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Abstract. In the classical approach to the mathematical model specification, for 
space-time complex system, the usual framework is the Partial Difference-
Differential Equations system (PDEs). This approach is very hard from a 
mathematical point of view, and the search for the (PDEs) solutions, almost in 
the practical applications, often it is impossible. Our approach is based, on the 
contrary, on Cellular Automata methodology in the framework of Random 
Field models. The statistical model building methodology for the Random 
Fields, is based on very simple statistical and probabilistic reasoning that utilize 
the concept of divisible distributions and logistic non-linear model. The 
interaction rules for the Cellular Automata mechanism, are built thorough 
inferential statistics and data analysis. 

Keywords: Random Field, Cellular Automata, space-time interactions, 
statistical model building, non-linear modeling, Complex space-time Systems.  

1 Introduction 

The model building methodologies, can be divided in three philosophical approach: a) 
hypothetical-deductive approach (mechanic models), b) inductive approach (statistical 
models), c) mixture of the two previous approach (statistical-mechanic models). If the 
relationship between the phenomena are linear (Gaussian field), there are no 
substantial differences between the above approach. The differences begin substantial, 
when the relationship are non-linear. The aim of this work is showing that 
mathematical models,t hat describe non linear relationship between phenomena, can 
be built applying cellular automata methodology in the framework of Random Field 
(R.F.) theory. This approach is a mixture of the above listed approach, because it 
utilizes the mechanic and the statistical reasoning in different step of model building 
procedure. In the classical mathematical modeling of physical, economics and 
ecological phenomena, one of the most applied methodology, is the system of PDEs 
(Partial Differential Equations). Unfortunately, it is not simple to find solutions for a 
such system [8]. Moreover, even if a solution is available, difficulties arise in the 
statistical parameter estimation. To avoid this problem we introduce, in our work, the 
Cellular Automata (CA) methodology in the framework of R.F. representation of 
data. The goal is to estimate a mathematical model for the conditional mean of a 
generic phenomenon, indicated with Z (dependent variable), when other variables 
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(phenomena related to Z), are known. The variable Z is supposed related to other two 
phenomena, indicated with X and Y (the conditioning variables). All this phenomena 
are observed in the time, so the mathematical tools occurring in this case, are based on 
dynamic system theory. All the random systems belongs to the typology of complex 
systems such as the socio-economic, physical, climatic-environmental, and ecological 
systems. A complex system is constituted by a large set of sub-systems reciprocally 
related each other in a non-linear way. In the quantitative analysis of complex 
dynamical systems, the mathematical-statistic models, that are able to analyze the 
space-time statistical phenomena, are the random field models. The statistical 
reasoning is based on the average behaviour of the phenomena and, the results has to 
be considered as average values. This imply a loss of information on system dynamic 
and can compromises the forecast and control of the system. To avoid this difficulties 
we apply the conditioning methodology, thorough acquisition of further information  
to reduce the variability. Taking in mind these definitions, it is presented a 
methodological approach which integrates statistic modeling and 2-D cellular 
automata (CA) techniques.  

2 The Random Field Model  

We indicate with Z a dependent phenomena and with X the conditioning ones 
(independent variables), with (x,t) a point of the Cartesian space-time T⊗X , (X take 
values in a N-dimensional space). The random field Z(x,t) is a random function of two 
variables: space and time. To be more explicit, for each point (x,t), the value z(x,t) is a 
random number generated by the random variable Z(x,t), located to the space-time 
coordinate point (x,t). If such of all the Z variables of the field are statistically 
independents, the phenomenon shows a random patterns without hidden deterministic 
low. Such random field is purely stochastic (if the mean is zero, is the noise field) and 
is predictable only with the space-time statistical mean. Mathematically speaking, the 
equation of such a field is: 

 

( ) ( )Z x, t U x, tm= +  (1) 

