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Abstract. We know that a few uniform cellular automata have maxi-
mum cycle lengths. However, there are many uniform cellular automata,
and checking the cycles of all uniform cellular automata is impractical.
In this paper, we define a cellular automaton by composition and show
how its cycles are related.

1 Introduction

The study of cellular automata was initiated by von Neumann in the 1940s[6].
Cellular automata have cells on a lattice, and the states of their cells (config-
uration) are determined by a transition function that references the states of
neighboring cells in the previous time step. When all cells evolve according to
the same local transition function, the cellular automaton is called a uniform
cellular automaton, otherwise, it is called a hybrid cellular automaton. Cellular
automata have been developed by many researchers as computational models
for simulating physical systems. For example, cellular automata with maximum
cycle length have been used to make pseudo-random pattern generators [1]. By
defining the transition function and cell size of uniform cellular automata well
enough, cellular automata can be made to have long cycle lengths[11]. More-
over, the necessary and sufficient conditions for having a maximum cycle length
have been shown for a hybrid cellular automata[2], and methods for finding it
have been devised by Tezuka and Fushimi[8]. For uniform cellular automata,
Matsumoto showed that five uniform cellular automata have a maximum cycle
length[5]. However, there are many uniform cellular automata, and compara-
tively little is known about their maximum cycle lengths because checking the
lengths of all of them would take so long.

Cellular automata have been defined on groups[3][7][12]. For instance, we in-
troduced cellular automata on groups in [4]. A configuration is defined as being
a function from the group into the set of states. Thus, a configuration is a way
of attaching a state to each element of the group. There is a natural action of
the group on the set of configurations, which is called the shift action. A cellular
automaton is thus a self-mapping of the set of configurations defined from a
system of local transition functions commuting with the shift.
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In this paper, we define a cellular automaton that is made from a composition
of two cellular automata, and show how it is related to its composing automata.
In fact, for two cellular automata CA1, CA2 with global transition functions
F1, F2, we can define a composited cellular automaton CA that has a global
transition function F = F1 ◦F2. Moreover, we show how CA1, CA2 and CA are
associated.

2 Cellular Automata and Composited Cellular Automata

In this section, we shall review the definitions of cellular automata and
compositions[4].

Definition 1. Let G be a group. A cellular automaton on G is a triple CA =
(G, V, V ′), in which V ⊂ G and V ′ ⊂ 2V are finite subsets of G. For V ′, we
define a function f : 2V → {φ, {e}} by

f(A) =

{
φ (A /∈ V ′)
{e} (A ∈ V ′)

and for all X ∈ 2G and a function F : 2G → 2G by F (X) =
⋃
g∈G

gf(g−1X ∩ V ).

We call f a local transition function and F a global transition function.

The set 2G is called the set of configurations.
Now let us define the operation +.

Definition 2. For X,Y ∈ 2G and A ∈ 2V , we define

– φ+ φ = φ , φ+ {e} = {e}+ φ = {e} , {e}+ {e} = φ

– X + Y =
⋃
g∈G

g((g−1X ∩ {e}) + (g−1Y ∩ {e})).

The following lemma holds for the operation +.

Lemma 1. Let X,Y, Z be elements of 2G.

1. X +X = φ,
2. X + Y = Y +X,
3. (X + Y ) ∩ Z = Z ∩ (X + Y ) = (X ∩ Z) ∪ (Y ∩ Z),
4. ∀g ∈ G, g(X + Y ) = gX + gY .

Now let us define the composition of cellular automata.

Definition 3. For cellular automata CA1 = (G, V1, V
′
1)and CA2 = (G, V2, V

′
2)

on G, the cellular automaton CA1♦CA2 = (G, V1 · V2, V
′
1♦V ′

2) is defined by

– V1 · V2 = {v1v2 ∈ G|v1 ∈ V1, v2 ∈ V2}
– V ′

1♦V ′
2 = {X ∈ 2V1·V2 |{v ∈ V1|v−1X ∩ V2 ∈ V ′

2} ∈ V ′
1}

For CA1♦CA2, the following theorem hold [4].
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Theorem 1. For global transition functions FCA1 , FCA2 , FCA1♦CA2 ,

FCA1 ◦ FCA2 = FCA1♦CA2 .

