
A Traffic Cellular Automaton with Time

to Collision Incorporated

Yohei Taniguchi1 and Hideyuki Suzuki2

1 Department of Advanced Interdisciplinary Studies (AIS)
Graduate School of Engineering, The University of Tokyo,

Meguro, Tokyo 1538904, Japan
2 Institute of Industrial Science, The University of Tokyo,

Meguro, Tokyo 1538505, Japan

Abstract. We present a new traffic CA model focused on an estimated
time for a following vehicle to catch up with the one ahead (Time-to-
Collision: TTC) , and investigate characteristics of the model with the
simulation. We also analyze analytically the possibility of a collision be-
tween two cars in this model. The model is simulated under open bound-
ary conditions and each car is parallel-updated. We draw some funda-
mental diagrams of the traffic flow with the simulation. In this figure, we
find two distinct phases: a free flow and wide moving jam. And between
the two phases, the region where the dots spread sparsely is seen clearly.
In addition to this, by using different values of an important parame-
ter, we can see the several patterns of the trajectory of vehicles. Based
on these findings, we believe it is possible for this model to reproduce
synchronized flow.

Keywords: TTC, Time-to-Collision, CA, cellular automaton, synchro-
nized flow.

1 Introduction

Many researchers have studied the dynamics of traffic scientifically and proposed
number of statistical physics models. Traffic flow is a complex system that can
show asymptotic behaviors such as self-organized criticality and a phase transi-
tion from free flow phase to congestion phase. Due to its flexibility for modifying
capability of capturing its self-organized criticality, the cellular automaton (CA)
has been used successfully in modeling real behavior of traffic flow, and has
become a popular tool for management of traffic [1,2,3].

The NaSch (Nagel-Schreckenberg) model [1] and the VDR (Velocity-
Dependent-Randomization) model [2] were proposed in 1992 and 1998 respec-
tively. The NaSch model is known as the model which is able to reproduce both
a free flow and congestion state by increasing the possible sets of velocity value
that vehicles can take. The VDR model can display a meta-stable state by intro-
ducing the slow-to-start effect. In addition to this, S-NFS model [4] proposed in
2006 shows a meta-stable state more clearly by forecasting a possible movement
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of a car ahead. And of course, there are many other mathematical models that
reproduce such a behavior in a traffic flow.

In 2002, Kerner [5,6,7] proposed ”Three-phase theory”, which states that traf-
fic flow has three phases; a free flow, synchronized flow and wide moving jams.
He observed the existence of these three phases, and also proposed the models
which can show all the phases [8].

Synchronized flow can be characterized as a sparsely clustered dots in the
fundamental diagram of density and flow rate, while other phases, such as a
free flow and wide moving jams are shown as dense packed clusters. Therefore,
in synchronized flow, the average values of density and flow rate largely vary
in time, and the average velocity can be spread from 20 km/h to 60 km/h. In
the synchronized flow state, there are both the section where some small sized
traffic jam occur and the section of cars moving smoothly. Synchronized flow is
visualized as a phenomenon that these sections run waving through backward.

A concept of Time-to-Collision (TTC) was suggested by Lee [9] in 1976. The
formula of TTC is described by the distance between a vehicle and the vehicle in
front divided by the relative velocity of the two vehicles. It has been often used
as the reference index for the risk of crash in a traffic model. However, TTC is
rarely used to study a phenomenon of traffic jams but instead used to evaluate
a safety of the traffic system as a whole [10,11]. In this paper, we regard TTC as
a time allowance until the driver catches up to the car in front. Since TTC has
a simpler formulation, it is easier to model behaviors of human drivers in real
driving situation.

In this paper, we explain how vehicles run in the model considering the idea
of TTC and also explain what is the condition of the parameters of the model
to avoid any collision of vehicles in section 2. In section 3, we discuss the repro-
ducibility of synchronized flow with figures of fundamental diagrams and time-
space diagrams obtained by a few numerical simulations. Then, we conclude the
findings and list what need to work in the section 4.

