Limit Cycle Structure for Block-Sequential Threshold Systems

Henning S. Mortveit

Department of Mathematics and Network Dynamics and Simulation Science Laboratory Vi[rg](#page-6-0)inia Tech Henning.Mortveit@vt.edu

Abstract. This paper analyzes the possible limit set structures for the standard threshold block-sequential finite dynamical systems. As a special case of their work on Neural Networks (generalized threshold functions), Goles and Olivos (1981 [2]) showed that for the single block case (parallel update) one may only have fixed points and 2-cycles as ω -limit sets. Barrett et al (2006 [1]), but also Goles et al (1990 [3]) as a special case, proved that for the case with n blocks (sequential update) the only ω -limit sets are fixed points. This paper generalizes and unifies these results to standard threshold systems with block-sequential update schemes.

Keywords: [gr](#page-6-1)[aph](#page-6-2) [d](#page-6-3)[yn](#page-6-4)amic[al](#page-6-1) systems, finite dynamical system, automata networks, neural networks, block-sequential, cellular automata, threshold function, periodic orbit, limit cycle, sequential, parallel (37B99,68Q80).

1 Introduction

This paper analyzes the structure of limit sets for finite dynamical systems (also called automata networks), see for example [2, 3, 5–9], where each vertex function is a standard threshold function over the domain $\{0, 1\}$. In [2] it is demonstrated, as a special case of a more general result on neural networks (generalized threshold functions), that for the parallel update scheme standard threshold dynamical systems may only exhibit fixed points and 2-cycles as limit sets. It is shown in for example [1] that under the sequential update scheme the only limit sets are fixed points. Here we extend these results to block sequential update schemes.

Following the notation of Serre, let X denote a simple graph with vertex set $v[X] =$ $\{1, 2, 3, \ldots, n\}$, and write S_X for the set of permutations over $v[X]$. We refer to the elements of a partition $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$ of $v[X]$ as *blocks* and write $S_{\mathcal{B}}$ for the set of permutations of B. We say that a block $B \in \mathcal{B}$ is *non-trivial* if it induces a connected subgraph. Clearly, any block [can](#page-6-5) be decomposed into non-trivial blocks. The main result can now be stated as follows:

Theorem 1. Let X be a simple graph and B a block partition of $v[X]$. If the largest *non-trivial block of* B *has size at most three, then any block-sequential threshold finite dynamical system with update sequence* $\pi \in S_B$ *only has fixed points as limit sets. If the largest nontrivial block has size at least four, then a block-sequential threshold finite dynamical system may have periodic orbits of length at least two.*

G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 672–678, 2012. -c Springer-Verlag Berlin Heidelberg 2012

We provide an explicit example of a 2-cycle in a threshold finite dynamical system (FDS) where the maximal non-trivial block size is four and where there are multiple blocks. In the remainder of this paper we first introduce the necessary terminology. The proof, which is based on a potential function argument, is then presented in Section 3 before we finish by discussing generalizations in Section 4.

2 Terminology

Let X be a simple graph as above, and assign a state $x_v \in K = \{0, 1\}$ to each vertex $v \in v[X]$. Here we refer to x_v as a *vertex state* and $x = (x_1, x_2, \ldots, x_n)$ as a *system state*. Whenever it is clear from the context we will simply say state for either case. Let $n[v]$ denote the sorted sequence of vertices from the 1-neighborhood of v in X, and let $x[v]$ denote the corresponding restriction of x to $n[v]$. Denoting the degree of v by $d(v)$, each vertex is assigned a *vertex function* $f_v: K^{d(v)+1} \longrightarrow K$. The function f_v is used to map the vertex state at time t to $t + 1$, that is, $x_v(t)$ to $x_v(t + 1)$, taking $x[v]$ (at time t) as input.

Using the *parallel update* we obtain the finite dynamical system map $F: K^n \longrightarrow$ K^n given by

$$
F(x_1,...,x_n) = (f_1(x[1]),...,f_n(x[n]))
$$
.

