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Abstract. This paper proposes a cellular automata-based solution of a
two-dimensional binary classification problem. The proposed method is
based on a two-dimensional, three-state cellular automaton (CA) with
the von Neumann neighborhood. Since the number of possible CA rules
(potential CA-based classifiers) is huge, searching efficient rules is con-
ducted with use of a genetic algorithm (GA). Experiments show an very
good performance of discovered rules in solving the classification prob-
lem. The best found rules perform better than the heuristic CA rule
designed by a human and also better than one of the most widely used
statistical method: the k-nearest neighbors algorithm (k-NN ). Experi-
ments show that CAs rules can be successfully reused in the process of
searching new rules.

Keywords: Cellular Automata, Binary Classification Problem, Genetic
Algorithm.

1 Introduction

CA is a discrete, dynamical system composed of many identical cells arranged
in a regular grid, in one or more dimensions [9]. Each cell can take one of a
finite number of states and has an identical arrangement of local connections
with other cells called a neighborhood, which also includes the cell itself. After
determining initial states of all cells (an initial configuration of a CA), states
of cells are updated synchronously at discrete time steps, according to a local
rule defined on a neighborhood, with the assumption of particular boundary
conditions.

CAs were intensively studied in many science disciplines, including com-
putability theory, mathematics, physics, theoretical biology, etc. The reason is
that in spite of their simple construction and principle of operation, these rela-
tively simple systems can exhibit complex global behavior.

In spite the fact that CAs have the potential to efficiently perform complex
computations, the main problem is a difficulty of designing CAs producing a
desired behavior. One must not only select a neighborhood type and size, and
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above all the appropriate rule (or rules). Since the number of possible rules is
usually huge, this is the extremely hard task. In some applications of CAs one
can design an appropriate rule by hand based on partial differential equations
describing a given phenomenon, see for example [7]. However, it is not always
possible. In the 90-ties of the last century Mitchell and collaborators proposed to
use GAs to find CAs rules able to perform one-dimensional density classification
task [6] and the synchronization task [2].

Statistical classification is the problem of determining to which class new
observations belong, based on the training set of data containing observations
whose class is known. The binary classification deals with only two classes,
whereas in a multiclass classification observations belong to one of several classes.
The well-known classifiers are neural networks, support vector machines, k−NN
algorithm, decision trees and others.

The idea of using CAs in the classification problem was described by Maji et
al. [5], Povalej et al. [8] and recently by Fawcett [3]. Fawcett designed the heuristic
rule based on the von Neumann neighborhood (so-called voting rule) and tested
its performance on different data sets. This paper proposes a different approach:
finding appropriate CAs rules by a GA. The effectiveness of rules discovered by
a GA will be compared with the effectiveness of the hand-designed voting rule.
Both CA-based approaches will be compared with the k −NN algorithm.

This paper is organized as follows. Section 2 defines the classification prob-
lem and describes the proposed CAs-based algorithm. Experimental results are
presented in Section 3. The last section contains conclusions.

2 Binary Classification Problem and Cellular Automata

2.1 Two-Dimensional Binary Classification Problem

In this paper we deal with the classification problem described in [4] in the
context of fuzzy rule-based classification system. Let us assume that the data
space is the unit square [0, 1]×[0, 1]. Suppose that m data-points xp = (xp1, xp2),
p = 1, 2, ...,m are given as a training set from two classes: class 1 and class 2.
That is, the classification of each xp = (xp1, xp2), p = 1, 2, ...,m is known as
one of two classes. The classification problem can be stated as follows. Given m
training data find a rule (or “classifier”) which divides the data space into two
disjoint decision areas (class 1 or 2) such that the class number can be assigned
to any new observation.

2.2 Proposed CA-Based Classifier

The idea of using CAs to solve the binary classification problem is based on the
construction of a CA and finding an appropriate rule which can perform the
classification task. Since the problem is defined in the two-dimensional space,
our CA will also be the two-dimensional. The CA works on a grid of cells, so we
must partition our data space [0, 1]× [0, 1] into a grid of cells. Let us assume that
the considered CA has an equal number of cells in each dimension (N = M).
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Our CA is a three-state automaton (k = 3). The initial state of each cell is
set by training points belonging to this cell and is determined in the following
way:

– if there is no point in a cell (an empty cell), then a cell is in state 0 (a cell
is marked in grey color),

– if there are points only from class 1 in a cell, then a cell is in state 1 (a cell
is marked in white color),

– if there are points only from class 2 in a cell, then a cell is in state 2 (a cell
is marked in black color),

– if there are points from both classes (class 1 and 2) in a cell, then a cell is
in state 0 (a cell is marked in grey color).

