Synthesis of Reversible Asynchronous Cellular
Automata for Pattern Generation with Specific
Hamming Distance*

Sukanta Das'!, Anindita Sarkar!, and Biplab K. Sikdar?

! Department of Information Technology
sukanta@it.becs.ac.in, anindita.sarkar10@gmail.com
2 Department of Computer Science & Technology
Bengal Engineering & Science University, Shibpur, West Bengal, India, 711103
biplab@cs.becs.ac.in

Abstract. The reversibility issue of 1-dimensional asynchronous cellu-
lar automata (ACA) has been reported in [4]. The ACA rules are clas-
sified to synthesis reversible ACA. Characterization has been done to
explore the update patterns of cells forming the reversible ACA. This
work reports synthesis of reversible ACA for pattern generation, where
specific Hamming distance between two consecutive ACA states of a cy-
cle is maintained. A hardware realization of ACA is also reported that
can effectively be utilized in VLSI circuit design, testing of asynchronous
circuit, and Hamming code generation.

Keywords: Asynchronous cellular automata (ACA), reversibility, ACA
cycle, reversible ACA rules.

1 Introduction

The reversibility of (synchronous) cellular automata has been studied extensively
for years [1I215]. However, reversibility of asynchronous cellular automata (ACA)
is almost an unaddressed issue. A very few works on reversibility of 2-dimensional
ACA have been reported in the literature [3]. This scenario motivates us to
explore the issue for 1-dimensional two-state 3-neighborhood ACA in [4].

In ACA, the cells are updated independently. So, in a single step any number of
cells can be updated. Based on the updates of ACA cells, we define update pattern
for reversibility of ACA. A number of CA ‘rules’ [6] has been identified as the ir-
reversible rules that can not design reversible ACA for any set of update patterns.
On the other hand, the reversible rules can synthesize reversible ACA for some set
of update patterns. A scheme is developed to find an update pattern of ACA with
specific cycle. In this work, we report synthesis of reversible ACA having some cy-
cles for pattern generation, where two consecutive states maintain some specific
Hamming distance. A hardware realization of ACA is also reported that can effec-
tively be utilized in VLSI circuit design and testing of asynchronous circuit.

* This work is supported by AICTE Career Award fund (F.No. 1-
51/RID/CA/29/2009-10), awarded to Sukanta Das.

G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 643-B52] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

644 S. Das, A. Sarkar, and B.K. Sikdar

2 Cellular Automata

A cellular automaton (CA) is the discrete spatially-extended dynamical systems.
It evolves in discrete space and time. In its simplest form, as it is proposed by
Wolfram [6], CA consist of a lattice of cells, each of which stores a discrete
variable at time t that refers to the present state of the CA cell. The next state
of a cell in 1-dimensional two-state 3-neighborhood (self, left and right neighbors)
CAis S{T' = f(St_,, St St,,), where f is the next state function; S¢_;, S! and
St, . are the present states of the left neighbor, self and right neighbor of the ith
CA cell at t. The function f : {0,1}® — {0, 1} can be expressed as a look-up table
as shown in Table[ll The decimal equivalent of the 8 outputs (next state) is called
‘rule’ [6]. There are 28 (256) CA rules in two-state 3-neighborhood dependency.
Two such rules, 60 and 51 are shown in Table[Il From the view point of Switching
Theory, a combination of the present states (first row of Table[d]) can be viewed
as the Min Term of a 3-variable (S!_,,S!, S! ;) switching function. So, each
column of the first row of Table [[lis referred to as Rule Min Term (RMT).

The collection of states of all the cells (S}, S%,---,S%) at time ¢ is the state
of n-cell CA at t. If the left most and right most cells are the neighbors of each
other (that is, S§ = Sf, and Sf,_; = S?), then the CA are periodic boundary CA.
On the other hand, in null boundary CA, S§ = S, =0 (null).

Table 1. Look-up table for rule 60 and 51

Present state : 111 110 101 100 011 010 001 000 Rule

(RMT) — (7) (6) (5) (4) (3) (2) (1) (0)
(i) Next State: 0 0 1 1 1 1 0 0 60
(ii) Next State: 0 0 1 1 0 0 1 1 51

If all the cells of a CA update their states simultaneously, the CA is syn-
chronous. In asynchronous CA (ACA), the cells are updated independently and
any number of cells can be updated in a time step.