For a sequential application of the maps f_v , it is convenient to introduce the X-local maps $F_v: K^n \longrightarrow K^n$ given by

$$
F_v(x_1,\ldots,x_n)=(x_1,\ldots,x_{v-1},f_v(x[v]),x_{v+1},\ldots,x_n).
$$

For a sequential update given by the permutation (or order) $\pi = (\pi(1), \pi(2), \ldots, \pi(n))$ $\pi(n)$) ∈ S_X we obtain the finite dynamical system map $F_\pi: K^n \longrightarrow K^n$ given by the composition

$$
F_{\pi} = F_{\pi(n)} \circ F_{\pi(n-1)} \circ \cdots \circ F_{\pi(1)}.
$$

A block-sequential update scheme generalizes both maps above. Let $\mathcal{B} = \{B_1, \ldots, B_m\}$ be a block partition as above. The map $F_{B_k}: K^n \longrightarrow K^n$ is given by

$$
(F_{B_k}(x))_v = \begin{cases} f_v(x[v]), & \text{if } v \in B_k \text{ and,} \\ x_v, & \text{otherwise.} \end{cases}
$$

The block-sequential map $F_{\mathcal{B}}: K^n \longrightarrow K^n$ is defined by

$$
F_{\mathcal{B}}=F_{B_m}\circ F_{B_{m-1}}\circ\cdots\circ F_{B_1}.
$$

Regardless of the choice of update scheme, we write $Per(F)$ and $Fix(F)$ for the set of periodic points and fixed points of $F: K^n \longrightarrow K^n$, respectively. Of course, $Fix(F) \subset$ $Per(F)$.

Define $\sigma_m: K^m \longrightarrow \mathbb{N}$ by $\sigma_m(x_1,\ldots,x_m) = |\{i \mid x_i = 1\}|$. The focus of this paper is on *standard threshold vertex functions*. The standard threshold function $t_{k,m}$: $K^m \longrightarrow K$ is defined by

$$
\mathbf{t}_{k,m}(x_1,\ldots,x_m) = \begin{cases} 1, & \sigma_m(x_1,\ldots,x_m) \ge k, \\ 0, & \text{otherwise.} \end{cases}
$$
 (1)

674 H.S. Mortveit

A finite dynamical system map is a threshold system if each of its vertex functions is a threshold function. The threshold need not be the same for all vertices.

We remark that the generalized threshold function $f: \{0,1\}^n \longrightarrow \{0,1\}$ of neural networks (see [2]) is defined by

$$
f(x_1,\ldots,x_n) = \begin{cases} 1, & \text{if } \sum_{j=1}^n a_{ij} x_j < \theta_i \\ 0, & \text{otherwise} \end{cases}
$$

where $\theta = (\theta_1, \dots, \theta_n) \in R^n$ and $A = (a_{ij})_{i,j=1}^n$ is a real symmetric matrix. The case considered in this paper additionally follows by restricting the a_{ij} 's to be either 0 or 1.

Example: The following example illustrates the concepts. As graph, take $X = \text{Circle}_4$ as shown in Figure 1. In this case we have $n[4] = (1, 3, 4), x[4] = (x_1, x_3, x_4)$ and $F_4(x)=(x_1, x_2, x_3, f_4(x_1, x_3, x_4))$. Taking $x = (1, 0, 1, 0)$ and threshold-2 vertex functions, we see that with the parallel update scheme $F(x) = (0, 1, 0, 1)$, whereas with sequential update and sequence $\pi = (1, 2, 3, 4)$ we have $F_{\pi}(x) = (0, 0, 0, 0)$. Using the block partition $\mathcal{B} = \{B_1 = \{2,4\}, B_2 = \{1,3\}\}\$ and update sequence $\pi' = (B_1, B_2)$ we get $F_{\pi'}(x) = (1, 1, 1, 1)$. For the map F the state x is on a 2-cycle, but is not periodic under either F_{π} or $F_{\pi'}$.

Fig. 1. The graph Circle⁴

Note that for the sync[hr](#page-6-0)onous update in this example we ha[ve](#page-6-6) a case where block-size 4 yields a 2-cycle. Later, we give another example of this where the update is neither parallel or sequential, but is instead block-sequential with three blocks.

