
CASTREAM : A New Stream Cipher Suitable

for Both Hardware and Software

Sourav Das and Dipanwita Roy Chowdhury

Alcatel-Lucent India Ltd and Dept. of CSE, IIT, Kharagpur, India
sourav10101976@gmail.com, drc@cse.iitkgp.ernet.in

Abstract. A new Cellular Automata based stream cipher is proposed
which is suitable for both hardware and software. It has a non-linear
combiner where two non-linear blocks along with a linear block are lin-
early combined to produce the key-streams. Unlike Non-linear Feedback
Shift Register (NFSR) based non-linear combiners, it combines 128-bit
blocks using parallel evolution of Cellular Automata (CA) and small CA
based S-boxes. The usage of CA prevents the correlation attack and two
layers of re-usable small S-boxes prevent the algebraic attacks. The pro-
posed stream cipher takes 128 bits Key and 128 bits of Initial Vector(IV).
Theoretically, the cipher operates with an encryption speed of nearly 8
bits per cycle. The initialization process needs 96 cycles which is much
faster than Grain and Trivium. This stream cipher is extensible in terms
of Key size and provides configurable security and vendor specific im-
plementation option. On implementation, the proposed cipher receives
higher throughput than the existing standards.

Keywords: Stream Cipher, Security Properties, Cellular Automata,
S-box.

1 Introduction

Stream ciphers have gained a lot of attention in recent years and provide fast
encryption. In stream ciphers a key stream sequence is generated from a secret
key. The plain-text is simply XORed with the key stream to encrypt the message
at the encryption site. At the decryption site, the same key stream is generated
with the same secret key. The cipher-text is XORed with the key-stream to get
back the plain-text. The ESTREAM [13] project had been launched to search
for a good stream cipher that can provide advantage in performance over block
ciphers.

The ESTREAM project has divided the stream ciphers into two categories,
namely, software oriented stream ciphers that provide fast encryption in software
and hardware oriented stream ciphers that provide fast encryption with easy
hardware implementation. Traditionally, the hardware oriented stream ciphers
used LFSRs (Linear Feedback Shift Register) filtered with a non-linear function.
But such kind of stream ciphers have been subjected to correlation attacks [10],
[9], and algebraic attacks [4], [5]. Later, stream ciphers started using NFSRs,

G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 601–610, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

602 S. Das and D. Roy Chowdhury

which are LFSR with non-linear feedback. The NFSRs are linearly combined
to produce the key-streams. ESTREAM finalist Trivium [3] is an example of
such stream ciphers. The stream cipher Grain [8] uses a combination of linearly
filtered NFSR with a non-linearly filtered LFSR. Mickey [1] is another finalist in
ESTREAM hardware profiles, and it uses variable clocking method. The software
oriented stream ciphers, however, in general use block oriented state transitions
that help in efficient software implementation. Examples of such stream ciphers
are Rabbit [2], HC-128 [16] etc.

Cellular Automata (CA) generate statistically random sequences which are
necessary for stream ciphers. CA also provide parallel transformations that help
to achieve more throughput which is also essential for stream ciphers. The use of
Cellular Automata in stream ciphers was proposed first by Wolfram using Rule
30 [14], [15]. However, Meier and Staffelbach found weaknesses in that stream
cipher [11]. But, the weaknesses of these stream ciphers may not be because
of any inherent weaknesses of CA, since CA are just primitives that generate
statistically random sequences. The problem was the way CA were used in those
stream ciphers. If CA are used a bit differently in the construction of stream
ciphers, CA can still prove to be excellent primitive for stream ciphers.

In [7] and [6], it was shown how to generate highly non-linear S-boxes using
CA. These papers demonstrate CA can be effective cryptographic primitives.
These S-boxes can be used in a stream cipher to enhance the security. The
S-boxes are dynamically generated, scalable and secure with efficiency in im-
plementation. In this paper, the idea of S-box generation in [6] is extended to
generate the non-linear block of a stream cipher. The uniqueness of this non-
linear block is that it uses CA based small non-linear generators with CA based
mixing among the generators. The advantages of such a non-linear block are
higher throughput, scalability and statistically random output sequences. Using
two such non-linear blocks and a linear block of maximum length linear CA, a
stream cipher, CASTREAM, with 128 bits Key and 128 bits IV is designed in
this paper.

