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Abstract. We demonstrate that Complex automata (CxA) - a hybrid of a Par-
ticle method (PM) and Cellular automata (CA) –- can serve as a convenient 
modeling framework in developing advanced models of biological systems. As 
a proof_of_concept we use two processes of pathogenic growth: cancer prolife-
ration and Fusarium graminearum wheat infection. The ability of mimicking 
both mechanical interactions of tumor with the rest of tissue and penetration 
properties of F.graminearum, confirms that our model can reproduce realistic 
3-D dynamics of complex biological phenomena. We discuss the scope of ap-
plication of CxA in the context of its implementation in CUDA GPU  
environment. 
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1 Introduction 

New challenges in systems biology involve searching for new modeling paradigms 
which allow for simulating multi-scale systems within a unified computational 
framework. In his seminal book [1] Wolfram advocates that Cellular automata para-
digm can be treated as a universal computational metaphor of reality. However, the 
robustness of CA is still mostly qualitative.  Although some CA clones such as lattice 
gas and lattice Boltzmann gas [2] are able to describe many dynamical properties of 
physical systems, they simulate mechanical interactions in a very simplistic way.  

Meanwhile, for the model of interacting particles or particle model (PM) (e.g. 
[3,4]) mechanical interactions are its intrinsic property. PM is a discrete, off-grid and 
very general paradigm of modeling, which has its roots in N-body simulations and 
well known Molecular Dynamics (MD) method (also the Non-equilibrium Molecular 
Dynamics NEMD). The system of discrete particles is defined by system boundary, 
initial conditions and by interactions between particles represented by a collision op-
erator. The particle system evolves according to the Newtonian equations of motion.  

Despite of its conceptual simplicity, the method is computationally demanding, 
when used for modeling macroscopic phenomena involving large number of particles. 
The state_of_the_art supercomputers allow for simulating more than a trillion atoms 
in a million time-steps by exploiting highly efficient MD parallel codes [5]. This  
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particle ensemble corresponds to spatial 3-D scales of a few micrometers and time 
scales of ten nanoseconds. Certainly, as shown in (e.g. [6-8]), Molecular Dynamics 
can be used as an efficient modeling framework also in larger scales employing vari-
ous definitions of “particle”. However, the main weakness of PM is the difficulty to 
represent important microscopic and macroscopic degrees of freedom only in the 
form of particle interactions. The problem becomes especially serious in modeling 
intrinsically complex biological systems. For example, assuming that a particle 
represents a cell, the microscopic processes such as chemical signaling, chemotaxis, 
haptotaxis, oxygen and proteins diffusion influencing cell behavior and its functions 
cannot be mimicked by a simple mechanical force. On the other hand, just mechanical 
interactions between cells can be a crucial factor influencing many types of growth. 

Instead of developing multi-scale model which consists of many submodels 
representing various scales coupled by complicated and unreliable scale-bridging 
mechanisms, we propose here a uniform coarse grained model in which information 
about finer scales is inscribed both in CA rules and particle interactions. We demon-
strate that by coupling cellular automata and particle model we can develop a new 
computational framework which possesses the advantages of the two.  By using as 
examples two modeling targets, proliferation of cancer and invasion of a pathogen 
attacking cereal crops (Fusarium graminearum) we demonstrate how the concept of 
CxA works when applied to modeling the realistic phenomena. At the end of the pa-
per we discuss the methods of speeding up the computations by using GPU and 
CUDA technologies. 

2 Complex Automata 

As it was shown in thousands of papers, the cellular automata (CA) is advantageous 
over other modeling approaches in simulating systems where interactions between 
individuals can be represented by a language instead of mathematical equations. Us-
ing more rules, i.e., more complicated language, one can simulate finer scales using 
coarse-grained CA representations [9]. The same property holds the particle model. 
The TC-DPD collision operator in macroscale - much more complicated than con-
servative MD force in atomistic scales (see [3,10]) - encapsulates in a consistent way 
averaged degrees of freedom from atomistic scales represented by Wiener stochastic 
terms. Concluding, the particle model reconstructs in a natural way mechanical inte-
ractions while cellular automata performs better when information exchange between 
individuals cannot be described only in terms of positions, velocities and forces. 
Therefore, by coupling the particle model with cellular automata, one can obtain the 
possibility to reconstruct both mechanical interactions and finer intercellular 
processes mimicked by CA rules. The overall CxA concept consists of the following 
principal simulation steps.  

