
Iterative Arrays:

Little Resources Big Size Impact

Martin Kutrib and Andreas Malcher

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Abstract. We investigate the descriptional complexity of little resources
added to deterministic one-dimensional real-time iterative arrays. More
precisely, we study the impact of adding sublinearly more time obtaining
time complexities strictly in between real time and linear time, adding
dimensions, allow the communication cell to perform a few nondetermi-
nistic steps, and increase the number of bits that may be communicated
to neighboring cells slightly. In all cases it is shown that there are arbi-
trary savings in the size of the descriptions of the arrays which cannot
be bounded by any computable function.

1 Introduction

The approach to analyze the descriptional complexity, that is, the size of sys-
tems as opposed to the computational complexity seems to originate from [24],
where the relative succinctness of regular languages represented by deterministic
finite state and deterministic pushdown machines is studied. In general, suppose
that a set of syntactical patterns, in our terms a formal language, has to be
stored or transmitted. Then there is a natural interest to represent the patterns
as succinctly as possible. As a simple example, we consider the representation
of a regular language over the symbols a and b by a minimal deterministic fi-
nite state machine having, say n states. Then the size of the machine, that is,
the length of its description given by a fixed set of, say x symbols, is roughly
2·n·logx(n), since for any state and input symbol we have to write down the next
state using the x symbols. It is well known, that any regular language can be
represented by a nondeterministic finite state machine as well. Moreover, there
are examples where the minimal deterministic machine equivalent to an n-state
nondeterministic device requires 2n states. So, the representation can be expo-
nentially more succinct, when the resource ‘nondeterminism’ is added to finite
state machines. Can we do better? What if deterministic pushdown machines
are used to represent regular languages? In [26] it has been shown that in this
case the order of magnitude of the size can be reduced double exponentially.
So, adding the resource ‘pushdown store’ to finite state machines has a big im-
pact on the size of the representation. Can we do still better? What if we add
nondeterminism and a pushdown store? In [21] as one of the cornerstones of de-
scriptional complexity theory it is shown that in this case there is no computable

G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 42–51, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Iterative Arrays: Little Resources Big Size Impact 43

function serving as upper bound for the possible gain in economy of description.
With other words, when regular languages are represented by nondeterministic
pushdown machines, one can choose an arbitrarily large computable function f
but the gain in economy of description eventually exceeds f . This qualitatively
phenomenon is called non-recursive trade-off (see, for example, [9,10,11,15]).

Here we start with one of the simplest models for massively parallel compu-
tations, that is, with deterministic one-dimensional iterative arrays (IA), which
sometimes are called cellular automata with sequential input, operating in real
time. In connection with formal language processing IAs have been introduced
in [7], where it was shown that the language family accepted by real-time IAs
forms a Boolean algebra not closed under concatenation and reversal. In [6]
it is shown that for every context-free language a two-dimensional linear-time
IA parser exists. In [8] a real-time acceptor for prime numbers has been con-
structed. Pattern manipulation is the main aspect in [1]. A characterization of
various types of IAs by restricted Turing machines and several results especially
speed-up theorems are given in [12,13,14]. Several more results concerning for-
mal languages can be found in [22,23,25]. We study here the impact on the
descriptional complexity of deterministic one-dimensional real-time iterative ar-
rays when little resources are added. In particular, we add sublinearly more time
obtaining time complexities strictly in between real time and linear time. Then
we add dimensions, allow the communication cell to perform a few nondeter-
ministic steps, and increase the number of bits that may be communicated to
neighboring cells slightly. In all cases non-recursive trade-offs are proved. So,
from a compressibility point of view it is worthwile to add them.

In the next section we recall the necessary definitions and notions, and the ba-
sics of descriptional complexity theory. In the following four sections we present
our results. The proofs are omitted here owing to space restrictions.

2 Preliminaries and Definitions

We denote the rational numbers by Q and the non-negative integers by N. The
empty word is denoted by λ, the reversal of a word w by wR, and for the length
of w we write |w|. The cardinality of a set M is denoted by |M | and its powerset
by 2M . We write ⊆ for set inclusion, and ⊂ for strict set inclusion.