This paper is organized as follows. Section 2 describes the cipher along with
the initialization process. The security properties of the cipher is analyzed in
section 3. Section 4 provides the implementation aspects of the cipher which has
two subsections for hardware and software implementations.

2 Description of the Stream Cipher

The high level block diagram of the construction is shown in Figure 1. This
stream cipher has three 128 bits blocks of state which are linearly combined
to produce 128 bit key-stream in each round. Two of the three blocks perform
non-linear transitions and the third block performs linear transition which guar-
antees the period. The linear block is a 128-bit maximum length CA using rules
90/150. This CA run for sixteen cycles in each iteration. The non-linear parts
are designed using a series of dynamically generated CA based S-boxes. The
S-boxes are generated by using the principle of input governing the number of

CASTREAM : A New Stream Cipher 603

128

128

128

64

64 64

Left Non-linear
Block

Right Non-linear
Block

Linear Maximum
Length CA Block

Key Stream

128
128

64

Fig. 1. The Stream Cipher Block Diagram

cycles of a maximum length CA with a constant initial seed as shown in [7]. Each
non-linear block also has a 128-bit maximum length linear CA to achieve mixing
among the S-boxes with good statistical properties. Both the non-linear blocks
contain two non-linear layers with a maximum length linear CA sandwiched be-
tween them to achieve mixing. The linear CA in the non-linear block also run
for sixteen cycles. The non-linear layers contain a series of 4-bit, 5-bit and 6-bit
S-boxes. These S-boxes are mixed in such a way that they give rise to four 32-bit
blocks of S-boxes. Two different combinations of the small S-boxes are used to
form the thirty-two bits blocks. The first combination contains 5-bit, 4-bit, 5-bit,
4-bit, 5-bit, 4-bit and 5-bit S-boxes in order. The second combination contains
4-bit, 5-bit, 4-bit, 6-bit, 4-bit, 5-bit and 4-bit S-boxes in order. Each combination
is repeated four times to constitute the non-linear layer. In the left hand side
non-linear block, the first combination makes the first non-linear layer and the
second combination constitutes the second non-linear layer as shown in figure 2.
The right hand side non-linear block consists of the second combination in the
first non-linear layer and the first combination in the second non-linear layer as
shown in Figure 3.

Repetition of the
series three more

times

Repetition of the
series three more

times

5 X 5
S-box

4 X 4
S-box

128 Bits Maximum Length CA

4 X 4
S-box

5 X 5
S-box

4 X 4
S-box

5 X 5
S-box

5 X 5
S-box

4 X 4
S-box

4 X 4
S-box

6 X 6
S-box

4 X 4
S-box

5 X 5
S-box

4 X 4
S-box

5 X 5
S-box

Fig. 2. The Processing of Left Hand Side Non-linear Block

In each iteration, the linear block feedbacks to itself. The two non-linear blocks
send feedback to the other block as well as to itself as follows. Let us divide the
each 128 non-linear state bits into eight 16-bits blocks. Then these blocks are

604 S. Das and D. Roy Chowdhury

Repetition of the
series three more

times

Repetition of the
series three more

times

4 X 4
S-box

6 X 6
S-box

128 Bits Maximum Length CA

5 X 5
S-box

4 X 4
S-box

5 X 5
S-box

4 X 4
S-box

4 X 4
S-box

5 X 5
S-box

5 X 5
S-box

4 X 4
S-box

5 X 5
S-box

4 X 4
S-box

5 X 5
S-box

4 X 4
S-box

Fig. 3. The Processing of Right Hand Side Non-linear Block

permuted so that each alternate block is taken from the left and right hand side
non-linear blocks. If we denote the left state bits (L1 · · ·L128), the right state bits
as (R1 · · ·R128) and the linear state bits as (C1 · · ·C128), then after permutation
the left state bits become:

(L1 · · ·L16, R1⊕C1 · · ·R16⊕C16, L17 · · ·L32, · · · , L49 · · ·L64, R49⊕C49 · · ·R64⊕
C64).