OO O O O O O O

Fig. 1. Partial state transition of rule 60 ACA. Cells updated are noted on the arrow

The next state of ACA depends not only on the cell rule, but also on the
cells that update their states at that time instant. We denote the set of cells
updated at t as us. Therefore, U = (uy,ug, -, us, -+ is the update pattern for
the ACA. If the ACA rule, U and an initial state are given, the state tran-
sitions of the ACA can be identified. A partial state transition diagram of 4-
cell rule 60 ACA with null boundary condition is shown in Fig. [l The set
U= ({2},{1,4},{2,4},{3},{2,4}, {3,4},{2}, - -) and initial state is 15.

ACA Pattern Generation 645

In ACA, a single state transition diagram may not cover all the CA states. A
set of update patterns can illustrate the transition of all the states.

3 The Reversibility of ACA

The state transition diagram classifies the CA states as cyclic and acyclic states.
If a CA state lies on a cycle in state transition diagram, the state is cyclic;
otherwise it is acyclic. The CA is reversible if all the CA states are cyclic. The
reversibility, in synchronous domain, guarantees that each CA state has unique
predecessor and successor.

Definition 1. For a set of update patterns, an ACA is reversible if each CA
state can uniquely be reached from the state itself. Otherwise, it is irreversible.

Fig. 2. 4-cell rule 60 reversible ACA in null boundary condition

Fig. @] depicts the state transition diagram of 4-cell null boundary reversible
ACA. The 8 update patterns (one for each cycle) are ({1}), ({2}, {4}, {2}, {4}),
{33, ({35, {3}), ({2}, {2}), ({4}, {4}), ({3}, {3}), and ({2}, {2}). The update

patterns cover all the 24 = 16 states of the ACA.

Definition 2. A CA rule R is an irreversible rule if there is at least a state
of ACA, designed with R, can never be cyclic for any update pattern. Otherwise,
R is a reversible rule.

For example, rule 77 (01001101) in null-boundary condition is an irreversible
rule. The all-0 state of rule 77 ACA is acyclic for all possible update patterns.
On the other hand, rule 60 is a reversible rule in null and periodic boundary
condition (Fig. 2]). The following theorem [4] characterizes the irreversible rules
in periodic boundary condition.

646 S. Das, A. Sarkar, and B.K. Sikdar

Table 2. Irreversible ACA rules in periodic boundary

0 2 4 6 8 10 12 14
16 20 24 28 64 66 68 70
72 74 76 78 80 84 88 92
141 143 157 159 173 175 189 191
197 199 205 207 213 215 221 223
229 231 237 239 245 247 253 255

Theorem 1. An ACA rule R is irreversible if and only if all-0 or all-1 state of
ACA, designed with R in periodic boundary condition, is acyclic for all possible
update patterns.

Corollary 1. [J] An ACA rule R is irreversible if (i) the RMTs 0, 2, 7, and
either RMT 3 or 6 of R are 1, or (ii) the RMTs 0, 5, 7, and either RMT 1 or
4 are 0, in periodic boundary condition.

There are (i) 24 rules where RMTs 0, 2, 7, and either RMT 3 or 6 are 1, and
(it) 24 rules where RMTs 0, 5, 7, and either RMT 1 or 4 are 0. The list of such
48 irreversible ACA rules are noted in Table 2l The rest 208 rules are reversible.
Each of these can design reversible ACA in periodic boundary condition for some
update patterns. The following theorem [4] characterizes the irreversible rules in
null boundary.

Theorem 2. An ACA rule R is irreversible if and only if all-0, all-1 or
10101 - - -1 state of ACA, designed with R in null boundary condition, is acyclic
for all possible update patterns.

Corollary 2. [JJ] An ACA rule R is irreversible if (i) the RMTs 0 and 2, and
either RMT 3 or 6 of R are 1, or (ii) the RMTs 0, 1, 3, 4, 5, 6 and 7 are 0,
or (iii) the RMTs 0 & 2 are 0, 5 & 7 are 1, and if RMT 1 s 0 or RMT 3 is 1,
then either RMT 4 is 0 or RMT 6 is 1 ACA in null boundary condition.

Therefore, in null boundary, there are (7) 48 irreversible ACA rules while RMTs
0, 2, and either 3 or 6 are 1, (i7) 2 irreversible ACA rules while RMTs 0, 1, 3,
4,5, 6 and 7 are 0, and (477) 9 irreversible ACA rules while RMTs 0 and 2 are
0, RMTs 5 and 7 are 1, and if RMT 1 is 0 or RMT 3 is 1, then either RMT 4 is
0 or RMT 6 is 1. All such (59) irreversible rules are listed in Table Bl The rest
197 rules are reversible in null boundary.