The interpretation of the above mentioned rules is simply and intuitive. The class
of training points determines the state of a cell. If the state of a cell cannot be
assigned, a cell is in state 0 (unknown class). This can happen in two situations:
either there are no training points in a cell or there are points from both classes in
it. The performance of the CA-based classifier depends on the size of a partition.
If a partition is too coarse, the performance of the system may be low (many
observations may be misclassified). On the other hand, if a partition is too fine,
one can observe the lack of training points in corresponding cells.

The next step is to determine the neighborhood type, along with boundary
conditions. We assumed the von Neumann neighborhood and null boundary
conditions: border cells have dummy neighbors always in state 0.

After determining initial states of all cells (i.e. the initial configuration of
the CA), cells change their states synchronously according to a certain rule
which must be found. An appropriate rule transforms, during T time steps, the
initial configuration of the CA into the final configuration in which there are
no empty cells and for which the correct class number can be assigned to any
new observation. Finding an appropriate rule is a key factor for performance of
CA-based classifier.

Let us first consider the heuristic rule for the classification problem designed
by Fawcett [3]. The rule, called n4V1nonstable, is a non-stable update rule de-
fined on the von Neumann neighborhood with k = 3, in which a cell may change
its state if the majority changes. According to this rule, the state of a cell at the
next time step is determined in the following way:

– if neigh1 + neigh2 = 0, then a cell state will be 0,
– if neigh1 > neigh2, then a cell state will be 1,
– if neigh1 < neigh2, then a cell state will be 2,
– if neigh1 = neigh2, then a cell state will be rand{1, 2},

where neigh1 and neigh2 denote the number of a cell’s neighbors, respectively
in state 1 and 2, and rand{1, 2} selects randomly 1 or 2 with equal probability.
After determining initial states of all cells, the CA runs for a maximum number
of T time steps (if two subsequent CA’s configurations are identical, the run
is stopped). The intention is that cells will organize themselves into regions of
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similar class assignment (class 1 or 2). Details of this approach along with the
extension to multi-dimensional data mining are described in [3].

In our approach there is the same goal but we want to discover such rules by
the GA and compare them with the hand-designed n4V1nonstable rule and with
the k−NN algorithm. The quality of a given CA rule (n4V1nonstable rule and
rules discovered by the GA) is determined on the base of a final configuration of
the CA. We generate l new observations of the classification problem and test if
new points fall into cells with right states. If a cell is in state 1 then “the answer”
of the CA is: “the class of all points falling into this cell is 1” (and similarly with
state 2). In rare cases, when a final configuration contains cells in state 0, new
points falling into these cells cannot be classified. The score of a CA rule is the
sum of the correctly classified points.

2.3 A Genetic Algorithm for Searching Efficient Rules

Assuming the von Neumann neighborhood, with three possible cell states and
the neighborhood size equal to 5 we have 35 = 243 possible neighborhood states.
Thus, the length of a CA rule is equal to 243 and the number of possible rules
is equal to 3243. We use the neighborhood coding described below.

Fig. 1. The neighborhood coding (on the left) and the fragment of the rule - the
chromosome of the GA (on the right, in the rectangle)

Five cells of the von Neumann neighborhood are usually described by direc-
tions on the compass: North (N), West (W), Central (C), East (E), South (S).
Fig. 1 (left) presents the example of such a neighborhood: 02201. It also lists
possible neighborhood states and presents the example of CA rule (on the right,
in the rectangle). The value at position 0 in the rule (the value at the top in the
rectangle) denotes a state of the central cell of the neighborhood 00000 at the
next time step, the value at position 1 in the rule denotes a state of the central
cell of the neighborhood 00001 at the next time step and so on, in lexicographic
order of neighborhoods. One can see that the central cell of the neighborhood
02201 will be in state 0 at the next time step.
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The next step is to evaluate individuals in the initial population for the ability
to perform the classification task. For this purpose each rule in the population is
run on the initial configuration of a CA for T time steps. The initial configuration
corresponds to the given problem instance and is determined as described in
Section 2.2. The final configuration of a CA is used to compute the following
fitness function components:

– n0 - the number of cells in state 0,
– nc - the number of cells in correct state (1 or 2),
– ni - the number of cells in incorrect state (1 or 2),
– nb - the number of cells with a ”suspicious neighbor”.

Cells in correct states are these cells in state 1 or 2 whose states in the initial
configuration remained unchanged in the final configuration. Cells in incorrect
states are these cells in state 1 whose state in the initial configuration was 2 and
vice versa: these cells in state 2 whose state in the initial configuration was 1.
A cell with a “suspicious neighbor” is a cell which has at least one neighbor in
different state than cell’s own state. These values are used to compute the fitness
f of a rule i, denoted as fi:

fi = nc− ni− n0− w·nb , (1)

where w ∈ 〈0, 1〉 is a coefficient used to adjust the influence of the number of
cells with a “suspicious neighbor” on the fitness. Omitting nb factor causes that
the GA tends to evolve CA rules which change states of empty cells into the
state 1 or 2 randomly: in the final configuration cells in states 1 and 2 do not
form consistent regions, as one would expect.

