

Lecture Notes in Artificial Intelligence 7526

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Birte Glimm Antonio Krüger (Eds.)

KI 2012: Advances in
Artificial Intelligence
35th Annual German Conference on AI
Saarbrücken, Germany, September 24-27, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Birte Glimm
University of Ulm, Institute of Artificial Intelligence
89069 Ulm, Germany
E-mail: birte.glimm@uni-ulm.de

Antonio Krüger
Saarland University and German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail: krueger@dfki.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33346-0 e-ISBN 978-3-642-33347-7
DOI 10.1007/978-3-642-33347-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946346

CR Subject Classification (1998): I.2.4, I.2.6, I.2.10-11, H.3.3-4, I.6.3, H.5.2-3, H.5.5,
F.4.1, F.1.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The yearly German Conference on Artificial Intelligence is the premier forum for
German research in artificial intelligence, and attracts numerous international
guests, too. The KI conferences traditionally bring together academic and in-
dustrial researchers from all areas of AI and are a premier forum for exchanging
news and research results on theory and applications of all aspects of AI.

KI 2012, the 35th event in this series, reflected this long-standing tradition,
and continued to mirror the trends and developments of the science. KI 2012
was held on September 23–26, 2012 in Saarbrücken, Germany.

This volume contains the technical papers of KI 2012. For the technical pro-
gram, we received 57 complete submissions (48 full papers, 9 short papers). From
the 48 full papers, 19 were unconditionally and 2 were conditionally accepted and
a further 7 were accepted as short papers. From the 9 short papers, 3 were ac-
cepted for presentation during the conference. Each submission received at least
three reviews and the members of the Program Committee invested considerable
effort in the discussion of the submissions.

The program of the main conference also included three invited talks: “Ex-
ploring the Potential of Social Signal Processing for Human-Machine Interac-
tion: Synergies and Challenges” by Elisabeth André from Augsburg University,
“Biosignals and Interfaces” by Tanja Schultz from the Karlsruhe Institute of
Technology, and “Semantics � Scalability |= ⊥?” by Ian Horrocks from the Uni-
versity of Oxford.

The conference was accompanied by a doctoral consortium in which eight
PhD students presented their work to the KI audience and received feedback
and advice from senior researchers in the field.

The first day of the program also featured six workshops with many additional
research presentations:

– Dirk Reichardt organized the 6th Workshop on “Emotion and Computing –
Current Research and Future Impact”

– Sebastian Rudolph, Heiner Stuckenschmidt, and Matthias Thimm organized
“AI on the Web”

– Jürgen Sauer, Stefan Edelkamp, and Bernd Schattenberg organized the 27th
Workshop on “Planning and Scheduling, Configuration and Design” (PuK
2012)

– Thomas Barkowsky, Marco Ragni, and Frieder Stolzenburg organized “Hu-
man Reasoning and Automated Deduction”

– Kristina Yordanova, Sebastian Bader, and Frank Krüger organized “From
Modeling to Assistance” (M2A)

– Frank Wallhoff, Bernd Schönebeck, and Stefan Goetze organized “Dialog
Systems That Think Along – Do They Really Understand Me?”

VI Preface

In addition to the workshops, the program of the first conference day included
four tutorials:

– Philippe Balbiani organized “Region-Based Theories of Space”
– Sabine Janzen and Wolfgang Maass organized “Designing Ambient Intelli-

gence Environments”
– Marco Ragni, Rebecca Albrecht, and Stefano Bennati organized “The Cog-

nitive Architecture ACT-R”
– Jens Haupert, Alexander Kröner, and Boris Brandherm organized “Object

Memory Tools: Tailoring a Thing’s Data Collection and Communication Be-
havior”

The organization of a conference like this one is only possible with the sup-
port of many individuals. First of all, the organizers wish to thank the authors
for their contributions. We had a very strong and competent Program Commit-
tee consisting of 67 members, which ensured that each submission underwent
several thorough and timely reviews. We want to thank all Program Committee
members for taking the time to read, review, and discuss the submissions. Last
but not least, we thank the members of the KI 2012 organizing committee:

– Local Chair: Boris Brandherm (Saarland University)
– Workshop Chair: Gabriele Kern-Isberner (TU Dortmund)
– Tutorial Chair: Wolfgang Maaß (Saarland University)
– Poster and Demo Chair: Stefan Wölfl (University of Freiburg)
– Doctorial Consortium Chair: Carsten Lutz (University of Bremen)
– Publicity Chair: Daniel Sonntag (DFKI)

We extend our thanks to all other people and institutions who helped make
KI 2012 a success, especially the German Research Center for Artificial Intelli-
gence (DFKI), Saarland University, Springer, and EasyChair.

July 2012 Birte Glimm
Program Chair

Antonio Krüger
General Chair

Organization

Program Committee

Klaus-Dieter Althoff DFKI / University of Hildesheim
Tamim Asfour Karlsruhe Institute of Technology (KIT)
Franz Baader TU Dresden
Joscha Bach Humboldt-University of Berlin
Amit Banerjee Pennsylvania State University Harrisburg
Sven Behnke University of Bonn
Maren Bennewitz University of Freiburg
Ralph Bergmann University of Trier
Marc Cavazza Teesside University
Eliseo Clementini University of L’Aquila
Cristóbal Curio Max Planck Institute for Biological Cybernetics
Kerstin Dautenhahn University of Hertfordshire
Frank Dylla University of Bremen
Stefan Edelkamp University of Bremen
Udo Frese University of Bremen
Stefan Funke University of Stuttgart
Johannes Fürnkranz TU Darmstadt
Christopher Geib University of Edinburgh
Birte Glimm University of Ulm
Björn Gottfried University of Bremen
Horst-Michael Gross Ilmenau University of Technology
Jens-Steffen Gutmann Evolution Robotics
Martin Günther University of Osnabrueck
Malte Helmert University of Basel
Joachim Hertzberg University of Osnabrueck
Otthein Herzog University of Bremen
Gabriele Kern-Isberner TU Dortmund
Thomas Kirste University of Rostock
Alexander Kleiner Linköping University
Roman Kontchakov Birkbeck College
Oliver Kramer University of Oldenburg
Ralf Krestel Leibniz University of Hanover
Torsten Kroeger Stanford University

VIII Organization

Kai-Uwe Kühnberger University of Osnabrueck
Bogdan Kwolek Rzeszow University of Technology
Gerhard Lakemeyer RWTH Aachen University
Tobias Lang FU Berlin
Volker Lohweg inIT - Institute Industrial IT
Benedikt Löwe University of Amsterdam & University of

Hamburg
Robert Mattmüller University of Freiburg
Bernd Michaelis Otto-von-Guericke-University Magdeburg
Ralf Möller TU Hamburg-Harburg
Justus Piater University of Innsbruck
Felix Putze Karlsruhe Institute of Technology (KIT)
Marco Ragni University of Freiburg
Jochen Renz Australian National University
Sebastian Rudolph Karlsruhe Institute of Technology (KIT)
Benjamin Satzger Vienna University of Technology
Juergen Sauer University of Oldenburg
Bernd Schattenberg University of Ulm
Malte Schilling ICSI Berkeley
Ute Schmid University of Bamberg
Lutz Schröder Friedrich-Alexander-Universität

Erlangen-Nürnberg
Carsten Schürmann IT University of Copenhagen
René Schumann University of Applied Sciences Western

Switzerland Valais
Jan-Georg Smaus Université Paul Sabatier de Toulouse
Daniel Sonntag German Research Center for Artificial

Intelligence (DFKI)
Luciano Spinello University of Freiburg
Steffen Staab University of Koblenz-Landau
Cyrill Stachniss University of Freiburg
Ingo J. Timm University of Trier
Rudolph Triebel University of Oxford
Johanna Völker University of Mannheim
Toby Walsh NICTA and UNSW
Thomas Wiemann University of Osnabrück
Diedrich Wolter University of Bremen
Stefan Wölfl University of Freiburg

Additional Reviewers

Bach, Kerstin
Becker, Tilman
Bercher, Pascal
Browatzki, Björn

De la Rosa, Stephan
Delhibabu, Radhakrishnan
Edelkamp, Stefan
El Haoum, Sabina

Organization IX

Euzenat, Jérôme
Huisman, Marieke
Knopp, Johannes
Kreutzmann, Arne
Krötzsch, Markus
Loeckelt, Markus
Minker, Wolfgang
Mossakowski, Till
Neumann, Günter

Özcep, Özgür Lütfü
Poll, Erik
Richter, Felix
Schaffernicht, Erik
Schiffer, Stefan
Schroeter, Christof
Stuckenschmidt, Heiner
Volkhardt, Michael
Wehrle, Martin

Table of Contents

Long Papers

Verification of Behaviour Networks Using Finite-State Automata 1
Christopher Armbrust, Lisa Kiekbusch, Thorsten Ropertz, and
Karsten Berns

Formal Semantics of Model Fields in Annotation-Based
Specifications . 13

Bernhard Beckert and Daniel Bruns

Searching with Partial Belief States in General Games with Incomplete
Information . 25

Stefan Edelkamp, Tim Federholzner, and Peter Kissmann

A Machine-Learning Framework for Hybrid Machine Translation 37
Christian Federmann

Using Equivalences of Worlds for Aggregation Semantics of Relational
Conditionals . 49

Marc Finthammer and Christoph Beierle

Developing of a Multimodal Interactive Training System in Therapeutic
Calisthenics for Elderly People . 61

Ben Hennig and Norbert Reithinger

PAC-Learning with General Class Noise Models . 73
Shahin Jabbari, Robert C. Holte, and Sandra Zilles

Avoiding Moving Persons by Using Simple Trajectory Prediction and
Spatio Temporal Planning . 85

Jens Kessler, Jürgen Strobel, and Horst-Michael Gross

Unsupervised Nearest Neighbors with Kernels . 97
Oliver Kramer

A Compact Encoding of Pseudo-Boolean Constraints into SAT 107
Steffen Hölldobler, Norbert Manthey, and Peter Steinke

Small Talk Is More than Chit-Chat: Exploiting Structures of Casual
Conversations for a Virtual Agent . 119

Nikita Mattar and Ipke Wachsmuth

Clustering Based on Density Estimation with Sparse Grids 131
Benjamin Peherstorfer, Dirk Pflüger, and Hans-Joachim Bungartz

XII Table of Contents

A Comparison between Cognitive and AI Models of Blackjack Strategy
Learning . 143

Marvin R.G. Schiller and Fernand R. Gobet

Plan Recognition by Program Execution in Continuous Temporal
Domains . 156

Christoph Schwering, Daniel Beck, Stefan Schiffer, and
Gerhard Lakemeyer

Modeling Human Motion Trajectories by Sparse Activation of Motion
Primitives Learned from Unpartitioned Data . 168

Christian Vollmer, Julian P. Eggert, and Horst-Michael Gross

Nogoods in Qualitative Constraint-Based Reasoning 180
Matthias Westphal and Julien Hué

Stochastic Gradient Descent with GPGPU . 193
David Zastrau and Stefan Edelkamp

Improved Query Suggestion by Query Search . 205
Xiaomin Zhang, Sandra Zilles, and Robert C. Holte

Knowledge-Base Revision Using Implications as Hypotheses 217
Özgür Lütfü Özçep

Short Papers

Improving Confidence of Dual Averaging Stochastic Online Learning
via Aggregation . 229

Sangkyun Lee

Supporting Fuzzy Metric Temporal Logic Based Situation Recognition
by Mean Shift Clustering . 233

David Münch, Eckart Michaelsen, and Michael Arens

Ontology-Based Information Extraction for French Newspaper
Articles . 237

Kamel Nebhi

Semantic Approach to Identity in Coreference Resolution Task 241
Maciej Ogrodniczuk and Magdalena Zawis�lawska

Matching Points of Interest from Different Social Networking Sites 245
Tatjana Scheffler, Rafael Schirru, and Paul Lehmann

Semi-analytic Natural Number Series Induction . 249
Michael Siebers and Ute Schmid

Dependency Parsing with Efficient Feature Extraction 253
Alexander Volokh and Günter Neumann

Table of Contents XIII

Strategies for Modelling Human Behaviour for Activity Recognition
with Precondition-Effect Rules . 257

Kristina Yordanova, Frank Krüger, and Thomas Kirste

Gated Boosting: Efficient Classifier Boosting and Combining 262
Mohammad Reza Yousefi and Thomas M. Breuel

Author Index . 267

Verification of Behaviour Networks

Using Finite-State Automata

Christopher Armbrust, Lisa Kiekbusch, Thorsten Ropertz, and Karsten Berns

Robotics Research Lab, Department of Computer Science,
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

{armbrust,kiekbusch,t ropert,berns}@cs.uni-kl.de
http://rrlab.cs.uni-kl.de/

Abstract. This paper addresses the problem of verifying properties of
behaviour-based systems used for controlling robots. A behaviour-based
system typically consists of many interconnected components, the be-
haviours, which in combination realise the system’s overall functionality.
The connections between the behaviours are crucial for the correct oper-
ation of a system. Therefore, key properties of behaviour-based systems
are verifiable based on their behaviour interconnections. In this paper,
it is described how behaviour-based networks can be (automatically)
modelled using finite-state machines and how model checking with the
Uppaal toolbox can then be applied for verification and analysis tasks.

Keywords: Behaviour-based System, Behaviour Network, Behaviour
Modelling, Behaviour Network Verification.

1 Introduction

Behaviour-based systems (bbs) have several advantages over classic, typically
monolithic robot control systems: Their distributed nature can strongly increase
the fault tolerance of a system and fosters component reuse and distributed
development (see [2] for more information on bbs). Unfortunately, with a higher
degree of distribution comes a greater importance of the proper coordination of
the single behaviours. Therefore, a concept for the development, application, and
verification of behaviour networks is developed at the Robotics Research Lab
(see Fig. 1). For example, principles for the design of behaviour architectures
and guidelines for the development of bbs are proposed in [12]. However, the
establishment of precise requirements and their formalised transfer into software
usually cannot avoid all errors, which makes verification necessary. Besides, if
additions are made to an existing system, the fulfilment of the requirements has
to be checked again.

This paper presents a novel approach for modelling and verifying bbs by
means of model checking techniques. For this purpose, networks of behaviours
are represented as synchronised automata that are variations of finite-state ma-
chines (fsms). This modelling is done automatically using partly pre-built basic

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://rrlab.cs.uni-kl.de/

2 C. Armbrust et al.

Fig. 1. A concept for the development and verification of behaviour networks

components. The Uppaal1 toolbox is then used to analyse the resulting net-
works of fsms.

The remainder of this paper is structured as follows: Section 2 gives an
overview of different approaches for verifying systems. In Section 3 the modelling
of behaviour networks as well as the application of model checking techniques
is explained in detail. Section 4 demonstrates how the presented concept can be
used for verifying a part of the navigation system of an off-road vehicle. Finally,
Section 5 concludes the paper and gives an outlook on future work.

2 Related Work

Model checking is a technique for automatically testing whether a model of a con-
current finite-state system meets a given specification (see [7] for an overview).
The corresponding process consists of modelling, specification, and verification.
Examples of the use of model checking are [15], which describes the use of model
checking for verifying the control system of an unmanned aircraft, [11], which
deals with the application and extension of model checking techniques for veri-
fying spacecraft control software, and [10], which explains how model checking
can be applied to verify a distributed coordination algorithm for robot swarms.

The authors of [8] describe the modelling of an agent’s behaviour as X-machine
(a computational machine resembling an fsm, but with attached memory). A
main difference to the work at hand is that an agent is represented by exactly one
machine (instead of several automata), which leads to very large automata when
modelling complex systems. The approach in the paper at hand, by contrast, is
to use several rather simple automata.

1 http://www.uppaal.org/

http://www.uppaal.org/

Verification of Behaviour Networks Using Finite-State Automata 3

In [13], it is described how single behaviours can be implemented in the
synchronous language Quartz and how their correctness can be shown using
a symbolic model checker. The author of [14] describes how model checking with
Uppaal in connection with a fault tree analysis can be used to ensure that
critical events cannot occur in a system. The modelling of parts of a system as
automata is necessary so that Uppaal can be used. The work at hand could be
a basis for employing the approach of [14] in bbs. Another connection of fault
trees and model checking is described in [9], which explains how the correctness
and completeness of fault trees can be verified using model checking. For that
work, modelling a system as fsm is necessary as well. Hence, the work presented
here could also be a basis for the application of that approach.

3 Behaviour Network Modelling and Verification

This section introduces the behaviour-based architecture iB2C2 as well as the
Uppaal toolbox and explains how iB2C networks can be modelled and verified.

3.1 The Behaviour-Based Architecture iB2C

The approach for modelling behaviour networks presented in the work at hand is
based on the behaviour-based architecture iB2C, which is described extensively
in [12]. It has been implemented using the software framework mca2-kl3.

One of the main concepts of the iB2C is that all behaviours possess a com-
mon interface transferring coordination signals between them. These signals are
a behaviour’s stimulation s (used to gradually enable the behaviour), inhibition i
(used to gradually disable it), activity a (the degree of influence the behaviour in-
tends to have), and target rating r (the behaviour’s satisfaction with the current
situation). s and i = max

j=0,...,k−1
{ij} (with k: number of inhibiting behaviours)

are combined to the activation ι = s ·(1− i), which defines the behaviour’s max-
imum influence within a network. To transfer only a part of its activity to the
outside, a behaviour can pass so-called derived activities a0, a1, . . . , aq−1 with
ai ≤ a ∀i ∈ {0, 1, . . . , q − 1} to other behaviours. Together with its activity, they

build the activity vector a = (a,a)
T
. As the activation defines the upper bound

of a behaviour’s influence, the activity is limited to a ≤ ι. All behaviour signals
are limited to [0, 1]. Apart from the standardised ports for behaviour signals,
every behaviour can have an arbitrary number of additional input and output
ports for transferring any kind of data. The vector of control output values u is
calculated using a behaviour’s transfer function F : u = F (e, ι) with e being the
vector of its control inputs. Fig. 2 depicts the symbol of a behaviour.

iB2C behaviours can be connected in various ways. The most common types
are stimulating and inhibiting connections, in which the activity output of a
behaviour is connected either to the stimulation or inhibition input of another

2 iB2C: integrated Behaviour-based Control.
3 mca2-kl: Modular Controller Architecture Version 2 - Kaiserslautern Branch.

4 C. Armbrust et al.

s

�ı

�a

r

�e

�u

B = (fa, fr, F)

Fig. 2. The general symbol of a behaviour
(s: stimulation, i: inhibition vector, a:
activity vector, r: target rating, e: in-
put vector, u: output vector, fa: function
calculating a, fr: function calculating r,
F (e, ι): function calculating u)

i1 > 3

Location_2Location_1

Location_0

i1 = 0

c2!
i2 = 3

c1?

Fig. 3. A simple automaton with three lo-
cations (Location 0: initial, Location 1:
urgent, Location 2: committed), a guard
(i1 > 3), two updates (i1 = 0, i2 = 3),
and two channel synchronisations (c1?:
receiver, c2!: sender)

behaviour. Other connection types include the combination of the outputs of a
number of competing behaviours using a so-called fusion behaviour (see below)
or the sequencing of behaviours using a special coordination behaviour (see [4]).

The iB2C fusion behaviour combines the outputs of other behaviours con-
nected to it according to one of three possible fusion modes (maximum, weighted
average, and weighted sum). Let BFusion be a fusion behaviour to which p com-
peting behaviours BInputc with activities ac, target ratings rc, and output vectors
uc are connected. In case of a maximum fusion, the outputs of BFusion are de-
fined as follows: u = us, a = max

c
(ac), and r = rs, where s = argmax

c
(ac). Fusion

behaviours have the same interface as basic behaviours.
To facilitate the handling of a large number of interconnected behaviours,

behavioural groups encapsulate a number of behaviours or further groups and
act as new behaviours in a network.

