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Abstract. The paper characterizes a special class of Cellular Automa-
ton (CA) called Two Predecessor Single Attractor CA (TPSA-CA). We
show that the transition graphs of the TPSA-CA can be used to realize
pseudo-random regular graphs with good expansion properties. The ele-
gance of the scheme lies in the fact that the storage required to capture
the graph is O(logN), where N is the total number of vertices in the
graph.
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1 Introduction

Expander Graphs have been a significant tool both in theory and practice. It
has been used in solving problems in communication and construction of error
correcting codes as well as a tool for proving results in number theory and
computational complexity. The combinatorial properties of the expander graphs
can also lead to the construction of one-way functions [1] and hash functions [2]
for cryptography.

The present work characterizes a special class of Cellular Automata (CA) [3],
known as the Two Predecessor Single Attractor Cellular Automata (TPSA-CA).
Next the work shows that the transition graphs generated by the TPSA-CA can
be composed to realize pseudo-random regular graphs with expansion properties.
Informally, a pseudo-random graph G = (V,E) is a graph that behaves like a
truly random graph. The paper shows that the CA based transition graphs
have uniform edge distributions, if the graveyard states are chosen uniformly
and independently. We provide both theoretical and experimental evidence to
show that the pseudo-randomness of the generated graphs can be utilized to
demonstrate good expansion properties. The elegance in the scheme lies in the
fact that the storage required for the generation of the graphs is O(logN), where
N is the number of vertices in the graph.

The outline of the paper is as follows: Section 2 describes some of the pre-
liminaries of expander graphs. The TPSA-CA is characterized in section 3 and
the state transitions of the machine is employed to generate pseudo-random reg-
ular graphs. In section 4 we present experimental evidence of the expansion
properties of the generated graphs. The work is concluded in section 5.
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2 Preliminaries on Expander Graphs

Informally expander graphs are a class of graphs G = (V,E) in which every
subset S of vertices expands quickly, in the sense that it is connected to many
vertices in the set S of complementary vertices. It may be noted that the graph
may have self loops and multiple edges. The following definition states formally
the expansion property of these class of graphs [4].

Definition 1. The edge boundary of a set S ∈ G, denoted δ(S) is δ(S) =
E(S, S) is the set of outgoing edges from S. The expansion parameter of G
is defined as:

h(G) = minS:|S|≤N/2
|δ(S)|
|S|

where |S| denotes the size of a set S and N is the total number of vertices in the
graph.

There are other notions of expansion, the most popular being counting the num-
ber of neighbouring vertices of any small set, rather than the number of outgoing
edges.

Random graphs have been utilized to develop expander graphs. A random
graphG(N, p) is a probability distribution of all the labeled graphs on N -vertices
where for each pair 1 ≤ i, j �= N , (i, j) is an edge of G(N, p) with probability
p = p(N), independently of any other edges.

Although d-regular random graphs on N vertices define an expander, for real
life applications it is necessary to have more explicit constructions on O(2n)
vertices, where n is the parameter defining the problem size. This is because to
store a description of a random graph on so many vertices requires exponential
time and space. Two well known constructions are found in [5,6,7].

The properties of the eigenvalue spectrum of the adjacency matrix A(G) can
also be used to understand properties of the graph G.

The adjacency matrix of a graph G, denoted by A(G) is an n × n matrix
such that each element (u, v) denotes the number of edges in G between vertex u
and vertex v[4]. For a d-regular graph, the sum of each row and column in A(G) is
d. By definition the matrix A(G) is symmetric and therefore has an orthonormal
base v0, v1, . . . , vn−1, with eigenvalues μ0, μ1, . . . , μn−1 such that for all i we
have Avi = μivi. Without loss of generality we assume the eigenvalues sorted
in descending order μ0 ≥ μ1 ≥ . . . ≥ μn−1. The eigenvalues of A(G) are called
the spectrum of G. The following two results are important in estimating the
expansion properties of the graph.

1. μ0 = d
2. d−μ1

2 ≤ h(G) ≤ √
2d(d− μ1)

Thus, the parameter d−μ1, also known as the Spectral Gap gives a good estimate
on the expansion of the graph G. The graph is an expander if the spectral gap
has a lower bound ε′ such that d− μ1 > ε′.
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A graph G1 has better expansion properties than graph G2, implies that for
any subset S, |S| ≤ n/2 of the graph G1 has a larger number of neighbour-
ing elements outside the set S, compared to that in G2. Mathematically, the
value of h(G1) > h(G2). Informally, it implies that the graph G1 expands faster
compared to graph G2. A random regular graph has good expansion properties.
However the problem of realizing such a graph is in its description which grows
exponentially with the number of vertices.