In the following, CA1♦CA2 is called a composited cellular automaton.

Definition 4. Let C be a subset of 2G and F be a global transition function of
a cellular automaton on G. We define F∞(C) by

F∞(C) := {c ∈ C|∃n > 0 c = Fn(c)}.
We call c ∈ F∞(C) an element of the limit cycle (LC) of F .

Definition 5. The local transition function f of a cellular automaton CA =
(G, V, V ′) is linear, if f(A+B) = f(A) + f(B) for all A,B ∈ 2V . So is CA.
For the local transition function f of CA and A ∈ 2V , if there exists a linear
local transition function q satisfying f(A) = q(A) + {e}, then f is affine. So is
CA.

Lemma 2. For all X,Y ∈ 2G, if a cellular automaton CA = (G, V, V ′) is linear,
then F (X + Y ) = F (X) + F (Y ).

Theorem 2. Let f1, f2 be local transition functions of CA1 = (G, V1, V
′
1) and

CA2 = (G, V2, V
′
2 ). If f1, f2 are linear, then the local transition function f1 � f2

of CA1 � CA2 is linear.

Definition 6. If no cellular automaton CA2 = (G, V2, V
′
2) satisfying FCA1 =

FCA2 and V2 � V1 exists, then CA1 = (G, V1, V
′
1) is called the minimum cellular

automaton.

Definition 7. For a cellular automaton CA = (G, V, V ′), we define the cellular
automaton CAm = (G, Vm, V ′

m) by

– Vm = {v ∈ V |{v} ∈ V ′},
– V ′

m = {A ⊂ Vm|A ∈ V ′}.
Lemma 3. For all X ∈ 2G, if a cellular automaton CA = (G, V, V ′) is linear,
then

X ∩ Vm ∈ V ′
m ⇐⇒ X ∩ V ∈ V ′.

Corollary 1. If a cellular automaton CA = (G, V, V ′) is linear, then FCA =
FCAm . Hence, CA ∼= CAm.

Lemma 4. If a cellular automaton CA = (G, V, V ′) is linear, then the cellular
automaton CAm is a minimum.

Definition 8. For a linear cellular automaton CA = (G, V, V ′), we can form
CAm = (G, Vm, V ′

m). If �Vm is even, then CA is called even linear. If �Vm is
odd, then CA is called odd linear. We assume the local transition function f
of an affine cellular automaton CA = (G, V, V ′) satisfies f(A) = q(A) + {e}
(∀A ∈ 2 V ) for the local transition function q of a linear cellular automaton
CA′. If CA′ is even linear, then CA is called even affine. Moreover, if CA′ is
odd linear, then CA is called odd affine.
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3 Commutativity Condition of Compositions

In this section, we discuss commutativity of transition functions. B. Voorhees
proved that the set of all local transition functions commuting with given local
transition functions is obtained by solving nonlinear Diophantine equations [9].
We state propositions for composited cellular automata and the commutativity
conditions for linear and affine cellular automata.

First, we shall consider linear cellular automata. Two simple linear cellular
automata commute as follows.

Proposition 1. For cellular automata CA1=(G, V1, V
′
1) and CA2 = (G, V2, V

′
2),

the following hold.

– If V ′
1 = ∅ and ∅ �∈ V ′

2 , then CA1 � CA2 = CA2 � CA1.
– If �V1 = 1 and V ′

1 = {V1}, then CA1 � CA2 = CA2 �CA1 for all CA2.

