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Abstract. This paper proposes a simple algorithm to find the critical
temperature of the continuous-state Game of Life (GoL). The algorithm
conducts the transitions of cells and the update of the temperature pa-
rameter alternatingly. The temperature starts from a low value and it
increases gradually, while a fixed GoL pattern evolves. This process con-
tinues, but before the temperature exceeds the critical temperature, the
update algorithm acts to decrease it, so as to prevent overshoot of the
temperature, which would make the cell states deviate from the normal
GoL behavior. An oscillatory value of the temperature can be observed,
but it converges towards a fixed value, indicating that its critical point
is being approached.

1 Introduction

Cell states in conventional Cellular Automata (CA) assume discrete values, but
when continuous states are allowed [9], it becomes possible to investigate dy-
namics that is chaotic or at the edge of chaos [1,10,11,12,13] or to apply it to
biological modeling [2], the coupled map lattice [4,5], etc.

One model with continuous cell states is the so-called Game of Life at finite
temperature [3]. A cell state in this model lies in the range [0 − 1] and it is
updated in a synchronous way at discrete time steps, such that a cell’s state
after update is determined by its own state and the sum of the neighbouring cell
states at the previous time, as well as by a temperature parameter.

It has been observed [3] that the temperature parameter plays an important
role in the behavior of the model. When it is below a certain value, which we
call the critical value, the model behaves like the traditional (discrete-state)
GoL [6,7,14], but once this critical value is exceeded, different behavior emerges.
The degree at which the behavior differs from the traditional GoL tends to
be proportional with the difference of the actual temperature and the critical
temperature below it. Though the use of the term critical temperature implies
that it is at a unique point, the reality is more complicated. It turns out that
the critical temperature is somewhat dependent on the actual configurations
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in cell space, and in fact it is a range of values. The minimum of these values
represents a critical point below which every configuration behaves as if it were
in the traditional GoL, and we are interested in this particular value. We call
this the critical point of the model.

In this paper we formulate an algorithm that determines this critical point by
adapting the temperature over the course of iterations. The algorithm employs
two phases in alternation: cell update and temperature update. The tempera-
ture update is based on a steepest descent algorithm, whereby the gradient of
the transition function is updated with a limiting value of 1. The algorithm then
selects a target cell in the cell space, which distinguishes itself from other cells
by having the largest gradient. The meaning of a cell’s gradient being the largest
is that that cell will start to decay first, i.e., behave in a different way than it
would in the traditional GoL. It is demonstrated that when the temperature
starts from a low value and increases gradually, a fixed GoL pattern evolves.
This process continues, but before the temperature exceeds the critical temper-
ature, the update algorithm acts to decrease it, so as to prevent overshoot of
the temperature, which would make the cell states deviate from the normal GoL
behavior.

This paper is organized as follows. In Section 2, the continuous-state GoL is
explained. The methods and the results of the algorithm used to find the critical
temperature are shown in Section 3. Conclusions are drawn in Section 4.

2 Continuous State Game of Life

The transition rule of the continuous state Game of Life [3] is described by

f(Ci) = 1/ [1 + exp(−2E(Ci)/T )] (1)

E(Ci) = E0 −
⎛
⎝Ci + 2

∑
j �=i

Cj − x0

⎞
⎠

2

(2)

where, Ci is the continuous state (0 ≤ Ci ≤ 1) of the i-th cell, j varies over
the Moore neighbourhood, T is the temperature, E(Ci) is the local energy, and
E0 and x0 are constants. All cells are selected in an iteration and their states
undergo transitions according to this function f synchronously, i.e., Ci(t+ 1) =
f(Ci(t)). Note that the transition function has 3 variables, the center cell’s state,
the summation of the neighbouring cells’ states, and the temperature. If the
constants are E0 = 2.25 and x0 = 6, this function is identical to the rule of the
Game of Life at zero temperature limit, as can be shown. For this reason, these
typical values are used in this paper.