3 Main Result

In this section we present the proof of the main result. The technique is an extension of the threshold function argument used in [1] and that was developed further in [4].

Proof (Theorem 1). For $v \in v[X]$ let $T_1(v)$ denote the threshold value for vertex v. Also, let $T_0(v)$ denote the smallest number of states in $x[v]$ that must be zero to ensure that x_v is mapped to zero. Clearly, we have the relation $(d(v)+1) - T_0(v) = T_1(v) - 1$, or $T_0(v) + T_1(v) = d(v) + 2$. We next introduce the vertex potential function

$$
P(x, v) = \begin{cases} T_1(v), & x_v = 1\\ T_0(v), & x_v = 0 \end{cases}
$$

and the edge potential function

$$
P(x, e = \{v, v'\}) = \begin{cases} 1, & x_v \neq x_{v'} \\ 0, & \text{otherwise.} \end{cases}
$$

We combine these and define the potential function $P: K^n \longrightarrow \mathbb{N}$ by

$$
P(x) = \sum_{v \in \mathbf{v}[X]} P(x, v) + \sum_{e \in \mathbf{e}[X]} P(x, e) .
$$
 (2)

Clearly, there exist an integer $M \geq 0$ such that $0 \leq P(x) \leq M$ for all $x \in K^n$. We write $n_i(x, v)$ for the number of neighbors of v with state $x_v = i$ with $i = 0, 1$. We then have $n_0(x, v) + n_1(x, v) = d(v)$. In the following we set $x' = F_v(x)$.

In [1] it is shown that whenever $x' \neq x$ we have $P(x') < P(x)$, which clearly implies that sequential FDS maps only have fixed points as limit sets. This covers the case where the maximal non-trivial block size is 1. In the following we prove that the same holds when the non-trivial blocks sizes are less than 4.

For a vertex state transition from x to x' where x_v is mapped from 0 to 1 by F_v we must have that $n_1(x, v) \geq T_1(v)$ or $T_1(v) - n_1(v) \leq 0$. Similarly, for the transition where x_v is mapped from 1 to 0 we must have that $n_1(x, v) + 1 \leq T_1(v) - 1$ so that $n_1(x, v) - T_1(v) \leq -2.$

In the argument to follow, we will first consider block-size 2 before handling blocksize 3. For a block B of size $|B| = 2$ we may limit our consideration to the case where all elements $v \in B$ change their state in the transition $x \mapsto x'$. If one or more of the states do not change, we are effectively working with a smaller block-size.

When determining the difference in potential ΔP when a block B is updated by F_B we may also limit our attention to the vertices in B and their incident edges since all other terms in the potential function P are the same before and after. However, if we simply add $P_v(x) = P(x, v) + \sum_{e=\{v, v'\}} P(x, e)$ for the elements $v \in B$ we may over-count the potential of all common edges in the block. However, by the previous remark that all states in the block must change, this over-counting in edge-potential is precisely the same for $P(x)$ and $P'(x)$. Consequently, we may disregard this without any consequence and simply add up $P_v(x)$ for each vertex v in the block.

To determine the potential change $\Delta P_v = P_v(x') - P_v(x)$ at vertex v, assume that $v \in B$ is adjacent to $\beta - 1$ other vertices in B, and assume that of these, α are in state 1 in x. It follows that the remaining $\beta - \alpha - 1$ other vertices in B adjacent to v have state 0. Since, all states are inverted, we conclude that in x' we have α adjacent vertices in state 0 and $\beta - \alpha - 1$ in state 1.

676 H.S. Mortveit

We first consider the transition where x_v is mapped from 0 to 1 in which case $n_1(x, v) \geq T_1(v)$:

$$
\Delta P_v = T_1(v) + n_0(x', v) - [T_0(v) + n_1(x, v)]
$$

= $T_1(v) + [n_0(x, v) + \alpha - (\beta - \alpha - 1)] - [T_0 + n_1(x, v)]$
= $T_1(v) + d(v) - n_1(x, v) + 2\alpha - \beta + 1 - [d(v) + 2 - T_1(v) + n_1(x, v)]$
= $2(T_1(v) - n_1(x, v)) + 2\alpha - \beta - 1$
 $\leq 2\alpha - \beta - 1$.

