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Abstract. This paper analyzes the possible limit set structures for the standard
threshold block-sequential finite dynamical systems. As a special case of their
work on Neural Networks (generalized threshold functions), Goles and Olivos
(1981 [2]) showed that for the single block case (parallel update) one may only
have fixed points and 2-cycles as ω-limit sets. Barrett et al (2006 [1]), but also
Goles et al (1990 [3]) as a special case, proved that for the case with n blocks (se-
quential update) the only ω-limit sets are fixed points. This paper generalizes and
unifies these results to standard threshold systems with block-sequential update
schemes.
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1 Introduction

This paper analyzes the structure of limit sets for finite dynamical systems (also called
automata networks), see for example [2, 3, 5–9], where each vertex function is a stan-
dard threshold function over the domain {0, 1}. In [2] it is demonstrated, as a special
case of a more general result on neural networks (generalized threshold functions), that
for the parallel update scheme standard threshold dynamical systems may only exhibit
fixed points and 2-cycles as limit sets. It is shown in for example [1] that under the se-
quential update scheme the only limit sets are fixed points. Here we extend these results
to block sequential update schemes.

Following the notation of Serre, let X denote a simple graph with vertex set v[X ] =
{1, 2, 3, . . . , n}, and write SX for the set of permutations over v[X ]. We refer to the
elements of a partition B = {B1, B2, . . . , Bm} of v[X ] as blocks and write SB for
the set of permutations of B. We say that a block B ∈ B is non-trivial if it induces a
connected subgraph. Clearly, any block can be decomposed into non-trivial blocks. The
main result can now be stated as follows:

Theorem 1. Let X be a simple graph and B a block partition of v[X ]. If the largest
non-trivial block of B has size at most three, then any block-sequential threshold finite
dynamical system with update sequence π ∈ SB only has fixed points as limit sets. If
the largest nontrivial block has size at least four, then a block-sequential threshold finite
dynamical system may have periodic orbits of length at least two.
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We provide an explicit example of a 2-cycle in a threshold finite dynamical system
(FDS) where the maximal non-trivial block size is four and where there are multiple
blocks. In the remainder of this paper we first introduce the necessary terminology. The
proof, which is based on a potential function argument, is then presented in Section 3
before we finish by discussing generalizations in Section 4.

2 Terminology

Let X be a simple graph as above, and assign a state xv ∈ K = {0, 1} to each vertex
v ∈ v[X ]. Here we refer to xv as a vertex state and x = (x1, x2, . . . , xn) as a system
state. Whenever it is clear from the context we will simply say state for either case. Let
n[v] denote the sorted sequence of vertices from the 1-neighborhood of v in X , and let
x[v] denote the corresponding restriction of x to n[v]. Denoting the degree of v by d(v),
each vertex is assigned a vertex function fv : K

d(v)+1 −→ K . The function fv is used
to map the vertex state at time t to t+1, that is, xv(t) to xv(t+1), taking x[v] (at time
t) as input.

Using the parallel update we obtain the finite dynamical system map F : Kn −→
Kn given by

F (x1, . . . , xn) = (f1(x[1]), . . . , fn(x[n])) .

For a sequential application of the maps fv, it is convenient to introduce the X-local
maps Fv : K

n −→ Kn given by

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x[v]), xv+1, . . . , xn) .

For a sequential update given by the permutation (or order) π = (π(1), π(2), . . . ,
π(n)) ∈ SX we obtain the finite dynamical system map Fπ : K

n −→ Kn given by
the composition

Fπ = Fπ(n) ◦ Fπ(n−1) ◦ · · · ◦ Fπ(1) .

A block-sequential update scheme generalizes both maps above. Let B={B1, . . . , Bm}
be a block partition as above. The map FBk

: Kn −→ Kn is given by

(
FBk

(x)
)
v
=

{
fv(x[v]), if v ∈ Bk and,

xv, otherwise.

The block-sequential map FB : Kn −→ Kn is defined by

FB = FBm ◦ FBm−1 ◦ · · · ◦ FB1 .

Regardless of the choice of update scheme, we write Per(F ) and Fix(F ) for the set of
periodic points and fixed points of F : Kn −→ Kn, respectively. Of course, Fix(F ) ⊂
Per(F ).

Define σm : Km −→ N by σm(x1, . . . , xm) = |{i | xi = 1}|. The focus of this
paper is on standard threshold vertex functions. The standard threshold function tk,m :
Km −→ K is defined by

tk,m(x1, . . . , xm) =

{
1, σm(x1, . . . , xm) ≥ k ,

0, otherwise.
(1)
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A finite dynamical system map is a threshold system if each of its vertex functions is a
threshold function. The threshold need not be the same for all vertices.

We remark that the generalized threshold function f : {0, 1}n −→ {0, 1} of neural
networks (see [2]) is defined by

f(x1, . . . , xn) =

⎧
⎨

⎩

1, if
n∑

j=1

aijxj < θi

0, otherwise
,

where θ = (θ1, . . . θn) ∈ Rn and A = (aij)
n
i,j=1 is a real symmetric matrix. The case

considered in this paper additionally follows by restricting the aij’s to be either 0 or 1.

