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Abstract. Agent-based models approximate the behaviour of simple natural and 
man-made systems. We present a simple cognitive agent capable of evaluating 
if a strategy has been applied successfully and capable of applying this strategy 
again with small changes to a similar but new situation. We describe some ex-
perimental results, present our conclusions, and outlines future work. 

Keywords: Agents, Cognitive Agents, Learning, Fuzzy Logic, Fuzzy Learning, 
Cellular Automata, Rule 184, Nagel-Schreckenberg model. 

1 Introduction 

An agent is an abstraction of an autonomous entity capable of interacting with its 
environment and other agents, [1], [2], [3], [4], [5]. The actual embodiment of the 
agent, e.g. software program in a simulated reality (e.g., virtual reality) or a stand-
alone hardware, depends on the problem for which the agent has been designed. Even 
when the agent results in something that is actually built in a tangible form, almost 
always a software instantiation exists to model and simulate it before it is actually 
built. This makes mistakes and misunderstandings explicit, thus avoiding costly 
hardware modifications. In a given simulated reality, agents perform “Reflexive 
Acts”, i.e. perceiving reality (the environment and the other agents) and responding to 
the actions (i.e., the dynamics) of other entities. The ability of agents to act autono-
mously is limited to the predefined environment and to the predefined situations to 
which the agent is expected to respond, because agents can only act in a situation 
compatible with the way they are designed.  In fact the behaviour of the agent is pro-
vided by means of a finite state machine or a set of finite state machines. A problem 
with all finite state machines is that their design, verification, validation, coding, and 
testing becomes progressively harder when trying to prepare the finite state machine 
for all possible scenarios beyond a small number. “Cognitive agents” partially solve 
this problem by performing “Cognitive Acts” (i.e., a sequence consisting of all of the 
following acts: Perceiving, Reasoning, Judging, Responding, and Learning). The 
functionality and performance of cognitive agents requires replacing the finite state 
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machine typical of “non cognitive” agents, i.e. “reactive agents”, with more complex 
functional blocks, built using computational intelligence methodology, i.e.: fuzzy 
logic, neural networks, evolutionary computation, and various types of bio-mimicry 
[6], [7]. In reality, also cognitive agents are implemented by means of software or a 
mix of hardware and software and are still far from the performance of animals and 
humans. 

In this paper we explore what may be considered some of the simplest possible 
cognitive functions of a primitive cognitive agent.  

The paper is structured as follows: section 2 describes the universe of the problem 
domain that we are studying (i.e., the environment, the population of agents, and the 
experiment); section 2.1 describes and discusses the learning algorithms implemented 
for our agents; section 2.2 describes our model and its software implementation; sec-
tion 3 contains some experimental results; section 4 presents our conclusions and 
outlines future work. 

2 The Environment, the Population of Agents, and the 
Experiment 

For our research we assume that an agent is “an autonomous entity capable of inte-
racting with its environment and other agents”, [1], [2], [3], [4], [5]. For simplicity 
and for ease of visualization as in [8], we assume that the agent is a creature with a 
strong instinct to forage for food. The environment is a piece of land with a long 
stretch of highway characterized by unidirectional vehicular traffic, without any inter-
section [8]. In some scenarios the highway is a single lane highway, while in other 
scenarios it can be a two or three lane highway. While in this paper we do not report 
on bidirectional traffic, bidirectional vehicular traffic is conceivable in our model. We 
assume that each creature must cross the highway in order to reach food. However, 
given the presence of vehicular traffic, crossing the highway may or may not be suc-
cessful for the creature. If successful, the creature simply crosses, reaches the food 
and never crosses again. Otherwise if not successful, the creature is struck by a ve-
hicle and dies. Crossing may happen at any point of the highway. 

We assume that the creatures are a population of agents who can observe the out-
come of the previous attempt to cross by other creatures of the same species [8]. 
Based on this observation each creature may decide to postpone crossing if the situa-
tion resembles one that has resulted in the death of another creature that has previous-
ly crossed. However, for realism’s sake we assume that the creature cannot derive 
quantitative information from its observations. Thus, the creature can perceive only 
“fuzzy” categories for speeds such as “fast” “medium” and “slow”, and proximities 
such as “close distance”, “medium distance”, and “far distance”. 

