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Abstract. This paper introduces a novel image resizing method for both color 
and grayscale images. The method could be beneficial in applications where 
time and quality of the processed images are crucial. The basic idea of the pro-
posed method relies on preserving the edges by partitioning the digital images 
into homogenous and edge areas during the enlargement process. In addition, 
the basic fundamentals of Cellular Automata were adopted in order to achieve 
better performance both in terms of processing time as well as in image quality. 
By creating appropriate transition rules, the direction of the edges is considered 
so that every unknown pixel is processed based on its neighbors in order to pre-
serve the quality of the edges. Results demonstrate that the proposed method 
improves the subjective quality of the enlarged images over conventional resiz-
ing methods while keeping the required processing time in low levels. 

Keywords: Image resizing, Color/Grayscale image enlargement, Edge-oriented 
method, Cellular automata.  

1 Introduction 

The main objective of the image resizing methods is to generate a high resolution 
image from its lower resolution version. Digital images and video sequences result in 
large amount of image data. Efficient manipulation of these types of data in systems 
with limited technical specifications is a significant issue in their overall performance. 
Image interpolation techniques are the most commonly adopted methods for image 
enlargement. Nevertheless, conventional linear interpolation schemes based on space-
invariant models fail to preserve the quality of the edges and consequently produce 
resized images with blurred edges or annoying zigzag artifacts.  

Several commonly used interpolation methods have been suggested for image re-
sizing, such as nearest neighbor interpolation [1], bilinear interpolation [1], bicubic 
interpolation [2] and spline interpolation [3]. Linear approaches are the most frequent-
ly applied for the resizing process due to their low computational burden. However, 
those methods produces image artifacts like blurring on edges since no information 
related to abrupt changes of pixel values is considered. On the contrary, nonlinear 
methods produce better results; nevertheless, they appear larger computational burden 
and involve blurring, as well. Various generic approaches have been proposed to  
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improve the subjective quality of the interpolated images and overcome such defi-
ciencies. In addition, the method in [4] is based on variation models with smoothing 
and orientation constraints. The nonlinear Partial Differential Equation (PDE) prob-
lem is simplified into a series of problems with explicit solutions. Furthermore, the 
area based interpolation scheme in [5] computes each interpolated pixel by propor-
tional area coverage of a filtering window which is applied to the input image. A qua-
dratic image interpolation method [6] has been proposed with adequate visual results 
nonetheless its computational cost remains in high levels. Finally, a method to esti-
mate the model parameters piecewisely is proposed in [7] using an autoregressive 
image model. The method utilizes the covariance matrix of the high resolution image 
itself, with missing pixels properly initialized.  

An alternative type of approaches has been introduced, namely edge-directed in-
terpolation methods, in order to preserve the edges of the low resolution image and 
produce crisper results. Edge-directed interpolation methods apply a variety of opera-
tors according to the edge directions [8]. A fuzzy interpolation approach was pro-
posed in [9] for two dimensional signal resampling, however, additional processing 
for edge identification is required. In addition, a neural network approach has been 
proposed in [10] to approximate the computational rules of interpolation algorithms 
for learning statistical inter-pixel correlation of interpolated images. The method in 
[11] comprises a hybrid artificial intelligence system. A fuzzy decision system was 
proposed to classify all the pixels of the input image into human perception nonsensi-
tive class and sensitive class. The bilinear interpolation is applied to the nonsensitive 
regions while a neural network was used to interpolate the sensitive regions along the 
edges. Furthermore, the method proposed in [12] initially estimates local covariance 
coefficients from a low resolution image. These covariance estimates are used to 
adapt the interpolation at a higher resolution based on the geometric duality between 
the low-resolution and the high-resolution covariance. Despite the visually accurate 
resulted images, the above edge directed approaches show high levels of computa-
tional cost and thus, their application in real-time systems is restricted. In order to 
achieve frame rates close to real time limits while enhancing the quality of the edges, 
an edge-oriented method was proposed in [13]. The main idea is to discriminate the 
image into homogenous areas and edge areas, which are processed using different 
interpolation methods. The method achieves real-time image enlargement, neverthe-
less, the classification of the areas depends on a predefined threshold as well as two 
stages of process are required. Finally, Shi et al. in [14] initially expand the low reso-
lution image using a bilinear interpolation method and a Canny edge detector [15] is 
applied to identify the edges of the upscaled image. The final pixel values are calcu-
lated by applying some refinement functions. Despite the satisfactory visual results 
and the high frame rates, the inaccuracies inserted by the initial bilinear enlargement 
lead to blurred edges and thus, the Canny edge detector is unable to detect significant 
edges. 

