
G.C. Sirakoulis and S. Bandini (Eds.): ACRI 2012, LNCS 7495, pp. 111–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Coevolutionary Approach to Cellular Automata-Based
Task Scheduling

Gina M.B. Oliveira and Paulo M. Vidica

Faculdade de Ciencia da Computacao - Universidade Federal de Uberlandia (UFU)
Av. Joao Naves de Avila, 2121- Campus Santa Monica, Bloco B, sala 1B60

CEP: 38400-902 Uberlandia, MG, Brazil
gina@facom.ufu.br

Abstract. Cellular Automata (CA) have been proposed for task scheduling in
multiprocessor architectures. CA-based models aim to be fast and decentralized
schedulers. Previous models employ an off-line learning stage in which an
evolutionary method is used to discover cellular automata rules able to solve an
instance of a task scheduling. A central point of CA-based scheduling is the
reuse of transition rules learned for one specific program graph in the schedule
of new instances. However, our investigation about previous models showed
that evolved rules do not actually have such generalization ability. A new
approach is presented here named multigraph coevolutionary learning, in which
a population of program graphs is evolved simultaneously with rules population
leading to more generalized transition rules. Results obtained have shown the
evolution of rules with better generalization abilitywhen they are compared
with those obtained using previous approaches.

Keywords: Cellular automata, task scheduling, coevolution.

1 Introduction

Scheduling tasks in multiprocessor architectures is known to be a NP-complete
problem [4] and it is still a challenge in parallel computing field. Approaches to
explore task scheduling typically employ specific heuristics [11] or metaheuristics,
like genetic algorithms and simulated annealing [12]. A computational effort is used
to solve an instance of the problem in these approaches and when a new instance is
presented to the algorithm, the process needs to start again from scratch. Besides, the
majority of scheduling algorithms is sequential and they are not appropriate to be
implemented in parallel hardware. Promising results obtained with the join use of
genetic algorithms (GA) [1] and cellular automata [3] have shown a new perspective
direction in developing fast and parallel scheduling algorithms [4-8].

Cellular automata (CA) are discrete dynamical systems that consist of a large number
of simple components with local connectivity. It is necessary to design an appropriate
neighborhood structure to use CA for scheduling. This neighborhood must reflect the
structure of a program graph, which contains all the relevant information of the parallel
application such as precedence of tasks, their computational costs and communication

112 G.M.B. Oliveira and P.M. Vidica

costs between pairs of tasks. In the present work a nonlinear structure named Selected
Neighborhood [4] is used to capture the intrinsic characteristics of program graphs. CA
model applies an asynchronous updating of cells since it has returned better results in
previous works [4, 10].

Some CA-based approaches had presented good results when applied to schedule
tasks for given program graphs [4, 8]. These approaches have a learning phase
characterized by the use of a standard GA to find the correct distribution of the tasks
considering a single program graph. The population of such GA is formed by CA
transition rules aiming to schedule tasks over architecture processors. Later on,
evolved CA rules can be used to schedule the same program graph or they can be
applied to find optimal or suboptimal solutions to other parallel programs. However,
as we will show in Section 4, the rules evolved using previous schemes [4, 8] have
shown almost none generalization ability, that is, they cannot find reasonable
makespam for new program graphs not seen during learning, even if these instances
are very similar to the one used to find them.

A new approach is proposed here, in which a coevolutionary algorithm is used
during learning to search for good scheduling not only for the target program graph
but also for some similar graphs generated applying some mutations on the target
graph. The goal is to find CA rules with better generalization ability. Therefore, a
second population formed by variations of the target graph is evolved simultaneously
with the transition rule population. We call this new approach as multigraph
coevolutionary learning.

Seredynski and Zomaya [5] have also investigated a coevolutionary approach in
the learning phase of CA-based schedulers. However, in their approach the second
population was formed by different initial configurations of the CA lattice to be used
as initial allocations to evaluate rules for a single program graph. The goal of
coevolutionary search in [5] is not to improve the generalization ability of the
discovered rules as we are seeking here, but to improve the performance of these rules
in relation to the proper target program. Other related works investigated CA models
to task scheduling [7, 13, 14]. However, they employed a different kind of
neighborhood (linear), while selected neighborhood used here and in references [4, 5,
6, 8] have shown more efficient to solve scheduling.