2 The Model with Time to Collision Incorporated

2.1 The Algorithm of the Model

We construct a model in which TTC is considered. The procedure is written as
follows.

R0 random braking parameter: @p =

⎧
⎨

⎩

p0 (dt−1
n = 0)

pd (dt−1
n > 0 and vtn < vmax)

ps otherwise

R1 acceleration: vt+1
n ←

{
vtn + 1 (vtn < vmax and vtn < dtn)
vtn otherwise

R2 aim velocity : ṽt+1
n ←
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c � otherwise



A Traffic Cellular Automaton with Time to Collision Incorporated 829

R3 deceleration: vt+1
n ← min

(
vt+1
n , ṽt+1

n

)

R4 random braking vt+1
n ← max

(
vt+1
n − 1, 0

)
with probability p

R5 moving: xt+1
n ← xt

n + vt+1
n

xt
n and vtn are the location and velocity of the n th vehicle at time t respectively,

and the n+ 1 th vehicle represents the vehicle in front of n th vehicle. dtn is the
gap between the n th car and the n+1 th car, that is dtn = xt

n+1−xt
n−1. Figure

1 shows a schema for the variables in the model. �·� is floor function.

Fig. 1. schema for the variables. vt+1
n is determined by xt

n, v
t
n and dtn

In this model slow-to-start effect [2,4,13] is considered by making p to have
three possible different values at R0. Cars accelerate gradually not to exceed a
limiting speed at R1. In addition, we consider a drivers’ mind that they tend to
avoid a collision. When the distance to the car in front is short for their own
velocity vtn ≥ dtn, they don’t accelerate. Likewise, when the distance between
two cars is short at R2, they take an aim velocity that is 1 smaller value than it
is not. We take the idea of TTC into R2. At R2, each driver adjusts the velocity
to make sure that one has more than c seconds to catch up to a car in front.
Suppose a time to catch up the car in front is tTTC . Then using relative velocity
(vtn − vtn+1), we can write

(
vt+1
n − vtn+1

)
tTTC = dtn. (1)

From this equation, the range of vt+1
n that makes tTTC more than c (second) is

vtn+1 ≤ vt+1
n ≤ vtn+1 +

dtn
c
. (2)

Therefore, the velocity of each car is within this range. Each driver looks at the
velocity of the car in front one time step (1 second) ahead. It is just the update
time step of CA.

Drivers follow the optimal velocity vt+1
n = vtn+1 +

dt
n

c at R2. This model only

uses integer, so rational numbers like
dt
n

c is linearly interpolated in this model. If
a car applies brakes, then a velocity ṽt+1

n is again computed in R2, then used in
R3. In this model the maximal acceleration is one cell per one step (7.5 m/s2).
Therefore, even if acceleration more than one cell per one step is required in
order to reach the optimal velocity, cars can’t accelerate up to the value. This is
why we use the value ṽt+1

n only when ṽt+1
n becomes less than vt+1

n at R3. Drivers
apply brakes randomly at R4 and the finally, cars advanced at the step R5.
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2.2 Risk of Collision

If the velocity is larger than the distance to a car in front, the danger of collision
increases. In this situation, if the car ahead does not move at the next time
(vt+1

n+1 = 0), a collision occurs. However, it is possible to have vt+1
n ≥ dtn because

there is no condition between vtn+1 +
dt
n

c + 1 and dtn. Therefore, it is not clear if
this model is a collision free or not.