3.2 Finite-State Automata and Uppaal

The Uppaal toolbox (see [6]) provides an integrated environment for the mod-
elling, simulation, and verification of real-time systems, which are represented as
networks of automata (see [1]). Its modelling language extends these automata
with structured data types, integer variables, and channel synchronisation. Every
automaton may fire an edge separately or synchronise with another automaton.

A Uppaal system consists of instantiations of several templates, each of
which contains the definition of an automaton. The basic elements of automata
are locations, which are connected via edges. Each location can be marked as
committed. A committed state cannot delay and the next transition must in-
volve an outgoing edge of at least one of the committed locations. Edges may
have several attributes like guards (side-effect free Boolean expressions to deter-
mine whether an edge is enabled), updates (assignments), and synchronisations

Verification of Behaviour Networks Using Finite-State Automata 5

between several automata. The latter are achieved via channels. An edge can
be labelled with a channel name followed by “!” for a sending or “?” for a re-
ceiving channel. Two types of channels exist: the binary synchronisation channel
and the broadcast channel. The first provides a synchronisation between a non-
deterministically chosen pair of automata, whereas the second enables a sender
to synchronise with an arbitrary number of receivers (including none). In the
latter case, any receiver that can synchronise in the current state must do so.

The formal language used in Uppaal to express the requirements specification
is a simplified version of TCTL4 that consists of two types of formulae—state
formulae (check whether an automaton is in a specific location) and path for-
mulae (quantify over paths or traces). The Uppaal toolbox features an editor
for modelling systems, a simulator for running traces, and a verifier for checking
properties using the above-mentioned formulae.

3.3 Modelling Behaviour Networks Using Finite-State Automata

Each behaviour B is represented by an instantiation of each of five templates,
which are StimulationInterface, InhibitionInterface, ActivationCalcu-
lation, ActivityCalculation, and TargetRatingCalculation. The separa-
tion of a behaviour model into different automata yields a better encapsulation,
which allows for reusing some of the templates for the models of different be-
haviours. Besides, templates dealing with more than one behaviour signal would
contain much more states, which would decrease clarity and complicate adopting
or enhancing the templates. A separation encapsulating single behaviour signals
has been chosen as these signals are an essential part of the structure of a be-
haviour network. The synchronisation of the automata of B with each other as
well as with the automata of other behaviours is done using synchronisation
channels. The value range of the models is limited to {0, 1} (0: “inactive”; 1:
“active to some degree”). This is currently sufficient and reduces the complexity
of the models. In the following, the five templates shall be explained in detail.

The StimulationInterface (see Fig. 4) consists of four locations, with two
of them dedicated to showing whether B is stimulated or not stimulated, re-
spectively. Uppaal does not allow more than one synchronisation per edge.
Therefore, edges that should have more than one synchronisation have been
split up into several edges, one for each synchronisation. Committed locations
representing intermediate states have been added between these edges. If the
StimulationInterface is in location Unstimulated and receives an s changed

signal, it sets s value to 1 and sends s changed internal. s value is the stim-
ulation of B and s changed internal is used to signal other automata of B
that the stimulation has changed. Accordingly, when s changed is received in
location Stimulated, the automaton transitions through the committed loca-
tion back to location Unstimulated, sending s changed internal and setting
s value to 0. The processing flag is used to be able to exclude intermediate
states when creating queries.

4 TCTL: Timed Computation Tree Logic.

6 C. Armbrust et al.

Stimulated

Unstimulated

s_changed_internal!
processing = false

s_changed?
s_value=0,
processing = true

s_changed_internal!
processing = false

s_changed?
s_value=1,
processing = true

Fig. 4. StimulationInterface of
a single behaviour

i1_changed?

i_changed_internal!

i_changed_internal!i0_changed?

Inhibited_by_Second

i_changed_internal!

i0_changed?

i1_changed?

i0_changed?

i_changed_internal!

i0_changed?

Inhibited_by_Both

Uninhibited Inhibited_by_First

i_value=1,
processing = true

processing = false

processing = falsei_value=1,
processing = true

processing = false

i_value=0,
processing = true

i_value=0,
processing = true

processing = false i1_changed?

i1_changed?

Fig. 5. InhibitionInterface for a behaviour
that is inhibited by two others

The automaton modelling the inhibitory inputs of a behaviour is built up
in a similar fashion. The most notable difference is that there can possibly
be more than one inhibitory input. Hence, there is actually not one single
InhibitionInterface, but for each number of inhibition inputs, a special tem-
plate is created automatically during the modelling process. Figure 5 exem-
plarily shows a template for two inhibiting behaviours. The main locations are
Uninhibited, Inhibited by First, Inhibited by Second, and Inhibited by-

Both. Similar to the StimulationInterface, the automaton updates its vari-
ables and notifies other automata of B about changes.

In an iB2C behaviour, stimulation s and inhibition i are combined to the
activation ι. This is modelled by ActivationCalculation (see Fig. 6). The
modelling of activity and target rating is done in an extremely simple form,
as this is sufficient when focussing on the interaction of behaviours. Figure 7
shows the automaton of ActivityCalculation. It switches between Inactive

and Inactive but Activated depending on the signal iota changed. In the
latter of the two states, it can switch to Active (and back) arbitrarily. The
calculation of the target rating is modelled in a similar way by TargetRating-

Calculation (see Fig. 8). Of course, it is possible to model the calculation of
these two behaviour signals in a more realistic fashion if this is necessary for the
verification process and enough information about the calculation functions is
available. How this is done for a fusion behaviour will be briefly described below.

As mentioned above, the modelling approach currently limits behaviour sig-
nals to {0, 1}. Hence, instead of the real formulae for activity and target rat-
ing of a fusion behaviour (see Section 3.1), a simpler calculation is used: The
activity of a fusion behaviour BFusion can only be above 0 if BFusion is ac-
tivated and at least one of its input behaviours BInputc is active. Similarly,

Verification of Behaviour Networks Using Finite-State Automata 7

i_changed_internal?

s_changed_internal?

(s_value==0) || (i_value==1)

i_changed_internal?

iota_changed!

s_changed_internal?

iota_changed!
(s_value==1) && (i_value==0)

Activated

Inactivated
processing = false

processing = true
processing = true

processing = true

processing = false

processing = true

processing = false

Fig. 6. ActivationCalculation (calculating the
activation from the stimulation and the inhibi-
tion)

a_changed!

iota_changed?

Inactive iota_changed?

a_changed!

iota_changed?

Active

Inactive_but_Activated

a_value = 0

a_value = 1

processing = true

a_value = 0,
processing = false

a_changed!

Fig. 7. ActivityCalculation
(calculating the activity)

Satisfied

r_changed!

Unsatisfied

r_value = 1

r_value = 0
r_changed!

Fig. 8. TargetRatingCalculation
(calculating the target rating)

it can only be unsatisfied with the situation if at least one of its input be-
haviours also is. These considerations lead to FBActivityCalculation with 18
and FBTargetRatingCalculationwith 8 locations (in the case of two connected
input behaviours). The most relevant locations are Active 01 (only BInput0 ac-
tive), Active 10 (only BInput1 active), Active 11 (both active), and Inactive

(none active). Due to the lack of space, these automata cannot be depicted here.
The creation of the Uppaal models is done automatically from a bbs within

a running mca2-kl programme. During the model creation, the synchronisa-
tion channels between the automata are established: When a template is in-
stantiated for behaviour B, it is provided with the correct channels depending
on the connections of B with other behaviours. For example, if a behaviour
B0 stimulates a behaviour B1 (see Fig. 9), then s changed of the instance of
StimulationInterface belonging to B1 is set to a changed of the instance of
ActivityCalculation of B0. Hence, when ActivityCalculation of B0 sends
a changed, StimulationInterface of B1 synchronises with the former.

3.4 Verification of Behaviour Network Models

As soon as a bbs has been modelled as a network of finite-state automata, Up-
paal’s verifier can be used to check certain properties of the model. By this
means, it is possible to gain information about when a behaviour can get active,
whether a set of behaviours can be active at the same time etc. How this is done

8 C. Armbrust et al.

Fig. 9. B0 stimulating B1 with its activity. The filled stimulation input of B0 indi-
cates that it is permanently stimulated. The automata show how such a connection
between two behaviours is modelled. In StimulationInterface of B1, s changed has
been replaced with a changed of B0, which is sent out by ActivityCalculation of B0.

shall be demonstrated using the network depicted in Fig. 9. With a very simple
query it can be checked whether B1 can be active without B0 being active, too:
E<> (B1 activity calculation.Active && !B0 activity calculation.Active)5

As B1 can only be stimulated by B0 and a ≤ ι (see Section 3.1) this query
evaluates to false. The assertion that B1 is always active if B0 is active can be
falsified with the following query:
A[] (B1 activity calculation.Active || !B0 activity calculation.Active)

This assertion is incorrect as B1 can be stimulated by B0, but still be inactive.
While answering such queries for small networks is trivial, it gets much more
complicated in sophisticated systems consisting of more behaviours.

4 Example

In this section, a part of the behaviour-based navigation system used to control
the off-road robot ravon6 (see [3]) is verified against certain requirements us-
ing Uppaal models of behaviour networks. Its purpose is to coordinate several
(groups of) behaviours that realise different approaches for calculating the next
target coordinates. There are two ways for driving the robot towards a goal: The
first implements a direct point access, where the vehicle is guided directly to a
target location. The second extends this by additionally specifying the vehicle’s
orientation at the target (point access with orientation).

The behaviour network called (G) Drive Control (see Fig. 10a) shall coordi-
nate the following three navigation approaches:

A1) A high-level navigation component is able to provide target coordinates (without
or including a target orientation) via behaviours (F) Nav. Direct Point Access
(DPA) Interface and (F) Nav. Point Access with Orientation (PAO) Interface.

5 Due to the limited space, the check of the Processing flag is left out in the queries.
6 ravon: Robust Autonomous Vehicle for Off-road Navigation.

Verification of Behaviour Networks Using Finite-State Automata 9

(F) Point Access
Mode

Point Access with
Orientation

(F) Direct Point
Access Input

(F) Point Access
with Orientation

Input

(F) Nav. Direct
Point Access

Interface

(G) Mediator

(F) Nav. Point Access
with Orientation

Interface

(1)

(2)

(3)

(a) (G) Drive Control

(G) Local
Path Planner

Same
Passage

New
Passage

Passage
Manager

(F) Passage
Driver Target

Passage
Driver

(1)

(2)

(F) Mediator

(F) Passage
Driver Target

Passage
Driver

Same
Passage

New
Passage

Passage
Manager

(2)

(b) (G) Mediator

Fig. 10. The two networks (grey node: simple behaviour; blue: fusion behaviour;
double-bordered grey: behavioural group; dashed green edge: stimulation; red: inhi-
bition; blue: activity transfer; dotted brown: target rating; bold grey: data)

A2) A classic A*-based local path planner ((G) Local Path Planner, (G) LPP) is able
to provide target coordinates.

A3) A special component shall be able to provide target coordinates along with a
desired orientation based on the detection of so-called “passages” (see below).

Passages are paths leading through obstacle formations in the robot’s envi-
ronment (see [5]). The passage components are marked with a shaded area in
Fig. 10b. New Passage (NP) shall get active if a new passage is detected and
send its coordinates to the Passage Manager (PM). This in turn shall get active
if it decides that the robot should enter the passage. Same Passage (SP) shall get
active if a previously detected passage is seen again. The behaviour’s intention
is then to guide the robot to this passage. The outputs of the PM and SP are
combined using (F) Passage Driver Target (PDT), which shall transmit the pas-
sage’s coordinates to the Passage Driver (PD). The latter shall further process
the coordinates and finally send them to the output of the (G) Mediator (see
Fig. 10b), which groups7 the classic path planner and the passage behaviours.

It is important that always only one navigation component may send com-
mands to the lower control layer. Hence, an order of precedence is needed, leading
to the following requirements.

7 ravon’s control system contains over 500 behaviours. In order to improve the struc-
ture of the system, many behaviours are combined in groups.

10 C. Armbrust et al.

R1) Only one of the components shall be able to provide target coordinates to the
robot at the same time.

R2) (G) LPP has precedence over the high-level navigation component, thus it is
allowed to deactivate (F) Nav. DPA Interface and (F) Nav. PAO Interface.

R3) The behaviour realising an oriented point access (PAO) is able to overrule the
direct point access (DPA Input).

R4) NP together with PM shall have precedence over SP.

R5) SP shall have precedence over (G) LPP.

Using the following Uppaal queries along with Uppaal’s verifier it is shown
that the network fulfills all of the above-mentioned requirements:

R1: To verify the system with respect to this requirement, it is checked whether
one of the behaviours used by the high-level navigation layer is active at the
same time as the group (G) Mediator.

E<> (((F Nav DPA Interface a value == 1) ||

(F Nav PAO Interface a value == 1)) && (F Mediator a value == 1))

As expected, this query evaluates to false, indicating that either the high-level
navigation or the (G) Mediator is active. It still has to be checked whether at
most one of the components within the (G) Mediator can control ravon at
the same time. The following query evaluates to true, which yields that it is
possible that the path planning as well as the passage components are active
concurrently.

E<> (((SP a value == 1) || (NP a value == 1)) && (G LPP a value == 1))

However, the automaton modelling the activity of (F) Mediator never reaches the
location indicating that both input behaviours are active (Active 11). So either
(G) LPP or the passage subsystem is active. The reason for this is the inhibitory
link connecting the activity output of Passage Driver with the inhibition input
of (G) LPP (see Fig. 10b (1)). The corresponding query is:

E<> (F Mediator activity calculation.Active 11) → false

The next result indicates that SP and NP can be active at the same time:

E<> ((SP a value == 1) && (NP a value == 1)) → true

But SP and PM cannot be active at the same time:

E<> ((SP a value == 1) && (PM a value == 1)) → false

Similar as above, the reason is the inhibitory link from PM to SP (see Fig. 10b
(2)). As the former processes the outputs of NP, the result is that either SP or
NP can provide a target to the lower layers.

R2: The prioritisation is realised using inhibitory links from (G) Mediator to
(F) Nav. DPA Interface and (F) Nav. PAO Interface (see Fig. 10a (1) and (2)).
This can be verified using the following three queries:

Verification of Behaviour Networks Using Finite-State Automata 11

E<> ((F Nav DPA Interface activation calculation.Activated || F Nav PAO

Interface activation calculation.Activated) && (G LPP a value == 1))

The above query will evaluate to false and thus prove that (F) Nav. DPA Inter-
face or (F) Nav. PAO Interface are never activated when (G) LPP is active.

E<> ((F Nav DPA Interface a value == 1) && (G LPP activation calculation.

Activated))

E<> ((F Nav PAO Interface a value == 1) && (G LPP activation calculation.

Activated))

By contrast, these queries evaluate to true, which means that neither (F) Nav.
DPA Interface nor (F) Nav. PAO Interface inhibits (G) LPP.

R3 This requirement is fulfilled with an inhibition between two behaviours.

E<> ((PAO activity calculation.Active) &&

(!F Point Access Mode activity calculation.Active 01)) → false

Active 01 is the location in which the only active behaviour connected to (F)
Point Access Mode ((F) PAM) is PAO (cp. information about FBActivity-

Calculation in Sec. 3.3). Hence, the result of the query shows that whenever
PAO is active, no other input behaviour of (F) PAM can be active, too. This is
realised by the link between the former and (F) DPA Input (see Fig. 10a (3)).

R4 The prioritisation is realised using the inhibitory link from PM to SP (see
Fig. 10b (2)). Two queries can be used to verify this:

E<> ((SP a value == 1) && (PM activation calculation.Activated)) → true

E<> ((SP activation calculation.Activated) && (PM a value == 1)) → false

R5 This prioritisation is realised with the inhibitory link going from PD to (G)
LPP (see Fig. 10b (1)). To verify this, similar queries as the ones above are used.

5 Conclusion and Future Work

In this paper, it has been demonstrated how model checking can help in verifying
properties of behaviour networks. It has been explained how a behaviour-based
system can be transformed automatically into a model consisting of finite-state
automata and how these automata can be analysed with the help of Uppaal.
An example has been used to prove the applicability of the presented concepts
to the control system of an autonomous off-road vehicle. It has shown that the
approach helps in verifying a behaviour-based system.

Future work will deal with more sophisticated networks and additional spe-
cialised behaviours. A way of modelling a robot’s collision avoidance system
along with environmental features is currently developed in order to take the
robot’s reaction to changes in the environment into account when verifying its
control system. Queries still have to be created manually, which is tedious and
error-prone. In the future, an automatism for creating whole sets of queries and
a graphical interface shall facilitate this task.

12 C. Armbrust et al.

Acknowledgements. The authors gratefully acknowledge Prof. Roland Meyer
from the Concurrency Theory Group8 of the University of Kaiserslautern for his
helpful comments and suggestions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Arkin, R.: Behaviour-Based Robotics. MIT Press (1998)
3. Armbrust, C., Braun, T., Föhst, T., Proetzsch, M., Renner, A., Schäfer, B.H.,

Berns, K.: RAVON – the robust autonomous vehicle for off-road navigation. In:
Baudoin, Y., Habib, M.K. (eds.) Using robots in hazardous environments: Land-
mine detection, de-mining and other applications. Woodhead Publishing (2010)

4. Armbrust, C., Kiekbusch, L., Berns, K.: Using behaviour activity sequences for mo-
tion generation and situation recognition. In: Ferrier, J.L., Bernard, A., Gusikhin,
O., Madani, K. (eds.) ICINCO 2011, July 28-31, vol. 2, pp. 120–127. INSTICC,
SciTePress, Noordwijkerhout, The Netherlands (2011)

5. Armbrust, C., Schäfer, B.H., Berns, K.: Using passages to support off-road robot
navigation. In: Filipe, J., Andrade-Cetto, J., Ferrier, J.L. (eds.) ICINCO 2009,
pp. 189–194. INSTICC, Milan, Italy (July 2009)

6. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
8. Eleftherakis, G., Kefalas, P., Sotiriadou, A., Kehris, E.: Modeling biology inspired

reactive agents using x-machines. In: Okatan, A. (ed.) International Conference on
Computational Intelligence 2004 (ICCI 2004), pp. 93–96. International Computa-
tional Intelligence Society, Istanbul, Turkey (December 2004)

9. Faber, J.: Fault tree analysis with Moby/FT. Tech. rep., Department for Comput-
ing Science, University of Oldenburg (2005), publication available at
http://csd.informatik.uni-oldenburg.de/~jfaber/dl/

ToolPresentationMobyFT.pdf
10. Juurik, S., Vain, J.: Model checking of emergent behaviour properties of robot

swarms. Proceedings of the Estonian Academy of Sciences 60(1), 48–54 (2011)
11. Lowry, M., Havelund, K., Penix, J.: Verification and Validation of AI Systems that

Control Deep-Space Spacecraft. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997.
LNCS, vol. 1325, pp. 35–47. Springer, Heidelberg (1997)

12. Proetzsch, M.: Development Process for Complex Behavior-Based Robot Control
Systems. RRLab Dissertations, Verlag Dr. Hut (2010)

13. Proetzsch, M., Berns, K., Schuele, T., Schneider, K.: Formal verification of safety
behaviours of the outdoor robot RAVON. In: Zaytoon, J., Ferrier, J.L., Andrade-
Cetto, J., Filipe, J. (eds.) ICINCO 2007, Angers, France, pp. 157–164. INSTICC
Press (May 2007)

14. Schäfer, A.: Combining Real-Time Model-Checking and Fault Tree Analysis. In:
Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 522–541.
Springer, Heidelberg (2003)

15. Webster, M., Fisher, M., Cameron, N., Jump, M.: Model checking and the cer-
tification of autonomous unmanned aircraft systems. Tech. Rep. ULCS-11-001,
University of Liverpool Department of Computer Science (2011)

8 http://concurrency.cs.uni-kl.de/

http://csd.informatik.uni-oldenburg.de/~jfaber/dl/ToolPresentationMobyFT.pdf
http://csd.informatik.uni-oldenburg.de/~jfaber/dl/ToolPresentationMobyFT.pdf
http://concurrency.cs.uni-kl.de/

Formal Semantics of Model Fields

in Annotation-Based Specifications�

Bernhard Beckert and Daniel Bruns

Karlsruhe Institute of Technology (KIT), Department of Informatics

Abstract. It is widely recognized that abstraction and modularization
are indispensable for specification of real-world programs. In source-code
level program specification and verification, model fields are a common
means for those goals. However, it remains a challenge to provide a well-
founded formal semantics for the general case in which the abstraction
relation defining a model field is non-functional.