Lemma 5. Let CA = (G, V, V ′) be a minimum linear cellular automaton. For
A ⊂ V ,

A ∈ V ′ ⇐⇒ �A is odd.

Using this lemma, we can prove the following theorem.

Theorem 3. Let CA1 = (G, V1, V
′
1) and CA2 = (G, V2, V

′
2) be minimum linear

cellular automata. If G is commutative for the composition, CA1 �CA2 = CA2 �
CA1.

Now let us consider affine cellular automata. Affine cellular automata are not
linear.

Lemma 6. For all A ∈ 2V , we define A =
⋃

v∈V v((v−1A ∩ {e}) + {e}).
1. If CA is even linear, then f(A) = f(A).
2. If CA is odd linear, then f(A) = f(A).

Let F1 and F2 be global transition functions of even linear and odd linear cellular
automata, respectively. We define X =

⋃
g∈G g((g−1X ∩ {e}) + {e}). From this

lemma and the definition of the global transition function, F1(X) = F1(X) and
F2(X) = F2(X).

In the following, we define a cellular automaton CArev by CArev =
(G, V, V ′), V = {e}, V ′ = {φ}. This cellular automaton corresponds to @.

Lemma 7. Let CAeven be even linear, and let CAodd be odd linear. Then the
following hold.

– CAeven � CArev
∼= CAeven,

– CAodd � CArev
∼= CArev � CAodd.
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Proof. For X ∈ 2G,

1.

F (X) =
⋃
g∈G

gf(g−1(X) ∩ V )

=
⋃
g∈G

gf(g−1(X) ∩ V )

= F (X).

2.

F (X) =
⋃
g∈G

gf(g−1(X) ∩ V )

=
⋃
g∈G

gf(g−1(X) ∩ V )

= F (X). ��
Lemma 8. If CArev �CA2

∼= CA2 �CArev and CA1 �CA2
∼= CA2 �CA1, then

CA1 � CArev � CA2
∼= CA2 � CA1 � CArev .

The above leads us to the following theorem.

Theorem 4. Let CA1, CA2 be even affine cellular automata. Then CA1�CA2
∼=

CA2 � CA1.

Proof. Let F1, F2 be global transition functions of CA1 CA2. Then there are
global transition functions F ′

1, F
′
2 of even linear cellular automata such that

F1 = F ′
1 and F2 = F ′

2. For all X ∈ 2G,

F1F2(X) = F ′
1F

′
2(X) = F ′

1F
′
2(X) = F ′

2F
′
1(X) = F ′

2F
′
1(X) = F2F1(X). ��

Theorem 5. Let cellular automata CA1, CA2 be odd affine and let a cellular
automaton CA3 be odd linear. Then CA1 �CA2

∼= CA2 �CA1 and CA1 �CA3
∼=

CA3 � CA1.

Corollary 2. For CA1 = (G, V1, V
′
1 )ACA2 = (G, V2, V

′
2), if V

′
1 = 2V1 and V2 ∈

V ′
2 , CA1 � CA2 = CA2 � CA1.

4 Cycles of Composited Cellular Automata

In this section, we discuss the circumstances under which a limit cycle (LC)
exists and the cycles for composited cellular automata.

In the following, we assume cellular automata compositions are commutative.
Let CA = (G, V, V ′) be a composited cellular automaton of CA1 = (G, V1, V

′
1)

and CA2 = (G, V2, V
′
2). Thus CA satisfies CA = CA1 � CA2 = CA2 � CA1 and

the global transition function F is defined as F = F1 ◦ F2 = F2 ◦ F1.
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Lemma 9. Following hold.

– F (C) ⊆ F1(C),
– F (C) ⊆ F2(C).

c ∈ C−F (C) is called a configuration of the Garden of Eden (GOE). This lemma
show C − F1(C) ∪ C − F (C) ⊆ C − F (C). Therefore if c ∈ C is a configuration
of GOE of F1 or F2, then c is a configuration of GOE of F .