Example: The following example illustrates the concepts. As graph, take X = Circle4
as shown in Figure 1. In this case we have n[4] = (1, 3, 4), x[4] = (x1, x3, x4) and
F4(x) = (x1, x2, x3, f4(x1, x3, x4)). Taking x = (1, 0, 1, 0) and threshold-2 vertex
functions, we see that with the parallel update scheme F (x) = (0, 1, 0, 1), whereas
with sequential update and sequence π = (1, 2, 3, 4) we have Fπ(x) = (0, 0, 0, 0).
Using the block partition B = {B1 = {2, 4}, B2 = {1, 3}} and update sequence
π′ = (B1, B2) we get Fπ′(x) = (1, 1, 1, 1). For the map F the state x is on a 2-cycle,
but is not periodic under either Fπ or Fπ′ .

1 2

34

Fig. 1. The graph Circle4

Note that for the synchronous update in this example we have a case where block-size 4
yields a 2-cycle. Later, we give another example of this where the update is neither
parallel or sequential, but is instead block-sequential with three blocks.

3 Main Result

In this section we present the proof of the main result. The technique is an extension of
the threshold function argument used in [1] and that was developed further in [4].

Proof (Theorem 1). For v ∈ v[X ] let T1(v) denote the threshold value for vertex v.
Also, let T0(v) denote the smallest number of states in x[v] that must be zero to ensure
that xv is mapped to zero. Clearly, we have the relation

(
d(v)+1

)−T0(v) = T1(v)−1,
or T0(v) + T1(v) = d(v) + 2. We next introduce the vertex potential function
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P (x, v) =

{
T1(v), xv = 1

T0(v), xv = 0

and the edge potential function

P (x, e = {v, v′}) =
{
1, xv �= xv′

0, otherwise.

We combine these and define the potential function P : Kn −→ N by

P (x) =
∑

v∈v[X]

P (x, v) +
∑

e∈e[X]

P (x, e) . (2)

Clearly, there exist an integer M ≥ 0 such that 0 ≤ P (x) ≤ M for all x ∈ Kn. We
write ni(x, v) for the number of neighbors of v with state xv = i with i = 0, 1. We then
have n0(x, v) + n1(x, v) = d(v). In the following we set x′ = Fv(x).

In [1] it is shown that whenever x′ �= x we have P (x′) < P (x), which clearly
implies that sequential FDS maps only have fixed points as limit sets. This covers the
case where the maximal non-trivial block size is 1. In the following we prove that the
same holds when the non-trivial blocks sizes are less than 4.

For a vertex state transition from x to x′ where xv is mapped from 0 to 1 by Fv we
must have that n1(x, v) ≥ T1(v) or T1(v) − n1(v) ≤ 0. Similarly, for the transition
where xv is mapped from 1 to 0 we must have that n1(x, v) + 1 ≤ T1(v) − 1 so that
n1(x, v) − T1(v) ≤ −2.

In the argument to follow, we will first consider block-size 2 before handling block-
size 3. For a block B of size |B| = 2 we may limit our consideration to the case where
all elements v ∈ B change their state in the transition x 	→ x′. If one or more of the
states do not change, we are effectively working with a smaller block-size.

When determining the difference in potential ΔP when a block B is updated by FB

we may also limit our attention to the vertices in B and their incident edges since all
other terms in the potential function P are the same before and after. However, if we
simply add Pv(x) = P (x, v) +

∑
e={v,v′} P (x, e) for the elements v ∈ B we may

over-count the potential of all common edges in the block. However, by the previous
remark that all states in the block must change, this over-counting in edge-potential is
precisely the same for P (x) and P ′(x). Consequently, we may disregard this without
any consequence and simply add up Pv(x) for each vertex v in the block.

To determine the potential change ΔPv = Pv(x
′) − Pv(x) at vertex v, assume that

v ∈ B is adjacent to β− 1 other vertices in B, and assume that of these, α are in state 1
in x. It follows that the remaining β − α − 1 other vertices in B adjacent to v have
state 0. Since, all states are inverted, we conclude that in x′ we have α adjacent vertices
in state 0 and β − α− 1 in state 1.
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We first consider the transition where xv is mapped from 0 to 1 in which case
n1(x, v) ≥ T1(v):

ΔPv = T1(v) + n0(x
′, v)− [T0(v) + n1(x, v)]

= T1(v) + [n0(x, v) + α− (β − α− 1)]− [T0 + n1(x, v)]

= T1(v) + d(v)− n1(x, v) + 2α− β + 1− [d(v) + 2− T1(v) + n1(x, v)]

= 2(T1(v)− n1(x, v)) + 2α− β − 1

≤ 2α− β − 1 .

Similarly, if xv is mapped from 1 to 0, and therefore n1(x, v)− T1(v) ≤ −2, we have

ΔPv = T0(v) + n1(x
′, v)− [T1(v) + n0(x, v)]

= T0(v) + [n1(x, v) + (β − α− 1)− α]− [T1 + n0(x, v)]

= d(v) + 2− T1(v) + n1(x, v) + β − 2α− 1)− [T1(v) + d(v)− n1(x, v)]

= 2(n1(x, v)− T1(v)) + β − 2α+ 1

≤ 2(−2) + β − 2α+ 1

= β − 2α− 3 .