In this paper, we discuss and compare several possibilities for defining
model field semantics, and we give a complete formal semantics for the
general case. Our analysis and the proposed semantics is based on a
generalization of Hilbert’s ε terms.

1 Introduction

Annotation-based specification. Recently, formal specification of programs at
the source-code level has become increasingly popular with a wider community,
where such specifications are used both in safety and security contexts. This
is mainly due to the rise of a specification methodology where the boundaries
between program proper and specification become blurred: specifications are
written as annotations into program source files. The specifications languages
extend the programming language’s syntax, and their semantics is defined on
top of the programming language’s semantics. Particular examples include the
Java Modeling Language (JML) [12] for Java, the ANSI/ISO C Specification
Language (ACSL) [2] for C, and Spec# [1] for C#. This approach bears the clear
advantage of being intuitively understandable to users who are not familiar with
logic. At the same time, however, it has become far more laborious to come up
with a sound semantical foundation.

Model fields. Even if programs are specified at the source-code level, abstrac-
tion and modularization are indispensable for handling real-word programs. For
that purpose, the concept of model fields [9,14] is widely used. Model fields are
abstractions of the program’s memory state given in a syntactically convenient
form (as fields in a class). The relation between the concrete state and the model
fields, i.e., the abstraction relation, is specified by so-called represents clauses.

� This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties” within priority programme 1496 “Reliably Secure Software Systems – RS3”.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 B. Beckert and D. Bruns

In general, abstraction relations may be non-functional, and they may refer to
entities which are not present in the concrete program (e.g., other model fields).
Model fields are also commonly used to give implementation-independent speci-
fications of abstract data types. In that case, the requirement specification only
refers to model fields while the abstraction relation is part of the (hidden) im-
plementation details.

Topic of this paper. There is yet no common understanding of what the seman-
tics of model fields is in the general case. The semantics used by verification
and runtime checking tools as well as the semantics defined in the literature is
restricted to functional represents clauses, to model fields of a primitive type, or
by restricting the syntax of represents clauses. The general case, however, raises
several questions:

– On which memory locations does the value of a model field depend?

– What value is chosen if the represents clause is non-functional?

– Is there aliasing between model fields of a reference type?

– What does an unsatisfiable represents clause mean? Does it lead to an in-
consistent axiom set?

– At what points in time does the value of a memory field change?

– In which cases are represents clauses well-defined? What about recursive
represents clauses?

In this paper, we answer these questions by presenting a well-founded semantics
for model fields in the general case, which is inspired by a generalization of
ε terms. Although we primarily report on the situation in the Java Modeling
Language (JML)—this is the specification language the authors know best—
we expect the principles outlined here to apply to other specification languages
which make use of model fields as well. In particular, the semantics is independent
of any reasoning system. It is parameterized so that it can be instantiated in
different ways in cases where different reasonable answers to the above questions
exist.

Hilbert’s ε terms. The concept of ε terms was first introduced by Hilbert in 1939
as an extension to classical first-order predicate logic [8]. An ε term εx.ϕ(x),
where x is a variable and ϕ is a formula, stands for ‘some domain element such
that ϕ holds (if such exists)’. In general, this informal understanding is the only
restriction on the value of an ε term; however, we will later see that further
useful restrictions may be added. These terms can, for example, be used to
represent instantiations of existentially quantified variables without assigning a
concrete value (i.e., skolemization). The quantifier in ∃x.ϕ(x) can be eliminated
by replacing the formula ∃x.ϕ(x) by ϕ(εx.ϕ(x)).

In the course of this paper, we will review the discussion on restrictions to the
valuation of ε terms, with a look for analogies in the discussion on model field
semantics.

Formal Semantics of Model Fields 15

Structure of this paper. In Section 2, we give a short introduction to JML and,
in particular, model fields in JML. We however expect the results presented
here to apply to other specification languages as well. In Section 3, we give
a formal semantics for JML expressions without model fields. Before extending
this semantics to model fields, we review the discussion on semantics of ε terms
and develop an n-ary generalization of ε terms (Section 4). Then, in Section 5,
we present a first approach to model field semantics inspired by ε terms. In
Section 5.1, we discuss some of the desired properties of this approach. We
discuss one deficiency in Section 5.2 and propose a solution in a second, extended
approach based on our generalized ε terms from Section 4.1.

2 The Java Modeling Language

The Java Modeling Language (JML) [12] was conceived to be both easily ac-
cessible to the ‘common programmer’—who might not be skilled in formal
modeling—and “capable of being given a rigorous, formal semantics” [11]. JML
specifications, i.e., primarily method contracts (including frame conditions) and
class invariants, are written in a Java-like expression language as comments in
source files. Due to this advantage, JML has quickly become one of the most pop-
ular specification languages, which is employed in numerous program verification
and runtime checking methods and tools. Despite good intuitive understanding
of JML, there is yet no canonized formal semantics. Some have been presented
before [4,5,6,10], including one of the authors’ own. But, semantics of model
fields, in particular, are subject to an ongoing debate.

In addition to plain Java expressions, JML expressions are enriched with quan-
tification and special constructs, such as \result to access the return value of
a method invocation, or \old to refer to pre-state values of expressions (in
a method’s post-state) as well as quantification over primitive and reference
types.

Model fields in JML are declared similarly to regular Java fields, but within
specifications. They may occur as either non-static (i.e., instance) or static fields.
A model field is declared with the additional modifier model. This does not
yet give any information on the value of the field but only type information.
To impose a constraint on the possible values of a model field, a (separate)
represents clause is provided. It comes in two variations: a functional form,
in which a model field points to exactly one value depending on the memory
state, and a relational form, in which it is constrained to values satisfying a
boolean expression. Obviously, the functional form is a special case of the re-
lational form. The functional form is indicated by the assignment operator =,
while a relational definition is indicated by the keyword \such_that; see Fig. 1
for an example. Since they are not describing the relationship between two
states, represents clauses are not allowed to contain \old or \result. Other-
wise, their syntax is not restricted. They may, for example, contain references
to other model fields. We will call such references the dependencies of the model
field.

16 B. Beckert and D. Bruns

�

1public class List {

2private int[] theList;

3/*@ model int bound;

4@ model int idxMax;

5@ represents bound \such_that

6@ (\forall int i; 0 <= i &

7@ i < theList.length;

8@ bound >= theList[i]);

9@ represents idxMax \such_that

10@ theList[idxMax] == bound;

11@*/ }
�

Fig. 1. Two model fields with non-functional represents clauses. While there are always
multiple possible values for bound, the relation for idxMax may be empty.

3 Semantics of JML Expressions

In this section, we summarize the framework given in [4] to evaluate JML ex-
pressions that do not contain references to model fields. This semantics is then
extended to the case of model fields in Section 5.

We assume that a closed Java program is given that is annotated with JML
specifications. This program provides a type hierarchy, i.e., a partially ordered
set (T ,�) of types, and a universe U . The universe U consists of all semantical
objects which may be referenced in the program. In particular, it includes the
mathematical integers and truth values tt (true) and ff (false). For each refer-
ence type T � Object there is a countably-infinite subset VT ⊂ U which serves
as a reservoir and contains the elements of that type and a special element null;
T ′ � T implies VT ′ ⊂ VT . When needed, we denote the set of direct instances
by V d

T , with the property V d
T ∩ V d

T ′ = ∅ if T �= T ′. For a primitive type T ,
VT and V d

T are identical and map directly to the corresponding mathematical
entities, e.g., Vint = {z ∈ Z | −231 ≤ z < 231}. We also require that T ⊂ U
in order to allow types (i.e., classes and interfaces) to act as the receiver of a
static field or method. The declared type of a field identified by x is denoted by
typeof (x). Let Id denote the set of valid Java identifiers and Expr the set of syn-
tactically well-formed JML expressions. See [12, Appendix A] for the complete
syntax.

A (system) state s is the union of functions η and σ, which represent the
heap and the stack memory, respectively. η : U × Id → U maps pairs of receiver
objects and field identifiers (these pairs are also called locations) to a value.
σ : Id ∪{this} → U evaluates local variables. For now, we assume both η and σ
to be total functions.1 For a total function f and a partial function p, we use the
notation f ⊕ p to indicate that p overrides f , i.e., (f ⊕ p)(x) = p(x) if x ∈ Id(p)
and f(x) otherwise. We omit ⊕ where the notion is clear.

1 This can be achieved through underspecification of otherwise undefined values.

Formal Semantics of Model Fields 17

We define the evaluation function val : S2 × Expr → U that, given a pair
of system states, maps expressions to elements of the universe. The two state
parameters represent the state referred to by the \old operator (pre-state) and
the current state (post-state), respectively. Table 1 shows the valuation function
for some exemplary parameters. For a comprehensive definition, the reader is
referred to [4, Appendix A]. For the sake of simplicity, we disregard the fact here
that JML even allows pure methods to have certain side-effects.

Table 1. Valuation function val for some representative expressions where a and b are
expressions and x is an identifier

field access: val(s0, s1, a.x) = η(val(s0, s1, a),x) where s1 = (η,)
variable: val(s0, s1, x) = σ(x) where s1 = (, σ)
constant: val(s0, s1, true) = tt

identity: val(s0, s1, a == b) =

{
tt val(s0, s1, a) = val(s0, s1, b)
ff otherwise

logical and: val(s0, s1, a && b) =

{
tt val(s0, s1, a) = val(s0, s1, b) = tt
ff otherwise

implication: val(s0, s1, a ==> b) =

{
tt val(s0, s1, a) = ff ∨ val(s0, s1, b) = tt
ff otherwise

quantification: val(s0, s1, (\forall T x; a; b))

=

{
tt ∀y ∈ VT \ null : val(s0{x �→ y}, s1{x �→ y}, a ==> b) = tt
ff otherwise

old state: val(s0, s1, \old(a)) = val(s0, s0, a)

4 Semantics of ε Terms

When Hilbert first introduced ε terms, he provided only a vague informal un-
derstanding of their semantics. This has led to some interesting discussions on
a formalization. In this section, we mainly reprise the account given in [7].

A pre-structure of first-order logic with ε terms is a triple S = (U , I,A)
consisting of a domain U , an interpretation I of predicates and functions as in
classical logic, and additionally an ε-valuation function A. The function A maps
a term εx.ϕ and a variable assignment β to a value A(εx.ϕ, β) ∈ U . To gain a
‘more semantical’ ε-valuation, intensional and eventually extensional semantics
have been introduced.

Definition 1. An intensional structure S = (U , I,A) is a pre-structure in
which the valuation of an ε term εx.ϕ only depends on the valuation of free
variables occurring in ϕ, and A points to a value that actually satisfies ϕ if such
a value exists:

– If β1|fv(ϕ) = β2|fv(ϕ) then A(εx.ϕ, β1) = A(εx.ϕ, β2)
(where βi|fv(ϕ) is the restriction of βi to the free variables in ϕ).

– If S, β |= ∃x.ϕ then S, β{x �→ A(εx.ϕ, β)} |= ϕ.

18 B. Beckert and D. Bruns

Intensional semantics may still assign different values to syntactically different
but logically equivalent terms. Extensional structures, on the contrary, are built
on a deterministic (total) choice function on the set of applicable values, the
extension.

Definition 2. The extension Ext of an ε term w.r.t. a structure and an assign-
ment is defined as

Ext(S, β, εx.ϕ) := {u ∈ U | (S, β{x �→ u}) |= ϕ} .

An intensional structure S = (U , I,A) with the following property is called an
extensional structure:

– If Ext(S, β, εx.ϕ) = Ext(S, β, εy.ψ) then A(εx.ϕ, β) = A(εy.ψ, β).

Note that extensions may be empty; in that case, A yields an arbitrary element
of the universe. Extensional semantics are strictly stronger than intensional se-
mantics, in the sense that they have more valid formulas. Take, for instance, the
formula εx.ϕ

.
= εx.¬¬ϕ. It is valid in any extensional structure, but not in all

intensional structures.

4.1 A Generalization of ε Terms

As we will further discuss in Section 5.2, model field specifications—in contrast
to formulae in logic—are highly non-modular as represents clauses may depend
on each other. Therefore, it is not always possible to express the value of a model
field in terms of an ε term. In the following, we introduce the notion of generalized
ε terms, which denote values for non-empty finite sequences of variables instead
of single variables.

Definition 3 (Generalized ε term, syntax). Let x̄ be a non-empty finite
sequence of pairwise distinct variables, let i ∈ N, and let ϕ be a formula.

Then εx̄i.ϕ is a generalized ε term.

Definition 4 (Generalized extension). The generalized extension Ext of a
generalized ε term εx̄i.ϕ w.r.t. a structure and an assignment is defined as

Ext(S, β, ε〈x0, . . . , xn−1〉i.ϕ) :=
{〈u0, . . . , un−1〉 ∈ Un | S, β{xj �→ uj | 0 ≤ j < n} |= ϕ}

Note that the generalized extension contains n-tuples and is independent of the
index i. We now extend the definition of structures to the case of generalized ε
terms. The conditions imposed on the ε-evaluation function A in the following
definition implies both the requirements made in Definitions 1 and 2, i.e., every
generalised ε structure is extensional:

Definition 5 (Generalized ε term, semantics). A pre-structure
S = (U , I,A) with the following properties is called a generalized ε structure:

Formal Semantics of Model Fields 19

– (Intensionality) If Ext(S, β, εx̄0.ϕ) �= ∅ then〈
A(εx̄0.ϕ, β), . . . ,A(εx̄|x̄|−1.ϕ, β)

〉
∈ Ext(S, β, εx̄0.ϕ)

– (Extensionality) If Ext(S, β, εx̄0.ϕ) = Ext(S, β, εȳ0.ψ) then
A(εx̄i.ϕ, β) = A(εȳi.ψ, β) for any i.

5 A Novel Approach to Model Field Semantics

We return to the evaluation of expressions in JML and present a first approach to
model field semantics that is inspired by extensional ε term semantics (without
using ε terms explicitly). As commonly accepted, program references can be
approximately identified with variables in logic, as system states can be identified
with valuations. In a way similar to the ε-valuation function A introduced above,
we define a model field valuation function ε : S×U×Id×Expr → U , which takes
a state, a receiver object, a model field’s identifier, and a constraining expression
(from the represents clause) as parameters. We then build the definition of an
extended valuation function valε for JML expressions on top.

Let us first define the extension, i.e., the set of semantical objects for which
a state s validates a boolean JML expression ϕ with a field identifier x and
receiver object o which simulates a heap location (o, x), in a way reminiscent to
the above definition:

Definition 6 (Extension).

Extε(s, o, x, ϕ) :=
{
u ∈ Vtypeof (x) | valε(s, s{this �→ o, (o, x) �→ u}, ϕ) = tt

}
The extension is defined w.r.t. only one state. The reason is that the \old op-
eration may not occur in represents clauses.

An extensional ε-valuation function is independent of the syntactical shape of
the constraining formula but only depends on its extension. It therefore can be
seen as a deterministic choice function χ : 2U → U applied on the extension set.2

This seems plausible—except that in program specification, this is against the
intuitive view that different locations hold values which are independent of each
other. In other words: all model fields with logically equivalent represents clauses
would be ==-equal. Therefore, we introduce (possibly) different choice functions
for different model fields through a weaker version of extensionality and instead
use a family of choice functions that contains a choice function χ(T,i) for each
type T ∈ T and identifier i ∈ Id .

Let T ′ be the type where x is declared. Then, an ε-valuation w.r.t. a choice
function χ(T ′,i) is defined by:

ε(s, o, x, ϕ) := χ(T ′,x) (Extε(s, o, x, ϕ)) .

2 Note that χ is a total function and, in particular, yields an underspecified value χ(∅).

20 B. Beckert and D. Bruns

In addition to the above mentioned information, we need to extract represen-
tation clauses from the annotated program. Let rep(T, x) denote the represents
clause declared in type T constraining model field x. We are finally able to ex-
tend our definition of val from Sect. 3 to valε to include model field validation:

Definition 7. If x is a model field, then

valε(s0, s1, a.x) := ε(s1, valε(s0, s1, a), x, rep(valε(s0, s1, a), x))

Although extension and valuation are defined mutually recursively, this defini-
tion is well-founded since there is only a finite number of model fields which are
referenced in a single expression.

5.1 Discussion

Frame properties. Framing is an essential means to specify and verify programs
in a modular way. With the following remark, our approach for defining the
semantics of model fields allows framing, i.e., restricting the possible assignments
for fields. This is a purely semantical criterion—without (syntactically) naming
dependencies explicitly.

Assuming a fixed choice function χ and, thus, a fixed valuation ε, there is only
one possible object value for each model field as long as the values of its concrete
dependencies remain unchanged, even if other parts of the state change.

The value for a model field can be observed in any state without additional
care. While some authors [13,15,16] define model field semantics only for states
in which the receiver object’s invariant holds, our definition is independent of
the particular semantics of invariants.

Handling undefinedness. Our definition of semantical evaluation of model fields
is independent of how undefinedness in expressions is handled (e.g., division by
zero or null pointer references). In JML—as in Java—an expression ϕ is only
well-defined if its subexpressions are themselves well-defined, namely those which
are relevant in a short-circuit evaluation read from left to right. On the top level,
a boolean expression is considered valid if it is well-defined and yields the value tt.
This can be seen as a non-symmetric, conservative three-valued logic. One could
easily extend this notion of well-definedness to model fields where a reference
expression is well-defined only if there is a non-empty extension.

Applications. Up to now, there exist various tools which use annotation-based
languages as specification input: runtime checkers, static analyzers, and formal
deductive verification tools. As our semantics is independent from any verifica-
tion methodology, we believe that it can be used to check whether those applica-
tions implement model fields in a consistent way. For runtime-checking, however,
it may be necessary to fix a certain choice function which is easy to compute,
e.g., to choose the least element w.r.t. some order.

Formal Semantics of Model Fields 21

5.2 An Improved Approach

The above approach works well in most cases—even when a represents clause
contains references to other model fields. However, the evaluation is local to
single model fields in the sense that it only establishes the relations between a
model field and its dependencies. In the case where references are cyclic, the
relation between model fields are ignored. Consider the following two represents
clauses:

represents x \such_that x >= y; represents y \such_that y >= x;

Both are clearly satisfiable, but when evaluated separately, it is not implied that
x and y are assigned the same value. For a sound evaluation in that case, instead
of making a choice from a set of values, we need to make a choice from the set
of valuations conforming with all represents clauses simultaneously. Let Ls be
the (finite) set of model field locations (i.e., pairs of receiver objects/classes and
field identifiers) whose receiver object is created in state s (or has been statically
initialized). Then, the heap extension HExt , as motivated by generalized exten-
sions (Def. 4), can be given as follows. It consists of functions from locations to
values—the same domain as the heap—under which all represents clauses valu-
ate to true. This means that those functions extend the actual heap. Since there
is a valuation for each model field, only one choice function is required.