However, the reversibility of ACA depends not only on the rule, but also on
update patterns. For example, rule 60 ACA can be irreversible (Fig.[Il), as well
as reversible (Fig.[2)) depending on the update patterns. Since the ACA cells can
update independently, it can not be predicted in advance that ACA designed
with a reversible rule is reversible.

Theorem 3. [J]] It is impossible, in general, to synthesize reversible an 1-d
ACA.

The following section investigates the update patterns for the cycles of reversible

ACA.

ACA Pattern Generation 647

Table 3. Irreversible ACA rules in null boundary

0 4 13 15 29 31 45 47
61 63 69 71 77 79 85 87
93 95 101 103 109 111 117 119
125 127 141 143 157 159 160 168
170 173 175 189 191 197 199 205
207 213 215 221 223 224 229 231
232 234 237 239 240 245 247 248
250 253 255

4 Identifying Update Pattern for a Cycle

The reversible rules require different sets of update patterns for reversible ACA.
Even, for a particular reversible rule, different sets of update patterns can be
identified that result in reversible ACA. The following theorem [4] characterizes
the states forming a cycle of ACA.

Theorem 4. A sequence of | distinct n-bit CA states (S1,S52,--+,51) form a
cycle of length 1 > 2 if, Vi (1 <i < n), the it" bit of the CA states does not flip
or flips even number of times.

To get a cycle of the reversible ACA, an update pattern along with an initial
state is required. Since the states of a cycle of length [are to be distinct, the
update pattern should be designed in such a way that at least one bit of a state
flips to get the next state. Moreover, in any sub-sequence of states, the bits of
states are not to be flipped in even number of times (Theorem H). If they flip,
the [states can not be distinct.

Therefore, distinct states depend not only on the update pattern, but also on

the initial state. Because, the initial state may not allow an arbitrary cell of an
ACA to flip. Rule 51 (Table[I]) is the only rule that always allows a cell to flip
its state when updated. So, rule 51 ACA do not depend on the initial state to
form a cycle. The following rule is designed to generate an update pattern for a
cycle of length 2! (1 < i < n, n is the number of ACA cells) while updating a
single cell at a time.
To get a cycle of length 2° (1 < i < n) of rule 51 ACA, we form a sequence
of i cells, to be updated, arbitrarily. Then we start with an arbitrary state and
update (27-1)*" state by updating j* cell (1 < j < i) of the sequence. We
repeat the update of j'" cell after each 27 states, where j < i. The next step is
the update of it cell after 2~1 states to get a cycle of length 2.

Ezample 1. To design a full length cycle for 4-cell rule 51 ACA (length = 2%), all
the cells are to be updated in some sequence. Consider, the sequence of update is
SEQ = (1,2,3,4) and the initial state is 0100. Each j*" cell of SEQ is selected
for the first time to update (2771)*" state. Hence, to get the second state, the
first bit of the initial state ((2/71)*" state, where j = 1) is updated. Similarly,
the second, third and fourth cells are selected for the first time to update the

648 S. Das, A. Sarkar, and B.K. Sikdar

second, fourth and eighth states respectively. The first cell is again selected to
update third, fifth, and all odd states (that is, after each 27 states where j = 1).
After the first time update, the second and third cells are selected repeatedly
to update after every 22 and 23 states respectively. The last cell is updated for
the second time after 22 states (2°~! states where i = 4) to complete the cycle.
Therefore, the sequence of states in the cycle is (0100, 1100, 1000, 0000, 0010,
1010, 1110, 0110, 0111, 1111, 1011, 0011, 0001, 1001, 1101, 0101, 0100). The
update pattern is ({1}, {2}, {1}, {3}, {1}, {2}, {1}, {4}, {1}, {2}, {1}, {3}, {1},
{2}, {1}, {4}). Here, the update pattern is independent of the initial state, but
depends on SEQ (the update pattern and cycle of rule 51 ACA are same for
both the boundary conditions).

The cycles can also be formed by updating multiple cells simultaneously.

Theorem 5. Rule 51 ACA with n cells can form a cycle of maximum length
2n=mtLl ifm cells (1 < m < n) are updated simultaneously.

In such case, the same rule of single cell update to get a cycle can be followed
with an exception that each entry in the sequence of cells (SEQ in Example [I])
in a set of m cells.