Similarly, the right hand side state bits become:
(L65 · · ·L80, R65 ⊕ C65 · · ·R80 ⊕ C80, · · · , L113 · · ·L128, R113 ⊕ C113 · · ·R128 ⊕

C128).
The key stream is generated by XORing all the three blocks. The encryption

is performed after XORing the key stream with the plain-text. The decryption
is performed after XORing the key stream with the cipher-text.

2.1 Initialization

The initialization of the cipher uses the same method as the key stream gener-
ation. On the left hand side non-linear block, the Key bits are loaded into the
state registers. On the right hand side non-linear block, the IV bits are loaded.
For the linear side, XOR of Key and IV bits are loaded. After loading the Key
and the IV bits, the cipher is iterated six times without generating any key
stream. While initializing, the only difference from the key stream generation is
that the linear block is fed from the XOR output of the internal states. Also,
after the Key and the IV are loaded, the last bit in the linear CA is always

Left Non-linear
Block

Right Non-linear
Block

Linear Maximum
Length CA Block

Key IV KEY
IV

Fig. 4. The Cipher Initialization

CASTREAM : A New Stream Cipher 605

kept at logic one during initialization. The key-streams are taken out from the
seventh iteration. The initialization process is shown in Figure 4.

2.2 Parameterizations

The parameterizations of the cipher help different vendors implement the cipher
in a different way. A different parameter value will result in a different key-
stream sequence even with the same Key-IV pairs in the following way. Each of
the S-boxes takes the seed as a parameter. There are four 128-bits layers of S-
boxes in the non-linear blocks. Each layer takes a parameter of 128 bits. Hence,
the total size of the parameter is 128 × 4 = 512 bits. However, care should be
taken that none of the S-boxes is parameterized with all zeros. To make the
parameterizations simple, every fourth bit of the 128-bits parameter is made to
logic one. This makes the user parameter size as 96× 4 = 384.

3 Security Analysis

In this section, we provide security analysis of the cipher.

3.1 An Analysis of the Cipher

Let, fNL, fL denote the non-linear function of the S-boxes and linear function
of maximum length CA, respectively. Also, let Ki, and IVi denote the i-th,
(i ∈ (1 · · · 128)), bit of the key and the initial value. Li,j, Ri,j and Ci,j denote
the i-th, (i ∈ (1 · · · 128)), bit of the the state bits of left hand side non-linear
block, right hand side non-linear block and linear CA block, respectively, during
some iteration j. For clarity we analyze the evolution of first bit (i=1) for all
the blocks below. The evolution of other bits can easily be extended from this
analysis.

The Evolution of the First Bit of All the Blocks. The equation for the left
hand side non-linear block after the first S-box layer transformation (denoting
it as LS1i,j) is, since the first S-box transforms five bits:

LS11,j = fNL(L1,j, L2,j, L3,j , L4,j, L5,j) (1)

After the linear transformation (denoting the bits as LC1i,j), the equation for
the first bit becomes, since after sixteen cycles each bit in the CA will depend
on itself, 16 more bits from left and 16 more bits from right:

LC11,j = fL(LS11,j, · · · , LS117,j) (2)

Expanding, as LS117,j is the part of 4× 4 S-box,

LC11,j = fL(fNL(L1,j, · · · , L5,j), · · · , fNL(L15,j , · · · , L18,j)) (3)

606 S. Das and D. Roy Chowdhury

Then occurs the second layer of S-box substitution. If LS2i,j denotes the output
of this layer, then the expression for the first bit is:

LS21,j = fNL(LC11,j, · · · , LC14,j) (4)

Expanding, since LC14,j will depend on sixteen bits from right side and will also
be affected by all the bits in the left hand side,

LS21,j = fNL(fL(LS11,j, · · · , LS117,j), · · · , fL(LS11,j, · · · , LS120,j)) (5)