The experiment consists in studying how the creature can “naturally” learn to avoid 
being struck by vehicles after having observed a sufficient number of other creatures 
attempting the same or similar crossings. The creature is capable of applying several 
learning algorithms. We model the motion of the vehicles according to the Nagel-
Schreckenberg model, [9], which can be seen as an extension of ECA (Elementary 
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CA) Rule 184. This rule accurately describes the motion of a vehicle at constant speed 
of one cell per time step and null acceleration. This is unrealistic, but is a good start-
ing point to apply extensions to Rule 184 as it may be needed.  It is important to no-
tice that Rule 184 is deterministic and cannot simulate real traffic with accidents. The 
Nagel-Schreckenberg model solves the problem adding stochastic behaviour, a larger 
size neighbourhood that can be used to implement variable speed and non null accel-
eration.  Nagel and Schreckenberg extend the neighbourhood from one cell (as in 
ECA Rule 184) to five cells. They introduce six discrete velocities.  The model con-
sists of four steps that are applied simultaneously to all cars: 

• Acceleration 

• Safety Distance Adjustment 

• Randomization 

• Change of Position 

For our investigation the implementation of the Nagel-Schreckenberg model requires 
to modify the Cellular Automata (CA) paradigm and to make the evolution of the CA 
not only dependent on the state of the neighbourhood but also on the current velocity 
of each vehicle. This implies that each cell is characterized not only by presence or 
absence of a vehicle but also by a pointer to a data structure containing the current 
velocity of the vehicle. The motion of the creature is modeled similarly to the motion 
of the vehicle, with a CA-like approach. However, the creature decides if to move or 
not to move not only based on positional criteria, but also on reasoning dependent on 
what the creature has learned observing the prior experience of other creatures. 

2.1 The Learning Algorithm 

A lot of interesting research on learning algorithms has been conducted [9], [11]. 
Many algorithms have been developed for various situations [6], [7]. However, at this 
stage our interest is to start with the simplest possible algorithm, the one requiring the 
least complex brain [8]. We assume that our creature is not capable of detailed quan-
titative reasoning. We apply two main learning algorithms: a simple “naïve” algo-
rithm and a fuzzy logic based algorithm.  

We First Describe the Simple “Naïve” Algorithm 
We assume that the creature is capable of matching simple patterns. If a set of val-

ues of distance, velocity, and crossing point resulted in success (or failure) for other 
creatures, the creature attempting to cross the highway will expect that a similar set of 
values will result in a similar outcome, i.e. success or failure as it may apply. We 
assume that the creature will always repeat the action that has previously resulted in 
success. If the set of distance, velocity and crossing point does not correspond to a 
known outcome, i.e. if this situation has never occurred earlier, the creature will as-
sume that crossing is possible. At each cell where the crossing may take place the 
creature builds a “mental” table with all possible outcomes for all possible combina-
tions of vehicle distance and vehicle velocity. When behaving according to the 
“naïve” algorithm, the creature has an optimistic approach. What is not known to have 
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failed earlier, it is assumed to be successful. A “0” in the table means that either that 
situation has never occurred earlier or that it resulted in success. If crossing results in 
a creature being struck all other creatures will “write” a “1” for the specific (distance, 
velocity) combination, while if the crossing is successful a “0” will be left for the 
specific (distance, velocity) combination. In other words, the mental table in the be-
ginning is populated with 0s in the assumption that all possible distance velocity 
combinations allow crossing.  

“Naïve” Algorithm with “Fear” and “Desire” 
The mental table described so far is the knowledgebase of the creature. The 

“naïve” algorithm is totally based on this knowledge-base.  However, “fear” and “de-
sire” may alter the behavior of the creature. When a creature is created, its fear and 
desire are both random between 0 and 1. The algorithm can use this information so 
that creatures which are fearless and have a strong motivation such as availability of 
food on the other side of the road are more likely to cross in risky situations, as op-
posed to fearful creatures that even under safe conditions may not cross the highway. 
However, it is possible to use these two parameters to make all creatures behave as 
fearless/fearful. In short “fear” and “desire” act as modifiers of the decision made by 
the creature if to cross or not to cross. 

Fuzzy Logic Based Algorithm 
Two types of fuzzy logic inference algorithms are available to the creature, one us-

ing three membership functions and the other using five membership functions to 
evaluate the distance and velocity of the vehicle to decide if to cross or not to cross. 
Currently, the membership functions are triangle shaped, but more complex shapes 
are possible and will be studied in the future. 

2.2 The Model and Its Software Implementation 

The simulation software implementation is based on a configuration file containing in 
plain ascii text all parameters of the specific experiment. 

The highway traffic is modeled adopting the Nagel – Schreckenberg model, [9]. As 
customary in the traffic modeling literature, we model the one lane highway as a large 
number of adjacent cells, with each cell representing a segment of highway of 7.5m in 
length [12]. Such representation has been chosen because it corresponds on average to 
the space occupied by the typical car plus the distance to the preceding car in a situa-
tion of dense traffic jam of cars of more or less homogeneous length (i.e., trucks and 
busses are excluded). The simulation also supports multiple lanes.   