Definition 8 (Generalized model field valuation). Let χ̄ be a fixed choice
function on UU×Id . Then define heap extension HExt(s) and valuation valε̄:

HExt(s) :=
{
h∈ UU×Id | ∀(o, x) ∈ Ls. valε̄(s, s⊕h⊕{this �→ o}, rep(o, x)) = tt

}
valε̄(s0, s1, a.x) := (χ̄HExt(s1)) (valε̄(s0, s1, a), x)

The heap extension set may lead to fewer values for a particular model field
when compared with the simple extension defined above. Those belonged to a
partial (local) solution in which not all represents clauses are satisfied simulta-
neously. However, all aspects which we discussed in Sect. 5.1 still apply to this
definition.

�

1public class LinkedList {

2private /*@ nullable @*/ LinkedList next;

3private Object contents;

4/*@ model int index;

5@ represents index \such_that

6@ next == null || index < next.index; @*/

7}
�

Fig. 2. Non-functional represents clause: index of a linked list

22 B. Beckert and D. Bruns

Example 1. Figure 2 shows an implementation of a linked list. In JML, it is
necessary to add the modifier nullable to the next list element because as the
default all object references must not point to null unless declared explicitly.

The represents clause of the model field index guarantees that the list is
actually acyclic as its value needs to be strictly less than index of the next
element. Let us determine the value of this.index in a state s = (η, σ) where

σ(this) = ll0, η(ll0, next) = ll1, η(ll1, next) = ll2, η(ll2, next) = null

and ll0, ll1, ll2 ∈ VLinkedList are the only objects created in s. From this it follows
that L(s) = {(ll0, index), (ll1, index), (ll2, index)}. Then

HExt(s) =
{
h ∈ (Vint)

U×Id | h(ll0, index) < h(ll1, index) < h(ll2, index)
}

,

which is clearly not empty and some function can be chosen.

6 Related Work

Even though JML is designed to be interchangeably used with various speci-
fication and program analysis techniques, the issue of handling model fields is
still subject to an on-going debate. There are several approaches to integrate
model fields into verification. There, semantics are mostly implict in the respec-
tive methodology or calculus. A preliminary version of the semantics in this work
has also appeared in [4, Sect. 3.1.5].

Substitution-based Approaches. Breunesse and Poll [3] present a semantics us-
ing substitutions in expressions. The clear advantage of this technique is that no
additional evaluation rules are needed. Given a model field x of type T with a rep-
resents clause ψ and a JML expression ϕ which contains x, the following transfor-
mation is applied: ϕ � (\forall T x; ψ; ϕ) && (\exists T x; true; ψ)

In the result, ϕ appears as the body of a quantifier expression with the model
field x as the quantified variable. This transformation is done for every model
field declared in the program. The resulting expression asserts both that ϕ holds
if the represents clause ψ is true as well as the existence of a value that satisfies ψ.

However, this approach is syntactically restricted since the order in which an
expression is transformed does matter. Moreover, model fields may depend on
each other, so if ψ contains a reference to another model field y, the scope of
quantification of y has to include ψ. Thus, the semantics of model fields is only
well-defined if there exists a linear ordering of dependencies and an upper bound
on their length.

Concrete Instantiations. There are two approaches by Leino and Müller [13] and
Tafat et al. [15], respectively, based on ownership methodology, which is used
in Spec# and ACSL among other languages. Model field values are stored on
the heap, like concrete or ghost fields. In contrast to JML, they are defined not
to change their value instantaneously when the locations change on which they
depend, but at given program points, namely upon invoking the special pack
operation on its owner.

Formal Semantics of Model Fields 23

In these works, represents clauses are not allowed to contain calls to pure
methods, and references to other model fields only in a few restricted cases.
It is not clear whether there are restrictions on the chosen values in case the
represents clause is not functional. Thus it may be possible, according to this
definition, that the value of a model field spontaneously changes upon packing
even though all dependencies retain their values.

Axiomatic Semantics. Weiß [16] presents a dynamic logic with explicit heap
objects. Model fields are translated to function symbols. Represents clauses are
introduced through logical axioms. As a simple solution to avoid an inconsistent
axiom set, they are guarded by an existentially quantified assumption, which
guarantees that the single represents clause is satisfiable. Mutually recursive
represents clauses may, however, give rise to inconsistent axiom sets.

Frame Conditions. Much of the above is dedicated to how model fields gain their
values. Another important property is to specify when a model field’s value
does not change, known as a frame condition. To this end, Weiß introduces
contracts for model fields [16], similar to frame conditions on methods, which
have to be respected by implementing represents clauses. Here, the argument
of a frame condition is an expression of type \locset (‘set of locations’) which
is dynamically valuated. This approach, known as dynamic frames theory, is
particularly useful when the concrete fields on which a model field depends are
not known on the abstract level.

7 Conclusion and Outlook

In this paper, we have presented a semantics for model fields in annotation-based
specification languages. The first version is strongly inspired by the notion of
ε terms as introduced by Hilbert. We have demonstrated the connection between
those two concepts—one from an established theory and one as a current challenge
in formal methods in software engineering. While this semantics exposes a ‘good
behavior’ in most cases, the general case requires a different methodology. This
second version covers the complete expression sub-language of JML.

To the best of our knowledge this is the first contribution in which model
fields are described in all their extent and in an application-independent way.
This means that the results can be applied to any verification paradigm. It also
provides the basis to independently give a definition of well-definedness.

Model fields are a powerful instrument in code-level specification which hides
behind the familiar syntactical guise. However, it is debatable whether there is
a real demand for non-functional relations. Commonly, within the technique of
abstraction, there are several concrete entities which are related to one abstract
representation. In the vast majority of instances, there is always a sensible func-
tional representation. In Fig. 2 for instance, we have seen an example where the
represents clause exposes a kind of weakly functional behavior, while it would
not do any harm to overspecify the relation and provide values to any case which
is yet left undefined.

24 B. Beckert and D. Bruns

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, Version 1.5 (2010)

3. Breunesse, C.B., Poll, E.: Verifying JML specifications with model fields. In: For-
mal Techniques for Java-like Programs (FTfJP), pp. 51–60. No. 408 in Technical
Report, ETH Zurich (July 2003)

4. Bruns, D.: Formal Semantics for the Java Modeling Language. Diploma thesis,
Universität Karlsruhe (2009)

5. Darvas, Á., Müller, P.: Formal encoding of JML level 0 specifications in JIVE.
Tech. Rep. 559, ETH Zürich (2007)

6. Engel, C.: A translation from JML to JavaDL. Studienarbeit, Fakultät für Infor-
matik, Universität Karlsruhe (February 2005)

7. Giese, M., Ahrendt, W.: Hilbert’s ε-Terms in Automated Theorem Proving. In:
Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 171–185.
Springer, Heidelberg (1999)

8. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer (1939)
9. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,

271–281 (1972)
10. Jacobs, B., Poll, E.: A logic for the Java Modeling Language (JML). Tech. Rep.

CSI-R0018, University of Nijmegen, Computing Science Institute (November 2000)
11. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

12. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual (July 13, 2011)

13. Leino, K.R.M., Müller, P.: A Verification Methodology for Model Fields. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg (2006)

14. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans-
actions on Programming Languages and Systems 24(5), 491–553 (2002)

15. Tafat, A., Boulmé, S., Marché, C.: A Refinement Methodology for Object-Oriented
Programs. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp.
153–167. Springer, Heidelberg (2011)

16. Weiß, B.: Deductive Verification of Object-Oriented Software — Dynamic Frames,
Dynamic Logic and Predicate Abstraction. Ph.D. thesis, Karlsruhe Institute of
Technology (January 2011)

Searching with Partial Belief States
in General Games with Incomplete Information

Stefan Edelkamp1, Tim Federholzner1, and Peter Kissmann2

1 TZI Universität Bremen, Germany
{edelkamp,tif}@tzi.de

2 Universität des Saarlandes, Saarbrücken, Germany
kissmann@cs.uni-saarland.de

Abstract. In this paper we present a full-fledged player for general games with
incomplete information specified in the game description language GDL-II. To
deal with uncertainty we introduce a method that operates on partial belief states,
which correspond to a subset of the set of states building a full belief state. To
search for a partial belief state we present depth-first and Monte-Carlo methods.
All can be combined with any traditional general game player, e.g., using mini-
max or UCT search.

Our general game player is shown to be effective in a number of benchmarks
and the UCT variant compares positively with the one-and-only winner of an in-
complete information track at an international general game playing competition.

1 Introduction

General game playing (GGP) urges the computer to process the rules of the game and
start to play, thus operating without including expert knowledge of the game that is
played. In the context of international GGP competitions [6] the rules are specified in
a logical formalism, called the game description language (GDL) [12]. The games are
played on a server, which connects with GGP agents via TCP/IP. After some startup
time the game starts and according to a play clock moves have to be issued. Moves are
executed on the server and reported to the players in order to continue.

As randomness and handling incomplete information is a necessity for playing many
games (e.g., card games), with the extension GDL-II [19] (for GDL with incomplete
information) both recently became part of the accepted standard for general game play-
ing. It has been shown that GDL-II can be mapped to situation calculus [17], while [15]
highlights connections of GDL/GDL-II and epistemic logic.

Only few players have been developed so far, and documentation is rare. At the only
international GGP competition that supported incomplete information games in GDL-
II, Schiffel’s FLUXII was clearly the best. The name indicates that the player is based
on the internationally very successful FLUXPLAYER [18].

Currently, the number of GDL-II benchmark problems incorporating incomplete in-
formation is rather small. Even though all specified games can be played, current play-
ers often have difficulties handling some of their complexities, especially due to the ad-
ditional efforts required to handle incomplete information. Players act in the so-called
belief state space and some assumptions of the current state might become invalid due
to incoming information provided by the server.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 S. Edelkamp, T. Federholzner, and P. Kissmann

In this paper we provide insights to the design and implementation of our GDL-II
player NEXUSBAUM. We start with a brief introduction to general game playing (Sec-
tion 2), where we address existing players and their techniques to play classical GDL
games, and turn to the problems encountered when addressing incomplete information.
For these problems we provide search solutions (Section 3) that act on subsets of the
actual sets building the belief states. In the experiments (Section 4) we see that us-
ing these strategies for simple single-player GDL-II games (such as MEMORY and the
MONTY HALL problem) NEXUSBAUM plays almost perfectly. Moreover, we show that
in a two-player scenario our approach can meet the effectiveness of FLUXII. Finally we
will draw some conclusions and point to possible extensions in the future (Section 5).

2 General Game Playing

2.1 GDL

As the description of syntax and semantics in GDL [12] is involved we prefer a set-
based definition of a general game.

Definition 1 (General Game). A general game can be described by a tuple of the form
(P, S, s0, T, S,M,L, succ, reward), where

– P is the set of roles (the players),
– S is the set of all states,
– s0 ∈ S is the (unique) initial state,
– T ⊆ S is the set of terminal states,
– M is the set of moves,
– L ⊆ M × P × S is the set of legal moves for the specified player in the specified

state,
– succ is a mapping L|P | × S → S for the calculation of the successor states, and
– reward is a mapping P ×T → {0, . . . , 100} that defines the rewards of the players

upon reaching a terminal state.

In the first two GGP competitions, players making use of Minimax search [14] were
prevalent, such as CLUNEPLAYER [3] and FLUXPLAYER [18], the winners of the first
two international GGP competitions. The difficulty of the minimax based approaches
is to find a good evaluation function that will work well for any game, as most games
cannot be fully analyzed in the available time.

Since 2007, the most successful GGP agents such as CADIAPLAYER [5] or ARY [13]
use UCT [10] to calculate the next move to play. UCT is a simulation based method that
stores only small parts of the actual game tree in memory. Each simulation run starts at
the root node and selects as the next move to take the one maximizing the UCT formula

UCT (s,m) = Q(s,m) + C

√
logN(s,m)

N(s)
,

with UCT (s,m) being the UCT value of move m in state s, Q(s,m) the average
reward achieved when choosing move m in state s, C a constant for controlling the

Searching with Partial Belief States in General Games with Incomplete Information 27

(role random)
(<= (legal random (flip ?coin1 ?coin2))

(coin ?coin1) (coin ?coin2)
)
(coin heads) (coin tails)

Fig. 1. Legal moves of random in the coin flipping example

exploration versus exploitation ratio, N(s) the number of times state s was expanded,
and N(s,m) the number of times move m was chosen in state s.

As an example of the portfolio of UCT search control heuristics, we refer to the killer
heuristic [1], a method originally introduced to minimax based algorithms to improve
pruning. The list of moves is sorted according to the success of pruning. This can be
ported to UCT by sorting the moves according to the statistics of rewards similar to [4].
However, the effect is not always as big as in Minimax.

2.2 GDL-II

Syntactically, GDL-II [19] is a small extension, as it mainly adds two keywords. The
first one is an additional role in P , called random, which chooses its moves uniformly at
random. The other one is the predicate sees that defines the visibility of information to
the players. While in GDL the players were informed of the moves that all participating
players have chosen, in case of GDL-II the players are informed only of what they can
see. Nevertheless, the players should always be able to determine the set of legal moves
they currently may choose and should also be able to determine a terminal state.

Let us consider some fragments of a simple coin flipping example. At any time, the
random player can only flip two coins (cf. Figure 1). The two possibilities for each coin
are heads and tails and for each coin they are independent of the other. As it is the
random player, we know that it will choose each of the four possible moves with the
same probability.

The first coin determines what the first player may do, the second one decides what
the second player may do. If a coin shows heads and the corresponding player has
chosen go, it is moving forward (cf. Figure 2). However, if the coin shows tails, the
player is blocked and thus does not change the position. If it chose to stay it will stay at
the previous position as well independent of the outcome of the coin throw.

To determine if the players were able to move the observations are sent according to
the sees rule (cf. Figure 3). Here it informs the players only about the results of the coin
flip performed by the random player, so that the actual position of the own player has
to be evaluated based on the performed moves, while that of the opponent is unknown,
as a player does not know if the opponent chose to go or stay.

Concerning GDL-II search control heuristics there is a much wider spectrum of pos-
sibilities. One can maximize the own flexibility, i.e., prefer nodes with large branching
factor, in order not to get stuck too quickly, or minimize the branching factor of the
opponent. Such heuristics are to be implemented with care. While flexibility is often
good for games like CHESS, in CHECKERS pieces are sacrificed too quickly because

28 S. Edelkamp, T. Federholzner, and P. Kissmann

(<= (next (position white ?n2))
(does white go) (does random (flip heads ?other))
(true (position white ?n1)) (next_pos ?n1 ?n2)

)
(<= (next (position white ?n))

(does white go) (does random (flip tails ?other))
(true (position white ?n))

)
(<= (next (position white ?n))

(does white stay)
(true (position white ?n))

)

Fig. 2. Update of the positions of white player in the coin flipping example. The update for the
black player is analogue.

(<= (sees ?r (did random (flip ?coin1 ?coin2)))
(role ?r)
(does random (flip ?coin1 ?coin2))

)

Fig. 3. The information the players see in the coin flipping example

the players are required to capture opponent’s pieces whenever they can. A better rule
of thumb for GDL-II games is to maximize the own knowledge, and minimize the one
offered to the opponents. However, the former can also lead to too many sacrifices, e.g.,
in KRIEGSPIEL, and the latter to avoid conflict that has to be resolved. As with the no-
free lunch theorems in optimization there is hardly a heuristic that is effective for all
games.

3 Handling Incomplete Information

When playing incomplete information games a player is confronted with the problem
that it does not know the precise state. A first idea to get as much information as possible
concerning the current state might be to evaluate all the observations based on the sees
rules it has received during play. However, evaluating the corresponding rules often
does not yield enough information.

Another approach is to handle belief states. A belief state is a set of states that the
player believes might be true. The actual situation is one of the states building the belief
state, but we do not know which element of the entire set it is. In this paper we propose
two approaches: First, to always store the full belief states, and secondly to store only a
subset of the set building the belief state, which we call a partial belief state and update
it after a move or whenever we find that some state cannot hold anymore.

Searching with Partial Belief States in General Games with Incomplete Information 29

Algorithm 1. Finding the full belief state
Input: General Game, belief state of last step BS i−1, set of observations of last step

Obs i−1.
Output: Belief state of this step BS i.

1 BS i ← ∅;
2 for all bs ∈ BS i−1 do
3 determine all possible joint moves JM ;
4 for all jm ∈ JM do
5 Obs ′ ← observe(bs, jm);
6 if Obs ′ = Obs i−1 then
7 bs ′ ← succ(bs , jm);
8 BS i ← BS i ∪ {bs ′};

9 return BS i;

3.1 Full Belief States

At the beginning of each playing phase we must generate the new belief state BS i based
on the one of the previous step BS i−1 (cf. Algorithm 1). While several datastructures
such as POMDPs [9,20] or BDDs [2] for the handling belief states have been used in
the past, for this first implementation we decided to stick to an explicit representation.
For each state bs ∈ BS i−1 we determine all the moves of all other players – we of
course know our own move – and calculate all possible joint moves JM . For each of
these joint moves we check if the observations we would have achieved if these were
the actual moves played equal those we did receive (Obs). If they do, we know that this
joint move might really have been performed, so that we compute the corresponding
successor state bs ′ and add it to BS i.

While at first glance it seems great to have the full belief states in order to en-
hance the performance of the player, it comes at a high cost. Take the game of POKER

with three players. Each player knows only the five cards it owns, so that there are(
47

5,5,37

)
= 1,304,872,821,252 possible states building the full belief state after dealing

the cards. Storing all of these and efficiently operating on them is very expensive and
the calculation of the next move might take more than the available play clock. Thus,
for more complex games it seems better to store only a subset of all possible states.

3.2 Partial Belief States

If we do not want to store the full belief states we instead store a tree that allows us
to find new possible states when we have to discard impossible ones. We call this tree
the belief state tree. Each node of the belief state tree corresponds to a state the player
believes to be possible (or mark it as being impossible), each edge to a joint move.
The root of the tree is the initial state of the game, which we know to be the only state
possible at the start of the game. For each node representing a possible state we store the
full set of possible successor states. Each node can have one of three different values.

30 S. Edelkamp, T. Federholzner, and P. Kissmann

possible. We have evaluated that state and found that the observations we get when
performing the ingoing joint move are equal to those we actually observed.

impossible. We have evaluated that state and either the observations when taking the
joint move leading to it do not match the observed ones or all its successors are
marked as impossible.

unknown. We have not yet evaluated that state and thus do not know if it is possible or
not.

In order to find a subset of the possible states after a move was performed we distinguish
two approaches, one based on depth-first search, which we call depth-first belief state
search (DFBSS), and the other based on random choice, which we call Monte-Carlo
belief state search (MCBSS). Such a subset then builds the partial belief state we use in
order to determine the next move to take.

Depth-First Belief State Search (DFBSS). Starting at the root of the belief state tree,
i.e., layer 0, we continue in a depth-bounded DFS manner until either the current layer i
contains the desired number of possible states (size) or the full tree has been evaluated
(cf. Algorithm 2).

When we reach a node with unknown value we evaluate it. If it is possible we con-
tinue further along that node. Otherwise we mark it as impossible and continue with its
siblings.

When we reach a node representing a possible state we continue either to the first
possible successor we have not visited in this search, or – if there is none – to the first
successor with unknown value.