Expanding, since LS120,j depends on L19,j , · · · , L23,j

LS21,j = fNL(fL(fNL(L1,j, · · ·), · · · , fNL(· · · , L23,j)), · · ·) (6)

Note that, LS2i,j is nothing but L1,j+1. Also, L17,j · · · L23,j are R1,j ⊕ C1,j

· · ·R7,j ⊕ C7,j due to the swap of bits at the end of every round. Hence, we
can write, denoting FNLL as the transformation function of the left hand side
non-linear block (which is the right hand side of the equation 6):

L1,j+1 = FNLL(L1,j , · · · , L16,j , R1,j, · · · , R7,j, C1,j · · ·C7,j) (7)

In a similar manner, we can show that in the right hand side also, the expression
for the first bit is:

R1,j+1 = FNLR(L65,j, · · · , L80,j, R65,j , · · · , R71,j , C65,j , · · ·C71,j) (8)

where, FNLR is the transformation function of the right hand side, which is
similar to the expression in equation 6, but the functions are applied in the
reverse order.

Then, it is easy to derive the equation for the first bit of the linear CA block,
which is, since this block runs for 16 cycles:

C1,j+1 = fL(C1,j , · · · , C17,j) (9)

Finally, the equation for the first bit of the 128 block of key stream is:

KSi,j+1 = L1,j+1 ⊕R1,j+1 ⊕ C1,j+1 (10)

where, L1,j+1, R1,j+1, C1,j+1 are as in equations 7, 8 and 9.

Expression for other Bits. Since the non-linear blocks use asymmetric S-box
transformation, the expression of each bit will be different. Hence, it is difficult
to write generalized expression for all the 128 bits. If we simplify the S-boxes to
have only uniform 4-bits S-boxes, then we can make an attempt. In that case,
the first bit is affected by four bit tuple it belongs to and another four 4-bits
tuples from immediate right. It can be also be shown that another four 4-bits
tuple affect each state bit from the left for the bit numbers i ∈ (17 · · · 128) for
both left hand side and the right hand side non-linear blocks. So, we can write a

CASTREAM : A New Stream Cipher 607

generic expression for any non-linear next state bit in the simplified non-linear
block, Xi,j+1 in terms of the previous state bits Xi,j , where i denotes the i-th
state bit (i ∈ (33 · · · 96)) and j denotes the iteration number.

Xi,j+1 = F (Xi−(16+(imod4)),j , · · · , Xi+20−(imod4),j) (11)

where, F denotes the transformation function of the non-linear block. Hence,
each state bit will depend on at least 36 bits from the previous state.

For the linear state bits the corresponding equation is:

Ci,j+1 = fL(Ci−16,j , · · · , Ci+16,j) (12)

Key and IV Mixing During Initialization. We show now that each state
bit after initialization depends on all the Key and the IV bits. We divide the left
hand side non-linear block and the right hand side non-linear block into eight
sixteen bits blocks. Let us denote them L1, L2, L3, L4, L5, L6, L7, L8 for the left
hand side non-linear block and R1, R2, R3, R4, R5, R6, R7, R8 for the right hand
side non-linear block. We use the following facts.

1. After sixteen cycles in the linear CA of the non-linear block, every bit in
the each sixteen bit block depends on all the bits in that block.

2. After both the S-box transformations and linear CA transformation running
for sixteen cycles, all the bits from the immediate neighboring blocks affect at
least one bit in the current block. In addition, a few bits from neighbor’s neighbor
block affect at least one bit in the current block.

We also simplify the analysis by ignoring the XOR from the linear block.
However, due to this XOR, if we prove that after the initialization the right
block affects all the bits in the left block, then, it will automatically imply that
the linear block also affects all the state bits in the non-linear blocks. Also, due
to the XOR feedback to the linear block, the proof will also imply that the linear
block is also affected by all the state bits.

Now let us see how the permutation at the end of the round takes place for
different rounds during initialization.