In this paper, we introduce an edge-directed method which exploits the simplicity 
and the inherent parallelism of Cellular Automata [16]. Cellular automata are decen-
tralized space-time systems where interactions are local and can be used to model 
physical systems. In addition, they consist of identical rectangular cells which results 
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to a regular grid in one or more dimensions. Each cell can be marked with a finite 
number of states at each evolution step, which are updated synchronously according 
to a specified transition rule set and the states of its adjacent cells. Due to its finite 
nature, the cells belonging to the borders of the grid are updated based on the defined 
boundary conditions, i.e. periodic, fixed or reflection. Cellular automata are exten-
sively used in a variety of applications including numerous image processing me-
thods. In the past, they were exploited to perform pattern reconstruction tasks [17], 
border detection [18] and noise filtering [19]. In the proposed method, a Cellular au-
tomaton (CA) was applied to increase the resolution of digital images. The edges of a 
low resolution image are initially determined by applying the Canny edge detector 
leading to a bitwise edge map. This map is then considered as a cell grid along with a 
cell state which corresponds to the undefined pixel values. The CA evolves its state 
by applying the appropriate transition rules, which were constructed based on the 
orientation of the edges. Finally, a simple remapping of each cell state to pixel value 
is applied, which is based on the weighted summation of the adjacent pixel values. 
The method manages to preserve the initial edges adequately while achieving high 
frame rates in both color and in grayscale images. In order to evaluate the perfor-
mance of the proposed method, a quantitative comparison with other related methods 
was applied proving its effectiveness.  

The rest of the paper is organized as follows. In Section 2, the proposed method is 
analyzed while in Section 3, the experimental results are provided. Conclusions are 
drawn in Section 4. 

2 Proposed Method 

The proposed method aims at calculating the unknown pixel values, which are pro-
duced by the resizing process. The basic concept of the method is to initially classify 
the pixels of the initial image into two categories: homogenous areas and edge areas. 
The method exploits the capability of the Canny edge detector to accurately determine 
the edges of the image. Since the bitwise edge map is produced, the logical array is 
enlarged and is considered as a CA lattice. The unknown cells update their state ac-
cording to the proposed transition rules. Finally, a simple transformation is applied to 
calculate the unknown pixel values based on the state of each CA cell. For color im-
ages, the above procedure is applied to each of the RGB vector separately. The over-
all process of the method is illustrated in Fig. 1. 

 

Fig. 1. Proposed CA based image resizing method 
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2.1 Edge Detection 

The first stage of the method is the application of an edge detection technique in order 
to discriminate the homogeneous areas from the edge areas. Thus, any method re-
ported in the literature could be applied. However, most of the methods which pro-
duce more accurate edges display higher computational burden. Therefore, their ap-
plication in real-time systems is not permissible. In order to produce accurate edge 
maps with high frame rates, the Canny edge detector was incorporated. The most 
significant criteria of this selection are as follows: 

• Correct detection: edges are detected with high probability when these exist in the 
real images. 

• Accurate localization: marked edges are accurately close to the edges in the real 
images. 

• Minimal response: a defined edge is detected only once, and where possible, noise 
should not create false edges.  

