
Scintillae: How to Approach Computing Systems

by Means of Cellular Automata

Gabriele Di Stefano1 and Alfredo Navarra2

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Italy

gabriele.distefano@univaq.it
2 Dipartimento di Matematica e Informatica,

Università degli Studi di Perugia, Italy
alfredo.navarra@unipg.it

Abstract. The paper deals with a very simple game called Scintillae.
Like in a domino game, Scintillae provides the player with limited basic
pieces that can be placed over a chessboard-like area. After the place-
ment, the game starts in a sort of runtime mode, and the player enjoys
his creation. The evolution of the system is based on few basic rules.

Despite its simplicity, Scintillae turns out to provide the player with
a powerful mean able to achieve high computational power, storage ca-
pabilities and many other peculiarities based on the ability of the player
to suitably dispose the pieces.

We show some of the potentials of this simple game by providing basic
configurations that can be used as “sub-programs” for composing bigger
systems. Moreover, the interest in Scintillae also resides in its potentials
for educational purposes, as many basic concepts related to the computer
science architecture can be approached with fun by means of this game.

1 Introduction

Scintillae is a game designed for fun to simulate a sort of domino effect on a
PC.1 Although it hides some peculiarities that cannot be realized by standard
domino games with falling pieces, it is very interesting how such kind of simulator
may easily realize a computing system in a sort of visual programming environ-
ment [3]. Its strength is witnessed by the high computational power that indeed
can be obtained by means of the few pieces provided by the game for composing
desired configurations. Instead of domino pieces falling in a sequence determined
by their proximity, Scintillae provides the user with sparks that seem to move
according to designed paths obtained by disposing arrows on a chessboard-like
area. The rules that establish the evolving of the system are very simple.

1.1 Rules of Scintillae

In an unbounded area divided into squares, it is possible to place two basic
pieces, at most one per square, to compose a game: Sparks (“Scintillae” in the

1 An executable graphic version of the program along with some explanatory examples
contained also in this paper can be found in [1,2].

G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 534–543, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Scintillae 535

Latin language), and four types of Arrows (→, ↑, ↓, ←), see Fig. 1. Each arrow
has four neighboring squares. The square pointed by the arrow is called the
output square while the other three squares are called input squares. The system
is synchronous and pieces interact at each time t according to the next simple
operations applied sequentially, that move the system’s state to time t+ 1:

1. an arrow becomes loaded if among its input squares there is exactly one
spark;

2. each spark disappears and leaves empty the corresponding square;

3. for each loaded arrow, a spark is placed in the output square, if empty;

4. each loaded arrow becomes unloaded.

Fig. 1 shows the available pieces and some basic configurations. By the rules
above, it follows that arrows never change from their original placement. That’s
all! The rules are specified, now only the imagination of the user can lead to sur-
prising results. In the implemented program, once the pieces have been placed, a
running button can be pressed to enjoy the evolution. Another way to experience
the evolution of the system is to press the space bar for a single clock’s tick.

Clearly, Scintillae belongs to the family of Cellular Automata [4,5,6,7,8,9].
Similarly to such systems, in Scintillae the user is provided with an area divided
into cells. Each cell may change its status according to its own one, and to
the status of a limited number of neighbors. The evolution is synchronous for
all the cells. Hence, Scintillae preserves the fundamental peculiarities of such
kind of computational means, that are: parallelism, locality, and homogeneity.
In fact, all the cells are updated synchronously in parallel, by applying the same
common rule based on local peculiarities. Likewise domino games but differently
from most cellular automata, in Scintillae there are predefined paths provided by
the initial disposal of the arrows that determine the evolution of the sparks. It
reminds the WireWorld tool [9], but it is even simpler as less rules are specified.
Moreover, the composed configurations appear very neat, clear and intuitive,
hence more appropriate for educational purposes. However, “unexpected” but
useful behaviors may occur for particular configurations.

Fig. 1. Available pieces, and a description of the evolving synchronous system



536 G. Di Stefano and A. Navarra

Fig. 2. Three possible cycles with periods 8, 4, and 2, respectively, and their application
in generating infinite sparks

Fig. 3. Two possible ways of realizing crossings

2 Basic Configurations

One main peculiarity of Scintillae is the opportunity to obtain infinite evolutions.
In fact, if the user defines a cycling sequence of arrows, and place a spark nearby
one of them, the spark will be moved along the cycles infinitely often, until
the user stops the run-time mode. In Fig. 2, three possible cycles are shown.
Moreover, on the right, it is shown how cycles can be used as infinite generators
of sparks. In particular, the size of the used cycle determines the frequency of
sparks in output. Another way to decide the frequency of sparks is to insert more
sparks in the cycle at the beginning during the designing mode.

