF LIA. We can do this
because Cignoli and Torrens showed in [5] that the variety of Product algebras
is also generated by a discrete linear product algebra: the one with domain
the negative cone of the additive group of the integers together with a first

element −∞. Indeed, it holds that TAUT ([0, 1]∗Π) = TAUT ((Z̃−)⊕), where

Z̃− := Z− ∪ {−∞} endowed with the natural order plus setting −∞ < x for all
x ∈ Z−, and with its conjunction operation ⊕ defined as:

x⊕ y :=

{
x + y, if x, y ∈ Z−

−∞, otherwise.

Notice that its corresponding residuated implication is then defined as:

x⇒⊕ y :=

⎧⎨⎩
0, if x ≤ y
y − x, if x, y ∈ Z−, x > y
−∞, otherwise.

Therefore, for dealing with Product logic it is enough to consider this discrete
algebra; and this particular algebra can be coded using just natural numbers with
the addition (i.e. using Presburger Arithmetic). Our experiments have shown
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that, for concrete instances, this approach based on the discrete theory of integers
with the addition (instead of the reals with product) works much better.

The interested reader can find in an extended version of this paper [17] an
appendix with Z3-code examples generated by our software to solve several kinds
of problems that clarify the methodology explained above.

4 Experimental Results

We consider the main advantage of our solver to be the versatility it allows, but
we have also performed an empirical evaluation of our approach using only its
theorem-prover option to compare it to [2].

We have conducted experiments over two different families of BL-theorems,
see (1) and (2) below. First, for comparison reasons with [2], we have considered
the following generalizations (based on powers of the & connective) of the first
seven Hájek’s axioms of BL [10]:

(A1) (pn → qn) → ((qn → rn) → (pn → rn))
(A2) (pn&qn) → pn

(A3) (pn&qn) → (qn&pn)
(A4) (pn&(pn → qn)) → (qn&(qn → pn))
(A5a) (pn → (qn → rn)) → ((pn&qn) → rn)
(A5b) ((pn&qn) → rn) → (pn → (qn → rn))
(A6) ((pn → qn) → rn) → (((qn → pn) → rn) → rn)

(1)

where p, q and r are propositional variables, and n ∈ N\{0}. It is worth noticing
that the length of these formulas grows linearly with the parameter n.

In [2] the authors refer to [13] to justify why these formulas can be considered
a good test bench for (at least) �Lukasiewicz logic. In our opinion, these formulas
have the drawback of using only three variables. This is a serious drawback at
least in �Lukasiewicz logic because in this case tautologicity for formulas with
three variables can be proved to be solved in polynomial time1.

To overcome the drawback of the bounded number of variables, we propose a
new family of BL-theorems to be used as a bench test. For every n ∈ N \ {0},

n∧
i=1

(&n
j=1 pij) →

n∨
j=1

(&n
i=1 pij) (2)

is a BL-theorem which uses n2 variables; the length of these formulas grows
quadratically with n. As an example, we note that for n = 2 we get the BL-
theorem

(
(p11&p12) ∧ (p21&p22)

)
→

(
(p11&p21) ∨ (p12&p22)

)
. We believe these

1 This polynomial time result is outside the scope of the present paper, but it can be
obtained from the rational triangulation associated with the McNaughton function
of the formula with three variables. It is worth noticing that the known proofs of NP-
completeness for �Lukasiewicz logic [12,10,1] need an arbitrary number of variables.
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formulas are significantly harder than the ones previously proposed in [13]; and
indeed, our experimental results support this claim2.

4.1 Data Results

We ran experiments on a machine with a i5-650 3.20GHz processor and 8GB of
RAM. Evaluating the validity in �Lukasiewicz, Product and Gödel logics of the
generalizations of the BL axioms (1), ranging n from 0 to 500 with increments
of 10, throws better results than the ones obtained in [2], but since our solver
is an extension of their work for these logics, we suppose this is due to the
use of different machines. For Product Logic, we obtained really good timings.
Actually, they are worse than the ones for �Lukasiewicz and Gödel logics in most
of the cases, since the Presburger arithmetic has high complexity too, but the
difference with the previous approach is clear: complex formulas are solved in a
comparatively short time, whereas in [2] they could not even be processed. In
Figure 1 one can see and compare solving times (given in seconds) for some of
the axioms of the test bench for the cases of BL, �Lukasiewicz, Gödel and Product
logics. It is also interesting to observe how irregularly the computation time for
Product Logic varies depending on the axiom and the parameter.