An iterative array is an infinite linear array of finite automata, sometimes
called cells. We identify the cells by natural numbers. Each cell except the origin
is connected to its both nearest neighbors (one to the left and one to the right).
The input is supplied sequentially to the distinguished communication cell at
the origin which is connected to its immediate neighbor to the right only. For
this reason, we have two different local transition functions. The state transition
of all cells but the communication cell depends on the current state of the cell
itself and the current states of its both neighbors. The state transition of the
communication cell additionally depends on the current input symbol (or if the
whole input has been consumed on a special end-of-input symbol). The finite
automata work synchronously at discrete time steps. Initially they are in the
so-called quiescent state.

44 M. Kutrib and A. Malcher

Definition 1. An iterative array (IA) is a system 〈S,A, #, F, s0, δ, δ0〉, where
1. S is the finite, nonempty set of cell states,
2. A is the finite, nonempty set of input symbols,
3. # /∈ A is the end-of-input symbol,
4. F ⊆ S is the set of accepting states,
5. s0 ∈ S is the quiescent state,
6. δ : S3 → S is the local transition function for non-communication cells

satisfying δ(s0, s0, s0) = s0,
7. δ0 : (A∪{#})×S2 → S is the local transition function for the communication

cell.

Let M be an IA. A configuration of M at some time t ≥ 0 is a description of
its global state which is actually a pair (wt, ct), where wt ∈ A∗ is the remaining
input sequence and ct : N → S is a mapping that maps the single cells to
their current states. The configuration (w0, c0) at initial time 0 is defined by the
input w0 and the mapping c0(i) = s0, i ≥ 0, while subsequent configurations
are chosen according to the global transition function Δ. Let (wt, ct), t ≥ 0,
be a configuration. Then its successor configuration (wt+1, ct+1) = Δ

(
(wt, ct)

)

is defined as ct+1(i) = δ
(
ct(i − 1), ct(i), ct(i + 1)

)
, ct+1(0) = δ0

(
a, ct(0), ct(1)

)
,

where i ≥ 1, and a = #, wt+1 = λ if wt = λ, and a = a1, wt+1 = a2a3 · · · an if
wt = a1a2 · · · an. Thus, the global transition function Δ is induced by δ and δ0.

An input w is accepted by an IA M if at some time i during its course of
computation the communication cell enters an accepting state. The language
accepted by M is defined as L(M) = {w ∈ A∗ | w is accepted by M }. Let
t : N → N be a mapping. If all w ∈ L(M) are accepted with at most t(|w|) time
steps, then L(M) is said to be of time complexity t. The family of all languages
that are accepted by IAs with time complexity t is denoted by Lt(IA). The index
is omitted for arbitrary time. If t is the function n+ 1, acceptance is said to be
in real time and we write Lrt(IA).

2.1 Descriptional Complexity

We recall some notation for descriptional complexity. Following [11] we say that a
descriptional system S is a set of finite descriptors such that eachD ∈ S describes
a formal language L(D), and the underlying alphabet alph(D) over which D
represents a language can be read off fromD. The family of languages represented
(or described) by S is L (S) = {L(D) | D ∈ S }. For every language L, the set
S(L) = {D ∈ S | L(D) = L } is the set of its descriptors in S. A complexity
measure for a descriptional system S is a total computable mapping c : S → N.

Example 2. Iterative arrays can be encoded over some fixed alphabet such that
their input alphabets can be extracted from the encodings. The set of these
encodings is a descriptional system S, and L (S) is L (IA).

Examples for complexity measures for IAs are the total number of symbols,
that is, the length of the encoding (length), or the total number of transitions
(trans) in δ and δ0.
�

Iterative Arrays: Little Resources Big Size Impact 45

Here we only use complexity measures that (with respect to the underlying
alphabets) are related to length by a computable function. If there is a total
computable function g : N × N → N such that, for all D ∈ S, length(D) ≤
g(c(D), |alph(D)|), then c is said to be an s-measure. If, in addition, for any
alphabet A, the set of descriptors in S describing languages over A is recursively
enumerable in order of increasing size, then c is said to be an sn-measure. Clearly,
length and trans are sn-measures for iterative arrays.