    
The classic geo-statistical analysis of random fields Z(x,t) (Matheron, Journel, 
Cressie,), is based on the space-time Bravais-Pearson autocorrelation function. 
Unfortunately, this function captures only the linear relationship between the random 
variables Z(xi,ti), Z(xj,tj); i≠j; where, in the real world, a large part of the relationships 
between phenomena, are non-linear. In this work, we introduce a new statistical 
measure of space-time non-linear relationship between the variables (IOS index). In 
general, the random field, is a real valued function that maps the points of a sample 
space }{ , ,TΩ Χ , into the real space ℜ (X represents a N-dimensional vector) : 

  

}{( , ):Z x t TΩ⊗ ⊗ →ℜX  (2) 

The eq. (2) implies the existence of a family of probability distribution for Z(x,t) that 
can be derived from the relationship, between the random variables Z(x,t) on the field 
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as x and t varies. At first, we define the space-time statistical mean and variance of 
Z(x,t) as (without loss of generality, we assume the continuity): 
 

[ ( , )] ( , ) [ ( , )] ( , )) ( , )E Z x t Z x t P Z x t dZ x t x tμ
ℜ

= =  (3) 

The formula (3) says that the mean of a random field is a deterministic function of 
space and time. For what concern the variance, we have: 
 

{ }
{ }

2

2 2

[ ( , )] ( , ) [( ( , )]

( , ) [ ( , )] [ ( , )] ( , ) ( , )

V Z x t E Z x t E Z x t

Z x t E Z x t P Z x t dZ x t x tσ
ℜ

= − =

= − =
 (4) 

 
The formula (4) shows that, the variance, is a deterministic function of space and time 
(sometime, the eqs. 3 and 4 are called infinitesimal mean and infinitesimal variance of 
the field). The definition of bilinear operator Covariance is more complicated than 3 
and 4; we skip, now, its definition. The classical way to built the family of 
probability distributions for Z(x,t) is as solution of the (Feyneman-Kac equation): 

 
2( ) ( ) 1

( , ) ( , ) ( , ) ( ) ( , )
21 1 1

( )N N NP Z P Z
x t x t V x t P Z f x ti ijt x x xi i j

P Z

i i j
σμ∂ ∂ ∂+ + − =  ∂ ∂ ∂= = =

 (5) 

 
In that equation, V and f are given function, respectively: potential and forcing 
functions. If that functions are zero, the (5) begins the Chapman-Kolmogorov (or 
Fokker-Plank or Smulokovsky-Einstein) Partial Differential Equation (PDE). The 
meaning of (5) is a first order relationship over the time (Markov random field) is 
equal to the second order relationship over the space. The specification of μ(x,t) e 
σ(x,t) functions in eq. (5) determines the form of P[Z(x,t)] and then, the form of the 
random field Z(x,t). Appling the linear operator E to the left and right member of 
equation (5), under the hypothesis V=0 and f=0, we obtain the Langevin equation: 

 
( , ) ( , ) ( , ) ( , ) ( , )dZ x t x t Z x t x t W x t dtμ σ= +  (6) 

 
In that equation W(x,t) is a Wiener R.F. and to solve this stochastic differential 
equations, we have to specify the mathematical field μ(x,t) e σ(x,t), (it assumes to be 
deterministic functions). In our work, the family distribution P, instead, will be built 
without assumption on space-time relationship but only by statistical consideration on 
Bernoulli random field and on Poincarrè formula (Inclusion-Exclusion Theorem). 
Furthermore, we develop a measure of non-linear dependence between statistical 
phenomena, based on the concept of Correlation Integral for Random Fields (IOS- 
Structural Organitation Index). 
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3 Model Building  

We will consider a real phenomenon Z whose measure takes value in a numerical 
space Z and two real phenomena X and Y, whose measure takes value in two 
numerical bounded spaces, X and Y, without less of generality, we can consider (Z, X, 

