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20 Avenue des Buttes de Coësmes, 35043 Rennes, France
deserable@insa-rennes.fr

http://www.insa-rennes.fr

Abstract. The void propagation defines a long-range interaction in
granular matter. We detail a logic scheme simulating the propagation and
implemented in a 2d cellular automata applied to granular flow. The CA
belongs to the family of “lattice-grain” automata (LGrA) with one parti-
cle per cell. We focus first on the influence of inertia, or “memory effect”,
on the flow patterns. The propagative mode is presented afterwards: it
implies that transition and timestep must be considered at two different
time scales. Although a CA is usually driven by local, nearest-neighbor
communications, it follows here that the timestep termination must be
detected at each transition, that involves a perpetual and global com-
munication within the network to synchronize the timestep. An all-to-all
“systolic gossiping” underlies the framework of this void propagation
model.

Keywords: lattice-grain (cellular) automata (LGrA), void propagation,
memory effect, time evolution, timestep synchronization, systolic
gossiping.

1 Introduction

Cellular automata may capture the essence of physical phenomena resulting from
elementary factors and make a suitable and powerful tool to catch the influence
of the microscopic scale onto the macroscopic behavior of complex systems [1].
Known as “lattice-gas” (cellular) automata (LGA) in hydrodynamics, they are
an extreme simplification of molecular dynamics and have been widely devel-
oped over the last forty years. Concerning granular media, there was a number
of attempts which in turn make a relative simplification of granular dynamics
and which are often known as “lattice-grain” (cellular) automata (LGrA); they
have yielded some interesting results especially for hopper flows, flows around
obstacles, segregation or stratification phenomena during free surface multiphase
flows or the formation of density waves in channel flows [2,3,4,5,6,7,8]. A state
of the art for lattice-grain models is given in [9] with references therein.

We focus here on a specific feature of our LGrA [10,11] concerning its capa-
bility of handling long-range interactions resulting from the phenomenon of void
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propagation in a granular assembly. The time evolution is governed by a “request-
exchange” synchronous mode which simulates a two-stage interaction-advection
process. The transition rule follows a simple logic including three physical compo-
nents: an external field, a set of kinematical exclusion rules and an inertial effect.
Our model is inspired by the first discrete, analytic model of Litwiniszyn-Müllins
[12,13] dealing with granular flow under gravity and including a “memory” effect
of inertia.

Section 2 recalls our LGrA logic that defines how the time evolution is driven
by the local interaction law acting on the hexavalent lattice. The inertial, mem-
ory effect is illustrated through a case study in Section 3. Section 4 describes
the logic of the propagative mode acting on the void. After a short reference
to the works upon the intensive communication protocols in coarse-grain and
fine-grain massively parallel architectures, Section 5 explains how the timestep
synchronization scheme induced by the long-range propagative logic is carried
out by means of a perpetual “systolic gossiping”. We conclude in Section 6 by
asking the question of the consistency of our model with the physical time as an
open problem.

2 LGrA Logic

2.1 Topology and Local Interaction Law

The LGrA is constructed on the 6-valent grid. This 2d topology offers the greatest
number of symmetries for a regular lattice: herein it maximizes the number
of degrees of freedom (or directions) for a displacement as well as the upper
bound of the coordination number (the number of contacts of a particle with
its vicinity). The concise notation “νdf” (0 ≤ ν ≤ 6) will be used for a law
with ν degrees of freedom. Each site is connected to its six nearest neighbors
denoted NE,N,NW,SW,S, SE. The order Ns stands for the number of sites
of the network. Since the graph is regular with degree 6, the number of links
connecting a pair of adjacent sites is clearly 3Ns.

The space occupancy principle allows one and only one particle per site,
whether it is a solid, liquid or gaseous one, the term “particle” being a purely
formal denotation. Multiphase flows are considered, where a phase φi, indexed in
the set Nφ = {1, 2, . . . , nφ} for a system of nφ phases, denotes a set of particles
provided with identical properties.

The interaction-advection process is performed by a two-stage transition ac-
cording to an original “request-exchange” mechanism. In the request stage, each
cell autonomously performs a computation composed of a precalculation followed
by a random choice. The result is a potential direction of displacement which be-
comes the direction of request. In the exchange stage, a test is performed for each
link of the network in order to detect whether an agreement has been reached
between the potential directions yielded by both adjacent sites (interaction). In
this case, a cell-to-cell exchange is performed (advection).