Interesting basic configurations concern the appropriate placement of the
pieces in order to realize desired connections. In particular, it may happen that
the user requires two sequences of arrows (lines) to cross each other in order
to move sparks towards desired destinations. The problem that arises is that
sparks on a line could be duplicated on the other line at the crossing point. Sur-
prisingly, Scintillae provide a way to realize crossings. As shown in Fig. 3, two
sequences of arrows may cross in two different ways, horizontally or vertically,
and it is interesting to observe during the run-time mode how the sparks follow
the appropriate A or B paths, without interfering.

A useful configuration that recall a candle or an on/off switch is shown in
Fig. 4. If a spark is placed nearby the leftmost arrow →, the system moves to
the rightmost configuration in few clock’s ticks. The configuration remains the
same until another spark enters the system. If this happens, again the first con-
figuration occurs (switching off the candle). The rational behind such a structure



Scintillae 537

Fig. 4. On the left, the starting configuration representing a candle (switch) divided
into two sub-structures X and Y . On the right, the configuration obtained after placing
a spark near by the leftmost arrow.

Fig. 5. The first configuration represents an alternative way for realizing a switch. The
second and the third configurations are obtained alternately once a spark is placed
near by the leftmost arrow. The last configuration can be obtained when switching off
the candle, according to the time when a second spark arrives.

is provided by the two sub-structure depicted in the figure. First, an input spark
is duplicated by means of the sub-structure X . Then, the two consecutive sparks
arrive to the cycle in the sub-structure Y . If the candle is off (i.e., the cycle is
empty), then the effect of the two sparks is that of filling the cycle, and hence
the candle turns on. If the candle was on, then the two consecutive sparks re-
move the ones contained in the cycle since the entering arrow of the cycle will
be neighbor of two sparks for two steps. Another way for realizing the candle is
shown in Fig. 5. However, this configuration reveals a weird side effect. In fact,
if a spark is placed near by the leftmost arrow, the system moves to an instable
situation where the candle is switched on, but the configuration alternates be-
tween the second and the third ones shown in the figure. When another spark
enters the system, the candle is switched off, but according to the time this
new spark arrives, the configuration might become either the original one or the
fourth one. Clearly, the configurations shown so far represent only few samples
with respect to the potentials of Scintillae. The ability of the user to find new
ways of composing the available pieces might realize surprising configurations.

3 From the Game to Computing

In this section, we exploit some of the potentials of Scintillae in order to realize
computing systems. An interesting peculiarity of Scintillae is its nice attitude to
provide a way for realizing combinatorial circuits. We now show how to imple-
ment the basic logic gates like XOR, OR, NOT and AND.



538 G. Di Stefano and A. Navarra

Fig. 6. XOR, OR, and NOT realized on Scintillae

The most natural logic gate obtainable by composing few lines of arrows is the
XOR. As shown in Fig. 6, it is enough to put a line of arrows between the two
lines carrying the two inputs of the gate. In fact, the first arrow of the output
line will move a spark towards the output only if one single spark arrives from
the input lines. When both the input lines carry on a spark, then the first arrow
of the output line will be neighboring two sparks that disappear at the next
clock’s tick, as shown in the fifth configuration of Fig. 1.

Remark 1. Actually, a single arrow in Scintillae represents a XOR gate of three
inputs, the neighboring squares not pointed by the arrow. It follows that any
other logic gate obtainable by composing Scintillae’s pieces is the result of com-
posing XOR gates. Although the XOR is not a universal gate like the NOR and
the NAND gates (see [10]), i.e., not all the other logic gates can be obtained
from the XOR, we show how this problem can be overcome in Scintillae. Even
tough this seems a contradiction, it will be better clarified later on.

Realizing the OR gate is also quite easy since it requires a little modification
with respect to the XOR, as shown in Fig. 6. Now, if both the input lines carry
on a spark, they will be both moved to the tail of the output line, where it
appears like only one spark as output. In order to realize the NOT, a bit more
understanding is required. In fact, we need to have a spark in the output line
when there is nothing in input. In order to realize such a configuration, we make
use of an infinite generator of sparks, as shown in the fifth configuration of Fig. 2.
As shown in Fig. 6, when the input line carries on a spark, the middle arrow of
that line will be neighboring with two sparks, as in the sixth configuration of
Fig. 1, and then there won’t be a spark at its head in the next clock’s tick.

