
Lecture Notes in Artificial Intelligence 7519

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Luis Fariñas del Cerro
Andreas Herzig Jérôme Mengin (Eds.)

Logics in
Artificial Intelligence

13th European Conference, JELIA 2012
Toulouse, France, September 26-28, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Luis Fariñas del Cerro
Université de Toulouse
Institut de Recherche en Informatique de Toulouse
118 route de Narbonne
31062 Toulouse Cedex 9, France
E-mail: luis.farinas@irit.fr

Andreas Herzig
Université de Toulouse
Institut de Recherche en Informatique de Toulouse
118 route de Narbonne
31062 Toulouse Cedex 9, France
E-mail: andreas.herzig@irit.fr

Jérôme Mengin
Université de Toulouse
Institut de Recherche en Informatique de Toulouse
118 route de Narbonne
31062 Toulouse Cedex 9, France
E-mail: jerome.mengin@irit.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33352-1 e-ISBN 978-3-642-33353-8
DOI 10.1007/978-3-642-33353-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946470

CR Subject Classification (1998): I.2.2-4, I.2.8-9, F.4.1, F.3.1, D.1.6, H.3.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

JELIA is the European Conference on Logics in Artificial Intelligence. The
acronym actually stands for its French translation Journées Européennes sur
la Logique en Intelligence Artificielle: the conference series started back in 1988
as a small workshop that was held in Roscoff, France. The theme of the work-
shop was the use of logic as a formal basis for theoretical and practical studies
in artificial intelligence. Since then, the number of applications and their im-
portance have grown significantly, and theory and methods of logic for artificial
intelligence have evolved a lot. Many fields like theorem proving or belief revi-
sion have matured, while new domains such as description logic or answer set
programming have emerged. As from the second meeting, JELIA has adopted
English and has published its proceedings in Springer’s LNAI series.

Over the last three decades, JELIA has been organized biennially in many Eu-
ropean countries: three times in Germany, twice in the UK and Portugal, and once
in the Netherlands, Italy, Spain, and Finland. This year JELIA finally returned
to France, taking place in Toulouse, “la ville rose”, September 26–28, 2012.

This volume contains the papers selected for presentation at JELIA 2012.
Competition was very high this year. We received 107 submissions from 31 coun-
tries (97 regular papers and 10 system descriptions). Only 36 regular papers and
5 system descriptions were selected for inclusion in the proceedings. The program
included three invited talks whose abstracts can be found below:
– Leila Amgoud and Philippe Besnard “Logical Limits of Dung’s Abstract

Argumentation Framework”
– Ulrich Furbach “Extensions of Hyper Tableaux”
– Wiebe van der Hoek “On Two Results in Contemporary Modal Logic: Local

Definability and Succinctness”

Many people contributed to making JELIA 2012 a success. We would like to
thank the authors of the 107 submitted papers, which were of high quality and
covered a broad range of topics. We also would like to thank the PC members
for their hard work, as well as all the additional experts who made it possible to
achieve a thorough reviewing process within a rather short time frame. Thanks
are also due to IRIT (Institut de Recherche en Informatique de Toulouse), CNRS
(Centre National de la Recherche Scientifique), UPS (Université Paul Sabatier),
and LEA IREP (French Spanish Laboratory for Advanced Studies in Informa-
tion, Representation and Processing) for their financial support. A final word of
thanks goes to the JELIA 2012 organizing committee, in particular to Véronique
Debats and Sabyne Lartigue for their precious support.

September 2012 Luis Fariñas del Cerro
Andreas Herzig
Jérôme Mengin

Organization

Program Chairs

Luis Fariñas del Cerro Andreas Herzig Jérôme Mengin

Program Committee

Thomas Ågotnes
Natasha Alechina
José Júlio Alferes
Franz Baader
Philippe Balbiani
Peter Baumgartner
Salem Benferhat
Philippe Besnard
Richard Booth
Gerhard Brewka
Pedro Cabalar
James Delgrande
Marc Denecker
Hans van Ditmarsch
Barbara Dunin-K ↪eplicz

Florence Dupin de Saint-Cyr
Ulle Endriss
Esra Erdem
Michael Fisher
Laura Giordano
Lluis Godo
Wiebe van der Hoek
Tomi Janhunen
Tommi Junttila
Jérôme Lang
Nicola Leone
Thomas Lukasiewicz
Carsten Lutz
Pierre Marquis
Lúıs Moniz Pereira

Angelo Montanari
David Pearce
Henri Prade
Jussi Rintanen
Francesca Rossi
Chiaki Sakama
Ulrike Sattler
Torsten Schaub
Renate A. Schmidt
Steven Schockaert
Leon van der Torre
Toby Walsh
Dirk Walther
Frank Wolter
Stefan Woltran

Additional Referees

Mario Alviano
Ringo Baumann
Jonathan Ben-Naim
Meghyn Bienvenu
Davide Bresolin
Andrea Cali
Martin Caminada
Broes De Cat
Pierangelo Dell’Acqua
Dario Della Monica
Agostino Dovier
Wolfgang Dvorak
Sjur Dyrkolbotn
Marcin Dziubinski
Patricia Everaere

Guillaume Feuillade
Martin Gebser
Adita Ghose
Valentina Gliozzi
Ricardo Gonçalves
Vı́ctor Didier

Gutiérrez Basulto
The Anh Han
Ullrich Hustadt
Mark Kaminiski
George Katsirelos
Piotr Kaźmierczak
Mohammad Khodadadi
Matthias Knorr
Sébastien Konieczny

Thomas Krennwallner
Temur Kutsia
Frédéric Lardeux
Brian Logan
Marco Manna
Marco Maratea
Thomas Meyer
Manuel Ojeda-Aciego
Madalena Ortiz
Max Ostrowski
Erik Parmann
Stef De Pooter
Gian Luca Pozzato
Bryan Renne
Francesco Ricca

VIII Organization

Olivier Roussel
Pietro Sala
Frédéric Saubion
Marius Schneider
Thomas Schneider

Peter Schueller
Nicolas Schwind
Michael Thomazo
Dmitry Tishkovsky
Dmitry Tsarkov

Levan Uridia
Pierfrancesco Veltri
Hanne Vlaeminck
Yı̀ Nicholas Wáng
Michal Zawidzki

Organizing Committee

Florence Dupin de Saint-Cyr
Damien Bigot
Pierre Bisquert
Claudette Cayrol
Véronique Debats

Sylvie Doutre
Luis Fariñas del Cerro
Andreas Herzig
Seif-eddine Kramdi
Marie-Christine Lagasquie

Sabyne Lartigue
Jérôme Mengin
Frédéric Moisan

Invited Talks

Leila Amgoud and Philippe Besnard (IRIT-CNRS, University of
Toulouse, France), Logical Limits of Dung’s Abstract Argumentation
Framework

A Dung’s abstract argumentation framework takes as input a set of arguments
and a binary relation encoding attacks between these arguments, and returns ar-
guments gathered in some so-called extensions. General indications lack on how
to instantiate this setting from a logical formalism, i.e., how to build arguments
from a given logical knowledge base and how to choose an appropriate attack
relation. This leads in some cases to undesirable results like inconsistent exten-
sions (i.e., the set of logical formulas underlying an extension is inconsistent).
This is due to the gap between the abstract setting and the knowledge base from
which it is specified.

We first propose to fill in this gap by extending Dung’s framework. The idea is
to consider all the ingredients involved in an argumentation problem. We start
with the notion of an abstract monotonic logic which consists of a language
(defining the formulas) and a consequence operator. We show how to build, in a
systematic way, arguments from a knowledge base formalised in such a logic.

When starting from a logical knowledge base, this takes care of defining
the arguments. As evidenced by the literature, it often happens that people
take a syntax-based subset of the arguments and a specific attack relation to
form an argumentation framework that they claim to capture the argumentative
information represented in the logical knowledge base. We show that such need
not be the case, in particular with the mostly overrated undercut relation.

Ulrich Furbach (Department of Computer Science, University of
Koblenz-Landau, Germany), Extensions of Hyper Tableaux

At JELIA 1996 Hyper Tableaux were introduced as a first order calculus which
combined ideas from hyper resolution and tableaux calculi. The first part of
this talk reviews a number of extensions, which are implemented in the prover
E-KRHyper. One of them incorporates efficient equality handling by the use
of an adapted version of the well known superposition inference rule. Other
extensions include a form of negation as failure, PROLOG-like data structures
and arithmetic and a unique name assumption. By using a transformation from
the description logic SHIQ to DL-clauses the prover E-KRHyper can also be
used as a decision procedure for SHIQ. The second part of the talk depicts
the embedding of E-KRHyper within the natural language question answering
system loganswer.de. We discuss the requirements which stem from such a time
critical and knowledge intensive application, and we discuss how such a system
can be evaluated.

X Invited Talks

Wiebe van der Hoek (Department of Computer Science, University
of Liverpool, UK) On Two Results in Contemporary Modal Logic:
Local Definability and Succinctness

In this invited talk, I present two kinds of results and methods in modal logic.
The first concerns local definability, and is joint work with Hans van Ditmarsch
and Barteld Kooi. In modal logic, when adding a syntactic property to an ax-
iomatisation, this property becomes true in all models, in all situations, under all
circumstances. For instance, adding a property like Kap→ Kbp (agent b knows
at least what agent a knows) to an axiomatisation of some epistemic logic has
as an effect that such a property becomes globally true, i.e., it will hold in all
states, at all time points (in a temporal setting), after every action (in a dynamic
setting) and after any communication (in an update setting), and every agent
will know that it holds, it will even be common knowledge. We propose a way to
express that a property like the above only needs to hold locally: it may hold in
the actual state, but not in all states. We achieve this by adding relational atoms
to the language that represent (implicitly) quantification over all formulas, as in
∀p(Kap→ Kbp). We show how this can be done for a rich class of modal logics
and a variety of syntactic properties.

The second theme concerns that of succinctness, and is joint work with Tim
French, Petar Iliev and Barteld Kooi. One way of comparing knowledge rep-
resentation formalisms is in terms of representational succinctness, i.e., we can
ask whether one of the formalisms allows for a more ‘economical’ encoding of
information than the other. Proving that one language is more succinct than
another becomes harder when the underlying semantics is stronger. We propose
to use Formula Size Games (as put forward by Adler and Immerman), games
that are played on two sets of models, and that directly link the length of play
with the size of the formula. Using Formula Size Games, we prove the following
succinctness results for m-dimensional modal logic: (1) on general Kripke mod-
els , a notion of ‘everybody knows’ makes the resulting language exponentially
more succinct for m > 1; (2) on epistemic models, the same language becomes
more succinct for m > 3, (3) the results for the language with ‘everybody knows’
also hold of a language with ‘somebody knows’, and (4) on epistemic models,
Public Announcement Logic is exponentially more succinct than epistemic logic,
if m > 3. The latter settles an open problem raised by Lutz.

Table of Contents

Regular Papers

Preferential Semantics for the Logic of Comparative Similarity over
Triangular and Metric Models . 1

Régis Alenda and Nicola Olivetti

Nested Sequent Calculi for Conditional Logics . 14
Régis Alenda, Nicola Olivetti, and Gian Luca Pozzato

Conflict-Tolerant Semantics for Argumentation Frameworks 28
Ofer Arieli

Knowledge Means ’All ’, Belief Means ’Most ’ . 41
Dimitris Askounis, Costas D. Koutras, and Yorgos Zikos

Generalized DEL-Sequents . 54
Guillaume Aucher, Bastien Maubert, and François Schwarzentruber

Deciding the Bisimilarity Relation between Datalog Goals 67
Philippe Balbiani and Antoun Yaacoub

Inconsistency Management for Traffic Regulations: Formalization and
Complexity Results . 80

Harald Beck, Thomas Eiter, and Thomas Krennwallner

Conditional Epistemic Planning . 94
Mikkel Birkegaard Andersen, Thomas Bolander, and
Martin Holm Jensen

PTL: A Propositional Typicality Logic . 107
Richard Booth, Thomas Meyer, and Ivan Varzinczak

The Complexity of One-Agent Refinement Modal Logic 120
Laura Bozzelli, Hans van Ditmarsch, and Sophie Pinchinat

The View-Update Problem for Indefinite Databases 134
Luciano Caroprese, Irina Trubitsyna, Miros�law Truszczyński, and
Ester Zumpano

Three-Valued Logics for Incomplete Information and Epistemic Logic . . . 147
Davide Ciucci and Didier Dubois

Exploiting Unfounded Sets for HEX-Program Evaluation 160
Thomas Eiter, Michael Fink, Thomas Krennwallner,
Christoph Redl, and Peter Schüller

XII Table of Contents

Using Satisfiability for Non-optimal Temporal Planning 176
Masood Feyzbakhsh Rankooh, Ali Mahjoob, and
Gholamreza Ghassem-Sani

How to Exploit Parametric Uniformity for Maximum Entropy
Reasoning in a Relational Probabilistic Logic . 189

Marc Finthammer and Christoph Beierle

Exact Query Reformulation with First-Order Ontologies and
Databases . 202

Enrico Franconi, Volha Kerhet, and Nhung Ngo

A Selective Semantics for Logic Programs with Preferences 215
Alfredo Gabaldon

A Minimal Model Semantics for Nonmonotonic Reasoning 228
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and
Gian Luca Pozzato

Extending a Temporal Defeasible Argumentation Framework with
Possibilistic Weights . 242

Llúıs Godo, Enrico Marchioni, and Pere Pardo

On Decidability of a Logic for Order of Magnitude Qualitative
Reasoning with Bidirectional Negligibility . 255

Joanna Golińska-Pilarek

Fault Tolerance in Belief Formation Networks . 267
Sarah Holbrook and Pavel Naumov

Large-Scale Cost-Based Abduction in Full-Fledged First-Order
Predicate Logic with Cutting Plane Inference . 281

Naoya Inoue and Kentaro Inui

Belief Base Change Operations for Answer Set Programming 294
Patrick Krümpelmann and Gabriele Kern-Isberner

A Framework for Semantic-Based Similarity Measures
for ELH-Concepts . 307

Karsten Lehmann and Anni-Yasmin Turhan

Sequent Systems for Lewis’ Conditional Logics . 320
Björn Lellmann and Dirk Pattinson

Relevant Minimal Change in Belief Update . 333
Laurent Perrussel, Jerusa Marchi, Jean-Marc Thévenin, and
Dongmo Zhang

Minimal Proof Search for Modal Logic K Model Checking 346
Abdallah Saffidine

Table of Contents XIII

Building an Epistemic Logic for Argumentation . 359
François Schwarzentruber, Srdjan Vesic, and Tjitze Rienstra

A Unifying Perspective on Knowledge Updates . 372
Martin Slota and João Leite

Verifying Brahms Human-Robot Teamwork Models 385
Richard Stocker, Louise Dennis, Clare Dixon, and Michael Fisher

On Satisfiability in ATL with Strategy Contexts . 398
Nicolas Troquard and Dirk Walther

Jumping to Conclusions: A Logico-Probabilistic Foundation for
Defeasible Rule-Based Arguments . 411

Bart Verheij

Beyond Maxi-Consistent Argumentation Operators 424
Srdjan Vesic and Leendert van der Torre

Reasoning about Agent Programs Using ATL-Like Logics 437
Nitin Yadav and Sebastian Sardina

Qualitative Approximate Behavior Composition . 450
Nitin Yadav and Sebastian Sardina

A Preferential Framework for Trivialization-Resistant Reasoning with
Inconsistent Information . 463

Anna Zamansky

System Descriptions

DebateWEL: An Interface for Debating with Enthymemes and Logical
Formulas . 476

Julien Balax, Florence Dupin de Saint-Cyr, and David Villard

OMiGA: An Open Minded Grounding On-The-Fly Answer
Set Solver . 480

Minh Dao-Tran, Thomas Eiter, Michael Fink,
Gerald Weidinger, and Antonius Weinzierl

The Multi-Engine ASP Solver ME-ASP . 484
Marco Maratea, Luca Pulina, and Francesco Ricca

A System for the Use of Answer Set Programming in Reinforcement
Learning . 488

Matthias Nickles

The Tableau Prover Generator MetTeL2 . 492
Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi

Author Index . 497

Preferential Semantics for the Logic

of Comparative Similarity over Triangular
and Metric Models

Régis Alenda and Nicola Olivetti

Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397, Marseille, France
regis.alenda@lsis.org, nicola.olivetti@univ-cezanne.fr

Abstract. The logic of Comparative Similarity CSL (introduced by
Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one
to reason about distance comparison and similarity comparison within
a modal language. The logic can express assertions of the kind “A is
closer/more similar to B than to C” and has a natural application to
spatial reasoning, as well as to reasoning about concept similarity in on-
tologies. The semantics of CSL is defined in terms of models based on
different classes of distance spaces. In this work we consider the cases
where the distance satisfies the triangular inequality and the one where
it is a metric. We show that in both cases the semantics can be equi-
valently specified in terms of preferential structures. Finally, we consider
the relation of CSL with conditional logics and we provide semantics
and axiomatizations of conditional logics over distance models with these
properties.

1 Introduction

In a series of papers [1,2,3], Sheremet, Tishkovsky, Wolter and Zakharyaschev
have presented several modal logics to reason about distance comparisons and
topological properties. One of the most interesting is the logic CSL, a modal logic
of qualitative distance comparison, or a logic of comparative similarity between
objects. This logic may be of interest and find an application in different areas
of Knowledge representations, namely:

1. Spatial reasoning: this is the most obvious application, motivated by its
distance semantics.

2. Reasoning about comparative similarity between concepts in ontologies (e.g.
“Neoclassical Music is more similar to Baroque Music than to Romantic
Music”, see examples below).

3. Conditional reasoning: in this context objects to be compared become pos-
sible worlds and comparative similarity judgment become statements about
relative plausibility: A is more plausible than /at least as plausible as B. It
turns out that CSL is equivalent to some conditional logics.

To cope with the mentioned applications, the language of CSL must be suitably
extended with further constructs specific to each context/application. However,

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 R. Alenda and N. Olivetti

CSL encodes the core properties of qualitative similarity comparisons, so that it
is worth to study it in its own.

The logic CSL corresponds to propositional logic extended with a modal bin-
ary operator ⇔ that is used to express distance comparisons between (set of)
objects: a formula A ⇔ B denotes the set of objects w that are closer to A
than to B, that is to say such that d(w,A) < d(w,B), where d is the distance
function. It covers in itself a wide range of logics of distance spaces; some of
these systems or fragments thereof have been used to provide suitable logics for
spatial reasoning in AI (see [3]). Topological notions of interior and closure of
a set A can be represented,, as well as the S5 existential modality. In case the
underlying distance space satisfies some properties (namely triangular inequal-
ity) we obtain a precise embedding of the system S4u into CSL. We recall that
S4u (whence CSL) strictly contains RCC-8 region calculus. Quite surprisingly,
in [3] it is shown that the powerful logic QML, a kind of ‘super logic’ to reason
about quantified distance relations can be encoded (although with an exponen-
tial blow-up) in CSL extended with the so-called realization operator r© (that
will not be considered here).

The logic CSL has also been investigated as a logic of qualitative similarity
comparisons with possible applications in ontologies [1,2]. It can express qual-
itative comparisons such as: ”Neoclassical Music is more similar to Baroque
Music than to Romantic Music” (which is arguable), as well as definitions of
concepts such as ”Reddish ”: a color which is more similar to a prototypical
“Red” than to any other color [2]. In CSL this last example could be expressed
by: Reddish ≡ {Red} ⇔ {Green, . . . ,Black}. To develop the example about
music a bit more, suppose KB contains:

(1) Neoclassical � (Baroque ⇔ Romantic)

(2) Neoclassical � (Romantic ⇔ Contemporary)

(3) Modern ≡ (Contemporary � Romantic)

From this KB we can derive Neoclassical � (Baroque ⇔ Contemporary) and
Neoclassical � (Baroque ⇔ Modern). Of course an application to similarity
reasoning in ontologies, would require an extension of the language of CSL with
nominals, roles, and possibly multiple operators of ⇔ to qualify comparisons.

The logic CSL is also strongly related to conditional logics based on Lewis’
semantics [4,5,6]: a conditional A>B is verified by a world x if B holds in all
A-worlds closest/most similar to x. The conditional operator > and ⇔ were
observed to be interdefinable in minspace models [2,3] (see Sec. 5).

The properties of CSL depend on the properties of the distance function. In
the weakest case the distance function is assumed to satisfy only the identity law:
d(x, y) = 0 iff x = y. Further obvious properties are symmetry and triangular
inequality. Another distinction is whether the distance function satisfies or not
the so-called minspace principle: d(x,A) = min{d(x, y) | y ∈ A}, that is that
d(x,A) is always realized by an element in A. The authors in [3] have obtained
axiomatizations of CSL over arbitrary, triangular and metric distance models;
an axiomatization of CSL over minspace models is provided in [7], whereas an
infinite axiomatization of CSL over symmetric minspace is provided in [8].

Preferential Semantics for the Logic of Comparative Similarity 3

In [7] it has been shown that the semantics of CSL over minspaces can be
equivalently restated in terms or preferential structures, the kind of structures
used to define the semantics of conditional logics. A preferential structure is a
set equipped by a family of binary relations indexed by the objects of the set
(or equivalently a ternary relation). The relation x ≤y z can be interpreted in-
tuitively as “y is at least as similar/close to x than z”. Such a semantics was
originally proposed by Lewis [4] to give a formal account of counterfactual con-
ditionals and related notions. In [9], the correspondence between distance and
preferential semantics has been extended to CSL interpreted over symmetric
minspace models. Finally in [10] the correspondence has been extended to ar-
bitrary non-minspace distance models. The semantics provided by preferential
structures is close to ordinary modal semantics and it is better suited to study
logical properties such axiomatization, finite model property; moreover it can be
the base to develop proof systems (see [10,9,7]).

In this paper we aim to complete the picture by giving in Sec. 3 a preferential
semantics counterpart for the remaining cases of CSL over distance models with
triangular inequality as well as over metric models. We show by a filtration tech-
nique the finite model property with respect to triangular preferential models, a
property that generally fails for distance models (except for minspace models).
The finite model property is also conjectured for metric preferential models, yet
it is still an open problem at this time. Unlike in previous work, the correspond-
ence between distance and preferential models is not shown directly. Instead it
is proven in Sec. 4 by a modular soundness and completeness result with respect
to the preferential semantics of an axiomatization, which was already proven to
be sound and complete with respect to distance models in [3].

In Sec. 5 we investigate the connection with conditional logics. In [2] the condi-
tional and the comparative similarity connectives are shown to be interdefinable
on minspace models. We extend this correspondence to all cases; it turns out that
distance models provide a natural semantics for conditionals. More precisely, we
characterize conditional logic corresponding to arbitrary, triangular and met-
ric distance/preferential models. In all cases we provide a sound and complete
axiomatization: whereas for the general case we (re)-discover well-known logic
VWU, for the triangular and metric models we obtain new systems to the best
of our knowledge.

Proof details are omitted due to space limitations and can be found in [11].

2 The Logic of Comparative Similarity CSL

Let Vp = {p0, p1, . . . , pi, . . . } be an enumerable set of propositional variables. We
consider a propositional language L, extended with the binary operator ⇔, and
generated by: A,B ::= � | ⊥ | pi | ¬A | A
B | A �B | A ⇔ B.

The original semantics of CSL is based on distance spaces [2]. A distance
space is a pair (Δ, d) where Δ is a non-empty set, called the domain and whose
elements are called points, and where d : Δ×Δ �→ R≥0 is the distance function
satisfying the following identity:

4 R. Alenda and N. Olivetti

d(x, y) = 0 iff x = y . (ID)

We define the distance from a point w ∈ Δ to a set X ⊆ Δ by d(w,X) =
inf {d(w, x) | x ∈ X}. If X is empty, we let d(w,X) = ∞. We say that the
distance d(w,X) is realized iff there is a point x ∈ X such that d(w,X) = d(w, x).
In this case the distance can be defined as a minimum instead of an infimum.

Additional properties can be assumed on d, such as the well known triangular
inequality and symmetry, and the less well-known minspace property:

d(x, y) ≤ d(x, z) + d(z, y) , (TRI)

d(x, y) = d(y, x) , (SYM)

X �= ∅ implies d(w,X) is realized . (MIN)

When d satisfies (TRI) or (SYM), we call the distance space triangular or sym-
metric respectively. If it satisfies both, we call it a metric (distance) space. If
it satisfies (MIN), we call it a minspace. Distance models are then defined as a
kind of Kripke models based on a distance space.

Definition 1. A distance model is a triple M = 〈Δ, d, π〉 where (Δ, d) is a
distance space and π : Vp �→ 2Δ is the valuation function which maps every
propositional variable pi ∈ Vp to a region (subset) π(pi) ⊆ Δ.

The interpretation CM of a formula C ∈ L is as usual: �M = Δ, ⊥M = ∅
and pMi = π(pi); boolean operators denote set-theoretic boolean operations; the
interpretation of ⇔ is shown below:

(A ⇔ B)M =
{
w ∈ Δ

∣∣ d(w,AM) < d(w,BM)
}

.

Satisfiability and validity of formulas are defined as usual.
A distance model is a triangular (resp. metric, minspace) distance model iff

it is based on a triangular (resp. metric, minspace) distance space.

Despite its apparent simplicity, the logic CSL turns out to be quite expressive
[2,3]. The closure ♦A = {w | d(w,A) = 0} of a set A, and its dual the interior
�A = {w | d(w,Δ −A) > 0}, can be expressed using the ⇔ operator. An S5-
like existential modality ∃ (with the intended meaning that (∃A)M = Δ iff
AM �= ∅), and its dual the universal modality ∀, can be defined as well:

♦A ≡ ¬(�⇔ A), �A ≡ �⇔ ¬A, ∃A ≡ (A ⇔ ⊥), ∀A ≡ ¬(A ⇔ ⊥). (1)

Note that ♦ and � do not behave like the S4 modalities when interpreted over
arbitrary distance spaces. Indeed, the topology induced by an arbitrary distance
space is not a topological space – in particular Kuratowski’s axiom ♦♦A ⊆ ♦A
fails. On the contrary, triangular and metric distance models satisfy the afore-
mentioned axiom and as consequence CSL interpreted over those two classes of
models contains the full logic S4u.

Preferential Semantics for the Logic of Comparative Similarity 5

The behavior of CSL over various classes of distance spaces is investigated
in [2,3]. When the minspace (MIN) property is not assumed, CSL is indifferent
to (SYM) (i.e., satisfiability wrt. arbitrary and symmetric distance models are
equivalent). It is, on the contrary, sensible to triangular distances and to metrics.

When the minspace property is assumed, the situation drastically changes:
CSL is unable to distinguish between arbitrary minspaces, symmetric minspaces,
triangular minspaces and metric minspaces. However when only finite minspaces
are considered, CSL is able to distinguish between symmetric and non-symmetric
ones. Furthermore in the general case CSL does not have the finite model prop-
erty, yet it does when the minspace property is assumed.

The satisfiability problem is shown to be decidable and ExpTime-complete
for all these classes of models. However, for models based on subspaces of Rn

with the usual euclidean distance, it turns out that the logic is undecidable [2,3].

3 A Preferential Semantics

CSL is a logic of pure qualitative comparisons. This motivates the study of
an alternative relational, modal-like, semantics which abstracts away from the
numerical values by encoding the distance comparisons by means of a family
of total preorders (≤w)w∈Δ. This semantics is similar to the one that some
conditional logic systems enjoy [6,4,5], and where the relations ≤w are called
preferential relations whence its name.

In [10] it shown that the semantics of CSL over arbitrary distance spaces can
be equivalently defined using preferential structures. Points of the preferential
structure intuitively corresponds to regions (subsets) of the distance space, and
comparisons of the form x ≤w y means “all the points in region w are as least
as close to region x than to region y”.

Definition 2. An (arbitrary) preferential model is a triple M = 〈Δ, (≤w)w, π〉
where Δ is a non empty-set and (≤w)w is a family of total preorders indexed by
the elements of Δ, each one satisfying the weak centering property:

For all x ∈ Δ, w ≤w x . (WKCT)

The valuation function π and the interpretation of propositional and boolean
formulas are defined as in Definition 1. The interpretation of ⇔ is shown below1:

(A ⇔ B)M =
{
w ∈ Δ

∣∣ there is x ∈ AM such that x <w y for all y ∈ BM} .

We furthermore require that M satisfies the limit assumption: if AM �= ∅
then AM has a ≤w-minimal element.

The weak centering states that each region w is minimal with respect to its own
preferential relation. Given a formula A satisfiable in M, the limit assumption
assure the existence of a minimal region satisfying A with respect to w.

1 We recall that x <w y iff x ≤w y and y �≤w x.

6 R. Alenda and N. Olivetti

In light of (1), the closure and interior of a set preferentially correspond to:

♦A = {w | there exists x ∈ A such that x ≤w w} ,

�A = {w | for all x ∈ Δ, x ≤w w implies x /∈ A} .
(2)

In [10] arbitrary distance and preferential models have been shown to be equi-
valent for formulas, in the sense that that the two semantics define the same
set of valid formulas. It is also shown that the finite model property holds for
arbitrary preferential models, whereas it obviously fails for distance ones2.

In previous work, we have investigated how the additional properties of the
distance function translate into the preferential semantics. In [7,9], we have
shown that minspace models can be captured by the strict centering property:

w = x or w <w x. (SCT)

The symmetric minspace case, not considered here, can also be captured [9,8].
We now extend those results to the remaining cases of triangular distance

spaces and metric spaces. The correspondence with distance models will be given
by Theorem 4 in the next section, through the axiomatization.

3.1 Triangular Case

Suppose that a point x is on the closure of a set A, that is d(x,A) = 0. When d
satisfies the triangular inequality, we have that d(w,A) ≤ d(w, x)+d(x,A), that
is d(w,A) ≤ d(w, x), for any point w. Intuitively, this means that we cannot be
strictly closer to the closure of a set than to the set itself [3].

This property can be nicely translated in the preferential semantics. We say
that a preferential model is a triangular preferential model iff it satisfies the
following property for all x, y, w ∈ Δ:

x ≤y y implies x ≤w y. (P-TR)

As in the general case [10], we can show by a filtration technique that CSL has
the finite model property with respect to triangular preferential model3.

Theorem 1. If a formula C is satisfiable in a triangular preferential model,
then it is satisfiable in a finite preferential model (of exponential size).

3.2 Metric Case

Let (Δ, d) be a metric space, and consider a subset X ⊆ Δ and a point w ∈ Δ
such that d(w,X) = 0 (that is w is in the closure of the set X). Let A,B ⊆ Δ
and suppose that for all x ∈ X , d(x,A) ≤ d(x,B). That is d(x,B)−d(x,A) ≥ 0.

For any x ∈ X , we have d(w,A) ≤ d(w, x) + d(x,A) and d(w,B) ≥ d(x,B)−
d(x,w) by the triangular inequality. We then obtain d(w,B)−d(w,A) ≥ d(x,B)−
d(x,A) − 2d(w, x) since d is symmetric. Now let x range over X and take the

2 e.g., The formula A � ♦¬A is not satisfiable in any finite distance model.
3 The finite model property does not hold for triangular distance models.

Preferential Semantics for the Logic of Comparative Similarity 7

infimum: we obtain d(X,A) ≤ d(X,B). As d(w,X) = 0, we get d(w,B) −
d(w,A) ≥ d(x,B) − d(x,A) − 0 ≥ 0, that is d(w,A) ≤ d(w,B).

This shows that in a metric space, every point have to satisfy all the non-strict
inequalities that holds in its ‘immediate neighborhood’ [3]. This property trans-
lates nicely to preferential models: a triangular preferential model is a metric
preferential model iff it satisfies, for all x, y ∈ Δ:

x ≤y y implies ≤x⊆≤y . (P-MT)

Observe that (P-TR) and (P-MT) are independent, and that we have to take
both to obtain a metric preferential model4 – a metric model being a particular
case of a triangular model. Whether the finite model property holds for CSL
over metric preferential models is still open – we strongly conjecture that it is
the case.

4 Axiomatization

We present here a reformulation of the axiomatization of CSL over arbitrary
distance spaces that can be found in [3]5. The axioms schemes, in addition to
the ones of propositional logic, are shown below.

¬(A ⇔ C) � ¬(C ⇔ B)→ ¬(A ⇔ B) (AX3)

(A ⇔ B) � (A ⇔ C)→ (A ⇔ (B � C)) (AX5)

(A ⇔ ⊥)→ ¬(¬(A ⇔ ⊥) ⇔ ⊥) (AX6)

� A→ B

� (A ⇔ C)→ (B ⇔ C)
(Mon)

	⇔ ⊥ (AX1)

¬(A ⇔ B) � ¬(B ⇔ A) (AX2)

A→ ¬(⇔ A) (AX4)

Intuitively, (AX1) states that we are strictly closer to the whole set than to the
empty set. (AX2) says that two formulas can always be (non-strictly) compared.
(AX3) states the transitivity of non-strict comparisons. (AX4) encodes the weak
centering property. (AX5) states that if we are strictly closer to one set than to
two others, then we are strictly closer to this set than to the union of the two.
(AX6) is the axiom 5 of modal logic ∃A → ∀∃A. Finally, the rule (Mon) states
the monotonicity of the comparative similarity operator in its first argument.

To capture the minspace, triangular and the metric case, we consider the
following additional axioms (see [7,3]).

A→ (⇔ ¬A) (AXMS)
¬(¬(⇔ A) ⇔ A) (AXTR)

(A ⇔ B)→ (⇔ ¬(A ⇔ B)) (AXMT)

4 Note that (P-MT) does not correspond to symmetry alone: it is a consequence of an
interaction between both the triangular inequality and the symmetry.

5 The axiomatization in [3] makes use of the additional r© modality. However, when
the axioms involving r© are ignored, it is equivalent to the axiomatization we present.
Soundness and completeness results with respect to distance semantics still hold.

8 R. Alenda and N. Olivetti

Axiom (AXMS), which can be rewritten as A → �A, encodes the strict cen-
tering property (SCT). Axiom (AXTR) can be rewritten as ¬(♦A ⇔ A) and
corresponds to the triangular property (P-TR). Axiom (AXMT) states (A ⇔
B)→ �(A ⇔ B) and encodes the metric property (P-MT).

We define the systems HCSLMS=HCSL+(AXMS), HCSLTR=HCSL+(AXTR),
and HCSLMT=HCSL+(AXTR)+(AXMT). Soundness and completeness of the
axiomatizations with respect to the distance semantics were proven in [3] for the
general, triangular and metric cases; and in [7] for the minspace case.

Theorem 2 ([3,7]). A formula is derivable in HCSL, HCSLMS, HCSLTR or
HCSLMT respectively, iff it is valid in every arbitrary, minspace, triangular or
metric distance model respectively.

We now show that those systems are sound and complete with respect to the
preferential semantics as well6.

Theorem 3. A formula is derivable in HCSL, HCSLMS, HCSLTR or HCSLMT
respectively, iff it is valid in every arbitrary, minspace, triangular or metric pref-
erential model respectively.

Proof. (⇒) One can check that every axiom of HCSL is valid in every pref-
erential model, that the rule (Mon) preserve validity, and that (AXMS), (AXTR)
and (AXMT) are valid in their respective classes of models.

(⇐) We give a modular completeness proof of HCSL + X , where X is
either empty (general case), (AXMS) (minspace case), (AXTR) (triangular case),
(AXTR)+(AXMT) (metric case). As usual, we prove completeness by exhibiting
for every formula C that is consistent with respect to HCSL + X , a canonical
model (built upon maximal consistent sets) in which C is satisfiable.

Maximal consistent sets are defined as usual. We recall that any consistent
set T can be extended to a maximal consistent set S ⊆ T .

Definition 3. Let S, T ∈MaxCons and A,B ∈ L. We define:
1. A �S B iff ¬(B ⇔ A) ∈ S,
2. S RT iff (A ⇔ ⊥) ∈ S for all A ∈ L,
3. SA = {¬B | (A ⇔ B) ∈ S}.

The relation �S is an order induced by (negative) comparative similarity for-
mulas, comparing the relative closeness of formulas with respect to S. R is an
accessibility relation that connect sets that are ‘compatible’ with each other, in
the sense that both sets agree upon existential formulas of the form ∃A. The set
SA is introduced for technical reason. Intuitively, if SA ⊆ T then T should be a
‘minimal’ element of A for S.

Lemma 1. Let S ∈ MaxCons and A ∈ L. We have the following:
1. �S is a total preorder over L.
2. R is an equivalence relation over MaxCons.

6 In the minspace case, this was already proven in [7].

Preferential Semantics for the Logic of Comparative Similarity 9

3. If A is consistent and (A ⇔ ⊥) ∈ S, then there exists T ∈ MaxCons such
that SA ∪ {A} ⊆ T and S RT .

Let C be a consistent formula; there exists a maximal consistent set S∗ ∈
MaxCons such that C ∈ S∗. To build our canonical model, we pick the maximal
consistent sets that are ‘compatible’ with S∗ (i.e., in relation wrt. R).

Definition 4. Let S∗ ∈ MaxCons. The canonical model generated by S∗ (wrt.
HCSL+X) is a triple M = 〈Δ, (≤S)S∈Δ, π〉 defined as follows:
– Δ = {S | S∗ RS},
– for all S, T, U ∈ Δ, we let T ≤S U iff for all A ∈ T , there exists B ∈ U such

that A �S B.
– π(pi) = {S ∈ Δ | pi ∈ S}, for all propositional variable pi ∈ Vp.

One can check that M is a preferential model (transitivity, totality and weak
centering of each ≤S follow from (AX3), (AX2) and (AX4) respectively; the limit
assumption will be shown later). In [7], (AXMS) was shown to force (SCT). We
now show that (AXTR) and (AXMT) force (P-TR) and (P-MT) respectively.

Lemma 2. If axioms (AXMS), or (AXTR), or (AXMT) are in X, then the
canonical model with respect to HCSL + X satisfies the strict centering, or the
triangular property, or the metric property respectively.

Proof. Axiom (AXTR): Let T, U ∈ Δ′ be such that T ≤U U . Due to (AX4),
observe that each formula in U is minimal for�U . As� ∈ U and by definition
of ≤U , we conclude that A �U �, i.e., ♦A ∈ U , for all A ∈ T . Now take any
S ∈ Δ′. By (AXTR) we get that A �S ♦A for all A ∈ T . We conclude by
the definition of ≤S and the fact that ♦A ∈ U .

Axiom (AXMT): Let T, U ∈ Δ such that T ≤U U . Then ¬(� ⇔ A) ∈ U
for every A ∈ T by the definition of the preferential relation. In particular,
we have that ¬(� ⇔ ¬(A ⇔ B)) ∈ U for every ¬(A ⇔ B) ∈ T . By the
contrapositive of (AXMT), we then obtain that ¬(A ⇔ B) ∈ U for every
¬(A ⇔ B) ∈ T , and the inclusion ≤T⊆≤U follows.
�

Lemma 3. For all formula A ∈ L, let ||A|| = {S ∈ Δ | A ∈ S}.
1. If SA ⊆ T then T is a ≤S-minimal element of ||A||.
2. For all formulas F ∈ L, FM = ||F ||.

By the previous Lemma, we finally obtain thatM satisfies the limit assumption.
As C ∈ S∗, we conclude that C is satisfiable in M.
�

From Theorems 2 and 3, we obtain the equivalence between the preferential and
the distance semantics, in particular for the new triangular and metric cases.

Theorem 4. A formula is satisfiable in an arbitrary, minspace, triangular or
metric distance model, iff it is satisfiable in an arbitrary, minspace, triangular
or metric preferential model respectively.

10 R. Alenda and N. Olivetti

5 Link with Conditional Logics

Conditional logics have a long history [6,4,5]. First proposed to formalize some
kind of hypothetical (counterfactual) reasoning, they have found various applic-
ations, from non-monotonic reasoning to belief update and revision.

The semantics of a conditional A>B is defined in terms of possible-world
models, where the intuition is that A>B is true at a world x, if B is true at
all A-worlds that are ‘most similar’ or ‘closest’ to x. In particular Lewis, in his
pioneering work [4] has proposed to capture the semantics of counterfactual con-
ditionals in two related ways: (i) by means of sphere-models, (ii) by a ternary
accessibility relation expressing comparative similarity, the same as in our pref-
erential semantics. In the latter case, the interpretation of > in a preferential
model M = 〈Δ, (≤w)w∈Δ, π〉 (with the limit assumption) is given by:

(A>B)M =
{
w
∣∣ min≤w(A

M) ⊆ BM}
As for CSL, different properties of the preferential relations (≤w)w∈Δ give rise
to different conditional logic’s systems.

The link between the comparative similarity and the conditional operators
was first noted in [2,3] for minspaces models, where the authors remark that
when the preferential relations are induced by a distance (that is x ≤w y iff
d(w, x) ≤ d(w, y))7, then the comparative similarity operator and the conditional
operator are interdefinable in the following way:

(A ⇔ B) ≡ ¬(A>⊥)
 (A �B>¬B)

(A>B) ≡ ¬(A ⇔ ⊥) � (A ⇔ A
 ¬B)
(3)

It follows that when interpreted over minspaces, CSL is equivalent to a condi-
tional logic (namely the logic VCU [6,4,5]).

By means of the preferential semantics and Theorem 4, we can extend this
result to other classes of distance spaces: indeed one can check that (3) holds in
all the preferential models of Sec. 3. Therefore CSL interpreted over any class
of distance space considered here is a conditional logic “in disguise”. We now
characterize the conditional systems generated by each class of distance models.

Arbitrary preferential models of Definition 2 (corresponding to arbitrary dis-
tance models) characterize the conditional logic VWU; minspace preferential
models, obtained by adding (SCT), define the logic VCU [4,5,12,6]. Triangular
and metric preferential models do not seem to have been considered in the liter-
ature, hence the conditional logics they define, to which we refer as VWUTR
and VWUMT respectively, are new to the best our knowledge.

7 This direct translation between distance and preferential models only works in the
minspace case, see [10].

Preferential Semantics for the Logic of Comparative Similarity 11

From the axiomatic point of view, we show below an axiomatization of VWU
[6,4,5] (in addition to axioms and rules of classical propositional calculus):

(A>A) (ID)

(A>B)→ (A→ B) (MP)

¬(A>⊥)→ ((A>⊥)>⊥) (U1)

(A>⊥)→ (¬(A>⊥)>⊥) (U2)

� A↔ B

� (A>C)↔ (B>C)
(RCEA)

(A>B) ∧ (A>C)→ ((A ∧B)>C) (CM)

(A>C) ∧ (B>C)→ (A ∨B>C) (CA)

(A>B) ∧ ¬(A>C)→ (A ∧ C>B) (CV)

� (B1 ∧ . . . ∧Bn)→ C

� ((A>B1) ∧ . . . ∧ (A>Bn))→ (A>C)
(RCK)

Additional properties of the preferential relations are captured by adding further
axioms. In particular, we consider the following three8:

(A ∧B)→ (A>B) (CS) (¬(>¬A)>¬A)→ (A>⊥) (TR)

(A>B)→ (>(A>B)) (MT)

Axiom (CS) is well-known: it encodes the strict centering and is part of VCU.
Axiom (TR) and (MT) respectively correspond to the triangular and to the met-
ric preferential properties. Whereas axiom (TR) seems to be new to the best of
our knowledge, it is worth noting that axiom (MT) is part of the axiomatization
of the logic BCR in [13] for representing AGM belief revision.

We let VCU = VWU+(CS), VWUTR = VWU+(TR), and VWUMT =
VWU+(TR)+(MT). By means of the equivalence with CSL, or by a direct
canonical model construction similar to the one in Sec. 4 (such as in [14]), one
can show that each of these axiomatizations is sound and complete with respect
to their respective class of preferential models.

Theorem 5. A formula is derivable in VWU, VCU, VWUTR or VWUMT
respectively, iff it is valid in every arbitrary, minspace, triangular or metric pref-
erential model respectively.

In light of the correspondence result of Theorem 4 between the preferential
semantics and the distance one (wrt. CSL), one can wonder whether we can
directly give a semantics of the conditional operator in terms of distances spaces.

Given a distance model M = 〈Δ, d, π〉 (see Def. 1), we define:

w |= (A>B) iff AM = ∅ or d(w,AM) < d(w, (A
 ¬B)M) . (4)

One can check that with this semantics, (3) now also holds in distance models.
Moreover, as a consequence of Theorems 2 and 3 and interdefinability of ⇔ and
>, we obtain the soundness and completeness of VWU and its variants with
respect to their respective classes of distance models:

8 In light of (2), the conditional formulas corresponding to the topological and existen-
tial modalities are: ♦A ≡ ¬(>¬A), �A ≡ (>A), ∃A ≡ ¬(A>⊥), ∀A ≡ (¬A>⊥).

12 R. Alenda and N. Olivetti

Theorem 6. A formula is derivable in VWU, VCU, VWUTR or VWUMT
respectively, iff it is valid in every arbitrary, minspace, triangular or metric dis-
tance model respectively.

This semantics seems similar to the semantics for conditionals without the limit
assumption (see, e.g., [12,4,15]) which can be transposed to distance models.

w |= (A>B) iff AM = ∅ or there exists x ∈ AM such that

for all y ∈ AM, d(w, y) ≤ d(w, x) implies y ∈ BM.
(5)

However, those two semantics are different. Consider the following model:

Δ = {w, x, yi | i ∈ N} , pM = {x, yi | i ∈ N} , qM = {x},

d(w, x) = 1, d(w, yi) = 1 +
1

1 + i
.

Using (5) yields to w ∈ (p>q)M (as x is a minimal element of pM and it satisfies
q). However when we consider (4), we have d(w, pM) = d(w, (p
 ¬q)M) = 1
and hence w /∈ (p>q)M. Intuitively, (4) takes ‘limit points’ (in this example the
one of all of the yi) into accounts when defining the truth value of a conditional,
whereas (5) is ‘blind’ to them.

Hence (5) does not preserve the interdefinability of ⇔ and > over distance
models. Moreover, (5) always gives VCU whatever properties of the distance
are assumed (due to the property (ID) that in this case works like the strict cen-
tering). When the minspace property is assumed, (4) and (5) become equivalent.

Preferential relations induced by a distance have been previously considered
in the literature (e.g., [4,16,17]). However to our knowledge, this idea was not
pushed to an end to define a semantics of conditional in terms of distance models.

Whether the above mentioned variants of VCU matter (in particular for
modeling belief change) is open and might be further investigated.

6 Conclusion and Further Work

In this paper, we have extended the work of [8,10,11] by giving a preferential
semantics for CSL over triangular and metric models. This complete the pic-
ture and each kind of distance semantics for CSL has now its own preferential
counterpart. We have proved the equivalence between the preferential and the
distance semantics by means of a modular completeness result of the known ax-
iomatizations of CSL with respect to our preferential semantics. We also obtain
the finite model property holds for triangular preferential model, whereas it does
not hold for triangular distance models. Whether the finite model property holds
for metric preferential models is still an open issue, but we strongly conjecture
that it is the case. Finally we have shown that the comparative similarity op-
erator corresponds to a conditional operator and that CSL over the considered
classes of models do in fact corresponds to extensions of the well-known con-
ditional logic VWU ; the systems corresponding to triangular and metric are
new. We have provided sound and complete axiomatizations for all of them.

Preferential Semantics for the Logic of Comparative Similarity 13

In future work, we plan to use the preferential semantics to give decision
procedures in the form of labeled tableau calculi for CSL over triangular and
metric models, in the line of of [10,9] (getting terminating calculi is namely the
crucial issue). We also intend to investigate possible connections between CSL
and belief change theory, as belief change operator are often defined in terms
of distances. Finally, for ontology reasoning about comparative similarity, we
intend to study the extension of CSL with nominals and other constructs of
various families of description logics.

References

1. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts
and similarity. J. Log. Comput. 17(3), 415–452 (2007)

2. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative Sim-
ilarity, Tree Automata, and Diophantine Equations. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 651–665. Springer, Heidelberg
(2005)

3. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for reas-
oning about comparative distances and topology. APAL 161(4), 534–559 (2010)

4. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)
5. Nute, D.: Topics in Conditional Logic. Reidel Publishing Company (1980)
6. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87 (1998)
7. Alenda, R., Olivetti, N., Schwind, C.: Comparative Concept Similarity over Min-

spaces: Axiomatisation and Tableaux Calculus. In: Giese, M., Waaler, A. (eds.)
TABLEAUX 2009. LNCS, vol. 5607, pp. 17–31. Springer, Heidelberg (2009)

8. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Preferential semantics for
the logic of comparative concepts similarity. In: Proc. TACL-5 (2010)

9. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau Calculi for CSL over
minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66.
Springer, Heidelberg (2010)

10. Alenda, R., Olivetti, N.: Tableau Calculus for the Logic of Comparative Similarity
over Arbitrary Distance Spaces. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17.
LNCS, vol. 6397, pp. 52–66. Springer, Heidelberg (2010)

11. Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative similar-
ity over triangular and metric models. Technical report, Aix-Marseille Université,
CNRS, LSIS UMR 7296, 13397, Marseille, France (2012),
http://www.lsis.org/squelettes/publication/upload/3355/

alendaolivetti jelia2012 techreport.pdf

12. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle,
J., Sandewall, E., Torasso, P. (eds.) KR, pp. 202–213. Morgan Kaufmann (1994)

13. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong ramsey
test: A logical formalization. Artif. Intell. 168(1-2), 1–37 (2005)

14. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-
based conditional logics: PCL and its extensions. TOCL 10(3) (2009)

15. Veltman, F.: Logics for Conditionals. Ph.D. dissertation, U. of Amsterdam (1985)
16. Schlechta, K.: Coherent systems, vol 2. Elsevier Science (2004)
17. Williamson, T.: First-order logics for comparative similarity. Notre Dame Journal

of Formal Logic 29(4), 457–481 (1988)

http://www.lsis.org/squelettes/publication/upload/3355/alendaolivetti_jelia2012_techreport.pdf
http://www.lsis.org/squelettes/publication/upload/3355/alendaolivetti_jelia2012_techreport.pdf

Nested Sequent Calculi for Conditional Logics

Régis Alenda1, Nicola Olivetti1, and Gian Luca Pozzato2

1 Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397, Marseille, France
{regis.alenda,nicola.olivetti}@univ-cezanne.fr
2 Dipartimento di Informatica, Università degli Studi di Torino, Italy

pozzato@di.unito.it

Abstract. Nested sequent calculi are a useful generalization of ordinary sequent
calculi, where sequents are allowed to occur within sequents. Nested sequent cal-
culi have been profitably employed in the area of (multi)-modal logic to obtain
analytic and modular proof systems for these logics. In this work, we extend the
realm of nested sequents by providing nested sequent calculi for the basic con-
ditional logic CK and some of its significant extensions. The calculi are internal
(a sequent can be directly translated into a formula), cut-free and analytic. More-
over, they can be used to design (sometimes optimal) decision procedures for the
respective logics, and to obtain complexity upper bounds. Our calculi are an ar-
gument in favour of nested sequent calculi for modal logics and alike, showing
their versatility and power.

1 Introduction

The recent history of the conditional logics starts with the work by Lewis [16,17], who
proposed them in order to formalize a kind of hypothetical reasoning (if A were the
case then B), that cannot be captured by classical logic with material implication. One
original motivation was to formalize counterfactual sentences, i.e. conditionals of the
form “if A were the case then B would be the case”, where A is false. Conditional
logics have found an interest in several fields of artificial intelligence and knowledge
representation. They have been used to reason about prototypical properties [10] and
to model belief change [14,12]. Moreover, conditional logics can provide an axiomatic
foundation of nonmonotonic reasoning [5,15], here a conditional A⇒ B is read as “in
normal circumstances if A then B”. Recently, a kind of (multi)-conditional logics [3,4]
have been used to formalize epistemic change in a multi-agent setting.

Semantically, all conditional logics enjoy a possible world semantics, with the intu-
ition that a conditional A ⇒ B is true in a world x, if B is true in the set of worlds
where A is true and that are most similar/closest/“as normal as” x. Since there are dif-
ferent ways of formalizing “the set of worlds similar/closest/...” to a given world, there
are expectedly rather different semantics for conditional logics, from the most general
selection function semantics to the stronger sphere semantics.

From the point of view of proof-theory and automated deduction, conditional logics
do not have however a state of the art comparable with, say, the one of modal logics,
where there are well-established alternative calculi, whose proof-theoretical and com-
putational properties are well-understood. This is partially due to the mentioned lack
of a unifying semantics; as a matter of fact the most general semantics, the selection

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 14–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Nested Sequent Calculi for Conditional Logics 15

function one, is of little help for proof-theory, and the preferential/sphere semantics
only captures a subset of (actually rather strong) systems. Similarly to modal logics and
other extensions/alternative to classical logics two types of calculi have been studied:
external calculi which make use of labels and relations on them to import the semantics
into the syntax, and internal calculi which stay within the language, so that a “con-
figuration” (sequent, tableaux node...) can be directly interpreted as a formula of the
language. Just to mention some work, to the first stream belongs [2] proposing a calcu-
lus for (unnested) cumulative logic C (see below). More recently, [18] presents modular
labeled calculi (of optimal complexity) for CK and some of its extensions, basing on
the selection function semantics, and [13] presents modular labeled calculi for prefer-
ential logic PCL and its extensions. The latter calculi take advantage of a sort of hybrid
modal translation. To the second stream belong the calculi by Gent [9] and by de Swart
[21] for Lewis’ logic VC and neighbours. These calculi manipulate set of formulas and
provide a decision procedure, although they comprise an infinite set of rules. Very re-
cently, some internal calculi for CK and some extensions (with any combination of MP,
ID, CEM) have been proposed by Pattinson and Schröder [19]. The calculi are obtained
by a general method for closing a set of rules (corresponding to Hilbert axioms) with
respect to the cut rule. These calculi have optimal complexity; notice that some of the
rules do not have a fixed number of premises. These calculi have been extended to pref-
erential conditional logics [20], i.e. including cumulativity (CM) and or-axiom (CA),
although the resulting systems are fairly complicated.

In this paper we begin to investigate nested sequents calculi for conditional logics.
Nested sequents are a natural generalization of ordinary sequents where sequents are al-
lowed to occur within sequents. However a nested sequent always corresponds to a for-
mula of the language, so that we can think of the rules as operating “inside a formula”,
combining subformulas rather than just combining outer occurrences of formulas as in
ordinary sequents1. Limiting to modal logics, nested calculi have been provided, among
others, for modal logics by Brünnler [7,6] and by Fitting [8].

In this paper we treat the basic normal conditional logic CK (its role is the same
as K in modal logic) and its extensions with ID and CEM. We also consider the flat
fragment (i.e., without nested conditionals) of CK+CSO+ID, coinciding with the logic
of cumulativity C introduced in [15]. The calculi are rather natural, all rules have a
fixed number of premises. The completeness is established by cut-elimination, whose
peculiarity is that it must take into account the substitution of equivalent antecedents of
conditionals (a condition corresponding to normality). The calculi can be used to obtain
a decision procedure for the respective logics by imposing some restrictions preventing
redundant applications of rules. In all cases, we get a PSPACE upper bound, a bound that
for CK and CK+ID is optimal (but not for CK+CEM that is known to be CONP). For
flat CK+CSO+ID = cumulative logic C we also get a PSPACE bound, we are not aware
of better upper bound for this logic (although we may suspect that it is not optimal). We
can see the present work as a further argument in favor of nested sequents as a useful
tool to provide natural, yet computationally adequate, calculi for modal extensions of
classical logics.

Technical details and proofs can be found in the accompanying report [1].

1 In this sense, they are a special kind of “deep inference” calculi by Guglielmi and colleagues.

16 R. Alenda, N. Olivetti, and G.L. Pozzato

2 Conditional Logics

A propositional conditional language L contains: - a set of propositional variables
ATM ; - the symbol of false ⊥; - a set of connectives �, ∧, ∨, ¬, →, ⇒. We define
formulas of L as follows: - ⊥ and the propositional variables of ATM are atomic for-
mulas; - if A and B are formulas, then ¬A and A ⊗ B are complex formulas, where
⊗ ∈ {∧,∨,→,⇒}. We adopt the selection function semantics, that we briefly recall
here. We consider a non-empty set of possible worldsW . Intuitively, the selection func-
tion f selects, for a world w and a formula A, the set of worlds of W which are closer
to w given the information A. A conditional formula A ⇒ B holds in a world w if the
formula B holds in all the worlds selected by f for w and A.
Definition 1 (Selection function semantics). A model is a triple M = 〈W , f, []〉
where: - W is a non empty set of worlds; - f is the selection function f :W× 2W −→
2W; - [] is the evaluation function, which assigns to an atom P ∈ ATM the set of
worlds where P is true, and is extended to boolean formulas as usual, whereas for
conditional formulas [A⇒ B] = {w ∈ W | f(w, [A]) ⊆ [B]}.
We have defined f taking [A] rather than A (i.e. f (w, [A]) rather than f (w, A)) as an
argument; this is equivalent to define f on formulas, i.e. f(w,A) but imposing that if
[A] = [A

′
] in the model, then f(w,A) = f(w,A

′
). This condition is called normality.

The semantics above characterizes the basic conditional system, called CK [17]. An
axiomatization of CK is given by (� denotes provability in the axiom system):

– any axiomatization of the classical propositional calculus;
– If � A and � A→ B, then � B (Modus Ponens)
– If � A↔ B then � (A⇒ C)↔ (B ⇒ C) (RCEA)
– If � (A1 ∧ · · · ∧An)→ B then � (C ⇒ A1 ∧ · · · ∧ C ⇒ An)→ (C ⇒ B) (RCK)

Other conditional systems are obtained by assuming further properties on the selection
function; we consider the following standard extensions of the basic system CK:

The above axiomatization is complete with respect to the semantics [17].

3 Nested Sequent Calculi NS for Conditional Logics

In this section we present nested sequent calculi NS, where S is an abbreviation for
CK+X, and X={CEM, ID, CEM+ID}. As usual, completeness is an easy consequence
of the admissibility of cut. We are also able to turn NS into a terminating calculus,
which gives us a decision procedure for the respective conditional logics.

Definition 2. A nested sequent Γ is defined inductively as follows: - A finite multiset of
formulas is a nested sequent. - If A is a formula and Γ is a nested sequent, then [A : Γ]
is a nested sequent. - A finite multiset of nested sequents is a nested sequent.

Nested Sequent Calculi for Conditional Logics 17

A nested sequent can be displayed as

A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn],

where n,m ≥ 0, A1, . . . , Am, B1, . . . , Bn are formulas and Γ1, . . . , Γn are nested se-
quents. The depth d(Γ) of a nested sequent Γ is defined as follows: - if Γ = A1 . . . , An,
then d(Γ) = 0; - if Γ = [A : Δ], then d(Γ) = 1 + d(Δ) - if Γ = Γ1, . . . , Γn,
then d(Γ) = max(Γi). A nested sequent can be directly interpreted as a formula,
just replace “,” by ∨ and “:” by ⇒. More explicitly, the interpretation of a nested
sequent A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn] is inductively defined by the formula
F(Γ) = A1 ∨ . . . ∨ Am ∨ (B1 ⇒ F(Γ1)) ∨ . . . ∨ (Bn ⇒ F(Γn)). For example, the
nested sequent A,B, [A : C, [B : E,F]], [A : D] denotes the formula A ∨ B ∨ (A ⇒
C ∨ (B ⇒ (E ∨ F))) ∨ (A⇒ D).

The specificity of nested sequent calculi is to allow inferences that apply within
formulas. In order to introduce the rules of the calculus, we need the notion of context.
Intuitively a context denotes a “hole”, a unique empty position, within a sequent that
can be filled by a formula/sequent. We use the symbol () to denote the empty context.
A context is defined inductively as follows:

Definition 3. If Δ is a nested sequent, Γ () = Δ, () is a context with depth d(Γ ()) =
0; if Δ is a nested sequent and Σ() is a context, Γ () = Δ, [A : Σ()] is a context with
depth d(Γ ()) = 1 + d(Σ()).

Finally we define the result of filling “the hole” of a context by a sequent:

Definition 4. Let Γ () be a context and Δ be a sequent, then the sequent obtained by
filling the context by Δ, denoted by Γ (Δ) is defined as follows: - if Γ () = Λ, (), then
Γ (Δ) = Λ,Δ; - if Γ () = Λ, [A : Σ()], then Γ (Δ) = Λ, [A : Σ(Δ)].

The calculi NS are shown in Figure 1. As usual, we say that a nested sequent Γ is
derivable in NS if it admits a derivation. A derivation is a tree whose nodes are nested
sequents. A branch is a sequence of nodes Γ1, Γ2, . . . , Γn, . . . Each node Γi is obtained
from its immediate successor Γi−1 by applying backward a rule of NS, having Γi−1

as the conclusion and Γi as one of its premises. A branch is closed if one of its nodes
is an instance of axioms (AX) and (AX�), otherwise it is open. We say that a tree is

Γ(P,¬P) (AX) (AX�)Γ(�)
Γ(A ∧ B) Γ(¬(A ∧ B))

Γ(A ∨ B) Γ(¬(A ∨ B))

Γ(A)

Γ(¬A) Γ(¬B)

Γ(B)

Γ(A,B)

Γ(¬A,¬B)

Γ(A ⇒ B) Γ(¬(A ⇒ B), [A′ : Δ])

Γ(¬(A ⇒ B), [A′ : Δ,¬B])Γ([A : B]) A,¬A′

Γ([A : Δ])

Γ([A : Δ,¬A])

Γ([A : Δ], [B : Σ])

Γ([A : Δ, Σ], [B : Σ]) A,¬B B,¬A

(∧+) (∧−)

(∨−)(∨+)

(⇒+) (⇒−)

(ID) (CEM)

Γ(A → B) Γ(¬(A → B))

Γ(¬A,B) Γ(A)
(→+) (→−)

(¬)

P ∈ ATM

Γ(A)
Γ(¬¬A)

A′,¬A

Γ(¬B)

Fig. 1. The nested sequent calculi NS

18 R. Alenda, N. Olivetti, and G.L. Pozzato

Fig. 2. A derivation of the axiom ID

closed if all its branches are closed. A nested sequent Γ has a derivation in NS if there
is a closed tree having Γ as a root. As an example, Figure 2 shows a derivation of (an
instance of) the axiom ID.

The following lemma shows that axioms can be generalized to any formula F :

Lemma 1. Given any formula F , the sequent Γ (F,¬F) is derivable in NS.

The easy proof is by induction on the complexity of F .
In [19] the authors propose optimal sequent calculi for CK and its extensions by any

combination of ID, MP and CEM. It is not difficult to see that the rules CKg , CKIDg ,
CKCEMg , CKCEMIDg of their calculi are derivable in our calculi.

3.1 Basic Structural Properties of NS

First of all, we show that weakening and contraction are height-preserving admissible
in the calculiNS. Furthermore, we show that all the rules of the calculi, with the excep-
tions of (⇒−) and (CEM), are height-preserving invertible. As usual, we define the
height of a derivation as the height of the tree corresponding to the derivation itself.

Lemma 2 (Admissibility of weakening). Weakening is height-preserving admissible
in NS: if Γ (Δ) (resp. Γ ([A : Δ])) is derivable in NS with a derivation of height h,
then also Γ (Δ,F) (resp. Γ ([A : Δ,F])) is derivable in NS with a proof of height
h′ ≤ h, where F is either a formula or a nested sequent [B : Σ].

The easy proof is by induction on the height of the derivation of Γ (Δ).

Lemma 3 (Invertibility). All the rules ofNS, with the exceptions of (⇒−) and (CEM),
are height-preserving invertible: if Γ has a derivation of height h and it is an instance of
a conclusion of a rule (R), then also Γi, i = 1, 2, are derivable inNS with derivations
of heights hi ≤ h, where Γi are instances of the premises of (R).

Proof. Let us first consider the rule (ID). In this case, we can immediately conclude be-
cause the premiseΓ ([A : Δ,¬A]) is obtained by weakening, which is height-preserving
admissible (Lemma 2), from Γ ([A : Δ]). For the other rules, we proceed by induction
on the height of the derivation of Γ . We only show the most interesting case of (⇒+).
For the base case, consider (∗) Γ (A ⇒ B,Δ) where either (i) P ∈ Δ and ¬P ∈ Δ,
i.e. (∗) is an instance of (AX), or (ii) � ∈ Δ, i.e. (∗) is an instance of (AX�); we
immediately conclude that also Γ ([A : B], Δ) is an instance of either (AX) in case

Nested Sequent Calculi for Conditional Logics 19

(i) or (AX�) in case (ii). For the inductive step, we consider each rule ending (looking
forward) the derivation of Γ (A ⇒ B). If the derivation is ended by an application of
(⇒+) to Γ ([A : B]), we are done. Otherwise, we apply the inductive hypothesis to the
premise(s) and then we conclude by applying the same rule. �

It can be observed that a “weak” version of invertibility also holds for the rules (⇒−)
and (CEM). Roughly speaking, if Γ (¬(A⇒ B), [A′ : Δ]), which is an instance of the
conclusion of (⇒−), is derivable, then also the sequent Γ (¬(A ⇒ B), [A′ : Δ,¬B]),
namely the left-most premise in the rule (⇒−), is derivable too. Similarly for (CEM).

Since the rules are invertible, it follows that contraction is admissible, that is to say:

Lemma 4 (Admissibility of contraction). Contraction is height-preserving admissi-
ble in NS: if Γ (F, F) has a derivation of height h, then also Γ (F) has a derivation of
height h′ ≤ h, where F is either a formula or a nested sequent [A : Σ].

3.2 Soundness of the Calculi NS

To improve readability, we slightly abuse the notation identifying a sequent Γ with
its interpreting formula F(Γ), thus we shall write A ⇒ Δ, Γ ∧ Δ, etc. instead of
A⇒ F(Γ),F(Γ)∧F(Δ). First of all we prove that nested inference is sound (similarly
to Brünnler [7], Lemma 2.8).

Lemma 5. Let Γ () be any context. If the formula A1 ∧ . . . ∧ An → B, with n ≥ 0, is
(CK+X)-valid, then also Γ (A1) ∧ . . . ∧ Γ (An)→ Γ (B) is (CK+X) valid.

Proof. By induction on the depth of a context Γ (). Let d(Γ ()) = 0, then Γ = Λ, ().
Since A1 ∧ . . . ∧ An → B is valid, by propositional reasoning, we have that also
(Λ ∨ A1) ∧ . . . (Λ ∨ An) → (Λ ∨ B) is valid, that is Γ (A1) ∧ . . . ∧ Γ (An) → Γ (B)
is valid. Let d(Γ ()) > 0, then Γ () = Δ, [C : Σ()]. By inductive hypothesis, we
have that Σ(A1) ∧ . . . ∧ Σ(An) → Σ(B) is valid. By (RCK), we obtain that also
(C ⇒ Σ(A1)) ∧ . . . ∧ (C ⇒ Σ(An)) → (C ⇒ Σ(B)) is valid. Then, we get that
(Λ∨ (C ⇒ Σ(A1)))∧ . . .∧ (Λ∨ (C ⇒ Σ(An)))→ (Λ∨ (C ⇒ Σ(B))) is also valid,
that is Γ (A1) ∧ . . . ∧ Γ (An)→ Γ (B) is valid. �

Theorem 1. If Γ is derivable in NS, then Γ is valid.

Proof. By induction on the height of the derivation of Γ . If Γ is an axiom, that is
Γ = Γ (P,¬P), then trivially P ∨ ¬P is valid; by Lemma 5 (case n = 0), we get
Γ (P,¬P) is valid. Similarly for Γ (�). Otherwise Γ is obtained by a rule (R):
- (R) is a propositional rule, say Γ1, Γ2/Δ, we first prove that Γ1∧Γ2 → Δ is valid. All
rules are easy, since for the empty context they are nothing else than trivial propositional
tautologies. We can then use Lemma 5 to propagate them to any context. For instance,
let the rule (R) be (∨−). Then (¬A ∧ ¬B) → ¬(A ∨ B) and, by the previous lemma,
we get that Γ (¬A)∧Γ (¬B)→ Γ (¬(A∨B)). Thus if Γ is derived by (R) from Γ1, Γ2,
we use the inductive hypothesis that Γ1 and Γ2 are valid and the above fact to conclude.
- (R) is (⇒+): trivial by inductive hypothesis.
- (R) is (⇒−) then Γ = Γ (¬(A⇒ B), [A′ : Δ]) is derived from (i) Γ (¬(A⇒ B), [A′ :
Δ,¬B]), (ii) ¬A,A′, (iii) ¬A′, A. By inductive hypothesis we have that A ↔ A′ is

20 R. Alenda, N. Olivetti, and G.L. Pozzato

valid. We show that also (∗) [¬(A⇒ B)∨ (A′ ⇒ (Δ∨¬B))]→ [¬(A⇒ B)∨ (A′ ⇒
Δ)] is valid, then we apply Lemma 5 and the inductive hypothesis to conclude. To prove
(*), by (RCK) we have that the following is valid: [(A′ ⇒ B) ∧ (A′ ⇒ (Δ ∨ ¬B))]→
(A′ ⇒ Δ). Since A ↔ A′ is valid, by (RCEA) we get that (A ⇒ B) → (A′ ⇒ B) is
valid, so that also (A ⇒ B) → ((A′ ⇒ (Δ ∨ ¬B)) → (A′ ⇒ Δ)) is valid, then we
conclude by propositional reasoning.
- (R) is (ID), then Γ = Γ ([A : Δ]) is derived from Γ ([A : Δ,¬A]). We show that
(A⇒ (Δ ∨ ¬A)) → (A⇒ Δ) is valid in CK+ID, then we conclude by Lemma 5 and
by the inductive hypothesis. The mentioned formula is derivable: by (RCK) we obtain
(A⇒ A)→ ((A⇒ (Δ ∨ ¬A))→ (A⇒ Δ)) so that we conclude by (ID).
- (R) is (CEM), thus Γ = Γ ([A : Δ], [A′, Σ]) and it is derived from (i) Γ ([A :
Δ,Σ], [A′ : Σ]), (ii) ¬A,A′, (iii) ¬A′, A. By inductive hypothesis A ↔ A′ is valid.
We first show that (∗∗) (A ⇒ (Δ ∨ Σ)) → ((A ⇒ Δ) ∨ (A′ ⇒ Σ)). Then we con-
clude as before by Lemma 5 and inductive hypothesis. To prove (**), we notice that
the following is derivable by (RCK): (A ⇒ (Δ ∨ Σ)) → [(A ⇒ ¬Δ) → (A ⇒ Σ)].
By (CEM), the following is valid: (A ⇒ Δ) ∨ (A ⇒ ¬Δ). Thus we get that (A ⇒
(Δ ∨ Σ)) → [(A ⇒ Δ) ∨ (A ⇒ Σ)] is valid. Since A ↔ A′ is valid, (by RCEA) we
have that also (A⇒ Σ)→ (A′ ⇒ Σ) is valid, obtaining (**). �

3.3 Completeness of the Calculi NS

Completeness is an easy consequence of the admissibility of the following rule cut:

Γ (F) Γ (¬F)
(cut)

Γ (∅)

where F is a formula. The standard proof of admissibility of cut proceeds by a double
induction over the complexity of F and the sum of the heights of the derivations of the
two premises of (cut), in the sense that we replace one cut by one or several cuts on
formulas of smaller complexity, or on sequents derived by shorter derivations. However,
in NS the standard proof does not work in the following case, in which the cut formula
F is a conditional formula A⇒ B:

(1) Γ ([A : B], [A
′
: Δ])

(⇒+)
(3) Γ (A ⇒ B, [A

′
: Δ])

(2) Γ (¬(A ⇒ B), [A
′
: Δ,¬B]) A,¬A

′
A

′
,¬A

(⇒+)
Γ (¬(A ⇒ B), [A

′
: Δ])

(cut)
Γ ([A

′
: Δ])

Indeed, even if we apply the inductive hypothesis on the heights of the derivations of
the premises to cut (2) and (3), obtaining (modulo weakening, which is admissible by
Lemma 2) a derivation of (2′) Γ ([A′ : Δ,¬B], [A′ : Δ]), we cannot apply the inductive
hypothesis on the complexity of the cut formula to (2′) and (1′) Γ ([A : Δ,B], [A′ : Δ])
(obtained from (1) again by weakening). Such an application would be needed in order
to obtain a proof of Γ ([A′ : Δ], [A′ : Δ]) and then to conclude Γ ([A′ : Δ]) since
contraction is admissible (Lemma 4).

In order to prove the admissibility of cut for NS, we proceed as follows. First, we
show that if A,¬A′ and A′,¬A are derivable, then if Γ ([A : Δ]) is derivable, then
Γ ([A′ : Δ]), obtained by replacing [A : Δ] with [A′ : Δ], is also derivable. We prove
that cut is admissible by “splitting” the notion of cut in two propositions:

Nested Sequent Calculi for Conditional Logics 21

Theorem 2. In NS, the following propositions hold: (A) If Γ (F) and Γ (¬F) are
derivable, so is Γ (∅), i.e. (cut) is admissible in NS; (B) if (I) Γ ([A : Δ]), (II) A,¬A′

and (III) A′,¬A are derivable, then Γ ([A′ : Δ]) is derivable.

Proof. The proof of both is by mutual induction. To make the structure of the induction
clear call: Cut(c, h) the property (A) for any Γ and any formula F of complexity c
and such that the sum of the heights of derivation of the premises is h. Similarly call
Sub(c) the assertion that (B) holds for any Γ and any formula A of complexity c. Then
we show the following facts:

(i) ∀h Cut(0, h)
(ii) ∀c Cut(c, 0)
(iii) ∀c′ < c Sub(c′) → (∀c′ < c ∀h′ Cut(c′, h′) ∧ ∀h′ < h Cut(c, h′) →
Cut(c, h))
(iv) ∀h Cut(c, h)→ Sub(c)

This will prove that ∀c ∀hCut(c, h) and ∀c Sub(c), that is (A) and (B) hold. The
proof of (iv) (that is that Sub(c) holds) in itself is by induction on the height h of the
derivation of the premise (I) of (B). To save space, we only present the most interesting
cases.
Inductive step for (A): we distinguish the following two cases:

• (case 1) the last step of one of the two premises is obtained by a rule (R) in which F
is not the principal formula. This case is standard, we can permute (R) over the cut, i.e.
we cut the premise(s) of (R) and then we apply (R) to the result of cut.
• (case 2) F is the principal formula in the last step of both derivations of the premises
of the cut inference. There are seven subcases: F is introduced a) by (∧−) - (∧+), b) by
(∨−) - (∨+), c) by (→−) - (→+), d) by (⇒−) - (⇒+), e) by (⇒−) - (ID), f) by (⇒−)
- (CEM), g) by (CEM) - (ID). We only show the most interesting case d), where the
derivation is as follows:

(1) Γ (¬(A ⇒ B), [A′ : Δ,¬B]) A,¬A′ A′,¬A
(⇒−)

Γ (¬(A ⇒ B), [A′ : Δ])

(2) Γ ([A : B], [A′ : Δ])
(⇒+)

(3) Γ (A ⇒ B, [A′ : Δ])
(cut)

Γ ([A′ : Δ])

First of all, since we have proofs for A,¬A′ and for A′,¬A and cp(A) < cp(A⇒ B),
we can apply the inductive hypothesis for (B) to (2), obtaining a proof of (2′) Γ ([A′ :
B], [A′ : Δ]). By Lemma 2, from (3) we obtain a proof of at most the same height
of (3′) Γ (A ⇒ B, [A′ : Δ,¬B]). We can then conclude as follows: we first apply
the inductive hypothesis on the height for (A) to cut (1) and (3′), obtaining a deriva-
tion of (4) Γ ([A′ : Δ,¬B]). By Lemma 2, we have also a derivation of (4′) Γ ([A′ :
Δ,¬B], [A′ : Δ]). Again by Lemma 2, from (2′) we obtain a derivation of (2′′) Γ ([A′ :
Δ,B], [A′ : Δ]). We then apply the inductive hypothesis on the complexity of the cut
formula to cut (2′′) and (4′), obtaining a proof of Γ ([A′ : Δ], [A′ : Δ]), from which we
conclude since contraction is admissible (Lemma 4).

Inductive step for (B) (that is statement (iv) of the induction): we have to consider all
possible rules ending (looking forward) the derivation of Γ ([A : Δ]). We only show

22 R. Alenda, N. Olivetti, and G.L. Pozzato

the most interesting case, when (⇒−) is applied by using [A : Δ] as principal formula.
The derivation ends as follows:

(1) Γ (¬(C ⇒ D), [A : Δ,¬D]) (2) C,¬A (3)A,¬C
(⇒−)

Γ (¬(C ⇒ D), [A : Δ])

We can apply the inductive hypothesis to (1) to obtain a derivation of (1′) Γ (¬(C ⇒
D), [A′ : Δ,¬D]). Since weakening is admissible (Lemma 2), from (II) we obtain a
derivation of (II ′) C,A,¬A′, from (III) we obtain a derivation of (III ′) A′,¬A,¬C.
Again by weakening, from (2) and (3) we obtain derivations of (2′) C,¬A,¬A′ and
(3′) A′, A,¬C, respectively. We apply the inductive hypothesis of (A) that is that cut
holds for the formula A (of a given complexity c) and conclude as follows:

(1
′
) Γ(¬(C ⇒ D), [A

′
: Δ,¬D])

(II
′
) C, A,¬A

′
(2

′
) C,¬A,¬A

′

(cut)

C,¬A
′

(III
′
) A

′
,¬A,¬C (3

′
) A

′
, A, ¬C

(cut)

A
′
, ¬C

(⇒−)

Γ (¬(C ⇒ D), [A
′
: Δ])

�Theorem 3 (Completeness of NS). If Γ is valid, then it is derivable in NS.

Proof. We prove that the axioms are derivable and that the set of derivable formulas is
closed under (Modus Ponens), (RCEA), and (RCK). A derivation of an instance of ID
has been shown in Figure 2. Here is a derivation of an instance of CEM:

(AX)
[A : B,¬B]

(AX)
A,¬A

(AX)
¬A,A

(CEM)
[A : B], [A : ¬B]

(⇒+)
[A : B], A ⇒ ¬B

(⇒+)
A ⇒ B,A ⇒ ¬B

(∨+)
(A ⇒ B) ∨ (A ⇒ ¬B)

For (Modus Ponens), the proof is standard and is omitted to save space. For (RCEA),
we have to show that if A ↔ B is derivable, then also (A ⇒ C) ↔ (B ⇒ C) is
derivable. As usual, A ↔ B is an abbreviation for (A → B) ∧ (B → A). Since
A ↔ B is derivable, and since (∧+) and (→+) are invertible (Lemma 3), we have a
derivation for A → B, then for (1) ¬A,B, and for B → A, then for (2) A,¬B. We
derive (A⇒ C)→ (B ⇒ C) (the other half is symmetric) as follows:

(AX)
¬(A ⇒ C), [B : C,¬C] (1) ¬A,B (2) A,¬B

(⇒−)
¬(A ⇒ C), [B : C]

(⇒+)
¬(A ⇒ C), B ⇒ C

(→+)
(A ⇒ C) → (B ⇒ C)

For (RCK), suppose that we have a derivation in NS of (A1 ∧ . . . ∧ An) → B. Since
(→+) is invertible (Lemma 3), we have also a derivation of B,¬(A1 ∧ . . .∧An). Since
(∧−) is also invertible, then we have a derivation of B,¬A1, . . . ,¬An and, by weaken-
ing (Lemma 2), of (1) ¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2, . . . ,¬An],
from which we conclude as follows:

Nested Sequent Calculi for Conditional Logics 23

(1) ¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2, . . . ,¬An]
. . .

(⇒−)
¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1,¬A2]

(AX)
C,¬C

(AX)
¬C,C

(⇒−)
¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B,¬A1]

(AX)
C,¬C

(AX)
¬C,C

(⇒−)
¬(C ⇒ A1), . . . ,¬(C ⇒ An), [C : B]

(∧−)
¬(C ⇒ A1 ∧ . . . ∧C ⇒ An), [C : B]

(⇒+)
¬(C ⇒ A1 ∧ . . . ∧ C ⇒ An), C ⇒ B

(→+)
(C ⇒ A1 ∧ . . . ∧ C ⇒ An) → (C ⇒ B)

�

3.4 Termination and Complexity of NS

The rules (⇒−), (CEM), and (ID) may be applied infinitely often. In order to obtain a
terminating calculus, we have to put some restrictions on the application of these rules.
Let us first consider the systems without CEM. We put the following restrictions:

– apply (⇒−) to Γ (¬(A⇒ B), [A′ : Δ]) only if ¬B �∈ Δ;
– apply (ID) to Γ ([A : Δ]) only if ¬A �∈ Δ.

These restrictions impose that (⇒−) is applied only once to each formula ¬(A ⇒ B)
with a context [A′ : Δ] in each branch, and that (ID) is applied only once to each
context [A : Δ] in each branch.

Theorem 4. The calculi NS with the termination restrictions is sound and complete
for their respective logics.

Proof. We show that it is useless to apply the rules (⇒−) and (ID) without the re-
strictions. We only present the case of (⇒−). Suppose it is applied twice on Γ ([A :
Δ], [B : Σ]) in a branch. Since (⇒−) is “weakly” invertible, we can assume, with-
out loss of generality, that the two applications of (⇒−) are consecutive, starting from
Γ (¬(A⇒ B), [A′ : Δ,¬B,¬B]). By Lemma 4 (contraction), we have a derivation of
Γ ([A : Δ,Σ], [B : Σ]), and we can conclude with a (single) application of (⇒−). �
The above restrictions ensure a terminating proof search for the nested sequents for CK
and CK+ID, in particular:

Theorem 5. The calculiNCK andNCK+ ID with the termination restrictions give
a PSPACE decision procedure for their respective logics.

For the systems allowing CEM, we need a more sophisticated machinery2, that allows
us also to conclude that:

Theorem 6. The calculiNCK+CEM andNCK+CEM+ID with the termination
restrictions give a PSPACE decision procedure for their respective logics.

It is worth noticing that our calculi match the PSPACE lower-bound of the logics CK
and CK+ID, and are thus optimal with respect to these logics. On the contrary the
calculi for CK+CEM(+ID) are not optimal, since validity in these logics is known to be
decidable in CONP. In future work we shall try to devise an optimal decision procedure
by adopting a suitable strategy.

2 The termination of the calculi with (CEM) can be found in [1].

24 R. Alenda, N. Olivetti, and G.L. Pozzato

4 A Calculus for the Flat Fragment of CK+CSO+ID

In this section we show another application of nested sequents to give an analytic calcu-
lus for the flat fragment, i.e. without nested conditionals⇒, of CK+CSO+ID. This logic
is well-known and it corresponds to logic C, the logic of cumulativity, the weakest sys-
tem in the family of KLM logics [15]. Formulas are restricted to boolean combinations
of propositional formulas and conditionals A ⇒ B where A and B are propositionals.
A sequent has then the form:

A1, . . . , Am, [B1 : Δ1], . . . , [Bm : Δm]

where Bi and Δi are propositional. The logic has also an alternative semantics in
terms of weak preferential models. The rules of NCK + CSO + ID are those ones
of NCK + ID (restricted to the flat fragment) where the rule (⇒−) is replaced by the
rule (CSO):

Γ,¬(C ⇒ D), [A : Δ,¬D] Γ,¬(C ⇒ D), [A : C] Γ,¬(C ⇒ D), [C : A]
(CSO)

Γ,¬(C ⇒ D), [A : Δ]

A derivation of an instance of CSO is easy and left to the reader. More interestingly, in
Figure 3 we give an example of derivation of the cumulative axiom ((A⇒ B)∧ (A⇒
C))→ (A ∧B)⇒ C.

Fig. 3. A derivation of the cumulative axiom ((A ⇒ B) ∧ (A ⇒ C)) → (A ∧ B) ⇒ C. We
omit the first propositional steps, and we let Σ = ¬(A⇒ B),¬(A⇒ C).

Definition 5. A sequent Γ is reduced if it has the form Γ = Λ,Π, [B1 : Δ1], . . . , [Bm :
Δm], where Λ is a multiset of literals and Π is a multiset of negative conditionals.

The following proposition is a kind of disjunctive property for reduced sequents.

Proposition 1. Let Γ = Λ,Π, [B1 : Δ1], . . . , [Bm : Δm] be reduced, if Γ is derivable
then for some i, the sequent Λ,Π, [Bi : Δi] is (height-preserving) derivable.

Nested Sequent Calculi for Conditional Logics 25

Proposition 2. Let Γ = Σ, [B1 : Δ1], . . . , [Bm : Δm] be any sequent, if Γ is derivable
then it can be (height-preserving) derived from some reduced sequents Γi = Σj, [B1 :
Δ1], . . . , [Bm : Δm]. Moreover all rules applied to derive Γ from Γi are either propo-
sitional rules or the rule (⇒+).

Proposition 2 can be proved by permuting (downwards) all the applications of proposi-
tional and (⇒+) rules.

Proposition 3. Let Γ = Σ, [A : Δ], [A : Δ] be derivable, then Γ = Σ, [A : Δ] is
(height-preserving) derivable.

Proof. By Proposition 2, Γ is height-preserving derivable from a set of reduced se-
quents Σi, [A : Δ], [A : Δ]. By Proposition 1, each Σi, [A : Δ] is derivable; we then
obtain Σ, [A : Δ] by applying the same sequence of rules. �

Theorem 7. Contraction is admissible inNCK+CSO+ID: if Γ (F, F) is derivable,
then Γ (F) is (height-preserving) derivable, where F is either a formula or a nested
sequent [A : Σ].

Proof. (Sketch) If F is a formula the proof is essentially the same as the one for Lemma
4 in NS. If F = [A : Σ] we apply Proposition 3. �

Observe that the standard inductive proof of contraction does not work in the case
F = [A : Δ], that is why we have obtained it by Proposition 3 which in turn is based
on Proposition 1, a kind of disjunctive property. The same argument does not extend
immediatly to the full language with nested conditionals.

As usual, we obtain completeness by cut-elimnation. As in case of NS, the proof is
by mutual induction together with a substitution property and is left to the reader due to
space limitations.

Theorem 8. In NCK + CSO + ID, the following propositions hold: (A) If Γ (F)
and Γ (¬F) are derivable, then so is Γ ; (B) if (I) Γ ([A : Δ]), (II) Γ ([A : A′]), and
(III) Γ ([A′ : A]) are derivable, then so is Γ ([A′ : Δ]).

Theorem 9. The calculus NCK + CSO + ID is sound and complete for the flat
fragment of CK+CSO+ID.

Proof. For soundness just check the validity of the (CSO) rule. For completeness, one
can derive all instances of CSO axioms. Moreover the rules RCK and RCEA are deriv-
able too (by using the rules (ID) and (CSO)). For closure under modus ponens, as
usual we use the previous Theorem 8. Details are left to the reader. �

Termination of this calculus can be proved similarly to Theorem 5, details will be given
in a full version of the paper.

Theorem 10. The calculusNCK +CSO+ ID with the termination restrictions give
a PSPACE decision procedure for the flat fragment of CK+CSO+ID.

26 R. Alenda, N. Olivetti, and G.L. Pozzato

We do not know whether this bound is optimal. The study of the optimal complexity for
CK+CSO+ID is still open. A NEXP tableau calculus for cumulative logic C has been
proposed in [11]. In [20] the authors provide calculi for full (i.e. with nested condition-
als) CK+ID+CM and CK+ID+CM+CA: these logics are related to CSO, but they do
not concide with it, even for the flat fragment as CSO = CM+RT (restricted transitivity).
Their calculi are internal, but rather complex as the make use of ingenious but highly
combinatorial rules. They obtain a PSPACE bound in all cases.

5 Conclusions and Future Works

In this work we have provided nested sequent calculi for the basic normal conditional
logic and a few extensions of it. The calculi are analytic and their completeness is
established via cut-elimination. The calculi can be used to obtain a decision procedure,
in some cases of optimal complexity. We have also provided a nested sequent calculus
for the flat fragment of CK+CSO+ID, corresponding to the cumulative logic C of the
KLM framework. Even if for some of the logics considered in this paper there exist
other proof systems, we think that nested calculi are particularly natural internal calculi.
Obviously, it is our goal to extent them to a wider spectrum of conditional logics, in
particular preferential conditional logics, which still lack “natural” and internal calculi.
We also intend to study improvements of the calculi towards efficiency, based on a
better control of duplication. Finally, we wish to take advantage of the calculi to study
logical properties of the corresponding systems (disjunction property, interpolation) in
a constructive way.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequents for Conditional Logics: preliminary
results, Technical Report (2012),
http://www.di.unito.it/˜pozzato/termcso.pdf

2. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cu-
mulative consequence relations. Journal of Logic and Computation 12(6), 1027–1060 (2002)

3. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts in Logic and Games,
Special Issue on New Perspectives on Games and Interaction 4, 9–31 (2008)

4. Board, O.: Dynamic interactive epistemology. Games and Economic Behavior 49(1), 49–80
(2004)

5. Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68(1),
87–154 (1994)

6. Brünnler, K.: Deep sequent systems for modal logic. Archive for Mathematical Logic 48(6),
551–577 (2009), http://www.iam.unibe.ch/˜kai/Papers/2009dssml.pdf

7. Brünnler, K.: Nested sequents (2010), habilitation Thesis,
http://arxiv.org/pdf/1004.1845

8. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure Applied Logic 163(3),
291–313 (2012)

9. Gent, I.P.: A sequent or tableaux-style system for lewis’s counterfactual logic vc. Notre Dame
Journal of Formal Logic 33(3), 369–382 (1992)

10. Ginsberg, M.L.: Counterfactuals. Artificial Intelligence 30(1), 35–79 (1986)

http://www.di.unito.it/~pozzato/termcso.pdf
http://www.iam.unibe.ch/~kai/Papers/2009dssml.pdf
http://arxiv.org/pdf/1004.1845

Nested Sequent Calculi for Conditional Logics 27

11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi for KLM
Logics of Nonmonotonic Reasoning. ACM Trans. Comput. Logic 10(3) (2009)

12. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong ramsey test: A
logical formalization. Artificial Intelligence 168(1-2), 1–37 (2005)

13. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based
conditional logics: Pcl and its extensions. ACM Trans. Comput. Logic 10(3) (2009)

14. Grahne, G.: Updates and counterfactuals. Journal of Logic and Computation 8(1), 87–117
(1998)

15. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

16. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)
17. Nute, D.: Topics in conditional logic. Reidel, Dordrecht (1980)
18. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A Sequent Calculus and a Theorem Prover for

Standard Conditional Logics. ACM Trans. Comput. Logic 8(4) (2007)
19. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Log-

ical Methods in Computer Science 7(1) (2011)
20. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cau-

tious monotonicity. In: ECAI. pp. 707–712 (2010)
21. de Swart, H.C.M.: A gentzen- or beth-type system, a practical decision procedure and a

constructive completeness proof for the counterfactual logics vc and vcs. Journal of Symbolic
Logic 48(1), 1–20 (1983)

Conflict-Tolerant Semantics

for Argumentation Frameworks

Ofer Arieli

School of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

Abstract. We introduce new kinds of semantics for abstract argumenta-
tion frameworks, in which, while all the accepted arguments are justified
(in the sense that each one of them must be defended), they may still at-
tack each other. The rationality behind such semantics is that in reality
there are situations in which contradictory arguments coexist in the same
theory, yet the collective set of accepted arguments is not trivialized, in
the sense that other arguments may still be rejected.

To provide conflict-tolerant semantics for argumentation frameworks
we extend the two standard approaches for defining coherent (conflict-
free) semantics for argumentation frameworks: the extension-based ap-
proach and the labeling-based approach. We show that the one-to-one
relationship between extensions and labelings of conflict-free semantics is
carried on to a similar correspondence between the extended approaches
for providing conflict-tolerant semantics. Thus, in our setting as well,
these are essentially two points of views for the same thing.

1 Introduction and Motivation

An abstract argumentation framework consists of a set of (abstract) arguments
and a binary relation that intuitively represents attacks between arguments. A
semantics for such a structure is an indication which arguments can be col-
lectively accepted. A starting point of all the existing semantics for abstract
argumentation frameworks is that their set(s) of acceptable arguments must be
conflict-free, that is: an accepted argument should not attack another accepted
argument. This means, in particular, a dismissal of any self-referring argument
and a rejection of any contradictory fragment of the chosen arguments. However,
in everyday life it is not always the case that theories are completely coherent
although each of their arguments provides a solid assertion, and so contradic-
tory sets of arguments should sometimes be accepted and tolerated. Moreover,
a removal of contradictory indications in such theories may imply a loss of in-
formation and may lead to erroneous conclusions.

In this paper, we consider a more liberal approach for argumentation seman-
tics, adhering conflicting indications (and so inconsistencies). For this, we extend
the two most standard approaches for defining semantics to abstract argumen-
tation frameworks as follows:

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 28–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Conflict-Tolerant Semantics for Argumentation Frameworks 29

– Extension-Based Semantics. Existing semantics that are defined by this
method share two primary principles: admissibility and conflict-freeness (see,
e.g., [2, 3]). The former principle, guaranteeing that an extension Ext ‘de-
fends’ all of its elements (i.e., Ext ‘counterattacks’ each argument that at-
tacks some e ∈ Ext), is preserved also in our framework, since otherwise
acceptance of arguments would be an arbitrary choice. However, the other
principle is lifted, since – as indicated above – we would like to permit, in
some cases, conflicting arguments.

– Labeling-Based Semantics. We extend the traditional three-state labelings of
arguments (accepted, rejected, undecided – see [5, 7]) by a fourth state, so
now apart of accepting or rejecting an argument, we have two additional
states, representing two opposite reasons for avoiding a definite opinion
about the argument as hand: One (‘none’), indicating that there is too lit-
tle evidence for reaching a precise conclusion about the argument’s validity,
and the other (‘both’) indicating ‘too much’ (contradictory) evidence, i.e.,
the existence of both supportive and opposing arguments concerning the
argument under consideration.

Both of these generalized approaches are a conservative extension of the stan-
dard approaches of giving semantics to abstract argumentation systems, in the
sense that they do not exclude standard extensions or labelings, but rather offer
additional points of views to the state of affairs as depicted by the argumenta-
tion framework. This allows us to introduce a brand new family of semantics
that accommodate conflicts in the sense that internal attacks among accepted
arguments are allowed, while the set of accepted arguments is not trivialized
(i.e., it is not the case that every argument is necessarily accepted).

We introduce an extended set of criteria for selecting the most plausible four-
valued labelings for an argumentation framework. These criteria are then justified
by showing that the one-to-one relationship between extensions and labelings ob-
tained for conflict-free semantics (see [7]) is carried on to a similar correspondence
between the extended approaches for providing conflict-tolerant (paraconsistent)
semantics. This also shows that in the case of conflict-tolerant semantics as well,
extensions and labelings are each other’s dual.

2 Preliminaries

Let us first recall some basic definitions and useful notions regarding abstract
argumentation theory.

Definition 1. A (finite) argumentation framework [8] is a pairAF = 〈Args, att〉,
where Args is a finite set, the elements of which are called arguments , and att
is a binary relation on Args×Args whose instances are called attacks . When
(A,B) ∈ att we say that A attacks B (or that B is attacked by A).

Given an argumentation framework AF = 〈Args, att〉, in the sequel we shall
use the following notations for an argument A ∈ Args and a set of arguments
S ⊆ Args:

30 O. Arieli

– The set of arguments that are attacked by A is A+ = {B ∈ Args | att(A,B)}.
– The set of arguments that attack A is A− = {B ∈ Args | att(B,A)}.

Similarly, S+ =
⋃

A∈S A
+ and S− =

⋃
A∈S A

− denote, respectively, the set of
arguments that are attacked by some argument in S and the set of arguments
that attack some argument in S. Accordingly, we denote:

– The set of arguments that are defended by S: Def(S)={A∈Args | A−⊆S+}.

Thus, an argument A is defended by S if each attacker of A is attacked by (an
argument in) S. The two primary principles of acceptable sets of arguments are
now defined as follows:

Definition 2. Let AF = 〈Args , att〉 be an argumentation framework.

– A set S ⊆ Args is conflict-free (with respect to AF) iff S ∩ S+ = ∅.
– A conflict-free set S ⊆ Args is admissible for AF , iff S ⊆ Def(S).

Conflict-freeness assures that no argument in the set is attacked by another
argument in the set, and admissibility guarantees, in addition, that the set is
self defendant. A stronger notion is the following:

– A conflict-free set S ⊆ Args is complete for AF , iff S = Def(S).

The principles defined above are a cornerstone of a variety of extension-based
semantics for an argumentation framework AF , i.e., formalizations of sets of
arguments that can collectively be accepted in AF (see, e.g., [8, 12]). In what
follows, we shall usually denote an extension by Ext. This includes, among oth-
ers, grounded extensions (the minimal set, with respect to set inclusion, that
is complete for AF), preferred extensions (the maximal subset of Args that is
complete for AF), stable extensions (any complete subset Ext of Args for which
Ext+ = Args\Ext), and so forth.1

An alternative way to describe argumentation semantics is based on the con-
cept of an argument labeling [5, 7]. The main definitions and the relevant results
concerning this approach are surveyed below.

Definition 3. Let AF = 〈Args, att〉 be an argumentation framework. An ar-
gument labeling is a complete function lab : Args → {in, out, undec}. We shall
sometimes write In(lab) for {A ∈ Args | lab(A) = in}, Out(lab) for {A ∈ Args |
lab(A) = out} and Undec(lab) for {A ∈ Args | lab(A) = undec}.

In essence, an argument labeling expresses a position on which arguments one
accepts (labeled in), which arguments one rejects (labeled out), and which argu-
ments one abstains from having an explicit opinion about (labeled undec). Since
a labeling lab of AF = 〈Args , att〉 can be seen as a partition of Args , we shall
sometimes write it as a triple 〈In(lab),Out(lab),Undec(lab)〉.
1 Common definitions of conflict-free extension-based semantics for argumentation
frameworks, different methods for computing them, and computational complexity
analysis appear, e.g., in [1, 6, 8, 9, 10, 11].

Conflict-Tolerant Semantics for Argumentation Frameworks 31

Definition 4. Consider the following conditions on a labeling lab and an argu-
ment A in a framework AF = 〈Args , att〉:
Pos1 If lab(A) = in, there is no B ∈ A− such that lab(B) = in.
Pos2 If lab(A) = in, for every B ∈ A− it holds that lab(B) = out.
Neg If lab(A) = out, there exists some B ∈ A− such that lab(B) = in.
Neither If lab(A) = undec, not for every B ∈ A− it holds that lab(B) = out

and there does not exist a B ∈ A− such that lab(B) = in.

Given a labeling lab of an argumentation framework 〈Args , att〉, we say that

– lab is conflict-free if for every A ∈ Args it satisfies conditions Pos1 and Neg,
– lab is admissible if for every A ∈ Args it satisfies conditions Pos2 and Neg,
– lab is complete if it is admissible and for every A ∈ Args it satisfies Neither.

Again, the labelings considered above serve as a basis for a variety of labeling-
based semantics that have been proposed for an argumentation framework AF ,
each one of which is a counterpart of a corresponding extension-based semantics.
This includes, for instance, the grounded labeling (a complete labeling for AF
with a minimal set of in-assignments), the preferred labeling (a complete labeling
for AF with a maximal set of in-assignments), stable labelings (any complete
labeling of AF without undec-assignments), and so forth.

The next correspondence between extensions and labelings is shown in [7]:

Proposition 1. Let AF = 〈Args , att〉 be an argumentation framework, CFE
the set of all conflict-free extensions of AF , and CFL the set of all conflict-
free labelings of AF . Consider the function LEAF : CFL → CFE, defined
by LEAF (lab) = In(lab) and the function ELAF : CFE → CFL, defined by
ELAF(Ext) = 〈Ext,Ext+,Args \ (Ext ∪ Ext+)〉. It holds that:

1. If Ext is an admissible (respectively, complete) extension, then ELAF (Ext)
is an admissible (respectively, complete) labeling.

2. If lab is an admissible (respectively, complete) labeling, then LEAF (lab) is
an admissible (respectively, complete) extension.

3. When the domain and range of ELAF and LEAF are restricted to complete
extensions and complete labelings of AF , then these functions become bijec-
tions and each other’s inverses, making complete extensions and complete
labelings one-to-one related.

3 Conflicts Tolerance

In this section we extend the two approaches considered previously in order to
define conflict-tolerant semantics for abstract argumentation frameworks. Recall
that our purpose here is twofold:

1. Introducing self-referring argumentation and avoiding information loss that
may be caused by the conflict-freeness requirement (thus, for instance, it may
be better to accept extensions with a small fragment of conflicting arguments
than, say, sticking to the empty extension).

32 O. Arieli

2. Refining the undec-indication in standard labeling systems, which reflects (at
least) two totally different situations: One case is that the reasoner abstains
from having an opinion about an argument because there are no indications
whether this argument should be accepted or rejected. Another case that
may cause a neutral opinion is that there are simultaneous considerations
for and against accepting a certain argument. These two cases should be
distinguishable, since their outcomes may be different.

3.1 Four-Valued Paraconsistent Labelings

Item 2 above may serve as a motivation for the following definition:

Definition 5. Let AF = 〈Args, att〉 be an argumentation framework. A four-
valued labeling for AF is a complete function lab : Args → {in, out, none, both}.
We shall sometimes write None(lab) for {A ∈ Args | lab(A) = none} and
Both(lab) for {A ∈ Args | lab(A) = both}.

As before, the labeling function reflects the state of mind of the reasoner regard-
ing each argument in AF . The difference is, of-course, that four-valued labelings
are a refinement of ‘standard’ labelings (in the sense of Definition 3), so that
four states are allowed. Thus, we continue to denote by In(lab) the set of argu-
ments that one accepts and by Out(lab) the set of arguments that one rejects,
but now the set Undec(lab) is splitted to two new sets: None(lab), consisting of
arguments that may neither be accepted nor rejected, and Both(lab), consisting
of arguments who have both supportive and rejective evidences. Since a four-
valued labeling lab is a partition of Args, we sometimes write it as a quadruple
〈In(lab),Out(lab),None(lab),Both(lab)〉.

Definition 6. Let AF = 〈Args , att〉 be an argumentation framework.

– Given a set Ext ⊆ Args of arguments, the function that is induced by (or, is
associated with) Ext is the four-valued labeling pELAF (Ext) of AF ,2 defined
for every A ∈ Args as follows:

pELAF(Ext)(A) =

⎧⎪⎪⎨⎪⎪⎩
in if A ∈ Ext and A �∈ Ext+,
both if A ∈ Ext and A ∈ Ext+,
out if A �∈ Ext and A ∈ Ext+,
none if A �∈ Ext and A �∈ Ext+.

A four-valued labeling that is induced by some subset of Args is called a
paraconsistent labeling (or a p-labeling) of AF .

– Given a four-valued labeling lab of AF , the set of arguments that is induced
by (or, is associated with) lab is defined by

pLEAF(lab) = In(lab) ∪ Both(lab).

2 Here, pEL stands for a paraconsistent-based conversion of extensions to labelings.

Conflict-Tolerant Semantics for Argumentation Frameworks 33

The intuition behind the transformation from a labeling lab to its extension
pLEAF (lab) is that any argument for which there is some supportive indication
(i.e., it is labeled in or both) should be included in the extension (even if there
are also opposing indications). The transformation from an extension Ext to its
induced labeling function pELAF(Ext) is motivated by the aspiration to accept
the arguments in the extension by marking them as either in or both. Since Ext
is not necessarily conflict-free, two labels are required to indicate whether the
argument at hand is attacked by another argument in the extension, or not.

Definition 6 indicates a one-to-one correspondence between sets of arguments
of an argumentation framework and the labelings that are induced by them.
It follows that while there are 4|Args| four-valued labelings for an argumenta-
tion framework AF = 〈Args, att〉, the number of paraconsistent labelings (p-
labelings) for AF is limited by the number of the subsets of Args, i.e., 2|Args|.

Example 1. Consider the argumentation framework AF1 of Figure 1.

Fig. 1. The argumentation framework AF1

To compute the paraconsistent labelings of AF1, note for instance that if for
some Ext ⊆ Args it holds that pELAF(Ext)(A) = in, then A ∈ Ext and A �∈
Ext+, which implies, respectively, that B ∈ Ext+ and B �∈ Ext, thus B must
be labeled out. Similarly, if A is labeled out then B must be labeled in, if A is
labeled both, B must be labeled both as well, and if A is labeled none, so B is
labeled none. These labelings correspond to the four possible choices of either
accepting exactly one of the mutually attacking arguments A and B, accepting
both of them, or rejecting both of them. In turn, each such choice is augmented
with four respective options for labeling C and D. Table 1 lists the corresponding
sixteen p-labelings of AF1.

A p-labeling may be regarded as a description of the state of affairs for any
chosen set of arguments in a framework. For instance, the second p-labeling in
Table 1 (Example 1) indicates that if {A,C,D} is the accepted set of arguments,
then B is rejected (labeled out) since it is attacked by an accepted argument,
and the status of D is ambiguous (so it is labeled both), since on one hand it is
included in the set of accepted arguments, but on the other hand it is attacked by
an accepted argument. Note, further, that choosing D as an accepted argument
in this case is somewhat arguable, since D is not defended by the set {A,C,D}.

The discussion above implies that the role of a p-labeling is indicative rather
than justificatory; A labeling that is induced by Ext describes the role of each
argument in the framework according to Ext, but it does not justify the choice

34 O. Arieli

Table 1. The p-labelings of AF1

A B C D Induced set

1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set

9 none none in out {C}
10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

of Ext as a plausible extension for the framework. For the latter, we should pose
further restrictions on the p-labelings. This is what we do next.

Definition 7. Given an argumentation framework AF = 〈Args, att〉, a
p-labeling lab for AF is called p-admissible, if it satisfies the following rules:

pIn If lab(A) = in, for every B ∈ A− it holds that lab(B) = out.
pOut If lab(A) = out, there exists B ∈ A− such that lab(B) ∈ {in, both}.
pBoth If lab(A) = both, for every B ∈ A− it holds that lab(B) ∈ {out, both}

and there exists some B ∈ A− such that lab(B) = both.
pNone If lab(A)= none, for every B ∈ A− it holds that lab(B) ∈ {out, none}.
The constraints in Definition 7 may be strengthen as follows:

Definition 8. Given an argumentation framework AF = 〈Args, att〉, a
p-labeling lab for AF is called p-complete, if it satisfies the following rules:

pIn+ lab(A) = in iff for every B ∈ A− it holds that lab(B) = out.
pOut+ lab(A) = out iff there is B ∈ A− such that lab(B) ∈ {in, both}

and there is some B ∈ A− such that lab(B) ∈ {in, none}.
pBoth+ lab(A) = both iff for every B ∈ A− it holds that lab(B) ∈ {out, both}

and there exists some B ∈ A− such that lab(B) = both.
pNone+ lab(A) = none iff for every B ∈ A− it holds that lab(B) ∈ {out, none}

and there exists some B ∈ A− such that lab(B) = none.

Example 2. Consider again the p-labelings for AF1 (Example 1), listed in
Table 1.

– The rule pIn is violated by labelings 3, 9, 10, 11, and the rule pBoth is
violated by labelings 2, 7, 8, 10. Therefore, the p-admissible labelings in this
case are 1, 4, 5, 6, 12–16.

– Among the p-admissible labelings in the previous item, labelings 4 and 6
violate pNone+, and labelings 13–15 violate pOut+. Thus, the p-complete
labelings of AF1 are 1, 5, 12 and 16.3

3 Intuitively, these labelings represent the most plausible states corresponding to the
four possible choices of arguments among the mutually attacking A and B.

Conflict-Tolerant Semantics for Argumentation Frameworks 35

In Section 3.3 and Section 4 we shall justify the rules in Definitions 7 and 8
by showing the correspondence between p-admissible/p-complete labelings and
related extensions.

3.2 Paraconsistent Extensions

Recall that Item 1 at the beginning of Section 3 suggests that the ‘conflict-
freeness’ requirement in Definition 2 may be lifted. However, the other properties
in the same definition, implying that an argument in an extension must be
defended, are still necessary.

Definition 9. Let AF = 〈Args , att〉 be an argumentation framework and let
Ext ⊆ Args. We say that Ext is a paraconsistently admissible (or: p-admissible)
extension for AF if Ext ⊆ Def(Ext). Ext is a paraconsistently complete (or:
p-complete) extension for AF if Ext = Def(Ext).

Thus, every admissible (respectively, complete) extension for AF is also p-
admissible (respectively, p-complete) extension for AF , but not the other way
around.

It is well-known that every argumentation framework has at least one complete
extension. However, there are cases (see, e.g., the argumentation frameworkAF2

in Figure 2) that the only complete extension for a framework is the empty
set. The next proposition shows that this is not the case regarding p-complete
extensions.

Fig. 2. The argumentation framework AF2

Proposition 2. Any argumentation framework has a nonempty p-complete
extension.4

Example 3. The argumentation framework AF2 that is shown in Figure 2 has
two p-complete extensions: ∅ (which is also the only complete extension of AF2),
and {A,B,C}.

4 Due to lack of space proofs are omitted.

36 O. Arieli

3.3 Relating Paraconsistent Extensions and Labelings

We are now ready to consider the extension-based semantics induced by para-
consistent labelings. We show, in particular, that as in the case of (conflict-free)
complete labelings and (conflict-free) complete extensions, there is a one-to-one
correspondence between them, thus they represent two equivalent approaches
for giving conflict-tolerant semantics to abstract argumentation frameworks.

Proposition 3. If Ext is a p-admissible extension of AF then pELAF (Ext) is
a p-admissible labeling of AF .

Proposition 4. If lab is a p-admissible labeling of AF then pLEAF (lab) is a
p-admissible extension for AF .

Proposition 5. Let AF = 〈Args , att〉 be an argumentation framework.

– For every p-admissible labeling lab for AF , pELAF (pLEAF (lab)) = lab.
– For every p-admissible extension Ext of AF , pLEAF (pELAF(Ext)) = Ext.

By Propositions 3, 4, and 5, we conclude the following:

Corollary 1. The functions pELAF and pLEAF , restricted to the p-admissible
labelings and the p-admissible extensions of AF , are bijective, and are each
other’s inverse.

It follows that p-admissible extensions and p-admissible labelings are, in essence,
different ways of describing the same thing (see also Figure 3 below).

Note 1. In a way, the correspondence between p-admissible extensions and p-
admissible labelings of an argumentation framework is tighter than the corre-
spondence between (conflict-free) admissible extensions and (conflict-free) ad-
missible labelings, as depicted in [7] (see Section 2). Indeed, as indicated in [7],
admissible labelings and admissible extensions have a many-to-one relationship:
each admissible labeling is associated with exactly one admissible extension,
but an admissible extension may be associated with several admissible label-
ings. For instance, in the argumentation framework AF1 of Figure 1 (Exam-
ple 1), lab1 = 〈{B}, {A,C}, {D}〉 and lab2 = 〈{B}, {A}, {C,D}〉 are different
admissible labelings that are associated with the same admissible extension {B}.
Note that, viewed as four-valued labelings into {in, out, none}, only lab1 is p-
admissible, since lab2 violates pNone. Indeed, the p-admissible extension {B}
is associated with exactly one p-admissible labeling (number 6 in Table 1), as
guaranteed by the last corollary.

Let us now consider p-complete labelings.

Proposition 6. If Ext is a p-complete extension of AF then pELAF(Ext) is a
p-complete labeling of AF .

Proposition 7. If lab is a p-complete labeling of AF then pLEAF (lab) is a
p-complete extension for AF .

Conflict-Tolerant Semantics for Argumentation Frameworks 37

Proposition 8. Let AF be an argumentation framework.

– For every p-complete labeling lab for AF , pELAF(pLEAF (lab)) = lab.
– For every p-complete extension Ext of AF , pLEAF (pELAF(Ext)) = Ext.

By Propositions 6, 7, and 8, we conclude the following:

Corollary 2. The functions pELAF and pLEAF , restricted to the p-complete
labelings and the p-complete extensions of AF , are bijective, and are each other’s
inverse.

It follows that p-complete extensions and p-complete labelings are different ways
of describing the same thing (see also Figure 3). This is in correlation with the
results for conflict-free semantics, according to which there is a one-to-one rela-
tionship between complete extensions and complete labelings (Proposition 1).

Example 4. Consider again the framework AF1 of Example 1.

1. By Example 2 and Propositions 4, the p-admissible extensions of AF1 are
induced by labelings 1, 4, 5, 6, 12–16 in Table 1, i.e., {A,C}, {A}, {B,D},
{B}, ∅, {A,B,D}, {A,B}, {A,B,C}, and {A,B,C,D} (respectively).

2. By Example 2 and Propositions 7, the p-complete extensions of AF1 are
those that are induced by labelings 1, 5, 12 and 16 in Table 1, namely
{A,C}, {B,D}, ∅, and {A,B,C,D} (respectively).

4 From Conflict-Tolerant to Conflict-Free Semantics

In this section we show that the variety of ‘standard’ semantics for argumentation
frameworks, based on conflict-free extensions and conflict-free labeling functions,
are still available in our conflict-tolerant setting. First, we consider admissible
extensions (Definition 2) and admissible labelings (Definition 4).

Proposition 9. Let lab be a p-admissible labeling for an argumentation frame-
work AF . If lab is into {in, out, none},5 then it is admissible.

As Note 1 shows, the converse of the last proposition does not hold. Indeed, as
indicated by Caminada and Gabbay [7], there is a many-to-one relationship be-
tween admissible labelings and admissible extensions. On the other hand, by the
next proposition (together with Corollary 2), there is a one-to-one relationship
between both-free p-admissible labelings and admissible extensions.

Proposition 10. Let AF = 〈Args, att〉 be an argumentation framework. Then

1. If lab is a both-free p-admissible labeling for AF , then pLEAF (lab) is an
admissible extension of AF .

2. If Ext is an admissible extension of AF then pELAF(Ext) is a both-free
p-admissible labeling for AF .

5 In which case lab is called ‘both-free’.

38 O. Arieli

Let us now consider complete extensions and complete labelings. The next two
propositions are the analogue, for complete labelings and complete extensions,
of Propositions 9 and 10:

Proposition 11. Let lab be a p-complete labeling for an argumentation frame-
work AF . If lab is into {in, out, none}, then it is complete.

Proposition 12. Let AF = 〈Args, att〉 be an argumentation framework. Then

1. If lab is a both-free p-complete labeling for AF , then pLEAF (lab) is a com-
plete extension of AF .

2. If Ext is a complete extension of AF then pELAF(Ext) is a both-free p-
complete labeling for AF .

Proposition 13. Let AF be an argumentation framework. Then lab is a com-
plete labeling for AF iff it is a both-free p-complete labeling for AF .

Figure 3 summarizes the relations between the conflict-free semantics and the
conflict-tolerant semantics considered so far (the arrows in the figure denote
“is-a” relationships, and the double-arrows denote one-to-one relationships).

Fig. 3. Conflict-free and conflict-tolerant semantics

By Proposition 13, a variety of conflict-free, extension-based (Dung-style)
semantics for abstract argumentation frameworks may be defined in terms of
both-free p-complete labelings. For instance,

Conflict-Tolerant Semantics for Argumentation Frameworks 39

– Ext is a grounded extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that there is no both-free p-complete labeling lab′′

of AF with In(lab′′) ⊂ In(lab).

– Ext is a preferred extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that there is no both-free p-complete labeling lab′′

of AF with In(lab) ⊂ In(lab′′).

– Ext is a semi-stable extension of AF iff it is induced by a both-free p-
complete labeling lab of AF such that there is no both-free p-complete la-
beling lab′′ of AF with None(lab′′) ⊂ None(lab).

– Ext is a stable extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that None(lab) = ∅.

By the last item, stable extensions correspond to {both, none}-free p-complete
labelings:

Corollary 3. Let AF = 〈Args, att〉 be an argumentation framework.

1. If lab is a {both, none}-free p-complete labeling for AF , then pLEAF (lab) is
a stable extension of AF .

2. If Ext is a stable extension of AF , then pELAF (Ext) is a {both, none}-free
p-complete labeling for AF .

Example 5. Consider again the framework AF1 of Example 1.

1. By Proposition 12, the complete extensions of AF1 are induced by the both-
free p-complete labelings, i.e., {A,C}, {B,D} and ∅ (which are the both-free
labelings among those mentioned in Items 2 of Examples 2 and 4).

2. By Corollary 3, the stable extensions of AF1 are those induced by the
none-free labelings among the labeling in the previous item, i.e., {A,C} and
{B,D}.

5 Conclusion

We have introduced a four-valued approach to provide conflict-tolerant semantics
for abstract argumentation frameworks. Such an approach may be beneficial for
several reasons:

– From a purely theoretical point of view, we have shown that the correla-
tion between the labeling-based approach and the extension-based approach
to argumentation theory is preserved also when conflict-freeness is aban-
don. Interestingly, as indicated in Note 1, in our framework this correlation
holds also between admissibility-based labelings and admissibility-based ex-
tensions, which is not the case in the conflict-free setting of [7].

– From a more pragmatic point of view, new types of semantics are introduced,
which accommodate conflicts, yet they are not trivialized by inconsistency.
It is shown that this setting is not a substitute of standard (conflict-free)
semantics, but rather a generalized framework, offering an option for inter-
attacks when such attacks make sense or are unavoidable.

40 O. Arieli

– Conflicts handling in argumentation systems turns out to be more evasive
than what it looks like at first sight. In fact, conflicts may implicitly arise even
in conflict-free semantics, because such semantics simulate binary attacks
and not collective conflicts (this is demonstrated in the last example of [2]).
In this respect, the possibility of having conflicts is not completely ruled
out even in some conflict-free semantics (such as CF2 and stage semantics;
see [2]), and our approach may be viewed as an explication of this possibility.

Our setting may be related to other settings that to the best of our knowl-
edge have not been connected so far to argumentation theory. For instance,
the resemblance to Belnap’s well-known four-valued framework for computer-
ized reasoning [4] is evident. Moreover, the use of four-valued labelings suggests
that the four-valued signed systems, used in [1] for representing conflict-free se-
mantics of argumentation frameworks, may be incorporated for representing the
conflict-tolerant semantics in this paper. We leave this for a future work.

Acknowledgement. Martin Caminada is thanked for useful discussions on
topics related to this paper.

References

[1] Arieli, O., Caminada, M.W.A.: A general QBF-based framework for formalizing
argumentation. In: Proc. COMMA 2012. IOS Press (in press, 2012)

[2] Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. The Knowledge Engineering Review 26(4), 365–410 (2011)

[3] Baroni, P., Giacomin, M.: Semantics for abstract argumentation systems. In: Rah-
wan and Simary [13], pp. 25–44

[4] Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Mod-
ern Uses of Multiple-Valued Logics, pp. 7–37. Reidel Publishing (1977)

[5] Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M.,
van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 111–123. Springer, Heidelberg (2006)

[6] Caminada, M., Carnielli, W.A., Dunne, P.: Semi-stable semantics. Journal of Logic
and Computation (in print, 2012)

[7] Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia
Logica. 93(2-3), 109–145 (2009)

[8] Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

[9] Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artificial Intelligence 171(10-15), 642–674 (2007)

[10] Dvořák, W.: On the Complexity of Computing the Justification Status of an
Argument. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI),
vol. 7132, pp. 32–49. Springer, Heidelberg (2012)

[11] Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2), 144–177 (2010)

[12] Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)

Knowledge Means ‘All’, Belief Means ‘Most’

Dimitris Askounis1, Costas D. Koutras2, and Yorgos Zikos3

1 Decision Support Systems Lab
School of Electrical and Comp. Engineering

National Technical University of Athens
9, Iroon Polytechniou Street, 15773 Athens, Greece

askous@epu.ntua.gr
2 Department of Computer Science and Technology

University of Peloponnese
End of Karaiskaki Street, 22 100 Tripolis, Greece

ckoutras@uop.gr
3 Graduate Programme in Logic, Algorithms and Computation (MPLA)

Department of Mathematics, University of Athens
Panepistimioupolis, 157 84 Ilissia, Greece

zikos@sch.gr

Abstract. We introduce a bimodal epistemic logic intended to capture knowl-
edge as truth in all epistemically alternative states and belief as a generalized
‘majority’ quantifier, interpreted as truth in many (a ‘majority’ of the) epistem-
ically alternative states. This doxastic interpretation is of interest in KR appli-
cations and it also has an independent philosophical and technical interest. The
logic KBM comprises an S4 epistemic modal operator, a doxastic modal opera-
tor of consistent and complete belief and ‘bridge’ axioms which relate knowledge
to belief. To capture the notion of a ‘majority’ we use the ‘large sets’ introduced
independently by K. Schlechta and V. Jauregui, augmented with a requirement of
completeness, which furnishes a ‘weak ultrafilter’ concept. We provide seman-
tics in the form of possible-worlds frames, properly blending relational semantics
with a version of general Scott-Montague (neighborhood) frames and we obtain
soundness and completeness results. We examine the validity of certain epistemic
principles discussed in the literature, in particular some of the ‘bridge’ axioms
discussed by W. Lenzen and R. Stalnaker, as well as the ‘paradox of the perfect
believer’, which is not a theorem of KBM.

Keywords: modal epistemic logic, majorities, large sets.

1 Introduction

Epistemic Logic is a very important research area, with interesting applications in
Computer Science and Artificial Intelligence, along with deeply interesting philosophi-
cal issues. Revolving around the fundamental notions of knowledge and belief, it is of
prime importance in Knowledge Representation as it is a valuable tool for modeling the
epistemic state and the dynamics of a rational agent acting in a complex environment.
The logic of knowledge and belief (epistemic and doxastic logic) has been success-
fully developed within the realm of Modal Logic. Its modern phase starts in 1962 with

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 41–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

42 D. Askounis, C.D. Koutras, and Y. Zikos

J. Hintikka’s book [17]. One of Hintikka’s major contributions has been the treatment
of knowledge as a modal operator, devising thus a semantics for epistemically pos-
sible worlds, similar to the relational semantics Kripke introduced for necessity; this
work has been a real breakthrough, critically contributing to the advent of relational
semantics, which made Modal Logic a flexible, useful tool [14].

When working with relational possible-worlds models, the modal operator is treated
as a universal quantifier: something is necessarily true inside a state s iff it is true in
every state considered as an alternative to s. In particular, when working with possible-
worlds models for epistemic logic, the key concept is indistinguishability: the epis-
temic alternatives to state s are the ones the agent cannot distinguish from s by his/her
knowledge. Given the different nature of knowledge and belief, what happens if one
tries to capture the distinction between the two propositional attitudes? In a very in-
teresting direction, a separate modal doxastic operator is introduced, interpreted over
a different binary accessibility relation between states. Thus, both modal operators for
knowledge and belief are treated as universal quantifiers, ranging over typically dif-
ferent sets of states. Here, we take a different approach which is novel and interesting
from many perspectives: the KR perspective, the philosophical and the technical per-
spective. We introduce a bimodal logic for knowledge and belief, in which knowledge
is a universal quantifier but belief is a ‘majority’ quantifier. There exists a single in-
distinguishability relation between states, knowledge is classically defined as ‘truth
in every epistemically alternative state’ but belief is captured as ‘truth in most of the
epistemically alternative states’.

Why might such an approach to knowledge and belief be interesting at the first place?
Because, we claim it successfully models situations of interest in Knowledge Represen-
tation; independently, it has also a separate technical interest, as it grafts a ‘majority’
notion from default reasoning into epistemic logic. Assume a rational agent whose epis-
temic state comprises items s/he knows and items s/he believes. As it is often the case
in planning, something is taken to be known if it holds in every scenario the agent can
consider while something is believed if it holds in most of these scenarios. It is inter-
esting to pin down the principles relating knowledge to belief in this kind of complex
epistemic state. On the other hand, there exist real-life situations involving this kind of
interaction between knowledge and belief. Let us consider the case of a stockbroker, re-
viewing the situation before selecting a stock. S/he knows that the P/E (Price/Earnings)
ratio is a critical factor: every acceptable theory of stock selection s/he has in mind tells
that a high P/E value means the stock is overvalued. On the other hand, s/he believes
that the stock under consideration is a good value, because in most of her scenarios a
stock is a good value if it is trading very close to its 52-week-low. S/he also knows that
liquidity is low because the volume - the number of stocks bought and sold in a day of
trading, is low; s/he can infer from this knowledge that this implies a lot of volatility,
something s/he believes s/he should avoid as, in most cases, this is annoying. And, of
course, s/he believes that this stock will offer option contracts for buying and selling in
the future; most stocks do so. Which epistemic logic can give us a formal account of
this kind of situation?

In this paper, we introduce the bimodal logic KBM, appropriate for capturing this
intuition: knowledge as ‘all’, belief as ‘most’. Knowledge is a normal S4 operator,

Knowledge Means ‘All’, Belief Means ‘Most’ 43

belief corresponds to a non-normal one, interpreted over ‘majorities’ of epistemically
alternative states. To express the notion of ‘majority’, we use its ‘large sets’ incarna-
tion, introduced independently by K. Schlechta [25,26] and V. Jauregui [18] in the field
of nonmonotonic reasoning, in order to capture a notion of normality-based default en-
tailment. Commonsense Reasoning has dealt with various forms of default entailment.
A natural approach is through ‘normality’: something is ‘normally’ the case, if ‘it holds
by default’. A candidate route to a formal definition of ‘normality’ is the notion of a
‘majority’: something is considered to be ‘normally the case’ iff it holds in a ‘majority’
(a ‘significant proportion’) of the conceivably alternative situations. ‘Majorities’ over a
set can be conceived as ‘overwhelming majorities’, ‘simple majorities’, or in a more re-
laxed way, as its ‘large subsets’. Model Theory captures ‘large subsets’ with filters over
powerset algebras. A relaxed notion of ‘weak filter’ has been independently introduced
by K. Schlechta [25] and V. Jauregui [18] with the intention to capture the collections
of ‘large’ (‘important’) subsets of a given set, expressing thus a notion of ‘majority’.
A more complex notion of ‘majority space’ has been introduced and analyzed by E.
Pacuit and S. Salame [23,24]. The definition of large sets we employ, naturally incurs
a requirement for complete, consistent belief, something neither surprising nor unde-
sirable, if one has KR applications in mind. We examine which of the ‘bridge’ axioms
discussed in the literature, in particular with respect to the discussion in R. Stalnaker’s
article [28], J. Halpern’s work in [16] and P. Gochet’s and P. Gribomond’s handbook
article [13] remain valid in our framework.

In Section 2, we provide some background material, reviewing basic definitions and
facts and establishing notation. Section 3 comprises the syntax, semantics, axiomati-
zation of the logic KBM, along with the frame completeness results and the discus-
sion on the epistemic principles which hold (or do not hold) in this framework. Fi-
nally, we conclude in Section 4 with a short discussion on the nature of the attitude
we capture here as a ‘majoritarian’ form of belief and some interesting questions for
future research. Due to space limitations, some proofs are omitted and others are briefly
sketched; the details can be found in the full report (draft version in [1]).

2 Background Material

Modal epistemic logic extends classical propositional logic. Its language LK is en-
dowed with an epistemic operator K; if the attitude considered is belief, it is usually
written as Bϕ. The formula Kϕ reads as ‘it is known that ϕ’ and Bϕ reads as ‘it is be-
lieved thatϕ’. For a complete treatment of modal logic, the reader can consult any of the
books [2,4]. The handbook article [13] is a very good starting point for epistemic logic.
The modal axiom schemata with a use in epistemic and/or doxastic logic comprise:
K. Kϕ ∧ K(ϕ ⊃ ψ) ⊃ Kψ (Epistemic Distribution), T. Kϕ ⊃ ϕ (Axiom of Knowl-
edge), 4. Kϕ ⊃ KKϕ (Positive Introspection), 5. ¬Kϕ ⊃ K¬Kϕ (Negative Introspec-
tion), D. Bϕ ⊃ ¬B¬ϕ (Consistent Belief). The axiom G. ¬K¬Kϕ ⊃ K¬K¬ϕ does
not have an obvious epistemic interpretation; however, if belief is defined as ¬K¬Kϕ
in a monomodal epistemic language, then G encodes a principle of consistent belief
[21]. The relationship between knowledge and belief is usually captured with bimodal

44 D. Askounis, C.D. Koutras, and Y. Zikos

languages, employing an epistemic (K) and a doxastic (B) modal operator. The relation-
ship between the two propositional attitudes is pinned down by ‘bridge’ axioms relating
the two modal operators. Some of these axioms will be discussed below in this paper.

Normal Epistemic Logics are defined as sets of LK-formulas that contain classical
propositional logic, all the instances of schema K, and are closed under the rules
Uniform Substitution and MP. ϕ,ϕ⊃ψ

ψ andRN. ϕ
Kϕ . Customarily, by KA1 . . .An is

denoted the smallest normal modal logic containing the axiom schemata A1 to An.
Some important normal epistemic logics have acquired names from the historical path
of Modal Logic in the 20th Century : S4 is KT4, S5 is KT5 (= KT45) and S4.2
stands for KT4G. S5 is a strong logic of knowledge, with many important applications
in Computer Science and Knowledge Representation, and logic KD45 is considered a
good candidate for the logic of consistent belief. Normal epistemic logics are interpreted
over Kripke (relational) possible-worlds models: a Kripke model M = 〈W,R, V 〉
consists of a set W of possible worlds (states, situations) and a binary accessibility re-
lation between them:R ⊆W ×W . The very idea in possible-worlds semantics in epis-
temic and doxastic logic is that epistemically alternative situations are the ones which
are consistent with the agent’s knowledge (or belief). In that respect, wRv means that,
in terms of the agent’s knowledge, the states w and v are indistinguishable. In common
modal logic parlance, whenever wRv, we say that world w ‘sees’ world v, or that v is
an epistemic alternative state to w. Abusing notation, we denote by R(w) the set of
epistemically alternative states to w: R(w) = {v ∈ W | wRv}. The valuation V
determines which states satisfy a propositional variable. Within a state w, the proposi-
tional connectives (¬, ⊃, ∧, ∨) are interpreted classically, while Kϕ is true at w iff it is
true in every epistemic alternative to w (notation: M, w � Kϕ). The pair F = 〈W,R〉
is called the frame underlying M. A logic Λ is determined by a class of frames iff it is
sound and complete with respect to this class.

There exist more general semantics for modal epistemic logic: the so-called Scott-
Montague semantics or neighborhood semantics. The reader can find more details in
the book of B. Chellas [6] (where they are called minimal models), in K. Segerberg’s
essay [27] and the mini-course notes [22]. In Scott-Montague models, each state is
not associated to its epistemically compatible (indistinguishable) states, but it is asso-
ciated to ‘neighborhoods’ (subsets) of states (or possible worlds). A neighborhood
model is a triple N = 〈W,N , V 〉, where W is a set of possible worlds (states),
N : W → P(P(W)) is a neighborhood function assigning to a state the set of
its ‘neighborhoods’ and V is again a valuation. Inside a state, formulas of the form
Kϕ become true at w iff the set of states V (ϕ) where ϕ holds (called the truth set
of ϕ, V (ϕ) = {v ∈ W | N, v � ϕ}), belongs to the set of neighborhoods of w:
V (ϕ) ∈ N (w). The pair F = 〈W,N〉 is called a Scott-Montague (neighborhood)
frame. It is known that the smallest normal modal logic K is determined by the class
of Scott-Montague frames, in which the neighborhood of each state is a filter over W
[6]. Given a neighborhood model N = 〈W,N , V 〉 and a subset X of W , we define
a map mN : P(W) → P(W), where mN (X) = {w ∈ W | X ∈ N (w)}. A gen-
eral Scott-Montague frame is a triple F = 〈W,A,N〉, where A is a set of admissible
subsets of W (A contains ∅, it is closed under union, complementation in W , and the
operator mN). General neighborhood frames provide a base for models, in which the

Knowledge Means ‘All’, Belief Means ‘Most’ 45

propositional valuations are restricted only to admissible sets. We will be based on a
stronger version of general Scott-Montague frames, used also in [9,19]: it requires that
all neighborhoods should be admissible (which means that N : W → P(A)) and,
moreover, in a model, based on a general Scott-Montague frame, that the truth sets of
atomic formulas also correspond to admissible sets. Then, it is easy to see that the truth
set of every formula is an admissible set. The notion we employ for the semantics of
our modal logic are based on this, but they are appropriately modified to host a notion
of ‘large sets’.

Notation. Given a consistent logic Λ, Λ-maximal consistent sets (mcΛ-sets) do exist,
by a standard Lindenbaum argument. We denote by [ϕ]Λ (or by [ϕ], when Λ is un-
derstood) the set of all mcΛ-sets, which contain ϕ. We use small-caps Greek capital
characters (Γ,Δ etc.) for denoting maximal consistent sets. We use the notion of strong
completeness: given a consistent logic Λ and a class of frames S, we say that Λ is
strongly complete with respect to S iff for every consistent with Λ theory I and formula
ϕ, if I entails semantically ϕ, then ϕ is deducible in Λ from I . To prove strong com-
pleteness with respect to S, it suffices to show that every consistent with Λ theory I is
satisfiable in a frame from S [2].

Majorities and Large Sets. Assume a set W ; it is our universe of discourse. With a
view to its use below, we will call its members ‘states’ or ‘worlds’. Which subsets of
W would we accept to represent a ‘majority’ of worlds? Of course, the answer de-
pends on whether we wish to capture an ‘overwhelming majority’ (which needs more
clarification), or a ‘simple majority’ with a view to Social Choice or Voting Theory
applications (simple majority might simply mean any subset with cardinality strictly
more than |W |/2 for finite W , but it is absolutely non-trivial to define for infinite sets).
It might be easier to define ‘majority’ in terms of ‘large subsets’ or ‘significant frag-
ments’ of W . In Model Theory [5], this is is captured by the notion of filters over W : a
filter over (a nonempty set) W is a collection F of subsets of W , such that (i) W ∈ F
and ∅ /∈ F , (ii) X ∈ F and X ⊆ Y ⊆ W implies Y ∈ F (filters are upwards closed),
(iii) X ∈ F and Y ∈ F implies (X ∩ Y) ∈ F (filters are closed under intersection).
This definition disallows the improper filter over W (which is just the whole powerset
algebra). Ultrafilters over W are the maximal (proper) filters, or equivalently, the filters
satisfying the following completeness requirement: for everyX ⊆W , either X ∈ F or
(W \X) ∈ F .

In [18], a different definition of the ‘large subsets’ of a set is introduced: a non-
empty collection F of subsets of W is a collection of large subsets iff: (i) X ∈ F and
X ⊆ Y ⊆ W implies Y ∈ F (F is upwards closed), (ii) X /∈ F or (W \ X) /∈ F
(it cannot be the case that both a set and its complement are large). In [25] a different,
but provably equivalent, notion of large sets had been given: it is essentially the same
with the previous one, replacing the second condition for the following one:X ∈ F and
Y ∈ F implies that X ∩ Y �= ∅ (There cannot be disjoint large sets). Perhaps the more
fine-grained definition of a collection F of ‘majorities’ has been given by E. Pacuit
and S. Salame [23,24]. The motivation of this definition has to do with applications of
graded modal logic and the intended interpretation of a ‘majority space’ has been that
of a ‘simple majority’.

46 D. Askounis, C.D. Koutras, and Y. Zikos

3 The Logic KBM

3.1 The Language and the Axioms

We assume a bimodal propositional language LKB , built upon the usual propositional
connectives (¬, ⊃, ∧, ∨, ≡) and endowed with the following modal operators: Kϕ,
read as ‘the agent knows ϕ’, Bϕ, read as ‘the agent believes that ϕ is the case’. The
axiomatizations of KBM comprises the following items:

K. Kϕ ∧ K(ϕ ⊃ ψ) ⊃ Kϕ (Consequences of knowledge constitute knowledge.)

T. Kϕ ⊃ ϕ (Only true things are known.)

4. Kϕ ⊃ KKϕ (Positive introspection regarding knowledge.)

KB. Kϕ ⊃ Bϕ (Knowledge implies belief.)

CB. ¬Bϕ ≡ B¬ϕ (Belief is consistent and complete.)

BK. Bϕ ∧ K(ϕ ⊃ ψ) ⊃ Bψ
If the agent believes ϕ, and knows that it entails ψ, then she believes also ψ.

PI. Bϕ ⊃ KBϕ (Positive introspection regarding belief.)

Definition 1. KBM is the modal logic axiomatized by K, T, 4, KB, CB, BK,PI
and closed under Uniform Substitution and the rules MP. ϕ,ϕ⊃ψ

ψ and RNK.
ϕ
Kϕ .

Some comments with respect to the axiomatization of KBM, are in order. We have
axiomatized knowledge by S4, declared as a minimal acceptable epistemic basis by W.
Lenzen, leaving out the strongly debated negative introspection axiom for knowledge
and its weak variants. Regarding the ‘bridge’ axioms: we have adopted axiom KB,
accepted also by W. Lenzen [20] and R. Stalnaker [28], also discussed extensively by J.
Halpern with respect to the scope of its applicability [16]. The axiomPI is also accepted
by R. Stalnaker (under the same name) and W. Lenzen. It will be shown later that the
logic of the doxastic operator B is not normal, since the doxastic distribution axiom (K
for B) is not a KBM theorem. In that respect, axiom BK is a careful application of
this principle, combining both epistemic attitudes. Some more epistemic principles of
this sort, are discussed below.

The axiomatization of belief, needs some explanation. Half of the axiom CB is just
D, that is consistent belief B¬ϕ ⊃ ¬Bϕ. The other half is a requirement for complete-
ness of belief, something compatible with our interpretation of belief as ‘truth in a large
set of epistemically indistinguishable states’: we are committed to two-valued logic and
we take into account that either a set or its complement should be regarded as majorities
esp. in a finite universe1.

We observe now that KBM is normal with respect to K. This means that KBM is
also closed under the rule (cf. [6]) RMK.

ϕ⊃ψ
Kϕ⊃Kψ . On the other hand, not surprisingly,

KBM is not normal with respect to B. The following remark asserts however that

1 Note also that in the case of the KD45 logic of consistent belief something weaker is valid,
namely ¬Bϕ ≡ B¬Bϕ (cf. [6, Sect. 4.4]).

Knowledge Means ‘All’, Belief Means ‘Most’ 47

KBM has the two normal rules mentioned, with respect to the doxastic operator B.
In what follows, the notation PC in the (condensed) derivations, denotes one or more
propositionally valid inference step(s).

Fact 1. KBM is closed under the rules RNB.
ϕ
Bϕ and RMB.

ϕ⊃ψ
Bϕ⊃Bψ .

To get a better feeling about the epistemic principles of KBM, let us examine some
‘bridge’ axioms discussed in the literature of bimodal epistemic logic.

– Bϕ ⊃ BKϕ

This is Stalnaker’s axiom SB for strong belief [28, p. 179], and axiom (A12) for
positive certainty in [16]. It holds also in F. Voorbraak’s OK&RIB system of objec-
tive knowledge and rational introspective belief [29].

– ¬Bϕ ⊃ K¬Bϕ
This is Stalnaker’s axiom NI for negative introspection [28, p. 179], discussed also
in [16].

– ¬Bϕ ⊃ B¬Kϕ
This is the axiom of negative certainty (A13) in [16]. It holds also in F. Voorbraak’s
OK&ORIB system [29].

The last two principles are theorems of KBM, as the following two facts verify. The
first one is not, but we will have to wait for a soundness result for our logic.

Fact 2. �KBM ¬Bϕ ⊃ K¬Bϕ

Fact 3. �KBM ¬Bϕ ⊃ B¬Kϕ

3.2 Semantics

Our intention now, is to provide possible-worlds semantics for our modal language,
with the aim to obtain an appropriate frame characterization result for KBM. The idea
is that a binary indistinguishability relation, interpreting the epistemic operator, will be
the basis. Then, we wish to obtain belief as truth in a ‘majority’ of the epistemically
alternative states; this creates a need for defining what will be considered as a ‘large
set’. We have also to combine this, with the ‘constraint’ of the admissible sets, as we are
going to employ a modified version of general Scott-Montague semantics. So, firstly, let
us define a collection of sets, which can be considered as ‘large sets’ in our framework.

Definition 2. Consider a set W �= ∅ and a collection A ⊆ P(W). Furthermore,
consider a Z ⊆ W and the set U = {Z ∩ X | X ∈ A}. Then, the collection C ⊆ U
will be called an A-collection of majorities of Z iff

(m1) Z ∈ C

(m2) (∀X ∈ A)
(
Z ∩X ∈ C ⇐⇒ Z ∩ (W \X) /∈ C

)
(m3) (∀T ∈ C)(∀S ∈ U)

(
T ⊆ S =⇒ S ∈ C

)

48 D. Askounis, C.D. Koutras, and Y. Zikos

In order to compare Def. 2 with the notions we have described in Section 2, let us
examine the caseA = P(W) andZ = W . Then, the properties (m1) to (m3) translate
into: (i) W ∈ C, (ii) (∀X ⊆ W)

(
X ∈ C ⇐⇒ (W \ X) /∈ C

)
and (iii) (∀T ∈

C)(∀S ⊆ W)
(
T ⊆ S =⇒ S ∈ C

)
. In this case, the collection C contains W and

it is upwards closed. These requirements describe the members of C, which are ‘large’
subsets of W . C contains every superset of a large set being in C; if it contains a
‘large’ set, its complement can not be ‘large’; and finally, either a subset of W or its
complement should be considered as ‘large’. It is now obvious that this notion is V.
Jauregui’s & K. Schlechta’s notion of ‘large sets’, augmented with a requirement of
completeness. If the basic notion can be considered as a ‘weak filter’, then this is a
‘weak ultrafilter’.

Next, having defined our ‘large sets’ (the sets we will be considering as ‘majorities’),
we can proceed to define possible-worlds frames, which will be relational (Kripke) with
respect to the operator K, and (modified) ‘general Scott-Montague’ with respect to the
operator B. In the next definition, note that N (w) plays the role of C in Def. 2 and the
states indistinguishable from w, namelyR(w), play the role of Z , again with respect to
Def. 2.

Definition 3. Consider a quadruple F = 〈W,A,R,N〉, where

– W �= ∅

– A ⊆ P(W) s.t.
(a1) ∅ ∈ A

and (∀X,Y ∈ A)

(a2) W \X ∈ A

(a3) X ∪ Y ∈ A

(a4) {w ∈W | R(w) ⊆ X} ∈ A

(a5) {w ∈W | R(w) ∩X ∈ N (w)} ∈ A

– R ⊆W ×W s.t. R is reflexive and transitive.2

– N : W → P(P(W)) s.t. (∀w ∈ W)

(n1) N (w) ⊆ {R(w) ∩X | X ∈ A}
(n2) N (w) is an A-collection of majorities of R(w)

(n3) (∀X ∈ A)
(
R(w) ∩ X ∈ N (w) =⇒ R(w) ⊆ {v ∈ W | R(v) ∩ X ∈

N (v)}
)

Then, F is called a kbm-frame. A model M = 〈F, V 〉 based on a kbm-frame F =
〈W,A,R,N〉, where V : Φ→ A is called a kbm-model.

Fact 4. The class of all kbm-frames is nonempty.

Finally, we extend the valuation function V to all formulas in the usual way, with slight
differences as far as B is concerned.

2 We remind thatR(w) denotes the set {v ∈W | wRv}.

Knowledge Means ‘All’, Belief Means ‘Most’ 49

Definition 4. Let V : LKB → A be the extension of the valuation V : Φ → A to all
formulas, defined recursively as follows:

– V (p) = V (p), (∀p ∈ Φ)

– V (⊥) = ∅

and (∀ϕ, ψ ∈ LKB)

– V (ϕ ⊃ ψ) = (W \ V (ϕ)) ∪ V (ψ)

– V (Kϕ) = {w ∈ W | R(w) ⊆ V (ϕ)}
– V (Bϕ) = {w ∈W | R(w) ∩ V (ϕ) ∈ N (w)}

Instead of w ∈ V (ϕ), we usually write M, w � ϕ.

Remark 1. The properties (a1) to (a5) of Def. 3 represent exactly what is required to
ensure that (∀ϕ ∈ LKB) V (ϕ) ∈ A, i.e. that such a function V in Def. 4 actually exists.

After a series of formal definitions, we should check whether our constructs accurately
reflect our intuitions about belief in KBM.

Note 1. According to Definitions 3 and 4, and in light of our comments after Defini-
tion 2, note that M, w � Bϕ implies R(w) ∩ V (ϕ) ∈ N (w) and furthermore, every
member of N (w) is a ‘large’ subset of R(w). Hence, ϕ holds in the ‘majority’ of the
R-neighbors of w.

3.3 Soundness and Completeness of KBM

We will now prove that KBM is sound and complete with respect to the class of all
kbm-frames.

Proposition 1. (Soundness) The logic KBM is sound with respect to the class of all
kbm-frames.

PROOF. [sketch] It suffices to show that all axioms of logic KBM are valid in every
kbm-frame. So, let M = 〈W,A,R,N , V 〉 be any kbm-model based on F. Since M is
a Kripke-model for R, K is valid in M, and since R is reflexive and transitive, axioms
T and 4 are also valid in M. From the remaining axioms, we show the case of CB; see
[1] for details. Consider an arbitrary w ∈ W .

CB. Firstly, since N (w) is an A-collection of majorities of R(w), by (m2), Rem.1,
and (a2), R(w) ∩ V (ϕ) ∈ N (w) ⇐⇒ R(w) ∩ (W \ V (ϕ)) /∈ N (w), hence
R(w) ∩ V (ϕ) ∈ N (w) ⇐⇒ R(w) ∩ V (¬ϕ)) /∈ N (w) (∗)
Hence, M, w � ¬Bϕ ⇐⇒ R(w) ∩ V (ϕ) /∈ N (w)

(∗)⇐⇒ M, w � B¬ϕ.

50 D. Askounis, C.D. Koutras, and Y. Zikos

Having proved the soundness theorem, we may now use it to invalidate certain epis-
temic principles which are not theorems of KBM. We have already mentioned the
axiom Bϕ ⊃ BKϕ and the belief distribution axiom Bϕ ∧ B(ϕ ⊃ ψ) ⊃ Bψ. Another
interesting principle is the ‘paradox of the perfect believer’ BKϕ ⊃ Kϕ . This principle
is derived in some axiomatic systems by the axiom KB, the axiom D for consistent
belief (Bϕ ⊃ ¬B¬ϕ) and the axiom 5 for negative introspection regarding knowledge
(¬Kϕ ⊃ K¬Kϕ) [13, Section 2.4]. This principle is difficult to accept: in the pres-
ence of T it declares that ‘we cannot believe to know a false proposition’, modeling
thus a perfect believer. Having abandoned axiom 5 in our framework, we expect that
KBM does not fall prey to this ‘infallibility argument’. The following fact declares
that, indeed, this is the case.

�

��

���w1�
�

�
���

�
�
�
���

�
�
�
�
�
�
�
�
�
�
��

	
	
	
	
	
	
	
	
	
	
	

�

��

��

�
w2

�

�

��

��

�
w3

�
�

��

��

�w4 �

��

��

�w5

Fig. 1. The kbm-frame F1

Fact 5.

i. �KBM Bϕ ⊃ BKϕ

ii. �KBM BKϕ ⊃ Kϕ

iii. �KBM Bϕ ∧ B(ϕ ⊃ ψ) ⊃ Bψ

PROOF. Consider the frame F1 = 〈W,A,R,N〉 of Figure 1, whereW = {w1, w2, w3,
w4, w5}, A =

{
∅, {w1}, {w2, w3}, {w4, w5}, {w1, w2, w3},, {w1, w4, w5}, {w2, w3,

w4, w5},W
}

, R is as shown in Figure 1, N (w1) =
{
{w1, w4, w5},W

}
, N (w2) ={

{w4}, {w2, w4}
}

, N (w3) =
{
{w5}, {w3, w5}

}
, N (w4) =

{
{w4}
}

, N (w5) ={
{w5}
}

. With a little effort one may check that all properties of Def.3 do hold, henceF1

is a kbm-frame. Consider now the model M1 = 〈F1, V 〉 based on frame F1 of Figure 1,
where V (p) = {w1, w4, w5}, V (q) = {w1}, and V (r) = ∅, for all r ∈ Φ \ {p, q}.

Knowledge Means ‘All’, Belief Means ‘Most’ 51

Then, V : Φ → A and M1 is a kbm-model. Check now that:M1, w1 � Bp ∧ ¬BKp,
M1, w2 � BKp ∧ ¬Kp and M1, w1 � Bp ∧ B(p ⊃ q) ∧ ¬Bq. It follows, by Prop. 1,
that the axioms above are not theorems of KBM.

We will now prove the completeness of KBM, via canonicity. To relax our notation,
we will denote KBM by Λ in the sequel. We proceed to define its canonical model.

Definition 5. The canonical model MΛ for Λ is the tuple 〈WΛ, AΛ,RΛ,NΛ, V Λ〉, ,
where

(i) WΛ = {Γ ⊆ LKB | Γ : mcΛ}
(the set of all maximal Λ-consistent sets)

(ii) AΛ = {Θ ⊆WΛ | (∃ϕ ∈ LKB) Θ = [ϕ]} 3

(iii) RΛ = {(Γ,Δ) ∈ WΛ ×WΛ | (∀ϕ ∈ LKB)(Kϕ ∈ Γ ⇒ ϕ ∈ Δ)}
(iv) (∀Γ ∈WΛ)

NΛ(Γ) = {RΛ(Γ) ∩Θ ⊆WΛ | (∃ϕ ∈ LKB)(Θ = [ϕ] & Bϕ ∈ Γ)}
(v) (∀p ∈ Φ) V Λ(p) = [p]

The frame FΛ underlying MΛ is called the canonical frame for Λ. The following lem-
mata are fairly standard.

Lemma 1. (Lindenbaum) Let I be a cΛ-theory. Then, there is a mcΛ theory Γ s.t.
I ⊆ Γ.

Lemma 2. (Existence Lemma)
(∀ϕ ∈ LKB)(∀Γ ∈ WΛ) ¬K¬ϕ ∈ Γ ⇐⇒ (∃Δ ∈ WΛ)(Δ ∈ RΛ(Γ) & ϕ ∈ Δ) and
equivalently Kϕ ∈ Γ ⇐⇒ (∀Δ ∈WΛ)(Δ ∈ RΛ(Γ)⇒ ϕ ∈ Δ).

Lemma 3. (∀Γ ∈WΛ)(∀ϕ, ψ ∈ LKB) (RΛ(Γ) ∩ [ϕ] ⊆ RΛ(Γ) ∩ [ψ] & Bϕ ∈ Γ) =⇒
Bψ ∈ Γ

Lemma 4. (Truth Lemma) (∀Γ ∈ WΛ)(∀ϕ ∈ LKB) M
Λ, Γ � ϕ ⇐⇒ ϕ ∈ Γ

Theorem 6. (Completeness) The logic KBM is strongly complete with respect to the
class of all kbm-frames.

PROOF. [sketch] We prove that every consistent with Λ theory is satisfied in FΛ. It
suffices to show that FΛ is a kbm-frame. By the soundness of KBM with respect to
the nonempty (Fact 4) class of kbm-frames, KBM is consistent, hence, {�} is a cΛ
theory, and, by Lemma 1, there exists a mcΛ theory containing {�}, so, WΛ �= ∅.
AΛ ⊆ P(WΛ), the proofs for (a1) to (a5) are omitted, see [1] for the details.
As an indication of the spirit of the proof, we will provide a sketch of for (n2). Consider
any Γ ∈WΛ. We have to verify thatNΛ(Γ) is an AΛ-collection of majorities of RΛ(Γ).
[(m1)]: � ∈ Λ, so, by Remark 1, B� ∈ Λ, hence, B� ∈ Γ, therefore, by Def.5(iv),
RΛ(Γ) ∩ [�] ∈ NΛ(Γ). But, [�] = WΛ, so, RΛ(Γ) = RΛ(Γ) ∩ [�] ∈ NΛ(Γ). [(m2)]
is omitted,see [1]. [(m3)]: Consider a T ∈ NΛ(Γ). Then, there is a formula ϕ s.t.
T = RΛ(Γ)∩ [ϕ] and Bϕ ∈ Γ. Furthermore, let S = RΛ(Γ)∩ [ψ] (for some formula ψ)
be s.t. T ⊆ S. Then, by Lemma 3, Bψ ∈ Γ, i.e., by Def.5(iv),S = RΛ(Γ)∩[ψ] ∈ NΛ(Γ).

3 We remind that [ϕ] = {Δ ∈ WΛ | ϕ ∈ Δ}.

52 D. Askounis, C.D. Koutras, and Y. Zikos

4 Conclusions and Future Work

In this paper, we have combined epistemic and doxastic logic with a notion of ‘major-
ity’ imported from default reasoning. What is really missing (and has been brought to
our attention by an extremely insightful referee report) is a discussion on whether this
kind of ‘majoritarian’ belief is really a sort of belief. Being motivated by Knowledge
Representation (and a notion of belief, loosely described as ‘observable evidence’) we
have not elaborated on the relation of this attitude to (a form of) ‘acceptance’. Of course,
there is a vivid discussion in the philosophical literature [7,10,3] on the exact differences
between the two notions of ‘belief’ and some aspects of this discussion are intimately
connected to the KR scenarios of our motivation: Planning and (inspiration from) de-
fault reasoning [3]. There exist different perspectives on belief and acceptance; for in-
stance P. Engel writes in [10] that “I argue, as a number of other writers argue, that one
should distinguish a variety of belief-like attitudes: believing proper - a dispositional
state which can have degrees - holding true - which can occur without understanding
what one believes - and accepting - a practical and contextual attitude that has a role in
deliberation and in practical reasoning” (emphasis is ours), adopting thus acceptance
as a form of belief. It would be very interesting and fruitful, both from the Philosophy
and the KR perspective, to axiomatize logics focusing on a ‘majoritarian’ treatment of
more fine-grained, belief-like attitudes. Motivated by this, we are currently pursuing an
S4.2-based epistemic logic (with a doxastic modality defined through the basic epis-
temic modality), enriched with a ‘majoritarian’ modality of ‘estimation’ (rather than
acceptance) that certain facts hold. Of course, for all these logics, it should be interesting
(i) to identify their computational complexity and (ii) to define and work with ‘group’
notions of belief, such as the collective attitudes discussed in [12,15] Another, very
interesting topic of future research is to identify the relation of KBM to probabilistic
beliefs and probabilistic epistemic logics, in particular with respect to possible applica-
tions in decision systems. This seems to be a much deeper question; as suggested to us,
the ‘belief as majority’ view calls immediately for a comparison to the ‘belief held with
probability strictly more than 0.5’ view. It is definitely a very natural and interesting
avenue of future research.

Acknowledgments. We wish to thank an anonymous JELIA 2012 referee for providing
a series of deep and insightful comments on the form of ‘belief ’ captured in this paper,
along with some pointers in the philosophy literature and very natural questions for
future research. Actually, the previous section has been entirely rewritten to include the
suggestions of the referee; as said above, some interesting research on the above topics
has already been launched. The third author gratefully acknowledges financial support
by the Greek Ministry of Education, Lifelong Learning and Religious Affairs under the
scheme of educational leave.

References

1. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means most.
Technical Report, draft version (May 2012), http://www.uop.gr/˜ckoutras,
http://users.uop.gr/%7Eckoutras/AKZ-KBM-Full.pdf

http://www.uop.gr/~ckoutras
http://users.uop.gr/%7Eckoutras/AKZ-KBM-Full.pdf

Knowledge Means ‘All’, Belief Means ‘Most’ 53

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press (2001)

3. Bratman, M.: Practical reasoning and acceptance in a context. Mind 101(401), 1–16 (1992)
4. Chagrov, A., Zakharyashev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford Uni-

versity Press (1997)
5. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Studies in Logic and the Foundations of

Mathematics, vol. 73. North-Holland, Amsterdam (1990)
6. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)
7. Cohen, L.: An essay on Belief and Acceptance. Oxford University Press (1995)
8. Dubois, D., Welty, C.A., Williams, M.-A. (eds.): Principles of Knowledge Representation

and Reasoning: Proceedings of the Ninth International Conference (KR 2004), Whistler,
Canada, June 2-5. AAAI Press (2004)

9. Dǒsen, K.: Duality between modal algebras and neighbourhood frames. Studia Logica. 48(2),
219–234 (1989)

10. Engel, P.: Believing, holding true, and accepting. Philosophical Explorations: An Interna-
tional Journal for the Philosophy of Mind and Action 1(2), 140–151 (1998)

11. Gabbay, D.M., Woods, J. (eds.): Logic and the Modalities in the Twentieth Century. Hand-
book of the History of Logic, vol. 7. North-Holland (2006)

12. Gilbert, M.P.: Modeling collective belief. Synthese 73, 185–204 (1987)
13. Gochet, P., Gribomont, P.: Epistemic logic. In: Gabbay and Woods [11], vol. 7, pp. 99–195

(2006)
14. Goldblatt, R.: Mathematical Modal Logic: A View of its Evolution. In: Gabbay and Woods

[11], vol. 7, pp. 1–98 (2006)
15. Hakli, R.: Group beliefs and the distinction between belief and acceptance. Cognitive Sys-

tems Research 7(2-3), 286–297 (2006)
16. Halpern, J.: Should knowledge entail belief? Journal of Philosophical Logic 25(5), 483–494

(1996)
17. Hintikka, J.: Knowledge and Belief: an Introduction to the Logic of the two notions. Cornell

University Press, Ithaca (1962)
18. Jauregui, V.: Modalities, Conditionals and Nonmonotonic Reasoning. PhD thesis, Depart-

ment of Computer Science and Engineering, University of New South Wales (2008)
19. Kracht, M., Wolter, F.: Normal modal logics can simulate all others. Journal of Symbolic

Logic 64(1), 99–138 (1999)
20. Lenzen, W.: Recent Work in Epistemic Logic. North-Holland (1978)
21. Lenzen, W.: Epistemologische Betrachtungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)
22. Pacuit, E.: Neighborhood semantics for modal logic: an introduction. Course Notes for ESS-

LLI 2007 (2007)
23. Pacuit, E., Salame, S.: Majority logic. In: Dubois, et al. [8], pp. 598–605
24. Salame, S.: Majority Logic and Majority Spaces in contrast with Ultrafilters. PhD thesis,

Graduate Center, City University of New York (2006)
25. Schlechta, K.: Defaults as generalized quantifiers. Journal of Logic and Computation 5(4),

473–494 (1995)
26. Schlechta, K.: Filters and partial orders. Logic Journal of the IGPL 5(5), 753–772 (1997)
27. Segerberg, K.: An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala (1971)
28. Stalnaker, R.: On logics of knowledge and belief. Philosophical Studies 128(1), 169–199

(2006)
29. Voorbraak, F.: As Far as I Know - Epistemic Logic and Uncertainty. PhD thesis, Department

of Philosophy, Utrecht University (1993)

Generalized DEL-Sequents

Guillaume Aucher1, Bastien Maubert2, and François Schwarzentruber3

1 University of Rennes 1 - INRIA, France
guillaume.aucher@irisa.fr

2 University of Rennes 1, France
bastien.maubert@irisa.fr

3 ENS Cachan, France
francois.schwarzentruber@bretagne.ens-cachan.fr

Abstract. Let us consider a sequence of formulas providing partial in-
formation about an initial situation, about a set of events occurring se-
quentially in this situation, and about the resulting situation after the
occurrence of each event. From this whole sequence, we want to infer
more information, either about the initial situation, or about one of the
events, or about the resulting situation after one of the events. Within
the framework of Dynamic Epistemic Logic (DEL), we show that these
different kinds of problems are all reducible to the problem of inferring
what holds in the final situation after the occurrence of all the events. We
then provide a tableau method deciding whether this kind of inference is
valid. We implement it in LotrecScheme and show that these inference
problems are NEXPTIME-complete. We extend our results to the cases
where the accessibility relation is serial and reflexive and illustrate them
with the coordinated attack problem.

1 Introduction

Assume that a sequence of n events has occured in a situation. We have some
information about each event and about the resulting situation after the occur-
rence of each event, in the form of a sequence of formulas ϕ′

i and ϕi respectively:

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
i, ϕi, . . . , ϕ

′
n, ϕn

Our aim is to infer some more information about one of the events or about one
of the resulting situations from the rest of information provided by this sequence.
This defines respectively two different kinds of inference problems.

In the first kind of inference problem, we want to infer more information about
the ith resulting situation. That is, given a formula ψ describing (incompletely)
a situation, we want to verify whether or not we can infer that this property ψ
necessarily held at the ith resulting situation:

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn i

1
ψ ?

In the second kind of inference problem, we want to infer more information about
the ith event. That is, given a formula ψ′ describing (incompletely) this event,

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 54–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Generalized DEL-Sequents 55

we want to verify whether or not we can infer that this property ψ′ necessarily
held during the occurrence of the ith event:

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn i

2
ψ′ ?

Solving these problems is relevant for dynamic diagnosis for instance (see [10]
for an early survey of dynamic diagnosis). In this field, one is interested in
looking for and verifying that plausible diagnoses of a faulty system ‘fit’ a given
history that contains some abnormal behaviours. A diagnosis is a series of faults
together with the time when they occur. Within our setting, this verification
problem amounts to deciding about the satisfiability of a sequence of formulas.

We moreover assume that our situations involve several agents and we are
interested in reasoning about the beliefs and knowledge of these agents. Our for-
mulas ϕ′

i and ϕi will therefore express beliefs of several agents about events and
about the resulting situations. For these reasons, we address our two problems
above within the framework of Dynamic Epistemic Logic (DEL for short), since
this logical framework is very well suited to express and reason about the beliefs
of several agents in a dynamic setting.

The paper is organised as follows. In Section 2, we recall the core of dynamic
epistemic logic and define our two kinds of inference problems. We show that
these two kinds of inference problems are actually both reducible to the problem
of inferring what holds in the final situation after the occurrence of all the events
from the rest of the sequence. In Section 3, we provide a terminating, sound and
complete tableau method that decides whether this kind of inference is valid. In
Section 4, we show that our tableau method is optimal, first by proving that it is
in NEXPTIME, and then by proving that our inference problem is NEXPTIME-
hard. We also provide in this section a link to an implementation of our tableau
method in LotrecScheme together with some details about its implementation.
In Section 5, we extend our results to richer semantics where the accessibility
relations are reflexive and serial. In Section 6, we apply our generalized DEL-
sequents to the coordinated attack problem of the distributed system literature.
Finally, in Section 7, we discuss some related work, and then conclude.1

2 Dynamic Epistemic Logic: DEL-Sequents

Following the methodology of DEL, we split the exposition of the logical frame-
work into three subsections. We then define our generalized DEL-sequents in
Section 2.4.

2.1 Representation of the Initial Situation: L-Model

In the rest of this paper, Φ is a countably infinite set of propositional letters
called atomic facts which describe static situations, and Agt is a finite set of
agents.

1 Note that all the proofs of this paper are available in a Technical Report at the
following address: http://hal.inria.fr/hal-00716074.

http://hal.inria.fr/hal-00716074

56 G. Aucher et al.

An L-model is a tuple M = (W,R, V) where:

– W is a non-empty set of possible worlds,
– R : Agt → 2W×W is a function assigning to each agent a ∈ Agt an accessi-

bility relation on W ,
– V : Φ→ 2W is a function assigning to each propositional letter of Φ a subset

of W . The function V is called a valuation.

We write w ∈ M for w ∈ W , and (M, w) is called a pointed L-model (w often
represents the actual world). If w, v ∈ W , we write wRav for R(a)(w, v) and
Ra(w) = {v ∈ W | wRav}. Intuitively, wRav means that in world w agent a
considers that world v might be the actual world.

Then, we define the following epistemic language L that can be used to de-
scribe and state properties of L-models:

L : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Baϕ

where p ranges over Φ and a over Agt. We define ϕ ∨ ψ
def
= ¬(¬ϕ ∧ ¬ψ) and

〈Ba〉ϕ def
= ¬Ba¬ϕ. The symbol � is an abbreviation for p ∨ ¬p for a chosen

p ∈ Φ. Let M be an L-model, w ∈ M and ϕ ∈ L. M, w |= ϕ is defined
inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff not M, w |= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= Baϕ iff for all v ∈ Ra(w), M, v |= ϕ

The formula Baϕ reads as “agent a believes ϕ”. Its truth conditions are defined
in such a way that agent a believes ϕ holds in a possible world when ϕ holds
in all the worlds agent a considers possible. Dually, the formula 〈Ba〉ϕ reads
as “agent a considers ϕ is plausible”. Agent a considers that ϕ is plausible in
a possible world when ϕ holds in at least one of the worlds agent a considers
possible.

2.2 Representation of the Event: L′-Model

The propositional letters p′ describing events are called atomic events and range
over an infinite set Φ′. To each atomic event p′, we assign a formula of the
language L, which is called the precondition of p′. This precondition corresponds
to the property that should be true in any world w of an L-model so that the
atomic event p′ can ‘physically’ occur in this world w. To do so we define a
surjection Pre : Φ′ → L that is called the precondition function. We take it
surjective so that we have an atomic event for every possible precondition.

An L′-model is a tuple M′ = (W ′, R′, V ′) where:

– W ′ is a non-empty set of possible events,
– R′ : Agt → 2W

′×W ′
is a function assigning to each agent a ∈ Agt an acces-

sibility relation on W ′,

Generalized DEL-Sequents 57

– V ′ : Φ′ → 2W
′
is a function assigning to each propositional letter of Φ′ a

subset of W ′ such that for all w′ ∈ W ′, there is at most one p′ such that
w′ ∈ V ′(p′) (Exclusivity).

We write w′ ∈ M′ for w′ ∈ W ′, and (M′, w′) is called a pointed L′-model and
w′ represents the actual event of (M′, w′). If w′, u′ ∈ W ′, we write w′R′

au
′ for

R′(a)(w′, u′) and R′
a(w

′) = {u′ ∈ W ′ | w′R′
au

′}. Intuitively, u′ ∈ R′
a(w

′) means
that while the possible event represented by w′ is occurring, agent a considers
possible that the possible event represented by u′ is actually occurring. Our
definition of an L′-model is equivalent to the definition of an action signature in
the logical framework of [6].2

Just as we defined a language L for L-models, we also define a language L′

for L′-models (L′ was already introduced in [8]):

L′ : ϕ′ ::= p′ | ¬ϕ′ | ϕ′ ∧ ϕ′ | Baϕ
′

where p′ ranges over Φ′ and a over Agt. In the sequel, formulas of L′ are always
indexed by the quotation mark ′, unlike formulas of L. The truth conditions
of the language L′ are identical to the ones of the language L. Let M′ be an
L′-model, w′ ∈M′ and ϕ′ ∈ L′. M′, w′ |= ϕ′ is defined inductively as follows:

M′, w′ |= p′ iff w′ ∈ V ′(p′)
M′, w′ |= ¬ϕ′ iff not M′, w′ |= ϕ′

M′, w′ |= ϕ′ ∧ ψ′ iff M′, w′ |= ϕ′ and M′, w′ |= ψ′

M′, w′ |= Baϕ
′ iff for all u′ ∈ R′

a(w
′), M′, u′ |= ϕ′

2.3 Update of the Initial Situation by the Event: Product Update

The precondition function Pre of the previous section induces a precondition
function for L′-models, which assigns to each possible event w′ of an L′-model
a formula Pre(w′) of L. The precondition function induced by the L′-model
M′ = (W ′, R′, V ′) is defined as follows: Pre(w′) = Pre(p′) if there is p′ such that
M′, w′ |= p′; Pre(w′) = � otherwise.

We then redefine equivalently in our setting the BMS product update of [7]
as follows. Let (M, w) = (W,R, V, w) be a pointed L-model and let (M′, w′) =
(W ′, R′, V ′, w′) be a pointed L′-model such that M, w |= Pre(w′). The product
update of (M, w) and (M′, w′) is the pointed L-model (M, w) ⊗ (M′, w′) =
(W⊗, R⊗, V ⊗, (w,w′)) defined as follows:

W⊗ = {(u, u′) ∈W ×W ′ | M, u |= Pre(u′)},
R⊗

a (u, u
′) = {(v, v′) ∈W⊗ | v ∈ Ra(u) and v′ ∈ R′

a(u
′)},

V ⊗(p) = {(u, u′) ∈W⊗ | M, u |= p}.
2 Let Σ = (W ′, R′, (w′

1, . . . , w
′
n)) be an action signature and let ϕ1, . . . , ϕn ∈ L.

The L′-model associated to (Σ,ϕ1, . . . , ϕn) is the tuple M ′ = (W ′, R′, V ′) where
the valuation V ′ is defined as follows. We pick q′ ∈ Φ′ such that Pre(q′) = 	,
and for all i ∈ {1, . . . , n}, we pick p′i ∈ Φ′ such that Pre(p′i) = ϕi. Then, for all
i ∈ {1, . . . , n} we set V ′(p′i) = {w′

i}, we also set V ′(q′) = W ′ − {w′
1, . . . , w

′
n}, and

for all p′ ∈ Φ′ − {q′, p′1, . . . , p′n} we set V ′(p′) = ∅.

58 G. Aucher et al.

This product update yields a new L-model (M, w)⊗ (M′, w′) representing how
the new situation which was previously represented by (M, w) is perceived by
the agents after the occurrence of the event represented by (M′, w′).

2.4 Generalized DEL-Sequents

In this section we define two different inference relations on formulas of L and
L′ representing an initial situation, a series of events and resulting epistemic
situations. One relation enables to infer information about one of the epistemic
situations, the other about one of the events:

Definition 1. Let ϕ0, ϕ1, . . . , ϕn, ψ ∈ L, ϕ′
1, . . . , ϕ

′
n, ψ

′ ∈ L′. We define the
logical consequence relations ϕ0, ϕ

′
1, ϕ1, . . . , ϕ

′
n, ϕn k

1
ψ where 0 ≤ k ≤ n, and

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn k

2
ψ′ where 1 ≤ k ≤ n, as follows:

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn k

1
ψ if

for all pointed L-models (M0, w0) and L′-models (M′
j , w

′
j), if we have for all

i ∈ {0, . . . , n} that (Mi, wi) = (M0, w0)⊗ (M′
1, w

′
1)⊗ . . .⊗ (M′

i, w
′
i) is defined

3

and Mi, wi |= ϕi, and for all j ∈ {1, . . . , n} that M′
j , w

′
j |= ϕ′

j, then Mk, wk |=
ψ.

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn k

2
ψ′ if

for all pointed L-models (M0, w0) and L′-models (M′
j , w

′
j), if we have for all

i ∈ {0, . . . , n} that (Mi, wi) = (M0, w0)⊗(M′
1, w

′
1)⊗. . .⊗(M′

i, w
′
i) is defined and

Mi, wi |= ϕi, and for all j ∈ {1, . . . , n} that M′
j, w

′
j |= ϕ′

j, then M′
k, w

′
k |= ψ′.

In fact, those two DEL-sequent relations are interdefinable:

Proposition 1. For all ϕ0, . . . , ϕn ∈ L, ϕ′
1, . . . , ϕ

′
n, ψ

′ ∈ L′ and k ∈ {1, . . . , n},

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn k

2
ψ′ iff ϕ0, . . . , ϕ

′
k ∧ ¬ψ′,�, ϕ′

k+1, . . . , ϕn k

1 ¬ϕk

Moreover, the first relation can always be reduced to the case where information
is inferred about the last situation:

Proposition 2. For all ϕ0, . . . , ϕn ∈ L, ϕ′
1, . . . , ϕ

′
n ∈ L′, k < n and ψ ∈ L,

ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn k

1
ψ iff ϕ0, . . . , ϕk ∧ ¬ψ, . . . , ϕ′

n,� n

1 ¬ϕn

Considering Propositions 1 and 2, in the rest of the paper we will only provide
a tableau method for the DEL-sequent ϕ0, ϕ

′
1, ϕ1, . . . , ϕ

′
n, ϕn n

1
ψ.

In [3], we defined three kinds of logical consequence relations dealing with a
single event, which are special cases of the general relations defined here. Let
ϕ0, ϕ1 ∈ L and ϕ′ ∈ L′. It holds that:

ϕ0, ϕ
′ ϕ1 iff ϕ0, ϕ

′,�
1

1
ϕ1 ϕ′, ϕ1

3
ϕ0 iff �, ϕ′, ϕ1 0

1
ϕ0

ϕ0, ϕ1
2
ϕ′ iff ϕ0,�, ϕ1 1

2
ϕ′

3 When i = 0 we let (M0, w0)⊗ (M′
1, w

′
1)⊗ . . .⊗ (M′

i, w
′
i) = (M0, w0).

Generalized DEL-Sequents 59

3 Tableau Method

We consider 2n + 2 formulas, ϕ0, . . . , ϕn, ψ ∈ L and ϕ′
1, . . . , ϕ

′
n ∈ L′, and by

P ⊂ Φ′ we denote the finite set of all atomic events appearing in one of the
event formulas ϕ′

1, . . . , ϕ
′
n. i ranges over {0, . . . , n} and j ranges over {1, . . . , n}.

We want to address the problem of deciding whether ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn n

1
ψ

holds. To do so we equivalently decide whether this does not hold, i.e whether
there exist a pointed L-model (M0, w0) and n pointed L′-models (M′

j , w
′
j) such

that for all i, (Mi, wi) = (M0, w0) ⊗ (M′
1, w

′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is defined and

Mi, wi |= ϕi, for all j M′
j, w

′
j |= ϕ′

j , andMn, wn |= ¬ψ. In other terms, deciding

whether ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn n

1
ψ holds reduces to the following problem called

the satisfiability problem:

– Input: ϕ0, . . . , ϕn, ψ ∈ L, ϕ′
1, . . . , ϕ

′
n ∈ L′ and Pre|P , the restriction of Pre

to the domain P .
– Output: yes iff there exist a pointed L-model (M0, w0) and n pointed L′-

models (M′
j , w

′
j) such that for all j, M′

j, w
′
j |= ϕ′

j , for all i, (Mi, wi) =
(M0, w0) ⊗ (M′

1, w
′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is defined and Mi, wi |= ϕi, and

Mn, wn |= ψ.