Upon reaching the current layer and evaluating the reached state as possible we store
it in BS i, the partial belief state in the current layer i, and continue with its siblings.

Monte-Carlo Belief State Search (MCBSS). A disadvantage of DFBSS is that it often
has to evaluate large parts of the belief state tree. Especially when a layer is reached
where the size of the full belief state is smaller than the subset size we wish to store,
DFBSS has to search the entire tree. Thus, the main bottleneck of DFBSS we found in
preliminary experiments is that it still is too slow. To overcome this problem we came
up with a Monte-Carlo based search in the belief state tree (cf. Algorithm 3).

Instead of performing depth-first search we use several Monte-Carlo runs, each start-
ing at the root node, the initial state of the game. When a state is reached that is marked
as possible we randomly choose one of its successors and continue from that. If a state
with unknown value is reached we must evaluate it. If it is impossible we mark it as
such, recursively remove it and its predecessors if those now only have impossible
successors, and afterward restart at the root node. If the node is evaluated as being
possible we continue from that node. Whenever we reach a possible node in the cur-
rent layer i we add the corresponding state bs to the partial belief state for the current
step BS i.

The algorithm stops when the specified number of states (size) is found. Note that
these states do not have to be different – otherwise we might run into the same problem

Searching with Partial Belief States in General Games with Incomplete Information 31

Algorithm 2. Depth-First Belief State Search (DFBSS)
Input: General game, belief state tree BST , set of observations of all steps Obs , current

step i, size of partial belief state size .
Output: Updated belief state tree BST , current partial belief state BS i.

1 layer ← 0; bs ← root(BST); BS i ← ∅;
2 while |BS i| < size and (hasMorePossibleSuccs(bs) or hasUnknownSucc(bs)) do
3 jm ← jointMoveTo(bs);
4 if isUnknown(bs) then
5 Obs ′ ← observe(bs, jm);
6 if Obs ′ = Obs layer then
7 markPossible(bs);
8 else
9 markImpossible(bs);

10 bs ← parent(bs);
11 layer ← layer − 1;

12 if isPossible(bs) then
13 if layer = i then
14 BS i ← BS i ∪ {bs};
15 else if hasMorePossibleSuccs(bs) then
16 bs ← nextPossibleSucc(bs);
17 layer ← layer + 1;
18 else if hasUnknownSucc(bs) then
19 bs ← firstUnknownSucc(bs);
20 layer ← layer + 1;
21 else
22 if allSuccsImpossible(bs) then
23 markImpossible(bs);

24 bs ← parent(bs);
25 layer ← layer − 1;

26 return BST , BS i;

as with DFBSS, because we would have to evaluate the entire belief state tree if the full
belief state is smaller than size.

While in most cases MCBSS is a lot faster than DFBSS, memory consumption tends
to be greater. In DFBSS only those nodes leading to possible states in the current layer
remain, while in MCBSS we often store paths that are not fully evaluated to the current
layer but rather ended in one state being impossible.

3.3 Choosing a Move for a (Full or Partial) Belief State

No matter if we manage the full belief state or only a partial one, each state of the set
can be seen as the initial state of a classical GDL game and thus be handled by classical
GGP approaches such as Minimax or UCT, similar to the sampling approaches used in
BRIDGE [7] or SKAT [11].

32 S. Edelkamp, T. Federholzner, and P. Kissmann

Algorithm 3. Monte-Carlo Belief State Search (MCBSS)
Input: General game, belief state tree BST , set of observations of all steps Obs , current

step i, size of partial belief state size .
Output: Updated belief state tree BST , current partial belief state BS i.

1 layer ← 0; bs ← root(BST); BS i ← ∅;
2 while |BS i| < size do
3 jm ← jointMoveTo(bs);
4 if isUnknown(bs) then
5 Obs ′ ← observe(bs, jm);
6 if Obs ′ = Obs layer then
7 markPossible(bs);
8 else
9 markImpossible(bs);

10 while isImpossible(bs) do
11 bs ← parent(bs);
12 if allChildrenImpossible(bs) then
13 deleteAllChildren(bs);
14 markImpossible(bs);

15 bs ← root(BST);
16 layer ← 0;

17 if layer = i then
18 BS i ← BS i ∪ {bs};
19 bs ← root(BST);
20 layer ← 0;
21 else
22 bs ← randomSucc(bs);
23 layer ← layer + 1;

24 return BST , BS i;

To determine which move to choose the results of the games must be combined. For
a minimax based approach the move maximizing

eval (m) =

∑
bs∈BSi

reward(bs ,m)

|BS i|
,

with m being a legal move and reward(bs ,m) being the estimated reward for move m
in state bs , is chosen.

For a simulation based approach the same function might be used. However, it is
possible to improve by integrating the number of simulation runs into the evaluation:

eval (m) =

∑
bs∈BSi

reward(bs ,m)×N(bs ,m)∑
bs∈BSi

N(bs ,m)
,

with N(bs ,m) being the number of times move m was evaluated in state bs . In other
words, the evaluations are weighted by their reliability. The results that were evaluated
more often are weighted higher than those evaluated only rarely.

Searching with Partial Belief States in General Games with Incomplete Information 33

Weighted MCBSS. A problem of MCBSS (as well as DFBSS) is that the partial belief
state for the current step BS i does not necessarily contain the true current state. Fur-
thermore, it might even be that all the states in BS i share only very few fluents with the
current state.

To overcome this problem we can use the rules for determining the opponents’ re-
wards. The estimated rewards determined for the various states in the evaluation process
are stored together with the corresponding states within the belief state tree.

Instead of choosing a successor node uniformly at random, weighted MCBSS uses a
probability distribution corresponding to those estimated rewards. Thus, a possible state
with greater stored reward values for the opponents will be chosen with higher proba-
bility than one with smaller reward values. The idea here is that the opponents would
typically perform a move that will ensure a higher reward in the end. The probability to
choose a move is given by

P
({

m1i1 ,m2i2 , . . . ,mpip

})
=

p∏
k=1

estReward (mkik)∑nk

j=1 estReward (mkj)
,

with p being the number of players,mkik the move chosen by player k, estReward(mkik)
the estimated reward for player k when choosing movemkik , and nk the number of legal
moves of player k. Note that our player’s chosen move is known, so that, assuming we
are player x and have chosen the yth move, the estimated rewards for our moves can be
set to 100 for move mxy and to 0 for all moves mxz with z �= y.

4 Experiments

So far, not many GDL-II games incorporating incomplete information have been pub-
lished, and often they are either too simple or too hard. We selected the known bench-
mark MONTY HALL [16] and added the two games MEMORY and STRATEGO for eval-
uation.

According to a private communication with Stephan Schiffel, the competitor FLUXII

uses full belief states. It has been implemented in ECLiPSe-Prolog 6.0 and was added to
the FLUXPLAYER infrastructure. During the startup time, static analyses are conducted
to improve the performance during the search. Once the belief state is computed, UCT
is applied. Afterward, results are merged.

Our player NEXUSBAUM stores only a subset of the belief states and applies MCBSS
or weighted MCBSS to update it. The setup of the player including the calculation of
the partial belief states and the accumulation of the results is implemented in Java
using SWI-Prolog, while for performance reasons the Monte-Carlo simulations are im-
plemented in C++ using ECLiPSe-Prolog 6.0.

For the experiments we used a personal computer with an Intel Core i7 920 CPU
with 2.67GHz and 12GB RAM. Overall, the experiments took more than a full month.

4.1 Games Played

The MONTY HALL problem [16] has received much interest when it was first proposed.
In that game we have a host (here modeled as the random player) and a player who has

34 S. Edelkamp, T. Federholzner, and P. Kissmann

to decide which door to take. The host places a car behind one door, which the player
is supposed to find, and goats behind the other two. After the player has chosen a door,
the host opens one of the unchosen doors containing a goat, and allows the player to
switch to the other unopened door. Actually, this switching is the best move the player
can take, resulting in a probability of 2/3 to find the car.

In MEMORY (engl. CONCENTRATION) the random player deals four pairs of cards,
which the player cannot see. The player is supposed to find the corresponding pairs in
as few moves as possible. In each move it may choose two cards. If they match they are
removed, otherwise they remain on the board. In case a player gets lucky four moves
suffice. However, the general best case is eight moves, which results in the full 100
points.

Our version of STRATEGO (orig. L’ATTAQUE) is played with six pieces for each
player on a 3×6 board. Pieces are captured according to fixed precedence rules, similar
to the original game. The goal is to take the opponent’s flag before running out of steps.
Otherwise, both players receive 50 points.

4.2 Results in the Games

For MONTY HALL we played a total of 100 games using a partial belief state size of 10
states, a startup time of 10 seconds and a play clock of 20 seconds. Overall, NEXUS-
BAUM scored an average of 67 points, which relates well to the theoretical knowledge
that the player will find the car with a probability of 2/3 if it switches the chosen door.
Indeed, in all the 100 runs it chose to switch the door.

For MEMORY we also played a total of 100 games and used a partial belief state
containing 10 states. Concerning the times, we used 10 seconds for the startup time
and 120 seconds for the play clock. Overall, NEXUSBAUM played optimally in most
cases. However, in a few runs it took nine or ten moves to find the correct pairs, which
correspond to 75 and 50 points, respectively, resulting in a total average of 95 points.

In STRATEGO we first of all played 50 matches against a random player, half of them
as first and the other half as second player. We used a partial belief state of size 10, a
startup time of 30 seconds and a play clock of 60 seconds. Overall, NEXUSBAUM was
able to win most of the time; only one match ended in a draw.

After these preliminary results in STRATEGO we decided to play against a real op-
ponent, i.e., FLUXII. We used three different versions of NEXUSBAUM, one using only
Monte-Carlo Belief State Search (MCBSS), one using weighted MCBSS (WMCBSS),
both of which use a simple Monte-Carlo approach as the underlying player. However, in
a final set of experiments we switched to using a UCT based player (WMCBSS+UCT).
All versions played 50 matches against FLUXII, 25 as the first and 25 as the second
player. The results are depicted in Table 1.

Concerning only MCBSS we can see that the results differ a lot with different play
clocks. With smaller play clock the version using a partial belief state size (pbs size)
of only 10 is clearly inferior to using a size of 15. However, with a play clock of 120
seconds using a size of 10 is a bit better than 15. This is quite surprising as the player
sometimes actually has problems finding the 15 possible states in the available time.
Given more time it should be able to find them more often and thus have more time to
evaluate them.

Searching with Partial Belief States in General Games with Incomplete Information 35

Table 1. Results of the matches against FLUXII in STRATEGO

NEXUSBAUM start play pbs average reward
version clock clock size for NEXUSBAUM

MCBSS 10 60 10 35.0
MCBSS 10 90 10 25.0
MCBSS 10 120 10 44.0
MCBSS 10 60 15 43.0
MCBSS 10 90 15 50.0
MCBSS 10 120 15 39.0

WMCBSS 10 60 10 38.0
WMCBSS 10 90 10 43.0
WMCBSS 10 60 15 44.0
WMCBSS 10 90 15 43.0

WMCBSS+UCT 10 60 10 56.0
WMCBSS+UCT 10 90 10 63.0

For WMCBSS we can see that using a play clock of 60 seconds and a pbs size of
10 or 15 or using a play clock of 90 seconds and a pbs size of 10 the average results
achieved against FLUXII are better for the weighted version. However, when using a
play clock of 90 seconds and a pbs size of 15 the unweighted MCBSS is superior. In
fact, when using only a Monte-Carlo based player we can see that using unweighted
MCBSS with a play clock of 90 seconds and a pbs size of 15 resulted in the highest
average outcome. This is the only setting where NEXUSBAUM played with a strength
comparable to FLUXII, resulting in an average of 50 points.

Finally, we turned on UCT search as well, and here we can see that we clearly can
win against FLUXII. When using a pbs size of 10 and a play clock of 90 seconds we
achieve an average reward of 63 points. Thus, it seems that in this setting our approach
of managing only partial belief states is better than using the full belief states.

5 Conclusions and Future Work

The challenge of playing general games is to program autonomous agents that can play
on a high level. For the new standard GDL-II that includes incomplete information
games this paper proposes a competitive full-fledged GDL-II player, which – besides
parsing, game controlling and some efficiency tricks – comes with a new game engine
for handling (partial) belief states.

Handling randomness and incomplete information is computationally hard. Even for
single-player general games, which can be cast to contingent action planning problems
[8], it is known that complexities rise drastically.

Our player NEXUSBAUM maintains partial belief states and works best with weight-
ed Monte-Carlo belief state search using an underlying UCT based player. It plays
single-player games like MONTY HALL and MEMORY almost perfectly, and – for our
case study of the complex game STRATEGO – it is shown to outperform Schiffel’s
FLUXII.

36 S. Edelkamp, T. Federholzner, and P. Kissmann

We found that calculating the desired number of possible states sometimes takes
more time than the available play clock. This suggests future work in order to cut off
evaluation of moves even if the partial belief state does not yet contain the desired
number of states in order to further tune the implementation, and to parallelize the
search.

References

1. Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In: Annual
ACM Conference, pp. 466–473 (1977)

2. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Strong planning under partial observability.
Artificial Intelligence 170(4-5), 337–384 (2006)

3. Clune, J.: Heuristic evaluation functions for general game playing. In: AAAI, pp. 1134–1139
(2007)

4. Finnsson, H., Björnsson, Y.: Learning Simulation Control in General-Game-Playing Agents.
In: AAAI, pp. 954–959 (2010)

5. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: AAAI,
pp. 259–264 (2008)

6. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the AAAI compe-
tition. AI Magazine 26(2), 62–72 (2005)

7. Ginsberg, M.L.: GIB: Imperfect information in a computationally challenging game.
JAIR 14, 303–358 (2001)

8. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with implicit
belief states. In: ICAPS, pp. 71–80 (2005)

9. Kaebling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

10. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

11. Kupferschmid, S., Helmert, M.: A Skat Player Based on Monte-Carlo Simulation. In: van
den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp.
135–147. Springer, Heidelberg (2007)

12. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description lan-
guage specification. Tech. Rep. LG-2006-01, Stanford Logic Group (April 2006)

13. Méhat, J., Cazenave, T.: A parallel general game player. KI – Künstliche Intelligenz (Special
Issue on General Game Playing) 25(1), 43–48 (2011)

14. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press (1944)

15. Ruan, J., Thielscher, M.: The Epistemic Logic Behind the Game Description Language. In:
AAAI, pp. 840–845 (2011)

16. vos Savant, M.: Ask Marilyn. Parade Magazine (1990)
17. Schiffel, S., Thielscher, M.: Reasoning About General Games Described in GDL-II. In:

AAAI, pp. 846–851 (2011)
18. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: AAAI,

pp. 1191–1196 (2007)
19. Thielscher, M.: A general game description language for incomplete information games.

In: Fox, M., Poole, D. (eds.) 24th AAAI Conference on Artificial Intelligence (AAAI),
pp. 994–999. AAAI Press (2010)

20. Wolfe, J., Russell, S.: Exploiting belief state structure in graph search. In: ICAPS-Workshop
on Planning in Games (2007)

A Machine-Learning Framework

for Hybrid Machine Translation

Christian Federmann

Language Technology Lab,
German Research Center for Artificial Intelligence,

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
cfedermann@dfki.de

Abstract. We present a Machine-Learning-based framework for hybrid
Machine Translation. Our approach combines translation output from
several black-box source systems. We define an extensible, total order on
translation output and use this to decompose the n-best translations into
pairwise system comparisons. Using joint, binarised feature vectors we
train an SVM-based classifier and show how its classification output can
be used to generate hybrid translations on the sentence level. Evaluations
using automated metrics shows promising results. An interesting finding
in our experiments is the fact that our approach allows to leverage good
translations from otherwise bad systems as the combination decision is
taken on the sentence instead of the corpus level. We conclude by sum-
marising our findings and by giving an outlook to future work, e.g., on
probabilistic classification or the integration of manual judgements.

Keywords: HybridMachine Translation, System Combination, Machine
Learning, Support Vector Machines, Feature-Based Classification.

1 Introduction

Research on the automatic translation of written texts or machine translation
(MT) has resulted in many different MT paradigms, each having individual
strengths and weaknesses. Amongst others, there are:

a) statistical machine translation (SMT) which aims at learning translation
probabilities from large amounts of parallel data, working on non-linguistic
phrases;

b) rule-based machine translation (RBMT) which relies on hand-crafted parsers
and grammars that transform a given input sentence into a foreign language
translation output; and

c) hybrid machine translation approaches which focus on creating translations
from several source systems, based on the assumption that the different MT
paradigms’ individual strengths and shortcomings are often complementary
which implies that a clever combination of their translations would yield an
overall better translation output.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 C. Federmann

Regardless of the actual methodology of a given MT system, the production of
the translations usually involves a lot of heterogeneous features. These range
from simple language model scores, parser or phrase table probabilities, and
confidence estimates to hierarchical parse trees or even full parse forests. This
makes it very difficult to intuitively understand the inner workings of the MT
engine in question; it is hence clear that research on the optimal combination
of different machine translation systems into better, hybrid MT systems is of
utmost importance to the field. To overcome the problem of incomprehensible
feature values, we propose a method that applies Machine Learning (ML) tools,
leaving the exact interpretation and weighting of features to the ML algorithms.

The remainder of this paper is structured as follows. After having introduced
the matter of investigation in this section, we present related work in Section 2
before defining and explaining in detail our Machine-Learning-based framework
for hybrid MT in Section 3. We first give an overview on the basic approach
in Section 3.1 and then discuss its most important components: the extensible,
total order on translations is defined in Section 3.2 while the notion of joint,
binarised feature vectors for Machine Learning is introduced in Section 3.3. In
Section 4 we present the experiments we have conducted in order to measure
the proposed method’s performance; results from this assessment are presented
in Section 5. We conclude by summarising our findings and by discussing future
research questions in Section 6.

2 Related Work

Hybrid translation approaches and system combination methods have received
a lot of research attention over the last decade. There is general consensus that
it is possible to combine translation output from different systems reaching an
improvement over the individual baseline systems, e.g., [8,15,20].

Confusion Networks can be used for system combination [4,7,16]. One of the
MT systems is chosen to become the backbone or skeleton of the hybrid transla-
tion, while other translations are connected via word alignment techniques such
as GIZA++ [17]. Together, the systems then form a network with different paths
through the network resulting in different translations. An open-source system
combination toolkit like this is described in [2].

As the combination of translation output using phrase-based methods may
not preserve the syntactic structure of the translation backbone, there also are
methods which perform Sentence-based Combination, trying to select the best
of several black-box translations for a given source text. This is similar to Re-
ranking Approaches in SMT. See [1,9,20].

Finally, there are Machine-Learning-based Combination methods which train
classifiers using, e.g., Support Vector Machines [22] to determine if a translation
output is good or bad. Recent work such as [11,12] applies Machine Learning
tools to estimate translation quality and re-rank a given set of candidate trans-
lations on the sentence level. Of course, there also exist various combinations of
the aformentioned methods, e.g., [1,18].