The Canny edge detector is actually an optimal technique of edge detection and crea-
tion and its application relies on the criteria above: correct detection, accurate locali-
zation and minimal response. To satisfy these requirements, a technique which finds 
the function, which optimizes a given functional was used, namely the calculus of 
variations. The method produces binary edge maps by applying sequentially the fol-
lowing processing stages: 

Stage 1: Filtering the image 
The image is initially filtered using a 2D Gaussian filter of zero mean value and a 
predefined standard deviation σ in order to eliminate possible noise. The result is a 
slightly blurred version of the original image.  

Stage 2: Defining the intensity gradient of the filtered image 
At this stage, elementary edge detection operators, like Sobel, are used in order to 
define the first derivative both in the horizontal and the vertical direction. Thus, the 
gradient and direction of each pixel are defined by the following equations: 

 







=+=

Gx

Gy
dGyGxg I

I
EIIE arctan,22  (1)

 

Stage 3: Non maximum suppression 
Given estimates of the image gradients, a search is then applied to determine if the 
gradient magnitude assumes a local maximum in the gradient direction. A pixel is 
defined as an edge pixel if its direction is larger than the average direction of its area.  

Stage 4: Hysteresis thresholding 
The last stage intends to further reduce the number of edge pixels that resulted during 
the above stages. For this purpose, two thresholds are used. The process starts by 
applying a high threshold and by using the directional information; edges can be 
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traced through the image. While an edge is traced, the lower threshold is applied in 
order to trace faint sections of edges. The most frequent value for the high threshold is 
considered to be related to the highest value of the gradient magnitude of the image 
while the low threshold is usually equal to 0.4*(high threshold). 

Once the process is completed, a binary image is produced where each pixel is 
marked as either an edge pixel or a non-edge pixel. Essentially, a new image with the 
same dimensions is produced representing the edges of the initial image. 

2.2 CA Resizing 

Motivated by the binary nature of the calculated edge maps, a CA is proposed to de-
fine the state of the additional cells that resulted after the resizing process and even-
tually the pixel values Without loss of generality, it is assumed that the high resolu-
tion edge map Yi,j of size 2(M × N) directly comes from size M × N. Thus, it yields 
Y2i,2j = Xi,j. Fig. 2 gives a schematic illustration of the resulted enlarged edge map.  

 

Fig. 2. Edge map after the enlargement 

The enlarged edge map is considered to be a 2D lattice of cells where every binary 
pixel is represented by a cell. Thus, the proposed CA grid has the same dimensions 
with the enlarged image. Moreover, in order to update the state of each cell, Moore 
neighborhood is applied. In addition, the set of states must be defined. Since the en-
larged edge map includes non-edge cells (stated as “0”), edge cells (stated as “1”) and 
undefined cells, we assume that the undefined cells are marked with the state “2”. In 
concluding, the cells of the CA before its evolution can be marked with three states: 
“0” (non-edge cell), “1” (edge cell) and “2” (undefined cell). Taking advantage of the 
cellular automata flexibility, the transition rules as well as the states of the cells after 
the evolution are created in order to preserve the edges. The basic motive is to create 
states that eventually will produce crisper transitions of pixel values from non-edge 
pixels to edge pixels during the remapping process. By using such states, the orienta-
tion of each edge is considered. For example, based on the lattice of Fig. 2, let us 
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assume that the cell Y2i,2j is marked as non-edge while the cell Y2i,2j+2 is an edge cell. 
The intermediate cell Y2i,2j+1 must be evolved to a cell that will produce a pixel value, 
which is closer to the value of the edge pixel and less close to the non-edge pixel. In 
addition, if no cell in its immediate neighbor is marked as a non-edge cell, its next 
state must correspond to a pixel value which leads to a homogenous area. It must be 
mentioned that all non-edge and edge cells of the enlarged map are surrounded by 
eight unknown cells and, after the evolution, they are marked with states which leads 
to equal pixel values with the corresponding pixels of the low resolution image. In 
addition, every cell stated as “2” appears either two (horizontal or vertical cells in-
dexed as Y2i,2j+1 and Y2i+1,2j, respectively) or four cells (central cell indexed as 
Y2i+1,2j+1) with known states in its Moore neighborhood, which will eventually desig-
nate the next state. The total number of the used states and the constructed transition 
rules is 24 therefore, each cell is marked with one discrete number between the range 
of [0,23] after the evolution of the CA. Finally, null boundary conditions are used in 
order to evolve the state of the frontier cells. Fig. 3 represents simple cases of the 
above rationality.  

