
The Tableau Prover Generator MetTeL2

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi�

School of Computer Science, The University of Manchester, UK

Abstract. This paper introduces MetTeL2, a tableau prover generator
producing Java code from the specification of a tableau calculus for a
logical language. MetTeL2 is intended to provide an easy to use system
for non-technical users and allow technical users to extend the generated
implementations.

1 Introduction

MetTeL2 is a tool for generating tableau provers from specifications of a syntax
and a tableau calculus for a logical theory. The syntax and tableau rule specifica-
tion languages of MetTeL2 are designed to be as simple as possible for the user
and to be as close as possible to the traditional notation used in logic and au-
tomated reasoning textbooks. At the moment the syntax specification language
is limited to (possibly multi-sorted) propositional languages with finitary con-
nectives and uses a simplified BNF. The tableau calculus specification language
covers different types of tableau calculi that fit the traditional representation
of tableau rules of the form X0/X1 | · · · | Xm creating a branching point with
m successors in tableau derivations. The Xi denote finite sets of expressions of
the given logical theory. X0 is the set of premises and X1, . . . , Xm are the sets
of conclusions of the rule. Many labelled semantic tableau calculi for modal,
description, hybrid and superintuitionistic logics belong to this paradigm.

MetTeL2 is complementary to the tableau synthesis framework introduced
in [4]. The framework effectively describes a class of logics for which tableau
calculi can be automatically generated. This class includes many modal, de-
scription, intuitionistic and hybrid logics. The framework provides a theoretical
foundation for sound, complete and terminating implementations of tableau pro-
cedures for logics from the mentioned class and, in particular, for many logics
which can be specified in MetTeL2. The scope of MetTeL2 extends however
that of tableau calculi derived in the framework and is not limited to semantic
or labelled tableau calculi.

The tableau reasoning core of MetTeL2 is considerably based on the generic
prover MetTeL [6], but has been completely reimplemented and several new
features have been added. Notable new features are dynamic backtracking and
conflict-directed backjumping, as well as ordered forward and backward rewrit-
ing, which can be used to perform equality reasoning. There is support for differ-
ent search strategies. The tableau rule specification language in MetTeL2 now

� This research is supported by UK EPSRC research grant EP/H043748/1.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 492–495, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Tableau Prover Generator MetTeL2 493

allows the specification of rule application priorities thus providing a flexible and
simple tool for defining rule selection strategies. To our knowledge, MetTeL2 is
the first system with full support of these techniques for arbitrary logical syntax.

The aim of the current implementation is to provide an easy to use prover gen-
erator with basic specification languages without sophisticated meta-program-
ming features that might overwhelm non-technical users. For technical users,
the generated code consists of a thoroughly designed hierarchy of public Java
classes and interfaces that can be extended and integrated with other systems.

2 Application Areas and Experiences So Far

Software to generate code for provers is useful anywhere where automated rea-
soning is needed. The provers generated by MetTeL2 output models for satisfi-
able problems on termination, so can be used for model generation purposes.

With MetTeL2 a quick implementation of a tableau prover can be obtained
and changes can be made without programming a single line of code. Prover
generation is useful for obtaining provers for newly defined logics or new com-
binations of logics. This is particularly pertinent to an area such as multi-agent
systems where the models are staggeringly complex. In ongoing work we are us-
ing MetTeL2 in combination with the tableau synthesis framework to develop
provers for multi-agent interrogative-epistemic logics [3]. For these logics and re-
lated dynamic epistemic logics there are almost no implemented reasoning tools.
Therefore being able to generate tableau provers is very useful especially to re-
searchers without the resources or expertise to implement automated reasoning
tools themselves.

We have found MetTeL2 useful for analysing tableau calculi under develop-
ment whose properties are not known yet. For example, in research conducted
for [2] we used MetTeL2 to determine the refinability or unrefinability of tableau
rules for a modal logic with global counting operators. MetTeL2 can also be used
to compare the effectiveness of different sets of tableau rules for the same logic.
For example, with minimal effort it is possible to compare the effectiveness of
standard tableau calculi with calculi following the KE approach where disjunc-
tion is handled by an analytic cut rule and a unit propagation rule (e.g., in terms
of proof length, size of produced model, or other derivation statistics which are
not tied to particular implementation details).

Concrete case studies we have undertaken with MetTeL2 include implement-
ing unlabelled tableau calculi for Boolean logic and three-valued �Lukasiewicz
logic, labelled tableau calculi for standard modal logics and description log-
ics, and internalised tableau calculi for hybrid and description logics. We used
MetTeL2 to implement the first tableau decision procedure for ALBOid, a de-
scription logic with the same expressive power as the two-variable fragment of
first-order logic. Some of the specifications are available from the MetTeL2 web-
site http://www.mettel-prover.org.

http://www.mettel-prover.org

494 D. Tishkovsky, R.A. Schmidt, and M. Khodadadi

3 The Implemented System

The parser for the specification of the user-defined logical language is imple-
mented using the ANTLR parser generator. The specification is parsed and
internally represented as an abstract syntax tree (AST). The internal ANTLR
format for the AST is avoided for performance purposes. The created AST is
passed to the generator class which processes the AST and produces the fol-
lowing files: (i) a hierarchy of Java classes representing the user-defined logical
language, (ii) an object factory class managing the creation of the language
classes, (iii) classes representing substitution, replacement, and rewrite order-
ings, (iv) an ANTLR grammar file for generating a parser of the user-specified
language and the tableau language, (v) a main class for the prover parsing com-
mand line options and initiating the tableau derivation process, and (vi) JUnit
test classes for testing the parsers and testing the correctness of tableau deriva-
tions. The generated Java classes for syntax representation and algorithms for
rule application follow the same paradigm as the generic prover MetTeL [6].