A Machine-Learning Framework for Hybrid MT 39

3 Methodology

3.1 Classification-Based Hybrid Machine Translation

In this section, we describe a Machine-Learning-based framework for hybrid
machine translation. Given a set of n translations from several, black-box systems
and a tuning set including reference text, we perform the following steps to
produce a hybrid translation for some given test set:

1. Compute a system ranking on the tuning set using some order relation based
on quality assessment of the translations with automatic metrics. This can
be extended to also include results from manual evaluation;

2. Decompose the aforementioned system ranking into a set of pairwise com-
parisons for any two pairs of systems A, B. As we do not allow for ties in our
system comparisons, the two possible values A > B, A < B also represent
our Machine-Learning classes +1/−1, respectively;

3. Annotate the translations with feature values derived from natural language
processing tools such as language models, part-of-speech taggers, or parsers ;

4. Create a data set for training an SVM-based classifier that can estimate
which of two systems A, B is better according to the available features1;

5. Train an SVM-based classifier model using, e.g., libSVM, see [3];

Steps 1–5 represent the training phase in our framework. They require the avail-
ability of a tuning set including references to allow the definition of the order
relation which subsequently defines the training instances for the SVM-based
classifier. After training, we can use the classifier as follows:

6. Apply the resulting classification onto the candidate translations from the
given test set. This will produce pairwise estimates +1/−1 for each possible
combination of systems A, B;

7. Perform round-robin playoff elimination to determine the single-best system
from the set of candidate translations on a per sentence level2;

8. Synthesise the final, hybrid translation output.

Steps 6−8 represent the decoding phase in which the trained classifier is applied
to a set of unseen translations without any reference text available. By computing
pairwise winners for each possible pair of systems and each individual sentence
of the test set, we determine the single-best system on the sentence level. This
is similar to SVMRank3 and it will be an interesting extension of the work
described in this paper comparing the performance of the two approaches.

1 We had used decision trees learnt on annotated data in previous work with moderate
success. For the experiments reported in this paper, we hence focused on SVM-based
classification instead in order to learn about its performance in our problem setting.

2 This may introduce problems such as loss of contextual information. For the work
described in this paper, we ignore any such problems leaving them to future work.

3 See http://cs.cornell.edu/people/tj/svm_light/svm_rank.html

http://cs.cornell.edu/people/tj/svm_light/svm_rank.html

40 C. Federmann

3.2 An Extensible, Total Order on Translations

In order to rank the given source translations, we first need to define an ordering
relation over the set of translation outputs. For this, we apply three renowned
MT evaluation metrics which are the de-facto standards for automated assess-
ment of machine translation quality. We consider:

1. The Meteor score, both on the sentence and on the corpus level, see [5];
2. The NIST n-gram co-occurence score on the corpus level, see [6]; and
3. The BLEU score which is the most widely used evaluation metric, see [19].

While both the BLEU and the NIST scores are designed to have a high corre-
lation with judgements from manual evaluation on the corpus level (denoted by
suffix C), the Meteor metric can also be used to meaningfully compare transla-
tion output on the level of individual sentences (denoted by suffix S). We make
use of this property when defining our order ord(A,B) on translations, as shown
in Equations 1–5:

ordBLEUC (A,B)
def
=

⎧⎪⎨⎪⎩
1 if ABLEUC > BBLEUC

−1 if ABLEUC < BBLEUC

0 else

(1)

ordNISTC (A,B)
def
=

⎧⎪⎨⎪⎩
1 if ANISTC > BNISTC

−1 if ANISTC < BNISTC

ordBLEUC (A,B) else

(2)

ordMeteorC (A,B)
def
=

⎧⎪⎨⎪⎩
1 if AMeteorC > BMeteorC

−1 if AMeteorC < BMeteorC

ordNISTC (A,B) else

(3)

ordMeteorS (A,B)
def
=

⎧⎪⎨⎪⎩
1 if AMeteorS > BMeteorS

−1 if AMeteorS < BMeteorS

ordMeteorC (A,B) else

(4)

ord(A,B)
def
= ordMeteorS (A,B) (5)

Note that the we called our order ord(A,B) an extensible, total order. It can
easily be extended to include, e.g., results from manual evaluation of transla-
tion output. In fact, this would be a very welcome addition as it would allow
to bring in knowledge from domain experts. However, as a manual annotation
campaign for n systems is both very time-consuming and expensive, we leave
the integration of manual judgements into our ordering relation to future work.

A Machine-Learning Framework for Hybrid MT 41

3.3 Machine Learning Using Joint, Binarised Feature Vectors

As previously mentioned in Section 2, many Machine-Learning-based approaches
for system combination use classifiers to estimate the quality or confidence in an
individual translation output and compare it to other translations afterwards.
This means that the feature vector for a given translation A is computed solely
on information available in A, not considering any other translation B. Formally,
this can be expressed by defining vectorsingle(A) ∈ Rn as follows:

vecsingle(A)
def
=

⎛⎜⎜⎜⎝
feat1(A)
feat2(A)

...
featn(A)

⎞⎟⎟⎟⎠ (6)

We take a different approach here and compute feature vectors for all possi-
ble, pairwise comparisons of translations A, B, storing binary feature values to
model if a given feature value featx(A) for system A is better or worse than the
corresponding feature value featx(B) for the competing system B. Effectively,
this means that we compare translations directly when constructing the set of
feature vectors required for training our ML classifier. Equation 7 shows our
definition of a joint, binarised feature vectorjoint(A,B) ∈ Bn:

vecjoint(A,B)
def
=

⎛⎜⎜⎜⎝
feat1(A) > feat1(B)
feat2(A) > feat2(B)

...
featn(A) > featn(B)

⎞⎟⎟⎟⎠ (7)

The reason to store binary features values featx ∈ B lies in the fact that these can
be processed more efficiently during SVM training. Also, previous experiments
have shown that using the actual feature values featx ∈ R does not give any
additional benefit so that we decided to switch to binary notation instead. We
have also run experiments using only joint feature vectors by concatenating
feature values for systems A, B and using the corresponding feature vectors of
length 2 ∗ n for classifier training. As the comparison A > B between systems
could not be taken using the resulting classifier we started investigating the
binarised model.

Note that the order in which features for translations A, B are compared does
not strictly matter. For the sake of consistency, we have decided to compare
feature values using simple A > B operations, leaving the actual interpretation
of these values or their polarity to the Machine Learning toolkit. This assumes
that feature values are ordered in some way; which holds for the selected set
of features. In future work, we plan to extend this introducing feature-specific
comparison operators.

42 C. Federmann

3.4 Feature Set for Training a Binary Classifier

We create the data set for classifier training using a selection of features. While
there are many features which could be added to this feature set, we restricted
ourselves to the following choice, leaving changes to future work:

1. Float values ∈ [0.0, 1.0]
– ratio of target/source tokens;
– ratio of target/source parse tree nodes;
– ratio of target/source parse tree depth;

2. Integer values ∈ {0, 1, . . . , }
– number of target tokens;
– number of target parse tree nodes;
– number of target parse tree depth;

3. log probabilities
– n-gram score for order n ∈ {1, . . . , 5};
– inverse phrase translation probability ρ(f |e)

4. perplexity for order n ∈ {1, . . . , 5}.
The selected features represent a combination of (shallow) parsing and language
model scoring and are derived from the set of features that are most often used
in the Machine-Learning-based system combination literature [1,9,11,12,18].

3.5 Creating Hybrid Translations Using an SVM Classifier

Given an SVM classifier trained on joint, binary feature vectors as previously
described, we can now create hybrid translation output. The basic algorithm is
depicted in Figure 1. It estimates the single-best translation for each sentence
in the test set, based on the +1/−1 output of the classifier.

For each sentence, we create a dictionary that stores for some system X
the set of systems which were outperformed by X according to our classifier.
To do so, we consider each pairwise comparison of systems A, B and compute
the corresponding feature vector which is then classified by the SVM. Only
systems winning at least once in these pairwise comparisons end up as keys in
our dictionary. The cardinality of the set of outperformed systems implicitly
represents the number of wins for a system X .

Finally, we compute the single-best translation for a sentence by sorting the
system wins dictionary so that systems with a larger number of wins come first.
There are three cases to consider:

1. If there is only one top-ranked system, this becomes the winning translation
for the current sentence;

2. If two systems are top-ranked, the winner depends on the comparison of
these. As we do not allow for ties in our comparisons, this is guaranteed to
determine a single winner;

3. If more than two systems are top-ranked, we check if one of the systems
outperforms the others. This may not yield a unique winner, in which case
we fall back to scoring the systems with ordMeteorC (A,B), effectively using
the corpus level system rankings obtained on the tuning set to reach a final
decision on the best translation for the current sentence.

A Machine-Learning Framework for Hybrid MT 43

1: for s_id in 1..len(sentences):

2: system_wins = {}

3: for (A, B) in system_pairs:

4: joint_feature_vector = compute_feature_vector(A, B, s_id)

5: classification_result = classify(joint_feature_vector)

6: if classification_result == "+1":

7: system_wins[A].append(B)

8: else:

9: system_wins[B].append(A)

10: compute_best_system(system_wins)

Fig. 1. Pseudo-code illustrating how an SVM classifier can be used to determine the
single-best translation using round robin playoff elimination. This operates on the
sentence level, compute best system() finally computes the system with most “wins”
over the competing systems. If two systems A, B have scored the same number of wins,
the algorithm falls back to the comparison of these two systems. As we do not allow
for ties in our system comparisons, the algorithm is guaranteed to terminate and will
always return the—according to the classifier used—single-best system for a sentence.

4 Experiments

In order to assess the performance of the proposed approach, we conduct several
experiments and measure the translation quality of the resulting hybrid output.
Note that in the data sets used for experimentation individual system names are
anonymised as the translation output is part of a shared translation task.

We train SVM classifier models for two language pairs: Arabic→English and
Chinese→English. For the first pair we work on translation output generated by
n = 10 different systems, for the latter pair there are n = 15 systems to consider.
The source text originates from the news domain.

As training data, we receive a tuning set including reference text as well as a
test set without reference. We apply our order relation on the given translations
to determine a system ranking on the sentence level. Using this information, we
then compute pairwise system comparisons as SVM class labels and annotate
individual translations with parser output and language model scores. We use
the Stanford Parser [10,13,14] to process the source text and the corresponding
translations. For language model scoring, we use the SRILM toolkit [21] training
a 5-gram target language model for English. We do not consider source language
language models in this work.

Figure 2 shows the optimisation grids we obtained during SVM tuning, using
5-fold cross validation an interval width step = 1, as implemented in grid.py
from libSVM. They show which settings for C and γ result in the best prediction
rate. Note how the graphs are similar regarding the optimal area. We train our
final SVM classifiers with parameters from this area, giving preference to smaller
values for both C and γ to reduce computational cost and thus training time.

44 C. Federmann

Fig. 2. Optimisation grids of SVM parameters C and γ for language pairs
Arabic→English and Chinese→English. Note the similarity of the grids, indicating
that our feature vectors are not depending on language-specific characteristics.

A Machine-Learning Framework for Hybrid MT 45

5 Evaluation

5.1 Automatic Metrics’ Scores

We evaluated the translation quality of our hybrid MT system (referred to as
SVM-combo in tables and figures) using BLEU and NIST, both of which are
predominantly used in MT evaluation. Given the relatively small feature set
and the sub-optimal prediction rate of the SVM classifier we achieve promising
results for both language pairs.

For Arabic→English we achieved a NIST score of 10.3584 and a BLEU score
of 0.4523. The single-best NIST score for the same language pair was 11.5046,
for BLEU it was 0.4951 For Chinese→English we achieved a NIST and BLEU
scores of 7.7636 and 0.2663, respectively, with single-best scores reported as
9.2705 and 0.3372. To correctly interpret these scores, it is important to note
that our main focus lies on performance wrt. Meteor, as described in Section 3.2;
here, the method performed better, with a result of 0.327 (best score 0.330) for
Arabic→English and 0.307 (best score: 0.318) for Chinese→English.

5.2 System Contribution

Another interesting aspect related to the quality of the proposed method is
the system contribution of the individual source systems. In order to better
understand how much each of the systems added to the hybrid translation out-
put, we compare the expected and the actual contribution in the translation
result.

Expected contribution is computed as the average of the ranks assigned to
each system by the metrics used in our order relation ord(A,B), namely BLEU,
NIST, and Meteor. Actual contribution is computed from the relative frequency
of translations a system added to the hybrid translation output. We measure
the difference between expected and actual contribution as Δ; positive values
+x mean that a system contributed more to the hybrid translation than we had
expected, negative values −y denote the opposite. Table 1 shows the comparison
of system contribution for Arabic→English, table 2 for Chinese→English.

Table 1. System contribution for language pair Arabic→English

System

Rank s01 s03 s05 s06 s07 s08 s11 s12 s16 s18

BLEU 3 10 7 2 1 6 8 9 4 5

NIST 2 10 6 1 3 5 7 9 4 8

Meteor 4 10 7 1 2 5 9 8 3 6

Expected 3 10 7 1 2 5 8 9 4 6

Combo 3 6 4 2 1 7 10 9 8 5

Δ +4 +3 −1 +1 −2 +2 −4 +1

46 C. Federmann

Table 2. System contribution for language pair Chinese→English

System

Rank s01 s02 s04 s06 s07 s08 s09 s10 s12 s13 s14 s15 s16 s17 s18

BLEU 2 14 15 1 3 8 13 11 5 12 7 10 9 6 4

NIST 3 15 14 1 2 9 13 10 5 11 7 12 8 6 4

Meteor 4 15 14 1 2 9 13 11 6 12 7 10 8 5 3

Expected 3 15 14 1 2 9 13 10 5 12 7 10 8 6 4

Combo 1 14 7 9 11 8 13 6 2 3 4 14 12 10 5

Δ +2 +1 +7 −8 −9 +1 +4 +3 +9 +3 −4 −4 −4 −1

6 Conclusion

6.1 Summary of Findings

We have described a Machine-Learning-based framework for hybrid MT. We
defined a total order on translation output that can be applied during feature
vector generation. Our method differs from previous work as we consider joint,
binarised feature vectors instead of separate feature vectors for each of the source
systems. We proposed an algorithm to make use of an SVM-based classifier
trained on these feature vectors for the creation of hybrid translations.

In our experiments for language pairs Arabic→English and Chinese→English,
we could observe promising results according to Meteor scores. We also analysed
the expected contribution of the source systems to the hybrid translation output
and found that our classifier was able to make use of good sentence translations
from systems which performed bad on the corpus level. We observed interesting
differences between expected and actual contribution ranks.

6.2 Outlook on Future Work

The total order on translation defined in Section 3 can be extended to make use of
results from manual judgements regarding the quality of candidate translations.
It is not yet clear how the SVM model’s prediction rate and the quality of the
final translation are interrelated or how changes of the former would alter the
latter, leaving room for future research work. We also intend to invest effort into
a large, manual evaluation campaign to examine in more detail what translations
are selected by our combination method and if these are actually the best (or at
least a good) translation considering the given source sentence.

Acknowledgments. This work has been funded under the Seventh Frame-
work Programme for Research and Technological Development of the European
Commission through the T4ME contract (grant agreement no.: 249119). The
author would like to thank Sabine Hunsicker and Yu Chen for their support
with the experiments, and Hans-Ulrich Krieger as well as Geert-Jan Kruijff for
their helpful comments. We are grateful to the anonymous reviewers for their
valuable feedback.

A Machine-Learning Framework for Hybrid MT 47

References

1. Avramidis, E.: DFKI System Combination with Sentence Ranking at ML4HMT-
2011. In: Proceedings of the International Workshop on Using Linguistic Infor-
mation for Hybrid Machine Translation (LIHMT 2011) and of the Shared Task
on Applying Machine Learning Techniques to Optimise the Division of Labour in
Hybrid Machine Translation (ML4HMT). META-NET, Barcelona (2011)

2. Barrault, L.: Many: Open source machine translation system combination. Prague
Bulletin of Mathematical Linguistics, Special Issue on Open Source Tools for Ma-
chine Translation 1(93), 145–155 (2010), http://www-lium.univ-lemans.fr/
sites/default/files/Barrault-MANY2010.pdf

3. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

4. Chen, Y., Eisele, A., Federmann, C., Hasler, E., Jellinghaus, M., Theison, S.: Multi-
engine machine translation with an open-source SMT decoder. In: Proceedings of
the Second Workshop on Statistical Machine Translation, pp. 193–196. Association
for Computational Linguistics, Prague (2007),
http://www.aclweb.org/anthology/W/W07/W07-0726

5. Denkowski, M., Lavie, A.: Meteor 1.3: Automatic Metric for Reliable Optimiza-
tion and Evaluation of Machine Translation Systems. In: Proceedings of the Sixth
Workshop on Statistical Machine Translation, pp. 85–91. Association for Compu-
tational Linguistics, Edinburgh (2011),
http://www.aclweb.org/anthology-new/W/W11/W11-2107

6. Doddington, G.: Automatic Evaluation of Machine Translation Quality Using n-
gram Co-occurrence Statistics. In: Proceedings of the Second International Confer-
ence on Human Language Technology Research, HLT 2002, pp. 138–145. Morgan
Kaufmann Publishers Inc., San Francisco (2002),
http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf

7. Eisele, A., Federmann, C., Saint-Amand, H., Jellinghaus, M., Herrmann, T., Chen,
Y.: Using Moses to integrate multiple rule-based machine translation engines into
a hybrid system. In: Proceedings of the Third Workshop on Statistical Machine
Translation, pp. 179–182. Association for Computational Linguistics, Columbus
(2008), http://www.aclweb.org/anthology/W/W08/W08-0328

8. Frederking, R., Nirenburg, S.: Three Heads are Better Than One. In: Proceed-
ings of the Fourth Conference on Applied Natural Language Processing, ANLC
1994, pp. 95–100. Association for Computational Linguistics, Stroudsburg (1994),
http://ww2.cs.mu.oz.au/acl/A/A94/A94-1016.pdf

9. Gamon, M., Aue, A., Smets, M.: Sentence-level MT Evaluation Without
Reference Translations: Beyond Language Modeling. In: Proceedings of the
10th EAMT Conference ”Practical Applications of Machine Translation”,
pp. 103–111. European Association for Machine Translation (May 2005),
http://research.microsoft.com/research/pubs/view.aspx?pubid=1426

10. Green, S., Manning, C.D.: Better Arabic Parsing: Baselines, Evaluations, and Anal-
ysis. In: Proceedings of the 23rd International Conference on Computational Lin-
guistics, COLING 2010, pp. 394–402. Association for Computational Linguistics,
Stroudsburg (2010), http://dl.acm.org/citation.cfm?id=1873826

11. He, Y., Ma, Y., van Genabith, J., Way, A.: Bridging SMT and TM with Translation
Recommendation. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL 2010, pp. 622–630. Association for Computa-
tional Linguistics, Stroudsburg (2010),
http://aclweb.org/anthology-new/P/P10/P10-1064.pdf

http://www-lium.univ-lemans.fr/sites/default/files/Barrault-MANY2010.pdf
http://www-lium.univ-lemans.fr/sites/default/files/Barrault-MANY2010.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.aclweb.org/anthology/W/W07/W07-0726
http://www.aclweb.org/anthology-new/W/W11/W11-2107
http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf
http://www.aclweb.org/anthology/W/W08/W08-0328
http://ww2.cs.mu.oz.au/acl/A/A94/A94-1016.pdf
http://research.microsoft.com/research/pubs/view.aspx?pubid=1426
http://dl.acm.org/citation.cfm?id=1873826
http://aclweb.org/anthology-new/P/P10/P10-1064.pdf

48 C. Federmann

12. He, Y., Ma, Y., Way, A., van Genabith, J.: Integrating N-best SMT Outputs into
a TM System. In: Proceedings of the 23rd International Conference on Compu-
tational Linguistics, COLING 2010, pp. 374–382. Association for Computational
Linguistics, Stroudsburg (2010), http://doras.dcu.ie/15799/1/
Integrating N-best SMT Outputs into a TM System.pdf

13. Klein, D., Manning, C.: Accurate Unlexicalized Parsing. In: Proceedings of the
41st Meeting of the Association for Computational Linguistics, ACL 2003, vol. 1,
pp. 423–430. Association for Computational Linguistics, Stroudsburg (2003),
http://acl.ldc.upenn.edu/P/P03/P03-1054.pdf