The program is based on two loops, an “external” time loop and an “internal” 
space loop [12].  The time loop simulates the passing of time, assigning a number of 
seconds to each time step. The space loop “scans” the representation of the physical 
highways, where distances are converted into cells, for every cell checking if the cell 
is occupied by a car or not. If it is not occupied by a car the next cell is examined, 
while if the cell is occupied by a car the “rule of transition” (also called “rule of mo-
tion”) is applied.  At each time step in the simulation, for each lane, a new car may  
be generated with a probability specified in the configuration file as car creation  
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probability.  If there is already a car in the first lane because it hasn’t sped up enough, 
or traffic is congested, it is added to a queue of cars waiting to enter the highway. The 
entrance point is always cell zero of each lane. Cars move according to the Nagel – 
Schreckenberg model. That is to say, they accelerate by one until they reach their 
maximum speed which is specified in the configuration file. With the assumption that 
the cells are 7.5m, a maximum speed of 10 corresponds to 99 km/h. If a car encoun-
ters another car in front of it, it slows down to match the speed to avoid a collision. 
The simulation also supports the idea of random deceleration of cars (as specified by 
the Nagel-Schrekenberg model, [9]), and can be turned on or off by setting 
RANDOM_DECEL to TRUE in the configuration file. So far we have not experi-
mented with this, as we commence our investigation focusing on understanding sim-
ple experiments. It is our intention to explore more complex situations in the future. 

The creatures are implemented in a fashion similar to the cars. They also use a 
queue so that if a creature has not yet crossed, the new creatures line up behind it. The 
creatures are generated with a creation probability at each time step, and at each cross 
point. Cross points are specified in the configuration file and can be repeated as many 
times as there are places for the creature to cross. When a creature crosses, it does so 
one lane at a time. In the presented study we consider only one fixed crossing point 
and one lane highway. In a single time step, the creature looks at the environment 
(where cars are, and with what speed they are travelling) then decides to move. If it 
decides to move, it moves onto the highway, then the cars move. If a car moves into 
the cell the creature is occupying or to a cell with coordinate number higher than the 
creature’s cell number, then the creature is hit. In order for a creature to decide 
whether to move, it must consult the global “knowledgebase” derived from the crea-
tures’ past experiences.  This “knowledgebase” is a table of states and results. The 
table has “fuzzy” categories for speed (e.g., “fast”, “medium”, and “slow”) and prox-
imities (e.g., “close”, “med”, and “far”). The values are all set in the configuration file 
for “fast”, “medium”, “slow”, “close” and “far”. When a creature attempts to cross 
under one of these conditions, if it is hit, a negative result is recorded. If the creature 
successfully crosses, a positive result is recorded. In a multi-lane highway, the result 
is propagated to all of lanes – condition pairs the creature encountered on its trip 
across the lanes. 

3 Experimental Results 

The software developed to simulate our model allows, among other things, to log the 
results of the simulation. At this preliminary stage of our research, we have produced 
500 simulation plots, each consisting of 1009 time steps. In what follows, as an ex-
ample, we show two sets of plots for different simulation parameters.  

Figure 1 shows the “crossing success rate” for different values of vehicle creation 
probability, which is equivalent to the traffic density on the road. In all cases the 
crossing algorithm is the “naïve” algorithm. The stretch of road under examination 
(i.e., being simulated) is 1009 cells long (equivalent to 7567.5 m). The road consists 
of 1 lane only. The duration of the simulation is 1009 time steps (only 50 displayed).  
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Fig. 1. “naïve” Algorithm; 1009 cells (equivalent to 7567.5 m); 1 lane; 1009 time steps (only 
50 displayed);  creature creation probability 0.1 – Vehicle creation probability: (a) 0.1, (b) 0.2, 
(c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, (g) 0.7, (h) 0.8,  (j) 0.9, (k) 1.0 
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Fig. 2.  “naïve” Algorithm; 1009 cells (equivalent to 7567.5 m); 1 lane; 1009 time steps (only 
50 displayed);  creature creation probability 0.3 – Vehicle creation probability: (a) 0.1, (b) 0.2, 
(c) 0.3 
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The creature creation probability is 0.1, while the vehicle creation probability 
ranges from 0.1, to 1.0 (i.e., case when at each time step a vehicle is always created. 
The plots show that with denser traffic the “naïve” algorithm is not sufficient to allow 
for a safe crossing. Figure 2 shows how with creature creation probability equal to 
0.3, the crossing success rate deteriorates already for values of vehicle creation prob-
ability: 0.1, 0.2, and 0.3. 

4 Conclusions and Future Work 

Agent-based models approximate the behaviour of simple natural and man-made 
systems. We present a simple cognitive agent capable of evaluating if a strategy has 
been applied successfully and capable of applying this strategy again with small 
changes to a similar but new situation. 

Preliminary results shown in section 3 indicate that simple pattern matching as in the 
“naïve” algorithm is not sufficient to allow safe crossing. We suspect that “jaywalkers”, 
as pedestrians crossing illegally between traffic lights are called in North America, have 
much better cognitive equipment than the little creatures of our experiment. We are 
planning to continue our study first by examining the outcome of the adoption of the 
two fuzzy inference algorithms programmed in our simulator. Later, if needed, we will 
apply other computational intelligence techniques such as genetic algorithm, 
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