The experiments done with the other family of BL-theorems (2) (see Fig-
ure 2 for the results) suggests that here the evaluation time is growing non-
polynomially on the parameter n. We have only included in the graph those
answers (for parameters n ≤ 70) obtained in at most 3 hours of execution (e.g.
for the BL case we have only got answers for the problems with n ≤ 4). The
high differences in time when evaluating the theorems were expectable: �Lukasi-
ewicz and Gödel are simpler than BL when proving the theoremhood because
of the method used for BL (considering n2 + 1 copies of �Lukasiewicz, where n
is the parameter of the formula). On the other hand, the computation times for
Product logic modeled with the Presburger arithmetic over Z− ∪{−∞} are also
smaller than for BL.

5 Conclusions

We have extended the use of SMT technology to define general-use logical solvers
for continuous t-norm logics, considered two test suites for these logics, and
performed empirical evaluation and testing of our solver. Also, we have provided
a new approach for solving more efficiently problems on Product logic.

There are a number of tasks and open questions that we propose as future work.
Firstly, solving real applications with SMT-based theorem provers: the
non-existence of fast and modern theorem provers has limited so far the poten-
tial of fuzzy logics to real applications. Secondly, using Presburger arithmetic has
been very useful for our solver to deal with product t-norm, but it is still missing an

2 We point out that the natural way to compare our formula with parameter n is to
consider the formulas in [13] with the integer part of

√
n as parameter.
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implementation where this trick is used for ordinal sums where one of the compo-
nents is the product t-norm. Finally, we would like to point out a more challenging
problem: to design an SMT solver for MTL logic (i.e., the logic of left-continuous t-
norms), since no completeness is currently known using just one particular t-norm.
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Abstract. This paper uses Monte Carlo Simulation to evaluate the seismic ha-
zard in two nuclear power plants sites in Taiwan. This approach is different 
from the two commonly-used methods, featuring the direct use of observed 
earthquakes to develop magnitude and distance probability functions. Those 
earthquakes with larger sizes and closer to the site are considered capable of 
causing damage on engineered structures. The result shows that even though 
two NPP sites in Taiwan are only 30 km away from each other, NPP site 4 is si-
tuated with the seismic hazard four-time as large as NPP site 1. Given our li-
mited understanding and the complicated, random earthquake process, none of 
a seismic hazard analysis is perfect without challenge. The accountability of 
seismic hazard analysis relates to analytical transparency, traceability, etc., not 
to analytical complexity and popularity.  

Keywords: Seismic hazard analysis, Monte Carlo simulation, NPP, Taiwan. 

1 Introduction 

Earthquake prediction is by all means one of the most controversial subjects in earth 
science that has been debated. A perfect prediction for engineering design and hazard 
mitigation needs to pinpoint “when” “where” and “how large” of next earthquakes, 
which is just difficult given the complicated earthquake process and inevitable natural 
randomness. Alternatively, the science community has developed several practical 
solutions to earthquake mitigation, such as earthquake early warning and seismic 
hazard analysis.   

Seismic hazard analysis has become the state-of-the-art approach for estimating the 
best ground motion that would occur within a certain period of time. Probabilistic 
seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA) 
are the two methods that have been generally accepted and that have been codified in 
technical references for critical structures [1-2]. However, the fight and defense about 
their pros and cons are nothing new in the history of their development. We agree 
with Mualchin’s footnote on seismic hazard analysis [3]: “None of them is going to 
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be perfect without challenge.” This presents much analogy to other engineering ana-
lyses, such as finite element analysis versus discrete element analysis, Terzaghi’s 
bearing capacity equation versus Meyerhof’s expression [4], Monte Carlo simulation 
versus Taylor probabilistic analysis [5], Bishop’s method and Janbu’s method of slice 
in slope stability analysis [4]. 