Y) ∈ 3ℜ . We are searching for a non-linear function Ϝ that describe the relationship 
between the phenomenon Z and the phenomena X and Y. Moreover, Z is a random 
variable while X and Y are deterministic variables. If X and Y are stochastic, then Z is 
a quantum random field and P could be a family of quantum probability density 
functions [1], [10]. We indicate with D the space (X ⊗  Y) and we suppose it is 
continuous furthermore, for simplicity, the space, Z is a Boolean space. As a 
consequence, Z(x,y)=0 or Z(x,y)=1 with probability given by an unknown function π 
(Z/x,y). Assuming that, as of x and y varies, the random variables Z(x,y) are 
statistically independent and identically distributed (the event Z(x,y)=1, it can arise, 
with the same probability in anywhere) his probability is given as: 

( , )

[ / , ]

Z x y dxdy
xy D

Z x y
dxdy

xy D

π

∈=


∈

 (7) 

Under this hypothesis, the Field Z(x,y) is homogeneous and isotropic. As a 
consequence, the random variables Z, overall D, is a Bernoulli Random Field and 
their probability distribution is given by: P(Z)=πZ[1-π]1-Z. The probability π is 
constant in D and, as a consequence, P(Z) doesn’t depend by (x,y) coordinates. Then: 

:A∀ A D⊂  the field: 
 

( , )

( ) ( , )
x y A

N A Z x y dxdy
∈

=   (8) 

 
is a Poisson Random Field, in which: 

( )( )
( ( )) exp[ ( ) ( )]

( )!

N AA
P N A A A

N A

π π μ=  (9) 

 
Where μ(Α) is the area of A and π(A) is proportional to μ(Α) . It means that the mean 
number of events in a generic area of size μ(Α)  is given by the product measure: μ(Α) 
π(A). The probability π(A), as measure of A, is: 

( , )

[ ]

Z x y dxdy
xy D

A dxdy
dxdy xy A

xy D

π

∈= 

∈
∈

 (10) 

In this framework, the forecast of the number of events in a given region A, it depends 
only from the area of that region: the best predictor is the mean. Now we introduce 
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the hypothesis that there exists some relationship between the coordinates (x,y) and 
the variable Z. In this case, the form of π(Z/x,y) arises by the relationship between the 
natural logarithm of the odds and the coordinate (x,y); the odds are the ratios between 
the probability P(Z=1) and the probability P(Z=0). That is:  
 ( , )

( , )
( / , )

1

F x y

F x y

e
Z x y

e
π =

+
 from which: ( , )

( , )
( / , )

1

F x y

F x y

e
Z x y

e
π =

+
 (11) 

The Log-function of the odds, eq. (12), can be interpolated by a polynomial equation. 

 (12) 

The aij coefficients are estimated by the non Linear Least Square Method with 
numerical solution of the system of normal equations. A new model, showing a high 
explicative ability of the odds variability, is given by the generalization of Poincarrè’s 
formula in the logistic function (11). We briefly describe the general aspects of this 
method, which has been adopted in the framework, of exponential polynomial 
functions. We assume that the statistical variable Z is conditioned by two 
deterministic variables (X,Y). Appling assiomatic Kolmogorov rule for probability, we 
have: 

 

( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )
, / , [ , / ( , / ))]  

, /  , / ) [( , ) / ( , / )]

P Z x y X Y P Z x y X Z x y Y

P Z x y X P Z x y Y P Z x y X Z x y Y

= ∪ =

= + − ∩
 (13) 

We can get the conditional independence between P(Z(x,y)/X) and Z((x,y)/Y) with the 
spectral decomposition of the covariance matrix COV(X,Y). Under the conditional 
independence we have: P(Z/X∩ Z/Y)=P(Z/X)P(Z/Y), and then, we obtain: 

 
( ) ( ) ( ) ( )