In the rest of the paper, when the initial pointed model (M0, w0) and the pointed
event models (M′

i, w
′
i) are clear from the context, we shall write Mi for M0 ⊗

M′
1 ⊗ . . .⊗M′

i and wi for (w0, w
′
1, . . . , w

′
i).

3.1 Tableau Method Description

Let Lab be a countable set of labels designed to represent worlds of the initial
epistemic model. For all integers i, let Labi be a countable set of labels designed
to represent events of the ith event model. We suppose that Lab and Labi for
all i are disjoint.

Our tableau method manipulates terms that we call tableau terms and they
are of the following kind:

– (σ ϕ) means thatM0, w0 |= ϕ, where w0 is the world of the initial epistemic
model M0 represented by σ and ϕ is a formula of L;

– (σi ϕ
′) means thatM′

i, w
′
i |= ϕ′, where w′

i is the event of the i
th event model

M′
i represented by σi, and ϕ′ is a formula of L′;

– (σ σ1 . . . σi ϕ) means that Mi, (w0, w
′
1, . . . , w

′
i) |= ϕ, where w0 is the world

of M0 represented by σ, w′
k ∈ M′

k is the event represented by σk, and ϕ is
a formula of L;

– (σ σ1 . . . σi 0) means that (w0, w
′
1, . . . , w

′
i) is not in Mi, where w0 is the

world of M0 represented by σ and w′
k ∈M′

k is the event represented by σk;
– (Ra σ σ

′) means that the worlds w and u of M0 represented respectively by
σ and σ′ are such that wRau;

– (Ri
a σi σ

′
i) means that in M′

i, the events w′ and u′ represented by σi and σ′
i

are such that w′R′i
au

′;
– ⊥ denotes an inconsistency.

60 G. Aucher et al.

We also use generic labels Σ to simplify notations: Σ can be either σ, σi or
σ σ1 . . . σi. (Ra Σ Σ′) is interpreted in the following way: if Σ = σ, Σ′ = σ′

then (Ra Σ Σ′) denotes (Ra σ σ′), if Σ = σi, Σ
′ = σ′

i then (Ra Σ Σ′) denotes
(Ri

a σi σ
′
i), and if Σ = σ σ1 . . . σi, Σ

′ = σ′ σ′
1 . . . σ′

i then (Ra Σ Σ′) denotes
(Ra σ σ′)(R1

a σ1 σ1) . . . (R
i
a σi σi).

A tableau rule is represented by a numerator N above a line and a finite list
of denominators D1, . . . ,Dk below this line, separated by vertical bars:

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of tableau terms.
A tableau for a tuple (ϕ0, . . . , ϕn, ϕ

′
1, . . . , ϕ

′
n) of formulas is a finite

tree with a set of tableau terms at each node. The root is Γ 0 =
{(σ ϕ0), (σ σ1 ϕ1), . . . , (σ σ1 . . . σn ϕn), (σ1 ϕ′

1), . . . , (σn ϕ′
n)}∪

{(σ1 p′+1), . . . , (σn p′+n)}, where p′+1 , . . . , p′+n are fresh new atomic events. In-
deed, in our tableau method, when a new event label σi is added to the set Γ
of a node, it is assigned a fresh new atomic event p′+. By fresh we mean that
they do not appear in any event formula ϕ′ in Γ , and their precondition is also
a fresh new atomic proposition that appears neither in any formula nor in any
precondition of any atomic event p′ of Γ . We denote it by Pre(p′+) = p+. We
abuse notations by writing p′ ∈ Γ whenever p′ occurs in a formula appearing in
a tableau term in Γ . Those additional fresh atomic propositions and events are
used in the tableau method to avoid the problematic case of events being built
with trivial precondition.

A rule with numeratorN is applicable to a node carrying a set Γ if Γ contains
an instance of N . If no rule is applicable, Γ is said to be saturated. We call a
node n an end node if the set of formulas Γ it carries is saturated, or if ⊥∈ Γ .
The tableau is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose a
rule ρ applicable to n.

2. (a) If ρ has only one denominator, add the appropriate instanciation to Γ .
(b) If ρ has k denominators with k > 1, create k successor nodes for n, where

each successor i carries the union of Γ with an appropriate instanciation
of denominator Di.

A branch in a tableau is a path from the root to an end node. A branch is closed
if its end node contains ⊥, otherwise it is open. A tableau is closed if all its
branches are closed, otherwise it is open. We write ϕ0, ϕ

′
1, ϕ1, . . . , ϕ

′
n, ϕn

1 ψ if
there is a closed tableau for (ϕ0, . . . , ϕn−1, ϕn ∧ ¬ψ, ϕ′

1, . . . , ϕ
′
n).

3.2 Tableau Rules

– Common rules for epistemic formulas and event formulas:

(Σ ϕ ∧ ψ)
(Σ ϕ) (Σ ψ)

∧
(Σ ¬(ϕ ∧ ψ))

(Σ ¬ϕ) | (Σ ¬ψ) ¬∧
(Σ ¬¬ϕ)
(Σ ϕ)

¬ (Σ p)(Σ ¬p)
⊥ ⊥

Generalized DEL-Sequents 61

(Σ 〈Ba〉ϕ)
(Ra Σ Σ+)(Σ+ ϕ)(σ+

1 p′+1) . . . (σ+
i p′+i)

〈Ba〉
(Σ Baϕ)(Ra Σ Σ′)

(Σ′ ϕ) | (Σ′ 0)
Ba

where p is in Φ ∪ Φ′, σ+
1 . . . σ+

i are the σ+
k in the fresh generic label Σ+

(none if Σ+ = σ+) and p′+k are fresh new atomic events with Pre(p′+i) = p+i .
– Specific rule for event formulas:

(σi p
′)(σi p

′′)

⊥ Excl

where p′, p′′ are not fresh (p′, p′′ ∈ Γ 0) and p′ �= p′′.
– Specific rules for epistemic formulas:

(σ σ1 . . . σi p)

(σ p)
←1

(σ σ1 . . . σi ¬p)
(σ ¬p)

←2

(σ 0)

⊥ Pre0
(σ σ1 . . . σi ϕ)(σi p

′)

(σ σ1 . . . σi−1 Pre(p′))
Pre1

ϕ �= 0, i > 0

(σ σ1 . . . σi 0)(σi p
′)

(σ σ1 . . . σi−1 ¬Pre(p′)) | (σ σ1 . . . σi−1 0)
Pre2

i > 0

We explain informally the meaning of these rules. The boolean rules, rule 〈Ba〉
and rule Ba are classic. Rule Excl enforces the Exclusivity of event models. It
does not apply to the fresh atomic events that we add at the creation of each
event label, because a “meaningful” atomic event may be added to such a label;
however these fresh events are removed from the final constructed models unless
they are the only atomic event in their possible event. Rules ←1 and ←2 reflect
the fact that for a world (w0, w

′
1, . . . , w

′
i) in Mi, by definition of the update

product, Mi, (w0, w
′
1, . . . , w

′
i) |= p if, and only if, M0, w0 |= p. Rule Pre1 says

that if (w0, w
′
1, . . . , w

′
i) is in Mi and M′

i, w
′
i |= p′, then (w0, w

′
1, . . . , w

′
i−1) is

in Mi−1 and Mi−1, (w0, w
′
1, . . . , w

′
i−1) verifies Pre(p′). Rule Pre2 says that if

(w0, w
′
1, . . . , w

′
i) is not in Mi and M′

i, w
′
i |= p′, either (w0, w

′
1, . . . , w

′
i−1) is not

in Mi−1, or it is in Mi−1 but Mi−1, (w0, w
′
1, . . . , w

′
i−1) �|= Pre(p′). Finally, Rule

Pre0 is used to forbid the rightmost choice in Rule Pre2 when i = 1. Indeed it
would make no sense to say that the world associated to a label σ must not be
in the initial model M0 when it has been created to be in M0.

Proposition 3 (Tableau method soundness and completeness). For all
ϕ0, . . . , ϕn, ψ ∈ L, for all ϕ′

1, . . . , ϕ
′
n ∈ L′, ϕ0, ϕ

′
1, ϕ1, . . . , ϕ

′
n, ϕn

1 ψ iff
ϕ0, ϕ

′
1, ϕ1, . . . , ϕ

′
n, ϕn n

1
ψ.

4 NEXPTIME-Completeness and Implementation

The NEXPTIME-completeness of our simple DEL-sequents [3] extends to gen-
eralized DEL-sequents.

62 G. Aucher et al.

Proposition 4. The satisfiability problem is NEXPTIME-complete

An implementation of the tableau method can be found at:

http://www.irisa.fr/prive/fschwarz/lotrecscheme/.

The tableau rules are written in LotrecScheme [16] which is a term rewriting
system designed for implementing tableau methods. The corresponding rules
can be found directly in the software by clicking ‘open’ and ‘generalized DEL-
sequents’.

The implemented rules are similar to those presented in Subsection 3.2. There
are two main differences. The first one is that we tag worlds with ok and ¬ok to
say respectively that the node belongs to the model or not. We use those two tags
for a reason of efficiency. The second difference concerns the pattern-matching
of a condition of a rule: as LotrecScheme does not enable an arbitrary number
of terms to match in a condition, we adapt the method so that the numbers of
terms in all rules are fixed. For instance, let us consider the rule Ba. (Ra Σ Σ′) is
a macro to denote an arbitrary number of terms whereas in the implementation
(Ra Σ Σ′) is not a macro but a term and we have to simulate the way relations
are defined in the product update:

(Ra Σ Σ′)(Ra a b)(Σ :: a ok)

(Ra Σ :: a Σ′ :: b) and

(Ra Σ :: a Σ′ :: b)

(Ra Σ Σ′)(Ra a b)

where a, b, Σ and Σ′ are terms, and where Σ :: a is the concatenation of Σ and
a, and Σ′ :: b is the concatenation of Σ′ and b. Σ and Σ′ are sequences of labels,
and a and b are labels representing worlds of an event model.

5 Extension to Other Semantics

In this section, we investigate the complexity of the satisfiability problem with
semantics where the accessibility relations are also assumed to be reflexive or
serial (an accessibility relation Ra is reflexive when for all w ∈ W , w ∈ Ra(w),
and serial when for all w ∈W , there is u ∈ W such that u ∈ Ra(w)).

(Σ ϕ)

(Ra Σ Σ)
T

(Σ Baϕ)

(Ra Σ Σ+)(Σ+ ϕ)
D

For reflexivity, we add the rule T above to the tableau method, where Σ can be
σ or σi (reflexivity of product models stems from initial and event models being
reflexive). Rule T is sound and complete with respect to reflexive models.

For seriality, we add the rule D above to the tableau method, where Σ can be
σ, σi or σ σ1 . . . σi. Rule D is sound and complete with respect to serial models.
There is no problem of termination because we add a successor to a node if, and
only if there is a modal formula in it.

http://www.irisa.fr/prive/fschwarz/lotrecscheme/

Generalized DEL-Sequents 63

Proposition 5. The satisfiability problem when the relations are reflexive or
serial is NEXPTIME-complete.

6 Example: Coordinated Attack Problem

In this section, we assume that there are only two agents a and b. We extend our
epistemic language L with the common knowledge operator Ca,bϕ. The truth
conditions of the common knowledge operator are defined as follows:

M, w |= Ca,bϕ iff for all v ∈ (Ra ∪Rb)
+
(w), M, v |= ϕ,

where (Ra ∪Rb)
+
is the transitive closure of (Ra ∪Rb).

Intuitively, Ca,bϕ is an abbreviation of an infinite conjunction (see [13] for
more details): Ca,bϕ = Ea,bϕ ∧ E2

a,bϕ ∧ E3
a,bϕ ∧ . . ., where Ek

a,bϕ is defined in-

ductively as follows: E1
a,bϕ = Baϕ ∧ Bbϕ and Ek+1

a,b ϕ = BaE
kϕ ∧ BbE

kϕ. The
definitions of DEL-sequents of Definition 1 can easily be adapted to this extended
language with common knowledge.

The coordinated attack problem from the distributed systems folklore can be
described informally as follows. Two generals need to attack their common enemy
simultaneously if they want to win. However, their only way to communicate is
by means of a messenger, and this messenger may be captured at any time
between the two camps. If we assume that the messenger is really lucky and
never gets caught on that particular night, how long will it take for the generals
to coordinate an attack?

We can model this problem within our framework. Assume that general a has
decided to attack at dawn. General a then sends a messenger to general b to
inform him of his decision. The content of the first message sent by general a to
general b is represented by the propositional letter attack standing for ‘general
a has decided to attack at dawn’. This message eventually reaches general b,
but general a does not know it yet. This event is represented by an atomic
event p′1 standing for ‘general b receives the decision of general a to attack
at dawn’. Its precondition is Pre(p′1) = attack. The only information we have
about this event p′1 is that general b knows about its occurrence: Bbp

′
1. As a

result of this event, general b now knows that general a has decided to attack:
Bbattack. However, general a does not know it, so they still cannot coordinate a
simultaneous attack. Therefore, general b sends an acknowledgement to general
a. This message eventually reaches general a. This event is represented by the
atomic event p′2 standing for ‘general a receives the first acknowledgement of
general b’. The precondition of atomic event p′2 is Pre(p′2) = Bbattack. This
time, general b does not know that his message has been delivered. Therefore,
the only information we have about this event p′2 is that general a knows about
its occurrence: Bap

′
2. As a result of this event, general a now knows that general

b knows that general a has decided to attack: BaBbattack. However, there is
still no common knowledge that general a has decided to attack. This informal
reasoning could go on indefinitely. It shows that common knowledge that general
a has decided to attack cannot be attained.

64 G. Aucher et al.

The above informal reasoning can be formalized within our framework in
a natural way. To achieve this aim, we define for all k ∈ N∗ the atomic
event p′k whose precondition is Pre(p′k) = BaBb . . . BaBbattack if k is odd and
Pre(p′k) = BbBaBb . . . BaBbattack if k is even (k − 1 knowledge operators are
nested alternatively in Pre(p′k)). The statement that after any finite number of
messages exchanged, it is impossible to infer that there is common knowledge
that general a has decided to attack is formalized by the fact that, for all k ∈ N∗:

Baattack,Bbp
′
1,�, Bap

′
2, . . . , Bap

′
k−1,�, Bbp

′
k,� �

k

1
Ca,battack if k is odd

Baattack,Bbp
′
1,�, Bap

′
2, . . . , Bbp

′
k−1,�, Bap

′
k,� �

k

1
Ca,battack if k is even

This result is itself due to the fact that for all k ∈ N∗,
Baattack,Bbp

′
1,�, Bap

′
2, . . . , Bbp

′
k,� �

k

1
Ek+1

a,b attack if k is odd, and

Baattack,Bbp
′
1,�, Bap

′
2, . . . , Bap

′
k,� �

k

1
Ek+1

a,b attack if k is even.
We illustrate our tableau method by proving this fact for k = 1 in Figure 1.

Remark that E2
a,battack = Ba(Baattack∧Bbattack)∧Bb(Baattack∧Bbattack).

Also, we only show one branch of the full tableau, the one which is open.

Γ0 = {(σ Baattack), (σ1 Bbp
′
1), (σ1 p′+1), (σ σ1 ¬E2

a,b)}

Pre1 and ¬∧

Γ1 = Γ0 ∪ {(σ p+1)} ∪ {(σ σ1 〈Ba〉¬(Baattack ∧ Bbattack))}

〈Ba〉

Γ2 = Γ1 ∪ {(Ra σ σ′), (R1
a σ1 σ′

1), (σ
′ σ′

1 ¬(Baattack ∧Bbattack)), (σ
′
1 p′+2)}

Pre1, Ba and ¬∧

Γ3 = Γ2 ∪ {(σ′ p+2)} ∪ {(σ′ attack)} ∪ {(σ′ σ′
1 〈Bb〉¬attack)}

〈Bb〉

Γ4 = Γ3 ∪ {(Rb σ′ σ′′), (R1
b σ′

1 σ′′
1), (σ

′′ σ′′
1 ¬attack)), (σ′′

1 p′+3)}

Pre1 and ←1

Γ5 = Γ4 ∪ {(σ′′ p+3)} ∪ {(σ ¬attack)}

Fig. 1. Open branch of the tableau proving that Baattack,Bbp
′
1,	 � 1

1
E2

a,battack

7 Conclusion

7.1 Related Work

In [12], Dupin de Saint-Cyr and Lang define an operator of “extrapolation”. This
operator takes as input a temporal formula, which corresponds to a sequence of
observations under the form of propositional formulas indexed by time stamps,

Generalized DEL-Sequents 65

and yields as output another temporal formula, which corresponds semantically
to the preferred sequences of states which satisfy the input temporal formula. The
authors follow an internal approach. In [9], Booth and Nittka address a similar
problem but with an imperfect external approach (see [1] for more details on the
different modeling approaches). They are interested in inferring what the agent
believed (or will believe) at a given moment, based on a sequence of observations
consisting of responses that the agent has given to a sequence of belief revision
inputs. Both papers deal with situations involving a single agent. Our approach
is different from both approaches, because we do not strive to “extrapolate” new
information from existing observations by resorting to an argument of minimal
change. Instead, we are only interested in inferring some necessary property that
follows from these existing observations.

Some tableau methods have been proposed for DEL, but only for public an-
nouncement logic [4,11] and hybrid public anouncement logic [14]. A terminating
tableau method has also been proposed for the full BMS framework in [14] by
encoding the reduction axioms as tableau rules. However, none of these tableau
methods can somehow address the two problems raised in the introduction, be-
cause the BMS language of [6] does not allow for partial and incomplete de-
scriptions of events: an event model or a formula announced publicly specifies
completely how all the agents perceive the occurrence of the corresponding event.
In particular, it is impossible to model the coordinated attack problem.

In [5], a sequent calculus has been developed, yet in an algebraic setting, mak-
ing a systematic comparison difficult. Their sequents m1, . . . , q1, . . . , A1, . . . ,mk,
. . . , ql, . . . , An � δ are arbitrarily long and consist of different types of for-
mulas which can contain propositions m1, . . . ,mk, events q1, . . . , ql and agents
A1, . . . , An, and which resolve into a single proposition or event δ. A sequent
calculus has also been proposed for public announcement logic [15] which, alike
our tableau terms, refers explicitely to possible worlds and relations.

7.2 Concluding Remarks

As we said in the previous subsection, our tableau method can infer necessary
information which was somehow already encoded in the sequence. In fact, our
method allows us to verify in a complexity-optimal way that a piece of informa-
tion about a sequence of events does follow from this sequence. It also allows us
to check that a given epistemic plan (viewed as a sequence of event properties)
yields an epistemic goal. Even if it does not provide an algorithm to synthesize
it ([2] deals more with synthesis), it can still be instrumental in finding out some
of its necessary properties. It can also be used during the design of the epistemic
plan itself to check that we are designing it in the ‘right’ direction.

As the title of this paper suggests, we have generalized our previous work [3]
to arbitrary long sequences of events, and extended it to the case of reflexive
or serial models.4 Also we illustrate our method by encoding the coordinated

4 A tableau rule is missing in [3]. This error is corrected in the paper available on the
HAL archive at http://hal.inria.fr/docs/00/64/64/81/PDF/M4M11.pdf

http://hal.inria.fr/docs/00/64/64/81/PDF/M4M11.pdf

66 G. Aucher et al.

attack problem. However, other generalizations still need to be done, such as
the addition of a common knowledge operator in the language (as illustrated in
Section 6) and the integration of ontic events.

References

1. Aucher, G.: An internal version of epistemic logic. Studia Logica 94(1), 1–22 (2010)
2. Aucher, G.: DEL-sequents for regression and epistemic planning. Journal of Ap-

plied Non-Classical Logics (to appear, 2012)
3. Aucher, G., Maubert, B., Schwarzentruber, F.: Tableau method and NEXPTIME-

completeness of DEL-sequents. Electronic Notes in Theoretical Computer Sci-
ence 278, 17–30 (2011)

4. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: Tableaux for public
announcement logic. Journal of Logic and Computation 20(1), 55–76 (2010)

5. Baltag, A., Coecke, B., Sadrzadeh, M.: Algebra and sequent calculus for epistemic
actions. In: Proceedings of Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS 2004), pp. 60–78 (2004)

6. Baltag, A., Moss, L.: Logic for epistemic programs. Synthese 139(2), 165–224 (2004)
7. Baltag, A., Moss, L., Solecki, S.: The logic of common knowledge, public announce-

ment, and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK 1998), pp. 43–56
(1998)

8. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. Technical report, Indiana University (1999)

9. Booth, R., Nittka, A.: Reconstructing an agent’s epistemic state from observations
about its beliefs and non-beliefs. J. Log. Comput. 18(5), 755–782 (2008)

10. Brusoni, V., Console, L., Terenziani, P., Dupré, D.T.: A spectrum of definitions for
temporal model-based diagnosis. Artificial Intelligence 102(1), 39–79 (1998)

11. de Boer, M.: KE tableaux for public anouncement logic. In: Proceedings of For-
mal Approaches to Multi-Agent Systems Workshop (FAMAS 2007), Durham, UK
(2007)

12. de Saint-Cyr, F.D., Lang, J.: Belief extrapolation (or how to reason about obser-
vations and unpredicted change). Artif. Intell. 175(2), 760–790 (2011)

13. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT
Press (1995)

14. Hansen, J.U.: Terminating tableaux for dynamic epistemic logic. Electronic Notes
in Theoretical Computer Science 262, 141–156 (2010)

15. Maffezioli, P., Negri, S.: A gentzen-style analysis of public announcement logic. In:
Proceedings of the International Workshop on Logic and Philosophy of Knowledge,
Communication and Action, pp. 293–313 (2010)

16. Schwarzentruber, F.: Lotrecscheme. Electronic Notes in Theoretical Computer Sci-
ence 278, 187–199 (2011)

Deciding the Bisimilarity Relation
between Datalog Goals

Philippe Balbiani and Antoun Yaacoub

Institut de Recherche en Informatique de Toulouse, CNRS — Université de Toulouse
118 route de Narbonne, 31062 Toulouse Cedex 9, France

{balbiani,yaacoub}@irit.fr

Abstract. We introduce the concept of bisimulation between Datalog
goals: two Datalog goals are bisimilar with respect to a given Datalog
program when their SLD-trees, considered as relational structures, are
bisimilar. We address the problem of deciding whether two given goals
are bisimilar with respect to given programs. When the given programs
are hierarchical or restricted, this problem is decidable in 2EXPTIME.

Keywords: Logic programming, Datalog, Equivalence of goals, Bisim-
ulation, Decision method, Computational complexity.

1 Introduction

Within the context of a given programming language, it is essential to associate
a semantics to programs written in it. This semantics induces an equivalence
relation between programs. Hence, the decision problem "given two programs,
determine whether they are equivalent" is at the heart of the study of program
semantics.

In logic programming, several ideas of equivalence of logic programs are in
competition. These ideas are based on the various semantics of logic programs.
For example, if one considers the least Herbrand model semantics, then two given
logic programs are said to be equivalent iff their least Herbrand models are equal.
Such equivalence relations between programs have been intensively studied in
the past [6,7,11,12]. Nevertheless, in some cases, they fail to adequately provide
the right tool for comparing logic programs. For instance, in the case of perpetual
processes, most of them are inadequate to offer frameworks in which to reason
about programs. The truth is that two perpetual processes may have the same
declarative semantics (defined in terms of least model) for example and, still
have very different behaviors. And the various equivalence relations considered
in [4,5,8,10] do not take into account the computational aspects of logic program-
ming. The goal of this paper is to suggest the use of equivalence relations between
logic programs that take into account the shape of the SLD-trees that these pro-
grams give rise to. This idea is not new: in automata theory, for instance, many
variants of the equivalence relation of bisimilarity have been defined in order
to promote the idea that automata with the same trace-based semantics should
sometimes not be considered as equivalent if they are not bisimilar [13].

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 67–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 P. Balbiani and A. Yaacoub

In this paper, in order to simplify matter, we consider logic programs of a
very simple kind: Datalog programs. Furthermore, comparing two given Datalog
programs and taking into account the shape of the SLD-trees they give rise
to necessitates the comparison of infinitely many SLD-trees. Thus, in a first
approach, we restrict our study to the comparison of two given Datalog goals.
We will say that, with respect to a fixed Datalog program P , two given goals
are equivalent when their SLD-trees are bisimilar.

In this paper, we investigate the computability and complexity of the equiva-
lence problem between Datalog goals. In particular, we examine the complexity
of the following decision problems:

– given two Datalog goals F, G and a hierarchical Datalog program P , deter-
mine if the SLD-trees of P ∪ F and P ∪G are bisimilar.

– given two Datalog goals F, G and a restricted Datalog program P , determine
if the SLD-trees of P ∪ F and P ∪G are bisimilar.

In section 2 of this paper, we will present some basic notions about Datalog
programs, syntax and semantics. In section 3, we will introduce the concept of
bisimulation between Datalog goals. An undecidability result concerning Prolog
programs will be given on section 4. In section 5, we will address the problem
of deciding whether two given goals are bisimilar with respect to a given hierar-
chical program. At the end of the section, computational issues will be studied.
Note that for hierarchical programs, the SLD-tree for a goal ← G contains only
finite branches. In section 6, we will address the same questions as in section 5
by considering here restricted programs. These programs allow a specific kind
of recursion in the clauses. Finally, we will conclude by proposing an open ques-
tion concerning to decide whether two given goals are bisimilar with respect
to a nonvariable introducing logic program or a single variable occurrence logic
program.

2 Datalog Programs

In many respects, Datalog is a simplified version of Prolog. A Datalog program
consists of a finite set of Horn clauses of the form A0 ← A1, · · · , An where each
Ai is a literal of the form p(t1, · · · , tk) such that p is a predicate symbol of arity
k and the t1, · · · , tk are terms. A term is either a constant or a variable. The
left-hand side of a Datalog-clause is called its head and the right-hand side is
called its body. Any Datalog program must satisfy the following condition: each
variable which occurs in the head of a clause must also occur in the body of
the same clause. A Datalog program P is said to be hierarchical iff there exists
a mapping l associating a nonnegative integer l(p) to every predicate symbol p
occurring in P and such that for all clauses A0 ← A1, · · · , An in P , if each Ai is a
literal of the form pi(t1, · · · , tki) then l(p0) > l(p1), · · · , l(pn). The dependency
graph of a Datalog program P is the graph (N, E) where N is the set of all
predicate symbols occurring in P and E is the adjacency relation defined on N
as follows: pEq iff P contains a clause A0 ← A1, · · · , An such that A0 is a literal

Deciding the Bisimilarity Relation between Datalog Goals 69

of the form p(· · ·) and for some 1 ≤ i ≤ n, Ai is a literal of the form q(· · ·). Let
E∗ be the reflexive transitive closure of E. A Datalog program P is said to be
restricted iff for all clauses A0 ← A1, · · · , An in P and for all 1 ≤ i ≤ n−1, if A0

is of the form p(· · ·) and Ai is of the form q(· · ·), then not qE∗p. A program P is
nonvariable introducing (in short nvi) if for every clause A← B1, · · · , Bn in P ,
every variable that occurs in B1, · · · , Bn occurs also in A. A program P is single
variable occurrence (in short svo) if for every clause A ← B1, · · · , Bn in P , no
variable in B1, · · · , Bn occurs more than once. A Datalog goal is a Horn clause of
the form G =← B1, · · · , Bm. Its size, denoted |G|, is m. There exists a goal of size
0, the empty goal (denoted �). The proof theoretic analysis of formalisms such
as Datalog is oriented towards the following decision problem: given a Datalog
program P and a Datalog goal ← B1, · · · , Bm, determine whether there exists
a ground substitution θ such that for every 1 ≤ i ≤ m, Biθ can be inferred from
P . The inference rule we will rely on in this paper is the so-called SLD-resolution
principle and the computation rule is the one which always selects the leftmost
atom in a goal. Consider a Datalog clause of the form A0 ← A1, · · · , An and
a Datalog goal ← B1, · · · , Bm. If a substitution θ exists such that, A0θ = B1θ
then the Datalog goal ← A1θ, · · · , Anθ, B2θ, · · · , Bmθ is called a resolvent of
A0 ← A1, · · · , An and ← B1, · · · , Bm. Let P be a Datalog program and G be
a Datalog goal. An SLD-derivation of P ∪ {G} consists of (finite or infinite)
sequences G0, G1, · · · of goals, C1, C2, · · · of P ’s clauses and θ1, θ2, · · · of most
general unifiers such that G0 = G and for all i ≥ 1, Gi is a resolvent of Ci and
Gi−1 using θi. An SLD-refutation of P∪{G} is a finite SLD-derivation of P ∪{G}
which has the empty goal � as the last goal in the derivation. An SLD-tree for
P ∪ {G} is a labeled tree satisfying the following conditions:

– The root node is labeled with G.
– Let ← B1, · · · , Bm (m ≥ 1) be the label of a node in the tree. Then for

every clause A0 ← A1, · · · , An in P and for every most general unifier θ of
B1 and A0, the resolvent ← A1θ, · · · , Anθ, B2θ, · · · , Bmθ of ← B1, · · · , Bm

and A0 ← A1, · · · , An via θ is the label of a child of ← B1, · · · , Bm.

Each branch of the SLD-tree corresponds to an SLD-derivation in a natural way.

Example 1. Let P be the program:
r(b, b)←,
q(a, a)←,
p(a, b)←,
p(x, y)← r(x, y),
p(x, z)← q(x, y), p(y, z)

and G be the goal← p(a, z). Remark that P is restricted. The next figure shows
the SLD-tree for this goal. The selected atoms are underlined and the success,
failure and infinite branches are shown.

70 P. Balbiani and A. Yaacoub

← p(a, z)

�
success

{z/b}
← r(a, z)

failure

← q(a, y), p(y, z)

← p(a, z)
...

infinite

{y/a}

Note that the above SLD-tree is infinite and has success branches corresponding
to the substitution answer {z/b}.

3 Bisimulation

In this section, we introduce the central concept of the paper: bisimulation. Quite
simply, a bisimulation is a binary relation between goals such that related goals
have "equivalent" SLD-trees. Let P be a Datalog program. A binary relation Z
between Datalog goals is said to be a P-bisimulation iff it satisfies the following
conditions for all Datalog goals F1, G1 such that F1ZG1:

– F1 = � iff G1 = � ,
– For each resolvent F2 of F1 and a clause in P , there exists a resolvent G2 of

G1 and a clause in P such that F2ZG2,
– For each resolvent G2 of G1 and a clause in P , there exists a resolvent F2 of

F1 and a clause in P such that F2ZG2.

It is a rather easy observation that the set of all P-bisimulations is closed under
taking arbitrary unions. This shows that:

Proposition 1. There exists a maximal P-bisimulation, namely the binary re-
lation ZP

max between Datalog goals defined as follows: F1ZP
maxG1 iff there exists

a P-bisimulation Z such that F1ZG1.

Obviously, the identity relation between Datalog goals is a P-bisimulation. More-
over, for all P-bisimulations Z, Z−1 (the inverse of Z) is a P-bisimulation. Fi-
nally, for all P-bisimulations Z, T , Z ◦ T (the composition of Z and T) is a
P-bisimulation. It follows immediately that:

Proposition 2. ZP
max is an equivalence relation on the set of all Datalog goals.

Example 2. Let P be the following program:
p(a, y)← q(y),
p(b, y)← r(y),
p(b, y)← s(y)
and let F, G be respectively the following goals ← p(a, y) and ← p(b, y). Note
that P is hierarchical and restricted.

Deciding the Bisimilarity Relation between Datalog Goals 71

Let Z be the binary relation between goals such that:

← p(a, y) Z ← p(b, y),
← q(y) Z ← r(y),
← q(y) Z ← s(y).

← p(a, y)

← q(y)

failure

← p(b, y)

← r(y)

failure
← s(y)

failure

Obviously, Z is a P-bisimulation. Since F Z G, then F ZP
max G.

In this paper, we address the following decision problem : (π) given a Datalog
program P and Datalog goals F1, G1, determine whether F1ZP

maxG1.

4 Undecidability of Bisimulation for Prolog Programs

As is well known, the SLD-resolution principle and the concepts of resolvent,
SLD-derivation, SLD-refutation and SLD-tree have also been considered within
the context of Prolog programs and Prolog goals. In addition to the predicate
symbols, constants and variables composing the alphabet of Datalog, the alpha-
bet of Prolog also includes function symbols allowing the use of terms induc-
tively defined as follows: (i) constants are terms; (ii) variables are terms; (iii)
expressions of the form f(t1, · · · , th) where f is a function symbol of arity h and
t1, · · · , th are terms are terms. As a result, one may also define in Prolog the
binary relations between goals similar to the bisimulation defined in Datalog.
Nevertheless,

Proposition 3. It is undecidable, given a Prolog program P and Prolog goals
F1, G1, to determine whether F1 ZP

max G1.

Proof. Let us consider the following decision problem: (π1) given a Prolog pro-
gram P with exactly one binary clause (i.e. a clause such that its body contains
at most one atom) and a Prolog goal ← B, determine whether the SLD-tree
for P ∪ {← B} contains an infinite branch. Let (P,← B) be an instance of
π1. We consider new constants a, b, c and a new predicate symbol p of arity 2.
Let P ′ be the least Prolog program containing P and the following Horn clauses:

p(a, y)← B,
p(b, y)← B,
p(b, y)← p(c, y),
p(c, y)← p(c, y).

72 P. Balbiani and A. Yaacoub

We demonstrate that the following conditions are equivalent:

(i) the SLD-tree for P ∪ {← B} contains an infinite branch;
(ii) ← p(a, y)ZP ′

max ← p(b, y).

(i)⇒ (ii) Suppose the SLD-tree for P ∪{← B} contains an infinite branch. Since
P consists of exactly one binary clause, then the SLD-tree for P ∪{← B} is equal
to a unique infinite branch. Obviously, the SLD-tree for P ′ ∪ {← p(a, y)} is also
equal to a unique infinite branch whereas the SLD-tree for P ′ ∪ {← p(b, y)} is
equal to a pair of infinite branches. Hence, ← p(a, y)ZP ′

max ← p(b, y).

(ii)⇒ (i) Suppose← p(a, y)ZP ′
max ← p(b, y). Obviously, the SLD-tree for P ′∪{←

p(b, y)} contains an infinite branch. Hence, the SLD-tree for P ′ ∪ {← p(a, y)}
also contains an infinite branch. Hence, the SLD-tree for P ∪ {← B} contains
an infinite branch.

Since (π1) is undecidable [3], then it is undecidable, given a Prolog program
P and Prolog goals F1, G1, to determine whether F1 ZP

max G1. �

A question arises here, how can we restore this decision problem to decidabil-
ity? One can think (as we have done) about considering specific classes of logic
programs, by restricting the language of logic programming. In the setting of
Datalog programs for example, the main difficulty concerning (π) comes from
loops or infinite branches in SLD trees. We will address this issue in the following
sections.

5 Decidability of Bisimulation for Hierarchical Programs

We now study the computational complexity of the following decision problem:
(πhie) given an hierarchical Datalog program P and Datalog goals F1, G1, de-
termine whether F1ZP

maxG1. In this respect, let P be a hierarchical Datalog
program. Remark that the Datalog program considered in Example 1 is not hi-
erarchical whereas the Datalog program considered in Example 2 is hierarchical.

In Algorithm 1, bothempty(F1,G1) is a Boolean function returning true iff
F1 = � and G1 = �, whereas bothfail(F1,G1) is a Boolean function returning
true iff F1 �= �, successor(F1)=∅, G1 �= � and successor(G1)=∅. Moreover,
successor(.) is a function returning the set of all resolvents of its argument
with a clause of P whereas get-element(.) is a function removing one element
from the set of elements given as input and returning it. In order to demonstrate
the decidability of (πhie), we need to prove the following lemmas for all Datalog
goals F1, G1:

Lemma 1 (Termination). bisim1(F1,G1) terminates.

Lemma 2 (Completeness). If F1ZP
maxG1, then bisim1(F1,G1) returns true.

Lemma 3 (Soundness). If bisim1(F1,G1) returns true, then F1ZP
maxG1.

Let
 be the binary relation on the set of all pairs of Datalog goals defined by:
(F2, G2)
 (F1, G1) iff

Deciding the Bisimilarity Relation between Datalog Goals 73

– the SLD-tree for F1 is deeper than the SLD-tree for F2,
– the SLD-tree for G1 is deeper than the SLD-tree for G2.

The depth of an SLD-tree is the depth of its longest branch. Remark that in this
section, all SLD-trees are finite.

Obviously,
 is a partial order on the set of all pairs of goals. Since P is
hierarchical, then
 is well-founded.

Algorithm 1. function bisim1(F1,G1)
begin

if bothempty(F1, G1) or bothfail(F1, G1) then
return true

else
SF ←− successor(F1)
SG←− successor(G1)
if SF �= ∅ and SG �= ∅ then

SF ′ ←− SF
while SF ′ �= ∅ do

F2 ←− get-element(SF ′)
found-bisim←− false
SG′ ←− SG
while SG′ �= ∅ and found-bisim = false do

G2 ←− get-element(SG′)
found-bisim←− bisim1(F2, G2)

if found-bisim = false then
return false

SG′ ←− SG
while SG′ �= ∅ do

G2 ←− get-element(SG′)
found-bisim←− false
SF ′ ←− SF
while SF ′ �= ∅ and found-bisim = false do

F2 ←− get-element(SF ′)
found-bisim←− bisim1(G2, F2)

if found-bisim = false then
return false

return true

else
return false

end

Proof of Lemma 1. The proof is done by
-induction on (F1, G1). Let (F1, G1)
be such that for all (F2, G2), if (F2, G2)
 (F1, G1) then bisim1(F2,G2) termi-
nates. Since every recursive call to bisim1 that is performed along the execution
of bisim1(F1,G1) is done with respect to a pair (F2, G2) of goals such that
(F2, G2)
 (F1, G1), then bisim1(F1,G1) terminates. �

74 P. Balbiani and A. Yaacoub

Proof of Lemma 2. Let us consider the following property: (Prop1(F1, G1))
if F1ZP

maxG1 then bisim1(F1,G1) returns true. Again, we proceed
by
-induction. Suppose (F1, G1) is such that for all (F2, G2), if
(F2, G2)
 (F1, G1) then Prop1(F2, G2). Let us show that Prop1(F1, G1).
Suppose F1ZP

maxG1. Hence, for all successors F2 of F1, there ex-
ists a successor G2 of G1 such that F2ZP

maxG2, and conversely. See-
ing that the logic program is hierarchical, then (F2, G2)
 (F1, G1).
By induction hypothesis, Prop1(F2, G2). Since F2ZP

maxG2, then
bisim1(F2,G2) returns true. As a result, one sees that bisim1(F1,G1)
returns true. �
Proof of Lemma 3. It suffices to demonstrate that the binary relation Z
defined as follows between Datalog goals is a bisimulation: F1ZG1 iff
bisim1(F1,G1) returns true. Let F1, G1 be Datalog goals such that F1ZG1.
Hence, bisim1(F1,G1) returns true. Thus, obviously, F1 = � iff G1 = �, and
the first condition characterizing bisimulations holds for Z. Now, suppose that F2

is a resolvent of F1 and a clause in P . Since bisim1(F1,G1) returns true, then
there exists a resolvent G2 of G1 and a clause in P such that bisim1(F2,G2)
returns true, i.e. F2ZG2. As a result, the second condition characterizing bisim-
ulations holds for Z. The third condition characterizing bisimulations holds for
Z too, as the reader can quickly check. Thus Z is a bisimulation. �
As a consequence of lemmas 1 – 3, we have:

Theorem 1. Algorithm 1 is a sound and complete decision procedure for (πhie).

It follows that (πhie) is decidable. Moreover,

Theorem 2. (πhie) is in 2EXPTIME.

Proof. Let P be a hierarchical Datalog program and G be a goal. Let n be the
maximal number of atoms in the clauses of P or in G, and t be the number of
level mapping in P . In fact, the maximal depth of a branch in an SLD-tree is
equal to n×(the maximal depth of a branch at level t−1) which is in turn equal to
n×(1+n×(1+ the maximal depth of a branch at level t−2)). Thus, by iterating
the same operation until level 1, we conclude that the maximal depth D of a
branch in an SLD-tree cannot exceed

∑t
i=1 ni. Remark that

∑t
i=1 ni ≤ t× nt.

Let s be the maximal number of clauses that defines a predicate. Hence, the
branching degree of the SLD-tree for P ∪ {G} is bounded by s. Remark that
our algorithm uses twice two nested loops. In fact, for a maximal depth D,
the time complexity of the algorithm is approximately equal to 2 × s2 × (the
time complexity of the algorithm for a depth D − 1) which is in turn equal to
4 × s4 × (the time complexity of the algorithm for a depth D − 2). Thus, by
iterating the same operation until depth 1, one can show that for a depth D,
the time complexity of our algorithm is about 2D × s2×D ≤ 2t×nt × s2×t×nt

.
Note that for a hierarchical program P and a goal G, the number of nodes in
the corresponding SLD-tree is about st×nt

. �
Concerning the exact complexity of (πhie), we do not know whether (πhie) is
2EXPTIME-hard or (πhie) is in EXPSPACE.

Deciding the Bisimilarity Relation between Datalog Goals 75

6 Decidability of Bisimulation for Restricted Programs

We now study the computational complexity of the following decision problem:
(πres) given a restricted Datalog program P and Datalog goals F1, G1, determine
whether F1ZP

maxG1. In this respect, let P be a restricted Datalog program.
In Algorithm 2, bothempty(Fi,Gi) and bothfail(Fi,Gi) are similar to the
corresponding functions used in Algorithm 1, whereas occur((F1 ⇒ · · · ⇒
Fi),(G1 ⇒ · · · ⇒ Gi)) is a Boolean function returning true iff there exists
substitutions σ, τ such that Fl = Fkσ, Gl = Gkτ for some 1 ≤ k < l ≤ i. As the
reader can see, Algorithm 2 is very similar to Algorithm 1. The main difference
lies in the introduction of the occur test in the first conditional instruction.
Remark that the Datalog programs considered in Example 1 and Example 2 are
restricted.

In order to demonstrate the decidability of (πres), we need to prove the fol-
lowing lemmas for all Datalog goals F1, G1.

Lemma 4 (Termination). bisim2((F1),(G1)) terminates.

Lemma 5 (Completeness). If F1ZP
maxG1, then bisim2((F1),(G1)) returns

true.

Lemma 6 (Soundness). If bisim2((F1),(G1)) returns true, thenF1ZP
maxG1.

Let ≺ be the binary relation on the set of all pairs of SLD-derivations defined
by: ((F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi)) ≺ ((F ′

1 ⇒ · · · ⇒ F ′
j), (G

′
1 ⇒ · · · ⇒ G′

j))
iff i > j, (F1 ⇒ · · · ⇒ Fj) = (F ′

1 ⇒ · · · ⇒ F ′
j), (G1 ⇒ · · · ⇒ Gj) = (G′

1 ⇒
· · · ⇒ G′

j), there exists no substitutions σ, τ such that F ′
l = F ′

kσ, G′
l = G′

kτ
for some 1 ≤ k < l ≤ i. Obviously, ≺ is a partial order on the set of all pairs
of SLD-derivations. Let us demonstrate that ≺ is well-founded. Suppose ≺ is
not well-founded. Hence, there exists infinite SLD-derivations (F1 ⇒ F2 ⇒ · · ·),
(G1 ⇒ G2 ⇒ · · ·) such that for all substitutions σ, τ , Fl �= Fkσ or Gl �= Gkτ for
all 1 ≤ k < l. This contradicts the following claim.

Claim. Let (F1 ⇒ F2 ⇒ · · ·), (G1 ⇒ G2 ⇒ · · ·) be infinite SLD-derivations.
There exists M ≥ 1 and there exists substitutions σ, τ such that FM = Fkσ,
GM = Gkτ for some 1 ≤ k < M .

Proof. According to [2, Corollary 4.14], there exists N ≥ 1 such that for all
j ≥ 1, |Fj | ≤ N and |Gj | ≤ N . Let ∼= be the binary relation on the set of all
pairs of goals of size bounded by N defined by: (F, G) ∼= (F ′, G′) iff

– there exists substitutions σ, τ such that Fσ = F ′, Gτ = G′,
– there exists substitutions σ′, τ ′ such that F ′σ′ = F , G′τ ′ = G.

Obviously, ∼= is an equivalence relation on the set of all pairs of goals of size
bounded by N . Seeing that our Datalog language has no function symbols and
possesses finitely many predicate symbols and constants, ∼= determines a fi-
nite number of equivalence relations. Thus, one of these equivalence classes is
repeated infinitely often in the sequence (F1, G1), (F2, G2), · · · . Therefore, there
exists M ≥ 1 and there exists substitutions σ, τ such that FM = Fkσ, GM = Gkτ
for some 1 ≤ k < M . �

76 P. Balbiani and A. Yaacoub

Algorithm 2. function bisim2((F1 ⇒ · · · ⇒ Fi),(G1 ⇒ · · · ⇒ Gi))
begin

if bothempty(Fi, Gi) or bothfail(Fi, Gi) or
occur((F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi)) then

return true

else
SF ←− successor(Fi)
SG←− successor(Gi)
if SF �= ∅ and SG �= ∅ then

SF ′ ←− SF
while SF ′ �= ∅ do

F ′ ←− get-element(SF ′)
found-bisim←− false
SG′ ←− SG
while SG′ �= ∅ and found-bisim = false do

G′ ←− get-element(SG′)
found-bisim←− bisim2((F1 ⇒ · · · ⇒ Fi ⇒ F ′), (G1 ⇒
· · · ⇒ Gi ⇒ G′))

if found-bisim = false then
return false

SG′ ←− SG
while SG′ �= ∅ do

G′ ←− get-element(SG′)
found-bisim←− false
SF ′ ←− SF
while SF ′ �= ∅ and found-bisim = false do

F ′ ←− get-element(SF ′)
found-bisim←− bisim2((G1 ⇒ · · · ⇒ Gi ⇒ G′), (F1 ⇒
· · · ⇒ Fi ⇒ F ′))

if found-bisim = false then
return false

return true

else
return false

end

Deciding the Bisimilarity Relation between Datalog Goals 77

Proof of Lemma 4. In order to show the termination of bisim2, it suffices to
repeat the proof of the termination of bisim1, with ≺ instead of
. �

Proof of Lemma 5. Let us consider the following property: (Prop2((F
′
1 ⇒ · · · ⇒

F ′
j), (G

′
1 ⇒ · · · ⇒ G′

j))) if F ′
jZP

maxG′
j then bisim2((F ′

1 ⇒ · · · ⇒ F ′
j),(G

′
1 ⇒

· · · ⇒ G′
j)) returns true. Again, we proceed by induction, this time with ≺

instead of
. Suppose ((F ′
1 ⇒ · · · ⇒ F ′

j), (G
′
1 ⇒ · · · ⇒ G′

j)) is such that for all
((F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi)), if ((F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi)) ≺
((F ′

1 ⇒ · · · ⇒ F ′
j), (G

′
1 ⇒ · · · ⇒ G′

j)) then Prop2((F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒
Gi)). Let us show that Prop2((F

′
1 ⇒ · · · ⇒ F ′

j), (G
′
1 ⇒ · · · ⇒ G′

j)). Suppose
F ′

jZP
maxG′

j . Hence, for all successors F ′ of F ′
j , there exists a successor G′ of G′

j

such that F ′ZP
maxG′, and conversely. Seeing that ((F ′

1 ⇒ · · · ⇒ F ′
j ⇒ F ′), (G′

1 ⇒
· · · ⇒ G′

j ⇒ G′)) ≺ ((F ′
1 ⇒ · · · ⇒ F ′

j), (G
′
1 ⇒ · · · ⇒ G′

j)), then by induction
hypothesis, Prop2((F

′
1 ⇒ · · · ⇒ F ′

j ⇒ F ′), (G′
1 ⇒ · · · ⇒ G′

j ⇒ G′)). Since
F ′ZP

maxG′, then bisim2((F ′
1 ⇒ · · · ⇒ F ′

j ⇒ F ′),(G′
1 ⇒ · · · ⇒ G′

j ⇒ G′))
returns true. As a result, one sees that bisim2((F ′

1⇒ · · · ⇒ F ′
j),(G

′
1 ⇒ · · · ⇒

G′
j)) returns true. �

Proof of Lemma 6. It suffices to demonstrate that the binary relation Z defined
as follows between Datalog goals is a bisimulation: FZG iff there exists SLD-
derivations (F1 ⇒ · · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi) such that Fi = F , Gi = G
and bisim2((F1 ⇒ · · · ⇒ Fi),(G1 ⇒ · · · ⇒ Gi)) returns true. Let F , G
be Datalog goals such that FZG. Hence there exists SLD-derivations (F1 ⇒
· · · ⇒ Fi), (G1 ⇒ · · · ⇒ Gi) such that Fi = F , Gi = G and bisim2((F1 ⇒
· · · ⇒ Fi),(G1 ⇒ · · · ⇒ Gi)) returns true. Thus, it is easy to verify that the
first condition characterizing bisimulations holds for Z as Fi = � iff Gi = �.
Let F ′ be a resolvent of Fi and a clause in P . Since bisim2((F1 ⇒ · · · ⇒
Fi),(G1 ⇒ · · · ⇒ Gi)) returns true, then there exists a resolvent G′ of Gi and
a clause in P such that bisim2((F1 ⇒ · · · ⇒ Fi ⇒ F ′),(G1 ⇒ · · · ⇒ Gi ⇒
G′)) returns true, i.e. F ′ZG′. Consequently, the second condition characterizing
bisimulations holds for Z. For the third condition characterizing bisimulations,
a proof similar to the one presented for the second condition applies here. Thus
Z is a bisimulation. �

As a consequence of lemmas 4 – 6, we have:

Theorem 3. Algorithm 2 is a sound and complete decision procedure for (πres).

It follows that (πres) is decidable. Moreover,

Theorem 4. (πres) is in 2EXPTIME.

Proof. Let P be a restricted Datalog program and G be a goal. Let n be the
maximal number of atoms in the clauses of P or in G, p be the number of
predicate symbols in P , a be the maximal arity of the predicate symbols in P ,
and c be the number of constants in P . Thus, the number of variables in P is
about n × a, the number of ground atoms is bounded by p × ca and the total
number of atoms is bounded by p×(c+n×a)a. Moreover, as the number of goals

78 P. Balbiani and A. Yaacoub

of size n is bounded by pn × (c + n× a)a×n, the number of pairs of goals of size
n is bounded by p2×n × (c + n× a)2×a×n. Then, according to the claim of page
9. The maximal length of SLD-derivations that are considered in Algorithm 2
will be smaller than M = p2×n × (c + n × a)2×a×n. Now, replacing D by M in
the proof of Theorem 2, one can demonstrate that the time complexity of our
algorithm is about 2M × s2×M ≤ 2p2×n×(c+n×a)2×a×n × s2×p2×n×(c+n×a)2×a×n

. �
In practice, we can limit the tests performed by occur in such a way that
occur((F1 ⇒ · · · ⇒ Fi),(G1 ⇒ · · · ⇒ Gi)) returns true iff there exists
substitutions σ, τ such that Fi = Fkσ, Gi = Gkτ for some 1 ≤ k < i.

7 Conclusion

In this paper, we have introduced the concept of bisimulation between datalog
goals: two Datalog goals are bisimilar with respect to a given program when their
SLD-trees are bisimilar. As proved in Section 4, deciding whether two given goals
are bisimilar with respect to a given general logic program is undecidable. Hence,
a natural question is to restrict the language of logic programming as done in
Section 5 and Section 6. Thus, when the given logic program is hierarchical or
restricted, the problem of deciding whether two given goals are bisimilar becomes
decidable in 2EXPTIME. The proof of decidability of bisimulation problem for
restricted logic program that we presented in Section 6 is based on techniques
that were developed in [2] for detecting loops in logic programming. We tried
to prove the same result for nvi programs and svo programs. Unfortunately,
applying the techniques of loop detection developed in [2] does not seem to
allow us to determine if two given goals are bisimilar with respect to an nvi or
an svo logic program.

Example 3. Let P be the following nvi, svo program:
p← p, t;
p←;
q ← r, q;
q ←;
r ←;
r ← s;
s←
and let F, G be respectively the following goals ← p and ← q. Remark that P is
both nvi and svo.← p

← p, t

← p, t, t
...

← t

�

← q

← r, q

← s, q
...

← q
...

�

Deciding the Bisimilarity Relation between Datalog Goals 79

Obviously, F and G are not bisimilar with respect to P . To see this, it suffices
to verify that, since the goal← p, t has an empty successor whereas all successors
of the goal ← r, q are non empty, then ← p, t and ← r, q are not bisimilar with
respect to P .

Nevertheless, if one applies the techniques of loop detection developed in [2],
then one obtains the following bisimilar reduced SLD-trees:

← p

← p, t �

← q

← r, q �

Acknowledgments. Both authors want to express their appreciation to Yan-
nick Chevalier for his kind help in the course of this research.

References

1. Bol, R.N.: Loop Checking in Partial Deduction. J. Logic Programming 16, 25–46
(1993)

2. Bol, R.N., Apt, K.R., Klop, J.W.: An Analysis of Loop Checking Mechanisms for
Logic Programs. Theoretical Computer Science 86, 35–79 (1991)

3. Devienne, P., Lebégue, P., Routier, J.-C.: Halting Problem of One Binary Horn
Clause is Undecidable. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS
1993. LNCS, vol. 665, pp. 48–57. Springer, Heidelberg (1993)

4. Gabbrielli, M., Levi, G., Meo, M.C.: Observable Behaviors and Equivalences of
Logic Programs 122, 1–29 (1992)

5. Harland, J.: On Normal Forms and Equivalence for Logic Programs. In: Proceed-
ings of the Joint International Conference and Symposium on Logic Programming,
pp. 146–160 (1992)

6. Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In: de
Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

7. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677
(1978)

8. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic (2000)

9. Lloyd, J.W.: Foundations in Logic Programming. Springer (1984)
10. Maher, M.: Equivalences of Logic Programs. In: Shapiro, E. (ed.) ICLP 1986.

LNCS, vol. 225, pp. 410–424. Springer, Heidelberg (1986)
11. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Sci-

ence 25, 267–310 (1983)
12. Park, D.: Concurrency and Automata on Infinite Sequences. In: Proceedings of the

5th GI-Conference on Theoretical Computer Science, pp. 167–183. Springer, UK
(1981)

13. Sangiorgi, D.: On the origins of bisimulation and coinduction. In: ACM Trans.
Program. Lang. Syst., pp. 1–41. ACM, USA (2009)

Inconsistency Management for Traffic Regulations:
Formalization and Complexity Results�

Harald Beck, Thomas Eiter, and Thomas Krennwallner

Institute of Information Systems, Vienna University of Technology
Favoritenstrasse 9–11, A-1040 Vienna, Austria
{hbeck,eiter,tkren}@kr.tuwien.ac.at

Abstract. Smart Cities is a vision driven by the availability of governmental data
that fosters many challenging applications. One of them is the management of
inconsistent traffic regulations, i.e., the handling of inconsistent traffic signs and
measures in urban areas such as wrong sign posting, or errors in data acquisition
in traffic sign administration software. We investigate such inconsistent traffic
scenarios and formally model traffic regulations using a logic-based approach for
traffic signs and measures, and logical theories describe emerging conflicts on a
graph-based street model. Founded on this model, we consider major reasoning
tasks including consistency testing, diagnosis, and repair, and we analyze their
computational complexity for different logical representation formalisms. Our
results provide a basis for an ongoing implementation of the approach.

1 Introduction

The advent of the World Wide Web and distributed systems brought numerous new
methods for intelligent management of data and knowledge. With initiatives such as
Open Government Data (http://opengovernmentdata.org/) the idea of Smart Cities has
been gaining interest in research communities, with many innovative applications in
ecological and city planning areas. Local governments manage their posted traffic signs
and measures using software tools, i.e., authorities enact rules how traffic on urban
streets and places should be regulated, and employees increasingly maintain this infor-
mation with the help of specialized software. An important task is the management of
inconsistent traffic regulations.

Example 1. Consider the T-junction in the top of Fig. 1a. It has three arms, each rep-
resented by two parallel lanes: u3 to u1 and v1 to v3, w2 to w1 and x1 to x2, and y1
to y3 and z3 to z1. We can turn from one arm to each other and may reverse between
nodes connected by edges with two arrows. The traffic signs at v2, y1, and y2 sym-
bolize a correct sign posting for a speed limit measure of 30 km/h, indicated by the
dashed blue path from v2 to y2. The effect expressed by both the measure and the signs
is that along the edges (v2, v3), (v3, y1), (y1, y2), the maximum speed allowed for any
road user is 30 km/h. The recurrent start sign at y1 is necessary, as road users coming
from x2, turning into the lane starting at y1, would otherwise be unaware of the speed

� Supported by PRISMA solutions EDV-Dienstleistungen GmbH, and the Austrian Science
Fund (FWF) projects P20841 and P24090.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 80–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://opengovernmentdata.org/

Inconsistency Management for Traffic Regulations 81

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

(a) Top: correct sign posting for a speed limit
measure (dashed blue path). Bottom: Inconsis-
tency: no recurrence of start sign at y1

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

c1

c2

c3 c4

c5

c6

c7c8

d1

d2

d3 d4

d5

d6

d7d8

(b) Loop caused by mandatory left turns

Fig. 1. Traffic Regulation Scenarios

limit. This situation is shown in the bottom of Fig. 1a. The effect of the start sign at v2
can only be propagated to the arm starting at y1, since y1 is also reachable from the arm
ending in x2. We get an inconsistent traffic regulation due to two conflicts: the speed
limit effect ends at y1 without an end sign, and the effect discontinuing at y2 does not
properly start.

Such inconsistencies create problems in daily traffic. Officials are confronted with le-
gal issues (e.g., challenging of speeding tickets) when two dissenting speed limits are
announced. Even more delicate is the aspect of legal responsibility in case of accidents
caused by wrong sign posting. Different from that, errors in the data acquisition in traf-
fic sign software may lead to wrong assumptions on the state of traffic regulations. Tools
that detect, prohibit, and correct such errors are in need to help public administration
with their traffic management tasks.

In order to gain new insights from available sign posting data, formal methods from
knowledge representation and reasoning proved to be a key to attack issues that arise
when data is inconsistent [16,12,10]. Many issues arise in the context of traffic regula-
tions. Traffic measures, i.e., intended constraints given as regulations on the traffic, may
oppose the state of traffic sign posting, which can be seen as real-world constraints that
announce what is allowed on the street. One natural question is how to find inconsis-
tencies when combining traffic measures and street signs. Such questions become even
more complex in dynamic environments, i.e., when so-called active traffic management
comes into play. For instance, variable-message signs on motorways manage the traf-
fic flow by varying speed limits based on events like traffic congestions, or weather
conditions like fog or black ice. Contradicting speed limits may be posted by operators
of such message signs, leading to aforementioned legal issues.

82 H. Beck, T. Eiter, and T. Krennwallner

Finding such errors is not trivial in real life situations and many subtle inconsisten-
cies may occur. When an inconsistency is found, one usually wants to diagnose and
repair it. To the best of our knowledge, there is no automated support for inconsistency
finding in complex traffic regulations. Already the seemingly simple scenario in Exam-
ple 1 shows the need for (semi-)automatic tool support in traffic regulation maintenance
software. Different from the issues above is the problem of modeling transportation and
traffic in a formal representation. Legal texts are ambiguous and often implicitly under-
stood, and no single characterization has yet shown to be advantageous over others.

This motivates this work, which makes the following contributions:

• We analyze the problem domain and identify main concepts and notions such as
traffic signs, measures, effects, and inconsistencies in traffic regulation orders.
• Building upon well-known literature in abductive reasoning and model-based diag-

nosis [16,12,10], we develop a formal model using predicate logic for traffic signs and
measures, and introduce the formal notion of a traffic regulation problem.
• For traffic regulation problems, we consider major reasoning tasks, viz. inconsis-

tency detection, diagnosis, correspondence between measures and signs, and repair.
• We then study and characterize the computational complexity of these reasoning

tasks, for different representation formalisms. In particular, we consider first-order (FO)
logic under domain closure (as the domain of discourse is fixed), and answer set pro-
gramming (ASP). The latter is convenient for developing executable specifications, and
provides attractive features that can be used for default rules and exception handling.

This work is embedded in an industrial context, dealing with specialized software,
which is used by local government departments and allows for the visualization and
administration of traffic regulations. The results of this research may assist to find in-
consistencies and should give a clear advantage over simple traffic sign acquisition and
storage tools. A prototype implementation using answer set programming is in progress.

2 Domain Analysis

In this section we briefly analyze the domain of traffic regulations, measures and signs.
A traffic regulation is a legal document describing how road users can use the street

and how these usages can be restricted by means of traffic signs. The legal act to intro-
duce new traffic signs, or to remove existing ones, is a traffic regulation order, which
comes in form of a document describing (in natural language) a traffic measure that
has to be taken to reach a desired effect, i.e., a restriction of road usage. This measure
has to be announced by traffic signs and becomes legally effective as soon as the cor-
responding signs are posted on the street. We view road markings as special cases of
traffic signs.

The restrictions described by measures and signs include speed limits, driving bans,
parking or halting bans, prohibited or mandatory driving directions, information about
zones like residential areas and pedestrian zones, motorways, and so on. We base our
work on the Austrian traffic regulation and its potential measures and signs, which can
be found at http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&
Gesetzesnummer=10011336. However, we focus on general aspects that are not
bound to regional differences.

http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&

Inconsistency Management for Traffic Regulations 83

Inconsistencies. In general, a set of traffic regulation orders, resp. the resulting mea-
sures and signs, can lead to conflicts with respect to the traffic regulation. The aim of
our work is to detect such inconsistencies, to diagnose and to repair them.

For instance, in Austria it is not allowed that a motorway overlaps with a residential
area. In view of traffic signs this means that, when driving on a motorway, the end sign
must precede the start sign of the residential area. In addition to such illustrative cases,
complications arise quickly when many different kinds of restrictions are expressed.

What we understand by a conflict does not necessarily stem from the traffic regula-
tion, but can also come from supplementary documents of expert knowledge such as
traffic planning experience. It is thus our aim to provide a system that can detect dif-
ferent sorts of conflicts in a modular and easily extendable way. Whenever a conflict
is detected, we want to provide the user with diagnostic information, explaining which
measures or signs caused it. Finally, we want to offer a repair mechanism that suggests
by which modifications compliance with the specification can be established.

Data Model and Approach. To achieve these goals, we first need a street model based
on which we can express measures and signs, and the restrictions expressed by them.
We will view streets as directed graphs, where edges represent the potential direction
of traffic. Each edge will get a unique label to discern whether it represents a part of a
lane, a turn over a junction or a U-turn. Any digital street map from which this view can
be generated can be used as potential database.

By an effect of both measures and signs we understand the implicit restrictions they
express. To reflect measures and signs (from a database or user input) in the street
graph, we will use predefined labels on the edges (for measures) and nodes (for signs).
Similarly, we will represent arising inconsistencies by associating nodes with specific
conflict labels. Both the mapping from measures and signs to effects and from effects to
conflicts will be established in a modular way by means of logic formulas. The conflict
labeling can be used to visualize inconsistencies on a street map, followed by user
interaction in connection with diagnosis and repair.

Challenges. Many conflicts will not be strictly illegal as defined by the traffic regula-
tory orders or additional legal documents, but arise from expert knowledge or common
sense. Consequently, both the inclusion and the kind of definition of many conflicts will
be a matter of preference, and shall in principle be configurable by domain experts.

To show the need for advanced reasoning support, consider the traffic regulation
problem in Fig. 1b, where a loop is induced by four mandatory left turns. We consider
loops as special dead ends which we want to detect whenever a node v has a way in,
but no way out. We say a node v has a way in, if it is predefined as in-node, or if it
is reachable from an in-node. Similarly, a node v has a way out, if it is a predefined
out-node, or an out-node is reachable from v.

A node w is reachable from v, if (i) (v, w) is an edge, where neither the node v is
prohibited for traffic (e.g., through a no-entry sign), nor the edge itself (e.g., through a
mandatory turn in a different direction), or (ii) if a node x is reachable from v, from
which w is reachable.

Example 2. The mandatory left turns in Fig. 1b induce a loop along the nodes L =
{a6, a3, b8, b5, c2, c7, d4, d1}. Respective in-nodes and out-nodes are not depicted and

84 H. Beck, T. Eiter, and T. Krennwallner

assumed to be reachable from the nodes with dotted lines. For instance, from a1, an out-
node is reachable, and a2 is reachable from an in-node. Each mandatory left turn pro-
hibits the right turn, U-turn, and edge straight ahead over the junction. E.g., the manda-
tory left turn at a6 prohibits moves along the edges (a6, a7), (a6, a5) and (a6, a1).

We try to keep the street model as simple as possible. Reversing along lanes is not
a typical road usage. Therefore, we do not model any intermediate nodes along streets
(and thus no U-turns within lanes), unless we need to represent a sign, or the start or end
of a measure. In reality, we could in principle escape the loop in Example 2 by reversing
somewhere along a lane. Since this is not supposed to be necessary, we still want an
evaluation to report that there are problems, by noting conflicts on the nodes v ∈ L.

Intuitively, the unique minimal explanation (i.e., a diagnosis) for each of these prob-
lematic nodes—which can be seen as one conflict across many nodes—consists of all
four mandatory left turns. Note that additional signs that do not restrict the reachability,
like speed limits, would not change this diagnosis.

To repair the scenario, i.e., make modifications such that the result is free of conflicts,
we may delete one of the mandatory left turns on nodes a6, b8, or c2. However, other
possibilities exist (see Section 6).

3 Formal Model

In this section we formalize our data model and formulate a traffic regulation problem
based on it. Throughout, we assume that a version of predicate logic L with negation is
fixed, in which the desired specification can be expressed (e.g., FO logic or ASP).

Definition 1 (Street graph). A (street) graph is a connected, labeled, directed graph
G = (V,E, �) of nodes V , edges E ⊆ V × V , and a labeling function � that assigns
each edge (v, w) ∈ E a unique label �(v, w) ∈ {left , straight , right , lane, uturn}.

We identify G with the set of atoms e(t, v, w), where t is the label of the edge (v, w).
Several assumptions about the structure of these graphs are made. For instance, we in-
tend to model junctions by means of edges with labels left , right and straight . For each
such edge (v, w), all incoming edges (x, v) ∈ E to node v are labeled uturn or lane .

Example 3 (cont’d). Fig. 1a suggests how the edge labels ought to be used. For in-
stance, the edge (v3, y1) models the direction straight ahead over a junction and thus
gets the label straight . All other edges (vi, vi+1) and (yi, yi+1) are labeled with lane .
The incoming street from below has a turn to the right starting at x2 and ending at y1,
which will be modeled by an atom e(right , x2, y1). Similarly, we use e(left , x2, u3) for
the left turn at x2. The edges with arrows on both ends depict U-turns in both directions.

In the formulation of measures in traffic regulation orders concepts like street names,
addresses and cardinal points are used to describe the intended topological dimensions.
We assume that for the description at hand, a preprocessing (or specification) maps this
scope to edges. We thus reduce measure descriptions to sets of such “atomic measures.”

To describe measures, signs, their effects, as well as conflicts, we build upon disjoint
sets of ground terms M, S, F and C called the measure types, sign types, effect types and
conflict types, respectively. For instance, M may contain a set of terms spl(k) for each
speed limit value k that is needed, e.g., spl(5), spl(10), . . . , spl(130) in Austria.

Inconsistency Management for Traffic Regulations 85

Definition 2 (Measures, Signs, Effects, Conflicts). Given a street graph G, we define
the following sets of atoms:

– Measures MG = {m(t, v, w) | t ∈ M, (v, w) ∈ E};
– Signs SG = {s(t, v) | t ∈ S, v ∈ V };
– Input IG = MG ∪ SG;
– Effects FG = {f(t, v, w) | t ∈ F, (v, w) ∈ E}; and
– Conflicts CG = {c(t, v) | t ∈ C, v ∈ V }.

For instance, to represent the prohibited case that a motorway overlaps with a resi-
dential area at a node v we might use c(overlap(motorway, residential–area), v).
Similarly, the fact that one is caught in a dead end or loop at u can be represented
as c(no-way-out, u).

Definition 3 (Scenario). Let G be a street graph,M ⊆MG be a set of measures on G,
and S ⊆ SG be a set of signs on G. Then, Sc = (G,M,S) is called a scenario.

Example 4 (cont’d). In Fig. 1a, the dashed blue path from v2 to y2 symbolizes a 30 km/h
speed limit measure. We formalize this as a set of atomic measures {m(spl(30), v2, v3),
m(spl(30), v3, y1), m(spl (30), y1, y2)}. The depicted traffic signs are defined at nodes
as the set {s(start(spl (30)), v1), s(start(spl (30)), y1), s(end(spl(30)), y2)}.

Effects and Conflicts. The meaning of both measures and signs is captured by a map-
ping of the according languages to a common target language of effects. To assist mod-
ular composition, we defineXY = X∪{¬x | x ∈ Y \X} as the closed world operator
applied to a set of ground atoms X relative to a base set Y ⊇ X . We always use the
according base set of Definition 2, and thus omit the subscript, e.g., M for a set mea-
sures M on G abbreviates MMG . The base set assumed for the completion G of any
graph G is the set of all atoms e(t, v, w). We introduce another operator Cn that maps
between atoms. LetX and Y be sets of atoms (onG) and let T be a set of formulas in L.

Definition 4 (CnG(T,X, Y)). The Y -consequences of T and X (on G) is the set of
atoms CnG(T,X, Y) = {y ∈ Y | T ∪G ∪X |= y}.

Here, |= is the (logical) consequence relation in the underlying logic L. The closed
world operator makes sure that atoms that are not entailed are set to false, and thus
ensures that valuations of atoms in Y are unique. This restriction will enable modular
composition by means of a two-stage approach, which we will describe next.

Definition 5 (Effect mapping). An effect mapping is a set P of formulas in L that
associates with each input I ⊆ IG on a street graphG the set FP

G (I) = CnG(P, I, FG)
of atoms, called effects of I (on G).

We implicitly assume that effect mappings use the ranges of terms appropriately.

Example 5. The first-order sentence

∀k, x, y (m(spl(k), x, y) ⊃ f(max -speed(k), x, y))

of an effect mapping P captures the meaning of speed limit (spl) measures. We infor-
mally describe when this effect label is obtained by signs: first, an edge (x, y) is labeled
with max -speed(k), if an start sign s(start(spl (k), x)) is placed at x. From there, the

86 H. Beck, T. Eiter, and T. Krennwallner

effect is propagated in the direction of traffic, i.e., along the edges with label lane, until
an end sign or a junction is reached. For the latter case, let e(lane, u′, u) be the last edge
before the junction and e(straight , u, v) be the next edge in the direction ahead. The
effect continues after the crossroads on the (unique) edge e(lane, v, w) only if another
start sign is posted on v, or no edge (x, v) with label left or right permitted for traffic
exists (and neither an end sign nor the start sign for a different speed limit is at v).

The effect mapping uses measures and signs on a graph to derive effects. Likewise,
these effect atoms will then be used to infer conflicts by means of a specification.

Definition 6 (Conflict specification). A conflict specification over an effect mappingP
is a set Sp of formulas in L that associates with each input I ⊆ IG on a street graph G
the set CP,Sp

G (I) = CnG(Sp,FP
G (I), CG) of atoms, called conflicts of I (on G).

Thus, the setup to compute conflicts based on effects given a conflict specification, is
the same as computing effects from measures and signs, given an effect mapping. The
first stage builds a context-dependent model of the input, the second stage establishes
the basis for reasoning tasks. There is no explicit support for query answering on top
of conflicts; however, queries on aspects of interest may be encoded in the conflict
specification, using designated conflicts and formulas defining them (e.g. rules) in Sp.
This way, given an input I on a graph G, querying for a certain conflict type (or aspect
of interest) t ∈ C amounts to computing the set {c(t, v) ∈ CP,Sp

G (I) | v ∈ V }.

Example 6 (cont’d). Fig. 1a (bottom) depicts the situation in which the intended speed
limit is not sufficiently announced. Road users coming from node x2, turning right
into the lane starting at y1 are not informed about the speed limit. Hence, according
to the sign posting, the max -speed(30) effect cannot be associated with edge (y1, y2).
Since we have a max -speed(30) effect until node y1 but no end sign mapped to it,
we have a conflict which we may represent as c(no-end(max -speed(30)), y1). The
end sign posted at y2 leads to a second conflict, since there is no “open” effect any-
more: c(cant-end(max -speed(30)), y2). Using answer set programming, with upper-
case letters denoting variables as usual, the latter conflict can be defined by the rule

c(cant-end(F), V2)← in-dir(V1, V2), s(end(T), V2),m2f (T, F), not f(F, V1, V2) ;

where in-dir represents an edge of type straight or lane, the atom s(end(T), V2)
stands for a traffic sign posted at node V2, ending a measure of type T , and m2f encodes
domain knowledge that T is associated with effect type F .

Note that ASP solvers like DLV support query functionalities in the aforementioned
sense. In the previous example, we might ask c(cant-end(F), V)? and get the terms
max -speed(30), y2 as result, matching c(cant-end(max -speed(30)), y2).

Definition 7 (Traffic Regulation Problem). Let Sp be a conflict specification over an
effect mapping P , and let Sc be a scenario. Then, the pair Π = (Sp, P) is called a
traffic regulation and the pair (Π,Sc) a traffic regulation problem.

4 Reasoning Tasks

We now use the preceding definitions to specify some practically relevant use cases in
form of reasoning tasks.In the sequel, we let T = (Π,Sc) be a traffic regulation problem
with a traffic regulation Π = (Sp, P) and a scenario Sc = (G,M,S), and I = M ∪S.

Inconsistency Management for Traffic Regulations 87

Definition 8 (Inconsistency). The conflicts of T are given by C(T) = CP,Sp
G (I). If

C(T) �= ∅, we call T inconsistent.

Additionally, we call every set of measures or signs X ⊆ IG on graph G inconsistent,
if CP,Sp

G (X) is non-empty. Given an inconsistent T , we are interested which part of the
input, i.e., which hypotheses, explain the conflict observations.

Definition 9 (Diagnosis). For inconsistent T , a diagnosis of a set of conflictsC ⊆C(T)

is a set J ⊆ I , such that C ⊆CP,Sp
G (J).

To see the relation of diagnosis with the usual notion of abductive diagnosis [15,3],
we recall the definition of the latter.1 An abductive diagnosis problem (ADP) is a
triple 〈T,H,O〉, where T is a set of formulas in L, called the theory, and H and O are
sets of literals, called the hypotheses and observations, respectively. A (complete) ab-
ductive diagnosis for 〈T,H,O〉 is a set A ⊆ H , such that T ∪A �|= ⊥ and T ∪ A |= O.
We note that an input J ⊆ I is the abductive diagnosis for the ADP 〈P ∪G, I,FP

G (J)〉.

Proposition 1. Let C ⊆ C(T) and J ⊆ I . The effects FP
G (J) are an abductive di-

agnosis for the ADP 〈Sp ∪ G,FP
G (I), C〉 iff J is a consistent diagnosis of C, i.e.,

Sp ∪G ∪ FP
G (J) �|= ⊥.

Since I is always a trivial (but non-informative) diagnosis for any set of conflicts, we
are interested in (subset-)minimal diagnoses. We omit a formal definition of Π serving
the forthcoming examples.

Example 7 (cont’d). The missing sign at y1 leads to two conflicts. The minimal diagno-
sis for the missing sign {c(no-end(max -speed(30)), y1)} is {s(start(spl (30)), v2)}.
Independently, the other conflict {c(cant-end(max -speed(30)), y2)} is minimally ex-
plained by {s(end(spl(30)), y2)}.

Usually, we desire that measures and signs in a scenario express the same effects.

Definition 10 (Correspondence). A set of measuresM and a set of signs S correspond
with respect to P and G, if it holds that FP

G (M) = FP
G (S).

The next example shows the significance of correspondence besides consistency.

Example 8 (cont’d). Suppose a no-right turn sign on x2 is added to the traffic regulation
problem in Fig. 1a, bottom. This results in a consistent scenario, since in this case,
the node y1 can only be reached from v3 (reversing at z1 along the U-turn (z1, y1) is
disregarded). Hence, another start sign at y1 is not necessary and the effect propagation
of the start sign at v2 continues through y1. However, the prohibition of traffic along the
edge (x2, y1) as supported by the no-right turn sign is not supported by a corresponding
measure. This problem can only be seen by additionally testing for correspondence.

For each of the definitions in this section, we immediately obtain a reasoning task which
requires the computation of the respective concept.

Repair. Complementary to diagnoses explaining the cause for inconsistency, a natural
question is how to repair an inconsistent traffic regulation problem, i.e., by means of
which deletions and additions of measures and signs consistency can be established. In
the general case, we might delete and add both measures and signs.

1 Strictly speaking, we present a slightly modified version using the closed world operator.

88 H. Beck, T. Eiter, and T. Krennwallner

Definition 11 (Repair). A repair of an (inconsistent) T is a pair (I−, I+) such that
I− ⊆ I , I+ ⊆ IG \ I , and CP,Sp

G (I ′) = ∅, where I ′ = (I\I−) ∪ I+.

A repair yields a traffic regulation problem T ′ replacing I with consistent I ′ in T .

Example 9 (cont’d). A repair for the inconsistent T with the traffic regulation scenario
as shown in Fig. 1a (bottom) is (∅, {s(start(spl (30), x4)}).

Usually, one requires correspondence after a repair, i.e., that M ′ = I ′ ∩MG and S′ =
I ′ ∩ SG correspond with respect to P and G; we call such repairs strict. Furthermore,
the candidate space (I−, I+) might be restricted; in this way, further practically relevant
reasoning tasks can be formulated as special cases of repair. For instance, if we are given
a scenario with consistent M , but inconsistent S, we may adjust the signs by restricting
the repair to modify only signs. Or, related to data imports, we may want to generate
measures from scratch, given only signs, or vice versa a sign posting, given only mea-
sures. Note that these additional reasoning tasks need no separate implementation.

5 Computational Complexity

In this section, we analyze the computational complexity of decision problems associ-
ated to the reasoning tasks above. In particular, we consider for a given traffic regulation
problem T = (Π,Sc), with Π = (Sp, P) and Sc = (G,M,S)

– CONS: decide whether T is consistent, i.e., C(T) = CP,Sp
G (I) = ∅;

– UMINDIAG: decide, given a set C ⊆ C(T) of conflicts, whetherC has a unique⊆-
minimal diagnosis, i.e., a single minimal J ⊆ I such that C ⊆ CP,Sp

G (J);
– CORR: decide whether M and S correspond, i.e., FP

G (M) = FP
G (S);

– REPAIR: decide, given T is inconsistent, whether some admissible repair exists,
i.e., some I+, I− ⊆ IG such that CP,Sp

G ((I \ I−)∪ I+) = ∅ and a polynomial-time
admissibility predicateA(I+, I−) holds.

We consider these problems for different mapping formalisms L, viz. (1) FO predi-
cate logic under domain closure (FOL+DCA), i.e., an axiom ∀x.

∨n
i=1(x = ci), where

c1, . . . , cn is the (finite) set of constant symbols; and (2) (function-free) Answer Set
Programs2 under cautious consequence, i.e., P |= α iff α is true in all answer sets of P ;
here, we consider various classes, including (a) stratified programs (ASP¬s), (b) nor-
mal programs (i.e., arbitrary negation, ASP¬), and (c) disjunctive programs (with head
disjunction and arbitrary negation, ASP∨,¬).

We assume that the reader is familiar with the basic concepts of complexity theory (cf.
[14]),and recall that PO (resp. NPO) is (nondeterministic) polynomial time computabil-
ity with an oracle for complexity class O, and Σp

i , i ≥ 1, are classes of the polynomial
hierarchy whereΣp

1 = NP andΣp
i+1 = NPΣp

i . Furthermore,PO
‖ is the restriction of PO

that all oracle queries are independent of each other, i.e., they are evaluable in parallel.
The computational complexity of the atom entailment problem in these logics (IMPL),

i.e., deciding T |= α for a set of formulas (resp. program) T and an atom α, is shown

2 The use of function symbols as in the examples is convenient but not essential for this domain.

Inconsistency Management for Traffic Regulations 89

Table 1. Complexity of reasoning tasks (general case / bounded predicate arities); unless stated
otherwise, entries are completeness results

Logic L IMPL CONS CORR UMINDIAG REPAIR

FO+DCA co-NExp / PSpace PNExp
‖ / PSpace NPNExp / PSpace

ASP¬s Exp / PNP Exp / PNP Exp / in P
Σ

p
2

‖ , Πp
2 -hard Exp / Σp

2

ASP¬ co-NExp / Πp
2 PNExp

‖ / P
Σ

p
2

‖ PNExp
‖ / in P

Σ
p
3

‖ , Πp
3 -hard NPNExp /Σp

3

ASP∨,¬ co-NExpNP / Πp
3 PNExpNP

‖ / P
Σ

p
3

‖ PNExpNP

‖ / in P
Σ

p
4

‖ , Πp
4 -hard NPNExpNP / Σp

4

in the first column of Table 1. Besides the general case, also the one of bounded pred-
icate arities (BPA) is printed, i.e., when the arities of predicates is bounded by some
constant. Briefly, as for FOL+DCA, a countermodel of T |= α (of exponential size) can
be guessed and verified in polynomial space (in the size of T and α); hardness follows,
e.g., from the complexity of satisfiability of the Bernays-Schönfinkel fragment of FOL.
Under BPA, the model guess has polynomial size, and thus the whole countermodel
check is feasible in polynomial space; PSpace-hardness is inherited from evaluation of
a given FOL formula over a finite structure. For the ASPX languages, see [4,5].

Theorem 1. For CONS, UMINDIAG, CORR, and REPAIR the results in Table 1 hold.

In the rest of this section, we explain the results and outline how they can be derived.
We make use of the following known fact; let PO

‖[k] be the restriction of PO such that
the oracle calls amount to k rounds of parallel (independent) oracle calls.

Lemma 1. For O = NExp,NExpNP, Σp
i , i ≥ 1, and constant k, PO

‖[k] = PO
‖[1] = PO

‖ .

CONS. To decide problem CONS, we must test whether some of the (polynomially
many) conflict facts c(t, v) is derivable from the conflict specification Sp over the effect
mapping P . To this end, we can determine for each of the (polynomially many) effect
facts f(t, v, w) ∈ FG whether f(t, v, w) ∈ FP

G (I) = CnG(P, I, FG) with an oracle
for IMPL, and then decide whether c(t, v) ∈ CP,Sp

G (I) = CnG(Sp,FP
G (I), CG) with

an oracle for IMPL. This is a polynomial time computation with two rounds of parallel
evaluation of oracle queries with complexity O; this puts the problem in the respective
complexity class PO

‖[2]. For O = Exp,PSpace, this class coincides with O and for O =

PNP with PNP (as oracles can be simulated, in case of an PNP oracle with an O oracle);
for the other classes, by the lemma it coincides with PO

‖ .

The PO
‖ -hardness results for CONS are derived by a reduction from the follow-

ing PO
‖ -complete problem EVEN: given instances I0, . . . , I2n+1, n ≥ 0, of a (fixed)

O-complete problem, decide whether the number of yes-instances among them is even.
Here, without loss of generality, we can assume that all yes-instances precede all no-
instances. To encode this problem, we use problem IMPL and restrict (wolog) to in-
stances Ij : T (j) |= αj in a way such that their answers amount to P |= φj for effect
mapping P and effect φj . We then design the conflict specification Sp to derive a con-
flict fact χ if and only if the maximum index of a yes-instance is even. To this end, we
can use in the ASP cases rules χ ← φ2j , notφ2j+1, where 0 ≤ j ≤ n, and in the FOL
case simply the formula χ↔

∨n
j=0 φ2j ∧ ¬φ2j+1.

90 H. Beck, T. Eiter, and T. Krennwallner

UMINDIAG. To test whether some set J ⊆ I is a diagnosis, we need to check C ⊆
CP,Sp
G (I); similarly as deciding CONS, the latter problem can be shown to be in PC

‖ .
For O = Exp,PSpace it is then clear that an algorithm can cycle through all J ⊆ I and
compute two minimal diagnoses in exponential time (resp. polynomial space), provided
two exist (one always exists). For other O, the following more involved method works.

Like for CONS, we first compute with a round of parallel O oracle calls the ef-
fects FP

G (I). Then, in a next round, we ask oracles, for k = 0, . . . , |I|, whether for
all J ⊆ I of size |J | = k, it holds that C �⊆ CP,Sp

G (J); for the considered O ⊇ NExp,
each oracle call is in O (exponentially many J’s can be considered without complexity
increase), while for the other classes it is in NPO. The smallest k for which the ora-
cle answers “no” is the size k∗ of a smallest (in terms of cardinality) diagnosis, and
thus of some minimal diagnosis. In a further round we then ask an oracle whether for
all J1, J2 ⊆ I such that |J1| = k∗ and J1 �⊆ J2 it holds that either C �⊆ CP,Sp

G (J1)

or C �⊆ CP,Sp
G (J2); the answer will be “yes” iff a unique minimal diagnosis exists.

Overall, the method uses three rounds of O (resp., NPO) oracle calls, which puts the
problem in the class PO

‖[3] resp. PNPO

‖[3] ; this class, however, by the lemma coincides

with PO
‖ resp. PNPO

‖ ; and for O = PNP, we have NPPNP

= NPNP, thus PNPPNP

‖ = P
Σp

2

‖ .
The hardness results for O ⊇ NExp are obtained by a reduction of the complement

of the EVEN problem (which is also PO
‖ -hard) that is a variant of the reduction for the

CONS problem. The conflict rules are extended to χ← ψ2j , notψ2j+1, in1, 0 ≤ j ≤ n,
and a further rule χ← in0 is added, where in0 and in1 are fresh input facts. Then, J =
{in0} is a minimal diagnosis, and it is the single one iff J = {in1} is not a diagnosis,
which is the case iff the EVEN instance is a no-instance. For the remaining cases of O,
one can show hardness for co-NPO by a reduction from evaluation of suitable QBFs;
however, hardness for NPO , let alone for PNPO

‖ is not apparent.

CORR. It is easy to see that CORR is solvable in polynomial time with parallel oracle
queries “f(t, w, v) ∈ FP

G (I)?” for P = PS , PM , which have complexityO of problem
IMPL for the underlying logic; this shows membership in PO

‖ . The hardness results
for O �= PSpace,Exp are shown similarly as for problem CONS by a reduction from
the EVEN problem. We use effect mappingsPM and PS , which consist of P from there
with additional rules (resp. implications for FOL+DCA) as follows: PM contains φ′

j ←
φ0, . . . , φ2j−1 and PS contains φ′

j ← φ0, . . . , φ2j , for 0 ≤ j ≤ n, where φ′
j is a new

effect atom. Assuming that I2n+1 is a no-instance, the specifications will correspond,
i.e., FPM

G (I) = FPS

G (I), iff the number of yes-instances among I0, . . . , I2n+1 is even.

REPAIR. To solve REPAIR, we can guess some change I+, I− ⊆ IG and then check
whether A(I+, I−) holds and there are no conflicts for input I ′ = (I \ I−) ∪ I+.
For IMPL complexity O = Exp,PSpace, this stays within O, as one can cycle through
all I ′, and for the other complexity classes O, by the results for CONS, the problem

is in NPPO
‖ = NPO. The hardness results for these O can be obtained by reductions

from a reasoning problem for ASP¬ resp. ASP∨,¬ programs: given a set of facts F ,
a program P and a fact α, does there exist some F ′ ⊆ F such that P ∪ F ′ |= α
(where |= is cautious consequence); this problem is, as shown with slight extensions
of the respective proofs for cautious consequence [4,5], complete for NPO . Finally, the

Inconsistency Management for Traffic Regulations 91

results for REPAIR remain unchanged if only strict repairs are considered as CORR has
lower complexity.

6 Discussion and Conclusion

Since comprehensible specifications play a major role in this problem domain, we de-
mand that the implementation should be declarative. An imperative way of programming
such rules will quickly lead to deeply nested conditionals with intransparent dependen-
cies. Further, we need a high degree of modularity to enable changes to specifications in-
dependent of the implementation of reasoning tasks. Since the domain comprises many
patterns with exceptions and special cases, some sort of default reasoning would be de-
sirable; e.g., traffic is permitted in a certain direction, unless it is explicitly prohibited.

Answer Set Programming (ASP) [9] is a natural choice for writing such declarative,
executable specifications. Due to the availability of efficient solvers such as DLV [11]
and Potassco [8], the ASP paradigm gains increasing popularity [2]. Furthermore, thanks
to modularity properties of answer set semantics, it is easy to modularly compose pro-
grams P and Sp from a traffic regulation Π = (P, Sp) into a single program P ∪ Sp,
provided that P has a unique answer set (as given, e.g., with stratified programs), where
rules ¬x ← not x for X are included (resp., if recursion through negation would
emerge, rules ¬x′ ← not x and x′ ← x, and x is replaced in Sp by x′).

Implementation. In cooperation with domain experts, we have written prototypical
ASP-programs to evaluate the consistency of scenarios, to diagnose conflicts and to
test correspondence using partial realizations of the traffic regulation. In addition, we
also dealt with repairs. We have used both the DLV system and Potassco to run these
programs on a number of different scenarios, and obtained satisfactory initial results.
Further development, regarding a representation of the traffic regulations and engineer-
ing the program for scalable execution, is ongoing; the fact that ASP programs serve as
executable specification is very helpful for developing the representation.

The use of DLV and the flexible optimization constructs available in its language
by weak constraints, has in fact also led us to experiment with preferred notions of
diagnoses and repairs. The possibilities range from generic preferences, like favoring
deletions over additions, to the encoding of very specific domain knowledge.

Example 10. Deleting the mandatory left turn at d4 in Fig. 1b gives an alternative repair
possibility for Example 2. The options to continue to drive straight over the junctions
towards node d7, as well as turning right towards node d5, are not available due to the
no-entry signs. According to the depicted street model, there is a way out from node d4
via the U-turn to node d3, from which an out-node node is reachable via nodes c8 and c3.
Arguably, it is reasonable to still classify the situation as loop, since paths should not
use U-turns. A road user arriving at d4 for the first time would not know that she will
eventually come back to node d4 (by taking the supposed path).

Thus, one might have different categories of loop conflicts like “strong loop” and “weak
loop,” where the latter allows for escapes via U-turns. In this sense, Fig. 1b represents
a strong loop, and the repair where the sign at d4 is removed represents a weak loop.
The repair might be less preferred. If yet chosen, we might wish to warn road users

92 H. Beck, T. Eiter, and T. Krennwallner

who eventually will have to take a U-turn, through a no-through-road sign. However,
the ideal position to do so is not obvious. Alternatively, we could add mandatory U-turn
signs before junctions one has to eventually return to. While this might often be the
desired solution, it is formally not optimal, since it is more restrictive than necessary.

Summary and Outlook. To date, tools for advanced inconsistency management of
traffic regulations are lacking. We presented a logic-based approach to this problem,
which is highly relevant in future dynamic regulation settings. We formalized the notion
of traffic regulation problem and defined major reasoning tasks on it, whose computa-
tional complexity we characterized for different logic languages. Complexity results
on abduction from logic programs [6] are not applicable, as the language setting and
problems studied there (in view of Prop. 1, consistent diagnosis existence with no ef-
fect mapping) are different. Our results provide a basis for implementation and show
that some reasoning tasks may be hosted in the underlying logic language, while for
others one needs a more expressive one. Finally, we briefly addressed an ASP-based
prototype.

The implementation is part of an ongoing industrial project on management of traf-
fic regulation data with PRISMA solutions GmbH.3 Currently, real world traffic reg-
ulation data is administrated by software that shall be enhanced by the methods we
described, and the resulting application shall be used by several Austrian regions, start-
ing with Lower Austria and Vienna. On the theoretical side, an investigation of pref-
erence and properties of traffic regulation problems, under possible restrictions of the
constituents, remains to be done. Also other logic formalisms, e.g., defeasible logic [1]
(which like ASP¬s allows for efficient reasoning [13]), or HEX-programs [7] may be
considered.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

3. Console, L., Torasso, P.: Automated diagnosis. Intelligenza Artificiale 3(1-2), 42–48 (2006)
4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Comput. Surv. 33(3), 374–425 (2001)
5. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity Results for Answer Set Programming

with Bounded Predicate Arities. Ann. Math. Artif. Intell. 51(2-4), 123–165 (2007)
6. Eiter, T., Gottlob, G., Leone, N.: Abduction From Logic Programs: Semantics and Complex-

ity. Theoretical Computer Science 189(1-2), 129–177 (1997)
7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-

soning and external evaluations in answer set programming. In: IJCAI, pp. 90–96 (2005)
8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:

Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

Next Generat. Comput. 9(3-4), 365–386 (1991)

3 http://www.prisma-solutions.at

http://www.prisma-solutions.at

Inconsistency Management for Traffic Regulations 93

10. de Kleer, J., Kurien, J.: Fundamentals of model-based diagnosis. In: IFAC Symposium
SAFEPROCESS 2003, pp. 25–36. Elsevier (2003)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

12. Lucas, P.: Symbolic diagnosis and its formalisation. Knowl. Eng. Rev. 12, 109–146 (1997)
13. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract. Log. Pro-

gram. 1(6), 691–711 (2001)
14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
15. Poole, D.: Normality and faults in logic-based diagnosis. In: IJCAI, pp. 1304–1310 (1989)
16. Poole, D.: Representing diagnosis knowledge. Ann. Math. Artif. Intell. 11, 33–50 (1994)

Conditional Epistemic Planning

Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen

Technical University of Denmark

Abstract. Recent work has shown that Dynamic Epistemic Logic (DEL)
offers a solid foundation for automated planning under partial observabil-
ity and non-determinism. Under such circumstances, a plan must branch
if it is to guarantee achieving the goal under all contingencies (strong
planning). Without branching, plans can offer only the possibility of
achieving the goal (weak planning). We show how to formulate plan-
ning in uncertain domains using DEL and give a language of conditional
plans. Translating this language to standard DEL gives verification of
both strong and weak plans via model checking. In addition to plan ver-
ification, we provide a tableau-inspired algorithm for synthesising plans,
and show this algorithm to be terminating, sound and complete.

1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving
a goal, she is engaging in the act of planning. When planning, the agent has a
view of the environment and knowledge of how her actions affect the environ-
ment. Automated Planning is a widely studied area of AI, in which problems
are expressed along these lines. Many different variants of planning, with differ-
ent assumptions and restrictions, have been studied. In this paper we consider
planning under uncertainty (nondeterminism and partial observability), where
exact states of affairs and outcomes of actions need not be known by the agent.
We formulate such scenarios in an epistemic setting, where states, actions and
goals are infused with the notions of knowledge from Dynamic Epistemic Logic
(DEL). Throughout this exposition, our running example, starting with Example
1, follows the schemings of a thief wanting to steal a precious diamond.

Example 1. After following carefully laid plans, a thief has almost made it to her
target: The vault containing the invaluable Pink Panther diamond. Standing out-
side the vault (¬v), she now deliberates on how to get her hands on the diamond
(d). She knows the light inside the vault is off (¬l), and that the Pink Panther is
on either the right (r) or left (¬r) pedestal inside. Obviously, the diamond cannot
be on both the right and left pedestal, but nonetheless the agentmay be uncertain
about its location. This scenario is represented by the epistemic model in Figure
1. The edge between w1 and w2 signifies that these worlds are indistinguishable
to the agent. For visual clarity we omit reflexive edges (each world is always
reachable from itself). We indicate with a string the valuation at world w, where
an underlined proposition p signifies that p does not hold at w.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 94–106, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Conditional Epistemic Planning 95

M0: w1:vlrd w2:vlrd

Fig. 1. The initial situation. The thief is uncertain about whether r holds.

The agent’s goal is to obtain the jewel and to be outside the vault. She can
enter and leave the vault, flick the light switch and snatch the contents of either
the right or left pedestal. Her aim is to come up with a, possibly conditional,
plan, such that she achieves her goal.

By applying DEL to scenarios such as the above, we can construct a procedure
for the line of reasoning that is of interest to the thief. In the following section we
recap the version of DEL relevant to our purposes. Section 3 formalises notions
from planning in DEL, allowing verification of plans (using model checking)
as either weak or strong solutions. In Section 4 we introduce an algorithm for
plan synthesis (i.e. generation of plans). Further we show that the algorithm is
terminating, sound and complete.

2 Dynamic Epistemic Logic

Dynamic epistemic logics describe knowledge and how actions change it. These
changes may be epistemic (changing knowledge), ontic (changing facts) or both.
The work in this paper deals only with the single-agent setting, though we briefly
discuss the multi-agent setting in Section 5. As in Example 1, agent knowledge is
captured by epistemic models. Changes are encoded using event models (defined
below). The following concise summary of DEL is meant as a reference for the
already familiar reader. The unfamiliar reader may consult [12,13] for a thorough
treatment.

Definition 1 (Epistemic Language). Let a set of propositional symbols P be
given. The language LDEL(P) is given by the following BNF:

φ ::= � | p | ¬φ | φ ∧ φ | Kφ | [E , e]φ
where p ∈ P , E denotes an event model on LDEL(P) as (simultaneously) de-
fined below, and e ∈ D(E). K is the epistemic modality and [E , e] the dynamic
modality. We use the usual abbreviations for the other boolean connectives, as
well as for the dual dynamic modality 〈E , e〉φ := ¬ [E , e]¬φ. The dual of K is
denoted K̃. Kφ reads as ”the (planning) agent knows φ” and [E , e]φ as ”after
all possible executions of (E , e), φ holds”.

Definition 2 (Epistemic Models). An epistemic model on LDEL(P) is a
tuple M = (W,∼, V), where W is a set of worlds, ∼ is an equivalence relation
(the epistemic relation) on W , and V : P → 2W is a valuation. D(M) = W
denotes the domain of M. For w ∈ W we name (M, w) a pointed epistemic
model, and refer to w as the actual world of (M, w).

To reason about the dynamics of a changing system, we make use of event models.
The formulation of event models we use in this paper is due to van Ditmarsch
and Kooi [12]. It adds ontic change to the original formulation of [5] by adding
postconditions to events.

96 M.B. Andersen, T. Bolander, and M.H. Jensen

Definition 3 (Event Models). An event model on LDEL(P) is a tuple E =
(E,∼, pre, post), where
– E is a set of (basic) events,
– ∼⊆ E × E is an equivalence relation called the epistemic relation,
– pre : E → LDEL(P) assigns to each event a precondition,
– post : E → (P → LDEL(P)) assigns to each event a postcondition.

D(E) = E denotes the domain of E. For e ∈ E we name (E , e) a pointed event
model, and refer to e as the actual event of (E , e).

Definition 4 (Product Update). Let M = (W,∼, V) and E = (E,∼′, pre,
post) be an epistemic model resp. event model on LDEL(P). The product update
of M with E is the epistemic model denoted M⊗E = (W ′,∼′′, V ′), where

– W ′ = {(w, e) ∈W × E | M, w |= pre(e)},
– ∼′′= {((w, e), (v, f)) ∈ W ′ ×W ′ | w ∼ v and e ∼′ f},
– V ′(p) = {(w, e) ∈ W ′ | M, w |= post(e)(p)} for each p ∈ P .

Definition 5 (Satisfaction Relation). Let a pointed epistemic model (M, w)
on LDEL(P) be given. The satisfaction relation is given by the usual semantics,
where we only recall the definition of the dynamic modality:

M, w |= [E , e]φ iff M, w |= pre(e) implies M⊗E , (w, e) |= φ

where φ ∈ LDEL(P) and (E , e) is a pointed event model. We write M |= φ
to mean M, w |= φ for all w ∈ D(M). Satisfaction of the dynamic modal-
ity for non-pointed event models E is introduced by abbreviation, viz. [E]φ :=∧

e∈D(E) [E , e]φ.

Throughout the rest of this paper, all languages (sets of propositional symbols) and
all models (sets of possible worlds) considered are implicitly assumed to be finite.

3 Conditional Plans in DEL

One way to sum up automated planning is that it deals with the reasoning side of
acting [14]. When planning under uncertainty, actions can be nondeterministic
and the states of affairs partially observable. In the following, we present a
formalism expressing planning under uncertainty in DEL, while staying true to
the notions of automated planning. We consider a system similar to that of
[14, sect. 17.4], which motivates the following exposition. The type of planning
detailed here is offline, where planning is done before acting. All reasoning must
therefore be based on the agent’s initial knowledge.

3.1 States and Actions: The Internal Perspective

Automated planning is concerned with achieving a certain goal state from a given
initial state through some combination of available actions. In our case, states are
epistemic models. These models represent situations from the perspective of the

Conditional Epistemic Planning 97

M′: u1:vlrd u2:vlrd

Fig. 2. A model consisting of two information cells

planning agent. We call this the internal perspective—the modeller is modelling
itself. The internal perspective is discussed thoroughly in [2,11].

Generally, an agent using epistemic models to model its own knowledge and
ignorance, will not be able to point out the actual world. Consider the epistemic
model M0 in Figure 1, containing two indistinguishable worlds w1 and w2. Re-
garding this model to be the planning agent’s own representation of the initial
state of affairs, the agent is of course not able to point out the actual world. It
is thus natural to represent this situation as a non-pointed epistemic model. In
general, when the planning agent wants to model a future (imagined) state of
affairs, she does so by a non-pointed model.

The equivalence classes (wrt. ∼) of a non-pointed epistemic model are called
the information cells of that model (in line with the corresponding concept in
[6]). We also use the expression information cell on LDEL(P) to denote any
connected epistemic model on LDEL(P), that is, any epistemic model consisting
of a single information cell. All worlds in an information cell satisfy the same K-
formulas (formulas of the formKφ), thus representing the same situation as seen
from the agent’s internal perspective. Each information cell of a (non-pointed)
epistemic model represents a possible state of knowledge of the agent.

Example 2. Recall that our jewel thief is at the planning stage, with her initial in-
formation cellM0. She realises that entering the vault and turning on the light will
reveal the location of the Pink Panther. Before actually performing these actions,
she can rightly reason that they will lead her to know the location of the diamond,
though whether that location is left or right cannot be determined (yet).

Her representation of the possible outcomes of going into the vault and turning
on the light is the model M′ in Figure 2. The information cells M′ � {u1} and
M′ � {u2} of M′ are exactly the two distinguishable states of knowledge the
jewel thief considers possible prior turning the light on in the vault.

In the DEL framework, actions are naturally represented as event models. Due to
the internal perspective, these are also taken to be non-pointed. For instance, in a
coin toss action, the agent cannot beforehandpoint outwhich sidewill land face up.

Example 3. Continuing Example 2 we now formalize the actions available to
our thieving agent as the event models in Figure 3. We use the same conven-
tions for edges as we did for epistemic models. For a basic event e we label it
〈pre(e), post(e)〉.1

The agent is endowed with four actions: take left, resp. take right, represent
trying to take the diamond from the left, resp. right, pedestal; the diamond is
obtained only if it is on the chosen pedestal. Both actions require the agent to

1 For a proposition p whose truth value does not change in e we assume the identity
mapping post(e)(p) = p, as is also the convention in automated planning.

98 M.B. Andersen, T. Bolander, and M.H. Jensen

g:〈v ∧ ¬d, {d �→ ¬r}〉

take left

h:〈v ∧ ¬d, {d �→ r}〉

take right

e1:〈r ∧ v, {l �→ 	}〉

e2:〈¬r ∧ v, {l �→ 	}〉
flick

f1:〈v ∨ (¬v ∧ ¬l) , {v �→ ¬v}〉 f2:〈¬v ∧ l ∧ r, {v �→ ¬v}〉 f3:〈¬v ∧ l ∧ ¬r, {v �→ ¬v}〉

move

Fig. 3. Event models representing the actions of the thief

be inside the vault and not holding the diamond. flick requires the agent to be
inside the vault and turns the light on. Further, it reveals which pedestal the
diamond is on. move represents the agent moving in or out of the vault, revealing
the location of the diamond provided the light is on.

It can be seen that the epistemic model M′ in Example 2 is the result of two
successive product updates, namely M0 ⊗move⊗ flick.

3.2 Applicability, Plans and Solutions

Reasoning about actions from the initial state as in Example 3 is exactly what
planning is all about. We have however omitted an important component in the
reasoning process, one which is crucial. The notion of applicability in automated
planning dictates when the outcomes of an action are defined. The idea trans-
lates to DEL by insisting that no world the planning agent considers possible is
eliminated by the product update of an epistemic model with an event model.

Definition 6 (Applicability). An event model E is said to be applicable in
an epistemic model M if M |= 〈E〉�.

This concept of applicability is easily shown to be equivalent with the one defined
in [11] when restricting the latter to the single-agent case. However, for our
purposes of describing plans as formulas, we need to express applicability as
formulas as well. The discussion in [16, sect. 6.6] also notes this aspect, insisting
that actions must be meaningful. The same sentiment is expressed by our notion
of applicability.

The situation in Example 2 calls for a way to express conditional plans.
Clearly, our agent can only snatch the jewel from the correct pedestal condi-
tioned on how events unfold when she acts. To this end we introduce a language
for conditional plans allowing us to handle such contingencies.

Definition 7 (Plan Language). Given a finite set A of event models on
LDEL(P), the plan language LP(P,A) is given by:

π ::= E | skip | if Kφ then π else π | π;π
where E ∈ A and φ ∈ LDEL(P). We name members π of this language plans,
and use if Kφ then π as shorthand for if Kφ then π else skip.

Conditional Epistemic Planning 99

The reading of the plan constructs are ”do E”, ”do nothing”, ”if Kφ then π, else
π′”, and ”first π then π′” respectively. Note that the condition of the if-then-else
construct is required to be aK-formula. This is to ensure that the planning agent
can only make her choices of actions depend on worlds that are distinguishable
to her (cf. the discussion of the internal perspective in Section 3.1). The idea
is similar to the meaningful plans of [16], where branching is only allowed on
epistemically interpretable formulas.

An alternative way of specifying conditional plans is policies, where (in our
terminology) each information cell maps to an event model [14, Sect. 16.2]. There
are slight differences between the expressiveness of conditional plans and policies
(e.g. policies can finitely represent repetitions); our main motivation for not using
policies is that it would require an enumeration of each information cell of the
planning domain.

Definition 8 (Translation). We define a strong translation �·�s · and a weak
translation �·�w · as functions from LP(P,A) × LDEL(P) into LDEL(P) by:

�E�s φ := 〈E〉� ∧ [E]Kφ
�E�w φ := 〈E〉� ∧ 〈E〉Kφ
�skip�· φ := φ
�if φ′ then π else π′�· φ := (φ′ → �π�· φ) ∧ (¬φ′ → �π′�· φ)�π;π′�· φ := �π�· (�π′�· φ)

Plans describe the manner in which actions are carried out. We interpret plans
π relative to a formula φ and want to answer the question of whether or not π
achieves φ. Using Definition 8 we can answer this question by verifying truth of
the DEL formula provided by the translations. This is supported by the results
of Section 4. We concisely read �π�s φ as ”π achieves φ”, and �π�w φ as ”π may
achieve φ” (elaborated below). By not specifying separate semantics for plans our
framework is kept as simple as possible. Note that applicability (Definition 6) is
built into the translations through the occurrence of the conjunct 〈E〉� in both
the strong translation �E�s φ and the weak translation �E�w φ.

The difference between the two translations relate to the robustness of plans:
�π�s φ, resp. �π�w φ, means that every step of π is applicable and that following
π always leads, resp. may lead, to a situation where φ is known.

Definition 9 (Planning Problems and Solutions). Let P be a finite set
of propositional symbols. A planning problem on P is a triple P = (M0,A, φg)
where
– M0 is an information cell on LDEL(P) called the initial state.
– A is a finite set of event models on LDEL(P) called the action library.
– φg ∈ LDEL(P) is the goal (formula).

We say that a plan π ∈ LP(P,A) is a strong solution to P if M0 |= �π�s φg, a
weak solution if M0 |= �π�w φg and not a solution otherwise.

Planning problems are defined with the sentiment we’ve propagated in our ex-
amples up until now. The agent is presently inM0 and wishes φg to be the case.

100 M.B. Andersen, T. Bolander, and M.H. Jensen

To this end, she reasons about the actions (event models) in her action library
A, creating a conditional plan. Using model checking, she can verify whether this
plan is either a weak or strong solution, since plans translate into formulas of
LDEL(P). Further, [12] gives reduction axioms for DEL-formulas, showing that
any formula containing the dynamic modality can be expressed as a formula
in (basic) epistemic logic. Consequently, plan verification can be seen simply as
epistemic reasoning about M0.

Example 4. We continue our running example by discussing it formally as a
planning problem and considering the solutions it allows. The initial state is still
M0, and the action library A = {flick,move, take left, take right}. We discuss the
plans below and their merit for our thief.

– π1 = flick;move; if Kr then take right else take left;move
– π2 = move; take right;move
– π3 = move; flick; take right;move
– π4 = move; flick; if Kr then take right else take left;move

We consider two planning problems varying only on the goal formula, P1 =
(M0,A, d ∧ ¬v) and P2 = (M0,A, K̃d ∧ ¬v). In P1 her goal is to obtain the
diamond and be outside the vault, whereas in P2 she wishes to be outside the
vault possibly having obtained the diamond.

Let π′
1 = move; if Kr then take right else take left;move and note that π1 =

flick;π′
1. Using the strong translation of π1, we get M0 |= �π1�s φg iff M0 |=

〈flick〉� ∧ [flick] �π′
1�s φg. As M0 |= 〈flick〉� does not hold, π1 is not a solution.

This is expected, since flicking the switch in the initial state is not an applicable
action. Verifying that π2 is a strong solution to P2 amounts to checking ifM0 |=
�π2�s K̃d ∧ ¬v which translates to

M0 |= 〈move〉	 ∧ [move]
(
〈take right〉	 ∧ [take right]

(
〈move〉	 ∧ [move]

(
K̃d ∧ ¬v

)))

With the same approach we can conclude that π2 is not a solution to P1, π3 is
a weak solution to P1 and P2, and π4 is a strong solution to P1 and P2.

4 Plan Synthesis

We now show how to synthesise conditional plans for solving planning prob-
lems. To synthesise plans, we need a mechanism for coming up with formulas
characterising information cells for if-then-else constructs to branch on. Inspired
by [8,9], these are developed in the following. Proofs are omitted, as they are
straightforward and similar to proofs in the aforementioned references.

Definition 10 (Characterising Formulas). Let M = (W,∼, V) denote an
information cell on LDEL(P). We define for all w ∈ W a formula φw by: φw =∧

p∈V (w) p ∧
∧

p∈P−V (w) ¬p. We define the characterising formula for M, δM,

as follows: δM = K(
∧

w∈W K̃φw ∧K
∨

w∈W φw).

Conditional Epistemic Planning 101

Lemma 1. Let M be an information cell on LDEL(P). Then for all epistemic
models M′ = (W ′,∼′, V ′) and all w′ ∈ W ′ we have that (M′, w′) |= δM if and
only if there exists a w ∈ D(M) such that (M, w) � (M′, w′).2

4.1 Planning Trees

For brevity, proofs have been omitted from this section. We encourage the reader
to consult the long version [1] in which full proofs are given.

When synthesising plans, we explicitly construct the search space of the prob-
lem as a labelled and-or tree, a familiar model for planning under uncertainty
[14]. Our and-or trees are called planning trees.

Definition 11. A planning tree is a finite, labelled and-or tree in which each
node n is labelled by an epistemic model M(n), and each edge (n,m) leaving an
or-node is labelled by an event model E(n,m).

Planning trees for planning problems P = (M0,A, φg) are constructed as fol-
lows. Let the initial planning tree T0 consist of just one or-node root(T0) with
M(root(T0)) = M0 (the root labels the initial state). A planning tree for P is
then any tree that can be constructed from T0 by repeated applications of the
following non-deterministic tree expansion rule.

Definition 12 (Tree Expansion Rule). Let T be a planning tree for a plan-
ning problem P = (M0,A, φg). The tree expansion rule is defined as follows.
Pick an or-node n in T and an event model E ∈ A applicable in M(n) with the
proviso that E does not label any existing outgoing edges from n. Then:

1. Add a new node m to T with M(m) = M(n) ⊗ E, and add an edge (n,m)
with E(n,m) = E.

2. For each information cell M′ in M(m), add an or-node m′ with M(m′) =
M′ and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expan-
sion rules used in tableau calculi, e.g. for modal and description logics [15]. Note
that the expansion rule applies only to or-nodes, and that an applicable event
model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for plan-
ning trees are game trees. At an or-node n, the agent gets to pick any applicable
action E it pleases, winning if it ever reaches an epistemic model in which the goal
formula holds (see the definition of solvednodes further below).At anand-nodem,
the environment responds by picking one of the information cells ofM(m)—which
of the distinguishable outcomes is realised when performing the action.

Example 5. In Fig. 4 is a planning tree for a variant of the Pink Panther planning
problem, this one where the thief is already inside the vault. The root is n0. Three
applications of the tree expansion rule have beenmade, the labels on edges indicat-
ing the chosen action.n0, nl andnr areor-nodes.n

′
0, n

′
l andn

′
r areand-nodes. The

2 Here (M, w) � (M′, w) denotes that (M, w) and (M′, w) are bisimilar according to
the standard notion of bisimulation on pointed epistemic models.

102 M.B. Andersen, T. Bolander, and M.H. Jensen

u1:vlrd

u2:vlrd

n0

u1:vlrd

u2:vlrd

n′
0

u1:vlrd

nl

u2:vlrd

nr

u1:vlrd

n′
l

u2:vlrd

n′
r

flick

take left

take right

Fig. 4. Planning tree for a variant of the Pink Panther problem

child nodes of the latter twoand-nodes havebeen omitted, as their information cell
is the same as that of their parent nodes. Pay particular attention to how flick re-
veals the location of the diamond. In the initial state, M(n0) |= ¬Kr ∧ ¬K¬r,
whileM(n′

0) |= Kr ∨K¬r,M(nl) |= K¬r andM(nr) |= Kr.

Without restrictions on the tree expansion rule, even very simple planning prob-
lems might be infinitely expanded. Finiteness of trees (and therefore termination)
is ensured by the following blocking condition.

B1 The tree expansion rule may not be applied to a node n for which there
exists an ancestor node m with M(m) � M(n).3

A planning tree for a planning problem P is called B1-saturated if no more
expansions are possible satisfying condition B1.

Lemma 2 (Termination). Any procedure that builds a B1-saturated planning
tree for a planning problem P by repeated application of the tree expansion rule
terminates.

Definition 13 (Solved Nodes). Let T be any (not necessarily saturated) plan-
ning tree for a planning problem P = (M0,A, φg). By recursive definition, a node
n in T is called solved if one of the following holds:

– M(n) |= φg (the node satisfies the goal formula).
– n is an or-node having at least one solved child.
– n is an and-node having all its children solved.

Continuing the game tree analogy, we see that a solved node corresponds is
one for which there exists a winning strategy. Regardless of the environment’s
choice, the agent can achieve its goal. Let T and P be as above. Below we show
that when a node n is solved, it is possible to construct a (strong) solution to
the planning problem (M(n),A, φg). In particular, if the root node is solved, a
strong solution to P can be constructed. As it is never necessary to expand a
solved node, nor any of its descendants, we can augment the blocking condition
B1 in the following way.

B2 The tree expansion rule may not be applied to a node n if one of the following
holds: 1) n is solved; 2) n has a solved ancestor; 3) n has an ancestor node
m with M(m) � M(n).

3 HereM(m) �M(n) denotes thatM(m) andM(n) are bisimilar according to the
standard notion of bisimulation between non-pointed epistemic models.

Conditional Epistemic Planning 103

In the following, we will assume that all planning trees have been built according
to B2. One consequence is that a solved or-node has exactly one solved child.
We make use of this in the following definition.

Definition 14 (Plans for Solved Nodes). Let T be any planning tree for
P = (M0,A, φg). For each solved node n in T , a plan π(n) is defined recursively
by:

– if M(n) |= φg, then π(n) = skip.
– if n is an or-node and m its solved child, then π(n) = E(n,m);π(m).
– if n is an and-node with children m1, . . . ,mk, then π(n) =

if δM(m1) then π(m1) else if δM(m2) then π(m2) else · · · if δM(mk) then π(mk)

Example 6. For the goal of achieving the diamond,φg = d, we have that the rootn0

of the planning tree of Figure 4 is solved, as both n′
l and n

′
r satisfy the goal formula.

Definition 14 gives us π(n0) = flick; if δM(nl) then take left; skip else if δM(nr)

then take right; skip. This plan can easily be shown to be a strong solution to the
planning problem of achieving d from the initial stateM(n0). In our soundness re-
sult below, we show that plans of solved roots are always strong solutions to their
corresponding planing problems.

Theorem 1 (Soundness). Let T be a planning tree for a problem P such that
root(T) is solved. Then π(root(T)) is a strong solution to P.

In addition to soundness, we also have completeness.

Theorem 2 (Completeness). If there is a strong solution to the planning
problem P = (M0,A, φg), then a planning tree T for P can be constructed, such
that root(T) is solved.

4.2 Strong Planning Algorithm

With all the previous in place, we now have an algorithm for synthesising strong
solutions for planning problems P , given as follows.

StrongPlan(P)
1 Let T be the plan. tree only consisting of root(T) labelled by the init. state of P .
2 Repeatedly apply the tree expansion rule of P to T until it is B2-saturated.
3 If root(T) is solved, return π(root(T)), otherwise return fail.

Theorem 3. StrongPlan(P) is a terminating, sound and complete algorithm
for producing strong solutions to planning problems. Soundness means that if
StrongPlan(P) returns a plan, it is a strong solution to P. Completeness
means that if P has a strong solution, StrongPlan(P) will return one.

Proof. Termination comes from Lemma 2 (with B1 replaced by the stronger
condition B2), soundness from Theorem 1 and completeness from Theorem 2
(given any two saturated planning trees T1 and T2 for the same planning problem,
the root node of T1 is solved iff the root node of T2 is).

104 M.B. Andersen, T. Bolander, and M.H. Jensen

4.3 Weak Planning Algorithm

With few changes, the machinery already in place gives an algorithm for syn-
thesising weak solutions. Rather than requiring all children of an and-node be
solved, we require only one. This corresponds to the notion of weak, defined in
Definition 8. Only one possible execution need lead to the goal.

Definition 15 (Weakly Solved Nodes). A node n is called weakly solved if
either M(n) |= φg or n has at least one solved child.

We keep the tree expansion rule, but make use of a new blocking condition B3

using Definition 15 rather than Definition 13.

Definition 16 (Plans for Weakly Solved Nodes). Let T be any planning
tree for P = (M0,A, φg). For each weakly solved node n in T , a plan πw(n) is
defined recursively by:

– if M(n) |= φg, then πw(n) = skip
– if n is an or-node andm its weakly solved child, then πw(n) = E(n,m);πw(m)
– if n is an and-node and m its weakly solved child, then πw(n) = πw(m)

The algorithm for weak planning is defined as follows.

WeakPlan(P)
1 Let T be the plan. tree only consisting of root(T) labelled by the init. state of P .
2 Repeatedly apply the tree expansion rule of P to T until it is B3-saturated.
3 If root(T) is weakly solved, return πw(root(T)), otherwise return fail.

Theorem 4. WeakPlan(P) is a terminating, sound and complete algorithm
for producing weak solutions to planning problems.

5 Related and Future Work

In this paper, we have presented a syntactic characterisation of weak and strong
solutions to epistemic planning problems, that is, we have characterised solu-
tions as formulas. [11] takes a semantic approach to strong solutions for epis-
temic planning problems. In their work plans are sequences of actions, requiring
conditional choice of actions at different states to be encoded in the action struc-
ture itself. We represent choice explicitly, using a language of conditional plans.
An alternative to our approach of translating conditional plans into formulas of
DEL would be to translate plans directly into (complex) event models. This is
the approach taken in [4], where they have a language of epistemic programs
similar to our language of plans (modulo the omission of ontic actions). Using
this approach in a planning setting, one could translate each possible plan π into
the corresponding event model E(π), check its applicability, and check whether
M0 ⊗ E(π) |= φg (the goal is satisfied in the product update of the initial state
with the event model). However, even for a finite action library, there are in-
finitely many distinct plans, and thus infinitely many induced event models to

Conditional Epistemic Planning 105

consider when searching for a solution. To construct a terminating planning al-
gorithm with this approach, one would still have to limit the plans considered
(e.g. by using characterising formulas), and also develop a more involved loop-
checking mechanism working at the level of plans. Furthermore, our approach
more obviously generalises to algorithms for replanning, which is current work.

The meaningful plans of [16, chap. 2] are reminiscent of the work in this paper.
Therein, plan verification is cast as validity of an EDL-consequence in a given
system description. Like us, they consider single-agent scenarios, conditional
plans, applicability and incomplete knowledge in the initial state. Unlike us, they
consider only deterministic actions. In the multi-agent treatment [16, chap. 4],
action laws are translated to a fragment of DEL with only public announcements
and public assignments, making actions singleton event models. This means
foregoing nondeterminism and therefore sensing actions.

Planning problems in [17] are solved by producing a sequence of pointed event
models where an external variant of applicability (called possible at) is used.
Using such a formulation means outcomes of actions are fully determined, making
conditional plans and weak solutions superfluous. As noted by the authors, and
unlike our framework, their approach does not consider factual change. We stress
that [11,17,16] all consider the multi-agent setting which we have not treated
here.

In our work so far, we haven’t treated the problem of where domain formu-
lations come from, assuming just that they are given. Standardised description
languages are vital if modal logic-based planning is to gain wide acceptance in
the planning community. Recent work worth noting in this area includes [7],
which presents a specification language for the multi-agent belief case.

As suggested by our construction of planning trees, there are several connec-
tions between our approach and two-player imperfect information games. First,
product updates imply perfect recall [10]. Second, when the game is at a node
belonging to an information set, the agent knows a proposition only if it holds
throughout the information set; corresponding to our use of information cells.
Finally, the strong solutions we synthesise are very similar to mixed strategies. A
strong solution caters to any information cell (contingency) it may bring about,
by selecting exactly one sub-plan for each [3].

Our work naturally relates to [14], where the notions of strong and weak so-
lutions are found. Their belief states are sets of states which may be partioned
by observation variables. Our partition of epistemic models into information
cells follows straight from the definition of product update. A clear advantage
in our approach is that actions encode both nondetermism and partial observ-
ability. [18] shows that for conditional planning (prompted by nondeterminis-
tic actions) in partially observable domains the plan existence problem is 2-
EXP-complete (plans must succeed with probability 1; i.e. be strong solutions).
StrongPlan(P) implicitly answers the same question for P (it gives a strong
solution if one exists). Reductions between the two decision problem variants
would give a complexity measure of our approach, and also formally link condi-
tional epistemic planning with the approaches used in automated planning.

106 M.B. Andersen, T. Bolander, and M.H. Jensen

We would like to do plan verification and synthesis in the multi-agent settings.
We believe that generalising the notions introduced in this paper to multi-pointed
epistemic and event models are key. Plan synthesis in the multi-agent setting is
undecidable [11], but considering restricted classes of actions as is done in [17] seems
a viable route for achieving decidable multi-agent planning. Another interesting
area is to considermodalities such as plausibility and preferences. This would allow
an agent to plan for (perhaps only) the most likely outcomes of its own actions
and the preferred actions taken by other agents in the system. This could then be
combined with the possibility of doing replanning, as mentioned above.

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional epistemic planning (long
version). Tech. rep. (2012), http://www2.imm.dtu.dk/~tb/cep-long.pdf

2. Aucher, G.: An internal version of epistemic logic. Studia Logica 94(1), 1–22 (2010)
3. Aumann, R.J., Hart, S.: Handbook of Game Theory with Economic Applications.

Elsevier (1992)
4. Baltag, A., Moss, L.S.: Logics for Epistemic Programs. Synthese 139, 165–224

(2004)
5. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common

knowledge and private suspicions. In: TARK 1998, pp. 43–56 (1998)
6. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:

Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory (LOFT7). Texts in Logic and Games, vol. 3, pp.
13–60. Amsterdam University Press (2008)

7. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for reasoning
about beliefs in multi-agent domains. In: Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (2012)

8. Barwise, J., Moss, L.: Vicious circles. CSLI Publications (1996)
9. van Benthem, J.: Dynamic odds and ends. Technical Report ML-1998-08, Univer-

sity of Amsterdam (1998)
10. van Benthem, J.: Games in dynamic-epistemic logic. Bulletin of Economic Re-

search 53(4), 219–248 (2001)
11. Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent sys-

tems. Journal of Applied Non-Classical Logics 21, 9–34 (2011)
12. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:

LOFT 7, pp. 87–117. Amsterdam University Press (2008)
13. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer

(2007)
14. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.

Morgan Kaufmann (2004)
15. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In:

Handbook of Modal Logic. Elsevier (2006)
16. de Lima, T.: Optimal Methods for Reasoning about Actions and Plans in Multi-

Agents Systems. Ph.D. thesis, IRIT, University of Toulouse 3, France (2007)
17. Löwe, B., Pacuit, E., Witzel, A.: DEL Planning and Some Tractable Cases. In: van

Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953, pp. 179–192.
Springer, Heidelberg (2011)

18. Rintanen, J.: Complexity of planning with partial observability. In: Zilberstein, S.,
Koehler, J., Koenig, S. (eds.) ICAPS, pp. 345–354. AAAI (2004)

http://www2.imm.dtu.dk/~tb/cep-long.pdf

PTL: A Propositional Typicality Logic�

Richard Booth1, Thomas Meyer2, and Ivan Varzinczak2

1 University of Luxembourg
richard.booth@uni.lu

2 Centre for Artificial Intelligence Research
CSIR Meraka Institute and UKZN, South Africa

{tommie.meyer,ivan.varzinczak}@meraka.org.za

Abstract. We introduce Propositional Typicality Logic (PTL), a logic for rea-
soning about typicality. We do so by enriching classical propositional logic with
a typicality operator of which the intuition is to capture the most typical (or nor-
mal) situations in which a formula holds. The semantics is in terms of ranked
models as studied in KLM-style preferential reasoning. This allows us to show
that rational consequence relations can be embedded in our logic. Moreover we
show that we can define consequence relations on the language of PTL itself,
thereby moving beyond the propositional setting. Building on the existing link
between propositional rational consequence and belief revision, we show that the
same correspondence holds for rational consequence and belief revision on PTL.
We investigate entailment for PTL, and propose two appropriate notions thereof.

Keywords: Nonmonotonic reasoning, typicality, belief revision, rationality.

1 Introduction and Motivation

The preferential and rational consequence relations first studied by Lehmann and col-
leagues in the 90’s play a central role in nonmonotonic reasoning [13,14]. This has
been the case due to at least three main reasons. Firstly, they are based on semantic
constructions that are elegant and neat. Secondly, they provide the foundation for the
determination of the important notion of entailment in this context. Finally they also
offer an alternative perspective on belief change [9].

A curious aspect of such consequence relations (and corresponding belief revision
constructions) is that they are crucially, albeit tacitly, based on a notion of typicality.
However, in the corresponding underlying language it is not possible to refer directly to
such a notion. In this paper, we fill this gap with the introduction of an explicit operator
to talk about typicality. Intuitively, our new syntactic construction allows us to single out
those most typical situations in which a formula holds. The result is a more expressive
language allowing us, for instance, to make statements of the form “the most typical αs
are most typical βs”, which is not possible in the aforementioned frameworks.

� This work is based upon research supported by the National Research Foundation. Any opin-
ion, findings and conclusions or recommendations expressed in this material are those of the
author(s) and therefore the NRF do not accept any liability in regard thereto. This work was
partially funded by Project number 247601, Net2: Network for Enabling Networked Knowl-
edge, from the FP7-PEOPLE-2009-IRSES call.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 107–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 R. Booth, T. Meyer, and I. Varzinczak

The remainder of the paper is structured as follows: After some preliminaries (Sec-
tion 2), we define and investigate PTL, a propositional typicality logic extending propo-
sitional logic (Section 3). The semantics of PTL is in terms of ranked models as studied
in the literature on preferential reasoning. This allows us to embed propositional KLM-
style consequence relations in our new language. In Section 4 we show that, although
the addition of the typicality operator increases the expressivity of the logic, the nest-
ing of the typicality does not. In Section 5 we investigate the link between AGM belief
revision and PTL. We show that propositional AGM belief revision can be expressed in
terms of typicality, and also that it can be lifted to a version of revision on PTL. We then
move to an investigation of rational consequence relations in terms of PTL (Section 6).
We show that propositional rational consequence can be expressed in PTL, that it can
be extended to PTL in terms of PTL itself, and that the propositional connection be-
tween rational consequence and revision carries over to PTL. In Section 7 we raise the
question of what an appropriate notion of entailment for PTL is, and propose at least
two candidates. After a discussion of and comparison with related work (Section 8), we
conclude with a summary of the contributions and directions for further investigation.

2 Preliminaries

We work in a propositional language over a finite set of atomsP , denoted by p, q, . . . (In
later sections we adopt a richer language.) Propositional formulas (and in later sections,
formulas of the richer language) are denoted by α, β, . . ., and are recursively defined in
the usual way: α ::= p | ¬α | α∧α. The other truth-functional connectives are defined
in terms of ¬ and ∧ in the usual way. We use � as an abbreviation for p ∨ ¬p, and ⊥
for p ∧ ¬p, for some p ∈ P . With L we denote the set of all propositional formulas.

We denote by U the set of all valuations v : P −→ {0, 1}. Satisfaction of α ∈ L
by v ∈ U is defined in the usual truth-functional way. With Mod(α) we denote the set
of all valuations satisfying α. Given sentences α and β, α |= β (α entails β) means
Mod(α) ⊆ Mod(β). We extend the notions of Mod(·) and entailment to knowledge
bases in the usual way: for a finiteK ⊆ L, Mod(K) is the set of all valuations satisfying
every formula in K, and K |= α if and only if Mod(K) ⊆ Mod(α).

A propositional defeasible consequence relation |∼ is defined as a binary relation on
the formulas of the underlying (finitely generated) propositional logic. |∼ is said to be
preferential if it satisfies the following set of properties [13]:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ

α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(RW)

α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

If, in addition to the properties of preferential consequence, |∼ also satisfies the follow-
ing Rational Monotonicity property, it is said to be a rational consequence relation [14]:

(RM)
α |∼ β, α �|∼ ¬γ

α ∧ γ |∼ β

PTL: A Propositional Typicality Logic 109

The semantics of (propositional) rational consequence is in terms of ranked models.
These are partially ordered structures in which the ordering is modular.

Definition 1. Given a set S, ≺ ⊆ S × S is modular if and only if there is a ranking
function rk : S −→ N such that for every s, s′ ∈ S, s ≺ s′ if and only if rk(s) < rk(s′).

Definition 2. A ranked model R is a pair 〈V ,≺〉, where V ⊆ U and ≺ ⊆ V × V is a
modular order over V .1

Definition 3. Let α ∈ L and let R = 〈V ,≺〉 be a ranked model. With �α� we denote
the set of valuations satisfying α in R, defined as follows:

�p� := {v ∈ V | v(p) = 1}, �¬α� := V \ �α�, �α ∧ β� := �α� ∩ �β�
Given a ranked model R, the intuition is that valuations lower down in the ordering
are more preferred than those higher up. Hence, a pair (α, β) is in the consequence
relation defined by R (denoted as α |∼R β) if and only if min≺�α� ⊆ �β�, i.e., the
most preferred (with respect to ≺) α-valuations are also β-valuations.

Lehmann and Magidor provided a representation result for the propositional case,
establishing that a defeasible consequence relation |∼ on L is rational if and only if it is
defined by some ranked model [14,9].

3 Propositional Typicality Logic

We introduce now a propositional typicality logic, called PTL, which extends propo-
sitional logic with a typicality operator a (read ‘bar’). The language of PTL, denoted
by L, is recursively defined by: α ::= p | ¬α | α∧α | α. (As before, the other connec-
tives are defined in terms of ¬ and ∧, and � and ⊥ are abbreviations.) Intuitively, α is
understood to refer to the typical situations in which α holds. The semantics is in terms
of ranked models and we extend the notion of satisfaction from Definition 3 as follows:

Definition 4. Let α ∈ L and let R = 〈V ,≺〉. Then �α� := min≺�α�.

Given α ∈ L and R a ranked model, we say that α is true in R (denoted as R � α) if
�α� = V . For K ⊆ L, R � K if R � α for every α ∈ K. α is valid, denoted as |= α, if
R � α for every ranked model R.

Note that for every ranked model R and α ∈ L, there is a β ∈ L (i.e., a propositional
formula) such that R � α↔ β. That is to say, given R, every α can be expressed as a
propositional formula (β) in R. Of course, this does not mean that propositional logic
is as expressive as PTL, since the formula β used to express α in the ranked model R
depends on R. Rather, the relationship between PTL and propositional logic is similar
to the relationship between modal logic and propositional logic in the sense that both
modal logic and PTL add to propositional logic an operator that is not truth-functional.
(In Section 8 we discuss in more detail the relationship between PTL and modal logic.)

Next is a property which shows that if R � α, then R consists of only α-worlds in
which all worlds are incomparable (alias equally preferred) according to ≺.

1 This is not Lehmann and Magidor’s [14] original definition of ranked models but a characteri-
zation of rational consequence can be given in terms of ranked models as we present here [9].

110 R. Booth, T. Meyer, and I. Varzinczak

Proposition 1. Let R = 〈V ,≺〉. Then (1)≺= ∅ iff there is an α ∈ L such that R � α;
(2) for every α ∈ L, R � α iff for every β ∈ L such that R � α→ β, R � β.

One of the consequences of this result is that if α is true in a ranked model, then so is α
(but the converse, of course, does not hold).

Another useful property of typicality is that it allows us to express (propositional)
rational consequence, as defined in Section 2.

Proposition 2. For α, β ∈ L, α |∼R β if and only if R � α→ β.

Proposition 2 shows that the introduction of typicality into the object language allows
us to express rational consequence. This forms part of our argument to show that our
semantics for typicality is the correct one, but it does not provide a justification for
introducing all the additional expressivity obtained from typicality. To provide such a
justification we turn to the notion of defeasible incompatibility. Intuitively, α and β are
said to be incompatible if they are contradictory. Therefore with an appropriate defini-
tion of defeasible incompatibility we should be able to capture the idea of α and β being
defeasibly incompatible. There seems to be at least four different ways of expressing de-
feasible incompatibility, none of which are equivalent (with respect to ranked models),
but all of which would be propositionally equivalent if the typicality operator were re-
moved: (i) (α→ ¬β)∧(β → ¬α); (ii)� → ¬(α∧β); (iii)¬(α ∧ β), and (iv)¬(α∧β).
Observe that (i) can be expressed as two |∼-statements (α |∼ ¬β and β |∼ ¬α), that
(ii) can be expressed in terms of |∼, but that (iii) and (iv) cannot.

Furthermore, although it may be useful to be able to express all four of these op-
tions, our contention is that the notion of defeasible incompatibility is correctly cap-
tured by option (iv), one of the options that cannot be expressed in terms of |∼. To
see why, note firstly that option (i) is ruled out because it is too strong. It expressly
forbids typical α-situations to be β-situations (and forbids typical β-situations to be
α-situations). We could consider weakening it so that typical α-situations are only for-
bidden to be typical β-situations (and similarly with the roles of α and β reversed),
i.e., to (α → ¬β) ∧ (β → ¬α). That looks reasonable indeed, but it is easy to see
that this statement is equivalent to each of its two conjuncts α → ¬β and β → ¬α,
and also to option (iv). To see why option (ii) does not fit the bill either, it is best to
consider its representation in terms of |∼: � |∼ ¬(α ∧ β). From this we do not always
get γ |∼ ¬(α ∧ β). Thus, in a sense, option (ii) is too weak since it ignores, for the
most part, the context in which defeasible incompatibility is supposed to hold. For op-
tion (iii), from Proposition 1 it follows that if ¬(α ∧ β) holds, then so does ¬(α ∧ β),
which is clearly too strong. Finally, observe that option (iv) is interpreted to mean that
the most typical α-situations and the most typical β-situations are incompatible, which
corresponds best to the informal notion of defeasible incompatibility. In summary then,
it seems that to express defeasible incompatibility correctly, it is necessary to go beyond
rational consequence, but sufficient to introduce typicality into the object language.

Finally, observe that Proposition 2 shows that rational consequence for propositional
logic can be expressed in PTL. In Section 6 we shall see that it is also possible to
express, in PTL itself, the extended notion of rational consequence for the language L.

PTL: A Propositional Typicality Logic 111

4 Typicality Unraveled

In the previous section we have argued for the need to include typicality explicitly in
the object language. The observant reader would have noticed that L allows for the
arbitrary (finite) nesting of the typicality operator. An important point to consider is
whether this much expressivity is needed, and whether it is not perhaps sufficient to
restrict the language to non-nested applications of typicality.

In this section we show that once typicality is added to the language, nesting does not
increase the expressivity any further, provided that we are allowed to add new proposi-
tional atoms. We shall thus be working with languages in which the set of propositional
atomsP may vary, and more specifically, with languages with respect to a given knowl-
edge base. So, given a knowledge base K, we denote by PK the set of propositional
atoms occurring inK. Furthermore, by a ranked model on PK we mean a ranked model
built up using only the propositional atoms occurring in PK.

Now, given any K ⊆ L we: (i) Show how to transform every β ∈ L into a for-
mula β̂ containing no nested instances of the bar operator (and therefore also how to
transform K into a knowledge base K̂, containing no nested instances of the bar oper-
ator); (ii) Show how to construct an auxiliary set of formulas Ê, containing no nested
instances of the bar operator, regulating the behavior of the newly introduced proposi-
tional atoms, and (iii) Show how to transform every ranked model R on PK into its
“appropriate representative” R̂ on P ̂K such that, for every β ∈ L, β is true in R if and
only if β̂ is true in R̂. Using these constructions we show that K̂ ∪ Ê is the non-nested
version of K in the sense that the ranked models in which K̂ ∪ Ê are true are precisely
the “appropriate representatives” of the ranked models in which K is true.

To be more precise, let K ⊆ L, let SK denote all subformulas of K, and let BK =
{α ∈ SK | α ∈ L}. So BK contains all occurrences of subformulas in K containing
a single bar. Informally, the idea is to substitute (all occurrences of) every element α
of BK with a new atom pα, and to require that pα be equivalent to α. In doing so we
reduce the level of nesting in K by a factor of 1. Now, let EK = {pα ↔ α | α ∈ BK},
and for every β ∈ L, let βK be obtained from β by the simultaneous substitution in β of
(every occurrence of) every α ∈ BK by pα (observe that βK = β if β is a propositional
formula). We refer to βK as the K-transform of β. Also, let K = {βK | β ∈ K}. The
idea is that K ∪ EK is a version of K with one fewer level of nesting.

Example 1. Let K = {p ∧ q → r, p ∨ r, p ∧ q ∨ r}. Then BK = {p ∧ q, p, r} and
EK = {pp∧q ↔ p ∧ q, pp ↔ p, pr ↔ r}. Now (p ∧ q → r)K = pp∧q → r, (p ∨ r)K =

pp ∨ r, (p ∧ q ∨ r)K = p ∧ q ∨ pr. Hence K = {pp∧q → r, pp ∨ r, p ∧ q ∨ pr}. Ob-
serve that K has a nesting level of 3, while K has a nesting level of 2.

Let R = 〈V ,≺〉 be a ranked model on PK. We define R = (V ,≺) on PK as follows:
for all v ∈ V , let v be a valuation on PK such that (i) v(p) = v(p) for every p ∈ PK,
and (ii) for every pα ∈ (PK \ PK), v(pα) = 1 if and only if v ∈ �α� in R. And for
all v, v′ ∈ V, v ≺ v′ if and only if v ≺ v′. So R is an extended version of R with
every valuation v in R replaced with an extended valuation v in which the truth values
of atoms occurring in v remain unchanged, and the truth values of the new atoms are

112 R. Booth, T. Meyer, and I. Varzinczak

constrained by the requirement that every pα be equivalent to α (for α ∈ BK). We refer
to R as the K-extended version of R. From this we obtain the following result.

Proposition 3. For every ranked model R onPK, R satisfiesEK. Conversely, a ranked
model R′ on PK satisfies EK if and only if there is a ranked model R on PK such that
R = R′. Furthermore, let R be a ranked model on PK. Then R satisfies K if and only
if R � K. Also, for all β ∈ L, R � β if and only if R � β.

The proposition above shows that the K-extended version of a ranked model R is the
only “appropriate representative” of R in the class of ranked models based on the ex-
tended language of K. Also, the K-extended versions of the ranked models based on
the language of K are the only ones satisfying EK.

As mentioned above, the move from K to K ensures that we can reduce the level of
nesting of a by a factor of 1. To arrive at a set K̂ not containing any nested occurrences
of a we just need to iterate the transform process a sufficient number of times. So, we
define K̂ as follows: Let K0 = K, and for i > 0, let Bi = BKi−1 , Ki = Ki−1, and let
n = min<{i | Bi+1 = ∅}. We then let K̂ = Kn. So for every i = 1, . . . , n, Ki has
one fewer level of nesting of a than Ki−1 until we get to Kn = K̂, which has no nested
occurrences of a. Similarly, for every β ∈ L, we define β̂ as follows: Let β0 = β, for
i = 1, . . . , n, let βi = βKi−1 , and let β̂ = βn. We refer to β̂ as the full K-transform
of β. In a similar vein, we let Ê =

⋃i=n−1
i=0 EKi .

Example 2. Continuing Example 1, let K0 = K. Then B1 = BK0 = BK, and K1 =

K with E0 = EK; B2 = BK1 = {q ∨ pr}, and E1 = {pq∨pr ↔ q ∨ pr}. Now

K2 = K1 = K = {pp∧q → r, pp ∨ r, p ∧ pq∨pr}. In the 2nd iteration, B3 = BK2 =

{pp ∨ r, p ∧ pq∨pr} with E2 = {ppp∨r ↔ pp ∨ r, pp∧pq∨pr ↔ p ∧ pq∨pr}. Then K3 =

K2 = {pp∧q → r, pp
p∨r, pp∧pq∨pr }. In the next iteration, B4 = ∅. Hence n = 3, and

K̂ =

{
pp∧q → r, pp

p∨r,

pp∧pq∨pr

}
, Ê =

{
pp∧q ↔ p ∧ q, pp ↔ p, pr ↔ r, pq∨pr ↔ q ∨ pr,

pp
p∨r ↔ pp ∨ r, pp∧pq∨pr ↔ p ∧ pq∨pr

}

Finally, for any ranked model R on PK, we define its full K-extended version R̂ as
follows: Let R0 = R, and for i = 1, . . . , n, Ri = Ri−1. Then we let R̂ = Rn.

Using Proposition 3 we then obtain the result we require.

Theorem 1. For every R on PK, its fullK-extended version R̂ satisfies Ê. Conversely,
a ranked model R′ on P ̂K satisfies Ê if and only if there is a ranked model R on PK

such that R′ = R̂. Furthermore, let R be a ranked model R on PK. Then R � K if
and only if R̂ � K̂. Also, for all β ∈ L, R � β if and only if R̂ � β̂.

5 Belief Revision and Typicality

Given the well-known link between propositional rational consequence and AGM belief
revision [1], as developed by Gärdenfors and Makinson [9], it is perhaps not surprising

PTL: A Propositional Typicality Logic 113

that propositional AGM belief revision can be expressed using the typicality operator.
In this section we make this claim precise. The formal representation of propositional
AGM revision we provide below is based on that of Katsuno and Mendelzon [12].

The starting point is to fix a non-empty subset V of U (as done by Kraus et al. [13]),
and to assume that everything is done within the context of V . In that sense, V becomes
the set of all valuations available to us. This is slightly more general than the Katsuno-
Mendelzon framework which assumes V to be equal to U , but is a special case of the
original AGM approach. To reflect this restriction, we use ModV(α) to denote the set
Mod(α) ∩ V . In the same vein, in the postulates below, validity is understood to be
modulo V . That is, for α ∈ L we let |= α if and only if ModV(α) = V .

Next, we fix a knowledge base κ ∈ L (i.e., represented as a propositional formula)
such that ModV(κ) �= ∅. A revision operator ◦ on L for κ is a function from L to L.
Intuitively, κ ◦ α is the result of revising κ by α (clearly the models of κ ◦ α should be
in V). An AGM revision operator ◦ on L for κ is a revision operator on L for κ which
satisfies the following six properties:

(R1) |= (κ ◦ α)→ α
(R2) If �|= ¬(κ ∧ α), then |= (κ ◦ α)↔ (κ ∧ α)
(R3) If �|= ¬α, then �|= ¬(κ ◦ α)
(R4) If |= κ1 ↔ κ2 and |= α1 ↔ α2, then |= (κ1 ◦ α1)↔ (κ2 ◦ α2)
(R5) |= ((κ ◦ α) ∧ β)→ (κ ◦ (α ∧ β))
(R6) If �|= ¬(κ ◦ α) ∧ β, then |= (κ ◦ (α ∧ β))→ ((κ ◦ α) ∧ β)
A ranked model R = 〈V ,≺〉 is defined as κ-faithful if and only if min≺ V = ModV(κ).
A revision operator ◦R (on L) is defined by a κ-faithful ranked model R if and only
if ModV(κ ◦R α) = min≺ ModV(α). Katsuno and Mendelzon [12] proved that for
V = U , (i) every revision operator ◦R defined by a κ-faithful ranked model R is an
AGM revision operator (on L), and (ii) for every AGM revision operator ◦ (on L) for
κ, there is a κ-faithful ranked model R such that ModV(κ ◦ α) = ModV(κ ◦R α).

We show that ◦ can be expressed in L using typicality. The key insight is to identify
the knowledge base κ to be revised with the formula�, while κ◦α is identified with α.

Proposition 4. Let R = 〈V ,≺〉 be any κ-faithful ranked model (with κ ∈ L). Then
�κ ◦R α� = �α� (for every α ∈ L). Conversely, let ◦ be any AGM revision operator
(on L) for κ. Then there is a κ-faithful ranked model R such that ModV(κ ◦ α) = �α�.

This result shows that propositional AGM revision can be embedded in L. But we can
take this a step further and extend revision to apply to the language L as well. So, with
V still fixed, we letRV = {R | R = 〈V ,≺〉} and we fix a κ ∈ L such that R �� ¬κ for
some R ∈ RV . The definition of a revision operator ◦ is then the same as above, except
that it is now with respect to L. And the definition of an AGM revision operator on L
is then one which satisfies (R1)–(R6), but with validity in the postulates understood to
be modulo RV (that is, for α ∈ L, |= α if and only if R � α for every R ∈ RV .) This
gives us a representation result similar to that of Katsuno and Mendelzon, but with the
revision operator defined on L.

Theorem 2. Let R be a κ-faithful ranked model. Then ◦R is an AGM revision operator
on L for κ. Conversely, for every AGM revision operator ◦ on L for κ there is a κ-
faithful ranked model R such that ModV(κ ◦ α) = ModV(κ ◦R α).

114 R. Booth, T. Meyer, and I. Varzinczak

6 Rational Consequence on L
We have seen in Section 5 that typicality can be used to express propositional AGM
belief revision, as well as AGM belief revision defined for PTL. From Proposition 2 we
know that rational consequence for propositional logic can be expressed in PTL. In this
section we complete the picture by showing that (i) rational consequence for PTL can
be expressed in PTL itself, a result analogous to Theorem 2, and (ii) that the expected
connection between rational consequence and AGM revision for PTL does indeed hold.

As in Section 5, we start by fixing a set V ⊆ U . In this case, however,V is allowed to
be empty as well. Then we let |∼ be a binary relation on L. We say that |∼ is a rational
consequence relation on L if and only if it satisfies the seven rationality properties from
Section 2. In this case (as in Section 5) |= is understood to be validity modulo RV :
|= α if and only if for every R ∈ RV , R � α. As was done in Section 2, given a
ranked model R, a pair (α, β) is in the consequence relation defined by R (denoted as
α |∼R β) if and only if min≺�α� ⊆ �β�. In this case, however, α and β are taken to be
elements of L and not just of L. From this we get the following:

Theorem 3. Every |∼R defined by some R is a rational consequence relation on L.
Conversely, for every rational consequence relation |∼ on L there exists a ranked
model R such that |∼R = |∼.

It is worth mentioning that the proof of Theorem 3 makes use of Theorem 2, as well as
the connection between AGM revision and rational consequence for PTL in the style of
Gärdenfors and Makinson [9], which we now proceed to describe. First we consider the
following additional property on defeasible consequence relations:

(Cons) � �|∼ ⊥

It is easy to see that for a ranked model R = 〈V ,≺〉, � |∼R ⊥ if and only if V = ∅.
By insisting that (Cons) holds, we are restricting ourselves to ranked models in which
V �= ∅, a restriction that is necessary to comply with postulate (R3) for AGM belief
revision. So, we consider only the case where the (fixed) set V is non-empty.2

Intuitively, given a rational consequence relation |∼ and a belief revision operator ◦
for a knowledge base κ, the idea is to (i) associate κ with all βs such that � |∼ β holds
and (ii) to associate the consequences of κ ◦ α with all the βs such that α |∼ β holds.

For a rational |∼ onL, let C|∼ = {α ∈ L | � |∼ α} and letK|∼ be the set of logically
strongest formulas (moduloRV) to be defeasibly concluded from �. That is,

K|∼ = {α ∈ C|∼ | for all β ∈ C|∼, if |= β → α, then |= α→ β}.3

Theorem 4. Let |∼ be a rational consequence relation on L also satisfying (Cons), and
let κ ∈ K|∼. There is an AGM revision operator ◦ on L for κ such that α |∼ β if and
only if |= (κ ◦ α) → β. Conversely, let κ be any element of L such that �|= ¬κ, and
let ◦ be an AGM revision operator on L for κ. Then there is a rational consequence
relation |∼ on L also satisfying (Cons) such that α |∼ β if and only if |= (κ ◦ α)→ β.

2 It is easy to see that if V = ∅, thenL×L is the only rational consequence relation satisfying all
seven rationality properties, that R = 〈∅, ∅〉 is the only ranked model, and that |∼R= L ×L.

3 Where |= is understood to mean validity modulo RV .

PTL: A Propositional Typicality Logic 115

7 Entailment for PTL

In this section we focus on what is perhaps the central question concerning PTL from
the perspective of knowledge representation and reasoning: What does it mean for a
PTL formula to be entailed by a (finite) knowledge base K? Formally, we view an
entailment relation as a binary relation |=∗ from the power set of the language under
consideration (in this case L) to the language itself. Its associated consequence relation
is defined as: Cn∗(K) = {α | K |=∗ α}. Before looking at specific candidates, we
propose some desired properties for such an entailment relation. The obvious place to
start is to consider the properties for Tarskian consequence below.

(Inclusion) K ⊆ Cn∗(K)
(Idempotency) Cn∗(K) = Cn∗(Cn∗(K))
(Monotonicity) If K1 ⊆ K2, then Cn∗(K1) ⊆ Cn∗(K2)

Inclusion and Idempotency are both properties we want to have satisfied, but Mono-
tonicity is not. To see why not, it is enough to refer to the classic example in nonmono-
tonic reasoning: Let K1 = {p → b, b → f} (penguins are birds, and birds typically
fly), and let K2 = K1 ∪ {p → ¬f} (add to K1 that penguins typically do not fly).
We want p → f ∈ Cn∗(K1) (penguins typically fly as a consequence of K1), but we
want p → f �∈ Cn∗(K2) (penguins typically fly not as a consequence of K2), thereby
invalidating Monotonicity.

In addition to Inclusion and Idempotency we require |=∗ to behave classically when
presented with propositional information only (below |= denotes classical entailment):

(Classic) If K ⊆ L, then for every α ∈ L, K |=∗ α iff K |= α

Therefore, we also require that the classical consequences of a knowledge base ex-
pressed in L be classically closed (below Cn(·) refers to classical consequence of L):

(Classic Closure) Cn∗(K) ∩ L = Cn(Cn∗(K) ∩ L)

We now consider an obvious candidate for entailment: the standard Tarskian notion of
entailment applied to the semantics of PTL:

K |=T α iff every ranked model R satisfying K also satisfies α

It is easy to show that |=T satisfies Inclusion, Idempotency, Classic, and Classic Clo-
sure. However, it also satisfies Monotonicity, which eliminates it from contention as a
viable form of entailment. Moreover, there is an additional argument against the use
of |=T as well, one that is based on an adaptation of a result obtained by Lehmann and
Magidor in the propositional case [14]. To make the argument, we first present a result
showing that all formulas of L can be rewritten as statements of rational consequence:

Lemma 1. For every R and α ∈ L, R � α if and only if R � ¬α → ⊥ if and only if
¬α |∼R ⊥. Conversely for every R and α, β ∈ L, α |∼R β if and only if R � α→ β.

We can therefore think of L as a language for expressing defeasible consequence on
L with |∼ viewed as the only main connective. More precisely, let L|∼ = {α |∼ β |
α, β ∈ L}, and for any ranked model R, let R � α |∼ β if and only if α |∼R β. The
next result shows that the languages L and L|∼ are equally expressive.

116 R. Booth, T. Meyer, and I. Varzinczak

Proposition 5. For every R and α |∼ β ∈ L|∼, R � α |∼ β if and only if R � α→ β.
Conversely, for every R and α ∈ L, R � α if and only if R � ¬α |∼ ⊥.

L|∼ is similar to the language for conditional knowledge bases studied by Lehmann and
Magidor, but with the propositional component replaced by L (i.e., |∼ ⊆ L× L).

Based on this we restate entailment in terms of the language L|∼, and propose an
additional property that any appropriate notion of entailment should satisfy. Let K be a
(finite) subset of L|∼, let |=∗ be a (potential) entailment relation from P(L|∼) to L|∼,
and let |∼∗

K be a defeasible consequence relation on L obtained from |=∗ as follows:
α |∼∗

K β if and only if K |=∗ α |∼ β.

(Rationality) For every finite K ⊆ L|∼, the consequence relation |∼∗
K obtained from

|=∗ should be a rational

Rationality is essentially the property for the entailment of propositional conditional
knowledge bases proposed by Lehmann and Magidor [14], but applied to L|∼. Based
on their results, it follows that |=T (defined on L|∼) does not satisfy Rationality. In fact,
analogous to one of their results, we have the following result.

Proposition 6. For finite K ⊆ L|∼, let |∼K= {(α, β) | α |∼ β ∈ K}, and let |∼P be
the intersection of all preferential consequence relations on L containing |∼K. For the
consequence relation |∼T

K obtained from |=T , it follows that |∼∗
K = |∼P is a preferential

consequence relation, but not necessarily a rational consequence relation.

Since L and L|∼ are equally expressive, Proposition 6 provides additional evidence that
|=T is not an appropriate form of entailment.

7.1 Rational Closure for PTL

Having shown that |=T is not an appropriate form of entailment for PTL, we now turn
our attention to a proposal for an appropriate version of entailment. It is the notion of the
rational closure of a conditional knowledge base, proposed by Lehmann and Magidor
for the propositional case, applied to L|∼.

Definition 5. Let |∼0 and |∼1 be rational consequence relations. |∼0 is preferable to
|∼1 (written |∼0 (|∼1) if and only if

• there is an α |∼ β ∈ |∼1 \ |∼0 s.t. for all γ s.t. γ ∨ α |∼0 ¬α and for all δ s.t.
γ |∼0 δ, we also have γ |∼1 δ;

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion ρ |∼ ν in
|∼1 \ |∼0 s.t. ρ ∨ γ |∼1 ¬γ.

The motivation for(here is essentially that for the same ordering for the propositional
case provided by Lehmann and Magidor [14]. Given K ⊆ L, the idea is now to de-
fine the rational closure as the most preferred (with respect to () of all those rational
consequence relations which includeK.

Lemma 2. Let K be a finite subset of L|∼ and let |∼K= {(α, β) | α |∼ β ∈ K}.
There is a unique rational consequence relation containing |∼K which is preferable
(with respect to () to all other rational consequence relations containing |∼K.

PTL: A Propositional Typicality Logic 117

This allows us to define the rational closure |=rc of a knowledge base on L|∼.

Definition 6. For finite K ⊆ L|∼, let |∼K= {(α, β) | α |∼ β ∈ K}, and let |∼rc be
the (unique) rational consequence relation containing |∼K which is preferable (with
respect to () to all other rational consequence relations containing |∼K. Then α |∼ β
is in the rational closure of K (written as K |=rc α |∼ β) if and only if α |∼rc β.

Definition 6 gives us a notion of rational closure for L|∼. Since L and L|∼ are equally
expressive, we can use Definition 6 to define rational closure for L as well:

Definition 7. Let K ⊆ L, α ∈ L, and let K|∼ = {¬β |∼ ⊥ | β ∈ K}. α is in the
rational closure of K (written as K |=rc α) if and only if ¬α |∼ ⊥ is in the rational
closure of K|∼.

It is not hard to show that rational closure satisfies Inclusion, Idempotency, Classic,
Classic Closure, and Rationality, but not Monotonicity. It is therefore a reasonable can-
didate for entailment for PTL.

7.2 Minimum Entailment for PTL

In this section we turn our attention to another proposal for entailment for L based
on a semantic construction. It is inspired by a proposal by Giordano et al. [10]. The
idea is to define a partial order on a certain subclass of ranked models satisfying a
knowledge base K ⊆ L, with models lower down in the ordering being viewed as
more ‘conservative’, in the sense that one can draw fewer conclusions from them, and
therefore being more preferred. For K ⊆ L, let VK be the elements of U permitted
by K: VK = {v | v ∈ V for some R = 〈V ,≺〉 s.t. R � K}. And let RK = {R =
〈VK,≺〉 | R � K}. Now, for any R = 〈VK,≺〉 ∈ RK, let VR

0 = min≺ VK, and

for i > 0 let VR
i = min≺

(
VK \ (∪j=i−1

j=0 V R
j)
)

. So VR
0 contains the elements of VK

lowest down w.r.t.≺, VR
1 contains the elements of VK just aboveVR

0 w.r.t.≺, etc. Next,
for every v ∈ VK we define the height of v in R as hR(v) = i if and only if v ∈ VR

i .
And based on that, we define the partial order � on RK as follows: R1 � R2 if and
only if for every v ∈ VK, hR1(v) ≤ hR2(v). From this we get:

Proposition 7. For every K ⊆ L, the partial order � on the elements of RK has a
unique minimum element.

This allows us to provide a definition for the minimum entailment of a knowledge base.

Definition 8. LetK ∈ L, α ∈ L, and RK be the (unique) minimum element ofRK w.r.t.
the partial order � on RK. Then α is in the minimum entailment of K (K |=min α) if
and only if RK � α.

It can be shown that minimum entailment satisfies Inclusion, Idempotency, Classic,
Classic Closure, and Rationality, but not Monotonicity. As for rational closure, it is
a reasonable candidate for entailment for L. In fact, the connection between rational
closure and minimal entailment may even be closer than that. There is strong evidence
to support the conjecture that they actually coincide.

118 R. Booth, T. Meyer, and I. Varzinczak

8 Related Work

To the best of our knowledge, the first attempt to formalize a notion of typicality in
the context of defeasible reasoning was that by Delgrande [8]. Given the relationship
between our constructions and those by Kraus et al., most of the remarks in the com-
parison made by Lehmann and Magidor [14, Section 3.7] are applicable in comparing
Delgrande’s approach to ours and we do not repeat them here.

Crocco and Lamarre [7] as well as Boutilier [2] have also explored the links between
defeasible consequence relations and notions of normality similar to ours. In particu-
lar, Boutilier showed that nonmonotonic consequence can be embedded in conditional
logics via a binary modality ⇒. Here we have considered a unary operator. The links
between our a and the conditional⇒ remain to be explored, though. Our conjecture at
the moment is that they provide for the same expressivity.

In a description logic setting, Giordano et al. [11] also study notions of typicality.
Semantically, they do so by placing an (absolute) ordering on objects in first-order do-
mains in order to define versions of defeasible subsumption relations in the description
logic ALC. The authors moreover extend the language of ALC with an explicit typi-
cality operator T of which the intended meaning is to single out instances of a concept
that are deemed as ‘typical’. That is, given an ALC concept C, T(C) denotes the most
typical individuals having the property of being C in a particular DL interpretation.

Giordano et al.’s approach defines rational versions of the DL subsumption rela-
tion �. Nevertheless, they do not provide representation results and do not address the
question of entailment either. In a recent paper [5] we have addressed precisely these
issues in DLs. Even though here we have investigated typicality in a propositional set-
ting, we expect that our representation result and constructions for the rational closure
(as well as the links with belief revision) can be lifted to the DL case.

Britz et al. [3] investigate another embedding of propositional preferential reasoning
in modal logic. In their setting, the modular ordering is an accessibility relation on
possible worlds, axiomatized via a modal operator �. Our typicality operator can be
defined in terms of their modality as α ≡def �¬α ∧ α. The modal sentence �¬α ∧ α
says that the worlds satisfying it are α-worlds and whatever world is more preferable
than these is a ¬α-world. In other words, these are the minimal α-worlds. The general
case of defining Britz et al.’s modality in terms of our typicality operator is not possible,
but in a finitely generated language as we consider here, the logics become identical.

Britz and Varzinczak [6] investigate another aspect of defeasibility by introducing
(non-standard) modal operators allowing us to talk about relative normality in acces-
sible worlds. With their defeasible versions of modalities, it is possible to make state-
ments of the form “α holds in all of the normal (typical) accessible worlds”, thereby
capturing defeasibility of what is ‘expected’ in target worlds. This allows for the def-
inition of a family of modal logics in which defeasible modes of inference can be ex-
pressed, and which can be integrated with existing |∼-based modal logics [4].

9 Concluding Remarks

The contributions of this work are as follows: (i) We present the logic PTL which pro-
vides a formal account of typicality with which to capture the most typical situations

PTL: A Propositional Typicality Logic 119

in which a given formula holds; (ii) We show that we can embed the (propositional)
KLM framework within PTL, and we also define rational consequence on PTL itself;
(iii) We establish a connection between rational consequence and belief revision, both
on PTL, and (iv) We investigate appropriate notions of entailment for PTL and propose
two candidates.

For future work we are interested in algorithms for computing the appropriate forms
of entailment for PTL, specifically algorithms that can be reduced to validity checking
for PTL. It follows indirectly from results by Lehmann and Magidor [14] that this type
of entailment has the same worst-case complexity of validity checking for PTL. Given
the links with modal logic, we know that this is at least in PSPACE. Finally we plan to
extend PTL to more expressive logics such as description logics and modal logics.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

2. Boutilier, C.: Conditional logics of normality: A modal approach. Artificial Intelli-
gence 68(1), 87–154 (1994)

3. Britz, K., Heidema, J., Labuschagne, W.: Semantics for dual preferential entailment. Journal
of Phil. Logic 38, 433–446 (2009)

4. Britz, K., Meyer, T., Varzinczak, I.: Preferential reasoning for modal logics. Electronic Notes
in Theoretical Computer Science 278, 55–69 (2011)

5. Britz, K., Meyer, T., Varzinczak, I.: Semantic Foundation for Preferential Description Logics.
In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 491–500. Springer,
Heidelberg (2011)

6. Britz, K., Varzinczak, I.: Defeasible modes of inference: A preferential perspective. In: 14th
International Workshop on Nonmonotonic Reasoning, NMR (2012)

7. Crocco, G., Lamarre, P.: On the connections between nonmonotonic inference systems and
conditional logics. In: Proc. KR, pp. 565–571. Morgan Kaufmann (1992)

8. Delgrande, J.P.: A first-order logic for prototypical properties. Art. Intel. 33, 105–130 (1987)
9. Gärdenfors, P., Makinson, D.: Nonmonotonic inference based on expectations. Artificial In-

telligence 65(2), 197–245 (1994)
10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A minimal model semantics for rational

closure. In: 14th International Workshop on Nonmonotonic Reasoning, NMR (2012)
11. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.L.: ALC + T : a preferential extension of

description logics. Fundamenta Informaticae 96(3), 341–372 (2009)
12. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.

Artificial Intelligence 3(52), 263–294 (1991)
13. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence 44, 167–207 (1990)
14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intel-

ligence 55, 1–60 (1992)

The Complexity of One-Agent Refinement Modal Logic

Laura Bozzelli1, Hans van Ditmarsch2, and Sophie Pinchinat3

1 Technical University of Madrid (UPM), Madrid, Spain
laura.bozzelli@fi.upm.es

2 Logic, University of Sevilla, Spain & IMSc, Chennai, India
hvd@us.es

3 IRISA/INRIA, University of Rennes
Sophie.Pinchinat@irisa.fr

Abstract. We investigate the complexity of satisfiability for one-agent Refine-
ment Modal Logic (RML), a known extension of basic modal logic (ML) obtained
by adding refinement quantifiers on structures. It is known that RML has the same
expressiveness as ML, but the translation of RML into ML is of non-elementary
complexity, and RML is at least doubly exponentially more succinct than ML. In
this paper, we show that RML-satisfiability is ‘only’ singly exponentially harder
than ML-satisfiability, the latter being a well-known PSPACE-complete problem.
More precisely, we establish that RML-satisfiability is complete for the complex-
ity class AEXPpol, i.e., the class of problems solvable by alternating Turing ma-
chines running in single exponential time but only with a polynomial number of
alternations (note that NEXPTIME⊆ AEXPpol⊆ EXPSPACE).

1 Introduction

From propositional to refinement quantification in modal logics. Modal logics with propo-
sitional quantifiers have been investigated since Fine’s seminal paper [7]. Fine distin-
guishes different propositional quantifications, which allow different kinds of model trans-
formations, not all of which are, in our modern terms, bisimulation preserving. However,
in the general case, propositional quantification can easily lead to undecidable logics
[7,8]. This has motivated, more recently, the introduction ofbisimulation quantified logics
[19,10,8,15]: in this framework, the quantification is over the models which are bisimilar
to the current model except for a propositional variable p (note that this includes model
restriction). A novel way of quantification in rather dynamic modal logics is quantifying
over all modally definable submodels of a given model [2]. The setting for these logics
is how to quantify over information change; for example, in the logic APAL of [2], an
expression that we might write as ∃rϕ for our purposes stands for “there is a formula ψ
such that after model restriction with relativization to ψ, the formula ϕ holds”. Refine-
ment modal logic (see [17,18] and the unpublished manuscript [4]) is a generalization of
this perspective to more complex model transformations than mere model restrictions:
this is achieved by existential and universal quantifiers which range over the refinements
of the current structure (model). From the atoms/forth/back requirements of bisimula-
tion, a refinement of a modal structure need only satisfy atoms and back. It is the dual
of a simulation that need only satisfy atoms and forth. Refinement is more general than
model restriction, since it is equivalent to bisimulation followed by model restriction.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 120–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Complexity of One-Agent Refinement Modal Logic 121

Moreover, refinement quantification corresponds to implicit quantification over propo-
sitional variables (i.e., quantification over variables not occurring in the formula bound
by the quantifier), just as in bisimulation quantified logics we have explicit quantification
over propositional variables; in fact, it is an abstraction of a bisimulation quantification
followed by a relativization [4]. As amply illustrated in [4], refinement quantification has
applications in many settings: in logics for games [1,15], it may correspond to a player dis-
carding some moves; for program logics [9], it may correspond to operational refinement;
and for logics for spatial reasoning, it may correspond to sub-space projections [14].

Our Contribution. We focus on complexity issues for (one-agent) Refinement Modal
Logic (RML) [17,18,4], the extension of (one-agent) basic modal logic (ML) obtained
by adding the existential and universal refinement quantifiers ∃r and ∀r. It is known
[18,4] that RML has the same expressivity as ML, but the translation of RML into ML is
of non-elementary complexity and no elementary upper bound is known for its satisfi-
ability problem [4]. In fact, an upper bound in 2EXPTIME has been claimed in [18] by
a tableaux-based procedure: the authors later concluded that the procedure is sound but
not complete [4]. In this paper, our aim is to close that gap. We also investigate the com-
plexity of satisfiability for some equi-expressive fragments of RML. In particular, we as-
sociate with each RML formula ϕ a parameter ϒw(ϕ) corresponding to a slight variant of
the classical quantifier alternation depth (measured w.r.t. ∃r and ∀r), and for each k≥ 1,
we consider the fragment RMLk consisting of the RML formulas ϕ such that ϒw(ϕ)≤ k.
Moreover, we consider the existential (resp., universal) fragment RML∃ (resp., RML∀)
obtained by disallowing the universal (resp., existential) refinement quantifier.

In order to present our results, first, we recall some computational complexity classes.
We assume familiarity with the standard notions of complexity theory [11,13]. We will
make use of the levels Σ EXP

k (k ≥ 1) of the exponential-time hierarchy EH, which are
defined similarly to the levels ΣP

k of the polynomial-time hierarchy PH, but with NP
replaced with NEXPTIME. In particular, Σ EXP

k corresponds to the class of problems
decided by single exponential-time bounded Alternating Turing Machines (ATM, for
short) with at most k−1 alternations and where the initial state is existential [11]. Note
that ΣEXP

1 = NEXPTIME. Recall that EH ⊆ EXPSPACE and EXPSPACE corresponds
to the class of problems decided by single exponential-time bounded ATM (with no
constraint on the number of alternations) [5]. We are also interested in an intermediate
class between EH and EXPSPACE, here denoted by AEXPpol, that captures the precise
complexity of some relevant problems [6,11,16] such as the first-order theory of real ad-
dition with order [6,11]. Formally, AEXPpol is the class of problems solvable by single
exponential-time bounded ATM with a polynomial-bounded number of alternations.

Our complexity results are summarized in Figure 1 where we also recall the well-
known complexity of ML-satisfiability. For the upper bounds, the (technically non-trivial)
main step in the proposed approach exploits a “small” size model property: we establish
that like basic modal logic ML, RML enjoys a single exponential size model property.1

We conclude this section by observing that our results are surprising for the follow-
ing reason. While our results essentially indicate that satisfiability of RML is “only”
singly exponentially harder than satisfiability of ML, it is known [4] that RML is doubly
exponentially more succinct than ML.

1 Omitted proofs can be found in the online extended version with the same title.

122 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

ML

PSPACE-complete

RML∃ = RML1

∈ NEXPTIME

PSPACE-hard

RML∀ ⊆ RML2

∈ ΣEXP
2

NEXPTIME-hard

RMLk+1 (k ≥ 1)

∈ ΣEXP
k+1

Σ EXP
k -hard

RML

AEXPpol-complete

Fig. 1. Complexity results for satisfiability of RML and RML-fragments

2 Preliminaries

In the rest of this section, we fix a finite set P of atomic propositions.

Structures, Tree Structures, and Refinement Preorder. A (one-agent Kripke) struc-
ture (over P) is a tuple M = 〈S,E,V〉, where S is a set of states (or worlds), E ⊆ S× S
is a transition (or accessibility) relation, and V : S �→ 2P is a P-valuation assigning to
each state s the set of propositions in P which hold at s. For states s and t of M such that
(s, t)∈ E , we say that t is a successor of s. A pointed structure is a pair (M,s) consisting
of a structure M and a designated initial state s of M.

A tree T is a prefix-closed subset of N∗, where N is the set of natural numbers. The
elements of T are called nodes and the empty word ε is the root of T . For x ∈ T , the
set of children (or successors) of x is {x · i ∈ T | i ∈N}. The size |T | of T is the number
of T -nodes. A (rooted) tree structure (over P) is a pair 〈T,V 〉 such that T is a tree and
V : T �→ 2P is a P-valuation over T . For x∈ T , the tree substructure of 〈T,V 〉 rooted at x
is the tree structure 〈Tx,Vx〉, also denoted by 〈T,V 〉x, where Tx = {y∈N∗ | x ·y∈ T} and
Vx(y) =V (x ·y) for all y∈ Tx. Note that a tree structure 〈T,V 〉 corresponds to the pointed
structure (〈T,E,V 〉,ε), where (x,y) ∈ E iff y is a child of x. Moreover, we can associate
with any pointed structure (M,s) a tree structure, denoted by Unw(M,s), obtained by
unwinding M from s in the usual way.

For two structures M = 〈S,E,V〉 and M′ = 〈S′,E ′,V ′〉, a refinement from M to M′ is
a relation R⊆ S×S such that for all (s,s′) ∈R: (i) V (s) =V ′(s′), and (ii) if (s′, t ′) ∈ E ′

for some t ′ ∈ S′, then there is some state t ∈ S such that (s, t) ∈ E and (t, t ′) ∈ R. If,
additionally, the inverse of R is a refinement from M′ to M, then R is a bisimulation
from M to M′. For states s ∈ S and s′ ∈ S′, (M′,s′) is a refinement of (M,s) (resp., (M,s)
and (M′,s′) are bisimilar), written (M,s)� (M′,s′) (resp., (M,s)≈ (M′,s′)), if there is a
refinement (resp., bisimulation)R from M to M′ s.t. (s,s′)∈R. Note that � is a preorder
(i.e., reflexive and transitive) and ≈ is an equivalence relation over pointed structures.