The paper is organized as follows. Section 2 contextualizes the problem of
scheduling tasks on multiprocessor systems. Section 3 reviews previous CA models
on scheduling. Section 4 discusses the generalization ability of CA rules – a key point
of this work. Section 5 presents the multigraph coevolutionary learning proposed
here. Section 6 presents some experiments accomplished with the new approach.
Section 7 shows the main conclusions of this work.

2 Multiprocessor Task Scheduling

A parallel application is represented by a program graph which is a weighted directed
acyclic graph Gp = (Vp, Ep). Vp is the set of Np tasks of the parallel program. It is
assumed that each task is a computational indivisible unit. There is a precedence

 A Coevolutionary Approach to Cellular Automata-Based Task Scheduling 113

constraint relation between tasks k and l if the result produced by task k has to be
available to task l, before it starts. Ep is the set of precedence relations between tasks.
A program graph has weights associate to nodes and edges: bk describes the
processing time required to execute a given task on any processor and akl describes
the communication time between pairs of tasks k and l, when they are located in
distinct processors. The purpose of scheduling is to distribute the tasks of a parallel
program among the processors in such a way that the precedence constraints are
preserved and the total execution time (or makespam) T is minimized. T depends on
tasks allocation between processors and on some scheduling policy that defines the
order for executing tasks within processors. Attributes can be associated with each
node k in a program graph such as: the level hk is defined as the maximal length of the
longest path from a node k to an exit node and the co-level dk is defined as the length
of the longest path from the starting node to node k. If they are calculated depending
on tasks allocation they are called dynamic level and dynamic co-level [4]. Some
special sets are defined in relation to a given task k: predecessors(k), brothers(k)
(nodes that have at least one common predecessor) and successors(k). The
multiprocessor architecture used in the present work is composed by two identical
processors: it is assumed that both processors have the same computational power and
communications between channels do not consume any extra time.

3 Cellular Automata-Based Scheduling

Cellular automata are discrete complex systems that possess both a dynamic and a
computational nature. Basically, a cellular automaton consists of two parts: the
cellular space and the transition rule. Cellular space is a regular lattice of N cells, each
one with an identical pattern of local connections to other cells, and subjected to some
boundary conditions. CA are characterized by a transition rule, that determines which
will be the next configuration of the lattice, from their current one. Cells interact
locally in a discrete time t: for each cell i, a neighborhood of radius r is defined; the
state of the cell i at time t + 1 depends only on the states of its neighborhood at time t
and its current state. Cells updating is usually performed in a synchronous way.
However, asynchronous updating is also possible. In sequential updating, only one
cell is update at each time step, starting from the first cell.

A scheduler model was presented in [4] where each lattice cell is associated with a
task. Considering two-processor architectures, the lattice is binary and each cell state
indicates that the corresponding task is allocated either in the processor P0 or P1.
Each lattice configuration corresponds to a different allocation of the tasks in the
processors. Makespam T associated to a given lattice is calculated using a scheduling
policy that defines the order of the tasks within each processor. The scheduling policy
used is: the task with the highest dynamic level is performed first.

CA evolve according to their transition rules. The goal is to find a CA rule able to
converge the lattice to a final allocation of tasks, which minimizes T, starting from
any initial allocation. The nonlinear structure of a program graph is represented in [4]
by a nonlinear CA neighborhood named Selected Neighborhood. Only two selected
representatives of each set of predecessors, brothers and successors are used to create

114 G.M.B. Oliveira and P.M. Vidica

the neighborhood of a cell associated with a task k [4]. The two representative tasks
are selected on the basis of maximal and minimal values of a chosen attribute. The
neighborhood for a cell k consists of 7 cells (including cell k). The length of a rule is
250 bits and there are 2250 possible rules [4]. Although sequential updating of cells is
not usual as the synchronous one, considering CA broad context, it has returned
interesting results in previous works involving CA-based scheduling [4, 6] and it is
also investigated in the present work.

