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Abstract. Cellular Automata (CA) have been proposed for task scheduling in 
multiprocessor architectures. CA-based models aim to be fast and decentralized 
schedulers. Previous models employ an off-line learning stage in which an 
evolutionary method is used to discover cellular automata rules able to solve an 
instance of a task scheduling. A central point of CA-based scheduling is the 
reuse of transition rules learned for one specific program graph in the schedule 
of new instances. However, our investigation about previous models showed 
that evolved rules do not actually have such generalization ability. A new 
approach is presented here named multigraph coevolutionary learning, in which 
a population of program graphs is evolved simultaneously with rules population 
leading to more generalized transition rules. Results obtained have shown the 
evolution of rules with better generalization abilitywhen they are compared 
with those obtained using previous approaches. 
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1 Introduction 

Scheduling tasks in multiprocessor architectures is known to be a NP-complete 
problem [4] and it is still a challenge in parallel computing field. Approaches to 
explore task scheduling typically employ specific heuristics [11] or metaheuristics, 
like genetic algorithms and simulated annealing [12]. A computational effort is used 
to solve an instance of the problem in these approaches and when a new instance is 
presented to the algorithm, the process needs to start again from scratch. Besides, the 
majority of scheduling algorithms is sequential and they are not appropriate to be 
implemented in parallel hardware. Promising results obtained with the join use of 
genetic algorithms (GA) [1] and cellular automata [3] have shown a new perspective 
direction in developing fast and parallel scheduling algorithms [4-8]. 

Cellular automata (CA) are discrete dynamical systems that consist of a large number 
of simple components with local connectivity. It is necessary to design an appropriate 
neighborhood structure to use CA for scheduling. This neighborhood must reflect the 
structure of a program graph, which contains all the relevant information of the parallel 
application such as precedence of tasks, their computational costs and communication 
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costs between pairs of tasks. In the present work a nonlinear structure named Selected 
Neighborhood [4] is used to capture the intrinsic characteristics of program graphs. CA 
model applies an asynchronous updating of cells since it has returned better results in 
previous works [4, 10]. 

Some CA-based approaches had presented good results when applied to schedule 
tasks for given program graphs [4, 8]. These approaches have a learning phase 
characterized by the use of a standard GA to find the correct distribution of the tasks 
considering a single program graph. The population of such GA is formed by CA 
transition rules aiming to schedule tasks over architecture processors. Later on, 
evolved CA rules can be used to schedule the same program graph or they can be 
applied to find optimal or suboptimal solutions to other parallel programs. However, 
as we will show in Section 4, the rules evolved using previous schemes [4, 8] have 
shown almost none generalization ability, that is, they cannot find reasonable 
makespam for new program graphs not seen during learning, even if these instances 
are very similar to the one used to find them.  

A new approach is proposed here, in which a coevolutionary algorithm is used 
during learning to search for good scheduling not only for the target program graph 
but also for some similar graphs generated applying some mutations on the target 
graph. The goal is to find CA rules with better generalization ability. Therefore, a 
second population formed by variations of the target graph is evolved simultaneously 
with the transition rule population. We call this new approach as multigraph 
coevolutionary learning.  

Seredynski and Zomaya [5] have also investigated a coevolutionary approach in 
the learning phase of CA-based schedulers. However, in their approach the second 
population was formed by different initial configurations of the CA lattice to be used 
as initial allocations to evaluate rules for a single program graph. The goal of 
coevolutionary search in [5] is not to improve the generalization ability of the 
discovered rules as we are seeking here, but to improve the performance of these rules 
in relation to the proper target program. Other related works investigated CA models 
to task scheduling [7, 13, 14]. However, they employed a different kind of 
neighborhood (linear), while selected neighborhood used here and in references [4, 5, 
6, 8] have shown more efficient to solve scheduling. 

The paper is organized as follows. Section 2 contextualizes the problem of 
scheduling tasks on multiprocessor systems. Section 3 reviews previous CA models 
on scheduling. Section 4 discusses the generalization ability of CA rules – a key point 
of this work. Section 5 presents the multigraph coevolutionary learning proposed 
here. Section 6 presents some experiments accomplished with the new approach. 
Section 7 shows the main conclusions of this work. 