The behavior of a phase in a multiphase system is defined by three “physical”
components: an external field, a set of exclusion rules and an inertial effect. It
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should be pointed out that it is not so much the autonomous behavior law of
a given phase that must be taken into account but the interaction law with its
local neighborhood: a phase component is meaningful, only when embedded into
the interaction law.

2.2 Time Evolution Equations and Transition Rule

A setK = (0, 1, 2, 3, 4, 5) is assigned to the six directionsNE,N,NW,SW,S, SE.
For a given timestep, a cell contains a particle of phase φi (i ∈ Nφ) characterized
by the three following components:

– the action of an external field, depicted by a “νdf” law with a 6–fold vector

Wi = (w
(k)
i )k∈K (1)

where weights w
(k)
i are non-negative integers and ν is the number of positive

weights.
– the action of exclusion rules, precluding some direction or other depending

on the state of the local vicinity and acting according to a mode from which
the exclusion will be applied before (pre-exclusion) or after (post-exclusion)
the request. This action is depicted by the 6–fold binary vector

Ẽi = (ε̃
(k)
i )k∈K : ε̃

(k)
i = ri ε

(k)
i + (1− ri) (2)

where ε
(k)
i = 0 (or 1) whenever the site in direction k is excluded (or not)

and ri = 1 (resp. 0) for a pre (resp. post) mode assigned to the phase. In
the sequel, a pre-exclusion will always be assumed, that simplifies (2) into

Ei = (ε
(k)
i )k∈K . (3)

– the action of inertia, or “memory” effect, depicted by the 6–fold vector

Mi = (μ
(k)
i )k∈K (4)

where μ
(k)
i = ci if k was the displacement direction at the previous timestep

and μ
(k)
i = 1 otherwise. Coefficient ci takes on positive integer values and

ci = 1 means no inertia for the phase.

Prior to computing a request, a precalculation yields the corrected distribution

W ∗
i = (w

∗(k)
i )k∈K : w

∗(k)
i = μ

(k)
i ε

(k)
i w

(k)
i (5)

and the probability of sending a request in direction k is then given by

p
∗(k)
i =

w
∗(k)
i

∑
K w

∗(k)
i

(6)
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on condition that the sum of the corrected distribution be positive (p
∗(k)
i =

0 otherwise). Direction k is selected at random by a pseudorandom sequence
generated from a user-defined seed.

Let (p
∗(k)
j )k∈K be now the distribution of probabilities of the neighboring

particle of phase φj in direction k and let Xk be the representative event of a
displacement in direction k for the current particle. The probability of this event
is finally

P (Xk) = p
∗(k)
i p

∗(k+3 mod 6)
j (7)

according to the exchange protocol.
For brevity’s sake, the reader is referred to [10,11] for a more detailed descrip-

tion of our LGrA logic.

3 Inertia and Memory Effect

Modeling inertia consists in saving the memory of the particle’s displacement
direction at the previous timestep, to reintroduce it with a user-defined weight
into the new weighted distribution for the current timestep. An inertial coeffi-
cient ci, which takes on a positive integer value, is assigned to each phase φi and
ci = 1 means no inertial effect for this phase.

3.1 A Case Study

The memory effect will be illustrated through a simple granular system sim-
ulating a silo emptying process. A silo is a container provided with an outlet
through which bulk grain falls down. A two-phase system Nφ = {1, 2} is consid-
ered, where φ1 denotes the “grain” phase and φ2 the “void” phase. Let us recall
the setK = (0, 1, 2, 3, 4, 5) assigned to the six directions NE,N,NW,SW,S, SE.
Regarding the gravity axis, we adopt two scenarios:

– a “2df–2df” law (shortly denoted “2df”) with W1 = (1, 0, 0, 0, 0, 1), W2 =
(0, 0, 1, 1, 0, 0) where the pattern NE–SE means “downwards”, the sense of
the main axis being W → E;

– a “3df–3df” law (shortly denoted “3df”) with W1 = (0, 0, 0, 1, 1, 1), W2 =
(1, 1, 1, 0, 0, 0) where the pattern SW–S–SE means “downwards”, the sense
of the main axis being N → S.

A “frontal” exclusion rule R1 is assigned to φ1 and φ2: this rule prohibits two
particles with the same phase to exchange. That is, neither a grain-grain nor a
void-void exchange may occur.