CA-based scheduler presented in [4] has two stages: a learning phase and an
operating phase. In the learning phase, a GA [1] is used to search for CA rules able to
schedule a specific program graph. GA begins with a population of P rules randomly
generated, encoded as binary strings. Rule’s fitness is calculated by: (i) using a set of
initial configurations (ICs) corresponding to initial allocations of a program graph; (ii)
applying the rule starting from each IC for M time steps and calculating the
makespam T for each final allocation; (iii) adding the values of T calculated for all the
ICs evaluated to obtain the fitness. The smaller is the fitness the better is the rule. GA
is simple and it is based on the framework to evolve rules to solve density
classification task [12]. At the end, population is stored in a repository of rules. In
operating phase, it is expect that, for any initial allocation of tasks, stored rules will be
able to find an allocation providing the optimal T (or near to). It is also expected that
rules evolved in the learning phase can be used in other graphs different from the one
for which they were learned providing a good performance. The scheduler model in
[4] was further investigated in references [5, 6, 8].

4 Generalization Ability of Previous Models

In previous CA-based schedulers [4, 8], a single program graph was used to discover
CA rules in learning phase. GA evolves the rules calculating their fitness based only
on this target graph. Published results have shown that the CA-based scheduler was
able to discover rules that can successfully schedule several program graphs
investigated in literature. However, when the discovered rules evolved for a specific
graph were applied to other programs, conclusive results about the generalization
ability of rules have not been published as we argument in the following.

It is interesting to point out that this generalization ability of evolved rules is
crucial to CA-based scheduling. The huge computational effort necessary to discover
the CA rules is justified only if these rules are able to be reused in new problems.
Otherwise, a GA can be directly used in the search for optimal configurations of each
graph independently, without the need to involve CA rules in the model. The idea
behind the application of transition rules is the possibility of reusing them in new
instances, without the need of a new process of evolutionary learning.

The generalization ability was evaluated in [4] using graphs Gauss 18 and Tree15. It
was presented that rules evolved for Gauss18 were successfully applied to schedule Tree
15. However, when the rules evolved for Tree15 were applied to schedule Gauss 18, the
results were not good: the best makespam found was 62 and the optimum is 44 (time
units). Besides, the rules evolved for Tree 15 in [4] were applied to “similar” graphs
Tree63 and Tree127. In this last test, the rules were able to schedule the two new graphs

 A Coevolutionary Approach to Cellular Automata-Based Task Scheduling 115

obtaining the optimum time. What is important to point here is that the family Treex is
formed by graphs with a very regular structure (binary trees), which are easy to schedule.
We performed a simple test to evaluate the difficulty of solving the scheduling of Tree15:
10,000 random lattices of CA were sorted and T associated to each allocation was
calculated. The optimum T is 9: average T found was close to 9.8 and in approximately
40% of the random allocations optimum was obtained. So, even using a random allocation
it is relatively easy to obtain the best scheduling for this kind of graph. The same test was
performed for Gauss18, which has the optimal makespam equal to 44. In this case the
average makespam obtained was close to 75 and none of the 10,000 random allocations
returns the optimum. It is clear that for Gauss18, which represents a real parallel program,
the scheduling problem is actually difficult to solve. Therefore, the results obtained
reusing rules evolved for Gauss18 in the scheduling of Tree15 presented in [4] must be
taken in a relative sense: the results are as good as if one uses a random allocation.

In subsequent works, few results about the generalization ability were presented. In
[5] the generalization results refer again to the application of rules in family Treex. In
[6] this generalization ability was tested using rules evaluated for two program graphs
separately (g18 and rnd25) in a new graph formed by joining these two graphs. Using
a model based on an artificial immune system, the rules were able to schedule the
mixed graph. Although these results are interesting, the learning phase was applied
again to obtain the new rules. The related studies [4-8] are promising but just a little
information about generalization ability was shown.