Whenever we consider the relative succinctness of two descriptional systems S1

and S2, we assume the intersection L (S1)∩L (S2) to be non-empty. Let S1 and
S2 be descriptional systems with complexity measures c1 and c2, respectively.
A total function f : N → N is an upper bound for the increase in complexity
when changing from a descriptor in S1 to an equivalent descriptor in S2, if for
all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1)) such that
c2(D2) ≤ f(c1(D1)).

If there is no recursive, that is, computable function serving as upper bound,
the trade-off is said to be non-recursive. That is, whenever the trade-off from one
descriptional system to another is non-recursive, one can choose an arbitrarily
large recursive function f but the gain in economy of description eventually
exceeds f when changing from the former system to the latter. In fact, the
non-recursive trade-offs are independent of particular sn-measures, as any two
sn-measures c1 and c2 for some descriptional system S are related by a recursive
function. So, a non-recursive trade-off exceeds any difference caused by applying
two sn-measures. For establishing non-recursive trade-offs the following general
result is useful.

Theorem 3 ([11]). Let S1 and S2 be two descriptional systems for recursive
languages such that any descriptor D in S1 and S2 can effectively be converted
into a Turing machine that decides L(D), and let c1 be a measure for S1 and c2 be
an sn-measure for S2. If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

In the following we show all non-recursive trade-offs between iterative arrays
having little additional resources and those that do not have these resources by
reduction of the finiteness problem for linearly space bounded Turing machines.
In order to apply Theorem 3, we use the family of deterministic linearly space
bounded one-tape one-head Turing machines, so-called linear bounded automata
(LBA), as descriptional system S3. Property P is infiniteness, which is not semi-
decidable for LBAs. Next, given an arbitrary LBA M , that is, a descriptor
D3 ∈ S3, we must construct an iterative array with the additional resources,
that is, a descriptor D1 in S1, that has an equivalent iterative array without the
resources, that is, a descriptor in S2, if and only if M accepts a finite language,
that is, D3 does not have property P .

For the reduction, we consider strings which record all configurations of
an accepting computation of a given LBA. Without loss of generality and for

46 M. Kutrib and A. Malcher

technical reasons, one can assume that any accepting computation has at least
three and, in general, an odd number of steps. Therefore, it is represented by an
even number of configurations. Moreover, it is assumed that the LBAs get their
input in between two endmarkers, and that a configuration is halting if and only
if it is accepting.

Let Q be the state set of some LBA M , where q0 is the initial state, T ∩Q = ∅
is the tape alphabet containing the endmarkers � and �, and Σ ⊂ T is the input
alphabet. A configuration of M can be written as a string of the form �T ∗QT ∗�
such that, �t1t2 · · · tiqti+1 · · · tn� is used to express that �t1t2 · · · tn� is the tape
inscription, M is in state q, and scans tape symbol ti+1. We consider words of
the form w1$w3$ · · · $w2k−1¢wR

2k$ · · · $wR
4 $w

R
2 , where wi are configurations, $

and ¢ are symbols not appearing in wi, w1 is an initial configuration of the
form q0Σ

∗, w2k is an accepting, that is, halting configuration, and wi+1 is the
successor configuration of wi, for 1 ≤ i ≤ 2k. Let $′ and ¢′ be new symbols and T ′

and Q′ primed copies of T and Q. The set of valid computations VALC(M) is
now defined to be the set of words ϕ−1(w), where w is a word of the form above
and ϕ is the homomorphism defined by ϕ(a) = a if a ∈ T ∪ Q ∪ {$, ¢}, and
ϕ(a′) = a if a′ ∈ T ′ ∪Q′ ∪{$′, ¢′}. The set of invalid computations INVALC(M)
is the complement of VALC(M) with respect to the coding alphabet ΛM =
{$, $′, ¢, ¢′}∪T ∪T ′∪Q∪Q′. By using the redundant primed symbols we ensure
that for any u ∈ VALC(M) there are are at least 2|u| further strings of length |u|
in VALC(M)) [19].