1. The simulated system is made of a set of particles ΛN={Oi: O(ri,vi,ai), i=1,…,N} 
where: i - particle index, N - the number of particles, ri,vi,ai - particle position, 
velocity and attributes, respectively. The vector of attributes ai is defined by the 
particle type, size, and its current states.  
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2. The particle state may depend on time t, concentration of diffusive substances 
and total pressure exerted on particle i from its closest neighbors. 

3. The collision operator Ωi(…), which is equal to the sum of particle-particle vec-
tor interactions Fij(|ri-rj|, vi-vj, ai, aj)  between the central particle i and all the par-
ticles j confined in the sphere of radius rcut, defines the total force acting on par-
ticle i. The type of particle-particle interaction, Fij, may depend on the current 
attributes of particles i and j. 

4. The particle dynamics is governed by the Newtonian laws of motion. Particle 
positions are shifted just after computing collision operators acting on every par-
ticle i. The Newtonian equations are integrated numerically in discrete time-steps 
Δt. 
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where ri is the position of particle, Pi is its momentum Nrcut is the number of  par-
ticles in the interaction range. 

5. The attributes of particles i are updated according to its history and the state of 
particles in its neighborhood according to prescribed CA rules. 

6. The particles attributes may also depend on current solutions of other large-scale 
models formulated in terms of PDEs (partial differential equations) such as reac-
tion-diffusion or hydrodynamics equations.  

In the following subsections we present two examples employing CxA metaphor.  

2.1 Tumor Growth Using CxA 

By skipping the complex genetic processes influencing the appearance of the first 
tumor cells we assume that a small cluster of cancerous cells is placed inside a healthy 
tissue. Typically, solid tumor proliferation consists of three phases: avascular growth, 
angiogenesis, vascular growth, and metastasis (e.g., [11]). Avascular tumor (see 
Fig.1a) develops due to nutrients diffusion (e.g. O2) throughout the tissue from neigh-
boring blood vessels. Due to short O2 diffusion path some of cancer cells located far 
from the closest blood capillary are in the chronic state of oxygen shortage - hypoxia. 
The hypoxic cells produce and release chemical species - called tumor angiogenic 
factors (TAFs) [11]. They diffuse throughout the tissue to neighboring blood capilla-
ries and trigger a cascade of events stimulating the growth of vasculature towards the 
tumor cluster. Vascularized tumor (see Fig.1b) having access to unlimited resources 
of nutrients dramatically accelerates its growth. Moreover, the tumor secretes cance-
rogenic material forming metastases through the blood system.  

There exist numerous mathematical models of tumor progression in all its phases 
(e.g. [12]). However, only a few consider mechanical factors of growth though tumor 
squeeze through the tight body is a purely mechanical phenomenon. The tissue and 
vasculature remodeling due to tumor push on influences both the speed and character 
of its growth. Just tumor remodeling is responsible for its heterogeneity influencing 
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the drug dosage/rate in chemotherapy. As shown in [13], CxA can be used as a robust 
metaphor which closes up this gap. 

We assume that a fragment of tissue, is made of a set of N particles ΛN. Each par-
ticle represents a single cell with a fragment of ECM (extracellular matrix). The vec-
tor of attributes ai is defined by the particle type {tumor cell (TC), normal cell (NC), 
endothelial cell (EC)}, cell life-cycle state {newly formed, mature, in hypoxia, after 
hypoxia, apoptosis, necrosis}, cell size, cell age, hypoxia time, concentrations of 
k=TAF, O2 (and others) and total pressure exerted on particle i from its closest neigh-
bors. The particle system is confined in the cubical computational box with a constant 
external pressure. For the sake of simplicity the vessel is constructed of tube-like 
“particles” – EC-tubes – made of two particles connected by a rigid spring. We define 
three types of interactions: particle-particle, particle-tube, and tube-tube. The forces 
between particles mimic both mechanical repulsion from squashed cells and attraction 
due to cell adhesiveness and depletion interactions cause by both ECM matrix and the 
cell. We postulate the heuristics – two-body interaction potential V(dij) - in the follow-
ing form:  
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where )( jiijij rrd +−= r and rij=|rij| is the distance between particles while ri and rj 

are their radiuses. 
We assume that the interactions between spherical particles and EC-tube particles 

have similar character. However, as shown in [13], additional rules have to be intro-
duced to enable appropriate growth of the vascular network. The particle dynamics is 
governed by the Newtonian dynamics while DPD (dissipative particle dynamics) 
collision operator [3,4] is used for simulating particle-particle interactions.  