Remark 1. For each pointed structure (M,s), (M,s) ≈ Unw(M,s).

Refinement Modal Logic. We recall the syntax and semantics of one-agent refinement
modal logic (RML) [18,4], an equally expressive extension of basic modal logic [3]
obtained by adding the existential and universal refinement quantifiers. For technical
convenience, the syntax of RML formulas ϕ over P is given in positive form as:

ϕ ::= p | ¬p | ϕ∧ϕ | ϕ∨ϕ | �ϕ | �ϕ | ∃rϕ | ∀rϕ

where p ∈ P, �ϕ reads as “possibly ϕ”, �ϕ reads as “necessarily ϕ”, and ∃r and ∀r are
the existential and universal refinement quantifiers. The dual ϕ̃ of a RML formula ϕ is
inductively defined as: p̃=¬p, ¬̃p= p, ϕ̃∨ψ= ϕ̃∧ψ̃, �̃ϕ=�ϕ̃, �̃ϕ=�ϕ̃, ∃̃rϕ=∀rϕ̃,

The Complexity of One-Agent Refinement Modal Logic 123

and ∀̃rϕ = ∃rϕ̃. We assume a standard DAG representation of a formula, hence, the size
|ϕ| of a formula ϕ is the number of vertices in the associated DAG (corresponding to
the number of distinct subformulas of ϕ). For example |p ∨ p| = 2 and |p ∨ q| = 3.
RML is interpreted over pointed structures (M,s). The satisfaction relation (M,s) |= ϕ
is inductively defined as follows (we omit the clauses for boolean connectives):

(M,s) |= p iff p ∈V (s) where M = 〈S,E,V 〉
(M,s) |=�ϕ iff for some successor t of s in M,(M, t) |= ϕ
(M,s) |= �ϕ iff for all successors t of s in M,(M, t) |= ϕ
(M,s) |= ∃rϕ iff for some refinement (M′,s′) of (M,s),(M′,s′) |= ϕ
(M,s) |= ∀rϕ iff for all refinements (M′,s′) of (M,s),(M′,s′) |= ϕ

Note that (M,s) |= ϕ iff (M,s) �|= ϕ̃. If (M,s) |= ϕ, we say that (M,s) satisfies ϕ, or also
that (M,s) is a model of ϕ. A RML formula ϕ is satisfiable if ϕ admits some model.

Fragments of RML. Let ML be the fragment of RML obtained by disallowing the re-
finement quantifiers, which corresponds to basic modal logic [3], and RML∀ and RML∃

be the fragments of RML obtained by disallowing the existential refinement quantifier
and the universal refinement quantifier, respectively. Moreover, we introduce a family
{RMLk}k≥1 of RML-fragments, where RMLk consists of the RML formulas whose weak
refinement quantifier alternation depth (see Definition 1 below) is at most k.

Definition 1 (Weak Refinement Quantifier Alternation Depth). We first define the
weak alternation length �(χ) of finite sequences χ ∈ {∃r,∀r}∗ of refinement quanti-
fiers: �(ε) = 0, �(Q) = 1 for every Q ∈ {∃r,∀r}, and �(QQ′χ) is �(Q′χ) if Q = Q′, and
�(Q′χ)+1 otherwise. For a RML formula ϕ, let T (ϕ) be the standard tree encoding of ϕ,
where each node is labeled by either a modality, or a boolean connective, or an atomic
proposition. The weak refinement quantifier alternation depth ϒw(ϕ) of a RML formula
ϕ is the maximum of the alternation lengths �(χ) where χ is the sequence of refinement
quantifiers along a path of T (∃rϕ) (note that we consider T (∃rϕ) and not T (ϕ)).
As an example, for ϕ = (∀r∃r p)∨�(∃r(p∧∀rq)), ϒw(ϕ) = 3. Note that RML∃ = RML1

and RML∀ ⊆ RML2. Moreover, for each RML formula ϕ, ϒw(∀rϕ) = ϒw(∀̃rϕ)+ 1. The
following example illustrates the succinctness of RML∃ w.r.t. ML.

Example 1. For n≥ 1, an n-block is a sequence b1, . . . ,bn+1 of n+1 bits. The following
RML∃ formula ϕn is satisfied by a tree structure iff there are two paths from the root
encoding two n-blocks of the form b1, . . . ,bn,bn+1 and b1, . . . ,bn,b′n+1 s.t. bn+1 �= b′n+1:

ϕn := ∃r
(
�

n+1(0∧¬1)∧�
n+1(1∧¬0)∧

n∧
i=1

∨
b∈{0,1}

�
i(b∧¬(1− b))

)
By using the approach in Section 6.2 of [4], one can easily show that any ML formula
which is equivalent to ϕn has size singly exponential in n.

Investigated Problems. For each RML-fragment F, let SAT(F) be the set of satisfi-
able F formulas. In this paper, we investigate the complexity of SAT(F) for any F ∈
{RML,RML∃,RML∀,RML2, . . .}. Figure 1 depicts our complexity results.

Assumption. Since RML is bisimulation invariant [18,4], by Remark 1, w.l.o.g. we can
assume that the semantics of RML is restricted to tree structures.

Since RML and ML are equi-expressive [18,4], we easily obtain the following.

124 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

Proposition 1 (Finite Model Property). Let ϕ be a RML formula and 〈T,V 〉 be a tree
structure satisfying ϕ. Then, there is a finite refinement 〈Tr,Vr〉 of 〈T,V 〉 satisfying ϕ.

3 Upper Bounds

In this section, we provide the upper bounds illustrated in Figure 1. Our approach con-
sists of two steps. First, in Section 3.1, we show that RML enjoys a singly exponential
size model property. Then, by using this result, we show in Section 3.2 that SAT(RML)
can be decided by a singly exponential-time bounded ATM whose number of alterna-
tions on an input ϕ is at most ϒw(ϕ)−1 and whose initial state is existential. We fix a fi-
nite set P of atomic propositions and consider RML formulas and tree structures over P.

3.1 Exponential Size Model Property

In this section, we prove the following result.

Theorem 1 (Exponential Size Model Property). For all satisfiable RML formulas ϕ
and tree structures 〈T,V 〉 such that 〈T,V 〉 satisfies ϕ, the following holds: there exists
a finite refinement 〈T ′,V ′〉 of 〈T,V 〉 such that 〈T ′,V ′〉 satisfies ϕ and |T ′| ≤ |ϕ|3|ϕ|2 .

First, we summarize the main steps in the proof of Theorem 1. Given a RML formula ϕ,
we associate with ϕ tableaux-based finite objects called constraints systems for ϕ (Def-
inition 2). Essentially, a constraint system S for ϕ is a tuple of hierarchically ordered
finite tree structures which intuitively represents an extended model of ϕ: (1) each node
x in a tree structure of S is additionally labeled by a set of subformulas of ϕ which hold
at the tree substructure rooted at node x, and, in particular, the first tree structure, called
main structure, represents a model of ϕ, and (2) the other tree structures of S are used
to manage the ∃r-subformulas of ϕ. In fact, in order to be an extended model of ϕ, S has
to satisfy additional structural requirements which capture the semantics of the boolean
connectives and all the modalities except the universal refinement quantifier ∀r, the lat-
ter being only semantically captured. Let C (ϕ) be the set of these constraints systems
for ϕ, which are said to be well-formed, saturated, and semantically ∀r-consistent. We
individuate a subclass Cmin(ϕ) of C (ϕ) consisting of ‘minimal’ constraints systems for
ϕ whose sizes are singly exponential in the size of ϕ, and which can be obtained from
ϕ by applying structural completion rules (Definitions 3 and 4). Furthermore, we in-
troduce a notion of ‘refinement’ between constraint systems for ϕ (Definition 5) which
preserves the semantic ∀r-consistency requirement. Then, given a finite tree structure
〈T,V 〉 satisfying ϕ, we show that: (1) there is a constraint system S ∈ C (ϕ) whose
main structure is 〈T,V 〉 (Lemma 1), and (2) starting from S , it is possible to construct a
minimal constraint system Smin ∈ Cmin(ϕ) which is a refinement of S (Lemma 3). This
entails that the main structure of Smin is a refinement of 〈T,V 〉 satisfying ϕ and having a
single exponential size. Hence, by Proposition 1, Theorem 1 follows. Now, we proceed
with the details of the proof of Theorem 1.

We denote by P the set of negations of propositions in P, i.e. P = {¬p | p ∈ P}. A
set χ of RML formulas is complete if for each p ∈ P, either p ∈ χ or ¬p ∈ χ. In the
following, we fix a RML formula ϕ. The closure cl(ϕ) of ϕ is the set containing all
the subformulas of ϕ and the formulas in P∪P. Moreover, d�,�(ϕ) denotes the nesting
depth of modalities � and � (in ϕ), and d∃(ϕ) denotes the nesting depth of modality ∃r.

The Complexity of One-Agent Refinement Modal Logic 125

Definition 2. A constraint system for ϕ is a tuple S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉,
where for all 1≤ i≤ n, Ti is a finite tree and Li and ←i are two Ti-labelings such that:

1. for each x ∈ Ti, Li(x) is a complete subset of cl(ϕ); moreover, ϕ ∈ Li(ε) if i = 1;
2. ←i: Ti �→ {⊥} if i= 1 (⊥ is for undefined), and←i: Ti �→ { j}×Tj for some 1≤ j< i

otherwise (note that j < i); moreover, for i > 1 and x,x′ ∈ Ti with ←i(x) = 〈 j,y〉
and ←i(x′) = 〈 j,y′〉, if x′ is a successor of x in Ti, then y′ is a successor of y in Tj.

We denote by L̃i the P-valuation over Ti defined as L̃i(x) := Li(x)∩P for all x ∈ Ti, by
S(i) the ith component of S , i.e. 〈Ti,Li,←i〉, and by dim(S) the number of S compo-
nents, i.e., n. The (tree) structure 〈T1, L̃1〉 is called the main structure of S .

Let 1 ≤ i, j ≤ n, x ∈ Ti, y ∈ Tj and ψ ∈ cl(ϕ). We write 〈 j,y〉 ←S 〈i,x〉 to mean
that ←i(x) = 〈 j,y〉, and S � 〈i,x,ψ〉 (resp., S �� 〈i,x,ψ〉) to mean that ψ ∈ Li(x) (resp.,
ψ �∈ Li(x)). If S � 〈i,x,ψ〉, we say that 〈i,x,ψ〉 is a S -constraint. S contains a clash
if S � 〈i,x, p〉 and S � 〈i,x,¬p〉 for some 1 ≤ i ≤ n, x ∈ Ti, and p ∈ P. Otherwise,
S is called clash-free. Moreover, S is said to be well-formed if S is clash-free and
whenever 〈 j,y〉 ←S 〈i,x〉, then L̃ j(y) = L̃i(x). Furthermore, S is said to be semantically
∀r-consistent if whenever S � (i,x,∀rψ) then the tree structure 〈Ti, L̃i〉x satisfies ∀rψ.

If S is well-formed, then the labelings←i induce a refinement hierarchy:

Remark 2. Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉 be a well-formed constraint system
for ϕ. Then, 〈 j,y〉 ←S 〈i,x〉 implies that 〈Ti, L̃i〉x is a refinement of 〈Tj, L̃ j〉y.

Definition 3 (Saturated Constraint Systems). A constraint system S for ϕ is satu-
rated if none of the following completion rules are applicable to S .

∧-rule: if S � 〈i,x,ψ1∧ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2} �⊆ L(x)
then update L(x) := L(x)∪{ψ1,ψ2}

∨-rule: if S � 〈i,x,ψ1∨ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2}∩L(x) = /0
then update L(x) := L(x)∪{ψk} for some k ∈ {1,2}

∃r-rule: if S � 〈i,x,∃rψ〉, S := 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉, and
S �� 〈h,ε,ψ〉 for each h≤ dim(S) such that ←h(ε) = 〈i,x〉

then update S := 〈〈T1,L1,←1〉, . . . ,〈Tn+1,Ln+1,←n+1〉〉, where
Tn+1 := {ε}, Ln+1(ε) := {ψ}∪ (Li(x)∩ (P∪P)), and ←n+1(ε) := 〈i,x〉

�-rule: if S � 〈i,x,�ψ〉 and S �� 〈i,x′,ψ〉 for some successor x′ of x in S(i)
then let S(i) = 〈T,L,←〉

update L(x′) := L(x′)∪{ψ} for each successor x′ of x in T

�-rule: if S � 〈i,x,�ψ〉 and S �� 〈i,x′,ψ〉 for each successor x′ of x in S(i)
then let 〈i0,x0〉 ←S . . .←S 〈ik,xk〉 with i0 = 1 and 〈ik,xk〉= 〈i,x〉

guess some complete set χ⊆ P∪P,
for each q = k,k− 1, . . . ,0 with S(iq) = 〈Tq,Lq,←q〉 do

update Tq := Tq∪{xq ·hq} for some hq ∈ N such that xq ·hq �∈ Tq

if q < k then Lq(xq ·hq) := χ and ←iq+1(xq+1 ·hq+1) := 〈iq,xq ·hq〉
else Lq(xq ·hq) := {ψ}∪χ

Remark 3. Let S be a constraint system for ϕ. Then, applying any rule of Definition 3
to S yields a constraint system for ϕ.

126 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

The ∨-rule, the ∧-rule, and the �-rule of Definition 3 are standard. The ∃r-rule and the
�-rule are the unique rules which add new nodes to the given constraint system S for ϕ.
The ∃r-rule is applicable to a S -constraint ξ = 〈i,x,∃rψ〉 if there are no S -constraints (ξ-
witnesses) of the form 〈h,ε,ψ〉 such that 〈i,x〉 ←S 〈h,ε〉. The rule then adds a ξ-witness
〈n+1,ε,ψ〉 to S by extending S with a new component containing a single node (the root)
whose label is propositionally consistent with the label of x. The�-rule is applicable to a
S -constraint ξ= 〈i,x,�ψ〉 if there are no S -constraints (ξ-witnesses) of the form 〈i,x′,ψ〉
where x′ is a successor of x. Let 〈i0,x0〉←S . . .←S 〈ik,xk〉 be the maximal chain of ‘back-
ward links’ from 〈ik,xk〉= 〈i,x〉. The rule then adds a ξ-witness 〈ik,x′k,ψ〉 to S (x′k being a
new successor of xk = x), a complete set χ⊆ P∪P is guessed, and the hierarchical struc-
ture of S is restored as follows: the rule adds the new constraints 〈i0,x′0,χ〉, . . . ,〈ik,x′k,χ〉,
where x′0, . . . ,x

′
k−1 are new successors of x0, . . . ,xk−1 respectively, and the new chain of

‘backward links’ 〈i0,x′0〉 ←S . . .←S 〈ik,x′k〉.

Lemma 1 (Soundness & Completeness). Let 〈T,V 〉 be a finite tree structure. Then,
〈T,V 〉 satisfies ϕ if and only if there is a well-formed, saturated, and semantically ∀r-
consistent constraint system S for ϕ whose main structure is 〈T,V 〉.

Definition 4 (Minimal Constraint Systems). A constraint system S for ϕ is initial if
S = 〈〈{ε},L,←〉〉, and for all ψ∈ L(ε), either ψ = ϕ or ψ∈ P∪P. A minimal constraint
system S for ϕ is a constraint system for ϕ which can be obtained from some initial
constraint system for ϕ by a sequence of applications of the rules of Definition 3.

The following lemma shows that every minimal constraint system for ϕ has a ‘size’
singly exponential in the size of ϕ.

Lemma 2. Each minimal constraint system S for ϕ satisfies the following invariant: (i)
each tree in S has height at most d�,�(ϕ) and branching degree at most |ϕ|(2d∃(ϕ)+1),

and (ii) dim(S) is at most |ϕ|4·(d∃(ϕ))2·(d�,�(ϕ)+1). Moreover, any sequence of applica-
tions of the rules of Definition 3 starting from an initial constraint system for ϕ is finite.

We introduce a notion of ‘refinement’ over constraint systems for ϕ, which generalizes
the refinement preorder over finite structures. Moreover, this notion crucially preserves
both well-formedness and the semantic ∀r-consistency requirement (Lemma 3).

Definition 5 (Refinement for constraint systems). Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn, Ln,
←n〉〉 and S ′ = 〈〈T ′

1 ,L
′
1,←′

1〉, . . . ,〈T ′
m,L

′
m,←′

m〉〉 be constraint systems for ϕ. S is a
refinement of S ′ if there is a tuple T = 〈↑1, . . . ,↑n〉 such that for all 1 ≤ i≤ n, there is
1≤ j ≤ m so that ↑i: Ti �→ T ′

j and for all x ∈ Ti with ↑i(x) = y:

1. Li(x)⊆ L′j(y), j = 1 iff i = 1, and y = ε iff x = ε;
2. for each successor x′ of x in Ti, ↑i(x′) = y′ where y′ is a successor of y in T ′

j ;
3. if←i(x) = 〈i′,x′〉, then←′

j(y) = 〈 j′,y′〉 and ↑i′(x
′) = y′ (in particular, ↑i′ : Ti′ �→ T ′j′).

Lemma 3 (Minimalization). Let S ′ be a constraint system for ϕ which is well-formed
and semantically ∀r-consistent. Then, any constraint system S for ϕ which is a refine-
ment of S ′ is well-formed and semantically ∀r-consistent too, and the main structure of
S is a refinement of the main structure of S ′. Moreover, if S ′ is additionally saturated,
there is a minimal and saturated constraint system S for ϕ which is a refinement of S ′.

The Complexity of One-Agent Refinement Modal Logic 127

Sketched Proof. The first part of Lemma 3 follows from Definition 5 and the following
crucial observation: if 〈Tr,Vr〉 is a refinement of a tree structure 〈T,V 〉, then for each
∀r-formula ∀rψ, 〈T,V 〉 |= ∀rψ implies 〈Tr,Vr〉 |= ∀rψ. For the second part of Lemma 3,
let S ′ be a well-formed, saturated, and semantically ∀r-consistent constraint system for
ϕ. Since S ′ is well-formed, there is a unique initial constraint system S0 for ϕ s.t. S0

is a refinement of S ′. For each rule of Definition 3, we define an extension of such
a rule which has the same precondition and the same effect (w.r.t. a given constraint
system S) with the difference that the nondeterministic choices are guided by S ′. By
Lemma 2, it follows that any sequence of applications of the new rules starting from
S0 is finite. Moreover, the application of these new rules preserves the property of a
constraint system to be a refinement of S ′. Hence, we deduce that there is a minimal
and saturated constraint system S for ϕ which is a refinement of S ′.
�
Proof of Theorem 1. Let 〈T,V 〉 be a tree structure satisfying ϕ. By Proposition 1, there
is a finite refinement 〈Tr,Vr〉 of 〈T,V 〉 satisfying ϕ. By Lemma 1, there is a well-formed,
saturated, and semantically ∀r-consistent constraint system S for ϕ whose main struc-
ture is 〈Tr,Vr〉. Thus, by Lemma 3, there is a minimal, well-formed, saturated, and se-
mantically ∀r-consistent constraint system Smin for ϕ whose main structure 〈Tmin,Vmin〉
is a refinement of 〈Tr,Vr〉. Hence, 〈Tmin,Vmin〉 is a refinement of 〈T,V 〉 as well, and by
Lemmata 1 and 2, 〈Tmin,Vmin〉 satisfies ϕ and |Tmin| ≤ |ϕ|3|ϕ|

2
. Hence, the result follows.

3.2 Checking Satisfiability

For a RML formula, the set FL(ϕ) of first-level subformulas of ϕ is defined as follows:
if ϕ = ϕ1∨ϕ2 or ϕ = ϕ1∧ϕ2, then FL(ϕ) = FL(ϕ1)∪FL(ϕ2); otherwise FL(ϕ) = {ϕ}.

Theorem 2. SAT(RML) ∈ AEXPpol and SAT(RMLk) ∈ Σ EXP
k for each k ≥ 1.

Proof. For a RML formula ϕ, a certificate of ϕ is a finite tree structure 〈T,V 〉 such that
|T | ≤ |ϕ|3·|ϕ|2 . Define:

ŜAT(RML) := {(ϕ,〈T,V 〉) | ϕ ∈ RML and 〈T,V 〉 is a certificate of ϕ satisfying ϕ}
By Theorem 1, ϕ ∈ SAT(RML) iff (ϕ,〈T,V 〉) ∈ ŜAT(RML) for some certificate 〈T,V 〉
of ϕ. Since 〈T,V 〉 has size singly exponential in the size of ϕ, it suffices to show that
ŜAT(RML) can be decided by a polynomial-time bounded ATM whose number of al-
ternations on an input (ϕ,〈T,V 〉) is at most ϒw(ϕ)− 1 and whose initial state is exis-
tential. For this, in turn, we show that ŜAT(RML) can be decided by a nondeterministic
polynomial-time bounded procedure “check” that given an input (ϕ,〈T,V 〉), uses in case
ϒw(ϕ)> 1 as an oracle the same language ŜAT(RML) but with input queries of the form
(ψ,〈T ′,V ′〉), where ϒw(ψ) < ϒw(ϕ) and ψ ∈ cl(ϕ). Hence, by standard arguments in
complexity theory [11,13], the result follows. Procedure check is defined as follows.

check(ϕ,〈T,V 〉) /** ϕ ∈ RML and 〈T,V 〉 is a certificate of ϕ **/

K ←{(ϕ,〈T,V 〉)};
while K �= /0 do

select (ψ,〈T ′,V ′〉) ∈K ; update K ←K \ {(ψ,〈T ′,V ′〉)};
guessF ⊆ FL(ψ)and let ψF be the boolean formula obtained from ψ by replacing

128 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

each first-level subformula θ of ψ with true if θ ∈ F , and false otherwise;
if ψF evaluates to false then reject the input;
for each θ ∈ F do

case θ = p with p ∈ P: if p /∈V ′(ε) then reject the input;
case θ = ¬p with p ∈ P: if p ∈V ′(ε) then reject the input;
caseθ=�θ′: guess a child x of the T ′-root, updateK ←K ∪{(θ′,〈T ′,V ′〉x)};
case θ =�θ′: update K ←K ∪{(θ′,〈T ′,V ′〉x1), . . . ,(θ′,〈T ′,V ′〉xk)}

where x1, . . . ,xk are the children of the root of T ′;
case θ = ∃rθ′: guess a certificate 〈T ′′,V ′′〉 of θ′ which is a refinement of

〈T ′,V ′〉 and update K ←K ∪{(θ′,〈T ′′,V ′′〉)};2

case θ = ∀rθ′: query the oracle for ŜAT(RML) with input (∀̃rθ′,〈T ′,V ′〉);
/** note that ϒw(∀̃rθ′)< ϒw(∀rθ′)≤ ϒw(ϕ) **/
if the oracle answers YES then reject the input;

end for
end while
accept the input.

Correctness of the procedure check easily follows from Theorem 1.
�

4 Lower Bounds

In this section, we provide the lower bounds illustrated in Figure 1. The main contribu-
tion is AEXPpol-hardness of SAT(RML), which is proved by a polynomial-time reduction
from a suitable AEXPpol-complete problem. First, we define this problem.

Let k ≥ 1. A k-ary deterministic Turing Machine is a deterministic Turing machine
M = 〈k, I,A,Q,{qacc,qrej},q0,δ〉 operating on k ordered semi-infinite tapes and having
just one read/write head, where: I (resp., A ⊃ I) is the input (resp., work) alphabet, A
contains the blank symbol #, Q is the set of states, qacc (resp., qrej) is the terminal ac-
cepting (resp., rejecting) state, q0 is the initial state, and δ : (Q\{qacc,qre j})×A→ (Q×
A×{−1,+1})∪{1, . . .,k} is the transition function. In each non-terminal step, if the
read/write head scans a cell of the �th tape (1≤ �≤ k) and (q,a)∈ (Q\{qacc,qre j})×A
is the current pair state/ scanned cell content, the following occurs:

– δ(q,a) ∈ Q×A×{−1,+1} (ordinary moves): M overwrites the tape cell being
scanned, there is a change of state, and the read/write head moves one position to
the left (-1) or right (+1) in accordance with δ(q,a).

– δ(q,a) = h ∈ {1, . . . ,k} (jump moves): the read/write head jumps to the left-most
cell of the hth tape and the state remains unchanged.

M accepts a k-ary input (w1, . . . ,wk)∈ (I∗)k, written M (w1, . . . ,wk), if the computation
of M from (w1, . . . ,wk) (initially, the �th tape contains the word w�, and the head points
to the left-most cell of the first tape) is accepting. We consider the following problem.
2By Theorem 1, if there is a refinement of 〈T ′,V ′〉 which satisfies θ′, there is also a refinement
of 〈T ′,V ′〉 satisfying θ′ which is a certificate of θ′. Moreover, checking for two given finite
tree structures 〈T,V 〉 and 〈T ′,V ′〉, whether 〈T,V 〉 is a refinement of 〈T ′,V ′〉 (or, equivalently,
〈T ′,V ′〉 is a simulation of 〈T,V 〉) can be done in polynomial time (see, e.g., [12]).

The Complexity of One-Agent Refinement Modal Logic 129

Alternation Problem. An instance of the problem is a triple (k,n,M), where k ≥ 1,
n > 1, and M is a polynomial-time bounded k-ary deterministic Turing Machine
with input alphabet I. The instance (k,n,M) is positive iff the following holds,
where Q� = ∃ if � is odd, and Q� = ∀ otherwise (for all 1≤ �≤ k),

Q1x1 ∈ I2n
.Q2x2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (x1, . . . ,xk)

Note that the quantifications Qi are restricted to words over I of length 2n.

For k ≥ 1, the k-Alternation Problem is the Alternation Problem restricted to instances
of the form (k,n,M) (i.e., the first input parameter is fixed to k), and the Linear Alter-
nation Problem is the Alternation Problem restricted to instances of the form (n,n,M).

Proposition 2. The Linear Alternation Problem is AEXPpol-complete and for all k≥ 1,
the k-Alternation Problem is Σ EXP

k -complete.

The proof of Proposition 2 is standard. Fix an instance (k,n,M) of the Alternation
Problem with M = 〈k, I,A,Q,{qacc,qrej}, q0,δ〉. Since M is polynomial-time bounded,
there is an integer constant c≥ 1 such that when started on a k-ary input (w1, . . . ,wk), M
reaches a terminal configuration in at most (|w1|+ . . .+ |wk|)c steps. A (k,n)-input is a
k-ary input (w1, . . . ,wk) such that wi ∈ I2n

for all 1≤ i≤ k. Let c(k,n) := c ·(n+,logk-),
where ,logk- denotes the smallest i ∈N such that i≥ logk. Note that a configuration of
M reachable from a (k,n)-input, called (k,n)-configuration, can be described as a tuple−→
C = (C1, . . . ,Ck) of k words C1, . . . ,Ck over A∪ (Q×A) of length exactly 2c(k,n) such
that for some 1≤ �≤ k, C� is of the form w ·(q,a) ·w′ ∈ A∗×(Q×A)×A∗, and for i �= �,

Ci ∈ A2c(k,n)
. For a (k,n)-input (a ·w1, . . . ,wk), the associated initial (k,n)-configuration

is ((q0,a) ·w1 ·#2c(k,n)−2n
, . . . ,wk ·#2c(k,n)−2n

). Thus, the computations of M from (k,n)-
inputs, called (k,n)-computations, can be described by sequences π of at most 2c(k,n)

(k,n)-configurations. In fact, w.l.o.g., we can assume that π has length exactly 2c(k,n).
In the rest of this section, we prove the following result.

Theorem 3. One can construct a RMLk+1 formula ϕ in time polynomial in n, k, and
the size of the TM M such that (i) ϕ is a RML∀ formula if k = 1, and (ii) ϕ is satisfiable
if and only if the instance (k,n,M) of the Alternation Problem is positive.

By Proposition 2 and Theorem 3, we obtain the following.

Corollary 1. SAT(RML) is AEXPpol-hard, SAT(RML∀) is NEXPTIME-hard, and for all
k ≥ 1, SAT(RMLk+1) is Σ EXP

k -hard.

Tree Encoding of (k,n)-Computations. In order to prove Theorem 3, first, we define an
encoding of (k,n)-computations by suitable tree structures over P, where P is given by

P = {0,1,arg1, . . . ,argk}∪Λ
and Λ is the set of triples (u−,u,u+) s.t. u ∈ A∪ (Q×A) and u−,u+ ∈ A∪ (Q×A)∪
{⊥} (⊥ is for undefined). An extended TM block ext bl is a word over 2P of length
2c(k,n)+ 2 of the form ext bl = {bit1} · . . . · {bitc(k,n)} · bl, where bl, called TM block,
is of the form bl = {bit′1} · . . . · {bit′c(k,n)} · {arg�} · {t} with 1 ≤ � ≤ k and t ∈ Λ. The
content CON(ext bl) (resp., CON(bl)) of ext bl (resp., bl) is bl (resp., t), the component
number of ext bl and bl is �, and the position number of ext bl (resp., bl) is the integer in

130 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

[0,2c(k,n)−1] whose binary code is bit1, . . . ,bitc(k,n) (resp., bit′1, . . . ,bit′c(k,n)). Intuitively,
ext bl encodes the triple t =(C�(i−1),C�(i),C�(i)) with i= ID(bl) (whereC�(i−1)=⊥
if i = 0, and C�(i+ 1) = ⊥ if i = 2c(k,n)− 1) of the �th component C� of some (k,n)-
configuration, the latter being the (ID(ext bl))-th (k,n)-configuration of some (k,n)-
computation. For a sequence π =

−→
C 0, . . . ,

−→
C 2c(k,n)−1 of 2c(k,n) (k,n)-configurations, we

can encode π by the set Sext bl(π) of extended blocks defined as: ext bl ∈ Sext bl(π) iff
there are 0≤ i, j ≤ 2c(k,n)−1 and 0≤ �≤ k such that ID(ext bl) = i, CON(ext bl) = bl,
ID(bl) = j and bl is the TM block associated with the jth symbol of the �th component
of
−→
C i. The tree representation of the set Sext bl(π) is defined as follows.

Definition 6. A (k,n)-computation tree code is a tree structure 〈T,V 〉 over P such that:
1. Each path of 〈T,V 〉 from the root has length 2c(k,n)+ 2, and each node is labeled

exactly by a proposition in P. Moreover, 〈T,V 〉 satisfies the ML-formula
2c(k,n)∧

i=1

�
i−1((�0∧�1)∧�(0∨1))∧�

2c(k,n)(
k∧

�=1

�arg�∧�

k∨
�=1

arg�)∧�
2c(k,n)+2

∨
t∈Λ

t

This requirement implies, in particular, that each path ν of 〈T,V 〉 from the root is
labeled by a word of the form V (ε) · ext bl, where ext bl is an extended TM block.

2. There is a sequence π =
−→
C 0, . . . ,

−→
C 2c(k,n)−1 of 2c(k,n) (k,n)-configurations such that

the set of extended TM blocks of 〈T,V 〉 corresponds to the set Sext bl(π).

We also need to encode existential and universal quantification on the different compo-
nents of a (k,n)-input of the TM M . This leads to the following definition.

Definition 7 (Initialized full (k,n)-computation tree codes). Let 1 ≤ � ≤ k. A �-in-
itialized full (k,n)-computation tree code is a tree structure 〈T,V 〉 over P such that:
1. Fullness requirement. 〈T,V 〉 satisfies Property 1 of Definition 6. Moreover, let ν =

z0, . . . ,z2c(n)+1,z2c(n)+2 be a path of 〈T,V 〉 (from the root) encoding an extended
TM block ext bl with component number h such that either h> � or ID(ext bl)> 0.
Then, for each t ∈ Λ, there is a child z of z2c(n)+1 which is labeled by {t}.

2. �-initialization requirement. There are w1, . . . ,w� ∈ I2n
s.t. for each extended block

ext bl of 〈T,V 〉 with component number 1 ≤ h ≤ � and position number 0, bl =
CON(ext bl) encodes the ID(bl)th symbol of the hth component of any initial (k,n)-
configuration associated with a (k,n)-input of the form (w1, . . . ,w�,w′�+1, . . . ,w

′
k)

for some w′�+1, . . . ,w
′
k ∈ I2n

. We say that w1, . . . ,w� ∈ I2n
is the �-ary input (which

is uniquely determined) associated with 〈T,V 〉 and we write 〈T,V 〉(w1, . . . ,w�).

Intuitively, a �-initialized full (k,n)-computation tree code 〈T,V 〉 associated with a �-ary
input w1, . . . ,w� ∈ I2n

encodes all the possible (k,n)-computations from (k,n)-inputs of
the form (w1, . . . ,w�,w′�+1, . . . ,w

′
k) for arbitrary words w′�+1, . . . ,w

′
k ∈ I2n

. More pre-
cisely, by construction, the following holds.

Proposition 3. Let 1 ≤ �≤ k, w1, . . . ,w� ∈ I2n
, and 〈T,V 〉 be a �-initialized full (k,n)-

computation tree code such that 〈T,V 〉(w1, . . . ,w�) holds. Then, the following holds:
1. case � < k: for each w ∈ I2n

, there is a refinement 〈Tr,Vr〉 of 〈T,V 〉 which is a
�+ 1-initialized full (k,n)-computation tree code satisfying 〈Tr,Vr〉(w1, . . . ,w�,w).
Moreover, for each refinement 〈Tr,Vr〉 of 〈T,V 〉 which is a �+ 1-initialized full
(k,n)-computation tree code, there is w∈ I2n

such that 〈Tr,Vr〉(w1, . . . ,w�,w) holds.

The Complexity of One-Agent Refinement Modal Logic 131

2. case �= k: the set of refinements of 〈T,V 〉 which are (k,n)-computation tree codes
encoding (k,n)-computations is non-empty, and each of such refinements encodes
the (k,n)-computation from the (k,n)-input (w1, . . . ,wk).

Lemma 4. One can construct in time polynomial in n, k, and the size of the TM M ,
1. a RML∀ formula ϕ1

init over P such that given a tree structure 〈T,V 〉, 〈T,V 〉 satisfies
ϕ1

init if and only if 〈T,V 〉 is a 1-initialized full (k,n)-computation tree code;
2. a RML∀ formula ϕ�init over P (for each 2 ≤ � ≤ k) such that given a refinement
〈Tr,Vr〉 of a �−1-initialized full (k,n)-computation tree code, 〈Tr,Vr〉 satisfies ϕ�init
if and only if 〈Tr,Vr〉 is a �-initialized full (k,n)-computation tree code;

3. a RML∀ formula ϕcomp over P such that given a refinement 〈Tr,Vr〉 of a k-initialized
full (k,n)-computation tree code, 〈Tr,Vr〉 satisfies ϕcomp iff 〈Tr,Vr〉 is a (k,n)-compu-
tation tree code encoding a (k,n)-computation;

4. a ML formula ϕacc over P such that given a (k,n)-computation tree code 〈T,V 〉,
〈T,V 〉 satisfies ϕacc iff the (k,n)-configuration with position number 2c(k,n)−1 en-
coded by 〈T,V 〉 is accepting.

Theorem 3 directly follows from the following two results (Theorems 4 and 5).

Theorem 4. One can construct a RMLk+1 formula ϕ in time polynomial in n, k, and
the size of the TM M such that ϕ is satisfiable if and only if

Q1x1 ∈ I2n
.Q2x2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (x1, . . . ,xk)

where Q� = ∃ if � is odd, and Q� = ∀ otherwise (for all 1≤ �≤ k).

Proof. Let ϕ1
init, . . . ,ϕk

init, and ϕcomp be the RML∀ formulas satisfying Properties 1–3 of
Lemma 4, and ϕacc be the ML formula satisfying Property 4 of Lemma 4. Then, the
RMLk+1 formula ϕ is defined as follows, where Q̃� = ∃r and op� = ∧ if � is odd, and
Q̃� = ∀r and op� =→ otherwise (for all 2≤ �≤ k):3

ϕ := ϕ1
init ∧ Q̃2(ϕ2

init op2 Q̃3(ϕ3
init op3 . . . opk−1 Q̃k(ϕk

init opk Q̃k(ϕcomp opk ϕacc)) . . .))

By construction and Lemma 4, it easily follows that ϕ is RMLk+1 formula which can
be constructed in time polynomial in n, k, and the size of the TM M . Let ϕ1 := ϕ,
ϕk+1 := Q̃k(ϕcomp opk ϕacc), and for each 2≤ �≤ k,

ϕ� := Q̃�(ϕ�init op� Q̃�+1(ϕ�+1
init op�+1 . . . opk−1 Q̃k(ϕk

init opk Q̃k(ϕcomp opk ϕacc)) . . .))

Correctness of the construction directly follows from the following claim, where a 0-
initialized full (k,n)-computation tree code is an arbitrary tree structure.

Claim: let 0≤ �≤ k, w1, . . . ,w� ∈ I2n
, and 〈T,V 〉 be a �-initialized full (k,n)-computation

tree code such that 〈T,V 〉(w1, . . . ,w�) holds. Then, 〈T,V 〉 satisfies ϕ�+1 if and only if

Q�+1x�+1 ∈ I2n
. . . . Qkxk ∈ I2n

.M (w1, . . . ,w�,x�+1, . . . ,xk)

The claim follows from Proposition 3 and Lemma 4.
�

Theorem 5. Let k = 1. Then, one can construct a RML∀ formula ϕ∀ in time polynomial
in n and the size of the TM M such that ϕ∀ is satisfiable if and only if ∃x ∈ I2n

.M (x).

3 For RML formulas ϕ and ψ, ϕ→ ψ is an abbreviation for ϕ̃∨ψ.

132 L. Bozzelli, H. van Ditmarsch, and S. Pinchinat

5 Concluding Remarks

An intriguing question left open is the complexity of satisfiability for multi-agent RML
[18,4]. Our approach does not seem to scale to the multi-agent case. Indeed, in this more
general setting, refinement is defined according to a designated agent so that refinement
restricts (modulo bisimulation) the accessibility relation of the designated agent, but
preserves (modulo bisimulation) those of all the other agents. From a technical point of
view, this means that a generalization of the minimalization lemma for the multi-agent
framework (Lemma 3) which preserves the crucial semantic ∀r-consistency requirement
does not seem possible, and a different more sophisticated approach may be required.
Another interesting direction is to investigate the exact complexity of the fragments
RML∃, RML∀, and RMLk, and the succinctness gap between RMLk and RMLk+1 for each
k ≥ 1. Furthermore, since the modal µ-calculus extended with refinement quantifiers
(RMLµ, for short) is non-elementarily decidable [4], it would be interesting to individu-
ate weak forms of interactions between fixed-points and refinement quantifiers, which
may lead to elementarily decidable and interesting RMLµ-fragments.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49(5), 672–713 (2002)

2. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., De Lima, T.: ‘Knowable’
as ‘known after an announcement’. Review of Symbolic Logic 1(3), 305–334 (2008)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science 53. Cambridge University Press, Cambridge (2001)

4. Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Refinement modal logic
(2012), http://arxiv.org/abs/1202.3538

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–
133 (1981)

6. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with
order. SIAM Journal on Computing 4(1), 69–76 (1975)

7. Fine, K.: Propositional quantifiers in modal logic. Theoria 36(3), 336–346 (1970)
8. French, T.: Bisimulation quantifiers for modal logic. PhD thesis, University of Western Aus-

tralia (2006)
9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

10. Hollenberg, M.: Logic and bisimulation. PhD thesis, University of Utrecht (1998)
11. Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Computer Sci-

ence, pp. A:67–A:161. MIT Press (1990)
12. Kupferman, O., Vardi, M.Y.: Verification of Fair Transisiton Systems. In: Alur, R., Hen-

zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 372–382. Springer, Heidelberg (1996)
13. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
14. Parikh, R., Moss, L., Steinsvold, C.: Topology and epistemic logic. In: Handbook of Spatial

Logics, pp. 299–341. Springer (2007)
15. Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Expressive Con-

straints on Strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.)
ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007)

http://arxiv.org/abs/1202.3538

The Complexity of One-Agent Refinement Modal Logic 133

16. Rybina, T., Voronkov, A.: Upper Bounds for a Theory of Queues. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 714–
724. Springer, Heidelberg (2003)

17. van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic
Events. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 51–
65. Springer, Heidelberg (2009)

18. van Ditmarsch, H., French, T., Pinchinat, S.: Future event logic - axioms and complexity. In:
Proc. 7th Advances in Modal Logic, vol. 8, pp. 77–99. College Publications (2010)

19. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group
Preprint Series 161, Department of Philosophy, Utrecht University (1996)

The View-Update Problem for Indefinite Databases

Luciano Caroprese1, Irina Trubitsyna1, Mirosław Truszczyński2, and Ester Zumpano1

1 DEIS, Università della Calabria, 87030 Rende, Italy
{caroprese,irina,zumpano}@deis.unical.it

2 Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
mirek@cs.uky.edu

Abstract. This paper introduces and studies a declarative framework for updat-
ing views over indefinite databases. An indefinite database is a database with
null values that are represented, following the standard database approach, by a
single null constant. The paper formalizes views over such databases as indefi-
nite deductive databases, and defines for them several classes of database repairs
that realize view-update requests. Most notable is the class of constrained re-
pairs. Constrained repairs change the database “minimally” and avoid making
arbitrary commitments. They narrow down the space of alternative ways to fulfill
the view-update request to those that are grounded, in a certain strong sense, in
the database, the view and the view-update request.

1 Introduction

A typical database system is large and complex. Users and applications rarely can ac-
cess the entire system directly. Instead, it is more common that access is granted in
terms of a view, a virtual database consisting of relations defined by a query to the
stored and maintained database. Querying a view does not present a conceptual prob-
lem. In contrast, another key task, view updating, poses major challenges.

Example 1. Let D = {q(a,b)} be a database over relation symbols q and r, where the
relation r has arity three and is currently empty. Let us consider the view over D given by
the Datalog program P = {p(X)← q(X ,Y),r(X ,Y,Z)}. That view consists of a single
unary relation p. Given the present state of D, the view is empty.

To satisfy the request that p(a) holds in the view (as it is now, it does not), one needs
to update the database D. Such update consists of executing update actions that specify
facts to insert to and to delete from D. These update actions (in a simplified setting that we
consider for now) are “signed” facts+F and−G, where+F stands for “insert F” and−G
stands for “delete G.” In our case, the set of update actions{−q(a,b),+q(a,a),+r(a,a,a)}
is a correct update to D. Executing it on D results in the database D′= {q(a,a),r(a,a,a)},
which has the desired property that p(a) holds in the view determined by P. There are
also other ways to satisfy the user’s request, for instance: {+r(a,b,a)} and {+q(c,d),
+r(c,d,d)}, where c and d are any elements of the domain of the database. �

As this example suggests, view updating consists of translating a view-update request,
that is, an update request against the view, into an update, a set of update actions against
the stored (extensional) database. The example highlights the basic problem of view

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 134–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The View-Update Problem for Indefinite Databases 135

updating. It may be (in fact, it is common), that a view-update request can be fulfilled
by any of a large number of database updates. One of them has to be committed to and
executed. Thus, developing methods to automate the selection process or, at least, aid
the user in making the choice is essential and has been one of the central problems of
view updating [9,2,13,11]. That problem is also the focus of our paper.1

To restrict the space of possible database updates to select from, it is common to
consider only those that accomplish the view-update request and are in some sense min-
imal. That reduces the space of updates. For instance, the update {−q(a,b),+q(a,a),
+r(a,a,a)} in Example 1 is not minimal. We can remove−q(a,b) from it and what re-
mains is still an update that once executed ensures that p(a) holds in the view. Minimal
updates fulfilling the view-update request are commonly called repairs.

Even imposing minimality may still leave a large number of candidate repairs. In
Example 1, updates {+r(a,b,ψ)}, where ψ is any domain element, are repairs, and
there are still more. As long as we insist on the completeness of the repaired database,
there is little one can do at this point but ask the user to select one.

The situation changes if we are willing to allow indefiniteness (incomplete infor-
mation) in databases. Given the “regular” structure of the family of repairs above, one
could represent it by a single indefinite repair, {+r(a,b,ψ)} regarding ψ as a distinct
null value standing for some unspecified domain elements. The choice facing the user
substantially simplifies as possibly infinitely many repairs is reduced to only one.

This approach was studied by Farré et al. [5], where the terminology of Skolem con-
stants rather than null values was used. However, while seemingly offering a plausible
solution to the problem of multiple repairs, the approach suffers from two drawbacks.
First, the use of multiple Skolem constants (essentially, multiple null values) violates
the SQL standard [15]. Second, the approach assumes that the initial database is com-
plete (does not contain null values). Thus, while the approach might be applied once,
iterating it fails as soon as an indefinite database is produced, since no guidance on how
to proceed in such case is given.

We consider the view-update problem in the setting in which both the original and
the updated databases are indefinite (may contain occurrences of null values) and the
database domain is possibly infinite. To be compliant with the SQL standard, we allow
a single null value only. We denote it by ⊥ and interpret it as expressing the existence
of unknown values for each attribute (with possibly infinite domain) it is used for [10].
Typically, a database is represented as a set of facts. We propose to represent indefinite
databases by two sets of facts that we interpret by means of a two-level closed-world as-
sumption tailored to the case of indefinite information. We interpret indefinite databases
in terms of their possible worlds. We extend the possible-world semantics to the setting
of views, which we formalize in terms of indefinite deductive databases, and apply the
resulting formalism to state and study the view-updating problem.

We then turn attention to the problem of multiple repairs. In general, using null val-
ues to encode multiple repairs is still not enough to eliminate them entirely (cf. our

1 In some cases no update satisfies the view-update request. The question whether the lack of an
appropriate update is caused by errors in the design of the view, in the extensional database, or
in the view-update request is interesting and deserves attention, but is outside the scope of the
present work.

136 L. Caroprese et al.

discussion above), and some level of the user’s involvement may be necessary. There-
fore, it is important to identify principled ways to narrow down the space of repairs for
the user to consider. We propose a concept of minimality tailored precisely to the new
setting. The primary concern is to minimize the set of new constants introduced by an
update. The secondary concern is to minimize the degree of the semantic change. The
resulting notion of minimality yields the notion of a repair.

Our concept of minimality leads us also to the concept of a relevant repair, an up-
date that introduces no new constants and minimizes the degree of change. In Exam-
ple 1, {+r(a,b,⊥)}, {+r(a,a,⊥),+q(a,a)} and {+r(a,c,⊥),+q(a,c)}, where c is an
element of the database domain other than a and b, are all repairs. The first two are
obviously relevant, the third one is not.

Some occurrences of non-nullary constants in a relevant repair may still be “un-
grounded” or “arbitrary,” that is, replacing them with another constant results in a re-
pair. For instance, replacing in the relevant repair {+r(a,a,⊥),+q(a,a)} the second
and the forth occurrences of a with a fresh constant c yields {+r(a,c,⊥),+q(a,c)}, an
update that is a repair. Intuitively, “arbitrary” occurrences of constants, being replace-
able, are not forced by the information present in the view (deductive database) and in
the view-update request. By restricting relevant repairs to those without arbitrary oc-
currences of constants we arrive at the class of constrained repairs. In the view-update
problem considered in Example 1, there is only one constrained repair, {+r(a,b,⊥)}.

Finally, we study the complexity of the problems of the existence of repairs, relevant
repairs and constrained repairs. We obtain precise results for the first two classes and
an upper bound on the complexity for the last class.

To summarize, our main contributions are as follows. We propose a two-set repre-
sentation of indefinite database that is more expressive than the standard one. We define
the semantics and the operation of updating indefinite databases (Section 2). We define
views over indefinite databases (indefinite deductive databases), and generalize the se-
mantics of indefinite databases to views (Section 3). We state and study the view-update
problem in the general setting when the initial and the repaired databases are indefinite.
We propose a notion of minimality of an update and use it to define the concept of a
repair. We address the problem of multiple repairs by defining relevant and constrained
repairs (Section 4). We study the complexity of problems of existence of repairs, rele-
vant repairs and constrained repairs (Section 5).

2 Indefinite Databases

We consider a finite set Π of relation symbols and a set Dom of constants that includes a
designated element ⊥, called the null value. We define Domd = Dom\ {⊥}. Normally,
we assume that Dom is an infinite countable set. However, for the sake of simplicity, in
several of the examples the set Dom is finite.

Some predicates in Π are designated as base (or extensional) predicates and all the
remaining ones are understood as derived (or intensional) predicates. A term is a con-
stant from Dom or a variable. An atom is an expression of the form p(t1, . . . , tk), where
p ∈ Π is a predicate symbol of arity k and ti’s are terms. An atom is ground if it does
not contain variables. We refer to ground atoms as facts. We denote the set of all facts

The View-Update Problem for Indefinite Databases 137

by At. We call facts defined in terms of base and derived predicates base facts and
derived facts respectively. A fact is definite if it does not contain occurrences of⊥. Oth-
erwise, it is indefinite. Given a set S of atoms, we define Dom(S) (resp. Domd(S)) as
the set of constants in Dom (resp. Domd) occurring in S. For every two tuples of terms
t = (t1, . . . , tk) and t ′ = (t ′1, . . . , t

′
k) and every k-ary predicate symbol p ∈ Π , we write

t � t ′ and p(t)� p(t ′) if for every i, 1≤ i≤ k, ti = t ′i or ti =⊥. We say in such case that
t ′ and p(t ′) are at least as informative as t and p(t), respectively. If, in addition, t �= t ′,
we write t ≺ t ′ and p(t) ≺ p(t ′), and say that t ′ and p(t ′) are more informative than t
and p(t). Sometimes, we say “at most as informative” and “less informative,” with the
obvious understanding of the intended meaning. We also define t and t ′ (respectively,
p(t) and p(t ′)) to be compatible, denoted by t ≈ t ′ (respectively, p(t) ≈ p(t ′)), if for
some k-tuple s of terms, t � s and t ′ � s. Finally, for a set D⊆ At, we define

D⇓= {a | there is b ∈ D s.t. a� b} D⇑= {a | there is b ∈D s.t. b� a}
D≈= {a | there is b ∈ D s.t. b≈ a} D∼= D≈ \D⇓.

To illustrate, let q be a binary relation symbol and Dom = {⊥,1,2}. Then:

{q(1,⊥)}⇓ = {q(1,⊥),q(⊥,⊥)} {q(1,⊥)}⇑= {q(1,⊥),q(1,1),q(1,2)}
{q(1,⊥)}≈ = {q(1,⊥),q(1,1),q(1,2),q(⊥,1),q(⊥,2),q(⊥,⊥)}
{q(1,⊥)}∼ = {q(1,1),q(1,2),q(⊥,1),q(⊥,2)}.

We note also note that D≈ = (D⇑)⇓.
In the most common case, databases are finite subsets of At that contain definite facts

only. The semantics of such databases is given by the closed-world assumption or CWA
[12]: a definite fact q is true in a database D if q ∈D. Otherwise, q is false in D. We are
interested in databases that may contain indefinite facts, too. Generalizing, we will for
now assume that an indefinite database is a finite set of possibly indefinite atoms. The
key question is that of the semantics of indefinite databases.

Let D be an indefinite database. Clearly, all facts in D are true in D. In addition, any
fact that is less informative than a fact in D is also true in D. Indeed, each such fact
represents an existential statement, whose truth is established by the presence of a more
informative fact in D (for instance, the meaning of p(⊥) is that there is an element c
in the domain of the database such that p(c) holds; if p(1) ∈ D, that statement is true).
Summarizing, every fact in D⇓ is true in D.

By CWA adapted for the setting of indefinite databases [10], facts that are not in D⇓

are not true in D, as D contains no evidence to support their truth. Those facts among
them that are compatible with facts in D (in our notation, facts in D∼), might actually
be true, but the database just does not know that. Of course, they may also be false,
the database does not exclude that possibility either. They are regarded as unknown. By
CWA again, the facts that are not compatible with any fact in D are false in D, as D
provides no explicit evidence otherwise.

The simple notion of an indefinite database, while intuitive and having a clear se-
mantics, has a drawback. It has a limited expressive power. For instance, there is no
database D to represent our knowledge that p(1) is false and that there is some definite
c such that p(c) holds (clearly, this c is not 1). To handle such cases, we introduce a
more general concept of an indefinite database, still using CWA to specify its meaning.

138 L. Caroprese et al.

Definition 1. An indefinite database (a database, for short) is a pair I = 〈D,E〉, where
D and E are finite sets of (possibly indefinite) facts. �

The intended role of D is to represent all facts that are true in the database 〈D,E〉, while
E is meant to represent exceptions, those facts that normally would be unknown, but
are in fact false (and the database knows it). More formally, the semantics of indefinite
databases is presented in the following definition.

Definition 2. Let 〈D,E〉 be a database and let q ∈ At be a fact. Then: (1) q is true in
〈D,E〉, written 〈D,E〉 |= q, if q ∈D⇓; (2) q is unknown in 〈D,E〉, if q ∈ (D≈ \D⇓)\E⇑

(= D∼ \E⇑); (3) q is false in 〈D,E〉, denoted 〈D,E〉 |= ¬q, in all other cases, that is, if
q /∈ D≈ or if q ∈D∼ ∩E⇑. �

The use of E⇑ in the definition (items (2) and (3)) reflects the property that if an atom a
is false then every atom b at least as informative as a must be false, too.

We denote the sets of all facts that are true, unknown and false in a database I =
〈D,E〉 by I t , I u and I f , respectively. Restating the definition we have:

I t = D⇓, I u = D∼ \E⇑, and I f = (At \D≈)∪ (D∼∩E⇑).

Example 2. The knowledge that p(c) holds for some constant c and that p(1) is false
can be captured by the database 〈{p(⊥)},{p(1)}〉. The database 〈{q(⊥,⊥),q(1,1)},
{q(1,⊥)}〉 specifies that the atoms q(1,1), q(1,⊥), q(⊥,1) and q(⊥,⊥) are true, that
all definite atoms q(1,d), with d �= 1, are false, and that all other atoms q(c,d) are
unknown. While the fact that q(⊥,⊥) is true follows from the fact that q(1,1) is true,
the presence of the former in the database is not redundant, that is, the database without
it would have a different meaning. Namely, q(⊥,⊥) makes all atoms q(a,b) potentially
unknown (with some of them true or false due to other elements of the database). �

Definition 3. A set W of definite facts is a possible world for a database I = 〈D,E〉
if I t ⊆W⇓ (W “explains” all facts that are true in I), W ⊆ I t ∪I u (only definite
facts that are true or unknown appear in a possible world). �

Databases represent sets of possible worlds. For a database I , we write W (I) to
denote the family of all possible worlds for I . Due to the absence of indefinite facts in
W ∈W (I), every fact in At is either true (if it belongs to W⇓) or false (otherwise) w.r.t.
W . Extending the notation we introduced earlier, for a possible world W and a ∈ At we
write W |= a if a ∈W⇓ and W |= ¬a, otherwise. The following proposition shows that
the semantics of a database can be stated in terms of its possible worlds.

Proposition 1. Let I be a database and q a fact. Then q ∈ I t if and only if W |= q,
for every W ∈W (I), and q ∈I f if and only if W |= ¬q, for every W ∈W (I). �

Updating a database 〈D,E〉 consists of executing on it update actions: inserting a base
fact a into D or E , and deleting a base fact a from D or E . We denote them by +aD, +aE ,
−aD and −aE , respectively. For a set U of update actions, we define UD

+ = {a | + aD ∈
U}, UE

+ = {a | + aE ∈ U}, UD
− = {a | − aD ∈ U}, and UE

− = {a | − aE ∈ U}. To be
executable, a set U of update actions must not contain contradictory update actions:

The View-Update Problem for Indefinite Databases 139

+aD and −aD, or +aE and −aE . A contradiction-free set U of update actions is an
update. We denote the set of all updates (in the fixed language we consider) by U .

We now define the operation to update a database, that is, to apply an update to it.

Definition 4. Let I = 〈D,E〉 be an indefinite database and U an update. We define
I ◦U as the database 〈D′,E ′〉, where D′ = (D∪UD

+)\UD
− and E ′ = (E ∪UE

+)\UE
− . �

3 Indefinite Deductive Databases

Integrity constraints (ICs, for short) are first-order sentences in the language L deter-
mined by the set of predicates Π and by the set Domd of definite constants. A database
with integrity constraints is a pair 〈I ,η〉, where I is a database and η is a set of ICs.
Possible worlds can be regarded as interpretations of the language L with Domd as
their domain. This observation and Proposition 1 suggest a definition of the semantics
of databases with ICs.

Definition 5. Let 〈I ,η〉 be a database with ICs. A possible world W ∈ W (I) is a
possible world for a database 〈I ,η〉 if W satisfies every integrity constraint in η . We
denote the set of possible worlds of 〈I ,η〉 by W (I ,η). A database with ICs, 〈I ,η〉,
is consistent if W (I ,η) �= /0. Otherwise, 〈I ,η〉 is inconsistent.

A fact q is true in 〈I ,η〉 if W |= q, for every W ∈W (I ,η); q is false in 〈I ,η〉 if
W |= ¬q, for every W ∈W (I ,η); otherwise, q is unknown in 〈I ,η〉. �

Example 3. Let us consider the database I = 〈{p(1), p(2),q(⊥)}, /0〉 (there are no ex-
ceptions) and let η = {∀X(q(X)→ p(X))}. Possible worlds of I include {p(1), p(2),
q(1)}, {p(1), p(2), q(2)} and {p(1), p(2),q(3)}. The first two satisfy the integrity con-
straint, the third one does not. Thus, only the first two are possible worlds of 〈I ,η〉.
Since p(1) belongs to all possible worlds of 〈I ,η〉, p(1) is true in 〈I ,η〉. Further,
p(3) is false in every possible world of I and so also in every possible world of 〈I ,η〉.
Thus, p(3) is false in 〈I ,η〉. Lastly, we note that q(1) and q(2) are unknown in 〈I ,η〉,
while q(3) is false (due to p(3) being false and the integrity constraint). �

We note that the possible-world semantics can capture additional information contained
in integrity constraints. In Example 3, the semantics derives that q(3) is false in 〈I ,η〉
even though this knowledge is not present in the database I .

The concepts of an update and of the operation to execute an update on a database
extend literally to the case of databases with ICs.

Following Ullman [16], views are safe Datalog¬ programs. We use the standard ter-
minology and talk about (Datalog¬) rules, and bodies and heads of rules. A rule is safe
if each variable occurring in the head or in a negative literal in the body also occurs in a
positive literal in the body. A Datalog¬ program is safe if each rule is safe. We assume
that views do not contain occurrences of ⊥. The semantics of Datalog¬programs is
given in terms of answer sets [6,7]. A precise definition of that semantics is immaterial
to our study and so we do not provide the details.

Definition 6. An indefinite deductive database (from now, simply, a deductive database)
is a tuple D = 〈I ,η ,P〉, where I is a database, η is a set of integrity constraints, and

140 L. Caroprese et al.

P is a safe Datalog¬ program (the specification of a view) such that no predicate oc-
curring in the head of a rule in P is a base predicate. �
Clearly, a deductive database with the empty view is a database with ICs, and a deduc-
tive database with the empty view and no ICs is simply a database.

Definition 7. A deductive database D = 〈I ,η ,P〉 is consistent if 〈I ,η〉 is consistent
and for every possible world W ∈ W (I ,η), the program W ∪P has answer sets. We
denote the family of all those answer sets by W (D) or W (I ,η ,P). We call elements
of W (D) possible worlds of D . �
There is an alternative to our concept of consistency. One could define a deductive
database 〈I ,η ,P〉 as consistent if for at least one world W ∈ W (I ,η), the program
W ∪P has an answer set. That concept of consistency would allow situations where
for some possible worlds of 〈I ,η〉, one of which could be a description of the real
world, the view P does not generate any meaningful virtual database. Our concept of
consistency is more robust. It guarantees that the user can have a view of a database no
matter how the real world looks like, that is, which of the possible worlds describes it.

Example 4. Let D = 〈I ,η ,P〉 be a deductive database, where I = 〈{p(⊥)}, /0〉, η = /0
and P = {t ← p(1), p(2),not t}, for some derived ground atom t. Every non-empty set
W ⊆{p(u) |u∈Domd} is a possible world of 〈I ,η〉. In particular, the set {p(1), p(2)}
is a possible world of 〈I ,η〉. Since the program P∪{p(1), p(2)} has no answer sets, D
is inconsistent (according to our definition). If D ′ = 〈I ,{p(1)∧ p(2)→⊥},P〉, then
the integrity constraint in D ′ eliminates the offending possible world and one can check
that for every possible world W of 〈I ,{p(1)∧ p(2)→⊥}〉, P∪W has an answer set.
Thus, D ′ is consistent.2 �
The concept of an update extends in a natural way to deductive databases. If U is an
update, and D = 〈I ,η ,P〉, we define the result of updating D by U by D ◦U = 〈I ◦
U,η ,P〉.

Next, we define the semantics of a deductive database D = 〈I ,η ,P〉, again building
on the characterization given by Proposition 1.

Definition 8. A fact a ∈ At is true in a deductive database D = 〈I ,η ,P〉, denoted by
D |= a, if for every possible world W ∈ W (D), W |= a; a is false in D , denoted by
D |= ¬a, if for every W ∈W (D), W |= ¬a; a is unknown in D , otherwise. We denote
the truth value of a in D by vD(a). �
Example 5. Let Dom = {⊥,1,2,3} and D = 〈I ,η ,P〉 be a deductive database, where
I = 〈{p(⊥)}, /0〉, η = {p(2)→⊥} and P = {q(X)← p(X)}.

We have W (I ,η) = {{p(1)},{p(3)}, {p(1), p(3)}}. Each of the possible worlds
in W (I ,η), when extended with the view P, gives rise to a program that has an-
swer sets. Thus, D is consistent. Moreover, the possible worlds for D are {p(1),q(1)},
{p(3),q(3)} and {p(1),q(1), p(3),q(3)} (in this case, one for each possible world
in W (I ,η)). It follows that p(⊥) and q(⊥) are true, p(2) and q(2) are false, and
p(1),q(1), p(3) and q(3) are unknown in D . �
2 We point out that in the paper, we overload the notation ⊥. We use it to denote both the single

null value in the language and the falsity symbol in the first-order language used for integrity
constraints. Since the meaning is always clear from the context, no ambiguity arises.

The View-Update Problem for Indefinite Databases 141

4 View Updating

In the view update problem, the user specifies a request, a list of facts the user learned
(observed) to be true or false, and wants the stored database to be updated to reflect it.3

Definition 9. A request over a deductive database D is a pair S = (S t ,S f), where
S t and S f are disjoint sets of facts requested to be true and false, respectively. �

To fulfill a request we need an update which, when executed, yields a database such
that the view it determines satisfies the request. We call such updates weak repairs.

Definition 10. Let D = 〈I ,η ,P〉 be a deductive database and S a request. An update
U for I is a weak repair for (D ,S) if U fulfills S , that is, if for every a ∈ S t ,
vD◦U(a) = true and for every a ∈S f , vD◦U(a) = false. �

We are primarily interested in updates that do not drastically change the database. One
condition of being “non-drastic” is not to introduce new predicate or constant symbols.
That leads us to the notion of a relevant weak repair.

Definition 11. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A constant
is relevant with respect to D and S if it occurs in D , or S , or if it is ⊥. A predicate
is relevant with respect to D and S if it occurs in D or in S . A weak repair U for
(D ,S) is relevant if every constant and predicate occurring in U is relevant. �

More generally, a weak repair is “non-drastic” if it minimizes the change it incurs [14].
There are two aspects to the minimality of change: (1) minimizing the set of new predi-
cate symbols and constants introduced by an update to the database (in the extreme case,
no new symbols must be introduced, and we used that requirement to define relevant
weak repairs above); (2) minimizing the change in the truth values of facts with respect
to the database. Following the Ockham’s Razor principle to avoid introducing new en-
tities unless necessary, we take the minimality of the set of new symbols as a primary
consideration. To define the resulting notion of change minimality, we assume that the
truth values are ordered false≤ unknown≤ true. Further, for a deductive database D , a
request set S and an update U ∈U we define NC(D ,S ,U) as the set of non nullary
constants that occur in U and not in D and S .

Definition 12. Let D = 〈I ,η〉 be a database with integrity constraints. For updates
V,U ∈ U , we define U � V if: NC(D ,S ,U) ⊂ NC(D ,S ,V), or NC(D ,S ,U) =
NC(D ,S ,V) and for every base atom a

1. if vD(a) = true, then vD◦U(a)≥ vD◦V (a)
2. if vD(a) = false, then vD◦V (a)≥ vD◦U(a)
3. if vD(a) = unknown, then vD◦U(a) = unknown or vD◦V (a) = vD◦U(a).

We also define U �V if U �V and V ��U. �
3 We do not allow requests that facts be unknown. That is, we only allow definite requests. While

there may be situations when all the user learns about the fact is that it is unknown, they seem
to be rather rare. In a typical situation, the user will learn the truth or falsity of a fact.

142 L. Caroprese et al.

We now define the classes of repairs and relevant repairs as subclasses of the respective
classes of weak repairs consisting of their �-minimal elements.

Definition 13. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A (relevant)
repair for (D ,S) is a �-minimal (relevant) weak repair for (D ,S). �
We note that the existence of (weak) repairs does not guarantee the existence of relevant
(weak) repairs. The observation remains true even if the view is empty.

Example 6. Let D = 〈I ,η ,P〉, where I = 〈 /0, /0〉, η = /0 and P = {t ← p(x),q(x)}.
If the request is ({t}, /0), then each repair is of the form {+p(i)D, +q(i)D}, for some
i ∈ Domd . None of them is relevant. (We note that {+p(⊥)D,+q(⊥)D} is not a (weak)
repair. The database resulting from the update would admit possible worlds of the form
{p(i),q(j)}, where i �= j. Clearly, the corresponding possible world of the view over
any such database does not contain t and so the update does not fulfill the request.) �
Some relevant constants are not “forced” by the database and the request, that is, can
be replaced by other constants. If such constants are present in a relevant (weak) repair,
this repair is arbitrary. Otherwise, it is constrained. A formal definition follows.

Definition 14. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A relevant
(weak) repair U for (D ,S) is constrained if there is no non-nullary constant a in U
such that replacing some occurrences of a in U with a constant b �= a (b might be ⊥),
results in a weak repair for (D ,S). �
Example 7. Let D = 〈I ,η ,P〉, where I = 〈{p(1),h(2)}, /0〉, η = /0 and P = {t ←
p(X),q(X); s← r(X)}. Let us consider the request S = ({s, t}, /0). The updates Ri =
{+q(1)D,+r(i)D}, i ∈ {⊥,1,2}, and R ′

i = {+q(2)D,+p(2)D,+r(i)D}, i ∈ {⊥,1,2},
are relevant weak repairs. One of them, R⊥, is constrained. Indeed, replacing in R⊥
the unique occurrence of a non-nullary constant (in this case, 1) with any other constant
does not yield a weak repair. On the other hand, Ri, i ∈ {1,2}, and R ′

i , i ∈ {⊥,1,2},
are not constrained. Indeed, replacing with 3 the second occurrence of 1 in R1, or the
occurrence of 2 in R2, or both occurrences of 2 in R ′

i in each case results in a weak re-
pair. Also weak repairs Ri = {+q(1)D,+r(i)D} and R ′

i = {+q(2)D,+p(2)D,+r(i)D},
i ∈ {3, . . .}, are not constrained as they are not even relevant. �
We stress that, in order to test whether a relevant (weak) repair R is constrained, we
need to consider every subset of occurrences of non-nullary constants in R. For in-
stance, in the case of the repair R1 = {q(1),r(1)} from Example 7, the occurrence of
the constant 1 in q(1) is constrained by the presence of p(1). Replacing that occurrence
of 1 with 3 does not result in a weak repair. However, replacing the occurrence of 1 in
r with 3 gives a weak repair and shows that R1 is not constrained.

Example 8. Let Dom= {⊥,1,2, . . .} and D = 〈I ,η ,P〉, where I = 〈{q(1,2),s(1,2,3)},
/0〉, η = /0 and P= {p(X)← q(X ,Y),r(X ,Y,Z); r(X ,Y,Z)← s(X ,Y,Z), t(X ,Y,Z)}. Let
us consider the request S = ({p(1)}, /0). In this case, our approach yields a unique
constrained repair R = {+t(1,2,3)D}. It recognizes that thanks to s(1,2,3) simply in-
serting t(1,2,3) guarantees r(1,2,3) to be true and, consequently, ensures the presence
of p(1) in the view. There are other repairs and other relevant repairs, but only the one
listed above is constrained. �

The View-Update Problem for Indefinite Databases 143

We observe that every (relevant, constrained) weak repair contains a (relevant, con-
strained) repair.

Proposition 2. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A (rele-
vant, constrained) repair for (D ,S) exists if and only if a (relevant, constrained) weak
repair for (D ,S) exists. �

5 Complexity

Finally, we discuss the complexity of problems concerning the existence of (weak)
repairs of types introduced above. The results we present here have proofs that are non-
trivial despite rather strong assumptions we adopted.

We assume that the sets of base and derived predicate symbols, the set of integrity
constraints η and the view P are fixed. The only varying parts in the problems are a
database I and a request S . That is, we consider the data complexity setting. More-
over, we assume that Dom = {⊥,1,2, . . .}, and take = and≤, both with the standard in-
terpretation on {1,2, . . .}, as the only built-in relations. We restrict integrity constraints
to expressions of the form: ∃X(∀Y (A1∧ . . .∧Ak → B1∨ . . .∨Bm)), where Ai and Bi are
atoms with no occurrences of ⊥ constructed of base and built-in predicates, and where
every variable occurring in the constraint belongs to X ∪Y , and occurs in some atom Ai

built of a base predicate.
We start by stating the result on the complexity of deciding the consistency of an

indefinite database with integrity constraints. While interesting in its own right, it is
also relevant to problems concerning the existence of repairs, as one of the conditions
for U to be a repair is that the database that results from executing U be consistent.

Theorem 1. The problem to decide whether a database 〈I ,η〉 has a possible world
(is consistent) is NP-complete. �

We now turn attention to the problem of checking request satisfaction. Determining
the complexity of that task is a key stepping stone to the results on the complexity of
deciding whether updates are (weak) repairs that are necessary for our results on the
complexity of the existence of (weak) repairs. However, checking request satisfaction
turns out to be a challenge even for very simple classes of views. In this paper, we
restrict attention to the case when P is a safe definite (no constraints) acyclic (no recur-
sion) Horn program, although we obtained Proposition 3 in a more general form.

Proposition 3. The problem to decide whether a ground atom t is true in a deductive
database 〈I ,η ,P〉, where 〈I ,η〉 is consistent and P is a safe Horn program, is in the
class co-NP. �

Next, we consider the problem to decide whether a ground atom t is false in a deductive
database 〈I ,η ,P〉. We state it separately from the previous one as our present proof of
that result requires the assumption of acyclicity.

Proposition 4. The problem to decide whether a ground atom t is false (ground literal
¬t is true) in a deductive database 〈I ,η ,P〉, where 〈I ,η〉 is consistent and P is an
acyclic Horn program, is in the class co-NP. �

144 L. Caroprese et al.

With Propositions 3 and 4 in hand, we move on to study the complexity of the problems
of the existence of weak repairs. First, we establish an upper bound on the complexity
of checking whether and update is a (relevant) weak repair.

Proposition 5. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, P an acyclic
Horn program, U an update and S a request set. The problem of checking whether an
update U is a weak repair (relevant weak repair) for (D ,S) is in Δ P

2 . �

With the results above, we can address the question of the complexity of the existence
of repairs. The first problem concerns weak repairs and stands apart from others. It turns
out, that deciding the existence of a weak repair is NP-complete, which may seem at
odds with Proposition 5 (an obvious non-deterministic algorithm guesses an update U
and checks that it is a weak repair apparently performing a “ΣP

2 computation”). How-
ever, this low complexity of the problem is simply due to the fact that there are no rel-
evance, constrainedness or minimality constraints are imposed on weak repairs. Thus,
the question can be reduced to the question whether there is a “small” database J ,
in which the request holds. The corresponding weak repair consists of deleting all ele-
ments from I and “repopulating” the resulting empty database so that to obtain J .

Theorem 2. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problem of deciding whether
there is a weak repair for (D ,S) is NP-complete. �

As noted, the case of the existence of weak repairs is an outlier and deciding the ex-
istence of (weak) repairs of other types is much harder (under common assumptions
concerning the polynomial hierarchy).

Theorem 3. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problems of deciding whether
there is a relevant weak repair and whether there is a relevant repair for (D ,S) are
ΣP

2 -complete. �

The last result concerns constrained (weak) repairs. It provides an upper bound on the
complexity of the problem of deciding the existence of constrained repairs. We conjec-
ture that the upper bound is in fact tight but have not been able to prove it. We leave the
problem for future work.

Theorem 4. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problems of deciding whether
there is a constrained weak repair and whether there is a constrained repair for (D ,S)
are in ΣP

3 . �

6 Discussion and Conclusion

We presented a declarative framework for view updating and integrity constraint main-
tenance for indefinite databases. The framework is based on the notion of an indefi-
nite deductive database. In our approach, the indefiniteness appears in the extensional

The View-Update Problem for Indefinite Databases 145

database and is modeled by a single null value, consistent with the standards of database
practice (a condition not followed by earlier works on the view-update problem over in-
definite databases). We defined a precise semantics for indefinite deductive databases
in terms of possible worlds. We used the framework to formulate and study the view-
update problem. Exploiting the concept of minimality of change introduced by an up-
date, we defined several classes of repairs, including relevant and constrained repairs,
that translate an update request against a view into an update of the underlying database.
Finally, we obtained several complexity results concerning the existence of repairs.

Our paper advances the theory of view updating in three main ways. First, it pro-
poses and studies the setting where extensional databases are indefinite both before and
after an update. While introducing indefiniteness to narrow down the class of potential
repairs was considered before [5], the assumption there was that the initial extensional
database was complete. That assumption substantially limits the applicability of the
earlier results. Second, our paper proposes a more expressive model of an indefinite ex-
tensional database. In our model databases are determined by two sets of facts. The first
set of facts specifies what is true and provides an upper bound to what might still be un-
known. By CWA, everything else is false. The second set of facts lists exceptions to the
“unknown range,” that is, facts that according to the first set might be unknown but are
actually false (exceptions). Third, our paper introduces two novel classes or repairs, rel-
evant and constrained, that often substantially narrow down possible ways to fulfill an
update request against a view. Relevant repairs do not introduce any new constants and
minimize change. Constrained repairs in addition do not involve constants that are in
some precise sense “replaceable” and, thus, not grounded in the problem specification.

We already discussed some earlier work on view updating in the introduction as a
backdrop to our approach. Expanding on that discussion, we note that the view-update
problem is closely related to abduction and is often considered from that perspective.
Perhaps the first explicit connection between the two was made by Bry [1] who pro-
posed to use deductive tools as a means for implementing the type of abductive rea-
soning required in updating views. That idea was pursued by others with modifications
that depended on the class and the semantics of the views. For instance, Kakas and
Mancarella [9] exploited in their work on view updates the abductive framework by
Eshghi and Kowalski [4] and were the first to consider the stable-model semantics for
views. Neither of the two works mentioned above was, however, concerned with the
case of updates to views over indefinite databases. Console et al. [2] studied the case in
which requests can involve variables. These variables are replaced by null values and,
in this way, null values eventually end up in repaired databases. However, once there,
they loose their null value status and are treated just as any other constants. Conse-
quently, no reasoning over null values takes place, in particular, they have no special
effect on the notion of minimality. None of the papers discussed studied the complexity
of the view-update problem. Instead, the focus was on tailoring resolution-based deduc-
tive reasoning tools to handle abduction. Some results on the complexity of abduction
for logic programs were obtained by Eiter, Gottlob and Leone [3]. However, again the
setting they considered did not assume incompleteness in extensional databases.

Our paper leaves several questions for future work. First, we considered restricted
classes of views. That suggests the problem to extend our complexity results to the

146 L. Caroprese et al.

full case of Horn programs and, later, stratified ones. Next, we considered a limited
class of integrity constraints. Importantly, we disallowed tuple-generating constraints.
However, once they are allowed, even a problem of repairing consistency in an exten-
sional database becomes undecidable. A common solution in the database research is
to impose syntactic restrictions on the constraints [8]. That suggests considering view-
updating in the setting in which only restricted classes of constraints are allowed.

Acknowledgments. The third author was supported by the NSF grant IIS-0913459.
We are grateful to Sergio Greco and Leopoldo Bertossi for helpful discussions.

References

1. Bry, F.: Intensional updates: Abduction via deduction. In: Proceedings of ICLP 1990, pp.
561–575. MIT Press, Cambridge (1990)

2. Console, L., Sapino, M.L., Dupré, D.T.: The role of abduction in database view updating. J.
Intell. Inf. Syst. 4(3), 261–280 (1995)

3. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and complexity.
Theor. Comput. Sci. 189(1-2), 129–177 (1997)

4. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: Proceedings
of ICLP 1989, pp. 234–254. MIT Press, Cambridge (1989)

5. Farré, C., Teniente, E., Urpı́, T.: Handling Existential Derived Predicates in View Updating.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 148–162. Springer, Heidelberg
(2003)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of ICLP/SLP 1988, pp. 1070–1080 (1988)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

8. Greco, S., Spezzano, F., Trubitsyna, I.: Stratification criteria and rewriting techniques for
checking chase termination. PVLDB 4(11), 1158–1168 (2011)

9. Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proceedings of the Six-
teenth International Conference on Very Large Databases, pp. 650–661. Morgan Kaufmann
Publishers Inc., San Francisco (1990)

10. Libkin, L.: A Semantics-Based Approach to Design of Query Languages for Partial Infor-
mation. In: Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 170–208.
Springer, Heidelberg (1998)

11. Mayol, E., Teniente, E.: Consistency preserving updates in deductive databases. IEEE
TDKE 47(1), 61–103 (2003)

12. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 55–76. Plenum Press (1978)

13. Teniente, E., Olivé, A.: Updating knowledge bases while maintaining their consistency.
VLDB J. 4(2), 193–241 (1995)

14. Todd, S.: Automatic constraint maintenance and updating defined relations. In: IFIP
Congress, pp. 145–148 (1977)

15. Türker, C., Gertz, M.: Semantic integrity support in sql: 1999 and commercial
(object-)relational database management systems. VLDB J. 10(4), 241–269 (2001)

16. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 1. Computer Sci-
ence Press (1988)

Three-Valued Logics for Incomplete Information

and Epistemic Logic

Davide Ciucci1,2,	 and Didier Dubois1

1 IRIT, Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse cedex 9, France

2 DISCo - Università di Milano – Bicocca
Viale Sarca 336 – U14, 20126 Milano, Italia

Abstract. There are several three-valued logical systems. They give the
impression of a scattered landscape. The majority of the works on this
subject gives the truth tables, sometimes an Hilbert style axiomatization
in a basic propositional language and a completeness theorem with re-
spect to those truth tables. We show that all the reasonable connectives
in three-valued logics can be built starting from few of them. Never-
theless, the issue of the usefulness of each system in relation with the
third truth value is often neglected. Here, we review the interpretations
of the third truth value. Then, we focus on the unknown case, suggested
by Kleene. We show that any formula in three-valued logics can be en-
coded as a fragment of an epistemic logic (formulae of modal depth 1,
with modalities in front of literals), preserving all tautologies and in-
ference rules. We study in particular, the translation of Kleene, Gödel,
�Lukasiewicz and Nelson logics. This work enables us to lay bare the lim-
ited expressive power of three-valued logics in uncertainty management.

1 Introduction

Classical Boolean logic has a remarkable advantage over many others: the defi-
nition of its connectives is not questionable, even if the truth values true (1) and
false (0) can be interpreted in practice in different ways. Moreover, there is com-
plete agreement on its model-based semantics. Its formal setting seems to ideally
capture the “targeted reality”. The situation is quite different with many-valued
logics, where we replace the two truth values by an ordered set L with more than
two truth values. The simplest case is three-valued logic where we add a single
intermediate value denoted by 1

2 . Naively, we might think that three-valued logic
should be as basic as Boolean logic: the set {0, 12 , 1} is the most simple example
of bipolar scale, isomorphic to the set of signs {−, 0,+}. However, there is quite
a number of three-valued logics since the extension to three values of the Boolean
connectives is not unique. Worse, there is no agreement on the interpretation of
this third truth value in the literature. Several interpretations of such a third
truth value have been proposed. Here is a (probably not exhaustive) list:

� Supported by FP7-Marie Curie Action (IEF) n.276158.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 147–159, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 D. Ciucci and D. Dubois

1. Possible: the oldest interpretation due to Lukasiewicz [4]. Unfortunately,
it seems to have introduced some confusion between modalities and truth
values, that is still looming in some parts of the many-valued logic literature.

2. half-true: it is the natural understanding in fuzzy logic [13]: if it is true that
a man whose height is 1.80 m. is tall and it is false that a man with height
1.60 m. is tall, we can think that it is half-true that a man whose height is
1.70 m. is tall. Then 1

2 captures the idea of borderline.
3. Undefined : this vision is typical of the studies on recursive functions modelled

by logical formulae and it can be found in Kleene works [16]. A formula is
not defined if some of its arguments are out of its domain. So, in this case
the third truth value has a contaminating effect.

4. Unknown: in the same book, Kleene suggests this alternative interpretation
of the intermediate value. It is the most usual point of view outside the
fuzzy set community. Unfortunately, it suffers from the confusion between
truth value and epistemic state, which generates paradoxes [22,7], just like
the �Lukasiewicz proposal.

5. Inconsistent : in some sense, it is the dual of “unknown”. Several works try
to tame the contradiction by means of a truth value (Priest, Belnap, and
some paraconsistent logics for instance). This standpoint has been criticized
as also generating paradoxes [10,6].

6. Irrelevant : this point of view is similar to “undefined” but with the opposite
effect: abstention. If a component of a formula has 1

2 as truth value, the truth
value of the whole formula is determined by the remaining components.

In the present work, we are interested in the fourth interpretation unknown of
1
2 (so, also in the first one). The idea that unknown can be a truth value seems
to originate from a common usage in natural language, creating a confusion
between true and certainly true (or yet provable), false and certainly false. In
the spoken language, saying “it is true” is often short for “I know that it is
true”. We mix up, in this way, the idea of truth per se with the assertion of
truth. The latter reveals some information possessed by the speaker (its epistemic
state). The value unknown is in conflict with certainly true and certainly false.
It corresponds to an epistemic state where neither the truth nor the falsity of a
Boolean proposition can be asserted. The truth values true (1) and false (0) are
of ontological nature (which means that they are part of the definition of what
we call proposition1), whereas unknown as well as certainly true and certainly
false have an epistemic nature: they reflect a knowledge state. Mathematically,
certainly true, certainly false and unknown are subsets of truth values, that is {1},
{0} and {0, 1}. The convention used here is the following: a subset T ⊆ L of truth
values attached to a proposition p contains the truth values that are possible for
p in the considered knowledge state (the values outside T are impossible)2. For
instance, {1} encodes certainly true since the only possible truth value is true.
Mixing up true and certainly true is the same as confusing an element with a

1 And not that they represent Platonist ideals.
2 Belnap[2] follows another convention: T represents a conjunction of truth values.
Then, {0, 1} encodes contradiction and the empty set represents unknown.

Three-Valued Logics for Incomplete Information and Epistemic Logic 149

singleton. The use of qualifiers such as certainly immediately suggests the use of
modal logic, just as �Lukasiewicz “truth value” possible does. Clearly, unknown
means that true and false are possible3. Already in 1921, Tarski had the idea of
translating the modalities possible and necessary into �Lukasiewicz three-valued
logic. The modal Possible is defined on {0, 12 , 1} as ♦x = ¬x→L x = min{2x, 1}
with �Lukasiewicz negation and implication. In this translation, possible thus
means that the truth value is at least 1

2 . So the question is: which of the two is
the most expressive language? modal logic or three-valued logic?

To address this question, we adopt the opposite point of view: rather than
trying to translate modal logic into a three-valued one, it seems more fruitful
to do the converse. According to the discussion of the epistemic nature of the
interpretation of 1

2 here chosen, the framework of some epistemic logic looks
convenient. In particular, and we will show this in the following, it is more
expressive than all the three-valued logics of unknown, the interest of which
proves marginal in practice.

The paper develops as follows: we recall an elementary variant of epistemic
logic, sufficient for our translation. It is a fragment of the logic KD, where we
can express only Boolean propositional formulae prefixed by a modality (nesting
of modalities is not allowed). It has a simple semantics in term of subsets of
interpretations. We show how it is possible to translate propositions of the form
“the truth value of three-valued proposition φ is in T ⊆ {0, 12 , 1}” by a Boolean
modal formula. In the following section, we explain that only very few connectives
are required to generate all the other connectives known in three-valued logics
(essentially the minimum on {0, 12 , 1} and its residuated implication, as well
as an involutive negation). Some three-valued logics like �Lukasiewicz’s can thus
express all the others. In the remaining sections, we consider several three-valued
logics and translate them into MEL. We show that the tautologies of one are
theorems of the other and the converse. On the contrary, the converse translation
is impossible: only a fragment of MEL can be translated into a three-valued
logic, the one where modalities are placed only in front of literals. In particular,
Tarski’s translation from ♦φ into ¬φ→L φ is valid only if φ is a literal.

2 Connectives in Three-Valued Logics

According to the discussion in the introduction, we must not use the same sym-
bols for Boolean truth values and the ones of the three-valued logic as long as 1

2
means unknown, since the latter should be seen as subsets of the former. We will
use 0 and 1 in the Boolean case and 3 = {0,1, 12} in three-valued logics. Since
1
2 is interpreted as unknown, 0,1, 12 will be considered as epistemic truth-values
and 0, 1 as ontic ones. Moreover, we equip 3 with a total order ≤: 0 < 1

2 < 1,
often referred to as the truth ordering [2].

Conjunction, implication and negation on the set of values 0, 12 ,1 can be
defined by minimal intuitive properties.

3 Actually, Lukasiewicz proposed this idea for the study of contingent futures: it is
possible that the battle will be won or lost.

150 D. Ciucci and D. Dubois

Definition 1. A conjunction on 3 is a binary mapping ∗: 3× 3 �→ 3 such that

(C1) If x ≤ y then x ∗ z ≤ y ∗ z;
(C2) If x ≤ y then z ∗ x ≤ z ∗ y;
(C3) 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.

We note that (C3) requires that ∗ be an extension of the connective AND in
Boolean logic. Then, the monotonicity properties (C1-C2) imply 1

2 ∗0 = 0 ∗ 1
2 =

0. If we consider all the possible cases, there are 14 conjunctions satisfying
definition 1. Among them, only six are commutative and only five associative.
These five conjunctions are already known in literature and precisely, they have
been studied in the following logics: Sette [19], Sobociński [20], �Lukasiewicz [4],
Kleene [16], Bochvar [3]. The idempotent and commutative Kleene conjunction
and disjunction (the minimum, denoted by
 and the maximum denoted by �)
are present in 3 due the total order assumption (x
 y = y
 x = x if and only
if x ≤ y if and only if x � y = y � x = y).

In the case of implication, we can give a general definition, which extends
Boolean logic and supposes monotonicity (decreasing in the first argument, in-
creasing in the second).

Definition 2. An implication on 3 is a binary mapping →: 3×3 �→ 3 such that

(I1) If x ≤ y then y → z ≤ x→ z;
(I2) If x ≤ y then z → x ≤ z → y;
(I3) 0→ 0 = 1→ 1 = 1 and 1→ 0 = 0.

From the above definition we derive x→ 1 = 1, 0→ 1 = 1 and 1
2 →

1
2 ≥ {1→

1
2 ,

1
2 → 0}. There are 14 implications satisfying this definition. Nine of them are

known and have been studied. Besides those implications named after the five
logics mentioned above, there are also those named after Jaśkowski [15], Gödel
[12], Nelson [17], Gaines-Rescher [11]. Gödel implication is present in 3 due to
the total order and using the residuation:

x
 y ≤ z if and only if x ≤ y →G z.

It is such that y →G z = 1 if y ≤ z and z otherwise.
Finally, there are only three possible negations that extend the Boolean nega-

tion, that is if 0′ = 1 and 1′ = 0:

1. ∼ 1
2 = 0. It corresponds to an intuitionistic negation (it satisfies the law of

contradiction, not the excluded middle).
2. ¬1

2 = 1
2 . It is an involutive negation.

3. − 1
2 = 1. It corresponds to a paraconsistent negation (as it satisfies the law

of excluded middle, not the one of contradiction).

The intuitionistic negation is definable by Gödel implication as ∼x = x →G 0.
Finally, despite the existence of several known systems of three-valued logics,
we can consider that in the above setting, there is only one encompassing three-
valued structure. That is, all the connectives satisfying the above definitions,
can be obtained from a structure equipped with few primitive connectives [5].

Three-Valued Logics for Incomplete Information and Epistemic Logic 151

Proposition 1. We denote by 3 the set of three elements without any structure
and by 3 the same set equipped with the usual order 0 < 1

2 < 1 or equivalently,
3 = (3,
,→G). All 14 conjunctions and implications can be expressed in any of
the following systems:

– (3,¬) = (3,
,→G,¬);
– (3,→K) where →K is Kleene implication (max(1− x, y));
– (3,→L,0) where →L is �Lukasiewicz implication (min(1, 1− x+ y));
– (3,→K ,∼,0) where →K is Kleene implication and ∼ the intuitionistic nega-

tion.

So, in the first two cases, we assume a residuated chain, whereas in the other two,
we can derive it from the other connectives. We remark also that the intuitionistic
negation can be replaced by the paraconsistent negation in the last item. The
above result differs from functional completeness, since it only deals with three-
valued functions that coincide with a Boolean connective on {T, F}.

3 A Simple Information Logic

Admitting that the concept of “unknown” refers to a knowledge state rather than
to an ontic truth value, we may keep the logic Boolean and add to its syntax the
capability of stating that we ignore the truth value (1 or 0) of propositions. The
natural framework to syntactically encode statements about knowledge states of
propositional logic (PL) statements is modal logic, and in particular, the logic
KD. Nevertheless, only a very limited fragment of this language is needed here:
the language MEL [1].

Consider a set of propositional variables V = {a, b, c, . . . , p, . . . } and a stan-
dard propositional language L built on these symbols along with the Boolean
connectives of conjunction and negation (∧,′). As usual, disjunction α∨β stands
for (α′ ∧ β′)′, implication α → β stands for α′ ∨ β, and tautology � for α ∨ α′.
Let us build another propositional language L� whose set of propositional vari-
ables is of the form V� = {�α : α ∈ L} to which the classical connectives can
be applied. It is endowed with a modality operator � expressing certainty, that
encapsulates formulas in L. We denote by α, β, . . . the propositional formulae of
L, and φ, ψ, . . . the modal formulae of L�. In other words

L� = �α : α ∈ L|¬φ|φ ∧ ψ|φ ∨ ψ|φ→ ψ.

The logic MEL [1] uses the language L� with the following axioms:

1. φ→ (ψ → φ)
2. (ψ → (φ→ μ))→ ((ψ → φ)→ (ψ → μ))
3. (φ′ → ψ′)→ (ψ → φ)

(RM) : �α→ �β if � α→ β in PL.
(M) : �(α ∧ β)→ (�α ∧�β)
(C) : (�α ∧�β)→ �(α ∧ β)
(N) : ��

152 D. Ciucci and D. Dubois

(D) : �α→ ♦α

and the inference rule is modus ponens. As usual, the possible modality ♦ is
defined as ♦α ≡ (�α′)′. The first three axioms are those of PL and the other
those of modal logic KD. (M) and (C) can be replaced by axiom (K):

(K) : �(p→ q)→ (�p→ �q).

MEL is the subjective fragment of KD (or S5) without modality nesting.
The MEL semantics is very simple [1]. Let Ω be the set of L interpretations:

{ω : V → {0, 1}}. The set of models of α is [α] = {ω : ω |= α}. A (meta)-
interpretation of L� is a non-empty set E ⊆ Ω of interpretations of L interpreted
as an epistemic state. We define satisfiability as follows:

– E |= �α if E ⊆ [α] (α is certainly true in the epistemic state E)

– E |= φ ∧ ψ if E |= φ and E |= ψ;

– E |= φ′ if E |= φ is false.

MEL is sound and complete with respect to this semantics [1].
We remark that in this framework, uncertainty modeling is Boolean but pos-

sibilistic. The satisfiability E |= �α can be written as N([α]) = 1 in the sense
of a necessity measure computed with the possibility distribution given by the
characteristic function of E. Axioms (M) and (C) lay bare the connection with
possibility theory [7], as they state the equivalence between (�α ∧ �β) and
�(α ∧ β). We can justify the choice of this minimal modal formalism. It is the
most simple logic to reason on incomplete propositional information4. We only
need to express that a proposition in PL is certainly true, certainly false or
unknown as well as all the logical combinations of these assertions.

4 The Principles of the Translation

We denote by v(a) ∈ 3 the epistemic truth value of the variable a ∈ L. The
assertion v(a) ∈ T ⊆ 3 informs about the knowledge state of a Boolean variable
which we also denote by a. Stricto sensu, we should not use the same notation
for three-valued propositional variables and Boolean ones. However, we will do
it for the sake of simplicity assuming that a possesses an epistemic truth value
v(a) and an ontic truth-value t(a) ∈ {0, 1}. If we interpret the three epistemic
truth-values 0,1, 12 as certainly true, certainly false and unknown respectively,
we can encode the assignment of such truth-values to a propositional variable
a in MEL as follows. We denote by T (v(a) ∈ T) the translation into MEL of

4 We can debate whether MEL is an epistemic or a doxastic logic. This formalism
does not take side, since axiom D is valid in both S5 and KD45 and the axiom T of
knowledge (�α→ α) is not expressible in MEL, which is the subjective fragment of
S5 as much as a KD45 fragment. We kept the term “epistemic” in reference to the
idea of an information state, whether it is consistent with reality or not.

Three-Valued Logics for Incomplete Information and Epistemic Logic 153

the statement v(a) ∈ T and define it as follows, in agreement with the intended
meaning of the epistemic truth-values:

T (v(a) = 1) = �a T (v(a) = 0) = �a′ T (v(a) = 1
2) = ♦a ∧ ♦a′

T (v(a) ≥ 1
2) = ♦a T (v(a) ≤ 1

2) = ♦a′

We remark that these definitions shed light on the acceptability or not of the ex-
cluded middle law and the contradiction principle in the presence of the unknown
value: a is always ontologically true or false, but �a∨�a′ is not a tautology nor
♦a ∧ ♦a′ a contradiction in MEL.

In parallel we can express 3-valued valuations in the form of special epistemic
states that serve as interpretations of the language L� of MEL. Given a 3-valued
valuation v, denote by Ev, the partial Boolean model defined by t(a) = 1 if and
only if v(a) = 1 and t(a) = 0 if and only if v(a) = 0. Such an epistemic state
Ev has a particular form: it is the set of propositional interpretations of a non-
contradictory conjunction of literals ∧v(a)=1a

∧
∧v(a)=0a

′. Conversely, for any
MEL epistemic state E (a disjunction of propositional interpretations) we can
assign a single 3 valued interpretation vE :

∀a, vE(a) =

⎧⎪⎨⎪⎩
1 E 	 �a
0 E 	 �a′
1
2 otherwise

The map E �→ vE is not bijective, it defines an equivalence relation on epistemic
states and Ev = ∪{E : vE = v} is the partial Boolean model induced by v. Let
us now consider the fragment of MEL where we can put modalities only in front
of literals, that is L

� = �a|�a′|φ′|φ ∧ ψ|φ ∨ ψ.
Proposition 2. Let α be a formula and Γ a set of formulae built on the language
of the fragment L

�. Then, Γ � α if and only if ∀v, Ev |= Γ implies Ev |= α.

In the following, we consider four known three-valued logics and show that,
insofar as the third truth-value means unknown, they can be expressed in MEL:
Kleene, Gödel three-valued intuitionistic, �Lukasiewicz and Nelson logics. The
two first ones can be viewed as fragments of the latter. Especially, we show that
L

� exactly characterizes any of �Lukasiewicz and Nelson logics as we will see in

the next sections. We start with the simplest logic.

5 The Kleene Fragment of MEL

The best known and often used logic to represent uncertainty due to incomplete
information is Kleene logic. The connectives are simply the min
, the max �,
the involutive negation ¬. A material implication a →K b := ¬a � b is then
derived. The involutive negation preserves the De Morgan laws between
 and
�. The syntax of Kleene logic is the same as the one of propositional logic
(replacing ∧,∨,′ by
,�,¬). Besides, it is known that Kleene logic does not have
any tautology (there is no formula α such that ∀v, v(α) = 1).

154 D. Ciucci and D. Dubois

We first show that all the assignments of epistemic truth values to Kleene
formulae, in the form v(α) ∈ T ⊆ 3 can be translated into MEL. Using the
translation of atoms in Section 4, the translation of other formulae is

T (v(α
 β) ≥ i) = T (v(α) ≥ i) ∧ T (v(β) ≥ i), i ≥ 1
2

T (v(α � β) ≥ i) = T (v(α) ≥ i) ∨ T (v(β) ≥ i), i ≥ 1
2

T (v(α
 β) ≤ i) = T (v(α) ≤ i) ∨ T (v(β) ≤ i), i ≤ 1
2

T (v(α � β) ≤ i) = T (v(α) ≤ i) ∧ T (v(β) ≤ i), i ≤ 1
2

T (v(¬α) = 1) = T (v(α) = 0) = (T (v(α) ≥ 1
2))

′

T (v(¬α) ≥ 1
2) = T (v(α) ≤ 1

2) = (T (v(α) = 1))′

The translation of Kleene implication can be obtained in this way; we can define
it directly as follows using standard material implication →.

T (v(α→K β) = 1) = T (v(α) ≥ 1
2)→ T (v(β) = 1)

T (v(α→K β) ≥ 1
2) = T (v(α) = 1)→ T (v(β) ≥ 1

2)

If α = a, β = b are atoms, we obtain �¬a ∨�b and ♦¬a ∨ ♦b respectively. The
translation into MEL lays bare the meaning of Kleene implication: a →K b is
“true” means that b is certain if a is possible.

Example 1. Consider the formula α = ¬(a
 (¬(b � ¬c))). Then, T (v(α) = 1) =
T (v(a
 (¬(b�¬c))) = 0). So, we get T (v(a) = 0)∨T (v(¬(b�¬c)) = 0) = �a′∨
T (v(b�¬c) = 1) and finally, �a′∨T (v(b) = 1)∨T (v(¬c) = 1) = �a′∨�b∨�c′.
Note that we could more simply put α in conjunctive normal form as ¬a∨ b∨¬c
then put � in front of each literal.

A knowledge base B in Kleene logic is a conjunction of formulae supposed to
have designated truth value 1. We can always transform this base in conjunctive
normal form (CNF), that is, a conjunction of disjunction of literals (without
simplifying terms of the form a � ¬a). Its translation into MEL consists of the
same set of clauses, where we put the modality � in front of each literal. It is
easy to see that the translation of any propositional tautology (if we replace each
literal l by �l in its CNF) will no longer be a tautology in MEL.

Finally we see that the fragment of MEL that exactly captures the language of
Kleene logic contains only the set (conjunctions) of disjunctions of the elementary
formulae of the form �a or �a′ : LK

� = �a|�a′|φ ∨ ψ|φ ∧ ψ ⊂ L

�. We remark

that the modal axioms of MEL cannot be expressed in this fragment.
Nevertheless, we can use MEL to reason in Kleene logic. We note that the

modus ponens applies to literals (since from �a and �a′ ∨ �b, we can derive
�b in MEL). The same counterpart of the resolution principle is also valid. It
is like a propositional logic without tautologies but with such standard rules of
inference. At the semantic level we can prove the following result.

Proposition 3. Let α be a formula in Kleene logic. For each model v of α, the
epistemic state Ev is a model (in the sense of MEL) of T (v(α) = 1). Conversely,

Three-Valued Logics for Incomplete Information and Epistemic Logic 155

for each model in the sense of MEL (epistemic state) E of T (v(α) = 1) the 3-
valued interpretation vE is a model of α in the sense that vE(α) = 1.

We can easily verify the completeness of the Kleene fragment in MEL with
respect to the models of the form Ev in the sense that T (B) � T (v(α) = 1) in
MEL if and only if ∀v, Ev 	 T (B) implies Ev 	 T (v(α) = 1).

6 From �Lukasiewicz Three-Valued Logic to MEL and
Back

�Lukasiewicz three-valued logic �L3 is a language powerful enough to express all
connectives laid bare in section 2. It has been axiomatized by M. Wajsberg [24],
using a language based on (V ,→L,¬), the modus ponens rule and the following
axioms:

(W1) (α→L β)→L ((β →L γ)→L (α→L γ))
(W2) α→L (β →L α)
(W3) (¬β →L ¬α)→L (α→L β))
(W4) (((α→L ¬α)→L α)→L α)

The truth-table of the implication →L is given by table 1 and the involutive
negation of Kleene logic is recovered as ¬a := a →L 0. We can also define two

Table 1. �Lukasiewicz implication, conjunction and disjunction truth tables

→L 0 1
2

1

0 1 1 1
1
2

1
2

1 1

1 0 1
2

1

� 0 1
2

1

0 0 0 0
1
2

0 0 1
2

1 0 1
2

1

⊕ 0 1
2

1

0 0 1
2

1
1
2

1
2

1 1

1 1 1 1

pairs of conjunction and disjunction connectives: (
,�) and (0,⊕). The former
pair is Kleene’s, recovered as a � b = (a →L b) →L b and a
 b = ¬(¬a � ¬b).
The other pair is a⊕ b := ¬a→L b and a0 b := ¬(¬a⊕¬b) explicitly described
in Table 1. �Lukasiewicz implication is translated into MEL as:

T (v(α→L β) = 1) = [T (v(α) = 1)→ T (v(β) = 1)]

∧ [T (v(α) ≥ 1
2)→ T (v(β) ≥ 1

2)]

T (v(α→L β) ≥ 1
2) =T (v(α) = 1)→ T (v(β) ≥ 1

2)

The translation of T (v(α→L β) = 1) is the same for all the 3-valued residuated
implications. In the case of atoms, we have T (v(a→L b) ≥ 1

2) = (�a)′ ∨♦b and
T (v(a →L b) = 1) = ((�a)′ ∨ �b) ∧ ((♦a)′ ∨ ♦b) = �a′ ∨ �b ∨ ((�a)′ ∧ ♦b)).
T (v(a →L b) = 1) thus means : if a is certain then so is b and if a is possible
then so is b. The translation of the connectives 0 and ⊕ is:

T (v(α⊕ β) = 1) = T (v(α) = 1) ∨ T (v(β) = 1) ∨ (T (v(α) ≥ 1
2) ∧ T (v(β) ≥ 1

2))

T (v(α⊕ β) ≥ 1
2) = T (v(α) ≥ 1

2) ∨ T (v(β) ≥ 1
2)

156 D. Ciucci and D. Dubois

T (v(α 0 β) = 1) = T (v(α) = 1) ∧ T (v(β) = 1)

T (v(α 0 β) ≥ 1
2) = [T (v(α) ≥ 1

2) ∧ T (v(β) = 1)] ∨ [T (v(α) = 1) ∧ T (v(β) ≥ 1
2)]

For the atoms, we see that T (v(a⊕b) = 1) = �a∨�b∨(♦a∧♦b) and T (v(α0β) =
1) = �a∧�b. Note that while the truth of Kleene disjunction a� b corresponds
to the requirement that one of a and b be certain, a ⊕ b is closer to the usual
meaning of the disjunction, whereby T (v(a ⊕ b) = 1) can be true with none of
a or b being certain. Besides, asserting the truth of a conjunction in �L3 leads
to the same translation for the two conjunctions. Note that in �L3 the top and
bottom element are translated respectively into, ((�a)′ ∨�a)∧ ((♦a)′ ∨♦a) and
�a∧(♦a)′ which are indeed tautologies and contradictions in MEL, respectively.
More generally:

Proposition 4. If α is an axiom in �L3, then T (v(α) = 1) is a tautology in
MEL.

The syntactic fragment of MEL capable of expressing �L3 is: �a|�a′|φ′|φ∧ψ|φ∨ψ,
that is the MEL fragment L

� where modalities are just in front of literals. It is
clear that LK

� is a fragment of L

�. From L

� to �L3, we can also prove:

Proposition 5. For any formula in φ ∈ L

�, there exists a formula α in �L3

such that φ is logically equivalent to T (v(α) = 1) in MEL. In particular, if φ is
a MEL axiom in L

�, then the corresponding formula α is a tautology in �L3.

Proof. Sketch. We just show that there exists a translation θ from L

� to

�Lukasiewicz logic, recursively defined as: θ(�a) = a, θ(�a′) = ¬a, θ(♦a′) =
a→L ¬a, θ(♦a) = ¬a→L a, θ(α ∧ β) = θ(α)
 θ(β), θ(α ∨ β) = θ(α) � θ(β).

At the semantic level, Proposition 3 extends to �L3. Moreover, since the sublan-
guage L

� is exactly the �Lukasiewicz fragment of MEL, we can apply Proposition
2 and obtain the completeness of this fragment of MEL with respect to the mod-
els of the form Ev in the sense that, given a knowledge base BLin �L3 (a conjunc-
tion of �L3 formulas) T (BL) � T (v(α) = 1) in MEL if and only if ∀v, Ev 	 T (BL)
implies Ev 	 T (v(α) = 1). Finally, we can prove that MEL restricted to L

� is
the proper target language for reasoning in �L3, adopting an epistemic stance for
truth-values. Indeed, from the above results we get the following.

Proposition 6. Let α be a formula in �Lukasiewicz logic �L3 and BL a knowledge
base in this logic. Then, BL � α in �L3 iff T (BL) � T (v(α) = 1) in MEL .

Proof. Sketch: both MEL and �Lukasiewicz logic are sound and complete. So, it
is enough to show that BL 	�L α iff T (BL) 	MEL T (v(α) = 1). One direction
is the extension of Proposition 3 to the present case and the other follows by
induction.

We note that all the results about �Lukasiewicz logic also apply to the three-
valued Nelson logic [23] N3 = (V ,
,�,→N ,¬,−) due to the equivalence of the
two logics. Indeed, Nelson implication is defined by �Lukasiewicz implication as
a →N b := a →L (a →L b) and �Lukasiewicz implication can be defined as

Three-Valued Logics for Incomplete Information and Epistemic Logic 157

a →L b := (a →N b)
 (¬b →N ¬a). So, Nelson implication, once translated
in the fragment L

� of MEL is defined (on the atoms) as T (v(a →N b) = 1) =
(�a)′ ∨ �b, which says that if α is certain then β is certain. This implication
may look more natural in MEL than residuated ones or Kleene’s.

7 Encoding Three-Valued Intuitionistic Logic into MEL

The three-valued Gödel logic [12] is based on the language built from the 4-tuple
(V ,→G,
,∼), and the axioms are

(I1) α→G (β →G α)
(I2) (α→G (β →G γ))→G ((α→G β)→G (α→G γ)
(I3) (α
 β)→G α
(I4) (α
 β)→G β
(I5) α→G (β →G (α
 β))
(I6) α→G (α � β)
(I7) β →G (α � β)
(I8) (α→G β)→G ((γ →G β)→G (α � γ →G β))
(I9) (α→ β)→ ((α→ ∼β)→ (∼α))

(I10) ∼α→ (α→ β)
(I11) α � (∼ β � (α→G β))

where →G is the residuum of Kleene conjunction
, ∼ is the intuitionistic nega-
tion, and the Kleene disjunction � is retrieved as α � β := [(α →G β) →G

β]
 [(β →G α) →G α]. The truth tables of the implication and negation are
given by Table 2. Axiom (I10), due to Hosoi [14], ensures three-valuedness. The

Table 2. Truth table of Gödel implication and negation

→G 0 1
2

1

0 1 1 1
1
2

0 1 1

1 0 1
2

1

∼ 0

0 1
1
2

0

1 0

translation T (v(∼ α) = 1) in MEL of Gödel negation is the same as the trans-
lation of Kleene negation. The translation T (v(α →G β) = 1) is the same as for
�Lukasiewicz implication. However,

T (v(∼ α) = 0) = T (v(α) ≥ 1
2)

T (v(α →G β) ≥ 1
2) = T (v(α) ≥ 1

2)→ T (v(β) ≥ 1
2)

In the case of atoms, T (v(a→G b) ≥ 1
2) = (♦a)′ ∨ ♦b = �a′ ∨ ♦b.

We note that the top element � = α →G α and the bottom element ⊥ =
¬(α →G α) in Gödel logic translate into a tautology and to a contradiction in
MEL. Their translation is the same as for �Lukasiewicz logic �L3. More generally,
we can justify the axioms of intuitionistic logic in MEL.

158 D. Ciucci and D. Dubois

Proposition 7. If α is an axiom of the three-valued Gödel logic, then T (v(α) =
1) is a tautology in MEL.

Finding the syntactic fragment of MEL (or of KD) that exactly captures this
three-valued logic is an open problem. It is contained in L

� and includes the
formulas {�a,�a′,♦a, a ∈ V}. However, Proposition 3 is still valid.

8 Conclusion

This work suggests that the multiplicity of three-valued logics is only apparent.
If the third value means unknown, the elementary modal logic MEL, and more
specifically its fragment where modalities appear only in front of literals, is a
natural choice to encode all of these three-valued logics. In the framework of a
given application, some connectives make sense, others do not and we can choose
the proper fragment. The interest in our translation, which is both modular and
faithful, is double:

1. Once translated into modal logic, the meaning of a formula becomes clear
since its epistemic dimension is encoded in the syntax, even if in the worst
case, the size of a translated formula may grow exponentially in the number
of occurrences of the input variables.

2. We can better measure the expressive power of each three-valued system. In
particular it shows that the truth-functionality of three-valued logic is paid
by a severe restriction to expressing knowledge about literals only, and a
very restrictive view of disjunction.

This work can be extended to more than 3 “epistemic” truth values. However,
the target language is then a more expressive modal logic with more or less strong
modalities, such as generalized possibilistic logic [9] (where the epistemic states
are possibility distributions). For instance, the 5-valued so-called equilibrium
logic [18] (which can encode “answer-set” programming) has been translated
into generalized possibilistic logic with weak and strong necessity operators, the
epistemic states being pairs of sets of nested models [8].

The idea of expressing a many-valued logic in a two-level Boolean language
(one encapsulating the other) put here at work can be adapted to other inter-
pretations of the third truth value (such as contradictory, irrelevant, etc.) by
changing the target language. We can conjecture that only the case where this
truth value has an ontic nature (that is half-true, admitting that truth is a mat-
ter of degree) enables to give a clear meaning to propositional languages using
the syntax of Gödel, �Lukasiewicz, etc. logics and to explain their violation of the
Boolean axioms, as in the case of fuzzy logics.

References

1. Banerjee, M., Dubois, D.: A Simple Modal Logic for Reasoning about Revealed Be-
liefs. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590,
pp. 805–816. Springer, Heidelberg (2009)

Three-Valued Logics for Incomplete Information and Epistemic Logic 159

2. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic, pp. 8–37. D. Reidel (1977)

3. Bochvar, D.A.: On a three-valued logical calculus and its application to the anal-
ysis of the paradoxes of the classical extended functional calculus. History and
Philosophy of Logic 2, 87–112 (1981)

4. Borowski, L. (ed.): Selected works of J. �Lukasiewicz. North-Holland, Amsterdam
(1970)

5. Ciucci, D., Dubois, D.: Relationships between Connectives in Three-Valued Logics.
In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager,
R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 633–642. Springer, Heidelberg
(2012)

6. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic Jour-
nal of the IGPL 16, 195–216 (2008)

7. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: A clarification. Ann. Math. and AI 32, 35–66 (2001)

8. Dubois, D., Prade, H., Schockaert, S.: Stable models in generalized possibilistic
logic. In: Proceedings KR 2012, Roma, pp. 519–529 (2012)

9. Dubois, D., Prade, H.: Generalized Possibilistic Logic. In: Benferhat, S., Grant, J.
(eds.) SUM 2011. LNCS, vol. 6929, pp. 428–432. Springer, Heidelberg (2011)

10. Fox, J.: Motivation and demotivation of a four-valued logic. Notre Dame Journal
of Formal Logic 31(1), 76–80 (1990)

11. Gaines, B.R.: Foundations of fuzzy reasoning. Int. J. of Man-Machine Studies 6,
623–668 (1976)

12. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger Akademie der Wis-
senschaften Wien 69, 65–66 (1932)

13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
14. Hosoi, T.: The axiomatization of the intermediate propositional systems sn of gödel.

J. Coll. Sci., Imp. Univ. Tokyo 13, 183–187 (1996)
15. Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Studia

Logica 24, 143–160 (1969)
16. Kleene, S.C.: Introduction to metamathematics. North–Holland Pub. Co., Ams-

terdam (1952)
17. Nelson, D.: Constructible falsity. J. of Symbolic Logic 14, 16–26 (1949)
18. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47,

3–41 (2006)
19. Sette, A.M.: On propositional calculus p1. Math. Japon 16, 173–180 (1973)
20. Sobociński, B.: Axiomatization of a partial system of three-value calculus of propo-

sitions. J. of Computing Systems 1, 23–55 (1952)
21. Surma, S.: Logical Works. Polish Academy of Sciences, Wroclaw (1977)
22. Urquhart, A.: Many-valued logic. In: Gabbay, D.M., Guenthner, F. (eds.) Hand-

book of Philosophical Logic: vol. III, Alternatives to Classical Logic, Springer
(1986)

23. Vakarelov, D.: Notes on n-lattices and constructive logic with strong negation.
Studia Logica 36, 109–125 (1977)

24. Wajsberg, M.: Aksjomatyzacja trówartościowego rachunkuzdań (Axiomatization of
the three-valued propositional calculus). Comptes Rendus des Séances de la Societé
des Sciences et des Lettres de Varsovie 24, 126–148 (1931); English Translation in
[21]

Exploiting Unfounded Sets for HEX-Program
Evaluation�

Thomas Eiter, Michael Fink, Thomas Krennwallner,
Christoph Redl, and Peter Schüller

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,fink,tkren,redl,ps}@kr.tuwien.ac.at

Abstract. HEX programs extend logic programs with external computations
through external atoms, whose answer sets are the minimal models of the Faber-
Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmono-
tonic external atoms of polynomial complexity is on the second level of the
polynomial hierarchy, answer set checking needs special attention; simply com-
puting reducts and searching for smaller models does not scale well. We thus
extend an approach based on unfounded sets to HEX and integrate it in a Conflict
Driven Clause Learning framework for HEX program evaluation. It reduces the
check to a search for unfounded sets, which is more efficiently implemented as a
SAT problem. We give a basic encoding for HEX and show optimizations by ad-
ditional clauses. Experiments show that the new approach significantly decreases
runtime.

Keywords: Answer Set Programming, Nonmonotonic Reasoning, Unfounded
Sets, FLP Semantics.

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which due to
expressive and efficient systems like SMODELS, DLV and CLASP, has been gaining pop-
ularity for many applications [2]. Current trends in computing, such as context aware-
ness or distributed systems, raised the need for access to external sources in a program,
which, e.g., on the Web ranges from light-weight data access (e.g., XML, RDF, or data
bases) to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs [9] extend ASP with so-called external atoms,
through which the user can couple any external data source with a logic program.
Roughly, such atoms pass information from the program, given by predicate exten-
sions, into an external source which returns output values of an (abstract) function that
it computes. This convenient extension has been exploited for many different appli-
cations, including querying data and ontologies on the Web, multi-context reasoning,

� This research has been supported by the Austrian Science Fund (FWF) project P20840,
P20841, P24090, and by the Vienna Science and Technology Fund (WWTF) project
ICT08-020.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 160–175, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Exploiting Unfounded Sets for HEX-Program Evaluation 161

or e-government, to mention a few (cf. [5]). It is highly expressive as recursive data
exchange between the logic program and external sources is possible.

The semantics of HEX-programs is defined in terms of answer sets based on the FLP
reduct [12]: an interpretation A is an answer set of a program Π , iff it is a ⊆-minimal
model of the FLP-reduct fΠA of the program wrt. A, which is the set of all rules whose
body is satisfied by A. This semantics is equivalent to the GL-reduct based semantics
of ordinary logic programs [14], but has advantages for extensions with nonmonotonic
aggregates [12] or the more general external atoms in HEX-programs.

Currently, a HEX-program Π is evaluated in two steps as follows. In step 1, external
atoms are viewed as ordinary atoms (replacement atoms) and their truth values are
guessed by added choice rules. The resulting ordinary ASP program Π̂ is evaluated by
an ordinary ASP solver and each answer set Â returned is checked against the external
sources, i.e., the guess is verified. After that, the guess for the non-replacement atoms,
called A, is known to be a model ofΠ , but it is yet unknown whether A is also a subset-
minimal model of the reduct fΠA. This has to be ensured in step 2 by an FLP check.
A straightforward method, called explicit FLP check, is to compute fΠA and to check
whether it has some model smaller than A. However, this approach is not efficient in
practice, actually the explicit FLP check often dominates the overall runtime.

This calls for alternative methods to do the FLP check efficiently, which we
address in this paper. For ordinary programs, unfounded sets proved to be a fruitful
approach [16], which later had been extended to programs with aggregates [11]: an in-
terpretation is an FLP-answer set of some program, if and only if it is unfounded-free,
i.e., is disjoint from every unfounded set. Thus to decide whether a candidate is an an-
swer set, one can simply search for unfounded sets, rather than to explicitly construct
the reduct and enumerate its models in search for a smaller one.

Starting from this idea, we define unfounded sets for HEX-programs following [11]
and explore their efficiency for FLP checking. Briefly, our main contributions are:

• We present an encoding of the unfounded set existence problem to a set of no-
goods, i.e., constraints that have to be satisfied, and show that the solutions correspond
1-1 with the unfounded sets. They can then be computed using a SAT solver and a
post-processing step which checks that the values of replacement atoms comply with
the results of the external calls. Furthermore, we consider optimizations which hinge
on dependency between external and ordinary atoms, determined in careful analysis.
Benchmarks show that this strategy is already more efficient than the explicit FLP
check.
• We consider how information gained in the FLP check can be used in generating

candidate answer sets in step 1. Recently, adopting a Clause Driven Conflict Learning
approach [3], this step has been enhanced by learning [6], in which nogoods describing
the external source behavior are learned during the search (called external behavior
learning or EBL), in order to guide it towards right guesses. We show how step 1 can
learn additional nogoods from unfounded sets that avoid the reconstruction of the same
or related unfounded sets, yielding further gain.

An experimental evaluation of the above techniques for advanced reasoning applica-
tions, including Multi-Context Systems [1,8], abstract argumentation [4] and UNSAT
testing [11], shows that unfounded sets checking combined with learning methods

162 T. Eiter et al.

from [6] improves HEX-program evaluation considerably. As unfounded-freeness may
be ensured by syntactic criteria in relevant cases (which makes the FLP check obsolete),
the new approach enables significant speedup and enlarges the scope of HEX applica-
bility. Proofs of our results are given in an extended version [7].

2 Preliminaries

In this section, we start with some basic definitions, and then introduce HEX-programs.
In accordance with [13,6], a (signed) literal is a positive or a negative formula Ta

resp. Fa, where a is a ground atom of form p(c1, . . . , c
), with predicate p and constants
c1, . . . , c
, abbreviated p(c). For a literal σ=Ta or σ=Fa, let σ denote its opposite,
i.e., Ta=Fa and Fa=Ta. An assignment is a consistent set of literals Ta or Fa,
where Ta expresses that a∈A and Fa that a /∈A. A is complete, also called an in-
terpretation, if no assignment A′⊃A exists. We denote by AT = {a | Ta∈A} and
AF = {a | Fa∈A} the set of atoms that are true, resp. false in A, and by ext(q,A) =
{c | Tq(c)∈A} the extension of a predicate q. Furthermore, A|q is the set of all liter-
als over atoms of form q(c) in A. For a list q = q1, . . . , qk of predicates we write p ∈ q
iff qi = p for some 1 ≤ i ≤ n, and let A|q =

⋃
j A|qj .

A nogood is a set {L1, . . . , Ln} of literals Li, 1 ≤ i ≤ n. An interpretation A is
a solution to a nogood δ (resp. a set Δ of nogoods), iff δ �⊆ A (resp. δ �⊆ A) for all
δ ∈ Δ.

HEX-Program Syntax. As introduced in [9], HEX-programs are a generalization of
(disjunctive) extended logic programs under the answer set semantics [14]; for de-
tails and background see [9]. HEX-programs extend ordinary ASP programs by external
atoms, which enable a bidirectional interaction between a program and external sources
of computation. External atoms have a list of input parameters (constants or predicate
names) and a list of output parameters. Informally, to evaluate an external atom, the
reasoner passes the constants and extensions of the predicates in the input tuple to the
external source associated with the external atom. The external source computes output
tuples which are with the output list. Formally, a ground external atom is of the form

&g[p](c), (1)

where p = p1, . . . , pk are constant input parameters (predicate names or object con-
stants), and c = c1, . . . , cl are constant output terms.

Ground HEX-programs are then defined similar to ground ordinary ASP programs.

Definition 1 (Ground HEX-programs). A ground HEX-program consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn , (2)

where each ai is an (ordinary) ground atom p(c1, . . . , c
) with constants ci, 1 ≤ i ≤ �,
each bj is either an ordinary ground atom or a ground external atom, and k + n > 0.1

1 For simplicity, we do not formally introduce strong negation but view, as customary, classical
literals ¬a as new atoms together with a nogood {Ta,T¬a}.

Exploiting Unfounded Sets for HEX-Program Evaluation 163

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . , not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program Π , let A(Π) be the set of all ordinary atoms occurring in Π . For a default
literal b, let tb = Ta if b = a for an atom a, and tb = Fa if b = not a. Conversely, fb =
Fa if b = a and fb = Ta if b = not a.

We also use non-ground programs. However, as suitable safety conditions allow for
using a grounding procedure [10], we limit our investigation to ground programs.

HEX-Program Semantics and Evaluation. The semantics of a ground external atom
&g[p](c) wrt. an interpretation A is given by the value of a 1+k+l-ary Boolean oracle
function, denoted by f&g following [9], that is defined for all possible values of A, p
and c. Thus, &g[p](c) is true relative to A if and only if it holds that f&g(A,p, c) = 1.
Satisfaction of ordinary rules and ASP programs [14] is then extended to HEX-rules
and programs in the obvious way, and the notion of extension ext(·,A) for exter-
nal predicates &g with input lists p is naturally defined by ext(&g[p],A) = {c |
f&g(A,p, c) = 1}.

An input predicate p of an external predicate with input list &g[p] is monotonic
(antimonotonic), iff f&g(A,p, c) = 1 implies f&g(A

′,p, c) = 1 (f&g(A,p, c) = 0
implies f&g(A

′,p, c) = 0) for all A′ s.t. ext(p,A′) ⊇ ext(p,A) and ext(q,A′) =
ext(q,A) for q ∈ p and q �= p. The sublist of all monotonic resp. antimonotonic p is
denoted by m(&g) resp. a(&g) and the sublist of neither monotonic nor antimonotonic
(i.e., nonmonotonic) p by n(&g); we also write pτ for τ(&g), τ ∈ {m, a, n}.

Definition 2 (FLP-Reduct [12]). For an interpretation A over a programΠ , the FLP-
reduct of Π wrt. A is the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules
whose body is satisfied under A.

An assignment A1 is smaller or equal to another assignment A2 wrt. a program Π ,
denoted A1 ≤Π A2 iff {Ta ∈ A1 | a ∈ A(Π)} ⊆ {Ta ∈ A2 | a ∈ A(Π)}.

Definition 3 (Answer Set). An answer set of Π is a ≤Π -minimal model A of fΠA.

Since interpretations (thus answer sets) are complete assignments, slightly abusing no-
tation, we uniquely identify them with the set of all positive literals they contain.

Example 1. Consider the programΠ = {p← &id [p]()}, where &id [p]() is true iff p is
true. Then Π has the answer set A1 = ∅; indeed it is a ≤Π-minimal model of fΠA1 =
∅.

The answer sets of a HEX-programΠ are determined by the DLVHEX solver using a trans-
formation to ordinary ASP programs as follows. Each external atom &g[p](c) inΠ is re-
placed by an ordinary ground external replacement atom e&g[p](c) and a rule e&g[p](c)∨
ne&g[p](c) ← is added to the program. The answer sets of the resulting guessing pro-

gram Π̂ are determined by an ordinary ASP solver and projected to non-replacement
atoms. However, the resulting assignments are not necessarily models ofΠ , as the value
of &g[p] under f&g can be different from the one of e&g[p](c). Each answer set of Π̂
is thus merely a candidate which must be checked against the external sources. If no
discrepancy is found, the model candidate is a compatible set of Π . More precisely,

164 T. Eiter et al.

Definition 4 (Compatible Set). A compatible set of a program Π is an assignment Â
(i) which is an answer set [14] of the guessing program Π̂ , and

(ii) f&g(Â,p, c) = 1 iff Te&g[p](c) ∈ Â for all external atoms &g[p](c) in Π , i.e.

the guessed values coincide with the actual output under the input from Â.

The compatible sets of Π computed by DLVHEX include (modulo A(Π)) all (FLP)
answer sets. For each answer set A there is a compatible set Â such that A is the re-
striction of Â to non-replacement atoms, but not vice versa. To filter out the compatible
sets which are not answer sets, the current evaluation algorithm proceeds as follows.
Each compatible set A is fed to the FLP check, which explicitly constructs fΠA. After
that, all models of the reduct are enumerated and compared to A. If there is a model
which is strictly smaller than A wrt. Π , then A is rejected, otherwise A is an answer
set.

Example 2 (cont’d). Reconsider the program Π = { p← &id [p]() } from above. Then
the corresponding guessing program is Π̂ = {p← e&id [p](); e&id [p] ∨ ne&id [p] ←} and
has the answer sets A1 = ∅ and A2 = {Tp,Te&id [p]}. While A1 is also a≤Π-minimal
model of fΠA1 = ∅, A2 is not a ≤Π-minimal model of fΠA2 = Π .

3 Unfounded Set Detection

It appears that in most current application scenarios there is no smaller model of the
reduct fΠA, i.e., most assignments A extracted from compatible sets Â pass the FLP
check. Moreover, this check is computationally costly: all models of fΠA must be enu-
merated, along with calls to the external sources to ensure compatibility. Even worse,
as we need to search for a smaller model and not just for a smaller compatible set, fΠA

usually has even more models then the original program. More precisely, the explicit
FLP check corresponds to the search for compatible sets of the following program:

fΠ̂Â ∪ {← a | a is ordinary ,Ta �∈ Â} ∪ {a ∨ a′ ←| Ta ∈ Â}
∪ {← not smaller} ∪ {smaller ← not a | a is ordinary ,Ta ∈ Â}.

It consists of the reduct fΠ̂Â and rules that restrict the search to proper subinterpreta-
tions of Â, where smaller is a new atom. Moreover, as we actually need to search for
models and not just compatible sets, rules of the form a∨a′ ← (where a′ is a new atom
for each Ta ∈ Â) make sure that atoms can be arbitrarily true without having a justi-
fying rule in Π . Because of these guessing rules, the rules in the reduct fΠ̂Â—except
for the guesses on replacement atoms—can be rewritten to constraints, which is more
efficient. Our comparison in Section 5 uses this optimized version of the explicit check,
but still demonstrates a significant performance gain by our novel approach.

In this section we present a novel FLP check algorithm based on unfounded sets
(UFS). That is, instead of explicitly searching for smaller models of the reduct, we
check if the candidate answer set is unfounded-free. For now, the unfounded set-based
check is also realized as a post-check, i.e., it is carried out only after the interpretation
has been completed. Nevertheless it performs much better than the explicit FLP check.

Exploiting Unfounded Sets for HEX-Program Evaluation 165

Investigating the effects of doing this check over partial interpretations and interleaving
it with the main search for compatible sets is future work. We use unfounded sets for
logic programs as introduced in [11] for programs with arbitrary aggregates.

Definition 5 (Unfounded Set). Given a program Π and an assignment A, let X be
any set of ordinary ground atoms appearing in Π . Then, X is an unfounded set for Π
wrt. A if, for each rule r having some atoms from X in the head, at least one of the
following conditions holds, where A

.
∪ ¬.X = (A \ {Ta | a ∈ X}) ∪ {Fa | a ∈ X}:

(i) some literal of B(r) is false wrt. A,
(ii) some literal of B(r) is false wrt. A

.
∪ ¬.X , or

(iii) some atom of H(r) \X is true wrt. A

Intuitively, an unfounded set is a set of atoms which only cyclically support each other.
Answer sets can be characterized in terms of unfounded sets.

Definition 6 (Unfounded-free Interpretations). An interpretation A of a program Π
is unfounded-free iff AT ∩X = ∅, for all unfounded sets X of Π wrt. A.

Theorem 1 (Characterization of Answer Sets). A model A of a program Π is an
answer set iff it is unfounded-free.

Example 3. Consider the program Π and A2 from Example 2. Then X = {p} is an
unfounded set since X intersects with the head of p ← &id [p]() and A

.
∪ ¬.X �|=

&id [p](). Therefore A2 is not unfounded-free and not an answer set.

3.1 Nogoods for Unfounded Set Search Encoding

We realize the search for unfounded sets using nogoods, i.e., for a given Π and an
assignment A we construct a set of nogoods, such that solutions to this set correspond
to (potential) unfounded sets. We then use a SAT solver to search for such unfounded
sets.

Our encoding of unfounded set detection, which is related to [3] but respects external
atoms, uses a set ΓA

Π = NA
Π ∪ OA

Π , of nogoods where NA
Π contains all necessary

constraints and OA
Π are optional optimization nogoods that prune irrelevant parts of the

search space. The idea is that the set of ordinary atoms of a solution to ΓA
Π represents a

(potential) unfounded set U of Π wrt. A, while the external replacement atoms encode
the truth values of the corresponding external atoms under A

.
∪ ¬.U .

Let B+
o (r) be the subset of B+(r) consisting of all ordinary atoms, and Be(r) the

subset of B(r) consisting of all external replacement atoms. Then, the nogood set ΓA
Π

is built over atoms A(ΓA
Π) = A(Π̂) ∪ {hr, lr | r ∈ Π}, where hr, and lr are addi-

tional atoms for every rule r in Π . The mandatory part NA
Π = {{Fa | Ta ∈ A}} ∪(⋃

r∈Π Rr,A

)
consists of a nogood {Fa | Ta ∈ A}, eliminating unfounded sets that

do not intersect with true atoms in A, as well as nogoods Rr,A for every r ∈ Π . The
latter consist of a head criterionHr,A and a conditional part Cr,A for each rule, defined
by:

– Rr,A = Hr,A ∪Cr,A, where
– Hr,A = {{Thr} ∪ {Fh | h ∈ H(r)}} ∪ {{Fhr,Th} | h ∈ H(r)}

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set;

166 T. Eiter et al.

– Cr,A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{{Thr} ∪
{Fa | a ∈ B+

o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪
{Th | h ∈ H(r),A |= h}} ifA |= B(r),

{} otherwise
encodes that condition (i), (ii) or (iii) of Definition 5 must hold if hr is true.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U �= ∅ (hr is true)
it must not happen that A |= B(r) (condition (i) fails), no a ∈ B+

o (r) with A |= a is in
the unfounded set and all a ∈ Be(r̂) are true under A

.
∪ ¬.U (condition (ii) fails), and

all h ∈ H(r) with A |= h are in the unfounded set (condition (iii) fails).
Towards computing unfounded sets, observe that they can be extended to solutions

to the set of nogoods ΓA
Π overA(ΓA

Π). Conversely, the solutions to ΓA
Π include specific

extensions of all unfounded sets, characterized by induced assignments: That is, by
assigning true to all atoms in U , to all hr such that H(r) intersects with U , and to all
external replacement atoms e&g[p](c) such that &g[p](c) is true under A

.
∪ ¬.U , and

assigning false to all other atoms in A(ΓA
Π). More formally, we define:

Definition 7 (Induced Assignment of an Unfounded Set). Let U be an unfounded set
of a program Π wrt. assignment A. The assignment induced by U , denoted I(U, ΓA

Π),
is

I(U, ΓA
Π) = I ′(U, ΓA

Π) ∪ {Fa | a ∈ A(ΓA
Π),Ta �∈ I ′(U, ΓA

Π)}, where

I ′(U, ΓA
Π) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π,H(r) ∩ U �= ∅} ∪

{Te&g[p](c) | e&g[p](c) ∈ A(Π̂),A
.
∪ ¬.U |= &g[p](c)}.

While concrete instances for OA
Π are defined in Section 4, note that for the next result

we simply require that the optimization part OA
Π is conservative in the sense that for

every unfounded set U of Π wrt. A, it holds that I(U, ΓA
Π) is a solution to OA

Π as well
(which is shown for the different optimizations considered in the next section). Then,
the solutions to ΓA

Π include all assignments induced by unfounded sets of Π wrt. A
(but not every solution corresponds to such an induced assignment, intuitively because
it does not reflect the semantics of external sources).

Proposition 1. Let U be an unfounded set of a programΠ wrt. assignment A such that
AT ∩ U �= ∅. Then I(U, ΓA

Π) is a solution to ΓA
Π .

Proof (Sketch). We make a proof by contraposition and show that if I(U, ΓA
Π) is not a

solution to ΓA
Π , then U cannot be an unfounded set.

First observe that the nogoods in Hr,A demand Thr to be true for a rule r ∈ Π if
and only if some head atom h ∈ H(r) of this rule is in U . As the conditions in these
nogoods are mutually exclusive and therefore consistent, and the truth value of hr in
I(U, ΓA

Π) is defined exactly to this criterion, Cr,A must be involved in a contradiction.
Moreover, the nogood {Fa | Ta ∈ A} ∈ NA eliminates I(U, ΓA

Π) only if U does
not intersect with the positive atoms in A. This is no problem because we are only
interested in such unfounded sets.

Therefore, if I(U, ΓA
Π) is not a solution to ΓA

Π , then for some rule r ∈ Π the nogood
in Cr,A must be violated. That is, we know the following: Thr ∈ I(U, ΓA

Π) (and
therefore H(r) ∩ U �= ∅), Fa ∈ I(U, ΓA

Π) for all a ∈ B+
o (r), ta ∈ I(U, ΓA

Π) for all

Exploiting Unfounded Sets for HEX-Program Evaluation 167

a ∈ Be(r̂), and Th ∈ I(U, ΓA
Π) for all h ∈ H(r) with A |= h. Moreover, we have

Cr,A �= ∅. We now show that this implies that none of the conditions of Definition 5
holds for r wrt. U and A, which contradicts the assumption that U is an unfounded set.

Condition (i) does not hold for r because A |= B(r) (otherwise Cr,A = ∅).
Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there

must be some b ∈ B(r) s.t. A
.
∪ ¬.U �|= b. Because Cr,A �= ∅, we know that A |= b.

We make a case distinction on the type of b:
– If b is a positive ordinary atom, then Fb ∈ I(U, ΓA

Π) and therefore b �∈ U . Conse-
quently A

.
∪ ¬.U |= b. Contradiction.

– If b is a negative ordinary atom, then A |= b implies A
.
∪ ¬.U |= b. Contradiction.

– If b is a positive or default-negated replacement atom of an external , then tb ∈
I(U, ΓA

Π). But this implies, by definition of I(U, ΓA
Π), that A

.
∪ ¬.U |= b. Contra-

diction.
Condition (iii) does not hold for r because Th ∈ I(U, ΓA

Π) and thus, by definition of
I(U, ΓA

Π), h ∈ U for all h ∈ H(r) with A |= h. Thus A �|= a for all a ∈ H(r) \ U . �

Corollary 1. If ΓA
Π has no solution, then U ∩ AT = ∅ for every unfounded set U of

Π .

The next property allows us to find the unfounded sets of Π wrt. A among all solutions
to ΓA

Π by using a postcheck on the external atoms.

Proposition 2. Let S be a solution to ΓA
Π such that

(a) Te&g[p](c) ∈ S and A �|= &g[p](c) implies A
.
∪ ¬.U |= &g[p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g[p](c) implies A
.
∪ ¬.U �|= &g[p](c)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

Informally, the proposition states that true non-replacement atoms in S which also ap-
pear in Π form an unfounded set, provided that truth of the external replacement atoms
e&g[p](c) in S coincides with the truth of the corresponding &g[p](c) under A

.
∪ ¬.U

(as in Definition 7). However, this check is just required if the truth value of e&g[p](c)
in S and of &g[p](c) under A differ. This gives rise to an important optimization for
the implementation: external atoms, whose (known) truth value of &g[p](c) under A
matches the truth value of e&g[p](c) in S, do not need to be postchecked.

Proof (Sketch). Suppose U is not an unfounded set. Then there is a r ∈ Π s.t. H(r) ∩
U �= ∅ and none of the conditions in Definition 5 is satisfied. We show now that S
cannot be a solution to ΓA

Π .
Because condition (i) does not hold, there is a nogood of form

{{Thr}∪{Fa | a ∈ B+
o (r),A |= a}∪{ta | a ∈ Be(r̂)}∪{Th | h ∈ H(r),A |= h}}

in ΓA
Π .

We now show that S contains all signed literals of this nogood, i.e., the nogood is
violated under S.

Because of H(r) ∩ U �= ∅, Thr ∈ S (otherwise a nogood in HA
r is violated).

168 T. Eiter et al.

As U is not an unfounded set, condition (ii) in Definition 5 does not hold. Consider
all a ∈ B+

o (r) s.t. A |= a. Then a �∈ U , otherwise A
.
∪ ¬.U �|= a and we have a

contradiction with the assumption that condition (ii) is unsatisfied. But then Fa ∈ S.
Now consider all &g[p](c) ∈ Be(r). Then A

.
∪ ¬.U |= &g[p](c) (as (ii) is vio-

lated). If A �|= &g[p](c), then condition (i) would be satisfied, hence A |= &g[p](c).
But then Te&g[p](c) ∈ S, otherwise A

.
∪ ¬.U �|= &g[p](c) by precondition (b) of this

proposition. Next consider all not&g[p](c) ∈ Be(r). Then A
.
∪ ¬.U �|= &g[p](c)

(as (ii) is violated). If A |= &g[p](c), then condition (i) would be satisfied, hence
A �|= &g[p](c). But then Fe&g[p](c) ∈ S, otherwise A

.
∪ ¬.U |= &g[p](c) by precon-

dition (a) of this proposition. Therefore, we have ta ∈ S for all a ∈ Be(r̂).
Finally, because condition (iii) in Definition 5 does not hold, h ∈ U and therefore

also Th ∈ S for all h ∈ H(r) with A |= a.
This concludes the proof that S cannot be a solution to ΓA

Π satisfying (a) and (b), if
U is not an unfounded set. �

Example 4. Reconsider program Π = {r1 : p ← &id [p]()} from Ex. 2 and the com-
patible set A2 = {Tp,Te&id [p]}. The nogood set NA2

Π = {{Thr1,Fp}, {Fhr1,Tp},
{Thr1 ,Te&id [p](),Tp}} has solutions S⊇{Thr1 ,Tp,Fe&id[p]()}, which correspond

to the unfounded set U = {p}. Here, Fe&id [p]() represents that A2

.
∪ ¬.U �|=&id [p]().

Note that due to the premises in Conditions (a) and (b) of Proposition 2, the postcheck
is faster if Te&g[p](c) ∈ S whenever A |= &g[p](c) holds for many external atoms in
Π . This can be exploited during the construction of S as follows: If it is not absolutely
necessary to set the truth value of e&g[p](c) differently, then carry over the value from
&g[p](c) under A. Specifically, this is successful if e&g[p](c) does not occur in ΓA

Π .

4 Optimization and Learning

In this section we first discuss some refinements and optimizations of our encoding of
nogoods for UFS search. In particular, we add additional nogoods which prune irrele-
vant parts of the search space. After that, we propose a strategy for learning nogoods
from detected unfounded sets, avoiding that the same unfounded set is generated again
later.

4.1 Optimization

The following optimizations turned out to be effective in improving UFS search.

Restricting the UFS Search to Atoms in the Compatible Set. First, not all atoms in
a program are relevant for the unfounded set search: atoms that are false under A can
be ignored. Formally one can show the following:

Proposition 3. If U is an unfounded set of Π wrt. A and there is an a ∈ U s.t. A �|= a,
then U \ {a} is an unfounded set of Π wrt. A.

Exploiting Unfounded Sets for HEX-Program Evaluation 169

Proof (Sketch). Let r ∈ Π s.t. H(r) ∩ (U \ {a}) �= ∅. We have to show that one of the
conditions of Definition 5 holds wrt. A and U \ {a}.

Because U is an unfounded set of Π wrt. A and H(r) ∩ (U \ {a}) �= ∅ implies
H(r) ∩ U �= ∅, one of the conditions of Definition 5 holds wrt. A and U . If this is
condition (i) or (iii), it also holds wrt. U \ {a} because these condition depend only on
r and A. Also if condition (ii) holds, it also holds wrt. U \ {a} because A

.
∪ ¬.U is

equivalent to A
.
∪ ¬.(U \ {a}) since a �∈ U . �.

Avoiding Guesses of External Replacement Atoms. Second, in some situations the
truth value of an external replacement atom b in a solution S to ΓA

Π is void. That is, both
(S \{Tb,Fb})∪{Tb} and (S \{Tb,Fb})∪{Fb} are solutions to ΓA

Π (which represent
the same unfounded set). Then we can set the truth value to an (arbitrary) fixed value
instead of inspecting both alternatives. The following provides a sufficient criterion:

Proposition 4. Let b be an external atom replacement, and let S be a solution to ΓA
Π .

If for all rules r ∈ Π , such that A |= B(r) and where b ∈ B+(r̂) or b ∈ B−(r̂), either

(a) for some a ∈ B+
o (r) such that A |= a, it holds that Ta ∈ S; or

(b) for some a ∈ H(r) such that A |= a, it holds that Fa ∈ S;

then both (S \ {Tb,Fb}) ∪ {Tb} and (S \ {Tb,Fb}) ∪ {Fb} are solutions to ΓA
Π .

Proof (Sketch). Suppose that changing the truth value of b in S turns the solution to a
counterexample of ΓA

Π . Then there must be a violated nogood N ∈ ΓA
Π containing b,

i.e., Tb ∈ N or Fb ∈ N . But this nogood corresponds to a rule with b ∈ B+(r̂) or
b ∈ B−(r̂) and A |= B(r), and it contains also the signed literals (1) Fa for all a ∈ B+

o

with A |= a and (2) Ta for all a ∈ H(r) with A |= a.
By precondition of the proposition we have either (a) Ta ∈ S for some a ∈ B+

o (r)
with A |= a, or (b) Fa for some a ∈ H(r) with A |= a. But then the nogood cannot be
violated, because (a) contradicts one of (1) and (b) contradicts one of (2). �

This property can be utilized by adding the following additional nogoods. Recall that
A(ΓA

Π) contains atoms lr for every r ∈ Π . They are intuitively used to encode for a
solution S to ΓA

Π , whether the truth values of the external atom replacements in B(r)
are relevant, or whether they can be set arbitrarily for r. The following nogoods label
relevant rules r, forcing lr to be false iff one of the preconditions in Proposition 4 holds:

LA
r ={{Tlr,Ta} | a ∈ B+

o (r),A |= a} ∪ {{Tlr,Fa} | a ∈ H(r),A |= a} ∪
{{Flr} ∪ {Fa | a ∈ B+

o (r),A |= a} ∪ {Ta | a ∈ H(r),A |= a}}.

These constraints exclusively enforce Tlr or Flr. Hence, the truth value of lr determin-
istically depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Prop. 4 we can set the truth value of an external replacement atom b arbitrarily,
if lr is false for all r such that b ∈ B+(r̂) or b ∈ B−(r̂). As mentioned after Prop. 2, it is
advantageous to set the truth value of e&g[p](c) to the one of &g[p](c) underA, because
this can reduce the number of external atoms that must be checked. The following
nogoods enforce a coherent interpretation of the external replacement atoms:

FA
r ={{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Fb} | b ∈ Be(r̂),A |= b} ∪

{{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Tb} | b ∈ Be(r̂),A �|= b}

170 T. Eiter et al.

In summary, our optimization part therefore is given by OA
Π =
⋃

r∈Π LA
r ∪ FA

r .

Example 5. Consider the program Π = {r1 : p ← &id [p]()., r2 : q ← &id [q]().},
and the compatible set A = {Tp,Fq,Te&id[p](),Fe&id [q]()}. Then, NA

Π has solutions
S1 ⊇ {Thr1 ,Tp,Fe&id [p](),Fhr2 ,Fq,Fe&id [q]()} and S2 ⊇ {Thr1 ,Tp,Fe&id[p](),
Fhr2 ,Fq,Te&id[q]()} (which represent the same unfounded set U = {p}). Here, the
optimization part for r2, LA

r2 ∪ FA
r2 = {{Tlr2,Fq}, {Flr2,Tq}, {Flr2 ,Te&id [q]()}},

eliminates solutions S2 for ΓA
Π . This is beneficial as for solutions S1 the postcheck is

easier (e&id [q]() in S1 and &id [q]() have the same truth value under A).

Exchanging Nogoods between UFS and Main Search. The third optimization allows
for the exchange of learned knowledge about external atoms between the UFS check
and the main search for compatible sets. For this purpose, we first define nogoods which
correctly describe the input-output relationship of external atoms.

Definition 8. A nogood of the form N = {Tt1, . . . ,Ttn, Ff1, . . . ,Ffm, ◦e&g[p](c)},
where ◦ is T or F, is a valid input-output-relationship, iff for all assignments A, Tti ∈
A, for 1 ≤ i ≤ n, and Ffi ∈ A, for 1 ≤ i ≤ m, implies A |= &g[p](c) if ◦ = F,
and A �|= &g[p](c) if ◦ = T.

Let N be a nogood which is a valid input-output-relationship learned during the main
search, i.e., for compatible sets of Π̂ , and let ◦̄ = T if ◦ = F, resp. ◦̄ = F if ◦ = T.

Definition 9 (Nogood Transformation T). For a valid input-output relationship N
and an assignment A, the nogood transformation T is defined as

T (N,A) =

⎧⎪⎨⎪⎩
∅ if Fti ∈ A for some 1 ≤ i ≤ n,

{{Ft1, . . . ,Ftn} ∪ {◦e&g[p](c)}} ∪
{Tfi | 1 ≤ i ≤ m,A |= fi} otherwise.

The next result states that T (N,A) can be considered, for all valid input-output rela-
tionships N under all assignments A, without losing unfounded sets.

Proposition 5. Let N be a valid input-output relationship, and let U be an unfounded
set wrt. Π and A. Then I(U, ΓA

Π) is a solution to T (N,A).

Proof (Sketch). If T (N,A) = ∅ then the proposition trivially holds. Otherwise T (N,
A) = {C} we know that Tti ∈ A for all 1 ≤ i ≤ n. Suppose C is violated. Then
Fti ∈ I(U, ΓA

Π) and therefore ti �∈ U for all 1 ≤ i ≤ n, and Tfi ∈ I(U, ΓA
Π) for all

1 ≤ i ≤ m with A |= fi, and ◦e&g[p](c) ∈ I(U, ΓA
Π).

But then A
.
∪ ¬.U |= ti for all 1 ≤ i ≤ n and A

.
∪ ¬.U �|= fi for all 1 ≤ i ≤

m. Because nogood N is a valid input-output-relationship, this implies ◦̄&g[p](c) ∈
A

.
∪ ¬.U . Then by definition of I(U, ΓA

Π) we have ◦̄e&g[p](c) ∈ I(U, ΓA
Π), which

contradicts the assumption that T (N,A) is violated. �

Hence, all valid input-output relationships for external atoms which are learned dur-
ing the search for compatible sets, can be reused (applying the above transformation)
for the unfounded set check. Moreover, during the evaluation of external atoms in the
postcheck for candidate unfounded sets (solutions to ΓA

Π), further valid input-output
relationships might be learned. These can in turn be used by further unfounded set
checks.

Exploiting Unfounded Sets for HEX-Program Evaluation 171

Example 6 (Set Partitioning). Consider the program Π

sel(a)← domain(a),&diff [domain , nsel](a)

nsel(a)← domain(a),&diff [domain , sel](a)

domain(a) ←

where &diff [p, q](X) computes the set of all elements X which are in the exten-
sion of p but not in the extension of q. Informally, this program implements a choice
from sel(a) and nsel(a). Consider the compatible set AT = {domain(a), sel(a),
e&diff [nsel](a)}. Suppose the main search has learned the input-output relationshipN =
{Tdomain(a), Fnsel(a),Fe&diff [nsel](a)}. Then the transformed nogood is
T (N,A)={{Fdomain(a), Fe&diff [nsel](a)}}, which intuitively encodes that, if
domain(a) is not in the unfounded set U , then e&diff [nsel](a) is true under A

.
∪ ¬.U .

This is clear because e&diff [nsel](a) is true under A and it can only change its truth
value if domain(a) becomes false.

However, it is important that this optimization cannot be simultaneously used with the
previous one as this can result in contradictions due to (transformed) learned nogoods.
Consequently, the previous optimization has been disabled in running our experiments.

4.2 Learning Nogoods from Unfounded Sets

Until now only detecting unfounded sets has been considered. A strategy to learn from
detected unfounded sets for the main search for compatible sets is missing. Here we
develop such a strategy and call it unfounded set learning (UFL).

Example 7. Consider the program Π = { p ← &id [p](); x1 ∨ x2 ∨ · · · ∨ xk ←}. As
we know from Example 3, {p} is a UFS wrt. A= {Tp,Te&id ()}, regarding just the
first rule. However, the same is true for any A′ ⊃ A regarding Π , i.e., p must never be
true.

The program in Example 7 has many compatible sets, and half of them (all where p
is true) will fail the UFS check for the same reason. We thus develop a strategy for
generating additional nogoods to guide the further search for compatible sets in a way,
such that the same unfounded sets are not reconsidered.

For an unfounded set U of Π wrt. A we define the following set of learned nogoods:

L(U,Π,A) = {{σ0, σ1, . . . , σj} | σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j)} ,

where Hi = {Th ∈ H(ri) | h �∈ U,A |= h} ∪ {Fb ∈ B+
o (ri) | A �|= b} and

{r1, . . . , rj} = {r ∈ Π | H(r) ∩ U �= ∅, U ∩ B+
o (r) = ∅} is the set of external rules

of Π wrt. U , i.e., all rules which do not depend on U .
Formally we can show that adding this set of nogoods is correct:

Proposition 6. If U is an unfounded set of Π wrt. A, then every answer set of Π is a
solution to the nogoods in L(U,Π,A).

172 T. Eiter et al.

Proof (Sketch). Suppose there is an answer set A′ of Π which is not a solution to a
nogood in L3(U,Π,A) We show that then U is an unfounded set of Π wrt. A′ which
intersects with A′.

Let {σ0, σ1, . . . , σn} be a violated nogood. Let r ∈ Π be a rule such thatH(r)∩U �=
∅. We have to show that one of the conditions of Definition 5 holds.

IfB+
o (r)∩U �= ∅, then condition (ii) holds, therefore we can assumeB+

o (r)∩U = ∅.
Then r is an external rule of Π wrt. U . But then there is a σi with 1 ≤ i ≤ n such that
either (1) σi = Th for some h ∈ H(r) with h �∈ U and A |= h, or (2) σi = Fb for
some b ∈ B+

o (r) with A �|= b. Because the nogood is violated by A′ by assumption, we
have σi ∈ A′. If (1) then condition (iii) is satisfied, if (2) then condition (i) is satisfied.

Moreover, by definition of L3 there is an a ∈ U s.t. Ta ∈ A′, i.e., A′ intersects with
U . �

Example 8. Consider the program Π from Example 7 and suppose we have found the
unfounded set U = {p} wrt. interpretation A = {Tp,Tx1} ∪ {Fai | 1 < i ≤ k}.
Then the learned nogood L2(U,A, Π) = {Tp} immediately guides the search to the
part of the search tree where p is false, i.e., roughly half of the guesses are avoided.

We also considered a different learning strategy based on the models of fΠA rather
than the unfounded set U itself, hinging on the observation (cf. [12]) that for every
unfounded set U , A

.
∪ ¬.U is a model of fΠA (hence U �= ∅ refutes A as a minimal

model of fΠA). However, this strategy appeared to be inferior to the one above.

5 Implementation and Evaluation

For implementing our technique, we integrated CLASP into our prototype system
DLVHEX; we use CLASP as an ASP solver for computing compatible sets and as a SAT
solver for solving the nogood set of the UFS check. We evaluated the implementation
on a Linux server with two 12-core AMD 6176 SE CPUs with 128GB RAM.

Table 1 summarizes our benchmark results (plain stands for disabling EBL and
UFL). We can see a clear improvement both for synthetic and for application instances,2

due to the UFS check and EBL. Moreover, a closer analysis shows that the UFS check
in some cases not only decreases the runtime but also the numbers of enumerated can-
didates (UFS candidates resp. model candidates of the FLP reduct) and of external atom
evaluations.

Set Partitioning. This benchmark extends the program from Ex. 6 by the additional
constraint ← sel(X), sel(Y), sel(Z), X �=Y,X �=Z, Y �=Z and varies the size of
domain . Here we see a big advantage of the UFS check over the explicit check, both
for computing all answer sets and for finding the first one. A closer investigation shows
that the improvement is mainly due to the optimizations described in Sec. 4 which make
the UFS check investigate significantly fewer candidates than the explicit FLP check.
Furthermore the UFS check requires fewer external computations.

Multi-Context Systems (MCSs). MCSs [1] are a formalism for interlinking knowl-
edge based systems; in [8], inconsistency explanations (IEs) for an MCS were defined.

2 Detailed instance information: http://www.kr.tuwien.ac.at/staff/ps/unfoundedsets/

Exploiting Unfounded Sets for HEX-Program Evaluation 173

This benchmark computes the IEs, which correspond 1-1 to answer sets of an encoding
rich in cycles through external atoms (which evaluate local knowledge base semantics).
We use random instances of different topologies created with an available benchmark
generator.

For most instances, we observed that the number of candidates for smaller models of
the FLP reduct equals the one of unfounded set candidates. This is intuitive as each un-
founded set corresponds to a smaller model; the optimization techniques do not prune
the search space in this case. However, as we stop the enumeration as soon as a smaller
model resp. an unfounded set is found, depending on the specific program and solver
heuristics, the explicit and the UFS check may consider different numbers of interpre-
tations. This explains why the UFS check is sometimes slightly slower than the explicit
check. However, it always has a smaller delay between different UFS candidates, which
sometimes makes it faster even if it visits more candidates.

The effects of external behavior learning [6] and of unfounded set learning is clearly
evident in the MCS benchmarks: the UFS check profits more from EBL than the explicit
check, further adding to its advantage. By activating UFL (not possible in the explicit
check) we gain another significant speedup.

Intuitively, consistent and inconsistent MCSs are dual, as for each candidate the ex-
plicit resp. UFS check fails, i.e., stops early, vs. for some (or many) candidates the
check succeeds (stops late). However, the mixed results do not permit us to draw solid
conclusions on the computational relationship of the evaluation methods.

Note that MCS topologies are bound to certain system sizes, and the difficulty of the
instances varies among topologies; thus larger instances may have shorter runtimes.

Table 1. Benchmark Results (— indicates timeout (300s) of resp. instances)
(a) Inconsistent MCSs

#c
on

te
xt

s compute all answer sets finding first answer set
explicit check UFS check explicit check UFS check

plain +EBL plain +EBL +UFL plain +EBL plain +EBL +UFL

3 9.08 6.11 6.29 2.77 0.85 4.01 2.53 3.41 1.31 0.57
4 89.71 36.28 80.81 12.63 5.27 53.59 16.99 49.56 6.09 1.07
5 270.10 234.98 268.90 174.23 18.87 208.62 93.29 224.01 32.85 3.90
6 236.02 203.13 235.55 179.24 65.49 201.84 200.06 201.24 166.04 28.34
7 276.94 241.27 267.82 231.08 208.47 241.09 78.72 240.72 66.56 16.41
8 286.61 153.41 282.96 116.89 69.69 201.10 108.29 210.61 103.11 30.98
9 — 208.92 — 191.46 175.26 240.75 112.08 229.14 76.56 44.73
10 — — — 289.87 289.95 — 125.18 — 75.24 27.05

(b) Consistent MCSs

#c
on

te
xt

s (no answer sets)
explicit check UFS check

plain +EBL plain +EBL +UFL

3 8.61 4.68 7.31 2.44 0.50
4 86.55 48.53 80.31 25.98 1.89
5 188.05 142.61 188.10 94.45 4.62
6 209.34 155.81 207.14 152.32 14.39
7 263.98 227.99 264.00 218.94 49.42
8 293.64 209.41 286.38 189.86 124.23
9 — 281.98 — 260.01 190.56

10 — 274.76 — 247.67 219.83

(c) Argumentation (plain)

#a
rg

s all answer sets first answer set

Explicit UFS Explicit UFS

5 1.47 1.13 0.70 0.62
6 4.57 2.90 1.52 1.27
7 19.99 10.50 3.64 2.77
8 80.63 39.01 9.46 6.94
9 142.95 80.66 30.12 20.97
10 240.46 122.81 107.14 63.50

(d) Set Partitioning

n 3 4 5 6 7 8 9 10 11 12 13 · · · 20

al
la

ns
w

er
s explicit 0.2 1.2 10.9 94.3 — — — — — — — — —

+EBL 0.1 0.5 4.3 34.8 266.1 — — — — — — — —
UFS 0.1 0.1 0.2 0.3 0.8 1.8 4.5 11.9 32.4 92.1 273.9 — —

+EBL 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.8 1.2 · · · 11.1

fir
st

an
sw

er explicit 0.1 0.2 0.7 4.3 26.1 163.1 — — — — — — —
+EBL 0.1 0.2 0.8 4.9 31.1 192.0 — — — — — — —

UFS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 · · · 0.5
+EBL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 · · · 0.3

174 T. Eiter et al.

Abstract Argumentation. In this benchmark we compute ideal set extensions for ran-
domized instances of abstract argumentation frameworks [4] of different sizes.

Table 1c shows average runtimes, each accumulated over 10 benchmark instances.
In these instances, few unfounded sets exist, hence both the explicit and the UFS check
often enumerate all candidates before they stop the search. As with MCS, the numbers
of reduct model candidates and UFS candidates is in most cases equal, but the UFS
check again enumerates its candidates faster; this explains the observed speedup.

Different from MCS, external learning prunes the search space only very little for
these benchmarks, which can be explained by the structure of the encoding. Also UFL
does not help much here, as few unfounded sets exist.

UNSAT. We also experimented with an encoding of the propositional UNSAT problem
based on aggregates (not shown in figures), which was used in [11] to show the hardness
result for the UFS decision problem. Here the optimizations discussed in Section 4
prune the search space (as in the set partitioning benchmark), which makes the UFS
check enumerate fewer candidates, involving also fewer external atom calls.

6 Discussion and Conclusion

Related to our work is [15], which reduces stable model checking for disjunctive logic
programs to unsatisfiability testing of CNFs, which like answer set checking from FLP-
reducts is co-NP-complete [12]. The difference between ordinary disjunctive programs
and FLP programs with external atoms is that co-NP-hardness holds already for Horn
programs with nonmonotonic external atoms that are decidable in polynomial time. For
computationally harder external atoms, the complexity increases relative to an oracle
for the external function (see [12]). The approach of [15] is extended to conflict-driven
learning and unfounded set checking in [3]. Here, two CLASP [13] instances generate
and check answer set candidates. As model checking may become computationally
harder in our setting, the results there do not carry over immediately.

We presented a new algorithm for deciding whether a model A of a HEX-programΠ
is a subset-minimal model of its FLP-reduct fΠA, adopting the notion of unfounded set
in [11]. We realized unfounded set (UFS) checking by an encoding as a SAT instance,
which produces candidate unfounded sets. Subsequently a (rather simple) postcheck
decides whether there is indeed an unfounded set. Experiments have shown that this
check is much more efficient than the explicit minimality check. We showed how to
learn from identified unfounded sets, by deriving nogoods which guide future search in
model generation and help avoiding to rediscover unfounded sets.

Our ongoing work includes interleaving UFS checks with the model generation pro-
cess, i.e., on incomplete interpretations. If it is clear that a partial interpretation can
never become an answer set, one can backtrack earlier; this may pay off for certain
classes of instances. Furthermore, we investigate sufficient conditions to simplify the
UFS check, aim at syntactic properties that are easy to check. Of particular interest are
relevant program classes for which the UFS check can be skipped; this holds e.g. for
programs without cyclic information flow through external atoms.

Another issue for future work is to study heuristics for guiding the search for an
unfounded set. Currently, our implementation applies the same strategies as for the

Exploiting Unfounded Sets for HEX-Program Evaluation 175

model generation task. Our experimental comparison with the explicit FLP check in
terms of candidate sets considered, however, suggests that there might be room for
improvement by employing specific choices. Developing appropriate such heuristics,
and validating their effectiveness on candidate set enumeration remains to be explored.

References

1. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems.
In: AAAI 2007, pp. 385–390. AAAI Press (2007)

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

3. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In: KR 2008, pp. 422–432. AAAI Press
(2008)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

5. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing Efficient Evaluation of
HEX Programs by Modular Decomposition. In: Delgrande, J.P., Faber, W. (eds.) LPNMR
2011. LNCS, vol. 6645, pp. 93–106. Springer, Heidelberg (2011)

6. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with external
sources. Theor. Pract. Log. Prog. (to appear, 2012)

7. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Improving HEX-Program Evalu-
ation based on Unfounded Sets. Tech. Rep. INFSYS RR-1843-12-08. TU, Wein (2012)

8. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in Multi-
Context Systems. In: KR 2010, pp. 329–339. AAAI Press (2010)

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI 2005, pp. 90–
96. Professional Book Center (2005)

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

11. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In:
Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 40–52. Springer, Heidelberg (2005)

12. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 188, 52–89 (2012)

14. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generat. Comput. 9(3-4), 365–386 (1991)

15. Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT
checkers. Artif. Intell. 151(1-2), 177–212 (2003)

16. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Inform. Comput. 135(2), 69–112 (1997)

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 176–188, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Satisfiability for Non-optimal Temporal Planning

Masood Feyzbakhsh Rankooh, Ali Mahjoob, and Gholamreza Ghassem-Sani

Sharif University of Technology, Tehran, Iran
{masood.feyzbakhsh,alimahjoob}@gmail.com, sani@sharif.edu

Abstract. AI planning is one of the research fields that has benefited from em-
ploying satisfiability checking methods. These methods have been proved to be
very effective in finding optimal plans for both classical and temporal planning.
It is also known that by using planning-based heuristic information in solving
SAT formulae, one can develop SAT-based planners that are competitive with
state-of-the-art non-optimal planners in classical planning domains. However,
using satisfiability for non-optimal temporal planning has not been investigated
so far. The main difficulty in using satisfiability in temporal planning is the re-
presentation of time, which is a continuous concept. Previously introduced
SAT-based temporal planners employed an explicit representation of time in the
SAT formulation, which made the formulation too large for even very small
problems. To overcome this problem, we introduce a novel method for convert-
ing temporal problems into a SAT encoding. We show how the size of the en-
coding can be reduced by abstracting out durations of planning actions. We also
show that the new formulation is powerful enough to encode fully concurrent
plans. We first use an off-the-shelf SAT solver to extract an abstract initial plan
out of the new encoding. We then add the durations of actions to a relaxed ver-
sion of the initial plan and verify the resulting temporally constrained plan by
testing consistency of a certain related Simple Temporal Problem (STP). In the
case of an inconsistency, a negative cycle within the corresponding Simple
Temporal Network (STN) is detected and encoded into the SAT formulation to
prevent the SAT solver from reproducing plans with similar cycles. This
process is repeated until a valid temporal plan will be achieved. Our empirical
results show that the new approach, while not using a planning-based heuristic
function of any kind, is competitive with POPF, which is the state-of-the-art of
expressively temporal heuristic planners.

Keywords: Satisfiability checking, AI planning, temporal planning, Simple
Temporal Networks.

1 Introduction

Translating a given planning problem into a SAT formulation, solving the converted
problem by using a SAT solver, and extracting the plan out of the SAT solution has
proven to be an effective technique in classical planning. This approach was initially
introduced in SATPLAN [1]. Since then, different techniques have been proposed to
increase the speed of SAT-based planners. Some of the successful ideas include: ex-
tracting “mutex” relationships from a planning graph [2] and applying them to the

 Using Satisfiability for Non-optimal Temporal Planning 177

SAT encoding [3], operator splitting [4], and considering alternative semantics for
parallel plans [5]. Most of the researches in employing satisfiability in AI planning
have been concentrated on finding optimal or step-optimal [5] plans. However, it has
been recently shown that by using planning-based heuristic information in solving
SAT formulae, one can develop SAT-based planners that are competitive with the
state-of-the-art in non-optimal planning [6].

Classical planning, however, has some major deficiencies when it comes to solving
real-world problems. An important drawback of classical planning has its roots in the
assumption of instantaneous actions and generating completely ordered plans. Since
time is an important feature of our real life, one may reasonably expect real-world ac-
tions to have durations and real-world plans to be concurrent. The advent of temporal
planning was a response to such expectations. Although the introduction of time and
concurrency makes temporal planning to be essentially different from the classical plan-
ning, one can adopt well-developed classical planning methods to tackle temporal plan-
ning problems. In fact, many temporal planners have benefited from such approaches.

The so-called plan-space based planning methods have already been employed in
temporal planning by many planners such as VHPOP [7] and CPT [8]. Some other
planners have embedded the concept of time in the planning graphs and made it usa-
ble for temporal planning. Examples are: TGP [9] and TPSYS [10]. State-space based
methods have also been utilized in temporal planning by several planners of which
LPG [11], and TFD [12] are the most famous ones.

While satisfiability checking is a major approach in dealing with classical plan-
ning, it has been insufficiently exploited in the field of temporal planning. In fact, the
only published SAT-based temporal planners are STEP [13] and T-SATPLAN[14],
which are both optimal planners. Besides, none of well-developed techniques men-
tioned above for increasing the speed of SAT-based planners have been used in tem-
poral planning.

Both STEP and T-SATPLAN use an explicit representation of time in their encod-
ings. Generally speaking, in these SAT-based approaches, layer i is exactly one time
unit ahead of layer i+1. If an action has a duration of d and its starting point is in layer
i, then its ending point is restricted to be in layer i+d. Such a representation makes an
enormous number of layers to be present in the SAT formulation while not being used
in the final plan. This problem worsens as the duration ratio between the most dura-
tive action and the least one gets higher. Encoding more layers increases the size of
the produced formula and may cause the planner to become highly memory sensitive.
Even if the planner is not running out of memory, a linearly larger number of va-
riables means an exponentially larger search space for finding a solution and as a
result, a substantial decrease in the speed of the planner.

In this paper, we propose an alternative encoding approach in which instead of us-
ing an explicit representation of time, layers are used merely for determining the order
of actions. In fact, in our representation, layer i is ahead of layer i+1, but the actual
difference in their times is not fixed. Therefore, an action can have its start in layer i,
and its end in layer i+1, regardless of its duration. In other words, the durations of
actions are abstracted out at the time of producing the SAT encoding. We also show
that by applying minor modifications to classical planning graphs, one can use the
“mutex” information extracted from planning graphs to increase the planning speed of
our new SAT representation of temporal planning problems.

178 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

Abstracting the durations of actions is not a new concept in the field of temporal
planning. Some temporal planners have used such abstractions for guaranteeing the
completeness in an important subset of temporal problems, called problems with re-
quired concurrency [15]. CRIKEY [16] was the first planner that separated the plan-
ning and scheduling processes by eliminating all durations in the planning phase.
CRIKEY tests the validity of the resulting plan later in the scheduling phase, by solv-
ing a simple temporal problem. POPF [17], a descendant of CRIKEY, uses a linear
programming method in its scheduling phase. Both POPF and CRIKEY take benefit
from an enforced hill-climbing search method [18] in addition to standard best-first
search mechanism. POPF is regarded as the state-of-the-art planner for solving the
temporal problems with required concurrency.

The block diagram of our approach is depicted in figure 1. Similar to CRIKEY and
POPF, our planner, named ITSAT (Implicit Time SAT planner), will need a schedul-
ing step, when an abstract plan is produced by the SAT solver. The durations should
be given back to the actions and an exact time value should be assigned to each of
them by solving a simple temporal problem. However, such a consistent temporal
assignment may not exist. As we show later in section 4, the reason of the inconsis-
tency can be easily identified as negative cycles in the graph representation of the
corresponding STP [19]. We then, add certain variables and clauses to the SAT for-
mula in order to prevent the SAT solver from reproducing such cycles.

Fig. 1. The block diagram of ITSAT

2 Temporal Planning

We now give a formal description of temporal planning. Before that, we need a for-
mal definition of a classical action. The definitions presented here are compatible with
PDDL2.1 [20] where temporal actions can have separate preconditions and effects
upon starting or ending.

Definition 1. A classical action o is a triple (pre(o), add(o), del(o)). All pre(o),
add(o), and del(o) are sets of facts and each fact is an atomic proposition. The set
pre(o) includes all the preconditions of o. The sets add(o) and del(o) contain the add
and delete effects of o, respectively.

 Using Satisfiability for Non-optimal Temporal Planning 179

Definition 2. A temporal action a is defined by a positive rational duration d(a), a
starting event as, an ending event ae, and an over-all condition over(a). Each event is a
classical action and the over-all condition is defined as a classical precondition. We
also have: action(as)=action(ae)=a. Action a is applicable in time t, if pre(as) and
pre(ae) are respectively held in time t and t+d(a); and furthermore, over(a) is held in
open interval (t,t+d(a)). The application of a will cause the effects of as and ae to take
place in time t and t+d(a), respectively.

Definition 3. A temporal planning problem is a quadruple P=(A,F,I,G), where A is a
set of temporal actions, F is the set of all the given facts, I is a classical initial state,
and G is a set of classical goal conditions. The set of all events of P is defined by

E=⋃aϵ A {as,ae}.

Definition 4. Suppose that P=(A,F,I,G) is a temporal planning problem. A plan is
represented by π={(a1,t1),…,(an,tn)}, which means that action ai is performed in time
ti. The makespan of π is calculated by relation (1).

 Makespan(π)=max(ti+d(ai)) (1)

We say π is a valid plan for P if for each i, action ai is applicable in time ti, given that
all the propositions in I are held in time 0. Furthermore, all the propositions in G must
hold in time Makespan(π). Plan π is concurrent if for some j and k we have: tk≤ tj ≤
tk+d(ak). A planning problem with only concurrent valid plans is called a problem
with required concurrency.

3 SAT Encoding

We now explain how a temporal planning problem P=(A,F,I,G) is encoded into its
corresponding SAT formula. Suppose that E is the set of all starting and ending events
of P, and we are constructing a formula with n conceptual layers. Variables and
clauses that are essential for the soundness and completeness of the encoding are de-
fined as follows.

3.1 Necessary Variables and Clauses

 We define some variables to represent all the facts of P.

• For every fact f ϵ F, and every 1≤i≤n, a variable Xf,i is defined. Assigning 1 to Xf,i
means that the fact f is true in the conceptual layer i.

Although previous SAT-based temporal planners, STEP and T-SATPLAN, encode
each temporal action with a single variable, our encoding has two variables for the
starting and ending events of each action, and another variable for representing the
situations when the action is still running i. e., it is open.

• For every event e ϵ E, and every 1≤i<n, a variable Ye,i is defined. Assigning 1 to
Ye,i means that the event e is performed in the conceptual layer i.

• For every action a ϵ A, and every 1≤i<n, a variable Wa,i is defined. Assigning 1 to
Wa,i means that the action a is open (started but has not yet finished) in the con-
ceptual layer i .

180 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

We also need some clauses for constraining the values of the variables of the first and
the last layers in an appropriate way.

• For every fact f ϵ I, a clause Xf,1 is asserted to ensure the presence of initial facts in
layer 1.

• For every fact f ϵ F-I, a clause ¬Xf,1 is added to ensure that only the facts of initial
state can be present at layer 1.

• For every fact g ϵ G, a clause Xg,n is asserted to ensure the presence of all the goal
conditions in the last layer.

• For every action a ϵ A, a clause ¬Wa,1 is asserted to ensure that no action is open
in layer 1.

• For every action a ϵ A, a clause Wa,n→ ,ea nY is added to ensure that no action is
remained unfinished in layer n.

We need certain clauses to handle the necessary conditions of performing an event in
a layer and propagating the effects of that event to the next layer. The following
clauses guarantee that if an event e is being performed in layer i, then its precondi-
tions are available in layer i, and its effects are held in layer i+1.

• For every event e ϵ E, every fϵ pre(e), and every 1≤i<n, a clause Ye,i→ Xf,i is added.
• For every event e ϵ E, every fϵ add(e), and every 1≤i<n, a clause Ye,i→ Xf,i+1 is

asserted.
• For every event e ϵ E, every fϵ del(e), and every 1≤i<n, a clause Ye,i→ ¬Xf,i+1 is

asserted.

Note that these constraints are not sufficient to make a valid plan. Many planning
representations, including PDDL2.1 [20], forbid a proposition to be deleted by an
event if it is needed by at least one other event at the same time. If the effects of each
event take place only in the next layer, detecting such conflicts will be impossible. To
overcome this flaw, quite similar to previous classical and temporal SAT-based plan-
ners, we use clauses that explicitly encode the mutual exclusion between conflicting
events. As an example, if event a deletes a precondition of event b, then the clause
Ya,i→¬ Yb,i is added to the formula for every i to ensure a and b will never be per-
formed at the same layer.