Lemma 10. For the set of configurations of LC, the following lemma holds.

1. F∞
1 (C) ∩ F∞

2 (C) ⊂ F∞(C),
2. F∞(C) ⊂ F∞

1 (C) ∪ F∞
2 (C).

Proof.
(1) Let c be a configuration of F∞

1 (C) ∩ F∞
2 (C). Then there exist n1, n2 > 0

that satisfy c = Fn1
1 (c) = Fn2

2 (c). Thus, Fn1×n2(c) = (F1 ◦ F2)
n1×n2(c) =

Fn1×n2
1 (Fn1×n2

2 (c)) = c by F1 ◦ F2 = F2 ◦ F1. Therefore, c ∈ F∞(C).
(2) Let c be a configuration of F∞(C). Then, there exists n > 0 that satisfies
c = Fn(c). Hence there exists an integer m that satisfies n×m > �C. Therefore
c = Fn×m(c) = Fn×m

1 (Fn×m
2 (c))(= Fn×m

2 (Fn×m
1 (c))) and c ∈ F∞

1 (C)(c ∈
F∞
2 (C)). (For t > �C and ∀c ∈ C,Fn(c) ∈ F∞(C).) ��

This lemma means that if c ∈ C is a configuration of LC of F1 and LC of F2,
then c is a configuration of LC of F .

From the commutativity of compositions, the following lemma holds.

Lemma 11. 1. If c ∈ F∞
1 (C), then F2(c) ∈ F∞

1 (C).
2. If c ∈ F∞(C), then F1(c) ∈ F∞(C).

Corollary 3.

(C − F∞
1 (C)) ∩ (C − F∞

2 (C)) ⊆ (C − F∞(C)).

If the configuration c is not an element of the set of configurations LC of F1 or
F2, then this corollary guarantees that c is not an element of LC of F .

Let us discuss the cycles of each transition function of cellular automata and
composited cellular automaton.

Lemma 12. For any c ∈ C, if there exists integers n1, n2 > 0 satisfying c =
Fn1
1 (c) = Fn2

2 (c), then c = FLCM(n1,n2)(c).

In the following, we define c ∈ F∞
1 (C) ∩ F∞

2 (C), C1 = {F t
1(c)|t ≥ 0}, C2 =

{F t
2(c)|t ≥ 0}, �C1 = n1, �C2 = n2, �(C1 ∩ C2) = m.

Lemma 13. m|n1 and m|n2 hold.

Proof. We will show the proof of m|n1. Assume m/| n1. Let the integer t be
t = min{t′ > 0|F t′

1 (c) ∈ C2}. Then, c ∈ C2, F
t
1(c) ∈ C2 and F t′

1 (c) �∈ C2

for 1 < t′ < t. Thus, F s
1 (c) ∈ C2 and there exist s > 0, s′ > 0 that satisfy

F s+s′
1 (c) ∈ C2 ∧ F s+t′

1 (c) �∈ C2 (1 ≥ t′ < s′) ∧ t �= s′. Let c = (F k
2 F

s
1 )(c) for any

integer k.
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1. If t > s′,

C2 �� F s′
1 (c)

= F s′
1 (F k

2 F
s
1 )(c)

= F k
2 (F

s+s′
1 (c)).

By F s+s′
1 (c) ∈ C2, this runs counter to our assumption.

2. We can apply the same method as above to t < s′.

Therefore, m|n1. ��
Corollary 4. We have F

n1
m

1 (C2) = C2 and F
n2
m

2 (C1) = C1.

– For 0 < t < n1

m , F t
1(C2) �= C2.

– For 0 < t < n2

m , F t
1(C1) �= C1.

Theorem 6. If C1 ∩ C2 = {c}, then
min{t|t > 0, c = F t(c)} = LCM(n1, n2).