Round 1: L1, L2, L3, L4, L5, L6, L7, L8, R1, R2, R3, R4, R5, R6, R7, R8

Round 2: L1, R1, L2, R2, L3, R3, L4, R4, L5, R5, L6, R6, L7, R7, L8, R8

Round 3: L1, L5, R1, R5, L2, L6, R2, R6, L3, L7, R3, R7, L4, L8, R4, R8

Round 4: L1, L3, L5, L7, R1, R3, R5, R7, L2, L4, L6, L8, R2, R4, R6, R8

Round 5: L1, L2, L3, L4, L5, L6, L7, L8, R1, R2, R3, R4, R5, R6, R7, R8

Now, if we start backtracking from round 5 for each of the blocks, we can
easily see that all sixteen blocks have affected each of the block. We show this
for the first block below.

After Round 1, the block L1 is affected by all the bits in the block L2 (plus
some more bits from L3, which we ignore for this example). At Round 2, L1

is affected by R1. But R1 is already affected by all the bits in R2 in Round 1.
Hence, after Round 2, L1 depends on L2, R1, R2.

At Round 3, L1, depends on all the bits from L5. But, in Round 2 L5 depends
on all the bits from R5. In Round 1, L5 depends on all the bits of L4 and L6.

608 S. Das and D. Roy Chowdhury

Again, in Round 1 R5 depends on all the bits of R4 and R6. Hence, at the end
of Round 3, L1 depends on L2, L4, L5, L6, R1, R2, R4, R5, R6.

At Round 4, L1, depends on all the bits from L3. But, in Round 3 L3 de-
pends on all the bits from L7 which depends on L6 and L8 at the first round
itself. In Round 2, L7 depends on R6 and R7. In Round 1, R7 depends on R6

and R8. Again, in round 2 L3, depends on R2 and R3. Hence, at Round 4, L1

depends on all the sixteen 16-bits blocks, namely, L1, L2, L3, L4, L5, L6, L7, L8,
R1, R2, R3, R4, R5, R6, R7, R8.

In a similar manner, it can be shown that all other blocks are affected by
rest of the blocks after four round of initialization. Before the Round 1 all the
blocks are initialized with the Key bits and IV bits. Hence, after four rounds of
initialization, all state bits are affected by all the key bits and the IV bits.

3.2 Statistical Tests

The output of the stream cipher was evaluated for statistical randomness using
NIST [12] statistical test tool. This test tool contains sixteen statistical tests
to evaluate a random number generator. We generated 128 million bits of key
streams and used the tool for the evaluation with 10 bitstreams of size 12.8
million each. The following Key and IV pairs are used:
Key : 0xFEDCBA98765432100123456789ABCDEF
IV : 0x0123456789ABCDEFFEDCBA9876543210.
The default parameters of the tools were used except for the block length of
Approximate Entropy where the block length used was 4. With these inputs,
the tool performed a number of statistical tests out of which 15 tests failed and
1829 tests passed. Table 1 shows the result of the statistical tests with the first
bit stream. p− value > 0.01 implies that the tests are passed.

Table 1. Statistical Tests Summary

Test p-val Test p-val

Frequency 0.032 Longest Run 0.782

Block Freq 0.726 Non-overlapping Template 0.369

Runs 0.789 Overlapping Template 0.356

Rank 0.564 Random Excur 0.065

FFT 0.664 Random Excur Var 0.548

Universal 0.747 Approx Entropy 0.247

Serial 0.560 Lin Complexity 0.513

CuSums 0.062 CuSums(Reverse) 0.050

4 Implementation and Performance

In this section we provide the architecture for hardware implementation along
with the software implementation.