Beside preconditions of an event, some other conditions must hold to enable that
event to occur in a certain layer. We assume that two copies of the same ground ac-
tion can never be concurrent. Even though PDDL2.1 allows this kind of concurrency,
none of the domains we observed during our empirical analysis had such require-
ments.

• For every 1≤i<n and every event e ϵ E, if e is the starting event of action a, a
clause Ye,i → ¬Wa,i ∧ Wa,i+1 is added to ensure that two copies of action a will not
be concurrent. This clause also assures us that if a is started in layer i, it will be
considered as an open action in layer i+1.

• For every 1≤i<n and every event e ϵ E, if e is the ending event of action a, a
clause Ye,i → Wa,i ∧ ¬Wa,i+1 is added to ensure that only open actions can be ended;
moreover, if an action is ended in layer i, it will no longer be considered as an
open action in layer i+1.

• For every 1≤i<n, every action a ϵ A, and every fact f ϵ over(a), we add a clause
Wa,i → Xf,i. This clause assures us that when an action is still open, its over-all
conditions are maintained.

 Using Satisfiability for Non-optimal Temporal Planning 181

Finally, several kinds explanatory frame axioms are needed for preventing the values
of the variables from changing without any reason.

• For every 1≤i<n and every f ϵ F, we add a clause ¬Xf,i ∧ Xf,i+1→(⋁fϵ add(e) Ye,i) to
prevent any fact from being arbitrarily asserted in layer i.

• For every 1≤i<n and every f ϵ F, we add a clause Xf,i ∧ ¬Xf,i+1→(⋁fϵdel(e) Ye,i) to
prevent any fact from being arbitrarily deleted from layer i.

• For every 1≤i<n and every a ϵ A, we add a clause ¬Wa,i ∧ Wa,i+1→ Ye,i , where e
is the starting event of action a. This clause ensures that no action can become
open in layer i+1, without having its starting event in layer i.

• For every 1≤i<n and every a ϵ A, we add a clause Wa,i ∧ ¬Wa,i+1→ Ye,i , where e
is the ending event of action a. This clause ensures that if an action is open in
layer i but not open in layer i+1, its ending event must be present in layer i.

It should be obvious from our SAT encoding that durations of actions play no role
in the encoding. However, every other constraint of temporal planning is encoded into
the SAT formulation. In other words, if we solve the SAT formula with a SAT solver,
the resulting plan will be a valid temporal plan, unless there is an inconsistency
among the durations of actions. We will discuss this issue in more details in section 4.

3.2 Mutex Relations as Auxiliary Clauses

Omitting any of the clauses stated in section 3.1 causes planner to lose either its
soundness or its completeness. In this section, we present other kinds of clauses that
can increase the speed of finding a valid plan but are not obligatory for preserving
soundness or completeness of the planner. For this purpose, by using a planning graph
[2], we automatically find pairs of propositions that cannot be true in a certain layer of
our SAT encoding. A thorough description of the classical planning graph can be
found in [2].

Due to the similarity between the structures of planning graph and SAT encoding
of planning problems, one can add the SAT encoding of mutex relations to the corres-
ponding layer of SAT formula and thereby prevent unnecessary effort in searching for
a valid plan. In other words, if p and q are mutex in layer i, the clause Xp,i→ ~Xq,i can
be added to the formula.

Planning graphs have been effectively used in SAT-based classical planners before
[3,21]. However, they have not been employed in SAT-based temporal planning. Note
that since we abstract out the duration of actions, the structure of our encodings be-
comes very similar to a classical planning graph. In ITSAT, we convert a temporal
problem to a classical one and achieve mutex relations by constructing a slightly mod-
ified classical planning graph.

We split any temporal action a into two classical actions as and ae, which are re-
spectively starting and ending events of a. In addition to their normal effects and pre-
conditions, as adds an exclusive proposition named pa, which is required and deleted
by ae. These new propositions are not propagated by the classical no-op actions.
Instead, for each action a, pa is propagated by a no-op action that requires the over-all
conditions of a in addition to requiring and adding pa. The new kind of no-op actions
is used to cover the overall conditions of actions, while reasoning about mutex
relations.

182 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

4 The Scheduling Phase

Assume that we have solved a SAT formula produced by the encoding phase de-
scribed is section 3 and obtained a solution for it. Let e1,…,em be the events whose
corresponding SAT variables have a value of 1 in the solution. Suppose that we have
given different names to different occurrences of the same action in the solution, so
all the events e1,…,em are unique. Let layer(ei) be the number of layer in which ei has
occurred.

Events e1,…,em must then be scheduled in order to produce a valid temporal plan.
In other words, exact time values should be assigned to the events. However, these
time values cannot be assigned arbitrarily. In fact, there exist certain constraints be-
tween these values.

4.1 Temporal Constraints

Let the time value assigned to event ei be T(ei). Since it is assumed in the generation
of a SAT formula, that layer i is ahead of layer i+1, a straightforward way to maintain
the validity of the final plan is to schedule each event of layer i, before all events of
layer i+1. Now, suppose that layer(ek)=i, and layer(ej)=i+1 and furthermore, ej and ek
have no causal relationship with each other. Now, if the order between ej and ek is
eliminated, not only will the validity of the plan remain unchanged, but also it will be
more likely to find a consistent assignment of time values for the events.

In order to pursue the above idea, we define new ordering constrains between dif-
ferent pairs of events. For satisfying all these constraints, we solve an instance of a
Simple Temporal Problem (STP) [19]. Each STP is associated with a weighted graph
named a Simple Temporal Network (STN). We construct an STN in which each node
corresponds to an event. For each i, let xi be the node that is corresponding to event ei
in the STN. Let ϵ be an arbitrary small rational number and ej and ek be different
events such that layer(ej)≥ layer(ek). The constraint T(ej) ≥ T(ek)+ϵ must hold if one
of following condition is satisfied:

1. ek adds a precondition of ej .
2. ej deletes a precondition of ek.
3. either ej or ek delete any effect of the other.
4. ej is a starting event and ek deletes an all-over condition of action(ej)

Consequently, an edge with the weight -ϵ will be present in the STN from the node xk
to the node xj . Moreover, if one of the following conditions holds, the constraint
T(ej)≥T(ek) will be necessary, and an edge with weight 0 will be present in the STN
from the node xk to the node xj.

5. ek is an ending event and ej deletes an all-over condition of action(ek).
6. ej is a starting event and ek adds an all-over condition of action(ej).

As before, in addition to the constraints stated above, the following constraint must
also hold if ek and ej are respectively the starting and ending effect of certain action a
to ensure that the durations of a in the final plan is set correctly:

7. T(ej)≥T(ek)+d(a)
8. T(ek)+d(a)≥ T(ej)

 Using Satisfiability for Non-optimal Temporal Planning 183

These constraints will be inserted into the STN by adding an edge with the weight –
d(a) from node xk to node xj, and another edge with weight d(a) from node xj to node
xk. We also add a reference node x0 to the constructed STN which has an edge with
weight 0 to every other node. A solution of the STP can be found by computing the
length of the shortest path form x0 to all other nodes. Suppose that such shortest paths
exist and the length of the shortest from x0 to xi is shown by distance(x0 , xi). For each
event ei, we assign -distance(x0 , xi) to T(xi). Constraints 1 to 8 guarantee that the re-
sulting plan has all the specifications of a valid temporal plan. However, there are
situations in which such shortest paths do not exist. It happens when the STN has a
negative cycle. In these situations the STP is inconsistent and consequently, all tem-
poral constraints can not be satisfied at the same time. An example of such cases is
depicted in figure 2.

Fig. 2. Negative cycle in an STN, and the detecting FSM

Suppose that 1) action a adds proposition p and g respectively by its starting and
ending event. 2) a needs proposition q as a precondition for its ending event. 3) action
b that requires p upon beginning and adds q upon ending. 4) durations of actions a,
and b, are 5 and 10, respectively. 5) action c is identical to b except for its duration
which is 15. 6) The goal of planning is reaching fact g. If a SAT formula with four
layers is produced for this problem, then a SAT solver can satisfy the formula by
putting the starting event of a in layer 1, the starting event of b in layer 2, the ending
event of b in layer 3, and the ending event of a in layer 4. This means action b must
be entirely performed inside of action a. However, this situation is impossible consi-
dering the fact that duration of a is less than that of b. The abstract plan produced by
SAT solver is depicted in figure 2(a). Preconditions and effects of each action are
respectively written above and below it.

The invalidity of this plan is caused by the fact that all the durations are abstracted
out when the formula is being produced. In fact, the SAT solver assumes that the
execution of ending event of a can be postponed, as long as is needed. The STN con-
structed for the plan of figure 2(a) is depicted in figure 2(b). asbsbeaeas is a negative
cycle with total weight -5-2ϵ. Note that if action b had been replaced by action c in fig
1(a), we would have had another negative cycle with weight -10-2ϵ.

184 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

4.2 Negative Cycle Prevention

As it was stated before, if the STN of an abstract plan has a negative cycle, it cannot
be transformed to a valid temporal plan. In such cases, we run the SAT solver again to
find a different solution. This can be done by adding an extra blocking clause to the
SAT formula so that at least one of the events of invalid plan cannot occur in its
current layer. Nevertheless, after adding such a blocking clause, the SAT solver can
produce new plans that are not essentially different from previous one. For instance,
consider the example given in figure 2(a). Suppose as,bs,be, and ae are true in layers 1
to 4, respectively. Assume that the SAT formula have 5 layers. If we forbid the exact
occurrence of this plan, a new temporally invalid abstract plan can still be produced
by shifting ae to layer 5 and maintaining other events in their current layers. The new
solution will have the same negative cycle. In fact, the main cause of the invalidity of
the plan has remained unchanged. On the other hand, by replacing action b by action
c, another temporally invalid abstract plan can be produced. This time, the cycle
asbsbeaeas has been replaced by cycle ascsceaeas. However, since b and c have identical
preconditions and effects, and c has a longer duration, we could have inferred from
structure of asbsbeaeas that ascsceaeas is also a negative cycle. We now show that nega-
tive cycles of particular structure can be prevented more effectively. We also explain
how other similar negative cycles can prevented.

The negative cycles in which we are interested are quite similar to the one depicted
in figure 2(b). Such cycles happen when several actions of a temporal plan are to be
executed consecutively within the execution of another action. These cycles can be
regarded as sequences of events. For instance, in the previous example, each time that
the as, ae, bs, and be occur with the order asbsbeae, we can be sure that the correspond-
ing STN has a negative cycle. Fortunately, such sequences can be detected by using a
simple Finite State Machine (FSM). For example, the FSM depicted in figure 2(c) can
detect the negative cycle of figure 2(b).

On the other hand, in the STN depicted in figure 2(b) there exists an edge from as
to bs only because condition number 1 (stated in section 4.1) is held between the two
events. The same condition causes an edge from be to ae. It should be clear that if we
replace action b by any other action with the same conditions but with a longer dura-
tion, the result will be again a negative cycle. Here, action c fulfills the stated re-
quirements. We call c an alternative for b. In fact, ITSAT automatically detects all
the alternatives for each action in a given negative cycle. The FSM that detects both
asbsbeae and ascsceae is depicted in figure 2(d). Note that in general, more than one
action, each of which having several alternatives, can occur consecutively inside a
covering action.

To prevent a cycle, one can start from the first layer and follow the transitions that
occur in the FSM. A certain transition occurs in layer i, only if the value of the varia-
ble corresponding to the label of that transition is equal to one.

If the FSM is constructed, its corresponding negative cycles can be prevented by
making the SAT solver simulate the function of the FSM and banning it from being in
the terminal state. In order to do so, we must add extra variables and clauses to the
SAT formula.

Let s0,…,sm be the states of an FSM that detects a certain negative cycle. Suppose
that s0 and sm are the initial state and the terminal state of the FSM, respectively. Let T

 Using Satisfiability for Non-optimal Temporal Planning 185

be the set of all transitions of the FSM, and label(si,sj) denote the event that causes the
transition from si to sj. Furthermore, assume that exit(si) denotes all the transitions
through which the FSM goes from si to another state. The following variables and
clauses are sufficient for preventing the SAT solver from reproducing negative cycles
that are associated with the FSM.

• For every 1≤i≤n and every 0≤j≤m, we define a variable Sj,i. Assigning one to Sj,i
means that the FSM can be in state j after observing all the events that are present
in the layers prior to i.

• For every 1≤i≤n, every 0≤j≤m, and every (sj,sk) ϵ exit(sj), we add a clause
Sj,i∧e→¬Sj,i+1∧Sk,i+1 , where e=lable(sj,sk), to ensure that in each layer, FSM per-
forms only correct transitions.

• For every 1≤i≤n and every 0≤j≤m, we add a clause Sj,i∧(¬⋁eϵE e)→Sj,i+1 , where
E={label(sj,sk) | (sj,sk) ϵ exit(sj)} , to ensure that FSM stays in state sj when it is ne-
cessary.

• For every 1≤i≤n and every 0≤j≤m, we assert a clause¬Sj,i∧Sj,i+1→⋁(k,e)ϵN(Sk∧e)
where N={(k,e) | e=lable(sk,sj)}. This clause prevents the FSM from arbitrarily
moving to some state.

• We assert a clause S0,1 to ensure that the FSM will start from its initial state in layer
one. We also add ¬Sj,1 for every 1≤j≤m, to prevent FSM from being in any other
state in layer one.

• For every 1≤i≤n, we assert a clause ¬Sm,i to ensure that the FSM will never go to its
terminal state, detecting a negative cycle.

After constructing the SAT formulation of the FSM, we add it to our previous encod-
ing of the problem. Then, SAT solver is called again to satisfy the new formula. The
process of solving the formula and adding negative cycle detectors (i. e., appropriate
FSMs) is repeated until a valid plan will be achieved.

5 Empirical Results and Discussion

ITSAT has been implemented using C++ programming language. We have used an
open source SAT solver, MINISAT2 [22] for solving SAT formulas. To evaluate
ITSAT, it has been compared with POPF [17] on the temporal problem sets of recent
international planning competitions plus two more domains (i.e., driverlogshift and
matchlift) defined by the Strathclyde planning group [23]. POPF is currently one of
the most efficient heuristic temporal planners. The experiments were conducted on a
3.1GHz corei5 CPU with 4GB main memory and 30 minutes time-limit for solving
each problem. All the results are presented in Table 1.

ITSAT and POPF are compared based on the number of problems they can solve in
each domain and also by the total score given to each planner using the scoring strate-
gy of recent IPCs: if a planner cannot solve a problem, it will get score 0 for it; Oth-
erwise, the score of planner is equal to the makespan of the best plan found for the
problem divided by the makespan of the plan found by the planner. The last columns
of Table 1, shows the makespan ratio, averaged only on problems that are solved by
both planners. Ratios less than one indicate better average quality of the solutions
produced by ITSAT in comparison with that of POPF.

186 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

Table 1. Comparing ITSAT to POPF

Domain IPC # of Problems
of Problems Solved Total Score
ITSAT POPF2 ITSAT POPF2 makespan ratio

zenotravel

2004

20 13 13 12.22 11.52 0.96
driverlog 20 15 15 13.96 11.63 0.76

rovers 20 16 19 15.97 14.04 0.87
depots 22 12 7 11.77 5.7 0.85
airport

2006
50 22 15 22 14.44 0.95

satellite 36 13 14 12.63 8.96 0.72
pegsol

2011

20 19 19 19 18.62 0.98
crewplanning 20 15 20 14.31 20 1.05

openstacks 20 0 20 0 20 ---
parking 20 0 20 0 20 ---

elevators 20 0 2 0 2 ---
floortile 20 20 0 20 0 1.33
storage 20 5 0 5 0 ---

matchcellar 20 4 20 4 20 1
sokoban 20 1 3 1 2.87 0.87

parcprinter 20 15 0 15 0 ---
turnandopen 20 3 9 3 8.72 0.9

tms 20 20 4 20 4 1
driverlogshift

Strathclyde
10 10 10 9.83 9.03 0.95

matchlift 14 14 13 13.96 12.08 0.98
total 482 217 223 213.65 203.61 ---

As it is shown in table (1), the total score of ITSAT is greater than that of POPF. In
fact, ITSAT has outperformed POPF in 13 out of 20 domains. Furthermore, consider-
ing the official results of the most recent planning competition (IPC 2011) [24], none
of participating planner has solved as many problems as ITSAT has solved in tms,
parcprinter, and floortile domains. These achievements are very promising because,
unlike other efficient non-optimal classical or temporal planners such as POPF, LPG,
TFD, FF [18], etc., in current version of ITSAT no planning based heuristic function
has been used.

On the other hand, since the encoding used in ITSAT can also represent fully con-
current plans, ITSAT is in fact a temporally expressive planner, i.e., it is able to solve
problems with required concurrency. This can be verified by the results of ITSAT in
driverlogshift, matchlift, matchcellar, tms, and turnandopen domains, which all have
required concurrency. Note that each planner has outperformed the other in two of
these five domains. Thus, in temporally expressive domains, ITSAT is comparable
with POPF, which is currently the state-of-the-art planner in such domains.

It should be clear that the size of our encoding and the amount of the memory
needed for saving the encoding increase as the number of ground actions is increased.
That’s why ITSAT performs rather inefficiently in domains where the number of
ground actions is relatively high. Such domains include: elevators, storage, opens-
tacks, parking, and turnandopen. ITSAT runs out of memory in some of these do-
mains. In addition to the memory consumption problem, we observed that the speed
of the SAT solver declines drastically as the number of variables increases. To tackle
this problem, we suggest using a lifted form of actions, instead of fully ground ac-
tions. The idea is very similar to the so-called operator splitting technique [4], which

 Using Satisfiability for Non-optimal Temporal Planning 187

has been used in classical planning. Operator splitting has been shown to be quite
effective in reducing the number of variables. We consider using lifted actions to be a
promising extension of the current version of ITSAT.

6 Conclusion

In this paper, we introduced a new method for producing SAT encoding of a given
temporal planning problem. In the new encoding, durations of all actions are initially
abstracted out in order to construct a compact SAT formula. The produced SAT for-
mula is then solved by an off-the-shelf SAT solver. The resulting abstract plan is then
relaxed by deleting unnecessary ordering constraints. In order to assign the exact time
values to the events of the relaxed plan, based on their order and action durations, a
Simple Temporal Network is constructed and resolved. We showed that possible neg-
ative cycles of such STNs can be detected by using certain Finite State Machines. We
also introduce an automatic method for encoding such FSMs. We showed how adding
FSMs encodings to the SAT formula could prevent the SAT solver from reproducing
solutions with similar negative cycles. Our empirical results showed that our new
planner ITSAT, while not using any planning based heuristic functions, is comparable
with POPF, which is currently the state-of-the-art in non-optimal temporal planning.

References

1. Kautz, H., Selman, B.: Planning as Satisfiability. In: Proceedings of 10th European Confe-
rence on Artificial Intelligence, pp. 359–363. IOS Press (1992)

2. Blum, A., Furst, M.: Fast Planning Through Planning Graph Analysis. Artificial Intelli-
gence 90(1-2), 281–300 (1997)

3. Kautz, H., Selman, B.: Unifying SAT-based and Graph-based Planning. In: Proceedings of
16th International Joint Conference on Artificial Intelligence, pp. 318–325. AAAI Press
(1999)

4. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: SAT-Based Parallel Planning Using
a Split Representation of Actions. In: Proceedings of 19th International Conference on
Automated Planning and Scheduling. AAAI Press (2009)

5. Rintanen, J., Heljanko, K., Niemelä, I.: Parallel Encodings of Classical Planning as
Satisfiability. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 307–319. Springer, Heidelberg (2004)

6. Rintanen, J.: Planning with Specialized SAT Solvers. In: Proceedings of 25th AAAI Con-
ference on Artificial Intelligence. AAAI Press (2011)

7. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile Heuristic Partial Order Planner. Jour-
nal of Artificial Intelligence Research 20, 405–430 (2003)

8. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner based
on constraint programming. Artificial Intelligence 170(3), 298–335 (2006)

9. Smith, D.E., Weld, D.S.: Temporal planning with mutual exclusion reasoning. In: Proceed-
ings of 16th International Joint Conference on Artificial Intelligence, pp. 326–337. AAAI
Press (1999)

10. Garrido, A., Fox, M., Long, D.: A temporal planning system for durative actions of
PDDL2.1. In: Proceedings of 15th European Conference on Artificial Intelligence,
pp. 586–590. IOS Press (2002)

188 M.F. Rankooh, A. Mahjoob, and G. Ghassem-Sani

11. Gerevini, A., Serina, I.: LPG: a Planner based on Local Search for Planning Graphs. In:
Proceedings of 6th International Conference on Artificial Intelligence Planning Systems,
pp. 13–22. AAAI Press (2002)

12. Eyerich, P., Mattmuller, R., Roger, G.: Unifying Context-Enhanced Additive Heuristic for
Temporal and Numeric Planning. In: Proceedings of 19th International Conference on Au-
tomated Planning and Scheduling. AAAI Press (2009)

13. Huang, R., Chen, Y., Zhang, W.: An optimal temporally expressive planner: Initial results
and application to P2P network optimization. In: Proceedings of 19th International Confe-
rence on Automated Planning and Scheduling. AAAI Press (2009)

14. Mali, A.D., Liu, Y.: T-SATPLAN: A SAT-based Temporal Planner. International Journal
of Artificial Intelligence Tools 15(5), 779–802 (2006)

15. Cushing, W., Kambhampati, S., Weld, D.S.: When is temporal planning really temporal? In:
Proceedings of 20th International Joint Conference on Artificial Intelligence, pp. 1852–1859.
AAAI Press (2007)

16. Halsey, K., Long, D., Fox, M.: Managing Concurrency in Planning Using Planner-
Scheduler interaction. Artificial Intelligence 173(1), 1–44 (2009)

17. Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-Chaining Partial-Order Planning. In:
Proceedings of 20th International Conference on Automated Planning and Scheduling, pp.
42–49. AAAI Press (2010)

18. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

19. Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelli-
gence 49(1-3), 61–95 (1991)

20. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

21. Kautz, H., Selman, B., Hoffmann, J.: SatPlan: Planning as Satisfiability. IPC (2006)
22. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.

(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
23. Strathclyde Planning Group, http://planning.cis.strath.ac.uk
24. Coles, A., Coles, A., Olaya, A.G., Jiménez, S., López, C.L., Sanner, S., Yoon, S.: A Sur-

vey of the Seventh International Planning Competition. AI Magazine 33(1) (2012)

How to Exploit Parametric Uniformity for Maximum
Entropy Reasoning in a Relational Probabilistic Logic�

Marc Finthammer and Christoph Beierle

Dept. of Computer Science, FernUniversität in Hagen, Germany

Abstract. The relational probabilistic conditional logic FO-PCL employs the
principle of maximum entropy (ME). We show that parametric uniformity of an
FO-PCL knowledge base R can be exploited for solving the optimization prob-
lem required for ME reasoning more efficiently. The original ME optimization
problem containing a large number of linear constraints, one for each ground in-
stance of a conditional, can be replaced by an optimization problem containing
just one linear constraint for each conditional. We show that both optimization
problems have the same ME distribution as solution. An implementation em-
ploying Generalized Iterative Scaling illustrates the benefits of our approach.

1 Introduction

Various extensions of propositional probabilistic logic to the relational case have been
proposed. Besides well-known approaches like Markov Logic Networks or Bayesian
Logic Programs, the principle of maximum entropy (ME) [19] has also been employed,
e.g. [15,16]. Here, we use the probabilistic relational conditional logic FO-PCL [8,9].

Example 1 (Elephant keeper). The elephant keeper example, adapted from [4] and also
[8], models the relationships among elephants in a zoo and their keepers. Elephants
usually like their keepers, except for keeper Fred. But elephant Clyde gets along with
everyone, and therefore he also likes Fred. This is expressed by REK containing:

EK1 : 〈(likes(E,K))[0.9],K �= fred〉
EK2 : 〈(likes(E, fred))[0.05], E �= clyde〉
EK3 : 〈(likes(clyde , fred))[1.0],�〉

EK1 and EK2 represent the statements that elephants normally like their keeper, ex-
cept for Fred. EK3 represents the exceptional fact that elephant Clyde likes Fred. The
constraint formulas K �= fred and E �= clyde of EK1 and EK2 make sure that there
will not be an inconsistency when substituting the variables with constants. If the con-
straint formula of EK2 was � instead (denoting a tautology), and if E was substituted
by clyde , the result would be the ground conditional 〈(likes(clyde , fred))[0.05],�〉,
which would be inconsistent with EK3 since no probability distribution can satisfy
likes(clyde , fred) both with probability 1.0 and with probability 0.05.

The ME semantics of FO-PCL is defined by referring to all groundings of a conditional
in a knowledge base R. Thus, for ME reasoning, the resulting optimization problem

� The research reported here was partially supported by the DFG (grant BE 1700/7-2).

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 189–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

190 M. Finthammer and C. Beierle

involves a potentially huge number of linear constraints, one for each ground instance
of a conditional. In this paper, we show that parametric uniformity of R [8,17] can be
exploited to significantly simplify the ME model computation by having to consider
only one linear constraint for each conditional, opening the road for using techniques
of lifted inference [20,3] and tailored optimization algorithms like Generalized Iterative
Scaling [2].

After briefly sketching the basics of FO-PCL as far as needed here (Sec. 2), we
use feature functions to develop a series of equation systems expressing the FO-PCL
satisfaction relation and exploiting parametric uniformity (Sec. 3 and 4). In Sec. 5,
we use an implementation of the maximum entropy computation based on the final
optimized equation system in order to illustrate the benefits of our approach, and in
Sec. 6, we conclude and point out further work.

2 Background: FO-PCL

FO-PCL Syntax. FO-PCL uses function-free signatures of the formΣ = (S,D,Pred)
where S is a set of sorts, D =

⋃
s∈S D

(s) is a finite set of (disjoint) sets of sorted
constant symbols, and Pred is a set of predicate symbols, each coming with an arity of
the form s1 × . . .× sn ∈ Sn indicating the required sorts for the arguments. Variables
V also have a unique sort, and all formulas and variable substitutions must obey the
obvious sort restrictions. In the following, we will adopt the unique names assumption,
i. e. different constants denote different elements.

An FO-PCL conditional R = 〈(φR|ψR)[ξR], CR〉 is composed of a premise ψR and
a conclusion φR, which are quantifier and function free first-order formulas (overΣ and
V) without equality, a probability value ξR ∈ [0, 1], and a constraint formula CR which
is a quantifier-free first-order formula using only the equality predicate. For ¬(V = X)
we also write (V �= X), and � resp. ⊥ denote a tautology resp. a contradiction. An
FO-PCL knowledge base is a pair (Σ,R) where R is a set of conditionals over Σ,V .
In the following, we will call just R a knowledge base and Σ will be given by the
context. We will use the notation CR 	 V �= c to express that under the unique names
assumption, the constraint formula CR of a conditional R entails the constraint V �= c,
and CR � V �= c means that CR does not entail the constraint. Let const(R) denote
the set of all constants appearing in the FO-PCL conditionals in R. The constants in
const(R) are called specific constants, whereas the constants in D \ const(R) are
generic constants.

The constraint formula makes it possible to explicitly express that a generic con-
ditional is not applicable with respect to a particular individual. Without constraint
formulas, having a generic conditional and a corresponding conditional for a specific
individual, that specific conditional might formally contradict the general one when
considering all instances (cf. Example 1). When the constraint formula of a ground in-
stance ofR evaluates to true, that instance is called admissible, and gnd(R) denotes the
set of all admissible instances of R (overΣ), in the following also just called instances.

FO-PCL Models. The Herbrand base H(R) is the set of all atoms in all gnd(Rk)
with Rk ∈ R, and every subset x ⊆ H(R) is a Herbrand interpretation, defining a
logical semantics for R. The set X(R) = {x | x ⊆ H(R)} denotes the set of all

How to Exploit Parametric Uniformity for ME Reasoning 191

Herbrand interpretations. The probabilistic semantics of R is a possible world seman-
tics [11] where the ground atoms in H(R) are binary random variables. An FO-PCL
interpretation pX(R) of R is thus a probability distribution over X(R).

ForRk ∈ R and every gRk
∈ gnd(Rk), let θRk

be an admissible ground substitution
for the variables in Rk so that gRk

= 〈(θgRk
(φRk

) | θgRk
(ψRk

))[ξRk
],�〉. Then pX(R)

satisfies Rk iff for every instance gRk
∈ gnd(Rk) it holds:

pX(R)(θRk
(φRk

) ∧ θRk
(ψRk

)) = ξRk
· pX(R)(θRk

(ψRk
))

Note that for the case of pX(R)(θRk
(ψRk

)) > 0, this equation is equivalent to
pX(R)(θRk

(φRk
)∧θRk

(ψRk
))

pX(R)(θRk
(ψRk

)) = ξRk
and thus to pX(R)((θgRk

(φRk
) | θgRk

(ψRk
))) =

ξRk
, expressing conditional probability. pX(R) is a model of R if it satisfies every

Rk ∈ R.

Maximum Entropy Model. A knowledge base R = {R1, . . . , Rm} may have many
different models, and the principle of maximum entropy [19,15,13,14] provides a
method to select a model that is optimal in the sense that it is the most unbiased one.
The entropy of a probability distribution pX(R) is defined as

H(pX(R)) = −
∑

x∈X(R)

pX(R)(x) log pX(R)(x)

The computation of the uniquely determined maximum entropy model

p∗X(R) = arg max
pX(R)|=R

H(pX(R)) (1)

is an optimization problem whose solution p∗X(R) can be represented by a Gibbs distri-
bution [10]:

p∗X(R)(x) =
1

Z
exp

⎛⎝ m∑
k=1

∑
gRk

∈gnd(Rk)

λgRk
fgRk

(x)

⎞⎠ (2)

where fgRk
is the feature function determined by gRk

, λgRk
is a Lagrange multiplier [1]

and Z is a normalization constant. We will not elaborate on the details of Equation (2)
as they are not important for the rest of this work (see [8] for a detailed explanation).
What is important to note is that according to (2), one optimization parameter λgRk

has to be determined for each single ground instance gRk
of each conditional Rk. This

readily yields a computationally infeasible optimization problem for larger knowledge
bases because there might be just too many ground instances.

However, there are FO-PCL knowledge bases for which the ground instances of a
conditional share the same entropy-optimal parameter. Parametric uniformity [8] means
that for each conditional all its ground instances share the same entropy-optimal param-
eter value. The advantage of parametric uniformity is that just one optimization param-
eter λRk

per conditional Rk has to be computed instead of one parameter per ground
instance :

p∗X(R)(x) =
1

Z
exp

⎛⎝ m∑
k=1

λRk

∑
gRk

∈gnd(Rk)

fgRk
(x)

⎞⎠ (3)

192 M. Finthammer and C. Beierle

Whereas parametric uniformity is a semantic notion, in [8] a syntactic criterion using
so-called probabilistic constraint involutions is presented which is sufficient to ensure
parametric uniformity. This syntactic criterion is based on the observation that paramet-
ric uniformity indicates identical knowledge about all ground instances of the same con-
ditional for an FO-PCL knowledge base R. Due to this, one should be able to transpose
two ground instances gRk

, g′Rk
of a conditional in R without changing the joint prob-

ability function with maximum entropy. In this case the transposed ground instances
must possess the same entropy optimal parameter, as the Gibbs distribution in (2) is
determined by a unique set of Lagrange multipliers.

Example 2. We continue Example 1 where likes takes one argument of sort Elephant
and one of sort Keeper . If D contains the constants {clyde, dumbo, nirvan} of sort
Elephant and the constants {fred , paul , simon} of sort Keeper , the set of ground in-
stances of the conditionals is:

grEK1−1:〈(likes(clyde , paul))[0.9],�〉
grEK1−2:〈(likes(dumbo, paul))[0.9],�〉
grEK1−3:〈(likes(nirvan , paul))[0.9],�〉
grEK1−4:〈(likes(clyde , simon))[0.9],�〉
grEK1−5:〈(likes(dumbo, simon))[0.9],�〉

grEK1−6:〈(likes(nirvan , simon))[0.9],�〉
grEK2−1:〈(likes(dumbo, fred))[0.05],�〉
grEK2−2:〈(likes(nirvan , fred))[0.05],�〉
grEK3−1:〈(likes(clyde , fred))[1.0],�〉

A possible probabilistic constraint involution transposes grEK1−1 and grEK1−2 , and
another one transposes grEK1−1 and grEK1−4 .

An involution covering for R is a set Π of probabilistic constraint involutions such
that for any two instances gRk

, g′Rk
∈ gnd(Rk) with with Rk ∈ R, there exists a se-

quence of involutions fromΠ transforming gRk
into g′Rk

. The importance of involution
coverings is given by Corollary 7.4.4 in [8], stating:

Proposition 1 (Involution covering implies parametric uniformity). If there is an
involution covering for R, then R is parametrically uniform.

For Example 2, it is particularly easy to find an involution covering as each ground
instance of a conditional uses only one ground atom, and each ground atom appears in
only one ground instance. In the next example, we present a simple knowledge base
that is not parametrically uniform.

Example 3 (Misanthrope). The knowledge baseRMI , adapted from [8], models friend-
ship relations within a group of people, with one exceptional member, a misanthrope.
In general, if a person V likes another person U, then it is very likely that U likes V, too.
But there is one person, the misanthrope, who generally does not like other people:

MI 1 : 〈(likes(U, V)|likes(V, U))[0.9], U �= V 〉
MI 2 : 〈(likes(a, V))[0.05], V �= a〉

The ground instances for the set of constants D = {a, b, c} are:

grMI1−1:〈(likes(a, b)|likes(b, a))[0.9],�〉
grMI1−2:〈(likes(a, c)|likes(c, a))[0.9],�〉
grMI1−3:〈(likes(b, a)|likes(a, b))[0.9],�〉
grMI1−4:〈(likes(b, c)|likes(c, b))[0.9],�〉

grMI1−5:〈(likes(c, a)|likes(a, c))[0.9],�〉
grMI1−6:〈(likes(c, b)|likes(b, c))[0.9],�〉
grMI2−1:〈(likes(a, b))[0.05],�〉
grMI2−2:〈(likes(a, c))[0.05],�〉

How to Exploit Parametric Uniformity for ME Reasoning 193

There is no probabilistic constraint involution that transposes grMI 1−1
with grMI 1−3

,
the problem being that ground instances of likes are shared by MI 1 and MI 2 in an
imbalanced way.

Luckily, each knowledge base R that is not parametrically uniform can be transformed
into an equivalent R’ that is parametrically uniform. This is achieved by the set of
transformations rules PU developed in [17].

Proposition 2 ([17]). Exhaustively applying PU to a knowledge base R yields a
knowledge base PU(R) such that R and PU(R) have the same maximum-entropy
model and PU(R) is parametrically uniform.

Example 4. By applying PU to RMI from Ex. 3, the conditional MI 1 is replaced by

MI 1′ : 〈(likes(U, V)|likes(V, U))[0.9], U �= V ∧ U �= a ∧ V �= a〉
MI 1′′ : 〈(likes(a, V)|likes(V, a))[0.9], V �= a〉
MI 1′′′ : 〈(likes(U, a)|likes(a, U))[0.9], U �= a〉

and the resulting set RMIpu := PU(RMI) = {MI 1′ ,MI 1′′ ,MI 1′′′ ,MI 2} is paramet-
rically uniform and has the same maximum entropy model as RMI .

3 Feature Functions and Parametric Uniformity

The argumentation used in Sec. 2 when comparing (2) and (3) implies that computing
the maximum-entropy model for R via PU(R) reduces the number of optimization
parameters that have to be determined. For the rest of this paper, R = {R1, . . . , Rm}
will always denote an FO-PCL knowledge base withm conditionals, and in this section,
we will show how parametric uniformity of R can be exploited when computing the
maximum entropy model p∗X(R) from (1).

3.1 Defining Satisfaction via Feature Functions

Let GRk
be the number of admissible ground instances of a conditional

Rk ∈ R, so we can enumerate the ground instances in gnd(Rk) by defining

gnd(Rk) =: {g(1)Rk
, . . . , g

(GRk
)

Rk
}. For Rk ∈ R and every g

(i)
Rk

= 〈(θ
g
(i)
Rk

(φRk
) |

θ
g
(i)
Rk

(ψRk
))[ξRk

],�〉 ∈ gnd(Rk) define a feature function f
g
(i)
Rk

with

f
g
(i)
Rk

(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 iff x |=
(
θ
g
(i)
Rk

(φRk
) ∧ θ

g
(i)
Rk

(ψRk
)

)
,

0 iff x |=
(
¬θ

g
(i)
Rk

(φRk
) ∧ θ

g
(i)
Rk

(ψRk
)

)
,

ξRk
iff x |=

(
¬θ

g
(i)
Rk

(ψRk
)

) (4)

The sum
∑

x∈X(R) fg(i)
Rk

(x) · pX(R)(x) is called the expected value of the feature func-

tion f
g
(i)
Rk

with respect to the distribution pX(R). In [8] it is shown that the satisfaction

relation pX(R) |= R can be expressed by using the notion of feature functions:

194 M. Finthammer and C. Beierle

Proposition 3. A probability distribution pX(R) is a model of R iff for all Rk ∈ R:∑
x∈X(R)

f
g
(1)
Rk

(x) · pX(R)(x) = ξRk

...∑
x∈X(R)

f
g
(GRk

)

Rk

(x) · pX(R)(x) = ξRk

(EQorig
Rk

)

For each conditional Rk ∈ R, there are GRk
feature functions

f
g
(1)
Rk

(x), . . . , f
g
(GRk

)

Rk

(x), leading to GRk
linear constraints which have to be sat-

isfied by a distribution pX(R) . Each such linear constraint enforces the expected value
of the respective feature function. Note that all feature functions emerging from the
ground instances of a conditional Rk must have the same expected value ξRk

. The set
of solutions to this equation system is denoted by

Modorig
Rk

:= {pX(R) | pX(R) |= EQorig
Rk

}

Let ⋃
Rk∈R

EQorig
Rk

(EQorig
R)

denote the equation system consisting of all the linear constraints emerging from all
admissible ground instances of R. Thus

Modorig
R := {pX(R) | pX(R) |= EQorig

R } =
⋂

Rk∈R
Modorig

Rk

denotes the set of probability distributions which are models of R, i. e. which are solu-
tions to the equation system EQorig

R . Let

p∗orig := arg max
pX(R)∈Modorig

R

H(pX(R))

denote the maximum entropy distribution regarding Modorig
R . From Proposition 3 it

follows directly that p∗X(R) = p∗orig (cf. (1)).

3.2 Relaxing the Expected Value of Feature Functions

The following equation system is a relaxation of EQorig
Rk

since it introduces additional

variables c(i)Rk
∈ R, 1 ≤ i ≤ GRk

, which allow each expected value of f (i)
gRk

to differ

from ξRk
by some amount c(i)Rk

. An additional linear constraint assures that the sum of
all these differences remains 0:∑

x∈X(R)

f
g
(1)
Rk

(x) · pX(R)(x) = ξRk
+ c

(1)
Rk

...∑
x∈X(R)

f
g
(GRk

)

Rk

(x) · pX(R)(x) = ξRk
+ c

(GRk
)

Rk∑GRk

i=1 c
(i)
Rk

= 0

(EQrelax
Rk

)

How to Exploit Parametric Uniformity for ME Reasoning 195

Using these equations, we define the two equation systems⋃
Rk∈R

EQrelax
Rk

(EQrelax
R)

(EQorig
R \ EQorig

Rk
) ∪ EQrelax

Rk
(EQ

relax(Rk)
R)

where the last equation system originates fromEQorig
R by just relaxing the equations re-

gardingRk. Let Mod relax
R and Mod

relax(Rk)
R , respectively, denote their set of solutions.

Since EQrelax
R is a relaxation of EQorig

R and EQ
relax(Rk)
R is a relaxation of EQorig

R for
every Rk ∈ R, the following proposition holds:

Proposition 4. Modorig
R ⊆ Mod

relax(Rk)
R ⊆ Modrelax

R

The set Mod
diff (Rk)
R := Mod

relax(Rk)
R \Modorig

R denotes the set of all those solutions

of EQrelax(Rk)
R for which it holds that the expected value of at least one feature function

of Rk does not match ξRk
. In the following, we will show that the maximum entropy

distribution regarding Mod
relax(Rk)
R , namely

p∗relax(Rk)
:= arg max

pX(R)∈Mod
relax(Rk)

R

H(pX(R)), (5)

does not belong to Mod
diff (Rk)
R . We start with the observation that ifR is parametrically

uniform, the ground instances of a conditional differ only in generic constants:

Proposition 5. Let i be an argument position in a literal P in a conditional R ∈ R,
and let c1, c2 be the constants in that position i in P in two different ground instances
of R. If R is parametrically uniform, then c1 = c2, or c1, c2 ∈ D \ const(R).

Note that in Ex. 3, the first argument in the head literal likes(a, b) of MI 1−2 is the spe-
cific constant a, while the corresponding argument b in MI 1−3 is a generic constant.
Thus, according to Prop. 5, this is only possible since RMI is not parametrically uni-
form.

Example 5. Consider the conditional MI 1′′ from the parametrically unifromRMIpu in

Ex. 4. Using the notation from above, let EQrelax(MI 1′′)
RMIpu

be the equation system which
contains relaxed constraints for MI 1′′ . Let p∗relax(MI 1′′)

be the ME-distribution regard-

ing EQ
relax(MI 1′′)
RMIpu

. For the set D = {a, b, c} of constants, MI 1′′ has the two ground
conditionals gMI 1

1′′
= (likes(a, b)|likes(b, a)) and gMI 2

1′′
= (likes(a, c)|likes(c, a)).

Since gMI 1
1′′

and gMI 2
1′′

differ only in the generic constants b and c for which

EQ
relax(MI 1′′)
RMIpu

contains equivalent constraints, the maximum entropy principle ensures
that these ground conditionals have the same probability under p∗relax(MI 1′′)

.

In general, assuming p∗relax(Rk)
�= p∗orig implies p∗relax(Rk)

∈ Mod
diff (Rk)
R and that

there are two ground instances g(i)Rk
, g

(j)
Rk

∈ gnd(Rk) for which c(i) �= c(j) and therefore

p∗relax(Rk)
(g

(i)
Rk

) = ξRk
+ c

(i)
Rk

�= ξRk
+ c

(j)
Rk

= p∗relax(Rk)
(g

(j)
Rk

)

196 M. Finthammer and C. Beierle

holds. Thus, the two ground instances g(i)Rk
and g(j)Rk

would have different probabilities
under the maximum entropy distribution p∗relax(Rk)

which is not possible if R is para-

metrically uniform. Thus, p∗relax(Rk)
�∈ Mod

diff (Rk)
R must hold, yielding:

Proposition 6. If R is parametrically uniform, then for Rk ∈ R it holds:

p∗relax(Rk)
= p∗orig (6)

Two equation systems EQ1 and EQ2 are called ME-equivalent iff

arg max
pX(R)∈Mod1

H(pX(R)) = arg max
pX(R)∈Mod2

H(pX(R))

holds, with Mod1,Mod2 being the set of solutions to the respective equation system.
From Proposition 6 we directly get:

Proposition 7. If R is parametrically uniform, then for Rk ∈ R, the equation systems
EQorig

R and EQ
relax(Rk)
R are ME-equivalent.

Therefore, EQorig
R can ME-equivalently be replaced by EQ

relax(Rk)
R since it yields

the same maximum-entropy distribution. By applying such replacements successively
for all conditionals R1, . . . , Rm, the original equation system EQorig

R can finally be
replaced by EQrelax

R .

Proposition 8. If R is parametrically uniform, then the equation systems EQorig
R and

EQrelax
R are ME-equivalent and therefore p∗orig = p∗relax holds, where

p∗relax := arg max
pX(R)∈Modrelax

R

H(pX(R))

3.3 Reducing the Number of Linear Constraints

For this subsection, we generally assume that R is parametrically uniform. The next
proposition allows us, roughly speaking, to sum up the equations from EQrelax

Rk
to just

one equation, yielding for Rk ∈ R:

∑
x∈X(R)

pX(R)(x)

GRk∑
i=1

f
g
(i)
Rk

(x) = GRk
· ξRk

(EQ sum
Rk

)

Let Mod sum
Rk

denote the solutions of EQsum
Rk

. Then we have:

Proposition 9. Mod relax
Rk

= Mod sum
Rk

Thus, the equations systems EQrelax
Rk

and EQsum
Rk

are equivalent, since they have the
same set of solutions. Analogously to before, we define the equation system⋃

Rk∈R
EQsum

Rk
(EQ sum

R)

and we let Mod sum
R denote its set of solutions, yielding:

How to Exploit Parametric Uniformity for ME Reasoning 197

Proposition 10. Mod relax
R = Mod sum

R

Therefore, using Propositions 8 and 10 we get:

Proposition 11. The equation systems EQorig
R and EQsum

R are ME-equivalent and
therefore p∗orig = p∗sum holds, where

p∗sum := arg max
pX(R)∈Modsum

R
H(pX(R))

The following proposition puts together the results obtained so far:

Proposition 12. Modorig
R ⊆ Modrelax

R = Mod sum
R

p∗orig = p∗relax = p∗sum

4 Simplification of Linear Constraints in ME-Computation

The equation system EQorig
R consists of GR :=

∑m
k=1GRk

linear constraints, i. e.
one linear constraint for each ground instance of each conditional. Since the number
of ground instances grows very fast in the number of constants in D, EQorig

R consists
of a large number of linear constraints which all have to be respected when computing
the ME-distribution p∗orig . Proposition 12 allows us to replace the original equation

system EQorig
R with the much smaller equation system EQsum

R containing just m linear
constraints, i. e. exactly one linear constraint for each conditional. Therefore, computing
the ME-distribution with respect to the solutions of EQsum

R is much easier, since only
m linear constraints have to be respected.

Example 6. Consider the parametrically uniform knowledge base Rpq with

R1 : 〈(P (U)|Q(Z,Z))[ξ], U �= Z〉
R2 : 〈(P (U)|Q(V, Z))[ξ], U �= V ∧ U �= Z ∧ V �= Z〉

together with a set of 10 constants. Then there exist GR1 = 90 admissible ground
instances of R1 and GR2 = 720 instances of R2. Therefore GR = GR1 + GR1 =
810 linear constraints have to be respected when computing the ME-distribution p∗orig
regarding the equation system EQorig

R . However, by alternatively computing the ME-
distribution p∗sum (which is identical to p∗orig) of the equation system EQsum

R , merely 2
linear constraints have to be respected.

A closer look at an equation EQsum
Rk

from EQsum
R reveals that the distinct values of the

individual feature functions f
g
(1)
Rk

(x), . . . , f
g
(GRk

)

Rk

(x) are not relevant insofar as only

their sum
∑GRk

i=1 f
g
(i)
Rk

(x) is used as a factor in the equation. Therefore, we can define a

new feature function FRk
for each Rk ∈ R which encapsulates f

g
(1)
Rk

, . . . , f
g
(GRk

)

Rk

by

FRk
(x) :=

GRk∑
i=1

f
g
(i)
Rk

(x) (7)

198 M. Finthammer and C. Beierle

According to the definition of f
g
(i)
Rk

(x) in (4), it holds f
g
(i)
Rk

(x) = 1 if the ground

conditional g(i)Rk
is verified by x, or f

g
(i)
Rk

(x) = 0 if g(i)Rk
is falsified by x; otherwise

f
g
(i)
Rk

(x) = ξRk
holds, i. e. g(i)Rk

is not applicable to x. The counting functions given by

verRk
(x) :=

∣∣∣∣{g(i)Rk
∈ gnd(Rk) | x |= (θ

g
(i)
Rk

(φRk
) ∧ θ

g
(i)
Rk

(ψRk
))

}∣∣∣∣
nappRk

(x) :=

∣∣∣∣{g(i)Rk
∈ gnd(Rk) | x |= (¬θ

g
(i)
Rk

(ψRk
))

}∣∣∣∣
represent the number of ground instances of Rk which are verified by a worlds x or
which are not applicable to x, respectively. Using these counting functions, we can now
state FRk

without the notion of feature functions f
g
(i)
Rk

(x) as:

FRk
(x) = verRk

(x) + nappRk
(x) · ξRk

(8)

Using (8), we define the following equation system consisting of m linear constraints:∑
x∈X(R)

pX(R)(x)FRk
(x) = GRk

· ξRk
, 1 ≤ k ≤ m (EQ sumF

R)

Proposition 13. If R is a parametrically uniform, then the maximum entropy model
p∗X(R) of R under FO-PCL semantics is the solution of the optimization problem

p∗X(R) = arg max
pX(R)∈ModsumF

R

H(pX(R))

with Mod sumF
R being the solutions of EQsumF

R .

Using the method of Lagrange multipliers [1], it can be shown that there exist m unique
Lagrange parameters λ1, . . . , λm so that p∗X(R) can be represented by the Gibbs distri-
bution

p∗X(R)(x) =
1

Z
exp

(
m∑

k=1

λkFRk
(x)

)
(9)

with Z being a normalization constant. By defining αk := exp(λk), the distribution can
also be expressed as the product

p∗X(R)(x) =
1

Z

m∏
k=1

α
FRk

(x)

k (10)

The representation in (9) matches the result from [8], stating that for an parametrically
uniform set R a representation as Gibbs distribution with just one Lagrange parameter
λk per conditionalRk ∈ Rmust exist and that therefore justm optimization parameters
have to be determined. However, the determination of these m parameters would still
require to respect

∑m
k=1GRk

linear constraints. Our results developed above exploit
the parametric uniformity of R by showing that it is sufficient to solve an alternative
optimization problem with just m linear constraints to determine p∗X(R).

How to Exploit Parametric Uniformity for ME Reasoning 199

Table 1. Results for computing the ME-distribution with a GIS algorithm approach

Knowledge Size of Linear Constraints in Iteration Computation Time
Base D Ω EQorig

R EQsumF
R Steps EQorig

R EQsumF
R

RCC 3 215 12 3 37,356 26 sec 2 sec
REK 7 212 12 3 1,028 4 sec <1 sec
REK 8 216 16 3 1,275 147 sec 2 sec
RMIpu 3 29 8 4 14,343 2 sec <1 sec
RMIpu 4 216 15 4 25,670 159 sec 6 sec

5 Implementation and First Evaluation Results

Within the framework of the KREATOR system [7], we implemented the computation
of the maximum entropy distribution for FO-PCL knowledge bases using the General-
ized Iterative Scaling (GIS) approach from [2]; the concrete algorithm is a variant of
the algorithm described in [5]. Since the optimization problem to be solved is convex,
general algorithm techniques for this class of problems could be applied [1], but the GIS
algorithm technique computes the ME-distribution under linear constraints, making this
algorithm tailored for our problem at hand. GIS iteratively computes a sequence of dis-
tributions which converges to the ME-distribution. In every iteration step, each linear
constraint has to be considered, therefore the number of linear constraints has a signifi-
cant impact on the computation speed of the algorithm.

For illustrating the practical computational benefits of solving the ME-optimization
problem with respect to the equation system EQsumF

R compared to the equation system
EQorig

R , we considerREK and RMIpu from Examples 1 and 4, respectively, as well as
the set RCC from the following example.

Example 7 (Common Cold). The common cold example from [8] models the probabil-
ity of catching a common cold, depending on a persons’s general susceptibility and his
contacts within a group of people, with the set RCC containing the conditionals:

CC 1 : 〈(commoncold(U))[0.01],�〉
CC 2 : 〈(commoncold(U)|susceptible(U))[0.1],�〉
CC 3 : 〈(commoncold(U)|contact(U, V) ∧ commoncold(V))[0.6], U �= V 〉

Since RCC , REK , and RMIpu are all parametrically uniform, according to Proposi-
tion 13 it is sufficient to solve the corresponding optimization problem with respect
to the equation system EQsumF

R , i. e., an equation system containing only one linear
constraint for each conditional in the knowledge base.

The results in Table 1 show that the computation time with respect to EQorig
R is

several times higher compared to EQsumF
R . The number of linear constraints in EQorig

R
corresponds to the number of groundings of all conditionals and thereby depends on
the number of constants in D, whereas the number of linear constraints in EQsumF

R is
given by the number of conditionals in R, i. e. it is independent of the size of D. A
comparison of the computation times makes clear that an increased number of linear
constraints causes a severe increase in computation time; e. g. considering the set REK

together with 8 constants, the 16 linear constraints of EQorig
REK

cause a computation

of 147 seconds, whereas considering only the 3 linear constraints of EQsumF
REK

allows

200 M. Finthammer and C. Beierle

to compute the solution within 2 seconds. Since the number of linear constraints in
EQsumF

R is fixed, the positive effects compared to EQorig
R become even more evident

when the number of constants is increased.
As an illustration of the benefits of transforming an FO-PCL knowledge base R

into a parametrically uniform one as given by PU(R), reconsider RMI (Ex. 3). RMI

has the same maximum entropy distribution as RMIpu , but unlike RMIpu , it is not
parametrically uniform. Thus, when computing the ME distribution on the basis of
RMI , we can not use the optimized equation system EQsumF

RMI
, but we must use the

original EQorig
RMI

(which is identical to EQorig
RMIpu

), requiring 159 seconds in the presence
of 4 constants (cf. the last row in Table 1), as opposed to just 6 seconds when using
RMIpu and exploiting the parametric uniformity according to EQsumF

RMIpu
.

6 Conclusions and Further Work

After briefly summarizing the basics of FO-PCL and its maximum entropy model, we
showed that the determination of the ME model for a set of FO-PCL conditionals R
requires to solve an optimization problem under, in general, a large number of linear
constraints even if R is parametrically uniform. We developed an approach how the
property of parametric uniformity can be exploited to reduce the number of linear con-
straints of the ME optimization problem significantly: Just one linear constraint per
conditional has to be considered, independent of the number of available constants,
whereas the number of linear constraints in the original equation system grows rapidly
in the number of constants of the knowledge base. Our first example applications show
promising results, but further experimental and theoretical investigations are needed.

The focus of our paper was on the reduction of the number of linear constraints in
the FO-PCL maximum entropy optimization problem, which has not been dealt with
previously. Another source of complexity stems from the fact that the ME model of a
knowledge base R with constant set D is a complete joint probability distribution over
all ground atoms in H(R), i. e. the size of the distribution is exponential in the number
of constants in D. Hence, techniques of lifted inference [20,3,12,18] should be applied
to FO-PCL to reduce the exponential size of models. Towards this end, for aggregating
semantics [16], we have already developed an approach exploiting the equivalences of
worlds induced by generic constants [6], and we are currently transferring these results
to FO-PCL. Aggregating and averaging semantics [16] are two alternative semantics
for relational probabilistic conditionals using a syntax similar to the FO-PCL syntax,
but without constraint formulas. In future work, we will also address the question how
our results obtained in this paper can be used for ME inferencing for these alternative
semantics.

References

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York
(2004)

2. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Annals of
Mathematical Statistics 43(5), 1470–1480 (1972)

How to Exploit Parametric Uniformity for ME Reasoning 201

3. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Kaelbling,
L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, IJCAI 2005, pp. 1319–1325. Professional Book Center (2005)

4. Delgrande, J.: On first-order conditional logics. Artificial Intelligence 105, 105–137 (1998)
5. Finthammer, M.: An iterative scaling algorithm for maximum entropy reasoning in relational

probabilistic conditional logic. In: Hüllermeier, E. (ed.) SUM 2012. LNCS, vol. 7520, pp.
351–364. Springer, Heidelberg (2012)

6. Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation semantics of
relational conditionals. In: KI 2012: Proceedings of 35th Annual German Conference on
Advances in Artificial Intelligence AI, Saarbrücken, Germany, September 24-27. LNCS
(LNAI), Springer (to appear, 2012)

7. Finthammer, M., Thimm, M.: An integrated development environment for probabilistic rela-
tional reasoning. Logic Journal of the IGPL (to appear, 2012)

8. Fisseler, F.: Learning and Modeling with Probabilistic Conditional Logic. Dissertations in
Artificial Intelligence, vol. 328. IOS Press (2010)

9. Fisseler, J.: First-order probabilistic conditional logic and maximum entropy. Logic Journal
of the IGPL (to appear, 2012)

10. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741
(1984)

11. Halpern, J.: Reasoning About Uncertainty. MIT Press (2005)
12. Jaimovich, A., Meshi, O., Friedman, N.: Template based inference in symmetric relational

markov random fields. In: Proc. of the 23rd Conference on Uncertainty in Artificial Intelli-
gence. AUAI Press (2007)

13. Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a
conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)

14. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS
(LNAI), vol. 2087. Springer, Heidelberg (2001)

15. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the
power of maximum entropy. Artificial Intelligence, Special Issue on Nonmonotonic Reason-
ing 157(1-2), 139–202 (2004)

16. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic con-
ditionals. In: Lin, F., Sattler, U., Truszczyński, M. (eds.) Proc. of the 12th Int’l. Conference
on the Principles of Knowledge Representation and Reasoning (KR 2010), May 2010, pp.
382–392. AAAI Press (May 2010)

17. Krämer, A., Beierle, C.: On Lifted Inference for a Relational Probabilistic Conditional Logic
with Maximum Entropy Semantics. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS,
vol. 7153, pp. 224–243. Springer, Heidelberg (2012)

18. Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic
inference with counting formulas. In: Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17. AAAI Press (2008)

19. Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge Uni-
versity Press (1994)

20. Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) Proc. IJCAI
2003, pp. 985–991. Morgan Kaufmann (2003)

Exact Query Reformulation with First-Order
Ontologies and Databases

Enrico Franconi, Volha Kerhet, and Nhung Ngo

Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Abstract. We study a general framework for query rewriting in the presence of
an arbitrary first-order logic ontology over a database signature. The framework
supports deciding the existence of a safe-range first-order equivalent reformula-
tion of a query in terms of the database signature, and if so, it provides an effective
approach to construct the reformulation based on interpolation using standard the-
orem proving techniques (e.g., tableau). Since the reformulation is a safe-range
formula, it is effectively executable as an SQL query. At the end, we present an
application of the framework with SHOQ ontologies.

1 Introduction

We address the problem of query reformulation with expressive ontologies over data-
bases. An ontology provides a conceptual view of the database and it is composed by
constraints on a vocabulary extending the basic vocabulary of the data. Querying a data-
base using the terms in such a richer ontology allows for more flexibility than using only
the basic vocabulary of the relational database directly.

In this paper we study and develop a query rewriting framework applicable to know-
ledge representation systems where data is stored in a classical finite relational database,
in a way that in the literature has been called locally-closed world assumption [1], ex-
act views [2,3,4], or DBox [5,6]. A DBox is a set of ground atoms which semantically
behaves like a database, i.e., the interpretation of the database predicates in the DBox is
exactly equal to the database relations. The DBox predicates are closed, i.e., their exten-
sions are the same in every interpretation, whereas the other predicates in the knowledge
base are open, i.e., their extensions may vary among different interpretations. We do not
consider here the open interpretation for the database predicates (also called ABox or
sound views). In an ABox, the interpretation of database predicates contains the data-
base relations and possibly more. This notion is less faithful in the representation of a
database semantics since it would allow for spurious interpretations of database predic-
ates with additional unwanted tuples not present in the original database.

In our general framework an ontology is a set of first-order formulas, and queries
are (possibly open) first-order formulas. Within this setting, the framework provides
support to decide the existence of a safe-range first-order equivalent reformulation of
a query in terms of the database signature. It also provides an effective approach to
construct the reformulation. We are interested in safe-range reformulations of queries
because their range-restricted syntax is needed to reduce the original query answering

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 202–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Exact Query Reformulation with First-Order Ontologies and Databases 203

problem to a relational algebra evaluation (e.g., via SQL) over the original database [7].
Our framework points out several conditions on the ontologies and the queries to guar-
antee the existence of a safe-range reformulation. We show that these conditions are not
infeasible in practice and we also provide an efficient method to ensure their validation.
Standard theorem proving techniques can be used to compute the reformulation.

In order to be complete, our framework is applicable to ontologies and queries ex-
pressed in any fragment of first-order logic enjoying finitely controllable determinacy
[3], a stronger property than the finite model property of the logic. If the employed logic
does not enjoy finitely controllable determinacy our approach would become sound but
incomplete, by still effectively implementable using standard theorem proving tech-
niques. We have explored non-trivial applications where the framework is complete;
in this paper, the application with SHOQ ontology and concept queries is discussed.
We show how (i) to check whether the answers to a given query with an ontology are
solely determined by the extension of the DBox predicates and, if so, (ii) to find an
equivalent rewriting of the query in terms of the DBox predicates to allow the use of
standard database technology for answering the query. This means we benefit from the
low computational complexity in the size of the data for answering queries on relational
databases. In addition, it is possible to reuse standard techniques of description logics
reasoning to find rewritings, such as in [5].

The query reformulation problem has received strong interest in classical relational
database research as well as modern knowledge representation studies. Differently from
the mainstream research on query reformulation [8], which is mostly based on perfect or
maximally contained rewritings with sound views (see, e.g., the DL-Lite approach [9]),
we focus here on exact rewritings with exact views, since it characterises more precisely
the query answering problem with ontologies and databases, and it allows for very
expressive ontology languages.

This work extends the works on exact rewritings with exact views [2,5,3] by focus-
sing on safe-range reformulations and on the conditions ensuring their existence, and
by considering general first-order ontologies extending the database signature, rather
than just local as view constraints over the database predicates [8]. This paper extends
to full FOL the results limited to description logics published in the paper [10].

The paper is organised as follows: Section 2 provides the necessary formal back-
ground and definitions; Section 3 introduces the notion of a query determined by a
database; Section 4 introduces a characterisation of the query reformulation problem;
in Section 5 the conditions allowing for an effective reformulation are analysed. At the
end, we present an application with SHOQ ontologies.

2 Preliminaries

Let FOL(C,P) be a classical function-free first-order language with equality over a
signature Σ = (C,P), where C is a (possibly infinite) set of constants and P is a set of
predicates with associated arities. We call L a fragment of FOL(C,P).

We denote as σ(ϕ1, . . . , ϕn) the signature of the formulas {ϕ1, . . . , ϕn}, i.e., the
union of all predicates and constants occurring in each formula ϕi (1 ≤ i ≤ n). Given
a formula ϕ, we denote the set of all variables appearing in ϕ as VAR(ϕ), and the set

204 E. Franconi, V. Kerhet, and N. Ngo

of the free variables appearing in ϕ as FREE(ϕ); we may use for ϕ the notation ϕ[X] –
where X = FREE(ϕ) is the (possibly empty) set of free variables of the formula.

A database (instance) DB is a finite set of ground atoms of the form P (c1, . . . , cn),
where P ∈ P, n-ary predicate, and ci ∈ C (1 ≤ i ≤ n). The set of all predicates
appearing in a database DB is denoted as PDB, and the set of all constants appearing
in DB is called the active domain of DB, and is denoted as CDB. A (possibly empty)
finite set KB of closed formulas will be called an ontology.

As usual, an interpretation I = 〈ΔI , ·I〉 includes a non-empty set – the domain ΔI

– and an interpretation function ·I defined over constants and predicates of the signa-
ture. An interpretation I embeds a database DB, written I(DB), if it holds that aI = a
for every database constant a ∈ CDB (the standard name assumption (SNA), customary
in databases, see [7]) and that (c1, . . . , cn) ∈ P I if and only if P (c1, . . . , cn) ∈ DB. In
other words, in every interpretation embedding a DB the interpretation of any database
predicate is always the same and it is given exactly by its content in the database; this is,
in general, not the case for the interpretation of the non-database predicates. We say that
all the database predicates are closed, while all the other predicates are open and may
be interpreted differently in different interpretations. We do not consider here the open
world assumption (the ABox) for embedding a database in an interpretation. In an open
world, an interpretation I soundly embeds a database if it holds that (c1, . . . , cn) ∈ P I

if (but not only if) P (c1, . . . , cn) ∈ DB.
In order to allow for an arbitrary database to be embedded, we generalise the stand-

ard name assumption to all the constants in C; this implies that the domain of any
interpretation necessarily includes the set of all the constants C.

We denote an interpretation I with a specific domainΔ as I(Δ). Given an interpreta-
tion I, we denote as I|S the interpretation restricted to the smaller signature S ⊆ P∪C,
i.e., the interpretation with the same domain ΔI and the same interpretation function
·I defined only for the constants and predicates from the set S. The semantic active do-
main of a signature σ′ ⊆ P∪C in an interpretation I, denoted adom(σ′, I), is the set of
all elements of the domain ΔI occurring in interpretations of predicates and constants
from σ′ in I:

adom(σ′, I) :=
⋃

P∈σ′

⋃
(a1,...,an)∈PI

{a1, . . . , an} ∪
⋃
c∈σ′

cI .

If σ′ ⊆ PDB∪C, then for any I(DB) andJ(DB), adom(σ′, I(DB)) = adom(σ′,J(DB));
so, for such case we introduce the notation adom(σ′,DB) := adom(σ′, I(DB)), where
I(DB) is any interpretation embedding the database DB. Intuitively adom(σ′,DB) in-
cludes the constants from σ′ and from DB appearing in the relations corresponding to
the predicates from σ′.

Let X be a set of variable symbols and S a set; we define a substitution ΘS

X
to be

a total function X �→ S assigning an element in S to each variable in X, including
the empty substitution ε when X = ∅. The image of a substitution ΘS

X
is written as

act-range(ΘS

X
). Given a subset of the set of constants C′ ⊆ C, we write that a formula

ϕ[X] is true in an interpretation I with its free variables substituted according to a sub-

stitution ΘC
′

X
as (I |= ϕ[X/ΘC′

X
]). Given an interpretation I = 〈ΔI , ·I〉, a subset of

its domain Δ ⊆ ΔI , we write that a formula ϕ[X] is true in I with its free variables
interpreted according to a substitution ΘΔ

X
as (I, ΘΔ

X
|= ϕ). The extension domain of a

Exact Query Reformulation with First-Order Ontologies and Databases 205

formulaϕ[X] with respect to the interpretation I is defined as the set of domain elements⋃
{act-range(ΘΔ

X
) | I, ΘΔ

X
|= ϕ[X]}.

As usual, an interpretation in which a closed formula is true is called a model for
the formula; the set of all models of a formula ϕ (resp. KB) is denoted as M(ϕ) (resp.
M(KB)). A database DB is legal for an ontology KB if there exists a model of KB
embeddingDB. In the following we will consider only consistent non-tautological on-
tologies and legal databases.

2.1 Queries

A query is a (possibly closed) formula. Given a queryQ[X], we define its certain answer
over KB and DB as follows:

Definition 1 (Certain Answer). The (certain) answer of a queryQ[X] to a databaseDB
under the ontologyKB is the set of substitutions with constants:

{ΘC

X
| ∀ I(DB) ∈M(KB) : I(DB) |= Q[X/ΘC

X
]}.

Query answering is defined as an entailment problem, and as such it is going to have
the same (high) complexity as entailment.

Note, that if a query Q is closed (i.e., a Boolean query), then the certain answer
is {ε} if Q is true in all the models of the ontology embedding the database, and ∅
otherwise. In the following, we assume that – given a substitution ΘC

X
assigning to

variables distinct constants not appearing in Q, nor in KB, nor in CDB – the closed
formula Q[X/ΘC

X
] is neither valid nor inconsistent under the ontology KB: this would

lead to trivial reformulations.
We now show that we can weaken the standard name assumption for the constants by

just assuming unique names, without changing the certain answers. As we said before,
an interpretation I embedding a database DB satisfies the standard name assumption –
written I(DB)SNA – if cI = c for any c ∈ C. Alternatively, an interpretation I embedding
a database DB satisfies the unique name assumption – written I(DB)UNA – if aI �= bI

for any different a, b ∈ C. The following proposition allows us to freely interchange the
standard name and the unique name assumptions with interpretations embedding data-
bases. This is of practical advantage, since we can encode the unique name assumption
in classical first-order logic reasoners, and most description logics reasoners do have a
native unique name assumption.

Proposition 1 (SNA vs UNA). For any query Q[X], ontology KB and database DB,

{ΘC

X
| ∀ I(DB)SNA ∈M(KB) : I(DB)SNA |= Q[X/ΘC

X
]} =

{ΘC

X
| ∀ I(DB)UNA ∈M(KB) : I(DB)UNA |= Q[X/ΘC

X
]}.

Since a query can be an arbitrary first-order formula, its answer can be infinite (since
the domain is not restricted to be finite) or it may depend on the domain. For example,
the query Q(x) = ¬Student(x) over the database Student(A), Student(B), with
domain {A,B,C} has the answer {x = C}, with domain {A,B,C,D} has the answer
{x = C, x = D}, and if we change the domain to an infinite one, the answer will
be infinite even in presence of such a finite database. Therefore, the notion of domain
independent queries has been introduced in relational databases. Here we adapt the
classical definitions [11,7] to our framework:

206 E. Franconi, V. Kerhet, and N. Ngo

Definition 2 (Domain Independence). A formula Q[X] is domain independent iff for
every two interpretations I = 〈ΔI , ·I〉 and J = 〈ΔJ , ·J 〉 which agree on the in-
terpretation of the predicates and constants (i.e. ·I = ·J), and for every substitution
ΘΔI∪ΔJ

X
: act-range(ΘΔI∪ΔJ

X
) ⊆ ΔI and I, ΘΔI∪ΔJ

X
|= Q[X] iff

act-range(ΘΔI∪ΔJ

X
) ⊆ ΔJ and J , ΘΔI∪ΔJ

X
|= Q[X].

A weaker version of domain independence is the following.

Definition 3 (Ground Domain Independence). A formula Q[X] is ground domain in-
dependent iff Q[X/ΘC

X
] is domain independent for every substitution ΘC

X
.

The problem of checking whether a FOL formula is domain independent is undecidable
[7]. The well known safe-range syntactic fragment of FOL introduced by Codd is an
equally expressive language; indeed any safe-range formula is domain independent, and
any domain independent formula can be easily transformed into a logically equivalent
safe-range formula. Intuitively, a formula is safe-range if and only if its variables are
bounded by positive predicates or equalities – for the exact syntactical definition see,
e.g., [7]. For example, the formula ¬A(x) ∧ B(x) is safe-range, while queries ¬A(x)
and ∀x.A(x) are not. To check whether a formula is safe-range, the formula is trans-
formed into a logically equivalent safe-range normal form and its range restriction is
computed according to a set of syntax based rules; the range restriction of a formula is
a subset of its free variables, and if it coincides with the free variables then the formula
is said to be safe-range [7]. Similar to domain independence, a formula is ground safe-
range if any grounding of this formula is safe-range. An ontology KB is safe-range
(domain independent), if every formula in KB is safe-range (domain independent).

The safe-range fragment of first-order logic with the standard name assumption is
equally expressive to the relational algebra, which is the core of SQL [7].

3 Determinacy

The certain answer to a query includes all the substitutions which make the query true
in all the models of the ontology embedding the database: so, if a substitution would
make the query true only in some model, then it would be discarded from the certain
answer. In other words, it may be the case that the answer to the query is not necessarily
the same among all the models of the knowledge base embedding the database. In this
case, the query is not fully determined by the given source data; indeed, there is some
answer which is possible, but not certain. Due to the indeterminacy of the query with
respect to the data, the complexity to compute the certain answer in general increases up
to the complexity of entailment in the logic. In this paper we focus on the case when a
query has the same answer over all the models of the ontology embedding the database,
namely, when the information requested by the query is fully available from the source
data without ambiguity. In this way, the indeterminacy disappears, and the complexity
of the process may decrease (see Section 4). The determinacy of a query w.r.t. a source
database [3,2,4] has been called implicit definability of a formula (the query) from a set
of predicates (the database predicates) by [12].

Exact Query Reformulation with First-Order Ontologies and Databases 207

Definition 4 (Finite Determinacy or Implicit Definability). Let I and J be any two
models of the ontology KB, both with a finite interpretation to the database predicates
PDB. A queryQ[X] is (finitely) determined by (or implicitly definable from) the database
predicates PDB under KB iff I|PDB∪C = J |PDB∪C implies that for every substitution
ΘΔI

X
: I, ΘΔI

X
|= Q[X] iff J , ΘΔI

X
|= Q[X].

Intuitively, the answer of an implicitly definable query does not depend on the interpret-
ation of non-database predicates. Once the database and a domain are fixed, it is never
the case that a substitution would make the query true in some model of the knowledge
base and false in others, since the truth value of an implicitly defined query depends
only on the interpretation of the database predicates and constants and on the domain
(which are fixed).

In the following we focus on those fragments of FOL(C,P) for which determinacy
under models with a finite interpretation of database predicates (finite determinacy) and
determinacy under models with an unrestricted interpretation of database predicates
(unrestricted determinacy) coincide. We say that these fragments have finitely control-
lable determinacy: we require that whenever a query is finitely determined then it is also
determined in unrestricted models (the reverse is trivially true). Indeed, the results in
this paper would fail if finite determinacy and unrestricted determinacy do not coincide:
it can be shown (from [13]) that Theorem 1 below fails if we consider only models with
a finite interpretation of database predicates.

Example 1 (Example from database theory). Let P = {P,R,Q}, PDB = {P,R},
KB = {∀x, y, z. R(x, y) ∧R(x, z)→ y = z, ∀x, y.R(x, y)→ ∃z.R(z, x),

(∀x, y.R(x, y)→ ∃z.R(y, z))→ (∀x.Q(x)↔ P (x))}.
The formula ∀x, y.R(x, y) → ∃z.R(y, z) is entailed from the first two formulas only
over finite interpretations of R. The query Q(x) is finitely determined by P (it is equi-
valent to it under the models with a finite interpretation of R), but it is not determined
by any database predicate under models with an unrestricted interpretation of R. This
fragment of FOL(C,P) does not enjoy finitely controllable determinacy.

The exact reformulation of a query [3] (also called explicit definition [12]) is a for-
mula logically equivalent to the query which makes use only of database predicates and
constants.

Definition 5 (Exact Reformulation or Explicit Definability). A query Q[X] is expli-
citly definable from the database predicates PDB under the ontology KB iff there is
some formula Q̂[X] in FOL(C,P), such that KB |= ∀X.Q[X] ↔ Q̂[X] and σ(Q̂) ⊆
PDB. We call this formula Q̂[X] an exact reformulation of Q[X] underKB over PDB.

Determinacy of a query is completely characterised by the existence of an exact refor-
mulation of the query: it is well known that a first-order query is determined by database
predicates if and only if there exists a first-order exact reformulation.

Theorem 1 (Projective Beth definability [12]). A queryQ is implicitly definable from
the database predicates PDB under an ontology KB, iff it is explicitly definable as a
formula Q̂ in FOL(C,P) over PDB under KB.

208 E. Franconi, V. Kerhet, and N. Ngo

Let Q be any formula in L and Q̃ the formula obtained from it by uniformly replacing
every occurrence of each non-database predicate P with a new predicate P̃ . We extend
this renaming operator ·̃ to any set of formulas in a natural way. One can check whether
a query is implicitly definable by using the following theorem.

Theorem 2 (Testing Determinacy [12]). A query Q[X] is implicitly definable from the

database predicates PDB under the constraintsKB iff KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X].

4 Exact Safe-Range Query Reformulation

In this section we analyse the conditions under which the original query answering
problem – corresponding to an entailment problem – can be reduced systematically
to a model checking problem of a safe-range formula over the database (e.g., using a
database system with SQL). Given a database signature PDB, an ontology KB, and a
query Q[X] expressed in L and determined by the database predicates, our goal is to

find a safe-range reformulation Q̂[X] of Q[X] in FOL(C,P), that when evaluated as a
relational algebra expression over a legal database instance gives the same answer as
the certain answer of Q[X] to the database under KB. This can be reformulated as the
following problem:

Problem 1 (Exact Safe-Range Query Reformulation). Find an exact reformulation
Q̂[X] of Q[X] under KB as a safe-range query in FOL(C,P) over PDB.

Since an exact reformulation is equivalent under the ontology to the original query,
the certain answer of the original query and of the reformulated query are identical.
More precisely, the following proposition holds.

Proposition 2. Let Q[X] be implicitly definable from PDB under KB and Q̂[X] be an
exact reformulation of Q[X] underKB over PDB, then:

{ΘC

X | ∀ I(DB)∈M(KB) :I(DB) |= Q[X/ΘC

X
]}={ΘC

X | ∀ I(DB) ∈M(KB) :I(DB) |= Q̂[X/ΘC

X
]}.

From the above equation it is clear that in order to answer an exactly reformulated
query, one still may need to consider all the models I(DB) of the ontology embedding
the database – i.e., we still have an entailment problem to solve. The following theorem
states the condition to reduce the original query answering problem – based on entail-
ment – to the problem of checking the validity of the exact reformulation over a single
model: the condition is that the reformulation should be domain independent.

Theorem 3 (Adequacy of Exact safe-range Query Reformulation). Let DB be a
database which is legal for KB, and Q[X] be a query. If Q̂[X] is an exact domain inde-
pendent (or safe-range) reformulation of Q[X] underKB over PDB, then:

{ΘC

X
| ∀ I(DB) ∈M(KB) : I(DB) |= Q[X/ΘC

X
]} =

{Θadom(σ(̂Q),DB)
X

| I(C)
(DB)|PDB∪C |= Q̂

[X/Θ
adom(σ(̂Q),DB)
X

]
}.

A safe-range reformulation is necessary to transform a first-order query to a relational
algebra query which can then be evaluated by using SQL techniques. The theorem
above shows in addition that being safe-range is also a sufficient property for an exact
reformulation to be correctly evaluated as an SQL query. Let us now see an example
in which we can not reduce the problem of answering an exact reformulation to model
checking over a database, if the exact reformulation is not safe-range.

Exact Query Reformulation with First-Order Ontologies and Databases 209

Example 2. Let P = {P,A}, PDB = {P}, C = {a},
DB = {P (a, a)}, KB = {∀y. P (a, y) ∨ A(y)},
Q = Q̂ = ∀y. P (x, y).

– DB is legal for KB because there is I(DB) = 〈{a}, ·I(DB)〉 such that P I(DB) =

{(a, a)}, AI(DB) = ∅ and obviously, I(DB) ∈M(KB).
– {ΘC

X
| ∀ I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X
]} = ∅ because one can take

I(DB) = 〈{a, b}, ·I(DB)〉 such that P I(DB) = {(a, a)}, AI(DB) = {b}; then
I(DB) ∈ M(KB), but for the only possible substitution {x → a}, I(DB) �|=
∀y P (a, y).

– However, {ΘC

X
| I(C)

(DB)|PDB |= Q̂[X/ΘC

X
]} = {x→ a}.
�

5 Conditions for an Exact Safe-Range Reformulation

We have just seen the importance of getting an exact safe-range query reformulation. In
this section we are going to study the conditions under which an exact safe-range query
reformulation exists. While implicit definability is – as we already know – a sufficient
condition for the existence of an exact reformulation, it does not guarantee alone the
existence of a safe-range reformulation.

Example 3. Let P = {A,B}, PDB = {A}, KB = {∀x.B(x)↔ ¬A(x)}, Q = B(x).
ThenQ is implicitly definable from PDB underKB, and every exact reformulation ofQ
over PDB underKB is not safe-range.
�
By looking at the example, it seems that the reason for the non-safe-range reformula-
tion lies in the fact that the query returns non-database domain elements – due to the
universal quantification. So, we try to restrict the queries to be DB-relativised, namely
they should return only database objects.

Definition 6 (DB-relativised query). An open query Q[X] is DB-relativised under
KB, if in each model of KB the extension domain of Q[X] includes only domain ele-
ments which are among the interpretation of database predicates or constants from KB
or Q[X]. A closed query is DB-relativised under any ontology.

Example 4. Let P = {A,B,C,D}, PDB = {D},
KB = {∀x.¬A(x) ∧B(x)↔ D(x), ∀x.C(x) → x = a},
Q(x) = ¬A(x) ∧B(x) ∨ C(x).
Then, since KB |= Q(x) → D(x) ∨ x = a, D is a database predicate and a is

constant in KB, it is easy to see, that the query Q(x) is DB-relativised under KB.
�
With DB-relativised queries, the following theorem holds, giving the semantic (non-
constructive) requirements for the existence of an exact reformulation.

Theorem 4 (Semantic). Let X = {x1, . . . , xn}. If Q[X] is implicitly definable from
PDB under KB, ground domain independent, and DB-relativised under KB, and KB
is domain independent, then there exists an exact reformulation Q̂[X] of Q[X] as a safe-
range query in FOL(C,P) over PDB under KB.

Let us now discuss the conditions of the theorem.

210 E. Franconi, V. Kerhet, and N. Ngo

The converse of theorem 4 in general does not hold.
In fact, if there exists a FOL(C,P) exact safe-range reformulation Q̂[X] ofQ[X] over

PDB under KB, then

– Q[X] is implicitly definable from PDB under KB given the Beth definability prop-
erty of FOL.

– Q[X] is DB-relativised under KB since Q̂[X] is DB-relativised under KB and Q[X]

is logically equivalent to Q̂[X] w.r.t. KB.
– Q[X] may not be ground domain independent, and KB may be not domain

independent.

Example 5. Let P = {A,B,C}, PDB = {B},KB = {∀x.A(x)∧∀y. C(y) ↔ B(x)},
Q(x) = A(x) ∧ ∀y. C(y). Q̂(x) = B(x) is a safe-range exact reformulation of Q(x)
over PDB under KB. But Q(x) is not ground domain independent, and KB is not do-
main independent.
�
We cannot neglect the ground domain independence of the query.

Example 6. Let P = {A,B}, PDB = {B},
KB = {∀x.A(x)↔ B(x)}, Q = ∀x.A(x).

– KB is domain independent;
– Q is implicitly definable from PDB underKB, because it is explicitly definable from

PDB under KB: KB |= ∀x.A(x) ↔ ∀y.B(y);
– Q is DB-relativised under KB because Q is closed;
– Q is not ground domain independent;
– All the exact reformulations of Q over PDB are logically equivalent w.r.t. KB to
∀x.B(x), which is not domain independent. Therefore, they are not safe-range.
�

We cannot neglect domain independence of KB.

Example 7. Let P = {P,A}, PDB = {A},
KB = {∃x. P (x)↔ ∃y.¬A(y)}, Q = ∃x. P (x).

– Q is implicitly definable from PDB underKB because the first sentence ofKB gives
an explicit definition of Q;

– Q is ground domain independent;
– Since Q is closed, it is always DB-relativised under KB;
– KB is not domain independent;
– All the exact reformulations of Q over PDB are logically equivalent w.r.t. KB to
∃y.¬A(y), which is not domain independent. Therefore, they are not safe-range.
�

We can weaken domain independence of KB.

Example 8. Let P = {A,B,C}, PDB = {C},
KB = {∀x.A(x)↔ C(x), ∀x.B(x)}, Q(x) = A(x) ∧B(x).

– Q(x) is implicitly definable from PDB under KB because the first sentence of KB
gives an explicit definition of Q(x);

– Q is domain independent;
– Q(x) is DB-relativised under KB because of the first sentence of the KB.
– Q̂(x) = C(x) is an exact safe-range reformulation of Q(x) from PDB underKB.

But KB is not domain independent.
�

Exact Query Reformulation with First-Order Ontologies and Databases 211

It is still open the problem to understand which part of KB is irrelevant for the refor-
mulation and therefore does not need to be domain independent.

The above theorem shows us the semantic conditions to have an exact safe-range
reformulation of a query, but it does not give us a method to compute such reformula-
tion. The following constructive theorem gives us sufficient conditions for the existence
of an exact safe-range reformulation in any decidable fragment of FOL(C,P) where
finite and unrestricted determinacy coincide, and compute it, if it exists.

Theorem 5 (Constructive)
Let X = {x1, . . . , xn}. If

1. KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X] (i.e., Q[X] is implicitly definable),
2. Q[X] is ground safe-range,
3. KB is safe-range,
4. there are n safe-range formulas ψ1, . . . , ψn over PDB with constants from KB and
Q[X], that we call DB-sorts, such that KB |= ∀X.Q[X] → ψ1(x1) ∧ . . . ∧ ψn(xn),

then there exists an exact reformulation Q̂[X] ofQ[X] as a safe-range query inFOL(C,P)
over PDB under KB, that can be obtained constructively, and each free variable xi in
Q̂ appears in a DB-sort ψi as a top level conjunct.

In order to compute the exact safe-range query reformulation we use the tableau based
method to find the Craig’s interpolant (see [14,15]) to compute Q̂[X] from a validity

proof of the implication (KB ∧ Q[X]) → (K̃B → Q̃[X]). Let us now consider a fully
worked out example, adapted from [3].

Example 9. Given: P = {R, V1, V2, V3, A}, PDB = {V1, V2, V3, A},
KB = {∀x, y. V1(x, y)↔ ∃z, v. R(z, x) ∧R(z, v) ∧R(v, y),
∀x, y. V2(x, y)↔ ∃z.R(x, z) ∧R(z, y),
∀x, y. V3(x, y)↔ ∃z, v. R(x, z) ∧R(z, v) ∧R(v, y),
∀x, y.R(x, y)→ A(y)}.
Q(x, y) = ∃z, v, u.R(z, x) ∧R(z, v) ∧R(v, u) ∧R(u, y).

The conditions of the constructive theorem are satisfied: Q(x, y) is implicitly definable
from PDB under KBQ(x, y) is ground safe-range; KB is safe-range; Q(x, y) is DB-
relativised, and A(x) and A(y) are the DB-sorts.

Therefore, with the tableau method one finds the Craig’s interpolant to compute
Q̂(x, y) from a validity proof of the implication (KB ∧ Q[X]) → (K̃B → Q̃[X]) and

obtain Q̂(x, y) = ∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y)) - an exact ground safe-
range reformulation. Since Q̂(x, y) is exact and A(x), A(y) are DB-sorts, KB |=
Q̂(x, y) → A(x) ∧ A(y). Then KB |= Q(x, y) ↔ Q̂(x, y) ∧ A(x) ∧ A(y). There-
fore, ∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y)) ∧ A(x) ∧ A(y) is an exact safe-range
reformulation of Q(x, y) from PDB under KB.
�

6 A Case Study: SHOQ
SHOQ is an extension of the description logicALC with transitive roles, role hierarch-
ies, qualified number restrictions, and individuals; it is a fragment of first-order logic

212 E. Franconi, V. Kerhet, and N. Ngo

Syntax Semantics
A AI ⊆ ΔI

R RI ⊆ ΔI ×ΔI

C �D CI ∩DI

C �D CI ∪DI

¬C ΔI\CI

∃R.C {x|exists y such that (x, y) ∈ RI and y ∈ CI}
∀R.C {x|forall y (x, y) ∈ RI implies y ∈ CI}
{o} {o}I ⊆ ΔI

≥ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≥ n}
≤ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≤ n}

and of OWL2. The syntax and semantics of SHOQ is summarised in the next Table,
where A is an atomic concept, C and D are concepts, o is an individual name and R is
an atomic role. SHOQ is a rather standard description logic; for more details see, e.g.,
[16]. A TBox in SHOQ is a set of concept inclusion axioms C � D, role inclusion
axioms R � S, and transitivity axioms Trans(R) (where C, D are concepts and R, S
are atomic roles) with the usual semantics. In this section, we present an application of
our framework where the ontology is a TBox in SHOQ, the query is a concept query
– namely a concept expression denoting an open formula with one free variable – or
a closed concept query – a concept query where the free variable has been substituted
with a constant – and the database is a set of expressions of the form A(a) and R(a, b)
(where A is an atomic concept and R is an atomic role) [10].

Finitely Controllable Determinacy. The constructive theorem holds in any fragment
of FOL(C,P) for a safe-range ontology KB and a DB-relativised query Q[X] if the

entailment KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X], that characterises implicit definability of
Q[X], is finitely controllable. The finite controllability of this entailment in SHOQ is

guaranteed because the entailment KB ∪ K̃B |= Q ≡ Q̃ can be reduced in SHOQ to
a concept satisfiability problem for an empty TBox, and SHOQ has the finite model
property [17].

Safe-Range Ontology. We call any axiom (concept) in SHOQ (ground) safe-range, if
the corresponding logically equivalent (open) formula in FOL(C,P) is (ground) safe-
range. Role inclusion and transitivity axioms are always safe-range. For any conceptC
we denote the corresponding logically equivalent formula in FOL(C,P) with one free
variable x as C(x). Unfortunately concept inclusion axioms in SHOQ ontologies may
not be safe-range: for example, the axiom¬ male � female is not safe-range. It is easy
to see that an axiom C � D is not safe-range if and only if C(x) is not safe-range and
D(x) is safe-range: just observe that the axiom is logically equivalent to the formula
¬∃x. C(x)∧¬D(x) in FOL(C,P). The following proposition provides rules deciding
whether a SHOQ concept is safe-range.

Proposition 3. Let A be an atomic concept, C and D be SHOQ concepts. Then:
1. A(x), (∃R.C)(x), {o}(x), (≥ nR.C)(x) are safe-range;
2. (∀R.C)(x), (≤ nR.C)(x) are not safe-range;
3. (C
D)(x) is safe-range if and only if C(x) is safe-range or D(x) is safe-range;
4. (C �D)(x) is safe-range if and only if C(x) is safe-range and D(x) is safe-range;

Exact Query Reformulation with First-Order Ontologies and Databases 213

5. ¬C(x) is safe-range if and only if C(x) is not safe-range.

Proposition 4. For any SHOQ concept C and constant a, C(x) is ground safe-range,
and C(a) is safe-range.
The presence of non-safe-range axioms in an ontology would prevent the application of
our framework, but we argue that non-safe-range axioms should not appear in a cleanly
designed SHOQ ontology, and, if present, they should be fixed. Indeed, the use of
absolute negative information in the subsumee – such as in “a non-male is a female"
(¬ male � female) – should be discouraged by a clean design methodology, since
the subsumer would include all sorts of objects in the universe (but the ones of the
subsumee type) without any obvious control. Only relativised negative information in
the subsumee should be allowed – such as in the axiom “a non-male person is a
female" (person
 ¬ male � female). This observations suggests a fix for non-
safe-range axioms: for every non-safe-range axiom C � D users will be asked to
replace it by the safe-range one C
E � D whereE is an arbitrary safe-range concept.
Therefore, the user is asked to make explicit the type of the subsumee, in a way to make
it domain independent; note that the type could be also a fresh new atomic concept. We
believe that the fix we are proposing for SHOQ is a reasonable one, and would make
all SHOQ ontologies eligible to be used with our framework.

Ground safe-range andDB-relativised query. LetKB be a SHOQ ontology, andQ(x)
an implicitly definable query, which is a possibly complex concept in SHOQ. In order
to use our framework, a query should be ground safe-range and DB-relativised under
the ontology. We already know that by Proposition 4 the query is ground safe-range. A
query is DB-relativised if it returns only database objects; it may be strange for a user
to issue a query which is not meant to return just database objects. Therefore, in the
rare case a user is issuing a non-DB-relativised query, we would ask the user to conjoin
the query with a safe-range concept composed only by database atomic concepts, which
would become the type of the query. The type plays the role of theDB-sort of theorem 5.
We believe that also this fix for the queries is a reasonable one, and would make all
queries eligible to be used with our framework.

7 Conclusion

We have introduced a framework to compute the exact reformulation of first-order quer-
ies to a database under ontologies. We have found the conditions which guarantee that
a safe-range reformulation exists, and we show that it can be evaluated as a relational
algebra query over the database to give the same answer as the original query under the
ontology. A non-trivial case study has been presented in the field of description logics,
with the SHOQ language.

We have also implemented a tool based on the Prover9 theorem prover [18]: the
tool manages an arbitrary first-order ontology, a database signature, and an arbitrary
first-order query in TPTP syntax, it performs all the tests on them to check whether a
reformulation can be computed, and it computes an optimal safe-range reformulation.

This framework, even with the limitation of atomic queries, is useful in data exchange-
like scenarios, where the target database (made by determined relations) should be ma-
terialised as a proper database, over which arbitrary queries should be performed. This

214 E. Franconi, V. Kerhet, and N. Ngo

is not achieved in a context with non-exact rewritings preserving the certain answers. In
our scenario rewritings are precomputed offline once. Our framework works also in the
case of arbitrary queries, and our tool shows that this is possible in practice.

As a future work, we would like to study optimisations of reformulations. From the
practical perspective, since there might be many rewritten queries from one original
query, the problem of selecting an optimised one in terms of query evaluation is very
important. In fact, one has to take into account which criteria should be used to optim-
ise, such as: the size of the rewritings, the numbers of used predicates, the priority of
predicates, the number of relational operators, and clever usage of duplicates. With the
tool we plan to evaluate our proposed technique in a real context.

References

1. Etzioni, O., Golden, K., Weld, D.S.: Sound and efficient closed-world reasoning for planning.
Artif. Intell. 89, 113–148 (1997)

2. Marx, M.: Queries determined by views: pack your views. In: Proceedings of the 26th ACM
Symposium on Principles of Database Systems, PODS 2007, pp. 23–30 (2007)

3. Nash, A., Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting. ACM
Trans. Database Syst. 35, 21:1–21:41 (2010)

4. Fan, W., Geerts, F., Zheng, L.: View determinacy for preserving selected information in data
transformations. Inf. Syst. 37, 1–12 (2012)

5. Seylan, İ., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies over DBoxes.
In: Proc. of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
pp. 923–925 (2009)

6. Franconi, E., Ibanez-Garcia, Y.A., Seylan, İ.: Query answering with DBoxes is hard. Elec-
tronic Notes in Theoretical Computer Science 278, 71–84 (2011)

7. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
8. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10, 270–294

(2001)
9. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-

lations. J. Artif. Intell. Res (JAIR) 36, 1–69 (2009)
10. Franconi, E., Kerhet, V., Ngo, N.: Exact query reformulation over SHOQ DBoxes. In: Proc.

of the 2012 International Workshop on Description Logics, DL 2012 (2012)
11. Avron, A.: Constructibility and decidability versus domain independence and absoluteness.

Theor. Comput. Sci. 394, 144–158 (2008)
12. Beth, E.: On Padoa’s method in the theory of definition. Indagationes Mathematicae 15, 330–

339 (1953)
13. Gurevich, Y.: Toward logic tailored for computational complexity. In: Computation and Proof

Theory, vol. 1104, pp. 175–216. Springer (1984)
14. Fitting, M.: First-order logic and automated theorem proving, 2nd edn. Springer (1996)
15. Borgida, A., de Bruijn, J., Franconi, E., Seylan, İ., Straccia, U., Toman, D., Weddell, G.E.: On

finding query rewritings under expressive constraints. In: Proc. of the 18th Italian Symposium
on Advanced Database Systems (SEBD 2010), pp. 426–437 (2010)

16. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proc. of
the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 199–204 (2001)

17. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete domains. J. Artif.
Int. Res. 23, 667–726 (2005)

18. McCune, W.: Prover9 and Mace4 (2005-2011),
http://www.cs.unm.edu/~mccune/prover9

http://www.cs.unm.edu/~mccune/prover9

A Selective Semantics for Logic Programs
with Preferences

Alfredo Gabaldon

Center for Artificial Intelligence (CENTRIA)
Universidade Nova de Lisboa
a.gabaldon@fct.unl.pt

Abstract. Answer Set Programming (ASP), has become a prominent approach
for Knowledge Representation and declarative problem solving. ASP has been
extended with preferences and several semantics have been proposed. Among the
available semantics, the so-called selective semantics have the property of always
choosing preferred answer sets from among the standard answer sets, which is
a desirable property in many applications. However, there exist programs which
while having answer sets, have no preferred answer sets under the existing selec-
tive semantics. On the other hand, there are programs which, arguably, have too
many preferred answer sets under existing semantics. We propose a new defini-
tion of preferred answer sets which is also selective, assigns at most one preferred
answer set given a full prioritization of a program, and for negative-cycle-free
programs the existence of a preferred answer set is guaranteed as in the case of
standard logic programs.

1 Introduction

Reasoning with preferences is widely recognized as an important problem. Many knowl-
edge representation formalisms have been extended to represent preferences as prior-
ities between propositions in a knowledge base. In particular, prioritized versions of
logic programming with answer set semantics [1, 2] have been studied and various
semantics have been proposed [3–8]. Some of these approaches [6–8] are called selec-
tive because they use the preferences to choose from the answer sets of a logic pro-
gram some preferred ones. Another characteristic of the selective approaches is that
most of them extend logic programs with preferences without increasing computational
complexity.

In this work we focus on selective approaches and propose a new definition of pre-
ferred answer sets of logic programs with preferences. The main motivation for intro-
ducing a new definition is that all of the existing selective approaches appear to be too
strong in the sense that some programs have no preferred answer sets even though they
have standard answer sets and no apparent conflict. At the same time, under these ap-
proaches there are programs where, even with a full set of priorities, it is not possible
to choose only one answer set as the preferred one. In other words, the existing selec-
tive approaches sometimes choose too few and sometimes too many preferred answer
sets. Under our proposed definition, a full set of priorities yields at most one preferred

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 215–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 A. Gabaldon

answer set. Moreover, for a class of propositional logic programs (called negative-cycle-
free and head-consistent) a preferred answer set is guaranteed to exist.

It is standard practice in answer set programming (ASP) to combine programs that
generate answer sets and then to use additional knowledge in the form of “constraints”
to eliminate some answer sets [9]. Constraints are precisely a form of negative cycle.
For a program outside the class of negative-cycle-free programs, it is possible under
our definition that the program not have any preferred answer sets. This would reflect
an inconsistency involving the priorities, the constraints and the rest of the rules in the
program. This is consistent with standard practice in ASP, where problems are often
solved by checking (non-)existence of answer sets. However, we show that programs
that are negative-cycle-free, which always have standard answer sets, are also guaran-
teed to have preferred answer sets under our new definition. Furthermore, a program
with a partial set of priorities may have multiple preferred answer sets, which is consis-
tent with ASP practice where multiple answer sets correspond to multiple solutions of
a problem. But a full set of priorities always yields at most one preferred answer set.

For comparison, we focus on the semantics introduced by Brewka and Eiter [6] (for
brevity, the BE semantics). Among the selective semantics within the NP complexity
class [6–8], the BE semantics produces a larger collection, in fact a superset, of pre-
ferred answer sets than the other the approaches do [10]. Since one of our goals is a
larger class of programs with preferred answer sets, we take the BE semantics as the
representative of the selective semantics and center our discussion and comparisons
around it. Among other approaches for logic programming with preferences, there are
[3, 5], which are in a higher complexity class, and [4] which is not selective. These
approaches have their own advantages, but we will not discuss them further as we focus
on selective semantics in the same complexity class as programs without preferences.

2 Prioritized Extended Logic Programs

2.1 Extended Logic Programs

We start with the syntax of Extended Logic Programs (elps) [1, 2]. A literal is an atom
p or its negation ¬p. Literals of the same atom, e.g. p and ¬p, are called contrary and l
denotes the literal contrary to l. If the language of an elp is not explicitly defined then
it is understood to consist of all the literals of all atoms that appear in the program. Lit
denotes the set of all literals in the language of an elp. A rule r is an expression of the
form1

l0 ← l1, . . . , ln, not ln+1, . . . , not lm (1)

where l0, . . . , lm are literals and not denotes negation-as-failure (or default negation).
Expressions not l are called extended literals. For a rule r of the form (1), the head,
l0, is denoted by head(r), the set of literals {l1, . . . , ln} by body+(r) and the set of
literals {ln+1, . . . , lm} by body−(r). The body of a rule r is the union body(r) =
body+(r)∪body−(r). For a set of rulesP , heads(P) = {head(r)|r ∈ P}. An extended
logic program is a finite set of rules.

1 Instead of rules with empty head, we assume constraints are expressed as p ← not p, Γ .

A Selective Semantics for Logic Programs with Preferences 217

A set of literals S ⊆ Lit is called a partial interpretation. We say a literal l defeats
a rule r if l ∈ body−(r). A partial interpretation S defeats a rule r if there is a literal
l ∈ S that defeats r. S satisfies the body of a rule r if body+(r) ⊆ S and S does not
defeat r. S satisfies r if head(r) ∈ S or S does not satisfy the body of r.

The answer sets of an elp whose rules do not contain not are defined as follows.

Definition 1. Let P be an elp without default negation. A partial interpretation S is an
answer set of P if S is minimal (wrt set inclusion) among the partial interpretations
that satisfy the rules of P , and S is logically closed, i.e. if S contains contrary literals
then S is Lit.

For arbitrary programs, the definition is extended by introducing the Gelfond-Lifschitz
reduct: let S be a partial interpretation and P be an elp. The reduct, PS , of P relative
to S is the set of rules l0 ← l1, . . . , ln for all rules (1) in P that are not defeated by S.

Definition 2 (Answer Set). A partial interpretation S is an answer set of an elp P if S
is an answer set of PS .

2.2 Prioritized Extended Logic Programs

We now turn to prioritized elps, adapting the definitions from [6]. Let us start with the
syntax. An elp rule r of the form (1) is called prerequisite-free if body+(r) = ∅ and an
elp P is prerequisite-free if all its rules are prerequisite-free.

Definition 3 (Prioritized elp). A prioritized elp is a pair P = (P,<) where P is an
elp and < is a strict partial order on the rules of P .

A simple example is the program

r1 : a ← not b.
r2 : b ← not a.

with priority r1 < r2, i.e. rule r1 has higher priority than r2. Of the two answer sets
{a} and {b}, the intention is that {a} would be the preferred answer set.

The answer sets of a prioritized elp P = (P,<) are defined as the answer sets of P
and are denoted by AS(P).

Definition 4. A full prioritization of (P,<) is any pair (P,<′) where <′ is a total order
on P that is compatible with <, i.e., r1 < r2 implies r1 <′ r2 for all r1, r2 in P .

The total ordering in a fully prioritized elp induces an enumeration r1, r2, . . . of its rules
with r1 having the highest priority. Throughout the paper, we use such an enumeration
in examples and write ri : l ← l1, . . . , ln, not ln+1, . . . , not lm to denote the ith rule
in such an enumeration.

Let us next look at the BE preferred answer set semantics. We will refer to preferred
answers sets under the BE semantics as BE-preferred answer sets. These definitions are
simplified versions of those in [6] as we focus in this work on propositional programs.

218 A. Gabaldon

Definition 5. LetP = (P,<) be a fully prioritized elp where P is a set ofn prerequisite-
free rules and let S be a set of literals. The sequence of sets S0, S1, . . . , Sn is defined
as follows: S0 = ∅ and for 0 < i ≤ n,

Si =

⎧⎨⎩
Si−1, if ri is defeated by Si−1 or

head(ri) ∈ S and ri is defeated by S,
Si−1 ∪ {head(ri)}, otherwise.

The set CP(S) is defined as the smallest set of literals such that Sn ⊆ CP(S) and
CP(S) is logically closed (consistent or equal to Lit).

Definition 6. Let P = (P,<) be a fully prioritized elp with prerequisite-free P and let
A be an answer set of P . Then A is the BE-preferred answer set of P iff A = CP(A).

For non prerequisite-free prioritized elps, a transformation is applied similar to the
Gelfond-Lifschitz reduct but that produces rules without prerequisites.

Definition 7. Let P = (P,<) be a fully prioritized elp and S be a set of literals. Define
SP = (SP, S<) to be the fully prioritized elp such that SP is the set of rules obtained
from P by

1. deleting every rule r ∈ P s.t. body+(r) �⊆ S, and
2. deleting body+(r) from every remaining rule r;

and S< is inherited from < by the mapping f : SP �→ P where f(r′) is the first rule
in P wrt < such that r′ results from r by step (2) above. In other words, for every
r1, r2 ∈ P , r′1

S< r′2 iff f(r′1) < f(r′2).

Definition 8. A set A of literals is a BE-preferred answer set of a fully prioritized elp
P = (P,<) iff A is a BE-preferred answer set of AP .

Finally, for an arbitrary prioritized elp P , A is a preferred answer set of P if A is a
preferred answer set of some full prioritization of P .

In the next section we present some examples illustrating this semantics, including
programs without preferred answer sets and fully prioritized programs with multiple
ones.

3 Some Examples

Here we consider some motivating examples. Some show programs that have no BE-
preferred answer sets despite containing no apparent conflict and some show programs
that are fully prioritized but, arguably, have too many BE-preferred answer sets. Most
examples are in fact from [6] where they were recognized as problematic.

Example 1. Consider the program P1 with rules

r1 : c ← not b.
r2 : b ← not a.

P1 has one answer set, A = {b}. Since c �∈ A nor is r1 defeated by ∅, c ∈ CP1(A).
Therefore this program has no BE-preferred answer sets.

A Selective Semantics for Logic Programs with Preferences 219

Brewka and Eiter’s approach to preferences is based on the view (which we follow as
well) that preferences are introduced in order to “solve potential conflicts...to conclude
more than in standard answer semantics” [6]. Since the rules in the above program show
no apparent conflict between them and in fact the program has only one answer set, it
seems reasonable that it should have a preferred answer set.

The following example shows this shortcoming even more directly, since one of the
rules is a fact, i.e. does not involve defaults at all.

Example 2. Consider the program P2 with rules

r1 : a ← not b.
r2 : b.

P2 has one answer set, A = {b}. By a similar argument as in the previous example, we
have that a ∈ CP2(A) and so the program has no BE-preferred answer sets.

The above examples show that the semantics is in some sense too strong (this also
holds for the other proposed selective semantics which are stronger). On the other hand,
this semantics assigns multiple preferred answer sets to some programs that are fully
prioritized. This means that a full prioritization is still not enough to solve all potential
conflicts. Consider the following example.

Example 3. Consider the program P3 with rules

r1 : b ← not¬b, a.
r2 : c ← not b.
r3 : a ← not c.

This fully prioritized elp has two answer sets: A1 = {c} and A2 = {a, b}. They are
both BE-preferred answer sets. Consider A1. Rule r1 does not belong to the reduct of
the program since prerequisite a �∈ A1. Then rule r2 is not defeated by ∅ nor by A1,
so we get c which then defeats rule r3 and we have A1 = CP3(A1). Now consider A2.
Prerequisite a is removed from r1 in the reduct of the program. Then we have that rule
r1 is not defeated by ∅ nor by A2, so we get b which then defeats rule r2 allowing r3 to
fire. Thus we have A2 = CP3(A2).

Despite imposing a full prioritization, the conflict between rules r1, r3 and r2 persists.
In the next sections we develop an alternative definition that a) selects at most one
preferred answer set when a full set of priorities is given and b) always assigns at least
one preferred answer set to a program without negative cycles (constraints). Note that
the programs in Ex. 1 and 2 do not contain constraints or any kind of conflict between
rules and still do not have BE-preferred answer sets.

4 A New Definition of Preferred Answer Sets

Our proposed new definition is intuitively based on the view, following Brewka and
Eiter, that priorities are used to resolve conflicts. Intuitively, it is also based on the idea

220 A. Gabaldon

of taking conflicts between rules somewhat more literally by appealing to a notion of
“attack” that is to some degree inspired by argument attacks in argumentation. Here,
by an attack of a rule on another we simply mean that if the attacking rule fires, it will
defeat the other one. We then consider rules to be in conflict when they attack each
other, as in the program:

a ← not b.
b ← not a.

In the above simple program, the attacks between the rules are direct. But attacks can
be indirect, involving a chain of other rules, as in the program:

a ← c.
b ← not a.
c ← not b.

Here, the second rule attacks the first indirectly through the third rule.
To simplify the development of our definition of preferred answer sets, we appeal to

a well know unfolding operation which transforms the above program into the program:

a ← not b.
b ← not a.
c ← not b.

Attacks and conflicts between rules are much easier to define on unfolded programs
and consequently simplifies our definition of preferred answer sets. However, we re-
mark that for the purpose of implementation this is not a requirement and probably
should be avoided in an efficient implementation. Although it would be possible to de-
fine the semantics without unfolding the program (e.g. by using argumentation inspired
constructions as in [11]), this would make the definition of conflicts between rules and
the overall semantics more cumbersome. That is why we opt to use unfoldings. More-
over, the answer set semantics satisfies the Generalized Principle of Partial Evaluation
[12–14], which means that the unfolding transformation results in a program that has
exactly the same answer sets as the original program. The formal definitions follow.

Definition 9 (Unfolding [12]). Let Pi be an elp and r be a rule in Pi of the form
H ← L, Γ where L is a literal different from H and Γ is the rest of the rule’s body.
Suppose that r1, . . . , rk are all the rules in Pi s.t. each rj is of the form L ← Γj s.t.
L �∈ body+(rj). Then

Pi+1 = (Pi \ {r}) ∪ {H ← Γj , Γ : 1 ≤ j ≤ k}.

This operation is called unfolding r in Pi and r is called the unfolded rule.

Let us define the unfolding operation for prioritized elps. For our purposes it suffices to
define it for fully prioritized elps.

Definition 10 (Unfolding fully prioritzed elps). We say Pi+1 = (Pi+1, <i+1) is the
result of applying an unfolding on Pi = (Pi, <i) if

A Selective Semantics for Logic Programs with Preferences 221

1. Pi+1 is the result of unfolding some r ∈ Pi s.t. r is replaced by rules r′1, . . . , r
′
k,

2. for each rule r′j obtained in the previous step, if r′j ∈ Pi, i.e. an identical rule was
already in the program, then

(a) if r′j <i r then let r′j <i+1 r
∗ (resp. r∗ <i+1 r

′
j) for every rule r∗ s.t. r′j <i r

∗

(resp. r∗ <i r
′
j), i.e. r′j retains the same priority, since it has higher priority in

Pi than the unfolded rule r.
(b) if r <i r

′
j then let r′j <i+1 r

∗ (resp. r∗ <i+1 r
′
j) for every rule r∗ s.t. r <i r

∗

(resp. r∗ <i r), i.e. r′j now has the same priority r has in Pi, since r had higher
priority.

3. for each rule r′j obtained in step (1) s.t. r′j �∈ Pi, i.e. it is a new rule, <i+1 extends
<i with the priorities r′j <i+1 r

∗ (resp. r∗ <i+1 r
′
j) if r <i r

∗ (resp. r∗ <i r), i.e.
these new rules are assigned the same priority r has in Pi.

It is easy to see that applying an unfolding operation results in a fully prioritized elp.

Definition 11. A transformation sequence is a sequence of fully prioritized elpsP0, . . . ,Pn

such that each Pi+1 is obtained by applying an unfolding operation on Pi.

Definition 12. The unfolding of a fully prioritized elp P , denoted P , is the fully prior-
itized elp Pn such that there is a transformation sequence P0, . . . ,Pn where P0 = P
and there is no rule in Pn that can be unfolded.

Example 4. Consider again the program of Ex. 3. The unfolding of that program con-
sists of the following rules:

r′1 : b ← not¬b, not c.
r2 : c ← not b.
r3 : a ← not c.

The unfolding helps to reveal more directly that there is a conflict between r1, r2: after
unfolding, the head of one rule appears negated in the body of the other and vice-versa.

Let us now proceed with our definition of preferred answer sets, starting with unfolded,
fully prioritized elps. We need some terminology.

Let P be an elp and X be a set of literals. We say a literal l holds in X if l ∈ X . An
extended literal not l is defeated by X if l holds in X . A rule r is defeated by X if there
is a literal l ∈ body−(r) such that not l is defeated by X . An extended literal not l holds
in X (wrt P) if l holds in X or every rule r ∈ P , if any, whose head(r) = l is defeated
by X . (Note it is possible for not l not to hold nor be defeated in X .) For a rule r, the
body holds in X if body+(r) holds in X and not l holds in X for each l ∈ body−(r).
A rule r is active in X if neither head(r) nor head(r) holds in, body+(r) holds in and
r is not defeated by, X .(A similar notion of “active rule” is used in [10].)

We also need to define the closure of a set of literals X under an elp P : close(X,P)
is the smallest set X ′, X ⊆ X ′, s.t. for every rule r ∈ P , if body(r) holds in X ′ then
head(r) ∈ X ′. For instance, for the program P1 of Ex. 1 we have close(∅, P1) = {b}.

222 A. Gabaldon

We define attacks on a rule r wrt a set of literals as follows: a rule r′ attacks r wrt
X if r′ is active in X and head(r′) ∈ body−(r). We will omit the mention of X when
clear from context and also use the notation r′ → r for attacks.

Next we define a notion of “conflict” and how conflicts may be resolved by taking
the priorities into account. A set of rules {r1, . . . , rk} is a conflict wrt X if there is a
sequence of attacks r1 → r2, r2 → r3, . . . , rk−1 → rk, rk → r1. For a rule r in a
conflict F = {r1, . . . , rk}, we define two sets, PRF (r) and CRF (r), called pro rules
and con rules resp., that partition F as follows: If r → r′ then r′ ∈ CRF (r). For
all other attacks ri → rj of conflict F , if ri ∈ PRF (r) then rj ∈ CRF (r) and if
ri ∈ CRF (r) then rj ∈ PRF (r). (We may omit the subscripts in PRF , CRF when
the relevant conflict is clear.) For instance, for a conflict involving attacks r1 → r2,
r2 → r3, r3 → r1, the pro rules of r1 are PR(r1) = {r1, r3} and the con rules are
CR(r1) = {r1, r2}. A conflict with an additional rule as follows: r1 → r2, r2 → r3,
r3 → r4, r4 → r1, yields PR(r1) = {r1, r3} and CR(r1) = {r2, r4}.

The following definition describes how to compute a sequence of sets that leads to
a preferred answer set. It includes the conditions (item b) under which the preferences
can be used to break a conflict in favor of one of the rules in it. Intuitively, the conditions
are: the rule should be the highest priority rule in the conflict, if any of the pro rules is
attacked, the attacking rule is also in the conflict, and the rule is not one of the con rules
itself.

Definition 13. Let P = (P,<) be an unfolded, fully prioritized elp. We define the
sequence X0, X1, . . . as follows.

1. X0 = ∅.
2. Xi+1 is recursively defined as follows. Let X ′ = close(Xi, P).

(a) If X ′ �= Xi then Xi+1 = X ′.
(b) If X ′ = Xi, then:

let r be the highest priority rule active in Xi such that there exists a conflict F
satisfying the following conditions:

i. r ∈ F ;
ii. r < r′ for every r′ �= r in F ;

iii. for every r+ ∈ PRF (r), if r′ → r+ then r′ ∈ F ;
iv. r �∈ CRF (r).

Then, Xi+1 = Xi ∪ heads(PRF (r)).

Intuitively, this definition can be understood as an algorithm which in each iteration:
computes the closure of Xi over P adding the heads of all rules that hold wrt Xi. If no
new literals are added in this step, the algorithm then finds the highest priority rule r
included in a conflict which also includes any rules attacking the pro rules. If it exists, it
can be found by first looking for a conflict that includes all rules attacking r. If r is not
a con rule itself (iv), we add the heads of the pro rules, which include r. Steps (a) and
(b) can be done in the same iteration, but it simplifies the proofs to keep them separate.

Proposition 1. There exists n s.t. for all m > n, Xm = Xn, i.e., the sequence reaches
a fixpoint.

Let IP denote the fixpointXn if it does not contain contrary literals, and Lit otherwise.

A Selective Semantics for Logic Programs with Preferences 223

Definition 14. Let P be an unfolded, fully prioritized elp. The set IP is a preferred
answer set of P if IP is an answer set of P .

It trivially follows from this definition that all preferred answer sets are answer sets. It
is also easy to see that if P has a preferred answer set at all, it has exactly one: IP .

The computation of IP may fail to produce one of the answer sets of the program,
hence the need to test afterwards whether it is one. For some programs the computation
may reach a fixpoint prematurely. Later we show that for negative-cycle-free, head-
consistent programs, this computation is guaranteed to produce one of the answer sets.
For this class of programs, after computing IP it is not necessary to check if it is an
answer set.

For an arbitrary prioritized elp, preferred answer sets are defined as follows.

Definition 15 (Preferred answer sets). For an arbitrary prioritized elp P , A is a pre-
ferred answer set of P if A is a preferred answer set of the unfolding P ′ of one of the
full prioritizations P ′ of P .

The set of all preferred answer sets of P will be denoted by PAS(P).
Since, given a prioritized elp, we need to consider its full prioritizations, in our ex-

amples below we use fully prioritized programs.

Example 5. Consider the program P1 from Ex. 1:

r1 : c ← not b.
r2 : b ← not a.

As described earlier, close(X0, P1) = {b}. So X1 = {b} which is the fixpoint. Since
{b} is also an answer set, it is the preferred answer set.

Example 6. Consider next the program P ′
3 from Ex. 3 and 4:

r′1 : b ← not¬b, not c.
r2 : c ← not b.
r3 : a ← not c.

First note that close(X0, P
′
3) = ∅. We then consider conflicts including r′1 and find

F = {r′1, r2} with PR(r′1) = {r′1} and CR(r′1) = {r2}. The only rule attacking r′1
is r2 and r′1 �∈ CR(r′1). We obtain X1 = {b} and then X2 = close(X1, P

′
3) = {a, b}.

This is the fixpoint and it is an answer set. Therefore it is the preferred answer set.

The following program includes a constraint and has no preferred answer sets under our
definition nor under the other selective semantics.

Example 7. Consider the following program P4:

r1 : p ← not p, not b.
r2 : a ← not b.
r3 : b ← not a.

224 A. Gabaldon

Clearly, close(X0, P4) = ∅. Rule r1 is self attacking, i.e., r1 ∈ CR(r1) in any conflict
that includes it, so it is never considered in step (2b). In the case of r2, there is conflict
F = {r2, r3} which includes r2 and its only attacker r3. We get X1 = {a}, which is
the fixpoint. However, {a} is not an answer set and therefore not a preferred answer set.
This program then has an answer set, {b}, but no preferred answer sets.

This program essentially has two parts, one part consisting of rules r2, r3 which intu-
itively generates a choice between a and b, and constraint r1 which eliminates answer
sets that contain a. But the priorities on the bottom two rules say to prefer a, which
conflicts with the constraint. Note that if the priorities on r2, r3 are relaxed, i.e. the pri-
ority r2 < r3 is removed, then {b} is a preferred answer set. It can be argued that the
information encoded in the priorities and the constraint is in some sense contradictory.
The priorities eliminate one answer set in favor of another and the constraint does the
same for a different answer set. In the following section we show that prioritized elps
without constraints always have preferred answer sets.

5 Properties

Here we present some formal properties of our definition of preferred answer sets. We
start by showing that prioritized elps are a conservative extension of elps.

Given an elp P , a set of literals S is said to be generated by R if R is the set of all
the rules r ∈ P whose bodies are satisfied by S and head(r) ∈ S. We also say in this
case that R is the set of generating rules of S.

Theorem 1. Let P = (P,<) be a prioritized elp with empty <, i.e., without priorities.
Then AS(P) = PAS(P).

Example 7 shows a prioritized program that combines constraints and priorities with
regular rules and has no preferred answer sets. It is well known in logic program-
ming that for negative-cycle-free programs an answer set always exists. A reasonable
question to ask is whether there is a similar class of prioritized programs for which a
preferred answer set always exists. We show next that in fact negative-cycle-free pri-
oritized programs, with the additional but less critical condition that the programs be
head-consistent, are guaranteed to have a preferred answer set.

An elp P is said to be head-consistent if the set of literals {head(r) : r ∈ P} is
consistent, i.e. does not contain contrary literals. It is said to be negative-cycle-free if
the dependency graph of P does not contain cycles with an odd number of negative
edges.

Theorem 2. Let P = (P,<) be a fully prioritized elp s.t. P is negative-cycle-free and
head-consistent. Then P has a preferred answer set.

Corollary 1. If P is a fully prioritized elp with negative-cycle-free and head-consistent
P , then the set IP is the preferred answer set.

The main point of this corollary is that for a prioritized elp P with negative-cycle-free,
head-consistent program, the computation of the sequenceX0, . . . , Xn of Def. 13 is guar-
anteed to produce an answer set, making the check stipulated in Def. 14 unnecessary.

A Selective Semantics for Logic Programs with Preferences 225

In [6] one can find multiple examples illustrating how the BE semantics overcomes
some of the shortcomings of previous approaches. Based on their study of these short-
comings and the development of their semantics, Brewka and Eiter proposed two prin-
ciples that ought to be satisfied by any system based on prioritized defeasible rules. We
reproduced them here in their particular form for prioritized elps.

The first principle specifies a requirement on the treatment of < as a preference
relation.

Principle 1. Let A1, A2 be two answer sets of a prioritized elp P = (P,<) generated
by the rules R∪ {r1} and R∪ {r2}, respectively, where r1, r2 �∈ R. If r1 < r2 then A2

is not a preferred answer set of P .

The second principle is about relevance. It says thatA should remain a preferred answer
set after adding a rule with a prerequisite not in A while keeping all preferences intact.

Principle 2. Let A be a preferred answer set of (P,<) and r be a rule such that at
least one prerequisite of r is not in A. Then A is a preferred answer set of (P ∪{r}, <′)
whenever <′ agrees with < on the rules in P .

Next we show that our definition of preferred answer sets satisfies the first principle for
unfolded programs.

Theorem 3. The preferred answer set semantics based on Def. 15 satisfies Principle 1.

Principle 2, which is about relevance, is not satisfied by our definition. This can be
shown using the program from Ex. 3.

Example 8. Consider again the program P3 from Ex. 3:

r1 : b ← not¬b, a.
r2 : c ← not b.
r3 : a ← not c.

Consider the programP ′
3 consisting only of the rules r2, r3 with r2 < r3. This program

has one answer set A1 = {c} which is also preferred according to our semantics. The
full programP3 has two answer sets, A1 and A2 = {a, b}which is the preferred answer
set. P ′

3 has no BE-preferred answer sets while for P3 both A1, A2 are BE-preferred.

According to Principle 2, {c} should remain a preferred answer set because r1 is not
applicable in A1 (not relevant). But in terms of attacks, r1 seems relevant since it can
attack r2 and has higher priority. Moreover, consider replacing r1 with its unfolded
version b ← not¬b, not c. The result is a program that is equivalent. However, in the
case of adding this unfolded rule to P ′

3, Principle 2 no longer says anything about it. It
does not apply. This is because it defines relevance in terms of prerequisites (literals in
body+). In other words, by applying the unfolding operation it is possible to sidestep
Principle 2, even though unfolding does not affect a program’s answer sets.

The example above also shows that satisfying Principle 2 necessarily requires that
some programs have no preferred answer sets or have multiple ones. In the above ex-
ample, P ′

3 has one answer set, {c}, which is not the same as the intuitively preferred

226 A. Gabaldon

answer set of P3. But Principle 2 requires that if {c} is a preferred answer set, it must
remain one after adding r1. In fact, Brewka and Eiter show in [6] that any semantics
that is consistent, i.e. that selects a preferred answer set whenever there are answer sets,
is incompatible with Principle 2.

It is worth mentioning that Brewka and Eiter [6] define another semantics, called
weakly preferred semantics, which assigns preferred answer sets to programs that do
not have one under the BE semantics. However, this semantics is based on quantitative
measures of relative satisfaction of the preferences, which is very different to the style of
semantics we propose here and of the BE semantics. Furthermore, the weakly preferred
semantics does not satisfy either of the two principles.

6 Conclusions

We have proposed a new definition of preferred answer sets. Under our definition, at
most one preferred answer set is selected for programs that are fully prioritized. As in
the case of standard answer sets, we showed that for negative-cycle-free programs the
existence of preferred answer sets is guaranteed. We have also shown that our semantics
captures the intended meaning of preferences as postulated by Principle 1 from [6].

In the literature about preferences in non-monotonic formalisms, the various ap-
proaches have been classified into two categories: prescriptive and descriptive (see e.g.
[15, 16]). Roughly, prescriptive approaches take preferences as an indication of the or-
der in which rules are to be applied, i.e. higher priority rules are to be applied before
lower priority rules. On the other hand, descriptive approaches take preferences as spec-
ifying the “desirability” of rules. It is said that the descriptive approaches take a “global
view” of preferences because they allow lower priority rules to be applied if doing so
enables a higher priority rule that would otherwise be inapplicable.

In terms of these two categories, we find that our approach has features of both. Pre-
ferred answer sets are essentially computed by attempting to apply the rules in the order
specified by the priorities. Also, similar to some prescriptive approaches, preferred an-
swer sets here are not computed by first computing a standard answer set and then
checking if it is preferred. On the other hand, similar to the descriptive approaches, a
high priority rule may be suspended if it is attacked by a lower priority rule and it does
not “counter-attack.” If the attacker turns out to be defeated, the rule may fire after all.
This kind of interaction between rules is the characteristic “global view” in descriptive
approaches. Our approach also shares with descriptive approaches the characteristic of
not satisfying Brewka and Eiter’s Principle 2. However, as mentioned after Example 8,
it seems that in the context of logic programming there are other reasons why one may
not accept it in its current form. For a more thorough discussion of the descriptive vs
prescriptive distinction, see [7, 15].

In future work we would like to investigate a semantics with the same properties as
we have presented here, but which does not require programs to be unfolded. We intend
to look for other classes of programs for which existence of preferred answer sets can
be guaranteed, e.g. based on [17]. We also plan to compare our approach with that of
[11]. It would also be interesting to look at the relationship between prioritized logic
programs as described here and approaches to updating logic programs such as [18].

A Selective Semantics for Logic Programs with Preferences 227

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

2. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of
Knowledge Representation, pp. 285–316. Elsevier (2008)

3. Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense
reasoning. Artificial Intelligence 123(1-2), 185–222 (2000)

4. Gelfond, M., Son, T.C.: Reasoning with Prioritized Defaults. In: Dix, J., Moniz Pereira, L.,
Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI), vol. 1471, pp. 164–223. Springer,
Heidelberg (1998)

5. Zhang, Y., Foo, N.Y.: Answer sets for prioritized logic programs. In: Maluszynski, J. (ed.)
International Symposium on Logic Programming (ILPS 1997), pp. 69–83 (1997)

6. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelli-
gence 109(1-2), 297–356 (1999)

7. Delgrande, J.P., Schaub, T., Tompits, H.: Logic programs with compiled preferences. In:
Horn, W. (ed.) 14th European Conference on Artificial Intelligence (ECAI 2000), pp. 464–
468 (2000)

8. Wang, K., Zhou, L.-z., Lin, F.: Alternating Fixpoint Theory for Logic Programs with Prior-
ity. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M.,
Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 164–178.
Springer, Heidelberg (2000)

9. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press (2003)

10. Schaub, T., Wang, K.: A comparative study of logic programs with preference. In: Nebel, B.
(ed.) 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 597–
602 (2001)

11. Sefranek, J., Simko, A.: Warranted derivations of preferred answer sets. In: 25th Workshop
on Logic Programming (2011)

12. Aravindan, C., Dung, P.M.: On the correctness of unfold/fold transformation of normal and
extended logic programs. Journal of Logic Programming 24(3), 201–217 (1995)

13. Dix, J.: A classification theory of semantics of normal logic programs: II. Weak properties.
Fundamenta Informaticae 22(3), 257–288 (1995)

14. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation.
Journal of Logic Programming 40(1), 1–46 (1999)

15. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference
handling approaches in nonmonotonic reasoning. Computational Intelligence 20(2), 308–
334 (2004)

16. Brewka, G.: Adding Priorities and Specificity to Default Logic. In: MacNish, C., Moniz
Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS (LNAI), vol. 838, pp. 247–260. Springer,
Heidelberg (1994)

17. Costantini, S.: On the existence of stable models of non-stratified logic programs. Theory
and Practice of Logic Programming 6(1-2), 169–212 (2006)

18. Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving Logic Programs. In: Flesca,
S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–62.
Springer, Heidelberg (2002)

A Minimal Model Semantics for Nonmonotonic
Reasoning

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 DISIT, Universitá del Piemonte Orientale, Alessandria, Italy, Alessandria, Italy
laura@mfn.unipmn.it

2 Dipartimento di Informatica, Università degli Studi di Torino, Italy
{gliozzi,pozzato}@di.unito.it

3 Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397, Marseille, France
nicola.olivetti@univ-cezanne.fr

Abstract. This paper provides a general semantic framework for nonmonotonic
reasoning, based on a minimal models semantics on the top of KLM systems for
nonmonotonic reasoning. This general framework can be instantiated in order to
provide a semantic reconstruction within modal logic of the notion of rational
closure, introduced by Lehmann and Magidor. We give two characterizations of
rational closure: the first one in terms of minimal models where propositional in-
terpretations associated to worlds are fixed along minimization, the second one
where they are allowed to vary. In both cases a knowledge base must be expanded
with a suitable set of consistency assumptions, represented by negated condition-
als. The correspondence between rational closure and minimal model semantics
suggests the possibility of defining variants of rational closure by changing either
the underlying modal logic or the comparison relation on models.

1 Introduction

In a seminal work Kraus Lehmann and Magidor [7] (henceforth KLM) proposed an ax-
iomatic approach to nonmonotonic reasoning. Plausible inferences are represented by
nonmonotonic conditionals of the form A |∼ B, to be read as “typically or normally A
entails B”: for instance monday |∼ go work, “normally on Monday I go to work”. The
conditional is nonmonotonic since from A |∼ B one cannot derive A ∧ C |∼ B, in our
example, one cannot derive monday ∧ ill |∼ go work. KLM proposed a hierarchy of
four systems, from the weakest to the strongest: cumulative logic C, loop-cumulative
logic CL, preferential logic P and rational logic R. Each system is characterized by a
set of postulates expressing natural properties of nonmonotonic inference. We present
below an axiomatization of the two stronger logics P and R (C and CL being too weak
to be taken as an axiomatic base for nonmonotonic reasoning). But before presenting
the axiomatization, let us clarify one point: in the original presentation of KLM sys-
tems, [7] a conditional A |∼ B is considered as a consequence relation between a pair
of formulas A and B, so that their systems provide a set of “postulates” (or closure
conditions) that the intended consequence relations must satisfy. Alternatively, these
postulates may be seen as rules to derive new conditionals from given ones. We take
a slightly different viewpoint, shared among others by Halpern and Friedman [4] (see

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 228–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Minimal Model Semantics for Nonmonotonic Reasoning 229

Section 8) and Boutilier [2] who proposed a modal interpretation of KLM systems P
and R: in our understanding these systems are ordinary logical systems in which a con-
ditional A |∼ B is a propositional formula belonging to the object language. Whenever
we restrict our consideration, as done by Kraus Lehmann and Magidor, to the entailment
of a conditional from a set of conditionals, the two viewpoints coincide: a conditional
is a logical consequence in logic P/R of a set of conditionals if and only if it belongs
to all preferential/rational consequence relations extending that set of conditionals, or
(in semantic terms), it is valid in all preferential/rational models (as defined by KLM)
of that set. Here is the axiomatization of logics P and R, in our presentation KLM
postulates/rules are just axioms. We use �PC (resp. |=PC) to denote provability (resp.
validity) in the propositional calculus.

All axioms and rules of propositional logic
A |∼ A (REF)
if �PC A↔ B then (A |∼ C)→ (B |∼ C) (LLE)
if �PC A→ B then (C |∼ A)→ (C |∼ B) (RW)
((A |∼ B) ∧ (A |∼ C))→ (A ∧ B |∼ C) (CM)
((A |∼ B) ∧ (A |∼ C))→ (A |∼ B ∧ C) (AND)
((A |∼ C) ∧ (B |∼ C))→ (A ∨B |∼ C) (OR)
((A |∼ B) ∧ ¬(A |∼ ¬C))→ (A ∧ C) |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of rational
entailment R. The weaker logic of preferential entailment P contains all axioms, but
(RM). P and R seem to capture the core properties of nonmonotonic reasoning, as
shown in [4] they are quite ubiquitous being characterized by different semantics (all of
them being instances of so-called plausibility structures).

Logics P and R enjoy a very simple modal semantics, actually it turns out that they
are the flat fragment of some well-known conditional logics. For P the modal semantics
is defined by considering a set of worldsW equipped by an accessibility (or preference)
relation < assumed to be transitive, irreflexive, and satisfying the so-called Smoothness
Condition. For the stronger R < is further assumed to be modular. Intuitively the mean-
ing of x < y is that x is more typical/more normal/less exceptional than y. We say that
A |∼ B is true in a model if B holds in all most normal worlds where A is true, i.e. in
all <-minimal worlds satisfying A.

KLM systems formalize desired properties of nonmonotonic inference. However, they
are too weak to perform useful nonmonotonic inferences. For instance KLM systems
cannot handle irrelevant information in conditionals: from monday |∼ go work, there
is no way of concluding monday ∧ shines |∼ go work in any one of KLM systems.
Lehmann and Magidor in [8] look for a plausible definition of the set of conditional asser-
tions entailed by a conditional knowledge base. They argue that such a set of assertions
must be rational and they propose a true nonmonotonic construction on the top of pref-
erential logic called rational closure. Rational closure, besides satisfying the postulates
of R, allows one to perform some truthful nonmonotonic inferences, like the one just

230 L. Giordano et al.

mentioned (monday ∧ shines |∼ go work).1 The authors has given a syntactic pro-
cedure to calculate the set of conditionals entailed by the rational closure as well as a
quite complex semantic construction. It is worth noticing that a strongly related con-
struction has been proposed by Pearl [9] with his notion of 1-entailment, motivated by
a probabilistic interpretation of conditionals.

In this work we tackle the problem of giving a purely semantic characterization of
rational closure, stemming directly from the modal semantics of logic R. Notice that
we restrict our attention to finite knowledge bases. More precisely, we try to answer to
the following question: given the fact that logic R is characterized by a specific class of
Kripke models, how can we characterize the Kripke models of the rational closure of a
set of positive conditionals?

The characterization we propose may be seen as an instance of a general recipe
for defining nonmonotonic inference: (i) fix an underlying modal semantics for condi-
tionals (such as the one of P or R), (ii) obtain nonmonotonic inference by restricting
semantic consequence to a class of “minimal” models according to some preference
relation on models. The preference relation in itself is defined independently from the
language and from the set of conditionals (knowledge base) whose nonmonotonic con-
sequences we want to determine. In this respect our approach is similar in spirit to
“minimal models” approaches to nonmonotonic reasoning, such as circumscription.

The general recipe for defining nonmonotonic inference we have sketched may have
a wider interest than that of capturing rational closure. First of all, we may think of
studying variants of rational closure based on other modal logics and/or on other com-
parison relations on models. Secondly, being a purely semantic approach (the prefer-
ence relation is independent from the language), our semantics can cope with a larger
language than the one considered in KLM framework. To this regard, already in this
paper, we consider a richer language allowing boolean combinations of conditionals2.
In the future, we may think of applying our semantics to Nonmonotonic Description
Logics, where an extension of rational closure has been recently considered [3].

In any case, the quest of a modal characterization of rational closure turns out to be
harder than expected. Our semantic account is based on the minimization of the height
of worlds in models, where the height of a world is defined in terms of length of the
<-chains starting from the world. Intuitively, the lower the height of a world, the more
normal (or less exceptional) is the world and our minimization corresponds intuitively to
the idea of minimizing less-normal or less-plausible worlds (or maximizing most plau-
sible ones). We begin by considering the nonmonotonic inference relation determined
by restricting considerations to models which minimize the height of worlds. In this first
characterization we keep fixed the propositional interpretation associated to worlds. The

1 From a technical point of view, as shown in [8] , it turns out that the intersection of all rational
consequence relations satisfying a set of conditionals coincides with the least preferential con-
sequence relation satisfying that set, so that (i) the axiom/rule (RM) does not add anything and
(ii) such relation in itself fails to satisfy (RM). The notion of rational closure provides a solu-
tion to both problems and can be seen as the “minimal” (in some sense) rational consequence
completing a set of conditionals.

2 An extension of rational closure to knowledge bases comprising both positive and negative
conditionals has been proposed in [1].

A Minimal Model Semantics for Nonmonotonic Reasoning 231

consequence relation makes sense in its own, but as we show it is strictly weaker than
rational closure. We can obtain nonetheless a first characterization of rational closure if
we further restrict attention to minimal canonical models that is to say, to models that
contain all propositional interpretations compatible with the knowledge base K (i.e. all
propositional interpretations except those that satisfy some formulas inconsistent with
the knowledge base K). Restricting attention to canonical models amounts to expand-
ing K by all formulas ¬(A |∼ ⊥) (read as “A is possible”, as it encodes S5 �A) for all
formulas A such that K �|=R A |∼ ⊥. We thus obtain a simple and neat characterization
of rational closure, but at the price of an exponential increase of the knowledge base K .

We then propose a second characterization that does not entail this exponential blow
up. In analogy with circumscription, we consider a stronger form of minimization where
we minimize the height of worlds, but we allow to vary the propositional interpretation
associated to worlds. Again the resulting minimal consequence relation makes sense
in its own, but as we show it still does not correspond to rational closure. In order to
capture rational closure, we must basically add the assumption that there are “enough”
worlds to satisfy all conditionals consistent with the knowledge base K . This amounts
to adding a small set of consistency assumptions (represented by negative conditionals).
In this way we capture exactly rational closure, without an exponential increase of K .

Due to space limitations, we put the main proofs in the accompanying paper [6].

2 General Semantics

In KLM framework the language of both logics P and R consists only of condition-
als A |∼ B. We consider here a richer language allowing boolean combinations of
conditionals (and propositional formulas). Our language L is defined from a set of
propositional variables ATM . We use A,B,C, . . . to denote propositional formulas
(not containing |∼), and F,G, . . . to denote arbitrary formulas. More precisely, the for-
mulas of L are defined as follows: if A and B are propositional formulas, A |∼ B ∈ L;
if F is a boolean combination of formulas of L, F ∈ L. A knowledge base K is any set
of formulas in L: as already mentioned, in this work we restrict our attention to finite
knowledge bases.

The semantics of P and R is defined respectively in terms of preferential and ra-
tional3 models, that are possible world structures equipped with a preference relation
<, intuitively x < y means that the world/individual x is more normal/ more typical
than the world/individual y. The intuitive idea is that A |∼ B holds in a model if the
most typical/normal worlds/individuals satisfyingA satisfy also B. Preferential models
presented in [7] characterize the system P, whereas the more restricted class of rational
models characterizes the system R [8].

Definition 1. A preferential model is a triple M = 〈W , <, V 〉 where: W is a non-
empty set of items; < is an irreflexive, transitive relation on W satisfying the Smooth-
ness relation defined below; V is a function V : W �−→ 2ATM , which assigns to
every world w the set of atoms holding in that world. If F is a boolean combination
of formulas, its truth conditions (M, w |= F) are defined as for propositional logic.

3 We use the expression “rational model” rather than “ranked model” which is also used in the
literature in order to avoid any confusion with the notion of rank used in rational closure.

232 L. Giordano et al.

Let A be a propositional formula; we define MinM
< (A) = {w ∈ W | M, w |= A

and ∀w′, w′ < w implies M, w′ �|= A}. We also define M, w |= A |∼ B if for all
w′, if w′ ∈ MinM

< (A) then M, w′ |= B. Last we define the Smoothness Condition:
if M, w |= A, then w ∈ MinM

< (A) or there is w′ ∈ MinM
< (A) such that w′ < w.

Validity and satisfiability of a formula are defined as usual. Given a set of formulas K
of L and a model M = 〈W , <, V 〉, we say that M is a model of K , written M |= K ,
if, for every F ∈ K , and every w ∈ W , we have that M, w |= F . K preferentially
entails a formula F , written K |=P F if F is valid in all preferential models of K .

Since we limit our attention to finite knowledge bases, we can restrict our attention to
finite models, as the logic enjoys the finite model property (observe that in this case the
smoothness condition is ensured trivially by the irreflexivity of the preference relation).
From Definition 1, we have that the truth condition of A |∼ B is “global” in a model
M = 〈W , <, V 〉: given a world w, we have that M, w |= A |∼ B if, for all w′, if
w′ ∈ MinM

< (A) then M, w′ |= B. It immediately follows that A |∼ B holds in w if
only if A |∼ B is valid in a model, i.e. it holds that M, w′ |= A |∼ B for all w′ in W ;
for this reason we will often write M |= A |∼ B. Moreover, when the reference to the
modelM is unambiguous, we will simply write Min<(A) instead of MinM

< (A).

Definition 2. A rational model is a preferential model in which < is further assumed to
be modular: for all x, y, z ∈ W , if x < y then either x < z or z < y. K rationally
entails a formula F , written K |=R F if F is valid in all rational models of K .

When the logic is clear from the context we shall write K |= F instead of K |=P F or
K |=R F . From now on, we restrict our attention to rational models.

Definition 3. The height kM(w) of a world w in M is the length of the longest chain
w0 < . . . < w from w to a w0 such that for no w′ it holds that w′ < w0

4.

Notice that finite Rational models can be equivalently defined by postulating the exis-
tence of a function k :W → N, and then letting x < y iff k(x) < k(y).

Definition 4. The height kM(F) of a formula F is i = min{kM(w) :M, w |= F}. If
there is no w :M, w |= F , F has no height.

Proposition 1. For any M = 〈W , V,<〉 and any w ∈ W , we have M |= A |∼ B iff
kM(A ∧B) < kM(A ∧ ¬B).

As already mentioned, although the operator |∼ is nonmonotonic, the notion of logical
entailment just defined is itself monotonic: if K |=P F and K ⊆ K ′ then also K ′ |=P

F (the same holds for |=R). In order to define a nonmonotonic entailment we introduce
our second ingredient of minimal models. The underlying idea is to restrict attention to
models that minimize the height of worlds. Informally, given two models of K , one in
which a given x has height 2 (because for instance z < y < x) , and another in which
it has height 1 (because only y < x), we would prefer the latter, as in this model x is
“more normal” than in the former.

4 In the literature the function kM is usually called ranking, but we call it height in order to
avoid any confusion with the different notions of ranking as defined by Lehmann and Magidor
and used in this paper as well. Our notion of ranking is similar to the one originally introduced
by Spohn [11] and to the one introduced by Pearl [9]. Observe that the definition of height
given above also works for preferential models.

A Minimal Model Semantics for Nonmonotonic Reasoning 233

In analogy with circumscription, there are mainly two ways of comparing models
with the same domain: 1) by keeping the valuation function fixed (only comparing M
and M′ if V and V ′ in the two models respectively coincide); 2) by also comparing
M and M′ in case V �= V ′. We consider the two semantics resulting from these
alternatives. The first one is a fixed interpretations minimal semantics, for short FIMS .

Definition 5 (FIMS). GivenM = 〈W , <, V 〉 andM′ = 〈W ′, <′, V ′〉 we say thatM
is preferred toM′ with respect to the fixed interpretations minimal semantics (M <FIMS

M′) if W = W ′, V = V ′, and for all x, kM(x) ≤ kM′(x) whereas there exists x′ :
kM(x′) < kM′(x′). We say that M is minimal with respect to <FIMS in case there is
no M′ such that M′ <FIMS M. We say that K minimally entails a formula F ∈ L
with respect to FIMS , and we write K |=FIMS F , if F is valid in all models ofK which
are minimal with respect to <FIMS .

The following theorem shows that, for KBs that are sets of conditionals, we can char-
acterize minimal models with fixed interpretations in terms of conditionals that are
falsified by a world. Intuitively minimal models are those where the worlds of height
0 satisfy all conditionals, and the height (> 0) of a world x is determined by the
height kM(C) of the antecedents C of conditionals falsified by x. Given a model
M = 〈W , <, V 〉 and x ∈ W , we define Sx = {C |∼ D ∈ K | M, x |= C ∧ ¬D}.

Proposition 2. Let K be a knowledge base and M a model, then M |= K if and only
if M satisfies the following, for every x ∈ W: 1. if kM(x) = 0 then Sx = ∅; 2. if
Sx �= ∅, then kM(x) > kM(C) for every C |∼ D ∈ Sx.

Observe that condition 1 is a consequence of condition 2; we have explicitly mentioned
it for clarity (see the subsequent proposition and theorem).

Proposition 3. Let K be a knowledge base and let M be a minimal model of K with
respect to FIMS ; then M satisfies for every x ∈ W: 1. if Sx = ∅ then kM(x) = 0; 2.
if Sx �= ∅, then kM(x) = 1 +max{kM(C) | C |∼ D ∈ Sx}.

Theorem 1. Let K be a knowledge base and let M be any model, then M is a FIMS
minimal model of K if and only ifM satisfies for every x ∈ W: 1. Sx = ∅ iff kM(x) =
0; 2. if Sx �= ∅, then kM(x) = 1 +max{kM(C) | C |∼ D ∈ Sx}.

In our second semantics, we let the interpretations vary. The semantics is called variable
interpretations minimal semantics, for short VIMS .

Definition 6 (VIMS). Given M = 〈W , <, V 〉 and M′ = 〈W ′, <′, V ′〉 we say that
M is preferred to M′ with respect to the variable interpretations minimal semantics,
and write M <VIMS M′, if W = W ′, and for all x, kM(x) ≤ kM′(x) whereas there
exists x′ : kM(x′) < kM′(x′). We say that M is minimal with respect to <VIMS in
case there is no M′ such that M′ <VIMS M. We say that K minimally entails (with
respect to VIMS) F , and write K |=VIMS F , if F is valid in all models of K which are
minimal with respect to <VIMS .

It is easy to realize that the two semantics, FIMS and VIMS , define different sets of
minimal models. This is illustrated by the following example.

234 L. Giordano et al.

Example 1. Let K = {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. We derive that
K �|=FIMS penguin∧black |∼ ¬fly. Indeed in FIMS there can be a modelM in which
W = {x, y, z}, V (x) = {penguin, bird, f ly, black}, V (y) = {penguin, bird},
V (z) = {bird, f ly}, and z < y < x. M is a model of K , and it is minimal with
respect to FIMS (indeed once fixed V (x), V (y), V (z) as above, it is not possible to
lower the height of x nor of y nor of z unless we falsify K). Furthermore, in M x is
a typical black penguin (since there is no other black penguin preferred to it) that flies.
Therefore,K �|=FIMS penguin∧ black |∼ ¬fly. On the other hand,M is not minimal
with respect to VIMS . Indeed, consider the model M′ = 〈W , <′, V ′〉 obtained from
M by letting V ′(x) = {penguin, bird, black}, V ′(y) = V (y), V ′(z) = V (z) and
by defining <′ as: z <′ y and z <′ x. Clearly M′ |= K , and M′ <V IMS M, since
kM′(x) < kM(x), while kM′ = kM for all other worlds.

The example above shows that FIMS and VIMS lead to different sets of minimal
models for a given K . Notice however that the model M′ we have used to illustrate
this fact is not a minimal model forK in VIMS . A minimal model in VIMS for K that
can be defined on the domain W is given by V (x) = V (y) = V (z) = {bird, f ly},
and the empty relation <. This is quite a degenerate model of K in which there are no
penguins. This illustrates the strength of VIMS : in case of knowledge bases that only
contain positive conditionals, logical entailment in VIMS collapses into classical logic
entailment. This feature corresponds to a similar feature of the non-monotonic logic
Pmin in [5], and can be proven in the same way.

Proposition 4. Let K be a set of positive conditionals. Let us replace all formulas of
the form A |∼ B in K with A→ B, and call K ′ the resulting set of formulas. We have
that K |=VIMS A |∼ B if and only if K ′ |=PC A→ B.

As for Pmin this strong feature of VIMS can be avoided when considering knowledge
bases that include existence assertions: these are negated conditionals, in the example
for instance we could add ¬(penguin |∼⊥) to force us to consider non trivial models
in which penguins exist. In the next section, we will use VIMS in this kind of way,
by always considering knowledge bases that include existence assertions (expressed by
negated conditionals).

3 A Semantical Reconstruction of Rational Closure

We provide a semantic characterization of the well known rational closure, described in
[8] within the two semantics described in the previous section. More precisely, we can
give two semantic characterizations of rational closure, the first based on FIMS , the
second based on VIMS . Since in rational closure no boolean combinations of condi-
tionals are allowed, in the following, the knowledge baseK is just a finite set of positive
conditional assertions. We recall the notion rational closure, giving its syntactical defi-
nition in terms of rank of a formula.

Definition 7. Let K be a finite set of positive conditional assertions and A a proposi-
tional formula. A is said to be exceptional for K iff K |=R � |∼ ¬A5.

5 In [8], |=P is used instead of |=R. However when K contains only positive conditionals the
two notions coincide (see footnote 1), then we use |=R here since we consider rational models.

A Minimal Model Semantics for Nonmonotonic Reasoning 235

A conditional formula A |∼ B is exceptional for K if its antecedent A is exceptional
for K . The set of conditional formulas which are exceptional for K will be denoted as
E(K). It is possible to define a non-decreasing sequence of subsets of K C0 ⊇ C1, . . .
by letting C0 = K and, for i > 0, Ci = E(Ci−1). Observe that, being K finite, there
is a n ≥ 0 such that for all m > n,Cm = Cn or Cm = ∅.

Definition 8. A propositional formula A has rank i for K iff i is the least natural num-
ber for which A is not exceptional for Ci. If A is exceptional for all Ci then A has no
rank.

The notion of rank of a formula allows to define the rational closure of K .

Definition 9. Let K be a conditional knowledge base. The rational closure K̄ of K is
the set of all A |∼ B s.t. either (1) the rank of A is strictly less than the rank of A ∧ ¬B
(this includes the case A has a rank and A ∧ ¬B has none), or (2) A has no rank.

The rational closure of a knowledge base K seemingly contains all conditional asser-
tions that, in the analysis of nonmonotonic reasoning provided in [8], one rationally
wants to derive from K . For a full discussion, see [8].

Can we capture rational closure within our semantics? A first conjecture might be
that the FIMS of Definition 5 could capture rational closure. However, we are soon
forced to recognize that this is not the case. For instance, Example 1 above illustrates
that {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly} �|=FIMS penguin ∧ black |∼
¬fly. On the contrary, it can be verified that penguin∧ black |∼ ¬fly is in the rational
closure of {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. Therefore, FIMS as
it is does not allow us to define a semantics corresponding to rational closure. Things
change if we consider FIMS applied to models that contain all possible valuations
“compatible” with a given knowledge base K . We call these models canonical models.

Example 2. Consider Example 1 above. If we restrict our attention to models that also
contain a w with V (w) = {penguin, bird, black} which is a black penguin that does
not fly and can therefore be assumed to be a typical penguin, we are able to conclude
that typically black penguins do not fly, as in rational closure. Indeed, in all minimal
models of K that also contain w with V (w) = {penguin, bird, black}, it holds that
penguin∧ black |∼ ¬fly.

We are led to the conjecture that FIMS restricted to canonical models could be the
right semantics for rational closure. Fix a propositional language LProp comprising a
finite set of propositional variables ATM , a propositional interpretation v : ATM −→
{true, false} is compatible with K , if there is no formulaA ∈ LProp such that v(A) =
true and K |=R A |∼ ⊥.

Definition 10. A model M = 〈W , <, V 〉 satisfying a knowledge base K is said to be
canonical if it contains (at least) a world associated to each propositional interpretation
compatible with K , that is to say: if v is compatible with K , then there exists a world
w in W , such that for all propositional formulas BM, w |= B iff v(B) = true.

Theorem 2. For a given domain W , there exists a unique canonical model M for K
overW such that, for all other canonical modelsM′ overW , we haveM <FIMS M′.

236 L. Giordano et al.

In the following, we show that the canonical models that are minimal with respect to
FIMS are an adequate semantic counterpart of rational closure.

To prove the correspondence between the rational closure of a knowledge base K
and the fixed interpretation minimal model semantics of K , we need to prove some
propositions. The next one is a restatement for rational models of Lemma 5.18 in [8],
and it can be proved in a similar way. Note that, as a difference, point 2 in Lemma 5.18
is an “if and only if” rather than an “if” statement.

Proposition 5. Let M = 〈W , <, V 〉 be a rational model of K . Let M0 = M and,
for all i, let Mi = 〈Wi, <i, Vi〉 be the rational model obtained from M by removing
all the worlds w with kM(w) < i, i.e., Wi = {w ∈ W : kM(w) ≥ i}. For any
propositional formula A, if rank(A) ≥ i, then: (1) kM(A) ≥ i; (2) If Ci |=R A |∼ B
then Mi |= A |∼ B.

Proposition 6. Let M = 〈W , <, V 〉 be a canonical model of K , minimal with respect
to <FIMS . For all w ∈ W it holds that: if M, w |= A → B for all A |∼ B in Ci, then
kM(w) ≤ i.

Proposition 7. Let M be a canonical model of K minimal with respect to <FIMS .
Then, rank(A) = i iff kM(A) = i.

Theorem 3. Let K be a knowledge base and M be a canonical model of K minimal
with respect to <FIMS . For all conditionals A |∼ B we have M |= A |∼ B if and only
if A |∼ B ∈ K, where K is the rational closure of K .

In Theorem 3 we have shown a correspondence between rational closure and minimal
models with fixed interpretations, on the proviso that we restrict our attention to mini-
mal canonical models. We can obtain the same effect by extendingK intoK ′ by adding
negated conditionals: K ′ = K ∪ {¬(C |∼⊥) | K �|=R (C |∼⊥)}. Indeed it can be eas-
ily verified that all models of K ′ are canonical, hence restricting FIMS to canonical
models on the one hand and considering the extension of K as K ′ on the other hand
amounts to the same effect. We can therefore restate Theorem 3 above as follows:

Theorem 4. LetK be a knowledge base and letK ′ = K∪{¬(C |∼⊥) | K �|=R (C |∼⊥
)}. For all conditionals A |∼ B we have K ′ |=FIMS A |∼ B if and only if A |∼ B ∈ K,
where K is the rational closure of K .

Notice that the size of K ′ is exponential in that of K . Can we lift the restriction to
canonical models by adopting a semantics based on variable valuations? In the general
case, the answer is negative. We have already mentioned that if we consider knowledge
bases consisting only positive conditionals logical entailment in VIMS collapses into
classical logic entailment. To avoid this collapse, we can require that, when we are
checking for entailment of a conditional A |∼ B from a K , at least an A ∧ B world
and an A ∧ ¬B world are present in K . This can be obtained by adding to K the
conditionals¬(A∧B |∼ ⊥) and ¬(A∧¬B |∼ ⊥). Also in this case, however, we cannot
give a positive answer to the above question. In fact, it is possible to build a model of
K , minimal with respect to VIMS , which falsifies a conditional A |∼ B which on the
contrary is satisfied in all the canonical minimal models of K under FIMS . This is
shown by the following example.

A Minimal Model Semantics for Nonmonotonic Reasoning 237

Example 3. Let K be the following: {T |∼ S, S |∼ ¬D, L |∼ P , R |∼ Q, E |∼ F ,
H |∼ G, D |∼ ¬P ∧ ¬Q ∧ ¬F ∧ ¬G, S |∼ ¬(L ∧ R), S |∼ ¬(L ∧ E), S |∼
¬(L ∧ H), S |∼ ¬(R ∧ E), S |∼ ¬(R ∧ H), S |∼ ¬(E ∧ H)}. Let A = D ∧ S ∧
R ∧ L ∧ E ∧ H,, B = ¬Q ∧ ¬P ∧ ¬F ∧ ¬G and let K ′ = K ∪ {¬(A ∧ B |∼
⊥), ¬(A ∧ ¬B |∼ ⊥)}. We define a model M = (W , <, V) of K ′, which is min-
imal with respect to VIMS , as follows: W = {x,w, y1.y2, y3}, where: V (y1) =
{S,¬D,¬R,¬L,¬E,¬H,P,Q, F,G}, V (y2) = {¬S,¬D,R,L,E,H, P,Q, F,G},
V (y3) = {¬S,¬D,R,L,E,H, P,Q, F,G}, V (x) = {D,S,R, L,E,H,¬Q,¬P,¬F,
¬G}, V (w) = {D,S,R, L,E,H,Q,¬P,¬F,¬G}, with kM(y1) = 0, kM(y2) = 1,
kM(y3) = 1, kM(x) = 2 and kM(w) = 2. Observe that: x is an A∧B minimal world;
w is an A ∧ ¬B minimal world; y1 is an S minimal world; y2 is a minimal world for
R,L,E and H ; and y3 is a D minimal world.
M is a model of K which is minimal with respect to VIMS . Also, A |∼ B is fal-

sified in M, while, on the contrary, A |∼ B holds in all the canonical models minimal
with respect to FIMS . Indeed, in all such models the height of k(A ∧ B) = 2 while
k(A ∧ ¬B) = 3. However, it is not possible to construct a model M′ with 5 worlds
so that M′ <V IMS M. In particular, assigning to x or w height 1 would require the
introduction of minimal worlds for R,L,E and H with height 0. But world y2 cannot
be given height 0, as it does not satisfy the conditionals with antecedent S. In canonical
models there are distinct minimal R worlds, L worlds, E worlds and H worlds height
0 (which are also minimal S worlds).

As suggested by this example, in order to characterize rational closure in terms of
VIMS , we should restrict our consideration to models which contain “enough” worlds.
In the following, as in Theorem 4, we enrich K with negated conditionals but, as a
difference with K ′ of Theorem 4, we only need to add to K a polynomial number of
negated conditionals (instead of an exponential number). The purpose of the addition
is that of restricting our attention to models minimal with respect to <VIMS that have
a domain large enough to have, in principle, a distinct most-preferred world for each
antecedent of conditional in K . For this reason, we add for each antecedent C of K a
new corresponding atom φC . If the problem to be addressed is that of knowing whether
A |∼ B is logically entailed by K , we also introduce φA∧B and φA∧¬B , and we define
K ′ as follows.

Definition 11. We define AK,A|∼B = {C | either for some D, C |∼ D ∈ K or C =
A ∧ B or C = A ∧ ¬B, and K ��R C |∼⊥} and K ′ = K ∪ {¬(C ∧ φC |∼⊥) | C ∈
AK,A|∼B} ∪ {(φCi ∧ φCj |∼⊥) | Ci, Cj ∈ AK,A|∼B}.

We here establish a correspondence between FIMS and VIMS . By virtue of Theorem
3, this allows us to establish a correspondence between rational closure and VIMS , as
stated by Theorem 6.

Theorem 5. Let M be a canonical model of K , minimal with respect to FIMS , and
let K ′ be the extension of K defined as in Definition 11. We have that M |= A |∼ B iff
K ′ |=VIMS A |∼ B.

From Theorem 3 and Theorem 5 just shown, it follows that:

Theorem 6. A |∼ B ∈ K̄ iff K ′ |=VIMS A |∼ B for K ′ of Definition 11.

238 L. Giordano et al.

4 Relation with Pmin and Pearl’s System Z

In [5] an alternative nonmonotonic extension of preferential logic P called Pmin is pro-
posed. Similarly to the semantics presented in this work, Pmin is based on a minimal
modal semantics. However the preference relation among models is defined in a differ-
ent way. Intuitively, in Pmin the fact that a world x is a minimal A-world is expressed
by the fact that x satisfies A ∧ �¬A, where � is defined with respect to the inverse
of the preference relation (i.e. with respect to the accessibility relation given by Ruv
iff v < u). The idea is that preferred models are those that minimize the set of worlds
where ¬�¬A holds, that is A-worlds which are not minimal. As a difference from the
approach presented in this work, the semantics of Pmin is defined starting from prefer-
ential models of Definition 1, in which the relation < is irreflexive and transitive (thus,
no longer modular). Pmin is a nonmonotonic logic considering only P models that, in-
tuitively, minimize the non-typical worlds. More precisely, given a set of formulas K ,
a model M = 〈WM, <M, VM〉 of K and a model N = 〈WN , <N , VN 〉 of K , we
say that M is preferred to N if WM =WN , and the set of pairs (w,¬�¬A) such that
M, w |= ¬�¬A is strictly included in the corresponding set for N . A model M is a
minimal model for K if it is a model of K and there is no a model M′ of K which
is preferred to M. Entailment in Pmin is restricted to minimal models of a given set
of formulas K . In Section 3 of [5] it is observed that the logic Pmin turns out to be
quite strong. In general, if we only consider knowledge bases containing only positive
conditionals, we get the same trivialization result (part of Proposition 1 in [5]) as the
one contained in Proposition 4 for VIMS .

This does not hold for rational closure. This is the reason why we have introduced
the additional assumptions of Definition 11 in order to obtain an equivalence with ra-
tional closure. Similarly, in order to tackle this trivialization in Pmin , Section 3 in [5]
is focused on the so called well-behaved knowledge bases, that explicitly include that
A is possible (¬(A |∼ ⊥)) for all conditional assertions A |∼ B in the knowledge base.

We can now wonder whether Pmin is equivalent to VIMS , which is the semantics
to which it resembles the most. Or whether VIMS is equivalent to a stronger version
of Pmin obtained by replacing P with R as the underlying logic. We call Rmin this
stronger version of Pmin .
Example 4. Let K = {PhD |∼ ¬worker ,PhD |∼ adult , adult |∼ worker , italian |∼
house owner ,PhD |∼ ¬house owner}. What do we derive in Pmin and Rmin, and
what in VIMS? By what said above, since K only contains positive conditionals, both
in Pmin and Rmin, on the one side, and in VIMS , on the other side, we derive that
italian ∧ PhD |∼⊥. So let’s add to K the constraint that people who are italian and
have a PhD do exist by introducing in K a conditional ¬(italian ∧ PhD |∼⊥), thus
obtaining: K ′ = {PhD |∼ ¬worker ,PhD |∼ adult , adult |∼ worker ,italian |∼
house owner ,PhD |∼ ¬house owner ,¬(italian ∧ PhD |∼⊥)}.
Notice that since ¬(italian ∧ PhD |∼⊥) entails both that ¬(italian |∼⊥) and that
¬(PhD |∼⊥), and that this in turn entails ¬(adult |∼⊥), K ′ is also well-behaved.
It can be verified that the logical consequences of K ′ in Pmin , Rmin, and VIMS dif-
fer. In both Pmin and Rmin, for instance, we derive neither that italian ∧ PhD |∼
house owner nor that italian∧PhD |∼ ¬house owner: the two alternatives are equiv-
alent. On the other hand, in VIMS we derive that italian ∧ PhD |∼ ¬house owner .

A Minimal Model Semantics for Nonmonotonic Reasoning 239

The previous example shows that in some cases VIMS is stronger than both Pmin

and Rmin. The following one shows that the two approaches are incomparable, since
there are also consequences that hold for both Pmin and Rmin but not for VIMS .

Example 5. Let K = {PhD |∼ adult , adult |∼ work ,PhD |∼ ¬work , italian |∼
house owner}. What do we derive about typical italian ∧ PhD ∧ work , for instance?
Do they inherit the property of typical italians of being house owner? Again, in order
to prevent the entailment of italian ∧ PhD ∧ work |∼⊥ from K both in VIMS and in
Pmin and Rmin, we add to K the constraint that italians with a PhD who work exist,
henceforth they also have typical instances. Therefore we expandK intoK ′ = {PhD |∼
adult , adult |∼ work ,PhD |∼ ¬work , italian |∼ house owner ,¬(italian ∧ PhD ∧
work |∼⊥)}. By reasoning as in Example 4 we can show that K ′ is a well-behaved
knowledge base. Now it can be shown that italian ∧ PhD ∧ work |∼ house owner
is entailed in Pmin and Rmin, whereas nothing is entailed in VIMS . This difference
can be explained intuitively as follows. The set of properties for which an individual
is atypical matters in Pmin and Rmin where one has to minimize the set of distinct
¬�¬C: even if an italian ∧ PhD ∧ work is an atypical PhD, Pmin and Rmin still
maximize its typicality as an italian, and therefore entail that it is a house owner, as all
typical italians. As a difference, in VIMS , what matters is the set of individuals which
are more typical than a given x, rather than the set of properties with respect to which
they are more typical. As a consequence, since an x which is italian ∧ PhD ∧ work is
an atypical PhD, there is no need to maximize its typicality as an italian, as long as this
does not increase the set of individuals more typical than x.

In [9] Pearl has introduced two notions of 0-entailment and 1-entailment to perform
nonmonotonic reasoning. We recall here the semantic definition of both and then we
remark upon their relation with our semantics and rational closure. A model M for a
finite knowledge base K has the form M = ({true, false}ATM , kM) where
{true, false}ATM is the set of propositional interpretations for, say, a fixed finite
propositional language, and kM is our height function mapping propositional interpre-
tations to N, the definition of height kM(A) of a formula is the same as in our semantic.
A conditional A |∼ B is true in a model M if kM(A ∧ B) < kM(A ∧ ¬B). Then the
two entailments relations are defined as follows:

K |=0−ent A |∼ B if A |∼ B is true in all models of K
K |=1−ent A |∼ B if A |∼ B is true in the (unique) model M of K which is
minimal with respect to kM.

(minimal with respect to kM means that no other modelM′ assigns a lower value kM′

to any propositional interpretation). First, observe that Pearl’s semantics (both 0 and 1
entailment) cannot cope with conditionals having an inconsistent antecedent. This lim-
itation is deliberate and is motivated by a probabilistic interpretation of conditionals: in
assertingA |∼ B,Amust not be impossible, no matter how it is unlikely. For this reason,
a knowledge base such as K = {A |∼ P,A |∼ ¬P,B |∼ Q} is out of the scope of Pearl’s
semantics, and nothing can be said about its consequences. As a difference with respect
to Pearl’s approach we are able to consider such K , we just derive that A is impossible,
without concluding that K is inconsistent or trivial, in the sense that everything follows
from it. Moreover both 0-entailment and 1-entailment fail to validate:

240 L. Giordano et al.

∅ |=0−ent/1−ent A |∼ ⊥ whenever �PC ¬A
which is valid in any KLM logic, whence in rational closure (as well as in our seman-
tics). However two definitions should make apparent the relations with our semantics
and rational closure. If we consider a K such that ∀A |∼ B ∈ K,K �|=R A |∼ ⊥,
we get an obvious correspondence between our canonical models (which will contain
worlds for very possible propositional interpretation) and models of Pearl’s semantics.
The correspondence preserves FIMS minimality, so that we get immediately:

Proposition 8. K |=1−ent A |∼ B iff A |∼ B holds in any FIMS -minimal canonical
model of K .

By Theorem 3, we therefore obtain K |=1−ent A |∼ B iff A |∼ B ∈ K̄. This is not
a surprise, the correspondence between 1-entailment and rational closure was already
observed by Pearl in [9,10]. However, it only works for knowledge bases with the strong
consistency assumption as above.

5 Conclusions and Future Works

We have provided a semantic reconstruction of the known rational closure within modal
logic. We have provided two minimal model semantics, based on the idea that preferred
rational models are those one in which the height of the worlds is minimized. We have
then shown that adding suitable possibility assumptions to a knowledge base, these two
minimal model semantics correspond to rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) the properties of the preference
relation <: for instance just preorder, or multi-linear [5], or weakly-connected (observe
that P is complete with respect to any of the three classes); (ii) the comparison relation
on models: for instance based on the heights of the worlds or on the inclusion between
the relations <, or on negated boxed formulas satisfied by a world, as in the logic
Pmin ; (iii) the choice between fixed or variable interpretations. The systems obtained
by various combinations of the three ingredients are largely unexplored and may give
rise to useful nonmonotonic logics. We finally intend to extend our approach to richer
languages, notably in the context of nonmonotonic description logics.

References

1. Booth, R., Paris, J.B.: A note on the rational closure of knowledge bases with both positive
and negative knowledge. Journal of Logic, Language and Information 7, 165–190 (1998)

2. Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68(1),
87–154 (1994)

3. Casini, G., Straccia, U.: Rational Closure for Defeasible Description Logics. In: Janhunen,
T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)

4. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the
ACM 48(4), 648–685 (2001)

5. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A Nonmonotonic Extension of KLM
Preferential Logic P. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397,
pp. 317–332. Springer, Heidelberg (2010)

A Minimal Model Semantics for Nonmonotonic Reasoning 241

6. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A minimal model semantics for rational
closure. In: Rosati, R., Woltran, S. (eds.) 14th International Workshop on Non-Monotonic
Reasoning, NMR 2012, Roma, Italy (2012)

7. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

8. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intel-
ligence 55(1), 1–60 (1992)

9. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning. In: Parikh, R. (ed.) TARK (3rd Conference on Theoretical Aspects of Rea-
soning about Knowledge), pp. 121–135. Morgan Kaufmann, Pacific Grove (1990)

10. Pearl, J., Goldszmidt, M.: On the relation between rational closure and System-Z. In: NMR
1990 (3rd Int. W. on Non-Monotonic Reasoning), South Lake Tahoe, California, USA (1990)

11. Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Harper,
W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, pp. 105–134.
Kluwer, Dordrecht (1988)

Extending a Temporal Defeasible Argumentation

Framework with Possibilistic Weights

Llúıs Godo1, Enrico Marchioni1, and Pere Pardo1,2

1 Artificial Intelligence Research Institute, IIIA
Spanish National Research Council, CSIC
Campus UAB, 08193 Bellaterra, Spain
{godo,enrico,pardo}@iiia.csic.es

2 Dept. Lògica, Història i Filosofia de la Ciència
Universitat de Barcelona, Montalegre 6, 08001 Barcelona, Spain

Abstract. Recently, a temporal extension of the argumentation defea-
sible reasoning system DeLP has been proposed. This system, called
t-DeLP, allows to reason defeasibly about changes and persistence over
time but does not offer the possibility of ranking defeasible rules accord-
ing to criteria of preference or certainty (in the sense of belief). In this
contribution we extend t-DeLP by allowing to attach uncertainty weights
to defeasible temporal rules and hence stratifying the set of defeasible
rules in a program. Technically speaking, weights are modelled as neces-
sity degrees within the frame of possibility theory, a qualitative model of
uncertainty.

1 Introduction and Motivation

The system DeLP [13] provides a defeasible logic programming-based argumen-
tation framework, based on the use of dialectical trees, upon which several exten-
sions have been built. In particular, the system t-DeLP [17] makes it possible to
express defeasible reasoning in a discrete temporal framework as well as changes
and persistence over time. t-DeLP, however, does not offer the possibility of rank-
ing defeasible rules according to criteria of preference or certainty (in the sense
of belief).

In addition, in t-DeLP, the application of rules does not take into account any
possible uncertainty in the occurrence of temporal events. This issue has been
already tackled in another extension of DeLP, the system P-DeLP [3,2,8], that
allows the handling of possibilistic uncertainty (of a qualitative, ordinal nature)
by attaching defeasible rules and arguments with necessity degrees.

To bridge this gap, in this paper we introduce an extended argumentation
framework, called pt-DeLP, where it is possible to express uncertainty on tem-
poral rules and events, and how this uncertainty may change over time. This
new system presents the possibility of formalizing arguments and defeat rela-
tions among them that combine both temporal criteria of t-DeLP and the belief
strength criteria from P-DeLP. In fact, preferred arguments in t-DeLP are those
with comparably more (temporally basic) information, or comparably less use of

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 242–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extending Temporal Defeasible Argumentation with Possibilistic Weights 243

persistence rules (which simply assume that some fact will not change). This al-
lows to express certain non-monotonic temporal phenomena (extinction of facts
vs. persistence) in an economic way. On the other hand, P-DeLP establishes a
preference for arguments that support their conclusions with comparably higher
weights. Then, a natural way of combining these two kinds of preference (de-
feat) relations is through the definition of a lexicographic preference relation
(see e.g. [4]) that assigns more relevance to temporal criteria or vice versa. We
will show that, under any of these two lexicographic combinations, pt-DeLP is a
conservative extension of t-DeLP, while this is not the case with P-DeLP.

The paper is structured as follows. In Section 2 we present the logic underlying
the proposed logic programming framework, which is introduced in Section 3.
The relationship between t-DeLP and P-DeLP to the new framework pt-DeLP is
studied in Section 4. Then, an illustrative example is developed in Section 5 and
we finish with a brief discussion on related work and conclusions.

2 Language and Semantics of the Base Logic of pt-DeLP

The logic upon which pt-DeLP is based on consists of (Boolean combinations of)
temporal formulas, encoding the occurrence of an event at a given time, equipped
with a weight that represents the degree of uncertainty attached to the formula.
Here, we describe how pt-DeLP is defined within such a syntactic framework.

Given a finite set of propositional variables Var = {p, q, . . . }, let us denote by
Lit the set of literals built from Var, i.e. Lit = {p,¬p | p ∈ Var}. By ¬� we will
denote ¬p if � = p, or p if � = ¬p, with p ∈ Var.

The set ATForm is defined as the set of all pairs (�, t) such that � ∈ Lit and
t ∈ N. Every formula in ATForm is called an atomic temporal formula. The set
TForm of temporal formulas is built, as usual, from the set of atomic temporal
formulas with the classical Boolean connectives ∧,∨,¬,−→.

A temporal interpretation for TForm is a mapping w : ATForm× N → {0, 1}
such that, for each t ∈ N, w((¬p, t)) = 1−w((p, t)). The interpretation w extends
to formulas TForm as usual using the classical truth-functions for the Boolean
connectives. Notice that the above extra condition ensures that, in fact, temporal
formulas (¬�, t) and ¬(�, t) are considered as logically equivalent.

We will denote by Ω the set of temporal interpretations over TForm. An
interpretation w ∈ Ω is called a model of a temporal formula Φ, denoted by
w |= Φ, whenever w(Φ) = 1.

In what follows, we expand the temporal language by introducing weights and
provide a suitable semantics in terms of possibilistic uncertainty.1

Definition 1. A possibilistic model over TForm is a possibility distribution π :
Ω → [0, 1] such that maxw∈Ω π(w) = 1. The possibility distribution π induces a
necessity measure Nπ on TForm in the usual way, i.e.: Nπ(Φ) = inf{1 − π(w) |
w ∈ Ω,w �|= Φ}.
1 For all the details on possibility theory and possibilistic logic the reader is referred
e.g. to [11] and the references therein.