2 Multiprocessor Task Scheduling 

A parallel application is represented by a program graph which is a weighted directed 
acyclic graph Gp = (Vp, Ep). Vp is the set of Np tasks of the parallel program. It is 
assumed that each task is a computational indivisible unit. There is a precedence 
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constraint relation between tasks k and l if the result produced by task k has to be 
available to task l, before it starts. Ep is the set of precedence relations between tasks. 
A program graph has weights associate to nodes and edges: bk describes the 
processing time required to execute a given task on any processor and akl describes 
the communication time between pairs of tasks k and l, when they are located in 
distinct processors. The purpose of scheduling is to distribute the tasks of a parallel 
program among the processors in such a way that the precedence constraints are 
preserved and the total execution time (or makespam) T is minimized. T depends on 
tasks allocation between processors and on some scheduling policy that defines the 
order for executing tasks within processors. Attributes can be associated with each 
node k in a program graph such as: the level hk is defined as the maximal length of the 
longest path from a node k to an exit node and the co-level dk is defined as the length 
of the longest path from the starting node to node k. If they are calculated depending 
on tasks allocation they are called dynamic level and dynamic co-level [4]. Some 
special sets are defined in relation to a given task k: predecessors(k), brothers(k) 
(nodes that have at least one common predecessor) and successors(k). The 
multiprocessor architecture used in the present work is composed by two identical 
processors: it is assumed that both processors have the same computational power and 
communications between channels do not consume any extra time. 

3 Cellular Automata-Based Scheduling 

Cellular automata are discrete complex systems that possess both a dynamic and a 
computational nature. Basically, a cellular automaton consists of two parts: the 
cellular space and the transition rule. Cellular space is a regular lattice of N cells, each 
one with an identical pattern of local connections to other cells, and subjected to some 
boundary conditions. CA are characterized by a transition rule, that determines which 
will be the next configuration of the lattice, from their current one. Cells interact 
locally in a discrete time t: for each cell i, a neighborhood of radius r is defined; the 
state of the cell i at time t + 1 depends only on the states of its neighborhood at time t 
and its current state. Cells updating is usually performed in a synchronous way. 
However, asynchronous updating is also possible. In sequential updating, only one 
cell is update at each time step, starting from the first cell. 

A scheduler model was presented in [4] where each lattice cell is associated with a 
task. Considering two-processor architectures, the lattice is binary and each cell state 
indicates that the corresponding task is allocated either in the processor P0 or P1. 
Each lattice configuration corresponds to a different allocation of the tasks in the 
processors. Makespam T associated to a given lattice is calculated using a scheduling 
policy that defines the order of the tasks within each processor. The scheduling policy 
used is: the task with the highest dynamic level is performed first. 

CA evolve according to their transition rules. The goal is to find a CA rule able to 
converge the lattice to a final allocation of tasks, which minimizes T, starting from 
any initial allocation. The nonlinear structure of a program graph is represented in [4] 
by a nonlinear CA neighborhood named Selected Neighborhood. Only two selected 
representatives of each set of predecessors, brothers and successors are used to create 



114 G.M.B. Oliveira and P.M. Vidica 

the neighborhood of a cell associated with a task k [4]. The two representative tasks 
are selected on the basis of maximal and minimal values of a chosen attribute. The 
neighborhood for a cell k consists of 7 cells (including cell k). The length of a rule is 
250 bits and there are 2250 possible rules [4]. Although sequential updating of cells is 
not usual as the synchronous one, considering CA broad context, it has returned 
interesting results in previous works involving CA-based scheduling [4, 6] and it is 
also investigated in the present work. 

CA-based scheduler presented in [4] has two stages: a learning phase and an 
operating phase. In the learning phase, a GA [1] is used to search for CA rules able to 
schedule a specific program graph. GA begins with a population of P rules randomly 
generated, encoded as binary strings. Rule’s fitness is calculated by: (i) using a set of 
initial configurations (ICs) corresponding to initial allocations of a program graph; (ii) 
applying the rule starting from each IC for M time steps and calculating the 
makespam T for each final allocation; (iii) adding the values of T calculated for all the 
ICs evaluated to obtain the fitness. The smaller is the fitness the better is the rule. GA 
is simple and it is based on the framework to evolve rules to solve density 
classification task [12]. At the end, population is stored in a repository of rules. In 
operating phase, it is expect that, for any initial allocation of tasks, stored rules will be 
able to find an allocation providing the optimal T (or near to). It is also expected that 
rules evolved in the learning phase can be used in other graphs different from the one 
for which they were learned providing a good performance. The scheduler model in 
[4] was further investigated in references [5, 6, 8]. 