CASTREAM : A New Stream Cipher 609

4.1 Hardware Implementation

The hardware architecture of the key stream generation algorithm of the pro-
posed cipher is shown in Figure 5. The hardware layout is made same as the
structure of the cipher. The S-boxes are implemented by using ROMs. The CA
are implemented using combinational logic. There is a 128 bit flip-flop layer in
each part of the state that perform the sequential part of the CA of running
sixteen cycles. The flip-flops in the non-linear layer takes the input from the first
S-box layer on Reset and from the output of the CA combinational circuit at
each cycle. The output of the CA combinational part is sent to the second S-box
layer whose output is connected to a three input XOR layer. The XOR output is
fed to the Key Stream flip-flops. After running sixteen cycles, a counter enables
the Key Stream flip-flops where the key-stream can be extracted. The state flip-
flops are Reset again with the wire permutation of the their contents at the end
of sixteen cycles. The linear block also consists of a series of flip-flops with CA
combinational logic. The CA in the linear block always take their inputs from
the outputs of the CA combinational logic.

A Series of ROM
for S-boxes

A Series of ROM
for S-boxes

A Series of ROM
for S-boxes

A Series of ROM
for S-boxes

128 Bit CA 128 Bit CA

128 Bit Flip-Flop 128 Bit Flip-Flop

128 Bit CA

128 Bit Flip-Flop

 XOR

128 Bit Flip-Flop for Key Stream

Clock and Counter

Fig. 5. The Hardware Architecture

The above circuit was implemented using Xilinx 7.i synthesis tool. The speed
was 183 MHz and the number of slices required was 1196. Since, at each iteration
it provides a key stream block of 128 bits, the throughput is 183× 128 = 23.4
GBPS, which is very high and better than all the ESTREAM candidates. The
throughput to area ratio is 19.4 which is again higher than all the existing stream
ciphers. On post place and route (PPR) results, the area required was more and
the speed was less than the synthesis results.

5 Conclusion

In this paper, a new stream cipher is proposed based on Cellular Automata (CA).
The cipher is secure and suitable for both hardware and software. It operates at

610 S. Das and D. Roy Chowdhury

a good speed. The cipher can be used both in small and large devices. It is also
extensible to a higher key size.

References

1. Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0.,
http://www.ecrypt.eu.org/stream/mickeyp3.html

2. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: A New High-Performance Stream Cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

3. De Canniere, C., Preneel, B.: Trivium Specification,
http://www.ecrypt.eu.org/stream/triviump3.html

4. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

5. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

6. Das, S., Roy Chowdhury, D.: An Efficient, Parameterized and Scalable S-box
for Stream Ciphers. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS,
vol. 6584, pp. 77–94. Springer, Heidelberg (2011)

7. Das, S., Roy Chowdhury, D.: Generating Cryptographically Suitable Non-linear
Maximum Length Cellular Automata. In: Bandini, S., Manzoni, S., Umeo, H.,
Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 241–250. Springer, Heidelberg
(2010)

8. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained
Environments,
http://www.ecrypt.eu.org/stream/Grainp3.html

9. Johansson, T., Jönsson, F.: Improved Fast Correlation Attacks on Stream Ciphers
via Convolutional Codes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 347–362. Springer, Heidelberg (1999)

10. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Stream Ciphers. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer,
Heidelberg (1988)

11. Meier, W., Staffelbach, O.: Analysis of Pseudo Random Sequences Generated by
Cellular Automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 186–199. Springer, Heidelberg (1991)

12. NIST Statistical Test Suit, http://csrc.nist.gov/rng/
13. The Estream Project, http://www.ecrypt.eu.org/stream/
14. Wolfram, S.: Random Sequence Generation by Cellular Automata. Advances in

Applied Mathematics 7, 123 (1986)
15. Wolfram, S.: Cryptography with Cellular Automata. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)
16. Wu, H.: The Stream Cipher HC-128,

http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

http://www.ecrypt.eu.org/stream/mickeyp3.html
http://www.ecrypt.eu.org/stream/triviump3.html
http://www.ecrypt.eu.org/stream/Grainp3.html
http://csrc.nist.gov/rng/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

	CASTREAM: A New Stream Cipher Suitablefor Both Hardware and Software
	Introduction
	Description of the Stream Cipher
	Initialization
	Parameterizations

	Security Analysis
	An Analysis of the Cipher
	Statistical Tests

	Implementation and Performance
	Hardware Implementation

	Conclusion
	References