Aiming to better investigate such desirable ability, we realized experiments based
on the model described in [4] and [8] applying the evolved rules to graphs totally
different from the one used in the learning phase. In these experiments we used four
graphs also applied in [4-8]: Gauss18, G18, Tree15 and G40 with optimum equal to
44, 46, 9 and 80, respectively. Each one of these graphs was used in learning phase as
the target graph and then evolved rules were applied to the target graph and to the
other three graphs in the operating phase. It was possible to observe that for each
evaluated target graph the best rule evolved is able to find the optimal makespam for
all the initial configurations tested. However, when the best evolved rules were
applied to a graph different from the target one the results were not good in general.
The unique exception is graph Tree15: the average makespam (considering all IC)
when the target graph used as an input for the learning phase was Gauss18, G18 and
G40 is 9.84, 9.63 and 9.39, respectively. For the other graphs, the results are not
reasonable. For Gauss18 the optimum is 44 and it was found 72.78, 62.85 and 58.36
using rules evolved for target graphs G18, Tree15 and G40, respectively; no rules was
able to find the optimal time. For G18 the optimum is 46 and it was found 58.46,
59.08 and 61.27 using rules evolved for target graphs Gauss18, Tree15 and G40,
respectively; no rules were able to find the optimal time. For G40 the optimum is 80
and it was found 97.51, 87.41 and 105.2 for the target graphs Gauss18, Tree15 and
G40, respectively. Due to the arguments and results presented we concluded that
reasonable results about the generalization ability of the evolved rules were found
only in graphs in which an optimal solution was relatively easy to obtain.

Another kind of investigation of generalization ability of previous CA-models [4,
8] were performed in [10]. This study concentrates on the following question: if CA

116 G.M.B. Oliveira and P.M. Vidica

rule evolved based on a specific program graph has some kind of generalization
ability, this rule should return reasonable results (near to the optimal) at least when it
is applied to new graphs that are similar variations of the original. Simple tests were
carried out to evaluate if rules evolved for Gauss18 return reasonable results when
they are applied to other graphs very similar to it, using fifteen graphs with 18 tasks
very similar to Gauss18. Experiments using a simple GA (without CA rules) were
conducted to find reference values for the similar graphs, since their optima are
unknown. Besides, 10,000 random allocations were used to calculate average
makespam considering all allocations for each similar graph. Best reference values
were not easy to obtain using random allocations, as we expected for graphs closely to
Gauss18. Finally, the best rules evolved for Gauss18 using the model in [4] in the
learning phase was reused to schedule the fifteen new graphs.

Comparing the average time found in reuse with the average time found using
10,000 random allocations, it was possible to verify evolved rules indeed perform a
kind of scheduling in all the graphs, because it was possible to reduce the makespam,
starting from a random initial configuration. However, if one considers the average
makespam found in operation phase with the best reference value for each graph, the
makespam obtained with the CA rules is around 20% above the best value,
considering the fifteen graphs. Therefore, considering CA-based model described in
[4, 8], rules evolved using Gauss18 as the target graph when applied to new similar
graphs were able to return makespam better than random allocations. But these values
are still distant from the best possible. Besides, in reference [10], an approach called
joint evolution was proposed, which also uses more graphs besides the target one
during the learning phase. However, this set of graphs is kept frozen during the
evolution and no coevolutionary strategy is employed. These previous results were
promising and they inspired us to propose the multigraph coevolutionary learning
discussed here which returned the best results of our investigation.