Proof. The fact c = FLCM(n1,n2)(c) is well defined. C1 ∩ C2 = {c} implies that
C1 �= F t

2(C1) for t > 0 satisfying n1/| t. Thus, c �= F t(c) (1 ≤ t < LCM(n1, n2)).
Therefore, min{t > 0|c = F t(c)} = LCM(n1, n2). ��
Theorem 7. Let m be �(C1∩C2) = m > 1 and let t be t = min{t′ > 0|F

n1
m

1 (c) =

F
n2
m t′

2 (c)}.
min{i|F i(c) = c} = LCM(

n1 + n2t

m
, n2)× n1

(n1 + n2t)
.

Proof. By F
n1
m (c) = F

n1
m

2 (F
n1
m

1 (c)) = F
n1+n2t

m
2 (c),

= F
LCM(

n1+n2t
m ,n2)× n1

(n1+n2t) (c)

= FLCM(
n1+n2t

m ,n2)× m
n1+n2t×

n1
m (c)

= F
LCM(

n1+n2t
m ,n2)

2 (c)

= c.

We assume there exists k satisfying F k(c) = c and 0 < k < LCM(n1+n2t
m , n2)×

n1

(n1+n2t)
. By corollary 4, k is a multiple of n1

m . Let k be k = n1

m h.

c = F
n1
m h = F

n1+n2t
m h

2 (c).

Thus n1+n2t
m h must be a multiple of n2. We have LCM(n1+n2t

m , n2) <
n1+n2t

m h.
Thus LCM(n1+n2t

m , n2)× n1

(n1+n2t)
< n1

m h = k. Then this is in conflict with the

assumption. Therefore min{i|F i(c) = c} = LCM(n1+n2t
m , n2)× n1

(n1+n2t)
. ��

Corollary 5. Let �C1 = �C2 = n and �(C1 ∩ C2) = m > 1. Then let t =

min{t′ > 0|F n
m
1 (c) = F

n
m t′

2 (c)}.

min{i > 0|F i(c) = c} =
n

m
× LCM(m, t+ 1)

t+ 1
.
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5 Examples of Composited Cellular Automata

In this section, we present examples of compositions of one-dimensional two-state
cellular automata that have periodic boundary conditions. We express the local
transition functions by their Wolfram number [10]. We represent a configuration
as a binary number and show it as a decimal number.

Let us being with an example in which the cycle length of composited cellu-
lar automaton is lowest common multiple of the cycle lengths of each cellular
automaton. Figure 1, 2 and 3 correspond to CA90(5), CA240(5) and the com-
posited cellular automaton. For the configuration c = 9, C1 = {6, 9, 15}, C2 =
{5, 9, 10, 18, 20} and min{t > 0|F t(9) = 9} = 15.

Next, let us show an example in which the cycle length of a composited
cellular automaton is the maximum cycle length for a linear cellular automaton

Fig. 1. CA90(5)
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Fig. 2. CA240(5)

Fig. 3. CA90(5) × CA240(5)
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Fig. 4. CA15(5)
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Fig. 5. CA150(5)
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Fig. 6. CA15(5) × CA150(5)
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and a non-linear cellular automaton. Figure 4, 5 and 6 correspond to CA15(5),
CA150(5) and the composited cellular automaton. For the configuration c = 6,
C1 = {3, 6, 7, 12, 14, 17, 19, 24, 25, 28}, C2 = {6, 9, 15} and min{t > 0|F t(6) =
6} = 30.

6 Conclusion

In this paper, we discussed the commutativity conditions of composition and
behavior of composited cellular automata. We presented the commutativity con-
ditions of compositions of linear cellular automata and affine cellular automata.
In addition, we showed the relations of cycles of cellular automata and their
composited cellular automaton. We presented that a cellular automaton made
by composition of cellular automata has a maximum cycle length.

In the future, we will study more commutativity conditions of compositions
and the behaviors of all cellular automata. In addition, we would like to show a
systematic way to define cellular automata with maximum cycle lengths.
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