The size of the container is defined by its height H = 101, its width L = 57,
giving a volume V0 of 5707 or 5729 cells, respectively for the “2df” or the “3df”
law; the negligible deviation (of 0.4%) results from a side-effect of the lattice. The
container is flat-bottomed and has no hopper, namely, its shape is rectangular.
The outlet, centered in the bottom, has a diameter D = 7 cells. The cells in
the outlet play a special role of “source” cells generating a void when a grain
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exits. The instantaneous “flow rate” is defined as the number of exiting grains
(or generated voids) per timestep. Initially, the silo is fully filled with grains. The
“porosity”, in this context, is defined from the ratio void/grain, namely zero at
initial state. A qualitative observation of the flow is made easier by zoning the
material into horizontal colored layers.

3.2 Influence of Inertia on Flow Patterns

Figure 1 highlights the action of inertia for the “2df” law under rule R1 after
T = 600 timesteps. In (a), no inertia is applied and a “funnel flow” is observed
where the upper layers fall down first. In (b), an inertial coefficient c2 = 10 is ap-
plied to the void phase and a “mass flow” is observed with a strong dissymmetry
in the emptying process. The dissimilarity between both patterns results only
from two distinct values assigned to the seed of the pseudorandom sequence,
that reveals here a sensitive dependence on initial conditions. A hopper-shaped
pattern between two shear bands separates the dynamic flow from a static “dead
zone”, with an angle of stability of 60◦ induced by the “2df” law. Moreover, the
chaotic free surface is induced by the flow above the outlet, which periodically
alternate from one shear band to the other. This kind of flow pattern was exper-
imentally observed [14]. A propagative effect acting on the voids upgoing from
the outlet appears on both sides of the hopper, though with an abnormally high
porosity.

The action of inertia for the “3df” law is displayed in Fig. 2 at state T = 1000.
In (a), no inertia is applied and a (last-in first-out) “funnel flow” is again ob-
served but with a reduction of the funnel’s depth. In (b-c), an inertial coefficient

- a - - b -

Fig. 1. “2df” law with rule R1 governing φ1 and φ2. States at T = 600 (a) without
inertial action (b) with inertial coefficients c1 = 1 and c2 = 10 and two distinct values
of the seed of the pseudorandom sequence
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c2 = 10 is applied to the void and a (first-in first-out) “mass flow” is again ob-
served but with a non-chaotic behavior and only weak instabilities appearing on
the free surface. A hopper-shaped pattern between two shear bands still sepa-
rates the dynamic flow from a static dead zone, but with an angle of stability of
30◦ induced by the “3df” law. As a consequence, the void phase is distributed
throughout the entire bulk, possibly with a porosity ratio higher than the normal
average, compared with which could be experimentally observed. Besides, while
a same value c1 = c2 is assigned to the grain phase in (b), no significant behav-
ioral discrepancy can be observed. Therefore, it should be pointed out that the
impact of a “memory” assigned to the void is significant whereas a “memory”
assigned to the grain is irrelevant in a dense packing.

- b -- a - - c -

Fig. 2. “3df” law with rule R1 governing φ1 and φ2. States at T = 1000 (a) without
inertial action (b) with inertial coefficients c1 = c2 = 10 (c) with c1 = 1, c2 = 10.

From the above observations, it may be asked what physical meaning could
be attributed to the artifact giving inertia to the void. Whenever a high value is
assigned to the “memory” of the void phase, this tends to induce, when the void
moves in a dense packing, an “indraught” to the particle located in the active
direction. During a sequence of transitions, this void will move a row of grains
one at a time but in the same direction. Although the row only moves at a rate
of one particle per timestep, a sort of effect of void propagation may occur. Let
us recall that a phase component is meaningful, only when embedded into the
interaction law.

4 Modeling a Propagative Mode

4.1 Limitation of the Transition Rule

In spite of the above remark, the transition rule as detailed in Sect. 2.2 is unable
to move two contiguous grains when one sends a request to the site of the other.
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To illustrate this deficiency, let us consider the scenario in Fig. 3 (for simplicity,
an isolated system is assumed). At state t of a one-dimensional system, m + 1
solid particles lie in sites denoted here x, x − 1, . . . , x −m while a void lies in
site x + 1. A downward request is sent by sites x, x − 1, . . . , x − m while an
upward request is sent by site x + 1. An exchange x ↔ x + 1 is then activated
while the m grains above stay at rest. So a void has been inserted in site x, for
state t + 1, although all grains above have emitted a downward request (case
(a)). This elementary transition rule does not allow the void to propagate and
the grains to tumble down simultaneously (as in case (b)).