5 Multigraph Coevolutionary Learning

In the new approach to the learning phase proposed here, a coevolutionary
environment [2] is used to evolve CA rules able to schedule program graphs. In this
model, coevolutionary interactions are modeled as predator and prey metaphor.
Coevolutionary algorithms evolve different populations during the evolutionary
process (one of possible solutions and another of instances to solve) and mutual
feedback mechanisms between the individuals of both populations provide a strong
driving force towards complexity. Two populations involved in CA-based scheduler
are: P1 formed by possible solutions to the problem (CA rules) and P2 formed by
different program graphs. P2 is composed by the target program graph (for example,
Gauss18) and its random variations, i.e., program graphs very similar to the target
one. We employed a total coevolutionary model in which both populations are
modified by genetic operators during the evolutionary search [9] (another model is the
partial coevolutionary in which only one population is actually evolved with
operators). Considering P1, selection, crossover and mutation operators are applied in
the transition rules evolution. Considering P2, only selection and mutation are applied:

 A Coevolutionary Approach to Cellular Automata-Based Task Scheduling 117

selection decides which program graph will be discarded at each generation step and
mutation operator creates a new variation of the target graph.

Let Tp1 and Tp2 be the size of populations P1 and P2, respectively. P2 is composed
by the target graph and Tp2 - 1 program graphs randomly generated based on the target
one. The other individuals of P2 are variations of the target program, each one having
1 to 4 mutations in relation to original graph. The possible modifications can be: (i) a
different computational cost associated to a task; (ii) a different communication cost
associated to an edge from task k to task j; (iii) exclusion of an edge from task k to
task j; (iv) inclusion of a new edge from task k to task j, being the order of k lesser
than the order of j and the cost associated to the new edge will be randomly generated
between the biggest and the smallest communication cost of the target program.

In each generation, Tp2 program graphs – including the target one – are used to
evaluate all Tp1 transition rules. In this evaluation, I initial configurations (IC) of the
lattice are used to evaluate the ability of each CA rule of P1 to schedule one program
graph of P2. Starting from each IC (representing an initial allocation), CA rule is
applied over the lattice by M time steps and makespam T associated to the final
configuration is computed. The rule fitness is given by the sum of T for all I tests.

P1 individuals are evolved as in [4]: (i) randomly sorting a initial population of Tp1
rules; (ii) randomly sorting a set of I initial configurations of the lattice, different for
each generation and testing them on each rule as described above; (iii) copying the E1
best rules (elite) without modification to the next generation. Forming the remaining
Tp1- E1 rules for the next generation applying the single-point crossover operator to
randomly sorted pairs of elite rules, which are submitted to mutation (subject to a
given rate); (iv) the process returns to step ii and continues a predefined number of
generations G; (v) the population of the last generation is stored in a repository of
rules. P2 is also modified during the evolutionary process. The selection strategy
adopted here is simple: the target graph is kept in P2 during all execution and each
program graph in P2 participates of the evaluation of P1 for at least 10 generations. As
a consequence, the initial Tp2 individuals are frozen in the first 10 generations.
Starting from generation 11, the variation with the worst fitness in the last 10
generations is eliminated and substituted by a new one: a mutation forming by
applying 1 to 4 modifications on the target graph. In operating phase, the discovered
rules are applied to schedule different variations of the target graph to test the quality
of discovered rules. It is expect the coevolved rules have good generalization ability.

6 Experiments

The target graph used in the experiments described here is Gauss18. We used in the
operating phase 40 different variations to evaluate the rules found with coevolutionary
learning. All theses variations have 18 tasks and there are 10 graphs with 2
modifications in relation to Gauss18, 10 graphs with 3 modifications, 10 graphs with
4 modifications and 10 graphs with 5 modifications.

Initially, we reproduce the environment described in [4] and explained in Section
3, where a standard GA was used to search for CA rules; we named it GA_Learning.
A second environment was implemented using the multigraph coevolutionary

118 G.M.B. Oliveira and P.M. Vidica

learning described in last section and we named it CO_Learning. Both environments
were implemented in C language. We choose the Selected Neighborhood because it
has shown more appropriated to Gauss18 graph as presented in [4] and as observed in
our own experiments. The chosen attributes for this neighborhood were the same
adopted in [4]: static co-level for predecessors, computational cost for brothers and
communication cost for successors. Both environments use the scheduling policy “the
task with the highest dynamic level is performed first”. As reported in [4] sequential
updating mode has shown to be more appropriate to deal with Gauss18, due to its
intrinsic non-linearity [5]. Some initial experiments using GA_learning environment
confirmed it. Thus, we performed the experiments described here using sequential
updating. CA and GA parameters were Tp1 = 100, Tp2 = 10. E1 = 10, pcross = 0.90, pmut
= 0.012, G = 100, I = 25 and M = 50.