For a car not to collide with a car in front at time t, it is sufficient if a condition
vt+1
n ≤ dtn is satisfied. Therefore, for the model to be collision free, we find the
sufficient condition is ”vt+1

n ≤ dtn if vtn ≤ dt−1
n ” at any possible values of n and

t. In addition, we suppose initial conditions of all cars satisfy v1n ≤ d0n for all n.
Before going further, we write down the relation between the velocity of the

front car and that of the following car. We reduce R1, R2 and R3 into the form
of

vt+1
n =

⎧
⎨

⎩

min
(
vtn + 1, vtn+1 + �d

t
n

c �+ 1
)
(vtn < vmax and vtn < dtn)

min
(
vtn, v

t
n+1 + �d

t
n

c �+ 1
)

otherwise.
(3)

Then, the changes of a distance between two cars is equal to the relative velocity,
that is, dtn− dt−1

n = vtn+1− vtn always holds (Fig 1 helps you understand easier).
Now, we denote dtn − dt−1

n by Δdtn. Then, we substitute these equations into a
equation (3) and obtain

vt+1
n =

⎧
⎨

⎩

vtn + 1 +min
(
0, Δdtn + �dt

n

c �
)
(vtn < vmax and vtn < dtn)

vtn +min
(
0, Δdtn + �dt

n

c �+ 1
)
otherwise.

(4)

Actually there is the case of a driver slowing down one cell per second speed at
R4, but in this subsection, we consider only the case that no car brakes at R4.
Since no car brakes at R4, it increases the risk of collision when a speed value
increases. Thus, if we look at the case with the highest risk and find that no
collision between vehicles occurs, then there will be no collision among vehicles
in any other cases. Supposing the equation (4) holds, we discuss a statement if
vt+1
n ≤ dtn when vtn ≤ dt−1

n at any n and any t. First, in addition to the equation
(4), if vtn < dtn is satisfied, the statement is true. Because vt+1

n ≤ vtn + 1 for any
t and any n, and then, vtn < dtn ⇔ vtn + 1 ≤ dtn.

Secondly, we discuss the case vtn = dtn. In this case, we can obtain the following:

vt+1
n = vtn + min

(
0, Δdtn + �dt

n

c �+ 1
)
≤ vtn. Using this inequality, it is easy to

see that vt+1
n ≤ vtn = dtn.

Finally, we look at the case vtn > dtn. In this case, whether it is possible to
crash to the vehicle ahead depends on a condition of a parameter c. Figure 2
shows the relevance of dtn and vtn. Drivers can take the combination of { dtn,
vtn } within the region colored in gray. In the black region, the condition that
vt+1
n > dtn when vtn ≤ dt−1

n is satisfied because of the following reason. The
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inequalities vtn ≤ dt−1
n and vt+1

n > dtn can be put into vtn ≤ dtn − Δdtn and

vtn > dtn − Δdtn − �d
t
n

c �, respectively. In the black region, both vtn ≤ dt−1
n and

vt+1
n > dtn are satisfied. So, the sufficient condition to be collision free ”vt+1

n ≤ dtn
if vtn ≤ dt−1

n ” is not satisfied. In order to know the condition of c, we see whether
there exists a common region between the gray and black area. As the case there
are no such region, the sufficient condition vt+1

n > dtn when vtn ≤ dt−1
n always

holds in the gray region, therefore we find any collision does not occur. To check
that, it is sufficient to focus on a line vtn = vmax and the point (c, c − Δdtn),
which is the coordinate both dtn and vtn are smallest in the black region (the
bigger point in Fig 2). We get the condition by comparing the value c − Δdtn
and vmax, as follows:

c > Δdtn + vmax = vmax − 1. (5)

Fig. 2. The relevance of dtn and vtn: It shows the region of the combination of { dtn, v
t
n

} drivers can take (colored in gray), and also shows the region where it is possible to
crash to the vehicle ahead, that is, vt+1

n > dtn when vtn ≤ dt−1
n (colored in black)

3 Simulation Results

We simulate this model with the parameter L = 2000 cells (15 km), open bound-
ary, inflow ratio α = 0.5, outflow ratio β = 0.5, vmax = 5 (= 135km/h),
p0 = 0.75, pd = 0.375, ps = 0.05, the target of TTC c = 4.1, 5, 7, 15, and
the calculation time step is 54000 (1 step = 1 second). From the subsection 2.2,
using the condition 5, it is found that all cases are collision free. In the case of a
car not running out from the end of the course in probability β, the car is on the
edge of the road at this time and goes out at the next time. In this situation, we
can understand that a new car is entering from branch road. Figure 3 shows the
fundamental diagram of this traffic model. The density and the flux observed at
the observation points (l) located at every 100 cells. The density is the number
of cars located on the points averaged over 300 seconds. The flux is the average
number of cars that pass the observation points per time step. The equations
are given as follows:
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Density: 1
T