Since the language class Lrt(IA) is closed under inverse homomorphisms,
essentially, the following crucial theorem has been shown in [18].

Theorem 4. Let M be an LBA. Then real-time iterative arrays that accept
VALC(M) and INVALC(M) can effectively be constructed.

3 Time

Basically, for any non-trivial computation an iterative array has to read at least
one end-of-input symbol. Therefore, real time is defined to be (n+1)-time. In [2]
it has been shown that there exists an infinite dense and strict time hierarchy
between real time and linear time. So adding a little bit more time yields a
strictly stronger class of iterative arrays. Here we consider the differences of
their descriptional complexities.

In order to deal with infinite dense time hierarchies in almost all cases rea-
sonable time bounding functions are required. Usually the notion reasonable is
substantiated in terms of the computability or constructibility of the function
with respect to the device in question. Here we consider so-called IA-constructible
functions. A strictly increasing function f : N → N is IA-constructible, if there
exists an IA such that on empty input the leftmost cell enters an accepting state
exactly at all time steps f(i), 1 ≤ i. Note that since all IA-constructible func-
tions f are necessarily strictly increasing, for their inverses we have f−1(n) ≤ n,
for all n ≥ 1.

Iterative Arrays: Little Resources Big Size Impact 47

The family of IA-constructible functions is very rich. It includes n !, kn, nk,
n+ �√n�, n+ �log�, etc., where k ≥ 1 is an integer. It is closed under the oper-
ations such as addition of constants, addition, iterated addition, multiplication,
composition, minimum, maximum etc. [20]. Further results can be found in [4,5].

Now, let M be an LBA, r−1 be an IA-constructible function, and define a
function hr as hr(n) = r−1((n+ 1)2), and a language

Lr,M = { $hr(m)−(m+1)2+1w1$w2$ · · · $wm¢y | m ≥ 1, wi ∈ Λm
M , 1 ≤ i ≤ m,

y ∈ VALC(M) and ∃ 1 ≤ j ≤ m : y = wj }.

Lemma 5. Let M be an LBA and r1, r2 : N → N be two increasing functions so
that r2 ∈ o(r1) and r−1

1 is IA-constructible. Then Lr1,M ∈ Ln+r2(n)(IA) if and
only if L(M) is finite.

In order to apply Theorem 3 to show the non-recursive trade-off between iterative
arrays with time complexity n+ r1(n) and n+ r2(n) as mentioned above, it now
suffices to show Lr1,M ∈ Ln+r1(n)(IA). In [2] an (n + r1(n))-time IA for a
language Lr1 has been constructed, where essentially, Lr1 is derived from Lr1,M

by defining the subwords wi over a binary alphabet and omitting the condition
that the suffix following ¢ has to belong to VALC(M). By Theorem 4 it is not
hard to extend the construction to language Lr1,M . A corresponding IA simply
can check the suffix on another track. So, the next theorem follows.

Theorem 6. Let r1, r2 : N → N be two increasing functions so that r2 ∈ o(r1)
and r−1

1 is IA-constructible. Then the trade-off between (n+r1(n))-time IAs and
(n+ r2(n))-time IAs is non-recursive.

4 Nondeterminism

This section is devoted to nondeterministic iterative arrays, where the nondeter-
minism is regarded as a limited resource. The ability to perform nondeterministic
transitions is restricted to the communication cell, all the other automata are de-
terministic ones. Moreover, the number of allowed nondeterministic transitions
is limited dependent on the length of the input. Such iterative arrays with lim-
ited nondeterministic communication cell have been introduced and investigated
in [3]. In particular, it has been shown that the number of nondeterministic tran-
sitions can be reduced by any constant without decreasing the computational
capacity, and that there is a strict and dense infinite hierarchy of language classes
dependent on sublogarithmic limits of the nondeterminism.

In order to define so-called gG-IA (g guess IA) the transition function δ0
for the communication cell is replaced by a nondeterministic local transition
function δnd : (A∪ {#})× S2 → 2S and a deterministic local transition function
δd : (A ∪ {#}) × S2 → S. The number of allowed nondeterministic transitions
is given by a mapping g : N → N dependent on the length n of the input, such

48 M. Kutrib and A. Malcher

that the first g(n) transitions of the communication cell are nondeterministic
according to δnd, and all subsequent transitions are deterministic according to δd.
The fact that the nondeterministic transitions have to be applied before the
deterministic ones is not a serious restriction since nondeterministic transitions
for later time steps can be guessed and stored in advance.