Remark 2. In the construction of the NOT gate resides the trick to obtain any
other logic gate by means of XOR gates. In fact, once we have both the OR
and the NOT gates we can obtain any other gate. The fact is that we are using
also sparks to realize the NOT gate. In particular, we are able to generate a
sequence of infinite sparks representing a line set to 1, and this is not possible
when considering only XOR gates.

Concerning the AND gate, by simply applying De Morgan’s rule [10], it can be
realized as NOT (NOT (A) OR NOT (B)). This is shown in the first configuration
of Fig. 7. In the same figure, the other configuration still realizes the AND gate



Scintillae 539

Fig. 7. Two configurations realizing the AND gate

Fig. 8. Other two possible ways for realizing the AND gate

but some more insights are required for its understanding. It comes from the re-
quirement of obtaining the “easiest” way for realizing such a gate. As part of the
game, we tried to obtain the same results by means of optimized configurations
in terms of used pieces. For the case of the AND gate, for instance, while the first
configuration of Fig. 7 is quite straightforward since obtained by applying well-
known rules, the other comes from our intuitions. Indeed, the rational behind
it is simply to merge the infinite generators of the first configuration as much
as possible. More tricky configurations that realize the AND gate are shown in
Fig. 8. These required much more confidence with the game.

Another interesting circuit obtained by serializing some candles and appro-
priately connecting them with infinite generators, realizes a binary counter as
shown in Fig. 9. The assumption is that 1 corresponds to the candle switched
on, 0 otherwise. In the figure, it is shown a snapshot of the system after injecting
eleven sparks as input (rightmost arrow ←).

In Fig. 10, we show a memory component of one byte with recorded value
11011100. The byte is contained in the cycle M . In order to read the value
contained in the memory, one has to insert a spark in the read line R. For a
correct reading of the byte, the input spark must arrive at line R synchronously
with a spark that in the CLOCK cycle occupies the bottom leftmost square as
in the figure.2 Then a copy of the correct sequence describing the byte will flow

2 The cycle defining the CLOCK is not really part of the memory, but is visualized
only for a correct use of the memory component.



540 G. Di Stefano and A. Navarra

Fig. 9. A binary 4-bits counter

on the output line O. This is realized by temporarily open the “tap” T 3 between
M and line O. A tap like T 3 is composed of a candle and two paths that leads
to the same arrow belonging to a path. A closed tap is realized by switching
on the candle and hence making two sparks neighboring to the common arrow
of a line, i.e., blocking the flow on that line. To open the tap, it is sufficient to
switch off the candle, hence removing the block. Note that, on the way from
R to T 3, the line P2 is used to duplicate the input spark in such a way that,
after eight clock’s ticks, the tap is automatically closed, hence letting flow only
eight bits on the output line O. The input line C is used to clean the memory.
In fact, when a spark enters this way, it is duplicated by means of line P1 in
such a way that the two sparks reach the tap T 1 and make it closed for exactly
eight clock’s ticks. In doing so, two sparks become neighbors to a common arrow
of M , hence obtaining the delation of the contained byte. By using the C line,
one obtains also another effect, that is, to open tap T 2 for exactly eight clock’s
ticks. This is, in fact, used for writing in the memory. To write a new byte in
the memory, the sequence of sparks describing the new byte must arrive at the
input line W concurrently with a spark at line C. Hence, M is first cleaned and
then refilled with the new sequence. For the synchronization of such operations
we were required to carefully consider the length of the involved lines.

4 A Case Study

Based on some previous configurations, we might be able to simulate any com-
binatorial circuit. In this section, we aim to construct a circuit that counts from
0 to 3, cyclically, and displays the outcome on a standard seven-bars display.
Moreover, we make also the display by means of the Scintillae’s pieces. In doing
so, we provide the evidence that Scintillae can be used for both computing and
wider purposes more related to aesthetical factors. In Fig. 11, the mentioned
configuration is shown. The snapshot is taken while the counter is displaying
the number 2 on the seven-bars display realized by means of arrows. We are
now going to describe all the “objects” composing the whole circuits. In order
to realize the desired counter we need four main sub-circuits: (i) a clock that



Scintillae 541

Fig. 10. A byte memory cell

frequently generates a signal in order to advance the counting; (ii) a counter
that translates the received signal from the clock into a binary string represent-
ing how many signals have been received modulo the size of the counter (four
in our case); (iii) a seven-bars display that has seven input lines for switching
on the correspondent bars (see Fig. 12); (iv) a circuit able to convert the binary
string representing a digit among the set {0, 1, 2, 3} into the suitable signals that
switch on the appropriate bars on the display for a correct visualization.