The question of propagating the void (or more generally the fluid phase)
implies that the transition rule be reconsidered. This problem has been dealt
with for automata models applied to gravity flows, but the sequential nature of
the approach which processes particles from bottom to top violates the principle
of simultaneity and Galilean invariance [3]. The solution proposed hereafter leads
to a strictly synchronous algorithm.

(a) (b)
state t state  t + 1

x - m

x - 1

x

x  + 1

Fig. 3. State t: isolated 1d-system of m+1 solid particles in sites x, x− 1, . . . , x−m
acting under gravity; one void in site x+1. State t+1: (a) Elementary (non-propagative)
mode: void in site x. (b) Propagative mode: void in site x−m.

4.2 Time Evolution: Transition and Timestep

Including a propagative mode leads us to consider transition and timestep at
two different scales. In Fig. 3, case (a) represents the outcome of one transition
but no longer a state t + 1, and case (b) the outcome of m + 1 transitions at
state t + 1 which defines the new timestep. The transition will be said to be
instantaneous within this timestep.

A first problem is to set up a criterion to stop this transitional sequence,
namely a criterion of termination for the current timestep. The “physical” prin-
ciple we adopt is as follows:
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– a grain is allowed to move at the most one time during a timestep,

– a void stayed at rest during a transition remains locked until completion of
the current timestep.

It follows that the cell should contain an “activity” signal, to be disabled when
locking a grain or a void in one of both situations. It is easy to show that this
process terminates because the medium is of finite size. Moreover, according to
rule R1, a void will stop upon reaching the free surface. Consequently, after a
finite number of transitions, the scene will no longer contain any active void.
Therefore, since only grain-void exchanges are allowed from R1, that ensures
the end of the current timestep.

A second problem that now arises is to detect the termination, a global state
which should be perceived at the local scale, namely at the cell level. The detec-
tion algorithm runs as follows: at each transition, each cell broadcasts over the
whole network the binary signal “I have an active void” (true for an active
void, false otherwise); conversely, each cell will detect the timestep completion
whenever the predicate “There exists one active void!” becomes false; at
this time, all the cells will enable their activity signal synchronously and initiate
the next timestep.

Let us note that this synchronization problem differs from the Myhill-Moore
Firing Squad [15,16] because we have no General.

5 Timestep Synchronization

5.1 Systolic Gossiping

The previous action consisting in broadcasting a message from any cell to any
other one follows an all-to-all gossiping scheme [17]. It should be observed that,
in general, gossiping is a more consuming task, in space and time, than broad-
casting. For example, given a message of length L and a network of order N ,
broadcasting requires a buffer of size L whereas gossiping may require a buffer
of size NL. But the coarse-grained communications protocols are seldom appro-
priate for cellular automata. For this reason, further investigations were derived
under a “systolic” form (this metaphor was borrowed from H.T. Kung [18]). For
fine-grained systolic gossiping, we can refer in particular to [19] and references
therein.

For our specific case, this task is much easier to achieve, and this for two
reasons: the first one is due to the symmetries of the graph, the second because
our buffer is far from exploding. Recall first that our LGrA is constructed on
the hexavalent grid, that provides a maximal symmetry for a 2d lattice. More
precisely, the underlying graph belongs to the family of so-called “rotational”
Cayley graphs [20,21] and it is shown therein that this nice property leads to
effective gossip schemes. It is beyond the scope of this paper to describe them.
Let us just say that there exists a half-duplex 3-port systolic protocol that gossips
through the N–SW–SE pattern in a time bounded by

√
Ns steps [22]. For the
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second reason, let us assume the cell having a 1-bit buffer. When receiving the 3-
fold signal “There exists one active void!” from its N–SW–SE neighbors,
it can immediately reduce it by an “OR” operation. Therefore, a 1-bit buffer
suffices to achieve the timestep termination detection.

5.2 The Case Study Revisited

Figure 4 resumes the study of the emptying process with the “3df” law and the
same inertial coefficients of Fig. 2c for two different timesteps at T = 400 and
T = 1000 (observe for this state the identical snapshots of Fig. 2c and Fig. 4a).
The propagative mode is applied in Fig. 4b. A decrease of porosity appears in
this second case as well as the corresponding ebb of the free surface level.