 

Fig. 3. Examples of the applied CA transition rules 

2.3 Remapping Process 

At this stage of the process, every pixel value of the resized image is defined based on 
the state of the corresponding cell. Let us consider that fi,j and F2i,2j corresponds to the 
low resolution image and the high resolution image, respectively. At the previous 
stage, cells indexed by (2i,2j) were marked with states that simply apply the follow-
ing: F2i,2j = fi,j. On the contrary, in order to keep computational cost in low levels, 
pixels with the indices (2i,2j+1), (2i+1,2j) and (2i+1,2j+1) are expressed as a 
weighted summation of their adjacent pixel values of the low resolution image. Thus, 
for the remapping process of these pixels, the following expressions are introduced: 

 1,2,112,2 ** ++ += jijiji fafaF  (2) 

 jijiji fbfbF ,12,12,12 ** ++ +=  (3) 
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 1,14,131,2,112,12 **** ++++++ +++= jijijijiji fcfcfcfcF  (4) 

where ak and bk , k = 1,2, corresponds to the applied weights for the F2i,2j+1 (horizon-
tal) and F2i+1,2j (vertical) pixel values of the high resolution image, respectively, while 
cm , m = 1,..4, depicts the weights applied for the central pixel F2i+1,2j+1.  

Each of the above weights is defined based on the state of the corresponding cell of 
the CA grid. In addition, the summation of each of the factors ak,bk and ck must be 
equal to one. For example, assuming that cell (2i,2j) is defined as a non-edge cell and 
cell (2i,2j+2) as an edge cell (Fig. 3(a)), weight α2 must be greater than α1 in order to 
produce a crisper value transition between the non-edge and the edge pixel. In addi-
tion, if both pixels are denoted as non-edge or edge pixels, the weights are equal in 
order to produce an expanded homogenous or edged area. Based on the case that Fig. 
3(c) presents, the cell Y2i,2j+1 is surrounded by the non-edge cell Y2i,2j and the edge cell 
Y2i,2j+2. Thus, the cell Y2i,2j+1 has been depicted during the CA evolution with a state, 
which results to the following αk weights: α1 = 0.25 and α2 = 0.75. In addition, the cell 
Y2i+1,2j is surrounded by an edge cell Y2i+2,2j, and by a non-edge cell, Y2i,2j, thus, its 
state after the CA evolution will correspond to a state where the following values will 
be used during the mapping process, b1 = 0.25 and b2 = 0.75. Finally, for the central 
cell Y2i+1,2j+1, values c1 = 0.1 and c2 = c3 = c4 = 0.3 are applied since cells Y2i,2j and 
Y2i,2j+1, Y2i+1,2j, Y2i+1,2j+1 are non-edge and edge cells, respectively.  