4 Generalization Ability of Previous Models 

In previous CA-based schedulers [4, 8], a single program graph was used to discover 
CA rules in learning phase. GA evolves the rules calculating their fitness based only 
on this target graph. Published results have shown that the CA-based scheduler was 
able to discover rules that can successfully schedule several program graphs 
investigated in literature. However, when the discovered rules evolved for a specific 
graph were applied to other programs, conclusive results about the generalization 
ability of rules have not been published as we argument in the following. 

It is interesting to point out that this generalization ability of evolved rules is 
crucial to CA-based scheduling. The huge computational effort necessary to discover 
the CA rules is justified only if these rules are able to be reused in new problems. 
Otherwise, a GA can be directly used in the search for optimal configurations of each 
graph independently, without the need to involve CA rules in the model. The idea 
behind the application of transition rules is the possibility of reusing them in new 
instances, without the need of a new process of evolutionary learning. 

The generalization ability was evaluated in [4] using graphs Gauss 18 and Tree15. It 
was presented that rules evolved for Gauss18 were successfully applied to schedule Tree 
15. However, when the rules evolved for Tree15 were applied to schedule Gauss 18, the 
results were not good: the best makespam found was 62 and the optimum is 44 (time 
units). Besides, the rules evolved for Tree 15 in [4] were applied to “similar” graphs 
Tree63 and Tree127. In this last test, the rules were able to schedule the two new graphs 
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obtaining the optimum time. What is important to point here is that the family Treex is 
formed by graphs with a very regular structure (binary trees), which are easy to schedule. 
We performed a simple test to evaluate the difficulty of solving the scheduling of Tree15: 
10,000 random lattices of CA were sorted and T associated to each allocation was 
calculated. The optimum T is 9: average T found was close to 9.8 and in approximately 
40% of the random allocations optimum was obtained. So, even using a random allocation 
it is relatively easy to obtain the best scheduling for this kind of graph. The same test was 
performed for Gauss18, which has the optimal makespam equal to 44. In this case the 
average makespam obtained was close to 75 and none of the 10,000 random allocations 
returns the optimum. It is clear that for Gauss18, which represents a real parallel program, 
the scheduling problem is actually difficult to solve. Therefore, the results obtained 
reusing rules evolved for Gauss18 in the scheduling of Tree15 presented in [4] must be 
taken in a relative sense: the results are as good as if one uses a random allocation.  

In subsequent works, few results about the generalization ability were presented. In 
[5] the generalization results refer again to the application of rules in family Treex. In 
[6] this generalization ability was tested using rules evaluated for two program graphs 
separately (g18 and rnd25) in a new graph formed by joining these two graphs. Using 
a model based on an artificial immune system, the rules were able to schedule the 
mixed graph. Although these results are interesting, the learning phase was applied 
again to obtain the new rules. The related studies [4-8] are promising but just a little 
information about generalization ability was shown. 

Aiming to better investigate such desirable ability, we realized experiments based 
on the model described in [4] and [8] applying the evolved rules to graphs totally 
different from the one used in the learning phase. In these experiments we used four 
graphs also applied in [4-8]: Gauss18, G18, Tree15 and G40 with optimum equal to 
44, 46, 9 and 80, respectively. Each one of these graphs was used in learning phase as 
the target graph and then evolved rules were applied to the target graph and to the 
other three graphs in the operating phase. It was possible to observe that for each 
evaluated target graph the best rule evolved is able to find the optimal makespam for 
all the initial configurations tested. However, when the best evolved rules were 
applied to a graph different from the target one the results were not good in general. 
The unique exception is graph Tree15: the average makespam (considering all IC) 
when the target graph used as an input for the learning phase was Gauss18, G18 and 
G40 is 9.84, 9.63 and 9.39, respectively. For the other graphs, the results are not 
reasonable. For Gauss18 the optimum is 44 and it was found 72.78, 62.85 and 58.36 
using rules evolved for target graphs G18, Tree15 and G40, respectively; no rules was 
able to find the optimal time. For G18 the optimum is 46 and it was found 58.46, 
59.08 and 61.27 using rules evolved for target graphs Gauss18, Tree15 and G40, 
respectively; no rules were able to find the optimal time. For G40 the optimum is 80 
and it was found 97.51, 87.41 and 105.2 for the target graphs Gauss18, Tree15 and 
G40, respectively. Due to the arguments and results presented we concluded that 
reasonable results about the generalization ability of the evolved rules were found 
only in graphs in which an optimal solution was relatively easy to obtain.  

