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Abstract. The role of cellular automata in optimization is a current area of re-
search. This paper presents a multi-objective approach to cellular optimization. 
A typical nonlinear problem of spatial resource allocation is treated by two al-
ternative methods. The first one is based on a specially designed operative ge-
netic algorithm and the second one on a hybrid annealing – genetic procedure. 
Pareto front approximations are computed by the two methods and also by a 
non-cellular version of the second approach. The better performance of the cel-
lular methods is demonstrated and questions for further research are discussed. 
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1 Introduction 

Cellular automata are being used for the simulation of a great variety of phenomena 
encompassing both natural processes and evolution of anthropogenic systems. In all 
those cases the system to be modeled is represented as a set or a lattice of discrete 
cells, to each one of which a certain “state” is assigned, coming from a set of possible 
states. The states of the individual cells are evolved according to a local transition 
rule. The local rule determines the next state of the cell as a function of the current 
states of the cells that are confined to the neighborhood of the cell in question.  

The formulation of the transition rule is the key issue in modeling the evolution of 
a system. A suitable transition rule is determined, such that the produced overall 
simulation will be satisfactory, according to preset criteria. This determination can be 
achieved by means of evolutionary methods, such as genetic algorithms. A multitude 
of such simulations have been presented ranging from physical to social and econom-
ic, such as forest fire propagation [1], urban development [2], adsorption - diffusion 
processes [3], traffic flow [4]. 

An alternative view of the cellular automaton concept is its use and role in optimi-
zation. Indeed, cellular automata can play a significant role as conceptual tools in 
optimization, if the system to be optimized can be modeled as a discrete set of cells 
with a well defined neighborhood structure and with certain properties, that can be 
identified as states. Then, suitable local rules have to be found, such that, starting 
from an arbitrary initial configuration, the system will be guided toward optimal ar-
rangements. Clearly, in this case the functioning of the transition rule will not be to 
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produce a simulation, but to act as an adaptive local operator in an iterative procedure 
that aims at the optimum.  

The concept of cellular automaton has been utilized in order to deal with a problem 
of groundwater management by Sidiropoulos and Tolikas [5]. Two alternative ap-
proaches were followed for that purpose: First, a genetic algorithm was embedded 
into a cellular automaton in order to effect the desired optimization. The chromo-
somes of the genetic algorithm reflected directly the local transition rules of the  
cellular automaton and an efficient solution was demonstrated. The second approach 
consisted in the application of simulated annealing. The perturbation involved in sim-
ulated annealing was chosen to take place inside the neighborhoods of the individual 
cells, thus forming the requisite local transition rule. 

An idea similar to the above genetic algorithm was later applied to a problem of 
spatial groundwater allocation [6]. The typical chromosome expressed the local tran-
sition rule of the cellular automaton and thus it acted as an operator transforming a 
base configuration. Hence, the genetic algorithm presented was characterized as an 
operative genetic algorithm [7].  The same process was generalized and reinforced 
with local search by Sidiropoulos [8]. 

The simulated annealing approach described above was applied by Sidiropoulos 
[9] to a similar spatial resource allocation problem. Both an annealing and a mixed 
annealing - genetic approach were presented, always on a cellular background. In all 
cases the introduction of the cellular automaton mechanism and concept contributed 
to more efficient numerical procedures in addition to a more appealing and realistic 
representation of the problem. 

This paper presents multi-objective versions of the above spatial groundwater allo-
cation problems. The cellular automaton concept plays the central role in the proposed 
algorithms. The genetic algorithm of the previous cited works is extended to a multi-
objective version retaining the operative character of the typical chromosome and 
incorporating the basic characteristics of Pareto front development. On the other hand, 
an extension of the simulated annealing approach is given in the form of a hybrid 
annealing – genetic algorithm with the local transition rule activating the perturbation 
of the annealing method. The same approach without the local aspect in the perturba-
tion is shown to produce inferior results. 

2 Problem Formulation 

The single-objective versions of the present problem have been presented elsewhere 
([6] and [9]). The problem is briefly reviewed here. A two-dimensional terrain is di-
vided into land blocks as shown in Figure 1. Each one of the blocks is occupied by a 
certain cultivation and it receives irrigation water form one of three wells placed as 
shown in the same Figure. The land blocks can be considered to be the cells of the 
cellular automaton and the state of each cell will be identified with the well from 
which the cell (block) is irrigated. Each block is assumed to receive water from only 
one well and the set of possible states coincides with the set of the existing wells.  
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Contrary to the above references, two separate objective functions will be considered: 
fp denoting the cost of pumping water at the sites of the wells and fT denoting the cost 
of transporting water from the wells to the individual cells. 