As discussed in the previous section, (i) and (ii) have been already realized.
In fact, (i) is obtained by a cycle of arrows with one spark inside (see bottom
left side of Fig. 11). In this way, we generate a spark every time the one in the
cycle covers all the cycle. Clearly, the more is the length of the cycle, the less
is the speed of the counter. The output of such a cycle is connected to a 2-bits
counter (similar to the one shown in Fig. 9, see on the left side of Fig. 11) that
provides the correct binary coding of the number of sparks received in input,
modulo four. The construction realizing (iii) can be easily recognized on the
right part of Fig. 11, with its seven input lines surrounding the display. This
has been realized by means of a suitable disposal of the arrows, some of which
are there only for aesthetical reasons. Concerning (iv), the circuit for converting
the binary string into switching signals for the seven-bars display is shown in
Fig. 12, along with the activation functions related to the bars of the display.
Such a circuit is a bit hidden in Fig. 9, but following the lines from the counter
to the display, one can easily recognize the logic gates used. Indeed, many of the
arrows are used for crossing lines by means of the horizontal configuration shown



542 G. Di Stefano and A. Navarra

Fig. 11. Snapshot of a cyclic counter form 0 to 3 while displaying number 2

Fig. 12. The seven-bars display, the activation functions of its input lines, and the
circuit used to convert a binary string of two bits XY into the appropriate signals for
visualizing the input number by means of a decimal digit on a seven-bars display

in Fig. 3. Concerning, for instance the activation function of S1, the AND gate
has been realized by means of the first configuration shown in Fig. 8. Concerning
S2, since the specific circuit counts cyclically from 0 to 3, its activation function
is always set to 1. This has been realized by embedding directly in the display
an infinite generator of sparks. Moreover, it is interesting to note that, if we



Scintillae 543

add more consecutive sparks in the cycle that provides the input to the counter,
we may obtain the visualization of the digits corresponding to the current digit
plus the number of sparks in the cycle modulo four. In particular, if we put
three consecutive sparks in the cycle, we obtain a cyclic countdown from 3 to 0.
Actually, the same effect might be realized by reducing the length of the cycle so
much that the display is not able to visualize all the input sequence. This implies
a refresh frequency of the designed display that must be carefully managed by
prolonging or shortening the connecting lines.

5 Conclusion

We have presented Scintillae, a new and simple cellular automaton that reveals
high computational power capabilities. Surprising results have been obtained by
suitably placing the few pieces provided by the game. As future work, we aim
to write the code of Scintillae for open source platforms, and adding further
capabilities to make easier its usage. For instance, it would be very useful to
exploit configurations already defined as black boxes for new configurations.
This would expand the visual programming features of the game. Moreover,
educational characteristics could also be exploited. In fact, Scintillae turns out
to be a very good mean for experiencing sequential circuits, but also for an easy
approach to low level programming languages like assembly.

Historical Note and Acknowledgement. A first version of Scintillae has
been implemented by Gabriele Di Stefano on a PC Olivetti M24 in the mid-
eighties. Special thanks go to Gian Marco Tedesco for his great contribution in
coding Scintillae with graphic libraries, for his insights and useful discussions.

References

1. http://www.dmi.unipg.it/navarra/Scintillae/scintillae.zip

2. http://gs.ing.univaq.it/Scintillae/scintillae.zip

3. Chang, S.K.: Visual Languages and Visual Programming (Languages and Infor-
mation Systems). Springer (1990)

4. Adamatzky, A.: Game of Life Cellular Automata. Springer (2011)
5. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game

“Life”. Scientific American 223, 120–123 (1970)
6. http://www.bitstorm.org/gameoflife/

7. Kari, J.: Theory of cellular automata: a survey. Theoretical Compututer Sci-
ence 334, 3–33 (2005)

8. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)
9. Dewdney, A.K.: Computer recreations: The cellular automata programs that create

wireworld, rugworld and other diversions. Scientific American 262, 146–149 (1990)
10. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-

ware/Software Interface. Elsevier Inc. (2007)

http://www.dmi.unipg.it/navarra/Scintillae/scintillae.zip
http://gs.ing.univaq.it/Scintillae/scintillae.zip
http://www.bitstorm.org/gameoflife/

	Scintillae: How to Approach Computing Systems
by Means of Cellular Automata
	Introduction
	Rules of Scintillae

	Basic Configurations
	From the Game to Computing
	A Case Study
	Conclusion
	References