In dissipative particle dynamics [3,4] the two-body interactions between two fluid 
particles i and j are assumed to be central and short-ranged. The collision operator, 

( )ijijr p,Ω , can be defined as a sum of a conservative force FC, dissipative component 

FD and the Brownian force FB. The Brownian factor represents the coarse grained 
equivalence of thermal fluctuations. The equations below show the basic formula 
describing the two-body forces. 
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The value of rcut is the cut-off radius which represents the range of interaction be-
tween two interacting DPs. 
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Both normal and tumor cells change their states from new to apoptotic (or necrot-
ic). The living cell changes its state to hypoxic (being the source of TAFs) when oxy-
gen concentration drops below a given threshold. The cell dies and becomes necrotic 
if it remains in hypoxia state too long. The life-cycle for EC-tube is different. It can 
grow both in length and in diameter. Reduced blood flow, the lack of VEGF (vascular 
endothelial growth factor), dilation, perfusion and solid stress exerted by the tumor 
can cause their rapid collapse. Because the EC-tube simulates a cluster of EC cells, its 
division onto two adjoined tubes does not represent the process of mitosis but is a 
computational metaphor of vessel growth. The tube can form a sprout of newly 
created capillary growing from existing vessels. The new sprout is formed when the 
TAFs concentration exceeds a given threshold. Its growth direction is parallel to the 
local TAF concentration gradient.  

The distribution of hematocrit is the source of oxygen, while the distribution of 
tumor cells in hypoxia is the source of TAFs. We assume that the cells of any type 
consume oxygen with the rate depending on both cell type and its current state, while 
TAFs are absorbed by EC-tubes only. TAFs are washed out from the system due to 
blood flow. The blood circulation is slower than diffusion but still faster than mitosis 
cycle. These facts allow for employing fast approximation procedures for both calcu-
lation of blood flow in capillaries and solving reaction-diffusion equation (see [13]).  

Summing up, the basic procedures of our CxA particle model consist of: the model 
initialization phase, i.e., definition of initial and boundary conditions, and its evolu-
tion driven by the following phenomena: the Newtonian dynamics of interacting cells, 
diffusion of oxygen and TAF, cellular life cycle modeled by CxA rules, vessels 
sprouting and growth, vessels remodeling due to blood flow, vessel maturation and 
degradation. 

 

 
Fig. 1. The snapshots from 3-D CxA simulations displaying two phases of tumor growth: a) 
avascular and b), c) vascular ones. In a) one can see hypoxic and necrotic parts of cancer glo-
bule. The network remodeling process is shown in c) where immature vessels (shown in red) 
collapse. The tissue cells are invisible in figures a) and c). 

In the context of tumor modeling, the main advantage of CxA over other models, 
consists in more realistic and strightforward simulation of the influence of mechanical 
remodelling process on tumor growth dynamics. For example, in [13] we show that 
inward motion of tumor cells in avascular tumor, which results in production of 
necrotic centre (see white arrow in Fig.1a), is a purely mechanical process. It 
stabilizes its size in this incipient stage of growth. Similarly, in the following 
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angiogenic phases mutual interactions between tumor body, vascularization, healthy 
tissue, and bones may be an important factor of temporar tumor stabilization, or 
converseley, its rapid growth.  

The newly created blood vessel become functional, when they form closed loops 
(anastomoses) and are covered with adequate quantity of mural cells. Mural cells are 
vascular support cells that range in phenotype from pericytes to vascular smooth mus-
cle cells [14]. As displayed in Figs.1a,c, the structures of vasculature become very 
complex and dynamic due to continual vessel maturation and degradation caused also 
by mechanical interactions. Therefore, the newly created vascular system inside the 
tumor is very fragile, vulnerable to rapid changes in blood pressure and the speed of 
volumetric growth. This very dynamic situation influencing majority of the tumor 
system makes it globally unstable. Very different situation is observed for 
F.graminearum infection in wheat, where mechanical factor is very local. 