For the proposed construction of expander graphs, we use graphs which are
parameterized by a shorter seed. These pseudo-random graphs, posses properties
like edge-density, identical to random graphs, if the seed is generated by a pseudo-
random generator.

In the next section we present the construction of random d regular graph
using the properties of a special class of CA, known as the Two Predecessor
Single Attractor Cellular Automaton (TPSA CA). The transition graphs of the
CA is at the heart of the proposed construction.

3 Expander Graphs Using TPSA CA

TPSA CA are a special class of non-group CA in which the state transition
graph forms a single inverted binary routed tree at all zero state (Fig. 1). Every
reachable state in the state transition graph has exactly two predecessors. The
only cyclic state is the all zero state (for a non-complemented TPSA CA), which
is an attractor (or graveyard). If Tn is the characteristic matrix of an n cell
automaton then the necessary and sufficient conditions to be satisfied by the
Transition matrix for the CA to be TPSA CA are[3]:

1. Rank(Tn)=n− 1
2. Rank(Tn ⊕ In)=n, In being an n × n identity matrix
3. Characteristic Polynomial = xn

4. Minimal Polynomial = xn

The following results [3] characterize the state transition of the non-complemented
TPSA CA.

Lemma 1. [3] For an n cell TPSA CA with characteristic polynomial xn and
minimal polynomial xn, (i) the number of attractors is 1, the all zero state, (ii)
the number of states in the tree is 2n.

Lemma 2. For an n cell TPSA CA having m(x) = xn the depth of the tree is
n.

Next, we develop a method to recursively synthesize an n cell TPSA. The state
transition matrix of the n cell TPSA is denoted by Tn and is generated from an
n − 1 cell TPSA CA characterized by the matrix Tn−1. The following theorem
describes the property exploited in the construction.

Theorem 1. Given that Tn−1 is the characteristic matrix of an (n − 1) cell
TPSA, the matrix Tn denoted by:
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Tn =

⎛

⎜
⎜⎜
⎜
⎝

| 0

Tn−1 | ...
| 0

− − − − − −
0 . . . 0 1 | 0

⎞

⎟
⎟⎟
⎟
⎠

represents the characteristic matrix of an n cell TPSA.

Proof. We prove the result using mathematical induction. Let us assume that
the theorem holds for n−1. We have to prove that the result holds true for n cell
as well. Thus, Tn−1 represents the characteristic matrix of an (n− 1) cell TPSA
CA. Thus, the four properties which Tn−1 satisfy are: i) Rank(Tn−1)=n− 2, ii)
Rank(Tn−1 ⊕ In−1)=n − 1, In−1 being an n − 1 × n − 1 identity matrix, iii)
Characteristic Polynomial = xn−1, iv) Minimal Polynomial = xn−1.

It is evident that since the element at the nth row and (n− 1)th column is 1
and by the construction methodology all the other rows have 0 in the (n− 1)th

columns the row added is linearly independent from the other rows of Tn. Hence
it adds by 1 to the rank of Tn−1. Thus, rank(Tn) = rank(Tn−1)+1 = n−2+1 =
n− 1.

Similarly, using the fact that rank(Tn−1 ⊕ In−1) = n − 1 (where In−1 is the
identity matrix of order n− 1), we have rank(Tn ⊕ In) = n. The characteristic
polynomial of the matrix Tn, denoted by φn(x) is evaluated as det(Tn ⊕ xIn),
where det denotes the determinant. Thus we have,
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Fig. 1. The state transition graph of a non-complemented TPSA CA
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φn(x) = det

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

| 0
| 0

| ...
Tn−1 ⊕ xIn−1 | 0

| ...
| 0
| 0

− − − − − −
0 . . . 0 1 | x

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

= xφn−1(x), (φn−1(x) denotes

the characteristic polynomial of Tn−1)

= x.xn−1 = xn

In order to evaluate the minimal polynomial we make use of the following
proposition.

Lemma 3. Let φn(x) and ψn(x) be the characteristic polynomial and the min-
imal polynomial of the matrix Tn, respectively. Let the greatest common divisor
(gcd) of the matrix (Tn ⊕ Inx)

∨ that is the matrix of algebraic complements of
the elements of the matrix (Tn ⊕ Inx) be d(x). Then, φn(x) = d(x)ψn(x).