Once we have the genetic representation and the fitness function defined, the
GA starts to improve the initial population of rules through repetitive applica-
tion of selection, crossover and mutation operators. In our experiments we used
the selection scheme described by Mitchell [6] in which E best individuals (the
elite) are copied without modifications to the next generation. The remaining
P −E rules are formed by crossover and mutation from the elite rules. Crossover
between two rules involves randomly selecting a single crossover point in the
rules and exchanging parts of the rules before and after this point. Mutation
is performed for each individual in the population (with the exception of the
elite rules) with the probability pm. When a given gene is to be mutated, we
replace the current value of this gene by the value 1 or 2, with equal probability.
Omitting the value 0 prevents from evolving rules with many 0s. Such rules are
more likely to produce configurations containing cells with state 0. It would be
unfavorable situation.

These steps are repeated through G generations. Then, the quality of the final
population of rules is tested on l = 1000 randomly generated new points of the
classification problem. A new point is classified correctly if it falls into a cell
whose state is the same as the class of a point. The quality of a rule is measured
by the number of correct classifications. The higher score a rule obtains, the
better classifier it represents. The result of the best rule is considered as the
result of the proposed method.
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3 Experimental Results

As test problems, we took two classification problems. In each problem the data
space [0, 1]×[0, 1] is divided into two classes according to the value of the function
g(x), i.e. if g(x) ≥ 0 then x belongs to class 1, else x belongs to class 2. The
functions used in experiments are:

– Problem 1: g(x) = −sin(2πx1)/4 + x2 − 0.5 [4]
– Problem 2: g(x) = −x3

1 + x2 − 0.3

For both problems we randomly generated 10 problem instances, where each of
them had 50 points in class 1 and 50 points in class 2 (m = 100). Each problem
instance was used to determine the initial configuration of the CA, with the
number of cells in each dimension equal to 10 (grid 10× 10).

The parameters of the CA and the GA were the following: T = 50, P = 200,
E = 50, pm = 0.05, w = 0.1, G = 500. The parameters were tuned during many
experiments and these values were chosen to final runs.

Since the GA and the n4V1nonstable rule are probabilistic, five runs of each
of them were performed. The best of five runs of the GA (CA-GA (10×10)) were
compared with the best five runs of the n4V1nonstable rule (n4V1 (10 × 10),
T = 50) and with the best results obtained by the distance weighted k − NN
method (k − NN) [1]. The k − NN was allowed to use up to five neighbors
and the best k was determined experimentally. Results of these experiments are
presented in Table 1 and Table 2.

Table 1. Problem 1: the number of correct classifications, l=1000

instance CA-GA CA-GA k −NN n4V1 n4V1
10× 10 20× 20 10× 10 20× 20

1 938 974 926 908 928
2 965 974 981 951 977
3 956 967 951 914 951
4 936 943 944 917 944
5 966 975 962 942 953
6 943 965 952 950 964
7 951 961 961 955 947
8 951 964 956 917 953
9 967 971 967 934 936
10 953 923 927 939 925

average 952.6 961.7 952.7 932.7 947.8

The structure of these tables is as follows. The first column lists the number of
a problem instance, the second and the third present results obtained by the GA
on grids 10×10 and 20×20, the fourth lists results obtained by the k−NN and
the last two columns present results obtained by n4V1nonstable rule on grids
10× 10 and 20× 20.
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Table 2. Problem 2: the number of correct classifications, l=1000

instance CA-GA CA-GA k −NN n4V1 n4V1
10× 10 20× 20 10× 10 20× 20

1 964 975 959 952 956
2 954 976 973 966 973
3 969 970 962 964 963
4 967 964 962 943 965
5 970 972 972 957 963
6 975 977 966 963 959
7 961 965 945 956 939
8 941 978 939 970 946
9 965 972 947 937 941
10 972 990 967 939 962

average 963.8 973.9 959.2 954.7 956.7

As it was mentioned, in the first experiment we compared the results obtained
by both CA-based methods on grid 10 × 10 with the results obtained by the
k −NN .

In the case of Problem 1, the CA-GA approach received better results than
the k − NN and n4V1nonstable rule in four instances (instances: 1, 3, 5, 10).
In the case of instance 9, the CA-GA obtained the same result as the k −NN .
The k −NN received better results than both CA-based methods in other five
instances. The n4V1nonstable was never the best. Looking at the average results
one can see that the best values were obtained by the k − NN . However, the
CA-GA algorithm performed significantly better than the n4V1nonstable rule.