Ezample 2. Let us consider, n = 4 and m = 2. To get an 8 length (2"~™*1)
cycle of the ACA, a sequence SEQ = ({1, 2}, {2, 3}, {3, 4}) of cells is formed
arbitrarily. Consider that the initial state is 0100. The first and second bits are
updated to generate the second state (1000). Similarly, the cells of second and
third entries of SEQ are selected to update the second and forth states. Like
Example [Tl the cells of first set ({1, 2}) are repeatedly selected to update the
odd states. The cells of second set ({2, 3}) are selected again to update the sixth
state. Therefore, a sequence (0100, 1000, 1110, 0010, 0001, 1101, 1011, 0111,
0100) of states is obtained and the update pattern is ({1, 2}, {2, 3}, {1, 2}, {3,

4, {1, 2}, {2, 3}, {1, 2}, {3, 4}).

The update rule, designed for rule 51 reversible ACA, guides us to develop
Algorithm 1 which finds the update pattern for a cycle of the reversible ACA.
It first forms a sequence of ¢ unique sets (arbitrarily). The sets are also designed
arbitrarily with m ACA cells per set. If no bit flips during the update of a set
of m cells, another set of m cells is searched so that at least one bit flips. While
2 states are covered but no cycle is formed, the algorithm attempts to form a
cycle with fewer states.

Algorithm 1. FindACACycle

Input: R (rule), n (# cells), 2¢ (cycle length, 1 < i < n), S (initial state), m
(# cells updated in each step)

Output: Update pattern with cycle length

Step 1: Form a sequence, SEQ of i unique sets of m ACA cells, arbitrarily.
Step 2: Load the ACA, designed with R, with S.

Step 3: For k = 1 to 2° repeat Step 4 to Step 9.

ACA Pattern Generation 649

Update Pattern Update pattern
of 51 123456 generated
v N
1,3 91 1 1&1 1,3
RMTs of Rule 123 L4 L1rotril L5
1,3 1&0&01 1,3
111 110 101 100 011 010 001 000 2,4 111101 2,4
M © 6 @ G @ 1) O 1.3 fof1o1 1.3
VN,
0 1 1 1 1 0o 1 1 1,4 90\]/10] 5,6
1,3 091310 1,3
2,4 101110 2,4
111010
SEQ = <(1, 3}, {1, 4}, {2, 4}> 111 019 4,6
&1 1111 2
191 111 1
001111 2
011111

Fig. 3. Generation of cycle for rule 123 ACA (m = 2)

Step 4: If k= 2771 (1 < j < 1), select the j** set of the SEQ.

If k = 2%, select the 7" set of SEQ.

If k=271 4+ px 2/ (pis a positive integer and 1 < j < 7) select j*" set.
Step 5: Update ACA cells of the selected set.
Step 6: 1f no cell flips during update, find a set of m cells so that

a) at least one cell flips, and b) the generated state is unique.

Otherwise, goto Step 9.
Step 7: If no such set is found in Step 6, goto Step 14.
Step 8: Update the ACA cells according to the set, designed in Step 6.
Step 9: Print the ACA cells that are updated to generate the next state of k.
Step 10: If no cycle is formed, identify the bits of 2¢ + 1 state which differ from
the initial state, S. Otherwise, go to Step 15.
Step 11: Update the ACA cells to flip the identified bits.
Step 12: If few cells flip, print those. Update the nearest cells of rest bits (one-
by-one or more than one at a time) so that the S is reached within few steps.
Step 13: If cycle is formed, goto Step 15.
Step 14: Print ‘Cycle is not possible’, and exit.
Step 15: Print the length of cycle and exit.

Ezample 3. Let us consider, R = 123, n = 6, cycle length = 8 (23), § = 011111
and m = 2. Formation of cycle following Algorithm 1 is shown in Fig. Bl Firstly,
a sequence of 3 sets SEQ = ({1, 3}, {1, 4}, {2, 4}) is formed arbitrarily (Step
1). The ACA is designed with rule 123 in null boundary condition. To get the
next state of 011111, the first and third cells are updated (Steps 4 and 5). In
Fig. Bl update pattern of rule 51 ACA is noted on the left side of the states, and
the update pattern generated for rule 123 is shown on the right side. To update
the second state (similarly sixth state), according to the update pattern of rule
51 ACA, the set {1, 4} is selected. Since no cell flips following RMTs of rule
123, another set {1, 5} is searched (Step 6). After generation of 8 states, cycle is

650 S. Das, A. Sarkar, and B.K. Sikdar

not formed. So, another 4 states are generated to form a cycle (Steps 10 — 12).
Therefore, length of cycle is 12.

We have experimented with different reversible rules. It is found that for a num-
ber of reversible rules, update pattern can be extracted utilizing Algorithm 1 to
get a full length cycle (by updating a single cell at a time). Few of such rules
are: 3, 19, 35, 83, 115, 131, 147, 163, 179, 211, 243.