From the matrix (Tn⊕Inx)∨ it may be observed that the element at the position
(0, n) is 1 and thus the gcd d(x) is also 1. Thus the minimal polynomial is equal to
the characteristic polynomial which is xn. Thus, we observe that the construction
follows all the four necessary and sufficient requirements of a TPSA CA. This
completes the proof.

We have seen above that the state transition in the above class of TPSA CA is
governed solely by the characteristic matrix. This class of CA is known as the
non-complemented TPSA CA. On the contrary when the next state is obtained
by the application of the characteristic matrix and then xoring with a vector F ,
the CA is known as the complemented TPSA CA.

The following results show how complementing the state transition function
of the non-complemented CA generates a class of automaton with the same
properties as the original TPSA CA.

Lemma 4. Corresponding to a non-complemented TPSA CAM1 and a state Z,
there exists a complemented CA M2 with state Z as an attractor. If the charac-
teristic matrix M1 be indicated by Tn and it is required to build a complemented
TPSA CA such that Z is the graveyard (attractor) then the characteristic matrix
of the complemented CA, Tn is related to Tn by

Tn(X) = Tn(X)⊕ (In ⊕ Tn)Z

where X is the seed to the CA and In is the identity matrix of order n.
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Lemma 5. A complemented TPSA CA has the same structure as a non-
complemented TPSA CA. To emphasize

– Number of attractors in the complemented CA is the same as that in the
original non-complemented CA.

– Number of reachable states and non-reachable states are same as that in the
original non-complemented CA.

Lemma 6. If any state Z in the non-reachable world of a non-complemented
CA is made the graveyard in a complemented TPSA, then the non-reachable
elements become elements of the reachable world in the complemented CA and
viceversa. Thus the non-reachable world (W1) and the reachable world (W2)
exchange themselves (Fig. 2).

Proof. LetX andZ be two non-reachable elements in the n cell non-complemented
CA with characteristic matrix Tn. Let X be the lth level sister of Z. In all cases
l < n. Thus, we have:

T l
n(X) = T l

n(Z)

Let us consider the state transition diagram of the complemented CA with Z as
the graveyard. The state transition of the complemented CA is indicated by T n.
We shall prove that in this state transition graph X is a reachable state. Let,
the depth of X in the graph of the complemented CA be t. If t is less than n
then X is a reachable state. Since, Z is the graveyard of this graph we have:

T
t

n(X) = Z

T t
n(X)⊕ (In ⊕ T t

n)Z = Z

T t
n(X) = T t

n(Z)

Thus, X and Z are tth level sisters in the state transition graph of the non-
complemented CA. But we know that they are lth level sisters. Thus t = l < n.
Thus, the depth of X is lesser than n and hence X is a reachable state in the
state transition graph of the complemented CA.

Lemma 7. If the state Z is chosen independently as the graveyard in a comple-
mented TPSA from a uniform distribution, then the state transition graph is a
pseudo-random graph.

Proof. Given any input state X , the output Y is governed by the equation:
Y = Tn(X) = Tn(X)⊕ (In ⊕ Tn)Z.

Now, since Z is chosen independently and randomly from a uniform distribu-
tion, the probability that Z equals a particular Z1 is given by Pr[Z = Z1] =

1
2n .

Here n is the size of the TPSA CA.
Let, when Z1 is the graveyard, the next state of a state X1 is say Y1. Thus,

Y1 = Tn(X1)⊕ (In ⊕ Tn)Z1. We compute the probability that for any arbitrary
graveyard, Z, the next state of X1 is Y1. That is we compute:
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Fig. 2. The exchange of the worlds in a complemented TPSA CA

Pr[Tn(X1) = Y1] = Pr[Tn(X1)⊕ (In ⊕ Tn)Z = Y1]

= Pr[Z = Z1]

( since, rank(In ⊕ Tn) = n)

=
1

2n

Thus the probability that there is an edge from X1 to Y1 is Pr[X1 → Y1] =
1
2n = 1

N , where N is the number of vertices in the graph.
Thus for a givenX , all the Y ’s are equally probable and hence the distribution

of Y for a given X is indistinguishable from a random distribution. Thus, the
state transition graph of the TPSA CA looks like a random graph when the
graveyard is chosen randomly and independently.