Now, let M be an LBA, r ∈ o(log) and r−1 be an IA-constructible function,
and define a function hr as hr(n) = 2r(n) and a language

L̃r,M = { $l+1w1$w2$ · · · $wj¢y | ∃n ≥ 1 : j = hr(n), l = n− (j +1) · (|y|+1),

y ∈ VALC(M), wi ∈ Λ
|y|
M , 1 ≤ i ≤ j, and ∃ 1 ≤ i ≤ j : y = wR

i }.
Clearly, function hr is increasing since r is. Moreover, since r ∈ o(log), it follows

limn→∞
hr(n)
nk = limn→∞ 2r(n)

2log(n)·k = 0 and, thus, hr(n) ∈ o(nk), for all k ∈ Q,
0 < k. Therefore, the function n

2hr(n)
is unbounded and for all m there is an n so

that m+1 ≥ n
2hr(n)

≥ m, which implies n ≥ m · 2 ·hr(n) ≥ (hr(n)+ 1) · (m+1),

for m large enough. This in turn implies that L̃r,M includes at least one word
for every word in VALC(M).

Lemma 7. Let M be an LBA and r1, r2 : N → N be two increasing functions
so that r2 ∈ o(r1), r1 ∈ o(log), and r−1

1 is IA-constructible. Then L̃r1,M ∈
Lrt(r2G-IA) if and only if L(M) is finite.

Similar as in Section 3, now Theorem 3 can be applied to show the non-recursive
trade-off between iterative arrays with r1(n) and r2(n) guesses as mentioned
above.

Theorem 8. Let r1, r2 : N → N be two increasing functions so that r2 ∈ o(r1),
r1 ∈ o(log), and r−1

1 is IA-constructible. Then the trade-off between real-time
r1G-IA and real-time r2G-IA is non-recursive.

5 Dimensions

In this section, we will show that there exist non-recursive trade-offs between
(d + 1)-dimensional and d-dimensional real-time iterative arrays. To define a
multidimensional IA we adopt Definition 1 by replacing the local transition
functions δ and δ0 by δ : S2d+1 → S satisfying δ(s0, s0, . . . , s0) = s0, and
δ0 : (A∪{#})×Sd+1 → S. Configurations of d-dimensional IAs (denoted by IAd)
and the global transition function are straightforwardly defined, where ct is now
a mapping from Nd to S.

In [17], a dimension hierarchy is shown for IAs with restricted communication.
Let us first describe the witness languages used there for the dimension hierarchy.
We will then modify these languages suitably to obtain non-recursive trade-offs
between real-time IAd+1 and real-time IAd, for all d ≥ 1.

For any dimension d ≥ 2, a language Ld is defined as follows. First, consider
the following series of regular sets: X1 = ${a, b}+ and Xi+1 = $X+

i , for i ≥ 1
Due to the separator symbol $, every word u ∈ Xi+1 can uniquely be decomposed

Iterative Arrays: Little Resources Big Size Impact 49

into its subwords from Xi. So, the projection on the jth subword can be defined
as usual: Let u = $u1 · · ·um, where uj ∈ Xi, for 1 ≤ j ≤ m. Then u[j] is defined
to be uj , if 1 ≤ j ≤ m, otherwise u[j] is undefined. Now define the language

Md = { u¢exd$ · · · $ex1$e2x$v | u ∈ Xd and 1 ≤ xi, 1 ≤ i ≤ d,

and x = x1 + · · ·+ xd and v = u[xd][xd−1] · · · [x1] is defined }.

Finally, the language Ld is defined as the homomorphic image of Md using a
suitable homomorphism h. It is shown in [17] that Ld+1 can be accepted by a
(d+1)-dimensional real-time IA with restricted communication, but not by any
d-dimensional real-time IA.