In the case of Problem 2, the CA-GA method gained higher score than the
k − NN and the n4V1nonstable rule in seven cases (instances: 1, 3, 4, 6, 7, 9,
10). In two cases (instances 2 and 5) the k − NN received better results than
both CA-based methods. N4V1nonstable was the best in instance 8. The best
average result was obtained by the CA-GA which also performed better than
n4V1nonstable.

However, it is worth to notice that the CA-based methods perform on a grid of
cells (in contrast to the k−NN) and the performance of these methods strongly
depends on the size of the partition (the number of cells in each dimension).
In the second series of experiments we tested the quality of n4V1nonstable rule
on the same problem instances, but on the grid size 20 × 20. Results of these
experiments are presented in the sixth column in Table 1 and Table 2 (n4V1
(20× 20)).

The CA-GA method was also tested on the grid size 20× 20. We performed
two series of experiments. In the first case the initial population of rules was
created fully randomly. In the second case, we took five best rules from the final
populations obtained for the grid size 10×10 for each problem instance and then
inserted them into initial populations of the GA (grid size 20×20). Experiments
showed that the GA (grid size 20 × 20) with the initial population containing
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Fig. 2. Problem 2, instance 10: fitness of the best individual

previously discovered rules evolved better solutions than the GA with randomly
generated initial population. Moreover, inserting the best rules into the initial
population caused that the efficient rules were discovered very quickly.

As the example, let us look at the instance 10 of Problem 2. Fig. 2 presents
two runs of the GA (with the grid size 20 × 20, first 100 generations marked)
in the case of randomly generated initial population and in the case of inserting
previously discovered rules into it. In the first case, the GA needs 500 generations
(not shown in the figure) to evolve the best rule. In the second case, one of the
best rules found for the grid size 10×10 receives high fitness value on the double
grid size (15.80 in the generation 0). The GA quickly improves the best rule and
as early as in the sixtieth generation the final, best rule is discovered. This rule
obtained the high score equal to 990 (see, Table 2, instance 10).

Fig. 3 and 4 present final configurations of the best rules during selected gen-
erations of the GA in the case of randomly generated initial population (Fig. 3)
and inserting previously discovered rules into the initial population (Fig. 4). One
can see the best rule in the random initial population performs chaotically (the
first picture in the first row, Fig. 3). On the contrary, the best rules found for the
grid size 10× 10 performs quite good on the double grid size (the first picture in
the first row, Fig. 4). This is the evidence of the scalability of CAs rules: rules
discovered for a given problem instance can be used to solve the same problems
on denser grids. Results of the experiment in which previously discovered rules
are inserted into the initial population of the GA are presented in the third col-
umn of both tables (CA-GA (20× 20)). One can see that this approach usually
improves results for both problems in comparison with the CA-GA performing
on the grid 10× 10. Only in two cases (Problem 1, instance 10 and Problem 2,
instance 4) obtained results were worse. In the case of Problem 1 the average
result has improved from 952.6 to 961.7 and in the case of Problem 2 from 963.8
to 973.9.
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Fig. 3. Problem 2, instance 10, random initial population: the final configurations of
the best rule in the GA generations: 0, 20, 150, 500

Fig. 4. Problem 2, instance 10, initial population with discovered rules: the final con-
figurations of the best rule in the GA generations: 0, 8, 20, 60
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4 Conclusions

In this paper we have presented the new approach concerning binary classi-
fication in the context of CAs. The main purpose of the paper was to study
possibilities of the GA in discovering CA rules which are able to perform binary
classification task. Results of presented experiments show that the GA is able to
discover rules appropriate to solve this task for a given instance of a problem.
The best found rules perform better than the heuristic rule designed by human
and better than the k −NN algorithm.

Conducted experiments showed very interesting ability of discovered rules, i.e.
the ability of quickly adopting to larger grid size. During artificial evolution rules
store some kind of knowledge about instance which is solved. This knowledge
can be successfully reused in the process of discovering rules defined on larger
grid size. We can interpret the first run of the GA on the grid size 10× 10 as the
preprocessing phase. When more precise results are needed, the best rules can
be again used by the GA searching on more fine grid partition.
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8. Povalej, P., Lenič, M., Kokol, P.: Improving Ensembles with Classificational Cellular
Automata. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS,
vol. 3578, pp. 242–249. Springer, Heidelberg (2005)

9. Wolfram, S.: A New Kind of Science Wolfram Media (2002)


	Searching Cellular Automata Rules for SolvingTwo-Dimensional Binary Classification Problem
	Introduction
	Binary Classification Problem and Cellular Automata
	Two-Dimensional Binary Classification Problem
	Proposed CA-Based Classifier
	A Genetic Algorithm for Searching Efficient Rules

	Experimental Results
	Conclusions
	References