14. Levy, R., Manning, C.: Is it harder to parse Chinese, or the Chinese Treebank?
In: Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, ACL 2003, pp. 439–446. Association for Computational Linguistics,
Stroudsburg (2003), http://www.aclweb.org/anthology/P03-1056

15. Macherey, W., Och, F.J.: An Empirical Study on Computing Consen-
sus Translations from Multiple Machine Translation Systems. In: Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pp. 986–995. Association for Computational Linguistics, Prague (2007),
http://www.aclweb.org/anthology/D/D07/D07-1105

16. Matusov, E., Ueffing, N., Ney, H.: Computing Consensus Translation from Mul-
tiple Machine Translation Systems Using Enhanced Hypotheses Alignment. In:
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 33–40. Association for Computational Linguistics, Stroudsburg (2006),
http://acl.ldc.upenn.edu/E/E06/E06-1005.pdf

17. Och, F.J., Ney, H.: A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics 29(1), 19–51 (2003),
http://acl.ldc.upenn.edu/J/J03/J03-1002.pdf

18. Okita, T., van Genabith, J.: DCU Confusion Network-based System Combination
for ML4HMT. In: Proceedings of the International Workshop on Using Linguistic
Information for Hybrid Machine Translation (LIHMT 2011) and of the Shared Task
on Applying Machine Learning Techniques to Optimise the Division of Labour in
Hybrid Machine Translation (ML4HMT). META-NET, Barcelona (2011)

19. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In: Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, ACL 2002,
pp. 311–318. Association for Computational Linguistics, Stroudsburg (2002),
http://acl.ldc.upenn.edu/P/P02/P02-1040.pdf

20. Rosti, A.V., Ayan, N.F., Xiang, B., Matsoukas, S., Schwartz, R., Dorr, B.: Com-
bining Outputs from Multiple Machine Translation Systems. In: Human Lan-
guage Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Proceedings of the Main Confer-
ence, pp. 228–235. Association for Computational Linguistics, Rochester (2007),
http://www.aclweb.org/anthology/N/N07/N07-1029

21. Stolcke, A.: SRILM - An Extensible Language Modeling Toolkit. In: Proceedings of
the International Conference on Spoken Language Processing, pp. 257–286 (Novem-
ber 2002)

22. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York (1995)

http://doras.dcu.ie/15799/1/Integrating_N-best_SMT_Outputs_into_a_TM_System.pdf
http://doras.dcu.ie/15799/1/Integrating_N-best_SMT_Outputs_into_a_TM_System.pdf
http://acl.ldc.upenn.edu/P/P03/P03-1054.pdf
http://www.aclweb.org/anthology/P03-1056
http://www.aclweb.org/anthology/D/D07/D07-1105
http://acl.ldc.upenn.edu/E/E06/E06-1005.pdf
http://acl.ldc.upenn.edu/J/J03/J03-1002.pdf
http://acl.ldc.upenn.edu/P/P02/P02-1040.pdf
http://www.aclweb.org/anthology/N/N07/N07-1029

Using Equivalences of Worlds for Aggregation

Semantics of Relational Conditionals�

Marc Finthammer and Christoph Beierle

Department of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany

Abstract. For relational probabilistic conditionals, the so-called aggre-
gation semantics has been proposed recently. Applying the maximum
entropy principle for reasoning under aggregation semantics requires
solving a complex optimization problem. Here, we improve an approach
to solving this optimization problem by Generalized Iterative Scaling
(GIS). After showing how the method of Lagrange multipliers can also
be used for aggregation semantics, we exploit that possible worlds are
structurally equivalent with respect to a knowledge base R if they have
the same verification and falsification properties. We present a GIS al-
gorithm operating on the induced equivalence classes of worlds; its im-
plementation yields significant performance improvements.

1 Introduction

In probabilistic reasoning, conditionals of the form (B|A)[x], expressing if A then
B with probability x, may be used. There are various approaches where A,B are
not just propositional, but first-order formulas (see e.g. [3,8]) While probabilistic
reasoning under maximum entropy exibits many desirable commonsense prop-
erties [13,9,10], it requires to solve a complex optimization problem, and the
size of this optimization problem increases significantly when moving from a
propositional to a relational setting.

Example 1. Consider a population of monkeys. The predicate feeds(X,Y) ex-
presses that a monkey X feeds another monkey Y and hungry(X) says that a
monkey X is hungry. The knowledge base Rmky contains conditionals expressing
generic knowledge as well as specific knowledge about the monkey charly . E.g.,
r1 states that if X is not hungry but Y is, X feeds Y with probability 0.8.

r1 : (feeds(X,Y) | ¬hungry(X) ∧ hungry(Y)) [0.80]
r2 : (¬feeds(X,Y) | hungry(X)) [0.999]
r3 : (¬feeds(X,Y) | ¬hungry(X) ∧ ¬hungry(Y)) [0.90]
r4 : (feeds(X, charly) | ¬hungry(X)) [0.95]
r5 : (feeds(X,X) | �) [0.001]

In virtually all approaches assigning a formal semantics to a relational knowledge
base like Rmky, the ground instances of the atoms or of the conditionals have

� The research reported here was partially supported by the DFG (grant BE 1700/7-2).

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 M. Finthammer and C. Beierle

to be taken into account, causing a severe complexity problem. For instance, for
the knowledge base Rmky with charly and two additional constants, there are
4,096 possible worlds, while with 4 constants there are already 1,048,576 worlds.

In this paper, we will consider aggregation semantics [12], which aggregates
the probabilities of worlds verifying a conditional and divides them by the ag-
gregated probabilities of worlds satisfying the conditional’s premise.

Up to now, only a single practical implementation has been developed for com-
puting the maximum entropy inference operator under aggregation semantics [4].
Here, we extend and improve the approach of [4] that employs the Generalized
Iterative Scaling (GIS) technique [2] in two directions. In a first step, we show
how the method of Lagrange multipliers [1] can also be used for aggregation
semantics and present an algorithm GISα� returning a compact representation
of the maximum entropy solution specified by the optimization problem. As the
main contribution of this paper, by exploiting Kern-Isberner’s concept of con-
ditional structures of worlds with respect to a knowledge base [9], we use the
structural equivalence of worlds to refine GISα� to an algorithm GIS≡R� that
operates on equivalence classes of worlds rather than on single worlds, yielding
significant performance improvements.

After recalling the basics of aggregation semantics (Sec. 2) and its normalized
optimization problem [4] (Sec. 3), we present the GISα� algorithm (Sec. 4) and
use conditional structures to define equivalence classes of worlds (Sec. 5). These
are used by the algorithm GIS≡R� in Sec. 6, where also an implementation and
a first evaluation of GISα� and GIS≡R� is presented. In Sec. 7 we conclude.

2 Background: Aggregation Semantics

We consider a first-order signature Σ := (Pred,Const) consisting of a set of first
order predicates Pred and a finite set of constants Const. So Σ is a restricted
signature since it only contains functions with an arity of zero. Let p/k denote
the predicate p ∈ Pred with arity k. The set of atoms A over Pred with respect
to a set of variables Var and Const is defined in the usual way. L denotes the
quantifier-free first-order language defined over Σ and the junctors ¬,∧,∨. We
will also use the notation AB to abbreviate a conjunction A ∧B. For a formula
A, gnd(A) denotes the set of ground instances of A.

Definition 1 (Conditional). Let A(X), B(X) ∈ L be first-order formulas
with X containing the variables of A and B, and let d ∈ [0, 1] be a real number.
(B(X)|A(X)) is a conditional, and (B(X)|A(X))[d] is a probabilistic condi-
tional with probability d. If d ∈ {0, 1} then the probabilistic conditional is called
hard, otherwise it is a called soft. The set of all conditionals (resp. probabilistic
conditionals) over L is denoted by (L|L) (resp. by (L|L)prob).

A set of probabilistic conditionals is also called a knowledge base. If it is clear from
context, we will omit the “probabilistic” and just use the term “conditional”.

Given L,H denotes the Herbrand base, i.e. the set containing all ground atoms
constructible from Pred and Const. A Herbrand interpretation ω is a subset

Using Equivalences of Worlds for Aggregation Semantics 51

of the ground atoms, that is ω ⊆ H. Using a closed world assumption, each
ground atom pgnd ∈ ω is interpreted as true and each pgnd �∈ ω is interpreted as
false; in this way a Herbrand interpretation is similar to a complete conjunction
in propositional logic. Ω = P(H) denotes the set of all possible worlds (i. e.
Herbrand interpretations), where P is the power set operator.

Definition 2 (Set of Grounding Vectors). For a conditional (B(X)|A(X)) ∈
(L|L), the set of grounding vectors of (B(X)|A(X)) is given by:
Hx(A,B) :={(a1, . . . , as) | a1, . . . , as∈Const, (B(a)|A(a))∈ gnd ((B(X)|A(X)))}

Let P : Ω → [0, 1] be a probability distribution over possible worlds and let
PΩ be the set of all such distributions. P is extended to ground formulas A(a),
with a ∈ Hx(A), by defining P (A(a)) :=

∑
ω|=A(a) P (ω).

Definition 3 (Aggregation Semantics Entailment Relation [12]). The
entailment relation |=� between a probability distribution P ∈ PΩ and a condi-
tional (B(X)|A(X))[d] ∈ (L|L)prob with

∑
a∈Hx(A,B) P (A(a)) > 0 is defined as:

P |=� (B(X)|A(X)) [d] iff

∑
a∈Hx(A,B)

P (A(a)B(a))∑
a∈Hx(A,B)

P (A(a))
= d (1)

Thus, the aggregation semantics resembles the definition of a conditional prob-
ability by summing up the probabilities of all respective ground formulas. Note
that both sums of the fraction run over the same set of grounding vectors and
therefore the same number of ground instances, i. e. a particular probability
P (A(a)) can be contained multiple times in the denominator sum.

If P |=� r holds for a conditional r, we say that P satisfies r or P is a model of
r. P satisfies a set of conditionalsR if it satisfies every element ofR, and S(R) :=
{P ∈ PΩ | P |=� R} denotes the set of all probability distributions satisfying
R. R is consistent iff S(R) �= ∅. The entropy H(P) := −

∑
ω∈Ω P (ω) logP (ω)

of a probability distribution P measures the indifference within P . The principle
of maximum entropy (ME) chooses the distribution P where H(P) is maximal
among all distributions satisfying R [13,9].

Definition 4 (ME� Inference Operator [12]). The ME-inference operator
ME� based on aggregation semantics for a consistent set R of conditionals is:

ME�(R) := arg max
P∈PΩ :P |=�R

H(P) (2)

Since (2) has a unique solution [16], ME�(R) is well defined. To avoid cumber-
some distinctions of cases, for the rest of this paper we will consider only soft
probabilistic conditionals since they guarantee that ME�(R) is strictly positive
using Paris’ open-mindedness principle [13]:

Proposition 1. 1. For any consistent set of soft probabilistic conditionals R,
there exists a positive probability distribution which satisfies R.

2. If a set of probabilistic conditionals R can be satisfied by a positive probability
distribution, then ME�(R) is a positive probability distribution.

52 M. Finthammer and C. Beierle

3 Normalized Optimization Problem for ME� Operator

For propositional conditionals, the satisfaction relation can be expressed by using
feature functions (e. g. [6]). The following definition defines feature functions for
the relational case where the groundings have to be taken into account.

Definition 5 (Counting Functions, Feature Function). For a conditional
ri = (Bi(X)|Ai(X)) [di] the counting functions ver i, fal i : Ω → N0 are given by:

ver i(ω) :=
∣∣∣{ai ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)

}∣∣∣
fal i(ω) :=

∣∣∣{ai ∈ Hx(Ai,Bi) | ω |= Ai(a)Bi(a)
}∣∣∣ (3)

ver i(ω) indicates the number of groundings of ω ∈ Ω which verify ri, whereas
fal i(ω) specifies the number of groundings which falsify ri. The feature function
of ri is the linear function function fi : Ω → R with:

fi(ω) := ver i(ω)(1 − di)− fal i(ω)di (4)

Proposition 2 ([4]). For (Bi(X)|Ai(X)) [di] with
∑

a∈Hx(A,B) P (A(a)) > 0
we have:

P |=� (Bi(X)|Ai(X)) [di] iff
∑
ω∈Ω

P (ω)fi(ω) = 0 (5)

Proposition 2 shows that under aggregation semantics a conditional induces a
linear constraint which has to be met by a satisfying probability distribution.
The expected value E(fi, P) of a function fi under a distribution P is defined
as E(fi, P) :=

∑
ω∈Ω fi(ω)P (ω). Thus, (5) states that the expected value of the

feature function fi must be 0 under every satisfying distribution. Since feature
functions play a central role in the sequel, we assume the following:

Notation: For the rest of the paper, R = {r1, . . . , rm} will always denote a
consistent set of m soft probabilistic conditionals

ri = (Bi(X)|Ai(X)) [di] , with di ∈ (0, 1), 1 ≤ i ≤ m (6)

and fi will always denote the feature function of ri according to Def. 5. Further-
more, PU with PU (ω)=

1
|Ω| for ω∈Ω denotes the uniform distribution over Ω,

and P ∗
R denotes the maximum entropy distribution, i.e. P ∗

R = ME�(R).
Instead of maximizing the entropy as in (2), one can also minimize the relative

entropy with respect to PU . The relative entropy K(P,Q) (also called Kullback-
Leibler divergence or information divergence) between two distributions P and Q

is defined as K(P,Q) :=
∑

ω∈Ω P (ω) log P (ω)
Q(ω) . Since K(P, PU) = log |Ω| −H(P)

holds, entropy is just a special case of relative entropy, and we have:
arg min

P∈S(R)
K(P, PU) = arg max

P∈S(R)
H(P)

The Generalized Iterative Scaling (GIS) algorithm technique [2] allows to solve
the corresponding optimization problem defined by a set of linear constraints,
each enforcing the expected value of a feature function, i. e., for given feature

Using Equivalences of Worlds for Aggregation Semantics 53

functions and given expected values the distribution minimizing the relative
entropy is determined. The GIS algorithm requires the feature functions and
expected values to meet a normalized form, which can be achieved by an appro-
priate transformation and by adding an additional correctional feature function.
[4] shows that the following normalized optimization problem can be used.

Normalized Optimization Problem OptAggNorm(R):
minimize K(P, PU)

subject to
∑

ω∈Ω P (ω)f̂i(ω) = ε̂i, 1 ≤ i ≤ m̂∑
ω∈Ω P (ω) = 1

P (ω) > 0, ∀ω ∈ Ω

(7)

with the normalized feature functions f̂i and their expected values ε̂i given by

f̂i(ω) =
fi(ω) + diG

#
i

G# , ∀ω ∈ Ω ε̂i =
diG

#
i

G# ,

for 1 ≤ i ≤ m, where the number of groundings of the conditional ri and the
total number of groundings of all conditionals in R, respectively, is denoted by:

G#
i := |Hx(Ai,Bi)| G# :=

m∑
i=1

G#
i (8)

For m̂ := m+ 1, the correctional feature function f̂m̂ and its expected value ε̂m̂
are given by:

f̂m̂(ω) = 1−
m∑
i=1

f̂i(ω), ∀ω ∈ Ω ε̂m̂ = 1−
m∑
i=1

ε̂i

In [4], it is shown that applying GIS to OptAggNorm(R) yields P ∗
R.

4 A GIS Algorithm for ME� Using Lagrange Multipliers

By applying the well-known method of Lagrange multipliers [1], a compact rep-
resentation of the probability distribution P ∗

R in terms of a Gibbs distribution
[7] can be derived using αi = exp(λi) with λi being a Lagrange multiplier:

Proposition 3. There exist values α0, α1, . . . , αm ∈ R such that for all ω ∈ Ω:

P ∗
R(ω) = α0

m∏
i=1

(
α1−di

i

)veri(ω) m∏
i=1

(
α−di

i

)fali(ω)

= α0

m∏
i=1

α
fi(ω)
i (9)

with α0 = 1∑
ω∈Ω

∏
m
i=1 α

fi(ω)

i

being a normalization value.

Thus, P ∗
R can be represented bym alpha-values α1, . . . , αm. Note that since there

is just one alpha-value αi for each conditional, the number of alpha-values is in-
dependent of the number of groundings of the conditionals. If these alpha-values
are at hand, the probability P ∗

R(ω) of a world ω can be determined according to
(9), since di and ver i(ω) and fal i(ω) are given by R.

54 M. Finthammer and C. Beierle

Input: a consistent set R of m soft probabilistic conditionals

Output: alpha-values α0, α1, . . . , αm determining the ME-distribution P ∗
R

1. for each 1 ≤ i ≤ m̂: initialize α̂(0),i := 1

2. for each ω ∈ Ω: initialize P(0)(ω) :=
1

|Ω|
3. initialize k := 0

4. repeat until an abortion condition holds (e. g. |1− β(k),i| < a given threshold):

(a) k := k + 1 // increase iteration counter

(b) for each 1 ≤ i ≤ m̂: // calculate scaling factors

β(k),i :=
ε̂i∑

ω∈Ω

P(k−1)(ω)f̂i(ω)

(c) for each ω ∈ Ω: // scale all probabilities

P
′
(k)(ω) := P(k−1)(ω)

m̂∏
i=1

(
β(k),i

)f̂i(ω)

(d) for each α̂(k),i, 1 ≤ i ≤ m̂: // scale all α̂-values
α̂(k),i := α̂(k−1),i · β(k),i

(e) for each ω ∈ Ω: // normalize probability values

P(k)(ω) :=
P

′
(k)(ω)∑

ω∈Ω

P
′
(k)(ω)

5. for each 1 ≤ i ≤ m̂: define α̂i := α̂(k),i // denote final α̂-values

define α̂0 :=

(∑
ω∈Ω

m̂∏
i=1

α̂
f̂i(ω)
i

)−1

6. for each 1 ≤ i ≤ m: define αi :=
(

α̂i
α̂m̂

) 1

G#
// determine α-values

define α0 := α̂0α̂m̂

∏m
i=1 α

diG
#
i

i

Fig. 1. Algorithm GISα
� for Aggregation Semantics computing alpha-values

By employing the basic GIS template of [2], we developed the algorithm GISα
�

(Fig. 1) computing the alpha values for the solution P ∗
R of OptAggNorm(R).

GISα� starts with the uniform distribution as initial distribution (line 2). In the

k-th iteration step, for each feature function f̂i the current ratio β(k),i between

its given expected value ε̂i and its current expected value
∑

ω∈Ω P(k−1)(ω)f̂i(ω)
under the current distribution P(k−1) is determined (line 4b). So β(k),i is the
factor required to scale P(k−1) appropriately so that the expected value ε̂i of

f̂i would be met exactly. Since the actual scaling of P(k−1) (line 4c) has to
be performed with respect to all scaling factors β(k),1, . . . , β(k),m̂, the scaled
distribution P(k) cannot fit all expected values immediately, but it is guaranteed
by the GIS approach that a distribution iteratively computed that way converges

Using Equivalences of Worlds for Aggregation Semantics 55

to the correct solution. Note that the constraint
∑

ω∈Ω P (ω) = 1 given in (7) is
not explicitly encoded as a constraint in GISα�. Instead, the scaled probability

values P
′
(k)(ω) are normalized in each iteration step (line 4e), so that P(k) is

a proper probability distribution (which is important to determine the correct
β(k+1),i with respect to P(k)). In line 4d, each α̂(k),i value is scaled accordingly
by its actual scaling factor β(k),i. For the final α̂-values (line 5) we have:

Proposition 4. The α̂-values α̂0, . . . , α̂m̂ computed by GISα� determine P ∗
R with

respect to the normalized feature functions f̂1, . . . , f̂m̂ by P ∗
R(ω) = α̂0

∏m̂
i=1 α̂

f̂i(ω)
i .