244 L. Godo, E. Marchioni, and P. Pardo

A weighted temporal formula (wt-formula) is an expression of the form 〈Φ〉r , with
Φ ∈ TForm, and r ∈ [0, 1], which is to be interpreted as a lower bound for the
necessity degree of Φ. Note that a formula like 〈(�1, t) −→ (�2, t)〉r is a formula
from TForm, while 〈(�1 −→ �2, t)〉r is not. The set of all wt-formulas is denoted
WTForm.

Definition 2. A possibilistic model π over TForm satisfies a weighted temporal
formula 〈Φ〉r, denoted π |=pos 〈Φ〉r, whenever Nπ(Φ) ≥ r. As usual, we say that
π satisfies a set of wt-formulas P whenever π satisfies every 〈Φ〉r ∈ P . Moreover,
the induced consequence relation is defined as follows: P |=pos 〈Φ〉r iff every π
satisfying P also satisfies 〈Φ〉r.

We now define the language of pt-DeLP as a fragment of WTForm, replacing −→
by ←− as costumary in logic programming languages. Let

WTLit = {〈(�, t)〉r | � ∈ Lit, t ∈ N, r ∈ [0, 1]}

be the set of all wt-formulas 〈Φ〉r where Φ is in ATForm. Each formula of this
kind is called a weighted temporal literal 2 (wt-literal, for short). Moreover, let

WTRule = {〈(�, t)←− (�1, t1) ∧ · · · ∧ (�n, tn)〉r | (�, t), . . . , (�n, tn) ∈ ATForm;
t ≥ max{t1, . . . , tn}, r ∈ [0, 1]}

be the set of all wt-formulas 〈Φ〉r where Φ is a temporal formula of the form
(�, t) ←− (�1, t1) ∧ · · · ∧ (�n, tn). Each formula contained in WTRule is called
a weighted temporal rule (wt-rule, for short).3 If δ = 〈(�, t) ←− (�1, t1) ∧ · · · ∧
(�n, tn)〉r, we write head(δ) = (�, t), body(δ) = {(�1, t1), . . . , (�n, tn)}, and lit(δ) =
{head(δ)} ∪ body(δ). If r = 1, δ is called a strict rule, and defeasible otherwise
(i.e. when 0 < r < 1). The language of pt-DeLP corresponds to the fragment of
WTForm consisting of the set of formulas WTLit ∪WTRule.

Note that rules from WTRule are forward temporal rules (i.e rules in which
the time of the occurrence of the literal in the conclusion follows the time
of the occurrences of the premises), and so we keep from t-DeLP the idea
that temporal rules represent causal relationships. For instance, a wt-rule like
〈(dead(Lars), t) ←− (bitten(Lars), t1) ∧ (antidote(Lars), t2))〉α means: it is α-
plausible that Lars dies at t when poisoned at t1 and given an antidote at t2.

It turns out that in many situations the weight attached to a temporal for-
mula (�, t) ←− (�1, t1) ∧ · · · ∧ (�n, tn) does not actually depend on the absolute
time values but on the temporal distances t − t1, . . . , t − tn between the time
of occurrence of the head of the rule and of the different premises. For this
reason we introduce the following convenient and schematic notation for spec-
ifying a given temporal evolution of the weights in a wt-rule. In a sense, such
schematic representations assume that the weights are invariant under uniform
time translations: a schematic weighted temporal rule is an expression δν of the
form

〈�←− (�1, d1) ∧ · · · ∧ (�n, dn)〉ν(d1,...,dn),
2 In the rest of the work, wt-literals 〈(�, t)〉r will be written in the simpler form (�, t)r.
3 The notation 〈(�, t)←− (�1, t1), . . . , (�n, tn)〉r will also be used later for wt-rules.

Extending Temporal Defeasible Argumentation with Possibilistic Weights 245

where d1, . . . , dn are variables taking values in N and ν : Nn → [0, 1]. This
schematic rule compactly encodes the set of the following instantiated wt-rules:

δ = 〈(�, t)←− (�1, t− d1) ∧ · · · ∧ (�n, t− dn)〉ν(d1,...,dn)

for each d1, . . . , dn ∈ N and for each t ≥ max{d1, . . . , dn}. The function ν is
called a weight distribution and assigns to each instantiated rule δ a weight
ν(d1, . . . , dn) that depends on the temporal distances d1, . . . , dn of the head of
the rule � with respect to each premise �i in the body.

As a particular case, we can represent weighted versions of t-DeLP persistence
rules δ
 for selected literals �. These are of the form 〈�←− (�, d)〉ν(d) which state
that a literal � holding at t will still hold at t+ d with degree ν(d), for any d.

The notion of derivability in pt-DeLP is the natural extension of that of t-DeLP
with possibilistic weights by means of a weighted version of modus ponens (which
is sound with respect to the above possibilistic semantics, see e.g. [11]).

Definition 3 (Derivability). Given a set of wt-literals and wt-rules P ⊆
WTLit ∪WTRule, we say that a wt-literal (�, t)r is derivable from P , denoted
(�, t)r ∈ Cn(P), iff

1. (�, t)r′ ∈ P with r ≤ r′, or
2. there exist a set of wt-literals (�1, t1)r1 , . . . , (�n, tn)rn ∈ Cn(P) and a wt-rule

〈(�, t)←− (�1, t1) ∧ · · · ∧ (�n, tn)〉s, such that r ≤ min{s, r1, . . . , rn}.

3 An Argumentation System for pt-DeLP

Logic-based argumentation systems aim at providing computational tools to
reason under conflicting or inconsistent information. Therefore, it is crucial to
have a clear notion of what an inconsistent set of pt-DeLP formulas is.

Definition 4. A set P ⊆WTLit∪WTRule is said to be pt-DeLP-inconsistent if
there exist (�, t)r, (¬�, t)s ∈ Cn(P) with min(r, s) > 0. Otherwise, we say that P
is pt-DeLP-consistent.

Note that if P is inconsistent, P is not satisfiable by any possibilistic model since
min(Nπ((�, t)), Nπ((¬�, t))) = 0 in any possibilistic model π. The converse is not
true, since the notion of derivability in pt-DeLP is obviously weaker than the
possibilistic logical consequence |=pos. In other words, if (�, t)r ∈ Cn(P) then
P |=pos (�, t)r, but the opposite does not always hold.

Definition 5 (Program). A pt-DeLP program is a pair (Π,Δ) such that Π is
a consistent finite set of strict wt-rules and Δ is a finite set defeasible wt-rules.

Definition 6 (Argument). Given a pt-DeLP program P = (Π,Δ), an argu-
ment for (�, t)r is a set A = AΠ ∪ AΔ, with AΠ ⊆ Π and AΔ ⊆ Δ, such
that:

1. Π ∪ AΔ is pt-DeLP-consistent,

246 L. Godo, E. Marchioni, and P. Pardo

2. r = max{s ∈ [0, 1] | (�, t)s ∈ Cn(AΔ ∪ AΠ)},
3. Both AΔ and AΠ are minimal w.r.t. inclusion, i.e.: there are no A′

Δ ⊂ AΔ

and A′
Π ⊂ AΠ such that (�, t)r ∈ Cn(A′

Δ ∪ A′
Π).

Notice that, given a pt-DeLP program (Π,Δ) there may exist different arguments
for (�, t)r, with different r. In fact, there might be different sets A = AΠ ∪ AΔ

and A′ = A′
Π ∪A′

Δ, with AΠ �⊆ A′
Π and AΔ �⊆ A′

Δ, such that A is an argument
for (�, t)s, while A′ is an argument for (�, t)s′ , with s �= s′.

Definition 7. Given a pt-DeLP program (Π,Δ) and an argument A = AΠ∪AΔ

for (�, t)r, we define:

1. concl(A) = (�, t)r;
2. base(A) = {(�′, t) | ∃δ ∈ A, (�′, t) ∈ body(δ), and � ∃δ ∈ A, (�′, t) ∈ head(δ)};
3. TLit(A) =

⋃
δ∈A lit(δ).

Definition 8 (Sub-argument). Let (Π,Δ) be a pt-DeLP program and let A =
AΠ ∪ AΔ be an argument for (�, t)r in (Π,Δ). Given some (�0, t0) ∈ TLit(A),
a sub-argument for (�0, t0)s (for some s ∈ (0, 1]) is a set B = BΠ ∪ BΔ, with
BΔ ⊆ AΔ and BΠ ⊆ AΠ , such that B is an argument for (�0, t0)s. The sub-
argument of A induced by (�0, t0) will be denoted A(�0, t0).

We now define the notion of attack between arguments as a natural extension
of those for DeLP and t-DeLP.

Definition 9 (Attack). Given a pt-DeLP program (Π,Δ), let A0 and A1 be
arguments for (�0, t0)r0 and (�1, t1)r1 , respectively. We say that A1 attacks A0

iff there exists a subargument B0 of A0 for a weighted temporal literal (¬�1, t1)s
for some s > 0. In this case, A1 is said to attack A0 at B0.

Given the notion of attack, we can now consider several notions of defeat. On
the one hand, following the idea proposed in P-DeLP (Possibilsitic DeLP), the
presence of weights makes it reasonable to use such weights in deciding whether
an attacking argument defeats another argument. Note that the next definition
is a direct extension to pt-DeLP of the notion of defeater in P-DeLP.

Definition 10 (Possibilistic Defeater). Let an argument A1 attack A0 at
B0, where we have concl(A1) = (�, t)r and concl(B0) = (¬�, t)s. We say that A1

is a proper possibilistic defeater for A0, denoted A1 2π A0, whenever r > s; and
we say that A1 is a blocking possibilistic defeater for A0, denoted A1 �3π A0,
whenever s = r.

Still, time and information specificity plays a fundamental role in reasoning in
pt-DeLP, and so the definition given in [17] of a temporal defeater for t-DeLP
should be also taken into account. In the following definition Δ¬
 denotes a
suitable set of instances of the schematic persistence rule 〈¬�←− (¬�, d)〉ν(d).

Definition 11 (Temporal Defeater). Let an argument A1 attack A0 at B0,
where concl(A1) = (�, t)r and concl(B0) = (¬�, t)s. We say that A1 is a proper
temporal defeater for A0, denoted A1 2τ A0 iff

Extending Temporal Defeasible Argumentation with Possibilistic Weights 247

1. base(A1) � base(B0), or
2. there exists t′ < t such that B0 = A1(�, t

′) ∪Δ¬

We say A1 is a blocking temporal defeater for A0, denoted A1 �3τ A0 iff
neither A1 nor B0 are proper temporal defeaters for each other.

The fact that pt-DeLP is built upon the presence of time and weights, formalized
in terms of a necessity measures, suggests that both the concepts of possibilistic
and a temporal defeaters should be taken into account to define a proper notion
of defeat.

Definition 12 ((π × τ)-defeater, (τ × π)-defeater). Let an argument A1 at-
tack A0 at B0, where concl(A1) = (�, t)r and concl(B0) = (¬�, t)s. We say that
A1 is a proper (π × τ)-defeater for A0, denoted A1 2π×τ A0 iff

1. A1 2π A0, i.e. A1 is a proper possibilistic defeater, or
2. A1 �3π A0, i.e. A1 is a blocking possibilistic defeater for A0, and A1 2τ

A0, i.e. A1 is a proper temporal defeater for A0.

We say that A1 is a blocking (π × τ)-defeater for A0, denoted A1 �3π×τ A0

iff A1 �3π A0 and A1 �3τ A0. The definition of proper and blocking (τ × π)-
defeater is completely analogous and is obtained by replacing τ with π and vice
versa.

The argumentation semantics for pt-DeLP inherits the one of DeLP (as well as
those of t-DeLP and P-DeLP) based on dialectical trees, with slight modifications
in each case. The following definitions actually are parametric with respect to
the notion of proper and blocking defeater, so they can be instantiated in any
of the (τ × π) or (π × τ) criteria. Of course, depending on whether we prioritize
the temporal defeat criteria or the comparison among weights, we will obtain
distinct notions of warrant.

Definition 13 (Argumentation Line, Dialectical Tree, Marking). Let A1

be an argument in (Π,Δ). An argumentation line for A1 is a sequence Λ =
[A1,A2, . . .] where:

(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly
consistent with Π, and similarly for interfering arguments A2i ∈ Λ ;

(ii) a supporting (resp. interfering) argument is different from the attacked sub-
arguments of previous supporting (resp. interfering) arguments: Ai+2k �=
Ai(¬concl(Ai+1));

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1.

An argumentation line [A1, . . . ,An] for A1 is maximal if there is no other ar-
gument An+1 such that [A1, . . . ,An,An+1] is an argumentation line for A1.

The dialectical tree for A1 is the set of maximal argumentation lines rooted in
A1 arranged in the form of a tree, and is denoted T(Π,Δ)(A1) (see [13] for more
details). The bottom-up marking procedure of a dialectical tree T is as follows:

248 L. Godo, E. Marchioni, and P. Pardo

(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D.

Finally, the notion of warranted literal is defined as follows. Notice that in the
presence of weights it makes sense to actually consider two notions of warrant,
the usual one and another one witnessing the highest weight with which a literal
can be warranted, see e.g. [3,8].

Definition 14 (Warrant, Strong Warrant). Given a pt-DeLP program (Π,Δ)
and a query temporal literal (�, t), we say (�, t) is warranted in (Π,Δ), denoted
(�, t) ∈ warr(Π,Δ), if, for some r > 0, there exists an argument A for (�, t)r
such that A is undefeated in T(Π,Δ)(A). In case there is no value s > r such
that (�, t)s is also warranted, we say that (�, t)r is strongly warranted in (Π,Δ),
denoted (�, t)r ∈ swarr(Π,Δ).

It should be noted that, as expected, the set warr(Π,Δ) is always consistent,
even with the (τ × π) defeat relation, but its consistency with the strict part of
the program Π cannot be guaranteed.

4 Relating pt-DeLP to t-DeLP and P-DeLP

Now we proceed to study how pt-DeLP relates to each of the frameworks t-DeLP
and P-DeLP. To this end, we first propose a translation between the respective
languages.

Definition 15. We define the translation maps f and g from, respectively,
the language of t-DeLP and P-DeLP into that of pt-DeLP. These maps are the
following:

f : t-DeLP �−→ pt-DeLP

fact (�, t) �−→ (�, t)1
rule (�, t)←− (�1, t1), . . . , (�n, tn) �−→ 〈(�, t)←− (�1, t1), . . . , (�n, tn)〉r

where

{
r = 1 if δ ∈ Π

r = .5 if δ ∈ Δ

g : P-DeLP �−→ pt-DeLP
fact (�)r �−→ (�, 0)r
rule 〈�←− �1, . . . , �n〉r �−→ 〈(�, 0)←− (�1, 0), . . . , (�n, 0)〉r

If P is a set of t-DeLP formulas, we will denote its translation by f by f [P] or
simply fP , and analogously with g. Note that both mappings f and g preserve
the strict or defeasible character of facts and rules (in the case of g the weight
is also preserved).

Lemma 1. For arbitrary arguments A,B in a t-DeLP program P , we have A 2τ

B iff f [A] 2τ f [B] iff f [A] 2τ×π f [B] iff f [A] 2π×τ f [B]. The case of �3τ

,�3τ×π and �3π×τ is similar.

Extending Temporal Defeasible Argumentation with Possibilistic Weights 249

warr(Π,Δ)

(Π,Δ)

t-D
eLP

>

f [warr(Π,Δ)]
=

warr(fΠ, fΔ)

f

>

(fΠ, fΔ)
PT-

DeL
P

>

f
>

Fig. 1. A representation of pt-DeLP being a conservative extension of t-DeLP under
the translation map f , and for any of the two criteria (τ × π) and (π × τ)

Proof. (Sketch) The idea is to use the fact that conflicting arguments are nonethe-
less consistent with Π , so they must both be of degree .5. This makes the degrees
collapse and hence makes the �3π always true. Thus, the result is determined
purely by 2τ and �3τ relations.

Lemma 1 fails for the mapping g between P-DeLP and pt-DeLP, as shown in
Example 1 below. From now on, the results focus then on the relation between
t-DeLP and pt-DeLP. Indeed, if we ignore the notational differences between

– t-DeLP (being strictly vs. defeasibly derivable), and
– pt-DeLP with set of degrees {0, .5, 1} (i.e. being derivable with degree .5 vs.

with degree 1)

we can define the conditions for pt-DeLP to be a conservative extension of t-DeLP
as follows: the warr(·, ·) operator commutes with f ; see Figure 1.

Proposition 1. pt-DeLP is a conservative extension of t-DeLP, under both lex-
icographic orderings (τ × π) or (π × τ).

Proof. (Sketch) The proof proceeds by using Lemma 1 and showing by induction
that the dialectical trees T(Π,Δ)(A) and T(fΠ,fΔ)(f [A]) are isomorphic.

In contrast to this preservation result for t-DeLP and pt-DeLP, the mapping g
fails to guarantee the warrant literals from P-DeLP to pt-DeLP for both lexico-
graphic criteria, as the following example shows.

Example 1. Consider the P-DeLP-program (Π,Δ) containing only the literals
and rules mentioned in the arguments below.

A = {(p)1; 〈q ←− p〉.8} with conclusion (q).8
B = {(p)1; (r)1; 〈¬q ←− p, r〉.8} with conclusion (¬q).8

Clearly, A and B attack each other, and are blocking defeaters for each other.
The dialectical tree for A is [A,B] which makes A defeated. Since this is the
only argument for (q).8, we have (q).8 /∈ warr(Π,Δ). The tree for B is [B,A], and
we also have that (¬q).8 /∈ warr(Π,Δ). On the other hand, if we translate them
into pt-DeLP as A′ = g[A] and B′ = g[B], we find that:

250 L. Godo, E. Marchioni, and P. Pardo

1. Case (τ × π): From B′ 2τ A′, we infer B′ 2τ×π A′, so T(gΠ,gΔ)(B′) = [B′]
and g(concl(B)) = (¬q, 0).8 ∈ warr(gΠ, gΔ).

2. Case (π× τ): Since A′ �3π B′, we try the temporal criteria which as before
gives B′ 2π×τ A′ from B′ 2τ A′. As before, this makes B′ undefeated and
A′ defeated (in the corresponding trees), so (¬q, 0).8 ∈ warr(gΠ, gΔ).

Thus, for both criteria, pt-DeLP is not a conservative extension of P-DeLP.

5 An Example

Consider the following scenario:
Lars, a tourist visiting the Snake Forest, just got bitten by a poisonous snake.

Normally, the bite of this kind of snake increases the likelihood of fast poisoning,
whose maximum degree is reached 10 hours after the bite. On the other hand,
Lars (who, as an experienced tropical tourist, has been bitten a few times before)
has developed some resistance to the poison. So this poison increases instead
his likelihood of slow poisoning, the maximum degree of likelihood for this being
reached 20 hours after the bite. In any case, once bitten, the actual occurrence
of slow or fast poisoning causes death immediately. Assuming Lars arrives alive
to the hospital and he is given an antidote, the likelihood that Lars survives the
next k hours depends on how much time passed between the bite and the antidote.

So we decide to take Lars to the nearest hospital, which normally takes 8 hours.
But, the radio just announced we will find a traffic jam, causing a delay of 4 more
hours. Thus, most plausibly it will take us 12 hours to reach the hospital. The
problem is then to compute at time 0 (now) how strong is our belief of whether
Lars will die (or not) at some later time t in this scenario.

This example extends a similar scenario considered in [17], where only the
amount and relevance of temporal information was considered. The possibilistic
degrees allow for more smooth descriptions of the causal relations considered.

The scenario is formalized in Figure 2. The strict facts denote the factual
knowledge about the initial state (where the reasoning takes place). The strict
rules describe the effect of two possible ways in which the bite can lead to
death by poisoning (one way would be faster than the other). In either case, the
immediate effect is death. A faster poisoning does occur in normal people, while
certain resistance can be acquired with experience, giving some extra temporary
resistance (slow poisoning). The defeasible rules δ2, δ3 describe the likelihood of,
resp., faster and slower poisoning across time, provided Lars has been bitten
(resp. and experienced). This likelihood is represented in Figure 3 (Top). The
X-axis represents time (from now, 0, to 20 hours into the future). The Y-axis
describes the degree for derivability of slow and faster poisoning (i.e. death) at
each time t. The arguments built in this program are also shown in Figure 4. The
first and third arguments are those built from δ2 (in grey, denoting defeated)
and δ3 (white, denoting undefeated). In order to prevent conclusions that are too
pessimistic (about Lars’ chances) using δ2, a canceling rule δ4 is introduced. So
the argument for δ3 can impose the (correct) degree α3(d0)(= α3(t−0) = α3(t)),

Extending Temporal Defeasible Argumentation with Possibilistic Weights 251

Π − facts{
(@forest(Lars), 0)1, (bitten(Lars), 0)1,
(¬dead(Lars), 0)1, (exp(Lars), 0)1

}

Π − rules

〈dead(Lars) ←− fast.poisoning(Lars), 0)〉1 δ0

〈dead(Lars) ←− slow.poisoning(Lars), 0)〉1 δ1

Δ

〈fast.poisoning(Lars) ←− ((bitten(Lars), d0))〉α2(d0) δ2

where α2(d0) is as in Fig. 3(Top).

〈slow.poisoning(Lars) ←− ((bitten(Lars), d0)), (exp(Lars), d1)〉α3(d0) δ3

where α3(d0) is as in Fig. 3(Top).

〈¬fast.poisoning(Lars) ←− ((bitten(Lars), d0)), (exp(Lars), d1)〉α4(d0) δ4

where α4(d0) = α3(d0) + .001

〈@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1)〉α5(d1) δ5

where α5(d1) =

{
.9 if d1 = 8

0 otherwise

〈¬@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1), δ6
(traffic.jam, d2)〉α6(d1)

where α6(d1, d2) =

{
.95 if d1 = 8 = d2

0 otherwise

〈¬slow.poisoning(Lars) ←− (bitten(Lars), d0),@hospital(Lars), d1), (exp(Lars), d2)〉α7 δ7

where α7(d0, d1) =

{
α3(d0) + .001 if d1 < d0

0 otherwise

〈@hospital(Lars) ←− (bitten(Lars), d0), (@forest(Lars), d1), δ8
(traffic.jam, d2)〉α6(d1,d2)

where α6(d1, d2) =

{
.95 if d1 = 12 = d2

0 otherwise

〈(dead(Lars) ←− (bitten(Lars), d0), (@hospital(Lars), d1), δ9
(exp(Lars, d2)〉α9(d0,d1)

where α9(d0, d1) =

{
α3(d1 − |d0 − d1|) if d1 < d0

0 otherwise

Fig. 2. The list of strict facts and rules, and defeasible rules for the example

252 L. Godo, E. Marchioni, and P. Pardo

Fig. 3. The Snake-Bites-Lars example. (Top) A comparison between the likelihood of
fast-poisoning (resp. slow-poisoning) in dashed arrow (resp. solid arrow). (Mid) The
likelihood of Lars dying at t, if we reach the hospital at time 8; this is described by α3

-before reaching the hospital-, and by α9 -afterwards. (Bottom) Similarly for the case
we reach the hospital at time 12, which is the actual case.

Fig. 4. An illustration of the example from Section 5 in terms of defeaters. Triangles
represent arguments, with the conclusion on top, and the base on bottom. White
triangles are undefeated arguments, grey arguments are defeated. The arrows denote
the defeat relations. Conclusions attacking their negations are left blank. For both
criteria (τ × π) and (π × τ), the output swarr(Π,Δ) includes (dead(Lars), t)α3 for
t < 12 and (dead(Lars), t)α9 , for t ≥ 12, as well as (@hospital(Lars), t).95.

Extending Temporal Defeasible Argumentation with Possibilistic Weights 253

correct at least up to the point where we reach the hospital. See in Figure 4 how
the counter-argument based on δ4 acts against δ2 at a particular time point, to
let δ3-arguments succeed.

After we reach the hospital, the previously correct α3 becomes too pessimistic,
since it does not take into account the antidote, and prevents the correct degrees
to surface (the lower degrees described by α9). To this end, δ3-based arguments
are to be counter-argued by arguments with δ7. Now, arguments containing δ9 or
δ7 depend of course on the time t we reach the hospital: we have arguments for
t = 8 and for t = 12, though the latter is better supported. See Figure 3 (Mid)
for the t = 8 case and (Bottom) for the (correct) case t = 12. Thus, the output
swarr(Π,Δ) includes (dead(Lars), t)α3(t) for t < 12 and (dead(Lars), t)α9(t), for
t ≥ 12, as well as (@hospital(Lars), t).95. These output results from either criteria
(τ × π) and (π × τ). So we could tell Lars that he will not be in much danger
most of the time.

6 Related Work and Conclusions

We presented a new argumentation-based logic programming formalism that
combines previous work on temporal reasoning, on the one side, and possibilistic
reasoning on the other. This is done by taking the lexicographic product of the
defeat criteria of these two systems. We have studied two notions of warrant
(with and without degrees). As a result, we have shown that the combined
system extend the temporal defeasible framework but not the possibilistic one.

Many different approaches exist in the area of temporal reasoning. Within the
more specific field of defeasible logics (for non-monotonic reasoning), one can point
to the initially proposed rule-based systems [6,16], recently extended in [14]. Since
[12], though,muchwork has been done on argumentation-based systems, for delib-
erative agents who have reasons for and against claims.Mostworks in this area that
address temporal argumentation, though, do so by associating time intervals to lit-
erals and arguments [15,5,9]. The present pointwise approach, based on [17], makes
t-DeLP (or pt-DeLP) simpler than thesewhile keeping enough expressive power.On
the other hand, several works on possibilistic defeasible logic programming can be
mentioned, e.g. [2,3,8]. We have assumed part of this work in the present possi-
bilistic temporal approach. Although as far as we know, combining possibilistic
and temporal defeasible argumentation is novel, the issue of combining time and
possibilistic logic had already been addressed in [10].

As for future work, we would consider the rationality postulates of [7], which
specify reasonable constraints on the logical behavior of the warrant operator.
We expect that some partial solution to this problem would come by trying to
extend the results for the temporal case in [17]. A more radical option would be
to adopt a recursive semantics (instead of the current based on dialectical trees)
like in [1] that would ensure the indirect consistency postulate.

Acknowledgments. The authors are grateful to the anonymous reviewers for
their insightful comments. They also acknowledge partial support by the Span-
ish projects Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO

254 L. Godo, E. Marchioni, and P. Pardo

2010), ARINF (TIN2009-14704-C03-03) and TASSAT (TIN2010- 20967-C04-01),
as well as by the Marie Curie IRSES Project MaToMuVI (FP7-PEOPLE-2009).

References

1. Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defea-
sible argumentation. In: Proc. of COMMA 2010, pp. 27–38 (2010)

2. Alsinet, T., Chesñevar, C.I., Godo, L., Sandri, S., Simari, G.R.: Formalizing argu-
mentative reasoning in a possibilistic logic programming setting with fuzzy unifi-
cation. Int. J. Approx. Reasoning 48(3), 711–729 (2008)

3. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A Logic Programming Frame-
work for Possibilistic Argumentation: Formalization and Logical Properties. Fuzzy
Sets and Systems 159, 1208–1228 (2008)

4. Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining pref-
erence relations. J. of Logic and Computation 12(1), 13–53 (2002)

5. Augusto, J.: Simari G. R. Temporal Defeasible Reasoning. Knowledge and Infor-
mation Systems 3, 287–318 (2001)

6. Billington, D.: Defeasible logic is stable. J. of Logic and Computation 3, 379–400
(1993)

7. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171, 286–310 (2007)

8. Capobianco, M., Simari, G.R.: A Proposal for Making Argumentation Computa-
tionally Capable of Handling Large Repositories of Uncertain Data. In: Godo, L.,
Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 95–110. Springer, Heidelberg
(2009)

9. Cobo, L., Mart́ınez, D., Simari, G.R.: On Admissibility in Timed Abstract Argu-
mentation Frameworks. In: Proc. of ECAI 2010, pp. 1007–1008. IOS Press (2010)

10. Dubois, D., Lang, J., Prade, H.: Timed possibilistic logic. Fundamenta Informati-
cae 15(3-4), 211–234 (1991)

11. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets and Systems 144(1), 3–23 (2004)

12. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

13. Garćıa, A., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1+2), 95–138 (2004)

14. Governatori, G., Terenziani, P.: Temporal Extensions to Defeasible Logic. In:
Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485.
Springer, Heidelberg (2007)

15. Mann, N., Hunter, A.: Argumentation Using Temporal Knowledge. In: Proc. of
COMMA 2008, pp. 204–215. IOS Press (2008)

16. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 3, pp. 353–395. Oxford University Press (1994)

17. Pardo, P., Godo, L.: t-DeLP: A Temporal Extension of the Defeasible Logic Pro-
gramming Argumentative Framework. In: Benferhat, S., Grant, J. (eds.) SUM 2011.
LNCS, vol. 6929, pp. 489–503. Springer, Heidelberg (2011)

On Decidability of a Logic

for Order of Magnitude Qualitative Reasoning
with Bidirectional Negligibility

Joanna Golińska-Pilarek

Institute of Philosophy, University of Warsaw, Poland
j.golinska@uw.edu.pl

http://www.joannagolinska.com

Abstract. Qualitative Reasoning (QR) is an area of research within Ar-
tificial Intelligence that automates reasoning and problem solving about
the physical world. QR research aims to deal with representation and
reasoning about continuous aspects of entities without the kind of pre-
cise quantitative information needed by conventional numerical analysis
techniques. Order-of-magnitude Reasoning (OMR) is an approach in QR
concerned with the analysis of physical systems in terms of relative mag-
nitudes. In this paper we consider the logic OMRN for order-of-magnitude
reasoning with the bidirectional negligibility relation. It is a multi-modal
logic given by a Hilbert-style axiomatization that reflects properties and
interactions of two basic accessibility relations (strict linear order and
bidirectional negligibility). Although the logic was studied in many pa-
pers, nothing was known about its decidability. In the paper we prove
decidability of OMRN by showing that the logic has the strong finite
model property.

Keywords: multi-modal logic, qualitative reasoning, order-of-magnitu-
de reasoning, bidirectional negligibility, knowledge representation,
decidability.

1 Introduction

The problem of knowledge representation and reasoning is recognized as one
of the central topics of Artificial Intelligence. Qualitative Reasoning (QR) has
emerged as a novel alternative for the representation of knowledge in AI thirty
years ago to deal with representation and reasoning about continuous aspects of
entities and systems in a symbolic, but human-like manner. One of the great-
est advantages of qualitative approach is that, given only vague or incomplete
qualitative information at any of the represented levels of abstraction, a qualita-
tive approach will infer as much as possible according to distinctions within the
model. In contrast, a numerical approach requires information to be expressed
as unit values, and hence the processing capability within a numerical approach
is limited if the quantities are not available. Qualitative reasoning methods have
been foremost applied to modeling problems in cognitive science, information

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 255–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

256 J. Golińska-Pilarek

technology, and engineering domains. Further possible and existing areas of ap-
plications include: natural language semantics and processing, linguistics, eco-
nomics and decision support systems, ecology and bioinformatics, robotics, and
education.

Order-of-magnitude Reasoning (OMR) is an approach in the field of qualita-
tive reasoning. The order-of-magnitude approach enables us to reason in terms
of relative magnitudes of variables obtained by comparisons of the sizes of quan-
tities ([9]). OMR methods of reasoning are situated midway between numerical
methods and purely qualitative formalisms. There are two main types of OMR
approaches: Absolute Order of Magnitude (AOM) and Relative Order of Mag-
nitude (ROM) models. The differences among both types of OMR approaches
are as follows: AOM is based on a partition of the real line, in which each el-
ement of the real line belongs to a qualitative class, whereas ROM reasoning
introduces a family of binary order of magnitude relations, among which are
comparability, negligibility, and closeness relations. The first multi-modal logic
for order-of-magnitude reasoning, with comparability relation based on Absolute
Order of Magnitude, was introduced in [1]. Later on, this logic was extended to
cope other magnitude relations such as negligibility ([2]), bidirectional negligi-
bility ([3]), and non-closeness and distance ([4]). For all these logics dual tableau
systems have been constructed as shown in papers [6] and [7] (cf. [8]). Some of
these systems have been implemented in PROLOG (see [5]).

Dual tableau systems for order-of-magnitude logics in question provide a
means for almost automated reasoning, but they do not provide decision proce-
dures. In fact the problem whether the logics for order-of-magnitude reasoning
are decidable is still open. The aim of the paper is to give a partial solution
to this problem. We focus on the logic for order-of-magnitude reasoning with
bidirectional negligibility, OMRN, introduced in [3]. We prove that this logic has
the finite model property, hence it is decidable.

The paper is organized as follows. In Section 2 we present the logic OMRN, its
syntax, axiomatization, and semantics. In Section 3 we prove its decidability by
showing that it has the strong finite model property. Final remarks and prospects
of future work are described in Section 4.

2 Logic OMRN

In this section we present the logic OMRN for order-of-magnitude qualitative
reasoning with bidirectional negligibility, its Hilbert-style axiomatization, and
semantics. In the presentation of the logic we follow [3].

The logic OMRN is based on the Absolute Order of Magnitude model AOM(5)
on which the new binary relation of bidirectional negligibility is defined. Recall
that in AOM(5) the real line is divided into seven equivalences classes with five
landmarks:

0 +α +β−α−β
NL NM NS PS PM PL

On Decidability of a Logic OMRN 257

where α, β are two positive real numbers such that α < β, for the usual or-
dering < on real numbers. There are seven equivalences classes above: NL,
NM, NS, [0], PS, PM, and PL. The labels correspond to ‘negative large’, ‘neg-
ative medium’, ‘negative small’, ‘zero’, ‘positive small’, ‘positive medium’, and
‘positive large’, respectively. Given positive real numbers α and β such that
0 < α < β, an element x is said to be negligible with respect to y (xNy for
short) if and only if either x = 0 or both x ∈ NS ∪ PS and y ∈ NL ∪ PL. Thus, 0
is negligible with respect to any real number and each number sufficiently small
is negligible with respect to any number sufficiently large, independently of their
signs. It follows that the relation N is not a restriction of <, hence the relation
N is referred to as bidirectional.

The logic OMRN is the multi-modal logic over two basic accessibility relations
together with their converses. The two basic relations are: the strict linear order-
ing and bidirectional negligibility. More precisely, the vocabulary of the language
of OMRN consists of the following pairwise disjoint sets symbols:

– V - a countably infinite set of propositional variables
– C = {c1, . . . , c5} - the set of propositional constants
– {¬,∨,∧,→} - the set of classical propositional operations of negation, dis-

junction, conjunction, and implication, respectively
– {[R], [R], [N], [N]} - the set of unary modal propositional operations of ne-

cessity with respect to the accessibility relation R, converse of R, the negli-
gibility relation N , and its converse, respectively.

As usual in modal logics, the set of OMRN-formulas is defined as the small-
est set that includes all the propositional variables and constants and is closed
on the OMRN-operations. We will write 〈T 〉 as abbreviations of ¬[T]¬, for any
T ∈ {R,R,N,N}. The propositional constants c1, c2, c3, c4, c5 are logical coun-
terparts of the distinguished landmarks −β,−α, 0,+α,+β, respectively, from
AOM(5)-model. The intuitive meanings of formulas with the modal connectives
[N] and [N] are as follows:

– [N]ϕ means ϕ holds in all states with respect to which the current one is
negligible.

– [N] means ϕ holds in all states which are negligible with respect to the
current one.

The Hilbert-style axiomatization of OMRN consists of all the tautologies of the
classical propositional logic together with the axiom schemas and rules listed
below.

Axioms for propositional constants, for i ∈ {1, . . . , 5}, j ∈ {1, . . . , 4}:
(C1) 〈R〉ci ∨ ci ∨ 〈R〉ci
(C2) ci → ([R]¬ci ∧ [R]¬ci)
(C3) cj → 〈R〉cj+1

The axioms (C1)-(C3) reflect the existence, uniqueness, and ordering of land-
marks.

258 J. Golińska-Pilarek

Axioms for modal operations:

(Ax1) [T](ϕ→ ψ)→ ([T]ϕ→ [T]ψ), for T ∈ {R,N}

(Ax2) ϕ→ [T]〈T ′〉ϕ, for T ∈ {R,R,N,N} and T ′ =

⎧⎪⎪⎨⎪⎪⎩
R, if T = R
R, if T = R
N, if T = N

N, if T = N
(Ax3) [R]ϕ→ [R][R]ϕ
(Ax4) [[R](ϕ ∨ ψ) ∧ [R]([R]ϕ ∨ ψ) ∧ [R](ϕ ∨ [R]ψ)]→ ([R]ϕ ∨ [R]ψ)
(Ax5) ([R]ϕ ∧ ϕ ∧ [R]ϕ)→ [N]ϕ
(Ax6) (〈R〉c2 ∨ 〈R〉c4)→ [N](ϕ ∧ ¬ϕ)
(Ax7) c3 → ([N]ϕ→ ([R]ϕ ∧ ϕ ∧ [R]ϕ))
(Ax8) (¬c3 ∧ (c2 ∨ (〈R〉c2 ∧ 〈R〉c4) ∨ c4))→ [N](〈R〉c1 ∨ 〈R〉c5)
(Ax9) (¬c3 ∧ (c2 ∨ (〈R〉c2 ∧ 〈R〉c4) ∨ c4))→

([N]ϕ→ ([R](〈R〉c1 → ϕ) ∧ [R](〈R〉c5 → ϕ)))

Axiom (Ax1) is the usual modal axiom. Axiom (Ax2) expresses that T is the
converse of T . Axiom (Ax3) reflects transitivity of R, while (Ax4) is related to its
connectedness. Axiom (Ax5) says that N is the restriction of R∪R. Axiom (Ax6)
expresses that neither large nor medium elements are negligible with respect to
any element. Axiom (Ax7) means that 0 is negligible with respect to any element.
Axioms (Ax8) and (Ax9) correspond to the property: x �= 0 is negligible with
respect to y if and only if x is small and y is large.

Rules of inference:

(MP) If � ϕ→ ψ and � ϕ, then � ψ.
(G1) If � ϕ, then � [R]ϕ.
(G2) If � ϕ, then � [R]ϕ.

An OMRN-formula is said to be OMRN-provable whenever there exists its proof
in the system described above. A sound and complete dual tableau system for
the relational logic associated with OMRN have been constructed in [7]. The dual
tableau system can be used to verify whether a formula is OMRN-provable, but
the system does not provide a decision procedure for OMRN, as it may generate
infinite trees.

Now, we present the semantics for the logic OMRN. An OMRN-model is a
structure M = (U,R,R,N,N,m), where:

– U is a non-empty set of states
– R is a strict linear order on U , i.e., for all x, y, z ∈ U the following hold:

(irref) (x, x) �∈ R
(tran) If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R
(con) Either (x, y) ∈ R or (y, x) ∈ R or x = y

– R is the converse of R
– m(p) ⊆ U , for every propositional variable p ∈ V
– m(ci) ∈ U and (m(cj),m(cj+1)) ∈ R, for every i ∈ {1, . . . , 5} and for every
j ∈ {1, . . . , 4}

On Decidability of a Logic OMRN 259

– N is a binary relation on U defined as N
df
= G1 ∪G2:

G1 = {(x, y) ∈ U × U |x = m(c3)}
G2 = {(x, y) ∈ U × U | (λ or μ) and (γ or δ) and (ζ or η)}, where

λ := ((m(c2), x) ∈ R, μ := (x = m(c2)),
γ := (((x,m(c4)) ∈ R), δ := (x = m(c4)),
ζ := ((y,m(c1)) ∈ R) and η := ((m(c5), y) ∈ R)

– N is the converse of N .

Let ϕ be an OMRN-formula and letM = (U,R,R,N,N,m) be an OMRN-model.
The satisfaction of ϕ in M by a state s ∈ U , (M, s |= ϕ for short), is defined as
usual in modal logic. Recall that for modal operations it is defined as follows:

For T ∈ {R,R,N,N},

– M, s |= [T]ϕ iff for all t ∈ U , (s, t) ∈ R implies M, t |= ϕ.

An OMRN-formula ϕ is true in an OMRN-model M whenever it is satisfied in
M for all s ∈ U . An OMRN-formula ϕ is OMRN-valid whenever it is true in all
OMRN-models. The following is stated in [3] (for the proof see [2]):

Theorem 1 (Soundness and Completeness). For every OMRN-formula ϕ,
the following conditions are equivalent:

1. ϕ is OMRN-valid.
2. ϕ is OMRN-provable.

We finish this section with the small example of application of the logic OMRN

mentioned in [3]. For further detailed discussions on properties and application
of the logic for order-of-magnitude reasoning with bidirectional negligibility see,
for instance [2] and [3].

Example
Suppose we want to specify the behavior of a device to control automatically the
temperature in a building so that some specific conditions hold. Let c3 represents
the temperature with value 0. If the temperature in a building must be closed
to some limit t, then for practical purposes we may assume that any value of
the interval [t − ε, t + ε], for small ε, is admissible. The extreme points of this
interval can be seen as the landmarks c2 and c4, respectively. Assume also that
if the temperature is out of this interval, it is necessary to use ‘normal’ heating
or cooling systems. Furthermore, we have another interval [t−λ, t+λ] such that
if the temperature is not in this interval, extra heating or extra cooling systems
must be used, as the normal systems will not suffice. The extreme points of
this interval can be seen as the landmarks c1 and c5, respectively. We assume
also that there are two systems of humidification, normal and extra. The first
system operates when normal systems of heating or cooling are used, while the
second one in the case of extra heating or extra cooling. The intervals NL, NM,
NS∪ [0]∪PS, PM, PL can be interpreted as very-cold, cold, ok, hot, very-
hot, respectively. Axioms that specify the general behavior of the whole system
are:

260 J. Golińska-Pilarek

ok→ off
cold→ heat hot→ cool
very-cold→ X-heat very-hot→ X-cool
(cold ∨ hot)→ hum (very-cold ∨ very-hot)→ X-hum

Relations among the actions are expressed as:

X-heat → (¬heat ∧ ¬off ¬cool ∧ ¬X-cool ∧ ¬X-hum)
heat → (hum ∧ ¬X-cool ∧ ¬cool ∧ ¬off)
off → (¬hum ∧ ¬X-hum ∧ ¬X-cool ∧ ¬cool)
cool → (hum ∧ ¬X-cool)
X-cool → X-hum
hum → (cool ∨ heat)
X-hum → ¬hum

In the above off means that the system is off, and cool (resp. heat, X-cool, X-
heat, hum, X-hum) means that the cooling (resp. heating, extra cooling, extra
heating, humidification, extra humidification) system is used. The above speci-
fication together with axioms of OMRN has the following consequences, among
others:

〈R〉c2 → (hum ∨X-hum)

(cool ∧ 〈R〉c2)→ [R](¬〈R〉c5 → hum)

(off ∧ ¬c3)→ [N]X-hum

X-hum → [N]off

Now, let p represents ‘the temperature is incremented (positively or negatively)
with respect to the actual value’. As argued in [3] the following formula is then
provable: (ok∧〈N〉p)→ (hum ∨X-hum). This formula says: if the temperature
is ok and it is incremented in some value with respect to which the actual value
is negligible, then humidification or extra humidification system must operate.
Hence, the logic OMRN can be used to verify some further properties of the whole
system, which are not given explicitly by the specification conditions or axioms.

3 Decidability of OMRN

In this section we prove decidability of the logic OMRN which so far was an open
problem. The idea of the proof is as follows. First, we show that the logic OMRN is
sound and complete with respect to the class of weaker OMRN-models, which are
called here quasi OMRN-models. Then, applying the filtration method, we show
that each formula satisfiable in a quasi OMRN-model, is satisfiable in a finite
quasi OMRN-model. This will yield the finite model property of logic OMRN,
which by the classical results will imply its decidability. First, we introduce
some useful notions and show some basic facts.

Let K be a class of Kripke models of the form M = (U,R,R,N,N,m), where
U is a non-empty set of states, R and N are any binary relations on U , R and N
are converses of relations R and N , respectively, and m is the meaning function
such that m(p) ⊆ U and m(ci) ∈ U , for every propositional variable p and for

On Decidability of a Logic OMRN 261

every i ∈ {1, . . . , 5}. The satisfaction and the truth of an OMRN-formula are
defined as in OMRN-models. We say that an OMRN-formula is K-valid whenever
it is true in all structures of K.

Proposition 1 (Correspondence).

1. If K is the class of models M = (U,R,R,N,N,m) such that R is transitive,
(m(ci),m(ci)) �∈ R, and (m(cj),m(cj+1)) ∈ R, for all i ∈ {1, . . . , 5} and
j ∈ {1, . . . , 4}, then the axioms (C1), (C2), and (C3) are K-valid.

2. For every class K, the axioms (Ax1) and (Ax2) are K-valid.
3. If K is the class of structures M = (U,R,R,N,N,m) with a transitive

relation R, then the axiom (Ax3) is K-valid.
4. If K is the class of structures M = (U,R,R,N,N,m) with a connected

relation R, then the axioms (Ax4) and (Ax5) are K-valid.
5. If K is the class of structures M = (U,R,R,N,N,m) such that R is transi-

tive, N is defined as in OMRN-models, (m(ci),m(ci)) �∈ R and, in addition,
(m(cj),m(cj+1)) ∈ R, for all i ∈ {1, . . . , 5}, j ∈ {1, . . . , 4}, then the axiom
(Ax6) is K-valid.

6. If K is the class of structures M = (U,R,R,N,N,m) such that N is defined
as in OMRN-models, then the axioms (Ax7), (Ax8), and (Ax9) are K-valid.

For space reasons, we omit the proof of the above proposition.

A quasi OMRN-model is a structure M = (U,R,R,N,N,m), where U is a non-
empty set of states, R is a transitive and connected relation on U , R, N ,
and N are defined as in OMRN-models, m(p) ⊆ U , for every propositional
variable p, m(ci) ∈ U , (m(ci),m(ci)) �∈ R, and (m(cj),m(cj+1)) ∈ R, for
all i ∈ {1, . . . , 5} and j ∈ {1, . . . , 4}. Quasi OMRN-models are referred to as
OMR∗

N-models. The satisfaction and the truth of a formula in an OMR∗
N-model

is defined as in OMRN-models. An OMRN-formula ϕ is said to be OMR∗
N-valid

whenever it is true in all OMR∗
N-models. It is easy to see that every OMRN-model

is an OMR∗
N-model. Hence, we have:

Proposition 2. If an OMRN-formula ϕ is OMR∗
N-valid, then it is OMRN-valid.

Now, we prove soundness of OMRN with respect to all OMR∗
N-models.

Proposition 3. For every OMRN-formula ϕ, if ϕ is OMRN-provable, then it is
OMR∗-valid.

Proof. We need to show that all the axioms are OMR∗
N-valid and all the rules

preserve OMR∗
N-validity.

Note that in every OMR∗
N-model M = (U,R,R,N,N,m) the relation R is

transitive and connected, the relations R, N , N are defined as in OMRN-models,
(m(ci),m(ci)) �∈ R and (m(cj),m(cj+1)) ∈ R, for all i ∈ {1, . . . , 5} and j ∈
{1, . . . , 4}. Thus, by Proposition 1, all the axioms are OMR∗

N-valid. The proof of
preserving OMR∗

N-validity of the rules is straightforward.
�

By Theorem 1, Proposition 2, and Proposition 3, we obtain:

262 J. Golińska-Pilarek

Theorem 2. For everyOMRN-formulaϕ, the following conditions are equivalent:

1. ϕ is OMRN-valid.
2. ϕ is OMR∗

N-valid.
3. ϕ is OMRN-provable.

Therefore, the class of OMR∗
N-models forms an alternative semantics for the logic

OMRN. Now, we show that every OMR∗
N-satisfiable formula ϕ is satisfiable in a

finite OMR∗
N-model. In the construction of a finite OMR∗

N-model, we will use the
filtration method.

Let ϕ be an OMR∗
N-satisfiable formula. Define ϕ∗ df

= ϕ∧
∧

i∈{1,...,5}(ci → [R]¬ci).
It is easy to see that the formula ci → [R]¬ci is valid in all OMR∗

N-models, for
every i ∈ {1, . . . , 5}, as (m(ci),m(ci)) �∈ R. Therefore, ϕ is OMR∗

N-satisfiable if
and only if ϕ∗ is OMR∗

N-satisfiable.
Let Γϕ be the set of all subformulas of ϕ∗. Since ϕ∗ is OMR∗

N-satisfiable, there
exist an OMR∗

N-model M = (U,R,R,N,N,m) and a ∈ U such that M, a |= ϕ∗.
Given s ∈ U , let Γϕ

s be the set of all subformulas ψ of ϕ∗ which are satisfied in

s, that is Γϕ
s

df
= {ψ ∈ Γϕ :M, s |= ψ}. Now, let us define a binary relation ∼Γϕ

on U as:
s ∼Γϕ t if and only if Γϕ

s = Γϕ
t .

Fact 3. The relation ∼Γϕ is an equivalence relation on U .

Now, we will define a filtration modelMΓϕ determined by the relation ∼Γϕ and
the model M = (U,R,R,N,N,m). A filtration model is a structure of the form
MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ), where:

– UΓϕ = {|s| : s ∈ U}, where |s| is an equivalence class of s determined by the
relation ∼Γϕ

– mΓϕ(p) = {|s| ∈ UΓϕ : s ∈ m(p)}
– mΓϕ(ci) = |m(ci)|
– RΓϕ is a binary relation on UΓϕ defined for all |s|, |t| ∈ UΓϕ as:

(|s|, |t|) ∈ RΓϕ iff for every ϕ ∈ Γϕ, if [R]ϕ ∈ Γϕ and M, s |= [R]ϕ, then
M, t |= [R]ϕ ∧ ϕ

– RΓϕ is a binary relation on UΓϕ defined for all |s|, |t| ∈ UΓϕ as:
(|s|, |t|) ∈ RΓϕ iff for every ϕ ∈ Γϕ, if [R]ϕ ∈ Γϕ and M, t |= [R]ϕ, then
M, s |= [R]ϕ ∧ ϕ

– NΓϕ is a binary relation on UΓϕ defined as in OMRN-models, that is, NΓϕ
df
=

G1 ∪G2:
G1 = {(x, y) ∈ UΓϕ × UΓϕ : x = mΓϕ(c3)}
G2 = {(x, y) ∈ UΓϕ × UΓϕ : (λ or μ) and (γ or δ) and (ζ or η)}, where:

λ := ((mΓϕ(c2), x) ∈ RΓϕ , μ := (x = mΓϕ(c2)),
γ := (((x,mΓϕ (c4)) ∈ RΓϕ), δ := (x = mΓϕ(c4)),
ζ := ((y,mΓϕ(c1)) ∈ RΓϕ) and η := ((mΓϕ(c5), y) ∈ RΓϕ)

– NΓϕ is the converse of NΓϕ .

On Decidability of a Logic OMRN 263

Proposition 4. Let ϕ be an OMRN-formula satisfiable in an OMR∗
N-modelM =

(U,R,R,N,N,m). Then, the filtration model MΓϕ determined by the relation
∼Γϕ and the model M is an OMR∗

N-model.

Proof. Let MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ) be a filtration model de-
termined by the relation ∼Γϕ and the model M = (U,R,R,N,N,m). First,
observe that UΓϕ is non-empty, as U is so and ϕ is satisfiable in M. Clearly,
RΓϕ is the converse of RΓϕ . Now, observe that for all s, t ∈ U :

(*) If (s, t) ∈ R, then (|s|, |t|) ∈ RΓϕ .

Indeed, assume (s, t) ∈ R. Let [R]ϕ ∈ Γϕ and M, s |= [R]ϕ. Then, by the
assumption, M, t |= ϕ. Now, let w ∈ U be such that (t, w) ∈ R. Since R
is transitive, (s, w) ∈ R. Thus, by the assumption, M, w |= ϕ. So M, t |=
[R]ϕ∧ϕ, and hence (|s|, |t|) ∈ RΓϕ . Now, we prove thatRΓϕ is transitive. Assume
(|s|, |t|) ∈ RΓϕ and (|t|, |w|) ∈ RΓϕ . Let [R]ϕ ∈ Γϕ be such that M, s |= [R]ϕ.
Suppose M, w �|= [R]ϕ ∧ ϕ. Then, since (|t|, |w|) ∈ RΓϕ , we obtain M, t �|=
[R]ϕ. Therefore, M, t �|= [R]ϕ ∧ ϕ. Thus, since (|s|, |t|) ∈ RΓϕ , M, s �|= [R]ϕ,
a contradiction. Hence, RΓϕ is transitive. By (*) and since R is connected, the
proof of connectedness of RΓϕ is obvious.

Moreover, observe that [R]¬ci ∈ Γϕ andM,m(ci) |= [R]¬ci, but we have also
M,m(ci) �|= ¬ci. Hence, (|m(ci)|, |m(ci)|) �∈ RΓϕ . Since (m(cj),m(cj+1)) ∈ R,
by (*) we get (|m(cj)|, |m(cj+1)|) ∈ RΓϕ . Furthermore,NΓϕ andNΓϕ are defined
as in OMRN-models. Hence, MΓϕ is an OMR∗

N-model.
�

From the construction of the model MΓϕ , we obtain the following:

Fact 4. Let ϕ be a formula satisfiable in an OMR∗
N-model M. Then, the size

of the universe of the filtration OMR∗
N-model MΓϕ , determined by the relation

∼Γϕ and the model M, is bounded by 2|ϕ
∗|, where |ϕ∗| is the size of the formula

ϕ∗.

Proposition 5. Let MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ) be a filtration
model determined by the relation ∼Γϕ and the model M = (U,R,R,N,N,m).
Then, for all s, t ∈ U the following hold:

1. (s, t) ∈ N iff (|s|, |t|) ∈ NΓϕ .
2. (s, t) ∈ N iff (|s|, |t|) ∈ NΓϕ .

Proof. First, we show that for every s ∈ U and for every i ∈ {1, . . . , 5}, the
following hold:

(a) s = m(ci) iff |s| = |m(ci)|.
(b) (s,m(ci)) ∈ R iff (|s|, |m(ci)|) ∈ RΓϕ .
(c) (m(ci), s) ∈ R iff (|m(ci)|, |s|) ∈ RΓϕ .

(a) Note that ci ∈ Γϕ. Clearly, for every s ∈ U , M, s |= ci iff s = m(ci), thus
by the definition of the relation ∼Γϕ , s = m(ci) if and only if |s| = |m(ci)|.

264 J. Golińska-Pilarek

(b) Assume (|s|, |m(ci)|) ∈ RΓϕ , that is if [R]ϕ ∈ Γϕ and M, s |= [R]ϕ,
then M, t |= [R]ϕ ∧ ϕ. Suppose (s,m(ci)) �∈ R. Since R is connected, either
s = m(ci) or (m(ci), s) ∈ R. If s = m(ci), then by (a) and the assump-
tion, (|m(ci)|, |m(ci)|) ∈ RΓϕ . However, MΓϕ is an OMR∗

N-model, so it satisfies
(|m(ci)|, |m(ci)|) /∈ RΓϕ , a contradiction. Next, if (m(ci), s) ∈ R, then by (*)
(see the proof of Proposition 4), (|m(ci)|, |s|) ∈ RΓϕ . Thus, by the assumption
and transitivity of RΓϕ , (|m(ci)|, |m(ci)|) ∈ RΓϕ , a contradiction. The other
direction follows from (*). The proof of (c) is similar.

By (a), (b), (c) above and the definition of NΓϕ , we get the proposition.
�

Proposition 6. Let MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ) be a filtration
model determined by the relation ∼Γϕ and the model M = (U,R,R,N,N,m).
Then, for every ψ ∈ Γϕ and for every s ∈ U , the following conditions are
equivalent:

1. M, s |= ψ.

2. MΓϕ , |s| |= ψ.

Proof. The proof of the proposition is by the induction on the complexity of
formulas in Γϕ. For propositional variables it holds by the definition of the
meaning function mΓϕ . For propositional constants the proposition follows from
the property (a) (see the proof of Proposition 5). Assume the claim holds for
ϑ, χ ∈ Γϕ.

Let ψ := ¬θ. Then, M, s |= ¬θ iff M, s �|= θ iff, by the induction hypothesis,
MΓϕ , |s| �|= θ iff MΓϕ , |s| |= ¬θ.

Let ψ := θ ∧ χ. Then, M, s |= θ ∧ χ iff M, s |= θ and M, s |= χiff, by the
induction hypothesis, MΓϕ , |s| |= θ and MΓϕ , |s| |= χ iff MΓϕ , |s| |= θ ∧ χ.

For formulas built with the other classical propositional operations the claim
can be proved in a similar way.

Let ψ := [R]θ be such that [R]θ ∈ Γϕ. Assume M, s |= [R]θ. Let t ∈ U be
such that (|s|, |t|) ∈ RΓϕ . Then, by the assumption, M, t |= θ. Thus, by the
induction hypothesis, MΓϕ , |t| |= θ. Hence, MΓϕ , |s| |= [R]θ. Now, assume that
MΓϕ , |s| |= [R]θ and let t ∈ U be such that (s, t) ∈ R. Then, (|s|, |t|) ∈ RΓϕ

and by the assumption MΓϕ , |t| |= θ. Therefore, by the induction hypothesis,
M, t |= θ. Hence, M, s |= [R]θ. For ψ := [R]θ the proof is similar.

Let ψ := [N]θ be such that [N]θ ∈ Γϕ. Assume M, s |= [N]θ. Let t ∈ U
be such that (|s|, |t|) ∈ NΓϕ . Then, by Proposition 5, (s, t) ∈ N , so by the
assumption M, t |= θ. Thus, by the induction hypothesis, M, |t| |= θ. Hence,
MΓϕ , |s| |= [N]θ. Now, assume thatMΓϕ , |s| |= [N]θ and let t ∈ U be such that
(s, t) ∈ N . Then, by Proposition 5 and the assumption,MΓϕ , |t| |= θ. Therefore,
by the induction hypothesis, M, t |= θ. Hence, M, s |= [N]θ. For ψ := [N]θ the
proof is similar.
�

On Decidability of a Logic OMRN 265

Proposition 7. Let ϕ be an OMR-formula that is satisfied in an OMR∗
N-model

M = (U,R,R,N,N,m) by a state a ∈ U . Then, the formula ϕ is satisfied in
the OMR∗

N-model MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ) by |a| ∈ UΓϕ .

Proof. The proof is straightforward. Let ϕ be a formula satisfied in an OMR∗
N-

modelM = (U,R,R,N,N,m) by a state a ∈ U . Take the filtration OMR∗
N-model

MΓϕ = (UΓϕ , RΓϕ , RΓϕ , NΓϕ , NΓϕ ,mΓϕ). Clearly, ϕ∗ ∈ Γϕ and |a| ∈ UΓϕ .
By the assumption, we have M, a |= ϕ∗. Thus, by Proposition 6, we obtain
MΓϕ , |a| |= ϕ∗. Hence, MΓϕ , |a| |= ϕ.
�

Recall that a logic L is said to have the finite model property whenever every
L-satisfiable formula is satisfiable in a finite L-model. Moreover, a logic L is said
to have the strong finite model property whenever there exists a computable
function f such that every L-satisfiable formula of size n is satisfiable in a finite
L-model of size at most f(n).

From Proposition 7 and Fact 4 we get:

Theorem 5 (Strong Finite Model Property). The logic OMRN has the
strong finite model property.

Now, since the logic OMRN has the strong finite model property and the finite
OMR∗

N-models form a recursively enumerable set, searching through all the fi-
nite models is an effective procedure for generating all non-provable formulas of
OMRN. Thus, the set of all OMRN-provable formulas is recursive, which implies
decidability of OMRN.

Theorem 6 (Decidability). The logic OMRN is decidable.

4 Conclusions

We have showed that the logic OMRN for order-of-magnitude qualitative rea-
soning based on Absolute Order of Magnitude model AOM(5) with bidirectional
negligibility relation has the strong finite model property, and thus it is decid-
able. So now the natural task is to construct its decision procedure based on
(dual) tableau system with good space complexity. Furthermore, there are other
logics than OMRN that enable us to deal with the order-of-magnitude reasoning.
In particular, the logics based on order-of-magnitude model with various rela-
tions, among which are relations of comparability, negligibility, (non-)closeness,
comparability, and distance, have been introduced (see [2], [4]). However, the
problem whether these logics are decidable is still open. So as a future work it is
planned to tackle the problem of decidability for these logics, and in the case of
positive answer to construct their decision procedures based on (dual) tableau
systems, further implemented in PROLOG.

Acknowledgments. This work was supported by the Polish National Science
Centre research project DEC-2011/02/A/HS1/00395.

266 J. Golińska-Pilarek

References

1. Burrieza, A., Ojeda-Aciego, M.: A Multimodal Logic Approach to Order of Mag-
nitude Qualitative Reasoning. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz,
J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 431–440. Springer,
Heidelberg (2004)

2. Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude
qualitative reasoning with comparability and negligibility relations. Fundamenta
Informaticae 68(1-2), 21–46 (2005)

3. Burrieza, A., Muñoz, E., Ojeda-Aciego, M.: Order of Magnitude Qualitative Rea-
soning with Bidirectional Negligibility. In: Maŕın, R., Onaind́ıa, E., Bugaŕın, A.,
Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 370–378. Springer,
Heidelberg (2006)

4. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A Logic for Order of Magnitude
Reasoning with Negligibility, Non-closeness and Distance. In: Borrajo, D., Castillo,
L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 210–219.
Springer, Heidelberg (2007)

5. Golińska-Pilarek, J., Mora, A., Muñoz-Velasco, E.: An ATP of a Relational Proof
System for Order of Magnitude Reasoning with Negligibility, Non-closeness and
Distance. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351,
pp. 128–139. Springer, Heidelberg (2008)

6. Golińska-Pilarek, J., Muñoz-Velasco, E.: Relational approach for a logic for order-
of-magnitude qualitative reasoning with negligibility, non-closeness and distance.
Logic Journal of IGPL 17(4), 375–394 (2009)

7. Golińska-Pilarek, J., Muñoz-Velasco, E.: Dual tableau for a multimodal logic for
order-of-magnitude qualitative reasoning with bidirectional negligibility. Interna-
tional Journal of Computer Mathematics 86(10-11), 1707–1718 (2009)

8. Or�lowska, E., Golińska-Pilarek, J.: Dual Tableaux: Foundations, Methodology, Case
Studies. Trends in Logic 36. Springer (2011)

9. Raiman, O.: Order of magnitude reasoning. Artificial Intelligence 51(1-3), 11–38
(1991)

Fault Tolerance in Belief Formation Networks

Sarah Holbrook and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland 21157, USA

{seh002,pnaumov}@mcdaniel.edu

Abstract. The paper investigates the formation of beliefs in multi-agent
systems with a fixed topology of the communication channels. Specifi-
cally, it considers the relation “beliefs formed by agents in set A are not
influenced by faulty or malicious behavior of agents in set B”. This re-
lation has a non-trivial Shield Wall property that has no equivalent in
other settings in which information flow over a fixed network of commu-
nication channels has been previously studied.

A new logical system based on the Shield Wall property is proposed
and is proven to be sound and complete with respect to the fault tolerance
semantics.

1 Introduction

Belief Networks. In this paper we study dependencies between beliefs in multi-
agent systems. An example of a set of such dependencies in a four-agent system is
given in Figure 1. In this figure, the accused (Eva), two witnesses (Alice and Bob),
Jury, and Public are agents and EvaMurdered and EvaIsGuilty are two beliefs.
The two Horn clauses given in the figure are belief formation rules. These rules
express how different agents form new beliefs based on existing beliefs of the
other agents. For example, according to the first cause, if both witnesses believe
that Eva is a murderer, then the jury will form a belief that Eva is guilty.

Alice:EvaMurdered ∧ Bob:EvaMurdered → Jury:EvaIsGuilty
Jury:EvaIsGuilty → Public:EvaIsGuilty

Fig. 1. Belief Network N1

According to the sec-
ond rule, once the
jury decides that Eva
is guilty, this belief
could propagate to
the public. We will re-

fer to settings such as the one in Figure 1 as belief formation networks or just
belief networks. The process of belief propagation on such networks will be
called belief formation, to emphasize the fact that the propagated belief (“Eva
is guilty”) could be different from the originating belief (“Eva is a murderer”)
and to differentiate this non-probabilistic approach from belief propagation on
Bayesian networks [1,2].

In the example above, the public forms its beliefs based only on the jury’s
beliefs, not directly on witnesses testimonies. The jury, on the other hand, bases
its beliefs on the witnesses’ testimonies, not on public opinion. These properties

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 267–280, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

268 S. Holbrook and P. Naumov

of the belief network are captured by belief dependency graph G1 depicted in
Figure 2.

j p

b

a

Fig. 2. Graph G1 shows belief
dependencies between agents
Alice (a), Bob (b), Jury (j),
and Public (p)

Fault Tolerance. There are many different prop-
erties of belief networks and belief dependency
graphs that one can consider. The focus of this
paper is on fault tolerance – the ability of an agent
in a belief network to resist forming false beliefs
when some other agents exhibit faulty or malicious
behavior. For example, assume, for the above dis-
cussed network N1, that neither Alice nor Bob
have witnessed the murder. Then no beliefs will
be formed in this network. If Bob misbehaves and
lies to the jury, then, assuming Alice does not
lie, neither the jury nor the public will form a false belief. We denote this by
Jury ‖ Bob and Public ‖ Bob. At the same time, if both Alice and Bob, mis-
behave, then this might result in the jury and the public forming a false belief:
¬(Jury ‖ Alice, Bob) and ¬(Public ‖ Alice, Bob).

Alice:EvaMurdered → Jury:EvaIsGuilty
Bob:EvaMurdered → Jury:EvaIsGuilty
Jury:EvaIsGuilty → Public:EvaIsGuilty

Fig. 3. Belief Network N2

Different belief networks can have the
same dependency graph. A fault tolerance
claim which is true in one of these net-
works might be false in the other. For
example, statements Jury ‖ Bob and
Public ‖ Bob are not true in the belief

network N2 depicted in Figure 3, although it has the same dependency graph
G1 as network N1.

1.1 Gateway

In this paper we study properties of fault tolerance that are common for all belief
networks sharing the same dependency graph. An example of such a property for
graph G1 is Public ‖ Jury → Public ‖ Alice, Bob. This statement is a special
case of a more general Gateway principle. Let A, B, and W be three sets of
vertices of a graph G. We say that set W is a gateway (see Figure 4) to set
A from set B if every path connecting a vertex from set B with a vertex from
A contains at least one vertex from set W . (For directed graphs, every directed
path from set B to set A must contain a vertex from set W .)

Gateway Principle.If a set W is a gateway to a set A from a set B of a graph
G, then the property A ‖ W → A ‖ B is true for any belief network with belief
dependencies specified by the graph G.

In the example above, A = {Public}, W = {Jury}, and B = {Alice, Bob}.
The gatewayprinciple is an intuitively expectedproperty of fault tolerance. Sim-

ilar principles in other information flow settings were proposed earlier for func-
tional dependency relation on hypergraphs [3] as well as independence relation on
graphs [4], directed acyclic graphs [5], and hypergraphs [6]. (Independence is also

Fault Tolerance in Belief Formation Networks 269

known in literature as nondeducibility [7].) In all these settings an appropriate ver-
sion of the gateway principle was not only sound, but, together with several other
relevant properties, gave a complete axiomatization of each of these relations over
a fixed graph.

A BW

Fig. 4. Gateway

It turns out, however, that, unlike the above
settings, the gateway principle is far from giv-
ing a complete description of all fault tolerance
properties of an arbitrary graph. For example, the
graph discussed above,G1, has the following prop-
erty: Jury ‖ Alice, Bob → Public ‖ Alice, Bob.
This property is a special case of a more general
principle:

a

b

c

d

Fig. 5. Graph G2

Second Gateway Principle.If a set W is a gateway
to a set A from a set B of a graph G, then property
W ‖ B → A ‖ B is true for any belief network with
belief dependencies specified by the graph G.

We will formally prove soundness of both gateway
principles later. These two principles, though, still do
not form a complete logical system for reasoning about
fault tolerance on directed graphs. Indeed, consider
dependency graph G2 depicted in Figure 5.

Proposition 1. a ‖ c → (b ‖ d → a, b ‖ c, d), for any belief network with belief
dependencies specified by graph G2.

Proof Idea. By “false” belief, we mean a belief that cannot be formed if all
agents are behaving properly. Assume that a certain malfunctioning of agents c
and d results in at least one of agents a and b forming a false belief. Let t0 be
the moment when such false belief is formed for the first time. Without loss of
generality, assume that the belief is formed by the agent a. Note that it means
that at any moment t < t0 agent b did not hold any false beliefs. Thus, the only
reason for agent a to form a false belief at moment t0 is a malfunctioning of the
agent c. Therefore, ¬(a ‖ c), which is a contradiction with the assumption. This
argument will be formalized later in the proof of Theorem 3.

It is easy to see that statement a ‖ c→ (b ‖ d→ a, b ‖ c, d) cannot be shown
using either of the two gateway principles above. It is an example of a more
general principle that we call the Shield Wall principle.

1.2 Shield Wall

Ancient warriors (and modern police forces) used multiple shields to protect
themselves. Each shield does not provide complete protection for its owner, but
if a group of warriors arranges its members in a circle with all shields facing
outward, then the whole group is completely protected. This idea is formally
captured in our Shield Wall principle:

Shield Wall Principle.Let G be a graph. If B is a set of vertices, {Ai}i≤n are
pair-wise disjoint sets of vertices, and {Si}i≤n are sets of vertices such that

270 S. Holbrook and P. Naumov

1. sets Ai and Si are disjoint for each i ≤ n,
2. Si ∪ (

⋃
j �=i Aj) is a gateway to Ai from B for each i,

then the property
∧

i≤n(Ai ‖ Si)→
(⋃

i≤n Ai

)
‖ B is true for any belief network

with belief dependencies specified by the graph G.

A1

A3 A4

A2

B

S4S3

S2S1

G

Fig. 6. Shield Wall

Informally, see Figure 6, sets
A1, . . . , An are “warriors” that are
“protected” by “shields” S1, . . . , Sn.
The fact that shield Si protects
warrior Ai is captured by the assump-
tion Ai ‖ Si. The fact that each war-
rior is blocked from the “enemy” B
is expressed by the assumption that
Si ∪ (

⋃
j �=iAj) is a gateway to set

Ai from set B. The conclusion of the
Shield Wall principle can be inter-
preted as a statement that the whole
group

⋃
iAi is protected against the

enemy B.
For the graph on Figure 5, n = 2,

A1 = {a}, A2 = {b}, S1 = {c}, S2 = {d}, and B = {c, d}. Thus, by the Shield
Wall principle, a ‖ c → (b ‖ d → a, b ‖ c, d). The Shield Wall principle also
manifests itself in international visa and custom treaties, such as the European
Schengen Agreement, under which each member (“warrior”) enforces passport
and custom control along external borders with non-members (“shields”). This
results in all member-states being protected from undesired visitors and goods.

1.3 Logics of Fault Tolerance

Logical aspects of fault tolerance have been analyzed before. This work lead to
the origination of a LICS workshop series on Logical Aspects of Fault Toler-
ance [8,9]. Logical frameworks that have been used for such analysis are Tem-
poral Logic (see, for example, [10]) and Deontic Logic [11]. Unlike the approach
proposed in this paper, these frameworks do not integrate topological structure
of the multi-agent system.

2 Graph Terminology

In this paper, all graphs are assumed to be directed. A directed path from vertex
v1 to vertex vn in a graph G = (V,E) is a sequence of vertices v1, . . . , vn such
that (vi, vi+1) ∈ E for each i < n. For example, a, j, p is a directed path in graph
G1, depicted in Figure 2.

Definition 1. A set W ⊆ V is a gateway to set A ⊆ V from set B ⊆ V of
a graph G = (V,E) if each path to a vertex in set A from a vertex in set B
contains a vertex from set W .

Fault Tolerance in Belief Formation Networks 271

3 Semantics

In this section we give a formal definition of fault tolerance in belief networks
that was discussed informally in the introduction.

Definition 2. For any directed graph G = (V,E), a belief formation network
over G is a triple N = (Ω, s,R), where

1. Ω is an arbitrary finite set (of “beliefs”),
2. the “initial state” s is an arbitrary mapping of vertices into sets of beliefs:

V �→ 2Ω,
3. R is an arbitrary finite set of belief propagation rules

(v1 : α1) ∧ (v2 : α2) ∧ · · · ∧ (vn : αn)→ w : β,

such that v1, . . . , vn, w ∈ V , α1, . . . , αn, β ∈ Ω, and (vi, w) ∈ E for each
i ≤ n.

Definition 3. For any belief network N = (Ω, s,R) over G = (V,E), state t of
the network N is an arbitrary function from V to subsets of Ω.

If a belief network N can go from state x to state y through a single application
of a belief formation rule, then we write x �N y. The formal definition of this
relation is given below.

Definition 4. Let x and y be two states of a belief network N = (Ω, s,R) over
G = (V,E). We write x �N y if there is v0 ∈ V such that

1. x(v) = y(v) for each vertex v �= v0,
2. there is a rule

(v1 : α1) ∧ (v2 : α2) ∧ · · · ∧ (vn : αn)→ v0 : β, (1)

in set R such that (a) αi ∈ x(vi) for each i ≤ n, (b) y(v0) = x(v0) ∪ {β}.

Vertex v0 will be called the “active” vertex of the rule (1). Let relation x �∗
N y

be the transitive and reflexive closure of the relation x �N y.

Lemma 1. Let N = (Ω, s,R) be an arbitrary belief network over G = (V,E).
For any states t1, t2 such that s �∗

N t1 and s �∗
N t2, there is a state t such that

s �∗
N t and t(v) = t1(v) ∪ t2(v) for each v ∈ V .

Proof. Since s �∗
N t1, there is a sequence of belief formation rules, that, when

applied, transform belief network N from state s into state t1. By assumption
s �∗

N t2, there is a similar sequence for state t2. Combine these sequences in,
say, consecutive order. Let t be the resulting state.
�

By MindsetN (v) we mean all beliefs that can be potentially formed at vertex
v.

272 S. Holbrook and P. Naumov

Definition 5. For any belief network N = (Ω, s,R) over G = (V,E) and any
v ∈ V , MindsetN (v) =

⋃
s�∗

N t t(v).

Note that MindestN , being a function from vertices into subsets of Ω, can also
be viewed as a state of the belief network.

Lemma 2. If N = (Ω, s,R) is an arbitrary belief network over G = (V,E),
then s �∗

N MindsetN .

Proof. The statement follows from finiteness of the set Ω and Lemma 1.
�

For any belief network N and any set of vertices B, by NB we mean a modified
network in which vertices in set B can misbehave or malfunction. We capture
this formally in the definition below by adding new belief formation rules to NB

that allow vertices in set B to form any belief from set Ω without preconditions.

Definition 6. For any belief network N = (Ω, s,R) over a graph G = (V,E)
and any B ⊆ V , we define belief network NB to be (Ω, s,RB), where

RB = R ∪ {b : α | b ∈ B,α ∈ Ω}.

Definition 7. For any graph G = (V,E), by Φ(G) we mean the minimal set of
formulas such that

1. ⊥ ∈ Φ(G),
2. A ‖ B ∈ Φ(G) for each A,B ⊆ V ,
3. φ→ ψ ∈ Φ(G) for each φ, ψ ∈ Φ(G).

The next definition is the key definition in this paper. It formally defines the
fault tolerance relation A ‖ B in belief networks as the inability of vertices in
set A to form any additional beliefs if vertices in set B are malfunctioning.

Definition 8. For any belief network N = (Ω, s,R) over graph G = (V,E) and
any formula φ ∈ Φ(G), we define truth relation N 	 φ by recursion on structural
complexity of the formula φ:

1. N � ⊥
2. N � A ‖ B if and only if, for each v ∈ A, MindsetNB(v) ⊆MindsetN (v)
3. N � φ1 → φ2 if N � φ1 or N � φ2.

4 Axioms

Our formal logical system for a graph G, in addition to Modus Ponens inference
rules and propositional tautologies in the language Φ(G), contains the following
three axioms:

1. Empty Set: A ‖ ∅,
2. Monotonicity: A,B ‖ C → A ‖ C,

Fault Tolerance in Belief Formation Networks 273

3. Shield Wall:
∧

0<i≤n(Ai ‖ Si) → (
⋃

0<i≤nAi) ‖ B, where {Ai}i are pair-
wise disjoint sets and Si ∪ (

⋃
j �=iAj) is a gateway to Ai from B for each

0 < i ≤ n.

We write �G φ if φ ∈ Φ(G) is provable from the axioms above and propositional
tautologies in the language Φ(G) using the Modus Ponens inference rule. We
write X �G φ if φ is provable using the additional set of axioms X . We often
omit the parameter G when its value is clear from the context.

5 Examples

In this section, we give several examples of proofs in our formal system. We start
by proving the two gateway principles mentioned in the introduction.

Proposition 2 (first gateway). If W is a gateway (see Figure 4) to set of
vertices A from set of vertices B of a graph G, then �G A ‖W → A ‖ B.
Proof. Let n = 1, A1 = A, S1 = W , and B = B in the Shield Wall axiom.
�
Proposition 3 (second gateway). If W is a gateway (see Figure 4) to set of
vertices A from set of vertices B of a graph G, then �G W ‖ B → A ‖ B.
Proof. Let n = 2, A1 = A \W , A2 = W , S1 = ∅, S2 = B and B = B. By the
Shield Wall axiom, �G (A \W) ‖ ∅∧W ‖ B → A,W ‖ B. By the Monotonicity
axiom, �G (A \W) ‖ ∅ ∧W ‖ B → A ‖ B. Again by the Monotonicity axiom,
�G A ‖ ∅∧W ‖ B → A ‖ B. By the Empty Set axiom, �G W ‖ B → A ‖ B.
�

a d

b1

b2

b3

c1

c2

c3

a

b

ed

c

f

Fig. 7. Graph G6 (left) and G7 (right)

Proposition 4. For G6 depicted in Figure 7,

�G6 (b1 ‖ c1, c2) ∧ (b2 ‖ c1, c3) ∧ (b3 ‖ c2, c3)→ a ‖ d
Proof. Let n = 4, A1 = {b1}, A2 = {b2}, A3 = {b3}, A4 = {a}, S1 = {c1, c2},
S2 = {c1, c3}, S3 = {c2, c3}, S4 = ∅, and B = {d} in the Shield Wall axiom.
Then, �G6 (b1 ‖ c1, c2) ∧ (b2 ‖ c1, c3) ∧ (b3 ‖ c2, c3) ∧ (a ‖ ∅) → a, b1, b2, b3 ‖ d.
By the Empty Set axiom,

�G6 (b1 ‖ c1, c2) ∧ (b2 ‖ c1, c3) ∧ (b3 ‖ c2, c3)→ a, b1, b2, b3 ‖ d.

By the Monotonicity axiom, �G6 (b1 ‖ c1, c2)∧(b2 ‖ c1, c3)∧(b3 ‖ c2, c3)→ a ‖ d.

�

274 S. Holbrook and P. Naumov

Proposition 5. For G7 depicted in Figure 7, �G7 (b ‖ c) ∧ (e ‖ f)→ d ‖ a.

Proof. Let A1 = {d}, A2 = {b}, A3 = {e}, S1 = ∅, S2 = {c}, S3 = {f}, and
B = {a}. Thus, by the Shield Wall axiom, �G7 (d ‖ ∅) ∧ (b ‖ c) ∧ (e ‖ f) →
b, d, e ‖ a. By the Empty Set axiom, �G7 (b ‖ c) ∧ (e ‖ f) → b, d, e ‖ a. By the
Monotonicity axiom, �G7 (b ‖ c) ∧ (e ‖ f)→ d ‖ a.
�

Proposition 6. If G8 is the graph depicted in Figure 8, then

�G8 (x ‖ a, d) ∧ (y ‖ c, f) ∧ (z ‖ e, b)→ x, y, z ‖ a, c, e.

Proof. Let n = 3, A1 = {x}, A2 = {y}, A3 = {z}, S1 = {a, d}, S2 = {c, f},
S3 = {e, b}, and B = {a, c, e}. in the Shield Wall axiom.
�

a

x

ze

y

c

f b

d

Fig. 8. Graph G8

The next three examples are statements that are true
for any graph G. Nevertheless, their proofs use the
Shield Wall axiom.

Proposition 7. � ∅ ‖ A, for any set of vertices A of
any graph G.

Proof. Consider the Shield Wall axiom for n = 0.
�

Proposition 8. � A ‖ B,C → A ‖ B, for any sets
of vertices A, B, and C of any graph G.

Proof. Any path to a vertex in set A from a vertex in set B trivially contains a
vertex from B ∪ C. Hence, B ∪ C is a shield that separates set A from set B.
The result, thus, follows from the Shield Wall axiom.
�

Proposition 9. � (A ‖ B) ∧ (C ‖ B) → A,C ‖ B, for any sets of vertices A,
B, and C of any graph G.

Proof. Let A1 = A, A2 = C, S1 = B, and S2 = B in the Shield Wall axiom.
�

6 Reverse Shield Wall

In the Shield Wall principle (see Figure 6), we assume that each of Ai can
tolerate faulty behavior of the appropriate Si and conclude that all Ai together
can tolerate faulty behavior of B. What if the situation were reversed: each of
Si can tolerate faulty behavior of the appropriate Ai. Can we conclude in this
case that B will tolerate the combined faulty behavior of all Ai? Intuitively, this
seems to be true since “false” beliefs generated by the union of all Ai will be
“locked” inside the wall formed by the shields Si.

In other words, sets A1, . . . , An can be thought of as groups of members of a
secret society. Each group Ai is prohibited from revealing the society secrets to
their non-member acquaintances that form the group Si, but are free to discuss
them with the other society members. As a result, the society secrets are not
divulged to the outsiders in the group B.

Fault Tolerance in Belief Formation Networks 275

Conjecture 1.
∧

0<i≤n(Si ‖ Ai) → B ‖
⋃

0<i≤nAi, where {Ai}i are pair-wise
disjoint sets and Si ∪ (

⋃
j �=iAj) is a gateway from set Ai to set B for each

0 < i ≤ n.

It turns out, however, that this conjecture, as stated, is not true. Indeed, con-
sider belief network N1 over graph G1 depicted, respectively, in Figure 1 and
Figure 2. Let A1 = {Alice}, A2 = {Bob}, S1 = S2 = {Jury}, B = {Public}. If
Conjecture 1 is true, then the following implication is true for the belief network
N1: (Jury ‖ Alice) ∧ (Jury ‖ Bob) → Public ‖ Alice, Bob, which, as we have
discussed in the introduction, is not true.

In spite of the example above, our “secret society” intuition is correct in the
sense that assumptions on the topology of the graph in Conjecture 1 could be
adjusted to make the statement true and provable in our axiomatic system:

Proposition 10 (reverse shield wall). �G

∧
0<i≤n(Si ‖ Ai)→ B ‖

⋃
0<i≤n Ai,

where B,S1, . . . , Sn are pair-wise disjoint sets and

1.
⋃

i Si is a gateway to B from
⋃

iAi,
2. B ∪Ai ∪

⋃
j �=i Sj is a gateway to Si from

⋃
j Aj, for each 0 < i ≤ n.

Proof. From the Shield Wall axiom when the settings are such that B,S1, . . . , Sn

are the “warriors” (formerly As), ∅, A1, . . . , An are the matching “shields” (for-
merly Ss) and

⋃
iAi is the “enemy” (formerly B):

�G (B ‖ ∅) ∧
∧

0<i≤n

(Si ‖ Ai)→ B,
⋃

0<i≤n

Si ‖
⋃

0<i≤n

Ai.

By the Monotonicity axiom, �G (B ‖ ∅) ∧
∧

0<i≤n(Si ‖ Ai) → B ‖
⋃

0<i≤n Ai.
By the Empty Set axiom, �G

∧
0<i≤n(Si ‖ Ai)→ B ‖

⋃
0<i≤n Ai.
�

7 Soundness

We prove soundness of our logical system by justifying separately each of its
axioms.

Theorem 1 (Empty Set). N 	 A ‖ ∅, for any belief network N = (Ω, s,R)
over a graph G = (E, V) and any subset B ⊆ E.

Proof. Note that, by Definition 6,N∅ = N . Thus,MindsetN∅
(v) ⊆MindsetN (v)

for each v ∈ A.
�

Theorem 2 (Monotonicity). If N 	 A,B ‖ C, then N 	 A ‖ C, for any belief
network N = (Ω, s,R) over a graph G = (E, V) and any subsets A,B,C ⊆ E.

Proof. If MindsetNB(v) ⊆MindsetN (v) for each v ∈ A∪C, then it follows that
MindsetNB(v) ⊆MindsetN (v) for each v ∈ A.
�

Before proving soundness of the Shield Wall axiom, we establish the following
technical lemma.

276 S. Holbrook and P. Naumov

B

W

W
W

A*

A*
A*

Fig. 9. Graph G3

Lemma 3 (Gateway Lemma). Let set W be a gateway to set A from set B
in graph G and let N = (Ω, s,R) be an arbitrary belief network over G. For any
state t such that s �∗

NB
t and any state s′ such that t(v) ⊆ s′(v) for any v ∈W ,

there is a state t′ such that s′ �∗
N t′ and t(v) ⊆ t′(v) for each v ∈ A.

Proof. Let A∗ be the set of all vertices v ∈ V such that W is a gateway to set
{v} from set B (see Figure 9). By the assumption of the lemma, A ⊆ A∗.

Additionally, by the assumption s �∗
NB

t, there are states s1, . . . , sn such that
s = s1, sn = t, and

s1 �NB s2 �NB · · · �NB sn−1 �NB sn (2)

Starting from state s′, reproduce all belief formation steps in path (2) in which
the active vertex belongs to A∗. The result will be a path

s′1 �N s′2 �N · · · �N s′k−1 �N s′k,

where s′(v) = s′1(v) and s′k(v) = t(v) for each v ∈ A∗. Take s′k to be t′.
�

Theorem 3 (Shield Wall). Let N = (Ω, s,R) be a belief network over a graph
G = (E, V), and {Ai}i≤n, {Si}i≤n, and B be a sets of vertices such that

1. {Ai}i≤n are pair-wise disjoint,
2. Ai is disjoint with Si for each i ≤ n,
3. B is disjoint with

⋃
iAi,

4. Si ∪ (
⋃

j �=i Aj) is a gateway to Ai from B for each i ≤ n,
5. N 	 Ai ‖ Si for each i ≤ n.

Then N 	
⋃

iAi ‖ B.

Proof. We need to prove thatMindsetNB(v) ⊆MindsetN (v) for each v ∈
⋃

iAi.
Assume the opposite. Since beliefs are formed one at a time, there must be state
t and v0 ∈ Ai0 such that

1. s �NB t,
2. t(v0) � MindsetN (v0),
3. t(v) ⊆MindsetN (v) for each v ∈

⋃
iAi \ {v0}.

Fault Tolerance in Belief Formation Networks 277

By Lemma 2, s �∗
N MindsetN . Thus, s �NSi0

s′, where

s′(v) =

{
t(v) ∪MindsetN (v) if v ∈ Si0 \

⋃
iAi,

MindsetN (v) otherwise.

Note that t(v) ⊆MindsetN (v) = s′(v) for each v ∈
⋃

i�=i0
Ai. Hence, t(v) ⊆ s′(v)

for each v ∈ Si0 ∪ (
⋃

i�=i0
Ai), which, by an assumption of the theorem, is a

gateway to Ai0 from B.
By Lemma 3, there is a state t′ such that s′ �∗

N t′ and t(v) ⊆ t′(v) for each
v ∈ Ai0 . Then, s �∗

NSi0

t′. At the same time, t′(v0) � MindsetN (v0), because

t(v) ⊆ t′(v) and t(v0) � MindsetN (v0). Since v0 has been chosen from the set
Ai0 , the above is a contradiction with the assumption N 	 Ai0 ‖ Si0 .
�

8 Completeness

Let G = (V,E) be a directed graph, X be a maximal consistent subset of Φ(G),
and φ ∈ Φ(G) such that X � φ. In this section we construct a belief network
N = (Ω, s,R) over graph G such that N � φ.

In the physical world, each agent often leaves her “mark” on the beliefs that
pass through her. In our construction, a belief is nothing but the collection of
such “marks”. Thus, we formally define a belief as a subset of vertices:

Definition 9. Set of beliefs Ω is the powerset of V .

Definition 10. Initial state s is the function that maps each vertex into the
empty set of beliefs.

Definition 11. Set S ⊆ V is called a “shield” of vertex v ∈ V if X � v ‖ S.

Definition 12. The set of belief formation rules R of the network N is the
minimal set such that for any w ∈ V , if S1, . . . Sn are all shields of vertex w,
then R contains of all rules of the form u : β∧

∧
i≤n vi : αi → w : β ∪{u}, where

1. u, v1, . . . , vn, w ∈ V ,
2. β, α1, . . . , αn ⊆ V ,
3. (vi, w) ∈ E for each i ≤ n,
4. (u,w) ∈ E,
5. Si ∩ (αi ∪ {vi}) = ∅ for each i ≤ n.

The following lemma immediately follows from the above definition of the belief
network N :

Lemma 4. For any v ∈ V \ B. If x ∈ MindsetNB(v), then set x ∩ B is not
empty.
�

Lemma 5. If X � A ‖ B, then N 	 A ‖ B.

278 S. Holbrook and P. Naumov

Proof. We need to prove that MindsetNB(w) ⊆ MindsetN (w) for each w ∈ A.
Indeed, the assumption X � A ‖ B, by the Monotonicity axiom, implies that
X � w ‖ B. Thus, set B is a shield of vertex w. Thus, by Lemma 4, all beliefs in
networkN outside of set B are “marked” by at least one element of B. Hence, by
Definition 12, vertex w will never form any beliefs. Therefore, setMindsetNB (w)
is empty.
�

Theorem 4. If N 	 A ‖ B, then X � A ‖ B.

Proof. We divide all vertices of the graph G into two disjoint groups: red ver-
tices and blue vertices. A vertex v is called blue if set MindsetNB(v) is empty.
Otherwise, vertex v is called red.

Lemma 6. Ω ⊆MindsetNB (v) for any v ∈ B.

Proof. See Definition 6.
�

Lemma 7 (Red Path). If path u1, u2, . . . , uk is a directed path of red vertices
in graph G and γ ∈MindsetNB (u1), then γ∪{u1, . . . , uk−1} ∈MindsetNB(uk).

Proof. Induction on k. If k = 1, then γ ∈MindsetNB(u1) by the assumption.
Let k > 1. If uk ∈ B, then γ∪{u1, . . . , uk−1} ∈MindsetNB(uk) by Lemma 6.

We will now assume that uk /∈ B. Thus, since vertex uk is red, by Definition 12,
there must exist vertices v1, . . . , vn and beliefs α1, . . . , αn such that

1. (vi, uk) ∈ E for each i ≤ n,
2. αi ∈MindsetNB (vi) for each i ≤ n, and
3. Si ∩ (αi ∪ {vi}) = ∅ for each i ≤ n.

Consider now the rule of our belief network

uk−1 : γ ∪ {u1, . . . , uk−2} ∧
∧
i≤n

vi : αi → uk : γ ∪ {u1, . . . , uk−1},

By the Induction Hypothesis, γ∪{v1, . . . , vk−2} ∈MindsetNB (uk−1). Therefore,
γ ∪ {v1, . . . , vk−1} ∈MindsetNB (uk).
�

Lemma 8. If for every shield of a vertex u there is a red directed path (possibly
except for vertex u) to vertex u from a vertex in B such that the path does not
go through the shield, then vertex u itself is red.

Proof. Let S1, . . . , Sn be all the shields of the vertex u. By the Empty Set axiom,
X � v ‖ ∅. Thus, n > 0. Let v1, . . . , vn be vertices such that (vi, u) ∈ E and

there is a directed red path v
(ni)
i , . . . , v′′i , v

′
i, vi, from a vertex v

(ni)
i ∈ B to vertex

vi that does not go through Si for each i ≤ n. In other words, intersection

Si ∩
{
v
(ni)
i , . . . , v′i, vi

}
is empty.

By Lemma 7, {
v
(ni)
i , . . . , v′i

}
∈MindsetNB (vi). (3)

Fault Tolerance in Belief Formation Networks 279

Recall that n > 0, thus, by Definition 12, network NB contains the rule

v1 : {v(n1)
1 , . . . , v′1} ∧

∧
i≤n

vi : {v(ni)
i , . . . , v′i} → u : {v(n1)

1 , . . . , v′1, v1}.

Hence, due to (3), {v(n1)
1 , . . . , v′1, v1} ∈MindsetNB(u). Thus, set MindsetNB (u)

is not empty, or, in other words, vertex u is red.
�

Due to Lemma 8, the set of all blue vertices, Blue, satisfies the conditions of
the Shield Wall axiom. Thus, X � Blue ‖ B. By the assumption, A ⊆ Blue.
Therefore, by the Monotonicity axiom, X � A ‖ B.
�

Theorem 5. X � φ if and only if N 	 φ, for any formula φ ∈ Φ(A).

Proof. Induction on the structural complexity of formula φ. The base case follows
from Lemma 5 and Theorem 4. The induction step follows in the standard way
from maximality and consistency of the set X .
�

Theorem 6 (Completeness). For any graph G and for any φ ∈ Φ(G). if � φ,
then there is a belief network N over graph G such that N � φ.

Proof. Suppose that � φ. Consider any maximal consistent set X containing ¬φ.
Let N be the canonical belief network defined in this section. By Theorem 5,
N � φ.
�

9 Conclusion

In this paper, we have studied fault tolerance properties of belief formation
networks under an assumption that once a belief is formed by an agent, it is
never forgotten by the agent. One can introduce “forgetting” belief networks by
adding a second type of transition to Definition 4. During such a new transition
x �N y, the active vertex v0 “forgets” some belief α. Thus, y(v0) = x(v0) \ {α}.
It is easy to show, however, that the soundness and completeness results in this
paper can be generalized to the “forgetting” belief networks.

References

1. Shafer, G., Shenoy, P.P.: Probability propagation. Ann. Math. Artif. Intell. 2,
327–351 (1990)

2. Cano, J.E., Delgado, M., Moral, S.: An axiomatic framework for propagating un-
certainty in directed acyclic networks. Int. J. Approx. Reasoning 8(4), 253–280
(1993)

3. More, S.M., Naumov, P.: The Functional Dependence Relation on Hypergraphs of
Secrets. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.)
CLIMA XII 2011. LNCS, vol. 6814, pp. 29–40. Springer, Heidelberg (2011)

4. More, S.M., Naumov, P.: Logic of secrets in collaboration networks. Ann. Pure
Appl. Logic 162(12), 959–969 (2011)

280 S. Holbrook and P. Naumov

5. Donders, M., Miner More, S., Naumov, P.: Information Flow on Directed Acyclic
Graphs. In: Beklemishev, L.D., de Queiroz, R. (eds.) WoLLIC 2011. LNCS,
vol. 6642, pp. 95–109. Springer, Heidelberg (2011)

6. Miner More, S., Naumov, P.: Hypergraphs of Multiparty Secrets. In: Dix, J., Leite,
J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS (LNAI), vol. 6245, pp.
15–32. Springer, Heidelberg (2010)

7. Sutherland, D.: A model of information. In: Proceedings of Ninth National Com-
puter Security Conference, pp. 175–183 (1986)

8. Marcus, L.: Preface. Electr. Notes Theor. Comput. Sci. 258(2), 1–2 (2009)
9. Bonakdarpour, B., Mailbaum, T. (eds.): Proceedings of the 2nd International

Workshop on Logical Aspects of Fault-Tolerance, LAFT (2011)
10. Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify

fault tolerance in multi-agent systems. In: Sierra, C., Castelfranchi, C., Decker,
K.S., Sichman, J.S. (eds.) AAMAS (1), IFAAMAS, pp. 113–120 (2009)

11. Castro, P.F., Maibaum, T.S.E.: Reasoning about System-Degradation and Fault-
Recovery with Deontic Logic. In: Butler, M., Jones, C., Romanovsky, A., Troubit-
syna, E. (eds.) Fault Tolerance. LNCS, vol. 5454, pp. 25–43. Springer, Heidelberg
(2009)

Large-Scale Cost-Based Abduction

in Full-Fledged First-Order Predicate Logic
with Cutting Plane Inference

Naoya Inoue and Kentaro Inui

Tohoku University, 6-3-09 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
{naoya-i,inui}@ecei.tohoku.ac.jp

Abstract. Abduction is inference to the best explanation. Abduction
has long been studied intensively in a wide range of contexts, from arti-
ficial intelligence research to cognitive science. While recent advances in
large-scale knowledge acquisition warrant applying abduction with large
knowledge bases to real-life problems, as of yet no existing approach
to abduction has achieved both the efficiency and formal expressiveness
necessary to be a practical solution for large-scale reasoning on real-life
problems. The contributions of our work are the following: (i) we refor-
mulate abduction as an Integer Linear Programming (ILP) optimization
problem, providing full support for first-order predicate logic (FOPL);
(ii) we employ Cutting Plane Inference, which is an iterative optimization
strategy developed in Operations Research for making abductive reason-
ing in full-fledged FOPL tractable, showing its efficiency on a real-life
dataset; (iii) the abductive inference engine presented in this paper is
made publicly available.

Keywords: abduction, cost-based abduction, cutting plane inference,
integer linear programming.

1 Introduction

Abduction is inference to the best explanation. Abduction has long been stud-
ied in a wide range of contexts. For example, abduction has been viewed as a
promising framework for describing the mechanism of human perception [1–4,
etc.]. The idea is that the declarative nature of abduction enables us to infer the
most plausible, implicitly stated information combining several types of infer-
ence, and pieces of explicitly observed information, as humans do. Hobbs et al.
[2] showed the process of natural language interpretation can reasonably be de-
scribed as abductive inference; finding the lowest-cost abductive proof provides
the solutions to a broad range of natural language pragmatics problems, such
as word sense disambiguation, anaphora, and metonymy resolution. It will be a
significant contribution for such research areas if we could provide an efficient
abductive reasoning engine which scales to large problems.

In this paper, we explore first-order predicate logic-based abduction with large
knowledge bases (KBs) for solving “real-life” problems. While the lack of world

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 281–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

282 N. Inoue and K. Inui

knowledge resources hampered applying abduction to real-life problems in the
1980s and 1990s, a number of techniques that acquire world knowledge resources
have been developed in the last decade [5–9, etc.]. Consequently, several re-
searchers start applying abduction to real-life problems, exploiting large KBs.
For instance, inspired by Hobbs et al. [2], Ovchinnikova et al. [10] propose an
abduction-based natural language processing framework using forty thousands
of axioms extracted from the popular ontological resources, WordNet [5] and
FrameNet [6]. They evaluate their approach on the real-life natural language
processing task of Recognizing Textual Entailment (RTE) [11].

However, in order to apply large-scale abductive inference to real-life prob-
lems, we still need to address the following issue: how to search for the best ex-
planation efficiently. Abduction is known to be an NP-hard problem in general
[12]; this hampers the application of abduction with large knowledge resources
to real-life problems. In fact, Ovchinnikova et al. [10] report that the Mini-
TACITUS abductive reasoning system [13] could not search the entire search
space of explanations within 30 minutes in most of the RTE problems in their
experiments. In the literature, many researchers have tried to overcome abduc-
tion’s inefficiency by a range of methods from approximation [14–16, etc.] to
exact inference [17, 18, etc.]. However, most of the proposed methods are opti-
mized for propositional logic in principle. Inoue and Inui [18] provides an efficient
approach to first-order predicate logic (FOPL)-based abduction, showing supe-
rior efficiency to Mini-TACITUS system [13]; however, it does not provide full
support of FOPL (e.g. negation is not supported). In addition, as the reader
will see in Sec. 3.2 and Sec. 4, it does not scale to larger problems due to the
intractability emerging from the use of FOPL inference.

In this paper, we address this issue with the following contributions:

(i) we extend Inoue and Inui [18]’s Integer Linear Programming (ILP)-based
inference method, providing full support for FOPL including negation;

(ii) we describe how Cutting Plane Inference, an iterative optimization strategy
developed in Operations Research, can be exploited for making abductive
reasoning in full-fledged FOPL tractable, showing its efficiency by providing
evaluation on a large, real-life dataset ;

(iii) the abductive inference engine presented in this paper is made publicly
available.

The structure of our paper is as follows. We start with a brief introduction of
cost-based abduction, where the quality of explanation is evaluated by some
cost function (Sec. 2.1). We then briefly describe Inoue and Inui [18]’s ILP-
based formulation of cost-based abduction (Sec. 2.2). In the next section, we
first describe how their formalization can be extended for handling negation
(Sec. 3.1). We then show how Cutting Plane Inference (CPI) enables us to apply
abductive reasoning in full-fledged FOPL with large KBs (Sec. 3.2). Finally, we
evaluate the efficiency of our CPI-based framework on a large, real-life problem
of natural language processing (Sec. 4), and give a comparison of our work with
the prior implementations of cost-based abduction (Sec. 5).

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 283

2 Background

2.1 Cost-Based Abduction

Abduction is inference to the best explanation. Formally, logical abduction is
defined as follows:

– Given: Background knowledge B, and observations O, where both B and
O are sets of first-order logical formulas

– Find: A hypothesis (or explanation) H such that H ∪ B |= O,H ∪ B �|=⊥,
where H is a set of first-order logical formulas. We say that p is hypothesized
if H ∪B |= p, and that p is explained if (∃q) q → p ∈ B and H ∪B |= q.

Typically, there exist several hypotheses H explaining O. We call each of them
a candidate hypothesis, and each literal in a hypothesis an elemental hypoth-
esis. Cost-based abduction (CBA) is defined as abduction which identifies the
minimum-cost explanation H∗ among a set H of candidate explanations. For-
mally, we find H∗ = argminH∈H cost(H), where cost is a functionH → R, which
is called the cost function. Several kinds of cost functions have been proposed
in prior work on cost-based abduction [1, 2, 19, 20, etc.]. For instance, Hobbs
et al. [2] use a cost function that favors a fewest elemental hypotheses and a
shorter proof path. The function is represented by the sum of costs of elemen-
tal hypotheses, where the cost of elemental hypothesis is in proportion to the
distance from the observations on a proof graph.

2.2 ILP-Based Formulation of CBA

In this section, we briefly review Inoue and Inui [18]’s ILP formulation of cost-
based abduction. The main idea is that explanation finding in CBA can be
regarded as the weighted combinatorial optimization problem of literals. They
thus formulate CBA as an ILP optimization problem, where the search space of
CBA is represented as ILP variables and constraints, and the cost function is
used as the ILP objective, in order to exploit the state-of-the-art combinatorial
optimization technology in Operations Research.

Here we give an intuitive description of their approach, using the diagram
illustrated in Figure 1. Given an abduction problem (i.e., background knowledge
B and observations O), they first create set P of potential elemental hypothe-
ses, a set of instantiated literals that are potentially included as constituents of
explanations of O (i.e. Step 1 in Figure 1). This procedure is called the search-
space generation. For enumerating potential elemental hypotheses, they apply
backward-chaining with axioms in B, and instantiate the body of axioms. For
instance, in Figure 1, we add two instantiated literals s(y), t(u) to P , which
might be the explanations of q(y) ∈ O, performing backward-chaining on q(y)
with axiom s(x)∧ t(y)→ q(x). Using the set P , they represent the search space
of explanations as an ILP optimization problem as follows.

Hypothesis Inclusion: For each p ∈ P , ILP variables hp ∈ {0, 1} are intro-
duced to represent whether p is hypothesized (hp = 1) or not (hp = 0). For
example, H2 in Figure 1 holds hr(x) = 1, where r(x) is included in H2.

284 N. Inoue and K. Inui

Candidate
hypothesis: hq(y) hr(A) hs(x) hs(y) ht(u) hr(x) sx,A sx,y sy,A ur(A),r(x) us(x),s(y)

H1: q(y) r(A) s(x) 1 1 1 0 0 0 0 0 0 0 0
H2: q(y) r(A) s(x) r(x) 1 1 1 1 0 1 0 0 0 0 0
H3: q(y) r(A) s(x) r(x) x=A 1 1 1 1 0 1 1 0 0 0 1
H4: q(y) r(A) s(x) r(x) s(y)
 t(u) x=A x=y 1 1 1 1 1 1 1 1 1 1 1

Set of potential elemental hypotheses:
 P ={s(y), t(u), r(x), q(y), r(A), s(x), x=y, A=x}

Input:
 B: {r(x) → s(x), s(x) t(y) → q(x)}
 O: x, y q(y) r(A) s(x)

x, y q(y) r(A) s(x)

r(x) s(y) t(u)
y=x A=x

Backward-chaining:

ILP representation of search space:
Output:
 H*: x, y q(y) r(A) s(x) r(x) x=A

Step 2. Solve ILP optimization problem

Step 1. Generate P

ILP constraints:
 C1: hq(y) = 1
 C2: rs(x) ≤ hr(x); hs(y)=ht(u)
 C3: 2ur(x), r(A) ≤ hr(x) + hr(A)
 C4: ur(x), r(A) ≤ sx,A
 C5: sx,A + sx,B ≤ 1
 C6: sy,A - sx,A - sx,y ≥ -1

ILP variables:

Fig. 1. Summary of Inoue and Inui [18]’s ILP-based approach

Cost of Hypothesis: To calculate cost(H) of each candidate hypothesis H ,
they use the cost function defined in Hobbs et al. [2]’s weighted abduction. In
weighted abduction, cost(H) is represented by the sum of the costs for p ∈ P
such that p is hypothesized (i.e., hp = 1) but not explained. They thus introduce
another ILP variable r ∈ {0, 1} for representing whether p is explained (rp = 1)
or not (rp = 0). The final objective function of the ILP problem is given by:
min. cost(H) =

∑
p∈{p|p∈P,hp=1,rp=0} cost(p), where cost(p) is the cost of a

literal p. The cost of a literal is determined by the total unreliability of backward-
inferences that are used for abducing the literal. This optimization amounts
to Step 2 in Figure 1. They optimize this objective with the six types of ILP
constraints as shown in Figure 1. In the rest of this section, we describe only
two of them, which are necessary for the readers to follow the discussion below
due to spatial limitations.

To handle first-order predicate logic, variable substitution must be taken into
account to control the unification of elemental hypotheses. For representing the
status of unification, they introduce another class of variables up,q ∈ {0, 1} for
each p, q ∈ P , which takes 1 if p is unified with q. Concerning variable substi-
tution, another type of ILP variables s are introduced, where sx,y = 1 if x is
substituted for y, 0 otherwise. s is symmetric (i.e., sx,y = sy,x). In Figure 1,
ur(x),r(A) and sx,A are introduced. In H3, the variables ur(x),r(A), sx,A are set to
1 because r(x) is unified with r(A), and x = A is assumed. Note that unification
of r(x) with r(A) is allowed only if x are substituted with A. In addition, the
substitution relation must be transitive (e.g. y = A must hold if x = y and
x = A hold). For keeping those consistency, they impose two ILP constraints:

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 285

Constraint 41: Two literals q(x1, x2, ..., xn) ≡ q(x) and q(y1, y2, ..., yn) ≡ q(y)
are allowed to be unified (i.e., uq(x),q(y) = 1) only if all variable substitutions x/y
involved in the unification are activated (i.e., sxi,yi = 1 for all i ∈ {1, 2, ..., n}).
This can be expressed as:

n · uq(x),q(y) ≤
n∑

i=1

sxi,yi (1)

In Figure 1, the constraint ur(x),r(A) ≤ sx,A is generated since x needs to be
substituted for A when r(x) and r(A) are unified.

Constraint 6: s is transitive; namely sx,z must be 1 if sx,y = 1 and sy,z = 1.
This can be expressed as the following constraints2:

sx,z − sx,y − sy,z ≥ −1 (2)

−sx,z + sx,y − sy,z ≥ −1 (3)

−sx,z − sx,y + sy,z ≥ −1 (4)

They generate O(n3) transitivity constraints, where n is the number of logical
terms. As the reader will see in Sec. 4, this makes inference intractable in large-
scale inference. We propose how this drawback can be overcome by exploiting
Cutting Plane Inference in Sec. 3.2.

3 Full-Fledged First-Order Predicate Logic Abduction
with Cutting Plane Inference

In this section, we first present an extended formulation of Inoue and Inui [18]
over full fledged first-order predicate logic. We then describe how to apply Cut-
ting Plane Inference to best-explanation finding, for avoiding the intractability
that arises from the extension and generation of transitivity constraints.

3.1 Handling Negation for Supporting Full-Fledged FOPL

The ILP formulation described in Sec. 2.2 does not provide full support for
FOPL; it cannot represent negation. As a background knowledge, they accept
only Horn clauses as axioms, and positive literals as observations. However,
the capability of handling negations is crucial for a wide range of abductive
reasoning. For example, in abduction-based natural language interpretation, one
can imagine that it needs to handle negated expressions, such as “I don’t know.”

In the rest of this section, we give two formulations for expressing negative
literals (e.g. ¬p) and inequality of variables (e.g. x �= y), for making Inoue and

1 The numbers of constraints correspond to the numbers presented in [18].
2 Inoue and Inui [18] introduce the form of inequality sx,y+sy,z ≤ 2·sx,z as transitivity
constraints. However, this constraint does not appropriately represent transitivity;
thus we replace them with inequalities (2)–(4).

286 N. Inoue and K. Inui

Inui [18]’s framework support full FOPL. By handling negative literals, we are
able to assume the background knowledge to be a set of full-fledged first-order
logical formulae represented in the clausal normal form, i.e. a set of implicitly
skolemized disjunctive literals (e.g. {¬p(x), q(x)}, {¬p(x), q(f(x), x), r(f(x))}).
To eliminate disjunctions from a clause, we convert each clause {L1, . . . , Ln} to
a set of single literal-headed clauses of the form of ¬L1 ∧ . . . ∧ ¬Li−1 ∧ ¬Li+1 ∧
. . . ∧ ¬Ln → Li for each Li. Henceforth, we call a clause of this form an axiom,
the right hand side the head, and the left hand side the body.

First, consider the case where two literals p(x) and ¬p(y) are in set P of po-
tential elemental hypotheses such that p(x) and p(y) are unifiable. We want to
prohibit the two literals from being hypothesized simultaneously if x is substi-
tuted with y. One can imagine a simple inequality such as hp(x) + h¬p(y) ≤ 1,
however, it is not enough because p(x) and p(y) can be both hypothesized (i.e.
hp(x) and h¬p(y) can be 1 simultaneously) if x is not substituted for y. This
constraint can be correctly represented by incorporating the ILP variable sx,y
which represents the variable substitution of x for y:

Proposed Constraint 1: Two literals q(x1, x2, ..., xn) ≡ q(x) and ¬q(y1, y2,
..., yn) ≡ ¬q(y) cannot be both hypothesized (hq(x) = 1 and h¬q(y) = 1) if
variable substitutions xi/yi are activated (sxi,yi = 1) for all i ∈ {1, 2, ..., n}.
This can be expressed as: hq(x) + h¬q(y) +

∑n
i=1 sxi,yi ≤ 1 + n. Note that the

case where x = y reduces to: hq(x) + h¬q(x) ≤ 1. This type of constraint grows
in O(nm) for each predicate p, where n is the number of positive instantiation
of p in P , and m is the number of negative instantiation of p in P .

The important question here is how to find the pair q(x) and ¬q(y). In order
to find potential contradictions, one can perform forward reasoning. However,
the problem is how to control the overall search process because chaining might
be repeated infinitely. Terminating the search at a certain depth could miss
potential contradictions. Given q(x) and r(x) as potential elemental hypotheses,
for example, we may fail to find that ¬q(x) could be derived from r(x) in several
forward-chaining steps. This is a long-standing problem in logic-based reasoning.
One can address this problem by adopting some heuristics such as A* search.

We now describe how the inequality of variables, where two variables are
prohibited to unify due to some constraints, can be formulated. This kind of
constraint is also important for abductive inference. For example, imagine natu-
ral language interpretation systems. Given the sentence “A girl sent a present to
another girl”, it is desirable to express that the two girls must not be identical.
Such a constraint can be expressed straightforwardly in the ILP formulation:

Proposed Constraint 2: For each pair of (existentially quantified) variables x
and y in set P of potential elemental hypotheses that must not be identical (i.e.
x �= y), introduce the following equality:

sx,y = 0. (5)

In our experiments, we use the six types of constraints described in Sec. 2.2 and
two constraints newly introduced above.

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 287

Algorithm 1. CPI4CBA(Background Knowledge B, Observation O)

1: (Ψ, I)← createBaseILP(B,O)
2: repeat
3: S ← solveILP(Ψ, I); V ← {}
4: for (x, y) ∈ unifiedTerms(S) do
5: for z ∈ termsUnifiableWith(x)∪ termsUnifiableWith(y) do
6: if (sx,z = 0 and sy,z = 1) or (sx,z = 1 or sy,z = 0) then
7: V ← V ∪ {−sx,y − sx,z + sy,z ≥ −1,−sx,y + sx,z − sy,z ≥ −1}
8: end if
9: end for
10: end for
11: I ← I ∪ V
12: until V �= φ

3.2 Cutting Plane Inference for CBA

The major drawback of the ILP formulation is that it needs to generate O(n3)
transitivity constraints, where n is the number of logical terms, because we per-
form inference over FOPL-based representation. That makes inference
intractable (see Sec. 4 for empirical evidence) because it generates an ILP opti-
mization problem that has quite a large number of constraints. Moreover, han-
dling negation quadratically increases Proposed Constraint 1.

How do we overcome this drawback? The idea is that “all the transitivity
constraints may not be violated all at once; so we gradually optimize and add
transitivity constraints if violated in an iterative manner.” More formally, we
propose to apply Cutting Plane Inference (CPI) to the CBA problems. CPI is
an exact inference optimization technique that is originally developed for solv-
ing large linear programming (LP) problems in Operations Research [21]. CPI
has been successfully applied to a wide range of constrained optimization prob-
lems where constraints are very large [22–25, etc.], from probabilistic deductive
inference problems [23] to machine learning problems [24]. To the best of our
knowledge, however, our work is the first successful work to apply CPI to abduc-
tive reasoning tasks. In principle, CPI solves optimization problem in an iterative
manner as follows: it solves an optimization problem without constraints, and
then adds violated constraints to the optimization problem. When the iteration
terminates, it guarantees solutions to be optimal. The proposed algorithm, called
CPI4CBA, is also an exact inference framework.

How do we apply the technique of CPI to cost-based abduction problems?
Intuitively, we iterate the following two steps: (i) solving an abduction problem
without enforcing transitivity on logical atomic terms, and (ii) generating transi-
tivity constraints dynamically when transitiveness of unification is violated (e.g.
x = y∧y = z∧z �= x). The iteration terminates if there is no violated unification
transitivity. The pseudo-code is given in Algorithm 1. In line 1, we first create an
ILP optimization problem described in Sec. 2.2 and Sec. 3.1 but without transi-
tivity constraints (i.e. Constraint 6), where Ψ denotes a set of ILP variables, and
I denotes a set of ILP constraints. In line 2–12, we repeat: checking consistency

288 N. Inoue and K. Inui

of unification transitiveness, adding constraints for violated transitiveness, and
re-optimizing. In line 3, we find the solution S for the current ILP optimization
problem. Then, for each pair (x, y) of logical atomic terms unified in the solution
S (line 4), find the logical term z which is unifiable with x or y (line 5). If the
transitive relation x, y with respect to z is violated (i.e. sx,z = 0 ∧ sy,z = 1 or
sx,z = 1 ∧ sy,z = 0), then we generate constraints for preventing this violation,
and keep it in set V of constraints (line 6–8). Finally, we again perform an ILP
optimization with newly generated constraints (line 11 and 3). The iteration
ends when there is no violated transitiveness (line 12).

The key advantages of CPI4CBA is that it can reduce the time of search-
space generation, and it is also expected to reduce the time of ILP optimization.
CPI4CBA does not generate all the transitivity constraints before optimiza-
tion, which saves the time for search-space generation. In addition, optimization
problems that we solve would become smaller than the original problem in most
cases, because not all the transitivity constraints may not be necessary to be
considered. In the worst case, we need to solve the optimization problem that is
same as the original one; but in most cases we found out that we do not need
to. We will show its empirical evidence through large-scale evaluation in Sec. 4.

4 Runtime Evaluation

How much does CPI improve the runtime of ILP-based reasoner? Does CPI
scale to larger real-life problems? To answer these questions, we evaluated the
CPI4CBA algorithm in two settings: (i) STORY, the task of plan recogni-
tion, and (ii) RTE, the popular, knowledge-intensive, real-life natural language
processing task of Recognizing Textual Entailment (RTE). While most of the
existing abductive reasoning systems are evaluated on rather small, and/or arti-
ficial datasets [26–28, etc.], our evaluation takes a real-life, much larger datasets
(see Sec. 4.1). In our experiments, we compare our system with: (i) Inoue and
Inui’s formulation [18], and (ii) the systems [26, 28, 29] based on Markov Logic
Networks (MLNs) [30]. For our experiments, we have used a 12-Core Opteron
6174 (2.2GHz) 128 GB RAM machine. We used Gurobi Optimizer3, which is an
efficient ILP solver. It is commercial but an academic license is freely available.

4.1 Settings

STORY: For this setting, we have used Ng and Mooney [31]’s story under-
standing dataset, which is widely used for evaluation of abductive plan recogni-
tion systems [26–28]. In this task, we need to abductively infer the top-level
plans of characters from actions which are represented by the logical forms
(e.g. getting off(Getoff16)∧agent get off(Getoff16,Fred16)∧name(Fred16,Fred)). The
dataset consists of 50 plan recognition problems and 107 background Horn
clauses (e.g. go step(r, g) ∧ going(g) → robbing(r)). The dataset contains on

3 http://www.gurobi.com/

http://www.gurobi.com/

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 289

average 12.6 literals in observed logical forms. To make the predicates repre-
senting top-level plans (e.g. shopping, robbing) disjoint, we generated 73 dis-
jointness axiom by using the formulation4 described in Sec. 3.1. Note that in
Inoue and Inui [18]’s evaluation, disjointness constraints are not used. Regard-
ing a cost function, we followed Hobbs et al. [2]’s weighted abduction theory.
For each axiom, we have set the sum of the axiom weights equal to 1.2 (e.g.
inst shopping(s)0.6 ∧ store(t, s)0.6 → shopping place(t)).

RTE: For observations (input), we employed the second challenge of RTE
dataset5. In the task of RTE, we need to correctly determine whether one text
(called text, or T) entails another (called hypothesis, or H) or not. The dataset
consists of development set and test set, each of which includes 800 natural lan-
guage text-hypothesis pairs. We have used all of the 800 texts from test set. We
have converted texts into logical forms presented in [32] using the Boxer semantic
parser [33]. The number of literals in observations is 29.6 literals on average. For
background knowledge, we have extracted 289,655 axioms6 fromWordNet 3.0 [5],
and 7,558 axioms from FrameNet 1.5 [6] following [10]. In principle, the WordNet
knowledge base contains several kinds of lexical relations between words, such
as IS-A, ontological relations (e.g. dog(x) → animal(x)). FrameNet knowledge
bases contain lexeme-to-frame mappings, frame-frame relations, etc. For exam-
ple, the mapping from surface realization “give to” to a frame “Giving” is given
by: Giving(e1, x1, x2, x3)

1.3 ∧ donor(e1, x1)
0.1 ∧recipient(e1, x2)

0.2 ∧ theme(e1, x3)
0.1

→ give(e1, x1, x3) ∧ to(e2, e1, x2) . We again followed Hobbs et al. [2]’s weighted
abduction theory for calculating the cost of hypothesis. We calculated the costs
by following Ovchinnikova et al. [10] in this setting.

4.2 Results and Discussion

The reasoner was given a 2-minute time limit for each inference step (i.e. search-
space generation and ILP optimization). In Table 1, we show the results of each
setting for two inference method in Table 1: (i) IAICBA: the inference method
without CPI (i.e. Inoue and Inui [18]’s formulation with proposed constraints
1 and 2), and (ii) CPI4CBA: inference method with CPI (i.e. our proposal).
In order to investigate the relation between the size of search space and the
runtime, we show the results for each depth, which we used for limiting the
length of backward-chaining. In the “Generation” column, we show the runtime
that is taken for search-space generation in seconds averaged over all problems
whose search-space generation is finished within 2 minutes. In the parenthesis,
we show the percentage of those problems. In the column “ILP inf”, we show
the runtime of ILP optimization averaged on only problems such that both
search-space generation and ILP optimization are finished within 2 minutes, as
well as the percentage of those problems (e.g. 80 % means “for 80 % of all the

4 For example, we generate hrobbing(x) + hshopping(y) + sx,y ≤ 2.
5 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
6 Extracted relations are: word-to-synset mapping, hypernym-hyponym, cause-effect,
entailment, derivational, instance-of relations.

http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/

290 N. Inoue and K. Inui

Table 1. The results of averaged inference time in STORY and RTE

Setting Method Depth Generation [sec.] ILP inf [sec.] # of ILP cnstr

STORY

IAICBA

1 0.02 (100.0 %) 0.60 (100.0 %) 3,708
2 0.12 (100.0 %) 5.34 (100.0 %) 23,543
3 0.33 (100.0 %) 8.11 (100.0 %) 50,667
∞ 0.35 (100.0 %) 9.00 (100.0 %) 61,122

CPI4CBA

1 0.01 (100.0 %) 0.34 (100.0 %) 784 (Δ 451)
2 0.07 (100.0 %) 4.15 (100.0 %) 7,393 (Δ 922)
3 0.16 (100.0 %) 3.36 (100.0 %) 16,959 (Δ 495)
∞ 0.22 (100.0 %) 5.95 (100.0 %) 24,759 (Δ 522)

RTE

IAICBA

1 0.01 (100.0 %) 0.25 (99.7 %) 1,104
2 0.08 (100.0 %) 2.15 (98.1 %) 5,185
3 0.56 (99.9 %) 5.66 (93.0 %) 16,992
∞ 4.78 (90.7 %) 15.40 (60.7 %) 36,773

CPI4CBA

1 0.01 (100.0 %) 0.05 (100.0 %) 269 (Δ 62)
2 0.04 (100.0 %) 0.35 (99.6 %) 1,228 (Δ 151)
3 0.09 (100.0 %) 1.66 (99.0 %) 2,705 (Δ 216)
∞ 0.84 (98.4 %) 11.73 (76.9 %) 10,060 (Δ 137)

problems, search-space generation was finished within 2 minutes, and so was ILP
inference.”). In the “# of ILP cnstr” column, we show the averaged number of
generated ILP constraints. Concerning CPI4CBA, the number denotes the total
number of constraints considered in the end, including the constraints added by
CPI. The number marked by Δ indicates the number of constraints that are
added during CPI (i.e. how many times line 7 in Algorithm 1 executed).

Overall, the runtimes in both search-space generation and ILP inference are
dramatically improved from IAICBA to CPI4CBA in both settings, as shown
in Table 1. In addition, CPI4CBA can find optimal solutions in ILP inference
for more than 76 % of the problems, even for depth ∞. This indicates that
CPI4CBA scales to larger problems. From the results of IAICBA in RTE set-
tings, we can see the significant bottleneck of Inoue and Inui [18]’s formulation
in large-scale reasoning: the time of search-space generation. The search-space
generation could be done within 2 minutes for only 90.7 % of the problems.
CPI4CBA successfully overcomes this bottleneck. CPI4CBA is clearly advan-
tageous in the search-space generation because it is not necessary to generate
transitivity constraints, an operation that grows cubically before optimization.

In addition, CPI4CBA reduces the time of ILP inference significantly. In ILP
inference, CPI did not guarantee the reduction of inference time in theory; how-
ever, as shown in Table 1, we found that the number of ILP constraints actually
used is much less than the original problem. CPI4CBA successfully reduces the
complexity of the ILP optimization problems in practice. This is also supported
by the fact that CPI4CBA keeps 76.9% in “ILP inf” for Depth = ∞ because it
solves very large ILP optimization problems that fail to be generated in IAICBA.

Finally, we compare our results with other existing systems. Overall, the pre-
sented reasoner is dramatically faster than the other systems. First, we im-
mediately see that the proposed method is more efficient than Inoue and Inui

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 291

[18]’s formulation (i.e. IAICBA). Regarding the MLN-based systems [26, 28, 29],
our results are comparable, or more efficient than the existing systems. For the
STORY setting, Singla and Mooney [28] report the results of two systems with
an exact inference technique using CPI for MLNs [23]: (i) Kate and Mooney [26]’s
approach: 2.93 seconds, and (ii) Singla and Mooney [28]’s approach: 0.93 sec-
onds7. MLN-based approaches seem to be reasonably efficient for small datasets.
However, it does not scale to larger problems; for the RTE setting, Blythe et
al. [29] report that only 28 from 100 selected RTE-2 problems could be run to
completion. The processing time was 7.5 minutes on average [personal communi-
cation]. On the other hand, our method solves 76.9% of all the problems, where
suboptimal solutions are still available for the rest of 21.5%, and it takes only
0.84 seconds for search-space generation, and 11.73 seconds for ILP inference.

5 Related Work

A number of methods attempting to efficiently find the best explanation have
been proposed [15–18, 34, 35, etc.]; however, most of them focus on improving
the inefficiency of propositional logic-based abduction. Although propositional-
ization techniques are available for applying these methods to FOPL abduction,
it will lead to an exponential growth of ground instances. Hence they would not
scale to larger problems for FOPL abduction with large KBs.

Recently, Markov Logic Networks (MLNs) [30] are used for emulating ab-
duction [26, 28, 29, etc.]. They provide full support of first-order predicate
logic; however, MLN-based approaches require special procedures to convert ab-
duction problems into deduction problems because of the deductive nature of
MLNs. The pioneering work of MLN-based abduction [26] converts background
axioms by (i) reversing implication and (ii) constructing axioms representing
mutual exclusiveness of explanation (e.g. the set of background knowledge ax-
ioms {p1 → q, p2 → q, p3 → q} is converted into the following MLN formulae:
q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨¬p2, q → ¬p1 ∨¬p3 etc.). MLN-based approaches suffer
from the inefficiency of inference due to the increase of converted axioms.

One important work for FOPL abduction is Inoue and Inui [18]’s approach
formulating first-order predicate logic abduction as an ILP optimization prob-
lem. However, as mentioned in Sec. 1 and Sec. 2.2, this formulation has two
significant drawbacks for large-scale reasoning on real-life problems: (i) the com-
binatorial growth of transitivity constraints which arises from support for FOPL
(see Sec. 3.2), (ii) negation is not supported.

6 Conclusion

We have proposed an ILP-based formulation for cost-based abduction in full-
fledged first-order predicate logic, extending Inoue and Inui [18]’s formulation.

7 This is the result of MLN-HC in [28]. MLN-HCAM cannot be directly compared
with our results, since the search space is different from our experiments because
they unify some assumptions in advance to reduce the search space.

292 N. Inoue and K. Inui

Compared to prior work, our method is more expressive and efficient. Although
full-fledged FOPL reasoning is computationally expensive, our proposed opti-
mization strategy CPI brings us to a significant boosting of the efficiency of the
reasoner.We have evaluated our method on two datasets, including real-life prob-
lems (i.e. RTE dataset with axioms generated from WordNet and FrameNet).
Our evaluation revealed that our inference method CPI4CBA was highly effi-
cient than other existing systems. In future work, we will develop methods for
automatic tuning of costs of elemental hypotheses. Specifically, we plan to rep-
resent the cost function as a weighted linear feature function, and then apply
a standard linear training algorithm such as perceptrons. Also, we will evaluate
the abduction-based framework in terms of the prediction accuracy on real-life
tasks. We intend to apply abduction to co-reference resolution, the task of identi-
fying referential relations in natural language texts, as a first step. The abductive
inference engine presented in this paper is made publicly available.

Acknowledgments. This work was partially supported by Grant-in-Aid for
JSPS Fellows (22-9719) and Grant-in-Aid for Scientific Research (23240018).
The authors would like to thank the reviewers for their insightful comments.

References

1. Charniak, E., Goldman, R.P.: A Probabilistic Model of Plan Recognition. In:
AAAI, pp. 160–165 (1991)

2. Hobbs, J.R., Stickel, M., Martin, P., Edwards, D.: Interpretation as abduction.
Artificial Intelligence 63, 69–142 (1993)

3. Shanahan, M.: Perception as Abduction: Turning Sensor Data Into Meaningful
Representation. Cognitive Science 29(1), 103–134 (2005)

4. Peraldi, S.E., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia Interpreta-
tion as Abduction. In: Int’l Workshop on Description Logics (2007)

5. Fellbaum, C. (ed.): WordNet: an electronic lexical database. MIT Press (1998)
6. Ruppenhofer, J., Ellsworth, M., Petruck, M., Johnson, C., Scheffczyk, J.: FrameNet

II: Extended Theory and Practice. Technical report, Berkeley, USA (2010)
7. Chambers, N., Jurafsky, D.: Unsupervised Learning of Narrative Schemas and their

Participants. In: ACL, pp. 602–610 (2009)
8. Schoenmackers, S., Davis, J., Etzioni, O., Weld, D.: Learning First-order Horn

Clauses from Web Text. In: EMNLP, pp. 1088–1098 (2010)
9. Hovy, D., Zhang, C., Hovy, E., Penas, A.: Unsupervised discovery of domain-

specific knowledge from text. In: ACL, pp. 1466–1475 (2011)
10. Ovchinnikova, E., Montazeri, N., Alexandrov, T., Hobbs, J.R., McCord, M.,

Mulkar-Mehta, R.: Abductive Reasoning with a Large Knowledge Base for Dis-
course Processing. In: IWCS, Oxford, UK, pp. 225–234 (2011)

11. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: Ra-
tional, evaluation and approaches - Erratum. NLE 16(1), 105 (2010)

12. Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational
complexity of abduction. Artificial Intelligence 49(1-3), 25–60 (1991)

13. Mulkar, R., Hobbs, J., Hovy, E.: Learning from Reading Syntactically Complex
Biology Texts. In: Commonsense, Palo Alto (2007)

Large-Scale Cost-Based Abduction in Full-Fledged FOPL 293

14. Poole, D.: Logic Programming, Abduction and Probability: a top-down anytime
algorithm for estimating prior and posterior probabilities. New Generation Com-
puting 11(3-4), 377–400 (1993)

15. Ishizuka, M., Matsuo, Y.: SL Method for Computing a Near-optimal Solution using
Linear and Non-linear Programming in Cost-based Hypothetical Reasoning. In:
PRCAI, pp. 611–625 (1998)

16. Chivers, S.T., Tagliarini, G.A., Abdelbar, A.M.: An Evolutionary Optimization
Approach to Cost-Based Abduction, with Comparison to PSO. In: IJCNN, pp.
2926–2930 (2007)

17. Santos, E.: A linear constraint satisfaction approach to cost-based abduction. Ar-
tificial Intelligence 65 (1), 1–27 (1994)

18. Inoue, N., Inui, K.: ILP-Based Reasoning for Weighted Abduction. In: AAAIWork-
shop on Plan, Activity and Intent Recognition (2011)

19. Raina, R., Ng, A.Y., Manning, C.D.: Robust textual inference via learning and
abductive reasoning. In: AAAI (2005)

20. Stern, A., Dagan, I.: A confidence model for syntactically-motivated entailment
proofs. In: ACL, pp. 455–462 (2011)

21. Dantzig, G.B., Fulkerson, R., Johnson, S.M.: Solution of a large-scale traveling
salesman problem. Operations Research 2(4), 393–410 (1954)

22. Riedel, S., Clarke, J.: Incremental Integer Linear Programming for Non-projective
Dependency Parsing. In: EMNLP, pp. 129–137 (2006)

23. Riedel, S.: Improving the Accuracy and Efficiency of MAP Inference for Markov
Logic. In: UAI, pp. 468–475 (2008)

24. Joachims, T., Finley, T., Yu, C.J.: Cutting-plane training of structural svms. In:
Machine Learning, pp. 27–59 (2009)

25. Berant, J., Aviv, T., Goldberger, J.: Global Learning of Typed Entailment Rules.
In: ACL, pp. 610–619 (2008)

26. Kate, R.J., Mooney, R.J.: Probabilistic Abduction using Markov Logic Networks.
In: PAIRS (2009)

27. Raghavan, S., Mooney, R.J.: Bayesian Abductive Logic Programs. In: STARAI,
pp. 82–87 (2010)

28. Singla, P., Domingos, P.: Abductive Markov Logic for Plan Recognition. In: AAAI,
pp. 1069–1075 (2011)

29. Blythe, J., Hobbs, J.R., Domingos, P., Kate, R.J., Mooney, R.J.: Implementing
Weighted Abduction in Markov Logic. In: IWCS, Oxford, UK, pp. 55–64 (2011)

30. Richardson, M., Domingos, P.: Markov logic networks. In: ML, pp. 107–136 (2006)
31. Ng, H.T., Mooney, R.J.: Abductive Plan Recognition and Diagnosis: A Compre-

hensive Empirical Evaluation. In: KR, pp. 499–508 (1992)
32. Hobbs, J.R.: Ontological promiscuity. In: ACL, Chicago, Illinois, pp. 61–69 (1985)
33. Bos, J.: Wide-Coverage Semantic Analysis with Boxer. In: STEP, pp. 277–286

(2008)
34. Prendinger, H., Ishizuka, M.: First-Order Diagnosis by Propositional Reasoning:

A Representation-Based Approach. In: DX, pp. 220–225 (1999)
35. Abdelbar, A.M., Hefny, M.: An efficient lp-based admissible heuristic for cost-based

abduction. JETAI 17(3), 297–303 (2005)

Belief Base Change Operations for Answer Set

Programming

Patrick Krümpelmann and Gabriele Kern-Isberner

Technische Universität Dortmund, Germany

Abstract. We present a principled approach to the problem of belief
revision in (non-monotonic) logic programming under the answer set se-
mantics. Unlike previous approaches we use a belief base approach. Belief
bases are sets of sentences that are, in contrast to belief sets, not deduc-
tively closed. We show that many of the classic base revision postulates
are applicable to the logic programming case. We discuss further postu-
lates for logic program revision and show that many of them follow from
classical base revision postulates. For those postulates that do not follow
from base revision postulates we propose new postulates that may also
be justified from the base revision perspective. Moreover we develop a
new construction for prioritized multiple base revision based on a con-
solidation operation via remainder sets. This construction is applicable
in both the classical propositional and the logic programming cases. We
connect postulates and construction by proving a representation theorem
showing that the construction is exactly characterized by the proposed
set of postulates.

1 Introduction

Belief dynamics within classical logics have been studied for over 25 years now
[1]. The theory of classic belief revision has well formulated notions for theory
change. The notions of the objects of change are well defined. In general these
can be belief sets or belief bases, i. e. sets of classical propositional sentences
which are deductively closed or not, respectively. For both, well defined sets of
rationality postulates for different change operations have been defined. For
logic programs most approaches to dynamics are very pragmatic and lack a for-
mal representation of requirements of the change process. Few works examined
the formal properties of approaches to change logic programs. Most of these use
the classic AGM postulates for the revision of belief sets for logic programs. The
adequate definition of a belief set, a consequence relation and a notion of equality
is crucial but not at all trivial for the applicability of the classic postulates. First
attempts found that “the majority of the adapted AGM and update postulates
are violated . . . ” for a variety of approaches based on the causal rejection princi-
ple [2]. Hereby logic programs were interpreted as epistemic states, and a belief
set was defined to be the set of rules satisfied by all answer sets of the program.
A successful approach of a relation to the AGM theory was achieved by the use

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 294–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Belief Base Change Operations for Answer Set Programming 295

of monotonic SE-Models first presented in [3]. They made use of the seman-
tic characterization of programs via SE-models and applied an adapted version
of distance based revision operators from classic belief revision. This approach
was shown to satisfy the majority of the adopted AGM postulates. AGM style
revision operations for answer set programming (ASP) have disadvantages and
show undesired results from the ASP point of view as first noted in [4]. These
undesired results for change operations in ASP are due to the application of a
semantic approach to ASP.

In this work we approach change operations of ASP from the belief base
perspective. We focus on the revision operation and base it on a consolidation
operation which can be used to specify other types of change operations as well.
The well developed classical base revision approach has not been considered in
the light of ASP before. Indeed, we argue that the belief base approach is the
natural one for ASP. AGM change operations on belief sets can be seen as oper-
ations on the knowledge level, abstractly describing how an ideal reasoner would
change its beliefs. This underlies the assumption of an omnipotent reasoner while
ASP’s main features are efficient computation of finite programs with finite an-
swer sets. Deductive closure is defined neither for programs nor for answer sets.
Belief bases are also more expressive; since on the knowledge level one cannot
distinguish between inferred beliefs and fundamental, or self-supporting, ones.
While this abstraction from the fundamental beliefs and their syntactic repre-
sentation has advantages for the global picture of belief change we argue that
ASP is primarily a syntax based approach. A key feature of ASP is that beliefs
are formulated in form of easily understandable rules that allow for explicit ex-
ceptions and the explanation of inferences. From the base revision perspective
the result of a change operation for ASP should be founded, understandable and
close to the original syntax. In this work we present a general exploration of
the application of classic base revision theory to change operations on ASP. We
discuss ASP specific postulates from the literature in the light of a base revision
approach, proofs of the relationships among both and formulation of adapted
postulates. Finally, we develop a base revision construction which is applicable
to ASP and prove a characterization theorem for it.

The remainder of this paper is structured as follows. In the next two sections
we give some preliminaries on belief base revision and answer set programming.
Following on this we develop base revision postulates for ASP, discuss them and
relate them to other postulates for ASP belief change. After that we present our
construction of multiple base revision and show its applicability to ASP and the
correspondence to the postulates. Finally we discuss our approach and conclude.

2 Belief Base Revision

The classic theory of belief revision is formulated for a classical propositional
language Lprop. A belief base B ⊆ Lprop is a set of classical sentences and a belief
set BS is a deductively closed set of sentences. The theory of belief base change
operations has been intensively studied in [5]. Postulates have been established

296 P. Krümpelmann and G. Kern-Isberner

as well as constructions and representation theorems connecting both. Let ∗ be
a base revision operator which given a belief base B and a sentence α ∈ Lprop

returns the revised belief base B∗α. Moreover, an expansion operator + is defined
for belief bases as the non-closing expansion operator defined as B+α = B∪{α}.
The basic set of postulates demanded for a belief base revision operator is the
following:

Success: α ∈ B ∗ α
Inclusion: B ∗ α ⊆ B + α
Vacuity: If B ∪ α is consistent, then B + α ⊆ B ∗ α
Consistency: If α is consistent, then B ∗ α is consistent
Relevance: If β ∈ (B ∪ α) \ (B ∗ α), then there is a set H such that B ∗ α ⊆

H ⊆ B ∪ α and H is consistent but H ∪ {β} is inconsistent
Uniformity: If for all B′ ⊆ B,B′ ∪ α is inconsistent iff B′ ∪ β is inconsistent,

then B ∩ (B ∗ α) = B ∩ (B ∗ β)

The success postulate states that the new information should be part of the
revision result. Inclusion demands that revision by some information should not
introduce more information than expansion. Vacuity demands that if the new
information is consistent with the belief base then no information should be dis-
carded. Consistency postulates that if the new information is consistent in itself
then the result of the revision is consistent as well. Relevance states that any
discarded piece of information would have lead to inconsistency in a super set
of the revision result. Finally, uniformity says that the effect of revision on B is
basically determined by subsets which are inconsistent with the new informa-
tion. Besides expansion and revision, contraction − as an operation removing
information from the belief base is the third change operation considered in clas-
sical scenarios. It is linked to belief base revision via the Levi-Identity: B ∗ α =
(B − ¬α) + α. A standard construction is to define a contraction B − α as
the intersection of a selection of maximal sets not containing α. Formally for
a given belief base B and a sentence α the set of remainder sets denoted by
B ⊥ α is such that for each X ∈ B ⊥ α: X ⊆ B, α �∈ Cn(X) and there is no
X ′ such that X ⊂ X ′ ⊆ B and α �∈ Cn(X ′). Let B be a set of sentences. A
function γ is a selection function for B iff for all sentences α if B ⊥ α �= ∅ then
∅ �= γ(B ⊥ α) ⊆ B ⊥ α and if B ⊥ α = ∅ then γ(B ⊥ α) = {B}. The partial meet
contraction operator is then defined as B−γ α =

⋂
γ(B ⊥ α). It has been shown

that a revision operator satisfies all of the above postulates iff it is constructible
via the Levi-identity and a partial meet contraction operator.

3 Answer Set Programming

In this work we focus on extended logic programs under the answer set se-
mantics based on [6]. Most results generalize to generalized disjunctive logic
programs and variations of semantics which will be considered in future work.
Extended logic programs consist of rules over a set of propositional atoms A
using strong negation ¬ and default negation not. A literal L can be an atom

Belief Base Change Operations for Answer Set Programming 297

A or a negated atom ¬A. The complement of a literal L is denoted by ¬L and
is A iff L = ¬A and ¬A iff L = A. Let A be the set of all atoms and Lit
the set of all literals Lit = A ∪ {¬A | A ∈ A}. D = {not L | L ∈ Lit} de-
notes the set of all default negated literals which we call assumptions in the
following. L = Lit ∪ D represents the set of all literals and assumptions. A
rule r is written as L ← L0, . . . , Lm, not Lm+1, . . . ,not Ln. where the head of
the rule H(r) = L is either empty or consists of a single literal and the body
B(r) = {L0, . . . , Lm, not Lm+1, . . . ,not Ln} is a subset of L. The body consists
of a set of literals B(r)+ = {L0, . . . , Lm} and a set of assumptions denoted by
B(r)− = {Lm+1, . . . , Ln}. If B(r) = ∅, r is a fact and if H(r) = ∅, r is a con-
straint. A program without default negation is a strict program. Let the set of
constructible programs over A be denoted by PA.

A set of literals which is consistent, i. e. it does not contain complementary
literals L and ¬L, is called a state I. A literal L is true in I iff L ∈ I and false
otherwise. The body B(r) of a given rule r is true in I iff each L ∈ B(r)+ is true
in I and each L ∈ B(r)− is false in I. A rule r is true in I iff H(r) is true in I
whenever B(r) is true in I. A state is a model of a program P iff r is true in I for
all r ∈ P . The reduct PS of a program P relative to a set S of literals is defined
as: PS = {H(r) ← B+(r) | r ∈ P,B−(r) ∩ S = ∅}. An answer set of a program
P is a state I which is a minimal model of its reduct P I . The set of answer sets
of a program P is denoted by AS(P). A program P is consistent iff AS(P) �= ∅.
For some fixed set of atoms A two programs P ∈ PA and P ′ ∈ PA are uniformly
equivalent iff for all sets of facts F ∈ PA, AS(P ∪ F) = AS(P ′ ∪ F), strongly
equivalent iff F can be any program and ordinarily equivalent iff F = ∅.

4 Postulates for ASP Base Revision

We consider a multiple base revision operator ∗ : PA × PA → PA for ASP.
Revision aims at solving conflicts between prior and posterior beliefs that can
be discovered by inconsistencies. In the context of logic programs a notable
property of inconsistency is that the state of inconsistency of a program can
change non-monotonically. While in the classical case any subset of a consistent
set of sentences is consistent, for a consistent logic program Q there can be a
subset P ⊂ Q such that P is inconsistent.

Example 1. The program P = {a., ¬a← not b.} is obviously inconsistent. P ′ =
P ∪ {b ← not c.} is consistent with AS(P ′) = {{a, b}} while P ′′ = P ′ ∪ {c.} is
inconsistent again.

The base revision postulates given above can be directly translated to the logic
programming case with + being the non-closing expansion P + Q = P ∪ Q.
For ∗ being a multiple base revision operator for logic programs we define the
following postulates:

Success: Q ⊆ P ∗Q
Inclusion: P ∗Q ⊆ P +Q
Vacuity: If P +Q is consistent, then P +Q ⊆ P ∗Q

298 P. Krümpelmann and G. Kern-Isberner

Consistency: If Q is consistent, then P ∗Q is consistent.
Relevance: If r ∈ (P ∪ Q) \ (P ∗ Q), then there is a program H such that

P ∗Q ⊆ H ⊆ P ∪Q and H is consistent but H ∪ {r} is inconsistent.
Fullness: If r ∈ (P ∪Q) \ (P ∗Q), then P ∗Q is consistent and (P ∗Q) ∪ {r}

is inconsistent.
Uniformity: If for all P ′ ⊆ P, P ′∪{Q} is inconsistent iff P ′∪{R} is inconsistent,

then P ∩ (P ∗Q) = P ∩ (P ∗R)

The postulate of Fullness is a stronger version of Relevance and resembles a
stronger requirement to the minimality of change. For the classical case Fullness
is arguably too strong [5], however for weaker logics it has also been proven to
be useful, cf. [7]. For logic programing it also does not have the same undesirable
implications as we shall see later on.

Lemma 1. If ∗ satisfies Fullness, then it satisfies Relevance. If ∗ satisfies Rel-
evance, then it satisfies Vacuity.1

Due to the non-monotonicity of inconsistency we can strengthen the Consistency
postulate for the logic programming case such that they capture the same idea
as for the classical case. The Consistency postulate expresses in the classical
case that the outcome of the revision shall be consistent whenever possible. For
classical propositional logic this is possible iff the input is consistent. Due to
the Success postulate and the monotonicity of the state of inconsistency any
revision with an inconsistent input is inconsistent. If the input is consistent,
then rejecting all previous information in any case leads to a consistent belief
base. In logic programming, however, the input can be inconsistent, the Success
postulate satisfied and yet the revision outcome can be consistent. This is shown
by the following example.

Example 2. Let P = {b., ¬a.} and Q = {a., ¬a ← not b.}. The program Q is
inconsistent but the revision P ∗ Q = {b., a., ¬a ← not b.} is consistent and
satisfies all other postulates.

Hence we strengthen the Consistency postulate to adequately capture non-
monotonic inconsistency by use of an appropriate premise for the possibility
of consistency.

NM-Consistency: If there exists some consistent X , Q ⊆ X ⊆ P ∪ Q, then
P ∗Q is consistent.

Proposition 1. If a revision operator ∗ satisfies NM-Consistency, then it sat-
isfies Consistency.

The base revision postulates have been accepted as characterizations of desir-
able revision operations for classical belief bases. The postulates can be applied
to belief bases represented as logic programs as just shown. However, it has to
be shown that the defined postulates for belief base revision lead to desirable

1 Due to the page limit we do not include proofs in this paper.

Belief Base Change Operations for Answer Set Programming 299

inference behavior given the non-monotonicity of the answer set semantics. Fur-
ther postulates for the connection of the revision on the program level and the
resulting answer sets might have to be formulated. Such ASP specific postulates
for belief dynamics have been proposed in [2] and adopted by several authors
for the evaluation of their approaches afterwards [3,8,9]. Those postulates base
on the notion of ordinary equivalence based on the identity of the sets of answer
sets (AS) in [2]2, on strong equivalence (SE) in [3] and partially on uniform
equivalence (UE) in [8]. Here, we generalize the postulates by considering dif-
ferent notions of equivalence. Therefore we parameterize them with a notion
of equivalence based on ◦. We obtain the original postulates with ◦ = AS but
consider a family of equivalences ◦ ∈ {AS,UE, SE, P}; with ≡P being the syn-
tactic identity of the programs, i. e. P ≡P P ′ iff P = P ′. The equivalences are
increasingly stronger with the order given above. More precisely, it holds that
for any two programs P and P ′ that if P ≡P P ′ then P ≡SE P ′, if P ≡SE P ′

then P ≡UE P ′ and if P ≡UE P ′ then P ≡AS P ′. Thus apart from the orig-
inal postulates we also consider stronger versions of these. It should be noted
that this family of notions of equivalence could be extended by all intermediate
notions as formalized in [10]. For one of the postulates, namely the Tautology
postulate, we need to define the notion of tautological programs.

Definition 1. Let P be a program over the set of literals Lit. P is tautological,
denoted by P�, iff for each rule r ∈ P , r is true in all states I ⊆ Lit.

The generalized postulates for ASP revision from [2] are:

Initialisation◦: ∅ ∗ P ≡◦ P
Idempotence◦: P ∗ P ≡◦ P
Absorption◦: (P ∗Q) ∗Q ≡◦ P ∗Q
Tautology◦: P ∗ P� ≡◦ P
Disjointness◦: If P = P1 ∪P2 and P1 and P2 have disjoint sets of literals, then

P ∗Q ≡◦ (P1 ∗Q) ∪ (P2 ∗Q).
Parallelism◦: If Q1 and Q2 have disjoint sets of literals, then P ∗ (Q1∪Q2) ≡◦

(P ∗Q1) ∪ (P ∗Q2).

The implications on the equivalences given above lead to implications of the
resulting postulates. Most importantly we get that if an operator ∗ satisfies a
postulate for some notion of equivalence, then it also satisfies the variants of
the postulates for all weaker notions of equivalence, e. g., InitialisationP im-
plies InitialisationSE , InitialisationUE and InitialisationAS . On the other hand,
if ∗ is shown to violate InitialisationAS , then it also violates InitialisationUE ,
InitialisationSE and InitialisationP . The same holds for all other postulates. In
the following we only show results for the strongest version of a postulate and
omit the implications of them. We obtain the following results for the connection
of base revision postulates and ASP change postulates:

Proposition 2. Let ∗ be a revision operator on logic programs.

2 For finite alphabets.

300 P. Krümpelmann and G. Kern-Isberner

1. If ∗ satisfies Success and Inclusion, then it satisfies InitialisationP .
2. If ∗ satisfies Success and Inclusion, then it satisfies IdempotenceP .
3. If ∗ satisfies Success, Consistency, Inclusion and Vacuity, then it satisfies

AbsorptionP .

Hence, we have just shown that the first three ASP postulates follow for all
considered notions of equivalence from very basic base revision postulates. This
verifies the adequateness of the base revision approach for ASP. The remaining
four ASP postulates do not follow from the base revision postulates and are
in conflict with some of them. This might be due to the fact that they were
formulated for approaches for handling update sequences of logic programs which
were shown to “neither have update nor revision flavor” in the classical sense [2].
However, the underlying ideas of these postulates are useful and can be adapted
to the base revision setting, as we show in the following.

The TautologyAS postulate is violated if the belief base is inconsistent before
and consistent after revising by a tautology.

Example 3. Let P = {a.,¬a.} and Q = {b← b.} with AS(P) = ∅ and AS(Q) =
{∅}. For any revision operator ∗ satisfying TautologyAS we get AS(P ∗ Q) =
∅, e. g. P ∗ Q = {a.,¬a., b ← b.}. Consistency on the other hand allows for
changes to make the belief base consistent. For any revision operator ∗′ satisfying
Consistency we get AS(P ∗′ Q) �= ∅. In this case P ∗′ Q = {a., b ← b.} or
P ∗′ Q = {¬a., b← b.}.

Thus Tautology cannot be satisfied by any operator satisfying consistency be-
cause of the case in which an inconsistent belief base is made consistent by the
revision by a tautology.

Proposition 3. Let ∗ be a revision operator on logic programs.

1. If ∗ satisfies Consistency, then it violates TautologyAS .
2. If ∗ satisfies Vacuity, then it violates TautologyP .

Tautology in general addresses an important issue in ASP revision, namely that
if the belief base is consistent, the revision by a tautology should not lead to any
changes of the semantics. This is not satisfied by many approaches to dynamics
in ASP. To adapt the TautologyAS postulate to the base revision setting it is
desirable that TautologyAS is satisfied, except for the case in which the belief base
is inconsistent. To this end we introduce the following weakening of Tautology.

Consistent Tautology◦: If P is consistent, then P ∗ P� ≡◦ P .

The problem of the approaches not satisfying the Tautology postulate is that
they make unnecessary changes not only for tautological revisions. Any revision
by a program that has no semantic influence should not add any answer sets. This
idea has been discussed in [11] and formalized for dynamic logic programming
as the refined extension principle. Here we formalize this idea in the following
postulate for all ◦ equivalences:

Consistent Irrelevance◦: If P is consistent and P ≡◦ P ∪Q, then P ∗Q ≡◦ P .

Belief Base Change Operations for Answer Set Programming 301

Clearly Consistent Tautology◦ follows from Consistent Irrelevance◦ iff for all
P ∈ PA, P ∪ P� ≡◦ P . This holds for ≡AS,≡UE ,≡SE but not for ≡P .

Proposition 4. If ∗ satisfies Consistent Irrelevance◦ and ◦ ∈ {AS,UE, SE},
then ∗ satisfies Consistent Tautology◦.

Consistent Irrelevance◦ is a postulate formulating some form of minimal change
on the semantical level. Two basic postulates for minimal change of the base
revision postulates, Inclusion and Vacuity, are sufficient to guarantee Consistent
Irrelevance◦.

Proposition 5. If ∗ satisfies Inclusion and Vacuity, then it satisfies Consistent
Irrelevance◦ for ◦ ∈ {AS,UE, SE, P}.

Corollary 1. If ∗ satisfies Inclusion and Vacuity, then it satisfies Consistent
Tautology◦ for ◦ ∈ {AS,UE, SE}.

These results are consistent with Proposition 3 which includes a negative result
for the ◦ = P case of Corollary 1. We consider Parallelism◦ and Disjointness◦
together since the underlying idea is similar. The problem with Parallelism◦
and Disjointness◦ is that the respective third program Q resp. P can contain
rules connecting the disjoint sets of literals such that inconsistencies arise in
combination of both sets of literals but not based on a single one.

Proposition 6. Let ∗ be a revision operator on logic programs.

1. If ∗ satisfies Success, Consistency and Vacuity then it violates ParallelismAS .
2. If ∗ satisfies Vacuity and Consistency then it violates DisjointnessAS .

Consider the following example which demonstrates that DisjointnessAS is in
conflict with the principle of minimal change in base revision.

Example 4. Let P = {a., b.} such that P = P1∪P2 with P1 = {a.} and P2 = {b.},
and Q = {¬a ← b.}. For the revision of P1 ∗ Q we can note that there is no
conflict and AS(P1∪Q) = {{a.}} such that there is no need to change anything,
such that P1 ∗Q = P1 ∪Q seems to be a reasonable revision. The same holds for
P2 ∗Q with AS(P2 ∪ Q) = {{b.}}. The DisjointnessAS postulate demands that
AS(P ∗Q) = AS((P1 ∗Q) ∪ (P2 ∗Q)). In this case AS((P1 ∗Q) ∪ (P2 ∗Q)) = ∅
which is clearly not a desirable outcome for AS(P ∗Q).

DisjointnessAS is in conflict with the minimal change of the revisions of P1 ∗Q
and P2 ∗Q. In order to satisfy DisjointnessAS the revisions of P1 ∗Q and P2 ∗Q
have to be cautious enough to anticipate possible inconsistencies with additional
input. Here we consider that inconsistencies with some input should be handled
by a revision operator applied to this input and not by a previous revision.

Hence these postulates are too strong to be satisfiable by a base revision
approach. Therefore we present weakened versions of the postulates that allow
for minimal change operations.

Weak Disjointness◦: If P = P1∪P2 and P1 and P2 have disjoint sets of literals
A1 and A2 and for each set of literals Ar of a rule r ∈ Q it holds Ar∩A1 = ∅
or Ar ∩ A2 = ∅, then P ∗Q ≡◦ (P1 ∗Q) ∪ (P2 ∗Q).

302 P. Krümpelmann and G. Kern-Isberner

Weak Parallelism◦: If Q1 and Q2 have disjoint sets of literals A1 and A2, and
for each set of literals Ar of a rule r ∈ P it holds Ar∩A1 = ∅ or Ar∩A2 = ∅,
then P ∗ (Q1 ∪Q2) ≡◦ (P ∗Q1) ∪ (P ∗Q2).

These weakened versions of Disjointness◦ and Parallelism◦ are not in conflict
with the proposed set of base revision postulates, but are still strong enough
such that they do not follow from the base revision postulate set. Thus we add
them to the set of desirable postulates.

To sum up, we have shown that all postulates for ASP revision that are not in
conflict with the base revision setting follow from the base revision postulates. For
those ASP revision postulates that are in conflict with the base revision postulates
we gave adequately weakened versions. Therefore we are looking for an operator
which satisfies Success, Inclusion, NM-Consistency, Fullness, Uniformity, Weak
DisjointnessP andWeak ParallelismP . As shown above, such an operator also sat-
isfiesVacuity,Consistency,Relevance, Initialisation◦ , Idempotence◦,Absorption◦,
Consistent Irrelevance◦ for ◦ ∈ {AS,UE, SE, P}, and Consistent Tautology◦ for
◦ ∈ {AS,UE, SE}.

5 Construction of ASP Base Revision

The direct transfer of the construction of belief base operators via the Levi
identity to logic programs does not work, because neither the negation nor the
inference of a rule is defined and inconsistency cannot be reduced to complemen-
tary literals. Even in the very restricted case of a revision of some program P by
new information Q = {L.} consisting of a single fact, it would not be sufficient
to contract such that ¬L �∈ ∩AS(P).

So we have to look for different constructions which implement the idea of
the Levi-Identity while being adequate for the ASP case. The idea of the Levi-
Identity is, that after contracting by ¬α the belief base is consistent with α.
That is, the belief base is made consistent with the information to be added
before adding it. This does not work in general for the logic programming case
because the dependencies within a program are complex and cannot be antici-
pated without including the input program. The inconsistency of a program P
with a new program Q can only be determined by considering P ∪ Q, as the
interaction of rules of both programs generates the inconsistency. Base revision
constructions of this type are called external revision since a sub-operation takes
place outside of the original set. Hence the base revision construction for logic
programs has to consider P ∪ Q to determine inconsistency. From P ∪ Q rules
are removed such that the resulting program is consistent with Q. This idea
amounts to the consolidation of P ∪ Q under certain constraints. In the base
revision literature the unary operator ! is called a consolidation operator and
results in a consistent subset of the input. A consolidation operator has been
used in [12] to define semi-revision, which is defined as B ∗? α = (B ∪ α) !. The
problem with semi-revision for our means is that it is non-prioritized, i. e. the
success postulate is not satisfied in general.

Belief Base Change Operations for Answer Set Programming 303

We extend the idea of the semi-revision construction to be able to define a
prioritized revision operator for logic programs. To this end we define a screened
consolidation operator !R with R being a set of core sentences that are immune to
change like in screened revision [13]. We propose the following set of postulates
for a screened consolidation:

C-Screen: R ⊆ P !R.
C-Screen-Consistency: If there exists some consistent X , R ⊆ X ⊆ P then

P !R is consistent.
C-Inclusion: P !R ⊆ P
C-Relevance: If r ∈ P and r �∈ P !R, then there is a set P ′ such that P !R ⊆

P ′ ⊆ P and that P ′ is consistent but P ′ ∪ {r} is inconsistent.
C-Fullness: If r ∈ P and r �∈ P !R, then P !R is consistent and P !R ∪ {r} is

inconsistent.
C-Screen-Uniformity: Let R,R′ and P be sets of rules and R and R′ be

consistent. If for all X ⊆ P , R∪X is consistent iff R′ ∪X is consistent, then
P ∩ (P ∪R)!R = P ∩ (P ∪R′)!R′ .

Note that as in the classic case satisfaction of C-Fullness implies satisfaction of
C-Relevance.

Proposition 7. Let !R be a screened consolidation operator. If !R satisfies C −
Fullness, then it satisfies C −Relevance.

Definition 2 (Screened Consolidation). An operator !R is an operator of
screened consolidation iff it satisfies C-Screen, C-Screen-Consistency, C-Inclusion,
C-Relevance, C-Fullness and C-Screen-Uniformity.

As stated before, the new postulates of Weak-Disjointness◦ and Weak-Parallel-
ism◦ do not follow from the basic set of belief base postulates. This is also true for
the postulate set for screened consolidation presented here. For their satisfaction
we introduce the notion of topic independence as defined in [12], which bases on
topicalizations.

Definition 3. [12] Let P be a set and P(P) the powerset of P . A set B ⊆ P(P)
is a topicalization of P iff: P =

⋃
B and if R ⊆ P , then R is consistent if R∩B

is consistent for all B ∈ B

A topicalization B of P is hence a cover of P for which it holds that the consis-
tency of each subset of P is only dependent on the consistency of its projection
for each topic B ∈ B.

C-Topic-Independence: [12] If B is a topicalization of P , then P \ P !R =⋃
B∈B(B \B!R)

The postulate of C-Topic-Independence demands that given a topicalization of
P each rule that has been removed from P by the consolidation operation !R is
also removed from each topic B ∈ B with r ∈ B by the respective consolidation
of the topic and each rule removed by all consolidations of topics of P containing
it is removed from P .

304 P. Krümpelmann and G. Kern-Isberner

Definition 4. Given a screened consolidation operator !R we define a multiple
ASP base revision operator by setting: P ∗Q = (P ∪Q)!Q

Proposition 8. Let ∗ be a multiple base revision operator defined as P ∗Q = (P ∪
Q)!Q. If !R is a screenedconsolidationoperator that satisfiesC-Topic-Independence,
then ∗ satisfies Success, Inclusion, Vacuity, Consistency, NM-Consistency, Rele-
vance, Fullness, Uniformity, Weak-DisjointnessP and Weak-ParallelismP .

We based the revision operation on a consolidation operation and characterized
the latter by a set of postulates. We need a construction of a screened con-
solidation operator that is suitable for the application to logic programs. Two
constructions of consolidation operations are available from belief base theory:
partial meet and kernel consolidation [12]. We use a partial meet construction
here. We start by defining a screened version of remainder sets for logic programs
in which all remainder sets contain the screened set of rules.

Definition 5 (Screened Remainder Sets). For sets of sentences P and R
with R ⊆ P the set of screened consistent remainder sets of P , denoted by
P ⊥! R is such that for each X ∈ P ⊥! R: 1) R ⊆ X ⊆ P , 2) X is consistent,
and 3) there is no X ′ such that X ⊂ X ′ ⊆ P and X ′ is consistent

The definition of screened remainder sets differs from the original formulation
only in the first condition which is X ⊆ P originally. In contrast to the classical
case, the intersection of remainders of logic programs is not necessarily consistent
due to the non-monotonicity of logic programs.

Example 5. Let P = {a ← b.,¬a., b.,← not ¬a, not b.}. The set of remainder
sets with the empty screen are P ⊥! ∅ = {{a← b., b., ← not ¬a, not b.}, {¬a., b.,
← not ¬a, not b.}, {a← b., ¬a., ← not ¬a, not b.}}. The intersection of the first
two remainders, {b., ← not ¬a, not b.}, is consistent. The intersection of the first
and the last remainder, {a← b., ← not ¬a, not b.}, is inconsistent.

This leaves us with the option of selecting exactly one of the remainders which
also has the advantage of performing less change.

A selection function is specific to a certain belief base since it shall evaluate to
the belief base if no remainder sets exists. We obtain a global selection function by
making use of a two place selection function [5] with the belief base a parameter.

Definition 6 (Global maxichoice selection function). Let P be a set of
sentences. γP is a selection function for P iff for all sets of sentences R

1. If P ⊥! R �= ∅, then γP (P ⊥! R) = X for some X ∈ P ⊥! R.
2. If P ⊥! R = ∅, then γP (P ⊥! R) = P .

A global maxichoice selection function is a function γ such that for each P ⊆ L,
γ(P, ·) = γP (·) is a selection function for P. We drop the index P if it is obvious.

A global maxichoice selection function is globally defined for all belief bases.
Hence, in contrast to one place selection functions, global maxichoice selection
functions are not specific to one particular belief base. Moreover, properties

Belief Base Change Operations for Answer Set Programming 305

of consolidation operators which connect the consolidation results of several
dependent belief bases can only be expressed for global maxichoice selection
functions. We define a screened maxichoice consolidation operation based on a
global maxichoice selection function.

Definition 7. Let P and R be sets of sentences and γ a maxichoice selection
function for P . The operation P !R such that P !R = γ(P ⊥! R) is a screened
maxichoice consolidation based on γ.

The following representation theorem shows that any screened maxichoice con-
solidation satisfies the set of postulates for screened consolidation and, moreover,
that any operation satisfying these postulates can be constructed as a screened
maxichoice consolidation.

Proposition 9. An operation !R is an operation of screened maxichoice consol-
idation iff it satisfies C-Inclusion, C-Screen-Consistency, C-Screen, C-Fullness
and C-Uniformity.

Finally, we link maxichoice consolidation with topic-independence by a notion
of monotony for selection functions.

Definition 8. A global selection function γ is monotone iff for all P, P ′ ⊆ L, if
for each X ∈ P ⊥! ∅ there exists some X ′ ∈ P ′ ⊥! ∅ such that P \X = P \X ′,
then P \ γ(P ⊥! ∅) = P \ γ(P ′ ⊥! ∅).

An operator of screened consolidation is monotone iff it is based on a mono-
tone selection function.

Proposition 10. If a screened maxichoice consolidation operator is based on a
monotone maxichoice selection function, then it satisfies topic-independence.

6 Discussion and Conclusion

In this work we presented a base revision description and construction for belief
bases represented by extended logic programs under the answer set semantics.
The majority of work on the dynamics in logic programming has focused on the
implementation of inconsistency handling in sequences of logic programs via logic
programs, e. g. [11,2,14]. Most of the principle based approaches used the classic
AGM postulates for belief set revision as reference and developed alternative
postulates as discussed previously, e. g. [2,11]. The closest work to base revision
is the state transition system approach presented in [15] which was meant to
satisfy base revision postulates for the revision by a fact, but no formal results
are shown. In terms of the adaption of classic construction for belief revision only
the distance based construction via SE-Models of [3] has been used. Approaches
to belief revision in other non-monotonic formalisms are often not based on
principles and very specific to the underlying logic [16,17]. A principle based
approach to contraction operations in logic programs has been considered in
[18]. The results presented in this paper show that the base revision approach to
belief revision is applicable to revision of logic programs and formalizes adequate

306 P. Krümpelmann and G. Kern-Isberner

properties such an operation should satisfy. We defined new postulates and a
construction satisfying all proposed postulates. This resembles an important
foundation for base revision approaches to answer set programming.

Acknowledgements. This work has been supported by the DFG, Collaborative
Research Center SFB876, Project A5. (http://sfb876.tu-dortmund.de)

References

1. Fermé, E., Hansson, S.: AGM 25 years. Journal of Philosophical Logic 40, 295–331
(2011), doi:10.1007/s10992-011-9171-9

2. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming 2(6) (2002)

3. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic pro-
grams under answer set semantics. In: Proc. of the 11th Int’l Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2008). AAAI Press (2008)

4. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In:
Proc. of the 19th European Conference on Artificial Intelligence, ECAI (2010)

5. Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers, Nor-
well (2001)

6. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the
A-Prolog perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

7. Delgrande, J.P.: Horn clause belief change: Contraction functions. In: Proc. of the
11th int’l Conference on Principles of Knowledge Representation and Reasoning
(KR), pp. 156–165. AAAI Press (2008)

8. Delgrande, J.P.: An approach to revising logic programs under the answer set se-
mantics. In: 13th Int’l Workshop on Non-Monotonic Reasoning, NMR 2010 (2010)

9. Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based
on basic structural properties. Theory Pract. Log. Program. 7(4), 451–479 (2007)

10. Woltran, S.: A common view on strong, uniform, and other notions of equivalence
in answer-set programming. Theory Pract. Log. Program. 8(2), 217–234 (2008)

11. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for
semantics of dynamic logic programming. Studia Logica 79(1) (2005)

12. Hansson, S.O.: Semi-revision. Journal of Applied Non-Classical Logics 7(2) (1997)
13. Makinson, D.: Screened revision. Theoria. 63(1-2), 14–23 (1997)
14. Krümpelmann, P.: Dependency semantics for sequences of extended logic programs.

Logic Journal of the IGPL (2012), doi: 10.1093/jigpal/jzs012
15. Kudo, Y., Murai, T.: A Method of Belief Base Revision for Extended Logic Pro-

grams Based on State Transition Diagrams. n: Negoita, M.G., Howlett, R.J., Jain,
L.C. (eds.) KES 2004, Part I. LNCS (LNAI), vol. 3213, pp. 1079–1084. Springer,
Heidelberg (2004)

16. Witteveen, G., van der Hoek, W.: A General Framework for Revising Nonmono-
tonic Theories. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 258–272. Springer, Heidelberg (1997)

17. Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: Revising Nonmono-
tonic Theories: The Case of Defeasible Logic. In: Burgard, W., Christaller, T.,
Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 101–112. Springer,
Heidelberg (1999)

18. Krümpelmann, P., Kern-Isberner, G.: On belief dynamics of dependency relations
for extended logic programs. In: Proceedings of the 13th International Workshop
on Non-Monotonic Reasoning, NMR 2010 (2010)

http://sfb876.tu-dortmund.de

A Framework for Semantic-Based Similarity

Measures for ELH-Concepts

Karsten Lehmann1,2 and Anni-Yasmin Turhan3,	

1 Optimisation Research Group, NICTA
Karsten.Lehmann@nicta.com.au

2 Artificial Intelligence Group, Australian National University
3 Institute for Theoretical Computer, TU Dresden, Germany

turhan@tcs.inf.tu-dresden.de

Abstract. Similarity measures for concepts written in Description Log-
ics (DLs) are often devised based on the syntax of concepts or simply by
adjusting them to a set of instance data. These measures do not take the
semantics of the concepts into account and can thus lead to unintuitive
results. It even remains unclear how these measures behave if applied to
new domains or new sets of instance data.

In this paper we develop a framework for similarity measures for ELH-
concept descriptions based on the semantics of the DL ELH. We show that
our framework ensures that the measures resulting from instantiations
fulfill fundamental properties, such as equivalence invariance, yet the
framework provides the flexibility to adjust measures to specifics of the
modelled domain.

1 Introduction

Concept similarity measures map a pair of concepts from an ontology to a value
between 0 and 1 indicating how similar the concepts are. These measures are
an important means to discover similar concepts in ontologies. In bio-medical
ontology-based applications, for example the Gene ontology [5], they are em-
ployed to discover functional similarities of genes. Furthermore, concept similar-
ity measures are used in ontology alignment algorithms [9].

A common approach to find and evaluate similarity measures is to have test
data and to tune a similarity measure until it matches the results of a human
expert. The disadvantage of this approach is that the behavior of such a measure
is hard to predict when applied to new test data, or when used for ontologies
modeling a different domain. As a consequence an ontology developer cannot
competently decide whether a measure obtained in this way is suitable for a
particular task.

Description Logics (DLs) are a family of knowledge representation formalisms
with formal semantics. A good similarity measure for DL concepts should take

� Partially supported by the German Research Foundation (DFG) in the Collaborative
Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 307–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 K. Lehmann and A.-Y. Turhan

the semantics of the underlying formalism into account, instead of assessing
similarity in a purely syntactical way. Similarity measures are often tailored for
particular applications. Thus, one similarity measure will hardly meet the needs
of all applications.

In [8] the intended behavior of a measure was discussed and partially captured
in terms of properties. These properties were adapted from metric spaces which
are related to similarity measures. We follow this approach to address the prob-
lems mentioned above. We extend this set of properties by including DL specific
ones and mathematically describe those from [8] in terms of DL. The formal-
ization of the properties allows us to prove whether or not an obtained measure
has the desired properties. Additionally, we investigate existing DL similarity
measures to determine which of the properties they fulfill. We then propose the
framework simi for similarity measures for ELH-concepts. If instantiated with
the right functions and operators as building blocks, simi yields measures for
which (most of) the formalized properties can be guaranteed. At the same time
the framework retains flexibility as it allows users to choose from the list which
properties the resulting measure should have and to build their measure accord-
ingly. Furthermore, the resulting similarity measures can be computed efficiently,
provided that functions employed can be computed efficiently as well.

Our choice for the DL ELH is motivated by the fact that large, well-known bio-
medical ontologies such as the Gene Ontology [5] or Snomed [21] are written in
(extensions of) ELH. Furthermore, ELH is a fragment of the DL that corresponds
to the OWL 2 EL profile, which is part of the W3C standard for an ontology
language for the Semantic Web [23, 19].

The paper is structured as follows: we start with preliminaries on DLs. In
Section 3, we introduce the set of properties desirable for similarity measures
and in Section 4 we devise a framework for constructing similarity measures
that fulfill (most of) the introduced properties. The paper ends with conclusions
and directions for future work.

2 Preliminaries

In this section we introduce the basic notions of DLs. For a thorough introduction
see [1]. Starting from a finite set of concept names NC and a finite set of role
names NR, complex concepts can be defined using concept constructors. Let A,
B ∈ NC , then EL-concepts are formed according to the following syntax rule:

C ::= � | A | C
D | ∃r.C

where r ∈ NR and C, D denote arbitrary EL-concepts. A concept of the form
∃r.C is called an existential restriction and one of the from C
 D is called
a conjunction. We call the DL, that only offers conjunction as a concept con-
structor, L0. The semantics of concepts is given in terms of interpretations. An
interpretation I = (Δ, ·) consists of the interpretation domain ΔI a non-empty
set and an interpretation function ·I that assigns role names to binary relations
on ΔI and concepts to subsets of ΔI . The top-concept � is mapped to ΔI . The

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 309

extension of the interpretation function to conjunctions is (C
D)I := CI ∩DI

and to existential restrictions (∃r.C)I := {d ∈ ΔI | ∃e ∈ ΔI : (d, e) ∈ rI and
e ∈ CI}.