The first experiment was carried out with 30 runs of GA_learning performing the
search for CA rules able to schedule Gauss18. Initially, the quality of the discovered
rules was evaluated in the operation phase based only on Gauss18 as in [4]. A
hundred initial configurations randomly sorted were used to test each rule of the final
GA population. About fifty rules were able to find an optimal scheduling (T = 44) in
all the 100 ICs evaluated. The results found were compatible with [4]. Aiming to
evaluate the generalization ability of these rules, we use them as schedulers in the 40
random variations of Gauss18. In these tests we also use 100 ICs to evaluate the rules
for each program graph. The results are presented in Table 1, where the 40 graphs
were categorized in 4 groups according to the number of variations of the graphs in
respect to Gauss18: Group_2 (10 graphs with 2 modifications), Group_3 (10 graphs
with 3 modifications), and so on. Table 1 presents average results of the best rule
found with each environment, for each group of graphs. Taverage is the average
makespam obtained using the best evolved rule to schedule the respective graph
starting from 100 different IC; Tmin is the minimum value of T found starting from 100
different IC. The table presents the average values of these metrics associated to each

set of 10 graphs: T average and T min. It also presents. the average values considering the
40 graphs as a whole. Using these values we calculated the confidence interval
associated to GA_Learning: we have 95% of confidence that average makespam is
between 52.25 and 53.63.

Table 1. Operation Phase: results found aplying rules evolved in learning phase for each group
of variations of Gauss18

GRAPH

 average min average min

Group_2 51,75 50,4 47,96 45,4
Group_3 51,03 48,2 48,02 45,5
Group_4 54,32 49,6 50,29 46,6
Group_5 54,69 51 51,15 47,1
Average 52,94 49,8 49,35 46,15
Conf. Int.

GA_Learning CO_Learning

(52,25 to 53,63) (48,49 to 50,10)

T T T T

 A Coevolutionary Approach to Cellular Automata-Based Task Scheduling 119

Subsequently, a new experiment was conducted using the new coevolutionary
approach presented in section 5. It was named CO_Learning and it was also formed
by 30 runs. The operation phase was also tested to evaluate the generalization ability
of the discovered rules, as presented in Table 1. Comparing the performance of the
rules found in each learning environment, one can see that rules found by
CO_Learning overcame those found by GA_Learning in all groups of 10 graphs, both
in the best makespam as in the average makespam found by the best rules. This
superiority reflects in the average of T found considering the 40 graphs: 49.35 and
52.94, for CO-Learning and GA-Learning, respectively. The confidence interval
associated to the CO_Learning environment was also calculated: we have 95% of
confidence that makespam is between 48.49 and 50.10. Comparing with the
confidence interval calculated with the rules evolved with GA_Learning (52.25,
53.63), one can see that the coevolutionary environment returns a better performance.

We used the null hypothesis to evaluate if the rules of the second experiment are
better than the first: there are significant evidences that a coevolved rule returns lower
than a single evolved rule. We have 95% of confidence that this improvement is
between 2.87 and 4.31 time units. As the best makespam found for these variations
are close to 44 time units (optimum for Gauss18), it represents a decrease of 10% in
respect to the previous model. We understand that these results qualify the coevolved
rules as more general than the single evolved rules.

7 Conclusions

Starting from the multiprocessor scheduler model proposed in [4], we investigated a new
approach to the learning phase, in which a coevolutionary genetic algorithm is used to
search for CA rules able to schedule tasks over a parallel architecture. The coevolutionary
algorithm evolves two populations simultaneously: the first formed by CA transition rules
and the second formed by a target program graph and some random graphs that are similar
to the target one, generated applying simple modifications in the original graph.