A pattern is defined as a set of living cells that is a subset of the cell space,
whereby a cell is called alive when its state is larger than 0.5, and dead otherwise.
The patterns of the model decay above the critical temperature Tc, and sustain
their typical Game of Life forms below Tc. The critical temperatures are different
for different patterns, for example, 0.53 is the critical temperature for a ‘beehive’,
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Fig. 1. A beehive pattern. Cells with the same indexes take about the same value at a
stable situation.

Fig. 2. A part of the map of the cell state C2 at time t and t+ 1

0.61 for a ‘glider gun’, 0.66 for an ‘eater’, 0.7 for a ‘glider’, and 0.8 for a ‘block’,
respectively. Since glider guns, eaters, and gliders are required as logic gates for
computing [7,8], this model is computational universal at T < 0.61.

We show the dynamics of how a pattern decays above the critical temperature
Tc. Below the critical temperature, the beehive pattern is stable as shown in
Fig.1. In the figure, we assume that the cells with the same indexes take about
the same value.

Relations of the states of cells denoted by 1 and 2 at the stable situation can
be expressed as follows,

E1 = E0 − (3C1 + 4C2 − x0)
2 (3)

C1 = 1/ [1 + exp(−2E1/T )] (4)

E2 = E0 − (5C2 + 6C1 − x0)
2 (5)

C2 = 1/ [1 + exp(−2E2/T )] (6)



86 S. Adachi et al.

where, C0 ∼ 0 is assumed for simplicity. Assuming T ∼ 0.5, then we obtain
C1 ∼ 0.0005 and C2 ∼ 0.99 numerically by an iterative computation. Based on
this value of C1, a map of C2(t + 1) = f(C2(t)) at T is obtained that is shown
in Fig.2.

If the temperature is smaller than the critical temperature (T < Tc), there
are three intersection points, and C2 converges towards the largest of them.
Otherwise (T > Tc), there is only one intersection around 0, and C2 converges
towards it. If T = Tc, there are two intersections at 0 and 1, and the gradient of
the function is 1 around the upper intersection.

Generally the mechanism of pattern decay is based on the disappearance of
bistability. However the detailed situation of this model is slightly different from
the Ising model in physics (or Hopfield Neural Network). Since the magnetization
of the Ising model is equal to the solutions of an equation like x = tanh(x/T ),
which is derived by using mean field approximation, the disappearance of the
bistability occurs continuously towards x → 0 at T → 1, which is a so-called
phase transition.

In this model, since the intersection points of y = x and y = f(x) around 1
disappear at T > Tc, the cell state jumps to the other intersection point around
0. In general, this highly non-linear characteristic of the transition function of
the model guarantees the survival of life patterns at low temperatures.

3 Approximating the Critical Temperature

We introduce a simple framework to find the critical points, starting with a low
temperature, and then carry out transitions of cell states and the update of the
temperature in an alternating way. When the update is executed so that the
gradient of the transition function is 1, then it can be expressed by the steepest
descent as follows.

T → T − μ
∂g

∂T
(7)

g =

(
1− ∂f

∂Ci

)2

(8)

where μ is a constant and g is the error function. The index i of cell Ci is chosen
as the point where the gradient ∂f/∂Ci takes its maximum value in the cell
space. The reason of taking this i is that if the gradient of a cell is larger than 1,
the cell starts to decay as shown in the previous section. In other words, a critical
temperature is the maximum value at which the weakest cell does not decay. In
the example of Fig. 1, the left cell of two cells C2 labeled 2 is the weakest cell
(since the pattern is symmetric, there are two of such weakest cells).

There is a problem in this framework that if the temperature becomes larger
than the critical point at a certain time and it becomes smaller according to
Eq. (7), it is too late to recover the cell state. This situation can be understood
by investigating the gradient being dependent on the temperatures at the stable
situation, as shown in Fig.3 (a). In the figure, the gradient is 0.177 at T = 0.539,
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Fig. 3. Gradient of a living cell as a function of T (a), dynamics of temperature (b),
dynamics of the cell state (c) and its map representation (d). The size of the cell space
is 20 × 20, the initial configuration is beehive, the initial temperature is 0.5, and the
constants are μ = 0.1 and θ = 0.2.

and ∼ 0 at T = 0.54. Although the critical point must be between them, the
gradient does not exceed 0.2 within the double precision of T due to sensitivity
considerations. The problem of an overshooting temperature can be solved in
the following ways:

1. replace double precision of T with quadruple precision.
2. asymmetric update (decrease the temperature more than in the original al-

gorithm).
3. replace g = (1−f ′)2 with g = (θ−f ′)2, whereby θ is an appropriately chosen

threshold.