Similarly, if x_v is mapped from 1 to 0, and therefore $n_1(x, v) - T_1(v) \le -2$, we have

$$
\begin{aligned}\n\Delta P_v &= T_0(v) + n_1(x', v) - [T_1(v) + n_0(x, v)] \\
&= T_0(v) + [n_1(x, v) + (\beta - \alpha - 1) - \alpha] - [T_1 + n_0(x, v)] \\
&= d(v) + 2 - T_1(v) + n_1(x, v) + \beta - 2\alpha - 1) - [T_1(v) + d(v) - n_1(x, v)] \\
&= 2(n_1(x, v) - T_1(v)) + \beta - 2\alpha + 1 \\
&\leq 2(-2) + \beta - 2\alpha + 1 \\
&= \beta - 2\alpha - 3.\n\end{aligned}
$$

Block-size 2. For any block $B = \{v, v'\}$ and state x for which $x' = F_B(x) \neq x$ we have $P(x') < P(x)$.

If $\{v, v'\}$ is not an edge, we are effectively in the block-size 1 case and the statement is known to hold. Assume therefore that v and v' are connected. By symmetry, there are three cases to consider: (a) $(0, 0) \mapsto (1, 1)$, (b) $(1, 1) \mapsto (0, 0)$, and (c) $(1, 0) \mapsto (0, 1)$. In all three cases we have $\beta(v) = \beta(v') = 2$. For case (a) we have $\alpha(v) = \alpha(v') = 0$, so $\Delta P \le 2(2 \cdot 0 - 2 - 1) = -6$. Similarly, for case (b) we have $\alpha(v) = \alpha(v') = 1$ so that $\Delta P \le 2(2-2 \cdot 1-3) = -6$. Finally, for case (c) we have $\alpha(v) = 0$ and $\alpha(v') = 1$, so $\Delta P < -1 + (-1) = -2$, so in all cases we have $\Delta P < 0$.

Block-size 3. For any block $B = \{u, v, w\}$ and state x for which $x' = F_B(x) \neq x$ we have $P(x') < P(x)$.

Again we may assume t[ha](#page-5-0)t B is non-trivial and that x_u , x_v and x_w are all mapped non-identically since all other possibilities reduce to the block-size 1 or block-size 2 cases. There are two possibilities for the subgraph induced by $B: (i)$ the 3-line with with edges $\{u, v\}$ and $\{v, w\}$ and (ii) the 3-cycle.

[C](#page-5-1)ase (i): the induced subgraph of $B = \{u, v, w\}$ is a 3-line. There are eight transitions to consider, but by symmetry, it follows that $(1, 1, 0) \rightarrow (0, 0, 1)$ has the same potential change as $(0, 1, 1) \mapsto (1, 0, 0)$ and similarly for $(1, 0, 0) \mapsto (0, 1, 1)$ and $(0, 0, 1) \mapsto (1, 1, 0)$. We write α and β as vectors, so that in this case $\beta = (2, 3, 2)$. This gives us the following cases listed in Tab. 1.

Case (ii): the induced subgraph of $B = \{u, v, w\}$ is a 3-circle. In this case, symmetry implies that there are four cases to consider: $(0, 0, 0) \mapsto (1, 1, 1), (1, 0, 0) \mapsto$ $(0, 1, 1), (1, 1, 0) \mapsto (0, 0, 1)$ and $(1, 1, 1) \mapsto (0, 0, 0)$. Here $\beta = (3, 3, 3)$ with cases summarized in Table 2.