An important observation that we made about the related studies in [4-8] is that just
a little information about the generalization ability related to the evolved rules was
available and just few examples of successful reusing of such rules were indeed
verified. We realized experiments applying the rules evolved in the learning phase to
graphs different from the target graph and we concluded that reasonable results were
found only in graphs where an optimal solution was easy to reach.

Rules evolved by the coevolutionary method proposed here have presented better
generalization ability. They returned a better performance to schedule new graphs
similar to the target one. It was possible to verify such ability in experimental results.
These rules outperformed the scheduling accomplished by rules obtained through the
strategy used in [4], that we called single evolution.

Such generalization ability is primordial to a CA-based scheduling model. The
evolved rules should be able to schedule not only the target program graph but they
must have an intrinsic scheduling strategy in such a way that when they are applied to
a new program, optimal or suboptimal allocations are returned without the need for a

120 G.M.B. Oliveira and P.M. Vidica

new evolution. Although CA-based schedulers have been proposed with the aim to
find rules with a high level of generalization, such ability was not easy to obtain in
previous work [4-7]. Using the proposed coevolutionary approach, this ability was
obtained at least for program graphs similar to the target one.

The results presented in the present work focus on the generalization ability of the
evolved rules in respect to schedule graphs similar to the target one. Nevertheless, the
desirable skill of these evolved rules is to have generalization ability not only in
respect to these graphs but also for graphs more different from the graphs used to
evolve the rules. We are working in this problem now but we face the results using
the similar graphs as an important step to achieve this goal.

Acknowledgments. GMBO thanks to CNPq and Fapemig financial support.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1989)

2. Hillis, D.: Co-evolving parasites improves simulated evolution as an optimization
procedure. Physica D 42(1-3), 228–234 (1991)

3. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)
4. Seredynski, F.: Evolving cellular automata-based algorithms for multiprocessor

scheduling. In: Zomaya, A., Ercal, F. (eds.) Solutions to Parallel and Distributed
Computing Problems: Lessons from Biological Sciences, pp. 179–207 (2001)

5. Seredynski, F., Zomaya, A.Y.: Sequential and parallel cellular automata-based scheduling
algorithms. IEEE Trans. Parallel Distrib. Syst. 13(10), 1009–1023 (2002)

6. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor scheduling and rescheduling
with use of cellular automata and artificial immune system support. IEEE Trans. Parallel
Distrib. Syst. 17(3), 253–262 (2006)

7. Swiecicka, A., Seredynski, F.: Cellular automata approach to scheduling problem. In:
Proc. of the International Conference on Parallel Computing in Electrical Engineering,
PARELEC 2000, Washington, DC, USA, p. 29 (2000)

8. Seredynski, F., Swiecicka, A., Zomaya, A.Y.: Discovery of parallel scheduling algorithms
in cellular automata-based systems. In: IPDPS, p. 132 (2001)

9. Paredis, J.: Coevolutionary computation. Artificial Life Journal 2(3) (1996)
10. Vidica, P.M., Oliveira, G.M.B.: Cellular Automata-Based Scheduling: A New Approach to

Improve Generalization Ability of Evolved Rules. In: Proc. of Brazilian Symposium on
Neural Networks, pp. 18–23 (2006)

11. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling
algorithms. Journal of Parallel and Distributed Computing 59(3), 381–422 (1999)

12. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer Science
(2008)

13. Carneiro, M.G., Oliveira, G.M.B.: Cellular automata based model with synchronous
updating for task static scheduling. In: Proc. of 17th International Workshop on Cellular
Automata and Discrete Complex System, AUTOMATA 2011, pp. 263–272 (2011)

14. Carneiro, M.G., Oliveira, G.M.B.: SCAS-IS: Knowledge Extraction and Reuse in
Multiprocessor Task Scheduling based on Cellular Automata. Accepted for Brazilian
Symposium on Neural Networks (2012, preprint)

	A Coevolutionary Approach to Cellular Automata-Based Task Scheduling
	Introduction
	Multiprocessor Task Scheduling
	Cellular Automata-Based Scheduling
	Generalization Ability of Previous Models
	Multigraph Coevolutionary Learning
	Experiments
	Conclusions
	References