∑T
t

∑
n 1 (x

t
n = l)

Flow: 1
T

∑T
t

∑
n 1 (x

t
n ≤ l ∩ xt

n > l) .

Fig. 3. The fundamental diagrams of identical vehicles in the proposed model. These
diagrams are drawn on the same simulation condition except the values of parameter c.

We can see both the free flow and congestion phase in all of diagrams of figure
3. In addition to this, the meta-stable state is seen clearly. It may be derived by
the slow-to-start effect. Furthermore, not only these two phases, but also there
are dots spread sparsely in the boundary of two phases. They are seen especially
in the case of c = 4.1 and c = 5. In general, the average velocity of vehicles
in synchronized flow is between 20 km/h and 60 km/h. In order to calculate
the average value in this system, we use the gradient between each of the dots
and origin. The gradients just correspond to the average velocity of vehicles. For
c = 4.1 and c = 5 (Fig 3), the average velocity of vehicles at the dots spread
sparsely, for example the point in the area [0.15,0.2] × [0.3,0.4], is surely between
20 km/h and 60 km/h. The result suggests the reproducibility of synchronized
flow in this model.

Figure 4 shows the plot of cars’ position among the amount of time. In all of
diagrams, each car’s speed is fluctuated, and there are both the spot where cars
have each short distance to the car in front and the spot where cars have each
long distance. In this state, the points in the two-dimensional of car’s density
and flux are ranged widely by time and space. These facts obtained by the traffic
simulation using this proposed car following model are some of the characters
of the synchronized flow. Moreover, there are different patterns by the value of
parameter c. In the upper left panel (c = 4.1) of figure 4, the shape of whole
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Fig. 4. Time-space diagrams: These figures show the trajectories of vehicles which run
between 800 cell and 1000 cell from 1000 seconds to 1200 seconds. The horizontal and
vertical axes represent the position and time of vehicle, respectively. Inflow ratio is
α = 0.5 in all the results. Several patterns of traffic flow are seen in these space-time
diagrams.

trajectory of vehicles looks like so-called general pattern (GP) [8]. The other cases
of c don’t show the pattern like GP, but show several ones that are different from
each other. The findings suggest that the model can reproduce some patterns of
synchronized flow by changing the parameter c.

4 Conclusion

In this paper, we presented a new CA model considering TTC and performed
traffic simulations of identical vehicles in the model. We found that a free flow,
meta-stable state and congestion state, which are some of the fundamental prop-
erties of traffic flow, were clearly observed in the simulation of this model. In
addition to this, we find another area. We calculated the average velocity of
vehicles in the area and looked at the the trajectory of vehicles on a inflow pa-
rameter. As the consequence, we successfully reproduced some characteristics of
the synchronized flow. Furthermore, by using different values of the parameter
c, we can see the several patterns of the trajectory of vehicles. It suggests that
the proposed model can show different synchronized patterns by changing the
parameter c. c is a physically meaningful parameter based on the human mind in
safety driving. Thus, we hope that the study about the relevance between these
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mind and the synchronized flow will proceed. In our future work, it is required
to investigate whether it is possible for this model to reproduce the synchronized
flow phase in detail.

In addition to this, it is also required to investigate the relation between a
model proposed by HK Lee et al. [13] and our proposed model. They reported
their model based on the BL iBrake Lightj model reproduces several patterns
of the synchronized flow phase which can be seen in real traffic flow [14]. Fur-
thermore, Kerner et al. presented a CA model which explains the physics of
synchronized flow [15]. We are interested in comparing with this model.
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