Another kind of investigation of generalization ability of previous CA-models [4, 
8] were performed in [10]. This study concentrates on the following question: if CA 
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rule evolved based on a specific program graph has some kind of generalization 
ability, this rule should return reasonable results (near to the optimal) at least when it 
is applied to new graphs that are similar variations of the original. Simple tests were 
carried out to evaluate if rules evolved for Gauss18 return reasonable results when 
they are applied to other graphs very similar to it, using fifteen graphs with 18 tasks 
very similar to Gauss18. Experiments using a simple GA (without CA rules) were 
conducted to find reference values for the similar graphs, since their optima are 
unknown. Besides, 10,000 random allocations were used to calculate average 
makespam considering all allocations for each similar graph. Best reference values 
were not easy to obtain using random allocations, as we expected for graphs closely to 
Gauss18. Finally, the best rules evolved for Gauss18 using the model in [4] in the 
learning phase was reused to schedule the fifteen new graphs.  

Comparing the average time found in reuse with the average time found using 
10,000 random allocations, it was possible to verify evolved rules indeed perform a 
kind of scheduling in all the graphs, because it was possible to reduce the makespam, 
starting from a random initial configuration. However, if one considers the average 
makespam found in operation phase with the best reference value for each graph, the 
makespam obtained with the CA rules is around 20% above the best value, 
considering the fifteen graphs. Therefore, considering CA-based model described in 
[4, 8], rules evolved using Gauss18 as the target graph when applied to new similar 
graphs were able to return makespam better than random allocations. But these values 
are still distant from the best possible. Besides, in reference [10], an approach called 
joint evolution was proposed, which also uses more graphs besides the target one 
during the learning phase. However, this set of graphs is kept frozen during the 
evolution and no coevolutionary strategy is employed. These previous results were 
promising and they inspired us to propose the multigraph coevolutionary learning 
discussed here which returned the best results of our investigation. 

5 Multigraph Coevolutionary Learning 

In the new approach to the learning phase proposed here, a coevolutionary 
environment [2] is used to evolve CA rules able to schedule program graphs. In this 
model, coevolutionary interactions are modeled as predator and prey metaphor. 
Coevolutionary algorithms evolve different populations during the evolutionary 
process (one of possible solutions and another of instances to solve) and mutual 
feedback mechanisms between the individuals of both populations provide a strong 
driving force towards complexity. Two populations involved in CA-based scheduler 
are: P1 formed by possible solutions to the problem (CA rules) and P2 formed by 
different program graphs. P2 is composed by the target program graph (for example, 
Gauss18) and its random variations, i.e., program graphs very similar to the target 
one. We employed a total coevolutionary model in which both populations are 
modified by genetic operators during the evolutionary search [9] (another model is the 
partial coevolutionary in which only one population is actually evolved with 
operators). Considering P1, selection, crossover and mutation operators are applied in 
the transition rules evolution. Considering P2, only selection and mutation are applied: 
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selection decides which program graph will be discarded at each generation step and 
mutation operator creates a new variation of the target graph.  

Let Tp1 and Tp2 be the size of populations P1 and P2, respectively. P2 is composed 
by the target graph and Tp2 - 1 program graphs randomly generated based on the target 
one. The other individuals of P2 are variations of the target program, each one having 
1 to 4 mutations in relation to original graph. The possible modifications can be: (i) a 
different computational cost associated to a task; (ii) a different communication cost 
associated to an edge from task k to task j; (iii) exclusion of an edge from task k to 
task j; (iv) inclusion of a new edge from task k to task j, being the order of k lesser 
than the order of j and the cost associated to the new edge will be randomly generated 
between the biggest and the smallest communication cost of the target program.  