 

Fig. 1. Problem definition. The color of each cell signifies the well (1,2 or 3) to which the cell 
is connected 

The cells are numbered consecutively according to the scheme presented by 
Sidiropoulos and Fotakis [6]. 

Let {1,2,... }=C   be the set of cells numbered consecutively. 

Let W = {P, Q, R,…} be the set of wells. Also, let w: C → W be a function assign-
ing to each one of the cells the well to which it is connected, i.e. w(i) ∈ W , 
i 1,2,...,=  . The individual values w(i) will be identified as the states of the cells i 
(i=1,2,..,  ). The function w will determine the whole configuration, which is defined 
as 

 {w(1), w(2),..., w( )}= L  (1) 

The two objective functions associated with each configuration are now denoted more 
precisely as 

 Pf [ ] +∈L  and Tf [ ] +∈L  (2) 

Both these costs are to be considered as functionals mapping the set of all possible 
configurations to the set of positive reals. The values of the functional fP are deter-
mined with the help of a groundwater model that governs the function of an underly-
ing aquifer, while the values of fT are computed on the basis of the distances of the 
cell-blocks from the wells. From the nature of these objective functions it can be seen 
that the problem is both non linear and non-separable with respect to individual cell 
contributions. The details of the physical model and of the objective functions have 
been given elsewhere ([6], [7]) and will not be repeated here. 

The problem is to determine the configuration (1) that minimizes the pair of 
functionals (2). According to the multi-objective optimization methodology, the Pare-
to front of non-dominated solutions will be sought (e.g.[10]). For this purpose, two 
alternative algorithms will be presented in the following sections, bearing a cellular 
automaton mechanism as their basic ingredient. 
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3 Method of Solution 

3.1 A Genetic Algorithm Approach 

Genetic algorithms have been proved to be particularly advantageous for the man-
agement of multi-objective optimization problems. A single-objective version of the 
problem described in the previous section was presented by Sidiropoulos and Fotakis 
[6], along with demonstrating the superior performance of a cell-based genetic algo-
rithm. A bi-objective version of that approach is given in this section. 

Let N(i) denote the neighborhood of cell i., i.e. the set of cells neighboring to cell i 
in the sense of von Neumann and let n(i) (i)∈N . Then the set 

 {n(1), n(2),..., n( )}= O  (3) 

can be considered as an operator acting on the configuration L of Equation (1), as 
follows: Let w(i) w(n(i))= . Then the new configuration 

 {w(1), w(2),..., w( )}= L  (4) 

may be thought of as the product of an operation of the set O of Equation (3) on the 
configuration L of Equation (1) and thus be denoted as 

 = ⊗L O L  (5) 

O obviously represents the rule that, for each one of the cells, picks out one of their 
neighboring cells. The cell in question will then adopt the state of the neighbor thus 
selected. In order to determine rules that iteratively lead to “better” configurations a 
genetic algorithm will be employed. This genetic algorithm will be called an operative 
genetic algorithm (OGA) [7] and the set O of Equation (3) will be its typical chromo-
some.  

An initial base configuration L is formed with a random selection of the cell states. 
A population 

 Oi (i=1,2,…,N)  (6) 

of such chromosomes will be formed and an equal number of new configurations will 
result according to the operation of Equation (5): 

 i i= ⊗L O L , i=1,2,..,N (7) 

Each one of the new configurations of Equation (7) will be evaluated according to 
Equation (2): 

 ( ) ( )i Pi Ti P i T if , f f [ ], f [ ]=f = L L  (8) 
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The pairs fi, i=1,2,..,N of Equation (8) are considered as points on the two-
dimensional space of the objective functions and they will be used for the selection of 
the new base configuration. In the single-objective version of the problem, the new 
base configuration was selected as the one with the best value of the objective func-
tion. In the present multi-objective problem, the selection will be done on the basis of 
two criteria: domination and isolation. 