5 Pattern Generation by ACA

The states generated by ACA can be considered as binary patterns. So, the ACA
can be treated as a pattern generator. If the ACA follow update pattern produced
by Algorithm 1, it can be predicted that a specific Hamming distance between
two consecutive patterns in the sequence of states is always maintained. Such
patterns can be utilized in various fields, like generating Hamming code, testing
VLSI circuits, etc. However, these applications demand hardware realization of
ACA, so that pattern generation can be fast and cost effective.

For hardware realization of ACA, a cell is to be implemented in hardware.
To do this, we need a combinational logic for implementing the next state logic
(rule), and a flip-flop to store present state of the cell. Such a cell is to be

1 QL QB Q; 1 Q4

Update
Pattern

Generator

oL N N N

Clk2 F1 — F2 F3 — F4 [

N

1l
90 [sy

d7 MUX [—

N

] 8X1 12
d7 | MUX

¥

8X1
MUX

shift
reg

(8 bit)

dz
e

Wl

T 8X1 14
MUX

d7
L

Fig. 4. The 4-cell ACA hardware

ACA Pattern Generation 651

T flip-flop T‘ >7 T flip-flop T flip-flop —| Tflip-flop

Clock

D F/IF o) DF/F o DQ DF/F o)
olpl olp2 olp3 op4

Fig. 5. Update pattern generator

placed into m positions to realize n-cell ACA. However, to optimize the space
requirement, we can use an 8-bit shift register to store the rule, and a multiplexer
(MUX) at each cell position to output state of the cell. Such implementation also
enables us to design ACA with any rule.

The detail hardware of a 4-cell ACA is shown in Fig. @l The rule is kept in
the shift register, D flip flops (F1, F2, F3 and F4) are used to store the states of
cells, an 8 x 1 MUX selects an RMT to get the next state, and Update Pattern
Generator generates update pattern for the ACA. The logic diagram of update
pattern generator is noted in Fig. Bl The generator is designed using T and D
flip-flops.

We have simulated the logic diagram (Fig. @l and Fig. B) of ACA in FPGA
(Field-Programmable Gate Array). Device utilization of such implementation of
4-cell and 16-cell ACA is reported in Table [l

Table 4. Device utilization of 4-cell and 16-cell ACA

cells Name of unit Unit Utilized Available Unit % of Utilization
Number of Slices 14 1920 0
Number of Slice Flip Flops 20 3840 0
4 Number of 4 input LUTs 25 3840 0
Number of 10s 8 - -
Number of bonded I0Bs 8 173 4
Number of GCLKs 2 8 25
Number of Slices 56 1920 2
16 Number of Slice Flip Flops 56 3840 1
Number of 4 input LUTs 108 3840 2
Number of 10s 20 - -
Number of bonded I0Bs 20 173 11

Number of GCLKs 2 8 25

652 S. Das, A. Sarkar, and B.K. Sikdar

6 Conclusion

We have addressed the reversibility of ACA in this paper. The CA rules are clas-
sified as reversible and irreversible. A reversible ACA may be synthesized with
a reversible rule if certain update pattern is followed. The ACA can be utilized
as an efficient pattern generator for various applications like VLSI circuit test-
ing, Hamming code generation, etc. The paper has finally proposed a hardware
realization of ACA, which can be utilized as a cost effective pattern generator.
However, a new research on the reversibility of ACA may be initiated considering
the random update of cells.

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of par-
allel maps for tesselation structures. Journal of Computer and System Sciences 6,
448-464 (1972)

2. Das, S., Sikdar, B.K.: Classification of CA Rules Targeting Synthesis of Reversible
Cellular Automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006.
LNCS, vol. 4173, pp. 68-77. Springer, Heidelberg (2006)

3. Lee, J., Peper, F., Adachi, S., Morita, K., Mashiko, S.: Reversible Computation in
Asynchronous Cellular Automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.)
UMC 2002. LNCS, vol. 2509, pp. 220-229. Springer, Heidelberg (2002)

4. Sarkar, A., Mukherjee, A., Das, S.: Reversibility in asynchronous cellular automata.
Accepted in Complex Systems (2012)

5. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. J. Comput. System Sci. 15, 213-231 (1977)

6. Wolfram, S.: Theory and applications of cellular automata. World Scientific, Singa-
pore (1986) ISBN 9971-50-124-4 pbk

	Synthesis of Reversible Asynchronous Cellular
Automata for Pattern Generation with Specific Hamming Distance
	Introduction
	Cellular Automata
	The Reversibility of ACA
	Identifying Update Pattern for a Cycle
	Pattern Generation by ACA
	Conclusion
	References