( / , ) ( ) ( ) ( ) ( )
1

F X G Y F X G Y
e e e

P Z X Y F X G Y F X G Y
e e e

+
+ +

= +
+ + +

 
(14) 

4 Cellular Automata and Complex Systems  

We consider, as complex system, the R.F. Z(x,y,t) defined on a set of referenced cells 
(x,y) constituting a regular partition of a mathematical (or phisycal) space D. The CA 
works on the interaction among cells of D. The most common interaction contours are 
due to Von Neuman and to Moore and describes different sets of adjacent cells. In our 
work, we apply the first order Von Neumann CA contour (spatial influence), that can 
be formally given as: 

( , ) [(x, y Dy),  (x, y Dy),  (x Dx, y),  (x Dx, y)]Δ Δ = − + + −x y  (15) 

The contour of time coordinate is given by the sequence of time interval before the 
actual time t, having, the time, a direction from past to the future. 

( , )
ln( ) ( , )

1 ( , )
i j

ij
ij

x y
F x y a x y

x y

π
π

= =
− 
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Dt t 1, t 2, t h.;             h 0= − − … − >  (16) 

In the dynamical space-time systems, we can define some theoretical function 
connecting the cell-field Z(x,y,t) to its space-time contour (Δx,Δy,Δt): 

( ) ( )Z x, y, t F[ Z( x, y, t ),  Z( x, y, Dt),  x, y, t ]  ε= Δ Δ Δ Δ  
(17) 

The R.F. ε(x,y,t) is a planar Brownian Motion Process representing the random 
perturbations. 

The CA approach consists in the iteration map of function (17) on the space-time 
neighbour [(Δx,Δy), Δt] of the cell (x,y,t). It does not exists any theory or methodology 
to build the function F in the (4.3). As a consequence, we should build the function F 
by statistical analysis of data. The simplest function, for the dynamic of the space-
system Z, is the homogenous Markov process. The Markov dynamic claims that what 
happen at time t, depends linearly on what happened at time t-Δt. Formally: 

( ) ( )Z x, y, t f[Z(x, y, t Dt)] x, y, tε= − +  
(18) 

Iterating for a long number of time eq. (18), it is possible to describe the change of 
spatial configuration of Z(x,y,t) overall the area D, without searching for a solution of 
the stochastic PDE (eq. 5). To estimate the parameter φ of eq. 18, we use the initial 
condition Z(x,y,t0) and found the constant rate of growth that works for each cell and 
transforms the Z(x,y,t0) in Z(x,y,t0+Δt). From the eqn. 18: 

(t-t )
0( , , )  ( , ) ( , , )

0
Z x y t x y Z x y tφ=  

(19) 

Then: 

)) ln( ( , , ) / ( , , )]`0 0( , ) exp[(1/ ( Z x y t Z x y tx y t tφ = −  

(20) 

 
If the function ( , )x yφ  depends on t,(not-homogenous Markov R.F.) the (19) isn’t 

appropriate.  
To build the time behavior of ( , , )x y tφ  as t varies, now we apply the Time Series 

Analysis techniques of linearization (smoothing and differentiation together with the 
State-Space Akaike representation ) to get the markovianity. If ( , , )x y tφ is non-

linear we apply the Lotka-Volterra type models to capture the competition mechanism 
between the space-time cells. 

4.1 A Simple Statistical Analysis to Build Spatial Interaction Function 

In order to built the F function we develop a statistical methodology called, here, 
extreme discretization. In this frame, the dependence between the variable Z and the 
variables X and Y is expressed, as: 
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( | , ) ( )P Z z X x Y y P Z z= = = ≠ =  (21) 

In other words, the conditional probability of the random event (Z = z) is different 
from the unconditional one. The eqn. (4.7) must be valid for all the z, x and y values. 
It is necessary to know the probability distributions ( | , )P Z X Y  and ( )P Z  to verify eq. 