3.1 Construction of a Random d Regular Graph Using the TPSA
CA

We have seen in the previous discussion that the TPSA CA is capable of gen-
erating pseudo-random graphs. In this section we present a method to generate
pseudo-random d regular graphs by composing the random graphs. It may be
noted that the adjacency of the graph is stored in the graveyard state, thus lead-
ing to a very compact storage of the graph. This is because given the graveyard
state, the entire transition graph can be obtained. If there are N vertices in the
graph, the graveyard state has a size logN and thus the storage required to store
the graph is O(logN).

In order to construct the d regular graph we proceed as follows. We first
present the construction of a 4 regular graph. Let Z1 ∈ W1 (non-reachable world
in the non-complemented TPSA CA) and Z2 ∈ W2 (reachable world in the
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non-complemented TPSA CA). Let, G1 and G2 be the state transition graphs
with Z1 and Z2 as the graveyards respectively.

Clearly, in G1 if X ∈ W1, degree(X) = 3 and if X ∈ W2, degree(X) = 1.
Similarly, in G2 if X ∈ W1, degree(X) = 1 and if X ∈ W2, degree(X) = 3.
Here degree is defined as the sum of the indegree and the outdegree in the
corresponding graph.

Thus, in the graph G obtained by a union operation in the graphs G1 and G2,
allowing multiple edges and self loops, we have for X ∈ G, degree(X) = 4. If
we continue the union operation in the above method we have degree(X) = d =
2(t+1), where t is an odd integer and represents the number of union operations.
Thus we can construct a d regular graph from the TPSA CA. In fact we argue
that we have a pseudo-random d regular graph, if the graveyards are properly
chosen.

For each of the graphs, we choose the graveyard states independently in a
random fashion. We have seen previously, that the probability than an edge
exists from any X to any Y is 1

N . After performing the union operation we
obtain a d regular graph, where there are d neighbors of each vertex. If we
divide the graveyards into two sets:

Z = {Z1, Z3, . . . , Zd/2−1} ∈ W1

Z∗ = {Z2, Z4, . . . , Zd/2} ∈ W2

Thus the d regular graph is formed by the union of d/4 graphs, each of which
is the union of two graphs formed with the graveyards chosen as the pairs
(Z1, Z2), . . . , (Zd/2−1, Zd/2). Then in the final graph, if X ∈ W1, there are d/2
incoming edges and d/4 outgoing edges belonging to graphs with graveyards
from Z and d/4 outgoing edges belonging to graphs with graveyards from Z∗.
Similarly, if X ∈ W2, there are d/2 incoming edges and d/4 outgoing edges be-
longing to graphs with graveyards from Z∗ and d/4 outgoing edges belonging to
graphs with graveyards from Z.

We note that Y cannot be on the other side of two edges e and e∗ if:

1. e and e∗ are both outgoing edges and e belongs to a graph with graveyard
from Z and e∗ belongs to a graph with graveyard from Z∗ or both belongs
to either Z or Z∗.

2. e and e∗ are both incoming edges and e belongs to a graph with graveyard
from Z and e∗ belongs to a graph with graveyard from Z∗ or both belongs
to either Z or Z∗.

The above properties hold because rank(In ⊕ Tn) = n and Z ∩ Z∗ = Φ. Thus,
the only possibility is if e is say an incoming edge with graveyard from Z and e∗

is an outgoing edge with graveyard from Z∗. Let the graveyards be respectively,
Zi and Zj , where i is an odd integer such that 1 ≤ i ≤ d/2− 1 and j is an even
integer such that 2 ≤ j ≤ d/2. Note that Y cannot be opposite two pairs of edges,
as then it implies that we also have two pairs of edges which have Y and each
pair belongs to the graphs with graveyard from Z or Z∗. This is not permitted
from our previous discussion. Thus, the node Y can be opposite only one pair
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of edges, in which one edge belongs to a graph with graveyard Zi ∈ Z and the
other belongs to a graph with graveyard Zj ∈ Z∗. Suppose, there is an edge
from Y to X in the graph with graveyard Zi. Thus, X = Tn(Y ) ⊕ (In ⊕ Tn)Zi.
Also if there is an edge from X to Y in the graph with graveyard Zj we have,
Y = Tn(X) ⊕ (In ⊕ Tn)Zj . Thus, we have Y = (In ⊕ Tn)