We adopt option 3 above, because of reasons of simplicity: it only requires the
change of the constant 1 into θ in Eq. (8). Since we have the knowledge that the
gradient does not exceed 0.2, we can safely choose θ = 0.2. Then the expression
Eq. (8) can be rewritten as follows.

g =

(
θ − ∂f

∂Ci

)2

(9)

The experiment is carried out as follows. The size of the cell space is 20×20, the
initial configuration is the beehive pattern, the initial temperature is 0.5, and the
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Fig. 4. A blinker pattern. The cell C3 takes the maximum value of the gradient.

constant is μ = 0.1. Some preliminary iterations are performed to make the cell
space stable. The result of the experiment is that the temperature oscillates and
converges towards the critical point, as shown in Fig. 3 (b). The time evolution
of the cell state C2 and its map representation are illustrated in Fig. 3 (c) and
(d).

The next example concerns the blinker pattern shown in Fig. 4. It is known
that the blinker is a period 2 oscillator. The center cell of the blinker C3 is the
weakest cell, which means its gradient has the maximum value. The gradient
plotted as a function of T is shown in Fig. 5 (a). In the figure, the maximum
value is 0.715 at T = 0.976, so in this case it is possible to set θ = 0.7.

The experiment is carried out as follows. The size of cell space is 20× 20, the
initial configuration is the blinker pattern, the initial temperature is 0.9, and
the constant is μ = 0.01. Some preliminary iterations are performed to make the
cell space stable at every even steps. As a result, the temperature oscillates and
converges to the critical point, as shown in Fig. 5 (b). The time evolution of the
cell state C3 and its map representation are illustrated in Fig. 5 (c) and (d).

In both cases of the beehive and the blinker, the algorithm can work well,
because the constant θ plays a role of an early stopping to increase the temper-
atures. There are also some cases it fails. If μ is large, the cell’s states can not
follow the updated temperature, then the states can not converge and in the
end the temperatures continue to oscillate. On the other hand, if μ is small, the
temperature converges below the critical point or oscillates periodically tracking
a hysteresis loop.

Finally, the results of the critical temperatures for some famous patterns in-
cluding the above patterns can be shown in Table.1.
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Fig. 5. Gradient of a living cell as a function of T (a), dynamics of temperature (b),
dynamics of the cell state (c), and its map representation (d). The size of the cell space
is 20× 20, the initial configuration is a blinker, the initial temperature is 0.9, and the
constants are μ = 0.01 and θ = 0.7.

Table 1. Threshold values of the gradient and critical temperatures for some patterns
are listed

pattern θ T

beehive 0.2 0.539694

paperclip 0.3 0.577207

loaf 0.3 0.597193

boat 0.35 0.612362

tub 0.195 0.639911

eater 0.454 0.665002

pond 0.28 0.680342

barge 0.3 0.696146

blinker 0.7 0.975632
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4 Concluding Remarks

We have proposed a simple algorithm to approximate the critical temperature
of the continuous-state Game of Life. The algorithm alternatingly updates cell
states on one hand and the temperature parameter on the other hand, such that
it avoids overshoot of the temperature. The algorithm uses knowledge about the
maximum value of the gradient of the weakest cell; this works correctly because
in this case the cell state is the most sensitive to the temperature. In other words,
the maximum value of the gradient is needed by the algorithm to avoid decay of
patterns under all circumstances.

In our experiments, the critical temperatures for the beehive and the blinker
were obtained without these patterns loosing their characteristic Game of Life
shapes.
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