2.2 Fusarium Graminearum Infection 

CxA model can be also applied for simulation of cereal infection by parasite fungi 
called Fusarium graminearum (F.graminearum - Fg). Fg is one of the main causal 
agents of Fusarium head blight (FHB) infection. It attacks cereal crops what results in 
significant crop losses. Another effect of this plague is the contamination of grain 
with mycotoxins, which is extremely harmful for animals and humans.  

According to [15], we can distinguish four types of Fusarium cells namely: tip 
cells, active cells, inactive cells and spores. Tip and active cells are involved in nu-
trient uptake, branching and translocation. Additionally, the tip cells are responsible 
for growth and its direction. Active cells secrete also the acid substances and toxins 
used for breaking mechanical barriers (such as cellular wall) and disarming plant 
immunological system. The necrotic cells and spores are inactive cells i.e. the cells 
that are no longer directly involved in translocation, branching or uptake. Meanwhile 
the spores are reproductive structures that are adapted for dispersal and surviving for 
extended periods of time in unfavorable conditions.   

F.graminearum is well adapted for growth in vascularized tissue due to their net-
work structure and filamentous growth nature. This growth process is the forward and 
lateral movement stimulated by the extension of hyphal tips and branching respective-
ly. As a result of tip movement, the hyphae are able to penetrate plant tissue and break 
hard obstacles such as cell or chitin walls. Breaking cell wall the hyphae secrete en-
zymes devastating its interior by leaching nutrients. The nutrients are absorbed then 
by the hyphae cells. Nutrient translocation is the crucial process for Fusarium expan-
sion and function in heterogeneous environments. It allows the redistribution of inter-
nal metabolites throughout the mycelium by using at least two translocation mechan-
isms: diffusion and active movement of nutrients. We assume that: 

1. Every Fusarium and plant cell is modeled by a particle which interacts with other 
particles (cells) in their closest neighborhood. 

2. Every cell has a number of attributes that evolve in time. 
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3. The concentration of nutrients is uniform in a single cell and constant in the spe-
cific time step. 

4. Nutrients circulation in the fungi body, which allows Fusarium to proliferate, is 
the effect of diffusion and translocation mechanism [15]. 

5. Each Fusarium and plant cell is in one out of three discrete states which models 
cell-life cycle.  

The laboratory experiments from Fig.2a,b were conducted in vitro in artificial condi-
tions. This means that no nutrients were produced in the course of experiments and 
the initial amount of food was only consumed by F.graminearum. The experiments 
were performed on flat surfaces on so called Petri dishes. Two types of environment 
were tested: PDA which is nutrient-rich and SNA which is nutrient-poor. Both sub-
stances are water solutions. This allows for two important assumptions: the fungus 
does not encounter much strain from the environment and diffusion does not need to 
be modeled directly. We may safely assume that the diffusion in water is fast enough 
to keep uniform nutrients concentration in the whole volume. As the result all fungi 
cells have identical external nutrients level and there is also no need to model diffu-
sion inside the fungus. In this early modeling stage only model of the hyphae growth 
and physical behavior has been developed. Due to the absence of plant cells in expe-
riments interactions with environment were not modeled. 

 

 
Fig. 2. The development of F.graminearum in in vitro - nutrient rich (a) and nutrient poor  
(b) - and in vivo (c) environments.  Figure c displays the cross-section of stem of wheat head. 
Experimental results (a,b,c) (courtesy of Dr Shea Miller and Dr Margaret Balcerzak from Agri-
culture and Agri-Food Canada, ECORC, Ottawa) are compared to corresponding snapshots 
from CxA simulations (d,e,f). As shown in (c) and (f), F.graminearum (black stains pointed by 
arrows) proliferate mainly in vascular bundles and rachis, i.e., nutrient poor environment.  
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As shown in Fig.2d,e, the comparison of simulation results with experimental data 
is cautiously optimistic. The qualitative character of growth is very similar. However, 
the structural characters of networks produced by F.graminearum and and CxA mod-
el are clearly different. This artifact can be improved, by using higher resolution 
(smaller Fg cells) and playing the parameters responsible for the sprouting. Another 
confrontation of simulation with experiment, displayed in Fig.2c,f, also shows a good 
qualitative agreement of the two. F.graminearum spreads mainly through vascular 
bundles (vertical growth), penetrating also the closest neighborhood (lateral growth) 
[16]. When pathogen finds the nutrient rich part of the plant, it shifts the type of 
growth from vertical to lateral one completely devastating attacked plant organ.  