Now, we modify the set Md in such a way that the prefix u is interleaved
symbol by symbol with some word from the set VALC(M) for some LBA M .
The remaining symbols ¢, $, e and the suffix v ∈ {a, b} are repeated once. Addi-
tionally, the prefix u may end with some dummy symbols c. Thus, we obtain

Ld,M = { u1w1u2w2 · · ·utwt¢¢e2xd$$ · · · $$e2x1$$e4x$$vv | uj ∈ {a, b, c, $},
wj ∈ ΛM , 1 ≤ j ≤ t, u = u1u2 · · ·ut ∈ Xd c

∗, w = w1w2 · · ·wt ∈ VALC(M),

1 ≤ xi, 1 ≤ i ≤ d, x = x1 + · · ·+ xd, and v = u[xd][xd−1] · · · [x1] is defined }.

Lemma 9. Let M be an LBA and d ≥ 1 be a constant. Then Ld+1,M ∈ Lrt(IA
d)

if and only if L(M) is finite.

Lemma 10. Let M be an LBA and d ≥ 1 be a constant number. Then language
Ld+1,M belongs to Lrt(IA

d+1).

Lemma 9, Lemma 10, and Theorem 3 show the following result.

Theorem 11. Let d ≥ 1 be a constant number. Then the trade-off between real-
time IAd+1 and real-time IAd is non-recursive.

6 Communication

Now we turn to consider d-dimensional real-time IAd with restricted commu-
nication. Basically, these are real-time IAd whose bandwidth of the inter-cell
communication links is limited. In the general case, in every step the states of
the cells are transmitted. Here the limitation is modeled by a set of messages
that can be sent, where the number k of different messages is independent of the
number of states. We denote these devices by IAd

k. Formally, we add to the defini-
tion the set of messages B and communication functions bi : S → B, 1 ≤ i ≤ 2d,
that determine the messages to be sent to neighbors. Furthermore, we replace δ
and δ0 by δ : S ×B2d → S satisfying δ(s0, (b1(s0), b2(s0), . . . , b2d(s0)) = s0, and
δ0 : (A ∪ {#})× S × Bd → S.

It is shown in [17] that for real-time IAd with d ≥ 1 there exists a proper
hierarchy dependent on the number of possible messages, that is, real-time IAd

50 M. Kutrib and A. Malcher

that can communicate k + 1 different messages are more powerful than those
that can communicate k different messages, for k ≥ 1. For d ≥ 1 and any
number of messages k ≥ 2 we define an alphabet Ad,k = {a0, . . . , akd−1} and a

language L̂d,k as

L̂d,k = { ex$u1u2 · · ·um | x ≥ 1 and m ≥ 2x− 1

and ui ∈ Ad,k, 1 ≤ i ≤ m, and uj = uj+2x−1, 1 ≤ j ≤ m− (2x− 1) }.

Then, it is shown [17] for d ≥ 1 and k ≥ 2 that L̂d,k+1 belongs to Lrt(IA
d
k+1),

but cannot be accepted by any real-time IAd
k. Now, we modify these languages

in order to obtain non-recursive trade-offs. For a constant c ≥ 1 and an alpha-
bet A, let hc be the homomorphism hc(a) = ac, for all a ∈ A. For an LBA M ,
let S be the state set of the real-time IA accepting VALC(M) constructed in
Theorem 4. Now set c = �log2(|S|)� and consider the set hc(VALC(M)). It has
been shown in [16] that a real-time IA2 accepting hc(VALC(M)) can effectively
be constructed. The main idea is to simulate one transition of the IA accepting
VALC(M) by c transitions. During these transitions the binary encoded states
of the cells are communicated. A cell that receives the cth bit with the cth tran-
sition, then simulates the original transition. Finally, the communication cell can
verify whether each input symbol is repeated c times. With these prerequisites,
we define the languages

Ld,k,M = { ew1ew2 · · · ewx$2xu1u2 · · ·um | x ≥ 1 and m ≥ 2x− 1

and ui ∈ Ad,k, 1 ≤ i ≤ m, and uj = uj+2x−1, 1 ≤ j ≤ m− (2x− 1),

wt ∈ ΛM , 1 ≤ t ≤ x, and w1w2 · · ·wx ∈ hc+1(VALC(M)) }.