As a result, this study develops another approach in estimating seismic hazard for 
the nuclear power plants (NPP) in Taiwan, where is “infamous” with high seismicity.  
The approach aims to use less subjective judgments involved during input characteri-
zation. Those details and estimated seismic hazard at NPP sites are provided in this 
paper. 

2 Probabilistic Seismic Hazard Analysis 

The essential of PSHA is to account for the uncertainty in earthquake magnitude, 
earthquake location, and ground motion attenuation [6]. It must be noted that there 
must be other probability-oriented approaches in seismic hazard assessment. But 
when it comes to PSHA, it is recognized as the Probabilistic Seismic Hazard Analysis 
or as the Cornell-McGuire method. 

 

Fig. 1. Observed and expected magnitude probability distribution around NPP site 4 in Taiwan 

For characterizing earthquake magnitude and source-to-site distance probabilities, 
recurrence parameters through the empirical Gutenberg-Richter relationship [7] and 
the seismic zoning model are needed in advance. According to more than 20,000 
earthquakes, Fig. 1 shows the observed and expected magnitude probability distribu-
tions within 200 km from NPP site 4 in the northeastern of Taiwan. The observed 
magnitude distribution is based on a published earthquake catalog around Taiwan 
since year 1900 [8].  
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Fig. 2. Spatial locations of Mw ≥ 5.5 earthquakes from NPP site 4 in Taiwan since year 1900. 

3 Observation-Oriented, MCS-Based Seismic Hazard Analysis 

3.1 Observation Directly Used as Inputs 

Fig. 2 shows the spatial distribution of 301 Mw ≥ 5.5 earthquakes since year 1900 
within 200 km from NPP site 4. Such moderate to large earthquakes are considered 
complete during the period of recording in the earthquake catalog used [8]. Fig. 3 
shows their statistics of magnitude and source-to-site distance. With the statistical 
information from abundant observations in the past hundred and plus years, the mag-
nitude and distance probability of such earthquakes for the site are considered statisti-
cally convincing when used in seismic hazard analysis. Without other judgments 
needed, this analysis is on the condition that the magnitude and distance thresholds 
are set at 5.5 Mw and 200 km. (PSHA needs this too.) Those quakes with a lower 
magnitude and higher distance are considered not to cause damage to engineered 
structures. 

3.2 Monte Carlo Simulation for Estimating Seismic Hazard 

The essential of Monte Carlo simulation (MCS) is to generate random numbers with 
prescribed probability distributions. For magnitude, distance, and ground motion  
attenuation, their distributions are given or developed. We used the observed distribu-
tion for the first two variables as described earlier, and adopted the lognormal  
distribution for ground motion attenuation that was commonly accepted [8].   
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Fig. 3. Observed magnitude and source-to-site distance probability distributions based on the 
301 earthquakes 

In addition to magnitude, distance, and ground motion uncertainties, this proposed 
approach accounts for the variability of earthquake occurrence in time. Apparently, 
given a specific earthquake with its mean annual rate equal to v, it is very unlikely 
that such an event will recur v times every year, but should follow a Poisson process 
with general acceptance [5-6]. Note that PSHA does not account for such uncertainty 
as the mean seismic hazard is governed by ν×H, where H denotes the seismic hazard 
induced by a single earthquake.   

 

Fig. 4. The relationship between exceedance probability and PGA under five different periods 
for NPP site 4 (left), for NPP site 1 (right) 

 

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
0.00

0.05

0.10

0.15

0.20

Based on 301 M
w
 >= 5.0 

earthquakes since 1900 within
200 km from NPP site 4

P
ro

b
ab

ili
ty

Magnitude, M
w

0 20 40 60 80 100 120 140 160 180 200
0.00

0.02

0.04

0.06

0.08

  (b) 

  (a) 