−1(TnZi ⊕ Zj). Thus
for each pair of Zi and Zj we have one such Y which may have two edges with
an X . From the enumeration of Z and Z∗ we can have (d/4)2 pairs and thus
(d/4)2 values of Y which may form 2 multiple edges with X . For these values of
Y , using inclusion-exclusion principle, the probability that Y is a neighbor of a
given X is p = d/N − (d/4)2(1/N)2. If we set d = N/c, for some integer c > 0
we have p = 1

c (
16c−1
16c ) ≈ 1/c, for c > 4. For some chosen values of N = 128 and

d = 16, we have p = 0.124 which is almost equal to 1/8 = 0.125.
For other cases of Y , Y can be a neighbor of X in only one of the d edges, so

the probability that Y is the neighbor of X is d
N . Thus, we can fairly state that

for all cases the probability that Y is a neighbor of X has a probability of d/N .
Thus we have indeed a d regular graph which has its edge distributions like a
random graph with d regularity.

4 Experimental Observations on the Expansion
Properties

We present some experimental results on the expansion properties of the con-
structed graph in Table 1. It measures the value of the two largest eigen values
for the TPSA based graphs for degree 4, 8, 12 and 16. The difference between
the largest two eigen values is known as the spectral gap and should be large for
good expansion of the graph. Results show that the spectral gap and hence the
expansion increases proportionately with the number of union operations (t).

Table 1. Spectrum of a 4 cell TPSA based regular graph

No. of Graveyards Degree First Second Spectral g/t
Union (t) Eigen Eigen Gap (g)

Value Value

1 {0},{4} 4 4 3.2361 0.76 0.76
3 {0,15},{4,8} 8 8 4.899 3.10 1.03
5 {0,15,3},{4,8,10} 12 12 6.3440 5.66 1.14
7 {0,15,3,2},{4,8,10,9} 16 16 5.2263 10.77 1.54

The lower bound of the expansion of the generated graphs may be computed
using Tanner’s Theorem[8,9].

Theorem 2. (Tanner) Let M be the adjacency matrix of a d-regular graph G
with N vertices and let λ2 be its second largest eigenvalue. Then, for all sets A,
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N(A) ≥ d2N

d2|A|+Nλ22(1− |A|/N)
|A|

,where N(A) is the neighbourhood of A outside A.

Let, G be the expander graph with n nodes, generated by the TPSA based
method. The expansion of the graph G may be computed as follows:

E(G) = maxA∈[N ]minA⊆G;|A|=x(|N(A)| − |A|)

≥ maxA∈[N ]
d2

d2x/N + λ22(1− x/N)
x− x

= maxA∈[N ]
Nx

(1− λ2
2

d2 )x+
λ2
2

d2N
− x

= maxA∈[N ]
Nx

(1− c)x+ cN
− x,

where c =
λ22
d2

The expression in the variable x becomes maximum at x = xmax, where

xmax

N
=

√
c− c

1− c

=
λ− λ2

1 − λ2
, where λ =

√
c

Thus the lower bound of the expansion of the graph G is

E(G) ≥ λ(1 + λ2)− 2λ2

λ(1− λ2)
N

Using the above result we obtain lower bounds of the expansion of the generated
expander graphs and tabulate them in Table 2.

Table 2. Expansion of the expander graphs generated by 4 cell TPSA CA

No. of Degree First Second λ Expansion

nodes (d) Eigenvalue Eigenvalue = λ2
λ1

Bound

(N) (λ1) (λ2) (E(G))

16 4 4 3.2361 0.809 1.688
16 8 8 4.899 0.6124 3.85
16 12 12 6.3440 0.5287 7.84
16 16 16 5.2263 0.3266 8.12

As expected the expansion increases with the increase in the degree of the
graphs. The results may be compared with the expansion rates of other con-
structions of expander graphs, with similar parameters as mentioned in [8]. It
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is mentioned in [1], that the best results are from the random construction of
the expander graphs. A typical value of the expansion bound of the random
expander constructions mentioned in [8,1] is N = 20, d = 8 and E(G) = 6.49.
This is quite similar to the expansion bound of the proposed construction. The
storage required to store the d graphs is that of storing d graveyard states, and
is thus O(logN), and is thus possible to be realized by efficient implementations.

5 Conclusion

We have proposed a new construction method of expander graphs using a special
class of Cellular Automata, called TPSA-CA. We have characterized the CA
and have theoretically explained its various properties. Finally, we show that
the transition graphs of the CA can be composed to realize random regular
graphs which also has good expansion properties. The storage required to store
the expander graph of N vertices is O(logN).
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