More specifically, from the set of points 

 F={fi | i=1,2,..,N} (9) 

of Equation (8), the non-dominated ones are separated. The concept of domination is 
defined in textbooks on multi-objective optimization (e.g.[10]). The notation i j  is 

used to indicate that a point i dominates a point j, where i, j {1, 2,.., N}∈ . Thus the 

subset F0 of F that contains the non-dominated points can be written as 

 { }0 j | i (1,2,.., N} with i j= ∈ ¬∃ ∈f F F  (10) 

On the other hand, for each one of the fj pairs belonging to the set F0 of Equation (10), 
the distances dj are formed from all other points of the set F of Equation (9): 

 
1/22 2

ji Pi Pj Ti Tjd (f f ) (f f ) = − + −   (11) 

where j and i are such that j 0∈f F and i ∈f F . 

From the above distances the smallest is chosen: 

 { }j jii
d min d=  (12) 

The distance dj of Equation (12) is the distance of point j to the one nearest to it, on 
the objective space. Finally, among the non-dominated points, the one is found with 
the largest dj: 

 { }base j
j

d max d=  (13) 

The point of the objective space with the index “base” of Equation (13) is character-
ized by a relative isolation with respect to the other points of the non-dominated set 
F0. Among the configurations Li of Equation (7), the one with the index “base” will 
now replace the old base configuration L: 

 base←L L  (14) 

The population of operators of the type given by (3), is the current population of 
chromosomes for the genetic algorithm. Therefore, they will now be subjected to the 
genetic operations of selection, crossover and mutation. Tournament selection will be 
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adopted for this problem. Two points i and j are picked at random from the whole 
population. If one of them dominates the other, then the dominant is selected. Other-
wise the distances di and dj are considered. If di > dj, then i is selected. Otherwise j is 
selected. 

Crossover and mutation are executed in the standard fashion on the chromosomes 
of the type (3) and finally a renewed population is produced, whose members act as 
operators on the base configuration that was defined above. It needs to be noted here 
that distance was found to be a convenient way of characterizing isolation in the pre-
sent approach. Other alternatives can be found in the literature, such as sharing dis-
tance [11] and crowding distance [10] 

 

Fig. 2. Outline of the multi-objective algorithm. The adjective best in front of the new base 
configuration means superior with respect to the criteria of domination and isolation as defined 
above. 

The present algorithm is summarized as follows: 

(a) An initial base configuration or mosaic is formed by randomly assigning a 
well to each one of the blocks. 

(b) An initial population of operator-chromosomes is formed by randomly as-
signing to each block one of its neighbors. 

(c) The chromosomes operate on the base configuration and generate an equal 
number of new configurations. 

(d) Non-domination sorting is performed and the non-dominated configurations 
are kept separately. 

(e) Out of all configurations of step (d) one is selected on the basis of domina-
tion and isolation and it becomes the new base configuration 
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(f) The current population of operator-chromosomes is subjected to tournament 
selection, crossover and mutation 

(g) The renewed population of chromosomes of step (f) will operate on the base 
configuration of step (d) and new configurations are generated, just as in step 
(c). 

(h) To the new configurations of step (g) the non-dominated ones of step (d) are 
added as elites. 

(i)  Control is transferred to step (d). 

3.2 A Hybrid Annealing – Genetic Approach 

An alternative approach to the genetic algorithm of the previous section is a scheme 
based on simulated annealing, but still retaining the characteristic of a population of 
solutions with a certain degree of genetic interaction. The concept of cellular automaton 
again plays a central role in the crucial step of perturbing the current base configuration. 
As with the operative genetic algorithm, there is also here a predominant base configu-
ration, which does not stand separately, but it is a member of a population of configura-
tions. This base configuration is perturbed, according to the annealing method.  

In order for the resulting perturbed configuration to be subjected to the annealing 
test of acceptance, a certain value or fitness needs to be defined for a configuration. 
For multi-objective problems this is an open issue. In the present approach, the so 
called energy function is adopted for the evaluation of the possible solutions in multi-
objective optimization [12]. The energy function is defined as follows: 

For i=1,2,..,N 
 Ei = 1 
 For j=1,2,..,N 

  If j i then Ei = Ei+1 

  End If 
 End For 
End For 

Extensive use of the concept of energy is made in reference [12], where more details 
are given. Below Ei denotes the energy of configuration Li:  

 Ei = E[Li]. (15) 

The above definition means that the lower the energy, the higher the value or fitness 
of the configuration. Thus the non-dominated points will have an energy value equal 
to 1. The proposed algorithm consists of the following steps: 

(a) An initial population of configurations P= {Li| i=1,2,..,N}  is formed accord-
ing to the type given by Equation (1). These configurations give rise to a set 
F of N corresponding points (fPi, fTi) on the objective space. 