3 GPU Acceleration of CxA Model 

In general, CxA modeling approach in which a particle represents a single cell is 
computationally demanding [17,18]. Assuming that plant cell perimeter is about 
20μm and taking into account the intercellular space and blood vessels, one can esti-
mate that it is about 108 cells of order in tissue volume of 1 cm3. Assuming computa-
tional power of modern laptop processors, the Complex Automata can be used for 
simulating in a reasonable time the fragments of tissue not larger than a few cubic 
millimeters. This is enough to model initial stages of tumor growth or Fg infection in 
particular fragments of organs. However, in case of simulating Fg where the dynam-
ics is very local the situation is more favorable. The spatio-temporal scale of model-
ing can be considerably increased taking into account that: 

1. The region of interest can be narrowed to the infected fragments of plant decreas-
ing the number of simulated cells by orders of magnitude. 

2. Plan cells are motionless thus they do not need updating its neighbors list. 
3. The only moving particles (cells) are Fusarium tip cells and fungi cells in their 

closest vicinity. 

We have estimated that using clusters of multi-core CPUs empowered by GPGPU 
boosters our model can be used for simulating fragments of plant much above a few 
centimeters of size.  

For modeling global dynamics of large tumors, a hybrid continuum-discrete model 
should be used. We have estimated the speedup obtained by using GPGPU for tumor 
modeling using CxA approach. The most advantageous are calculations of tube-tube 
interactions. However, there are rather rare and it appears that the most consuming 
part of calculations is connected with tube-particle interactions.  

In our tests we use the same machine: Intel Xeon E5540 at 2.53GHz CPU with 
Nvidia GeForce GTX 295 (containing 240 CUDA cores). Machine runs Red Hat En-
terprise Linux Server release 6.0. CUDA version was 3.2.16. We compare perfor-
mance of a single core of the CPU processor with GPU board. The simple (naive) 
GPU version of cell-cell interactions runs 6 times faster than its CPU counterpart. By 
use of advanced CUDA mechanisms such as shared memory, textures, atomic opera-
tions, and tailoring algorithms to GPUs, we managed to increase the speedup of our 
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CUDA kernel up to 60 times. The entire simulation runs 10-20 times faster than the 
single threaded CPU version. In Fig.3 we collected our averaged timings. In the ex-
treme case, tubes are so dense that their interactions considerably affect overall per-
formance. When the number of tubes reaches 9996, tube-tube interactions take 29% 
of the total execution time. Normally, blood vessels are sparse and hardly ever inte-
ract with each other so we can expect much better results than these shown in Fig.3.  

 

Fig. 3. Speedups for the most intensive calculations compared to the entire simulation  

4 Conclusions and Discussion 

We have introduced here a novel modeling concept, called Complex Automata, which 
integrates the two types of modeling techniques, namely, particle method and cellular 
automata. We have shown that the particle method decides about the mechanical 
properties of the system. Microscopic phenomena involving fluctuations and dissipa-
tive behavior can also be added in a consistent way exploiting widely known model-
ing techniques such as DPD or TC-DPD [4,10]. Apart from system properties result-
ing from simple Newtonian mechanics, other microscopic biological processes can be 
encapsulated in CA rules. These rules depend on the current configuration of the 
nearest neighbors and other phenomena, e.g., described by the continuum fields ob-
tained from integrating PDEs. We have also presented a proof-of-concept of our ap-
proach by employing CxA as a metaphor in modeling of two different biological phe-
nomena. The ability of mimicking both mechanical interactions of tumor with the rest 
of tissue and penetration properties of F.graminearum, shows that our model can 
reproduce realistic 3-D dynamics of these complex biological systems.  

The model presented is only a pure phenomenological metaphor of F.graminearum 
and tumor growth being a proof-of-concept of Complex Automata paradigm applica-
tion in these domains. Only basic principles of growth were taken into account. How-
ever, including more sophisticated processes to the framework of CxA model such as 
tissue defense mechanisms and toxines devastating effects should be straightforward.  
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To make our model functional the crucial task is to incorporate to the model a data 
assimilation module. Up to now the model parameters were matched coarsely using 
very general data which bases mainly on the results of analysis of microscopic pic-
tures. We believe that using Complex Automata computational framework with data 
assimilation module will allow for attacking many biological problems in a more 
systematic and focused way.  
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