A concept definition assigns a concept name to a complex concept. We callA =
C a concept definition and A � C a primitive concept definition. A finite set of
(possibly primitive) concept definitions is a TBox T . If the (primitive) definitions
in a TBox are acyclic and do not contain multiple definitions we call the TBox
unfoldable. Concept names occurring on the left-hand side of a definition are
called defined concepts. All other concept names are called primitive concepts.
Let s, r ∈ NR. A role inclusion axiom (RIA) is a statement of the form: r � s.
The DL that extends EL by RIAs is called ELH. An interpretation is a model for
s � r iff sI ⊆ rI . A finite set of RIAs is called RBox R. An interpretation I is a
model of the TBox T (RBox R) iff it satisfies all its concept definitions (RIAs).
We write s �R r, if sI ⊆ rI holds in all models of R and s ≡R r, if s �R r and
r �R s hold.

A DL knowledge base (KB) K consists of the TBox and the RBox and we say
that an interpretation I is a model of K, if it is a model for the corresponding
TBox and RBox.

Based on the semantics of concepts, reasoning problems can be defined. The
concept C is subsumed by the concept D w.r.t. the KB K (C �K D) iff CI ⊆ DI

holds for all models I ofK. C andD are equivalent w.r.t. K (C ≡K D) iff C �K D
and D �K C.

For a given concept C, expansion replaces exhaustively all occurrences of de-
fined concepts in C by the right-hand sides of their concept definitions. For
unfoldable TBoxes all reasoning problems can be reduced to reasoning for con-
cepts by using expansion of concepts w.r.t. the TBox [1].

We denote the set of concepts for a specific DL L with C(L), e.g., C(EL) is
the set of all EL-concepts. We call concepts that are either concept names or
existential restrictions atoms and denote the set of atoms by NA.

For EL-concepts a unique normal form (modulo associativity and commuta-
tivity), was given in [2], which we extend to ELH-concepts in presence of RBoxes.
To treat equivalent roles, we define [r] = {s ∈ NR | r≡Rs} and fix a function f
that picks one role ri from each equivalence class and replaces each occurrence
of a role from [ri] with ri. Given an RBox R and an ELH-concept C, C is in
ELH-normal form, if the following 4 rules have been applied exhaustively to the
concept C and its subconcepts:

1. A
 � −→ A, 2. A
 A −→ A, 3. ∃r.C′ −→ ∃f([r]).C′,

4. ∃r.C′
 ∃s.D′ −→ ∃r.C′ if r �R s and C′ � D′

The transformation of ELH-concepts into ELH-normal form can be done in poly-
nomial time.

3 Properties for Concept Similarity Measures

Formally, a concept similarity measure sim is a function mapping from pairs of
ELH-concepts to the interval [0, 1]. To identify properties of similarity measures

310 K. Lehmann and A.-Y. Turhan

for concepts, [8] used metric spaces as a starting point, which was also done in
other areas of similarity research (see [22, 16, 17, 20]). A metric can be interpreted
as a dissimilarity measure. The distance represents the dissimilarity between two
objects—the lower their distance, the higher the similarity. Using a metric d, we
can obtain a similarity function s by defining s(a, b) := 1 − d(a, b). If we adapt
the properties of a metric accordingly, we obtain the following properties for
similarity functions.

Definition 1. Let D be a set. A function s : D ×D −→ [0, 1] is called a simi-
larity function for D iff for all a, b, c ∈ D holds

1. s(a, b) = 1 ⇐⇒ a = b, (identity of indiscernibles)
2. s(a, b) = s(b, a), and (symmetry)
3. 1 + s(a, b) ≥ s(a, c) + s(c, b) (triangle inequality).

Next we present definitions of properties of concept similarity measures and the
underlying intuitions for these properties. We start with a formal definition of
the properties and discuss each of them afterwards.

Definition 2. Let C,D,E ∈ C(ELH). A similarity measure sim is

1. symmetric iff sim(C,D) = sim(D,C).
2. fulfilling the triangle inequality property iff

1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

3. equivalence invariant iff C ≡ D =⇒ sim(C,E) = sim(D,E).
4. equivalence closed iff sim(C,D) = 1 ⇐⇒ C ≡ D.
5. subsumption preserving iff C � D � E =⇒ sim(C,D) ≥ sim(C,E).
6. reverse subsumption preserving iff C � D � E =⇒ sim(C,E) ≤ sim(D,E).
7. structurally dependent iff for all sequences (Cn)n of atoms with ∀i, j ∈ N, i �=

j : Ci �� Cj the concepts

Dn :=
�
i≤n

Ci
D and En :=
�
i≤n

Ci
 E

fulfill the condition limn→∞ sim(Dn, En) = 1.

The properties 1. to 4. are adopted from the literature, whereas to the best of
our knowledge the properties 5. to 7. are introduced for DLs in this paper.

Symmetry is a rather controversial property for similarity in general—while
some consider it essential [18], cognitive sciences seems to favor an asym-
metric notion of similarity [22, 4]. Even for DL concepts Janowicz et al.
[13, 12] prefer asymmetry (but devise symmetric measures), whereas most
[3, 7, 6, 10, 8] consider it a fundamental property of similarity of concepts.

Triangle property is inherited from metrics. Two papers mentioned triangle
inequality in the context of DLs: [8] argues in favor, while [12] argue against
it, because of Tversky’s [22] work.

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 311

DLs allow the same thing to be described in different ways. Two concepts can
be syntactically different and yet semantically equivalent. A similarity measure
for complex concepts should depend on the semantics rather than the syntax of
the concepts to measure.

Equivalence Invariance ensures that two equivalent concepts have the same
similarity towards a third concept. Equivalence invariance is widely accepted
as a necessary property for measures for DL concepts ([13, 12, 6, 8]). Yet
we found that the methods used to ensure equivalence invariance were not
always sound (see Section 3.1).

Equivalence Closure holds for a similarity measure if and only if two concepts
are totally similar if and only if they are equivalent. This corresponds with
the idea that indiscernible things are identical. Equivalence closure is consid-
ered to be a basic property for concept similarity measures [8, 12] especially
since it is inherited from metrics.

One asset of DLs is their reasoning services. An intuitive idea is to characterize
similarity of concepts in terms of these services. The subsumption relation yields
a total partial order on concepts. Consider the case where C,D,E ∈ C(ELH) and
C � D � E. A natural requirement of similarity measures is to reflect this
constellation.

Subsumption Preservation expresses that the similarity of C andD is higher
than the one of C and E because C is ‘closer’ to D than to E.

Reverse subsumption Preservation states likewise that the similarity of D
and E is higher than the similarity of C and E, since E is ‘closer’ to D than
to C.

In [15] we also employ the reasoning service least common subsumer to capture
the characteristics of total dissimilarity of concept similarity.

Tversky [22] presents the feature model, where an object is described by a set
of features. The similarity of two objects is measured by a relation between the
number of common features of both objects and the number of unique features
of each object. The basic rule is that if

1. the number of common features increases and

2. the number of uncommon features is constant

then the similarity must increase.

Structural Dependence reflects this basic rule. Concepts are our objects to
compare and the atoms of a conjunction represent the features of the object.
The intuition is that the more features (atoms) two complex concepts share,
the higher their similarity should be.

For a more detailed explanation of the last property and for a presentation of
examples illustrating the above properties see [15].

312 K. Lehmann and A.-Y. Turhan

Table 1. Overview of similarity measures and their properties

symm. triang. eq. inv. eq. cl. subs. rev. subs. struc. dep. DL

simi � - � � � - � ELH
Jacc [11] � � � � � � � L0

[13] � - - - - - � SHI
[12] � - - - - - � ALCHQ
[7] - - - - - - - ALC
[10] � - � - � � - ALN
[6] � - � - � � - ALC
[8] � - � - � � - ALE

3.1 Inspecting Existing Concept Similarity Measures

We distinguish two kinds of concept similarity measures: structural measures and
interpretation based measures. Structural measures are defined using the syntax
of the concepts to measure. Since conjunction and disjunction are commutative
and associative, these measures are invariant to the order of the atoms in a con-
junction or disjunction. The measures differ regarding the similarity of primitive
concepts: [12] uses the TBox whereas [7] and [10] use the canonical interpreta-
tion which takes the set of ABox individuals as the interpretation domain (for
an introduction to ABoxes see [1]).

Interpretation based measures are defined using interpretations and cardi-
nality, instead of the syntax of the (possibly) complex concepts to measure.
Therefore, they are trivially equivalence invariant. The two interpretation based
measures we investigated [6, 8] are using the canonical interpretation IA. These
measures need a populated and representative ABox as a significant domain.

Table 1 presents an overview of similarity measures for concepts written in dif-
ferent DLs (including our measure simi to be defined in Section 4) and whether
or not they fulfill the properties from Definition 2. The proofs can be found in
[15]. The first four measures are purely structural measures. The next two are
structural measures which use the canonical interpretations to measure primi-
tives. The last two are purely interpretation based measures.

We included the Jaccard index [11], which is originally a set measure, here
adapted to L0. Interestingly, this is the only measure of those investigated that
fulfills the triangle inequality.

Our thorough investigation of the similarity measures defined in the literature
showed that defining a similarity measure that fulfills most of the properties from
Definition 2 is by no means a trivial task—in particular if the DL allows the use
of roles, as the lightweight DL ELH already does.

4 Developing Concept Similarity Measures for ELH
We present simi, a framework for similarity measures for concepts written in the
DL ELH based on the semantics of the logic. It operates on (complex) concepts

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 313

and an RBoxR, which contains role inclusion axioms. If concepts to be processed
contain concepts defined in an unfoldable TBox T , we assume that these concepts
are expanded w.r.t. T , i.e., all concept names occurring in them are primitive
names.

Another preprocessing step is to transform the concepts into ELH-normal form
(defined in Section 2). Concepts in this normal form are unique (modulo asso-
ciativity and commutativity), which ensures that simi (and any other measure
processing concepts in this normal form) is equivalence invariant. We assume for
the remainder of the paper that the concepts are in ELH-normal form.

The framework simi constructs similarity measures from several free parame-
ters, i.e., it allows functions to be combined in such a way that, if these functions
fulfill certain properties, then the resulting similarity measure can be shown to
fulfill all properties from Definition 2 except reverse subsumption preserving and
the triangle inequality. Furthermore, it can be computed efficiently.
Simi is inspired by the Jaccard index and it is a conservative extension of

the Jaccard index, in the sense that ∀C,D ∈ C(L0) : simi(C,D) = Jacc(C,D)
(proven in [15]). Another inspiration is the equivalence of concepts, which can
be regarded as a trivial similarity measure: the similarity of two concepts is 1
if they are equivalent and 0 otherwise. To determine if C ≡ D is true, one can
use the subsumption test to find out whether or not C � D and D � C are
true. We generalize this approach in simi by introducing a generalization of
the subsumption operator. Since such an operator is in general an asymmetric
function, we call it directed simi and denote it with simid (to be introduced in
Section 4.1). Now, once the values simid(C,D) and simid(D,C) are computed,
we have to combine them with an operator to obtain a value for simi. Instead
of fixing a specific operator, we identify the properties such an operator needs
to provide such that simi fulfills as many of the properties as possible. We call
such an operator a fuzzy connector (denoted with ⊗). A fuzzy connector ⊗ is an
operator on the interval [0, 1], ⊗ : [0, 1]2 −→ [0, 1] such that for all x, y ∈ [0, 1]
the following properties are true.

– Commutativity: x⊗ y = y ⊗ x,
– Equivalence closed: x⊗ y = 1 ⇐⇒ x = y = 1,
– Weak monotonicity: x ≤ y =⇒ 1⊗ x ≤ 1⊗ y,
– Bounded: x⊗ y = 0 =⇒ x = 0 or y = 0 and
– Grounded: 0⊗ 0 = 0.

Using a fuzzy connector, simi is simply defined as

simi(C,D) := simid(C,D)⊗ simid(D,C)

where C and D are arbitrary ELH-concepts.
The commutativity of a fuzzy connector ensures that simi is symmetric,

the property equivalence closed provides the same property for the resulting
similarity measure and weak monotonicity is sufficient to prove that simi ful-
fills subsumption preserving. Examples for fuzzy connectors are the average
and triangular norms (t-norms, ⊗) [14] which fulfill the property that for all
x, y ∈ [0, 1] : x⊗ y = 0 =⇒ x = 0 or y = 0 as shown in [15].

314 K. Lehmann and A.-Y. Turhan

4.1 A Directed Similarity Measure: simid

To formulate simid, we need a bit of notation. If convenient, we treat concepts
as sets of atoms. Let C ∈ C(ELH), then it can be written as C =

�
i≤n Ci where

∀i ≤ n : Ci ∈ NA. The function (·̂) maps concepts to sets of atoms, so for C,

Ĉ := {C1, C2, . . . , Cn}. Now, the starting point for the derivation of simid is the
function

d(C,D) :=
|Ĉ ∩ D̂|
|Ĉ|

which is inspired by the Jaccard Index. This function can be used to measure the
similarity of sets of concept names. In order to be able to incorporate existential
restrictions, we rewrite the numerator of d to

|Ĉ ∩ D̂| =
∑
C′∈ ̂C

max
D′∈ ̂D

f(C′, D′), (1)

where the function f : NC −→ {0, 1} is defined as f(C′, D′) := 1 if C′ = D′ and
0 otherwise.

The simplifying assumption for f is that two different concept names denote
always totally dissimilar concepts. However, this assumption may not be correct
in all cases. Therefore, we generalize f by introducing a measure for concept
names. In order to work for existential restrictions, this measure has to be able
to deal with role names, too. In addition, we have to ensure some properties for
this measure to guarantee properties for simi. We call this measure for (concept
or role) names a primitive measure and denote it with pm. More formally, it
is a function of type pm : N2

C ∪ N2
r −→ [0, 1] with the property that for all

A,B ∈ NC and r, s, t ∈ Nr the following holds:

– pm(A,B) = 1 ⇐⇒ A = B,
– pm(r, s) = 1 ⇐⇒ s � r,
– s �R r =⇒ pm(s, r) > 0, and
– t �R s =⇒ pm(r, s) ≤ pm(r, t).

The first two properties are sufficient to ensure that simi fulfills equivalence
closed and the last one is needed to prove that simi fulfills subsumption pre-
serving. Note that pm does not need to be symmetric.

To incorporate existential restrictions into d we have three cases to consider.
Namely, we need to be able to compute the similarity of two concept names, of
a concept name and an existential restriction and of two existential restrictions.
The first case is handled directly by the primitive measure pm. In the second
case, we assert that a concept name and an existential restriction are always
totally dissimilar and thus their similarity is 0. For the third case, let ∃r.C∗

and ∃s.D∗ be the two existential restrictions. To compute the similarity of both
atoms, we proceed component-wise. The similarity of the role names is computed
using the primitive measure pm and the similarity of the concepts C∗ and D∗

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 315

is computed by a recursive call to d. Then, to combine both values we use a
number w ∈ (0, 1) and the formula

d(∃r.C∗, ∃s.D∗) := pm(r, s) · [w + (1 − w) · d(C∗, D∗)].

Forcing w > 0, enables us for d(C∗, D∗) = 0 to distinguish between the cases
where the roles are similar and where they are not. In the first case, the similarity
is w, whereas in the second one, the similarity is 0.

As a suitable w, we suggest the value n where one would say that the concepts

C := ∃r. · · · ∃r.︸ ︷︷ ︸
n

A and D := ∃r. · · · ∃r.︸ ︷︷ ︸
n

B

with pm(A,B) = 0 are regarded (almost) totally similar.
In Equation 1, we search for each atom of C for that atom of D with the

highest similarity value. This method does not always yield satisfactory results.
Consider the case, where pm(A,B1) = 0.5 and pm(A,B2) = 0.5 and we want
to measure A towards B1
 B2, then the current version of function d does not
take into account that A is ‘known to be similar’ to each of B1 and B2 alone and
thus should even be more similar to their combination. The function chooses one
‘best matching partner’ instead of combining the two sources of similarity.

To deal with this effect, we propose to replace the maximum operator with
a triangular conorm (t-conorm, ⊕) [14] which is bounded, meaning that for all
x, y ∈ [0, 1] : x ⊕ y = 1 =⇒ x = 1 or y = 1. There are several reasons for
the use of a t-conorm. First, the operator max is an instance of a bounded
t-conorm. Second, all t-conorms yield values greater or equal to those of max
which is consistent with our expectation that the value should be higher or equal
to the maximum. Also, 0 acts as neutral element for t-conorms. Therefore, all
atoms from D that are totally dissimilar do not influence the value. If we use
the probabilistic sum (x ⊕sum y = x + y − xy) instead of the maximum for our
example above, then we obtain the value 0.75 instead of 0.5, since the measure
takes both similarity values (towards B1 and B2) into account.

Another parameter of simid is the weighting function (denoted g). It weights
the atoms by assigning each of them a value greater than 0, so g : NA −→ R>0.
The effect is that some atoms can ‘contribute more’ to the similarity than others,
thus a part of the vocabulary can be picked by g to supply a context under
which the concepts from the KB are assessed. Let’s assume we are interested in
similarity regarding Anatomy and our KB, say Snomed, contains atoms from
two different subject areas like Anatomy and medical procedures. Now, weighting
the atoms related to Anatomy higher would result in their similarity having a
greater influence on the overall similarity value between concepts.

Note, that the KB does not need to be changed or adapted to achieve this.
Several different such weighting functions can easily be employed for the same
KB. To incorporate the weighting function we generalize the cardinality of a
set of atoms to the sum of the weights of its elements. To obtain a well-defined
measure, the weight needs to be added to the numerator of d as well.

By combining the above presented parts, we can already obtain a definition
of simid except for some corner cases involving �. If we want to be formally

316 K. Lehmann and A.-Y. Turhan

correct, then the type of the function simid depends on the used parameters as
well as on the concepts to be measured. However, for better readability, we omit
writing these parameters.

Definition 3 (simid). Let C,D ∈ C(ELH) \ {�}, E,F ∈ C(ELH), A,B ∈ NC

and r, s ∈ NR. Directed simi is the function simid : C(ELH)2 −→ [0, 1] defined
(w.r.t. a bounded t-conorm ⊕, a primitive measure pm, a weighting function g
and w ∈ (0, 1)) by

simid(�,�) := simid(�, D) := 1,

simid(C,�) := 0,

simid(C,D) :=

∑
C′∈ ̂C

[g(C′) ·
⊕

D′∈ ̂D
simia(C

′, D′)]

∑
C′∈ ̂C

g(C′)
,

where simia measures the similarity of two atoms and is defined as

simia(A,B) := pm(A,B),

simia(∃r.E,A) := simia(A, ∃r.E) := 0,

simia(∃r.E, ∃s.F) := pm(r, s) · [w + (1 − w)simid(E,F)].

4.2 Properties of simid and simi

We present the lemma needed to prove various properties of simi. The proofs
can be found in [15] (p. 67 ff). In the following we assume that the primitive
measure is pm, the weighting function is g, the t-conorm is ⊕ and the fuzzy
connector is ⊗.

Lemma 1. Let C,D,E ∈ C(ELH). Then

1. simid(C,D) = 1 ⇐⇒ D � C.
2. D � E =⇒ simid(C,E) ≤ simid(C,D).

Proof. We present a proof sketch for the left-to-right implication of the first
statement. Let simid(C,D) = 1. If C = � then D � C = � is true. Let C �= �.
To prove D � C we have to show that ∀C′ ∈ Ĉ ∃D′ ∈ D̂ : D′ � C′. Let C′ be
an arbitrary atom of C. simid(C,D) = 1 implies that∑

C′∈ ̂C

g(C′) =
∑
C′∈ ̂C

[g(C′) ·
⊕
D′∈ ̂D

simia(C
′, D′)].

Because of g(C′) ·
⊕

D′∈ ̂D simia(C
′, D′) ≤ g(C′) we derive that for all C′ ∈

Ĉ :
⊕

D′∈D simia(C
′, D′) = 1. Since the t-conorm is bounded, ∃D′ ∈ D such

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 317

that simia(C
′, D′) = 1. The rest of the proof uses structural induction and case

distinction.
If C′ = A then simia(C

′, D′) = 1 leads to D′ = A which implies D′ � C′.
Next, let C′ = ∃r.C∗. simia(C

′, D′) = 1 implies that D′ is of the form D′ =
∃s.D∗ and 1 = pm(r, s) · [w+ (1−w)simid(C

∗, D∗)]. This leads to pm(r, s) = 1
which according to the definition of the primitive measure implies s � r. Since
w < 1, simid(C

∗, D∗) = 1. Using the induction hypothesis we can derive D∗ �
C∗, therefore D′ � C′.

Recall, simi(C,D) := simid(C,D) ⊗ simid(D,C). The resulting function has
the following properties.

Theorem 1. The function simi fulfills

1. symmetry,
2. equivalence invariance,
3. equivalence closed,
4. subsumption preserving.

Let g′ be a weighting function with inf{g(C′) | C′ ∈ C(ELH)} > 0. Furthermore,
let ⊗′ be a fuzzy connector s.t. for all sequences (xn)n and (yn)n (xi, yi ∈ [0, 1])
with limn→∞ xn = limn→∞ yn = 1 and limn→∞ xn⊗′yn = 1. Then simi together
with ⊗′ and g′ fulfills structural dependence.

The main reason why simi neither fulfills the triangle inequality nor reverse
subsumption preserving is that the computation of simid(C,D) does not use the
similarity values between the atoms of C (and between the atoms ofD). Consider
C := A

�
i≤nBi, where the Bi are very similar to each other, D := A
 B0

and E := A then the similarity of D and E is approximately 0.5, the similarity
of C and D is close to 1 (since each Bi is very similar to B0) but the similarity
of C and E converges to 0 with increasing n. For the proofs of other properties
of simi and further details see [15].

An important property of simi is that it can be computed efficiently, provided
that the involved parameter functions can be computed efficiently as well.

Lemma 2. If the specific fuzzy connector, the bounded t-conorm, the primitive
measure and the weighting function can be computed in polynomial time, then
simi can be computed in time polynomial in the size of the concepts to measure.

5 Conclusions

Similarity measures are important procedures for central ontology management
tasks such as alignment of ontologies. Often these measures are built in an ad-hoc
way by simply tuning them to test data.

In this paper we have proposed a different approach to construct a whole range
of such measures for ELH-concepts. Our starting point was a set of formally de-
fined properties for concept similarity measures, which make use of the semantics
of DL concepts and of DL reasoning services. We devised a framework that, if

318 K. Lehmann and A.-Y. Turhan

instantiated with appropriate functions and operators as discussed in this paper,
allows to generate similarity measures that have 5 of the proposed 7 properties
(reverse subsumption preservation and triangle inequality are missing). In that
sense one could claim that our framework for similarity measures is not only
semantics-based, but also provides the measures with semantics. Moreover, our
approach does not restrict users to a single similarity measure, but allows them to
design their own measures by selecting the functions and operators appropriate
to yield the needed individual similarity measure. If the selected functions con-
form to the framework described in this paper, the resulting similarity measure
is equipped with the properties.

Similarity is often perceived as a context-dependent characteristic. Even in
this case our framework can offer support, in the sense that the directed measure
simid allows atoms appearing in the concept to be weighted differently using
the weighting function g. Different instantiations of g allow different thematic
subdomains of the domain of discourse to be highlighted.

To test our framework empirically is a non-trivial task, since each application
may require a different instantiation of simi with functions and operators. To
aquire such instantiations suitable for each application requires profound knowl-
edge of the application in question. Thus for now it remains future work to
compare the outcome of simi instantiations with other well-accepted similarity
measures.

On the theoretical side it would be interesting to investigate such frameworks
for more expressive DLs and for the concepts defined w.r.t. general TBoxes.
Since a unique normal form is the main means to achieve an equivalence invariant
similarity measure, it is not obvious how to extend simi to these more expressive
scenarios.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

[2] Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. In: Dean, T. (ed.) Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp.
96–101. Morgan Kaufmann, Los Altos (1999)

[3] Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description
logics. In: Proceedings of the International Workshop on Description Logics (DL
2005) (2005)

[4] Bowdle, B., Gentner, D.: Informativity and asymmetry in comparisons. Cognitive
Psychology 34(3), 244–286 (1997); PMID: 9466832

[5] T.G.O. Consortium. Gene Ontology: Tool for the unification of biology. Nature
Genetics 25, 25–29 (2000)

[6] d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expres-
sive description logics. In: Convegno Italiano di Logica Computazionale (CILC
2005) (2005)

A Framework for Semantic-Based Similarity Measures for ELH-Concepts 319

[7] d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for ALC concept
descriptions. In: Proceedings of the ACM Symposium on Applied Computing,
SAC 2006, pp. 1695–1699 (2006)

[8] d’Amato, C., Staab, S., Fanizzi, N.: On the Influence of Description Logics On-
tologies on Conceptual Similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW
2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)

[9] Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In:
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI
2004), pp. 333–337. IOS Press (2004)

[10] Fanizzi, N., d’Amato, C.: A similarity measure for the ALN description logic. In:
Convegno Italiano di Logica Computazionale (CILC 2006) (2006)

[11] Jaccard, P.: Étude comparative de la distribution florale dans une portion des
alpes et des jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37, 547–
579 (1901)

[12] Janowicz, K.: SIM-DL: Towards a semantic similarity measurement theory for the
description logic ALCNR in geographic information retrieval. In: SeBGIS 2006,
OTM Workshops 2006, pp. 1681–1692 (2006)

[13] Janowicz, K., Wilkes, M.: SIM-DLA: a novel semantic similarity measure for de-
scription logics reducing Inter-Concept to Inter-Instance similarity. In: Proceed-
ings of the 6th European Semantic Web Conference on The Semantic Web Re-
search and Applications, pp. 353–367 (2009)

[14] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. SV (2000)
[15] Lehmann, K.: A framework for semantic invariant similarity measures for ELH

concept descriptions. Master’s thesis, TU Dresden (2012),
http://lat.inf.tu-dresden.de/research/mas

[16] Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 863–872 (2003)

[17] Li, M., Sleep, M.R.: Melody classification using a similarity metric based on Kol-
mogorov complexity. In: Proceedings of the Sound and Music Computing Confer-
ence (SMC 2004) (2004)

[18] Lin, D.: An Information-Theoretic definition of similarity. In: Proceedings of the
Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)

[19] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 web ontology language profiles. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

[20] Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity - a review.
QSAR & Combinatorial Science 22, 1006–1026 (2003)

[21] Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with snomed-rt. Journal of the American
Medical Informatics Assoc. (2000), Fall Symposium Special Issue

[22] Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)
[23] W3C OWL Working Group. OWL 2 web ontology language document overview.

W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

http://lat.inf.tu-dresden.de/research/mas
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Sequent Systems for Lewis’ Conditional Logics�

Björn Lellmann and Dirk Pattinson

Department of Computing, Imperial College London, UK

Abstract. We present unlabelled cut-free sequent calculi for Lewis’ conditional
logic V and extensions, in both the languages with the entrenchment connective
and the strong conditional. The calculi give rise to Pspace-decision procedures,
also in the language with the weak conditional. Furthermore, they are used to
prove the Craig interpolation property for all the logics under consideration, and
yield a Pspace-decision procedure for a recently considered hybrid version of V.

1 Introduction

Although the use of conditional logics in artificial intelligence and automated reason-
ing has a long tradition (e.g. [6]), there has been slow progress in the development
of proof systems for these logics. Even today, we still see conditional logics for which
no proof systems of optimal complexity have been found. In general, the development
of proof systems follows two main approaches: one can derive labelled tableau systems
from the semantics [14,8] or convert a Hilbert-style axiomatisation to an unlabelled
sequent system which is then saturated to guarantee cut-elimination [15,17,10].

Although proof systems for some of the more prominent logics have been developed
quite early on [2,9,4,1], the systematic exploration of systems with optimal complexity
has attracted interest only recently. In particular, there are no complexity-optimal proof
systems for an important class of logics, those that are interpreted over sphere models,
originally proposed by Lewis [11]. These logics can be characterised using different
connectives: the entrenchment connective �, the strong conditional�, and the weak
conditional�. While these connectives are interdefinable, the translations in general
yield an exponential blow-up, and thus complexity results do not necessarily carry over.

Although the logics in the weak conditional language have long been known to be
decidable in polynomial space [3], the best proof systems for this language so far only
yield a coNExptime upper bound [8]. For the entrenchment connective, there are sys-
tems for the logics VC and VCS, which implicitly yield a Pspace upper bound [2,4], but
no systematic treatment has been given yet, a gap that this paper now closes.

Our main results are the following: we present complexity-optimal unlabelled se-
quent calculi for the logics V,VN,VT,VW and VC in the entrenchment and strong
conditional language. With the exception of the calculus for VC in the entrenchment
language these seem to be new. Cut elimination for our calculi follows from the more
general approach of cut elimination by saturation, and yields purely syntactical decision
procedures of optimal Pspace complexity. A Pspace decision procedure for the logics in
the weak conditional language is established by means of translation. As an application,

� Supported by EPSRC-Project EP/H016317/1.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 320–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sequent Systems for Lewis’ Conditional Logics 321

we establish the Craig interpolation property for all logics considered (in any connec-
tive), which we believe is also a new result. Our second application yields a previously
unknown Pspace result for a hybrid version of V� recently considered in [16].

2 Preliminaries

For n ∈ {0, 1, 2, . . . } we write [n] for {1, . . . , n}. Throughout,V denotes a denumerable
set of propositional variables, written p, q, . . . and we use bold face p, q, . . . to de-
note finite sequences of propositional variables. We fix a set Λ of modal operators with
associated arities (later, we will specialise Λ to consist of just one binary conditional op-
erator). The set of Λ-formulae is defined by F (Λ) � A, B, A1, . . . , An ::= ⊥ | p | A ∧ B |
A∨B | A→ B | ♥(A1, . . . , An) for p ∈ V and ♥ ∈ Λwith arity n, with remaining connec-
tives defined as usual. We write Λ(S) = {♥(A1, . . . , An) | ♥ ∈ Λ n-ary, A1, . . . , An ∈ S }
for the set of formulae constructed from S using a single connective in Λ and var (A) for
the set of propositional variables occurring in the formula A. Uniform substitution of all
propositional variables in a formula A using a substitutionσ : V → F (Λ) is denoted by
Aσ. A Λ-logic, or just logic is a set L ⊆ F (Λ) that contains all propositional tautologies
and is closed under uniform substitution, modus ponens and the congruence rule: from
Ai ↔ Bi for i = 1, . . . , n infer ♥(A1, . . . , An) ↔ ♥(B1, . . . , Bn) for every n-ary modality
♥ ∈ Λ. We think of logics as given semantically as the set of universally valid formulae
on some class of models and write |=L A for A ∈ L. The set S(F) of sequents over F
consists of tuples of multisets Γ, Δ of formulae in F, written Γ ⇒ Δ. The multiset union
of two multisets Γ and Δ is written Γ, Δ and we identify formulae with singleton multi-
sets. Substitution extends to both multisets of formulae and sequents in the obvious way
(perserving multiplicity), e.g. (A1, A2 ⇒ B)σ = A1σ, A2σ ⇒ Bσ. We use the system
G3cp of [18] with axioms Γ, A ⇒ Δ, A (where A ranges over the set of formulae) as
basis for all systems that extend classical propositional logic and denote its proof rules
by G. We adopt the standard structural rules

Γ ⇒ Δ
Σ, Γ ⇒ Δ, Π W,

Γ, A, A⇒ Δ
Γ, A⇒ Δ ConL,

Γ ⇒ Δ, A, A
Γ ⇒ Δ, A ConR,

Γ ⇒ Δ, A Σ, A⇒ Π
Γ, Σ ⇒ Δ, Π Cut

and write |=L Γ ⇒ Δ if L is a logic and |=L ∨Γ → ∧Δ.

3 Conditional Logics: Calculi and Main Results

We consider the conditional logics V,VN,VT,VW and VC [11,13] in the languages of
(binary) entrenchment � and (binary) weak and strong conditionals� and �. We
read entrenchment A � B as ’A is at least as plausible as B’ and adopt Lewis’ sphere
semantics: a sphere model is a triple I = (I, ($i)i∈I , π) where I is a set (of worlds),
each $i ⊆ P(I) is a system of spheres, i.e. a family of nested subsets of I closed under
unions and nonempty intersections, and π : V → P(I) is a valuation. We think of $i as
providing a measure of comparative similarity, which provides the truth condition

I, i |= A � B ⇐⇒ for all spheres S ∈ $i (S ∩ �B� � ∅ only if S ∩ �A� � ∅)

322 B. Lellmann and D. Pattinson

(CP)
� B→ (A1 ∨ · · · ∨ An)

� (A1 � B) ∨ · · · ∨ (An � B)
(n ≥ 1)

(TR) ((A � B) ∧ (B � C))→ (A � C)

(CN) (A � B) ∨ (B � A)

(N) ¬(⊥ � �)

(T) (⊥ � ¬A)→ A

(W) ((⊥ � ¬A) ∨ ¬(¬A � �))→ A

(C) ((A � �) ∧ (� � A))→ A

HV� : CP,TR,CN HVN� : HV, N HVT� : HV,T HVW� :HV,W HVC� :HV,C

Fig. 1. Hilbert axiomatisation of the V-logics as smallest logics closed under rules/axioms

where �A� = {i ∈ I | i |= A} is the truth set of a formula A, together with the standard
clauses for propositional variables and boolean connectives. The strong conditional op-
erator � can be defined in terms of entrenchment by (A � B) ↔ ¬((A ∧ ¬B) �
(A∧ B)). Over a sphere model, A� B asserts that A∧ B is more possible or plausible
than A ∧ ¬B. This leads to the interpretation

I, i |= A� B ⇐⇒ for some sphere S ∈ $i (S ∩ �A� � ∅ but S ∩ �A ∧ ¬B� = ∅) .

Similarly, the weak conditional � can be expressed in terms of entrenchment by
(A � B) ↔ ((⊥ � A) ∨ ¬((A ∧ ¬B) � (A ∧ B))) where the only difference is that
a weak conditional A � B is also accepted if the conditional antecedent A is consid-
ered impossible, i.e. false in every sphere for the current world.

If A is a formula and C is a class of sphere models, then A is universally valid on C
if I, i |= A for all I = (I, ($i)i∈I , π) ∈ C and all i ∈ I. We write V∗ for the logic of all
sphere models, i.e. the set of all formulae that are universally valid in all sphere models
in the language of the binary connective ∗ ∈ {�,�,�}. We consider the following
extensions [11, page 120] of V∗ determined by the following additional conditions on
sphere models I = (I, ($i)i∈I , π), understood as universally quantified over all i ∈ I:

– The logic VN∗ is determined by all normal sphere models, i.e. those with
⋃

$i � ∅
– The logic VT∗ is determined by all totally reflexive sphere models, i.e. i ∈ ⋃ $i

– The logic VW∗ is the logic of all weakly centered sphere models, i.e. those for
which there is S ∈ $i with S � ∅ and i ∈ S ′ whenever ∅ � S ′ ∈ $i

– The logic VC∗ is the logic of all centered sphere models, i.e. those with {i} ∈ $i.

Those logics are known [11, pages 124–130] to enjoy a sound and complete axiomati-
sation in a Hilbert calculus with rules and axioms summarised in Figure 1. By reducing
the decision problem for standard modal logics K,D, T to the decision problems for the
corresponding conditional logics [11, p.137] using the translations ♦A ↔ ¬(⊥ � A)
and ♦A ↔ (A� �) and ♦A ↔ ¬(A� ⊥) all the logics are easily seen to be Pspace-
hard. Our main contribution are new, cut-free sequent calculi for the logics above that
enable backwards proof search in polynomial space. Our calculi contain the standard
rules for the propositional connectives together with the rules summarised in Figure
2. Intuitively, rules R1,2 and R2,0 guarantee derivability of the axioms (TR) and (CN),
while the rules Rn,0 cover the rules of (CP). The remaining rules of RV� are needed to
guarantee saturation (see Section 5), and additional rules for the other logics correspond
to additional axioms. The rule sets for� are constructed by translation.

Sequent Systems for Lewis’ Conditional Logics 323

{ Bk ⇒ A1, . . . , An,D1, . . . ,Dm | k ≤ n } ∪ { Ck ⇒ A1, . . . , An,D1, . . . ,Dk−1 | k ≤ m }
Γ, (C1 � D1), . . . , (Cm � Dm)⇒ Δ, (A1 � B1), . . . , (An � Bn)

Rn,m

A⇒ ⇒ B
Γ, (A � B)⇒ Δ RN

A⇒ Γ ⇒ Δ, B
Γ, (A � B)⇒ Δ RT

{ Ck ⇒ A1, . . . , An,D1, . . . ,Dk−1 | k ≤ m } Γ ⇒ Δ, A1, . . . , An,D1, . . . ,Dm

Γ, (C1 � D1), . . . , (Cm � Dm)⇒ Δ, (A1 � B1), . . . , (An � Bn)
Wn,m

Γ ⇒ Δ, A
Γ ⇒ Δ, (A � B)

RC1
Γ, A⇒ Δ Γ ⇒ Δ, B

Γ, (A � B)⇒ Δ RC2

{
Ck, {Bi | i ∈ I} ⇒ {Ai | i � I}, {C j | j ∈ J}, {Dj | k > j � J} | k ≤ m, I ⊆ [n], J ⊆ [k − 1]

}

∪ { Ak, Bk, { Bi | i ∈ I } ⇒ { Ai | i � I }, {C j | j ∈ J}, {Dj | j � J} | k ≤ n, I ⊆ [n], J ⊆ [m]
}

Γ, (A1 � B1), . . . , (An � Bn)⇒ Δ, (C1 � D1), . . . , (Cm � Dm)
R′n,m

⇒ A ⇒ B
Γ ⇒ Δ, (A� B)

R′N
Γ ⇒ Δ, A A⇒ B
Γ ⇒ Δ, (A� B)

R′T
{

Ck, {Bi | i ∈ I} ⇒ {Ai | i � I}, {C j | j ∈ J}, {Dj | k > j � J} | k ≤ m, I ⊆ [n], J ⊆ [k − 1]
}

∪ { Γ, {Bi | i ∈ I} ⇒ {Ai | i � I}, {C j | j ∈ J}, {Dj | j � J} | I ⊆ [n], J ⊆ [m]
}

Γ, (A1 � B1), . . . , (An � Bn)⇒ Δ, (C1 � D1), . . . , (Cm � Dm)
W′

n,m

Γ ⇒ Δ, A Γ, B⇒ Δ
Γ, (A� B)⇒ Δ R′C1

Γ ⇒ Δ, A Γ ⇒ Δ, B
Γ ⇒ Δ, (A� B)

R′C2

RV� = {Rn,m | n ≥ 1,m ≥ 0}
RVN� = RV ∪ {RN}
RVT� = RV ∪ {RT }
RVW� = RVT ∪ {Wn,m | n ≥ 1,m ≥ 0}
RVC� = RV ∪ {RC1,RC2}

RV� = {R′n,m | n ≥ 1,m ≥ 0}
RVN� = RV� ∪ {R′N}
RVT� = RV� ∪ {R′T }
RVW� = RVT� ∪{W′

n,m | n ≥ 1,m ≥ 0}
RVC� = RV� ∪ {R′C1,R

′
C2}

Fig. 2. The rules and rule sets

As usual, we call a formula principal in a rule if it appears in the conclusion of the
rule but not in any premiss. A premiss of a rule is contextual if it inherits the context
(written Γ ⇒ Δ in Figure 2) from the conclusion. That is, the right hand premiss of
RT and the premisses of both RC1 and RC2 are contextual premisses of the respective
rules. If R is one of the rule sets of Figure 2, we write R∗ for the rule set that arises
by adding the principal formulae of each rule to each of its contextual premisses and
refer to R∗ as the modification of R. For example, the right (contextual) premiss of the
rule RT then becomes Γ, (A � B) ⇒ Δ, B whereas the left (non-contextual) premiss of
RT remains unchanged. We write �R Γ ⇒ Δ in case Γ ⇒ Δ is derivable using rules
in R, and �R∗ for derivability using the modification of R. We denote use of additional
rules by juxtaposition, e.g. GRConCut denotes derivability where Cut and Contraction
(both on the left and on the right) may be used in addition to rules in G and R. The
remainder of the paper establishes our main contributions, the first being soundness and
completeness of the corresponding rules in presence of contraction (see Sections 4,5,6).

Theorem 1 (Soundness and Completeness). If ∗ ∈ {�,�} and L is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗ then �GRLCon Γ ⇒ Δ if and only if |=L Γ ⇒ Δ.

324 B. Lellmann and D. Pattinson

The primary purpose of the modifications of the rules in Figure 2 is to achieve admis-
sibility of contraction between principal formulae and those in the context. It is easy to
see that this does not change the set of derivable sequents (Sections 5,6).

Proposition 2 (Elimination of Contraction). If ∗ ∈ {�,�} andL is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗ then �(GRL)∗ Γ ⇒ Δ if and only if �GRLCon Γ ⇒ Δ.

This already implies that cut elimination holds for all logics formulated in terms of
entrenchment and strong conditional. The calculi are complexity optimal (Sections 5,6):

Theorem 3 (Complexity). If ∗ ∈ {�,�} and L is one of the logics V∗,VN∗,VT∗,
VW∗,VC∗, then derivability in (GRL)∗ is decidable in Pspace using backwards proof
search. If ∗ =�, then L is decidable in Pspace by translating to�.

As an immediate application, the calculi above allow us to establish, for the first time,
that all logics considered here have the Craig interpolation property (Section 7).

Theorem 4 (Craig Interpolation). If ∗ ∈ {�,�,�} and L is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗, then L has the Craig interpolation property.

We prove the above theorems and give precise definitions in the following sections.

4 Soundness and Completeness of the Entrenchment Rules

We first consider the rules in the entrenchment language. The corresponding results for
the rules for the strong implication will be established in Section 6.

Theorem 5. For L ∈ {V�,VN�,VT�,VW�,VC�} the rules in RL are sound for L.

Proof. We proceed by induction on the derivations and refer to [4] for RVC� .
For RV� : Suppose the last applied rule was Rn,m, with conclusion (C1 � D1), . . . , (Cm �
Dm) ⇒ (A1 � B1), . . . , (An � Bn) and premisses as given in Figure 2, and suppose all
the premisses are valid. Let I = (I, ($i)i∈I , π) be a sphere model and i ∈ I. Suppose
i ∈ �Ck � Dk� for all k ∈ [m] and that for a k ∈ [n] we have i � �A
 � B
� for all

 ∈ [n],
 � k. Choose S ∈ $i and j ∈ S ∩ �Bk�. Since |=V� Bk → ∨
∈[m] D
 ∨∨
∈[n] A

we have j ∈ ⋃
∈[n]�A
� ∪ ⋃
∈[m]�D
�. Thus either j ∈ ⋃
∈[n]�A
� or j ∈ �D
� for a

 ∈ [m]. In the latter case, since i ∈ �C
 � D
� we find a j2 ∈ S ∩ �C
�, and since
|=V� C
 → ∨
′<
 D
′ ∨∨
′∈[n] A
′ we have j2 ∈ ⋃
′<
�D
′� ∪⋃
′∈[n]�A
′�. Continuing
like this we find a j′ ∈ I with j′ ∈ S ∩ ⋃
∈[n]�A
�. Now if j′ � �Ak� there is a

 � k with j′ ∈ �A
�. But since i � �A
 � B
� there is an S ′ ∈ $i with S ′ � S and
S ′ ∩�B
� � ∅ = S ′ ∩�A
�. As above we get a j′′ ∈ S ′ ∩⋃t∈[n]�At� = S ′ ∩⋃t∈[n],t�
�At�.
Repeating the argument we finally get an S ′′ ∈ $i with ∅ � S ′′∩⋃
∈[n]�A
� = S ′′∩�Ak�,
and since by construction S ′′ ⊆ S we have i ∈ �Ak � Bk�.

For RVN� : Assume |=VN� ¬A and |=VN� B, let I be a normal sphere model, i.e., for
all i ∈ I we have

⋃
$i � ∅, and let i ∈ I. Since

⋃
$i � ∅ there is a j ∈ S ∈ $i. But then

j ∈ �B� and for all t ∈ S we have t � �A�. Thus i � �A � B�.
For RVT� : Suppose |=VT� ¬A and |=VT�

∧
Γ → ∨Δ∨B, and let I be totally reflexive,

i.e., for all i ∈ I we have i ∈ ⋃ $i. Then for any i ∈ I we have either i ∈ �B� and are

Sequent Systems for Lewis’ Conditional Logics 325

done, or we can choose a S ∈ $i with i ∈ S . But we know that j � �A� for all j ∈ S ,
and thus we get i � �A � B�.

For RVW� : Similar to V�. Let |=VW� Γ ⇒ D1, . . . ,Dm, A1, . . . , An, Δ and |=VW� Ck ⇒
D1, . . . ,Dk−1, A1, . . . , An for all k ∈ [m], and suppose that I is weakly centered, i.e.,
for all i ∈ I there is an S ∈ $i with S � ∅ and for all S ∈ $i with S � ∅ we have
i ∈ S . Then for i ∈ I we have either i �

⋃

∈[m]�D
� ∪ ⋃
∈[n]�A
� and are done; or

we have i ∈ �A
� for a
 ∈ [n] and are done; or we have i ∈ �Dk� for a k ∈ [m].
In the latter case we take S ∈ $i with S � ∅. Then i ∈ S . If i � �Ck � Dk� we are
done; otherwise there is a i1 ∈ S ∩ Ck. Since |=VW� Ck → ∨
<k D
 ∨ ∨
∈[n] A
 we
have i1 ∈ ⋃
<k�D
� ∪⋃
∈[n]�A
�. Repeating the argument yields a j ∈ S ∩⋃
∈[n]�A
�.
Choose k1 with j ∈ �Ak1�. If i � �Ak1 � Bk1�, then there is a S ′ � S with S ′ ∩ �Ak1� = ∅
and S ′∩�Bk1� � ∅. As above we get a j2 ∈ S ′∩⋃
∈[n]�A
� = S ′∩⋃
�k1

�A
�. Repeating
the argument again we successively eliminate the A
’s and get a k′ ∈ [n] such that for
all S ∈ $i with S ∩ �Bk′� � ∅ we have S ∩ �Ak′� � ∅. But this means i ∈ �Ak′ � Bk′�.

�

Next we establish completeness of the sequent systems with the cut rule. Cut-free com-
pleteness follows from the generic cut elimination result of the next section. Since all
our systems include the congruence rule and thus are closed under uniform substitution,
it suffices to show that all the rules and axioms of the Hilbert-style characterisationHL
of a given logicL from Figure 1 are derivable in the corresponding sequent system with
cut. Since the Hilbert-systems are complete [11], this establishes the result.

Theorem 6 (Completeness). For L ∈ {V�,VN�,VT�,VW�,VC�} the sequent system
GRLConWCut is complete with respect to L.

Proof. Showing that the rules and axioms of HV�,HVN� and HVT� can be derived
in the corresponding sequent system is easy. For HVW� note that adding the axiom
(W) is equivalent to adding the axioms (T) and (¬A � �) ∨ A, where the latter is easily
derived using W1,0. ForHVC�, using RC2 we get (A � �)→ A and thus (C). �

5 Cut Elimination for the Entrenchment Rules

Our approach towards proving cut elimination for the sequent systems of the previous
section is based on a general method for the construction of cut-free calculi: cut elim-
ination by saturation. We call a set of (sequent) rules saturated if it is closed under
the operations of cut and contraction, introduced below. Cut elimination by saturation
elevates both cut and contraction from the level of proof rules to the level of operations
on proof rules, i.e. constructions that allow us to derive new proof rules while preserv-
ing soundness. Cut closure holds if for any two given rules, performing a cut on the
conclusions and collecting the premisses of both rules results in a (cut-free) derivable
rule (after eliminating variables that no longer occur in the conclusion) and contraction
closure stipulates that the result of identifying literals in the conclusion of a rule gives
a rule already present in the rule set. Assuming saturation cut elimination holds, ev-
ery cut can be replaced by a derivable rule, reducing level or rank of the cuts. The key
ingredient in sequent systems for non-iterative logics is the concept of a shallow rule,

326 B. Lellmann and D. Pattinson

introduced in previous work [10]. Intuitively, a shallow rule adds one layer of modalities
in the conclusion, while its premisses may or may not propagate the context.

Definition 7. A shallow rule is a triple R = (Pn; Pc;Σ ⇒ Π) where Pn ⊆ S(V) and
Pc ⊆ S(V) are finite sets of sequents (the non-contextual and contextual premisses,
respectively) and Σ ⇒ Π ∈ S(Λ(V)) are the principal formulae subject to the following
variable restriction: every variable p ∈ V may occur at most once in Σ ⇒ Π and occurs
in the premisses iff it occurs in the principal formulae. An instance of a shallow rule

{Υσ⇒ Ωσ | Υ⇒ Ω ∈ Pn} ∪ {Γ,Θσ⇒ Δ, Ξσ | Θ⇒ Ξ ∈ Pc}
Γ, Σσ⇒ Δ, Πσ

is given by a context Γ ⇒ Δ and a substitution σ : V → F (Λ). We often annotate the
contextual premisses with the context (usually Γ ⇒ Δ) if no confusion can arise.

Remark 8. The variable restriction on the principal formulae is for technical conve-
nience and not restrictive, as a duplicate occurrence of a variable p is avoided by re-
placing it by a fresh variable q and adding non-contextual premisses p⇒ q and q⇒ p.

Example 9. The rules of classical propositional logic such as Γ⇒Δ,A Γ⇒Δ,B
Γ⇒Δ,A∧B (∧R) and

all of our rules for conditional logics in Figure 2 are shallow. All premisses in ∧R and
RC2 are contextual, while all premisses in Rn,m and RN are non-contextual. Rule RT has
both a contextual and a non-contextual premiss.

A set R of shallow rules induces a sequent system in the standard way.

Definition and Convention 10. Whenever we speak about a set of shallow rules R
we assume that R is closed under injective renaming of propositional variables. Let
R be a set of shallow rules and S ⊆ S(F (Λ)) a set of sequents. A sequent Γ ⇒ Δ
is R-derivable from S, in symbols S �R Γ ⇒ Δ, if it is an element of the least set
S �R containing S and closed under the axiom rules

Γ,A⇒Δ,A and the congruence rules
A1⇒B1 B1⇒A1 ... An⇒Bn Bn⇒An

Γ,♥(A1,...,An)⇒Δ,♥(B1,...,Bn) and all instances of rules in R. We write S �RR′ for
S �R∪R′ and simply �R for ∅ �R. The rule set R′ is R-admissible if �RR′⊆�R. Derivations
are defined as usual [18] and a (not necessarily shallow) rule R = P1 . . . Pn/C with
premisses P1, . . . , Pn and conclusion C is R-derivable if {P1, . . . , Pn} �R C.

Lemma 11 (Admissibility of Weakening). �R Γ ⇒ Δ whenever �RW Γ ⇒ Δ.

The proof is standard. For admissibility of Contraction and Cut, the rule set needs to be
closed under the operations of rule contraction and cut between rules described next.

Definition 12 (Cut as an Operation on Proof Rules). If (On,Oc) are sets of sequents
(that we think of as non-contextual and contextual premisses, respectively) and p is a
variable, then the p-elimination on On and Oc is the pair (On,Oc)� p := (O′n,O′c) where

O′n = {Γ, Σ ⇒ Δ, Π | 〈Γ, p⇒ Δ;Σ ⇒ Π, p〉 ∈ On × On} ∪ {Γ ⇒ Δ ∈ On | p � Γ, Δ}
O′c = {Γ, Σ ⇒ Δ, Π | 〈Γ, p⇒ Δ;Σ ⇒ Π, p〉 ∈ (On ∪ Oc)2 \ (On × On)}

∪ {Γ ⇒ Δ ∈ Oc | p � Γ ∪ Δ}

Sequent Systems for Lewis’ Conditional Logics 327

and we write (On,Oc) � p1, . . . , pn for the repeated application of variable elimination.
If R = (Pn; Pc;Σ ⇒ Π,♥p) and R′ = (P′n; P′c;♥p, Σ′ ⇒ Π ′) are shallow rules, the cut
of R and R′ on ♥p is the shallow rule cut(R,R′,♥p) = (Qn; Qc;Σ, Σ′ ⇒ Π,Π ′) where
(Qn,Qc) = (Pn ∪ P′n, Pc ∪ P′c) � p. A set R of shallow rules is cut closed if for any
R,R′ ∈ R with principal formulae Γ ⇒ Δ,♥p and ♥p, Γ′ ⇒ Δ′ the rule cut(R,R′,♥p) is
RWCon-derivable.

That is, the cut between R and R′ is a (shallow) rule, whose principal formulae arise
by applying cut to the principal formulae of R and R′ and whose premisses are the pre-
misses of both R and R′ with superfluous variables eliminated by variable elimination,
i.e. cuts on the variables that no longer appear in the conclusion. Note that a premiss is
contextual in the cut between two rules if at least one step in the variable elimination
process did involve a contextual premiss. Cut closed rule sets are simply closed un-
der performing cuts between rules. Also note that in presence of the rules for classical
propositional logic the constructed rules are derivable using the old rules and Cut, since
we can reconstruct the cut formulae for the premisses using the rules from G:

Lemma 13 ([10]). For shallow rules R1,R2 with principal formulae Σ ⇒ Π,♥p and
♥p, Σ′ ⇒ Π ′ the rule cut(R1,R2,♥p) is GR1R2Cut-derivable.

A similar construction applies to contraction:

Definition 14 (Contraction as Operation on Proof Rules). If S is a set of sequents
and p = (p1, . . . , pn) and q = (q1, . . . , qn) are n-tuples of variables, then S [q← p] is the
result of replacing every occurrence of qi in a sequent in S by pi for all i = 1, . . . , n and
contracting duplicate instances of p1, . . . , pn. Let R = (Pn; Pc;Γ,♥p,♥q⇒ Δ) be a shal-
low rule. The left contraction of R on ♥p and ♥q is the shallow rule ConL(R,♥p,♥q) =
(Pn[q ← p]; Pc[q ← p]);Γ,♥p ⇒ Δ). The right contraction ConR(R,♥p,♥q) is de-
fined dually. A rule set R is contraction closed if for every rule R ∈ R the rules
ConL(R,♥p,♥q) and ConR(R,♥p,♥q) can be simulated by applications of Weakening
and Contraction, followed by at most one application of a rule R′ ∈ R and Weakening.

Saturated rule sets combine both properties.

Definition 15. A set of shallow rules is saturated if it is both cut and contraction closed.

Theorem 16. For L ∈ {V�,VN�,VT�,VW�,VC�} the rule set GRL is saturated.

Proof (Sketch). It is easy to see that the rules of G are saturated. Since cuts between
propositional and conditional rules on principal formulae of both rules are impossible
we thus only need to consider the rule sets RL. For cut closure of RV� it can be seen that
cuts between two rules Rn,m and Rk,
 are subsumed by the rule Rn+k−1,m+
−1. Contraction
closure is evident. The sets RVN� and RVT� are cut- and contraction closed, since cuts
between a rule Rn,m and RN or RT are subsumed by the rule Rn−1,m. Cut- and contraction
closure of RVW� follows since RV� is cut closed and since cuts between Rn,m or Wn,m

and Wk,
 are subsumed by Wn+k−1,m+
−1. For RVC� note that cuts between Rn,m and RC1

or RC2 can be replaced by a number of applications of RC2 and RC1. �

Saturation enables a general cut elimination theorem following [5]: (multi-)cuts on con-
text formulae are propagated upwards in the proof trees, and (multi-)cuts on principal
formulae can be eliminated using cut and contraction closure.

328 B. Lellmann and D. Pattinson

Theorem 17 (Generic Cut Elimination). Let R be a saturated set of shallow rules.
Then Cut is admissible in RCon, i.e. �RCon Γ ⇒ Δ whenever �RConCut Γ ⇒ Δ.

Proof. Similar to [10, Prop. 21].

Corollary 18. For L ∈ {V�,VN�,VT�,VW�,VC�} GRLCon has cut elimination.

Note that contraction closure only allows to eliminate Contraction on principal formu-
lae, but not on a principal formula and a context formula. Nevertheless, after establish-
ing cut elimination, admissibility of Contraction and a generic Pspace complexity result
are obtained in the modification of the rule set, where in a standard move the principal
formulae are copied into the contextual premisses.

Definition 19 (Modified Instances). A modified instance

{Υσ⇒ Ωσ | Υ⇒ Ω ∈ Pn} ∪ {Γ, Σσ,Θσ⇒ Δ, Ξσ,Πσ | Θ⇒ Ξ ∈ Pc}
Γ, Σσ⇒ Δ, Πσ

of a shallow rule (Pn; Pc;Σ ⇒ Δ) is given by a substitution σ and a (context) sequent
Γ ⇒ Δ. For the modification R∗ of R the notion of R∗-admissibility and R∗-derivability
are as for R using modified instances of rules in R instead of instances.

The purpose of modified instances is the elimination of Contraction, where Contrac-
tion between context and principal formulae is absorbed by moving principal formu-
lae upwards in the context. Moving to modified instances, e.g. the (standard) instance
Γ,Θ⇒Δ,Ξ Υ⇒Ω
Γ,♥A⇒Δ,♣B is replaced by the modified instance Γ,♥A,Θ⇒Δ,♣B,Ξ, Υ⇒Ω

Γ,♥A⇒Δ,♣B . We can now
apply the following result from [10] for tractable rule sets, i.e., sets where codes of the
rules can be computed in space polynomial in the length of the conclusion and where
the premisses can be computed in space polynomial in the code of the rule. It can easily
be checked that all of the rule sets in Figure 2 as well as the rules of G are tractable.

Theorem 20. If R is saturated, then �RConCut = �RCon = �R∗Con = �R∗ . In particular, Con
is R∗-admissible. If R is also tractable, then backwards proof search in R∗ is in Pspace.

Corollary 21. For L ∈ {V�,VN�,VT�,VW�,VC�} we have |=L= �(GRL)∗ and back-
wards proof search in (GRL)∗ is in Pspace.

Remark 22. Theorems 17 and 20 remain valid for languages that do not contain all
Boolean connectives. As the propositional rules are shallow, they can be absorbed into
the general treatment and it is easy to see that, for every Boolean connective, adding the
corresponding left and right rules preserves saturation.

6 Strong and Weak Conditional Implication

For the systems in the language with the strong conditional our strategy for proving
soundness and completeness is slightly different.

Theorem 23. For L ∈ {V�,VN�,VT�,VW�,VC�} the sequent system
GRLConCut is sound and complete for L.

Sequent Systems for Lewis’ Conditional Logics 329

Proof. Since the strong conditional is defined in terms of entrenchment by the transla-
tion (A� B)↔ ¬((A ∧ ¬B) � (A ∧ B)) from [11], we get the translation rules

A⇒ C A,D⇒ C ⇒ A,D B⇒ C B⇒ D C,D ⇒ B
Γ, (A � B), (C� D)⇒ Δ Rt1

A⇒ C A,D⇒ C ⇒ A,D B⇒ C B⇒ D C,D ⇒ B
Γ ⇒ Δ, (A � B), (C� D)

Rt2

which together are equivalent to the translation axiom. The rule setsRV� ,RVN� ,RVT� ,
RVW� and RVC� arise from the rule sets for the entrenchment connective by cutting
every literal of every rule with the appropriate translation rule. The resulting rules have
the translation built in which gives completeness and soundness (using Lemma 13). �

Since cuts between the translation rules are subsumed by congruence and since the
entrenchment rules are saturated, saturation for these rule sets is not unexpected.

Theorem 24. For L ∈ {V�,VN�,VT�,VW�,VC�} the rule set GRL is satu-
rated and thus GRLCon has cut elimination. Hence L is decidable in Pspace.

Proof. Cut closure is seen analogous to the entrenchment case. E.g. for RV� a cut
between rules R′n,m and R′k,
 is subsumed by the rule R′n+k−1,m+
−1. Note that for some of
the premisses of the latter rule we need to cut three of the original premisses and apply
Contraction. Contraction closure is straightforward. �

Unfortunately, this technique does not work not work for Lewis’ weak conditional�,
since the translations of� into � or� are more subtle. Nevertheless, since the trans-
lation (A� B)↔ ((⊥ � A)∨¬((A∧¬B) � (A∧ B))) of� into � from [11, p.26,53]
increases the number of subformulae only by a constant factor, we may represent for-
mulae as directed acyclic graphs instead of trees, to obtain a purely syntactical Pspace
decision procedure of optimal complexity for these logics in the language with�.

Theorem 25. The logics V�,VN�,VT�,VW�,VC� are decidable in Pspace.

Proof. Since the important measure for the backwards proof search procedure from [10]
is the nesting depth of connectives and not the size of the formulae, careful inspection
of the proofs together with the fact that the translation is linear for the representation of
formulae by directed acyclic graphs yields the result. �

7 Applications

Interpolation. The sequent systems presented above enable us to establish Theorem 4
(Craig interpolation) for all logics considered in this paper in a standard way. A logic
L has the (Craig) interpolation property (CIP) if whenever |=L A → B, then there is
an interpolant I satisfying the variable condition var (I) ⊆ var (A) ∩ var (B) such that
|=L A → I and |=L I → B. We use split sequents [18] to establish the CIP, the intuition
being that whenever we split a provable sequent into two, we can find an interpolant:

330 B. Lellmann and D. Pattinson

Definition 26 (split sequent). An expression Γ1 | Γ2 ⇒ Δ1 | Δ2 is a split sequent,
if Γ1, Γ2 ⇒ Δ1, Δ2 is a sequent, and we say that Γ1 | Γ2 ⇒ Δ1 | Δ2 is a splitting of
Γ1, Γ2 ⇒ Δ1, Δ2. A formula I is an interpolant in RL for the split sequent Γ1 | Γ2 ⇒
Δ1 | Δ2 if it satisfies the variable condition var (I) ⊆ var (Γ1 ⇒ Δ1)∩ var (Γ2 ⇒ Δ2) and
�RL Γ1 ⇒ Δ1, I and �RL I, Γ2 ⇒ Δ2. A sequent Γ ⇒ Δ admits interpolation in RL if all
its splittings have an interpolant in RL. A shallow rule R supports interpolation in RL
if whenever all its premisses admit interpolation in RL, then so does its conclusion.

It is routine to prove the following lemma by induction.

Lemma 27. If GRL is a sound and complete set of shallow rules for a logic L and all
the rules in GRL support interpolation in GRL, then L has the interpolation property.

Theorem 28. V� has the Craig interpolation property.

Proof. We need to show that the rules in GRV� support interpolation. For the proposi-
tional rules this is standard [18]. For Rn,m we construct an interpolant for a splitting of
the conclusion from interpolants of the corresponding splittings of the premisses. First,
consider the rule R2,m and the splitting Γ1 | Γ2 ⇒ Δ1 | Δ2 of its conclusion given by

{(Ci � Di) | i ∈ [m], i odd} | {(Ci � Di) | i ∈ [n], i even} ⇒ (A1 � B1) | (A2 � B2) .

For k ∈ [m] let Ik be the interpolant for the corresponding splitting of the premiss
Ck ⇒ {D
 |
 < k}, A1, A2 and for k ∈ {1, 2} let Jk be the one for the corresponding
splitting of the premiss Bk ⇒ {D
 |
 ∈ [m]}, A1, A2. For every odd k ∈ [m] we introduce

Xk =
∨

≤k,
 odd

I
 Yk =

⎧
⎪⎪⎨
⎪⎪⎩

¬Ik+1 ∨ ¬J2 k = max{
 ∈ [m] |
odd}
¬Ik+1 otherwise

Zk = J1 ∨
∨

∈[m],
>k,
 odd

I

Vk = (Xk � Yk) Wk = (Yk � Zk) I =
∧

k∈[m], k odd

(¬Wk ∨ Vk) .

Claim 1: For every odd k ∈ [m] we have �RV� Γ1,Wk ⇒ Δ1,Vk. The idea is to in-
sert Wk instead of (Ck+1 � Dk+1) and Vk instead of (A2 � B2) into the rule pattern.
Then using the definitions of Wk and Vk together with applications of Weakening it is
straightforward to check that R2, |{
∈[m]|
 odd}|+1 can be applied.
Claim 2: For every partition (F, S) of {k ∈ [m] | k odd} we have �RV� Γ2, {Vk | k ∈ F} ⇒
Δ2, {Wk | k ∈ S }. The idea is to insert the Vk instead of the (Ck � Dk), and the Wk as
positive literals instead of (A1 � B1). Then again it is straightforward to check that we
have all the necessary premisses for an application of R|S |+1, |F|+|{
∈[m]|
 even}|.

By propositional reasoning, both claims give �RV� Γ1 ⇒ Δ1, I and �RV� I, Γ2 ⇒ Δ2

and the interpolant I satisfies the variable condition, since all its constituents satisfy it.
For the general case consider the splitting Γ1 | Γ2 ⇒ Δ1 | Δ2 of the conclusion, and

write I′k for the interpolant for the corresponding splitting of the premiss Ck ⇒ {D
 |
 <
k}, {A
 |
 ∈ [n]} and J′k for the one for the premiss Bk ⇒ {A
 |
 ∈ [n]}, {D
 |
 ∈ [m]}.
In the construction of the interpolant above we replace J1 by

∨
(A
�B
)∈Δ1

J′
 and ¬J2

by
∨

(A
�B
)∈Δ2
¬J′
. The formulae I
 in Xk and Zk are replaced by

∨
j∈T
 I′j where T
 is

the
-th block of consecutive indices j with (C j � D j) ∈ Γ1. The formulae ¬Ik+1 in
Yk are replaced by

∨
j∈S k
¬I′j where S k is the k-th block of consecutive indices j with

(C j � D j) ∈ Γ2. Then in the proofs of the claims the formulae Wk and Vk are inserted
instead of the blocks {(C
 � D
) |
 ∈ Tk} and {(C
 � D
) |
 ∈ S k}. �

Sequent Systems for Lewis’ Conditional Logics 331

Corollary 29. VT�,VN�,VW�,VC� have the CIP.

Proof. For VT�,VN� and VC� this is immediate since the additional axioms trivially
support interpolation. For the rules Wn,m of RVW� we only need to modify the proof
for the rules Rn,m by replacing the interpolants J1, J2 in the construction of I by the
interpolant J of the contextual premiss and its negation. �

Corollary 30. For ∗ ∈ {�,�} the logics V∗,VT∗,VN∗,VW∗,VC∗ have the CIP.

Proof. By translating the formula A→ B into the entrenchment language, and translat-
ing the interpolant back into the original language. Since both translations are identity
on propositional variables the variable condition holds, and we obtain an interpolant
since translating back and forth yields logically equivalent formulae. �

Hybrid Conditional Logic. In [16] a hybridisation of conditional logic V� is pro-
posed to extend Lewis’ interpretation of� in terms of contextually definite descrip-
tions. Worlds in a sphere model represent things or individuals, the sphere systems give
degrees of salience, and a formula like Pig � Grunting is interpreted as “The (most
salient) pig is grunting”. Nominals i are introduced as names for specific individuals
together with the satisfaction operators @i A stating that A is true for individual i.

Following [12] the sequent system for V� can easily be turned into a sequent sys-
tem for the hybrid logic VHC(@) in the language of the strong conditional. Sphere mod-
els are captured coalgebraically as coalgebras for the functor Sp with Sp(X) = {$ ∈
PP(X) | $ a system of spheres} and Sp(f) the double direct image of f . The correct
semantics for � is then given by the predicate lifting ���X(A, B) = {$ ∈ Sp(X) |
∃S ∈ $ s.t. (S ∩ A � ∅ and S ∩ A∩ Bc = ∅)}. Our proof of soundness and completeness
for RV� over V� can be adapted to show that the rules are indeed one-step sound
and cut-free complete with respect to the coalgebraic semantics. By [12] this induces
a sequent system which is sound and complete with respect to VHC(@). In particular,
backwards proof search in this system can be implemented in polynomial space.

Theorem 31. Hybrid conditional logic VHC(@) is decidable in Pspace.

8 Conclusion

We presented the first unlabelled sequent systems for the conditional logics V,VN,VT
and VW in the entrenchment and strong conditional languages and for VC in the strong
conditional language. Since these systems have cut elimination and (after a slight mod-
ification) admissibility of contraction, backwards proof search can be implemented in
polynomial space, giving the first purely syntactical Pspace decision procedures for
these logics. Furthermore, translating the weak conditional into our systems gives to
our knowledge the first purely syntactical Pspace decision procedures for the logics in
the weak conditional language. All the algorithms are of optimal complexity. Moreover,
we used our calculi to show that all the logics mentioned have the Craig interpolation
property, and to give a Pspace decision procedure for the hybrid version of V�.

Related Work. Our calculus for VC� is the sequent version of the tableau calculus
in [4,2], but we also systematically cover weaker logics and different languages. The

332 B. Lellmann and D. Pattinson

calculi in [8] for the weak conditional language are labelled and thus conceptually more
involved, and not complexity optimal. In [1] a system for V� involving second degree
sequents is given, but it is not used for deciding the logic. The complexity results in
[3] are obtained via small model theorems which complements our purely syntactical
treatment. Calculi for the flat fragments of conditional logics corresponding to logics of
the KLM framework are given in [7].

References

1. Crocco, G., Fariñas del Cerro, L.: Structure, consequence relation and logic. In: Gabbay,
D.M. (ed.) What is a logical system?, pp. 239–259. Oxford University Press (1994)

2. de Swart, H.C.: A Gentzen- or Beth-type system, a practical decision procedure and a con-
structive completeness proof for the counterfactual logics VC and VCS. J. Symb. Log. 48(1),
1–20 (1983)

3. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: KR 1994, pp. 202–
213 (1994)

4. Gent, I.P.: A sequent- or tableau-style system for Lewis’s counterfactual logic VC. Notre
Dame J. Form. Log. 33(3), 369–382 (1992)

5. Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(2), 176–210 (1934)
6. Ginsberg, M.L.: Counterfactuals. Artif. Intell. 30, 35–79 (1986)
7. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for KLM

logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3) (2009)
8. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based

conditional logics: PCL and its extensions. ACM Trans. Comput. Log. 10(3), 1–50 (2009)
9. Groeneboer, C., Delgrande, J.P.: Tableau-based theorem proving in normal conditional log-

ics. In: AAAI, pp. 171–176 (1988)
10. Lellmann, B., Pattinson, D.: Cut Elimination for Shallow Modal Logics. In: Brünnler, K.,

Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 211–225. Springer, Heidelberg
(2011)

11. Lewis, D.: Counterfactuals. Blackwell (1973)
12. Myers, R., Pattinson, D., Schröder, L.: Coalgebraic Hybrid Logic. In: de Alfaro, L. (ed.)

FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)
13. Nute, D., Cross, C.B.: Conditional logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook

of Philosophical Logic, vol. 4, pp. 1–98. Kluwer (2001)
14. Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for stan-

dard conditional logics. ACM Trans. Comput. Log. 8(4), 1–51 (2007)
15. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Log.

Methods Comput. Sci. 7(1) (2011)
16. Sano, K.: Hybrid counterfactual logics - David Lewis meets Arthur Prior again. J. Log. Lang.

Inf. 18, 515–539 (2009)
17. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cau-

tious monotonicity. In: ECAI, pp. 707–712 (2010)
18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University

Press (2000)

Relevant Minimal Change in Belief Update

Laurent Perrussel1, Jerusa Marchi2,
Jean-Marc Thévenin1, and Dongmo Zhang3

1 Institut de Recherche en Informatique de Toulouse
Université Toulouse I, Toulouse, France

laurent.perrussel@irit.fr, thevenin@univ-tlse1.fr
2 Departamento de Informática e Estat́ıstica,

Universidade Federal de Santa Catarina, Florianópolis, Brazil
jerusa@inf.ufsc.br

3 School of Computing and Mathematics
University of Western Sydney, Sydney, Australia

dongmo@scm.uws.edu.au

Abstract. The notion of relevance was introduced by Parikh in the
belief revision field for handling minimal change. It prevents the loss of
beliefs that do not have connections with the epistemic input. But, the
problem of minimal change and relevance is still an open issue in belief
update. In this paper, a new framework for handling minimal change and
relevance in the context of belief update is introduced. This framework
goes beyond relevance in Parikh’s sense and enforces minimal change by
first rewriting the Katzuno-Mendelzon postulates for belief update and
second by introducing a new relevance postulate. We show that relevant
minimal change can be characterized by setting agent’s preferences on
beliefs where preferences are indexed by subsets of models of the belief
set. Each subset represents a prime implicant of the belief set and thus
stresses the key propositional symbols for representing the belief set.

1 Introduction

Belief updating is the process of incorporating new pieces of information into
a set of existing beliefs when the world described by this set has changed. It
is usually assumed that this operation follows two principles: (i) the resulting
belief set is consistent, and (ii) the change to the original belief set is minimal.

The most influential work within the area is the KM paradigm, which charac-
terizes the belief update operation through a set of plausible axioms, generally
referred to as the KM postulates [7]. Despite their popularity, the KM postulates
are not sufficient to capture minimal change.

The notion of relevant belief was introduced by Parikh [13] in the context of
belief revision. Relevant belief revision ensures that all beliefs in an initial belief
set that are not related with the new piece of information are preserved. This
notion avoids counter-intuitive changes of beliefs like those performed by the full
meet revision operator [1], i.e. removing all statements from the original belief
set and keeping only the new piece of information. Relevant change has been

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 333–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

334 L. Perrussel et al.

investigated in the belief revision context [10,9,14,19]. However, relevance by its
nature is a syntactical issue and model-based approaches provide only peripheral
solutions. In this sense, approaches based on knowledge compilation [3] and also
prime implicates and prime implicants representation have been proposed [4,15].

Particularly, in [15], we propose a relevant belief revision operator based on
minimal change to general preference orderings via minimizing prime implicant
changes to existing beliefs. This belief operator satisfies Katsuno-Mendelzon’s
postulates for belief revision as well as Parikh’s postulate for relevant revision.
However, that proposal was limited to the belief revision context.

The purpose of this paper is to extend our previous work in order to charac-
terize the concept of Relevant Belief Update. Such characterization entails not
only an adaptation of Parikh’s postulate but also a new definition of the KM
postulates for belief update in order to capture relevant minimal change. We
consider that a belief update process should be performed over set of terms [16]
instead of models by only looking at the literals that are concerned with the
change issue. A natural way to focus on those literals is to represent the belief
set as sets of prime implicants [11].

The paper is organized as follows. Section 2 reviews the notions of implicants
and prime implicants and introduces some necessary definitions. Section 3 re-
views the results obtained in [15], which are quite related to this work. Section
4 characterizes the class of relevant minimal change belief update operators in
terms of postulates and constraints on preferences. Section 5 concludes the paper
by considering some open issues.

2 Preliminaries

Let P = {p1, . . . , pn} be a finite set of propositional symbols and L be the
propositional language associated with P . Lang : L �→ 2P is a function that
assigns each formula ϕ in L the set of the propositional symbols occuring in ϕ.

Let LIT = {L1, . . . , L2n} be the set of associated literals: Li = pj or ¬pj .
A term Di is a conjunction of literals : Di = L1 ∧ · · · ∧ Lk. Let Li be the
complementary literal, s.t. Li = ¬pj iff Li = pj and D be the mirror of a
term D s.t. D = L1 ∧ · · · ∧ Lk iff D = L1 ∧ · · · ∧ Lk. In the following, terms
can also be viewed as sets of literals (Di = {L1, · · · , Lk}) and we will frequently
switch between the two notations.

A term D is an implicant of an L-formula ψ iff D |= ψ, where |= is the
satisfiability relation. A term D is said to be a prime implicant [17] of ψ if D is
an implicant of ψ and for any term D′ such that D′ ⊂ D, we have D′ �|= ψ, i.e.,
a prime implicant of a formula ψ is an implicant of ψ without any subsumed
terms.

Based on P and ψ, four specific sets of terms are considered:

1. D is the set of all possible terms that can be built over P . Since P is finite,
D is also finite, because we only consider terms with non-redundant and
non-contradicting literals;

Relevant Minimal Change in Belief Update 335

2. PIψ is the set of prime implicants of ψ. This set is a disjunction of all non-
contradictory and non-redundant prime implicants of ψ such that ψ ≡ PIψ .
This set is unique and minimal in the sense that it consists of the smallest
sets of terms closed for inference and without any subsumed terms;

3. Dψ is the set of all implicants of ψ. This set is a disjunction of all non-
contradictory and non-redundant implicants of ψ;

4. Γ(ψ) is the set of all possible terms based on ψ defined as follows: for every
Dψ ∈ PIψ and for every term D ∈ D, a new term is obtained by adding
to D all the literals of Dψ which are non-conflicting with the literals of D.
Formally:

Γ(ψ) = {D ∪ (Dψ −D)|Dψ ∈ PIψ and D ∈ D}

Figure 1 illustrates the inclusion relation between these sets: first prime impli-
cants of ψ, then implicants of ψ, then terms that differ on some symbols with
the implicants of ψ and finally all possible terms.

PIψD DψΓ(ψ)

Fig. 1. Inclusion relation of sets of terms

In the sequel we omit “non-contradictory” and “non-redundant” when we
mention prime implicants, implicants or terms.

Example 1. Consider that P = {p1, p2, p3} is the set of propositional symbols
and a formula ψ ∈ L(P) such that ψ = (p1 ∧ p2). The following sets of terms
can be obtained from P and ψ:

PIψ = {{p1, p2}}
Dψ = {{p1, p2}, {p1, p2, p3}, {p1, p2,¬p3}}
Γ(ψ) = {{p1, p2}, {¬p1, p2}, {p1,¬p2},

{¬p1,¬p2}{p1, p2, p3}, {p1, p2,¬p3}, {¬p1, p2, p3},
{¬p1, p2,¬p3}, {p1,¬p2, p3}, {p1,¬p2,¬p3}
{¬p1,¬p2, p3}, {¬p1,¬p2,¬p3}}

D = {{}, {p1}, {p2}, {p3}, {¬p1}, {¬p2}, {¬p3},
{p1, p2}, {p1,¬p2}, {p1, p3}, · · · {¬p2,¬p3},
{p1, p2, p3}, · · · , {¬p1,¬p2,¬p3}}

The cardinalities of these sets are: | PIψ |= 1, | Dψ |= 3, | Γ(ψ) |= 12 and | D |=
27. Let us stress that terms without the two propositional symbols involved in
the prime implicants of ψ could not belong to Γ(ψ).

336 L. Perrussel et al.

3 Relevance Criterion in Belief Change

In literature, Belief Change refers to two different but related theories: Belief
Revision and Belief Update [1,7]. Each of these activities is guided by a set
of postulates that expresses some pre-requisites for belief change functions and
describe how these functions should behave. In both theories, consistency main-
tenance and minimal change play a key role. However, Parikh observed that none
of the theories follow the principle of minimal change. Ideally, if a statement ϕ
in a belief base ψ does not share any propositional symbol with incoming infor-
mation μ, then ϕ should belong to the resulting belief base after either the belief
revision or belief update operation has been performed.

Formally, upon letting ◦ denote a belief revision operator, the following pos-
tulate captures the idea of relevant revision [13]:

(P) Let ψ = ϕ ∧ ϕ′ s.t. Lang(ϕ) ∩ Lang(ϕ′) = ∅. If Lang(μ) ⊆ Lang(ϕ), then
ψ ◦μ ≡ (ϕ ◦′ μ)∧ϕ′, where ◦′ is the revision operator restricted to language
Lang(ϕ).

An open question, as stressed in [14], concerns the local revision operator men-
tioned in postulate (P): this operator must be context-independent. Suppose
there are two belief sets ψ and ψ′ such that ψ ≡ ϕ∧ ϕ′, ψ′ ≡ ϕ∧ ϕ′′, Lang(ϕ) ∩
Lang(ϕ′) = ∅ and Lang(ϕ) ∩ Lang(ϕ′′) = ∅. Then only a single version of the
local revision operator ◦′ should exist such that ψ ◦ μ ≡ (ϕ ◦′ μ) ∧ ϕ′ and
ψ′ ◦ μ ≡ (ϕ ◦′ μ) ∧ ϕ′′ for any μ s.t. Lang(μ) ⊆ Lang(ϕ). Hereafter, we also
commit to this strong version of (P).

A relevant belief revision operator which minimizes the existing belief prime
implicant change was proposed in [15]. That operator, denoted ◦PI , satisfies
Katsuno-Mendelzon’s postulates for belief revision as well as Parikh’s postulate
for relevant revision. The first step in capturing the notion of relevance is to
represent the belief base as its set of prime implicants. Prime implicants facil-
itate the splitting stage when performing the change by providing a canonical
representation and the minimal language for representing belief base ψ.

Satisfaction of postulate (P) is assured then by the definition of faithful as-
signment, where preferences are defined within a subset of terms rather than
on the whole set of possible models as required in [6,8]. The pre-order is only
required to be set over the set of terms that can be built from Γ(ψ). Let
ψ be
a preference relation defined over the set of all possible terms in Γ(ψ): D
ψ D′

states that D is at least as close as D′ w.r.t. ψ. The notion of faithful assignment
is defined as follows.

Definition 1. [15] A faithful assignment Fψ is a function which maps every
formula ψ to a pre-order over Γ(ψ) s.t.:1

(C1-T) if D,D′ ∈ Dψ, then D �<ψ D′.
(C2-T) if D ∈ Dψ and D′ �∈ Dψ, then D <ψ D′.
(C3-T) if ψ ≡ ϕ, then
ψ=
ϕ.
(C4-T) For all D,D′ �∈ Dψ, if (D ⊆ D′) then D ∼ψ D′.

1 D ∼ψ D′ stands for D
ψ D′ and D′
ψ D

Relevant Minimal Change in Belief Update 337

Constraint (C4-T) states that preferences should not favor too specific terms.
This is the first step towards the enforcing the notion of relevance.

Operator ◦PI commits to the strong version of postulate (P) by setting a
constraint on faithful assignment. Suppose that ψ ≡ ϕ∧ϕ′ such that Lang(PIϕ)∩
Lang(PIϕ′) = ∅. Local revision operator ◦′PI used in (P) requires that there is
only one pre-order
ϕ associated to ϕ. Suppose two terms D and D′ ∈ Γ(ϕ) such
that D
ϕ D′. Pre-order
ψ should also reflect these preferences; extending
terms D and D′ with any prime implicants belonging to PIϕ′ must not change
preferences. The following constraint expresses the strong notion of relevance by
considering multiple pre-orders.

(CS-T) Suppose ϕ and a faithful assignment F ′
ψ s.t. F ′

ψ(ϕ) =
ϕ. Faithful as-
signment Fψ mapping each belief set ψ to a pre-order
ψ is said to be
relevant iff for any ϕ, ϕ′ s.t. ψ ≡ ϕ∧ϕ′ and Lang(PIϕ)∩Lang(PIϕ′) = ∅; for
any D,D′ ∈ Γ(ϕ): D
ϕ D′ iff D ∪ Dϕ′
ψ D′ ∪ D′

ϕ′ s.t. Dϕ′ , D′
ϕ′ ∈ PIϕ′

and D ∪Dϕ′ , D′ ∪D′
ϕ′ ∈ Γ(ψ).

Revising a belief set ψ by μ is then defined as selecting the preferred terms
w.r.t.
ψ. It has been shown that the resulting revision operator ◦PI defined by
faithful assignment Fψ satisfies postulate (P) if faithful assignment Fψ satisfies
constraint (CS-T):

Theorem 1. [15] Let F ′
ψ be a faithful assignment that maps each belief set ψ′

to a total pre-order
′
ψ. Let ◦′PI be the revision operator defined by F ′

ψ. Let Fψ

be a faithful assignment that maps each belief set ψ to a total pre-order
ψ. Let
◦PI be the revision operator defined by Fψ.

If Fψ satisfies constraint (CS-T) w.r.t. F ′
ψ then ◦PI satisfies (P) w.r.t. re-

vision operator ◦′PI .

The result of relevance is rooted in two key aspects: defining the revision operator
◦PI and committing to the strong version of the relevance postulate. Hence,
the prime implicant based revision operator exactly characterizes the notion of
relevant belief revision.

Dalal’s operator and Relevant Revision

According to [11], ◦PI revision operator is equivalent to Dalal’s revision oper-
ator [2]. Considering that ◦PI is relevant, we show below that Dalal’s revision
operator is also relevant. The notion of distance used by Dalal can be rephrased
with respect to distance between terms belonging to Γ(ψ). Every term that be-
longs to Γ(ψ) can be rewritten asD∪(Dψ−D) s.t. Dψ ∈ PIψ and D ∈ D. Hence,
the set D ∩ Dμ, where Dμ are the terms of the new information μ, represents
the contradicting literals between the belief base ψ and the new information μ.
We introduce function κ that returns the set of propositional symbols associated
with this set of contradicting literals and which allows us to rephrase Dalal’s
pre-order
Da

ψ .

338 L. Perrussel et al.

Definition 2 (κ). Let D1 ∈ D, Dψ ∈ PIψ and D ∈ Γ(ψ) s.t. D = D1 ∪ (Dψ −
D1): κ(D) = {p ∈ P |p ∈ (Dψ ∩D1) or ¬p ∈ (Dψ ∩D1)}

Definition 3 (
Da
ψ). Let D,D′ ∈ Γ(ψ): D
Da

ψ D′ ⇐⇒ |κ(D)|
N |κ(D′)|

Let us state that Dalal’s revision operator is relevant.

Proposition 1. Let FDa
ψ be a function mapping a total pre-order
Da

ψ to each

belief set ψ. Function FDa
ψ is a faithful assignment which satisfies constraint

(CS-T) w.r.t. faithful assignment F ′
ψ = FDa

ψ .

Proof. (sketch): It is straightforward to prove that (C1-T)–(C3-T) hold. Con-
straint (C4-T): suppose D,D′ �∈ Dψ s.t. D ⊆ D′; suppose l s.t. l ∈ κ(D′) and
l �∈ κ(D): either (i)D∪{l} is not consistent and thusD∪{l} �∈ Γ(ψ) or (ii) l is con-
sistent with D and thus D∪{l} ∈ Γ(ψ) then κ(D) = κ(D∪{l}) and thus κ(D) =
κ(D′). Hence (C4-T) holds. Constraint (CS-T): suppose it does not hold. Then
it follows that ∃ϕ, ϕ′ s.t. ψ ≡ ϕ∧ϕ′, Lang(PIϕ)∩ Lang(PIϕ′) = ∅ and ∃D,D′ ∈
Γ(ϕ) s.t. D
ϕ D′ and D∪Dϕ′ �
ψ D′ ∪D′

ϕ′ . Since Lang(PIϕ)∩Lang(PIϕ′) = ∅
it follows that Dϕ′ is consistent with D and D′; hence κ(D) = κ(D ∪Dϕ′) and
κ(D′) = κ(D′ ∪Dϕ′) which contradicts D ∪ Dϕ′ �
ψ D′ ∪ D′

ϕ′ . Since D ∪ Dϕ′ ,
D′ ∪D′

ϕ′ ∈ Γ(ψ), (CS-T) holds.

4 Relevant Belief Update

In this section we present the KM framework and we present how KM postulates
are changed in order to consider sets of terms. We also show that Forbus’ operator
is relevant in the sense of Parikh, but it is not minimal. We present how a relevant
and minimal operator can be obtained considering terms instead of models and
we demonstrate how to achieve Relevant Minimal Change.

4.1 KM’s Framework of Belief Update

Belief update concerns consistently inserting a new piece of information μ into a
belief set ψ. The update operator is usually denoted by 5 and the resulting belief
set is denoted ψ 5 μ. The KM postulates provide an axiomatic characterization
of belief update operators in the context of finite propositional beliefs [7]:

(U1) ψ 5 μ implies μ.
(U2) If ψ implies μ then ψ 5 μ is equivalent to ψ.
(U3) If both ψ and μ are satisfiable then ψ 5 μ is also satisfiable.
(U4) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 5 μ1 ≡ ψ2 5 μ2.
(U5) (ψ 5 μ) ∧ ϕ implies ψ 5 (μ ∧ ϕ).
(U6) If ψ 5 μ1 implies μ2 and ψ 5 μ2 implies μ1 then ψ 5 μ1 ≡ ψ 5 μ2.
(U7) If ψ is complete then (ψ 5 μ1) ∧ (ψ 5 μ2) implies ψ 5 (μ1 ∨ μ2).
(U8) (ψ1 ∨ ψ2) 5 μ ≡ (ψ1 5 μ) ∨ (ψ2 5 μ).

Relevant Minimal Change in Belief Update 339

Updating ψ by μ consists of choosing the closest models of μ with respect to each
model of ψ [8,7]. Let �w be a pre-order representing preferences defined over
W , where W is the set of all propositional interpretations defined over P . The
closeness criterion: w′ �w w′′ states that w′ is at least as close as w′′ w.r.t. w.
Faithful assignment represents preferences related to w, i.e, the most preferred
model is w:2

Definition 4. A faithful assignment Fw is a function that maps each interpre-
tation w to a partial pre-order �w s.t.:

(C1) for all w′ ∈ W if w �= w′ then w ≺w w′

Let [[ψ]] be the set of propositional interpretations that satisfy ψ, i.e., the models
of ψ. Updating a belief set is then defined by selecting the preferred models of
μ w.r.t. each �w.

Theorem 2. [8] An update operator 5 satisfies (U1)–(U8) if and only if there
exists a faithful assignment Fw that maps each interpretation w to a partial
pre-order �w s.t. [[ψ 5 μ]] =

⋃
w∈[[ψ]]min([[μ]],�w).

One of the simplest ways to set preferences is to consider the propositional
symbols that may change. This has been proposed by Dalal in [2] and is applied
to belief update in [18,5]. It consists of characterizing a belief change operator
as a function which changes the minimal number of propositional symbol truth
values in each ψ model so that incoming information can be added without
entailing inconsistency.

4.2 Relevance Criterion on Belief Update

Since Dalal’s operator is a relevant belief revision operator, the immediate ques-
tion becomes: is it also the case for Dalal’s belief update counter-part, the Forbus’
operator [5]?

To get the answer, we first need to rephrase the Parikh’s postulate for belief
update. A naive translation is:

(P-U) Let ψ = ϕ ∧ ϕ′ s.t. Lang(ϕ) ∩ Lang(ϕ′) = ∅. If Lang(μ) ⊆ Lang(ϕ), then
ψ 5 μ ≡ (ϕ 5′ μ) ∧ ϕ′, where 5′ is the update operator restricted to language
Lang(ϕ).

Let us consider one example that illustrates the relevance issue with Forbus’
belief update operator.

Example 2. Consider belief base ψ = (p2 ∧ p3 ∧ p5) ∨ (p4 ∧ p5) and new piece of
information μ = (p1∧p2∧¬p3)∨(¬p1∧¬p2∧¬p3). Performing the update process

2 ≺w is defined from "w as usual, i.e., w′ ≺w w′′ iff w′ "w w′′ but not w′ "w w′′.

340 L. Perrussel et al.

using Forbus’ operator means to calculating distances and preferences between
models of ψ and μ: w′ �w w′′ iff |d(w,w′)|
N |d(w,w′′)|, where function d gives
the set of propositional symbols that differ between w and w′. The resulting
belief base is given by the models of μ that are the closest to each model of ψ:

[[ψ 5 μ]] = {{p1, p2,¬p3, p4, p5}, {¬p1,¬p2,¬p3, p4, p5}
{p1, p2,¬p3,¬p4, p5}, {¬p1,¬p2,¬p3,¬p4, p5}}

that corresponds to the following implicants:

ψ 5 μ = (p1 ∧ p2 ∧ ¬p3 ∧ p5) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p5)

The belief base ψ can be split into ϕ and ϕ′ such that Lang(ϕ) = {p1, p2, p3, p4}
and Lang(ϕ′) = {p5}, such that Lang(ϕ) ∩ Lang(ϕ′) = ∅. Literal p5 is preserved
in the resulting belief base, and thus the update process performed using Forbus’
operator seems relevant in the sense of Parikh.

However, we face two caveats. First, it is not minimal: literal p4 appears in one
implicant of ψ but not in the representation of μ and p4 is also concerned with the
update operation (p4 no longer explicitly appears in the resulting belief base);
second, the constraint relating languages is too strong if we want to perform
update as suggested by the example.

Since each prime implicant of ψ stresses up the relevant literals for repre-
senting ψ, update should also focus on these relevant literals. It means that
update should be performed by considering each prime implicant of ψ rather
than considering each model of ψ.

To enforce this new way to update a belief set, we extend the definition of
Γ(ψ) so that we consider one term D and a formula μ such that every prime
implicant of μ is extended with the maximal consistent part of term D:

Γ(D,μ) = {Dμ ∪ (D −Dμ)|Dμ ∈ PIμ}

Hence, the “relevant minimal change” operator should pick up terms D(ψ,μ) of
set
⋃

Dψ∈PIψ
Γ(Dψ , μ) that are the closest to each prime implicant Dψ in PIψ

as illustrated in Figure 2.

Dn
ψ

Di
(ψ,μ)

Dk
(ψ,μ)

Dj
(ψ,μ)

Dm
(ψ,μ)

Dl
(ψ,μ)

D1
ψ
D2

ψ
. . .

PIψ

⋃
Dψ∈PIψ

Γ(Dψ, μ)

Fig. 2. Belief update performed over terms of PIψ

Relevant Minimal Change in Belief Update 341

4.3 Belief Update in Prime Implicants

Our aim is to develop a theorem similar to theorems 1 and 2 that describes belief
update operation in terms of preferences over terms. As explained, preferences
are now indexed by the prime implicants Dψ of ψ rather than by the models of
ψ. First we rewrite constraint (C1) that characterizes preferences overs models:
all terms which are entailed by an implicant D are strictly preferred to the
terms that are not entailed by D. Secondly, we rewrite constraint (C4-T), which
avoids setting preferences that favor too specific terms (cf. section 3). These two
constraints characterize the notion of faithful assignment defined over terms.

Definition 5. A faithful assignment FD is a function which maps every D ∈ D
to a partial pre-order
D defined over Γ(D) s.t.:

(CU1-T) For all D′, D′′ ∈ D, if D′ ∈ Γ(D), D′′ �∈ Γ(D) then D′ <D D′′

(C4U-T) For all D′, D′′ ∈ Γ(D), if D′ ⊆ D′′ then D′ ∼D D′′.

Since preferences are indexed by terms instead of models, postulates (U1)–(U8)
that characterize the notion of update by applying change to each model of the
initial belief set have to be reformulated in order to accommodate the notion of
change that leads to relevance: changes should be applied to each prime implicant
of the initial belief set. In fact, all postulates are identical to postulates (U1)–
(U8) except postulates (U7-T) and (U9-T). Let ψ 5PI μ denote the updated
belief base. The following postulates characterize 5PI :

(U1-T) ψ 5PI μ implies μ.
(U2-T) If ψ implies μ then ψ 5PI μ is equivalent to ψ.
(U3-T) If both ψ and μ are satisfiable then ψ 5PI μ is also satisfiable.
(U4-T) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 5PI μ1 ≡ ψ2 5PI μ2.
(U5-T) (ψ 5PI μ) ∧ ϕ implies ψ 5PI (μ ∧ ϕ).
(U6-T) If ψ5PI μ1 implies μ2 and ψ5PI μ2 implies μ1 then ψ5PI μ1 ≡ ψ5PI μ2.
(U7-T) If PIψ = {Dψ} then (ψ 5PI μ1) ∧ (ψ 5PI μ2) implies ψ 5PI (μ1 ∨ μ2).
(U8-T) (ψ1 ∨ ψ2) 5PI μ ≡ (ψ1 5PI μ) ∨ (ψ2 5PI μ).
(U9-T) If PIψ = {Dψ} and PIμ = {Dμ} then ψ 5PI μ = Dμ ∪ (Dψ −Dμ).

Postulate (U7-T) rephrases the condition “ψ is complete” as “ψ is represented
by only one prime implicant”. Combining (U8-T) and (U7-T) leads to update
ψ by considering each prime implicant alternately. Postulate (U9-T) stresses
up the second key difference between 5 and 5PI : the result given by 5PI is a
subset of the set

⋃
Dψ∈PIψ

Γ(Dψ, μ) while the result given by 5 is a subset of W .

Following [7], we now show that whenever constraints (CU1-T) and (C4U-T)
hold, the nine update postulates are satisfied:

Theorem 3 (Update operator). Let FD be a faithful assignment that maps
each term D ∈ D to a partial pre-order
D. PI update operator 5PI defined by
FD satisfies (U1-T)–(U9-T) if

ψ 5PI μ =def

⋃
Dψ∈PIψ

min(Γ(Dψ , μ),
Dψ
)

342 L. Perrussel et al.

Proof. (Sketch) The proof is almost a direct translation of the proof of theorem 2
given in [7] and theorem 5 in [11]. (U1-T)–(U4-T) and (U8-T) are consequences
of the definitions of Γ and 5PI . Constraint (C4U-T) enforces postulates (U5-
T)–(U7-T). Let us focus on (U5-T): suppose the case where ψ and (ψ5PI μ)∧ϕ
are consistent, then there exists D ∈ (ψ 5PI μ) and Dϕ s.t. D∧Dϕ is consistent.
It follows that there exists Dψ s.t. D is minimal w.r.t.
Dψ

. Constraint (C4U-
T) entails that D∪Dϕ is also minimal. Hence (U5-T) holds. Postulate (U9-T)
holds since the results given by 5PI is a subset of

⋃
Dψ∈PIψ

Γ(Dψ, μ).

4.4 Relevant Belief Update

Postulates (U7-T) and (U9-T) represent the first key step to handling Relevant
Minimal Change. The second step is to rewrite Parikh’s postulate in the context
of belief update. Relevance has to be set by constraining faithful assignments.
Consider a term D which can be split in a conjunction of two terms which do
not share any symbols: D ≡ D1 ∧ D2. Suppose one pre-order
D1 defined by
faithful assignment F ′

D. Now, suppose two terms D,D′ ∈ Γ(D1, μ) such that
D
D1 D′. Relevance states that adding D2 to D and D′ should not switch
the preferences about D and D′ since D2 is expressed with symbols that differ
from the symbols of D1; that is D ∪D2
D D′ ∪D2 (provided that D ∪D2 and
D′ ∪D2 are consistent, i.e. they belong to Γ(D)).

(CUS-T) Suppose D1 and a faithful assignment F ′
D s.t. F ′

D(D1) =
D1 . Faith-
ful assignment FD mapping each D ∈ D to a pre-order
D is relevant iff for
any D,D2 s.t. D ≡ D1∧D2 and Lang(D1)∩Lang(D2) = ∅; for any D′, D′′ ∈
Γ(D1): D

′
D1 D
′′ iff D′ ∪D2
D D′′ ∪D2 s.t. D′ ∪D2, D

′′ ∪D2 ∈ Γ(D).

Now, we show that operator 5PI characterizes relevant belief update by sat-
isfying postulate based on (P). The constraint (CUS-T) stating relevance by
considering multiple assignments stresses that changes should be performed by
handling implicants. Hence, the postulate for relevance should explicitly mention
operator 5PI in its definition. We rephrase Parikh’s postulate in terms of the
prime implicant representation of belief since it enables the clear separation of
relevant and non-relevant literals used to represent ψ:3

(PU-T) Let PIψ = PIϕ × PIϕ′ . If (i) Lang(PIμ) ∩ Lang(PIϕ′) = ∅ and (ii)
∀ϕ′′, ϕ′′′ s.t. PIψ = PIϕ′′ × PIϕ′′′ and Lang(PIμ) ∩ Lang(PIϕ′′′) = ∅,
Lang(PIϕ′′′) ⊆ Lang(PIϕ′); then ψ 5PI μ ≡ (ϕ 5′PI μ) ∧ ϕ′, where 5′PI is
the PI update operator restricted to the language Lang(PIϕ).

The definition of the constraint states that if there exist ϕ and ϕ′ s.t. ψ = ϕ∧ϕ′

and ϕ′ is the formula that has the largest set of symbols (condition (ii)) which
are not shared with those of μ (condition (i)), then 5PI should not change ϕ′.

If a faithful assignment satisfies constraint (CUS-T), then operator 5PI sat-
isfies the relevance postulate for update.

3 PIϕ × PIϕ′ is the Cartesian product of sets PIϕ and PIϕ′ .

Relevant Minimal Change in Belief Update 343

Theorem 4. Suppose PI update operator 5′PI defined by the faithful assignment
F ′

D. Let FD be a faithful assignment that maps each D ∈ D to a partial pre-order

D. PI update operator 5PI defined by FD satisfies (PU-T), w.r.t. operator 5′PI ,
if FD satisfies (CUS-T) w.r.t. faithful assignment F ′

D.

Proof. (sketch) If it is not the case, there exist ϕ and ϕ′ s.t. PIψ = PIϕ∧ϕ′ ,
Lang(PIμ) ∩ Lang(PIϕ′) = ∅ and ψ 5PI μ �≡ (ϕ 5′PI μ) ∧ ϕ′. Suppose that ψ 5PI

μ �⇒ (ϕ 5′PI μ) ∧ ϕ′. It entails, because of the definition of 5PI , that there
exist Dψ and D ∈ min(Γ(Dψ, μ),
ψ) s.t. D �|= (ϕ 5′PI μ) ∧ ϕ′. There also exist
D′ ∈ Γ(ϕ) and Dϕ′ ∈ PIϕ′ s.t. D = D′ ∪Dϕ′ because of the definition of Γ and
Lang(PIϕ) ∩ Lang(PIϕ′) = ∅. Condition (CUS-T) entails that D′ belongs to
min(Γ(Dϕ, μ),
ϕ) and thus D |= (ϕ 5′PI μ) ∧ ϕ′. Contradiction. Proof for the
case (ϕ 5′PI μ) ∧ ϕ′ ⇒ ψ 5PI μ is similar.

Let us look at the opposite way: suppose an update operator 5PI which satisfies
postulates (U1-T)–(U9-T) and (PU-T); the question becomes “is there a
relevant faithful assignment that can produce the same result?” If the answer
is positive then it means that in fact operator 5PI characterizes the family of
belief update operators that produces minimal relevant change. The following
theorem shows that it is in fact the case if we focus on the strong meaning of
relevance:

Theorem 5. Suppose PI update operator 5′PI s.t. (U1-T)–(U9-T); Suppose
PI update operator 5PI s.t. (U1-T)–(U9-T) and (PU-T) hold w.r.t. PI update
operator 5′PI . Then (i) there exists a faithful assignment F ′

D that maps every
D ∈ D to a pre-order
′

D s.t.

ψ 5′PI μ =def

⋃
Dψ∈PIψ

min(Γ(Dψ , μ),
′
Dψ

)

and (ii) there exists a relevant faithful assignment FD satisfying constraint (CUS-
T) w.r.t. to faithful assignment F ′

D s.t.

ψ 5PI μ =def

⋃
Dψ∈PIψ

min(Γ(Dψ , μ),
Dψ
)

Proof. (Sketch) Suppose ψ 5PI μ s.t. postulates (U1-T)–(U9-T) and (PU-
T) hold; let us define preferences of faithful assignment FD as follows: for
any terms D,D′ and D′′ ∈ D, there exist D1 and D2 ∈ D s.t. D′ = D1 ∪
(D − D1) and D′′ = D2 ∪ (D − D2). We set D′
D D′′ iff D ⊆ D′ or
D 5PI (D1 ∨D2) = {D′}. Reflexivity and transitivity are proven as in [11].
(CU1-T) holds because : (i) for all terms D′ subsumed by D, it holds that
D′
D D′′ and (ii) (U2-T) entails that D′′ �
D D′ for all D′′ �⊆ D. Con-
straint (C4-T) holds because of postulate (U5-T) and also (U7-T). Finally,
(U5-T), (U7-T)–(U9-T) entails that Dψ 5PI μ = min(Γ(Dψ, μ),
Dψ

) which
then entails that ψ 5PI μ = ∪Dψ∈PIψ min(Γ(ψ, μ),
Dψ

). Finally, we prove that
constraint (CUS-T) holds: suppose F ′

D is defined in a similar way to FD and

344 L. Perrussel et al.

based on 5′PI . For all D ∈ D, assume D ≡ D3 ∧ D4 and let us go back to the
way we set preferences: D 5PI (D1 ∨D2) = {D′} and by (PU-T), it holds that
D′ ≡ D35′PI (D1∨D2)∧D4. Consequently D35′PI (D1∨D2) ≡ D′−D4. Moreover
D′ is minimal and also D′ −D4 (see above). Hence (CUS-T) holds.

We conclude the characterization of 5PI by showing that Forbus-based PI update
is minimal and relevant:

Proposition 2. Let FFo
D be a function mapping a pre-order
Da

D to each D ∈ D
(cf. Def. 2 and 3). Function FFo

D is a faithful assignment which satisfies (CUS-
T) w.r.t. faithful assignment F ′

D = FFo
D .

The proof is similar to the proof of Proposition 1. Let us illustrate the proposition
by reconsidering Example 2:

Example 3. Consider belief base ψ and new piece of information μ as presented
in Example 2 and represented as PIψ = (p2 ∧ p3 ∧ p5) ∨ (p4 ∧ p5) and PIμ =
(p1∧p2∧¬p3)∨ (¬p1 ∧¬p2 ∧¬p3). Definitions 2 and 3 give the following faithful
assignment FFo

D with pre-orders
Da
Dψ

:

{p1, p2,¬p3, p5} <Da
{p2,p3,p5} {¬p1,¬p2,¬p3, p5}

{p1, p2,¬p3, p4, p5}
Da
{p4,p5} {¬p1,¬p2,¬p3, p4, p5}

Let 5FoPI be the PI update operator defined by FFo
D . We get:

ψ 5FoPI μ = (p1 ∧ p2 ∧ ¬p3 ∧ p5)∨
(p1 ∧ p2 ∧ ¬p3 ∧ p4 ∧ p5)∨
(¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5)

As expected, operator 5FoPI preserves literals of prime implicant (p4 ∧ p5).

5 Conclusion

This paper proposed a framework for handling relevant minimal update. We
go beyond Parikh to ensure that literals without relation with new information
are preserved. Operator 5PI is characterized both in terms of postulates and
faithful assignment over terms. Performing belief update over terms, i.e, set of
models ensures the syntax independence principle. Besides that, since beliefs are
represented as sets of prime implicants, the belief update operator 5PI is not
computationally more complex when applied in a relevant belief update process.
In fact, Theorems 3–5 stress that 5PI exactly characterizes update operators
that produce relevant minimal change.

There is a subtle link between relevance belief update and the frame prob-
lem [12]. On the one hand, these two problems are closely related. A solution to
the frame problem requires separating irrelevant fluents from relevant fluents.
If we know which fluents we should update after performing an action, these
fluents are relevant and the rest are irrelevant. This means that a solution to

Relevant Minimal Change in Belief Update 345

relevance updating is a solution to the frame problem. On the other hand, a
solution to the frame problem needs to be attached to an action logic, which
is normally a high-order logic, either dynamic logic or situation calculus. Prime
implicants are not expressive enough to represent actions and their effects. How
to apply the techniques we introduced in this paper to an action logic will be a
promising research topic for the future.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. of Symbolic Logic 50(2), 510–
530 (1985)

2. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary
report. In: Proc. of AAAI 1988, pp. 475–479 (1988)

3. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. Journal of Artificial
Intelligence Research (17), 229–264 (2002)

4. Van de Putte, F.: Prime implicates and relevant belief revision. Journal of Logic
and Computation 7, 1–11 (2011), DOI: 10.1093/logcom/exr040

5. Forbus, K.: Introducing actions into qualitative simulation. In: Proc. of IJCAI 1989,
pp. 1273–1278 (1989)

6. Grove, A.: Two Modellings for Theory Change. J. of Philosophical Logic 17, 157–
170 (1988)

7. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base
and revising it. In: Proc. of KR 1991, pp. 387–394 (1991)

8. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52(3), 263–294 (1991)

9. Kourousias, G., Makinson, D.: Parallel interpolation, splitting, and relevance in
belief change. J. Symb. Log. 72(3), 994–1002 (2007)

10. Makinson, D., Kourousias, G.: Respecting relevance in belief change. Análisis Fi-
losófico 26(1), 53–61 (2006)

11. Marchi, J., Bittencourt, G., Perrussel, L.: Prime forms and minimal change in
propositional belief bases. Annals of Math. and AI (2010)

12. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, 463–502 (1969)

13. Parikh, R.: Beliefs, belief revision, and splitting languages, vol. 2, pp. 266–278.
Center for the Study of Language and Information, Stanford (1999)

14. Peppas, P., Chopra, S., Foo, N.: Distance semantics for relevance-sensitive belief
revision. In: Proc. of KR 2004, pp. 319–328 (2004)

15. Perrussel, L., Marchi, J., Zhang, D.: Characterizing Relevant Belief Revision Op-
erators. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 42–51. Springer, Heidelberg
(2010)

16. Perrussel, L., Marchi, J., Bittencourt, G.: Prime implicants and belief update. In:
Proceedings of the Twenty-Second International FLAIRS Conference 2009, pp.
577–598 (2009)

17. Quine, W.V.O.: On cores and prime implicants of truth functions. American Math-
ematics Monthly 66, 755–760 (1959)

18. Winslett, M.: Reasoning about action using a possible models approach. In: Proc.
of AAAI 1988, pp. 89–93 (1988)

19. Wu, M., Zhang, D., Zhang, M.: Language splitting and relevance-based belief
change in horn logic. In: AAAI (2011)

Minimal Proof Search for Modal Logic K Model
Checking�

Abdallah Saffidine

LAMSADE, Université Paris-Dauphine
abdallah.saffidine@dauphine.fr

Abstract. Most modal logics such as S5, LTL, or ATL are extensions
of Modal Logic K. While the model checking problems for LTL and to
a lesser extent ATL have been very active research areas for the past
decades, the model checking problem for the more basic Multi-agent
Modal Logic K (MMLK) has important applications as a formal frame-
work for perfect information multi-player games on its own.

We present Minimal Proof Search (MPS), an effort number based al-
gorithm solving the model checking problem for MMLK. We prove two
important properties for MPS beyond its correctness. The (dis)proof ex-
hibited by MPS is of minimal cost for a general definition of cost, and
MPS is an optimal algorithm for finding (dis)proofs of minimal cost. Op-
timality means that any comparable algorithm either needs to explore
a bigger or equal state space than MPS, or is not guaranteed to find a
(dis)proof of minimal cost on every input.

As such, our work relates to A* and AO* in heuristic search, to Proof
Number Search and DFPN+ in two-player games, and to counterexample
minimization in software model checking.

1 Introduction

Model checking for temporal logics such as LTL or CTL is a major research area
with important applications in software and hardware verification [4]. Model
checking for agent logics such as ATL or S5 is now also regarded as an important
topic with a variety of applications [17,18,11]. On the other hand, Modal Logic K
is usually considered the basis upon which more elaborate modal logics are built,
such as S5, PDL, LTL, CTL, or ATL [2,16]. Multi-agent Modal Logic K (MMLK)
can also be used directly to model (sequential) perfect information games.

In this article, we put forward a model checking algorithm for MMLK that
we call Minimal Proof Search (MPS). As the name indicates, given a model
checking problem q |= φ, the MPS algorithm outputs a proof that q satisfies φ or a
counterexample, this proof/counterexample being minimal for some definition of
size. Perfect information games provide at least two motivations for small proofs.
In game playing, people are usually interested in “short” proofs, for instance a
chess player would rather deliver checkmate in three moves than in nine moves

� A longer version of this article is available at http://arxiv.org/abs/1207.1832v1.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 346–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1207.1832v1

Minimal Proof Search for Modal Logic K Model Checking 347

even if both options grant them the victory. In game solving, “compact” proofs
can be stored and independently checked efficiently.

In CTL model checking, finding a minimal witness/counterexample is np-
complete [3]. MMLK model checking, on the contrary, though ptime-complete [10],
allows finding minimal witnesses/counterexamples relatively efficiently as we
shall see in this article.

Our goal is related both to heuristic search and software model checking. On
one hand, the celebrated A* algorithm outputs a path of minimal cost from
a starting state to a goal state. This path can be seen as the proof that the
goal state is reachable, and the cost of the path is the size of the proof. On the
other hand, finding small counterexamples is an important subject in software
model checking. For a failure to meet a specification often indicates a bug in
the program, and a small counterexample makes finding and correcting the bug
easier [7].

Like A*, MPS is optimal, in the sense that any algorithm provided with the
same information and guaranteed to find a proof of minimal size needs to do as
many node expansions as MPS.

The tableau-based model checking approach by Cleaveland for the μ-calculus
seems to be similar to ours [6], however it would need to be adapted to handle
(dis)proof cost. Also, in our understanding, the proof procedure check1 presented
by Cleaveland can be seen as an unguided depth first search while our approach
is guided towards regions of minimal cost.

The two algorithms most closely related to MPS are AO*, a generalization
of A* to And/Or trees, and DFPN+ [13], a variant of DFPN, itself a depth-first
variant of Proof Number Search (PNS) [1].

While And/Or trees are as expressive as the combination of MMLK and Game
Automata (GAs), we believe that the separation of concerns between the logic
and the Game Automaton is beneficial in practice. For instance, if the properties
to be checked are encoded in the logic rather than in the graph, there is no need
to rewrite the rules of chess if one is interested in finding helpmates instead of
checkmates, or if one just wants to know if any piece can be captured in two
moves from a given position. The encoding through an And/Or graph would
be different in every such situation while in our approach, only the modal logic
formula needs to be adapted. Another advantage of MPS over AO* is that if the
problem is not solvable, then MPS finds a minimal disproof while AO* does not
provide such a guarantee.1

DFPN+ is typically only used to find a winning strategy for either player in
two-player games. MPS, on the contrary, can be applied to solve other interest-
ing problems without a cumbersome And/Or graph prior conversion. Example
of such problems range from finding ladders in two-player games to finiding para-
noid wins in multi-player games. Another improvement over DFPN+ is that we
allow for a variety of (dis)proof size definitions. While DFPN+ is set to minimize

1 Following the convention in Proof Number Search, we use the term proof and dis-
proof instead of witness and counterexample which are more common in the model
checking literature.

348 A. Saffidine

the total edge cost in the proof, we can imagine minimizing, say, the number of
leaves or the depth of the (dis)proof.

In his thesis, Nagai derived the DFPN algorithm from the equivalent best-first
algorithm PNS [13]. Similarly, we can obtain a depth-first version of MPS from
the best first search version presented here by adapting Nagai’s transformation.
Such a depth-first version should probably be favoured in practice, however we
decided to present the best first version in this article for two main reasons. We
believe the best-first search presentation is more accessible to the non-specialists.
The proofs seemed to be easier to work through in the chosen setting, and they
can later be extended to the depth-first setting.

The remainder of this paper is structured as follows. In Sect. 2 we recall the
definitions of Game Automaton (GA) and MMLK and formally define (dis)proofs
for the corresponding model checking problem. Section 3 elaborates on the notion
of (dis)proof cost and the associated basic admissible heuristic functions, it then
proceeds with the presentation of the MPS algorithm. Finally, we prove the
correctness of MPS, the minimality of the output (dis)proofs and the optimality
of the algorithm in Sect. 4. A short discussion concludes the article.

2 Definitions

We define in this section various formal objects that will be used throughout
the paper. The GA is the underlying system which is to be formally verified.
The MMLK is the language to express the various properties we want to model
check GAs against. Finally, a (dis)proof is a tree structure that shows whether
a property is true on a state in a GA.

2.1 Game Automata

A GA is a kind of labelled transition system where both the states and the
transitions are labelled. If a GA is interpreted as a perfect information game,
then a transition corresponds to a move from one state to the next and its label
is the player making that move. The state labels are domain specific information
about states, for instance we could have a label for each triple (piece, owner,
position) in chess-like games. Naturally, it is also possible to give a formal
definition of GAs.

Definition 1. A Game Automaton is a 5-tuple G = (P, Σ, Q, π, δ) with the
following components:

– P is a non-empty set of atoms (or state labels)
– Σ is a non-empty finite set of agents (or transition labels)
– Q is a set of game states
– π : Q→ 2P maps each state q to its labels
– δ : Q ×Σ → 2Q is a transition function that maps a state and an agent to

a set of next states.

Minimal Proof Search for Modal Logic K Model Checking 349

In the following, we will use p, p′, p1, . . . for atoms, a for an agent, and q, q′,
q1, . . . for game states. We write q

a−→ q′ when q′ ∈ δ(q, a) and we read agent a
can move from q to q′. Note that δ returns the set of successors, so it need not
be a partial function to allow for states without successors. If an agent a has no
moves in a state q, we have δ(q, a) = ∅.

2.2 Multi-agent Modal Logic K

Following loosely [2], we define the Multi-agent Modal Logic K over a set of
atoms P as the formulas we obtain by combining the negation and conjunction
operators with a set of box operators, one per agent.

Definition 2. The set T of well-formed Multi-agent Modal Logic K (MMLK)
formulas is defined inductively as φ := p | ¬φ′ | �a φ′ | φ1 ∧ φ2 where φ, φ′,
φ1,. . . stand for arbitrary MMLK formulas.

We can define the usual syntactic shortcuts for the disjunction and the diamond
operators φ1∨φ2

def
= ¬(¬φ1∧¬φ2) and ♦a φ

def
= ¬�a ¬φ. The box operators convey

necessity and the diamond operators convey possibility: �a φ can be read as it
is necessary for agent a that φ, while ♦a φ is it is possible for a that φ.

2.3 The Model Checking Problem

We can now interpret MMLK formulas over GAs via the satisfaction relation |=.
Intuitively, a state in a GA constitutes the context of a formula, while a formula
constitutes a property of a state. A formula might be satisfied in some contexts
and not satisfied in other contexts, and some properties hold in a state while
others do not. Determining whether a given formula φ holds in a given state q
(in a given implicit GA) is what is commonly referred to as the model checking
problem. If it is the case, we write q |= φ, otherwise we write q �|= φ.

It is possible to decide whether q |= φ by examining the structure of φ, the
labels of q, as well as the accessible states.

Definition 3. The formulas satisfied by a state q can be constructed by induc-
tion as follows.

– If p is a label of q, that is if p ∈ π(q), then q |= p;
– if q �|= φ then q |= ¬φ;
– if q |= φ1 and q |= φ2 then q |= φ1 ∧ φ2;
– if for all q′ such that q

a−→ q′, we have q′ |= φ, then q |= �a φ.

2.4 Proofs and Counterexamples

In practice, we never explicitly construct the complete set of formulas satisfied
by a state. So when some computation tells us that a formula φ is indeed (not)
satisfied by a state q, some sort of evidence might be desirable. In software model
checking, a model of the program replaces the GA, and a formula in a temporal

350 A. Saffidine

logic acts as a specification of the program. If a correct model checker asserts
that the program does not satisfy the specification, it means that the program
or the specification contained a bug. In those cases, it can be very useful for the
programmers to have access to an evidence by the model checker of the mismatch
between the formula and the system as it is likely to lead them to the bug.

In this section we give a formal definition of what constitutes a proof or
a disproof for the class of model checking problems we are interested in. It is
possible to relate the following definitions to the more general concept of tree-like
counterexamples used in model checking ACTL [5].

Definition 4. An exploration tree for a formula φ in a state q is a tree with
root n associated with a pair (q, φ) with q a state and φ a formula, such that n
satisfies the following properties.

– If n is associated with (q, p) with p ∈ P , then it has no children;
– if n is associated with (q,¬φ) then n has at most one child and it is an

exploration tree associated with (q, φ);
– if a node n is associated with (q, φ1 ∧ φ2) then any child of n (if any) is an

exploration tree associated with (q, φ1) or with (q, φ2);
– if a node n is associated with (q, �a φ) then any child of n (if any) is an

exploration tree associated with (q′, φ) for some q′ such that q
a−→ q′.

– In any case, no two children of n are associated with the same pair.

Unless stated otherwise, we will not distinguish between a tree and its root node.
In the rest of the paper, n, n′, n1, . . . will be used to denote nodes in exploration
trees.

Definition 5. A proof (resp. a disproof) that q |= φ is an exploration tree with
a root n associated with (q, φ) satisfying the following hypotheses.

– If φ = p with p ∈ P , then p ∈ π(q) (resp. p /∈ π(q));
– if φ = ¬φ′, then n has exactly one child n′ and this child is a disproof

(resp. proof);
– if φ = φ1 ∧ φ2, then n has exactly two children n1 and n2 such that n1 is

a proof that q |= φ1 and n2 is a proof that q |= φ2 (resp. n has exactly one
child n′ and n′ is a disproof that q |= φ1 or n′ is a disproof that q |= φ2);

– if φ = �a φ′, then n has exactly one child n′ for each q
a−→ q′, and n′ is a

proof for q′ |= φ′ (resp. n has exactly one child n′ and n′ is a disproof for
q′ |= φ′ for some q

a−→ q′).

3 Minimal Proof Search

Let q |= φ be a model checking problem and n1 and n2 two proofs as defined in
Sect. 2.4. Even if n1 is not a subtree of n2, there might be reasons to prefer, n1

over n2. For instance, we can imagine that n1 contains fewer nodes than n2, or
that the depth of n1 is smaller than that of n2.

Minimal Proof Search for Modal Logic K Model Checking 351

3.1 Cost Functions

To remain as general as possible with respect to the definitions of a small
(dis)proof in the introduction, we introduce a cost function k as well as cost
aggregators A∧ and A�. These functions can then be instantiated in a domain
dependent manner to get the optimal algorithm for the domain definition of min-
imality. This approach has been used before in the context of A* and AO* [14].

We assume given a base cost function k : P → R+, as well as a conjunction
cost aggregator A∧ : NR

+∪{∞} → R+ ∪ {∞} and a box modal cost aggregator
A� : Σ × NR

+∪{∞} → R+ ∪ {∞}, where NR
+∪{∞} denotes the set of multisets

of R+ ∪ {∞}.
We assume the aggregators are increasing in the sense that adding elements

to the input increases the cost. For all costs x ≤ y ∈ R+ ∪ {∞}, multisets
of costs X ∈ NR

+∪{∞}, and for all agents a, we have for the conjunction cost
aggregator A∧(X) ≤ A∧({x} ∪X) ≤ A∧({y} ∪X), and for the box aggregator
A�(a, X) ≤ A�(a, {x} ∪X) ≤ A�(a, {y} ∪X).

We further assume that aggregating infinite costs results in infinite costs and
that aggregating finite numbers of finite costs results in finite costs. For all costs
x ∈ R+, multisets of costs X ∈ NR

+∪{∞}, and for all agents a, A∧({∞}) =
A�(a, {∞}) = ∞ and that A∧(X) < ∞ ⇒ A∧({x} ∪X) < ∞ and A�(a, X) <
∞⇒ A�(a, {x} ∪X) <∞.

Note that in our presentation, there is no cost to a negation. The justification
is that we want a proof aggregating over a disjunction to cost as much as a
disproof aggregating over a conjunction with children of the same cost, without
having to include the disjunction and the diamond operator in the base syntax.

Given k, A∧, and A�, it is possible to define the global cost function for a
(dis)proof as shown in Table 1.

Table 1. Cost K of a proof or a disproof for a node n as a function of the base cost
function k and the aggregators A∧ and A�. C is the set of children of n.

Label of n Children of n K(n)

(q, p) ∅ k(p)
(q,¬φ) {c} K(c)
(q, φ1 ∧ φ2) C A∧({K(c)|c ∈ C})
(q, �a φ) C A�(a, {K(c)|c ∈ C})

Example 1. Suppose we are interested in the nested depth of the � operators in
the (dis)proof. Then we define k = 0, A∧ = max, and A�(a, X) = 1 + maxX
for all a.

Example 2. Suppose we are interested in the number of atomic queries to the
underlying system (the GA). Then we define k = 1, A∧(X) =

∑
X , and

A�(a, X) =
∑

X for all a.

352 A. Saffidine

We define two heuristic functions I and J to estimate the minimal amount of
interaction needed with the underlying system to say anything about a formula
φ. These functions are defined in Table 2, I(φ) is a lower bound on the minimal
amount of interaction to prove φ and J(φ) is a lower bound on the minimal
amount of interaction to disprove φ.

Table 2. Definition of the heuristic functions I and J

Shape of φ I(φ) J(φ)

p k(p) k(p)
¬φ′ J(φ′) I(φ′)
φ1 ∧ φ2 A∧({I(φ1), I(φ2)}) mini∈{1,2} A∧({J(φi)})
�a φ′ A�(a, ∅) A�(a, {J(φ′)})

The heuristics I and J are admissible, that is, they never overestimate the
cost of a (dis)proof.

Proposition 1. Given a formula φ, for any state q, for any proof n that q |= φ
(resp. disproof), I(φ) ≤ K(n) (resp. J(φ) ≤ K(n)).

3.2 Best First Search Framework

We inscribe the MPS algorithm in a best first search framework inspired by game
tree search. We then specify a function for initializing the leaves, a function
to update tree after a leaf has been expanded, a selection function to decide
which part of the tree to expand next, and a stopping condition for the overall
algorithm.

Algorithm 1 develops an exploration tree for a given state q and formula φ. To
be able to orient the search efficiently towards proving or disproving the model
checking problem q |= φ instead of just exploring, we need to attach additional
information to the nodes beyond their (state, formula) label. This information
takes the form of two effort numbers, called the minimal proof number and
minimal disproof number. Given a node n associated with a pair (q, φ), the
minimal proof number of n, MPN(n), is an indication on the cost of a proof for
q |= φ. Conversely, the minimal disproof number of n, MDN(n), is an indication
on the cost of a disproof for q |= φ. For a more precise relationship between
MPN(n) and the cost of a proof see Prop. 6.

The algorithm stops when the minimal (dis)proof number reaches ∞ as it
corresponds to the exploration tree containing a (dis)proof of minimal cost (see
Prop. 4).

The values for the effort numbers in terminal leaves and in newly created
leaves are defined in Table 3. The values for the effort numbers of an internal
node as a function of its children are defined in Table 4. Finally, the selection
procedure base on the effort numbers to decide how to descend the global tree

Minimal Proof Search for Modal Logic K Model Checking 353

bfs(state q, formula φ)
r ← new node with label (q, φ);
r.info ← init-leaf(r);
n ← r;
while r is not solved do

while n is not a leaf do
n ← select-child(n);

extend(n);
n ← backpropagate(n);

return r

extend(node n)
switch on the label of n do

case (q, p)
n.info ← info-term(n);

case (q, φ1 ∧ φ2)
n1 ← new node with label (q, φ1);
n2 ← new node with label (q, φ2);
n1.info ← init-leaf(n1);
n2.info ← init-leaf(n2);
Add n1 and n2 as children of n;

case (q,¬φ1)
n′ ← new node with label (q, φ1);
n′.info ← init-leaf(n′);
Add n′ as a child of n;

case (q, �a φ1)

foreach q′ in {q′, q a−→ q′} do
n′ ← new node with label (q′, φ1);
n′.info ← init-leaf(n′);
Add n′ as child of n;

backpropagate(node n)
new_info ← update(n);
if new_info = n.info ∨ n = r then return n;
else

n.info ← new_info;
return backpropagate(n.parent)

Algorithm 1. Generic pseudo-code for a best-first search algorithm

Table 3. Values for terminal nodes and initial values for leaves

Node label MPN MDN

info-term
(q, p) where p ∈ π(q) k(p) ∞
(q, p) where p /∈ π(q) ∞ k(p)

init-leaf (q, φ) I(φ) J(φ)

354 A. Saffidine

Table 4. Determination of values for internal nodes

Node label Children MPN MDN

(q,¬φ) {c} MDN(c) MPN(c)
(q, φ1 ∧ φ2) C A∧({MPN(c)|c ∈ C}) minC A∧({MDN})
(q, �a φ) C A�(a, {MPN(c)|c ∈ C}) minC A�(a, {MDN})

Table 5. Selection policy

Node label Children Chosen child

(q,¬φ) {c} c
(q, φ1 ∧ φ2) C arg minC A∧({MDN})
(q,�a φ) C arg minC A�(a, {MDN})

is given in Table 5. The stopping condition, Table 3, 4, and 5, as well as Alg. 1
together define Minimal Proof Search.

The backpropagate procedure implements a small optimization known as
the current node enhancement [1]. Basically, if the information about a node n
are not changed, then the information about the ancestors of n will not change
either and so the next descend will reach n. Thus, it is possible to shortcut the
process and start the next descent at n directly.

4 Properties of MPS

Before studying some theoretical properties of (dis)proofs, minimal (dis)proof
numbers, and MPS, let us point out that for any exploration tree, not necessarily
produced by MPS, we can associate to each node an MPN and an MDN by using
the initialization described in Table 3 and the heredity rule described in Table 4.

4.1 Correctness of the Algorithm

The first property we want to prove about MPS is that the descent does not get
stuck in a solved subtree.

Proposition 2. For any internal node n with finite effort numbers, the child c
selected by the procedure described in Table 5 has finite effort numbers. MPN(n) �=
∞ and MDN(n) �=∞ imply MPN(c) �=∞ and MDN(c) �=∞.

As a result, each descent ends in a non solved leaf. Either the associated formula
is of the form p and the leaf gets solved, or the leaf becomes an internal node
and its children are associated with structurally smaller formulas.

Proposition 3. The MPS algorithm terminates in a finite number of steps.

Minimal Proof Search for Modal Logic K Model Checking 355

Since the algorithm terminates, we know that the root of the tree will eventually
be labelled with a infinite minimal (dis)proof number and thus will be solved. It
remains to be shown that this definition of a solved tree coincides with containing
(dis)proof starting at the root.

Proposition 4. If a node n is associated with (q, φ), then MDN(n) =∞ (resp.
MPN(n) = ∞) if and only if the tree corresponding to n contains a proof
(resp. disproof) that q |= φ as a subtree with root n.

Theorem 1. The MPS algorithm takes a formula φ and a state q as arguments
and returns after a finite number of steps an exploration tree that contains a
(dis)proof that q |= φ.

4.2 Minimality of the (Dis)Proofs

Now that we know that MPS terminates and returns a tree containing a (dis)proof,
we need to prove that this (dis)proof is of minimal cost.

The two following propositions can be proved by a simple structural induction
on the exploration tree, using Table 3 and the admissibility of I and J for the
base case and Table 4 for the inductive case.

Proposition 5. If a node n is solved, then the cost of the contained (dis)proof
is given by the minimal (dis)proof number of n.

Proposition 6. If a node n is associated with (q, φ), then for any proof m
(resp. disproof) that q |= φ, we have MPN(n) ≤ K(m) (resp. MDN(n) ≤ K(m)).

Since the aggregators for the cost function are increasing functions, then MPN(n)
and MDN(n) are non decreasing as we add more nodes to the tree n.

Proposition 7. For each disproved internal node n in a tree returned by the
MPS algorithm, at least one of the children of n minimizing the MDN is dis-
proved.

Combining Prop. 5, 6, and 7, we get the following theorem.

Theorem 2. The tree returned by the MPS algorithm contains a (dis)proof of
minimal cost.

4.3 Optimality of the Algorithm

The MPS algorithm is not optimal in the most general sense because it is pos-
sible to have better algorithm in some cases by using transpositions, domain
knowledge, or logical reasoning on the formula to be satisfied.

For instance, take φ1 = ♦a(p∧¬p) and φ2 some non trivial formula satisfied in
a state q. If we run the MPS algorithm to prove that q |= φ1 ∨φ2, it will explore
at least a little the possibility of proving q |= φ1 before finding the minimal proof
through φ2. We can imagine that a more “clever” algorithm would recognize that
φ1 is never satisfiable and would directly find the minimal proof through φ2.

356 A. Saffidine

Another possibility to outperform MPS is to make use of transpositions to
shortcut some computations. MPS indeed explores structures according to the
MMLK formula shape, and it is well-known in modal logic that bisimilar struc-
tures cannot be distinguished by MMLK formulas. It is possible to express an
algorithm similar to MPS that would take transpositions into account, adapting
ideas from PNS [15,12,8]. We chose not to do so in this article for simplicity
reasons.

Still, MPS can be considered optimal among the programs that do not use
reasoning on the formula itself, transpositions or domain knowledge. Stating
and proving this property formally is not conceptually hard, but we have not
been able to find simple definitions and a short proof that would not submerge
the reader with technicalities. Therefore we decided only to describe the main
ideas of the argument from a high-level perspective.

Definition 6. A pair (q′, φ′) is similar to a pair (q, φ) with respect to an ex-
ploration tree n associated with (q, φ) if q′ can substitute for q and φ′ for φ in
n.

Let n associated with (q, φ) be an exploration tree with a finite MPN (resp. MDN),
then we can construct a pair (q′, φ′) similar to (q, φ) with respect to n such that
there is a proof that q′ |= φ′ of cost exactly MPN(n) (resp. a disproof of cost
MDN(n)).

Definition 7. An algorithm A is purely exploratory if the following holds. Call
n the tree returned by A when run on a pair (q, φ). For every pair (q′, φ′) sim-
ilar to (q, φ) with respect to n, running A on (q′, φ′) returns a tree structurally
equivalent to n.

Depth first search, if we were to return the explored tree, and MPS are both
examples of purely exploratory algorithms.

Proposition 8. If a purely exploratory algorithm A is run on a problem (q, φ)
and returns a solved exploration tree n where MPN(n) (resp. MDN(n)) is smaller
than the cost of the contained proof (resp. disproof), then we can construct a
problem (q′, φ′) similar with respect to n such that A will return a structurally
equivalent tree with the same proof (resp. disproof) while there exists a proof of
cost MPN(n) (resp. disproof of cost MDN(n)).

Note that if the cost of a solved exploration tree n is equal to its MPN (resp. MDN),
then we can make MPS construct a solved shared root subtree of n just by influ-
encing the tie-breaking in the selection policy described in Table 5.

Theorem 3. If a purely exploratory algorithm A returns a solved exploration
tree n, either this tree (or a subtree) can be generated by MPS or A is not guar-
anteed to return a tree containing a (dis)proof of minimal cost on all possible
inputs.

Minimal Proof Search for Modal Logic K Model Checking 357

5 Conclusion and Discussion

We presented Minimal Proof Search (MPS), a model checking algorithm for
MMLK. MPS has been proven correct, and it has been proved that the (dis)proof
returned by MPS was minimizing a generic cost function. The only assumption
about the cost function is that it is defined recursively using increasing aggrega-
tors. Finally, we have shown that MPS was optimal among the purely exploratory
model checking algorithms for MMLK.

Nevertheless, the proposed approach has a few limitations. MPS is a best
first search algorithm and is memory intensive; the cost functions addressed in
the article cannot represent variable edge cost; and MPS cannot make use of
transpositions in its present form. Still, we think that these limitations can be
overcome in future work.

We envision a depth-first adaptation of MPS similar to Nagai’s transformation
of PNS into DFPN. Alternatively, we can draw inspiration from PN2 [1] and
replace the heuristic functions I and J by a nested call to MPS, leading to
an MPS2 algorithm trading time for memory. These two alternative algorithms
would directly inherit the correctness and minimality theorems for MPS. The
optimality theorem would also transpose in the depth-first case, but it would
not be completely satisfactory. Indeed, even though the explored tree will still
be admissibly minimal, several nodes inside the tree will have been forgotten
and re-expanded multiple times. This trade-off is reminiscent of the one between
A* and its depth-first variation IDA* [9].

Representing problems with unit edge costs is already possible within the
framework presented in Sect. 3.1. It is not hard to adapt MPS to the more
general case as we just need to replace the agent labels on the transitions with
(agent, cost) labels. This more general perspective was not developed in this
article because the notation would be heavier while it would not add much to
the intuition and the general understanding of the ideas behind MPS.

Finding minimal (dis)proofs while taking transpositions into account is more
challenging because of the double count problem. While it is possible to obtain
a correct algorithm returning minimal (dis)proofs by using functions based on
propagating sets of individual costs instead of real values in Sect. 3.1, similarly
to previous work in PNS [12], such a solution would hardly be efficient in prac-
tice and would not necessarily be optimal. The existing literature on PNS and
transpositions can certainly be helpful in addressing efficient handling of trans-
positions in MMLK model checking [15,12,8].

Beside evaluating and improving the practical performance of MPS, future
work can also study to which extent the ideas presented in this article can be
applied to model checking problems in more elaborate modal logics and remain
tractable.

Acknowledgement. We would like to thank the reviewers for their helpful
comments and for pointing out Cleaveland’s related work [6].

358 A. Saffidine

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Arti-
ficial Intelligence 66(1), 91–124 (1994)

2. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge Univer-
sity Press (2001)

3. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proceedings of
the 32nd Annual ACM/IEEE Design Automation Conference, pp. 427–432. ACM
(1995)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
5. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model check-

ing. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pp. 19–29. IEEE (2002)

6. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus.
Acta Informatica 27(8), 725–747 (1989)

7. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model
Checking Software, pp. 121–136 (2003)

8. Kishimoto, A., Müller, M.: A solution to the GHI problem for depth-first proof-
number search. Information Sciences 175(4), 296–314 (2005)

9. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Ar-
tificial Intelligence 27(1), 97–109 (1985)

10. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1), 39–49 (2006)

11. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification
of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

12. Müller, M.: Proof-Set Search. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG
2002. LNCS, vol. 2883, pp. 88–107. Springer, Heidelberg (2003)

13. Nagai, A.: Df-pn algorithm for searching AND/OR trees and its applications. Ph.D.
thesis, University of Tokyo (December 2001)

14. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving.
Addison Wesley Publishing Company (1984)

15. Schijf, M., Allis, L.V., Uiterwijk, J.W.: Proof-number search and transpositions.
ICCA Journal 17(2), 63–74 (1994)

16. Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press (2009)

17. van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In:
Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer,
Heidelberg (2002)

18. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Concurrent dynamic epistemic
logic for MAS. In: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 201–208. ACM (2003)

Building an Epistemic Logic for Argumentation�

François Schwarzentruber1, Srdjan Vesic2, and Tjitze Rienstra2

1 IRISA / ENS Cachan
francois.schwarzentruber@bretagne.ens-cachan.fr

2 Computer Science and Communication
University of Luxembourg

{srdjan.vesic,tjitze.rienstra}@uni.lu

Abstract. In this paper, we study a multi-agent setting in which each agent is
aware of a set of arguments. The agents can discuss and persuade each other
by putting forward arguments and counter-arguments. In such a setting, what an
agent will do, i.e. what argument she will utter, may depend on what she knows
about the knowledge of other agents. For example, an agent does not want to
put forward an argument that can easily be attacked, unless she believes that she
is able to defend her argument against possible attackers. We propose a logi-
cal framework for reasoning about the sets of arguments owned by other agents,
their knowledge about other agents’ arguments, etc. We do this by defining an
epistemic logic for representing their knowledge, which allows us to express a
wide range of scenarios.

1 Introduction

Argumentation is the interdisciplinary study of how conclusions can be reached through
logical reasoning. In the area of artificial intelligence, argumentation is usually seen as
a reasoning approach based on construction and evaluation of arguments. The work
of Pollock [10], Vreeswijk [16], and Simari and Loui [13] gave rise to other proposi-
tions on how to conceptualise this process. Nowadays, much research on the topic of
argumentation is based on the argumentation theory proposed by Dung [4]. It allows to
abstract from the origin and the structure of arguments, by representing an argumen-
tation system as a directed graph, whose vertices correspond to arguments and arcs to
attacks between them.

It is common that argumentation takes place between multiple agents, having differ-
ent information and different goals. In such a setting, agents present arguments in order
to persuade other agents. Their goal is often to make a certain argument accepted (or
rejected). Some efforts were done in studying argumentation dialogues [11,12] by ap-
plying game-theoretic notions. However, those approaches do not allow for reasoning
about agents’ knowledge, which is one of the essential factors in such a setting and in-
fluences agent’s behaviour in a major way. For example, when deciding which argument

� SV was funded by the National Research Fund, Luxembourg. His work was carried out during
the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. This Programme is sup-
ported by the Marie Curie Co-funding of Regional, National and International Programmes
(COFUND) of the European Commission.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 359–371, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

360 F. Schwarzentruber, S. Vesic, and T. Rienstra

to utter, an agent may take into account his beliefs about whether another agent has an
attacker of that argument. Moreover, an agent may want to reason about the knowledge
of another agent. For example: what should I do if he knows that I know that he does
not have an attacker of this argument?

In this paper, we define a logical framework for this setting. To do so, we use the
epistemic modal logic. We define a logic which allows to formalise a broad spectrum
of scenarios concerning the knowledge of agents in form of arguments (e.g. attacks
between them) but also the knowledge of agents about the knowledge of other agents,
and so on. We also provide a method to speak about the fact that an agent is aware of
the existence of an argument.

The remainder of the paper is organised as follows. Section 2 introduces the setting
and stresses the importance of the notion of awareness. Section 3 provides a logic to ex-
press beliefs about awareness. Section 4 extends this logic for expressing beliefs about
the structure of the argumentation graph. Section 5 provides a solution for expressing
beliefs about properties of a given argument. The last section concludes.

2 Setting

Since we represent the basic knowledge of agents in form of arguments, we first intro-
duce the notion of an argumentation theory [4] which is used in our formalisation.

Definition 1 (Argumentation system). An argumentation framework is a pair A =
(A,�) where A is a set of arguments and �⊆ A×A a binary relation. For each pair
(a, b) ∈�, we say that a attacks b. We will also sometimes use notation a � b instead
of (a, b) ∈�.

We model a situation where a set of agents {1, . . . , n} have different knowledge (in
terms of arguments) and beliefs (about the knowledge of other agents). We can model
this situation in abstract argumentation theory by representing the arguments and the
attack relation between them by what we will call a big argumentation framework.
We denote this framework by BAF = (AB,�B). The big argumentation framework
contains all arguments relevant to a particular discourse. Here we may imagine, for
example, that BAF is constructed from all available knowledge and beliefs on a subject
such as nuclear energy, and the issue of whether or not we should build more nuclear
power plants, or instead close them. The knowledge and opinions in BAF may come, for
example, from books, internet, scientific publications, but they may also be completely
personal to an agent. Agents are resource bounded and are, in general, not aware of
all arguments that belong to the BAF. An agent is aware of only those arguments that
she has acquainted herself with, or that she has formed, in some way, on the basis of
personal considerations or a priori knowledge.

We can thus represent the knowledge of an agent i by a set Ai ⊆ AB of argu-
ments. We assume, however, that all agents use the same logical language in order
to understand each other and that they agree on the attack relation. That is, for every
pair of arguments a, b ∈ AB, all agents agree on whether or not a is a valid counter-
argument to b (or whether a attacks b). So we have a model where all arguments of a
particular discourse, and their attack relations, are represented by the big argumentation

Building an Epistemic Logic for Argumentation 361

framework BAF = (AB,�B), and the knowledge of an agent i is represented by a set
Ai ⊆ AB. This induces, for an agent i, a framework (Ai,�i), with �i=� |Ai . Note
that the formalisation we use, namely the hypothesis that there exists a big argumen-
tation framework and that agents are aware of some arguments from this framework is
already present in argumentation literature [11,14]. In the rest of the paper, we develop
logics for reasoning in this setting.

3 The First Attempt of an Epistemic Argumentation Logic

In this section, we propose a framework for representing the fact that different agents
are aware of different arguments. Let AGT = {1, . . . , n} be a finite set of agents. The
language of this logic, denoted by L1 is generated by the following BNF:

ϕ ::= owns(i, a) | ¬ϕ | ϕ ∧ ϕ | Biϕ

where i ∈ AGT is an agent, and a ∈ AB is an argument. For a finite set S ⊆ AB ,

with S = {a1, . . . , ak}, we define an abbreviation owns(i, S)
def
= owns(i, a1)∧ . . .∧

owns(i, ak).
A formula owns(i, a) means that agent i is aware of the argument a. The meaning

of ¬,∧ and derived connectives∨,→,↔ are as usual. A formulaBiϕ means that agent
i believes that ϕ holds. Some examples of statements that we can express are:

– owns(1, {a, b, c})∧B1owns(2, {a, b}) (Agent 1 is aware of a, b and c and believes
that agent 2 is aware of a and b.)

– owns(1, {a})∧B1B2¬owns(1, {a}) (Agent 1 is aware of a but believes that agent
2 believes he is not.)

The interpretation of the language is based on Kripke structures where states describe
possible configurations of argument awareness for all agents. Formally, a state w and an
agent i map to a set Di ⊆ A, where Di is the set of arguments that agent i is aware of in
state w. For every agent i, the accessibility relation Ri captures the ‘considers possible’
relation. Formally:

Definition 2. AnL1-epistemic argumentation model is a Kripke structureM = (W,R,
D) where:

– W is a non-empty set of states;
– R maps each agent i to an accessibility relation Ri over W ;
– D maps each world w and each agent i to a set of arguments Di(w) such that:

1. for all agents i, for all w, u ∈ W , wRiu implies Di(u) = Di(w).
2. for all agents i, j, for all w, u ∈ W , wRiu implies Dj(u) ⊆ Di(w).

We use the familiar interpretation of belief by taking every Ri to be a KD45 relation
[8]. That is, Ri is

– serial: ∀s ∈W, ∃t ∈ W s.t. t ∈ Ri(s),
– transitive: ∀s, t, u ∈W , t ∈ Ri(s) and u ∈ Ri(t) implies u ∈ Ri(s),
– and Euclidean: ∀s, t, u ∈W , t ∈ Ri(s) and u ∈ Ri(s) implies t ∈ Ri(u),

362 F. Schwarzentruber, S. Vesic, and T. Rienstra

The truth conditions are as follows:

– M, w |= owns(i, a) iff a ∈ Di(w);
– M, w |= Biϕ iff for all u ∈ Ri(w), we have M, u |= ϕ;
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ;
– M, w |= ¬ϕ iff it is not the case that M, w |= ϕ

The two conditions from Definition 2 crucially capture our intuition behind awareness
of arguments, as described in the previous section. The first condition says that in every
world an agent considers possible, she is aware of the same set of arguments that she
is aware of in the actual world. This condition corresponds to the following ‘argument
awareness introspection’ axioms:

– owns(i, a)→ Biowns(i, a);
– ¬owns(i, a)→ Bi¬owns(i, a)

The second condition stipulates that, if an agent is not aware of an argument, she be-
lieves that no agent is aware of that argument. This condition corresponds to the fol-
lowing axiom:

– ¬owns(i, a)→ Bi¬owns(j, a).

Figure 1 shows a model M where M, s |= owns(1, {a, b, c}) ∧ B1owns(2, {a, b}).
Notice that agent 1 has no belief as to whether or not agent 2 knows c, and agent 2 has
no beliefs as to whether agent 1 knows a.

s
1 : {a, b, c}
2 : {a}

t
1 : {a, b, c}
2 : {a, b} u

1 : {a, b, c}
2 : {a, b, c}

v
1 : {a}
2 : {a} w

1 : {∅}
2 : {a}

1 1

11

2 2

22

Fig. 1. An L1-epistemic argumentation logic model

We say that ϕ is L1-satisfiable iff there exists an L1-argumentation epistemic model
M and a world w such that M, w |= ϕ. The satisfiability problem of a formula of L1

is the following decision problem:

– input: a formula ϕ ∈ L1;
– output: yes iff the formula ϕ is L1-satisfiable.

Building an Epistemic Logic for Argumentation 363

Having an algorithm to solve the satisfiability problem enables us to check consistency
automatically. We now study the computational properties of the satisfiability problem
of a formula of L1.

Theorem 1. If there are more than 3 agents, the satisfiability problem of a formula of
L1 is PSPACE-hard.

Proof. When there is more than three agents, we can embed the satisfiability problem
of KD452 into the satisfiability problem of a formula of L1. Let ϕ be a formula of
KD452. Let i, j be two distinct agents such all agents appearing in ϕ are in {i, j}. Let k
be a third distinct agent. We suppose the set of arguments to be the set of all propositions
appearing in ϕ. We then define a polynomial translation tr from the KD452 language
to L1 as follows:

– tr(p) = owns(k, p);
– tr(Biϕ) = Bitr(ϕ);
– tr(Bjϕ) = Bjtr(ϕ).

We have that ϕ is KD45n satisfiable iff tr(ϕ) is satisfiable in an epistemic argumen-
tation model. Note that we must take care to verify the condition of Definition 2 in the
sense ‘left to right’. We need the extra agent k in order to be able to construct such a
epistemic argumentation model. Technical details are left to the reader.

Theorem 2. The satisfiability problem of a formula of L1 is in PSPACE.

Proof. We can embed L1 into KD45n and call an optimal procedure for KD45n plus
distributed belief which is in PSPACE [8]. Let ϕ be a formula of L1. Let m be the
modal depth of the formula ϕ. The embedding works as follows. We add also an oper-
ator called distributed belief in the language, noted Bdist. This operator enables us to
express the properties of Definition 3 up to the depth n with a formula of polynomial
size in the length of ϕ. The semantics is defined as follows:

– M, w |= Bdistψ iff for all i ∈ AGT, for all u ∈ Ri(w) we have M, u |= ψ.

We denote by Bdistχ the formula χ∧Bdistχ∧B2
distχ∧· · ·∧Bm

distχ. It corresponds to
common knowledge up to level n, where n is the modal depth of ϕ. We then consider
tr(ϕ) as the conjunction of ϕ and the following formulas:

– Bdist(owns(i, a)→ Biowns(i, a))

– Bdist(¬owns(i, a)→ Bi¬owns(i, a))
– Bdist(¬owns(i, a)→ Bi¬owns(j, a)).

In that way, tr(ϕ) imposes the KD45n-model to satisfy the properties of Definition 3
up to level m. The formula ϕ is satisfiable in an epistemic argumentation model iff the
formula tr(ϕ) is satisfiable in KD45n plus distributed belief, where constructions of
the form owns(i, a) are considered as atomic propositions in KD45n.

364 F. Schwarzentruber, S. Vesic, and T. Rienstra

4 Expressing Belief about Properties of Arguments

The formalisation presented until now is only the first step towards describing an
argument-based dialogue. There are still simple facts that cannot be expressed in the
proposed logic. For example, imagine a non-expert person having an idea in some area.
She can believe that her idea is interesting, and she is not aware of any attacker of her
argument, but she also believes that there is an argument (from an expert) attacking her
argument. The problem here is that to express a property about an argument one is not
aware of. The next example formalises this consideration.

Example 1. Let us consider the following BAF:

a b c

Imagine that agent 1 is not an expert and she has only argument b. The framework
proposed in the previous section does not allow to represent a situation in which she
has no beliefs about whether this argument is attacked or not. Namely, according to
Definition 2, for every modelM, for every world w in M such that agent 1 has exactly
the argument b, i.e. where D1(w) = {b}, for every world u in M such that wR1u, for
every agent j, it holds that a /∈ Dj(u). That is, in every world of every possible model
where agent 1 is aware, agent 1 believes that b is not attacked.

The previous example shows the formalism from the previous section is not expressive
enough since it cannot represent the situation where an agent believes that there exists
an attacker of one of her arguments, without being able to construct an attacker herself.
We start by defining a new language which is richer and allows to speak about attacks
between arguments. The solution we propose consists in mixing epistemic modal logic
(that we proposed in the previous section) and a logical framework to speak about ar-
gumentation graphs, initially proposed by Grossi [7]. Let ATM be a countable set of
atomic propositions. The new language is defined as a combination of those two lan-
guages:

ϕ ::= 〈U〉ψ | ¬ϕ | ϕ ∧ ϕ | Biϕ
ψ ::= p | ¬ψ | ψ ∧ ψ | isarg(a) | ownedby(i) | [attacks]ψ | [is_attacked]ψ

where p ∈ ATM , a is an argument of the BAF and i is an agent. We define the
language L2 as the set of formulas obtained with the rule ϕ. ϕ-formulas are epis-
temic modal logic formulas expressing beliefs about facts. The construction 〈U〉ψ is
read as ‘there exists an argument verifying the property ψ’. Then a ψ-formula de-
scribes the property of a given argument. Propositions p are used to describe prop-
erty of arguments, as for instance ‘the current argument is about politics’. isarg(a)
states that the argument of which we speak now is argument a. ownedby(i) means
that the current argument is owned by i. The construction [attacks]ψ means that all
arguments that the current argument attacks verify the property ψ. The construction
[is_attacked]ψ means that all arguments that the current argument is attacked by ver-
ify the propertyψ. We define the following abbreviations: 〈attacks〉ψ = ¬[attacks]¬ψ
and 〈is_attacked〉ψ = ¬[is_attacked]¬ψ.

Building an Epistemic Logic for Argumentation 365

Example 2. Now, we can say that agent 1 does not have beliefs about whether argu-
ment b is attacked or not. We can write this as ’agent 1 does not believe that b is
attacked and agent 1 does not believe that b is not attacked’: ¬B1(〈U〉(isarg(b) ∧
〈is_attacked〉�)) ∧ ¬B1(〈U〉(isarg(b) ∧ ¬〈is_attacked〉�)). As another example,
take the following formula which says that agent 1 believes that there exists an argu-
ment about global warming owned by the second agent: B1(〈U〉(global_warming ∧
ownedby(2))). We can also say that agent 1 does not have an attacker of b but agent
1 believes that agent 2 has an attacker of b on the subject of global warming. It is written
as:
〈U〉(isarg(b) ∧ [is_attacked]¬ownedby(1)) ∧ B1isarg(b) ∧ 〈is_attacked〉
(ownedby(2) ∧ global_warming).

We now define how to interpret formulas of language L2.

Definition 3. AL2−epistemic argumentation model is a Kripke structureM = (W,R,
A) based on a BAF = (AB,�B) where:

– W is a non-empty set of epistemic worlds;
– R maps each agent to a serial, transitive and Euclidean relation over W ;
– A maps each world w to a labelled argumentation graph Aw = (Aw ,�w, Lw)

where:
• Aw is a finite subset of AB ∪ {?0, ?1, . . . };
• �w⊆ Aw×Aw is a binary relation such that for a, b ∈ AB, a�Bb if and only

if a �w b;
• Lw is a map from Aw to 2AGT∪ATM .

Furthermore, we impose:

1. for all agents i, for allw, u ∈ W ,wRiu implies that {a ∈ Au ∩ AB | i ∈ Lu(a)} =
{a ∈ Aw ∩ AB | i ∈ Lw(a)};

2. for all agents i, for all w, u ∈ W , wRiu implies that
{a ∈ Au ∩ AB} ⊆ {a ∈ Aw ∩ AB | i ∈ Lw(a)}.

An example of a model is depicted in Figure 2. The model is still a Kripke model but
now, each world w contains an argumentation graph Aw = (Aw ,�w). Each argument
of Aw is either an argument from AB , or an element of a set {?0, ?1, . . . }. A “question
mark argument” denotes an argument the agent is not aware of, that is to say, they can
not argue by using it, but they can imagine its existence. The idea is to represent facts
like “there is an attacker of argument a” without being able to identify an actual attacker
of this argument. �w is the attack relation in Aw. �w is compatible with the attack
relation of the BAF in the following sense: if two arguments a and b of the BAF appear in
the argumentation graph Aw of the world w, then the attack relation in Aw is the same
as in the BAF. Intuitively, it says that there is no uncertainty concerning the attack of
arguments of the BAF [11]. L is a valuation function that specifies the atomic properties
of a (this can be anything, for example a subject of an argument) and the agents that
own argument a, for all arguments a ∈ Aw. For example, in Figure 2, in worlds w and
u, argument b, owned by agent 1 is about global warming. Condition (1) and condition
(2) have the same meaning as condition (1) and (2) in Definition 2.

366 F. Schwarzentruber, S. Vesic, and T. Rienstra

The truth conditions for ϕ-formulas are defined as follows:

– M, w |= Biϕ iff for all u ∈ Ri(w), we have M, u |= ϕ;
– M, w |= 〈U〉ψ iff there exists an argument a ∈ Aw such that Aw, a |= ψ.

The truth conditions for ψ-formulas are defined as follows:

– Aw, a |= p iff p ∈ ATM and p ∈ Lw(a);
– Aw, a |= isarg(b) iff a = b;
– Aw, a |= ownedby(i) iff i ∈ AGT and i ∈ Lw(a);
– Aw, a |= [attacks]ψ iff for all b such that a �w b we have Aw, b |= ψ;
– Aw, a |= [is_attacked]ψ iff for all b such that b �w a we have Aw, b |= ψ;

Example 3 (Example 1 Cont.). The logic L2 is expressive enough to overcome prob-
lems of Example 1. Let α = ¬B1(〈U〉(isarg(b) ∧ 〈is_attacked〉�)) ∧ ¬B1(〈U〉
(isarg(b) ∧ ¬〈is_attacked〉�)). This formula says that agent 1 does not have beliefs
about whether argument b is attacked or not. Let M be the model from Figure 2, then
M, w |= α. This means that in model M and world w, agent 1 does not have beliefs
about whether argument b is attacked or not.

u

?0

∅

b

{1, global_warming}
w

b

{1, global_warming}
1

1 1

Fig. 2. An L2-epistemic argumentation logic model

The language L2 is a conservative extension of the language L1. Indeed, we can
embed L1 into L2 by preserving validities with the following translation:

– tr(owns(i, a)) = 〈U〉(ownedby(i) ∧ isarg(a)).

We define the notion of L2-satisfiable formula. A formula ϕ is L2-satisfiable iff there
exists a big argumentation framework BAF = (AB,�B) and a L2−epistemic argumen-
tation model M = (W,R,A) based on BAF, and a world ∈ W , such that M, w |= ϕ.
In the same way, we define the satisfiability problem of L2.

Theorem 3. Even if there are no occurrences of arguments in the formula we want to
check, the satisfiability problem of L2 is EXPTIME-hard.

Proof. The global satisfiability problem of modal logic K is defined as follows:

– input: two formulas ϕ, ψ where there is only one modal operator �;
– output: yes iff there exists a pointed model M, w for logic K such that M, u |= ϕ

for all u ∈W and M, w |= ψ.

Building an Epistemic Logic for Argumentation 367

It is EXPTIME-hard. We polynomially reduce the global satisfiability of logic K to
the satisfiability of a formula of L2 in the following way: ϕ |=g ψ iff ¬〈U〉¬tr(ϕ) ∧
〈U〉tr(ψ) satisfiable where tr(�ϕ) = [attacks]ϕ. So the satisfiability problem of L2

is EXPTIME-hard. All of this works because of the presence of ?-arguments.

Now, concerning the satisfiability problem of L2, we have a tableau method decision
procedure in [3] dealing with nominals (or arguments in our case), a K-operator � (or
[attacks] in our case) universal modality. In [1], the author explains that the satisfiabil-
ity problem of the hybrid logic where we add the converse operator and the universal
operator is EXPTIME-complete. In our case, it means that given finite sets A,B of
formulas of the form 〈U〉ψ, checking whether

∧
〈U〉ψ∈A〈U〉ψ ∧

∧
〈U〉ψ∈B ¬〈U〉ψ is

satisfiable can be solved with an EXPTIME procedure. If we combine with a tableau
procedure for KD45n [8] we obtain the following result.

Theorem 4. The satisfiability problem of L2 is in EXPTIME.

Proof. We give the idea of algorithm to solve the satisfiability problem of L2. Let us
consider ϕ ∈ L2. Let arg(ϕ) be the set of arguments that appear in the formula ϕ. We
add also an operator called distributed belief to the language, denotedBdist, in order to
be able to express the properties of Definition 3. The semantics is defined as follows:

– M, w |= Bdistϕ iff for all i ∈ AGT, for all u ∈ Ri(w) we have M, u |= ϕ.

We denote by Bdistχ the formula χ ∧Bdistχ ∧B2
distχ ∧ · · · ∧Bm

distχ. It corresponds
to common knowledge up to level m, where m is the modal depth of ϕ. We denote
by 〈U〉SF (ϕ) the set of all subformulas of ϕ of the form 〈U〉ϕ. Let Att ∈ 2arg(ϕ)2 .
We define TAtt(ϕ) as the following conjunction, which imposes the constraint of the
Definition 3 up to depth m:

– ϕ;
– Bdist((〈U〉isarg(a) ∧ ownedby(i)) → Bi(〈U〉isarg(a) ∧ ownedby(i))) for i ∈

AGT;
– Bdist((〈U〉isarg(a) ∧ ¬ownedby(i))→ Bi(¬〈U〉isarg(a))) for i ∈ AGT;
– Bdist([U](isarg(a)→ ¬isarg(b))) for all a, b ∈ A such that a �= b.
– Bdist(〈U〉isarg(a) ∧ 〈U〉isarg(b)) → 〈U〉(isarg(a) → 〈attacks〉isarg(b)) for

all (a, b) ∈ Att;
– Bdist([U](isarg(a)→ [attacks]¬isarg(b)) for all (a, b) �∈ Att;

Now we define the algorithm.

for Att ∈ 2arg(ϕ)2

for A,B ⊆ 〈U〉SF (TAtt(ϕ))
PROP [A,B] =

satsolver_KU,converse(
∧

〈U〉ϕ∈A〈U〉ψ ∧
∧

〈U〉ϕ∈B ¬〈U〉ϕ))
endFor
if (modified_KD45n_tableau_method(TAtt(ϕ), PROP))

return sat
endIf

endFor
return unsat

368 F. Schwarzentruber, S. Vesic, and T. Rienstra

We loop on all possible attack relations Att over arguments that appear in the for-
mula ϕ. Somehow, we browse all possible BAF. Our aim is then to check if TAtt(ϕ) is
satisfiable.

The first step consists in computing which subformulas of TAtt(ϕ) of the form 〈U〉ψ
are consistent. Thus, PROP [A,B] will contain ‘sat’ if∧

〈U〉ψ∈A〈U〉ψ ∧
∧

〈U〉ψ∈B ¬〈U〉ψ is satisfiable and ‘unsat’ otherwise. The procedure

satsolver_KU,converse is an EXPTIME procedure to solve the satisfiability problem
of K plus converse, plus universal modality and hybrid logic. Indeed, arguments are
considered as nominals (it is impossible to have two different nodes labelled by the
same arguments).

The second step is now to run a tableau method for KD45n logic on the formula
TAtt(ϕ). For that, we use the tableau method described in [8]. This tableau method runs
as usual for the Boolean connectives and beliefs operators but it considers formulas of
the form 〈U〉ψ as atoms. We extend this tableau method with a new rule applied on a
node w, when all the other rules have already been applied:

– Let A be the set of 〈U〉ψ formula written in the node w. Let B be the set of 〈U〉ψ
such that ¬〈U〉ψ. If PROP [A,B] is unsat, we close the current tableau branch.

This modified version of the tableau method runs in PSPACE ⊆ EXPTIME. So the
global algorithm runs in EXPTIME. The proof of completeness and soundness of this
algorithm are classical.

5 Expressing Properties of Arguments Containing Belief

The logical language developed in Section 4 is powerful enough to enable to speak
about arguments without specifying them, but some facts about the framework we study
in this paper still cannot be expressed in it. Consider the following example.

Example 4. Agent i owns a and believes that there exists an argument attacked by a
which is owned by agent k, but agent j believes that this argument is not owned by k.

Languages L1 and L2 do not allow to express statement from the previous example.
We now present a preliminary but promising approach for expressing properties over

arguments but also beliefs about those properties. The approach we present here is
inspired by other applied logics mixing:

– knowledge and time [5], [9]: the author speaks about moments in time and knowl-
edge about properties of the moment;

– time and space [2]: the author speaks about evolution of objects in the time.

The language L3 is defined by the following rule:

ϕ ::= p | isarg(a) | ownedby(i) | Biϕ | 〈U〉ϕ | [attacks]ϕ | [is_attacked]ϕ

where p ∈ ATM , a ∈ AB and i ∈ {1, . . . , n} is an agent. In L3, we can mix doxastic
operatorBi and speaking about arguments. The reading ofBiϕ is now ‘agent i believes
ϕ about the current argument’.

Building an Epistemic Logic for Argumentation 369

Example 5. The formula 〈U〉(isarg(a) ∧ ownedby(i) ∧ Bi〈attacks〉(ownedby(k) ∧
Bj¬ownedby(k)) is in L3 and captures the sentence of Example 4.

Definition 4. F = (W,R) is a Kripke epistemic frame if and only if W is a non-empty
set of possible worlds and R is a function mapping each agent i to a serial, transitive
and Euclidean relation Ri over W . MA = (M,A, L) is a world/argument model if
and only if:

– M = (W,R), is a Kripke epistemic frame;
– A = (A,�) is an argumentation graph such that A = AB ∪ {?0, ?1, . . . } such

that for all a, b ∈ AB , a�Bb iff a � b;
– L maps all couples (w, a) ∈ W ×A to elements of 2AGT∪ATM .

The truth conditions are:

– MA, (w, a) |= p iff p ∈ ATM and p ∈ L(w, a);
– MA, (w, a) |= isarg(b) iff a = b;
– MA, (w, a) |= ownedby(i) iff i ∈ {1, . . . , n} and i ∈ L(w, a);
– MA, (w, a) |= Biϕ iff for all u ∈ Ri(w), we have MA, (u, a) |= ϕ;
– MA, (w, a) |= 〈U〉ϕ iff there exists b ∈ A, we have MA, (w, b) |= ϕ;
– MA, (w, a) |= [attacks]ϕ iff for all b ∈ A, a � b implies MA, (w, b) |= ϕ;
– MA, (w, a) |= [is_attacked]ϕ iff for all b ∈ A, b � a implies MA, (w, b) |= ϕ.

Example 6. Figure 3 shows a model for the formula from Examples 4 and 5, namely:
〈U〉(isarg(a)∧ownedby(i)∧Bi〈attacks〉(ownedby(k)∧Bj¬ownedby(k)). We con-
sider a model (on the right) built from the epistemic frame on the left and the BAF in the
middle.

w

u

v

i

j

i

i,j

j

a b

(w, a) {i} (w, b) ∅

(u, a) {i} (u, b) {i, k}

(v, a) ∅ (v, b) ∅

i

j

i

j

i i

i,j i,j

j j

Fig. 3. A world / argument model

In previous sentence, the context is a couple (w, a) where w is a possible epistemic
situation and a is an argument. Table 1 illustrates how to follow the nodes of a graph in
Figure 3 when analysing the formula from our running example.

Note that this framework containsKD45×K . The satisfiability problem of S5×K
is NEXPTIME-complete [6, page 339]. We conjecture that the satisfiability of the logic
KD45 × K is also NEXPTIME-complete so the satisfiability problem in our setting
may be NEXPTIME-hard.

370 F. Schwarzentruber, S. Vesic, and T. Rienstra

Table 1. A world / argument model

Part of the sentence (syntax) context world/argument (semantics)
i owns a and (w, a)
i believes that all (t, a) such that wRit, in our case: only (u, a)
there exists an argument x attacked by a... there exists (u, x) such that a � x, here: (u, b)
agent j believes that ... all (t, b) such that uRjt, in our case: only (v, b)

6 Summary

In this paper, we provide three languages to deal with argumentation and beliefs. The
first one (L1) enables us to speak about beliefs about awareness of arguments. The
second one (L2) is a conservative extension of L1 and enables to speak about beliefs
about the structure of the argumentation graph. The third logic (L3) enables to speak
about beliefs about a specific argument. The third logic has many promising features,
but is not a conservative extension ofL2. A part of our future work will be to investigate
whether it is possible to slightly change L3 in order to make it a conservative extension
of L2.

This paper presents a landscape of incremental logics, in the sense that every logic
is more expressive than the previous one. As expected, the complexity of consistency
checking of a formula increases. ForL1 it is PSPACE-complete, forL2, it is EXPTIME-
complete and for L3 we conjecture it to be NEXPTIME-hard. As this complexity is
high, a part of our future work will be to study their syntactic fragments.

The paper presents the first attempt to formalise agents’ beliefs in a multi-agent ar-
gumentation setting. We are inspired by the work of Grossi [7]. That paper shows that
an argumentation framework can be seen as a Kripke structure. In our paper, we “im-
port” those ideas on argumentation level (inside of each possible world), and develop a
framework for reasoning about agents’ beliefs. The solution presented in this paper is
the first attempt to model awareness about arguments. An urgent extension of our work
is to make a detailed comparison with the logic of awareness about propositional facts
[15].

Growing interest in game theoretic investigations of argument-based dialogues
[11,12,14] shows that a logical framework is needed to represent knowledge and beliefs
of agents in such a setting. We believe that our work is the first step in that direction.

References

1. Areces, C., de Rijke, M.: From description to hybrid logics, and back. Advances in Modal
Logic 3, 17–36 (2001)

2. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a
framework for spatio-temporal reasoning. Applied Intelligence 17(3), 239–251 (2002)

3. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. Journal of
Logic and Computation 16(6), 737–763 (2006)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence Journal 77,
321–357 (1995)

Building an Epistemic Logic for Argumentation 371

5. Fagin, R., Moses, Y., Halpern, J., Vardi, M.: Reasoning about knowledge. The MIT Press
(2003)

6. Gabbay, D.M.: Many-dimensional modal logics: theory and applications, vol. 148. North-
Holland (2003)

7. Grossi, D.: On the logic of argumentation theory. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 409–416.
IFAAMAS (2010)

8. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial intelligence 54(3), 319–379 (1992)

9. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time. i. lower
bounds. Journal of Computer and System Sciences 38(1), 195–237 (1989)

10. Pollock, J.: How to reason defeasibly. Artificial Intelligence Journal 57, 1–42 (1992)
11. Rahwan, I., Larson, K.: Argumentation and game theory, pp. 321–339. Springer (2009)
12. Riveret, R., Prakken, H., Rotolo, A., Sartor, G.: Heuristics in argumentation: A game theory

investigation. In: COMMA, pp. 324–335 (2008)
13. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its imple-

mentation. Artificial Intelligence Journal 53, 125–157 (1992)
14. Thimm, M., Garcia, A.J.: Classification and strategical issues of argumentation games on

structured argumentation frameworks. In: Proceedings of the Ninth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems 2010, AAMAS 2010 (2010)

15. van Ditmarsch, H., French, T.: Becoming aware of propositional variables. In: Logic and Its
Applications, pp. 204–218 (2011)

16. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence Journal 90, 225–279
(1997)

A Unifying Perspective on Knowledge Updates

Martin Slota and João Leite

CENTRIA & Departamento de Informática
Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

Abstract. We introduce an abstract update framework based on viewing a knowl-
edge base as the set of sets of models of its elements and performing updates by
introducing additional interpretations – exceptions – to the sets of models of ele-
ments of the original knowledge base. In [36], an instantiation of this framework
for performing rule updates has been shown to semantically characterise one of
the syntax-based rule update semantics. In this paper we show that the framework
can also capture a wide range of both model- and formula-based belief update
operators which constitute the formal underpinning of existing approaches to on-
tology updates. Exception-driven operators thus form a unifying perspective on
both ontology and rule updates, opening new possibilities for addressing updates
of hybrid knowledge bases consisting of both an ontology and a rule component.

1 Introduction

In this paper we propose a novel generic method for specifying update operators. By
viewing a knowledge base as the set of sets of models of its elements, and seeing updates
as adding new interpretations to those sets, we are able to capture a range of model- and
formula-based belief update operators. When coupled with the results of [36] in which
an instantiation of this framework was shown to characterise a syntax-based rule update
semantics, our findings imply that exception-driven operators are the first approach that
embraces these two seemingly irreconcilable approaches to updates.

Throughout the last decade, standardisation efforts gave rise to widely accepted
knowledge representation languages such as the Web Ontology Language (OWL)1 and
Rule Interchange Format (RIF),2 based on Description Logics [4] and Logic Program-
ming [16], respectively. This has fostered a large number of ontologies and rule bases
with different levels of complexity and scale. Whereas ontologies provide the logical
underpinning of intelligent access and information integration, rules are widely used to
represent business policies, regulations and declarative guidelines about information.

Since both ontologies and rules offer important features for knowledge representa-
tion, considerable effort has been invested in identifying a unified hybrid knowledge
framework where expressivity of both formalisms could be seamlessly combined. This
task turned out to be very challenging because of the inherent semantic differences
between the two knowledge representation paradigms.

1 http://www.w3.org/TR/owl-overview/
2 http://www.w3.org/2005/rules/wiki/RIF_Working_Group

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 372–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.w3.org/TR/owl-overview/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

A Unifying Perspective on Knowledge Updates 373

Over the years, work on hybrid knowledge bases has matured significantly and fun-
damental semantic as well as computational problems were addressed successfully (see
[20] for an overview). The recent formalisms, based on an embedding to a unifying
non-monotonic formalism, such as the Autoepistemic Logic [6] or the Logic of Mini-
mal Knowledge and Negation as Failure (MKNF) [27], provide a tight and semantically
neat integration of ontologies and rules, allowing predicates to be defined concurrently
in the ontology as well as by rules. Nevertheless, they only deal with static knowledge.

One of the main challenges for knowledge engineering and information management
is to efficiently and plausibly deal with the incorporation of new, possibly conflicting
knowledge and beliefs. In other words, support for knowledge dynamics is essential.
This topic has been extensively addressed in the context of both Description Logics and
Logic Programs, when taken separately.

Ontology Updates. The area of research called ontology change encompasses a num-
ber of strongly related though distinguishable subareas, such as ontology matching, on-
tology integration and merging, or ontology translation (a survey can be found in [14]).
The purest type of change, concerned with modifications to a single ontology, is gen-
erally referred to as ontology evolution. Approaches to ontology evolution with a firm
semantic underpinning, thus amenable to a formal analysis of their behaviour and prop-
erties, are based on research in the area of belief change, initiated by the seminal work
of Alchourrón, Gärdenfors and Makinson (AGM) [1] who proposed a set of desirable
properties of change operators on monotonic logics, now called AGM postulates.

Subsequently, revision and update were distinguished as two very related but ulti-
mately different belief change operations [39,21,28]. While revision deals with incor-
porating new information about a static world into a knowledge base, update takes
place when a knowledge base needs to be brought up to date when the modelled world
changes. While AGM postulates were deemed appropriate for describing revision, a
different set of postulates was suggested for belief update [21,28].