Lemma 12. Let M be an LBA and d, k ≥ 1 be constants. Then language
Ld,k+1,M belongs to Lrt(IA

d
k) if and only if L(M) is finite.

Lemma 13. Let M be an LBA and d, k ≥ 1 be constant numbers. Then language
Ld,k+1,M belongs to Lrt(IA

d
k+1).

Lemma 12, Lemma 13, and Theorem 3 show the following result.

Theorem 14. Let d, k ≥ 1 be constant numbers. Then the trade-off between
real-time IAd

k+1 and real-time IAd
k is non-recursive.

References

1. Beyer, W.T.: Recognition of topological invariants by iterative arrays. Tech. Rep.
TR-66. MIT, Cambridge, Proj. MAC (1969)

2. Buchholz, T., Klein, A., Kutrib, M.: Iterative Arrays with Small Time Bounds. In:
Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 243–252. Springer,
Heidelberg (2000)

3. Buchholz, T., Klein, A., Kutrib, M.: Iterative arrays with limited nondeterministic
communication cell. In: Words, Languages and Combinatorics III, pp. 73–87. World
Scientific Publishing (2003)

Iterative Arrays: Little Resources Big Size Impact 51

4. Buchholz, T., Kutrib, M.: Some relations between massively parallel arrays. Parallel
Comput. 23, 1643–1662 (1997)

5. Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular
automata. Acta Inform. 35, 329–352 (1998)

6. Chang, J.H., Ibarra, O.H., Palis, M.A.: Parallel parsing on a one-way array of
finite-state machines. IEEE Trans. Comput. C-36, 64–75 (1987)

7. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Trans. Comput. C-18, 349–365 (1969)

8. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. ACM 12, 388–394 (1965)

9. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8, 193–234
(2002)

10. Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. J. Au-
tom., Lang. Comb. 15, 107–120 (2010)

11. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Appl. of Language Methods, pp. 1–58. Imperial College Press (2010)

12. Ibarra, O.H., Jiang, T.: On one-way cellular arrays. SIAM J. Comput. 16, 1135–
1154 (1987)

13. Ibarra, O.H., Palis, M.A.: Some results concerning linear iterative (systolic) arrays.
J. Parallel Distributed Comput. 2, 182–218 (1985)

14. Ibarra, O.H., Palis, M.A.: Two-dimensional iterative arrays: Characterizations and
applications. Theoret. Comput. Sci. 57, 47–86 (1988)

15. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

16. Kutrib, M., Malcher, A.: Computations and decidability of iterative arrays with
restricted communication. Parallel Process. Lett. 19, 247–264 (2009)

17. Kutrib, M., Malcher, A.: Cellular automata with limited inter-cell bandwidth. The-
oret. Comput. Sci. 412, 3917–3931 (2011)

18. Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf.
Syst. E87-D(3), 721–725 (2004)

19. Malcher, A., Mereghetti, C., Palano, B.: Sublinearly space bounded iterative arrays.
Int. J. Found. Comput. Sci. 21, 843–858 (2010)

20. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret.
Comput. Sci. 217, 53–80 (1999)

21. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory, SWAT 1971,
pp. 188–191. IEEE (1971)

22. Seiferas, J.I.: Linear-time computation by nondeterministic multidimensional iter-
ative arrays. SIAM J. Comput. 6, 487–504 (1977)

23. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. J. Comput. System Sci. 6, 233–253 (1972)

24. Stearns, R.E.: A regularity test for pushdown machines. Inform. Control 11, 323–
340 (1967)

25. Terrier, V.: On real time one-way cellular array. Theoret. Comput. Sci. 141,
331–335 (1995)

26. Valiant, L.G.: Regularity and related problems for deterministic pushdown au-
tomata. J. ACM 22, 1–10 (1975)

	Iterative Arrays:
Little Resources Big Size Impact
	Introduction
	Preliminaries and Definitions
	Descriptional Complexity

	Time
	Nondeterminism
	Dimensions
	Communication
	References