T = 400

T = 1000

- a - - b -

Fig. 4. The “3df” law with rule R1 governing φ1 and φ2 and inertial coefficients c1 = 1,
c2 = 10. States at T = 400 and T = 1000 (a) without propagative law (b) with
propagative law.
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Since the snapshots are captured at the end of the timestep, it might seem
surprising that all the voids did not reach the free surface. Indeed, if we consider
a single void isolated in the bulk, the action of R1 on both phases implies that
a grain-void exchange must occur within the transition and therefore that the
void moves up surely. However, it should be pointed out that the grain’s site
requested by the void is likely to be locked. This means that the void would be
about to cross the path of another void that has already spread to the upper
layers. Disabling the grain’s site caused a lack of response and consequently the
retention of the void, which stays at rest. This phenomenon explains how the
state of non-zero porosity observed during the silo’s emptying process follows
from the definition of the criterion of propagation.

Table 1. Impact of the propagative mode on the flow process

3df H = 101 L = 57 V0 = 5729 V ∗
0 = 5391 D = 7

Mode
Non propagative Propagative Ratios

Timestep T = 400 T = 1000 T = 400 T = 1000

Voids: Nv 326 240 72 48
Grains: Ng 4848 3528 4620 2994

Flow rate Q:
Ng(t)−Ng(t+Δt)

Δt
Q = 2.20 Q′ = 2.71 Q′/Q = 1.23

Void index:
e = Nv

Ng
e = 0.0676 e′ = 0.0158 e′/e = 0.235

Porosity:
φ = e

1+e
φ = 0.0633 φ′ = 0.0156 φ′/φ = 0.246

Relaxation time:

Δtr = φV0
Q

Δtr = 165 Δt′r = 33
Δt′r
Δtr

= 0.2

Discharge time:

Δtv =
V ∗
0
Q

Δtv = 2451 Δt′v = 1990
Δt′v
Δtv

= Q
Q′ = 0.81

Free surface ebb:

U = H(t+Δt)−H(t)
Δt

U = −0.0411 U ′ = −0.0482 U ′/U = 1.17
Void mean speed:

u = H
Δtr

u = 0.6121 u′ = 3.075 u′/u = 5.02

The impact of the propagative mode on the flow process in Fig. 4 is analyzed
in Tab. 1. V ∗

0 denotes the dynamical volume of a “hopper” induced by the 3df
law and out of which a granular dead zone of V0 − V ∗

0 = 338 cells will stay at
rest on both sides of the outlet in the bottom corners of the container. The flow
rate remains constant on average from the beginning to the end of the emptying
process. As soon as the outlet is opened, the process enters a transient state
during a relaxation time before the porosity reaches a maximal threshold and
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until the first voids emerge from the free surface. Then the process enters a steady
state and the descent of the free surface is activated with constant velocity until
completion of a mass flow discharge; note that the “mass flow” pattern is only
a consequence of inertial coefficient c2. The ratios of the macroscopic quantities
between propagative and non propagative modes are given, respectively for flow
rate, void index, porosity, relaxation and total discharge times, velocity of the
descent of the free surface and vertical mean speed of the void.

6 Conclusion

This paper dealt with the various logical problems induced by the simulation
of the physical phenomenon of void propagation in a lattice-grain automata,
illustrated with a case study of a silo emptying process. After a short presentation
of the transition rule underlying the time evolution in our LGrA, the logic of
an inertial memory effect was tackled as well as its influence on the diversity
of resulting flow patterns. This background introduced the core of this study:
from a simple “physical” criterion governing the void propagation within the
medium, a logical framework is proposed to solve the successive problems of
synchronization and intensive communications yielded in the cellular automata
by this long-range interaction.

Further issues should be pursued. Firstly, the question of “memory effect”
must be tackled from its generic sense and in the context of other alterna-
tive memory mechanisms [23]. We let also open the question of consistency of
our model with the physical time: the time evolution is the main point and,
of course, our physical criterion of termination of the void propagation within
a row of grains, the perception of the instantaneous transition as well as the
transition-timestep duality should be discussed. More precisely, the property of
our model regarding Galilean invariance will be examined elsewhere and Lam-
port’s paradigm [24] between logical clocks and real-time clocks in a distributed
system appears as an appropriate startpoint. Besides, a more detailed explana-
tion about the physical results in Tab. 1 will be examined elsewhere [25].
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19. Flammini, M., Pérennes, S.: Lower bounds on systolic gossip. Information and
Computation 196(2), 71–94 (2005)

20. Désérable, D.: A family of Cayley graphs on the hexavalent grid. Discrete Applied
Math. 93, 169–189 (1999)
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