In each generation, Tp2 program graphs – including the target one – are used to 
evaluate all Tp1 transition rules. In this evaluation, I initial configurations (IC) of the 
lattice are used to evaluate the ability of each CA rule of P1 to schedule one program 
graph of P2. Starting from each IC (representing an initial allocation), CA rule is 
applied over the lattice by M time steps and makespam T associated to the final 
configuration is computed. The rule fitness is given by the sum of T for all I tests.  

P1 individuals are evolved as in [4]: (i) randomly sorting a initial population of Tp1 
rules; (ii) randomly sorting a set of I initial configurations of the lattice, different for 
each generation and testing them on each rule as described above; (iii) copying the E1 
best rules (elite) without modification to the next generation. Forming the remaining 
Tp1- E1 rules for the next generation applying the single-point crossover operator to 
randomly sorted pairs of elite rules, which are submitted to mutation (subject to a 
given rate); (iv) the process returns to step ii and continues a predefined number of 
generations G; (v) the population of the last generation is stored in a repository of 
rules. P2 is also modified during the evolutionary process. The selection strategy 
adopted here is simple: the target graph is kept in P2 during all execution and each 
program graph in P2 participates of the evaluation of P1 for at least 10 generations. As 
a consequence, the initial Tp2 individuals are frozen in the first 10 generations. 
Starting from generation 11, the variation with the worst fitness in the last 10 
generations is eliminated and substituted by a new one: a mutation forming by 
applying 1 to 4 modifications on the target graph. In operating phase, the discovered 
rules are applied to schedule different variations of the target graph to test the quality 
of discovered rules. It is expect the coevolved rules have good generalization ability.  

6 Experiments 

The target graph used in the experiments described here is Gauss18. We used in the 
operating phase 40 different variations to evaluate the rules found with coevolutionary 
learning. All theses variations have 18 tasks and there are 10 graphs with 2 
modifications in relation to Gauss18, 10 graphs with 3 modifications, 10 graphs with 
4 modifications and 10 graphs with 5 modifications.  

Initially, we reproduce the environment described in [4] and explained in Section 
3, where a standard GA was used to search for CA rules; we named it GA_Learning. 
A second environment was implemented using the multigraph coevolutionary 
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learning described in last section and we named it CO_Learning. Both environments 
were implemented in C language. We choose the Selected Neighborhood because it 
has shown more appropriated to Gauss18 graph as presented in [4] and as observed in 
our own experiments. The chosen attributes for this neighborhood were the same 
adopted in [4]: static co-level for predecessors, computational cost for brothers and 
communication cost for successors. Both environments use the scheduling policy “the 
task with the highest dynamic level is performed first”. As reported in [4] sequential 
updating mode has shown to be more appropriate to deal with Gauss18, due to its 
intrinsic non-linearity [5]. Some initial experiments using GA_learning environment 
confirmed it. Thus, we performed the experiments described here using sequential 
updating. CA and GA parameters were Tp1 = 100, Tp2 = 10. E1 = 10, pcross = 0.90, pmut 
= 0.012, G = 100, I = 25 and M = 50.  

The first experiment was carried out with 30 runs of GA_learning performing the 
search for CA rules able to schedule Gauss18. Initially, the quality of the discovered 
rules was evaluated in the operation phase based only on Gauss18 as in [4]. A 
hundred initial configurations randomly sorted were used to test each rule of the final 
GA population. About fifty rules were able to find an optimal scheduling (T = 44) in 
all the 100 ICs evaluated. The results found were compatible with [4]. Aiming to 
evaluate the generalization ability of these rules, we use them as schedulers in the 40 
random variations of Gauss18. In these tests we also use 100 ICs to evaluate the rules 
for each program graph. The results are presented in Table 1, where the 40 graphs 
were categorized in 4 groups according to the number of variations of the graphs in 
respect to Gauss18: Group_2 (10 graphs with 2 modifications), Group_3 (10 graphs 
with 3 modifications), and so on. Table 1 presents average results of the best rule 
found with each environment, for each group of graphs. Taverage is the average 
makespam obtained using the best evolved rule to schedule the respective graph 
starting from 100 different IC; Tmin is the minimum value of T found starting from 100 
different IC. The table presents the average values of these metrics associated to each 

set of 10 graphs: T average and T min. It also presents. the average values considering the 
40 graphs as a whole. Using these values we calculated the confidence interval 
associated to GA_Learning: we have 95% of confidence that average makespam is 
between 52.25 and 53.63. 