MetTeL2 implements two general techniques for reducing the search space
in tableau derivations: dynamic backtracking and conflict directed backjumping.
Dynamic backtracking avoids repeating the same rule applications in parallel
branches by keeping track of rule applications common to the branches. Conflict-
directed backjumping derives conflict sets of expressions from a derivation. This
causes branches with the same conflict sets to be discarded. Since MetTeL2 is
a prover generator, dynamic backtracking and backjumping needed to be repre-
sented and implemented in a generic way, completely independent of any specific
logical language and tableau rules.

The provers generated by MetTeL2 come with support for ordered backward
and forward rewriting with respect to equality expressions appearing in the cur-
rent branch. In the language specification, equality expressions can be identified
with built-in keywords. Each Java class representing a tableau node keeps a
rewrite relation completed with respect to all equality expressions appearing in
a branch. Once an equality expression is added within a tableau node, backward
rewriting is applied. This means the rewrite relation is rebuilt with respect to
the newly added equality, and all expressions of the node are rewritten with
respect to the rewrite relation. Forward rewriting (with respect to the current
rewrite relation) is applied to all new expressions added to the branch during
the derivation.

The core tableau engine of MetTeL2 provides various ways for controlling
derivations. The default search strategy is depth-first left-to-right search, which
is implemented as a MettelSimpleLIFOBranchSelectionStrategy request to the
MettelSimpleTableauManager. The MettelSimpleTableauManager object manages tableau
branches at the very top level: it stores branches for expansion and selects them
in accordance with the specified branch selection strategy. Breadth-first search is
implemented as a MettelSimpleFIFOBranchSelectionStrategy request and can be used
after a small modification in the generated Java code. In future this will be con-
figurable at the generation stage. A user can also implement their own search
strategy and pass it to the MettelSimpleTableauManager.

The Tableau Prover Generator MetTeL2 495

The rule selection strategy can be controlled by specifying priority values
for the rules in the tableau calculus specification. The rule selection algorithm
checks the applicability of rules and returns a rule that can be applied to some
expressions on the current branch according to rule priority values. If several
rules are applicable preference is given to those which have smaller priority
values. Rules within each priority group are checked for applicability sequentially.
To ensure fairness for rules within the same priority group all rules in the group
are checked for applicability an equal number of times. Again the user could
implement their own rule selection strategy and modify the generated code.

To achieve termination for semantic tableau approaches some form of blocking
is usually necessary. To generate a prover with blocking the user can specify a
blocking rule similar to the unrestricted blocking rule from [5] as one of the rules
of the tableau calculus. If the definition of the rule involves equality operators
then rewriting is triggered (see above). Based on the results in [4,5], the blocking
rule can be used to achieve termination for logics with the finite model property.
The first of the two termination conditions in [4,5] is automatically true because
the generated provers are equipped with ordered rewriting. The second termina-
tion condition can be satisfied by using appropriate priority values for tableau
rules of the tableau calculus. By varying the specification of the blocking rule it
is possible to perform blocking more selectively [1].

4 Conclusion

MetTeL2 can be downloaded from http://www.mettel-prover.org. A web-
interface is provided, where a user can input their specifications in syntax aware
textareas and generate provers. The user can either download the generated
prover or directly run it in the web-interface.

References

1. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: An abstract tableau calculus for
the description logic SHOI using unrestricted blocking and rewriting. In: Proc. DL
2012. CEUR Workshop Proceedings, vol. 846, pp. 224–234 (2012)

2. Khodadadi, M., Schmidt, R.A., Tishkovsky, D., Zawidzki, M.: Terminating tableau
calculi for modal logic K with global counting operators (manuscript, 2012),
http://www.mettel-prover.org/papers/KEn12.pdf

3. Minica, S., Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: Synthesising and imple-
menting tableau calculi for interrogative epistemic logics. In: Proc. PAAR 2012, pp.
109–123 (2012)

4. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Meth-
ods Comput. Sci. 7(2:6), 1–32 (2011)

5. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity (2011) (manuscript),
http://www.mettel-prover.org/papers/ALBOid.pdf

6. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL: A Tableau Prover
with Logic-Independent Inference Engine. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS, vol. 6793, pp. 242–247. Springer, Heidelberg (2011)

http://www.mettel-prover.org
http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/ALBOid.pdf

	The Tableau Prover Generator MetTeL2
	Introduction
	Application Areas and Experiences So Far
	The Implemented System
	Conclusion
	References