(21), but these are not known. Consequently, these probabilities, should be 
statistically estimated through relative frequencies of conditional and unconditional 
events for each Z=z value of the eq. (21), derived by empirical data. Instead of 
compare the probability distributions; we compare the conditional mean of Z with the 
unconditional one. In fact, if Z is dependent from X and Y, we have: 

( / , ) ( )E Z X Y E Z≠ and, as a consequence, is a function of X and Y: 

( / , ) ( , )E Z X Y F X Y=  (22) 

The conditional mean of Z is described by the eq. (22) and specified as function of X 
and Y. Thus, we build a new dichotomised random variable, φ - which is φ=0 when 
the eq. (22) is false and is φ=1 when it is true. This sentence has to be read from a 
statistical point of view, as test of hypothesis: ,Z X Y  (independence between Z, 

and (X, Y). 
We perform the statistical inference for unconditional mean of Z to set a threshold 

value of z in order to define when φ =1 or φ =0. In this framework, φ represents the 
values of Z which are statistical significance different from its unconditional mean, 
pointing out that differences are due to the effects, of X and Y on Z, revealing thus the 
effect of F(X,Y) (conditional mean of Z). We model, then, the field ϕ(X,Y) for each 
couple (X=x, Y=y), because we are interested to estimate the following probability; 

( )P  1 |  X x,  Y yφ = = =  (23) 

The probability expressed in eq. (23) as function of X and Y variables, we show that 
an universal model is the logistic one:  
 

( , ) ( , ) ( , ) ( , )
( 1| , )

( , ) ( , ) ( , ) ( , )1

F X X G Y Y F X X G Y Ye e e
P X Y

F X X G Y Y F X X G Y Ye e e
ϕ

Δ Δ Δ + Δ+ +
= = Δ Δ Δ + Δ+ + +

 (24) 

 
The F function have been derived from the PCA polynomial analysis (which was a 
representation of the product space (X,Y) as a discrete and finite Hilbert space).  

5 The Building of the Statistical Indicators IOS  

The statistic method used here is based on the Correlation Integral (CI) adapted to 
spatially extended systems. In the framework of our approach, the IOS gives 
information about the non-linear dependence in the spatial interactions of R.F. Z(x,y). 
The CI is given as: 
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1 1

2

[ ( , ) ( , ), ]

( , )
( )

N h N h

i j i j
i j

H Z x y Z x h y h r

C r h
N h

− −

= =

− − −
=

−

 
 

(25) 

where H(x,y,r) is the Heaviside function. As a consequence C(r,h) is a not-decreasing 
function of r and h, how it is possible to demonstrate by easy calculations.  

The area beneath the surface depends on the spatial relations between the Z(x,y) 
random variables in the different points of the fields, therefore it can be used as an 
indicator of structural homogeneity, because integrating the function C(h,r) between 
zero and max(r) we obtain an index which we named IOS. This index, from a 
theoretical point of view, is defined as: 

max( )
1

0

1 ( , )
r

IOS A C h r drdh−= −    (26) 

It is easy to show that: 0 1IOS≤ ≤ . The symbol A in the equation (26) represents the 
volume of the minimum parallelepiped containing the surface C(h,r). Therefore IOS 
will show low values for uniform random fields and high values for conditions 
characterized by large structural-weaving homogeneity.  

6 Conclusions  

The method, described in this work, has been applied for a study concerning 
environmental and ecological phenomena [5]. We believe that this approach can 
generalize the concept of statistical modeling based on nonlinear regression analysis. 
In fact, we introduce the local relation between the dependent and independent 
variables and the general model was born from this relationship, through the 
mechanism of cellular automata. In particular, we will consider a partition of Z into 
more than two intervals so as to be able to build models that follow the mechanical-
statistical reasoning. In this framework, we will introduce the hypothesis of 
asymmetry in the calculation of the joint probabilities and the hypothesis of stochastic 
nature for the independent variables to build quantum-statistical models.  
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