Update operators based on these postulates, usually referred to as model-based, were
later used to partially address ontology updates [25,10], namely to update the part of the
ontology with assertions about individuals (the ABox). On the other hand, model-based
operators are considered inappropriate for updating ontological axioms that define the
terminology (the TBox) [7,34]. Their antipole, formula-based operators, which manip-
ulate the knowledge base at a syntactic level and are strongly related to base revision
operators, were adopted for performing TBox updates instead [7].

Rule Updates. When updates were tackled in the context of Logic Programming, it
was only natural to consider adapting the belief update postulates and operators to deal
with them. However, this led to counterintuitive results because the model-based ap-
proach fails to capture the essential relationships between literals encoded in rules [23],
and the formula-based approach is too crude as it does not allow rules to be reactivated
when reasons for their suppression disappear [40]. Although state-of-the-art approaches
to rule updates are guided by the same basic intuitions and aspirations as belief updates,
they build upon fundamentally different principles and methods.

Many of them are based on the causal rejection principle [23,3,12,2] which states
that a rule is rejected only if it is directly contradicted by a more recent rule. This
essentially means that inertia and minimal change, applied at the level of literals in

374 M. Slota and J. Leite

model-based belief update operators, is instead applied to rules and the truth values of
literals follow from the set of unrejected rules. Causal rejection semantics are useful in
a number of practical scenarios and their behaviour is intuitively predictable. Alterna-
tive approaches to rule updates employ syntactic transformations and other methods,
such as abduction [31], prioritisation and preferences [40,11], or dependencies on de-
fault assumptions [32,22]. The main feature of all these approaches is that they need
to refer to the syntactic structure of a logic program: the individual rules and, in most
cases, also the literals in heads and bodies of these rules. These properties render them
seemingly irreconcilable with belief updates since ontology axioms and formulae in
Classical Logic simply have no heads and bodies.

Towards Updates of Hybrid Knowledge Bases. The question that arises, then, is:
How can we combine methods used for updating ABoxes, TBoxes and rules in a single
framework that allows us to update hybrid knowledge bases?

In [34,37] we provided partial solutions to this problem but the inherent differences
between the distinct approaches to updates have prevented us from suggesting a uni-
versal hybrid update semantics. Subsequently, in [33,35,36] we looked for a suitable
semantic foundation of rule updates which would be independent of rule syntax and, at
the same time, would retain the fundamental properties of existing rule update seman-
tics. This led to the study of exception-driven rule update operators and a definition
of particular operators that semantically capture the justified update semantics for rule
updates [23] and enjoy a number of syntactic as well as semantic properties.

In this paper we go one step beyond and show that exception-driven operators also
capture a range of belief update operators, both model- and formula-based. In other
words, they form a common basis for both ontology and rule updates and create room
for their cross-fertilisation, ripening and further development.

Our main contributions in this paper are as follows:

– We define abstract exception-driven operators for any knowledge representation
formalism with a model-theoretic semantics.

– We show that they capture a wide range of belief update operators.
– We discuss the relationship between belief set and belief base revision operators,

on the one hand, and exception-driven operators, on the other.

This work has the following structure: In Sect. 2 we introduce update operators for
first-order knowledge bases which form the basis for ontology updates. Sections 3 and
4 introduce abstract exception-driven operators and show how they are able to charac-
terise belief updates. We discuss the relationship between our update framework and
revision operators and point at interesting future research directions in Sect. 5.

2 Preliminaries

In this section we introduce model- and formula-based update operators for first-order
knowledge bases which underlie the formal approaches to ontology updates [25,10,7,24].

One of the main issues with ontology updates is the expressibility of the result of
an update which arises due to the fact that Description Logics are fragments of first-
order logic, so the result of an update operator may not be expressible in the DL used to

A Unifying Perspective on Knowledge Updates 375

encode the original ontology and its update [5]. Nevertheless, in this paper we abstract
away from this problem, noting that Description Logics for which expressibility is guar-
anteed have been identified [25,10], approximation techniques for the updated ontology
also constitute a viable solution to this problem [10], and the recent work on belief re-
vision within Horn and other fragments of classical logic may show this problem from
a new viewpoint (see e.g. [8] and references therein).

Throughout the remainder of this paper we thus assume to be using a function-free
first-order language consisting of disjoint non-empty sets of constant and predicate sym-
bolsC andP . First-order formulae are defined in the standard way and by a (first-order)
knowledge base we mean a set of first-order sentences.

From a semantic viewpoint we adopt first-order interpretations under the standard
names assumption in order to simplify comparison between first-order interpretations,
problematic when the interpretation of constants may vary [39,10]. More formally, we
assume that the set of constant symbols C is infinite and all first-order interpretations
are over the universe C where every constant is interpreted by itself. In addition, we
assume that the equality predicate ≈ is allowed to be interpreted by any congruence
relation on C that allows for replacement of equals by equals, enabling us to support
updates of equality assertions. The set of all interpretations satisfying these conditions
is denoted by I . Note that due to Theorems 5.9.4 and 9.3.9 in [13], the semantics we
adopt preserves the standard first-order consequences of all finite knowledge bases.

Furthermore, every interpretation I ∈ I directly corresponds to the set of ground
atoms that it entails; in the following we use these two notions interchangeably. We
denote the set of models of a knowledge base B by [[B]] and say that B is consistent if
B has a model. Given two knowledge bases B, C, we say that B entails C, denoted by
B |= C, if [[B]] ⊆ [[C]], and that B is equivalent to C, denoted by B ≡ C, if [[B]] = [[C]].

We liberally define an update operator as any function that takes the original knowl-
edge base and its update as inputs, and returns the updated knowledge base.

Definition 1 (Update Operator). A (first-order) update operator is a binary function
over the set of all knowledge bases. Any update operator 5 is inductively generalised to
finite sequences of knowledge bases 〈Bi〉i<n as follows:

�〈B0〉 = B0 , �〈Bi〉i<n+1 = (�〈Bi〉i<n) 5 Bn .

In the following we consider two complementary ways of further specifying an update
operator. While the first one puts constraints on the models of knowledge bases pro-
duced by it, the second directly defines the resulting knowledge base by performing
modifications at the syntactic level.

Model-Based Update Operators. The basic idea underlying model-based update op-
erators is that models of the original knowledge base are viewed as alternative states of
the modelled world, only one of which is the true one. Given this perspective, it is nat-
ural to perform an update with U by updating each of the alternatives independently of
the others, making it consistent with U , and thus obtaining a new set of interpretations
– the models of the updated knowledge base. Formally this is captured by the equation

[[B 5 U]] =
⋃

I∈[[B]]

incorporate([[U]], I) , (1)

376 M. Slota and J. Leite

where incorporate(M, I) returns the members of M closer to I so that the original
information in I is preserved as much as possible. A natural way of defining this set
is by assigning a preorder ≤I over I to each interpretation I and taking the minima
of ≤I within M, i.e. incorporate(M, I) = min(M,≤I). In the following we first
formally establish the concept of an order assignment; thereafter we define when an
update operator is characterised by an order assignment.

Given a set S, a preorder over S is a reflexive and transitive binary relation over S;
a strict preorder over S is an irreflexive and transitive binary relation over S. Given a
preorder ≤ over S, we denote by < the strict preorder induced by ≤, i.e. s < t if and
only if s ≤ t and not t ≤ s. For any subset T of S, the set of minimal elements of T
w.r.t. ≤ is denoted by min(T ,≤). A preorder assignment over S is any function ω that
assigns a preorder ≤s

ω over S to each s ∈ S. A preorder assignment ω is faithful if for
all s, t ∈ S with s �= t, s <s

ω t.

Definition 2 (Model-Based Update Operator [21]). Let 5 be a first-order update op-
erator and ω a preorder assignment over I . We say that 5 is characterised by ω if for
all knowledge bases B, U ,

[[B 5 U]] =
⋃

I∈[[B]]

min
(
[[U]],≤I

ω

)
.

An operator 5 is model-based if it is characterised by some faithful preorder assignment.

The model-based operator that underlies the work on ABox updates [25,10] is
Winslett’s operator which compares interpretations based on the sets of ground atoms
that they interpret differently than the original interpretation.

Definition 3 (Winslett’s Operator [39]). The preorder assignment W is defined for all
interpretations I, J,K ∈ I as J ≤I

W
K if and only if (J ÷ I) ⊆ (K ÷ I), where ÷

denotes the set-theoretic symmetric difference. Winslett’s operator 5W is a fixed update
operator that is characterised by W.

Formula-Based Operators. The traditional formula-based update operators that ma-
nipulate a knowledge base syntactically are Set-Of-Theories, Cross-Product and WID-
TIO (see [39] and references therein). The central notion for these operators is that of
a possible remainder which is a maximal set of formulae from the original knowledge
base that is consistent with the update. Formally, given knowledge basesB andU , the set
of possible remainders rem(B,U) is the set of maximal subsets B′ of B such that B′∪U
is consistent. The distinct formula-based operators differ in how they deal with multi-
ple possible remainders. The Set-Of-Theories operator returns the set of all alternative
results, i.e. the set of knowledge bases B′∪U for every B′ ∈ rem(B,U). Assuming that
the initial knowledge base is finite, the Cross-Product operator compiles these different
remainders into a single formula and returns a single knowledge base that is equivalent
to the “disjunction” of knowledge bases returned by the Set-Of-Theories operator.

Definition 4 (Cross-Product Operator). The formula-based operator 5CP is defined
for all finite knowledge bases B,U as B 5CP U = U ∪ { ψ } where ψ is the formula∨

B′∈rem(B,U)

∧
φ∈B′

φ .

A Unifying Perspective on Knowledge Updates 377

On the other hand, the operator WIDTIO (When In Doubt, Throw It Out [39]) takes
the safe path – it keeps exactly those formulae that belong to the intersection of all
remainders and throws away the rest.

Definition 5 (WIDTIO Operator). The formula-based operator 5WIDTIO is defined for
all knowledge bases B, U as B 5WIDTIO U = U ∪

⋂
rem(B,U).

Recently, an operator inspired by WIDTIO was defined in [24] to tackle ABox updates.
Additionally, in [7] the new formula-based operator Bold was suggested for performing
TBox updates because of the counterintuitive behaviour of model-based operators when
used for this purpose. The Bold operator solves the problem of multiple remainders by
using a selection function to choose one and commit to it.

Definition 6 (Bold Operator [7]). A remainder selection function is a function s that
assigns to every set of remainders R a remainder s(R) ∈ R.

Given a remainder selection function s, the formula-based operator 5s
BOLD

is for all
knowledge bases B, U defined as B 5sBOLD U = U ∪ s(rem(B,U)).

3 Exception-Driven Operators

In order to show how belief- and formula-based operators can be characterised in a uni-
fied manner, we define an abstract framework for exception-driven operators, usable
for any knowledge representation formalism with a monotonic model-theoretic seman-
tics. We also demonstrate how the justified update semantics (or JU-semantics) for rule
updates [23] was characterised semantically in [36] using exception-driven operators.

Abstract Exception-Driven Operators. Throughout this subsection we assume to be
using some knowledge representation formalism in which a knowledge base is a sub-
set of the set of all knowledge atoms Ω and Z denotes the set of all semantic structures
among which the models of knowledge atoms are chosen. The set of models of a knowl-
edge atom α is denoted by [[α]]. The semantic characterisation of a knowledge base K
is the set of sets of models of its knowledge atoms: 〈〈K〉〉 = { [[α]] | α ∈ K }. The models
of K are the models of all its elements, i.e. [[K]] =

⋂
〈〈K〉〉.

An exception-driven operator views a knowledgeK through its semantic characteri-
sation 〈〈K〉〉 and introduces exceptions to its knowledge atoms by adding new semantic
structures to their original sets of models. The formalisation of this idea is straight-
forward: an exception-driven update operator is characterised by an exception function
that, given the set of models of a knowledge atom α and the semantic characterisations
of the original and updating knowledge base, returns the set of semantic structures that
are to be introduced as exceptions to α.

Definition 7 (Exception Function). An exception function is any function

ε : 2Z × 22
Z × 22

Z → 2Z .

Given such an exception function and knowledge bases K, U , it naturally follows that
the semantic characterisation resulting from updating K by U should consist of sets

378 M. Slota and J. Leite

of models of each knowledge atom α from K, each augmented with the respective
exceptions, and also the unmodified sets of models of knowledge atoms from U . In
other words, we obtain the set of sets of models

{ [[α]] ∪ ε([[α]], 〈〈K〉〉, 〈〈U〉〉) | α ∈ K } ∪ 〈〈U〉〉 . (2)

Turning to the syntactic side, an update operator is binary function over 2Ω that takes
the original knowledge base and its update as inputs and returns the updated knowledge
base. An exception-driven update operator is then formalised as follows:

Definition 8 (Exception-Driven Update Operator). We say that an update opera-
tor ⊕ is exception-driven if for some exception function ε, 〈〈K ⊕ U〉〉 is equal to (2)
for all K,U ⊆ Ω. In that case we also say that ⊕ is ε-driven.

Before we begin formally comparing model- and formula-based operators with
exception-driven ones, we briefly illustrate how the results of [36], where the JU-se-
mantics for rule updates was semantically characterised, fit within our abstract frame-
work for exception-driven operators. Our main intention in doing so is to provide the
reader with a broader picture of exception-driven operators; the technical details left out
in what follows can be found in [36].

Exception-Driven Rule Updates. We adopt the standard syntax and the stable models
semantics of propositional logic programs [16]. In particular, given a set of atoms A,
a literal is an atom p ∈ A or its default negation ∼p, a rule consists of a pair of sets
of literals (H(π), B(π)), usually written (H(π) ← B(π).), and a program is a set of
rules. An interpretation is a subset of A that naturally assigns truth values to atoms and
a model of a rule is an interpretation that satisfies the rule when interpreted as a classical
implication. Models of a program P are the models of all its rules and an interpretation
J is a stable model of P if it is a subset-minimal model of its Gelfond-Lifschitz reduct
PJ [16]. The set of stable models of P is denoted by [[P]]

SM
.

The goal of rule update semantics [26,23,3,12,2,31,40,11,22,32] is to generalise the
definition of stable models to pairs or sequences of programs where each component
represents an update of the preceding ones. These semantics are usually constrained
to finite sequences of non-disjunctive programs which we call dynamic logic programs
(DLPs). Typically, they are defined by referring to the syntactic structure of the pro-
grams in a DLP. As a consequence, analysis of their semantic properties is very daunting
and most of them do exhibit undesirable behaviour, e.g. by being sensitive to tautolog-
ical updates which is counterintuitive in the context of updates – a tautology cannot
encode a change in the modelled world because it is always true. The historically first
semantics for DLPs is the JU-semantics [23]. We denote the set of all JU-models of a
DLP D by [[D]]JU.

The operators introduced in [36] can be seen as an instantiation of the abstract frame-
work introduced above. In this context, the set of knowledge atoms Ω consists of all
rules and programs and the set of semantic structures Z of three-valued interpreta-
tions. A knowledge base (or rule base) is thus any set of rules and programs and its
elements are perceived as atomic pieces of knowledge. Note that a program is a special
case of a rule base. The reason why we allow for programs inside a rule base is that
when a rule is updated, by adding exceptions to its set of models, the resulting set of

A Unifying Perspective on Knowledge Updates 379

models is usually not expressible by a rule, only by a program. Note also that the notion
of a stable model can be naturally generalised to rule bases by introducing models of a
rule base as the models of all its elements and defining the Gelfond-Lifschitz reduct of
a rule base R as RJ =

{
ΠJ
∣∣ Π ∈ R

}
.

In [36], the semantics assigned to each rule or program in a rule base is given by
a refinement of SE-models [38], dubbed RE-models, which can distinguish additional
classes of rules, indispensable in the context of updates. An exception function, here
denoted by ε

JU
, is then defined. Details about RE-models and ε

JU
can be found in [36].

The main property of ε
JU

is that stable models of the rule base produced by an
ε
JU

-driven operator, when applied to a DLP D, coincide with its JU-models. This holds
whenever D does not contain local cycles, i.e. rules π with both { p,∼p } ∩H(π) �= ∅
and { p,∼p } ∩B(π) �= ∅ for some p ∈ A.

Theorem 9 ([36]). Let D be a DLP without local cycles, J an interpretation and ⊕ an
εJU-driven rule update operator. Then [[

⊕
D]]SM = [[D]]JU.

This means that up to the marginal case of local cycles, ε
JU

can be seen as a seman-
tic characterisation of the JU-semantics: it leads to stable models that coincide with
JU-models. In case the DLP contains local cycles, less stable models than JU-mod-
els are found [36]. Local cycles correspond to two different kinds of rules: tautological
rules and rules with the negation of their head in the body. The different behaviour in the
presence of tautological rules is a strict improvement over JU-models, as it introduces
immunity to tautological updates. The other differences are a consequence of treating
constraints such as (p ← ∼p.) and (← ∼p.) uniformly while the JU-semantics treats
them differently under certain circumstances.

This tight relationship allowed us to study the semantic properties of JU-models
under a range of different notions of program equivalence and entailment, and to shed
new light on the problem of state condensing since ε

JU
-driven operators compress any

DLP into a single equivalent rule base.
Even more importantly, these results, along with the developments in this paper,

show that exception-driven operators form a common semantic basis for both ontology
and rule updates, and so create room for addressing updates of hybrid knowledge bases.

4 Belief Updates Using Exception-Driven Operators

Concrete exception-driven operators for first-order knowledge bases are obtained from
the abstract framework developed in Sect. 3 by identifying the set of knowledge atoms
Ω with the set of first-order sentences and the set of semantic structures Z with first-
order interpretations under the standard names assumption, as introduced in Sect. 2.

In [21] it was shown that propositional model-based update operators are exactly
those that satisfy a collection of eight update postulates. These postulates express basic
desirable properties of update operators and most of them can be directly generalised
to the first-order case. Here we use the following three basic properties of first-order
update operators and prove results about the class of all operators satisfying them. The
properties are formulated for an update operator 5 and quantified over all knowledge
bases B, C, U , V .3

3 Their numbers are as in [21,19].

380 M. Slota and J. Leite

(U1) B 5 U |= U .

(U2.1) B ∪ U |= B 5 U .

(U4) If B ≡ C and U ≡ V , then B 5 U ≡ C 5 V .

The intuitive reading of (U1) is that information from the update must be retained in the
updated knowledge base, also known as the principle of primacy of new information
[9]; (U2.1) expresses that models of B that are also models of U , and thus need not be
updated, are kept as models of the updated knowledge base; (U4) specifies that the oper-
ator must be syntax-independent, i.e. it must provide equivalent results given equivalent
inputs. All model-based update operators, including Winslett’s, satisfy these principles:

Proposition 10 (Properties of Model-Based Updates). Every model-based update
operator satisfies (U1), (U2.1) and (U4).

Furthermore, any operator satisfying these three principles can be faithfully modelled
by an exception-driven operator. Formally:

Theorem 11 (Model-Based Updates Using Exception-Driven Operators). If 5 is an
update operator that satisfies (U1), (U2.1) and (U4), then there exists an exception func-
tion ε such that for every ε-driven update operator⊕ and all finite sequences of knowl-
edge bases D, [[�D]] = [[

⊕
D]].

Similar results can be achieved for formula-based update operators. First we introduce
the following principles, counterparts of the respective belief update postulates, which
are satisfied by many formula-based operators. We denote by 〈〈B〉〉I the set 〈〈B〉〉 ∪ { I }
for any knowledge base B. The principles are as follows:

(F1) 〈〈B 5 U〉〉 ⊇ 〈〈U〉〉.
(F2.1) 〈〈B ∪ U〉〉 ⊇ 〈〈B 5 U〉〉.
(F4) If 〈〈B〉〉I = 〈〈C〉〉I and 〈〈U〉〉I = 〈〈V〉〉I , then 〈〈B 5 U〉〉I = 〈〈C 5 V〉〉I .

We can see that (F1) and (F2.1) are stronger versions of (U1), and (U2.1), respectively.
While (F1) requires that the sets of models of formulae in U be retained in the semantic
characterisation of B 5 U , (F2.1) states that every formula in B 5 U be equivalent to
some formula in B ∪ U . Intuitively, this means that B 5 U is obtained from B ∪ U by
deleting some of its elements, modulo equivalence. Finally, (F4) is a reformulation of
(U4) that is satisfied by formula-based operators – it can be seen as syntax-independence
w.r.t. the set of sets of models of a knowledge base, modulo the presence of tautologies,
instead of the overall set of models as in (U4). In some ways it is weaker than (U4) as
its antecedent is much stronger.

The WIDTIO operator satisfies all of these principles, and so does the Bold operator
if it is based on a remainder selection function that selects remainders with the same
semantic characterisation when given sets of remainders with the same sets of semantic
characterisations. More formally:

Definition 12 (Regular Bold Operator). Let R be a set of remainders. We denote the
set { 〈〈B′〉〉I | B′ ∈ R} by ((R))I .

We say that the Bold operator 5sBOLD is regular if for all sets of remainders R1, R2

such that ((R1))
I = ((R2))

I it holds that 〈〈s(R1)〉〉I = 〈〈s(R2)〉〉I .

A Unifying Perspective on Knowledge Updates 381

The regularity condition guarantees a certain degree of independence of syntax, e.g.
given the sets of remainders R1 = { { p } , { q } } and R2 = { { p ∧ p } , { q ∨ q } }, a
regular Bold operator either selects { p } from R1 and { p ∧ p } from R2, or it selects
{ q } from R1 and { q ∨ q } from R2. A non-regular one might select, say, { p } from
R1 and { q ∨ q } from R2. Thus the regularity condition ensures that the operator is
independent of the syntax of individual formulae in the knowledge base.

The Cross-Product operator satisfies (F1), (U2.1) and (F4), but not (F2.1).

Proposition 13 (Properties of Formula-Based Updates). The WIDTIO and regular
Bold operators satisfy (F1), (F2.1) and (F4). The Cross-Product operator satisfies (F1),
(U2.1) and (F4) but does not satisfy (F2.1).

The following result establishes that formula-based operators such as WIDTIO and
regular Bold can be fully captured by exception-driven operators. In addition, operators
such as Cross-Product can be captured for the case of a single update.

Theorem 14 (Formula-Based Updates Using Exception-Driven Operators). If 5 is
an update operator that satisfies (F1), (F2.1) and (F4), then there exists an exception
function ε such that for every ε-driven update operator ⊕ and all finite sequences of
knowledge bases D, [[�D]] = [[

⊕
D]].

If 5 is an update operator that satisfies (F1), (U2.1) and (F4), then there exists an
exception function ε such that for every ε-driven update operator⊕ and all knowledge
bases B, U , [[B 5 U]] = [[B ⊕ U]].

5 Discussion

We have introduced exception-driven operators for first-order knowledge bases and
shown that they can fully capture update operators that form the basis of ontology up-
dates, such as the model-based Winslett’s operator, or the formula-based WIDTIO and
Bold operators [25,10,7,24]. The Cross-Product operator can be captured when a single
update is performed. Furthermore, the same can be said about the Set-Of-Theories op-
erator since for a single update it is equivalent to the Cross-Product operator [39], with
alternative knowledge bases interpreted disjunctively. However, neither of these two op-
erators offers a viable alternative for updating ontologies. Cross-Product requires that
disjunctions of ontology axioms be performed, which is typically not supported in DLs,
and Set-Of-Theories produces a disjunctive ontology which is impractical and deviates
from mainstream DL research.

An interesting point regarding the results of Sect. 4 is that the principles (U1), (U2.1)
and (U4) are not specific to update operators, they are also satisfied by AGM revision
operators. These operators are developed for the case of revising a belief set which is a
set of formulae closed w.r.t. a logical consequence operator Cn. A revision operator #
takes an original belief set T and a formula μ representing its revision and produces
the revised belief set T # μ. The typical properties satisfied by AGM revision operators
include success, inclusion and extensionality [18], formalised, respectively, as

μ ∈ T # μ , T # μ ⊆ Cn(T ∪ {μ }) , If μ ≡ ν, then T # μ = T # ν.

382 M. Slota and J. Leite

These three properties directly imply that (U1), (U2.1) and (U4) are satisfied by AGM
revision operators if the initial knowledge base is a belief set and each of its updates a
single formula. This essentially means that Theorem 11 directly applies to AGM revi-
sion operators as well. Note that the operator adopted for ABox updates in [24], inspired
by WIDTIO, performs a deductive closure of the ABox before updating it, so it corre-
sponds to the standard full meet AGM revision operator.

Similarly, principles (F1), (F2.1) and (F4) are closely related with the properties of
base revision operators [15,18], of which direct instances are the WIDTIO and Bold
operators. In particular, two types of base revision are identified in [18], the internal
and external base revision. Both of them satisfy base revision counterparts of success
and inclusion and, in addition, internal revision operators satisfy a property called uni-
formity. These three principles together entail that internal revision operators satisfy
(F1), (F2.1) and one half of (F4); the other half can be achieved by putting additional
constraints on the two-place selection function that generates the revision operator, sim-
ilar to the regularity condition we imposed on the Bold operator above. Such regular
internal revision operators are thus directly subject to Theorem 14. The same however
does not hold for regular external revision operators as they need not satisfy uniformity.
Note also that the WIDTIO and Bold operators coincide with internal full meet base
revision and internal maxichoice base revision operators, respectively.

To sum up, in this paper we introduced the abstract framework for exception-driven
operators which view a knowledge base or program as the set of sets of models of its
elements, and perform updates by adding new interpretations – exceptions – to the sets
of models of elements in the original knowledge base or program. The most impor-
tant feature of this approach is that it provides a common basis for a wide range of
model- and formula-based belief update operators as well as for the JU-semantics, a
traditional syntax-based approach to rule updates. In other words, exception functions
and exception-driven operators offer a uniform framework that bridges two very distinct
approaches to updates, previously considered irreconcilable.

Along with this, new possibilities for addressing updates of hybrid knowledge bases
arise. The different methods used for dealing with ABox, TBox and rule updates can
be viewed uniformly by looking at their associated exception functions. When coupled
with a counterpart of SE- or RE-models in the context of hybrid knowledge bases, this
can lead to universal hybrid update semantics which in turn can further improve our
understanding of the relation between the distinct update paradigms.

Our discussion of the expressivity of exception-driven operators w.r.t. revision oper-
ators, on both belief sets and belief bases, can be used to tackle and unify approaches
to ontology revision [29,17,30]. This seems relevant even in the context of ontology
updates since it has been suggested in the literature that the strict distinction between
revision and update is not suitable in the context of ontologies [7].

Furthermore, exception-driven characterisations of additional rule update semantics
need to be investigated. This poses a number of challenges due to the need to detect non-
tautological irrelevant updates [2,32]. Insights gained by obtaining exception-driven
characterisations of various rule update semantics may also shed light on the problem
of updating disjunctive programs which has received very little attention up until now.

A Unifying Perspective on Knowledge Updates 383

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments. The authors were partially supported by the FCT funded project ERRO – Effi-
cient Reasoning with Rules and Ontologies (PTDC/EIA-CCO/121823/2010).

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)

2. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics
of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

3. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic up-
dates of non-monotonic knowledge bases. J. Log. Program. 45(1-3), 43–70 (2000)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge
Univ. Press (2007)

5. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and
action formalisms: First results. In: Veloso, M.M., Kambhampati, S. (eds.) Procs. AAAI
2005, pp. 572–577. AAAI/MIT Press (2005)

6. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: Embedding nonground logic programs into
autoepistemic logic for knowledge-base combination. ACM Trans. Comput. 12(3), 20 (2011)

7. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite Knowledge
Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 112–128. Springer, Heidelberg
(2010)

8. Creignou, N., Papini, O., Pichler, R., Woltran, S.: Belief revision within fragments of propo-
sitional logic. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Procs. KR 2012, pp. 126–136.
AAAI Press (2012)

9. Dalal, M.: Investigations into a theory of knowledge base revision. In: Procs. AAAI 1988,
pp. 475–479. AAAI/MIT Press (1988)

10. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure
in description logic ontologies. J. Log. Comput. 19(5), 745–770 (2009)

11. Delgrande, J.P., Schaub, T., Tompits, H.: A Preference-Based Framework for Updating
Logic Programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

12. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. TPLP 2(6), 721–777 (2002)

13. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Graduate texts in
computer science. Springer, Berlin (1996)

14. Flouris, G., Makanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology change:
classification and survey. Knowledge Eng. Review 23(2), 117–152 (2008)

15. Gärdenfors, P.: Belief Revision: An Introduction. In: Belief Revision, pp. 1–28. Cambridge
Univ. Press (1992)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Procs. ICLP/SLP 1988, pp. 1070–1080. MIT Press (1988)

17. Halaschek-Wiener, C., Katz, Y.: Belief base revision for expressive description Logics. In:
Grau, B.C., Hitzler, P., Shankey, C., Wallace, E. (eds.) Procs. OWLED 2006. CEUR Work-
shop Proceedings, vol. 216 (2006), CEUR-WS.org

18. Hansson, S.O.: Reversing the Levi identity. J. Philosophical Logic 22(6), 637–669 (1993)

384 M. Slota and J. Leite

19. Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artif. In-
tell. 115(1), 107–138 (1999)

20. Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Handbook on On-
tologies, 2nd edn. International Handbooks on Information Systems, pp. 111–132. Springer,
Berlin (2009)

21. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and
revising it. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Procs. KR 1991, April 22-25,
pp. 387–394. Morgan Kaufmann Publishers, Cambridge (1991)

22. Krümpelmann, P., Kern-Isberner, G.: On belief dynamics of dependency relations for ex-
tended logic programs. In: Procs. NMR 2010, Toronto, Canada (2010)

23. Leite, J., Moniz Pereira, L.: Generalizing Updates: From Models to Programs. In: Dix, J.,
Moniz Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI), vol. 1471, pp.
224–246. Springer, Heidelberg (1998)

24. Lenzerini, M., Savo, D.F.: On the evolution of the instance level of DL-Lite knowledge bases.
In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Procs. DL 2011. CEUR Workshop
Proceedings, vol. 745 (2011), CEUR-WS.org

25. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Updating description logic ABoxes. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Procs. KR 2006, pp. 46–56. AAAI Press (2006)

26. Marek, V.W., Truszczynski, M.: Revision programming. Theor. Comput. Sci. 190(2), 241–
277 (1998)

27. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 93–154 (2010)
28. Peppas, P., Nayak, A.C., Pagnucco, M., Foo, N.Y., Kwok, R.B.H., Prokopenko, M.: Revision

vs. update: Taking a closer look. In: Wahlster, W. (ed.) Procs. ECAI 1996, pp. 95–99. John
Wiley and Sons, Chichester (1996)

29. Qi, G., Yang, F.: A Survey of Revision Approaches in Description Logics. In: Calvanese, D.,
Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 74–88. Springer, Heidelberg (2008)

30. Ribeiro, M.M., Wassermann, R.: Base revision in description logics - preliminary results.
Procs. IWOD 2007, 69–82 (2007)

31. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
TPLP 3(6), 671–713 (2003)

32. Šefránek, J.: Static and dynamic semantics: Preliminary report. In: MICAI, pp. 36–42 (2011)
33. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In: Coelho, H.,

Studer, R., Wooldridge, M. (eds.) Procs. ECAI 2010. Frontiers in Artificial Intelligence and
Applications, vol. 215, pp. 957–962. IOS Press (2010)

34. Slota, M., Leite, J.: Towards Closed World Reasoning in Dynamic Open Worlds. TPLP Spe-
cial Issue 10(4-6), 547–564 (2010)

35. Slota, M., Leite, J.: Back and Forth between Rules and SE-Models. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 174–186. Springer, Heidelberg (2011)

36. Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs.
In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Procs. KR 2012, pp. 158–168. AAAI Press
(2012)

37. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases. TPLP Special
Issue 11(4-5), 801–819 (2011)

38. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints.
TPLP 3(4-5), 609–622 (2003)

39. Winslett, M.: Updating Logical Databases. Cambridge Univ. Press, New York (1990)
40. Zhang, Y.: Logic program-based updates. ACM Trans. Comput. Log. 7(3), 421–472 (2006)

Verifying Brahms Human-Robot Teamwork Models

Richard Stocker, Louise Dennis, Clare Dixon, and Michael Fisher

Department of Computer Science, University of Liverpool, U.K.
R.S.Stocker@liverpool.ac.uk

Abstract. Collaboration between robots and humans is an increasingly impor-
tant aspect of industrial and scientific settings. In addition, significant effort is
being put into the development of robot helpers for more general use in the work-
place, at home, and in health-care environments. However, before such robots can
be fully utilised, a comprehensive analysis of their safety is necessary. Formal ver-
ification techniques are regularly used to exhaustively assess system behaviour.
Our aim is to apply such techniques to Brahms, a human-agent-robot modelling
language. We show how to translate from Brahms scenarios, using a formal se-
mantics for Brahms, into the input language of a model checker. We illustrate the
approach by defining, translating, and verifying a domestic robot helper example.

1 Introduction

As autonomous devices are increasingly being developed for, and deployed in, both do-
mestic and industrial scenarios, there is an increasing requirement for humans to at least
interact with, and often work cooperatively with, such devices. While the autonomous
devices in use at present are just simple sensors or embedded hardware, a much wider
range of systems are being developed. These consist not only of devices performing solo
tasks, such as the automated vacuum cleaners we see already, but are likely to include
robots working cooperatively with humans. For example, there will be robot ‘helpers’
to assist the elderly and incapacitated in their homes [1, 2], there will be manufacturing
robots which will help humans to make complex artifacts [3], and there will be robots
tasked with ensuring that humans working in dangerous areas remain safe. All these
are being developed, many will be with us in the next ten years, and all involve varying
degrees of cooperation and teamwork.

The above examples highlight robots deployed in both domestic and safety-critical
industrial situations where human safety can be compromised. Thus, it is vital to carry
out as much analysis as is possible not only to maximize the safety of the humans
involved, but to ascertain whether the humans and robots together ‘can’, ‘should’, or
‘will’ achieve the goals required of the team activity.

There are several challenges facing such analysis. One is to to accurately describe hu-
man, and indeed robot, behaviour. Even when we have described such behaviours, how
can we exhaustively assess the possible interactions between the humans and robots?
While some work has been carried out on the safety analysis of low-level human-robot
interactions [4], a detailed analysis of the high-level behaviours within such systems
has not yet been achieved.

In this paper, we tackle the general problem of matching a set of requirements (which
could concern safety, capabilities, or interactions) against scenarios involving humans,

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 385–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

386 R. Stocker et al.

robots, and agents. Within this, we use important work on high-level modelling of
human-agent-robot teamwork that has already been carried out using the Brahms frame-
work [5]. Thus, we assume that the key interactions and behaviours of any human-
agent-robot scenario have been captured within a Brahms model. We also assume that
a set of informal requirements have been constructed. The work described in this paper
essentially describes the solid arrows within Fig. 1.

Brahms
Teamwork

Model

Human-Agent-
Robot Teamwork

Scenario

Informal
RequirementsMatch?

Java
Representation

of Semantic
Structures

Formal
Requirements
in Promela

Promela
Representation of
Teamwork Model

Automated,
Exhaustive,

Formal Verification
in Spin

Alternative
verification

systems [Future
Work]

Fig. 1. Overview of the processes described in this paper

Thus, given a Brahms model of a human-agent-robot scenario, we use the formal
semantics described in [6] to generate a Java representation of the semantic structures
relevant to this scenario. We then translate these structures into Promela process de-
scriptions, which represent partial instantiations of the semantics, suitable for input to
the Spin model checker [7]. In parallel, we translate the informal requirements (where
possible) to Promela code representing these properties. Finally, we apply the Spin
model checker to the Promela descriptions and feed the results back to the high-level
scenarios for evaluation. This, then, provides a mechanism for formally verifying prop-
erties of human-agent-robot teamwork scenarios.

Our paper describes this framework and exhibits its use on a specific domestic sce-
nario, where a helper robot and a house agent work together with a person to to monitor,
remind and assist a person with their daily activities in a home environment.

2 Background

2.1 Brahms

Brahms is a multi-agent modelling, simulation and development environment devised
by Sierhuis [5] and subsequently developed at NASA Ames Research Center. Brahms
is designed to model both human and robotic activity using rational agents. Rational
agents can be seen as autonomous entities, able to make their own choices and carry

Verifying Brahms Human-Robot Teamwork Models 387

out actions in a rational and explainable way [8]. As Brahms was developed in order
to represent people’s activities in real-world contexts, it allows the representation of
artifacts, data, and concepts in the form of classes and objects. Both agents and objects
can be located in a model of the world giving agents the ability to detect both objects
and other agents, have beliefs about the objects and move between locations. For a more
detailed description of the Brahms language we refer the reader to [5] and [9]. The key
aspects of Brahms are:

– activities: actions (with durations) an agent can perform;
– beliefs: each agent’s own personal perceptions of itself, the environment and other

agents;
– facts: the actual state of the agents and the environment (which agents/objects ob-

serve using detectables);
– detectables: allowing facts to be brought into the an agent’s belief base and deter-

mining how the agent will react in response;
– workframes: sequences of events required to complete a task, together with any

belief updates resulting from the task completion;
– thoughtframes: reasoning/thought processes, e.g. “I believe it is raining therefore I

believe I need an umbrella”;
– time: Brahms models incorporate a time-line of events and belief changes.

Brahms has been judged ideal for describing human-agent-robot teamwork, for example
astronaut-robot teamwork on Mars [10].

A Brahms simulation contains a set of agents (representing robots, humans or actual
agents) and a scheduling system which manages a clock recording global time within
the simulation. Since agent actions have durations, the scheduler will examine each
agent to see how much longer any action the agent is performing will take and then
advance the clock to the next significant point in time, typically when the agent ac-
tion finishes. When two agents finish actions at the same time (and at the start of the
simulation) the scheduler also manages the order in which the agents execute their rea-
soning processes in order to determine their next action. In such cases the agents have
a pre-determined order of priority within the scheduler.

2.2 Brahms Formal Semantics

In [6], we provided a formal operational semantics for Brahms. This provides the the-
oretical basis for our verification. A Brahms model is represented as a 5-tuple:

〈Ags, agi, Bξ, F, Tξ〉

Where Ags is the set of all agents, agi the agent currently under consideration, Bξ

the belief base of the system (used to synchronise the agents, e.g. agent i’s next event
finishes in 1000 seconds), F the set of facts in the environment (e.g. temperature is
20◦C) and Tξ is the current time of the system.

The agents (Ags, and agi) have a 9-tuple representation:

〈agi, T ,W, stage,B, F, T,TF ,WF 〉

388 R. Stocker et al.

Here agi is the identification of the agent; T the current thoughtframe; W the current
workframe; stage the current stage of the agent’s reasoning cycle;B the agent’s beliefs;
F the set of facts about the world; T the agent’s internal time; TF the agent’s thought-
frames; and WF is the agent’s set of workframes. In addition, stage controls which
rules in the operational semantics are currently applicable to the agent or if the agent is
in a finish (fin) or idle (idle) stage. The (operational) semantics is then represented as
a set of transition rules of the form

〈StartingTuple〉 ActionsPerformed−−−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Here, ‘ConditionsRequiredForActions’ refers to conditions which must hold before
the rule can be applied, while ‘ActionsPerformed ’ represents changes to the agent,
object or system state which, for presentational reasons, can not be easily represented
in the resulting tuple. Finally, it is assumed that all agents and objects can see and access
everything in the overall system’s tuple, e.g. Tξ.

The semantics is split into two groups of rules: the first group concerns the global
system and represents the functioning of the scheduler; the other acts upon individual
agents. Rules for the scheduler act as a global arbiters instructing agents when to start,
suspend, or terminate. Rules for the individual agents choose actions and update beliefs,
etc. An agent first processes thoughtframes, then detectables (both of which may update
the beliefs), and then workframes which may initiate actions, referred to as activities.

For example, there are rules informing an agent on how to select a thoughtframe
based on whether its beliefs match the thoughtframe guard conditions and whether the
thoughtframe’s priority is sufficiently high. The rules governing activities communicate
with the system to inform it of the activity’s duration. When no agent can apply any
more operational rules, control returns to the scheduler which examines all the agents’
activities to determine which will conclude first and at what time it will finish. The
scheduler then moves the global clock forward accordingly, and hands control to the
rules governing the behaviour of the individual agents once more.

2.3 Formal Verification, Promela and SPIN

Formal verification represents a family of techniques aimed at assessing whether a sys-
tem always/ever satisfies its specification. We consider a fully automated, algorithmic
technique known as model checking [11]. A model checker takes a description of the
system together with some requirement expressed in a formal logic. The model checker
exhaustively checks the formal requirement against all paths through the system. If a
path is found in which the property does not hold then a trace of that path is provided.

In this paper we use the Spin model checker [7]. Promela (Process/Protocol
Meta Language) is the input language for Spin. Promela was designed to be a sim-
ple multi-process language, allowing the models generated to be small. Processes are
a key part of Promela. They are asynchronous and are declared by the key word
proctype. Promela provides three basic control flow constructs: case selection;
repetition; and unconditional jump.
Spin itself is an on-the-fly reachability analysis system [7]. It accepts specifications

in the form of linear temporal logic properties, which are translated into Büchi automata

Verifying Brahms Human-Robot Teamwork Models 389

— finite automata over infinite input sequences. Spin then examines all possible runs
through the Promela program, running the Büchi automaton in parallel in order to
assess whether the temporal requirements are satisfied.

3 Case Study: “Domestic Home Care”

We will describe our translation and verification procedure through the development of
one specific example; further details are available in the extended technical report [12].
We first describe the, necessarily very simple, scenario and outline its Brahms imple-
mentation. Though we can only provide an English overview here, we provide a sample
Brahms workframe in Fig. 2; the full Brahms implementation is provided in [12].

3.1 Overview of Scenario

In this scenario there is a person, a helper robot, a human care worker and a house
agent. The helper robot is mobile and can move about the house assisting the person
with various tasks. The house agent has the role of detecting information, informing
the person and issuing reminders where necessary. The care worker is called when the
robot/agent are unable to assist. Such domestic health-care scenarios typically involve
assisting the elderly or infirm; see for example [1, 2].

The helper robot: fetches drinks, cooks food, and delivers meals to the person; col-
lects dirty dishes and puts them in the dishwasher; fetches medicines; records whether
the person has taken these; informs the person of what to do in case of an emergency,
e.g. a fire; and communicates with the house agent. The house agent: informs the helper
robot of the person’s location; issues reminders to the person (e.g. to flush the toilet);
and monitors the person’s location. The care worker is called for when the person fails
to take their medication. We assume the care worker is always successful in administer-
ing the medication. The person is modelled very simply, watching TV, requesting food,
eating and going to the toilet at regular intervals.

3.2 Brahms Representation

This scenario is modelled using five agents and one object: Robot, House, Care-Worker,
Environment and Bob (our elderly person) are the agents and Clock is the object. The
Clock is used for termination of the simulation (i.e. after 20 hours) and provides the no-
tion of time used by the simulation e.g. governing when the human’s hunger increases.
The Environment is a simple agent that decides if, and when, a fire alarm will occur.

Bob’s role is to watch television and perform simple everyday tasks such as eating
and going to the toilet. Thoughtframes are used to update beliefs about how hungry he
is and how much he needs the toilet. When his hunger reaches a certain threshold a
workframe activates and Bob requests food. A similar workframe will trigger a visit to
the toilet. These workframes have a higher priority than the workframe for watching
television, so when they become active the ‘television’ workframe suspends. The work-
frame for going to the toilet activates other workframes to flush the toilet and wash his
hands once finished. Two versions of these workframes exist: representing whether or
not he remembers to perform the task, each have the same guard conditions and priority

390 R. Stocker et al.

so only one will execute at random. Bob also has workframes for taking his medication
and thoughtframes that govern whether or not he chooses to do so.

The helper Robot remains idle until it receives a command or it detects Bob re-
quires attention. When Bob requests food, the Robot prepares and delivers it. There is
a detectable in the Robot’s “wait for instructions” workframe which detects when Bob
has finished eating; this triggers a belief update which in turn triggers a workframe to
clear the plates. The Robot also has workframes to deliver medicine to Bob; activated
at pre-allocated times. The Robot places the drugs on Bob’s tray and then monitors
them hourly to check if they have been taken. The workframe governing this is shown
in Fig. 2. A detectable takenMedicationC aborts the workframe if the drugs have
been taken and then updates the Robot’s beliefs. If the drugs have not been taken the
workframe reminds Bob to take his medication. The Robot counts the number of times
it reminds Bob, and after 2 reminders it notifies the House. The Robot also instructs
Bobto evacuate the house in the case of fire and answers the door to the Care Worker.

workframe wf_checkMedicationC {
repeat: true;
priority: 3;
detectables:

detectable takenMedicationC{
when(whenever)
detect((Bob.hasMedicationC = false),
dc:100)

then abort; }
when(knownval(current.perceivedtime > 14)and

knownval(Bob.hasMedicationC = true) and
knownval(current.checkMedicationC = true))

do {
checkMedication();
remindMedicationC();
conclude((current.checkMedicationC = false));
conclude((current.missedMedicationC =
current.missedMedicationC + 1)); }}

Fig. 2. The Robot’s workframe to remind Bobabout medication

The House is ‘intelligent’. It is responsible for monitoring Bob, giving him instruc-
tions based on his location, and detecting any fire. The House’s default workframe
monitors Bob, and has detectables which update the House’s beliefs about Bob’s loca-
tion. When Bob’s location is at the toilet a new workframe is fired, containing an ‘abort’
detectable which quits the activity when Bob leaves the toilet and activates a new work-
frame which detects Bob’s location and uses this to decide whether or not Bob has left
without flushing the toilet. Bobis then reminded if necessary. The default monitoring
workframe also has a detectable for a fire, this aborts the current activity and activates
a workframe which sounds an alarm and notifies the Robot and Bob. Finally, while the
House is notified that Bob has failed to take his medicine, it informs the Care Worker.

The Care Worker performs outside activities which are abstracted into a single “busy”
activity. When the Care Worker is called he/she will only make their way to the house

Verifying Brahms Human-Robot Teamwork Models 391

once they have finished their current activity. When the Care Worker arrives they ring
the door bell. Once they have been let in by the Robot they administer the medication
and inform the Rpbpt that the patient has now taken the medication. The Care Worker
then leaves and continues with their outside activities.

Note that each of the agent’s behaviours are here deliberately chosen to to be simple.
We can, of course, add much more complex behaviour though our aim here is just to
use this scenario to exhibit the overall approach.

4 From Brahms to Promela

We automatically build a Promela version of the Brahms scenario. In practice we
translate Brahms into Java data structures corresponding to the semantic configu-
rations (i.e., the various tuples mentioned in section 2.2) [6]. This is to allow us to
(later) target several different model-checkers from the same intermediate representa-
tion. Here, however, we just discuss the final Promela code and do not detail the
intermediate Java representation. Promela’s restrictive data types and control struc-
tures make it difficult to model the operational semantics for Brahms directly. Agents,
workframes, thoughtframes and the tuples representing the system model all have to
be represented via arrays. This makes it complex to write generic code that will apply
to any model. As such we choose to generate a partial instantiation of the operational
rules tailored for a particular model of interest. This partial instantiation is generated
automatically from the Java representation.

4.1 From the Scheduler to a Promela Process

Representing the Scheduler in Promela. Given a specific model, we generate partial
instantiations of the scheduler rules which act, not on a list of unknown agents, Ags,
but upon the specific agents we know to exist in the model. The only variables used by
the scheduler are an integer to represent its current time, ‘cntEnvionment’; an enu-
meration, ‘turn’, which can be either an object/agent’s name or the Environment; and
a Boolean, ‘EnvironmentActive’, which decides when the system is to terminate.

The Promela translation imitates the Brahms system scheduler by representing
it as a proctype. The global clock is represented by an integer. Agents are also
represented using proctypes and the scheduler determines their order of execution
through ‘turn’. Once an agent has executed, ‘turn’ is re-assigned to the scheduler.

Matching the Scheduler’s Rules. The Promela code captures all the scheduler rules
in a loop containing a conditional expression with one condition representing the guard
for each rule. If the condition evaluates to true then code representing the rule’s seman-
tics is executed. We give an example of one of the scheduler rules, Sch run, and discuss
its instantiation as Promela code.

RULE: Sch run

〈Ags, agi, Bξ, F, Tξ〉
stageagi

=Set Act
−−−−−−−−−−−−−−−−−−−−−−−−−→
∀ag∈Ags|stageag∈{fin,idle},(Tξ �=−1)

〈Ags,agi, Bξ, F, Tξ〉

392 R. Stocker et al.

Sch run becomes active if all the agents are either finished (in the fin stage) or idle (the
idle stage) and the simulation hasn’t finished (Tξ �= −1). In Promela:

– a set of Boolean variables represent when agents are idle (e.g., ‘RobotActive’) is
set to false if the Robot is idle); ’

– a set of integers representing the time remaining for each agent’s current activity are
used to judge whether an agent is in the fin stage. (e.g., if ‘Robot timeRemaining’
is zero then the Robot is in the fin stage); and

– Promela will terminate if the simulation has concluded so it isn’t necessary to
check explicitly for Tξ = −1.

The condition representing the rule’s guard checks all these variables (‘RobotActive’,
‘Robot timeRemaining’ etc.) explicitly. In the generic rule, Sch run sets the stage
of agi to Set Act. In Promela the value of the agent’s enumeration ‘turn’ represents
the agent’s stage and this is set accordingly.

4.2 From Agent Semantics to Promela Processes

Representing the Agent’s Data Structures in Promela. The components of the 9-
tuple that represent an agent are primarily represented by arrays. These arrays are re-
ferred to by name in the partial instantiations of the operational rules.

For instance, T , the agent’s current thoughtframe is represented as a one-dimensional
array and treated as a stack. The array is labelled ‘tf stack’ followed by the agent’s
name e.g. ‘tf stackRobot’. The current workframe is represented in a similar fashion.
The first six indices (three in the case of the current thoughtframe) of the array (elements
0-5) are used to store the workframe header data. Below the header information are a
stack of deeds which may represent belief updates or activities. Sets of thoughtframes
and workframes are stored in the same format but in two-dimensional arrays where
the first index represents the thoughtframe or workframe and the second represents the
elements of the thoughtframe or workframe. These are named ‘tf’ or ‘wf’ followed by
the name of the agent. e.g. an agent Robot may have a set of workframes as follows:

Index Workframe at index 0 index 1

0 Workframe ID number = 0 ID = 1
1 Boolean guard condition = 1 (workframe is active) Guard = 0
2 Priority of the workframe = 4 Priority = 10
3 Repeat = 3 (always repeat) Repeat = 0 (never repeat)
4 Boolean to flag a communication or move activity = 0 Comm/Move = 0
5 Boolean to flag if workframe is in impasse = 0 impasse = 1
6 Last deed on stack Last deed on stack
. . .
. . .
i Top deed on stack Top deed on stack

We do not represent the current stage of the agent’s reasoning cycle explicitly, but do
so implicitly by the order in which rules are represented in the Promela code.

Verifying Brahms Human-Robot Teamwork Models 393

Beliefs and facts in Brahms are tied to the attributes and relations of an
agent; where attributes are defined properties of agents and relations are connections
between agents. So agent Robot could believe agent Bob’s attribute AskedForFood
is true or that Bob has the relation of isPatientOf with the Carer. To model this
in Promela every agent is assigned a belief about every attibute and relation,
even if it does not own that attribute. This belief is represented as a Boolean array.
The name of the belief is the name of the agent followed by the name of the at-
tribute, e.g. RobotAskedForFood represents the Robot’s beliefs about the attribute
AskedForFood. The index of the array is the ID number of the agent whom the belief
concerns, e.g.

0 = Robot’s ID Robot believes the Robot askedForFood = false
1 = Clock’s ID Robot believes the Clock askedForFood = false
2 = Bob’s ID Robot believes that Bob AskedForFood = true
3 = House’s ID Robot believes the House AskedForFood = false

Matching the Agent’s Semantic Rules in Promela. When the scheduler’s ‘turn’
enumeration is an agent name then control passes to the agent rules. Like the sched-
uler rules these are represented by a loop that checks the rule pre-conditions in turn.
To explain how the Promela translation matches Brahms we show how one of the
operational semantic rules is represented in Promela.

RULE: Wf Select
〈agi, ∅, ∅,Wf ∗, Bi, F, Ti,TF i,WF i〉

β=Maxpri(W∈WFi|B|=Wg)
−−−−−−−−−−−−−−−−−−→

∃W∈WFi |Bi |=Wg

〈agi, ∅, β,Wf (true/false/once), Bi, F, Ti,TF i,WF i〉

Wf Select determines which workframe is to be selected. For the rule to be activated
there needs to exist a workframe in the set of workframes whose guard conditions eval-
uates to true with respect to the belief base (∃W ∈ WF i |Bi |= W g). At the start of
each cycle the agent first identifies which workframes have guard conditions that evalu-
ate to true: those which are active have a 1 entered at index 1 in the 2-dimensional array
of workframes above, those that are not have a 0. The rule also states that the “cur-
rent workframe” entry in the tuple must be empty, which is represented in Promela
by a pointer to the current workframe’s top element. If this is −1 then there is no cur-
rent workframe. If the current workframe is empty and some workframe is active then
Wf Select will be selected.

Wf Select performs a selection process to find the active workframe with the highest
priority (β = Max pri(W ∈WF i|B |=W g)). The Promela translation loops through
the array of workframes, checks the guard condition and the priority of each workframe;
index 1 and 2 in the workframe array shown earlier. It builds a temporary array of
workframes that share the maximum priority among all the active workframes. Finally
the Promela code arbitrarily selects one workframe from this temporary array. For a
further comparison with the semantics rules we refer the reader to the technical report
[12].

394 R. Stocker et al.

4.3 Correctness Issues

As can be seen, we have not implemented the Brahms semantics directly in Promela.
At present, analysis of this implementation consists of an informal comparison of the
Promela arrays against the complex data structures of the semantics and an informal
analysis of the operational rules against the partial instantiations produced for the spe-
cific example of the “Home Care” system. Parts of this analysis have been reproduced
here and the full version can be found in [12]. In future work we intend to produce
a more general, though still informal, discussion of the translation mechanisms them-
selves. It should be noted that there is also no proof that the operational semantics ac-
curately capture Brahms. So both systems can be viewed separately as mechanisms for
exploring models of human-agent teamwork even if they are not provably equivalent.

5 “Home Care” Verification

We next consider the actual verification of human-agent-robot teamwork; again we fo-
cus on the “home care” scenario.

5.1 Requirements

We develop a range of logical requirements for the scenario; recall that in temporal
logic, �φ means that “φ will be true at some moment in the future”, while �φ means
that “φ will be true at all future moments”. We describe some of the properties verified
and classify these just by the core aspect they represent, i.e. properties labelled Fn relate
to the fire alarm; labelled by Tn relate to the toilet; Hn relate to hunger and Mn relate to
medicine. For space reasons, we only provide the temporal formulae in the case of the
fire alarm. The axioms used in the properties are all based on the beliefs of the agents
or facts in the system. We expect all of these properties to hold apart from M1.

F1: If a fire actually occurs then, eventually, House will generate a fire alarm. Logical
requirement is: �(a ⇒ � b) where

a = there is a fire
b = House believes there is a fire alarm

F2: If fire alarm is sounding, and Bob leaves House then fire alarm finishes. Logical
requirement is: �((a ∧ b)⇒ �¬a) where

a = House believes there is a fire alarm
b = Bob believes he has evacuated the house

F3: If fire alarm is sounding and Bob has not left House, then Robot reminds Bob.
Logical requirement is: �((a ∧ b)⇒ �¬c) where

a = House believes there is a fire alarm
b = Bob believes he has evacuated the house
c = Robot believes it has alerted Bob of the fire 0 times

T1: Eventually Bob will go to toilet.
T2: If Bob goes to the toilet he can forget to flush it and, if so, he will be reminded by

the House. So, if Bob goes the toilet then eventually he will flush the toilet.
H1: If Bob requests food then eventually Robot will deliver the food within an hour.

Verifying Brahms Human-Robot Teamwork Models 395

H2: Once Bob has finished eating, Robot will then retrieve the dishes and place in the
dishwasher.

M1: Either Bob always takes his medication or the Robot never reminds him to do so.
(This should be false since Bob may not take his medication even if reminded).

M2: If Bob has medication, but not taken it, then Robot will eventually remind Bob to
take it.

M3: Bob takes medicine or House is informed that Bob has not taken it.
M4: If Care Worker is informed that Bob has not taken his medication then the Care

Worker is with Bob within 2 hours and Bob takes his medication.

5.2 Verification Results

The properties F1, F2, F3, T1, T2, H1, H2, M2, M3 were all verified using Spin (i.e.
the property holds on all paths from every initial state) in times ranging from T1 of 29.9
seconds to H1 of 848 seconds. As expected Spin shows that the property M1 is false
and the time taken to find a trace in the model was 421 seconds. The property M4 was
run multiple times to observe how changing the duration of the Care Worker’s other
duties affected the outcome. Spin was able to verify M4 so long as the Care Worker’s
other duties took less than 2 hours.

6 Conclusions

In this paper we have presented an overview of our work in verifying human-agent
teamwork using the Spin model checker and the Brahms teamwork modelling system.
Brahms enables the description of human-agent teamwork scenarios where the defining
factors are the actions taken, their timing, duration and results. It has proven useful
in the analysis of such scenarios via simulation. By adding verification to Brahms we
extend its usefulness by allowing all possible simulations (with fixed time granularities)
to be explored, thus ensuring that undesirable outcomes can not arise within the model.

A simple case study was presented, demonstrating the kind of human-agent team-
work scenarios we intend to verify. This case study included sample verified properties.
The case study demonstrates most of the core capabilities of Brahms: multi-tasking by
suspending actions in favour of higher priority ones; detecting changes in the environ-
ment; aborting actions; choosing between actions of equal priority; and communicating
to coordinate actions.

The properties we verified were necessarily simple. However, it should be clear that
as long as the properties can be represented in a straight-forward temporal language,
then model-checking can be carried out. When humans are involved, we abstract their
behaviour within the Brahms model and describe their requirements in logical terms.
Whether human participants live up to these requirements is, of course, up to others to
assess.

6.1 Related and Future Work

There are relatively few tools available for the analysis of human-agent teamwork.
Brahms is one of the few that is used in the analysis of real systems. At present Brahms

396 R. Stocker et al.

is, essentially, a testing tool and is used to examine multiple simulations of a model in
a search of undesirable outcomes (e.g. Extra Vehicular Activities in space [10, 13]).

As far as we are aware there is no tool for the formal analysis via model checking of
such scenarios. However BDI-style agent programming languages are a natural tool for
creating such models, with their emphasis on modelling the reasoning of autonomous
agents in terms of their beliefs and goals. A number of systems have been developed
for model-checking programs in agent languages [14–16] though none of these have
yet been applied to human-agent-robot teamwork.

In future we aim to improve the efficiency of the verification and to analyse more
complex scenarios with multiple agents, cooperating and coordinating efforts in a much
larger team. Scalability of the verification will be tested on these new scenarios. Sce-
narios under consideration include search and rescue; factory work; and hospitals. We
also aim to investigate the verification of Brahms models in other model checkers, par-
ticularly ones with input languages which let us capture the operational semantics in a
more intuitive fashion. This would provide a better guarantee of equivalence to Brahms
simulations and it would also provide a point of comparison for evaluating the effi-
ciency of the model checkers. The Java Pathfinder system [17] is an obvious candidate
for this, either by implementing the Brahms semantics directly in Java or by using the
AIL tool-kit for modelling agent languages and AJPF, its associated JPF based model
checker [16].

Acknowledgements. This work was funded by EPSRC through EP/F033567 and
EP/F037201.

References

1. Montemerlo, M., Pineau, J., Roy, N., Thrun, S., Verma, V.: Experiences with a mobile robotic
guide for the elderly. In: Eighteenth National Conference on Artificial Intelligence, pp. 587–
592. American Association for Artificial Intelligence, Menlo Park (2002)

2. Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun, S.: Towards robotic assistants in
nursing homes: Challenges and results. Robotics and Autonomous Systems 42, 271–281
(2003)

3. Lenz, C., Nair, S., Rickert, M., Knoll, A., Rosel, W., Gast, J., Bannat, A.: Joint-action for
Humans and Industrial Robots for Assembly Tasks. In: Proc. 17th IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), pp. 130–135 (2008)

4. CHRIS: Cooperative Human Robot Interaction Systems (2011),
http://www.chrisfp7.eu

5. Sierhuis, M.: Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling
and simulation language for work system analysis and design. PhD thesis, Social Science
and Informatics (SWI), University of Amsterdam, SIKS Dissertation Series No. 2001-10,
Amsterdam, The Netherlands (2001)

6. Stocker, R., Sierhuis, M., Dennis, L., Dixon, C., Fisher, M.: A Formal Semantics for Brahms.
In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011.
LNCS, vol. 6814, pp. 259–274. Springer, Heidelberg (2011)

7. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
(2003)

8. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2002)

http://www.chrisfp7.eu

Verifying Brahms Human-Robot Teamwork Models 397

9. Sierhuis, M.: Multiagent Modeling and Simulation in Human-Robot Mission Operations
(2006), http://ic.arc.nasa.gov/ic/publications

10. Clancey, W., Sierhuis, M., Kaskiris, C., van Hoof, R.: Advantages of Brahms for Specify-
ing and Implementing a Multiagent Human-Robotic Exploration System. In: Proceedings
of the Sixteenth International Florida Artificial Intelligence Research Society Conference
(FLAIRS), pp. 7–11. AAAI Press (2003)

11. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
12. Stocker, R., Dennis, L., Dixon, C., Fisher, M.: Spin Verification of Brahms Human-Robot

Teamwork Models (2012),
http://www.csc.liv.ac.uk/˜rss/Publications.html

13. Hirsh, R., Tyree, K., Johnson, N., Johnson, N.: Intelligence for human-assistant planetary
surface robots. In: IntelZigence for Space Robotics, pp. 261–279. TSI Press (2006)

14. Jongmans, S.-S.T.Q., Hindriks, K.V., van Riemsdijk, M.B.: Model Checking Agent Pro-
grams by Using the Program Interpreter. In: Dix, J., Leite, J., Governatori, G., Jam-
roga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 219–237. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-14977-1_17

15. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentSpeak. In:
Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS (2003)

16. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.: Model Checking Agent Programming
Languages. Automated Software Engineering 19, 5–63 (2012)

17. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10, 203–232 (2003)

http://ic.arc.nasa.gov/ic/publications
http://www.csc.liv.ac.uk/~rss/Publications.html
http://dx.doi.org/10.1007/978-3-642-14977-1_17

On Satisfiability in ATL with Strategy Contexts

Nicolas Troquard1 and Dirk Walther2

1 Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy
2 Universidad Politécnica de Madrid, Spain

Abstract. This paper is a study of Brihaye et al.’s ATL with strat-
egy contexts. We focus on memory-less strategies and establish that the
resulting logic is undecidable. An immediate corollary follows that the
problem of satisfiability checking of every variant of ATL with strategy
context introduced by Brihaye et al. is undecidable. We also relate ATLsc

with memory-less strategies with ATL with explicit strategies, providing
a decidable fragment.

1 Introduction

With Alternating-time Temporal Logic ATL(∗) ([2,14]) one can reason about the
ability of a coalition to ensure something whatever the other agents do. It is
the logic of sentences like “The monitoring units u1, . . . , ul can ensure that the
system stays in a failsafe state.” In this paper, we consider the recent variant
of ATL with strategy contexts [4,6]. A strategy context is the actual current
strategy of some committed set of agents. The truth value of an ATLsc-formula
is evaluated in a concurrent game structure, at a state, and wrt. a strategy
context. Informally, the formula 〈·A·〉ψ states that A has a strategy to ensure
the property ψ in the context of the current strategy commitment. Like in ATL,
the formula ψ typically represents a temporal property, but unlike the ATL
path quantifier, the modality 〈·A·〉 commits the members of A to their chosen
strategy FA. Henceforth, the commitment is used for the evaluation of ψ. That
is, ψ is evaluated wrt. to a strategy context consisting in the initial strategy
context updated with FA. The operator ·〉A〈· releases this commitment. Under
the common assumptions of ATL, the ATL path quantifier is trivially captured
by

〈〈A〉〉ψ def
= ·〉Σ〈·〈·A·〉ψ,

where Σ is the set of all agents.
The notion of ability of a coalition in ATLsc is their ability given the context

of the strategies that the coalition is actually committed to. Actual agency, the
property of some agentive entity in the act of doing something, is ubiquitous in
our everyday life: “Unit u1 is inspecting the register 0x12345678.” It is all the
more important in a multi-agent framework where agents strategise given some
input (observation, expectation, belief, etc.) about the strategies followed by the
other players, and their abilities depend on it: “If units u1, . . . , ui−1, ui+1, . . . , ul
do not know which register ui is inspecting, they cannot ensure that no system

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 398–410, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Satisfiability in ATL with Strategy Contexts 399

failure will occur.” Actual agency is also central to game theory, where for in-
stance, a Nash equilibrium occurs when every agent is playing his best response
to the current strategy of the other agents. With the advent of the Internet and
service-oriented computing, system designers in industry and in academia rely
increasingly on the multi-agent paradigm. As we seek after the ‘next generation’
of logics for the specification of properties of societies of agents, and for the
verification of their designs, it appears important to be able to talk and reason
about actual agency of coalitions of agents, and their contextualised ability.

ATLsc and ATL∗sc can capture a variety of notions of strategic actual agency
that lie beyond the mere ability of coalitions as captured by ATL. For instance,
a type of STIT modality ([11,5]) can be defined as

[A sstit]ψ
def
= ·〉Σ \A〈·〈·∅·〉ψ,

reading “A is seeing to it that ψ.” (See the earlier report [18] for a detailed
discussion about ATL and STIT modalities.)

In the pure tradition of knowledge representation it is also useful to be able
to talk about strategies in a more explicit manner. Practically, they can serve,
e.g., as explicit delegation instruction between agents. We will contrast the use
of strategy contexts with explicit strategies. ATLsc and ATLES ([19]) capture the
notions of commitment to, release and recall of strategies, as well as irrevocable
strategies ([1]). We introduce ATLES on concurrent game structures in Section 3
and relate ATLsc with ATLES, determining a decidable fragment of ATLsc.

Originating from theoretical computer science and verification, the focus of
ATLsc has been on model checking so far, and not satisfiability. In Section 4, we
establish that the satisfiability problem for both ATLsc and ATL∗sc is undecidable
in general, emphasising the significance of the fragment previously identified.

In the next section we define rigorously the syntax and semantics of ATLsc
and ATL∗sc that we have informally presented in this introduction.

2 ATL with Strategy Contexts

We fix a countable set of atomic propositions Π and a finite set of agents (or
players) Σ. The following grammar was given for ATL∗sc in [6].

Definition 1 (ATL∗sc syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π and A over finite subsets of Σ.
The language of ATL∗sc consists of the state formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ·〉A〈·ϕ | 〈·A·〉ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ©ϕ | ϕU ϕ

The remaining Boolean operators ∧, → and ↔ as well as the logical constants
� and ⊥ can be defined as usual in terms of the operators given. The linear
temporal logic operators ‘sometime’ and ‘forever’ can be defined as path formulas
�ϕ = (�U ϕ) and �ϕ = ¬(�U ¬ϕ).

400 N. Troquard and D. Walther

The language of ATLsc consists only of some formulas from ATL∗sc. The syntax
of the path formulas ψ is restricted as follows (where ϕ refers to the state formulas
in Def. 1):

ψ ::= ¬ψ | ©ϕ | ϕU ϕ
We evaluate the formulas on Concurrent Game Structures (CGSs), which are
defined as follows.

Definition 2 (Concurrent Game Structure). Let Σ = {1, . . . , n} ⊂ Σ,
with n ≥ 1, be a finite set of agents, and Π ⊂ Π be a finite set of atomic
propositions. A Concurrent Game Structure (CGS) C for 〈Σ,Π〉 is a tuple C =
〈W,V,Σ,M,Mov,E〉, where:
– W is a non-empty set of worlds (or game positions);
– V : W → 2Π is a valuation function;
– M is a finite, non-empty set of moves;
– Mov : W × Σ → 2M \ ∅ maps every world w and agent a to the non-empty

set Mov(w, a) of moves available to a at w; and
– E : W ×MΣ → W is a transition function mapping a world w and a move

profile m = 〈m1, . . . ,mn〉 (one move for each agent) to the world E(w,m).

Let C be a CGS. The component Mov determines which of the moves from M
are available for an agent at a world w. Let prof(w) be the set of available move
profiles at world w, i.e.,

prof(w) = {〈m1, . . . ,mn〉 | mi ∈Mov(w, i)}.

A move profile is used to determine a successor of a world using the transition
function E. Let succ(w) be the set of possible successors of w, formally

succ(w) = {E(w,m) |m ∈ prof(w)}.

An infinite sequence λ = x0x1x2 · · · ∈ Wω of worlds is called a play or com-
putation if xi+1 ∈ succ(xi) for all positions i ≥ 0. Denote with λ[i] the i-th
component xi in λ, and with λ[0, i] the initial sequence x0 · · ·xi of λ.

A strategy for an agent a ∈ Σ is a function fa that maps a world w fromW to
a move profile fa(w) ∈Mov(w, a) available to a at w. A strategy for a coalition
A ⊆ Σ is a set FA of strategies with FA = {σa | a ∈ A} containing one strategy
for every agent in A. We refer to a strategy also as strategy context. We denote
with strat(A) the set of strategies available to coalition A. The strategies con-
sidered here are memoryless as they are functions from worlds to move profiles
and, thus, do not take previously visited states into account.

We define two operations on strategies: upgrade and release of strategies.
Let FA and F be strategies for sets of agents, where FA contains strategies for
the agents in A. The upgrade of F with the strategies in FA is the result of
overwriting F with strategies for the agents in A ∩ dom(F) and supplementing
F with strategies for agents for which F does not already provide a strategy
(i.e., for agents in A \ dom(F)). We will use ◦ as a strategy upgrade operator.
Formally,

FA ◦ F = FA ∪ {fa ∈ F | a /∈ A}.

On Satisfiability in ATL with Strategy Contexts 401

The release of the strategies for the agents in B from F is the restriction of F to
strategies for agents that do not occur in B (i.e., for agents in Σ \B). Formally,
for C = Σ \B,

F |C = {fa ∈ F | a ∈ C}.
The set out(w,FA) of outcomes of a strategy FA for the agents in A starting at
a world w is the set of all plays λ = x0x1x2 · · · ∈Wω such that x0 = w and, for
every i ≥ 0, there is a move profile m = 〈m1, . . . ,mn〉 ∈ prof(xi) such that:

(i) ma = fa(xi), for all a ∈ A; and
(ii) xi+1 = E(xi,m).

The truth values of ATL∗sc-formulas over CGSs is given as follows, where state
formulas are evaluated at worlds (or game positions) and path formulas over
infinite paths in a CGS.

Definition 3 (ATL∗sc Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and a strategy context F , the consequence relation |= is inductively
defined as follows:

– C, w |=F p iff p ∈ V (w), for all atomic propositions p ∈ Π;
– C, w |=F ¬ϕ iff C, w �|=F ϕ;
– C, w |=F ϕ1 ∨ ϕ2 iff C, w |=F ϕ1 or C, w |=F ϕ2;
– C, w |=F ·〉A〈·ϕ iff C, w |=S ϕ, where S = F |Σ\A;
– C, w |=F 〈·A·〉ψ iff there is FA ∈ strat(A) such that for all plays λ ∈ out(w, S),

it holds that C, λ |=S ψ, where S = FA ◦ F ;
– C, λ |=F ϕ iff C, λ[0] |=F ϕ, when ϕ is a state formula;
– C, λ |=F ¬ψ iff C, λ �|=F ψ;
– C, λ |=F ψ1 ∨ ψ2 iff C, λ |=F ψ1 ∨ ψ2;
– C, λ |=F ©ϕ iff C, λ[1] |=F ϕ;
– C, λ |=F (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, λ[i] |=F ϕ2 and C, λ[j] |=F

ϕ1 for all j with 0≤j<i.

A formula ϕ is satisfiable if C, w |=F ϕ for some CGS C, some world w in C
and some strategy context F in C; a formula is called valid if C, w |=F ϕ for all
C, all w and all F .

In this paper, we do not assume agents being capable of perfect recall. In fact, we
use a semantics for ATLsc and ATL∗sc that is based on memoryless strategies. This
means that agents use strategies that prescribe for every world which move to
take. The history of previously visited worlds is not taken into account. In [4,6],
these logics are denoted with ATLsc,0 and ATL∗sc,0.

3 Strategy Contexts and Explicit Strategies

In this section, we contrast the notion of strategy contexts with explicit strate-
gies. Many notions relevant to strategies come into the picture and our principal
aim is to discuss them informally. We first present ATLES, the extension of ATL
with explicit strategies from [19] (Section 3.1). We introduce it over CGSs while
its original presentation was in terms of alternating transition systems. We then
translate a fragment of ATLsc into ATLES (Section 3.2).

402 N. Troquard and D. Walther

3.1 ATLES

The language of ATL is enriched with symbols for strategies and commitment
functions that assign agents to strategies they are committed to play. Thus
ATLES allows to reason explicitly about strategies. This is not possible with any
of ATL and ATLsc (and their respective LTL-extensions) as strategies are pure
semantic constructs and they do not occur in the object language.

Formally, the signature of the language is extended by a set Υ of strategy
terms, where Υ =

⋃
a∈Σ Υa and Υa is a countably infinite set of strategy terms

σa for agent a in Σ. A commitment function is a partial function ρ : Σ → Υ
with a finite domain mapping an agent a ∈ Σ to a strategy term ρ(a) ∈ Υa for
a. Note that a commitment function ρ is a finite object and as such it is used
to additionally parameterise path-quantifiers as 〈〈A〉〉ρ. The set dom(ρ) consists
of the committed agents. If ρ(a) is defined, then ρ contains a mapping of the
form a �→ σa which is called a commitment of agent a (or a commits) to play
the strategy denoted by the strategy term σa. On the other hand, if ρ(a) is
undefined, then a does not commit to any strategy and, thus, a can quantify
freely over the strategies available to a. The reading of an ATL-path quantifier
〈〈A〉〉 with commitment function ρ is as follows:

〈〈A〉〉ρϕ states that, given the commitment of any agent b in dom(ρ)
to use the strategy denoted by ρ(b), the agents in A \ dom(ρ) have a
strategy to ensure the temporal property ϕ, no matter what the agents
in Σ \ (dom(ρ) ∪ A) do.

Notice that the committed agents in dom(ρ) do not take part in the quantification
over strategies in 〈〈A〉〉ρ.

We remark that 〈〈A〉〉ρ is not how the path quantifier really looks like when
used in a formula. The symbol ρ is merely a meta-logical reference to an actual
commitment function, which is a collection of mappings of the form a �→ σa,
where σa is a strategy term for agent a. This should be considered when analysing
the length of a formula.

The notion of commitment to strategies requires the same strategies to be
played again at a later stage. This means, in formulas of the form 〈〈A〉〉ρΨ , the
same commitment a �→ σa from ρ occurs in a commitment function ξ of a nested
path quantifier 〈〈B〉〉ξ in Ψ . Both ρ and ξ prescribe the strategy term σa for agent
a (or, in both cases, a commits to σa). We have that ρ(a) = ξ(a). Release of
commitment to σa is modelled as easily as committing to it in the first place.
This is achieved by having a commitment function χ of a nested path quantifier
not include the commitment a �→ σa, i.e., either χ(a) �= σa or χ is undefined for a.
In case release of commitment is not desired, the notion of irrevocable strategies
is used. It can be modelled explicitly in ATLES by only allowing commitment
functions ρ to extend conservatively the commitment functions ξ under whose
range they occur, i.e., ρ and ξ agree for all agents in dom(ξ). Thus, IATL can be
defined in ATLES while avoiding the update semantics employed in [1].

The language of ATLES is defined over the extended signature 〈Π,Σ,Υ〉.

On Satisfiability in ATL with Strategy Contexts 403

Definition 4 (ATLES Syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π, A ranges over finite subsets of
Σ and ρ over commitment functions. The language of ATLES consists of state
formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρψ
ψ ::=©ϕ | �ϕ | ϕU ϕ

The language of ATLES could easily be extended to allow for negation of the
temporal operators next-time and until. We refrain from extending the syntax
in this paper as we use the established complexity result of the satisfiability
problem for ATLES from [19] in order to use ATLES to determine a decidable
fragment of ATLsc whose satisfiability can be solved in ExpTime.

Strategy terms in Υ are interpreted as strategies in a CGS via assignments.
An assignment a in C is a function mapping strategy terms σa in Υa for any
agent a in Σ to a strategy a(σa) in strat(a) for a in C. Note that the assignment
a in a CGS acts like an assignment in First-order Logic with the difference that
in ATLES strategy terms are mapped to actual strategies in the CGS instead of
domain elements as in FOL. In [19] an assignment is called denotation function,
which comes as a component of an ATS.

To define the semantics of ATLES, we use the notions of a strategy and out-
come as in Section 2. We lift the notion of assignment to commitment functions
as follows. The application of an assignment a to a commitment function ρ is
the set a(ρ) of strategies for the agents in dom(ρ). Formally,

a(ρ) = {fa ∈ strat(a) | fa = a(ρ(a)), a ∈ dom(ρ)}.

It is readily checked that a(ρ) is indeed a set of strategies, one for each agent in
dom(ρ). To see this, recall that ρ is functional, i.e., it yields exactly one strategy
term ρ(a) for every agent for which ρ is defined.

An assignment a acts as an interpretation of the commitment function ρ (i.e.
the strategy terms in ρ). We can view a strategy term σa = ρ(a), for any a
in dom(ρ), as a constant rather than a variable. As we will see below in the
semantics of ATLES, the assignment a does not change during the evaluation of
a formula and, thus, the strategy a(σa) is fixed. We can think of the strategy term
σa as being existentially quantified in the sense that there exists a strategy for a
that is referenced by σa and provided by a. ATLES does not provide references
to universally quantified strategies.

Using the notion of assignments, we can now define how to interpret the
formulas of ATLES over CGSs.

Definition 5 (ATLES Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and an assignment a, the consequence relation |= is inductively defined
as follows, and the notions of validity and satisfiability are defined as usual:

– C, w |=a p iff w ∈ V (p), for all atomic propositions p ∈ Π;
– C, w |=a ¬ϕ iff C, w �|=a ϕ;
– C, w |=a ϕ1 ∨ ϕ2 iff C, w |=a ϕ1 or C, w |=a ϕ2;

404 N. Troquard and D. Walther

– C, w |=a 〈〈A〉〉ρψ iff there is a strategy FA in strat(A) such that for all plays
λ ∈ out(w, S), it holds that C, λ |=a ψ, where S = a(ρ) ◦ FA;

– C, λ |=a ©ϕ iff C, λ[1] |=a ϕ;
– C, λ |=a �ϕ iff C, λ[i] |=a ϕ for all positions i ≥ 0;
– C, λ |=a (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, λ[i] |=a ϕ2 and C, λ[j] |=a

ϕ1 for all positions j with 0≤j<i.

The ATLES semantics of 〈〈A〉〉ρ is similar to the semantics of 〈·A·〉 in ATLsc,
which facilitates comparison. We recall that the operator ◦ from Section 2 yields
a(ρ) ◦ FA = a(ρ) ∪ {fa ∈ FA | a /∈ dom(ρ)}. Intuitively, a(ρ) ◦ FA states that
commitments of agents are respected as prescribed in ρ, all other agents in A
play their just selected strategies.

3.2 Comparing ATLsc and ATLES

Obvious differences between ATLsc and ATLES are that, while the former includes
a separate release operator ·〉A〈· and a strategy context in the semantics, the
latter allows to specify commitments in the form of a �→ σa in the syntax which
are interpreted using assignments. However, commitments and assignments in
ATLES can play the roles of strategy release and strategy contexts in ATLsc.
A crucial difference between the logics is the semantics of the path quantifiers
〈·A·〉 and 〈〈A〉〉ρ. For 〈·A·〉, the strategies FA selected by A upgrade or overwrite
the strategy context Fcontext (cf. Def. 3), whereas, for 〈〈A〉〉ρ, the strategies a(ρ)
specified by the commitment ρ are supplemented by FA (cf. Def. 5). The set of
plays considered for further evaluation depends on the upgraded context FA ◦
Fcontext or the supplemented commitments a(ρ) ◦ FA. Both are not necessarily
equivalent. The following proposition states under which conditions 〈·A·〉 and
〈〈A〉〉ρ determine the same set out(x, S) of plays, where S is defined as S =
FA ◦ Fcontext in the former case, and S = a(ρ) ◦ FA in the latter.

Proposition 1. It holds that FA ◦ Fcontext = a(ρ) ◦ FA if one of the following
three conditions is satisfied:

(i) Fcontext = a(ρ) = ∅;
(ii) FA = ∅ and Fcontext = a(ρ); or
(iii) FA = Fcontext = a(ρ).

The proposition can be shown by using the fact that the strategy upgrade op-
erator ◦ forms an idempotent semigroup on the set strat of strategies, and that
◦ is not commutative.

Proposition 1 makes clear that a strategy context Fcontext in ATLsc corresponds
to the strategy commitment a(ρ) in ATLES with the difference that Fcontext is a
purely semantic object, whereas a(ρ) consists of a syntactic component ρ and a
semantic component a. This means we can explicitly describe strategy contexts
in the language of ATLES, whereas in ATLsc we have to make use of 〈·A·〉 and
·〉A〈· that describe that strategies for A are either pushed into the context or
released from it. Notice how using strategy commitments in the syntax is more
flexible than the strategy context model as every path quantifier in ATLES can

On Satisfiability in ATL with Strategy Contexts 405

be parameterised with a different commitment function, which describes explic-
itly which agent is using what strategy. In particular, this does not require a
dedicated release operator.

The notion of irrevocable strategies is captured in ATLsc by carefully avoiding
quantification over strategies of committed agents. In ATLES, irrevocability can
be made explicit in the syntax.

Once a strategy in the strategy context is overwritten with a new strategy
or released, it cannot be recovered in ATLsc, because any reference to it is lost.
This could be described with the notion of forgetting forever. Not so in ATLES,
where ‘forgetting forever’ can be modelled explicitly in the language, but it is
no restriction of the logic as in ATLsc. In fact, an agent in ATLES may resume a
commitment after releasing it, which also captures a notion of agents having a
strategy memory.

A strength of ATLsc is to push any strategy that is available to an agent into
the context. This is achieved with formulas of the form ¬〈·A·〉ψ, where the agents
in A quantify universally over their strategies FA. In the semantics, before we
continue with the evaluation of the path formula ψ, the strategies FA are used
to upgrade the strategy context (cf. Def. 3). This is another crucial difference
to ATLES, which is restricted to existential quantification over commitments.
To make more precise the relationship between ATLsc and ATLES, we present
an equivalence preserving mapping from a fragment of ATLsc into ATLES. The
fragment under consideration is represented by the set of ATLsc-formulas where
(i) a negated path subformula can only have the form ¬(�U ϕ), and (ii) every
〈·A·〉 (for any A) is under the scope of an even number of negations. Let us denote
L(e) this language. Let us also denote L(o) the language satisfying (i) but such
that every 〈·A·〉 (for any A) is under the scope of an odd number of negations.
We define the translation tr(·, ·) as follows:

tr(p, ξ)
def
= p;

tr(¬ϕo, ξ)
def
= ¬tr(ϕo, ξ);

tr(ϕ1 ∨ ϕ2, ξ)
def
= tr(ϕ1, ξ) ∨ tr(ϕ2, ξ);

tr(·〉A〈·ϕ, ξ) def
= tr(ϕ, χ), where χ = ξ|Σ\A;

tr(〈·A·〉©ϕ, ξ)
def
= 〈〈A〉〉ρ© tr(ϕ, ρ);

tr(〈·A·〉�ϕ, ξ) def
= 〈〈A〉〉ρ� tr(ϕ, ρ);

tr(〈·A·〉(ϕ1 U ϕ2), ξ)
def
= 〈〈A〉〉ρ(tr(ϕ1, ρ)U tr(ϕ2, ρ)),

where ϕo is in L(o), ϕ, ϕ1 and ϕ2 are in L(e), and where the commitment
function ρ overwrites/updates ξ at A with fresh strategy terms. Formally,

ρ = ξ|dom(ξ)\A ∪ {a �→ σa | a ∈ A, σa is fresh}.

The following proposition states that tr(·, ·) is indeed equivalence preserving. The
proof works by induction on the structure of ATLsc-formulas that are translated.

Proposition 2. Let ϕ be a formula in L(e), C a CGS, x a world in C and F a
strategy in C. The following are equivalent:

406 N. Troquard and D. Walther

(a) C, x |=F ϕ;
(b) C, x |=a tr(ϕ, ρF), for some 〈ρF , F 〉-compatible assignment a,

where ρF = {a �→ σa | fa ∈ F, σa is fresh} and an assignment a is 〈ρF , F 〉-
compatible if a(ρF (a)) = fa, for every a ∈ dom(ρF) and fa ∈ F .

The satisfiability checking problem for L(e) can be solved in ExpTime by Propo-
sition 2 and the fact that ATLES is in ExpTime [19]. This is in contrast with the
complexity of full ATLsc, which we establish in the following section.

4 Complexity

This section is devoted to investigating the computational complexity of ATLsc
and ATL∗sc.

Generally, high expressiveness tends to come with the price of high compu-
tational complexity of reasoning problems. While the model checking problem
was already considered in [6,4] (and shown to be between 2ExpTime-hard and
non-elementary for ATLsc, while it is 2ExpTime-complete for ATL∗, cf. [2]), we
focus here on the satisfiability problem. The lower complexity bounds carry over
to ATLsc and ATL∗sc from their respective fragments ATL and ATL∗. It turns out,
however, that extending ATL with strategy contexts comes with a much higher
price. In the following we show that ATLsc is undecidable. In fact, we show this
for the release-free fragment of ATLsc. We use a reduction of the satisfiability
problem for the product logic S5n, which is known to be undecidable. As we
have hinted upon in the introduction, ATLsc can capture some type of STIT ac-
tual group agency. Thus the undecidability of ATLsc may not come as a surprise
considering the undecidability of Chellas’ STIT logic of group agency ([10]).

4.1 Product Logic S5

The language of S5n is the basic propositional n-modal language given by the
following grammar, where p ranges over Π, and i ∈ {1, . . . , n}:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �iϕ.

The semantic structures for S5n are as follows. A universal product S5n-frame is
a tuple F = (W1 × · · · ×Wn, R1, . . . , Rn), where for every i ∈ {1, . . . , n}, Wi is a
non-empty set of worlds and Ri is the universal relation on Wi. As the relations
Ri are determined by the setsWi, we also denote such frames by (W1×· · ·×Wn).
An S5n-model is a pair M = (F, V), where F = (W1 × · · · ×Wn) is a universal
product S5n-frame and V a valuation in F mapping every propositional variable
p to a subset V (p) of W1 × · · · ×Wn. The consequence relation |=S5n is defined
inductively between S5n-models M, worlds x = 〈x1, . . . , xn〉 in M and formulas
of S5n as follows:

– (M,x) |= p iff x ∈ V (p);
– (M,x) |= ¬ϕ iff (M,x) �|=S5n ϕ;

On Satisfiability in ATL with Strategy Contexts 407

– (M,x) |= ϕ ∨ ψ iff (M,x) |=S5n ϕ or (M,x) |=S5n ψ;
– (M,x) |= �iϕ iff there is a yi ∈ Wi such that (M,y) |= ϕ,

where y = 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉.

We make use of the following results.

Theorem 1. The satisfiability problem for S5n over finite models is

(i) NExpTime-complete for n = 2; and
(ii) undecidable for all n ≥ 3.

As S52 has the finite model property ([17]), (i) follows from Marx’s result on
the NExpTime-hardness of S52 ([16]). Undecidability of S5n, for n ≥ 3, over
arbitrary models was shown by Maddux ([15]) in an algebraic setting, via a re-
duction of the undecidable word problem of semigroups. As the word problem
of all finite semigroups is also undecidable ([8]), Maddux’s original proof actu-
ally shows the undecidability of S5n reasoning restricted to finite models (even
though S5n lacks the finite model property for n ≥ 3, cf. [13]). Another way of
showing the undecidability of finite model reasoning with S5n, for n = 3, is using
Trakhtenbrot’s theorem ([3, Section 2.1.2]). He showed how to encode the ω×ω
grid and halting Turing machines in finite models, using the first-order language
having binary predicates and 3 variables only. This language can be translated to
S53 while keeping the models finite, using the Halmos-Johnson technique ([9,12],
see also [7, Section 8.1]).1

4.2 Satisfiability of ATLsc

Theorem 2. The satisfiability problem for ATLsc is

(i) NP-hard for formulas with n = 1 agent;
(ii) NExpTime-hard for formulas with n = 2 agents; and
(iii) undecidable for formuals with n ≥ 3 agents.

We show the lower complexity bounds in Theorem 2 by a reduction of the satis-
fiability problem for S5n to the problem for ATLsc. We leave the matching upper
bounds for (i) and (ii) as open problems. Define inductively a translation tr(·)
mapping S5n-formulas to formulas of ATLsc as follows:

tr(p)
def
= 〈·∅·〉©p;

tr(¬ϕ) def
= ¬tr(ϕ);

tr(ϕ ∨ ψ) def
= tr(ϕ) ∨ tr(ψ);

tr(�iϕ)
def
= 〈·i·〉(⊥U tr(ϕ)).

Notice that the translation does not make use of the strategy release operator
·〉A〈· of ATLsc. Thus Theorem 2 holds already for the ·〉A〈·-free fragment of ATLsc.

1 We are grateful to Agi Kurucz for referencing and summarising these details for us.

408 N. Troquard and D. Walther

Lemma 1. Let ϕ be an S5n-formula and let Σϕ be the set of agents that occur
in ϕ. The following are equivalent:

(i) ϕ is satisfiable wrt. S5n in a finite model;
(ii) 〈·Σϕ·〉⊥U tr(ϕ) is satisfiable wrt. ATLsc.

Proof. “(i)⇒ (ii)”: Given a finite S5n-model M = (F, V) with F = (W1 × · · · ×
Wn), we construct a CGS CM = 〈WM, VM, ΣM,MM,MovM, EM〉 as follows.
Set:

– WM = W1 × · · · ×Wn;
– VM(w) = {p | w ∈ V (p)}, for all w ∈WM;
– ΣM = {1, . . . , n};
– MovM(w, i) = {{〈x1, . . . , xn〉 | xj ∈ Wj for all j �= i} | xi ∈ Wi}, for all

w ∈ WM and all i ∈ ΣM;
– MM =

⋃
i=1,...,nMovM(w, i), for some arbitrary w ∈WM; and

– EM(w,m) ∈
⋂

i=1,...,nmi, for all w ∈ WM and all m = 〈m1, . . . ,mn〉 ∈
prof(w),

where prof(w) = {〈m1, . . . ,mn〉 | mi ∈ MovM(w, i)}. It is readily checked that
CM is indeed a CGS. To see this, note that for all m = 〈m1, . . . ,mn〉 ∈ prof(w),
each mi is a subset of WM, and verify that the intersection

⋂
i=1,...,nmi is a

singleton set.
Given a world x = 〈x1, . . . , xn〉 in M, set the strategy Fx = {fx

1 , . . . , f
x
n } for

the agents in ΣM as follows: For all i = 1, . . . , n and all w ∈WM,

fx
i (w) = {〈y1, . . . , yn〉 | yi = xi, yj ∈Wj for all j �= i}.

Fx is indeed a strategy for ΣM as fx
i (w) ∈ Mov(w, i), for all i = 1, . . . , n and

w ∈ WM. Note that Fx specifies the same complete move profile 〈fx
1 (w), . . . ,

fx
n (w)〉 at every state w in CM.
To show this direction of the lemma, it is sufficient to show that, for all S5n-

formulas ϕ, all S5n-models and worlds x in M and states w in CM:

M,x |=S5n ϕ iff CM,w |=Fx tr(ϕ). (1)

Fx specifies the same state EM(w, Fx) = x as successor of any state w in CM. It
follows that the set out(w, Fx) consists of exactly one play λ such that λ[i] = x,
for all positions i ≥ 0. Together with the right-hand side of (1), this implies that
CM,w |=S 〈·Σϕ·〉�tr(ϕ) and CM,w |=S 〈·Σϕ·〉⊥U tr(ϕ), for any strategy S for
ΣM. Hence, the left-to-right direction of the lemma follows.

To show (1), we proceed by induction on the structure of ϕ. In the induction
base, ϕ is a proposition p. The following equivalences hold: M,x |=S5n p iff
x ∈ V (p) iff p ∈ VM(x) iff, for every state w in CM, CM,w |=Fx 〈·∅·〉©p. For the
induction step, assume that we have already shown the induction hypothesis for
ϕ. Consider the following case of the induction step (we omit the Boolean cases):

– ϕ = �iψ. Then: M,x |=S5n �iψ iff there is a yi ∈ Wi such that M,x′ |=S5n

ψ, where x′ = 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉. By the induction hypothesis,

On Satisfiability in ATL with Strategy Contexts 409

this is equivalent to CM,w |=F
x′ tr(ψ) (for all w). The strategy fx′

i (w) is a
move in MovM(w, a) available to agent i at any state w in WM. Since Fx

and Fx′ differ at most in their i-th component, we have that CM,w |=Fx

〈·i·〉⊥U tr(ψ), which is equivalent to CM,w |=Fx tr(�iψ).

This finishes the induction and, thus, this direction of the proof.

“(ii) ⇒ (i)”: Given a CGS C = 〈W,V,Σ,M,Mov,E〉 for 〈Σ,Π〉 with Σ =
{1, . . . , n} and a world x in C, construct an S5n-model M(C,x) = (F(C,x), V(C,x))

with F(C,x) = (W
(C,x)
1 × · · · ×W

(C,x)
n) as follows. Set:

– W
(C,x)
i = Mov(x, i) for all i ∈ Σ; and

– V(C,x)(p) = {m ∈ W
(C,x)
1 × · · · ×W

(C,x)
n | p ∈ V (E(x,m))}, for all p ∈ Π .

It is readily checked thatM(C,x) is indeed a finite S5n-model. While a move profile
determines a unique successor E(x,m) at a state x, two move profiles m1 �= m2

may be mapped to the same successor, i.e. E(x,m1) = E(x,m2). However, in
the product model M(C,x) the move profiles m1 and m2 are different worlds. Let
FΣ = {f1, . . . , fn} be a strategy in C for the agents in Σ. A world m in M(C,x)
is called an FΣ,x-world if E(x,m) = λ[1] with {λ} = out(x, FΣ,x).

To show this direction of the lemma, it is sufficient to show that, for all S5n-
formulas ϕ, for all CGSs C, all worlds x in C and all strategies F for Σ, and all
F -worlds wF in M(C,x):

C, x |=F tr(ϕ) iff M(C,x),wF |=S5n ϕ. (2)

Then, the right-to-left direction of the lemma follows from (2) together with the
fact that C, x |=S 〈·Σϕ·〉tr(ϕ) implies C, x |=F tr(ϕ), for any strategy S.

To show (2), we proceed by induction on the structure of ϕ. In the induction
base, ϕ is a proposition p. The following equivalences hold: C, x |=F tr(p) iff
C, x |=F 〈·∅·〉©p iff C, y |=F p, where y = out(x, F) iff p ∈ V (y) iff wF ∈ V(C,x)(p)
iff M(C,x),wF |=S5n p. For the induction step, assume that we have already
shown the induction hypothesis for ϕ. Again, we skip the Boolean cases and
proceed with the interesting case:

– ϕ = �iψ. Then: C, x |=F tr(�iψ) iff C, x |=F 〈·i·〉⊥U tr(ψ) iff there is a
strategy fi such that it holds that C, x |=S tr(ψ), with S = {fi} ∪ {fb ∈ F |
b �= i}. By the induction hypothesis, we obtain M(C,x),wS |=S5n ψ. Since F
and S are identical with the possible exception of the strategy fi for agent
i, the worlds wS and wF differ at most in their i-th component. We have
that M(C,x),wF |=S5n �iψ. The other direction of this case can be shown
similarly.

�

Corollary 1. The satisfiability problem of any variant of ATL with strategy con-
texts in [4] is undecidable.

410 N. Troquard and D. Walther

Acknowledgements. We thank Agi Kurucz for her input on the undecidabil-
ity of finite model reasoning of the product logic S5n. We are indebted to the
reviewers of LAMAS 2012 and the workshop “Modeling Strategic Reasoning”
at the Lorentz Center in Leiden, The Netherlands, 20–24 February 2012. The
first author is supported by a Marie Curie COFUND fellowship, and the second
author by a Juan de la Cierva fellowship of Spain and the project Agreement
Technologies (Grant CONSOLIDER CSD2007-0022, INGENIO 2010), and the
MICINN projects TIN2006-15455 and TIN2009-14562-CO5.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Proceedings of TARK 2007, pp. 15–24. ACM (2007)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. The
Journal of the ACM 49(5), 672–713 (2002)

3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspec-
tives Mathematical Logic. Springer (1997)

4. Brihaye, T., Da Costa, A., Laroussinie, F., Markey, N.: ATL with Strategy Contexts
and Bounded Memory. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS,
vol. 5407, pp. 92–106. Springer, Heidelberg (2008)

5. Broersen, J., Herzig, A., Troquard, N.: A STIT-Extension of ATL. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 69–81. Springer, Heidelberg (2006)

6. Da Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expres-
siveness and model checking. In: Proceedings of FSTTCS 2010. LIPIcs, vol. 8, pp.
120–132. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2010)

7. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal
logics: theory and applications. Studies in Logic, vol. 148. Elsevier Science (2003)

8. Gurevich, Y., Lewis, H.R.: The word problem for cancellation semigroups with
zero. The Journal of Symbolic Logic 49(1), 184–191 (1984)

9. Halmos, P.: Algebraic logic, IV. Transactions of the AMS 86, 1–27 (1957)
10. Herzig, A., Schwarzentruber, F.: Properties of logics of individual and group agency.

In: Proceedings of AiML 2008, pp. 133–149. College Publications (2008)
11. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
12. Johnson, J.: Nonfinitizability of classes of representable polyadic algebras. The

Journal of Symbolic Logic 34(3), 344–352 (1969)
13. Kurucz, A.: S5 x S5 x S5 lacks the finite model property. In: Proceedings of AiML

2002, pp. 321–327. World Scientific (2002)
14. Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of

ATL. Logical Methods in Computer Science 4(2) (2008)
15. Maddux, R.: The equational theory of CA3 is undecidable. The Journal of Symbolic

Logic 45(2), 311–316 (1980)
16. Marx, M.: Complexity of products of modal logics. Journal of Logic and Compu-

tation 9(2), 197–214 (1999)
17. Mortimer, M.: On languages with two variables. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik 21, 135–140 (1975)
18. Troquard, N., Walther, D.: ATL with contexts: agency and explicit strategies. In:

Proceedings of LAMAS@AAMAS 2012 (2012)
19. Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time temporal logic

with explicit strategies. In: Proceedings of TARK 2007, pp. 269–278. ACM (2007)

Jumping to Conclusions

A Logico-Probabilistic Foundation
for Defeasible Rule-Based Arguments

Bart Verheij

Artificial Intelligence, University of Groningen

Abstract. A theory of defeasible arguments is proposed that combines
logical and probabilistic properties. This logico-probabilistic argumenta-
tion theory builds on two foundational theories of nonmonotonic reason-
ing and uncertainty: the study of nonmonotonic consequence relations
(and the associated minimal model semantics) and probability theory. A
key result is that, in the theory, qualitatively defined argument validity
can be derived from a quantitative interpretation. The theory provides a
synthetic perspective of arguments ‘jumping to conclusions’, rules with
exceptions, and probabilities.

1 Introduction

Jumping to conclusions is a necessary and oft-used skill. We hear a voice on the
phone, and conclude it’s our father’s. We smell foul coffee, and conclude it’s from
that dreaded machine down the hall. We find a note on the kitchen table, and
conclude that our son has gone out. But sometimes we jump too far. It’s not our
father, but his brother. It’s not coffee from that machine, but from a similar one
on the next floor. And we find our son in his room at home, playing his favorite
computer game, as his message was yesterday’s.

In this paper, a mathematical theory of jumping to conclusions is developed.
The theory’s starting point is that jumping to conclusions is allowed (‘valid’,
using a heavily laden term) when the conclusions do not lead us too far from
the premises. Or, to be a bit more precise, when the case made on the basis of
the premises, is close to those premises. Here ‘the case made’ is defined as the
conjunction of premises and conclusions. In other words, we can jump to certain
conclusions, if adding them to the premises is not a jump too far.

For instance, when a witness says she saw the suspect at the crime scene (w),
we ‘jump to’ the conclusion that the suspect was indeed there (s) by making
the case w ∧ s. A valid jump will be written ϕ |∼ ψ, an invalid jump as ϕ |∼/ ψ.
That the corresponding case made is sufficiently close to the premises is written
as ϕ ∼ ϕ ∧ ψ, that it is too far a jump as ϕ 2 ϕ ∧ ψ.

Our theory formalizes ampliative reasoning, as it has been called by Peirce,
that is: reasoning that goes beyond the premises. Toulmin used the term substan-
tial reasoning for the same concept, and considered reasoning only interesting
when it adds information to what is already in the premises.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 411–423, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

412 B. Verheij

⊥

	

�
�
�
��

�
�

�
��

�
�

�
��

�
�
�
��

�

�

D
ed

u
ctio

n A
m
p
li
a
ti
o
n

p

p ∧ q

���� a ∨ b

a

������

Fig. 1. Deduction and ampliation in a Boolean lattice

In Section 2, ampliative inference is studied in relation to nonmonotonic infer-
ence. In Section 3, a connection is made to the mathematical (pre)order relations,
as a first step towards the quantitative interpretation, given in Section 4. It is
shown that well-behaved ampliative inference can be derived from an ‘argument
value’ function on the language with properties close to those of a standard prob-
ability function. In Section 5, a connection to argumentation theory is made by
considering arguments with local structure in terms of premises, rules, and ex-
ceptions. It is shown that the global validity of an ampliative argument can be
determined by the application of non-excluded rules.

2 Ampliative Arguments

The propositions that occur in arguments are expressed in a classical language
L with BNF specification ϕ ::= � | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ↔ ψ, and the
associated classical, deductive, monotonic consequence relation, denoted �. As
in the study of nonmonotonic inference, we write ϕ |∼ ψ to denote the validity
of an ampliative argument from premises ϕ to conclusions ψ (plural to allow
us to speak of separate premises/conclusions that are in an argument joined by
conjunction). The proposition ϕ ∧ ψ is the case made by the argument.

In the Boolean lattice associated with our language L, ampliative and deduc-
tive arguments have opposite directions (Figure 1, with � at the bottom and ⊥
on top). In Figure 1, we can jump from p to p ∧ q and from a ∨ b to a; written
as p |∼ p ∧ q and a ∨ b |∼ a.

The following qualitative properties, well-known in the general study of non-
monotonic inference relations [2,11,12], are our starting point. For all proposi-
tions ϕ, ϕ′, ψ, ψ′, χ ∈ L:

(LE) If ϕ |∼ ψ, � ϕ↔ ϕ′ and � ψ ↔ ψ′, then ϕ′ |∼ ψ′.
(Ant) If ϕ |∼ ψ, then ϕ |∼ ϕ ∧ ψ.
(PR) If ϕ |∼ ϕ ∧ ψ, then ϕ |∼ ψ.
(R) ϕ |∼ ϕ.
(RW) If ϕ |∼ ψ ∧ χ, then ϕ |∼ ψ.
(CCM) If ϕ |∼ ψ ∧ χ, then ϕ ∧ ψ |∼ χ.
(CCT) If ϕ |∼ ψ and ϕ ∧ ψ |∼ χ, then ϕ |∼ ψ ∧ χ.

Jumping to Conclusions 413

(LE), for Logical Equivalence, expresses that in a valid ampliative argument the
premises and the conclusions can be replaced by a classical equivalent (in the
sense of �). (Ant), for Antededence, expresses that when we can jump from cer-
tain premises to a conclusion, we can also jump to the case made by the argument
(recall: the conjunction of conclusion and premises). Since (Ant) holds for am-
pliative arguments, every argument ϕ |∼ ψ has an associated ‘ampliation’, i.e.,
an argument of which the conclusion deductively implies the premises, namely
ϕ |∼ ϕ ∧ ψ. (PR), for Premise Reduction, says that we can also jump to a con-
clusion that classically follows from the case made by a valid argument. As the
converse of (Ant), it is technically useful below. (R), for Reflexivity, expresses
the validity of the limiting case of jumping from premises to themselves. (RW),
for Right Weakening, expresses that when the premises justify a composite con-
clusion also the intermediate conclusions are justified. It strengthens (PR) (given
(LE)). (CCM), for Conjunctive Cautious Monotony, expresses that we can still
jump to the case made by a valid argument when an intermediate conclusion is
added to the argument’s premises. (CCT), for Conjunctive Cumulative Transi-
tivity, is a variation of the Cumulative Transitivity property (CT, also known as
Cut) extensively studied in the literature (which has ϕ |∼ χ instead of ϕ |∼ ψ∧χ
as a consequent). The variation may seem minor, but is essential in the absence
of the (And) property (If ϕ |∼ ψ and ϕ |∼ χ, then ϕ |∼ ψ ∧ χ). Assuming (Ant),
(CCT) expresses the validity of chaining jumps from ϕ via ϕ ∧ ψ to ϕ ∧ ψ ∧ χ.

The relation ∼ associated with |∼ singles out those arguments that have the
case made by the argument as conclusion, i.e., have a conclusion that logically
implies the premises.

Definition 1. For |∼⊆ L× L, we define:

ϕ ∼ ψ := ψ � ϕ and ϕ |∼ ψ.

We now show that the properties of |∼ have close counterparts in terms of ∼.
Beware: notwithstanding the suggestive notation, ∼ need not be symmetric.

(LEAmpl) If ϕ ∼ ψ, � ϕ↔ ϕ′ and � ψ ↔ ψ′, then ϕ′ ∼ ψ′.
(Ampl) If ϕ ∼ ψ, then ψ � ϕ.
(Eq) If � ϕ↔ ψ, then ϕ ∼ ψ.
(Int) If χ � ψ, ψ � ϕ and ϕ ∼ χ, then ϕ ∼ ψ and ψ ∼ χ.
(Tr) If ϕ ∼ ψ and ψ ∼ χ, then ϕ ∼ χ.

(LEAmpl) expresses Logical Equivalence, this time for ∼. By (Ampl), for Am-
pliation, ∼ is an ampliation relation: when ϕ ∼ ψ, ψ goes logically beyond ϕ.
Also, by (Ampl), ∼ is not normally symmetric (which would come at the price of
reducing ∼ to classical equivalence). (Eq), for Equivalence, says that a proposi-
tion’s ampliations include all propositions logically equivalent to the proposition.
(Int), for Interpolation, says that an ampliation can be split at a proposition that
is logically in between. (Tr), for Transitivity, says that the ampliation relation
is transitive.

The listed properties for |∼ and ∼ have close formal connections:

414 B. Verheij

Proposition 1. Let |∼ be an inference relation obeying (LE), (Ant) and (PR),
and ∼ the associated ampliation relation. Then the following hold:

1. ∼ obeys (LEAmpl) and (Ampl).
2. ϕ |∼ ψ if and only if ϕ ∼ ϕ ∧ ψ.
3. |∼ obeys (R) if and only if ∼ obeys (Eq).
4. |∼ obeys (RW) and (CCM) if and only if ∼ obeys (Int).
5. |∼ obeys (CCT) if and only if ∼ obeys (Tr).

When the conditions (LE), (Ant) and (PR) of the proposition obtain, so that
1–5 follow, we speak of an ampliative inference relation |∼ and a corresponding
ampliation relation ∼. When all properties listed obtain, we speak of qualitative
ampliative inference and qualitative ampliation. The inference relation can be
recovered from the ampliation relation (part 2 of the proposition).

An example of qualitative ampliative inference is the following, for which
p |∼ q, but p ∧ e |∼/ q, so e is an exception blocking the jump from p to q:

ϕ |∼ ψ if and only if (p ∧ q � ϕ ∧ ψ and ϕ � p) or (p ∧ e � ϕ ∧ ψ and ϕ � p ∧ e)
or (φ � ψ).

A second example shows that we can sometimes jump to incompatible conclu-
sions, e.g., in the case of two reasonable, but inconsistent decisions (as in a
choice situation). Here we can jump from p to either q, or to ¬q, but not to their
conjunction:

ϕ |∼ ψ if and only if (p∧ q � ϕ∧ψ and ϕ � p) or (p∧¬q � ϕ∧ψ and ϕ � p) or
(φ � ψ).

This example of non-qualitative ampliative inference illustrates the role of (CCT)
and (Tr):

ϕ |∼ ψ if and only if (p∧q � ϕ∧ψ and ϕ � p) or (p∧q∧r � ϕ∧ψ and ϕ � p∧q)
or (ϕ � ψ).

The relation |∼ obeys all properties listed above, but not (CCT)/(Tr) since it
is not possible to chain the arguments p |∼ p ∧ q and p ∧ q |∼ p ∧ q ∧ r since
p |∼/ p ∧ q ∧ r. Cf. the following figure.

p ��
��

p ∧ q �� p ∧ q ∧ r (1)

3 Ampliation and the Ordering of Propositions

In Section 4, we establish a quantitative interpretation of well-behaved amplia-
tive inference in terms of a numeric ‘argument value’ function on the language.
By this function, the propositions of the language can be ordered, in a way that
is similar to a probability function that assigns decreasing probabilities to more

Jumping to Conclusions 415

specific propositions. As a first step, we consider certain (pre)order relations
associated with ampliation. For instance, the ampliation relation itself is a pre-
order, since Reflexivity (ϕ ∼ ϕ) holds by (LEAmpl) and (Eq), and Transitivity
is part of the definition. Since Antisymmetry obtains for L’s logical equivalence
classes, ∼ is even a partial order on logical equivalence classes. But Symmetry
(If ϕ ∼ ψ, then ψ ∼ ϕ) fails in general, so ∼ is not an equivalence relation.

The following definitions are needed.

Definition 2. For an ampliative inference relation |∼ and a corresponding am-
pliation relation ∼, we define:

ϕ 2 ψ := ψ � ϕ and ϕ 	 ψ
ϕ � ψ := ϕ ∼ ψ or ϕ 2 ψ
ϕ ≺ ψ := ψ 2 ϕ
ϕ ψ := ψ � ϕ

As a result, ϕ � ψ is equivalent to ψ � ϕ. Also, given ψ � ϕ, ϕ |∼ ψ is equivalent
to ϕ ∼ ψ, and ϕ |∼/ ψ is equivalent to ϕ 2 ψ. Furthermore, for all ϕ and ψ,
exactly one of ϕ ∼ ψ, ϕ 2 ψ, and ψ �� ϕ holds.

The following result says that, if we stay within an ampliative chain, ∼ and 2
are well-defined ‘up to ∼’, although care is needed by the failure of Symmetry.

Proposition 2. Let |∼ be a qualitative ampliative inference relation. Assume
χ � ψ � ϕ.

1. When ϕ ∼ ψ, the following hold:

(a) ψ ∼ χ if and only if ϕ ∼ χ.
(b) ψ 2 χ if and only if ϕ 2 χ.

2. When ψ ∼ χ, the following hold:

(a) ϕ ∼ ψ if and only if ϕ ∼ χ.
(b) ϕ 2 ψ if and only if ϕ 2 χ.

If ∼ and 2 are to be represented by numeric values, their properties should be
sufficiently well-behaved over the whole language, and not just within ampliative
chains. This requires a further property that expresses a kind of conservativeness
across ampliation chains. Consider a case in which ϕ |∼ ψ and ψ |∼ χ (cf. the
following picture). The arrows indicate ampliations (in the upward direction of
the arrow), the dotted lines deductions (in the downward direction).

ϕ ∧ ψ ψ ∧ χ

ϕ
∼
�������

ψ
∼
��������

�
�
�

χ
�

�
�
�

(2)

The two ampliations occur in (possibly) different chains, one containing ϕ and
ϕ ∧ ψ, the other ψ and ψ ∧ χ. When the relations are numerically derived, one
would expect that they can be chained. For instance, ϕ ∼ ϕ ∧ ψ and ϕ ∧ ψ ψ
would give ϕ “” ψ, and similarly ψ “” χ, hence ϕ “” χ.

416 B. Verheij

Now consider what happens if also χ |∼ ϕ (as in the figure below).

ϕ ∧ ψ ψ ∧ χ χ ∧ ϕ

ϕ
∼
�������

ψ
∼
�������

�
�

χ
∼
��������

�
�
�

ϕ
�

�
�
�

. . .

(3)

In this situation, we conclude ϕ “” χ∧ϕ. Since also χ∧ϕ “” ϕ (by χ∧ϕ ϕ,
i.e., χ ∧ ϕ � ϕ), we conclude ϕ “∼” χ ∧ ϕ. But ϕ and χ ∧ ϕ are in the same
chain, so we could have ϕ 	 χ∧ϕ, in disagreement with ϕ “∼” χ∧ϕ. What we
need is that a sequence of ∼ and statements as in the figure is conservative on
ampliation chains. All this can be made precise using the following definition.

Definition 3. For an ampliative inference relation |∼ and a corresponding am-
pliation relation ∼, we define:

∗ is the transitive closure of |∼
ϕ ∼∗ ψ := ϕ ∗ ψ and ψ ∗ ϕ
ϕ ≺∗ ψ := ϕ ∗ ψ and not ψ ∗ ϕ
ϕ �∗ ψ := ψ ∗ ϕ
ϕ 2∗ ψ := ψ ≺∗ ϕ

∗ extends and ∼∗ extends ∼, but ≺∗ does not always extend ≺. (Cf. the
counterexample to Conservativeness below.) By (R), ∗ is reflexive, hence ∼∗

is also reflexive. As ∗ is transitive, it is a preorder, and ∼∗ an equivalence
relation. ∗ is well-defined on ∼∗-equivalence classes:

Proposition 3. Let |∼ be a qualitative ampliative inference relation. Then the
following holds:

If ϕ ∗ ψ, ϕ ∼∗ ϕ′ and ψ ∼∗ ψ′, then ϕ′ ∗ ψ′.

Conservativeness is expressed as follows. The |∼ version is known as Loop.

(L) If ϕ0 |∼ ϕ1, ϕ1 |∼ ϕ2, . . . and ϕn |∼ ϕ0, then ϕ0 |∼ ϕn.
(C) If ϕ ∗ ψ and ψ � ϕ, then ϕ ∼ ψ.

Assuming qualitative ampliative inference, the |∼ and ∼ versions are equivalent:

Proposition 4. Assume an ampliative inference relation |∼ and a correspond-
ing ampliation relation ∼. Then |∼ obeys (L) if and only if ∼ obeys (C).

Here is an example of a consequence relation for qualitative ampliative arguments
that does not obey (L)/(C):

ϕ |∼ ψ if and only if (p ∧ q � ϕ ∧ ψ and ϕ � p) or (q ∧ r � ϕ ∧ ψ and ϕ � q) or
(p ∧ r � ϕ ∧ ψ and ϕ � r) or (ϕ � ψ).

For this consequence relation, we have p |∼ q |∼ r |∼ p, while p |∼/ r.

Jumping to Conclusions 417

4 Quantifiable Qualitative Ampliative Arguments

The next step towards a quantified interpretation of qualitative ampliative ar-
guments requires the notion of a numeric order of magnitude of a proposition.

Definition 4. For a relation |∼⊆ L × L, we define the order of ϕ, notation
O(ϕ), as the maximal length n of a sequence ϕ0, . . . , ϕn with ϕ = ϕ0 and, for
all i ∈ {0, . . . , n− 1}, ϕi 2∗ ϕi+1 (if such a finite maximal length exists). When
every proposition has a finite order, we say that |∼ has finite orders. When also
there is a maximum order, we say that |∼ has bounded finite orders.

When the property (L)/(C) holds, there cannot be a ≺∗-loop. So, for a language
with a finite number of elementary propositions, (L)/(C) implies finite orders.

Restricting to bounded finite orders, qualitative ampliative inference can be
defined in terms of the order function.

Theorem 1. Let |∼ express qualitative ampliative inference with bounded finite
orders. Then there is an integer-valued function O : L→ N such that

ϕ ∼ ψ if and only if O(ϕ) = O(ψ) and ψ � ϕ
ϕ 2 ψ if and only if O(ϕ) > O(ψ) and ψ � ϕ

for which the following properties hold:

1. O(⊥) ≤ O(ϕ) ≤ O(�).
2. O(ϕ) = 0 if and only if ϕ |∼ ⊥.
3. O(ϕ) ≥ max(O(ϕ ∧ ψ), O(ϕ ∧ ¬ψ)).
4. If ψ � ϕ, then O(ϕ) ≥ O(ψ).
5. ϕ |∼ ψ if and only if O(ϕ) = O(ϕ ∧ ψ).
6. ϕ |∼/ ψ if and only if O(ϕ) > O(ϕ ∧ ψ).

In the proof, O(ϕ) is taken to be the order of ϕ. The properties in the theorem
are already quite close to the properties of probability theory. But the order of
a proposition behaves like an order of magnitude, reflected by the max-relation
in part 3, in contrast with probability theory’s addition (which also has equality
instead of ≥).

We next show that (assuming a further finitizing restriction) the max-relation
can be replaced by addition. The order function is replaced by an ‘argument
value’ function, in such a way that the order function behaves like a kind of
rounded logarithm of the value function. We need definitions of maximally spe-
cific conclusions and of minimally specific exceptions.

Definition 5. A maximal conclusion (or extension) of a proposition ϕ is a
proposition ψ with ϕ |∼ ψ and ψ � ϕ that is maximally specific in the sense of
�, i.e., for all χ, if ψ �/ χ and χ � ψ, then ϕ |∼/ χ. When every conclusion of a
proposition can be amplified to a maximal conclusion, we say that |∼ has finitely
expressible maximal conclusions.

A minimal non-conclusion of a proposition ϕ is a proposition ψ with ϕ |∼/ ψ
and ψ � ϕ that is minimally specific in the sense of �, i.e., for all χ, if ψ � χ

418 B. Verheij

and χ �/ ψ, then ϕ |∼ χ. When every non-conclusion of a proposition (�-implied
by the non-conclusion) is an amplification of a minimal non-conclusion, we say
that |∼ has finitely expressible minimal non-conclusions.

A minimal exception of a proposition ϕ is a minimal non-conclusion ψ of ϕ
such that there does not exist a maximal conclusion χ of ϕ with ψ � χ.

To simplify technicalities (involving infinite disjunctions and conjunctions cor-
responding to infinite unions and intersections of sets), we restrict ourselves to
inference relations with finitely expressible maximal conclusions and minimal
non-conclusions.

The following theorem contains the inductive definition of an integer-valued
function v : L → N that characterizes qualitative ampliative inference. The
induction is based on the property that minimal non-conclusions of a proposition
have an order that is strictly lower than the proposition.

Theorem 2. Let |∼ express qualitative ampliative inference, have bounded
finite orders, have finitely expressible maximal conclusions and minimal non-
conclusions, have a bounded finite number of maximal conclusions per proposi-
tion, and a bounded finite number of minimal exceptions per proposition. Let
C denote the minimal upper bound of the number of maximal conclusions. Let
O be the order function on propositions and c(ϕ) the number of maximal con-
clusions of a proposition ϕ. We inductively define the argument value function
v : L→ N:

v(ϕ) :=

⎧⎨⎩
0 if O(ϕ) = 0;
1 if O(ϕ) = 1;
c(ϕ).v(O(ϕ)) +

∑
{v(ψ) | ψ minimal exception of ϕ} if O(ϕ) > 1,

where v(n) = (C2 + 1)n−1 for n > 0. Then:

1. v(⊥) ≤ v(ϕ) ≤ v(�).
2. v(ϕ) = 0 if and only if ϕ |∼ ⊥.
3. v(ϕ) ≥ v(ϕ ∧ ψ) + v(ϕ ∧ ¬ψ).
4. If ψ � ϕ, then v(ϕ) ≥ v(ψ).

5. ϕ |∼ ψ if and only if and ϕ |∼ ⊥ or v(ϕ∧ψ)
v(ϕ) > 1

C+1 .

6. ϕ |∼/ ψ if and only if ϕ |∼/ ⊥ and v(ϕ∧ψ)
v(ϕ) ≤ 1

C+1 .

Note the special role of ⊥, related to 0 having a logarithm of minus infinity.
As promised, the integer value function v of the theorem behaves almost like a

probability function (bearing the standard connection between propositions and
sets in mind). There is still one telling difference: whereas the sum of the prob-
ability of disjoint sets is equal to the probability of their union (in accordance
with Kolmogorov’s standard axioms), the sum of the argument values of mutu-
ally inconsistent propositions may not be equal to their disjunction, but can also
be lower. There is a natural interpretation for this technical difference. Whereas

Jumping to Conclusions 419

probability theory counts cases of which all properties are available, in our set-
ting of ampliative argumentation, the argument values count cases in which
there can be unknown properties. Logically speaking, probability counts worlds
(complete interpretations), whereas ampliative argumentation counts states ex-
pressed by propositions (partial interpretations). The role of partiality is to be
expected, as ampliation is a way of adding information to the partial informa-
tion expressed by the premises (cf. the examples at the start of the paper). The
amplified information will again be partial.

In light of the close analogy between probabilities and the argument val-
ues used in the theorem, we will write v(ψ|ϕ) := v(ϕ ∧ ψ)/v(ϕ). The argu-
ment value version of Bayes’ theorem is an immediate consequence: v(ψ|ϕ) =
v(ϕ|ψ)v(ψ)/v(ϕ).

Theorem 2 shows that the ‘conditional argument value’ v(ψ|ϕ) can be inter-
preted as the strength of the argument. When the strength is above the threshold
1/(C + 1), the argument is valid, when the strength is below (or equal to) the
threshold it is invalid.

5 Structured Arguments

Until now, by our focus on the inference relation |∼, we have used the classical
model of arguments as unstructured premise-conclusion pairs. As such, we have
established a theory of the global validity of arguments. However, in contempo-
rary formal theory of defeasible arguments (see [16] for an overview), arguments
have additional structure since they are constructed using premises, rules, excep-
tions, defeaters, etc. A central problem addressed in this kind of work is how the
local structure of an argument, and of the arguments attacking the argument,
determines the global validity of the argument. Today, Dung’s seminal abstract
perspective [5] plays a key role in determining such global validity (or argu-
mentative warrant). Dung proposed different kinds of ‘semantics’ — preferred,
complete, grounded and stable —, each determining a different kind of argumen-
tative warrant. Several other semantics have been proposed, e.g., the stage and
semi-stable semantics, both in [17] (though the semi-stable with another name),
and the ideal and cf2 semantics; cf. the overview [1].

When we restrict ourselves to qualitative ampliative inference, as in this pa-
per, determining the global validity of structured arguments becomes relatively
simple: an argument is globally valid if the case it makes is constructed using
rules that are not excluded by an exception. This is possible because we do
not assume that all sets of rules, exceptions, defeaters, etc. can occur; the in-
put from which arguments are constructed is constrained by the properties of a
global theory (expressed in the inference relation). As a result, arguments are
only constructed from ‘well-behaved’ sets rules and exceptions.

Syntactically, structured arguments are sequences of premises (propositions in
L), rules of the form ϕ⇒ ψ, and exceptions of the form ¬(ϕ⇒ ψ). An exception
¬(ϕ′ ⇒ ψ) excludes a rule ϕ ⇒ ψ when ϕ′ � ϕ. When ϕ |∼ ψ, ϕ ⇒ ψ is an
|∼-rule; when ϕ |∼/ ψ, ¬(ϕ ⇒ ψ) is an |∼-exception. We will assume a language

420 B. Verheij

L with a finite number of elementary propositions and a qualitative ampliative
inference relation |∼.

Definition 6. Let |∼ express qualitative ampliative inference. We inductively
define valid arguments α from premises P (α) ∈ L making the case C(α) ∈ L as
follows.

1. The empty argument [] is a valid argument from � making the case �. It
has no applicable rules and no applicable exceptions.

2. When an argument α = [γ0, . . . , γn] is valid, it can be extended to a valid
argument α′ by adding a premise ϕ provided that, for each applicable rule
ψ ⇒ χ occurring in α such that C(α) ∧ ϕ |∼/ χ, an |∼-exception overruling
the rule is also added (after the new premise). Each thus excluded rule is
not applicable in α′. Also each rule that comes after an excluded rule is not
applicable in α′. α′ is an argument from P (α) ∧ ϕ making the case P (α) ∧
ϕ∧ψ0∧ . . .∧ψk, where ψ0, . . . , ψk are the consequents of the applicable rules
of α′.

3. When an argument α = [γ0, . . . , γn] is valid, it can be extended to a valid
argument α′ by adding a |∼-rule ϕ⇒ ψ provided that C(α) � ϕ and C(α) |∼
ψ. That rule is an additional applicable rule of α′. The extended argument’s
case is C(α) ∧ ψ.

Theorem 3. Let |∼ express qualitative ampliative inference. Then ϕ |∼ ψ if and
only if there is a valid argument, structured as in Definition 6, from ϕ making
the case ϕ ∧ ψ.

By this theorem, we can use the same term ‘argument’ for an argument in the
sense of a global judgment of warrant and for an argument in the sense of a valid
structured argument, as defined in Definition 6.

Assume for instance that the argument [p, p ⇒ q, q ⇒ r, e,¬(e ∧ q ⇒ r)] is
valid, where all rules and exceptions are taken from a qualitative ampliative in-
ference relation |∼. This argument’s construction consists of three steps. Initially
there is only the premise p, then the rule p ⇒ q is applied, then a second rule
q ⇒ r, but that rule is immediately excluded by the exception e. The argument
is an argument from p ∧ e making the case p ∧ q ∧ e.

As said, the construction of valid arguments is more straightforward than in
other proposals because the properties of qualitative ampliative inference re-
strict which rules and exceptions can form an argument. Consider for instance
this argument, a slight variant of a puzzle studied by Pollock [14]: [p, p⇒ q, q ⇒
r,¬(p ∧ r ⇒ q)]. After the application of the second rule, the first one is ex-
cluded, making the application of the second rule impossible; contradiction. In
the present proposal, this example is not a valid argument of a qualitative am-
pliative inference relation |∼. For if the two rules can both be validly applied, we
would have that p |∼ q ∧ r, hence by (CCM) and (RW) (and (LE)) p∧ r |∼ q, so
¬(p ∧ r⇒ q) is not an |∼-exception.

What about the expressiveness of the present approach? Isn’t it too restric-
tive? Let’s consider the three kinds of argument attack that are most prominent

Jumping to Conclusions 421

in state-of-the-art argumentation formalizations (e.g., [15]): assumption-based
attack, aimed at the defeasible assumptions of an argument, undercutting at-
tack, aimed at the connection between a reason and its conclusion, and rebutting
attack, in which a reason for the opposite of the argument’s conclusion is given.

Consider the following three arguments, one of each type:

�� a �� b a �� b a �� c

e

��

e

��

b ��

�����

	

¬c

(4)

The argument [⇒ a, a⇒ b, e,¬(e⇒ a)], depicted on the left, in which the defea-
sible assumption a is attacked by e, is an example of assumption-based attack.
The argument from a to b is based on the defeasible assumption a (formalized
by the rule ⇒ a with empty antecedent). The assumption is attacked by the
exception e. When the argument is valid (with respect to a qualitative inference
relation |∼), the rules and exceptions in the argument correspond to |∼ a, a |∼ b
and e |∼/ a. The gradual construction of the argument starts with the assumption.
At this stage of construction, the argument’s validity corresponds to |∼ a (cf.
Theorem 3). Then the rule a⇒ b is applied. The argument’s validity now corre-
sponds to |∼ a ∧ b. Finally, the premise e is added, that leads to the addition of
an exception ¬(e ⇒ a) excluding the assumption ⇒ a. The argument’s validity
now corresponds to e |∼/ a and e |∼ e.

Similarly for the middle, undercutting argument [a, a ⇒ b, e,¬(e ∧ a ⇒ b)],
in which the reason a for b is undercut by e. Its rule and exception correspond
to a |∼ b and a ∧ e |∼/ b. Its gradual construction corresponds to the sequence
a |∼ a, a |∼ a ∧ b, e ∧ a |∼/ b, e ∧ a |∼ e ∧ a.

The argument on the right, [a, a⇒ c, b,¬(a ∧ b⇒ c), b⇒ ¬c], an example of
a reason b for ¬c that rebuts the reason a for c, has rules corresponding to a |∼ c
and b |∼ ¬c and an exception corresponding to a∧b |∼/ c. Its gradual construction
corresponds to a |∼ a, a |∼ a ∧ c, a ∧ b |∼/ c, a ∧ b |∼ ¬c.

6 Summary and Concluding Remarks

In this paper, the foundations of argumentation theory have been reconsidered
using the formal properties of nonmonotonic consequence as a starting point
[2,11,12]. Well-known properties of a nonmonotonic consequence relation |∼ were
reinterpreted in terms of a so-called ampliation relation ∼. By this reinterpreta-
tion, ampliative inference could be connected to properties studied in the math-
ematical theory of (pre)orders. This allowed the development of a quantitative
interpretation of qualitative ampliative inference, in two versions.

The first quantitative interpretation was in terms of a numeric function mea-
suring an ‘order of magnitude’ of a proposition (if you like: an ‘order of normal-
ity’), with larger orders being more general (with the order of � as maximum)
and lower orders more specific (with the order of ⊥ as minimum). The properties
of this order-of-magnitude function remind of possibility logic [4] by its use of
a maximum property (as opposed to the additivity of probability), with a key

422 B. Verheij

difference being the use of an inequality. The order-of-magnitude function helps
to explain why preferential logic (which can be obtained from our qualitative
ampliative inference by adding the (And) and (Or) rules) can be defined both
in terms of limits (Geffner & Pearl [6]) and in terms of minimal models (Kraus,
Lehmann, Magidor [11]): a premise and its conclusions have the same order of
magnitude, with a difference that vanishes ‘in the limit’.

From the order function, a second quantitative interpretation of qualitative
ampliative inference has been derived in terms of an ‘argument value’ func-
tion with properties that closely resemble the Kolmogorov probability axioms
[7]. This second ‘logico-probabilistic’ interpretation of ampliative arguments uses
numeric argument values that behave like conditional probabilities and that mea-
sure argument strength. When the strength of an argument is above a threshold,
the argument is valid. The Kolmogorov additivity axiom is replaced by an in-
equality, that has the natural interpretation that the cases that are the basis of
the numeric distribution (e.g., by counting observations or by otherwise weight-
ing them) contain partial information, and not information about the ‘whole
world’. This partiality of information is a cornerstone of ampliative inference,
that can by our formal proposal be interpreted as jumping to conclusions when
staying sufficiently close in value to the premises.

One interpretation of the case made by an argument, defined here as the
conjunction of premises and conclusions, is as an explanation supported by the
argument’s premises. As a result, the approach in this paper is related to theories
of abductive inference to the best explanation [10]. This is no coincidence since
one inspiration for the present approach was the intuition that argument-based
and explanation-based approaches could be formally integrated (cf. Bex’s hybrid
argumentative-narrative theory of legal evidential reasoning [3]).

Our approach can be regarded as a bridge between logic and probability. While
[8] consider the (And) rule as a watershed between qualitative and quantitative
interpretations of nonmonotonic reasoning, we have proposed a quantitative in-
terpretation of qualitative ampliative arguments that is independent of (And).
Here, the (CCT) property, that expresses a kind of defeasible rule application
and is probabilistically not valid, plays a key role in distinguishing quantitative
and qualitative argumentation.

Bayesian networks [9,13] also combine logic and probability. They are how-
ever often causally interpreted and need additional tools for the modeling of
an agent’s decision making, e.g., utilities. By the combination of the decision-
oriented notions of defeasible argument, rules with exceptions and argument
strength, the here proposed theory provides a fresh perspective on intelligent
agents jumping to conclusions in order to interpret their world and act in it.

The distinguishing role of defeasible rule application and the associated prop-
erty (CCT) shows on formal grounds that the rules and exceptions underlying
qualitative ampliative inference cannot be derived from statistical correlations
alone. Defeasible rules need to be tested by applying them, thereby generating
hypotheses. Sometimes rules with their associated exceptions will lead to hy-
potheses that are not falsified too often. When this happens, such rules can be
regarded as ‘knowledge’, in the sense that they describe accurate patterns.

Jumping to Conclusions 423

Acknowledgements. The author would like to thank Allard Tamminga and
Rineke Verbrugge for their valuable comments.

References

1. Baroni, P., Caminada, M., Giacomin, M.: Review: an introduction to argumenta-
tion semantics. The Knowledge Engineering Review 26(4), 365–410 (2011)

2. van Benthem, J.: Foundations of conditional logic. Journal of Philosophical Logic,
303–349 (1984)

3. Bex, F., Van Koppen, P., Prakken, H., Verheij, B.: A hybrid formal theory of
arguments, stories and criminal evidence. Artificial Intelligence and Law, 1–30
(2010)

4. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: A clarification. Annals of Mathematics and Artificial Intelligence 32(1), 35–
66 (2001)

5. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence 77,
321–357 (1995)

6. Geffner, H., Pearl, J.: Conditional entailment: Bridging two approaches to default
reasoning. Artificial Intelligence 53(2-3), 209–244 (1992)

7. Hájek, A.: Interpretations of probability. In: Zalta, E. (ed.) The Stanford Encyclo-
pedia of Philosophy, Stanford University (2011)

8. Hawthorne, J., Makinson, D.: The quantitative/qualitative watershed for rules of
uncertain inference. Studia Logica 86(2), 247–297 (2007)

9. Jensen, F., Nielsen, T.: Bayesian networks and decision graphs. Springer, Berlin
(2007)

10. Josephson, J., Josephson, S.: Abductive Inference: Computation, Philosophy, Tech-
nology. Cambridge University Press, Cambridge (1996)

11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hog-
ger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic
Programming. Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 35–
110. Clarendon Press, Oxford (1994)

13. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
14. Pollock, J.: Cognitive Carpentry: A Blueprint for How to Build a Person. The MIT

Press, Cambridge (1995)
15. Prakken, H.: An abstract framework for argumentation with structured arguments.

Argument and Computation 1(2), 93–124 (2010)
16. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer,

Dordrecht (2009)
17. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and ar-

gumentation stages. In: Meyer, J.J., van der Gaag, L. (eds.) Proceedings of NAIC
1996, pp. 357–368. Universiteit Utrecht, Utrecht (1996)

Beyond Maxi-Consistent Argumentation Operators�

Srdjan Vesic and Leendert van der Torre

Computer Science and Communication
University of Luxembourg

{srdjan.vesic,leon.vandertorre}@uni.lu

Abstract. The question whether Dung’s abstract argumentation theory can be
instantiated with classical propositional logic has drawn a considerable amount
of attention among scientists in recent years. It was shown by Cayrol in 1995
that if direct undercut is used, then stable extensions of an argumentation system
correspond exactly to maximal (for set inclusion) consistent subsets of the knowl-
edge base from which the argumentation system was constructed. Until now, no
other correspondences were found between the extensions of an argumentation
framework and its knowledge base (except if preferences are also given at the
input of the system). This paper’s contribution is twofold. First, we identify four
intuitive conditions describing a class of attack relations which return extensions
corresponding exactly to the maximal (for set inclusion) consistent subsets of the
knowledge base. Second, we show that if we relax those conditions, it is possible
to instantiate Dung’s abstract argumentation theory with classical propositional
logic and obtain a meaningful result which does not correspond to the maxi-
mal consistent subsets of the knowledge base used for constructing arguments.
Indeed, we define a whole class of instantiations that return different results. Fur-
thermore, we show that these instantiations are sound in the sense that they satisfy
the postulates from argumentation literature (e.g. consistency, closure). In order
to illustrate our results, we present one particular instantiation from this class,
which is based on cardinalities of minimal inconsistent sets a formula belongs to.

1 Introduction

The question how to reason in presence of inconsistency is on of the keywords of logic
and artificial intelligence. A notable example are paraconsistent logics [11] where one
is able to draw some (but not all) conclusions from an inconsistent set of formulae. As
another example take belief revision, belief merging or voting [8]. Generally speaking,
an inference relation is a way to go from a (possibly inconsistent) knowledge base to a
set of subsets of that knowledge base. For example, given a knowledge base {ϕ,¬ϕ ∧
ψ}, an inference relation could return two sets: {ϕ} and {¬ϕ∧ψ}. One of the simplest
inference relations is a function returning the set of all maximal (for set inclusion)
consistent subsets of a knowledge base. It has been shown [6] that the result obtained

� SV was funded by the National Research Fund, Luxembourg. His work was carried out during
the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. This Programme is sup-
ported by the Marie Curie Co-funding of Regional, National and International Programmes
(COFUND) of the European Commission.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 424–436, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Beyond Maxi-Consistent Argumentation Operators 425

by this inference relation can be also obtained by an instantiation of Dung’s abstract
argumentation theory [7]. Namely, when direct undercut is used as attack relation on
the set of all the arguments built from a knowledge base, then stable extensions of the
resulting argumentation framework correspond exactly to the set of maximal consistent
subsets of the knowledge base. This is the first result which shows that Dung’s abstract
argumentation theory can be instantiated in a way to capture an inference relation.

An important question is whether Dung’s theory can be used as a general framework
for nonmonotonic logic, and if so, which class of inference relations can be studied
as instances of Dung’s theory. Indeed, only a very small fragment of logics has been
represented in such a way. This may also not be very surprising, given the richness of
the logic literature and the strong constraints imposed by Dung’s theory. This raises two
important questions for the community. First, which class of logics can be captured by
Dung’s theory? Second, how to generalize Dung’s theory? In this paper we address the
first question, whereas the second question is a part of our long term research agenda.

The starting point of our work is to note that since the first result [6] showing how
to capture an inference relation in Dung’s theory, not much work has been done in
this direction. Indeed, no “reasonable” logic-based instantiations of Dung’s abstract
theory were found that capture another inference relation. By “reasonable”, we mean
that they satisfy at least some basic postulates proposed for instantiated argumentation
frameworks [5] like consistency, closure, and so on.

The challenges of this paper are: First, is it possible to define conditions that char-
acterize the circumstances when a semantics returns maximal consistent subsets under
subset relation? Second, how to define a class of attack relations in terms of the knowl-
edge base such that the stable extensions of the obtained argumentation framework do
not correspond to exactly to the maximal for set inclusion consistent subsets of the
knowledge base? Third, how to ensure that those instantiations of Dung’s theory still
return a reasonable result?

The layout of this paper is as follows: After introducing the notions of argumentation
framework and formally defining its logic-based instantiations (Section 2), we identify
four conditions describing a class of attack relations returning extensions corresponding
to maximal consistent subsets of a knowledge base (Section 3). Then, we show that if
two conditions are dropped, it is possible to instantiate Dung’s abstract argumentation
theory in a meaningful way and obtain a substantially different result (Section 4). The
last section concludes and reviews questions left for future work. The proofs are omitted
due to the space restrictions.

2 Dung’s Abstract Argumentation Theory and Its Instantiation
with Classical Propositional Logic

In this section, we present the most common way of instantiating Dung’s abstract ar-
gumentation theory [7] with classical propositional logic. L denotes the set of well-
formed formulae, � stands for classical entailment, and ≡ for logical equivalence. We
denote by Σ a finite set of classical propositional formulae from which arguments are
constructed. We use the notation MC(Σ) for the set of all maximal (for set inclusion)
consistent subsets of Σ, and MinConf(Σ) for the set of minimal (for set inclusion) in-
consistent subsets of Σ. A formula ϕ is called a free formula of a knowledge base Σ if

426 S. Vesic and L. van der Torre

and only if ϕ does not belong to any minimal (for set inclusion) inconsistent subset of
Σ. A logical argument is defined as a pair (support, conclusion).

Definition 1 (Argument). Let L be a classical propositional language with � its asso-
ciated logical consequence, let Σ ⊆ L and α ∈ L. An argument is a pair (Φ, α) such
that Φ ⊆ Σ is a minimal (for set inclusion) consistent set of formulae such that Φ � α.

Example 1. Let Σ = {ϕ, ϕ → ψ, ω}. ({ϕ, ϕ → ψ}, ψ), ({ϕ → ψ},¬ϕ ∨ ψ) and
({ϕ, ψ}, ϕ↔ ψ) are some of the arguments that can be constructed from Σ.

For an argumenta = (Φ, α), we write Supp(a) = Φ to denote its support and Conc(a) =
α to denote its conclusion. For a set of arguments E , we denote by Concs(E) the set
of conclusions of all the arguments from E . In other words, Concs(E) = {Conc(a) |
a ∈ E}. For a given set of formulae S ⊆ L, we denote by Arg(S) the set of arguments
constructed from S. Formally, Arg(S) = {a | a is an argument and Supp(a) ⊆ S}.
Let Arg(L) denote the set of all arguments that could be made from propositional logic
formulae. For a given set of arguments E , we denote Base(E) =

⋃
a∈E Supp(a). Now

we provide a definition of argumentation framework.

Definition 2 (Argumentation framework). An argumentation framework is a pair
(A,R) where A ⊆ Arg(L) is a set of arguments and R ⊆ A × A a binary rela-
tion. For each pair (a, b) ∈ R, we say that a attacks b. We also sometimes use notation
aRb instead of (a, b) ∈ R.

In the rest of the paper, we suppose that all the arguments from Σ are constructed, i.e.
that A = Arg(Σ). We now introduce the notions of conflict-freeness and defence used
to define different semantics.

Definition 3 (Conflict-free, defence). Let F = (A,R) be an argumentation frame-
work, E ⊆ A and a ∈ A.

– E is conflict-free if and only if there exist no two arguments a, b ∈ E s.t. (a, b) ∈ R
– E defends a if and only if for every b ∈ A we have that if bRa then there exists
c ∈ E such that cRb.

Let us now define the most commonly used acceptability semantics.

Definition 4 (Acceptability semantics). Let F = (A,R) be an argumentation frame-
work and B ⊆ A. We say that a set B is admissible if and only if it is conflict-free and
defends all its elements.

– B is a complete extension if and only if B defends all its arguments and contains
all the arguments it defends.

– B is a preferred extension if and only if it is a maximal (with respect to set inclusion)
admissible set.

– B is a stable extension if and only if B is conflict-free and for all a ∈ A \ B, there
exists b ∈ B such that bR a.

– B is a semi-stable extension if and only if B is a complete extension and the union of
the set B and the set of all arguments attacked by B is maximal (for set inclusion).

Beyond Maxi-Consistent Argumentation Operators 427

– B is a grounded extension if and only if B is a minimal (for set inclusion) complete
extension.

– B is an ideal extension if and only if B is a maximal (for set inclusion) admissible
set contained in every preferred extension.

For an argumentation framework F = (A,R) we denote by Extx(F); or, by a slight
abuse of notation, by Extx(A,R) the set of its extensions with respect to semantics x.
We use abbreviations c, p, s, ss, g and i for respectively complete, preferred, stable,
semi-stable, grounded and ideal semantics. For example, Extp(F) denotes the set of
preferred extensions argumentation framework F .

Example 2. Let F = (A,R) be an argumentation framework withA = {a, b, c, d} and
R = {(b, c), (c, b), (b, d), (c, d)}. The graph is visualised below.

c d

a b

There are three complete extensions: {a, b}, {a, c} and {a}, and two preferred / sta-
ble / semi-stable extensions: {a, b} and {a, c}. The grounded extension of this frame-
work coincides with its ideal extension, which is the set {a}.

We now introduce the most common ways in which attack relations are defined in terms
of (i.e. as functions of) the knowledge base in argumentation literature [9].

Definition 5. For a set of formulae Φ = {ϕ1, . . . , ϕk}, let
∧
Φ denote ϕ1 ∧ . . . ∧ ϕk.

Let a, b ∈ Arg(L). We define the following attack relations:

– defeat: aRdb if and only if Conc(a) � ¬
∧
Supp(b)

– direct defeat: aRddb if and only if there exists ϕ ∈ Supp(b) s.t. Conc(a) � ¬ϕ
– undercut: aRub if and only if there exists Φ ⊆ Supp(b) such that Conc(a) ≡ ¬

∧
Φ

– direct undercut: aRdub if and only if there exists ϕ ∈ Supp(b) s.t. Conc(a) ≡ ¬ϕ
– canonical undercut: aRcub if and only if Conc(a) ≡ ¬

∧
Supp(b)

– rebut: aRrb if and only if Conc(a) ≡ ¬Conc(b)
– defeating rebut: aRdrb if and only if Conc(a) � ¬Conc(b)

Note that all the attack relations from the previous definition are defined on Arg(L) ×
Arg(L). For a given Σ, one can just use the restriction of the relation from Arg(L) ×
Arg(L) to Arg(Σ) × Arg(Σ). This is not the case with all the attack relations we use
in this paper. Namely, for some attack relations we use, there exist arguments a, b ∈
Arg(L), such that whether a attacks b or not depends also on the knowledge base Σ.
Formally, the more general case is when an attack relation is defined by specifying its
behaviour on every Arg(Σ)× Arg(Σ) for every finite Σ ⊆ L. In the rest of the paper,

428 S. Vesic and L. van der Torre

when we use the term “attack relation”, we refer to the more general case. Formally, one
should write (a, b,Σ) ∈ R. However, since it is always clear to which Σ we refer to,
there is no danger of confusion and in order to simplify the notation we write (a, b) ∈ R
or aRb throughout the paper.

3 Some Hypotheses Leading to Maximal Consistent Subsets of the
Knowledge Base

In this section, we identify four simple and intuitive conditions such that every instantia-
tion which satisfies all of them returns the extensions corresponding exactly to maximal
consistent subsets of the knowledge base arguments are constructed from. Namely, sim-
ilar to the principles that can be satisfied by an acceptability semantics [4], there exist
principles that an attack relation can satisfy [1,5]. An important requirement is that an
attack relation should return consistent extensions (abbreviated CE).

Definition 6 (CE). LetR be an attack relation. We say thatR returns consistent exten-
sions under semantics x if and only if for every Σ ⊆ L, for every F = (Arg(Σ),R),
for every extension E of F under semantics x, it holds that Base(E) is a consistent set.

Example 3. Rdu and Rdd satisfy CE under stable, semi-stable, preferred, and com-
plete semantics, whereas Ru,Rcu,Rr,Rdr do not satisfy CE under neither of those
semantics [9].

Another requirement in logic-based argumentation is that an argument should not at-
tack another one if the union of their supports is consistent. This property of an attack
relation is called conflict-dependence [1] for what we use the abbreviation CD.

Definition 7 (CD). Let R be an attack relation. We say that R is conflict-dependent if
and only if for every Σ ⊆ L, for every a, b ∈ Arg(Σ), if (a, b) ∈ R then Supp(a) ∪
Supp(b) � ⊥.

Example 4. Attack relations Rdd,Ru,Rdu,Rcu,Rr,Rdr are conflict-dependent.

The next requirement specifies that the arguments having the same support are attacked
by the same arguments. We call this AS (“assumption attack”).

Definition 8 (AS). Let R be an attack relation. We say that R satisfies AS if and only
if for every Σ ⊆ L, for every a, b, c ∈ Arg(Σ), if Supp(b) = Supp(c) then aRb if and
only if aRc.

Note that AS is already present in argumentation literature [3,9].

Example 5. Attack relations Rdd,Ru,Rdu and Rcu satisfy AS, whereas Rr and Rdr

do not.

The last property we consider in this paper specifies that when one constructs a set
Arg(S) containing all the arguments made from a maximal consistent set S, then every
argument outside of Arg(S) is attacked by at least one argument from Arg(S). We call
the resulting condition MS, which is an abbreviation telling that the intuition behind it is
that any maximal consistent set should be stable.

Beyond Maxi-Consistent Argumentation Operators 429

Definition 9 (MS). Let R be an attack relation. We say that R satisfies MS if and only
if for every Σ ⊆ L, for every S ∈ MC(Σ), for every a′ ∈ Arg(Σ) \ Arg(S), there exists
a ∈ Arg(S) such that (a, a′) ∈ R.

To the best of our knowledge, this property was not formally stated until now.

Example 6. Attack relations Rdd,Ru,Rdu,Rcu satisfy MS.

Those conditions seem as properties one would like an attack relation to satisfy (at least
in some contexts). The goal of this section is to answer the question: is it possible to
define an instantiation of Dung’s theory that captures reasoning substantially different
from the approach which returns maximal consistent subsets and at the same satisfies
CE, CD, AS and MS? The answer is no, as shown by Proposition 3.

We start by defining a notion of independence of a set of formulae, which is used to
describe the extensions of attack relations satisfying AS. The idea is that no formula in
a set can be derived from other formulae of that set.

Definition 10 (Independent set of formulae). A set S ⊆ L is independent if and only
if there exists no formula ϕ ∈ S s.t. S \ {ϕ} � ϕ.

Our first goal is to show that for the class of attack relations satisfying AS, conclusion
of an argument has no impact on its acceptability. In other words, the membership to an
extension is uniquely determined by argument’s support. To prove this result, we need
the following lemma.

Lemma 1. Let R be an attack relation satisfying AS, let Σ ⊆ L be a knowledge base,
F = (Arg(Σ),R) and let E ⊆ Arg(A) an admissible set. Let a, b ∈ Arg(Σ) be two
arguments such that Supp(a) = Supp(b), a ∈ E and b /∈ E . Then, E ∪ {b} is also an
admissible set.

We can now show that if two arguments have the same support, and an attack relation
satisfying AS is used, those two arguments are exactly in the same extensions.

Proposition 1. Let R be an attack relation satisfying AS, let Σ ⊆ L be a knowledge
base, F = (Arg(Σ),R) and E ∈ Extx(F) with x ∈ {s, ss, p, g, i}. Let a, b ∈ Arg(Σ)
and Supp(a) = Supp(b). Then, a ∈ E if and only if b ∈ E .

We can now show that for attack relations satisfying AS, every extension can be charac-
terised by a collection of sets of formulae.

Proposition 2. Let R be an attack relation satisfying AS, let Σ ⊆ L be a knowledge
base, F = (Arg(Σ),R) and E ∈ Extx(F) with x ∈ {s, ss, p, g, i}. Then: there exists
a unique collection of sets S1, . . . , Sn ⊆ Σ such that:

1. every Si is consistent
2. every Si is independent
3. E = {a ∈ Arg(L) | there exists Si such that Supp(a) = Si}.

430 S. Vesic and L. van der Torre

The significance of the previous result lays in the fact that it is a step forward towards
understanding the expressivity of attack relations satisfying AS. Namely, is shows that
every extension can be fully characterised by a unique collection of consistent and in-
dependent sets. Roughly speaking, every attack relation satisfying AS provides us with
no more or less information than a function which separates Σ in a finite number of
collections of consistent and independent sets.

We can now prove that if an attack relation satisfies CEs, CD, AS and MS, then its ex-
tensions are exactly the sets of arguments constructed from maximal consistent subsets
of the knowledge base. In other words, for any maximal consistent subset S of Σ, the
set of all arguments constructed from S is an extension, and for any extension, there
exists a maximal consistent set S ⊆ Σ such that E = Arg(S).

Proposition 3. Let R be an attack relation satisfying CEs, CD, AS and MS. Then, for
every Σ ⊆ L, extensions of (Arg(Σ),R) under stable semantics are exactly {Arg(S)
| S ∈ MC(Σ)}.

The previous result shows that the attack relations satisfying CEs, CD, AS and MS simply
mimic the result obtained by selecting the maximal consistent subsets of the knowledge
base. This proposition is proved under stable semantics, but we believe that similar
results can be obtained for other acceptability semantics, which will be a part of our
future work.

4 A New Class of Instantiations: Beyond Maximal Consistent Sets

In this section, we show that if conditions AS and MS are dropped, it is possible to define
a new instantiation of Dung’s abstract argumentation theory which captures a result
different from maximal consistent subsets of a knowledge base by and at the same
time: i) uses only the information from the knowledge base (i.e. no external data about
the preferences, values...), ii) and satisfies postulates from the argumentation literature
(e.g. consistency, closure).

In general, it is possible to go from a knowledge base to a set of extensions in two
steps. First, we define a measure, attaching to each element of a knowledge base a value;
second, we define a procedure using that measure to calculate extensions. First, one can
define different measures on the set of formulae of a propositional knowledge base.
Second, once we have a measure, there are still many ways to go from the knowledge
base and the measure to the sets of extensions. We can for example try to define an attack
relation such that an extension contains the elements having a minimal sum of values.
In this paper, we use the approach inspired by the work of Amgoud and Vesic [2]. The
idea is to construct an attack relation which makes extensions contain as much elements
having low values as possible, until a maximal consistent subset of a knowledge base is
reached.

4.1 Shapley Inconsistency Value of a Formula

The main idea behind the class of instantiations we propose is that the arguments made
from “less inconsistent” formulae have “more chance” to be in extensions. This means

Beyond Maxi-Consistent Argumentation Operators 431

that we need a tool for indicating how inconsistent a set or a formulae is. In this paper,
we use Shapley Inconsistency Values, introduced by Hunter and Konieczny [10], to
obtain that measure. This concept for measuring inconsistency is inspired by a Shapley
Value, which was originally developed by Shapley [12] for defining merits of each
individual of a coalition in a cooperative game theory.

The idea behind the class of instantiations we propose is that a user is free to choose
a basic inconsistency measure, under the condition that it satisfies the four properties
we state in the following definition. The corresponding Shapley Inconsistency Value
can then be calculated automatically. Thus, different basic inconsistency measures give
different Shapley Inconsistency Values.

Note that we present only the most important concepts linked to the definition of
a Shapley Inconsistency Value, for more details the reader is referred to the paper in
which they were introduced [10].

Definition 11 (Basic inconsistency measure [10]). A basic inconsistency measure I
is a function that for every finite set of formulae returns a real number and satisfies the
following properties for all finite sets Σ,Σ′ ⊆ L and all formulae ϕ, ψ ∈ L:

– I(Σ) = 0 if and only if Σ is a consistent set (Consistency)
– I(Σ ∪Σ′) ≥ I(Σ) (Monotony)
– If ϕ is a free formula of Σ ∪ ϕ, then I(Σ ∪ ϕ) = I(Σ) (Free Formula Independ.)
– If ϕ � ψ and ϕ �� ⊥, then I(Σ ∪ {ϕ}) ≥ I(Σ ∪ {ψ}) (Dominance)

A basic inconsistency measure gives a number indicating how conflicting a knowledge
base is. Let us give an example of a basic inconsistency measure.

Definition 12 (MI inconsistency measure [10]). The MI inconsistency measure is de-
fined as the number of minimal inconsistent subsets of Σ, i.e.

IMI(Σ) = | MinConf(Σ) |

Example 7. Let Σ = {ϕ,¬ϕ, ϕ → ψ,¬ψ, ω}. Then, MinConf(Σ) = {C1, C2}, with
C1 = {ϕ,¬ϕ} and C2 = {ϕ, ϕ→ ψ,¬ψ}. Thus, MI(Σ) = 2.

The MI inconsistency measure is a basic inconsistency measure.
Originally, Shapley’s idea was to measure the merit of an individual in a coalition.

Here, the idea is to use it to measure the “blame” of a formula for the inconsistency of
a knowledge base. To do that, the identical mathematical expression from Shapley [12]
is used, but with different interpretation.

Definition 13 (Shapley Inconsistency Value [10]). Let Σ ⊆ L and let I be a basic
inconsistency measure. We define the corresponding Shapley Inconsistency Value (SIV),
noted SI , as follows. For every ϕ ∈ Σ:

SI
ϕ(Σ) =

∑
S⊆Σ

(|S| − 1)!(|Σ| − |S|)!
|Σ|! (I(S)− I(S \ {ϕ})).

432 S. Vesic and L. van der Torre

Beside the fact that this measure gives very sensible results, it has also been shown
that the previous formula is the only one which satisfies a set of intuitive axioms for
measuring inconsistency [10]. This SIV gives a value for each formula of the base Σ.
Thus, the previous definition allows us to define to what extent a formula is concerned
with the inconsistencies. Note that for a formula ϕ, SIV depends essentially on the
sum of differences of inconsistencies of all subsets of Σ together and without ϕ. Those
values are then just multiplied with coefficients which depend only on the cardinalities
of the corresponding sets. So, the main intuition can be resumed in: “How much does
inconsistency decrease when ϕ is removed?”

It has been shown [10] that the SIV corresponding to basic inconsistency measure
MI is:

SIMI
ϕ (Σ) =

∑
C∈MinConf(Σ) such that ϕ∈C

1

|C| .

In other words, the inconsistency blame of a formula ϕ is obtained by summing up the
values 1

|C| for all minimal conflicts C such that ϕ ∈ C.

Example 8 (Example 7 Cont.). SIV values of the formulae from Σ are as follows:
SIMI
ϕ (Σ) = 5

6 , SIMI
¬ϕ (Σ) = 1

2 , SIMI

ϕ→ψ(Σ) = 1
3 , SIMI

¬ψ (Σ) = 1
3 , and SIMI

ω (Σ) = 0.

On the one hand, this measure takes into account the fact that a formula being in more
minimal inconsistent sets is more inconsistent (which can be justified by saying that to
obtain consistency, one has to remove at least one formula from every minimal conflict,
thus by removing a formula which is in more minimal conflicts, one obtains consistency
“faster”). On the other hand, this measure takes into account the intuition that, for ex-
ample, a formula is in a minimal inconsistent set having 1000 formulae makes it “less
inconsistent” than if it were in a minimal inconsistent sets having 2 formulae.

However, MI is just one possible basic inconsistency value, which we presented in
order to illustrate the idea. In the rest of the paper, we suppose that an arbitrary basic
inconsistency measure and the corresponding SIV are used.

4.2 Defining Instantiations

In this section, we use the method for measuring inconsistency of a formula to define an
instantiation of Dung’s abstract argumentation theory. Suppose that we are given a basic
inconsistency measure. We can obtain the corresponding SIV, and use it to compare the
formulae of the knowledge base. We first define how to construct a stratified version of
a knowledge base, where the least inconsistent formulae (according to a given measure)
are put in Σ0 and the most inconsistent ones in Σn.

Definition 14 (Inconsistency ordered version of a knowledge base). Let I be a basic
inconsistency measure, and SI the corresponding SIV. Let Σ ⊆ L be a knowledge base.
The inconsistency ordered version of Σ (with respect to I) is a n-tuple (Σ0, . . . , Σn)
such that

Beyond Maxi-Consistent Argumentation Operators 433

– Σ0 ∪ . . . ∪Σn = Σ,
– for every i, j ∈ {0, . . . , n}, if i �= j then Σi ∩Σj = ∅,
– for any two formulae ϕ, ψ ∈ Σ such that ϕ ∈ Σi and ψ ∈ Σj , we have

SI
ϕ(Σ) ≥ SI

ψ(Σ) if and only if i ≥ j.

Example 9 (Example 8 Cont.). The inconsistency ordered version of Σ with respect to
MI is: Σ0 = {ω}, Σ1 = {ϕ→ ψ,¬ψ}, Σ2 = {¬ϕ}, Σ3 = {ϕ}.

This order induces a preference on Σ, which can be used to define a preference relation
on Arg(Σ). Let us first define a level of a formula and of an argument.

Definition 15 (Level of formulae and arguments). Let I be a basic inconsistency
measure, SI the corresponding SIV, let Σ ⊆ L be a knowledge base and (Σ0, . . . , Σn)
its inconsistency ordered version with respect to I . For a formula ϕ ∈ Σ,

level(ϕ) = i if and only if ϕ ∈ Σi.

For an argument a ∈ Arg(Σ),

level(a) = maxϕ∈Supp(a)level(ϕ).

We can now define an attack relation taking into account the level of formulae.

Definition 16 (Direct undercut on the ordered knowledge base). Direct undercut on
the ordered knowledge base (Σ0, . . . , Σn) is a relationRduo defined as: aRduob if and
only if (aRdub and level(a) ≤ level(b)) or (bRdua and level(a) < level(b)).

As an illustration we consider again our running example.

Example 10 (Example 9 Cont.). Let a = ({¬ψ, ϕ → ψ},¬ϕ), b = ({ϕ}, ϕ), and c =
({¬ϕ},¬ϕ). Then, aRdub, level(a) = 1 and level(b) = 3. Thus, aRduob. However,
even if bRduc, we do not have that bRduoc, since level(b) = 3 and level(c) = 2.

Attack relation Rduo satisfies CD.

Proposition 4. For any basic inconsistency measure I and the corresponding SIV SI ,
Rduo is CD.

We can also show that it returns consistent extensions which are closed for � and for
sub-arguments1.

Proposition 5. Let I be a basic inconsistency measure andSI the corresponding Shap-
ley inconsistency measure. Let Σ ⊆ L be a knowledge base and (Σ0, . . . , Σn) its in-
consistency ordered version. Let E be a stable extension of (Arg(Σ),Rduo). Then:

– Base(E) and Concs(E) are consistent sets
– Concs(E) is closed for �, i.e. for every ϕ ∈ L, if Concs(E) � ϕ then ϕ ∈
Concs(E),

1 We suppose the definition of sub-argument by Gorogiannis and Hunter [9].

434 S. Vesic and L. van der Torre

– E is closed for sub-arguments, i.e. if a ∈ E and b is an argument such that Supp(b)
⊆ Supp(a), then b ∈ E .

Note that by following the approach we describe in this section, one obtains a refine-
ment of the approach returning extensions corresponding to the maximal consistent
subsets of the knowledge base. Namely, if a basic inconsistency measure is used to
order the knowledge base, and Rduo is then applied to calculate the extensions under
stable semantics, every extension corresponds to exactly one maximal consistent subset
of Σ, but there are some maximal consistent subsets of Σ which do not correspond to
any extensions. Proposition 6 shows that for every extension, there exists a maximal
consistent subset of Σ corresponding to that extension. Example 11 illustrates the fact
that there can exist maximal consistent sets which do note correspond to any stable
extensions.

Proposition 6. Let I be a basic inconsistency measure and SI the corresponding SIV.
Let Σ ⊆ L be a knowledge base and (Σ0, . . . , Σn) its inconsistency ordered version.
Then:

Exts((Arg(Σ),Rduo)) ⊆ {Arg(S) | S ∈ MC(Σ)}

Example 11 (Example 10 Cont.). The set S = {ϕ, ϕ→ ψ, ω} is a maximal consistent
subset of Σ. Let d = ({¬ψ},¬ψ). It is clear that d /∈ Arg(S). However, no argu-
ment from Arg(S) attacks d with respect to Rduo. There exists only one argument
e = ({ϕ, ϕ → ψ}, ψ), such that e ∈ Arg(S) and eRdud, but level(e) > level(d),
thus e is more inconsistent than d and, according to the definition of Rduo, does not
attack d.

We see from Propositions 4 and 5 that Rduo satisfies CD and CEs. We now show that
this attack relation falsifies AS and MS. To show that Rduo falsifies AS, consider the
following example.

Example 12. Let Σ = {¬ϕ,¬(ϕ∧ψ), ϕ∧ψ}, and let us use the MI inconsistency mea-
sure and the corresponding Shapley Inconsistency ValueSIMI . Then,Σ0 = {¬ϕ,¬(ϕ∧
ψ)} and Σ1 = {ϕ∧ψ}. Let a = ({¬ϕ},¬ϕ), b = ({ϕ∧ψ}, ϕ), and c = ({ϕ∧ψ}, ψ).
Then, Supp(b) = Supp(c), but at the same time aRduob and ¬(aRduoc). Thus, Rduo

does not satisfy AS.

By examining Example 10 one can observe that no argument attacks argument c =
({¬ϕ},¬ϕ) in this example. Thus, Rduo does not satisfy MS.

5 Summary

This paper advances the state of the art in instantiating Dung’s abstract argumentation
theory in several ways. First, we identify four simple conditions describing a wide class
of attack relations based on attacking premises of an argument which return extensions
corresponding to exactly maximal consistent subsets of the propositional knowledge
base. Second, we show that when two of the conditions are dropped, it is possible to
instantiate Dung’s abstract argumentation theory with classical propositional logic and

Beyond Maxi-Consistent Argumentation Operators 435

to obtain a result substantially different from the extensions which correspond to max-
imal consistent subsets of the knowledge base, without having external information
such as preferences or values. We use Shapley Inconsistency Values [10] to measure
inconsistency of a particular formula in the knowledge base and use that value to define
attack relations which select extensions made of less inconsistent formulae. Third, we
show that this whole class of instantiations satisfies the usual rationality postulates: its
extensions have consistent bases, they are closed for sub-arguments, etc.

We identified a new class of inference relations that can be captured in Dung’s the-
ory, which is a first step towards a better understanding of possibilities and constraints
imposed by this abstract theory. Our next goal is to characterise the class of all inference
relations that can be represented in such a way.

To capture different results from simply returning the extensions corresponding to
maximal consistent sets, we use an original attack relation, which has several features
deserving some comments. First, this attack relation is dependent on the knowledge
base Σ. In other words, whether an argument attacks another one cannot be determined
without knowing what knowledge base they come from. This raises some conceptually
and technically interesting questions which will be part of our future work. Second,
the procedure we use rank-orders arguments on the basis of some kind of preference
on the formulae in their supports. Our attack relation in some way “simulates” what is
done in preference-based argumentation [2], and protects less inconsistent arguments
from more inconsistent ones. An important difference is that in the present paper, we
do not suppose any preferences at the input of our system. If the proposed class of
instantiations selects some maximal consistent sets and not all of them, it comes from
the fact that they have different degrees of inconsistency.

Obviously, the result of our work depends on the acceptability semantics used for
evaluating arguments. Our main results were shown under stable semantics. We plan
to examine whether similar results can be obtained under other semantics, and more
generally, to determine the role played by a semantics when capturing different results
as instantiations of Dung’s abstract theory. Our goal is to study a large class of semantics
satisfying some minimal requirements [4] (e.g. conflict-freeness, syntax independence).

This paper shows that the class of attack relations satisfying CE, CD, AS and MS is
rather narrow, in the sense that they always return a result identical to that obtained
from maximal consistent sets of the knowledge base. Thus, if one wants to subsume
richer approaches, at least one of those four conditions has to be dropped. For example,
Section 4 of the current paper uses attack relations satisfying CD and CE and violating AS
and MS. First, note that we present the first attack relation which violates AS and returns
sound results. Considering violating MS, it does not seem surprising, since this condi-
tion basically says that every maximal consistent set should yield a stable extension.
Violating conflict-dependency and keeping some good properties of the system looks
like a difficult task, although we do not claim that is impossible. However, it would be
hard to justify attack relations returning extensions with inconsistent bases. The only
possible explanation for that could be that argumentation is seen just as the first step
of some longer process, and it resolves some (but not necessarily all) conflicts. Then,
another mechanism is used to reason with the set of obtained extensions.

436 S. Vesic and L. van der Torre

References

1. Amgoud, L., Besnard, P.: Bridging the Gap between Abstract Argumentation Systems and
Logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 12–27. Springer,
Heidelberg (2009)

2. Amgoud, L., Vesic, S.: A new approach for preference-based argumentation frameworks.
Annals of Mathematics and Artificial Intelligence (2011)

3. Amgoud, L., Vesic, S.: On the Equivalence of Logic-Based Argumentation Systems. In: Ben-
ferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 123–136. Springer, Heidelberg
(2011)

4. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artificial Intelligence Journal 171, 675–700 (2007)

5. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intel-
ligence Journal 171(5-6), 286–310 (2007)

6. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based en-
tailment. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), pp. 1443–1448 (1995)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–
357 (1995)

8. Gabbay, D., Pigozzi, G., Rodrigues, O.: Common foundations for belief revision, belief
merging and voting. In: Formal Models of Belief Change in Rational Agents (Dagstuhl Sem-
inar Proceedings) (2007)

9. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic argu-
ments: Postulates and properties. Artificial Intelligence Journal 175, 1479–1497 (2011)

10. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artifi-
cial Intelligence Journal 174(14), 1007–1026 (2010)

11. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosoph-
ical Logic, vol. 6, pp. 287–393. Kluwer Academic Publishers, Dordrecht (2002)

12. Shapley, L.: A value for n-person games. In: Contributions to the Theory of Games II, pp.
307–317. Princeton University Press (1953)

Reasoning about Agent Programs
Using ATL-Like Logics

Nitin Yadav and Sebastian Sardina	

RMIT University, Melbourne, Australia

Abstract. We propose a variant of Alternating-time Temporal Logic (ATL)
grounded in the agents’ operational know-how, as defined by their libraries of
abstract plans. Inspired by ATLES, a variant itself of ATL, it is possible in our
logic to explicitly refer to “rational” strategies for agents developed under the
Belief-Desire-Intention agent programming paradigm. This allows us to express
and verify properties of BDI systems using ATL-type logical frameworks.

Keywords: Agent Programming, Reactive plans, ATL, Model Checking.

1 Introduction

The formal verification of agent-oriented programs requires logic frameworks capable
of representing and reasoning about agents’ abilities and capabilities, and the goals they
can feasibly achieve. In particular, we are interested here in programs written in the fam-
ily of Belief-Desire-Intention (BDI) agent programming systems [5, 6, 18], a popular
paradigm for building multi-agent systems. Traditional BDI logics based on CTL (e.g.,
[17]) are generally too weak for representing ability; their success has primarily been
in defining “rationality postulates,” i.e., constraints on rational behaviour. Further, such
logics do not encode agents’ capabilities (as represented by their plan libraries) and
thereby leave a sizable gap between agent programs and their formal verification.

Recent work (e.g., [1, 2, 9]) has better bridged the gap between formal logic and
practical programming by providing an axiomatisation of a class of models that is de-
signed to closely model a programming framework. However, this is done by restricting
the logic’s models to those that satisfy the transition relations of agents’ plans, as de-
fined by the semantics of the programming language itself. In such a framework, it is
not possible to reason about the agent’s know-how and what the agent could achieve if
it had specific capabilities. It is also not possible to reason about coalition of agents.

Our aim thus is to define a framework, together with model checking techniques,
that will allow us to speculate about a group of agents’ capabilities and what they can
achieve with such capabilities under the BDI paradigm, which enables abstract plans
written by programmers to be combined and used in real-time under the principles of

This requires the ability to represent capabilities directly in our logic. To that end,
we adapt ATLES, a version of ATL (Alternating-time Temporal Logic) [3] with Ex-
plicit Strategies [20], to our purpose. ATL is a logic for reasoning about the ability of

� We would like to thank Lawrence Cavedon for earlier discussions on the topic of this paper.
We acknowledge the support of the Australian Research Council under grant DP120100332.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 437–449, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

438 N. Yadav and S. Sardina

agent coalitions in multi-player game structures. This is achieved by reasoning about
strategies (and their success) employed by teams of agents: 〈〈A〉〉ϕ expresses that the
coalition team of agents A has a joint strategy for guaranteeing that the temporal prop-
erty ϕ holds. Walther et al. [20], standard ATL does not allow agents’ strategies to be
explicitly represented in the syntax of the logic. They thus rectified this shortcoming
by defining ATLES, which extends ATL by allowing strategy terms in the language:
〈〈A〉〉ρϕ holds if coalition A has a joint strategy for ensuring ϕ, when some agents are
committed to specific strategies as specified by so-called commitment function ρ.

In this paper, we go further and develop a framework—called BDI-ATLES—in
which the strategy terms are tied directly to the plans available to agents under the no-
tion of practical reasoning embodied by the BDI paradigm [6, 18]: the only strategies
that can be employed by a BDI agent are those that ensue by the (rational) execution of
its predefined plans, given its goals and beliefs. The key construct 〈〈A〉〉ω,�ϕ in the new
framework states that coalitionA has a joint strategy for ensuring ϕ, under the assump-
tions that some agents in the system are BDI-style agents with capabilities and goals as
specified by assignmentsω and $, respectively. For instance, in the Gold Mining domain
from the International Agent Contest,1 one may want to verify if two miner agents pro-
grammed in a BDI language can successfully collect gold pieces when equipped with
navigation and communication capabilities and want to win the game, while the oppo-
nent agents can perform any physically legal action. More interesting, a formula like
〈〈A〉〉∅,∅ϕ ⊃ 〈〈A〉〉ω,�ϕ can be used to check whether coalition A has enough know-how
and motivations to carry out a task ϕ that is indeed physically feasible for the coalition.

We observe that the notion of “rationality” used in this work is that found in the
literature on BDI and agent programming, rather than that common in game-theory
(generally captured via solution concepts). As such, rationality shall refer from now on
to reasonable constraints on how the various mental modalities—e.g., beliefs, intention,
goals—may interact. In particular, we focus on the constraint that agents select actions
from their know-how in order to achieve their goals in the context of their beliefs.

Finally, we stress that this work aims to contribute to the agent-oriented programing
community more than to the (ATL) verification one. Indeed, our aim is to motivate the
former to adopt well-established techniques in game-theory for the effective verification
of their “reactive” style agent programs.