(b) The initial base configuration is chosen at random from the N configurations. 
(c) The current base configuration is set equal to the initial one of step (b). 
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The annealing double loop starts at this step: 
 

(d) The current base configuration L is perturbed and a new configuration L1 re-
sults. 

(e) The respective energies E[L] and E[L1] are computed as above. 
(f) Let δE = E[L1] - E[L]. 

If δE < 0, then L1 is accepted and L ← L1 
 Else  let r = Random(0,1) and p = exp(-δE/T) 
   If r < p then L1 is accepted and L ← L1 
    Else L1 is not accepted and L remains 
  End If 
End If 

(g) By means of domination sorting algorithms, the subset Pd ⊂ P of points is 
found that are dominated by the current base configuration L. These points 
will eventually be removed from the population. Let the number of these 
points be equal to dom. 

(h) A randomly chosen subset Pr ⊂ P is formed with cardinality equal to dom-1 
(i) The base configuration L is recombined with each one of the configurations 

that generated the points of Pr. The recombination consists in an ordinary 
crossover with a single random separator. Out of the three new individuals 
involved in the crossover (one member of Pr and two offspring) the one is 
kept with the smallest energy function value (Equation 15). Thus dom-1 
members are now available. The set thus resulting is denoted as Pc 

(j) Finally, the new population will be composed as P← (P\ Pd) ∪ Pc∪{ L }, 
thus retaining the same number of configurations.  

The annealing loop is completed with step (j) and control is transferred to 
step (d). 

The temperature T that appears in step (f) is decreased every time a speci-
fied number of iterations are completed.  

The idea of removing from the population the members dominated by the 
current point is known from the literature (Smith et al., 2008). The way of 
replacing the removed elements is different in the present approach. 

The concept of cellular automaton comes into the algorithm when per-
turbing the current base configuration in step (d). Perturbation is carried out 
in two different ways. According to the first option, every cell will exchange 
states with one of its neighbors in a von Neumann neighborhood (Figure 3a). 
This is in full accord with the concept of cellular automaton and the method 
may be called cellular simulated annealing (CSA). Another mode of pertur-
bation consists in an exchange of states between the current cell and another 
one anywhere in the space covered by the cells (Figure 3b). This is clearly 
incompatible with the notion of cellular automaton and it will be interesting 
to compare its performance to that of the CSA. 
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Fig. 3. Modes of perturbation 

4 Results - Discussion 

A fictive rectangular area was considered with an underlying aquifer of infinite ex-
tent. It was divided into 100 blocks and the specific data concerning the aquifer and 
the positions of the wells have been given in [6] and in [7]. As pointed out in the sec-
tion on problem formulation, the problem is both nonlinear and non-separable. In 
previous works it was demonstrated that the operative genetic algorithm produced 
clearly superior results compared to more conventional, non-cellular approaches for 
the single-objective problem ([6] and [7]). Also, the application of simulated anneal-
ing on a cellular background gave results comparable to those of the operative genetic 
algorithm for the problem examined by Sidiropoulos and Tolikas [5] and clearly supe-
rior results compared to a more conventional version of simulated annealing for the 
problem treated by Sidiropoulos [9]. 

In the present multi-objective approach the operative genetic algorithm is com-
pared to the CSA and to the non-cellular SA described in the previous section. 

 

Fig. 4. Comparison of methods 

All three methods produced approximations to the Pareto front. It is demonstrated 
in Figure 4 that OGA produced a clearly better front in comparison to the simulated 
annealing methods. The data depicted on the figure are not scaled, because classical 
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scaling would have to be based on population maxima and minima. But in that case 
the results of the three different methods would not be directly comparable, as the 
respective populations could not have been the same. According to numerical experi-
ments conducted by the author, the introduction of an elitism, as explained in the 
description of the algorithm given in Section 3.1, contributes to the performance of 
OGA. The cellular SA yielded a front close to that of the OGA, but not covering 
clearly the whole range of OGA. 

Multi-objective cellular automata optimization has not been studied extensively as 
yet and a lot of research is needed regarding various methodological possibilities, as 
well as more extensive comparisons among methods. For instance, in the case of sim-
ulated annealing there are more alternatives to be considered with respect to the re-
placement of points removed due to being dominated by the current configuration. 
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