3 Experimental Results 

To evaluate the performance of the tested resizing methods including the proposed 
method, several tested were performed. Zero – order, bilinear, bicubic, the Nedi [12], 
the edge-oriented [13] and the proposed method were tested on both color and grays-
cale images of various resolutions. All original images were initially down sample 
and then up sampled by the same algorithm to meet the initial dimensions. The results 
shown in Fig. 4 are a comparison of all the applied algorithms for the Cameraman 
image. In order to quantify the effectiveness of every method, the Peak Signal-to-
Noise Ratio (PSNR) metric was calculated, as given by: 
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where MSE stands for the Mean-Squared-Error, calculated by:  
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where I(i,j) is the original image, F(i,j) is the approximated version of the image and 
M, N are the dimensions of the image respectively. For color images, the definition of 
PSNR is exact the same, except the MSE is the sum over all squared value differences 
divided by image size and by three.  
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Fig. 4. Resized Cameraman Images: (a) Original image, (b) Nearest neighbor, (c) Bilinear, (d) 
Bicubic, (e) Nedi, (f) Edge-oriented and (g) CA based proposed method 

All resulted PSNR values for every tested image are provided in Table 1, while in 
Table 2, the resulted execution time for each method is demonstrated. As it is de-
picted in Table 1, the proposed method produces sufficiently high PSNR values. De-
spite their low processing times, the Nearest-neighbor method produces zigzag arti-
facts over the edge areas while the bilinear method results blurred edges. In addition, 
the Bicubic method also produces blurred edges requiring more processing time. The 
highest PSNR values are produced by the Nedi algorithm nevertheless; the required 
execution time prohibits its use for real-time applications. In addition, the edge-
oriented method produces adequate PSNR values with low processing time, however, 
it is a threshold dependent method since it is required to determine the edge areas. On 
the contrary, the proposed method produces sufficiently high PSNR values preserving 
the edges of the initial image. Moreover, exploiting the inherit parallelism of the CA, 
the method displays low execution time, making it appropriate for real time systems. 

Table 1. Resulted PSNR(dB) values. NN: Nearest; BL: Bilinear; BC: Bicubic; ND: Nedi, EO: 
Edge – oriented; CA-R: Proposed method  

Image 
Method 

NN BL BC ND EO CA-R 
Koala (Rgb 256×192) 23.70 25.37 25.14 32.45 29.30 30.32 
Cam-man (Gr 128×128) 22.37 23.96 23.70 30.77 25.80 26.54 
Lena (Rgb 150×150) 26.93 28.88 28.77 34.57 30.90 31.57 
Box (Gr 320×240) 28.68 30.19 29.99 32.1 29.13 30.02 
Building (Rgb 640×480) 29.92 31.71 31.73 33.91 30.62 31.58 
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Table 2. Execution time (msec). NN: Nearest; BL: Bilinear; BC: Bicubic; ND: Nedi, EO: Edge 
– oriented; CA-R: Proposed method 

Image 
Method 

NN BL BC ND EO CA-R 
Koala (Rgb 256×192) 3.6 19 21 44860 91.2 84.4 
Cam-man (Gr 128×128) 3.1 8.7 9.7 4500 38.2 36.9 
Lena (Rgb 150×150) 3.9 13.2 15.9 18600 41.2 39.3 
Box (Gr 320×240) 3.6 9.4 10.6 5000 63.2 58.6 
Building (Rgb 640×480) 5 26.2 29.5 65290 102.4 99.4 

4 Conclusions 

In this paper, a new image resizing method based on Cellular Automata and the 
Canny edge detector was introduced. The Canny edge detector is initially applied in 
order to descriminate the edge areas from the homogenous areas. The resulted binary 
edge map is then upscaled and processed as a CA grid. Appropriate CA states and 
transition rules were constructed to evolve the CA, which eventually attempt to 
enhance the quality of the edged areas. The orientation of the edge cells is considered 
in order to preserve effectively the edges of the initial image. Finally, a simple linear 
transformation is applied to reevaluate the value of each pixel for the final resized 
image. In terms of quantative comparison based on the PSNR values, the method 
demonstrates sufficient performance while the required processing time is kept in low 
levels due to the parallel nature of the CA. The method could be considered as 
appropriate for systems with low specifications, i.e. low resolution cameras, when 
further image processing is required.  
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