P
ro

b
ab

ili
ty

Source-to-site distance, km

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1x10-4

1x10-3

1x10-2

1x10-1

1x100

1.9%

9.2%

E
xc

ee
d

an
ce

 P
ro

b
ab

ili
ty

Peak Ground Acceleration (g)

 10 years
 20 years
 30 years
 40 years
 50 years

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1x10-4

1x10-3

1x10-2

1x10-1

1x100

0.5%

2.5%

E
xc

ee
d

an
ce

 P
ro

ba
b

ili
ty

Peak Ground Acceleration (g)

 10 years
 20 years
 30 years
 40 years
 50 years



 Seismic Hazard Assessment on NPP Sites in Taiwan 645 

As a result, we can generate a series of random maximum ground motion through 
MCS given the best-estimate statistical attributes of earthquake magnitude, etc. 
Therefore, the probability that the seismic hazard (i.e., maximum motion) exceeds a 
given motion is the ratio of trials N (Ymax > y*) to total simulation or known as MCS 
sample size n, as follows: 

*
* max

max

( )
Pr( )

N Y y
Y y

n

>> =      (1)

It is worth noting that the use of maximum motion as seismic hazard estimation is 
logical for earthquake resistant design. As long as engineered structures can withstand 
the maximum motion, they are considered reliable with a deterministic failure crite-
rion being adopted.   

4 Seismic Hazard Assessments on NPP Sites 1 and 4 

Fig. 4 (left) shows the relationship between exceedance probability and maximum 
PGA for NPP site 4 through the proposed MCS method with sample size of 50,000. 
Such a large size ensures the reliability of this MCS result. Given the design motion at 
0.5 g in PGA, the exceedance probabilities in 10 and 50 years are 1.9% and 9.2%. 
Following the same procedure, Fig. 4 (right) shows the seismic hazard estimation for 
NPP site 1 located at the north tip of Taiwan (Fig. 2), around 30 km away from NPP 
site 4.  Lower seismic hazard is situated at the site in contrast to NPP site 4 closer to 
the “hot zone” of seismicity relating to plate subduction zones. Given the same design 
motion design, the exceedance probabilities in 10 and 50 years reduce to 0.5% and 
2.5%, around one fourth as large as those in NPP site 4. As a result, this approach is 
also site-specific, as the-state-of-art earthquake resistant design for safety-related 
structures at nuclear power plants demanding site-specific design inputs.         

5 Discussions 

This paper by no means attends to degrade the PSHA methodology. In fact, the fun-
damental ideas of PSHA to take earthquake uncertainty into account are acknowled-
geable and used in this study. But we here like to refer to Klugel’s points [9] on ro-
bust seismic hazard analyses, which must feature “transparency” and “traceability” 
with model assumptions and analytical results being supported and validated. “The 
best way of improving analytical transparency is to keep the analysis as simple as 
possible.”  

Combining Mualchin’s amd Krinitzsky’s points [3], it is worth noting that the ac-
countability of seismic hazard estimation relates to those factors, but not including the 
complexity, or even popularity, of the method adopted. “Among a variety of imper-
fect approaches, it is more critical for decision makers and reviewers to fully under-
stand the fundamentals of the selected method in seismic hazard analysis, to ask hard 
questions about every assumption and input data, and to be open-minded during a 
decision-making process.” 
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6 Conclusions 

This paper presents a new site-specific, observation-oriented, and probability-based 
seismic hazard analysis, in which the uncertainties of earthquake magnitude, location, 
rate, and motion attenuation are accounted for. This approach features less judgments 
needed during analysis, and directly develops magnitude probability distribution from 
abundant earthquakes rather than using empirical relationships to indirectly develop 
the distribution. This approach was demonstrated during the seismic hazard evalua-
tion on two nuclear power plants in Taiwan. The site-specific analysis shows that the 
seismic hazard is situated at NPP site 4 is four-time as large as that at NPP site 1 in 
terms of exceedance probability. As pointed out, given our still limited understanding 
on the high uncertain earthquake process, not a seismic hazard analysis is perfect 
without challenge. The accountability of a seismic hazard analysis relates to analytical 
transparency, traceability, etc., not relates to complexity. 
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