Transition	α	Potential change
		$(1,1,1) \mapsto (0,0,0) (1,2,1) \Delta P \leq -3 - 4 - 3 = -10$
		$(0,0,1) \mapsto (1,1,0) \mid (0,1,0) \mid \Delta P \leq -3 - 2 - 1 = -6$
		$(1,1,0) \mapsto (0,0,1) (1,1,1) \Delta P \leq -3 - 2 - 1 = -6$
		$(0,1,0) \mapsto (1,0,1) (1,0,1) \Delta P \leq -1 - 0 - 1 = -2$
		$(1,0,1) \mapsto (0,1,0) (0,2,0) \Delta P \leq -1 - 0 - 1 = -2$
		$(0,0,0) \mapsto (1,1,1) (0,0,0) \Delta P \leq -3 - 4 - 3 = -10$

Table 1. Potential changes for case (i) where block size is 3

Table 2. Potential changes for case (ii) where block size is 3

Transition	α	Potential change
		$(1,1,1) \mapsto (0,0,0) (2,2,2) \Delta P \leq -4-4-4=-12$
		$(0,1,1) \mapsto (1,0,0) (2,1,1) \Delta P \leq 0-2-2=-4$
		$(0,0,1) \mapsto (1,1,0) (1,1,0) \Delta P \leq -2 - 2 - 0 = -4$
		$(0,0,0) \mapsto (1,1,1) (0,0,0) \Delta P \leq -4 - 4 - 4 = -12$

It follows that whenever the maximal non-trivial block size in β is at most three, the block sequential threshold map may only have fixed points as limit cycles as claimed.

Block-size 4**.** For this case it is possible to construct systems with 2-cycles. Specifically, let X be the graph displayed in Figure 2. Let the blocks be $B_1 = \{0\}, B_2 = \{1, 2, 3, 4\}$ and $B_3 = \{5\}$. The state x obtained by assigning 0 to the even vertices and 1 to the odd vertices is clearly periodic with period 2 for any permutation update sequence of B_1 , B_2 and B_3 .

Fig. 2. A graph where threshold finite dynamical system maps with block size 4 can have periodic orbits of size ≥ 2

4 Summary and Open Questions

We note that extending the results above to the generalized threshold functions is nontrivial and will require additional constraints on the matrix A, see [3].

Here we did not address the question of what is the maximal periodic orbit size when the maximal non-trivial block size b falls in the range $4 \leq b \leq n-1$. It seems plausible that it is bounded by 2, but we have no proof for this at the moment. We close with this as a conjecture and challenge the reader to settle it.

Conjecture 1. The periodic orbits of any block sequential threshold system have length at most 2.

Acknowledgments. The author thanks the Network Dynamics and Simulation Science Laboratory (NDSSL) at Virginia Tech for the support of this research which was funded under DTRA R & D Grant HDTRA1-09-1-0017, DTRA Grant HDTRA1-11-1-0016 and DTRA CNIMS Contract HDTRA1-11-D-0016-0001. The author also thanks the anonymous reviewers for corrections and constructive comments.

References

- [1] Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete sequential dynamical systems. Journal of Computer and System Sciences 72, 1317–1345 (2006)
- [2] Goles, E., Olivos, J.: Comportement periodique des fonctions a seuil binaires et applications. Discrete Applied Mathematics 3, 93–105 (1981)
- [3] Goles, E., Martinez, S.: Neural and automata networks: Dynamical behaviour and applications. Kluwer Academic Publishers (1990)
- [4] Kuhlman, C., Mortveit, H.S., Murrugarra, D., Anil Kumar, V.S.: Bifurcations in boolean networks. Discrete Mathematics and Theoretical Computer Science (2011), accepted, peerreviewed article for Automata, November 21-23, Santiago, Chile (2011)
- [5] Laubenbacher, R., Paraigis, B.: Limits of sequential dynamical systems (preprint)
- [6] Laubenbacher, R., Pareigis, B.: Equivalence relations on finite dynamical systems. Advances in Applied Mathematics 26, 237–251 (2001)
- [7] Mortveit, H.S., Reidys, C.M.: Discrete, sequential dynamical systems. Discrete Mathematics 226, 281–295 (2001)
- [8] Mortveit, H.S., Reidys, C.M.: An introduction to sequential dynamical systems. Springer, Universitext (2007)
- [9] Robert, F.: Discrete iterations. a metric study. Springer Series in Computational Mathematics, vol. (6). Springer (1986)