 
Table 1. Operation Phase: results found aplying rules evolved in learning phase for each group 
of variations of Gauss18 

GRAPH

         average             min          average             min

Group_2 51,75 50,4 47,96 45,4
Group_3 51,03 48,2 48,02 45,5
Group_4 54,32 49,6 50,29 46,6
Group_5 54,69 51 51,15 47,1
Average 52,94 49,8 49,35 46,15
Conf. Int.

GA_Learning CO_Learning

(52,25 to 53,63) (48,49 to 50,10)

T T T T
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Subsequently, a new experiment was conducted using the new coevolutionary 
approach presented in section 5. It was named CO_Learning and it was also formed 
by 30 runs. The operation phase was also tested to evaluate the generalization ability 
of the discovered rules, as presented in Table 1. Comparing the performance of the 
rules found in each learning environment, one can see that rules found by 
CO_Learning overcame those found by GA_Learning in all groups of 10 graphs, both 
in the best makespam as in the average makespam found by the best rules. This 
superiority reflects in the average of T found considering the 40 graphs: 49.35 and 
52.94, for CO-Learning and GA-Learning, respectively. The confidence interval 
associated to the CO_Learning environment was also calculated: we have 95% of 
confidence that makespam is between 48.49 and 50.10. Comparing with the 
confidence interval calculated with the rules evolved with GA_Learning (52.25, 
53.63), one can see that the coevolutionary environment returns a better performance.  

We used the null hypothesis to evaluate if the rules of the second experiment are 
better than the first: there are significant evidences that a coevolved rule returns lower 
than a single evolved rule. We have 95% of confidence that this improvement is 
between 2.87 and 4.31 time units. As the best makespam found for these variations 
are close to 44 time units (optimum for Gauss18), it represents a decrease of 10% in 
respect to the previous model. We understand that these results qualify the coevolved 
rules as more general than the single evolved rules. 

7 Conclusions 

Starting from the multiprocessor scheduler model proposed in [4], we investigated a new 
approach to the learning phase, in which a coevolutionary genetic algorithm is used to 
search for CA rules able to schedule tasks over a parallel architecture. The coevolutionary 
algorithm evolves two populations simultaneously: the first formed by CA transition rules 
and the second formed by a target program graph and some random graphs that are similar 
to the target one, generated applying simple modifications in the original graph. 

An important observation that we made about the related studies in [4-8] is that just 
a little information about the generalization ability related to the evolved rules was 
available and just few examples of successful reusing of such rules were indeed 
verified. We realized experiments applying the rules evolved in the learning phase to 
graphs different from the target graph and we concluded that reasonable results were 
found only in graphs where an optimal solution was easy to reach.  

Rules evolved by the coevolutionary method proposed here have presented better 
generalization ability. They returned a better performance to schedule new graphs 
similar to the target one. It was possible to verify such ability in experimental results. 
These rules outperformed the scheduling accomplished by rules obtained through the 
strategy used in [4], that we called single evolution. 

Such generalization ability is primordial to a CA-based scheduling model. The 
evolved rules should be able to schedule not only the target program graph but they 
must have an intrinsic scheduling strategy in such a way that when they are applied to 
a new program, optimal or suboptimal allocations are returned without the need for a 
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new evolution. Although CA-based schedulers have been proposed with the aim to 
find rules with a high level of generalization, such ability was not easy to obtain in 
previous work [4-7]. Using the proposed coevolutionary approach, this ability was 
obtained at least for program graphs similar to the target one. 

The results presented in the present work focus on the generalization ability of the 
evolved rules in respect to schedule graphs similar to the target one. Nevertheless, the 
desirable skill of these evolved rules is to have generalization ability not only in 
respect to these graphs but also for graphs more different from the graphs used to 
evolve the rules. We are working in this problem now but we face the results using 
the similar graphs as an important step to achieve this goal. 
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