2 Preliminaries

2.1 ATL/ATLES Logics of Coalitions

Alternating-time Temporal Logic (ATL) [3] is a logic for reasoning about the ability of
agent coalitions in multi-agent game structures. ATL formulae are built by combining
propositional formulas, the usual temporal operators—namely,© (“in the next state”),� (“always”), � (“eventually”), and U (“strict until”)—and a coalition path quantifier
〈〈A〉〉 taking a set of agents A as parameter. As in CTL, which ATL extends, temporal
operators and path quantifiers are required to alternate. Intuitively, an ATL formula
〈〈A〉〉φ, where A is a set of agents, holds in an ATL structure if by suitably choosing

1 http://www.multiagentcontest.org/

http://www.multiagentcontest.org/

Reasoning about Agent Programs Using ATL-Like Logics 439

their moves, the agents in A can force φ true, no matter how other agents happen to
move. The semantics of ATL is defined in so-called concurrent game structures where,
at each point, all agents simultaneously choose their moves from a finite set, and the next
state deterministically depends on such choices. More concretely, an ATL structure is
a tuple M = 〈A, Q,P ,Act, d,V , σ〉, where A = {1, . . . , k} is a finite set of agents,
Q is the finite set of states, P is the finite set of propositions, Act is the set of all
domain actions, d : A × Q �→ 2Act indicates all available actions for an agent in a
state, V : Q �→ 2P is the valuation function stating what is true in each state, and
σ : Q × Act|A| �→ Q is the transition function mapping a state q and a joint-move
a ∈ D(q)—where D(q) = ×|A|

i=1d(i, q) is the set of legal joint-moves in q —to the
resulting next state q′.

A path λ = q0q1 · · · in a structure M is a, possibly infinite, sequence of states such
that for each i ≥ 0, there exists a joint-move ai ∈ D(qi) for which σ(qi, ai) = qi+1.
We use λ[i] = qi to denote the i-th state of λ, Λ to denote the set of all paths in M,
and Λ(q) to denote those starting in q. Also, |λ| denotes the length of λ as the number
of state transitions in λ: |λ| = � if λ = q0q1 . . . q
, and |λ| = ∞ if λ is infinite. When
0 ≤ i ≤ j ≤ |λ|, then λ[i, j] = qiqi+1 . . . qj is the finite subpath between the i-th and
j-th steps in λ. Finally, a computation path in M is an infinite path in Λ.

To provide semantics to formulas 〈〈·〉〉ϕ, ATL relies on the notion of agent strategies.
Technically, an ATL strategy for an agent agt is a function fagt : Q+ �→ Act, where
fagt(λq) ∈ d(agt, q) for all λq ∈ Q+, stating a particular action choice of agent agt at
path λq. A collective strategy for group of agents A ⊆ A is a set of strategies FA =
{fagt | agt ∈ A} providing one specific strategy for each agent agt ∈ A. For a collective
strategy FA and an initial state q, it is not difficult to define the set out(q, FA) of all pos-
sible outcomes of FA starting at state q as the set of all computation paths that may
ensue when the agents in A behave as prescribed by FA, and the remaining agents
follow any arbitrary strategy [3, 20]. The semantics for the coalition modality is then
defined as follows (here φ is a path formula, that is, it is preceded by©, �, or U , and
M, λ |= φ is defined in the usual way [3]):

M, q |= 〈〈A〉〉φ iff there is a collective strategy FA such that for all computations
λ ∈ out(q, FA), we have M, λ |= φ.

The coalition modality only allows for implicit (existential) quantification over strate-
gies. In some contexts, though, it is important to refer to strategies explicitly in the
language, e.g., can a player win the game if the opponent plays a specified strategy? To
address this limitation, Walther et al. [20] proposed ATLES, an extension of ATL where
the coalition modality is extended to 〈〈A〉〉ρ, where ρ is a commitment function, that is,
a partial function mapping agents to so-called strategy terms. Formula 〈〈A〉〉ρφ thus
means that “while the agents in the domain of ρ act according to their commitments,
the coalition A can cooperate to ensure φ as an outcome.”

The motivation for our work stems from the fact that ATLES is agnostic on the
source of the strategic terms: all meaningful strategies have already been identified. In
the context of multi-agent systems, it may not be an easy task to identify those strate-
gies compatible with the agents’ behaviors, as those systems are generally built using
programming frameworks [5] that are very different from ATL(ES).

440 N. Yadav and S. Sardina

2.2 BDI Programming

The BDI agent-oriented programming paradigm is a popular and successful approach
for building agent systems, with roots in philosophical work on rational action [6] and
a plethora of programming languages and systems available, such as JACK, JASON,
JADEX, 2APL [5], and GOAL [11], among others.

A typical BDI agent continually tries to achieve its goals (or desires) by selecting an
adequate plan from its plan library given its current beliefs, and placing it into the in-
tention base for execution. The agent’s plan library Π encodes the standard operational
knowledge of the domain by means of a set of plan-rules (or “recipes”) of the form
φ[α]ψ: plan α is a reasonable plan to adopt for achieving ψ when (context) condition φ
is believed true. For example, walking towards location x from y is a reasonable strat-
egy, if there is a short distance between x and y (and the agent wants to be eventually at
location x). Conditions φ and ψ are (propositional) formulas talking about the current
and goal states, respectively. Though different BDI languages offer different constructs
for crafting plans, most allow for sequences of domain actions that are meant to be
directly executed in the world (e.g., lifting an aircraft’s flaps), and the posting of (in-
termediate) sub-goals !ϕ (e.g., obtain landing permission) to be resolved. The intention
base, in turn, contains the current, partially executed, plans that the agent has already
committed to for achieving certain goals. Current intentions being executed provide a
screen of admissibility for attention focus [6].

Though we do not present it here for lack of space, most BDI-style programming
languages come with a clear single-step semantics basically realizing [18]’s execution
model in which (rational) behavior arises due to the execution of plans from the agent’s
plan library so as to achieve certain goals relative to the agent’s beliefs.

3 BDI-ATLES: ATL for BDI Agents

Here we develop an ATL(ES)-like logic that bridges the gap between verification frame-
works and BDI agent-oriented programming languages. The overarching idea is for BDI
programmers to be able to encode BDI applications in ATL in a principled manner.

Recall that ATL(ES) uses strategies to denote the agent’s choices among possible
actions. For a BDI agent these strategies are implicit in her know-how. In particular, we
envision BDI agents defined with a set of goals and so-called capabilities [7, 16]. Gen-
erally speaking, a capability is a set/module of procedural knowledge (i.e., plans) for
some functional requirement. An agent may have, for instance, the Navigate capability
encoding all plans for navigating an environment. Equipped with a set of capabilities, a
BDI agent executes actions as per plans available so as to achieve her goals, e.g., explor-
ing the environment. In this context, the BDI developer is then interested in what agents
can achieve at the level of goals and capabilities. Inspired by ATLES, we develop a
logic that caters for this requirement without departing much from the ATL framework.

In this work, we shall consider plans consisting of single actions, that is, given BDI
plan for the form φ[α]ψ, the body of the plan α consists of one primitive action. Such
plans are akin to those in the GOAL agent programming language [11], as well as
universal-plans [19], and reactive control modules [4]. Let ΠΠΠP

Act be the (infinite) set
of all possible plan-rules given a set of actions Act and a set of domain propositionsP .

Reasoning about Agent Programs Using ATL-Like Logics 441

3.1 BDI-ATLES Syntax

The language of BDI-ATLES is defined over a finite set of atomic propositions P ,
a finite set of agents A, and a finite set of capability terms C available in the BDI
application of concern. Intuitively, each capability term c ∈ C (e.g., Navigate) stands
for a plan library Πc (e.g., ΠNavigate). As usual, a coalition is a set A ⊆ A of agents.
A capability assignment ω consists of a set of pairs of agents with their capabilities of
the form 〈agt : Cagt〉, where agt ∈ A and Cagt ⊆ C. A goal assignment $, in turn,
defines the goal base (i.e., set of propositional formulas) for some agents, and is a set
of tuples of the form 〈agt : Gagt〉, where agt ∈ A and Gagt is a set of boolean formulas
over P . We use Aω to denote the set of agents for which their capabilities are defined
by assignment ω, that is, Aω = {agt | 〈agt : Cagt〉 ∈ ω}. SetA� is defined analogously.

The set of BDI-ATLES formulas is then exactly like that of ATL(ES), except that
coalition formulas are now of the form 〈〈A〉〉ω,�ϕ, where ϕ is a path formula (i.e., it is
preceded by©, �, or U), A is a coalition, and ω and $ range over capability and goal
assignments, respectively, such that Aω = A�. Its intended meaning is as follows:

〈〈A〉〉ω,�ϕ expresses that coalition of agents A can jointly force temporal con-
dition ϕ to hold when BDI agents in Aω (orA�, since A� = Aω) are equipped
with capabilities as per assignment ω and (initial) goals are per assignment $.

Notice that we require, in each coalition (sub)formula, that the agents for which capabil-
ities and goals are assigned to be the same. This enforces the constraint that BDI-style
agents have both plans and goals. Hence, a formula of the form 〈〈A〉〉∅,{〈a1 :{γ}〉}ϕwould
not be valid, as agent a1 has one goal (namely, to bring about γ), but its set of plans is
not defined—we cannot specify what its rational behavior may be. This contrasts with
formula 〈〈A〉〉{〈a1 :∅〉},{〈a1:{γ}〉}ϕ, a valid formula in which agent a1 is assumed to have
no plans (i.e., agent has empty know-how) and one goal.

Example 1. Consider the following simplified instance of the gold mining domain with
three locations A, B and C, a gold piece 5 at location C, the depot located at B (rect-
angle location), and two players Ag (BDI agent) and En (enemy):

EnA Ag
B

� C

Players can move LEFT/RIGHT, PICK/DROP gold, or remain still by executing special
action NOOP. PropositionXY , whereX ∈ {Ag,En} and Y ∈ {A,B,C}, encodes that
playerX is at location Y ; whereas propositionsGA,GB ,GC ,GAg, andGEn denote that
the gold is at location A/B/C or being held by agent Ag/En, respectively. The depot is
assumed to be always at B and hence is not represented explicitly.

The winning condition for player Ag is ψWIN= GB ∧ AgB : the player wins when
collocated with gold at the depot.

Among the many capabilities available encoding the know-how information of the
domain, we consider the following three. The Collect capability includes plans to pick
gold, such as AgC ∧GC [PICK]GB : if gold needs to be at B and agent is at C, where
there is indeed gold, then execute the PICK action. Similarly, capability Deposit con-
tains plans like GAg ∧ AgB[DROP]GB , for example, to allow dropping of gold at the
desired location. Lastly, capability Navigate has plans for moving around, such as
AgC [LEFT]AgB to move left from location C to (desired destination) B.
�

442 N. Yadav and S. Sardina

AgB , EnA

GC

q0

AgC , EnB

GC

q1

AgC , EnC

GAg

q2

AgB , EnC

GAg

q3

AgB , EnC

GB

q4

AgC , EnC

GC

q5

AgC , EnC

GEn

q6

AgC , EnB

GEn

q7

AgC , EnB

GB

q8

AgB , EnB

GC

q9

〈r, r〉 〈p, r〉 〈l, n〉 〈d, n〉

〈n,n〉
〈p, p〉

〈n, r〉

〈n, p〉 〈n, l〉 〈n, d〉

〈n, n〉

〈n, r〉

〈r, r〉

〈n, l〉
〈n, l〉

(a) A section of the BDI-ATLES alternating model

q0

q1 q2 q3 q4

q9 q5 q1 q2

λ+
1

λ+
2

f1
Ag ∈ ΣAg

Π,G

f2
Ag �∈ ΣAg

Π,G

Ag B
∧G

C
[r
]G

B

AgC ∧GC [p]GB

AgC ∧GAg[l]AgB

AgB ∧GAg[d]GB

r

p l d

n

r n p

(b) Traces λ+
1 and λ+

2 resultant from
strategies f1

Ag and f2
Ag, respectively

Fig. 1. A fragment of a Gold domain model and a picture showing rational traces and strategies.
Actions LEFT, RIGHT, PICK, DROP, and NOOP are abbreviated with their first letter.

The remaining of the section involves providing the right interpretation to such formu-
las, under the assumption that agents act rationally as per the BDI paradigm.

3.2 BDI-ATLES Semantics

A BDI-ATLES concurrent game structure is a tupleM=〈A, Q,P ,Act, d,V , σ, Θ〉, with:

– A, Q, P , Act, d, V and σ are as in ATL(ES).
– There is a distinguished dummy action NOOP ∈ Act such that NOOP ∈ dagt(q) and
σ(q, 〈NOOP, . . . , NOOP〉) = q, for all agt ∈ A and q ∈ Q, that is, NOOP is always
available to all agents and the system remains still when all agents perform it.

– Capability function Θ : C �→ F(ΠΠΠP
Act) maps capability terms to their (finite) set of

plans. (Here, F(X) denotes the set of all finite subsets X .)

Example 2. Figure 1(a) shows a partial model for the gold game. The game starts at
state q0, with players Ag and En located at B and A, resp., and gold present at C.
From there, player Ag has a winning strategy: reach the gold earlier and deposit it in
the depot. This can be seen in path q0q1q2q3q4. However, this is possible only when the
agent Ag is indeed equipped with all three capabilities. If, on the other hand, the agent
lacks capability Collect, for instance, then player En may actually manage to win the
game, as evident from the path q0q1q5q6q7q8.
�

BDI-ATLES models are similar to ATLES ones, except that capability, rather than strat-
egy term, interpretations are used. In a nutshell, the challenge thus is to characterize
what the underlying “low-level” ATL strategies for agents with certain capabilities and
goals are. We call such strategies rational strategies, in that they are compatible with
the standard BDI rational execution model [18]: they represent the agent acting as per
her available plans in order to achieve her goals in the context of her beliefs.

So, given an agent agt ∈ A, a plan-library Π , and a goal base G, we define Σagt
Π,G

to be the set of standard ATL strategies for agent agt in M that are rational strategies
when the agent is equipped with plan-library Π and has G as (initial) goals, that is,
those ATL strategies in which the agent always chooses an action that is directed by
one of its available plans in order to achieve one of its goals in the context of its current
beliefs. The core idea behind defining set Σagt

Π,G is to identify those “rational traces” in
the structure that are compatible with the BDI deliberation process in which the agent

Reasoning about Agent Programs Using ATL-Like Logics 443

acts as per her goals and beliefs. Traces just generalize paths to account for the actions
performed at each step, and are hence of the form λ+ = q0 a1 q1 · · · a
 q
 such that
q0qq · · · q
 is a (finite) path. Rational strategies, then, are those that only yield rational
traces. Technically, we define rational traces in three steps. First, we define a goal-
marking function g(λ+, i) denoting the “active” goal base of the agent at the i-th stage
of trace λ+. Basically, a goal-marking function keeps track of the goals that the agent
has already achieved at each stage in a trace. Second, we define Exec(φ[α]ψ, g, λ+)
as the set of indexes (i.e., stages) in trace λ+ where the plan φ[α]ψ may have been
executed by the agent: the plan’s precondition φ was true, ψ was an active goal of the
agent (as directed by goal-marking function g), and α was indeed performed. Finally,
we say a trace λ+ is deemed “rational” if at every moment in the run the agent executed
one of its plans. That is, for every index i, it is the case that i ∈ Execagt(φ[α]ψ, g, λ

+),
for some plan φ[α]ψ in her know-how library. Finally, we use Σagt

Π,G to denote the set
of all ATL strategies whose executions always yield rational traces. The laborious, and
arguably boring, technical details of all the above steps and notions can be found in [21].

Example 3. Figure 1(b) depicts two possible traces λ+1 and λ+2 (for agent Ag) com-
patible with strategies f1

Ag and f2
Ag, resp. Trace λ+1 is due to the agent executing ac-

tions as per its applicable plans, as evident from the plan labeling. For example, at
state q1, the agent is in a gold location and hence executes the pick action as per plan
AgC ∧GC [PICK]GB . Consequently the strategy f1

Ag is rational, as it yields rational trace

λ+1 . Trace λ+2 on the other hand does not obey the BDI rationality constraints (e.g., the
agent remains still in location B, despite an applicable plan being available).
�
Assuming that set Σagt

Π,G of rational strategies has been suitably defined, we are ready
to detail the semantics for formulas of the form 〈〈A〉〉ω,�ϕ. Following ATLES we first
extend the notion of a joint strategy for a coalition to that of joint strategy under a
given capability and goal assignment. So, given a capability (goal) assignment ω ($)
and an agent agt ∈ Aω (agt ∈ A�), we denote agt’s capabilities (goals) under ω ($)
by ω[agt] ($[agt]). Intuitively, an 〈ω, $〉-strategy for coalition A is a joint strategy for
A such that (i) agents in A ∩ Aω only follow “rational” (plan-goal compatible) strate-
gies as per their ω-capabilities and $-goals; and (b) agents in A\Aω follow arbitrary
strategies. Formally, an 〈ω, $〉-strategy for coalition A (with Aω = A�) is a collective
strategy FA for agents A such that for all fagt ∈ FA with agt ∈ A ∩ Aω , it is the case
that fagt ∈ Σagt

Π,G , where Π = ∪c∈ω[agt]Θ(c) and G = $[agt]. Note no requirements are
asked on the strategies for the remaining agents A\Aω, besides of course being legal
(ATL) strategies. Also, whereas ATLES ρ-strategies are collective strategies including
all agents in the domain of commitment function ρ, our 〈ω, $〉-strategies are collective
strategies for the coalition of concern only. This is because commitment functions in-
duce deterministic agent behaviors, whereas capabilities and goals assignments induce
non-deterministic ones. We will elaborate on this issue below.

Using the notions of 〈ω, $〉-strategies and that of possible outcomes for a given col-
lective strategy from ATL (refer to function out(·, ·) from Preliminaries), we are now
able to state the meaning of BDI-ATLES (coalition) formulas:2

2 As with ATL(ES), ϕ ought to be a path formula and is interpreted in the usual manner. We
omit the other ATL-like cases for brevity; see [20].

444 N. Yadav and S. Sardina

M, q |= 〈〈A〉〉ω,�ϕ iff there is a 〈ω, $〉-strategy FA such that for all 〈ω, $〉-strategies
FAω\A forAω \A, it is the case thatM, λ |= ϕ, for all paths λ ∈ out(q, FA ∪FAω\A).

Intuitively, FA stands for the collective strategy of agents A guaranteeing the satisfac-
tion of formula ϕ. Because FA is a 〈ω, $〉-strategy, some agents in A—those whose
capabilities and goals are defined by ω and $, resp.—are to follow strategies that corre-
spond to rational executions of its capabilities. At the same time, because other agents
outside the coalition could have also been assigned capabilities and goals, the chosen
collective strategyFA needs to work no matter how such agents (namely, agentsAω\A)
behave, as long as they do it rationally given their plans and goals. That is, FA has to
work with any rational collective strategy FAω\A. Finally, the behavior of all remaining
agents—namely those in A \ (A ∪ Aω)—are taken into account when considering all
possible outcomes, after all strategies for agents in A ∪Aω have been settled.

While similar to ATLES coalition formulas 〈〈A〉〉ρϕ, BDI-ATLES coalition formulas
〈〈A〉〉ω,�ϕ differ in one important aspect that makes its semantics more involved. Specif-
ically, whereas commitment functions ρ prescribe deterministic behaviors for agents,
capabilities and goals assignments yield multiple potential behaviors for the agents of
interest. This nondeterministic behavior stems from the fact that BDI agents can choose
what goals to work on at each point and what available plans to use for achieving such
goals. Technically, this is reflected in the strategies for each agent in (Aω \ A)—those
agents with assigned capabilities and goals but not part of the coalition—cannot be (ex-
istentially) considered together with those of agents in A or (universally) accounted for
via the possible outcomes function out(·, ·), as such function puts no rationality con-
straints on the remaining (non-committed) agents. Thus, whereas agents in A ∩ Aω

are allowed to select one possible rational behavior, all rational behaviors for agents in
(Aω \A) need to be taken into consideration.

We close this section by noting an important, and expected, monotonicity property
of BDI-ATLES w.r.t. changes in the goals and plans of agents.

Proposition 1. |= 〈〈A〉〉ω,�ϕ ⊃ 〈〈A′〉〉ω′,�′ϕ holds, provided that:

– A ⊆ A′, that is, the coalition is not reduced;
– ω[agt] ⊆ ω′[agt] and $[agt] ⊆ $′[agt], for all agt ∈ Aω ∩ A, that is, the goals and

capabilities of those BDI agents in the coalition are not reduced; and
– Aω \ A ⊆ Aω′ \ A′, that is, the set of non BDI agents outside the coalition is not

reduced (but could be new BDI agents outside the coalition);
– ω′[agt] ⊆ ω[agt] and $′[agt] ⊆ $[agt], for all agt ∈ Aω \ A, that is, the goals and

capabilities of those BDI agents outside the coalition are not augmented.

Informally, augmenting the goals/plans of agents in a coalition does not reduce the abil-
ity of agents. This is because a collective 〈ω, $〉-strategy for coalition A to bring about a
formula would still work if more goals and plans are given to the agents in the coalition
(second condition). Observe, on the other hand, that augmenting the goals or plans of
those agents outside the coalition may yield new behavior that can indeed interfere with
the coalition’s original abilities (last condition). This even includes turning BDI agents
into non BDI agents (third condition). Of course, as in ATL, enlarging the coalition does
not reduce ability (first condition).

Reasoning about Agent Programs Using ATL-Like Logics 445

foreach ϕ′ in Sub(ϕ) w.r.t.M = 〈A, Q,P ,Act, d,V, σ, Θ〉 do
case ϕ′ = p : [ϕ′]M = V(p);
case ϕ′ = ¬θ : [ϕ′]M = ([TRUE]M \ [θ]M);
case ϕ′ = θ1 ∨ θ2 : [ϕ′]M = [θ1]M ∪ [θ2]M;
case ϕ′ = 〈〈A〉〉ω,©θ : [ϕ′]M = ws(Pre(A,ω,Θ, [θ]M) ∩ ���) ;
case ϕ′ = 〈〈A〉〉ω,�θ : ρ = [TRUE]M	 ; τ = [θ]M	 ;

while ρ �⊆ τ do ρ = τ ; τ = Pre(A,ω,Θ, ρ) ∩ [θ]M	 od;
[ϕ′]M = ws(ρ ∩ ���) ;

case ϕ′ = 〈〈A〉〉ω,θ1Uθ2 : ρ = [FALSE]M	 ; τ = [θ2]M	 ;
while τ �⊆ρ do ρ = ρ∪τ ; τ = Pre(A,ω,Θ, ρ)∩[θ1]M	 od;
[ϕ′]M = ws(ρ ∩ ���) ;

od;
return [ϕ′]M;

Fig. 2. BDI-ATLES symbolic model checking

4 BDI-ATLES Model Checking

Given a BDI-ATLES model M and a formula ϕ, the model checking algorithm for
BDI-ATLES computes the set of states in M that satisfy ϕ. To that end, the algorithm
has to take into account the rational choices of each BDI agent, that is, those choices
that are the consequence of the agent’s goals and capabilities specified by functions $
and ω in formulae of the form 〈〈A〉〉ω,�ϕ. Roughly speaking, the algorithm restricts, at
each step, the options of BDI agents to their applicable plans. We start by extending the
model M to embed the possible goals (based on the goal assignment) of BDI agents
into each state, and then then discuss the model checking algorithm and its complexity.

So, given a BDI-ATLES modelM=〈A, Q,P ,Act, d,V , σ, Θ〉 and a goal assignment
$, the goal-extended model is a model M�=〈A, Q�,P ,Act, d�,V�, σ�, Θ〉, where:

– Q� ⊆ Q ×
∏

agt∈A	
2�[agt] is the set of extended states, now accounting for the

possible goals of BDI agents. When q� = 〈q, g1, . . . , g|A	|〉 ∈ Q�, where q ∈ Q
and gi ⊆ $[agti], is an extended state, we use ws(q�) = q and gl(agti, q�) = gi
to project M’s world state and agti’s goals. To enforce belief-goal consistency
we require no agent ever wants something already true: there are no q� ∈ Q�,
agt ∈ A�, and formula γ such that V(ws(q�)) |= γ and γ ∈ gl(agt, q�).

– V�(q�) = V(ws(q�)), for all q� ∈ Q�, that is, state evaluation remains unchanged.
– d�(agt, q�) = d(agt,ws(q�)), that is, physical executability remains unchanged.
– σ�(q�, a) = 〈q′, g′1, . . . , g′|A	|〉, where q′ = σ(ws(q�), a) and g′i = gl(agti, q�) \
{γ | γ ∈ gl(agti, q�),V(q′) |= γ}, is the transition function for the extended model.

Model M� is like M though suitably extended to account for agents’ goals under the
initial goal-assignment $. Observe that the transition relation caters for persistence of
goals as well as dropping of achieved goals. Indeed, the extended system will never
evolve to an (extended) state in which some agent has some true fact as a goal. Hence,
the transition relation is well-defined within Q� states. More interesting, the extended
model keeps the original physical executability of actions and, as a result, it accom-
modates both rational and irrational paths. However, it is now possible to discriminate
between them, as one can reason about applicable plans in each state. Finally, it is not

446 N. Yadav and S. Sardina

difficult to see that the extended model is, in general, exponentially larger than the orig-
inal one with respect to the number of goals maxagt∈A(|$[agt]|) and agents |A�|.

As standard, we denote the states satisfying a formula ϕ by [ϕ]. When the model is
not clear from the context, we use [ϕ]M to denote the states in M that satisfy the for-
mula ϕ. We extend ws(·) projection function to sets of extended states in the straight-
forward sense, that is, ws(S) =

⋃
q∈S{ws(q)}. Thus, ws([ϕ]M) denotes the set of

all world states in M that are part of an extended state in M� satisfying the formula
ϕ. Also, �$� denotes the set of extended states where the agents’ goals are as per goal
assignment $; formally, �$� = {q | q ∈ Q�, ∀agt ∈ A� : gl(agt, q) = $[agt]}.

Figure 2 shows the model checking algorithm for BDI-ATLES. It is based on the
symbolic model checking algorithm for ATL [3] and ATLES [20]. The first three cases
are handled in the same way as in ATL(ES). To check the BDI-ATLES coalition formu-
lae 〈〈A〉〉ω,�ϕ, we extend the model as above (relative to the formula’s goal assignment
$), and then check the plain ATL coalition formula 〈〈A〉〉ϕ in such extended model.
Note that only the set of states having the goals as per the initial goal assignment are
returned—all agents’ initial goals are active in the first state of any rational trace.

Unlike standard ATL model checking, we restrict the agents’ action choices as per
their capabilities. This is achieved by modifying the usual pre-image function Pre(·) to
only take into account actions resultant from agents’ applicable plans. More concretely,
Pre(A,ω,Θ, ρ) is the set of (extended) states from where agents in coalition A can
jointly force the next (extended) state to be in set ρ no matter how all other agents (i.e.,
agents inA\A) may act and provided all BDI-style agents (i.e., agents with capabilities
defined under ω and Θ) behave as such. Formally:

Pre(A,ω,Θ, ρ) = {q | ∀i ∈ A, ∃ai ∈ d+� (i, q, ω,Θ),
∀j ∈ A\A, ∀aj ∈ d+� (j, q, ω,Θ) :σ�(q, 〈a1, . . . , a|A|〉)∈ρ},

where auxiliary function d+� (agt, q, ω,Θ) denotes the set of all actions that an agent agt
may take in state q under capabilities as per defined in ω and Θ:

d+� (agt, q, ω,Θ) =

⎧⎪⎪⎨⎪⎪⎩
d�(agt, q) if agt �∈ Aω

d�(agt, q) ∩ dBDI(agt, q,
⋃

c∈ω[agt]

Θ(c)) if agt ∈ Aω

An action belongs to set d+� (agt, q, ω,Θ) if it is physically possible (i.e., it belongs to
d�(agt, q)), and BDI-rational whenever the agent in question is a BDI agent. To capture
the latter constraint, set dBDI(agt, q,Π) is defined as the set of all rational actions for
agent agt in (extended) state q when the agent is equipped with the set of plans Π :

dBDI(agt, q,Π)=

{
{a | φ[a]ψ∈Δ(agt, q,Π)} if Δ(agt, q,Π) �= ∅
{NOOP} otherwise

where Δ(agt, q,Π)={φ[a]ψ ∈ Π | V(q) |= φ, γ ∈ gl(agt, q), ψ |= γ} is the set of all
applicable plans in Π at state q. So, summarising, function Pre(·, ·, ·, ·) is an extension
of the standard ATL Pre(·) function in which the agents that have goals and capabilities
defined—the BDI agents—do act according to those goals and capabilities.

Reasoning about Agent Programs Using ATL-Like Logics 447

It is clear that the modified version of Pre(·) function does not alter the complexity
of the underlying ATL-based algorithm. In fact, the variation is similar to that used for
model checking ATLES, except that the action filtering does not come from strategy
terms, but from agent plans. This means that the algorithm runs in polynomial time
w.r.t. the size of model M� (which is exponential w.r.t. the original model M).

Theorem 1. Model checking a BDI-ATLES formula 〈〈A〉〉ω,�ϕ (against a model M)
can be done in exponential time on the number of agents |A| and goals maxa∈A(|$[a]|).
Of course, should we have included agents’ goals explicitly in models (rather than using
a succinct representation), as done with intentions in ATL+intentions (ATLI) [15], the
model checking problem would retain ATL’s polynomial complexity. The same would
apply if one just generalized ATLES to explicitly require all rational-strategies be part
of the model. The fact is, however, that generating such rational strategies by hand
(to include them in models) will be extremely involved, even for small problems. In
addition, our approach decouples agent’s mental attitudes from the physical ATL-like
model, and enables reasoning at the level of formulae without changing the model.

We shall note that the exponentiality may not show up in certain applications. In
many cases, for example, one is interested in just one BDI agent acting in an environ-
ment. In that case, only such agent will be ascribed goals and capabilities. Since it arises
due to agents with goals, the exponential complexity would therefore only be on the
number of goals for such agent. Similarly, in situations where all agents have a single
goal to achieve (e.g., to pick gold), the model checking would then be exponential on
the number of BDI agents only. In the next section we shall provide one interpretation
of goals for which the model checking problem remains polynomial.

5 BDI-ATLES with Maintenance Goals

So far, we have worked on the assumption that agents have a set of “flat” achievement
goals, goals that the agent needs to eventually bring about. One can however consider
alternative views of goals that could suit different domains. In particular, we have con-
sidered achievement goals with priorities and repetitive/reactive maintenance goals. In
the first case, the framework can be easily generalized to one in which goals can be
prioritized without an increase in complexity [21].

A more promising case arises when goals are given a maintenance interpretation, that
is, (safety) properties that ought to be preserved temporally. For example, a Mars robot
has the goal to always maintain the fuel level above certain threshold. We focus our
attention on the so-called repetitive or reactive maintenance goals [10, 12]: goals that
ought to be restored whenever “violated.” Should the fuel level drop below the thresh-
old, the robot will act towards re-fueling. This type of goals contrast with proactive
maintenance goals [12], under which the agent is expected to proactively avoid situa-
tions that will violate the goal. The fact is, however, that almost all BDI platform—like
JACK, JASON, and JADEX—only deal with the reactive version, thus providing a middle
ground between expressivity and tractability.

Technically, to accommodate maintenance goals within BDI-ATLES, one only needs
to do a small adaptation of the semantics of the logic so that goals are not dropped for-
ever once satisfied, but “re-appear” when violated. We refer to this alternate version of

448 N. Yadav and S. Sardina

our logic as BDI-ATLESM . Of course, the model checking algorithm discussed above
also needs to be slightly adapted to deal with the new goal semantics. Interestingly, one
only needs to adapt the definition of a goal-extended model M� by re-defining compo-
nents Q� and σ�(q�, a); see [21] for details.

Theorem 2. Model checking in BDI-ATLESMcan be done in polynomial time (w.r.t.
the model and the formula).

Hence, for (reactive) maintenance goals, we retain ATL(ES) polynomial complexity.3

Of course, this bound is tight, as BDI-ATLESM subsumes ATL (just take ω = ϕ = ∅ in
every coalition formula) and model checking ATL is PTIME-complete [3].

6 Discussion

We have developed an ATL-like logic that relates closely to the BDI agent-oriented pro-
gramming paradigm widely used to implement multi-agent systems. In the new logic,
the user can express the capability of agents equipped with know-how knowledge in
a natural way and can reason in the language about what agents can achieve under
such capabilities. Besides the general framework with standard achievement goals, we
argued that one could instead appeal to goals with priorities or a special type of main-
tenance goals. We provided algorithms for model checking in such a framework and
proved its (upper-bound) complexity in the various cases. Overall, we believe that this
work is a first principled step to bring together two different fields in the area of multi-
agent systems, namely, verification of strategic behaviour and agent programming.

The framework presented here made a number of assumptions requiring further
work. Due to valuation function V in a structure, all agents are assumed to have full
shared observability of the environment. This is, of course, a strong assumption in
many settings. We considered here basically reactive plans, akin to the language of
GOAL [11], certain classes of 2APL/3APL [8, 13], reactive modules [4], and univer-
sal plans [19]. We would like to explore the impact of allowing plan bodies having
sequences of actions, and more importantly, sub-goaling, as well as the possibility of
agents imposing (new) goals to other agents, via so-called BDI messages. Also, in the
context of complex plan bodies, one could then consider both a linear as well as inter-
leaved execution styles of plans within each agent (for its various goals). Most of these
issue appear to be orthogonal to each other, and hence can be investigated one by one.
With the core framework laid down, our next efforts shal focus on the above issues, as
well as proving whether the complexity result provided in Theorem 1 is tight.

We close by noting that, besides ATLES, our work has strong similarities and moti-
vations to those on plausibility [14] and intention [15] reasoning in ATL. Like ATLES,
however, those works are still not linked to any approach for the actual development of
agents, which is the main motivation behind our work. Nonetheless, we would like to
investigate how to integrate plausibility reasoning in our logic, as it seems orthogonal to
that of rational BDI-style behavior. Indeed, the plausibility approach allows us to focus
the reasoning to certain parts of an ATL structure using more declarative specifications.

3 Note the complexity of model checking ATLES is known only for memoryless strategies [20].

Reasoning about Agent Programs Using ATL-Like Logics 449

References

[1] Alechina, N., Dastani, M., Logan, B., Meyer, J.-J.: A logic of agent programs. In: Proc. of
the National Conference on Artificial Intelligence (AAAI), pp. 795–800 (2007)

[2] Alechina, N., Dastani, M., Logan, B., Meyer, J.-J.: Reasoning about agent deliberation. In:
Proc. of Principles of Knowledge Representation and Reasoning (KR), pp. 16–26 (2008)

[3] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM (49), 672–713 (2002)

[4] Baral, C., Son, T.C.: Relating theories of actions and reactive control. Electronic Transac-
tions of AI (ETAI) 2(3-4), 211–271 (1998)

[5] Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A., Gómez Sanz, J.J., Leite,
J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and platforms
for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)

[6] Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning.
Computational Intelligence 4(3), 349–355 (1988)

[7] Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents: Components
for intelligent agents in Java. AgentLink Newsletter 2, 2–5 (1999)

[8] Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

[9] Dastani, M., Jamroga, W.: Reasoning about strategies of multi-agent programs. In: Proc. of
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 997–1004 (2010)

[10] Dastani, M., van Riemsdijk, B., Meyer, J.-J.: Goal types in agent programming. In: Proc. of
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1285–1287 (2006)

[11] de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.: A verification framework for agent
programming with declarative goals. Journal of Applied Logic 5(2), 277–302 (2007)

[12] Duff, S., Harland, J., Thangarajah, J.: On proactivity and maintenance goals. In: Proc. of
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1033–1040 (2006)

[13] Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

[14] Jamroga, W., Bulling, N.: A framework for reasoning about rational agents. In: Proc. of
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1–3 (2007)

[15] Jamroga, W., van der Hoek, W., Wooldridge, M.J.: Intentions and Strategies in Game-Like
Scenarios. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808,
pp. 512–523. Springer, Heidelberg (2005)

[16] Padgham, L., Lambrix, P.: Formalisations of capabilities for BDI-agents. Autonomous
Agents and Multi-Agent Systems 10(3), 249–271 (2005)

[17] Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proc. of
Principles of Knowledge Representation and Reasoning (KR), pp. 473–484 (1991)

[18] Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proc. of Princi-
ples of Knowledge Representation and Reasoning (KR), pp. 438–449 (1992)

[19] Schoppers, M.: Universal plans for reactive robots in unpredictable environments. In: Proc.
of the Int. Joint Conference on Artificial Intelligence (IJCAI), pp. 1039–1046 (1987)

[20] Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time temporal logic with ex-
plicit strategies. In: Conference on Theoretical Aspects of Rationality and Knowledge, pp.
269–278. ACM Press (2007), doi:10.1145/1324249.1324285

[21] Yadav, N., Sardina, S.: Reasoning about agent programs using ATL-like logics (2012) Avail-
able from CoRR, http://arxiv.org/abs/1207.3874

http://arxiv.org/abs/1207.3874

Qualitative Approximate Behavior Composition

Nitin Yadav and Sebastian Sardina	

RMIT University, Melbourne, Australia

Abstract. The behavior composition problem involves automatically building a
controller that is able to realize a desired, but unavailable, target system (e.g., a
house surveillance) by suitably coordinating a set of available components (e.g.,
video cameras, blinds, lamps, a vacuum cleaner, phones, etc.) Previous work has
almost exclusively aimed at bringing about the desired component in its totality,
which is highly unsatisfactory for unsolvable problems. In this work, we develop
an approach for approximate behavior composition without departing from the
classical setting, thus making the problem applicable to a much wider range of
cases. Based on the notion of simulation, we characterize what a maximal con-
troller and the “closest” implementable target module (optimal approximation)
are, and show how these can be computed using ATL model checking technology
for a special case. We show the uniqueness of optimal approximations, and prove
their soundness and completeness with respect to their imported controllers.

1 Introduction

The behavior composition problem (e.g., [2, 6, 12, 19]) involves the automatic synthesis
of a controller that is able to “realize” (i.e., implement) a desired, though non-existent,
complex target system by suitably coordinating a collection of partially controllable
available behaviors. A behavior here refers to the abstract operational model of a device
or program, generally represented as a non-deterministic transition system. Thus, in a
smart building setting, one may look for a controller able to coordinate the execution of
a set of devices installed in a house—music and movie players, game consoles, auto-
matic blinds and lights, radios, etc.—such that it appears as if a complex entertainment
system was actually being run. A solution to the problem is called a composition.

The composition problem is appealing to a wide range of audiences. Indeed, with
computers now present in everyday devices like mobile phones, credit cards, or places
like homes, offices and factories, the trend is to build embedded complex devices from a
collection of simple components. In addition, the problem can be related to several sub-
areas of AI and CS, including web-service composition [10], reactive synthesis [14],
agent-oriented programming [18], robot ecologies [15], and automated planning [8].

While the behavior composition problem has been substantially studied in an AI
context lately (e.g., [6, 17, 19]), previous work has exclusively aimed at the synthesis
of complete realisations of the desired target component—compositions that implement
the desired component in its totality. This poses a major limitation in problem instances
with no (exact) compositions. For such cases, a merely “no solution” outcome is ex-
tremely unsatisfactory. The need to address this shortcoming has already been noted in

� We acknowledge the support of the Australian Research Council under grant DP120100332.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 450–462, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Qualitative Approximate Behavior Composition 451

previous works [19, 20]. In this paper, we develop a qualitative account of approximate
behavior composition that caters for instances admitting no exact solutions.

Intuitively, the overarching idea is to look for those parts of the target module that
can be realized with the available modules, and provide this as an (approximate) solu-
tion. More precisely, given a target module, the task is to identify the closest alternative
target module that can be fully realized with the behaviors at hand—the optimal ap-
proximate target. Of course, it is expected that such alternative target will generally
provide less functionalities than the original one. Indeed, some execution paths may
be impossible to generate with the new target (e.g., it may no more be feasible to play
video games when listening to music). Moreover, the alternative target may accommo-
date less “freedom” of choices in executions (e.g., when requesting to watch a movie,
one may now need to commit to whether one will be playing a video game or listen-
ing to radio afterwards). Nonetheless, the user can request actions as per the alternative
(approximate) target and be guaranteed her requests will always be fulfilled.

Observe that in this paper we assume a setting of strict uncertainty, in that the space
of possibilities (behaviors’ evolutions and target requests) is known, but the probabil-
ities of these potential alternatives cannot be quantified [7]. This contrasts with our
previous approach [20], which assumes all such probabilities have been specified for
the domain and then looks for the “best” controller possible from a decision-theoretic
perspective. Consequently, our account here can be seen as the next natural extension of
the “classical” composition framework found in the literature, in that no no additional
domain information is assumed. We shall discuss and compare this further in Section 6.

The rest of the paper is organized as follows. In the next two sections, we introduce
the composition framework as known in the literature. Besides providing the standard
notion for exact compositions (complete solutions to the problem), we also introduce
the notion of maximal compositions, as controllers that can do as well as any other con-
troller. After that, we develop the main contribution of our work, namely, the notion of
optimal target approximations as the best alternative target behaviors that can be fully
realized in the system at hand. We demonstrate that “importing” controllers from opti-
mal approximations amounts to using maximal controllers (for the original target), thus
providing correctness for optimal approximations. In addition, we show that the im-
ported controllers of an optimal approximation together realize the same set of traces as
those realized by maximal controllers (together as well), thereby providing a complete-
ness result. More importantly, we prove that optimal approximations are in fact unique
(up to simulation equivalence), a very interesting and unexpected property. Finally, we
describe how optimal approximate targets can be computed for the special case of de-
terministic systems (as, for example, in the context of service composition; e.g, [2, 3])
by reducing the problem to ATL model checking, opening the door for advanced model
checking tools. We close the paper with a short discussion and conclusions. An ex-
tended version of the paper, including proofs, can be found in [21].

2 The Behavior Composition Framework

In a behavior composition setting, a set of available behaviors are meant to jointly
bring about a virtual target behavior [6, 17, 19]. We follow the composition framework
in [17] with two minor modifications. For simplicity, we do not deal with the so-called

452 N. Yadav and S. Sardina

environment, the shared space where behaviors are meant to execute. Nonetheless, all
results presented here can be easily generalized to account for an environment. Second,
we shall generalize target behaviors to non-deterministic transition systems.

Behaviors. A behavior stands for the operational model of a program or device. In
general, behaviors provide, step by step, the user a set of actions that it can perform
(relative to its specification). At each step, the behavior can be instructed to execute one
of the legal actions, causing the behavior to transition to a successor state, and thereby
providing a new set of applicable actions.

Formally, a behavior is a tuple B = 〈B,A, b0, $〉, where:1

– B is the finite set of behavior’s states;
– A is a set of actions;
– b0 ∈ B is the initial state;
– $ ⊆ B×A×B is the behavior’s transition relation, where 〈b, a, b′〉 ∈ $, or b

a−→ b′

in B, denotes that action a executed in behavior state b may lead the behavior to
successor state b′.

Note that we allow behaviors to be non-deterministic, that is, given a state and an action,
the behavior may transition to more than one state. This implies that one cannot know
beforehand what actions will be available to execute after an action is performed, as the
next set of applicable actions would depend on the successor state in which the behavior
happens to be in. Hence, we say that non-deterministic behaviors are only partially
controllable. A deterministic behavior is one where there is no state b ∈ B and action
a ∈ A for which there exist two transitions b

a−→ b′ and b
a−→ b′′ in B with b′ �= b′′. A

deterministic behavior is fully controllable. For the sake of legibility and easier notation,
we shall assume, wlog, that behaviors capture non-terminating processes and hence do
not have any terminating state with no outgoing transition.2

System and Enacted System. A system is a collection of behaviors at disposal. Techni-
cally, an (available) system is a tuple S = 〈B1, . . . ,Bn〉, where Bi = 〈Bi,Ai, bi0, $i〉,
for i ∈ {1, . . . , n}, is a behavior, called an available behavior in the system.

To refer to the behavior that emerges from the joint execution of behaviors in a
system, we use the notion of enacted system behavior. The enacted system behavior of
an available system S (as above) is a tuple ES = 〈SS ,A, {1, . . . , n}, sS0, δS〉, where:

– SS = B1 × · · · × Bn is the finite set of ES’s states; when sS = 〈b1, . . . , bn〉, we
denote bi by behi(sS), for i ∈ {1, . . . , n};

– A =
⋃n

i=1Ai is the set of actions of ES ;
– sS0 ∈ SS with behi(sS0) = bi0, for i ∈ {1, . . . , n}, is ES’s initial state;
– δS ⊆ SS ×A×{1, . . . , n}× SS is ES’s transition relation, where 〈sS , a, k, s′S〉 ∈
δS , or sS

a,k−→ s′S in ES , iff:
• behk(sS)

a−→ behk(s′S) in Bk; and
• behi(sS) = behi(s′S), for i ∈ {1, . . . , n} \ {k}.

1 With no shared environment in this paper, behaviors are not equipped with guard conditions
(as done in [6, 19]) and the set of actions A are included in their definitions.

2 As customary, e.g., in LTL verification, this can be easily achieved by introducing “fake” loop
transitions.

Qualitative Approximate Behavior Composition 453

a0 a1

a2

a3

MOVIE
GAME

WEB

STOP

WEB

UNPLUG

GAME DEVICE BG

b0 b1 b2
MUSIC RADIO

STOP

AUDIO DEVICE BA

d0 d1

LIGHTON

LIGHTOFF

LIGHT DEVICE BL

c0 c1 c2
MOVIE RADIO

STOP

MOVIE DEVICE BM

t0 t1 t2 t3 t4
LIGHTON

MOVIE

MUSIC

GAME

RADIO

WEB

STOP

LIGHTOFF
TARGET TENT

u0 u1

u2 u3

u6 u7

u4 u5 u8
LIGHTON

MOVIE

GAME
STOP

MUSIC RADIO
STOP

MOVIE RADIO STOP

LIGHTOFF

TARGET APPROX T̃ENT

Fig. 1. A smart house scenario with four available behaviors. Target TENT cannot be fully realized
in the system, but its optimal approximation T̃ENT can.

The enacted system behavior ES is technically the asynchronous product of the avail-
able behaviors. The index k in transitions makes explicit which behavior is performing
the action in the transition—all other behaviors remain still.

Target. A target behavior T = 〈T,AT , t0, $T 〉 is a, possibly non-deterministic,
behavior that represents the desired functionality to be obtained (through the avail-
able system). In contrast with all previous works, we allow for non-deterministic target
specifications. Nonetheless, the objective is not to capture incomplete information, and
hence partial controllability, of the target module, but to be able to accommodate action
requests carrying more “information.” This will come handy for our account of approxi-
mation. Thus, in order to preserve the full controllability of the target, we shall consider
requests in terms of target transition, rather than just actions.

Informally, the behavior composition task is stated as follows: Given a system S
and a target behavior T , is it possible to (partially) control the available behaviors in
S in a step-by-step manner—by instructing them on which action to execute next and
observing, afterwards, the outcome in the behavior used—so as to “realize” the desired
target behavior. In other words, by adequately controlling the system, it appears as if
one was actually executing the target module. (See next section for more details.)

As noted by De Giacomo and Sardina [6], the behavior composition problem is re-
lated to planning (under incomplete information) [8], being both synthesis tasks, though
here, we look for whom to delegate the next action at each step (whatever such action
happens to be at runtime), rather than what those actions should be.

Figure 1 depicts a universal home entertainment system in a smart house scenario.
Target TENT encapsulates the desired functionality, which involves first switching on
the lights when entering the room, then providing various entertainment options (e.g.,
listening to music, watching movies, browsing the Web, etc.), and finally stopping active
modules and switching off the lights. There are four available devices installed in the
house that can be used to bring about such desired behavior, namely, a game device BG,
an audio device BA, a movie device BM , and the lights controller BL. Note that action
WEB in the device BG is non-deterministic, as it may bring the module into states a2 or
a3. If the device happens to evolve to state a3, then, for some reason, it is not enough
to stop the device to reset it: the device needs to be completely unplugged.

454 N. Yadav and S. Sardina

3 Controllers and Compositions

Next, we formally define what constitutes a solution for a behavior composition prob-
lem. In doing so, we shall not only look at the problem from a binary perspective —
solvable vs unsolvable–but instead provide a qualitative account of “optimal” solutions.
From now on, let S = 〈B1, . . . ,Bn〉 be an available system and T = 〈T,A, t0, $T 〉 be
a target behavior to be realized on S.

Controller. A controller is a component able to activate, stop, and resume any of the
available behaviors, and to instruct them to execute an (allowed) action. The controller
has full observability on the available behaviors; that is, it can keep track (at runtime)
of their current states—if details have to be hidden, this can be done by means of non-
determinism within the abstract behaviors exposed.

To formally define controllers and solutions, we rely on the notions of traces and
histories. A trace for a given enacted system ES = 〈SS ,A, {1, . . . , n}, sS0, δS〉 is a,

possibly infinite, sequence of the form s0
a1,k1

−→ s1
a2,k2

−→ · · · such that (i) s0 = sS0;

and (ii) sj
aj+1,kj+1

−→ sj+1 in ES , for all j > 0. A history is just a finite prefix h =

s0
a1,k1

−→ · · · a

,k

−→ s
 of a trace. We denote s
 by last(h), � by |h| (i.e., the length of h),
and sequence a1 · . . . · a
 as [h] (i.e., the projection on actions). Traces and histories
can also be defined for a behavior B in a similar fashion: behavior traces have the form

s0
a1

−→ s1
a2

−→ · · · such that (i) s0 = b0; and (ii) sj
aj+1

−→ sj+1 in B, for all j > 0. We
use HS and HB to denote the set of system histories (i.e., histories of ES) and histories
of behavior B, respectively.

A controller for target T on system S is a partial functionC : HS× (T ×A×T) �→
{1, . . . , n}, which, given a system history h ∈ HS and a requested target transition
〈t, a, t′〉 ∈ $T , returns the index of an available behavior to which the action a is dele-
gated for execution. For legibility, we shall write C(h, t1

a−→ t2) to compactly denote
C(h, t1, a, t2). Note here the slight departure form previous notions of controllers (e.g.,
[6, 17, 19]), in that a controller now receives a complete target transition as the next
request, not just an action. While this has no impact when dealing with deterministic
targets, it guarantees full controllability for nondeterministic ones.

Intuitively, a controller (fully) realizes a target behavior if for every trace (i.e., run)
of the target, at every step, the controller returns the index of an available behavior
that can perform the requested action. Formally, one first defines when a controller
C realizes a trace of the target T . Though not required for this paper, the reader is
referred to [6, 17] for details on how to formally characterize trace realization. We
denote ΔC

〈S,T 〉 the set of traces of T that controller C is able to realize in system S.
Then, a controller C realizes the target behavior T iff it realizes all its traces. In that
case, C is said to be an exact composition for target T on system S.

Now, suppose we are given a target behavior T and an available system S, and that,
as expected in many domains, there is no exact composition for T on S—the target
cannot be completely realized in the system. This is indeed the case in our example, as
there is no exact composition for TENT in the house system. Merely returning a negative
“no solution” outcome is highly unsatisfactory. The question then is: what does it mean
for a controller C1 to achieve “a better realization” of T on S than controller C2?

Qualitative Approximate Behavior Composition 455

To answer such a question in a qualitative manner, we rely on the extent at which
controllers are able to honour arbitrary long set of target requests. We say that controller
C1 dominates controller C2, denoted C1 ≥ C2, iff ΔC2

〈S,T 〉 ⊆ ΔC1

〈S,T 〉—C1 can honour
all request sequences that C2 can honour, and possibly more. As usual, C1 > C2 is
equivalent to C1 ≥ C2 but C2 �≥ C1, that is, ΔC2

〈S,T 〉 ⊂ ΔC1

〈S,T 〉. A controller C is said
to be a maximal composition (for a target on a system) iff for every other controller
C′, if C′ ≥ C, then C ≥ C′ (or equivalently C′ �> C). In other words, maximal
compositions are those for which there is no other controller that can realize strictly
more runs of the target behavior in the system. We use MAXCOMP(S, T) to denote the
set of all maximal compositions for target T on system S.

Consider the following two controllers for our smart house. Whereas controller C1

allocates all requests to the light device BL, controller C2 delegates media and light
requests to the audio BA and light BL devices, respectively. Then, C1 realizes just one

target trace, that is, ΔC1

〈S,T 〉 = {t0 LIGHTON−→ t1}. On the other hand, C2 realizes such

a trace as well as trace t0
LIGHTON−→ t1

MOVIE−→ t2
RADIO−→ t3

STOP−→ t4 (and all its prefixes).
Therefore, ΔC1

〈S,T 〉 ⊂ ΔC2

〈S,T 〉 and C2 > C1 holds. The reader may notice that even
better controllers than C2 exist when all four behaviors are used.

As expected, whenever a behavior composition problem admits an exact
composition—the target is fully realizable—the set of exact compositions coincides
with that of maximal compositions. When full realizations are impossible, though, max-
imal compositions capture the best controllers that one could hope for.

4 Target Approximation

Whereas maximal compositions, as defined above, provide a way of handling instances
with no exact solution, they do not convey useful insights on how well such instances
can be solved. Even if we are given the set of traces that a maximal composition realizes,
it will be difficult to reconstruct what it means in terms of the problem specification.
As a consequence, using a maximal non-exact composition may yield dead-end execu-
tions where no further actions can be honoured. What is more, while there are various
techniques to construct exact compositions (e.g., [6, 16, 19]), it is far from clear how to
build maximal composition controllers.

So, in this section, we will look at “approximation” from a different perspective
that is arguably more intuitive and computationally more amenable than dealing with
controller functions, namely, we are concerned with what parts of the target can in fact
be brought about. More concretely, we are interested in the following task:

Given an available system S and a target behavior T , find an (approximate)
target behavior T̃ that can be fully realized on S (by some controller CT̃) and
such that T̃ is “as close as possible” to the original target behavior T .

We call this the approximate behavior composition problem. Once an approximate
target T̃ is obtained, one may either use such new target directly or consider “im-
porting” its exact compositions into the original target module T . Hopefully, in the
latter case, the imported controllers will turn out to be the best possible controllers
for the original target. These are arguably the main ideas of our work and what we

456 N. Yadav and S. Sardina

shall develop below. Before doing so, we should point out that defining approximate
targets based merely on trace/language inclusion is not sufficient. While two targets
may yield exactly the same sequences of requests, one may accept an exact composition
while the other may not. In our smart house scenario, for instance, the two sequences
LIGHTON ·MOVIE ·GAME ·STOP and LIGHTON ·MOVIE ·RADIO ·STOP may be realized
by the same controller for the approximation T̃ENT, but not for the original target TENT.

In order to capture approximate targets, we make use of the formal notion of sim-
ulation [13]. A simulation relation captures the similarity in the behavior of two tran-
sition systems. Intuitively, a (transition) system S1 “simulates” another system S2 if
S1 is able to match all of S2’s moves. We make this precise for our (target) be-
haviors as follows. Let Ti = 〈Ti,A, ti0, $i〉, where i ∈ {1, 2}, be two target be-
haviors. A simulation relation of T2 by T1 is a relation Sim ⊆ T2 × T1 such that
〈t2, t1〉 ∈ Sim implies that for every transition 〈t2, a, t′2〉 ∈ $2 in T2, there exists a
transition 〈t1, a, t′1〉 ∈ $1 in T1 such that 〈t′2, t′1〉 ∈ Sim. We say that a state t2 ∈ T2

is simulated by a state t1 ∈ T1 (or t1 simulates t2), denoted t2 � t1, iff there exists
a simulation relation Sim of T2 by T1 such that 〈t2, t1〉 ∈ Sim. Observe that relation
� is itself a simulation relation (of T2 by T1), and in fact, it is the largest simulation
relation, in that all simulation relations are contained in it. Informally, t2 � t1 means
that t1 in T1 can “mimic” all moves of t2 in T2, and that this property is propagated in
their corresponding successor states. We say that a target behavior T1 simulates target
behavior T2, denoted T2 � T1, if it is the case that t20 � t10, that is, their initial states
are in simulation and, as a result, T1 can always mimic T2 from the start. In our exam-
ple, t2 and t1 in TENT simulate states u4 and u1, respectively, in T̃ENT (i.e., u4 � t2 and
u1 � t1), but not the other way around (i.e., t2 �� u4 and t1 �� u1). Two targets are said
to be simulation equivalent, denoted T1 ∼ T2, whenever they simulate each other.

We then argue that a qualitative comparison of target approximations can be achieved
based on their simulation “hierarchy” (see that � is a pre-order). We say that a target
behavior T̃ approximates target T on system S (or T̃ is an approximation of T on S)
iff T̃ � T and there is an exact composition for T̃ on S (i.e., T̃ is simulated by T and
it can be fully realized on available system S).

Despite being fully solvable, an approximation will generally provide “less” than the
original target. First, an approximation may be missing certain executions altogether. In
the smart house scenario, approximation T̃ENT does not account for the action sequence
LIGHTON · MUSIC · GAME · STOP · LIGHTOFF. Second, an approximation may require
the user to commit earlier to future possible request choices. In that sense, a user of
target T̃ENT needs to decide when requesting MOVIE in state u1 if she will later play a
GAME or listen to RADIO. Notice such extra “temporal” information is not required at
state t1 in original target TENT. It is exactly to accommodate this feature that we have
departed from the standard view of deterministic targets.

Of course, between full realization and the trivial empty approximation, there lies a
whole spectrum of approximating targets. Among these, we are interested in those that
are “closest” to the original target, in that the minimum possible is given up. We say
that a target behavior T̃ is an optimal approximate of target T on system S iff :

Qualitative Approximate Behavior Composition 457

1. T̃ is an approximation of T on S; and
2. there is no target behavior T̃ ′ that approximates T on S such that T̃ ≺ T̃ ′, that is,
T cannot be approximated by a strictly more general target module.

Intuitively, an optimal target approximation is a maximal representation of those aspects
of the original target that can be completely implemented. When the target behavior
does admit a full realization in the system, the optimal approximation is then expected
to represent the target module in all its extent.

Theorem 1. Suppose there is an exact composition for target T on system S. Then, T̃
is an optimal approximation of T on S iff T̃ ∼ T .

Importantly, there can only be one way of optimally approximating a given target.

Theorem 2. An optimal approximation T̃ of a target T on a system S is unique upto
simulation equivalence.

We observe that, for non-deterministic transition systems, simulation is a stronger mea-
sure of equivalence than language inclusion [9]. Therefore, if a target T̃ approximates
another target T , then the action request sequences resulting from the traces of T̃ will
be a subset of those produced by T . It follows then that if CT̃ is an exact composition
for T̃ , then CT̃ ought to be able to handle a subset of T ’s request sequences.

4.1 Imported Controllers

In contrast with maximal controllers, optimal approximations are specified in the same
language as the original problem. The user can thus decide to request actions as per
the new (approximate) target with guaranteed full realizability. Nonetheless, one may
still ask in which sense these solutions are “correct.” To answer that, we show that
using an exact composition for an optimal approximation amounts to using a maximal
composition for the original target. To that end, we define what it means to “import” a
controller CT ′ designed for one target module T ′ into another target module T .

We start by defining the family of functions that are meant to explain sequences
of action requests in a target. Informally, the function EXPLT (σ) outputs a history of
the target T compatible with the given sequence of actions σ. Formally, a function
EXPLT : A∗ �→ HT is a target explanatory function for a target T if for any action

sequence σ = a1 · . . . · a
 ∈ A∗, with � ≥ 0, it is the case that EXPLT (σ) = t0
a1

−→
· · · a

−→ t
 ∈ HT . In general, there will be many of such functions, since the same
sequence of action requests can arise from different runs of a non-deterministic target.
For instance, sequence LIGHTON ·MOVIE can be explained in two ways on target T̃ENT,

namely, via histories u0
LIGHTON−→ u1

MOVIE−→ u2 and u0
LIGHTON−→ u1

MOVIE−→ u4.
Using target explanatory functions, we next characterize the set of so-called induced

controllers. Suppose we have a controller CT ′ for a target T ′ (on a system S). An
induced controller (from controller CT ′) for a target behavior T is one that handles
requests from T as if they were requests issued as per module T ′. Recall that a con-
troller for a system S outputs the behavior index to which a given transition-action

458 N. Yadav and S. Sardina

request is delegated to at a certain system history. Formally, then, we say that CT ′

T is
an induced controller (from controller CT ′ on target T ′) for target T over system S
if there exists a target explanatory function EXPLT ′(·) for T ′ such that for every sys-
tem history h ∈ HS and transition t1

a−→ t2 in T , the following holds (recall that [h]
denotes the sequence of actions in history h):

CT ′

T (h, t1
a−→ t2)=

{
CT ′(h, t′1

a−→ t′2) EXPLT ′([h] · a)= t0
a1

−→· · · a
|h|
−→ t′1

a−→ t′2
undefined EXPLT ′([h] · a) is undefined

That is, T ’s request t1
a−→ t2 is delegated at history h as controllerCT ′ would delegate

request t′1
a−→ t′2 from target T ′ if h’s requests leave target T ′ in state t′1 and the

current requested action a is indeed explained by transition request t′1
a−→ t′2 in T ′.

When there is no explanation in the T ′—EXPL(·) is undefined—the induced controller
is left undefined. Note that different ways of explaining original target’s sequences of
requests (i.e., different explanatory functions) yield different induced controllers.

Finally, an imported controller is a maximal (i.e., non-strictly dominated) controller
within the family of induced controllers—the “best” induced controllers. Technically,
the set of imported controllers from C on T into target T ′, denoted ΩT ′

〈C,T 〉 is the set of

all controllers Ĉ for T ′ such that (i) Ĉ is an induced controller from C on target T for
T ′; and (ii) there is no other induced controller C′ such that C′ > Ĉ.

First, we show that better target approximations amount to better, or more precisely
“never worse,” imported controllers.

Theorem 3. Let T̃1 and T̃2 be two target approximations of target T on system S, and
let C̃1 and C̃2 be exact compositions of T̃1 and T̃2, resp. Suppose also that T̃2 � T̃1
(i.e, T̃1 simulates T̃2). Then, for every controller C1 ∈ ΩT

〈C̃1,T̃1〉
, there is no controller

C2 ∈ ΩT
〈C̃2,T̃2〉

such that C2 > C1 holds.

In other words, if T̃1 is as good an approximation as T̃2, then T̃1’s imported controllers
will not be worse than those imported from T̃2. More importantly, the next result demon-
strates that importing controllers from an optimal approximation yields maximal com-
positions (for the original target being approximated), and that, together, they account
for every trace of the original target that could ever be realized. In other words, ΩT

〈C̃,T̃ 〉
is sound and “complete.”

Theorem 4. Let T̃ be an optimal approximation of target T on system S, and C̃ be an
exact composition for T̃ . Then,

– For all C ∈ ΩT
〈C̃,T̃ 〉, it holds that C ∈ MAXCOMP(S, T); and

–
⋃

C∈ΩT
〈C̃,T̃ 〉

ΔC
〈S,T 〉 =

⋃
C∈MAXCOMP(S,T)Δ

C
〈S,T 〉, that is, all imported controllers

account together for all realizable target traces.

These two results are important in that they establish the relationship between approx-
imating the target and optimizing its controller: optimizing targets implies optimizing
controllers. A direct and expected consequence of Theorems 1 and 4 is that if the opti-
mal approximation is simulation equivalent to the target, then every imported controller
from such approximation is in fact an exact composition.

Qualitative Approximate Behavior Composition 459

5 Computing Optimal Approximations for Deterministic Systems

Various techniques have been used to actually solve classical behavior composi-
tion problems, including PDL satisfiability [6], direct search-based approaches [19],
LTL/ATL synthesis [5, 16], and computation of special kind of simulation relations [3,
17]. Unfortunately, all those techniques synthesize exact composition controllers. In
the context of our work, we are interested in computing optimal target approximations
instead. We show how this can be effectively done for the special case of deterministic
available behaviors, as in the case of service composition [2, 3].

De Giacomo and Felli [5] has shown that the controller generator (i.e., a structure
representing all exact compositions) can be synthesised by resorting to Alternating-
time Temporal Logic (ATL) model checking. ATL [1] is a logic for reasoning about the
ability of group of agents (i.e., coalitions) in multi-agent game structures. The advan-
tages of reducing the composition problem to that of ATL reasoning is that it provides
access to some of the most advanced model checking techniques and tools, such as
MCMAS [11], that are in active development within the agent community.

ATL formulae are built by combining propositional formulas, the usual temporal
operators—namely, © (“in the next state”), � (“always”), � (“eventually”), and U
(“strict until”)—and a coalition path quantifier 〈〈A〉〉 taking a set of agents A as pa-
rameter. Intuitively, an ATL formula 〈〈A〉〉φ, where A is a set of agents, holds in an
ATL structure if by suitably choosing their moves, the agents in A can force φ true, no
matter how other agents happen to move. The semantics of ATL is defined in so-called
concurrent game structures where, at each point, all agents simultaneously choose their
moves from a finite set, and the next state deterministically depends on such choices.

In order to reduce a behavior composition problem to an ATL model checking prob-
lem, De Giacomo and Felli [5] basically define an ATL structureMS,T with one agent
per available and target behavior, and one distinguished agent contr representing the
controller. A state 〈b1, . . . , bn, ts, a, td, k〉 in such a model encodes the current state bi
of each available behavior, the current state ts of the target, the current action a being
requested by the target, the next target state td given the request, and the index of the
available behavior to which the last action was delegated to. The initial states of MS,T
encode all possible initial configurations of the composition framework—initial states
for all behaviors and a legal initial request. Also, the structure is made to encode all le-
gal evolutions of the composition instance. The task then involves model checking the
special formula ϕ = 〈〈contr〉〉�(

∧
i=1,...,n statei �= errori) (against structure MS,T),3

which states that the controller agent has a strategy so that none of the n available be-
haviors end up in an error state. A behavior arrives to a distinguished “error”state if it is
ever delegated an action that it cannot perform. As a result, the controller agent ought to
make sure it always delegates actions in the right way so as to satisfy every potential re-
quest, that is, it has to solve the composition problem. Finally, De Giacomo and Felli [5,
Definition 2 & Theorems 3 and 4] show how to extract a correct controller generator—a
structure representing all exact compositions—from the set of winning states [ϕ]MS,T ,
namely, all those states q in MS,T such that q |= ϕ. Intuitively, a winning state for

3 We note that [5] deals with final states where the composition execution may stop. For sim-
plicity, we have not dealt with final configurations here, but one can easily accommodate them.

460 N. Yadav and S. Sardina

them is one in which the current request is legally honored to some available behavior
and all corresponding successor states are winning.

Surprisingly, it turns out that one can readily adapt De Giacomo and Felli’s reduc-
tion to actually synthesize an optimal approximation for a, possibly non-solvable,
deterministic composition problem (and to extract the corresponding controller genera-
tor). Though it looks counter-intuitive, the key for this is to include the target behavior
in the coalition so that the joint-strategy also includes selecting which transition from
the actual target may be requested. In other words, we are instead to model check the
following formula against structure MS,T :

ϕ̃ = 〈〈contr, tgt〉〉�(
∧

i=1,...,n

statei �= errori).

In this case, a winning state in [ϕ̃]MS,T is one in which the target requests actions
such that the controller can (always) legally honor them to an available behavior, and
has some corresponding successor winning state. Observe here the implicit existential
quantification on the requests, as compared with the universal quantification implied in
De Giacomo and Felli [5]’s encoding for exact composition synthesis.

Intuitively, the idea behind formula ϕ̃, as opposed to formula ϕ, is that the coalition
is now in control of what can be requested (and what should not be). This suggests that
the coalition has the ability to select which parts of the target can be executed with-
out driving the available system into an “error” state (due to an impossible fulfilment
of a request). It follows then that one can extract an optimal approximation from the
maximal winning set [ϕ̃]MS,T , as the following result demonstrates.

Theorem 5. Let S = 〈B1, . . . ,Bn〉 be a system and T = 〈T,A, t0, $T 〉 a target mod-
ule. Then, behavior T̂ = 〈T̂ ,A, t̂0, $̂〉 is an optimal approximation for T on S, where:

– T̂ = {〈b1, . . . , bn, ts〉 | 〈b1, . . . , bn, ts, a, td, k〉 ∈ [ϕ̃]MS,T } ∪ {t̂0};
– t̂0 = 〈b10, . . . , bn0, t0〉 is the initial state of T̂ ;
– $̂(〈b1, . . . , bn, ts〉, a, 〈b′1, . . . , b′n, td〉) iff for some action a′ ∈ A, and indexes

k, k′ ∈ {1, . . . , n}, it is the case that:
• 〈b1, . . . , bn, ts, a, td, k〉, 〈b′1, . . . , b′n, t′s, a′, t′d, k

′〉 ∈ [ϕ̃]MS,T ; and
• 〈b1, . . . , bn, ts, a, td, k〉 may transition to 〈b′1, . . . , b′n, t′s, a′, t′d, k′〉 in MS,T .

It is not hard to see that the controller generator [17] for T̂ can be extracted by keeping
those behavior delegations that transition a winning game state into another winning
state in MS,T . In terms of computational complexity, the model checking task on ATL
can be done in polynomial time wrt to the size of the game structure [1]. Since the
size of such space is exponential on the number of available behaviors, computing the
optimal approximation can be done in exponential time (for deterministic systems).
Observe that, in the worst case, the approximation problem itself is (at least) exponen-
tial, as it subsumes the classical behavior composition problem (which is known to be
EXPTIME-complete even under deterministic behaviors). Indeed, in order to check if a
problem has an exact composition one can compute its optimal approximation and test
(in polynomial time) if it is simulation equivalent with the original target.

The full details of the ATL encoding, together with an implementation in MCMAS of
our running example, can be found in [21].

Qualitative Approximate Behavior Composition 461

6 Discussion

We have proposed a qualitative framework for approximate behavior composition in
which the task is to find the closest possible target module that can be implemented with
the available modules. To that end, we relied on the formal notion of simulation and that
of imported controllers for the specification of the problem, and on ATL model checking
for actual computation of solutions for the special case of deterministic systems. To our
knowledge, this is the first account that is able to accommodate behavior composition
instances with no complete solutions—arguably the most common ones—while still
remaining within the original problem formulation.

Initially, the work of Girard and Pappas [9] appeared to be extremely related to
our objectives, as it proposes a notion of transition system approximation based on
the notion of simulation. However, their work differs in what is being approximated.
In the most general notion of simulation, only some aspects of states are observable
and two states in simulation are meant to coincide on their observable aspects. In
Girard and Pappas’s account, an approximate transition system is allowed to differ on
such observables up to some extent: s simulates s′ implies s can (always) replicate all
moves of s′ and s’s observation is “similar” to that of s′. It follows then that the approx-
imating transition system must still be able to mimic all actions of the approximated
system. In our framework, there is no notion of state observations (every state has the
same observations) and hence we only focus on the similarities of states in terms of
the potential behavior they can generate. We believe though that one can use their ac-
count of approximation when performing composition within a shared environment (as
in [6, 19]), so as to allow the environment to evolve “close enough” to what is necessary.

Confronted with a behavior composition problem instance admitting no complete
solution (i.e., no exact composition) one can, of course, think of other approaches or-
thogonal to the one developed here. For example, one may look for additional available
behavior modules or enhancement of existing ones with new capabilities that will re-
cover exactness. In some cases, simply adding extra “copies” of existing modules could
be enough. Thus, installing an extra video camera in the house may turn the problem
solvable. One could also consider a framework where essential and optional function-
alities can be specified, and look for controllers that fully realize the former ones while
optimizing the latter ones. We shall focus on these ideas on future work, as well as
on generalizing the actual synthesis techniques from Section 5 to nondeterministic sys-
tems, possibly relying on more expressive games using GR(1) formulas [4].

The only approach, as far as we know, to deal with unsolvable composition instances
is the one we pursued previously in [20] within a decision-theoretic framework. There,
the idea is to look for a controller that maximizes the “expected realizability” of the tar-
get behavior. There are however two major differences with our current proposal. First,
their controller may in some runs yield dead-end situations, that is, states from where
no further target request can be fulfilled. Under our framework, the user (of the target)
can never arrive to those “error” situations, as the optimal approximation is always fully
implementable. Second, in our work we kept the strict uncertainty setting from the com-
position problem found in the literature—no extra knowledge of the domain is assumed
to be available. We note that it is well known that strict uncertainty cannot always be

462 N. Yadav and S. Sardina

reduced to a setting where the uncertainty can be measured [7]. Nonetheless, it would
be interesting to be able to accommodate extra domain knowledge when available.

References

[1] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM (49), 672–713 (2002)

[2] Balbiani, P., Cheikh, F., Feuillade, G.: Composition of interactive web services based on
controller synthesis. In: Proc. of SERVICES, pp. 521–528 (2008)

[3] Berardi, D., Cheikh, F., De Giacomo, G., Patrizi, F.: Automatic service composition via sim-
ulation. International Journal of Foundations of Computer Science 19(2), 429–452 (2008)

[4] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive(1) de-
signs. Journal of Computer and System Sciences, 1–28 (2011)

[5] De Giacomo, G., Felli, P.: Agent composition synthesis based on ATL. In: Proc. of AAMAS,
pp. 499–506 (2010)

[6] De Giacomo, G., Sardina, S.: Automatic synthesis of new behaviors from a library of avail-
able behaviors. In: Proc. of IJCAI, pp. 1866–1871 (2007)

[7] French, S.: Decision Theory: An Introduction to the Mathematics of Rationality. Ellis Hor-
wood (1986)

[8] Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers Inc. (2004)

[9] Girard, A., Pappas, G.: Approximation metrics for discrete and continuous systems. IEEE
Transactions on Automatic Control 52(5), 782–798 (2007)

[10] Hull, R.: Web services composition: A story of models, automata, and logics. In: Proc. of
SCC, pp. 18–19 (2005)

[11] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of
Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
682–688. Springer, Heidelberg (2009)

[12] Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

[13] Milner, R.: An algebraic definition of simulation between programs. In: Proc. of IJCAI, pp.
481–489 (1971)

[14] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–
190 (1989)

[15] Saffiotti, A., Broxvall, M.: PEIS ecologies: Ambient intelligence meets autonomous
robotics. In: Proc. of the International Conference on Smart Objects and Ambient Intel-
ligence, pp. 275–280 (2005)

[16] Sardina, S., De Giacomo, G.: Realizing multiple autonomous agents through scheduling of
shared devices. In: Proc. of ICAPS, pp. 304–312 (2008)

[17] Sardina, S., Patrizi, F., De Giacomo, G.: Behavior composition in the presence of failure.
In: Proc. of KR, pp. 640–650 (2008)

[18] Shoham, Y.: Agent-oriented programming. Artificial Intelligence Journal 60, 51–92 (1993)
[19] Stroeder, T., Pagnucco, M.: Realising deterministic behaviour from multiple non-

deterministic behaviours. In: Proc. of IJCAI, pp. 936–941 (2009)
[20] Yadav, N., Sardina, S.: Decision theoretic behavior composition. In: Proc. of AAMAS, pp.

575–582 (2011)
[21] Yadav, N., Sardina, S.: Qualitative approximate behavior composition (2012) Available

from CoRR, http://arxiv.org/abs/1207.3863

http://arxiv.org/abs/1207.3863

A Preferential Framework

for Trivialization-Resistant Reasoning
with Inconsistent Information

Anna Zamansky	

Vienna University of Technology

Abstract. Paraconsistent entailments based on more than two truth-
values are useful formalisms for handling inconsistent information in
large knowledge bases. However, such entailments suffer from two major
drawbacks: they are often too cautious to allow intuitive classical in-
ference, and are trivialization-prone. Two preferential mechanisms have
been proposed to deal with these two problems, but they are formulated
in different terms, and are hard to combine. This paper is a step towards
a systematization and generalization of these approaches. We define an
abstract framework, which allows for incorporating various preferential
criteria into paraconsistent entailments in a modular way. We show that
many natural cases of previously studied entailments can be simulated
within this framework. Its usefulness is also demonstrated using a con-
crete domain related to ancient geography.

1 Introduction

Handling inconsistent information in large knowledge bases is an important prac-
tical problem, that has been recently drawing a lot of attention. The main draw-
back of classical logic (CL) in this context is that it fails to accommodate the
fact that knowledge bases containing contradictory data may still produce useful
answers to queries. This is because in CL a single inconsistency leads to triv-
ialization of the whole knowledge base. The traditional approach to handling
inconsistency in knowledge bases has been that of revision: in case of an incon-
sistency, some pieces of information must be abandoned in order to maintain
consistency. In many natural cases, however, inconsistency is an inherent, and
even a very important part of information systems, and should not be treated
as an undesirable phenomenon (see [12] for further discussion).

As a running example in this paper, we use a domain, in which inconsistent in-
formation plays an important role, and as such should often be preserved, rather
than attempted to be discarded. The domain is taken from a concrete practical
problem, pointed out to the author in a personal communication1 by a researcher

� The author is supported by funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. 252314.

1 The author would like to thank Ekaterina Ilyuschetchkina for her valuable contribu-
tion to this paper.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 463–475, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

464 A. Zamansky

of descriptive ancient geography. Due to a vast amount of information extracted
from various ancient texts, there is a need for automated methods for keeping
track and reasoning about geographic information. More specifically, texts of an-
cient authors (such as Eratosthenes, Strabo, Ptolemy, Pausanias, etc.) are used
in the study of ancient geography to extract information about the ancient per-
ception of the world. Such texts contain a lot of conflicting and contradictory
information. The explanations for the contradictions vary: the primary objec-
tive of such texts is not scientific and thus they are often imprecise, the authors
rely on information from different sources (the identity of which is usually not
known), etc. One example of a text containing several controversial contradic-
tions is a description of the habitable world written in a terse and elegant style
by Dionysios Periegetes2 ([15]). The text begins with describing a “bird’s-eye”
view of the world. In it, Periegetes describes schematically the continents of
Africa, Europe and Asia as triangles (of different forms), and notes that the
eastern border of Africa is defined by the Nile river. When later describing the
“regional picture” of the continent of Africa, however, he states that on the east
Africa borders with the Arabian Gulf3 (the modern Red Sea). When describing
in details the Nile river, he repeats, however, that Nile is the eastern border
of Africa. Another example of (perhaps a more subtle) contradiction is that in
his “bird’s-eye” description of the world, Periegetes describes the continent of
Africa as having the form of a triangle. However, when describing the regional
picture, he states that is has the form of a trapezoid. But taking into account
the mathematical theories developed far before his time, it is commonly believed
that Periegetes makes a clear distinction between a triangle and a trapezoid.

Attempting to collect the pieces of information described in the above exam-
ples in a traditional knowledge base obviously results in its trivialization, i.e.,
everything (classically) follows from it. However, discarding any of the facts from
the knowledge base would lead to loss of important information. The ideal so-
lution is finding a way to keep all pieces of information in the knowledge base,
while preventing its trivialization. This naturally leads to the need for paracon-
sistent entailment relations, which would allow to make useful inferences from
inconsistent theories.

One of the most common ways of defining useful paraconsistent entailments
is using three-valued (or in general many-valued) matrices. The idea is to add
a new truth value � (or more), with the intuitive meaning of being “inconsis-
tent”, or “both true and false”. The entailments induced by such matrices are
“well-behaved” consequence relations (crs), which enjoy a simple and intuitive
semantics and have a well-developed proof theory. However, such crs suffer from
two major drawbacks. The first is that in many cases they are too cautious to

2 The lifedates of Dionysios Periegetes (also known as Dionysios of Alexandria) are
estimated around the 2nd century A.D. His poem enjoyed great popularity in ancient
times. Although he is a poet and not a scientist, his texts today are a useful source
for extracting information on geographic knowledge in the ancient world.

3 More precisely, he speaks of the isthmus between the Arabian Gulf and the Mediter-
ranean Sea.

A Preferential Framework for Trivialization-Resistant Reasoning 465

allow natural (and seemingly harmless) classical inferences. Interestingly, such
problem obtains even for those paraconsistent logics which are maximal (that
is, any extension leads to a logic that is no longer paraconsistent), which means
that extending the logic cannot be a satisfactory solution. One solution, pro-
posed in [17] in the spirit of Shoham’s preferential semantics ([21]), is to focus
on preferential refinements of the basic inference relation, applying the principle
of inconsistency minimization: the interpretations which are as close as possible
to classical interpretations are preferred, resulting in a better approximation of
classical reasoning.

The second drawback of paraconsistent many-valued logics (induced by some
matrix M), which becomes crucial in the context of practical applications, is
that despite the fact that they tolerate classical inconsistency, they may still be
trivialized in case of inconsistency inM. A database repair method was proposed
in [9,20] for two particular paraconsistent logics. However, in our context repair
implies loss of information, so instead of refining the knowledge base, we would
prefer to refine our entailment relation. A distance-based approach for defining
trivialization-tolerant variants for logics induced by denotational semantics was
proposed in [2,4] (see also [16]). The idea is to apply distance-based minimiza-
tion of non-satisfiability for “approximation” ofM-models of anM-inconsistent
knowledge base. The resulting entailment coincides with the original logic in
case that the knowledge base is M-consistent, but does not trivialize otherwise.
This method, however, does not apply to the above mentioned preferential re-
finements, which are, as observed in [17], trivialization-prone as well.

In this paper we propose a systematic approach to incorporate preferential
criteria into paraconsistent entailments based on many-valued matrices. The
approach is based on the observation, that despite the fact that the methods
of [17] for handling cautiousness and the methods of [2,4] for handling trivi-
alization are formulated in different terms, they are in fact different facets of
minimization according to “epistemic” criteria. We therefore define an abstract
framework for specifying such criteria in a uniform way, which also allows for
a modular combination of these criteria. This allows for defining trivialization-
resistant variants of various preferential paraconsistent entailments based on a
matrix M, which coincide with the original entailment whenever the premises
are M-consistent, but do not trivialize otherwise. This is done via lexicographic
aggregation of preference, which is a common technique in choice theory [1]. The
framework also captures many previously studied paraconsistent entailments (in-
cluding the preferential relations on [17], summation-based entailments of [2,4]
and maximal-consistency based cautious semantics of [13]). We demonstrate the
usefulness of the framework using the above mentioned domain of descriptive
ancient geography.

2 Preliminaries

In what follows, L denotes a propositional language with a countable set Atoms =
{p, q, r . . .} of atomic formulas and a (countable) set WL = {ψ, φ, σ, . . .} of

466 A. Zamansky

well-formed formulas. A theory Γ is a finite set of formulas. The set of all theories
of L is denoted by TL.

Definition 1. – An entailment relation � for L is a binary relation between
theories from TL and formulas in WL.

– An entailment relation � for L is a (Tarskian) consequence relation (tcr) if
it has the following properties: (i) Reflexivity : if ψ ∈ Γ then Γ � ψ, (ii)
Monotonicity : if Γ � ψ and Γ ⊆ Γ ′, then Γ ′ � ψ, and (iii) Transitivity : if
Γ � ψ and Γ ′, ψ � ϕ then Γ, Γ ′ � ϕ.

– A propositional logic is a pair 〈L,�〉, where � is a structural4 consequence
relation for L.

The most standard semantic way of defining logics is by many-valued matrices:

Definition 2. A (many-valued) matrix for a language L is a triple M =
〈V ,D,O〉, where V is a non-empty set of truth values, D is a non-empty proper
subset of V , containing the designated elements of V , and O includes an n-ary
function 5̃M : Vn → V for each n-ary connective 5 of L.

Example 1. The simplest example of a many-valued matrix is the (standard)
classical two-valued matrix for Lcl, which we shall denote by Mcl.

The three-valued matrix MB0 = {{t,�, f}, {t,�},O} for Lcl = {¬,∨,∧,⊃}
is used in [17], and is defined as follows:

∧̃ t f 	
t t f 	
f f f f
	 	 f 	

∨̃ t f 	
t t t t
f t f 	
	 t 	 	

→̃ t f 	
t t f 	
f t t t
	 t f 	

¬̃
t f
f t
	 	

Definition 3. Let M = 〈V ,D,O〉 be a matrix for L.

– An M-valuation for L is a function ν : WL → V such that for every n-
ary connective 5 of L and every ψ1, . . . , ψn ∈ WL, ν(5(ψ1, . . . , ψn)) =
5̃M(ν(ψ1), . . . , ν(ψn)). We denote the set of all the M-valuations by ΛM.

– A valuation ν ∈ΛM is an M-model of a formula ψ, if it belongs to the set
modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}. The M-models of a theory Γ are the
elements of the set modM(Γ) = ∩ψ∈Γ modM(ψ).

– A formula ψ (a theory Γ) isM-consistent if modM(ψ) �= ∅ (modM(Γ) �= ∅).
– The entailment �M induced by M, is defined by Γ �M ψ if modM(Γ) ⊆
modM(ψ).

It is easy to see that for every matrix M for L, 〈L,�M〉 is a propositional logic.
This notion, however, is in many cases too restrictive. In the context of non-
monotonic reasoning it is usual to consider the following weaker notion, that
still guarantees in many cases that the induced entailment is “well-behaved”
(see, e.g., [3,18,19]):

4 An entailment � is structural if Γ � ϕ implies σ(T) � σ(ϕ) for every substitution σ.

A Preferential Framework for Trivialization-Resistant Reasoning 467

Definition 4. An entailment � is a cautious consequence relation (with respect
toM) if it has the following properties: (i) Cautious Reflexivity (with respect to
M): if Γ isM-consistent and ψ ∈ Γ then Γ � ψ, (ii) Cautious Monotonicity [11]:
if Γ � ψ and Γ � φ then Γ, ψ � φ, and (iii) Cautious Transitivity [18]: if
Γ � ψ and Γ, ψ � φ then Γ � φ.

3 Paraconsistent Entailments

The standard notion of paraconsistency with respect to ¬ (defined in [8,5] for
propositional logics), can be extended to the context of (less restrictive) entail-
ments as follows:

Definition 5. Let L be a language which includes a unary connective ¬. An
entailment � for L is paraconsistent (with respect to ¬) if for every theory Γ
and every L-formula ψ, such that ψ,¬ψ ∈ Γ , there is some L-formula φ, such
that Γ �� φ.

There is a vast amount of different paraconsistent entailments that have been
suggested and investigated over the years. A natural question arises: what are
the properties that a “well-behaved” entailment should satisfy? This question
was considered in [5] for the case of propositional logics. The intuitive answer is
that an ideal paraconsistent logic should follow the original intention of one of
the founders of paraconsistent logics, Newton da Costa ([10]), by “retaining as
much of classical logic as possible”, while still allowing non-trivial inconsistent
theories. This rather vague notion of “ideal logics” was defined in [5] in precise
terms, and it includes the following basic requirements5: (i) containment of clas-
sical logic, (ii) absolute maximal paraconsistency (in the sense that any extension
of the logic results in a non-paraconsistent logic), (iii) maximal paraconsistency
with respect to classical logic (in the sense that extending the set of theorems of
the logic results in classical logic), and (iv) reasonable language (that is, having
a natural implication and conjunction). It was also shown that practically all
reasonable three-valued paraconsistent logics are ideal in the defined sense.

In addition to having a natural implication and conjunction, a useful feature
of the language of a paraconsistent logic is an internalization of the notion of
consistency. A well-known example of logics which have this feature is the family
of paraconsistent logics motivated by da Costa’s approach, known as Logics of
Formal (In)consistency (LFIs, [8]). In these logics we are able to make a distinc-
tion in the language between consistent and inconsistent propositions (in other
words, “normal” ones – which cannot be both true and false, and “abnormal”
ones for which such case is possible), and use this distinction to restrict classical
rules of inference only to the “normal” ones. This distinction is often done using
a primitive (or defined) unary connective ◦, where the meaning of ◦ϕ is “ϕ is
consistent”.

5 We refer the reader to [5] for the formal definitions and further details.

468 A. Zamansky

Example 2. Consider the matrix MB for L = {∧,∨,⊃,¬, ◦} obtained by ex-
tending MB0 from Example 1 by the following interpretation of ◦: ◦̃t = ◦̃f = t,
◦̃� = f . The logic B = 〈L,�MB〉 was introduced in [9,20] for repairing evolu-
tionary databases (it was called LFI1 there), and shown in [5] to be ideal in the
sense explained above. Note that the explosion principle of classical logic does
not hold in B: ψ,¬ψ ��B ϕ, and so B is paraconsistent. However, a weakened
version of the explosion principle does hold: ◦ψ, ψ,¬ψ ��B ϕ. Intuitively, this
means that a consistent proposition cannot be both true and false.

Example 3. Let us utilize the logic B in the context of the ancient geography
domain. The text of Periegetes starts with a “bird’s-eye” description of the world,
in which (among others) the following facts are mentioned: (i) The earth consists
of three continents: Africa, Europe and Asia, (ii) Africa and Europe have the
form of a triangle, (iii) The eastern border of Africa is the Nile river. In the
regional description of Africa, a new fact appears: (iv) The eastern border of
Africa is the Arabian Gulf. We can capture this information in the knowledge
base EK (of explicit knowledge of Periegetes):

Continent(africa)

Continent(europe)

Continent(asia)
EastBorder (africa, nile)

Triangle(europe)

Triangle(africa)
EastBorder (africa, arabgulf)

We will also maintain an additional set of formulas which reflects implicit as-
sumptions related to the geographic concepts (for instance, that a continent
has only one geographical object on its eastern border), to the additional back-
ground knowledge Periegetes is assumed to have (for instance, that triangle
is a different shape from a trapezoid), etc. Suppose we impose the following
set of assumptions6: IA = {∀x∀y∀z EastBorder(x,y) ∧ EastBorder(x,z) →
y = z, nile �= arabgulf }. Clearly, KB = EK ∪ IA is classically inconsistent,
and is trivialized in classical logic. However, this is not the case if a three-valued
paraconsistent logic is used instead. Using B, however, trivialization is avoided:
(i) KB ��B EastBorder(europe, arabgulf), (ii) KB ��BTriangle(asia).

4 The Problems of Cautiousness and Trivialization

Despite the usefulness of three-valued paraconsistent logics for dealing with in-
consistency, such entailments suffer from two major drawbacks. We discuss them
in further details below.

6 To simplify the presentation in the sequel, we would like to restrict our discussion
to the propositional level. Thus we interpret here the atomic formulas as proposi-
tional atoms, and the universally quantified formulas as the set of their substitution
instances.

A Preferential Framework for Trivialization-Resistant Reasoning 469

The first drawback, pointed out in [17], is that three-valued paraconsistent logics
are often too cautious to make intuitive classical entailments. Intuitively, e.g.,
when a knowledge base contains evidence that ψ is true and does not contain
any evidence that ¬ψ is true, one cannot infer that ¬ψ is false, although it seems
plausible.

Example 4. Let B⊥ be the logic obtained from B by adding the bottom ele-
ment ⊥ (which is assigned f by all valuations). Now note that in KB from
Example 3, we have evidence that Continent(europe) is true, but no evidence
that its negation is true. Despite this, we cannot infer that its negation is false:
KB ��B⊥¬Continent(europe)→ ⊥.

One of the solutions to the problem of cautious inference, proposed in [17], is
to focus on preferential refinements of the basic inference relation, applying the
principle of inconsistency minimization. The definitions in [17] apply only to the
three-valued matrix MB0 from Example 1, but can be adapted as follows to the
context of arbitrary finite-valued matrices:

Definition 6. For a set of elements U and a well-founded (partial) order ≤ on
U , we define: min(≤, U) = {u ∈ U | ¬∃u′ ∈ U.u′ ≤ u and u �≤u′}.

Definition 7. Let M be a matrix and ≤ a well-founded (partial) order on ΛM.

Then Γ �≤
M ψ if min(≤,modM(Γ)) ⊆ modM(ψ).

Example 5. The following are two examples of order relations on ΛMB0
proposed

in [17,7], where the set of atoms in L is assumed to be finite (this restriction
will be eliminated in our framework, see the discussion in Remark 1 below). For
a valuation μ and a theory Γ , denote by μ! the set of atoms in L, which are
assigned � by μ. Let μ ≤P ν iff μ! ⊆ ν!, and μ ≤CP ν iff |ν!| ≤ |μ!|.

Example 6. Let us return to Example 4 and see how using, e.g., �≤P

MB⊥
in-

stead of �MB⊥
solves the problem discussed there. It is easy to see that for

every ν ∈ min(modMB(Γ),≤P), ν(Continent(europe)) = t. It now follows that

KB �≤P

B⊥
¬Continent(europe)→ ⊥.

The second major drawback of paraconsistent entailments is that they are prone
to trivialization. Of course, such entailments are no longer trivialized in the face
of a classical inconsistency. However, the danger of trivialization remains, as it
may happen that a knowledge base is no longer M-consistent, as demonstrated
by the following example.

Example 7. Consider the following toy knowledge base EB0 =
{EastBorder(africa, nile),Triangle(europe),Triangle(africa),¬Triangle(africa)}.
Suppose also that the researchers come to believe that all geographical facts
specified in the “bird’s-eye” of the world should be taken as consistent, in
the sense that they do not have reason to expect to find any information
contradicting this part of the text. This includes the facts that Europe and
Africa have the form of a triangle. This can be captured by the following set

470 A. Zamansky

of implicit assumptions (using the consistency operator available in the logic
B): IA0 = {◦Triangle(africa), ◦Triangle(europe)}. However, the knowledge base
KB0 = EB0 ∪ IA0 is MB-inconsistent, resulting in its trivialization.

A method for avoiding trivialization for logics induced by denotational semantics
was proposed in [2,4]. The idea is to apply distance-based minimization of non-
satisfiability for “approximation” of M-models of an M-inconsistent knowledge
base. The resulting entailment coincides with the original logic in case that the
knowledge base is M-consistent, and does not trivialize otherwise. The prob-
lem of trivialization, however, obtains also for the preferential entailments from
Definition 7, to which the above method is not applicable. Indeed, preference is
made there over models of the knowledge base, and as soon as the set of mod-
els is empty, we are again facing trivialization. In the next section we combine
distance-based and preferentical approaches in a unified framework, allowing for
trivialization-resistant preferential entailments.

5 Trivialization-Resistant Preferential Framework

In what follows we define a framework for incorporating preference criteria into
paraconsistent entailments based on arbitrary many-valued matrices. The frame-
work is based on the key notion of order generators. The intuitive idea is that the
preference criteria are knowledge base dependent, that is each theory induces its
own order relation on the space of valuations. This dependency is encapsulated
in an order generator, which generates a different order for each theory7:

Definition 8. Let M be a matrix.

– An order generator O for M is a function which for every theory Γ returns
a well-founded partial order ≤Γ on ΛM.

– For some order generator O for M, we write Γ �O
M ψ if min(O(Γ), ΛM) ⊆

modM(ψ).

The key property of entailments of the form defined above is that for any matrix
satisfying the following natural normality condition from [4], they are completely
trivialization-resistant:

Definition 9. A matrix M for L is normal if for every ν ∈ ΛM, there is a
L-formula ψ, such that ν �|=Mψ.

It is easy to see, e.g., that any matrixM in which a bottom element is definable,
is normal. Moreover, so is any three-valued paraconsistent matrix for a language
with ¬ and ◦, where these unary connectives are interpreted like in MB from
Example 2.

Proposition 1 (non-trivialization). Let M be a normal matrix for L and O
an order generator. Then for every theory Γ , there is some ψ, such that Γ ��O

Mψ.

7 See also the discussion in Remark 1 on order generators.

A Preferential Framework for Trivialization-Resistant Reasoning 471

Proof: Let Γ be a theory. Since O(Γ) is a well-founded relation,min(O(Γ), ΛM)
is non-empty. Let μ ∈ min(O(Γ), ΛM). By the normality of M, there is some
ψ, such that μ �∈modM(ψ). Hence Γ ��O

Mψ.

Order generators will be constructed using (any number of) profile settings,
consisting of two ingredients. The first is a profile, assigned to each valuation
μ, which contains information to judge how “well-behaved” this valuation is
with respect to a given knowledge base KB. Making this idea more concrete,
a possible profile is a set of formulas, on which μ is “well-behaved” (the latter
can mean different things: satisfaction of a formula, assigning a particular truth-
value to a formula, etc.). To keep this set finite, we only use formulas which are
“relevant” (this notion can also vary, and is defined below in precise terms) for
KB. The second ingredient of a profile setting is some ordering on profiles (or
finite sets of formulas). Since a profile is theory-dependent, we encapsulate this
dependency (like in order generators) by defining profile matching:

Definition 10. Let M be a matrix for L.

– A profile matching for M is a function J , which given an M-valuation μ
and a theory Γ , returns a finite set of formulas, and which satisfies the
boundedness condition: for every theory Γ , there is some number nΓ , such
that for all μ ∈ ΛM, |J (μ, Γ)| ≤ nΓ .

– A profile setting for M is a pair S = 〈J ,≤〉, where J is a profile matching
for M and ≤ a partial well-founded order on TL.

A profile setting can then be used to define natural orderings among valuations.
Moreover, we can define more fine-grained orderings by applying a common
technique in choice theory based on lexicographic aggregation of orderings ([1]):

Definition 11. Let S1 = 〈J1,≤1〉, . . . ,Sn = 〈Jn,≤n〉 be profile settings for M.
OS1,...,Sn is defined inductively as follows:

– OS1(Γ)(μ, ν) iff J1(μ, Γ) ≤1 J1(ν, Γ).
– For n > 1, OS1,...,Sn(Γ)(μ, ν) iff OS1,...,Sn−1(Γ)(μ, ν) and if also

OS1,...,Sn−1(Γ)(ν, μ), then Jn(μ, Γ) ≤n Jn(ν, Γ).

The intuitive idea behind lexicographic aggregation is that the preference ex-
pressed by Si−1 is more important than the one expressed by Si. Below we shall
use this idea to capture the fact that approximating the behaviour of a model of
the knowledge base is more important than approximating a classical behaviour.
Note that the fact that profile settings are based on well-founded orders ensures
that OS1,...,Sn is indeed an order generator.

Now we provide some concrete examples of the two ingredients of a profile set-
ting. Some natural examples of orders on TL are (i) Γ1 ≤c Γ2 if |Γ1| ≤ |Γ2|,
and (ii) Γ1 ≤i Γ2 if Γ1 ⊆ Γ2. To define profile matchings, we will need the no-
tion of contexts from [4], capturing the intuitive idea of “relevance” for a given
knowledge base.

472 A. Zamansky

Definition 12. A context is a finite set of formulas (i.e., an element of TL). A
context generator (for L) is a function G : TL → TL, producing a context for
every theory.

Example 8. Common examples for context generators are, e.g., the following
functions defined for every theory Γ by GAt(Γ) = Atoms(Γ) (denoting the atoms
of Γ), GID(Γ) = Γ , and GSF(Γ) = SF(Γ) (denoting the subformulas of Γ).

Now we are ready to define the profile matching J G
Y induced by a context gener-

ator G and a subset Y of truth-values of M. The intuition behind the captured
preference is that we want to minimize in some sense (according to the chosen
order relation) the formulas “relevant” to our knowledge base (according to the
generator G) which are assigned values from Y. For instance, by choosing Y
to be the non-designated truth-values of M, we “maximize the satisfaction” of
the knowledge base, preferring valuations which approximate models of it. By
choosing Y to contain the inconsistent truth-value �, we “maximize classical rea-
soning”, preferring valuations which best approximate classical valuations. The
most natural approach seems to us having “model approximation” as a primary
objective, which can then be refined by other criteria.

Definition 13. Let M = 〈V ,D,O〉 be a matrix, Y ⊆ V, and G - a context
generator. The profile maching J G

Y is defined as follows: J G
Y (μ, Γ) = {ψ ∈

G(Γ) | μ(ψ) ∈ Y}.

Example 9. Let M = 〈V ,D,O〉 be a matrix. Denote D = V \ D. Then Jmod =

J GID

D is a profile matching for M. Moreover, in the case that V = {t, f,�}, so
are Jcon = J GAtoms

{�} and Jtrue = J GID(Γ)
{f,�} .

Example 10. Let Γ = {p,¬p, ◦p, q, ◦q,¬(p ∧ q)}. Let M be the matrix MB

from Example 2. To demonstrate the difference between various profile settings,
consider the cases Scon

c = 〈Jcon,≤c〉, Smod
i = 〈Jmod,≤i〉, and Smod

c = 〈Jmod,≤c

〉. Note that the “relevant” formulas for Jmod are all the formulas from Γ , while
the “relevant” formulas for Jcon are only the atoms occurring in Γ . Computing
the profiles of the M-valuations, we obtain:

νi p q ¬(p ∧ q) ¬p ◦p ◦q Jmod(νi, Γ) Jcon(νi, Γ)
ν1 t t f f t t {¬(p ∧ q),¬p} ∅
ν2 t � � f t f {¬p, ◦q} {q}
ν3 t f t f t t {q,¬p} ∅
ν4 � t � � f t {◦p} {p}
ν5 � � � � f f {◦p, ◦q} {p, q}
ν6 � f t � f t {q, ◦p} {p}
ν7 f t t t t t {p} ∅
ν8 f � t t t f {p, ◦q} {q}
ν9 f f t t t t {p, q} ∅

So we have min(OSmod
i

, ΛM) = {ν1, ν2, ν3, ν4, ν7}, while min(OSmod
c

, ΛM) =

{ν4}. Hence, e.g., Γ ��OSmod
i ◦ q, while Γ�OSmod

c ◦ q. The cautiousness of

A Preferential Framework for Trivialization-Resistant Reasoning 473

�OSmod
i can be recovered by using an aggregation-based order. For instance,

min(OSmod
i ,Scon

c
, ΛM) = {ν1, ν3, ν7}, and so Γ�OSmod

i
,Scon

c ◦ q.

Below we show some basic properties of the defined entailments. First of all, for
M-consistent knowledge bases, the two basic entailments coincide with the logic
�M (while for inconsistent ones they behave differently, as we have just seen in
Example 10 above).

Proposition 2. Let M be a matrix and Γ - an M-consistent theory. Let S =
〈Jmod,≤〉, where ≤ is either ≤i or ≤c. Then Γ �M ψ iff Γ �OS

M ψ

The basic entailment induced by Jmod is particularly well-behaved:

Proposition 3. Let S1 = 〈J1,≤1〉, where J1 = Jmod and ≤1 is either ≤i or
≤c. Then �OS

M is a cautious consequence relation (with respect to M).

Proposition 4 (decidability). We say that a profile setting S = 〈J ,≤〉 for a
finite matrix M is simple if J has the form from Definition 13, and ≤ is either
≤c or ≤i. For simple profile settings S1 = 〈J1,≤1〉, . . . ,Sn = 〈Jn,≤n〉 for a

finite matrix M, the question whether Γ �OS1,...,Sn

M ψ is decidable.

Remark 1. In addition to defining new paraconsistent entailments, many natural
cases of previously studied paraconsistent formalisms can be simulated within
our framework, which is perhaps an indication for the naturality of the above
definitions. Below are some examples:

1. For Sc = 〈Jmod,≤c〉 and any matrix M, �OS
M coincides with the distance-

based paraconsistent entailment |∼〈Atoms,d,Σ〉 from [4], where d is the standard

distance on {t,�, f} (where, e.g., d(t, f) = 1 and d(t,�) = d(f,�) = 0.5).
2. For Si = 〈Jmod,≤i〉 and the classical matrix Mcl, �OS

M coincides with the
(propositional fragment) of the cautious entailment based on maximally con-
sistent subsets of [13,14].

3. LetM be any paraconsistent three-valued matrix. Let S0 be either Sc or Si.
Then the following holds for any M-consistent theory Γ and any ψ: (i) For

S1 = 〈J At
� ,≤i〉, Γ �OS0,S1

M ψ iff Γ |=P ψ, (ii) For S1 = 〈J At
� ,≤c〉, Γ �OS0,S1

M ψ

iff Γ |=CP ψ, (iii) For S1 = 〈J ID
{�,f},≤i〉, Γ �OS0,S1

M ψ iff Γ |=Γ
BS ψ, (iv) For

S1 = 〈J ID
{�,f},≤c〉, Γ �OS0,S1

M ψ iff Γ |=Γ
CBS ψ, where |=P , |=CP , |=Γ

BS , |=Γ
CBS

are the entailments defined in [17,7] (see also Example 5), and we assume
that the set of atoms of L is finite and is equal to Atoms(Γ).
It should be noted that there are a number of aspects, in which the above
entailments differ from their corresponding counterparts |=P , |=CP , |=Γ

BS and
|=Γ

CBS . First of all, while the former coincide with the latter forM-consistent
premises, they do not trivialize in the presence ofM-inconsistency. Secondly,
due to the incorporation of context generators, the former do not depend on
the (rather restrictive) assumption of finiteness of the underlying language.
Finally, the entailments |=Γ

BS and |=Γ
CBS are called in [17] non-standard re-

lations, as their definition depends on the belief base Γ under consideration.

474 A. Zamansky

The incorporation of the notion of order generators, however, solves this
problem, as the dependency of the belief base is encapsulated in it, so the
corresponding relations can be thought of as standard in the sense of [17].

Example 11. Revisiting the knowledge base KB0 from Example 7, let us now

apply, e.g., the entailment �OS0,S1

MB⊥
for S0 = 〈Jmod,≤c〉 and S1 = 〈Jcon,≤i〉

(where MB⊥ is the matrix from Example 4). The entailment is trivialization-
resistant, since despite the fact that KB0 is not MB⊥-consistent, we cannot
infer from it Triangle(africa) (while we can still infer Triangle(europe)). Moreover,

the entailment is less cautious than �MB⊥
or �OS0

MB⊥
, since, as opposed to the

latter, we can infer in it, e.g., ¬EastBorder(africa, nile) → ⊥ from KB0 (i.e,
EastBorder(africa, nile) is consistently true).

6 Summary and Further Research

In this paper we have proposed an abstract framework for incorporating various
“epistemic” preference criteria into paraconsistent entailments, which are useful
for overcoming problems such as cautiousness and trivialization. The framework
has a number of attractive properties. Most importantly, it allows for defining
trivialization-resistant variants of paraconsistent entailments based on a many-
valued matrix, including the case of preferential ones, which to the best of our
knowledge has not been treated before in this context. Moreover, it is general, as
nothing is assumed about the underlying matrix, and the preference criteria de-
finable in it also have a general form, which can also be further generalized. The
framework is also modular, as it has a built-in mechanism for easily combining
any finite number of preference criteria. We believe that this framework can be a
useful tool for the design of paraconsistent knowledge bases. The reason is that
for a problem coming from a new, not yet studied domain (like the domain of
descriptive ancient geography), it is often hard to choose the right paraconsistent
approach (e.g., fixing the matrix, choosing the most natural preference criteria,
etc.). In many cases the right choice becomes evident only after some experi-
mental data is available. Our framework, which combines many paraconsistent
approaches and allows for a smooth transition between them, can be used for
their comparative study.

The most immediate research directions include investigating the logical prop-
erties of the entailments defined in our framework, as well as of their compu-
tational complexity (from the results of [17] for some special cases, it is clear
that intractability is expected for the general case). It should be noted, how-
ever, that the current framework aims at generality rather than efficiency, while
for improving the latter, entailment-specific optimizations can be employed. For
practical applications, the results should also be extended to the first-order case.
Concerning the considered domain of ancient geography, it seems promising to
combine our approach for handling inconsistent knowledge bases with methods
for handling vague geographic concepts along the lines of [6].

A Preferential Framework for Trivialization-Resistant Reasoning 475

References

1. Andréka, H., Ryan, M., Schobbens, P.-Y.: Operators and laws for combining pref-
erence relations. Journal of Logic and Computation 12(1), 13–53 (2002)

2. Arieli, O.: Distance-based paraconsistent logics. International Journal of Approxi-
mate Reasoning 48(3), 766–783 (2008)

3. Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: from basic
entailments to plausible relations. Logic Journal of the IGPL 8(2), 119–148 (2000)

4. Arieli, O., Zamansky, A.: Inconsistency-Tolerance in Knowledge-Based Systems by
Dissimilarities. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153,
pp. 34–50. Springer, Heidelberg (2012)

5. Avron, A., Arieli, O., Zamansky, A.: Ideal paraconsistent logics. Studia Logica 99(1-
3), 31–60 (2011)

6. Bennett, B., Mallenby, D., Third, A.: An ontology for grounding vague geographic
terms. In: Eschenbach, C., Gruninger, M. (eds.) Proceedings of the 5th Interna-
tional Conference on Formal Ontology in Information Systems (FOIS 2008). IOS
Press (2008)

7. Besnard, P., Schaub, T.: Circumscribing inconsistency. In: Proc. of IJCAI 1997,
pp. 150–155 (1997)

8. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In:
Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn.,
vol. 14, pp. 15–107. Springer (2007)

9. Carnielli, W.A., Marcos, J., de Amo, S.: Formal inconsistency and evolutionary
databases. Logic and Logical Philosophy 8, 115–152 (2000)

10. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame Jour-
nal of Formal Logic 15, 497–510 (1974)

11. Gabbay, D.: Theoretical foundation for non-monotonic reasoning, Part II: Struc-
tured non-monotonic theories. In: Proc. SCAI 1991. IOS Press (1991)

12. Gabbay, D., Hunter, A.: Making inconsistency respectable: A logical framework
for inconsistency in reasoning. In: Fundamentals of Artificial Intelligence. Springer
(1992)

13. Grant, J., Subrahmanian, V.S.: Reasoning about inconsistent knowledge bases. In:
IEEE TKDE, vol. 7(1), pp. 177–189 (1995)

14. Grant, J., Subrahmanian, V.S.: Applications of paraconsistency for data and knowl-
edge bases. Synthese 125(1/2), 121–132 (2000)

15. Ilyuschetchkina, E.: Das Weltbild des Dionysios Periegetes. In: Die Vermessung der
Oikumene / Mapping the Oikumene. De Gruyter, Berlin (forthcoming, 2012)

16. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelli-
gence 157(1-2), 49–79 (2004)

17. Konieczny, S., Marquis, P.: Three-Valued Logics for Inconsistency Handling. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 332–344. Springer, Heidelberg (2002)

18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

19. Makinson, D.: General patterns in nonmonotonic reasoning. In: Handbook of Logic
in Artificial Intelligence and Logic Programming, vol. 3, pp. 35–110 (1994)

20. de Amo, S., Carnielli, W.A., Marcos, J.: A Logical Framework for Integrating
Inconsistent Information in Multiple Databases. In: Eiter, T., Schewe, K.-D. (eds.)
FoIKS 2002. LNCS, vol. 2284, pp. 67–84. Springer, Heidelberg (2002)

21. Shoham, Y.: Reasoning about Change. MIT Press (1988)

DebateWEL: An Interface for Debating

with Enthymemes and Logical Formulas�

Julien Balax, Florence Dupin de Saint-Cyr, and David Villard

IRIT, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
julienbalax@gmail.com, florence.dupin@irit.fr, david0271@ymail.com

Abstract. The DebateWEL G.U.I. allows two players to exchange logi-
cal formulas and enthymemes in a persuasion debate game. DebateWEL
protocol, described in [1], ensures consistency of each player with respect
to himself and common-knowledge thanks to a SAT solver [2] which is
called directly from the SAToulouse interface [3]. The game ends either
because the players have found an agreement or because the limit of time
has been reached (failure of the debate).

Being persuasive is very useful in many situations. Indeed good orators are con-
sidered to be very clever, hence an interesting challenge for AI is to be able to
design artificial persuasive orators. Before proposing such artificial agents, it is
necessary to define the framework in which they are going to play.

Persuasion dialogs are particular dialogs in which one agent aims at convincing
others that a first assertion (called the subject of the dialog) holds. In order to
design a framework in which a persuasion dialog can take place, it is necessary
to define the moves that each agent is allowed to make. This definition is called a
protocol. In persuasion dialogs, the possible types of moves are mainly assertions
and challenges while in other kinds of dialogs (e.g. negotiations dialogs) moves
like requirements or proposals are allowed. Apart from its type, a move is also
characterized by its content. In a persuasion dialog this content is an assertion or
an argument (i.e., a rational utterance explaining the reasons for a given claim).
Here are the specificities of DebateWEL protocol:
– There is no information about the state of mind of the agents, only what is
publicly said is considered.
– The contents of the moves are based on classical propositional logic.
– Arguments are not abstract entities but explicit pairs (S, ϕ) where the sup-
port S is a set of formulas and the claim ϕ is a formula. Moreover, pairs in
which S is not a proof of ϕ are allowed. If something is missing to prove ϕ
from S or if ϕ is too vague then (S, ϕ) is called enthymeme for a given perfect
argument that should have a more complete support or a more precise claim.
As explained in [1,4,5]), enthymemes are very common in human dialogs.
– At the beginning of the dialog the agents agree on a common knowledge on
which they can base their future statements, it is expressed under the form of
formulas and enthymemes (they can agree on a set of approximate arguments

� This work was funded by the ANR project LELIE on risk analysis and prevention
(http://www.irit.fr/recherches/ILPL/lelie/accueil.html).

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 476–479, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DebateWEL: Debating with Enthymemes in Logics 477

that they consider as sufficient “proofs”). This common knowledge may only
increase during the dialog.
– The protocol is flexible: any agent can take is turn as soon as the previous
move is finished (even by himself), and can utter any move provided that it
does not introduce any self-contradiction or repetition, and that, before the
end, all the commitments induced by the moves of his adversary are fulfilled.
– The dialog ends either with the victory of one agent when his adversary
has agreed with him, or with a failure when they did not succeed to fulfill
their commitment in time (either expressed in seconds or in terms of number
of symbols used). DebateWEL is designed for inciting agents rather to agree
than to reach a failure of the dialog: the score is high for a persuasive player,
middle for a persuaded player and bad if the dialog fails.

Let us recall definitions from [1]: L being a propositional language, an approx-
imate argument is a pair (S, ϕ) where S ⊆ L and ϕ ∈ L . A logical argument
(S, ϕ) is such that: (1) S ⊂ L , (2) S � ⊥, (3) S � ϕ, and (4)
S′ ⊂ S s.t. S′ � ϕ.
(S, ϕ) and (S′, ϕ′) being approximate arguments, (S′, ϕ′) completes (S, ϕ) iff (1)
S ⊂ S′ and ϕ = ϕ′ or (2) S ⊆ S′ and {ϕ′}∪S′ � ϕ and ϕ �= ϕ′. a is an enthymeme
for a′ iff a′ is a logical argument and a′ completes a (a is said incomplete).

We consider a set of eleven speech acts, the six usual speech acts used in
persuasion dialog: Accept for accepting a formula, Argue for uttering an argument
(which maybe incomplete), Assert for uttering a formula, Challenge for asking
for an argument explaining a formula, Close to end the dialog and Retract for
removing an asserted formula. Two speech acts that are specific for enthymemes
are added to this set, namely Quiz and Agree (proposed by [6]) for asking for
a completion of an argument and for agreeing with the fact that a given pair
(S, ϕ) is sufficient to convince that ϕ holds. We also add three more moves:
Quizlink enabling to ask for a completed argument that relates its claim to the
subject of the dialog, Replace allowing to complete an argument andDismantle for
retracting an argument. In [1], it is assumed that speech acts commit either the
utterer (to be consistent and to be able to explain himself when challenged) and
the hearer (to acknowledge that he agrees with the utterances of his adversary
(unless they have been retracted)).

DebateWEL interface handles these commitments with a commitment store
[7] divided into three parts (see Figure 1). On the center, the common knowledge
part is divided into formulas and arguments. On each side of the screen, the com-
mitment stores of each agent are divided into three parts: propositional formu-
las and approximate arguments asserted by the agent and commitments towards
the other agent, i.e., the requests to which he should answer. The preconditions
of each move are translated into consistency checks (done by SAT4j) within the
commitment store while the effects of the moves are addition to or removal from
the commitment store (following the precise definitions of each move given in [1]).

In the screen shot of Figure 1, the first player is named Schopenhauer, he
has asserted drama→ supreme meaning “In drama, English are supreme”, the
common knowledge is {opera → music, opera} meaning that the two players
agree on the fact that “opera is music” and that “opera exists”. After this first

478 J. Balax, F. Dupin de Saint-Cyr, and D. Villard

Fig.1 Screen shot of DebateWEL main screen

SAToulouse

checkSelfConsistency
checkGlobalConsistency
checkLogicalSyntaxe
checkFormulaConsistency
checkArgumentConsistency Move

name:string

Request
argument: Argument
formula: Formula
moveType:Move

Argument
support: List<Formula>
conclusion:Formula

Formula

Form/Argt Dialog

inputFormula
inputArgument

MoveHandler

checkRedundancy
checkGlRedundancy

Player
name:String
symbCount:int
requests:List<Request>
speechTime:int

Participant
formulas:List<String>
arguments:List<Argument>
solver:SATsolverSAT4J

Message

displayErrorMessage
displaySuccessMessage DebateFrame

PlayerPane
formulas:JList
arguments:JTree
requests:JList
chrono:JLabel
nbSymbols:JLabel
hasFloor:boolean

Referee
idCurrentPlayer:int
topics:Array List<String>
scoringType:int

Menu

main
load
save
insertTopics

ReferePane
formulas:Jlist
arguments:JTree

Fig.2 Simplified Architecture of DebateWEL

move, the second player named “Adversary” is commited to Accept the formula
drama → supreme (as long as Schopenhauer has not retracted this assertion).
Schopenhauer has been permitted to do it because it is consistent with what he
had already said (nothing) and with common knowledge. Checking consistency is
done by using SAT4j. The interface for entering formulas is based on SAToulouse
as shown on Figure 2 which represents the architecture of DebateWEL.

DebateWEL has several software features:

– The hand is materialized by a buzzer, when it is green the agent can buzz.
After buzzing, the buzzer becomes orange and the current agent can play its

DebateWEL: Debating with Enthymemes in Logics 479

move while his adversary must wait (the moves that are not possible are grayed
button, if the formula or argument entered is not consistent or redundant then
an error message is delivered). In Figure 1, the two agents can buzz, the quicker
to buzz will be allowed to play.
– In order to help the players, they can choose to load one or several files con-
taining formulas concerning a given topic, it is then possible to select directly
these formulas instead of entering them, moreover it is also possible to select
among formulas that have already been asserted in the dialog.
– A concise view of arguments is proposed: by default, only the claim is shown
(the support can be fold and unfold simply by clicking on it).
– The type of the move of a request is symbolized by a colored bullet and the
meaning of the colors is displayed in the center of the screen (see Figure 1).
– The score at the end of the dialog is based on the number of the player’s
formulas present in the common knowledge at the end of the dialog, a big
penalty is associated to a player who has not fulfilled his commitments.
– There are two options for the limitation of the dialog: either the time taken
by the agent or the number of symbols used in his utterances.
– At the end of the game the common-knowledge is stored in a file.
– DebateWEL enables the user to load an old game, thus it is possible to stop
the dialog and save it (in order to continue later).

In the near future, we plan to develop an artificial player on the basis of an
A* algorithm, and we also want to make this application available on the web.
Indeed if this application is used, then it can help to collect new arguments
(hence enrich a set of argument benchmarks, something that is really needed in
the field of Argumentation theory).

References

1. Dupin de Saint-Cyr, F.: Handling Enthymemes in Time-Limited Persuasion Dialogs.
In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS (LNAI), vol. 6929, pp. 149–162.
Springer, Heidelberg (2011)

2. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 59–64 (2010)

3. Gasquet, O., Schwarzentruber, F., Strecker, M.: Satoulouse: The Computational
Power of Propositional Logic Shown to Beginners. In: Blackburn, P., van Dit-
marsch, H., Manzano, M., Soler-Toscano, F. (eds.) TICTTL 2011. LNCS, vol. 6680,
pp. 77–84. Springer, Heidelberg (2011)

4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial
Intelligence 128(1-2), 203–235 (2001)

5. Hunter, A.: Real arguments are approximate arguments. In: Proceedings of the 22nd
National Conference on Artificial Intelligence, pp. 66–71. AAAI Press (2007)

6. Black, E., Hunter, A.: Using enthymemes in an inquiry dialogue system. In:
Padgham, L., Parkes, D. (eds.) Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems - AAMAS, International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC, pp. 437–
444 (2008)

7. Hamblin, C.: Fallacies. Methuen, London (1970)

OMiGA: An Open Minded Grounding
On-The-Fly Answer Set Solver

Minh Dao-Tran, Thomas Eiter, Michael Fink,
Gerald Weidinger, and Antonius Weinzierl	

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria

{dao,eiter,fink,weidinger,weinzierl}@kr.tuwien.ac.at

Abstract. We present a new solver for Answer-Set Programs whose main fea-
tures include grounding on-the-fly and readiness for use in solving distributed
answer-set programs. The solver is implemented in Java and uses an underlying
Rete network for propagation. Initial experimental results show the benefit of us-
ing Rete for this purpose, but also exhibit the need for learning in the presence of
grounding on-the-fly.

1 Motivation

Answer-set programming (ASP), based on [2], is a paradigm where a problem is en-
coded as a program that is a set P of nonmonotonic rules, facts, and constraints. The
program P is then given to a solver that searches for specific interpretations called an-
swer sets of P such that all rules and constraints are satisfied.

Example 1. Consider a variant of cut-set: given a graph, remove one edge and compute
the reachability of the modified graph. An ASP encoding is P =⎧⎨⎩

r1: del(X,Y) ← e(X,Y),not k(X,Y). r4: reach(X,Y) ← k(X,Y).
r2: k(X,Y) ← e(X,Y), del(X1, Y1), X1 �= X. r5: reach(X,Z) ← reach(X, Y),
r3: k(X,Y) ← e(X,Y), del(X1, Y1), Y1 �= Y. reach(Y,Z).

⎫⎬⎭ .

Rule r1 uses negation to create a choice point for each edge; r2 and r3 ensure that only
one edge is removed. Finally, r4 and r5 compute reachability among the edges kept.
Observe that only r1 requires a guess and if for one ground instance the rule is guessed
applicable, an answer set can be found using only propagation.

For humans, abstract rules as above are easy to understand and process, while traditional
answer-set solvers can not handle them. They apply (pre-)grounding, i.e., substituting
all variables with the actual values they might take. So for each combination of edges,
a new rule is generated where the variables are eliminated.

As the ground program might be very large compared to the non-ground program,
techniques like intelligent grounding have been developed in order to restrict the rules
which must be grounded. But for distributed systems, these techniques conflict with

� This work has been funded by the Vienna Science and Technology Fund (WWTF) project ICT
08-020 and by the Austrian Science Fund (FWF) project P20841.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 480–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver 481

information hiding and the fact that not all information is known when pre-grounding
must take place. As open domains become more important, the same problem arises
even in non-distributed settings.

To avoid pre-grounding the answer set solvers GASP [5] and ASPeRiX [3,4] have
been developed, both based on the same evaluation technique which has similarities to
the SModels [6] approach. We reconsider this technique since it can be improved with
well-suited data structures like Rete [1], and we develop a solver, called OMiGA, with an
eye on distributed systems.

2 Methods and Techniques

Intuitively, OMiGA keeps a partial interpretation I = (I+, I−) containing all ground
atoms considered true (resp., false) in I+ (resp., I−). If there is a non-ground rule r with
a valuation V of variables such that all positive atoms of the grounded rule r[V] are true,
i.e., B+(r[V]) ⊆ I+, and all negative atoms of r[V] are false, i.e., B−(r[V]) ⊆ I−,
then the head of r is grounded and derived, i.e., I+ is extended by H(r[V]). This
propagation is repeated until a fixpoint is reached.

If propagation is finished and a valuation V of a rule r exists such that B+(r[V]) ⊆
I+ and B−(r[V]) ∩ I+ = ∅, then r[V] possibly is applicable in some answer set; we
have to guess whether it is the case or not. If yes, I− is extended by B−(r[V]) and I+

byH(r[V]), making r[V] applicable. If not, conceptually a constraint is added ensuring
that r[V] does not become applicable.

At any point, if a constraint is violated or I+ ∩ I− �= ∅, the current guessing branch
is inconsistent, backtracking is issued, and subsequently a guess is inverted.

To minimize time needed to find a valuation V of r for propagation or guessing,
we employ a Rete-like network, where nodes represent parts of the input program P .
Each node has an associated working memory (WM) in which all valuations that are
true under I are stored. There are basic nodes, join nodes, and head nodes, representing
facts, subsets of rule body atoms, and rule heads, respectively.

These nodes are connected according to P , e.g., for rule r5 in Example 1 there exists
one join-node connected twice to the basic node of reach , and it is connected to the
head node for r5. If a new fact is added to its corresponding basic node, it is propagated
through the network and thus only processed where it might lead to new results. To
represent I+ and I− there are two basic nodes for each predicate p. For guessing, the
Rete network is built such that each rule has a specific join-node whose WM contains
valuations V for which B(r[V]) ⊆ I+, i.e., finding a rule whose applicability can be
guessed amounts to selecting from that node.

3 Solver Architecture

The basic architecture of OMiGA is shown in Figure 1. Its input is an answer-set program
that is parsed and rewritten to optimize guessing (in a standard way, introducing new
atoms representing satisfaction of rule bodies). From these rules, the Rete Builder then
creates the Rete network that is later used in the central component of our solver. Here,
a Manager controls the depth-first search for answer sets as follows: Rete is repeatedly

482 M. Dao-Tran et al.

Input
file Parser Rewriter

Rete
Builder Rete Choice

Manager

Answer
sets

Fig. 1. System architecture

Manager

Rete Choice

1

7
3

9

4

10
6

12

5 11

13

2

8 Answer sets

(1, 7) M (Manager) triggers R (Rete) to propagate
(2) R propagates until a fix point and informs M (3)

I+ = {e(1, 2), e(2, 3), e(3, 4), e(2, 4)}
(4, 10) M triggers C (Choice) to make a choice
(5) C looks up Rete network, finds a choice r1[X/2, Y/3]
(6) C makes a choice: r1 is applicable

I+ = I+ ∪ {del(2, 3)}, I− = {k(2, 3)}
(8) R propagates until a fix point and informs M (9)

I+ = I+ ∪
{
k(1, 2), k(3, 4), k(2, 4), reach(1, 4),
reach(1, 2), reach(3, 4), reach(2, 4)

}
(11) C looks up Rete network, finds no more choice
(12) C informs M of no more choice
(13) M requests R to print the answer

Fig. 2. Illustration of the propagation-and-guess evaluation

triggered to evaluate all rules and derive new rule heads. If no new atoms can be derived,
i.e., the propagation phase is finished, then the Choice component selects a rule whose
positive body is fulfilled, a new decision level is entered and the rule is guessed to be ap-
plicable. This process of propagation and guess is repeated until either no more choices
can be made, i.e., an answer set is found and printed, or an inconsistent state is reached.
In the latter case, backtracking is done and the last guess is inverted. Figure 2 details a
run for Example 1, on a graph with edges E = {e(1, 2), e(2, 3), e(3, 4), e(2, 4)}.

4 Evaluation

We compare OMiGA to clingo1 3.0.4, DLV2 2011-12-21, and ASPeRiX 0.2.4; we omit
GASP, as it is known to be slower than ASPeRiX [4] and time measurement due to
entanglement with Prolog is ambiguous. The instances are: (i) reachability, a positive
program for graph reachability (from the 2009 ASP Contest), with close to 24K and
700K edges, (ii) 3-colorability on sparse graphs of size 10 and 20, (iii) locstrat, a bench-
mark program from [4] with 200 and 400 nodes, (iv) cutedge, our running example on
a random graph with 100 nodes and close to 2.8K resp. 4.9K edges.

As Table 1 shows, the use of Rete pays off as it stores partial joins and hence re-
duces time for propagation. OMiGA is consistently faster than ASPeRiX, except for loc-
strat where ASPeRiX uses must-be-true propagation while OMiGA only propagates rule
heads. Also note that due to the use of Java and the building of the Rete network, our
solver has an increased startup-time. On NP-hard problems like 3-colorability, the issue

1 http://potassco.sourceforge.net/
2 http://www.dlvsystem.com

http://potassco.sourceforge.net/
http://www.dlvsystem.com

OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver 483

Table 1. Comparative systems evaluation (c: clingo, d: DLV, a: ASPeRiX, o: OMiGA)

reachability 3-colorability locstrat cutedge
24K 700K 10 20 200 400 2.8K 4.9K

c 0.33 5.00 0.00 0.00 0.00 0.00 0.46 0.46 2.06 2.05 25.85 27.34 75.06 79.26

d 0.44 4.56 0.00 0.00 0.00 0.00 5.88 5.67 46.93 47.78 107.07 214.67 301.54 600.08

a 2.84 — 0.01 1.06 — — 0.01 0.08 0.07 0.33 1.70 16.70 4.62 46.02

o 1.20 15.53 0.16 0.35 1.97 5.37 0.38 0.65 0.61 1.32 0.77 3.05 0.85 3.53

Running time in seconds, left: first answer, right: first 10 answers (if applicable).

of missing learning from conflicts is visible as clingo (using nogood learning) and DLV
(using backjumping and look-back heuristics) perform extremely well. For non-ground
ASP solving, learning is an open issue.

Comparing the cutedge benchmark with reachability, the effect of intelligent pre-
grounding is evident since for the positive reachability instances, the pre-grounder can
efficiently evaluate the programs. If those pre-grounding strategies are not possible due
to only one guessing rule like in cutedge, the propagation becomes ineffective, very
much in contrast to a Rete-based propagation.

5 Ongoing Work and Conclusion

We have presented OMiGA,3 a new grounding on-the-fly solver for answer set programs,
which also can be employed in a distributed setting where nodes contain programs
that can access atoms at other nodes, by exchanging only the Manager component. As
our experimental results show, Rete pays off and makes OMiGA outperform clingo and
DLV for propagation-intense instances. Future work on backtracking, conflict-driven
learning, and extended propagation is planned.

References

1. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

3. Lefèvre, C., Nicolas, P.: A First Order Forward Chaining Approach for Answer Set Comput-
ing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 196–208.
Springer, Heidelberg (2009)

4. Lefèvre, C., Nicolas, P.: The First Version of a New ASP Solver: ASPeRiX. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg
(2009)

5. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Gasp: Answer set programming with lazy
grounding. Fundam. Inform. 96(3), 297–322 (2009)

6. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.
Artif. Intell. 138(1-2), 181–234 (2002)

3 http://www.kr.tuwien.ac.at/research/systems/omiga

http://www.kr.tuwien.ac.at/research/systems/omiga

The Multi-Engine ASP Solver ME-ASP

Marco Maratea1, Luca Pulina2, and Francesco Ricca3

1 DIBRIS, Univ. degli Studi di Genova, Viale F.Causa 15, 16145 Genova, Italy
2 POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy

3 Dipartimento di Matematica, Univ. della Calabria, Via P. Bucci, 87030 Rende, Italy
marco@dist.unige.it, lpulina@uniss.it, ricca@mat.unical.it

Abstract. In this paper we describe the new system ME-ASP, which applies ma-
chine learning techniques for inductively choosing, among a set of available ones,
the “best” ASP solver on a per-instance basis. Moreover, we report the results of
some experiments, carried out on benchmarks from the “System Track” of the
3rd ASP Competition, showing the state-of-the-art performance of our solver.

1 Introduction

Answer Set Programming [7] (ASP) is a truly-declarative programming paradigm pro-
posed in the area of non-monotonic reasoning and logic programming. The idea of ASP
is to represent a given computational problem by a logic program whose answer sets
correspond to solutions, and then use a solver to find such solutions [12]. The language
of ASP is very expressive, indeed all problems in the second level of the polynomial
hierarchy are expressible in ASP [4]. Moreover, the applications of ASP nowadays be-
long to several fields from Artificial Intelligence to Knowledge Management [2]. The
development of efficient and fast ASP systems is, thus, a crucial task made even more
challenging by existing and new-coming applications.

As witnessed by the ASP competition series (see [3] for the most recent), several
efficient ASP solvers have been proposed up to now, which are based on different solv-
ing techniques ranging from ASP-specific approaches to translation to SAT/Difference
Logic. Inspired by the recent research results on the neighbor fields of SAT and QBF,
where inductive techniques for algorithm selection were applied with success [18,16],
we have developed ME-ASP, a multi-engine solver for propositional ASP programs.

In this paper we describe this new system. In order to obtain a robust ASP solver,
i.e., a system able to perform well across a wide set of problem domains, we leverage a
number of efficient ASP systems (e.g., [6,14,10,11,9,17]), and we apply machine learn-
ing techniques for inductively choosing, among the available ones, the “best” solver to
be run on the basis of the characteristics, also called features, of the input program at
hand.

We also report the results of some experiments carried out on the grounded version
of all benchmarks employed in the “System Track” of the 3rd ASP Competition [3]
falling in the “NP” and “Beyond NP” categories of the competition, that show the state-
of-the-art performance of our multi-engine solver; indeed, ME-ASP is able to solve
substantially more instances than the winner of the “System Track” of the 3rd ASP
Competition.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 484–487, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Multi-Engine ASP Solver ME-ASP 485

Fig. 1. The architecture of ME-ASP. The dotted box denotes the whole system and, inside it, each
solid box represents its modules. Arrows denote functional connections between modules.

It is worth mentioning that, machine learning techniques have been already applied
to ASP solving, i.e. CLASPFOLIO and DORS [5,1]. In particular, the CLASPFOLIO sys-
tem was conceived and implemented for selecting the “best” heuristic configuration of
the CLASP solver. An important difference with ME-ASP is that the application of algo-
rithm selection strategies is limited in CLASPFOLIO (which is, actually, a unique binary
including CLASP) to the variants of a single engine; moreover, CLASPFOLIO is not able
to deal with ASP programs with syntactically-unrestricted disjunction.

2 The structure of ME-ASP

Figure 1 presents the architecture of ME-ASP1. Looking at the figure, we can see that
ME-ASP is composed of the five modules described in the following.
INTERFACE manages both the input received by the user and the output of the

whole system. It also dispatches the input data to the remaining modules, as denoted by
the outgoing arrows. In particular, INTERFACE collects (i) the ground ASP program
in ASP-Core format [3], and (ii) the classifier type and its inductive model.
FEATURE EXTRACTION extracts the syntactic features of the input ground pro-

gram, as detailed in [13]. The CPU time spent for the extraction is negligible.
CLASSIFICATION ALGORITHMS is devoted to the prediction of the engine to

run. It implements five different inductive models, namely Aggregation Pheromone
density based pattern Classification, Decision Rules, Decision Trees, Nearest-neighbor,
and Support Vector Machine. We implemented the first one following the methodol-
ogy described in [8], while the remaining ones are built on top of the RAPIDMINER

library [15]. This module receives as input both the classifier type and its inductive
model (from INTERFACE) and a vector of features (from FEATURE EXTRACTION).
It returns to MANAGER the name of the predicted engine.

1 ME-ASP is available for download at http://www.mat.unical.it/ricca/me-asp

http://www.mat.unical.it/ricca/me-asp

486 M. Maratea, L. Pulina, and F. Ricca

Table 1. Results on the 10 grounded instances for each domain evaluated at the 3rd ASP compe-
tition. The instances of the DisjunctiveScheduling, PackingProblem and WeightAssignmentTree
are not solved by any solver. The table is organized as follows. In the first column we report the
benchmark, followed by three groups of columns, each one related to an evaluated solver. Each
group is composed of two columns, namely “#Solved” (i.e., the total amount of solved instances
within the time limit) and “Time” (i.e., the total CPU time spent on the solved instances).

Problem ME-ASP CLASPD SOTA

#Solved Time #Solved Time #Solved Time

GraphColouring 4 527.67 3 302.09 4 523.38
HanoiTower 9 1107.67 2 416.94 9 1041.76
KnightTour 8 755.67 8 544.21 8 728.12
Labyrinth 5 415.43 3 275.12 5 344.95
MazeGeneration 10 52.15 10 32.63 10 31.37
MinimalDiagnosis 10 1889.46 10 1859.86 10 69.01
MultiContextSystemQuerying 10 687.93 10 1177.08 10 87.45
Numberlink 8 254.01 7 47.32 8 226.06
SokobanDecision 9 1312.74 7 487.50 9 1182.24
Solitaire 5 767.98 2 57.98 8 1238.21
StrategicCompanies 5 1290.27 3 484.14 5 1152.00

TOTAL 83 9060.98 65 5684.87 86 6624.55

ENGINE MANAGER manages the interaction with the engines. It receives from
MANAGER information about the engine to fire. At the end of the engine computa-
tion, ENGINE MANAGER returns to MANAGER the result. Finally, MANAGER works as
a coordinator of ME-ASP modules, and it also provides the final result to INTERFACE.

The engines of ME-ASP, as depicted in Figure 1 (the rightmost boxes) are five state-
of-the-art ASP solvers, namely CLASP [6] and its disjunctive version CLASPD, CMOD-
ELS [11], DLV [10], and IDP [14]; nonetheless, the architecture of ME-ASP is modular
and allows one to easily update the engines set with additional solvers. Finally note that
engines are used as “black-boxes”, i.e., ME-ASP interacts with them via system calls.

3 Performance at a Glance

The experiments were carried out on CyberSAR, a cluster comprised of 50 Intel Xeon
E5420 blades equipped with 64 bit Gnu Scientific Linux 5.5. The resources granted to
the solvers are 600s of CPU time and 2GB of memory. Time measurements were carried
out using the time command shipped with Gnu Scientific Linux 5.5.2 In Table 1 we
report the results of the ME-ASP version using Decision Trees as classifier in comparison
with CLASPD – the winner of the “System Track” of the 3rd ASP Competition – and
the state of the art (SOTA) solver, i.e., considering a problem instance, the oracle that
always fares the best among available solvers.

2 We remind that these are different hardware setting w.r.t. the 3rd ASP competition in both
computer architecture and memory limits; importantly, the inputs were pre-grounded and saved
in ASP-Core format.

The Multi-Engine ASP Solver ME-ASP 487

Looking at Table 1, we can see that ME-ASP solves 18 instances more than CLASPD.
More, here it is very interesting to note that its performance is very close to the SOTA
solver which, we remind, has the ideal performance that we could expect on these in-
stances with these engines. More details and additional experimental data concerning
ME-ASP settings (i.e., solver selection, program features, solver training, and classifica-
tion algorithms) can be found in [13].

References

1. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AICOM 24,
147–164 (2011)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Tempe (2003)

3. Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro,
M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer Set Programming Compe-
tition: Preliminary Report of the System Competition Track. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS, vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

4. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (1997)

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A Portfo-
lio Solver for Answer Set Programming: Preliminary Report. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer, Heidelberg (2011)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proc. of IJCAI 2007, pp. 386–392. Morgan Kaufmann Publishers (2007)

7. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

8. Halder, A., Ghosh, A., Ghosh, S.: Aggregation pheromone density based pattern classifica-
tion. Fundamenta Informaticae 92(4), 345–362 (2009)

9. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing Stable Models via Reductions to Dif-
ference Logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
142–154. Springer, Heidelberg (2009)

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

11. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Proc. of LPNMR
2005. LNCS, vol. 3662, pp. 447–451. Springer, Heidelberg (2005)

12. Lifschitz, V.: Answer Set Planning. In: Proc. of ICLP 1999, Las Cruces, New Mexico, USA,
pp. 23–37. The MIT Press (November 1999)

13. Maratea, M., Pulina, L., Ricca, F.: Applying machine learning techniques to ASP solving.
Number CVL 2012/003, p. 21. University of Sassari Tech. Rep. (March 2012)

14. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of Propo-
sitional Logic Extended with Inductive Definitions. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

15. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for
complex data mining tasks. In: Proc. of KDD 2006, pp. 935–940. ACM (2006)

16. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean formu-
las. Constraints 14(1), 80–116 (2009)

17. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138, 181–234 (2002)

18. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selec-
tion for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

A System for the Use of Answer Set Programming
in Reinforcement Learning

Matthias Nickles

Department of Computer Science, Technical University of Munich
Boltzmannstr.3, D-85748 Garching, Germany

nickles@cs.tum.edu

Abstract. We present the software system QASP which integrates Reinforce-
ment Learning (RL) with Answer Set Programming (ASP). Our framework al-
lows for the ASP-based representation, computation and constraining of states
and actions (and other events), and for the use of AnsProlog for the specification
of action- and event-calculi and background knowledge for RL.

Keywords: Answer Set Programming, Relational Reinforcement Learning, Log-
ical Planning, Satisfiability Checking, Statistical Relational Learning.

1 Introduction

Relational Reinforcement Learning (RRL) [1,4,5,7,6] enhances traditional Reinforce-
ment Learning (RL) with expressive relational representation formats for actions, states
and prior knowledge. This paper presents the software QASP (“Q-learning with Answer
Set Programming”) which implements an approach to RRL based on Answer Set Pro-
gramming (ASP), making the strengths of ASP (such as a high degree of declarativity
and an efficient approach to combinatorial search problems and automated planning)
in practice available to RL. To our best knowledge, QASP has been the first software
system which combined Reinforcement Learning with ASP.

With QASP, ASP can be used for the computation or constraining of state transi-
tions, rewards and possible actions (using answer set programs), for background knowl-
edge, for planning, and for the representation of states (in form of answer sets) and
actions (as atoms). Various third-party ASP-grounders and solvers are supported, and as
RL-algorithms (Relational) Q-learning and SARSA-learning, and Relational Instance-
Based Learning (based on distance-weighted k-Nearest Neighbor Learning) (a rela-
tional generalization technique) [4,7] can be specified. Furthermore, the system allows
for the induction of probabilistic first-order logical decision trees [5]. Our software also
includes a GUI for the graphical presentation of results, policies and state/action/value
spaces, and for the debugging of learning experiments.

2 Framework

In the following, an outline of the overall system architecture is presented. For its theo-
retical background, algorithms and preliminary experimental results, please see [3].

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 488–491, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A System for the Use of Answer Set Programming in Reinforcement Learning 489

In our framework, a single agent learns an optimal (or near-optimal) policy for acting
in a deterministic or non-deterministic environment. As learning approach either off-
policy (Q-learning) or on-policy (SARSA) temporal-difference learning can be used.
States and agent actions in the Markov Decision Process (MDP) are represented in a re-
lational format (as (sets of) atoms), and rules governing state updates, rewards, possible
actions etc. are specified in form of some user-defined answer set program. At this, ASP
in QASP is not restricted to a certain event of action language - basically any answer set
program can be used, provided there is some notion of fluents and event-triggered state
updates. E.g., we have successfully used the Circumscriptive Event Calculus, which can
for finite domains be translated into AnsProlog [8].

In RL, each learning episode consists of several learning steps which correspond to
discrete time steps. By default, the ASP-solver is called at each learning step. Each solver
call results in a set of stable models from which the following information is extracted
(cf. Fig. 1): 1) the next state (or a set of possible new states), given the previous state,
the agent’s most recent action, and any background rules. 2) the set of actions which
are logically possible at this point and from which the learning agent chooses its next
action, 3) which rewards were achieved (numerical rewards are ordinary fluents in our
framework, which allows for Markovian as well as non-Markovian rewards). After the
learning agent has chosen and performed the next action and has observed the new state,
its knowledge base in form of a logic program is extended appropriately (depending on
the solver type (conventional or incremental), either the entire updated knowledge base
or just the new piece of information acquired by the agent is submitted to the solver).

Both deterministic domains and non-deterministic / stochastic domains are supported.
Non-determinism (and to a rather limited degree even probability distributions) of states
and rewards, but also choice among actions, can be modelled by various means, e.g.,
using disjunctive logic programs (if the ASP solver supports these) or choice constructs.

By putting constraints on possible states and actions, the agent designer can formally
enable and confine what the learning agent is able to (or must) conceive and do at each
point in time. In particular, this allows for the “injection” of planning goals or sub-goals
into the MDP, with the plans being computed by the ASP-solver, which effectively blends
ASP-based planning with reinforcement learning (cf. [3] for details). Using an appropri-
ate axiomatic basis such as the Event Calculus, ASP can also be used to specify action
sequences, exploration policies and sub-policies, and for the simulation or processing of
external events. As a simple example for how QASP operates, consider the following
snippet of an AnsProlog program which models the well-known Blocks World domain:

1. time(minstep..maxstep).

2. #domain time(TIME).

3. holdsAt(on(X,Y),TIME) :- happens(stack(X,Y),TIME-1).

4. :- happens(stack(X,Y),TIME), holdsAt(on(Z,X),TIME).

5. holdsAt(reward(1),TIME) :- holdsAt(on(blueblock,table),TIME).

6. [...]

This program has a number of stable models with each stable model consisting of a
number of atoms, e.g., holdsAt(on(redblock,table),3) and happens(stack

(greenblock,redblock),3), meaning that (according to the respective stable
model) the red block is on the table at time 3 and, also at time 3, the agent attempts to

490 M. Nickles

Learning agent

FOL background knowledge
(optional)

ASP background knowledge

Reward
specs

Planning
goals

Partial
policy

Action
calculus
axioms...

Knowledge base

Statet Statet+1...
Possible
action

Possible
action

ob
se

rv
at

io
n

action selection

 Environment

Learning process
--- time t -->

ASP-solver ...
Possible

state

Possible
state

acting

Domain
specification

Fig. 1. Schematic architecture of the QASP learning core

stack the green block on top of the red block. Terms like on(redblock,

table) represent fluents. A (Markov) state is represented as a set of fluents which
hold at some time step, according to a certain stable model. A certain state can cor-
respond to multiple time steps, i.e., a state can of course occur repeatedly during a
learning episode. Rules like the one in line 3 determine which effects actions have on
the truth of fluents, i.e., they determine the next state (or the set of potential next states
in a non-deterministic environment). Stable models and their underlying rules also tell
QASP which actions are logically possible at a certain time step. E.g., the action pre-
conditioning rule in line 4 specifies that instances (groundings) of stack(X,Y) are
executable actions provided there is currently no block on top of block X. Rule 5 speci-
fies that there is a reward of 1 given in a state where the blue block is on the table.

3 Software Specifics

QASP is mostly programmed in Scala (a smaller, GUI-related part is written in Java).
The current prototype (for Linux, Windows and Mac OS X) and its documentation can
be found at http://www.model.in.tum.de/˜nickles/QASP/index.html

To run QASP, a Java JRE (version 6 or higher) and an external ASP-grounder and
ASP-solver are required (grounders and solvers are not included in QASP and need to
be installed separately). QASP supports a wide range of ASP-solvers and -grounders.
Basically, any solver which understands the output of the grounder lparse [9] and any
grounder which produces output in this format can be used, in particular lparse itself
and the solver smodels [9]. In our experiments, we achieved very good results using
clingo (a combined ASP-grounder + ASP-solver), gringo (a grounder) and clasp (a
solver) from the Potsdam ASP collection “Potassco”[2]1. QASP also supports

1 http://potassco.sourceforge.net/

http://www.model.in.tum.de/~nickles/QASP/index.html
http://potassco.sourceforge.net/

A System for the Use of Answer Set Programming in Reinforcement Learning 491

incremental ASP-solving, namely using Cmodels [10] (an incremental solver based on
SAT solvers) and oclingo (an incremental reactive solver) [2]. Background knowledge
in first-order logic syntax is supported by means of an optional third-party conversion
tool (F2LP 2). Support of further solvers (e.g., DLV) is planned for the near future.

QASP includes a rich set of tools for visualization, control and debugging of learn-
ing experiments. Experiments can be processed in single step mode in order to control
state (stable model) transitions triggered by action events. Further features are model
learning (in form of probabilistic first-order decision tree induction), shortest plan esti-
mation for stochastic domains, graphical policy visualization in form of automata, and
3D graphical visualization of the state/action/value space or a sample thereof.

4 Conclusion

We have presented a software system for the integration of ASP and Reinforcement
Learning. The system already supports a wide range of ASP tools and implements var-
ious approaches to on-policy and off-policy RL, however, there is still much room for
improvement and extensions. For the near future it is planned to support further ASP
solvers, to integrate QASP with ILP systems for improved model induction, and to en-
able learning using large sets of examples from online resources.

Acknowledgement. This work was supported by Deutsche Forschungsgemeinschaft
(DFG).

References

1. Dzeroski, S., De Raedt, L., Blockeel, H.: Relational Reinforcement Learning. In: Procs.
ICML 1998. Morgan Kaufmann (1998)

2. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2) (2011)

3. Nickles, M.: Integrating Relational Reinforcement Learning with Reasoning about Actions
and Change. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS
(LNAI), vol. 7207, pp. 255–269. Springer, Heidelberg (2012)

4. Driessens, K., Ramon, J.: Relational Instance Based Regression for Relational Reinforce-
ment Learning. In: Procs. ICML (2003)

5. Croonenborghs, T., Ramon, J., Bruynooghe, M.: Towards Informed Reinforcement Learning.
Procs. In: Workshop on Relational Reinforcement Learning at ICML 2004 (2004)

6. Van Otterlo, M.: The Logic of Adaptive Behavior. IOS Press, Amsterdam (2009)
7. Rodrigues, C., Gerard, P., Rouveirol, C.: Relational TD Reinforcement Learning. In: Procs.

EWRL 2008 (2008)
8. Kim, T.-W., Lee, J., Palla, R.: Circumscriptive Event Calculus as Answer Set Programming.

In: Procs. IJCAI 2009 (2009)
9. Niemelä, I., Simons, P.: Smodels - An Implementation of the Stable Model and Well-Founded

Semantics for Normal Logic Programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS, vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming based on Propositional
Satisfiability. Journal of Automated Reasoning (2006)

2 http://reasoning.eas.asu.edu/f2lp/

http://reasoning.eas.asu.edu/f2lp/

The Tableau Prover Generator MetTeL2

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi	

School of Computer Science, The University of Manchester, UK

Abstract. This paper introduces MetTeL
2, a tableau prover generator

producing Java code from the specification of a tableau calculus for a
logical language. MetTeL

2 is intended to provide an easy to use system
for non-technical users and allow technical users to extend the generated
implementations.

1 Introduction

MetTeL
2 is a tool for generating tableau provers from specifications of a syntax

and a tableau calculus for a logical theory. The syntax and tableau rule specifica-
tion languages of MetTeL

2 are designed to be as simple as possible for the user
and to be as close as possible to the traditional notation used in logic and au-
tomated reasoning textbooks. At the moment the syntax specification language
is limited to (possibly multi-sorted) propositional languages with finitary con-
nectives and uses a simplified BNF. The tableau calculus specification language
covers different types of tableau calculi that fit the traditional representation
of tableau rules of the form X0/X1 | · · · | Xm creating a branching point with
m successors in tableau derivations. The Xi denote finite sets of expressions of
the given logical theory. X0 is the set of premises and X1, . . . , Xm are the sets
of conclusions of the rule. Many labelled semantic tableau calculi for modal,
description, hybrid and superintuitionistic logics belong to this paradigm.

MetTeL
2 is complementary to the tableau synthesis framework introduced

in [4]. The framework effectively describes a class of logics for which tableau
calculi can be automatically generated. This class includes many modal, de-
scription, intuitionistic and hybrid logics. The framework provides a theoretical
foundation for sound, complete and terminating implementations of tableau pro-
cedures for logics from the mentioned class and, in particular, for many logics
which can be specified in MetTeL

2. The scope of MetTeL
2 extends however

that of tableau calculi derived in the framework and is not limited to semantic
or labelled tableau calculi.

The tableau reasoning core of MetTeL
2 is considerably based on the generic

prover MetTeL [6], but has been completely reimplemented and several new
features have been added. Notable new features are dynamic backtracking and
conflict-directed backjumping, as well as ordered forward and backward rewrit-
ing, which can be used to perform equality reasoning. There is support for differ-
ent search strategies. The tableau rule specification language in MetTeL

2 now

� This research is supported by UK EPSRC research grant EP/H043748/1.

L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.): JELIA 2012, LNCS 7519, pp. 492–495, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Tableau Prover Generator MetTeL2 493

allows the specification of rule application priorities thus providing a flexible and
simple tool for defining rule selection strategies. To our knowledge, MetTeL

2 is
the first system with full support of these techniques for arbitrary logical syntax.

The aim of the current implementation is to provide an easy to use prover gen-
erator with basic specification languages without sophisticated meta-program-
ming features that might overwhelm non-technical users. For technical users,
the generated code consists of a thoroughly designed hierarchy of public Java

classes and interfaces that can be extended and integrated with other systems.

2 Application Areas and Experiences So Far

Software to generate code for provers is useful anywhere where automated rea-
soning is needed. The provers generated by MetTeL

2 output models for satisfi-
able problems on termination, so can be used for model generation purposes.

With MetTeL
2 a quick implementation of a tableau prover can be obtained

and changes can be made without programming a single line of code. Prover
generation is useful for obtaining provers for newly defined logics or new com-
binations of logics. This is particularly pertinent to an area such as multi-agent
systems where the models are staggeringly complex. In ongoing work we are us-
ing MetTeL

2 in combination with the tableau synthesis framework to develop
provers for multi-agent interrogative-epistemic logics [3]. For these logics and re-
lated dynamic epistemic logics there are almost no implemented reasoning tools.
Therefore being able to generate tableau provers is very useful especially to re-
searchers without the resources or expertise to implement automated reasoning
tools themselves.

We have found MetTeL
2 useful for analysing tableau calculi under develop-

ment whose properties are not known yet. For example, in research conducted
for [2] we usedMetTeL

2 to determine the refinability or unrefinability of tableau
rules for a modal logic with global counting operators.MetTeL

2 can also be used
to compare the effectiveness of different sets of tableau rules for the same logic.
For example, with minimal effort it is possible to compare the effectiveness of
standard tableau calculi with calculi following the KE approach where disjunc-
tion is handled by an analytic cut rule and a unit propagation rule (e.g., in terms
of proof length, size of produced model, or other derivation statistics which are
not tied to particular implementation details).

Concrete case studies we have undertaken with MetTeL
2 include implement-

ing unlabelled tableau calculi for Boolean logic and three-valued �Lukasiewicz
logic, labelled tableau calculi for standard modal logics and description log-
ics, and internalised tableau calculi for hybrid and description logics. We used
MetTeL

2 to implement the first tableau decision procedure for ALBOid, a de-
scription logic with the same expressive power as the two-variable fragment of
first-order logic. Some of the specifications are available from the MetTeL

2 web-
site http://www.mettel-prover.org.

http://www.mettel-prover.org

494 D. Tishkovsky, R.A. Schmidt, and M. Khodadadi

3 The Implemented System

The parser for the specification of the user-defined logical language is imple-
mented using the ANTLR parser generator. The specification is parsed and
internally represented as an abstract syntax tree (AST). The internal ANTLR

format for the AST is avoided for performance purposes. The created AST is
passed to the generator class which processes the AST and produces the fol-
lowing files: (i) a hierarchy of Java classes representing the user-defined logical
language, (ii) an object factory class managing the creation of the language
classes, (iii) classes representing substitution, replacement, and rewrite order-
ings, (iv) an ANTLR grammar file for generating a parser of the user-specified
language and the tableau language, (v) a main class for the prover parsing com-
mand line options and initiating the tableau derivation process, and (vi) JUnit

test classes for testing the parsers and testing the correctness of tableau deriva-
tions. The generated Java classes for syntax representation and algorithms for
rule application follow the same paradigm as the generic prover MetTeL [6].

MetTeL
2 implements two general techniques for reducing the search space

in tableau derivations: dynamic backtracking and conflict directed backjumping.
Dynamic backtracking avoids repeating the same rule applications in parallel
branches by keeping track of rule applications common to the branches. Conflict-
directed backjumping derives conflict sets of expressions from a derivation. This
causes branches with the same conflict sets to be discarded. Since MetTeL

2 is
a prover generator, dynamic backtracking and backjumping needed to be repre-
sented and implemented in a generic way, completely independent of any specific
logical language and tableau rules.

The provers generated by MetTeL
2 come with support for ordered backward

and forward rewriting with respect to equality expressions appearing in the cur-
rent branch. In the language specification, equality expressions can be identified
with built-in keywords. Each Java class representing a tableau node keeps a
rewrite relation completed with respect to all equality expressions appearing in
a branch. Once an equality expression is added within a tableau node, backward
rewriting is applied. This means the rewrite relation is rebuilt with respect to
the newly added equality, and all expressions of the node are rewritten with
respect to the rewrite relation. Forward rewriting (with respect to the current
rewrite relation) is applied to all new expressions added to the branch during
the derivation.

The core tableau engine of MetTeL
2 provides various ways for controlling

derivations. The default search strategy is depth-first left-to-right search, which
is implemented as a MettelSimpleLIFOBranchSelectionStrategy request to the
MettelSimpleTableauManager. The MettelSimpleTableauManager object manages tableau
branches at the very top level: it stores branches for expansion and selects them
in accordance with the specified branch selection strategy. Breadth-first search is
implemented as a MettelSimpleFIFOBranchSelectionStrategy request and can be used
after a small modification in the generated Java code. In future this will be con-
figurable at the generation stage. A user can also implement their own search
strategy and pass it to the MettelSimpleTableauManager.

The Tableau Prover Generator MetTeL2 495

The rule selection strategy can be controlled by specifying priority values
for the rules in the tableau calculus specification. The rule selection algorithm
checks the applicability of rules and returns a rule that can be applied to some
expressions on the current branch according to rule priority values. If several
rules are applicable preference is given to those which have smaller priority
values. Rules within each priority group are checked for applicability sequentially.
To ensure fairness for rules within the same priority group all rules in the group
are checked for applicability an equal number of times. Again the user could
implement their own rule selection strategy and modify the generated code.

To achieve termination for semantic tableau approaches some form of blocking
is usually necessary. To generate a prover with blocking the user can specify a
blocking rule similar to the unrestricted blocking rule from [5] as one of the rules
of the tableau calculus. If the definition of the rule involves equality operators
then rewriting is triggered (see above). Based on the results in [4,5], the blocking
rule can be used to achieve termination for logics with the finite model property.
The first of the two termination conditions in [4,5] is automatically true because
the generated provers are equipped with ordered rewriting. The second termina-
tion condition can be satisfied by using appropriate priority values for tableau
rules of the tableau calculus. By varying the specification of the blocking rule it
is possible to perform blocking more selectively [1].

4 Conclusion

MetTeL
2 can be downloaded from http://www.mettel-prover.org. A web-

interface is provided, where a user can input their specifications in syntax aware
textareas and generate provers. The user can either download the generated
prover or directly run it in the web-interface.

References

1. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: An abstract tableau calculus for
the description logic SHOI using unrestricted blocking and rewriting. In: Proc. DL
2012. CEUR Workshop Proceedings, vol. 846, pp. 224–234 (2012)

2. Khodadadi, M., Schmidt, R.A., Tishkovsky, D., Zawidzki, M.: Terminating tableau
calculi for modal logic K with global counting operators (manuscript, 2012),
http://www.mettel-prover.org/papers/KEn12.pdf

3. Minica, S., Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: Synthesising and imple-
menting tableau calculi for interrogative epistemic logics. In: Proc. PAAR 2012, pp.
109–123 (2012)

4. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Meth-
ods Comput. Sci. 7(2:6), 1–32 (2011)

5. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity (2011) (manuscript),
http://www.mettel-prover.org/papers/ALBOid.pdf

6. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL: A Tableau Prover
with Logic-Independent Inference Engine. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS, vol. 6793, pp. 242–247. Springer, Heidelberg (2011)

http://www.mettel-prover.org
http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/ALBOid.pdf

Author Index

Alenda, Régis 1, 14
Andersen, Mikkel Birkegaard 94
Arieli, Ofer 28
Askounis, Dimitris 41
Aucher, Guillaume 54

Balax, Julien 476
Balbiani, Philippe 67
Beck, Harald 80
Beierle, Christoph 189
Bolander, Thomas 94
Booth, Richard 107
Bozzelli, Laura 120

Caroprese, Luciano 134
Ciucci, Davide 147

Dao-Tran, Minh 480
Dennis, Louise 385
Dixon, Clare 385
Dubois, Didier 147
Dupin de Saint-Cyr, Florence 476

Eiter, Thomas 80, 160, 480

Fink, Michael 160, 480
Finthammer, Marc 189
Fisher, Michael 385
Franconi, Enrico 202

Gabaldon, Alfredo 215
Ghassem-Sani, Gholamreza 176
Giordano, Laura 228
Gliozzi, Valentina 228
Godo, Llúıs 242
Golińska-Pilarek, Joanna 255

Holbrook, Sarah 267

Inoue, Naoya 281
Inui, Kentaro 281

Jensen, Martin Holm 94

Kerhet, Volha 202
Kern-Isberner, Gabriele 294

Khodadadi, Mohammad 492
Koutras, Costas D. 41
Krennwallner, Thomas 80, 160
Krümpelmann, Patrick 294

Lehmann, Karsten 307
Leite, João 372
Lellmann, Björn 320

Mahjoob, Ali 176
Maratea, Marco 484
Marchi, Jerusa 333
Marchioni, Enrico 242
Maubert, Bastien 54
Meyer, Thomas 107

Naumov, Pavel 267
Ngo, Nhung 202
Nickles, Matthias 488

Olivetti, Nicola 1, 14, 228

Pardo, Pere 242
Pattinson, Dirk 320
Perrussel, Laurent 333
Pinchinat, Sophie 120
Pozzato, Gian Luca 14, 228
Pulina, Luca 484

Rankooh, Masood Feyzbakhsh 176
Redl, Christoph 160
Ricca, Francesco 484
Rienstra, Tjitze 359

Saffidine, Abdallah 346
Sardina, Sebastian 437, 450
Schmidt, Renate A. 492
Schüller, Peter 160
Schwarzentruber, François 54, 359
Slota, Martin 372
Stocker, Richard 385

Thévenin, Jean-Marc 333
Tishkovsky, Dmitry 492
Troquard, Nicolas 398

498 Author Index

Trubitsyna, Irina 134

Truszczyński, Miros�law 134

Turhan, Anni-Yasmin 307

van der Torre, Leendert 424

van Ditmarsch, Hans 120

Varzinczak, Ivan 107

Verheij, Bart 411

Vesic, Srdjan 359, 424

Villard, David 476

Walther, Dirk 398
Weidinger, Gerald 480
Weinzierl, Antonius 480

Yaacoub, Antoun 67
Yadav, Nitin 437, 450

Zamansky, Anna 463
Zhang, Dongmo 333
Zikos, Yorgos 41
Zumpano, Ester 134

	Title
	Preface
	Organization
	Table of Contents
	Regular Papers
	Preferential Semantics for the Logic of Comparative Similarity over Triangular and Metric Models
	Introduction
	The Logic of Comparative Similarity CSL
	A Preferential Semantics
	Triangular Case
	Metric Case

	Axiomatization
	Link with Conditional Logics
	Conclusion and Further Work
	References

	Nested Sequent Calculi for Conditional Logics
	Introduction
	Conditional Logics
	Nested Sequent Calculi NS for Conditional Logics
	Basic Structural Properties of NS
	Soundness of the Calculi NS
	Completeness of the Calculi NS
	Termination and Complexity of NS

	A Calculus for the Flat Fragment of CK+CSO+ID
	Conclusions and Future Works
	References

	Conflict-Tolerant Semantics for Argumentation Frameworks
	Introduction and Motivation
	Preliminaries
	Conflicts Tolerance
	Four-Valued Paraconsistent Labelings
	Paraconsistent Extensions
	Relating Paraconsistent Extensions and Labelings

	From Conflict-Tolerant to Conflict-Free Semantics
	Conclusion
	References

	Knowledge Means ‘All’, Belief Means ‘Most’
	Introduction
	Background Material
	The Logic KBM
	The Language and the Axioms
	Semantics
	Soundness and Completeness of KBM

	Conclusions and Future Work
	References

	Generalized DEL-Sequents
	Introduction
	Dynamic Epistemic Logic: DEL-Sequents
	Representation of the Initial Situation: L-Model
	Representation of the Event: L'-Model
	Update of the Initial Situation by the Event: Product Update
	Generalized DEL-Sequents

	Tableau Method
	Tableau Method Description
	Tableau Rules

	NEXPTIME-Completeness and Implementation
	Extension to Other Semantics
	Example: Coordinated Attack Problem
	Conclusion
	Related Work
	Concluding Remarks

	References

	Deciding the Bisimilarity Relation between Datalog Goals
	Introduction
	Datalog Programs
	Bisimulation
	Undecidability of Bisimulation for Prolog Programs
	Decidability of Bisimulation for Hierarchical Programs
	Decidability of Bisimulation for Restricted Programs
	Conclusion
	References

	Inconsistency Management for Traffic Regulations: Formalization and Complexity Results
	Introduction
	Domain Analysis
	Formal Model
	Reasoning Tasks
	Computational Complexity
	Discussion and Conclusion
	References

	Conditional Epistemic Planning
	Introduction
	Dynamic Epistemic Logic
	Conditional Plans in DEL
	States and Actions: The Internal Perspective
	Applicability, Plans and Solutions

	Plan Synthesis
	Planning Trees
	Strong Planning Algorithm
	Weak Planning Algorithm

	Related and Future Work
	References

	PTL: A Propositional Typicality Logic
	Introduction and Motivation
	Preliminaries
	Propositional Typicality Logic
	Typicality Unraveled
	Belief Revision and Typicality
	Rational Consequence on L
	Entailment for PTL
	Rational Closure for PTL
	Minimum Entailment for PTL

	Related Work
	Concluding Remarks
	References

	The Complexity of One-Agent Refinement Modal Logic
	Introduction
	Preliminaries
	Upper Bounds
	Exponential Size Model Property
	Checking Satisfiability

	Lower Bounds
	Concluding Remarks
	References

	The View-Update Problem for Indefinite Databases
	Introduction
	Indefinite Databases
	Indefinite Deductive Databases
	View Updating
	Complexity
	Discussion and Conclusion
	References

	Three-Valued Logics for Incomplete Information and Epistemic Logic
	Introduction
	Connectives in Three-Valued Logics
	A Simple Information Logic
	The Principles of the Translation
	The Kleene Fragment of MEL
	From Łukasiewicz Three-Valued Logic to MEL and Back
	Encoding Three-Valued Intuitionistic Logic into MEL
	Conclusion
	References

	Exploiting Unfounded Sets for HEX-Program Evaluation
	Introduction
	Preliminaries
	Unfounded Set Detection
	Nogoods for Unfounded Set Search Encoding

	Optimization and Learning
	Optimization
	Learning Nogoods from Unfounded Sets

	Implementation and Evaluation
	Discussion and Conclusion
	References

	Using Satisfiability for Non-optimal Temporal Planning
	Introduction
	Temporal Planning
	SAT Encoding
	Necessary Variables and Clauses
	Mutex Relations as Auxiliary Clauses

	The Scheduling Phase
	Temporal Constraints
	Negative Cycle Prevention

	Empirical Results and Discussion
	Conclusion
	References

	How to Exploit Parametric Uniformity for Maximum Entropy Reasoning in a Relational Probabilistic Logic
	Introduction
	Background: FO-PCL
	Feature Functions and Parametric Uniformity
	Defining Satisfaction via Feature Functions
	Relaxing the Expected Value of Feature Functions
	Reducing the Number of Linear Constraints

	Simplification of Linear Constraints in ME-Computation
	Implementation and First Evaluation Results
	Conclusions and Further Work
	References

	Exact Query Reformulation with First-Order Ontologies and Databases
	Introduction
	Preliminaries
	Queries

	Determinacy
	Exact Safe-Range Query Reformulation
	Conditions for an Exact Safe-Range Reformulation
	A Case Study: SHOQ
	Conclusion
	References

	A Selective Semantics for Logic Programs with Preferences
	Introduction
	Prioritized Extended Logic Programs
	Extended Logic Programs
	Prioritized Extended Logic Programs

	Some Examples
	A New Definition of Preferred Answer Sets
	Properties
	Conclusions
	References

	A Minimal Model Semantics for Nonmonotonic Reasoning
	Introduction
	General Semantics
	A Semantical Reconstruction of Rational Closure
	Relation with Pmin and Pearl's System Z
	Conclusions and Future Works
	References

	Extending a Temporal Defeasible Argumentation Framework with Possibilistic Weights
	Introduction and Motivation
	Language and Semantics of the Base Logic of pt-DeLP
	An Argumentation System for pt-DeLP
	Relating pt-DeLP to t-DeLP and P-DeLP
	An Example
	Related Work and Conclusions
	References

	On Decidability of a Logic for Order of Magnitude Qualitative Reasoning with Bidirectional Negligibility
	Introduction
	Logic OMRN
	Decidability of OMRN
	Conclusions
	References

	Fault Tolerance in Belief Formation Networks
	Introduction
	Gateway
	Shield Wall
	Logics of Fault Tolerance

	Graph Terminology
	Semantics
	Axioms
	Examples
	Reverse Shield Wall
	Soundness
	Completeness
	Conclusion
	References

	Large-Scale Cost-Based Abduction in Full-Fledged First-Order Predicate Logic with Cutting Plane Inference
	Introduction
	Background
	Cost-Based Abduction
	ILP-Based Formulation of CBA

	Full-Fledged First-Order Predicate Logic Abduction with Cutting Plane Inference
	Handling Negation for Supporting Full-Fledged FOPL
	Cutting Plane Inference for CBA

	Runtime Evaluation
	Settings
	Results and Discussion

	Related Work
	Conclusion
	References

	Belief Base Change Operations for Answer Set Programming
	Introduction
	Belief Base Revision
	Answer Set Programming
	Postulates for ASP Base Revision
	Construction of ASP Base Revision
	Discussion and Conclusion
	References

	A Framework for Semantic-Based Similarity Measures for ELH-Concepts
	Introduction
	Preliminaries
	Properties for Concept Similarity Measures
	Inspecting Existing Concept Similarity Measures

	Developing Concept Similarity Measures for ELH
	A Directed Similarity Measure: simid
	Properties of simid and simi

	Conclusions
	References

	Sequent Systems for Lewis’ Conditional Logics
	Introduction
	Preliminaries
	Conditional Logics: Calculi and Main Results
	Soundness and Completeness of the Entrenchment Rules
	Cut Elimination for the Entrenchment Rules
	Strong and Weak Conditional Implication
	Applications
	Conclusion
	References

	Relevant Minimal Change in Belief Update
	Introduction
	Preliminaries
	Relevance Criterion in Belief Change
	Relevant Belief Update
	KM's Framework of Belief Update
	Relevance Criterion on Belief Update
	Belief Update in Prime Implicants
	Relevant Belief Update

	Conclusion
	References

	Minimal Proof Search for Modal Logic K Model Checking
	Introduction
	Definitions
	Game Automata
	Multi-agent Modal Logic K
	The Model Checking Problem
	Proofs and Counterexamples

	Minimal Proof Search
	Cost Functions
	Best First Search Framework

	Properties of MPS
	Correctness of the Algorithm
	Minimality of the (Dis)Proofs
	Optimality of the Algorithm

	Conclusion and Discussion
	References

	Building an Epistemic Logic for Argumentation
	Introduction
	Setting
	The First Attempt of an Epistemic Argumentation Logic
	Expressing Belief about Properties of Arguments
	Expressing Properties of Arguments Containing Belief
	Summary
	References

	A Unifying Perspective on Knowledge Updates
	Introduction
	Preliminaries
	Exception-Driven Operators
	Belief Updates Using Exception-Driven Operators
	Discussion
	References

	Verifying Brahms Human-Robot Teamwork Models
	Introduction
	Background
	Brahms
	Brahms Formal Semantics
	Formal Verification, Promela and SPIN

	Case Study: ``Domestic Home Care''
	Overview of Scenario
	Brahms Representation

	From Brahms to Promela
	From the Scheduler to a Promela Process
	From Agent Semantics to Promela Processes
	Correctness Issues

	``Home Care'' Verification
	Requirements
	Verification Results

	Conclusions
	Related and Future Work

	References

	On Satisfiability in ATL with Strategy Contexts
	Introduction
	ATL with Strategy Contexts
	Strategy Contexts and Explicit Strategies
	ATLES
	Comparing ATLsc and ATLES

	Complexity
	Product Logic S5
	Satisfiability of ATLsc

	References

	Jumping to Conclusions
	Introduction
	Ampliative Arguments
	Ampliation and the Ordering of Propositions
	Quantifiable Qualitative Ampliative Arguments
	Structured Arguments
	Summary and Concluding Remarks
	References

	Beyond Maxi-Consistent Argumentation Operators
	Introduction
	Dung's Abstract Argumentation Theory and Its Instantiation with Classical Propositional Logic
	Some Hypotheses Leading to Maximal Consistent Subsets of the Knowledge Base
	A New Class of Instantiations: Beyond Maximal Consistent Sets
	Shapley Inconsistency Value of a Formula
	Defining Instantiations

	Summary
	References

	Reasoning about Agent Programs Using ATL-Like Logics
	Introduction
	Preliminaries
	ATL/ATLES Logics of Coalitions
	BDI Programming

	BDI-ATLES: ATL for BDI Agents
	BDI-ATLES Syntax
	BDI-ATLES Semantics

	BDI-ATLES Model Checking
	BDI-ATLES with Maintenance Goals
	Discussion
	References

	Qualitative Approximate Behavior Composition
	Introduction
	The Behavior Composition Framework
	Controllers and Compositions
	Target Approximation
	Imported Controllers

	Computing Optimal Approximations for Deterministic Systems
	Discussion
	References

	A Preferential Framework for Trivialization-Resistant Reasoning with Inconsistent Information
	Introduction
	Preliminaries
	Paraconsistent Entailments
	The Problems of Cautiousness and Trivialization
	Trivialization-Resistant Preferential Framework
	Summary and Further Research
	References

	System Descriptions
	DebateWEL: An Interface for Debating with Enthymemes and Logical Formulas
	References

	OMiGA: An Open Minded Grounding On-The-Fly Answer Set Solver
	Motivation
	Methods and Techniques
	Solver Architecture
	Evaluation
	Ongoing Work and Conclusion
	References

	The Multi-Engine ASP Solver ME-ASP
	Introduction
	The structure of me-asp
	Performance at a Glance
	References

	A System for the Use of Answer Set Programming in Reinforcement Learning
	Introduction
	Framework
	Software Specifics
	Conclusion
	References

	The Tableau Prover Generator MetTeL2
	Introduction
	Application Areas and Experiences So Far
	The Implemented System
	Conclusion
	References

	Author Index