Block-size 2. For any block B = {v, v′} and state x for which x′ = FB(x) �= x we
have P (x′) < P (x).

If {v, v′} is not an edge, we are effectively in the block-size 1 case and the statement
is known to hold. Assume therefore that v and v′ are connected. By symmetry, there are
three cases to consider: (a) (0, 0) 	→ (1, 1), (b) (1, 1) 	→ (0, 0), and (c) (1, 0) 	→ (0, 1).
In all three cases we have β(v) = β(v′) = 2. For case (a) we have α(v) = α(v′) = 0,
so ΔP ≤ 2(2 · 0− 2− 1) = −6. Similarly, for case (b) we have α(v) = α(v′) = 1 so
that ΔP ≤ 2(2−2 ·1−3) = −6. Finally, for case (c) we have α(v) = 0 and α(v′) = 1,
so ΔP ≤ −1 + (−1) = −2, so in all cases we have ΔP < 0.

Block-size 3. For any block B = {u, v, w} and state x for which x′ = FB(x) �= x we
have P (x′) < P (x).

Again we may assume that B is non-trivial and that xu, xv and xw are all mapped
non-identically since all other possibilities reduce to the block-size 1 or block-size 2
cases. There are two possibilities for the subgraph induced by B: (i) the 3-line with
with edges {u, v} and {v, w} and (ii) the 3-cycle.

Case (i): the induced subgraph of B = {u, v, w} is a 3-line. There are eight tran-
sitions to consider, but by symmetry, it follows that (1, 1, 0) 	→ (0, 0, 1) has the same
potential change as (0, 1, 1) 	→ (1, 0, 0) and similarly for (1, 0, 0) 	→ (0, 1, 1) and
(0, 0, 1) 	→ (1, 1, 0). We write α and β as vectors, so that in this case β = (2, 3, 2).
This gives us the following cases listed in Tab. 1.

Case (ii): the induced subgraph of B = {u, v, w} is a 3-circle. In this case, sym-
metry implies that there are four cases to consider: (0, 0, 0) 	→ (1, 1, 1), (1, 0, 0) 	→
(0, 1, 1), (1, 1, 0) 	→ (0, 0, 1) and (1, 1, 1) 	→ (0, 0, 0). Here β = (3, 3, 3) with cases
summarized in Table 2.
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Table 1. Potential changes for case (i) where block size is 3

Transition α Potential change
(1, 1, 1) �→ (0, 0, 0) (1, 2, 1) ΔP ≤ −3− 4− 3 = −10
(0, 0, 1) �→ (1, 1, 0) (0, 1, 0) ΔP ≤ −3− 2− 1 = −6
(1, 1, 0) �→ (0, 0, 1) (1, 1, 1) ΔP ≤ −3− 2− 1 = −6
(0, 1, 0) �→ (1, 0, 1) (1, 0, 1) ΔP ≤ −1− 0− 1 = −2
(1, 0, 1) �→ (0, 1, 0) (0, 2, 0) ΔP ≤ −1− 0− 1 = −2
(0, 0, 0) �→ (1, 1, 1) (0, 0, 0) ΔP ≤ −3− 4− 3 = −10

Table 2. Potential changes for case (ii) where block size is 3

Transition α Potential change
(1, 1, 1) �→ (0, 0, 0) (2, 2, 2) ΔP ≤ −4− 4− 4 = −12
(0, 1, 1) �→ (1, 0, 0) (2, 1, 1) ΔP ≤ 0− 2− 2 = −4
(0, 0, 1) �→ (1, 1, 0) (1, 1, 0) ΔP ≤ −2− 2− 0 = −4
(0, 0, 0) �→ (1, 1, 1) (0, 0, 0) ΔP ≤ −4− 4− 4 = −12

It follows that whenever the maximal non-trivial block size in B is at most three, the
block sequential threshold map may only have fixed points as limit cycles as claimed.

Block-size 4. For this case it is possible to construct systems with 2-cycles. Specifically,
let X be the graph displayed in Figure 2. Let the blocks be B1 = {0}, B2 = {1, 2, 3, 4}
and B3 = {5}. The state x obtained by assigning 0 to the even vertices and 1 to the odd
vertices is clearly periodic with period 2 for any permutation update sequence of B1,
B2 and B3.

0
1

2

3

4

5

Fig. 2. A graph where threshold finite dynamical system maps with block size 4 can have periodic
orbits of size ≥ 2

4 Summary and Open Questions

We note that extending the results above to the generalized threshold functions is non-
trivial and will require additional constraints on the matrix A, see [3].

Here we did not address the question of what is the maximal periodic orbit size when
the maximal non-trivial block size b falls in the range 4 ≤ b ≤ n− 1. It seems plausible
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that it is bounded by 2, but we have no proof for this at the moment. We close with this
as a conjecture and challenge the reader to settle it.

Conjecture 1. The periodic orbits of any block sequential threshold system have length
at most 2.
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