Given the m̂ = m+1 final α̂-values for the m̂ normalized and correctional feature
functions f̂i, the m α-values corresponding to the m original feature functions fi
are determined (line 6), i. e., each αi value corresponds to a conditional ri ∈ R.

Proposition 5. The α-values α0, . . . , αm computed by GISα� determine P ∗
R with

respect to the feature functions f1, . . . , fm by P ∗
R(ω) = α0

∏m
i=1 α

fi(ω)
i .

A practical abortion condition as needed in line 4 of GISα� is to stop after
iteration step k if |1 − β(k),i| < δβ holds for 1 ≤ i ≤ m̂, with δβ being an
appropriate accuracy threshold.

5 Equivalences of Worlds

The core loop of the algorithm GISα� in Figure 1 iterates over the set Ω of all
worlds. This causes a redundancy for two different worlds ω, ω′ if ω and ω′ nec-
essarily have the same ME probability with respect to R. In [9], Kern-Isberner
investigates the behaviour of worlds with respect to conditionals and introduces
the concept of conditional structure of a world with respect to a set of proposi-
tional conditionals Rprop. Formally, the conditional structure of ω with respect
to Rprop is given by a product in a free abelian group with generators a+i , a

−
i

where a+i (resp. a−i) indicates that ω verifies (resp. falsifies) the i-th conditional
in Rprop. Kern-Isberner’s idea of a conditional structure carries over to the rela-
tional case by employing the functions ver i, fal i counting the number of verify-
ing and falsifying groundings. Here, we will extend the conditional structure of
a world to the relational setting by using ordered tuples instead of a free abelian
group notation (cf. [11]).

Definition 6 (vf-Pair, Conditional Structure). For a world ω, the pair
(ver i(ω), fal i(ω)) ∈ N0×N0 is called the vf-pair of ω with respect to conditional
ri. The conditional structure γR(ω) of ω with respect to R is the m-tuple:

γR(ω) := ((ver1(ω), fal1(ω)) , . . . , (verm(ω), falm(ω))) ∈ (N0 × N0)
m

(10)

Example 2. Consider Rmky from Ex. 1 with Const = {andy, bobby, charly}. We
abbreviate predicates and constants by their first character and consider the
worlds ω′ = {f (a, c), f (a, a), f (a, b), f (c, c), h(a)}, ω′′ = {f (b, c), f (b, a), f (b, b),
f (c, c), h(b), ω′′′ = {f (c, a), f (c, b), f (c, c), h(c)}. We get γR(ω′) = γR(ω′′) =
((0, 2), (0, 3), (3, 1), (1, 1), (2, 1)) and γR(ω′′′) = ((0, 2), (0, 3), (4, 0), (0, 2), (1, 2)).

56 M. Finthammer and C. Beierle

Note that the conditional structure γR(ω) does not take any probabilities
into account, i. e. it just considers the logical part of the conditionals in R. Since
in (9), α0, α1, . . . , αm and d1, . . . , dm are fixed values, the probability P ∗

R(ω)
of ω merely depends on the values of the m vf-pairs (ver i(ω), fal i(ω)). Thus,
worlds having the same conditional structure have the same probability under
P ∗
R, motivating the following definition:

Definition 7 (Structural Equivalence). Two worlds ω1, ω2 ∈ Ω are struc-
turally equivalent with respect to R, denoted by ω1 ≡R ω2, iff γR(ω1) = γR(ω2).
With [ωl]≡R := {ω ∈ Ω | ω ≡R ωl} we denote the equivalence class of ωl ∈ Ω,
with Ω/ ≡R := {[ω]≡R | ω ∈ Ω} the set of all equivalence classes, and with
|[ωl]≡R | the cardinality of the equivalence class [ωl]≡R .

Corollary 1. For ω1, ω2 ∈ Ω, ω1 ≡R ω2 implies P ∗
R(ω1) = P ∗

R(ω2).

Similar to the conditional structure of ω given by an m-tuple of vf-pairs, we can
consider the tuple of values of ω for the m different feature functions.

Definition 8 (Feature Function Structure). The feature function structure
fR(ω) of a world ω with respect to R is given by:

fR(ω) := (f1(ω), . . . , fm(ω)) ∈ Rm (11)

Note that fR(ω), in contrast to γR(ω), also depends on the probabilities of the
probabilistic conditionals in R.

Definition 9 (Feature Function Equivalence). Worlds ω1, ω2 ∈ Ω are fea-
ture function equivalent with respect toR, denoted ω1≡fR ω2, iff fR(ω1)= fR(ω2).

Corollary 2. For ω1, ω2 ∈ Ω, ω1 ≡fR ω2 implies P ∗
R(ω1) = P ∗

R(ω2).

Thus, both structural equivalence and feature function equivalence imply that
worlds have the same ME probability. However, the equivalences do not coincide:
The next proposition shows that ≡R is a finer equivalence relation than ≡fR .

Proposition 6 (≡R � ≡fR).

For all worlds ω1, ω2 ∈ Ω: ω1 ≡R ω2 ⇒ ω1 ≡fR ω2 (12)

There are worlds ω1, ω2 ∈ Ω with: ω1 ≡fR ω2 �⇒ ω1 ≡R ω2 (13)

Proof. (12) is easy to show. For (13), consider Pred ={q/1}, Const ={a,b}, and
the knowledge base {r1} consisting of the single conditional r1=(q(Y)|q(X))[0.5].
There are four groundings of r1: (q(a)|q(a))[0.5], (q(b)|q(a))[0.5], (q(a)|q(b))[0.5],
(q(b)|q(b))[0.5]. For the worlds ω1 = {} and ω2 = {q(a)}, the counting functions
ver1 and fal1 of r1 yield ver1(ω1) = 0, fal1(ω1) = 0, ver1(ω2) = 1, fal1(ω2) = 1.
Thus, for the feature function f1(ω) = ver1(ω)(1− 0.5)− fal1(ω)0.5 of r1 we get

f1(ω1) = 0 · (1 − 0.5)− 0 · 0.5 = 0 = f1(ω2) = 1 · (1− 0.5)− 1 · (0.5)

and thus ω1 ≡fR ω2 holds. However, we have γR(ω1) = ((0, 0)) �= ((1, 1)) =
γR(ω2) and therefore ω1 �≡R ω2. ��

Using Equivalences of Worlds for Aggregation Semantics 57

6 A GIS Algorithm Using Equivalence Classes of Worlds

According to Corollary 1, all worlds in an equivalence class have the same prob-
ability under the distribution P ∗

R. We describe how the GISα
� algorithm can be

modified to operate on equivalence classes instead of all worlds, thereby exploit-
ing the fact that Ω/≡R is typically much smaller than Ω.

Definition 10 (Feature Function on Equivalence Classes). For ri ∈ R
the feature function f

Ω/≡R
i : Ω/≡R → R is defined by f

Ω/≡R
i ([ω]≡R) := fi(ω).

Definition 11 (≡R-Representation of a Distribution). Let P be a proba-
bility distribution on Ω such that for all ω1, ω2 ∈ Ω, ω1 ≡R ω2 implies P (ω1) =
P (ω2). Then the function PΩ/≡R :Ω/≡R → [0, 1] with PΩ/≡R([ω]≡R) = P (ω)
is called the ≡R-representation of P .

It is easy to show that the functions f
Ω/≡R
i and PΩ/≡R on Ω/ ≡R are well-

defined. To simplify our notation, in the following, we omit the index Ω/≡R in

both f
Ω/≡R
i and PΩ/≡R , writing just fi and P , since the domain of the function

will always be clear from its argument. Note that Def. 10 covers feature functions
in general and therefore also applies to normalized feature functions.

Using the structural equivalence of worlds and the functions defined in Def. 10
and 11, we developed the algorithm GIS≡R� (Fig. 2) operating on equivalence
classes of worlds. Its structure is based on GISα

� (Fig. 1), and in order to ease
a comparison we have highlighted all differences to GISα�. Apart from the addi-
tional step determining the set of equivalence classes (line 0), the two algorithms
perform the same operations. Generally speaking, each occurrence of ω ∈ Ω in
GISα� has been replaced by [ω]≡R ∈ Ω/≡R (lines 2, 4b, 4c, 4e, and 5), and the
cardinality of an equivalence class [ω]≡R occurs as a factor in each sum over
Ω/≡R (lines 4b, 4e, and 5).

An in-depth comparison of both algorithms reveals that, despite the differ-
ences, the operations of the GIS≡R� algorithm produce the same result as the
GISα� algorithm. For instance, in line 4b, the scaling factors are calculated. In
GISα�, the sum in the denominator runs over Ω, whereas the sum in GIS≡R�
runs over Ω/≡R. Since the correct calculation of the scaling factor requires that
the probability of each ω ∈ Ω is summed up, each value P(k−1)([ω]≡R) must be
multiplied by the cardinality of the equivalence class [ω]≡R . That way, GIS≡R�
computes exactly the same scaling factor values as GISα

�. In line 4c, the actual
calculation of probabilities is performed. Since all worlds in an equivalence class
have the same feature functions values, they also have the same scaled probabil-
ity value; thus it is sufficient in GIS≡R� to calculate just one scaled probability
value for each equivalence class.

Extending the analysis of GIS≡R� to all other differences to GISα� shows that
Propositions 4 and 5 carry over to GIS≡R� . In particular, GIS≡R� computes the
correct alpha-values for P ∗

R:

Proposition 7. The α-values α0, . . . , αm computed by GIS≡R� determine P ∗
R

with respect to the feature functions f1, . . . , fm by P ∗
R(ω) = α0

∏m
i=1 α

fi(ω)
i .

58 M. Finthammer and C. Beierle

Input: a consistent set R of m soft probabilistic conditionals

Output: alpha-values α0, α1, . . . , αm determining the ME-distribution P ∗
R

0. determine the set of equivalence classes Ω/≡R

1. for each 1 ≤ i ≤ m̂: initialize α̂(0),i := 1

2. for each [ω]≡R ∈ Ω/≡R : initialize P(0)([ω]≡R) := 1
|Ω|

3. initialize k := 0

4. repeat until an abortion condition holds (e. g. |1− β(k),i| < a given threshold):

(a) k := k + 1 // increase iteration counter

(b) for each 1 ≤ i ≤ m̂: // calculate scaling factors

β(k),i :=
ε̂i∑

[ω]≡R∈Ω/≡R

|[ω]≡R |P(k−1)([ω]≡R)f̂i([ω]≡R)

(c) for each [ω]≡R ∈ Ω/≡R : // scale all probabilities

P
′
(k)([ω]≡R) := P(k−1)([ω]≡R)

m̂∏
i=1

(
β(k),i

)f̂i([ω]≡R)

(d) for each α̂(k),i, 1 ≤ i ≤ m̂: // scale all α̂-values
α̂(k),i := α̂(k−1),i · β(k),i

(e) for each [ω]≡R ∈ Ω/≡R : // normalize probability values

P(k)([ω]≡R) :=
P

′
(k)([ω]≡R)∑

[ω]≡R∈Ω/≡R

|[ω]≡R |P
′
(k)([ω]≡R)

5. for each 1 ≤ i ≤ m̂: define α̂i := α̂(k),i // denote final α̂-values

define α̂0 :=

⎛⎝ ∑
[ω]≡R∈Ω/≡R

|[ω]≡R |
m̂∏
i=1

α̂
f̂i([ω]≡R)

i

⎞⎠−1

6. for each 1 ≤ i ≤ m: define αi :=
(

α̂i
α̂m̂

) 1

G#
// determine α-values

define α0 := α̂0α̂m̂

∏m
i=1 α

diG
#
i

i

Fig. 2. Algorithm GIS≡R
� for Aggregation Semantics operating on equivalence classes

Is is important to notice that the GIS≡R� algorithm does not consider the
exponentially large set Ω at any iteration step. Merely the cardinality of Ω ap-
pears in the initial value 1

|Ω| , and the set Ω/≡R has to be determined in the

initialization phase (lines 0 and 1). Applying a straight-forward approach re-
quires to run over Ω once to determine Ω/≡R. In contrast, GISα� has to run
over Ω in every iteration step, and the iterative computation of P ∗

R with ac-
ceptable precision can require several ten thousands of such steps. Therefore, if

Using Equivalences of Worlds for Aggregation Semantics 59

Table 1. Computations times of GISα
� and GIS≡R

� for different knowledge bases

Knowl. Size of Iteration Computation Time
Base Const Ω Ω/≡R Steps GISα

� GIS≡R
�

Rmky 3 4,096 546 20,303 26 sec 4 sec
Rmky 4 1,048,576 4,661 33,914 2 h 25 min 147 sec

Rsyn 8 65,536 80 731 16 sec 1 sec
Rsyn 9 262,144 99 810 58 sec 6 sec
Rsyn 10 1,048,576 120 892 199 sec 29 sec

Rflu 3 4,096 32 257 1 sec < 1 sec
Rflu 4 1,048,576 91 686 152 sec 39 sec

the setΩ/≡R is significantly smaller thanΩ as it is typically the case, the GIS≡R�
algorithm will provide a much better performance than the GISα

� algorithm.

We implemented the algorithms GISα� and GIS≡R� in Java as plugins for the
KReator system, an integrated development environment for representing, rea-
soning, and learning with relational probabilistic knowledge [5]. In the following,
we apply both algorithms to different knowledge bases. All results which are
summarized in Table 1 were computed with an accuracy threshold of δβ = 0.001
(cf. Sec. 4) using an Intel Core i5-2500K CPU (4 cores, 3.3 Ghz).

Reconsider the knowledge base Rmky (Example 1) with charly and two other
constants. There are 212 = 4, 096 worlds, but only 546 equivalence classes. GIS≡R�
takes just 4 seconds to compute the solution, while GIS≡R� needs 26 seconds.
With 4 constants, the size of Ω is 220 = 1, 048, 576, compared to 4,661 equiv-
alence classes. The corresponding difference in run time is almost 2 and a half
hours vs. 147 seconds.

For Rsyn = {(r(X)|q(X))[0.7], (q(X))[0.2], (q(a))[0.6]}, Table 1 shows the
corresponding results for 8, 9, and 10 constants. Note that here the number of
iterations steps compared to Rmky is much smaller, while the benefit of using
GIS≡R� is still significant.

Also the results forRflu={(flu(X))[0.2], (flu(X)|contact(X,Y)∧flu(Y))[0.4]}
illustrate the performance improvements obtained by GIS≡R� . All computation
times include the constant amount of time needed for preprocessing steps, e. g.
36 sec for Rflu and 4 constants., i. e. this preprocessing time is independent of
the number of iteration steps.

Whereas Ω always grows exponentially in the number of constants, it becomes
clear from the result in Table 1 that the size ofΩ/≡R grows much slower, thereby
significantly reducing the complexity of each iteration step.

7 Conclusions and Further Work

For probabilistic reasoning with relational conditionals under aggregation se-
mantics according to the principle of maximum entropy, we refined a generalized
iterative scaling approach to compute the ME inference operator in two steps:

60 M. Finthammer and C. Beierle

GISα� computes a compact representation of the maximum entropy distribu-
tion using alpha values, and, more importantly, GIS≡R� operates on equivalence
classes induced by structural equivalences of worlds. An implementation and first
evaluation of both algorithms demonstrates significant performance gains; fur-
ther experiments and theoretical investigations are still needed. In future work,
we will study to what extend equivalence classes can be exploited to perform
lifted inference [14,15]. We will also extend our approach to cover other variants
of maximum entropy semantics and by allowing deterministic knowledge in a
knowledge base R.

References

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

2. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. In:
Annals of Mathematical Statistics. Institute of Mathematical Statistics (1972)

3. De Raedt, L., Kersting, K.: Probabilistic Inductive Logic Programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic ILP 2007.
LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008)

4. Finthammer, M.: An Iterative Scaling Algorithm for Maximum Entropy Reasoning
in Relational Probabilistic Conditional Logic. In: Hüllermeier, E., Link, S., Fober,
T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 351–364. Springer,
Heidelberg (2012)

5. Finthammer, M., Thimm, M.: An integrated development environment for proba-
bilistic relational reasoning. Logic Journal of the IGPL (to appear, 2012)

6. Fisseler, J.: Learning and Modeling with Probabilistic Conditional Logic. Disser-
tations in Artificial Intelligence, vol. 328. IOS Press, Amsterdam (2010)

7. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 6, 721–741 (1984)

8. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press (2007)

9. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

10. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming
with the power of maximum entropy. Artificial Intelligence, Special Issue on Non-
monotonic Reasoning 157(1-2), 139–202 (2004)

11. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals.
In: Proc. 20th European Conference on Artificial Intelligence (to appear, 2012)

12. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational proba-
bilistic conditionals. In: Proc. of KR 2010, pp. 382–392. AAAI Press (May 2010)

13. Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cam-
bridge University Press (1994)

14. Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) Proc.
of IJCAI 2003, pp. 985–991. Morgan Kaufmann (2003)

15. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
Proc. of IJCAI 2005 (2005)

16. Thimm, M.: Probabilistic Reasoning with Incomplete and Inconsistent Beliefs.
Ph.D. thesis, Technische Universität Dortmund (2011)

Developing of a Multimodal Interactive Training

System in Therapeutic Calisthenics
for Elderly People

Ben Hennig and Norbert Reithinger

German Research Center for Artificial Intelligence
Alt-Moabit 91c

10559 Berlin, Germany
{Ben.Hennig,Norbert.Reithinger}@dfki.de

Abstract. As a result of demographic developments and medical pro-
gress, the number of elderly and very old patients with multiple illnesses
will increase in all areas of care. After stays at a clinic, it is important
that rehabilitation exercises are continued at home. We developed an
interactive training system to be installed in the homes of elderly peo-
ple that should motivate and enhance the training experience at home.
In this paper, we describe the simple-to-use multimodal interface of the
system which facilitates the interactions with a virtual therapist. During
various exercises, an integrated sensor system recognizes the user’s move-
ments. The multimodal visual feedback system supports and controls the
exercises of the user and rates his performance. The system allows social
interaction between the therapist, patient and/or other users via video
conference and enables them to discuss problems as they arise. Further-
more, the therapist can remotely make adjustments to the users training
protocol based on the monitored performance feedback.

1 Introduction

As a result of demographic developments and medical progress, the number of
elderly and very old patients with multiple illnesses increases in all areas of
care [2]. Further, medical care is more and more expensive, waiting times for
treatments are getting longer and the patient has the problem to obtain the
required therapy, the required count of therapy sessions for the real therapeutic
goal. A home-based interactive therapeutic environment can be an important
building block to continue the rehabilitation at home.

One part of such an environment is a user interface that hides the complexity
of the interaction. A natural and easy interaction experience is crucial to con-
trol the system and to transmit feedback, especially for older people. During a
therapy a user has to concentrate and perform the therapeutic exercises and the
attention must not be absorbed by the system.

In this paper we will introduce the reader which need for developing and re-
searching such systems exist, briefly in section 2. In section 3, we give an overview

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 B. Hennig and N. Reithinger

of the interactive training system. In section 4 we describe the requirement, con-
cept and design of the multimodal interaction system as well as we describe the
modules of interaction in section 5. Then we will introduce the reader by an
example in section 6. And last but not least a short review, how we will evaluate
the system within the project SmartSenior1, in section 7.

2 Related Work

For physical therapy, several projects exist to increase physical activity and to
support motivational factors.

Within the project GestureTek Health2 different gesture-control technolo-
gies exist for disability, hospital, mental health and educational sectors. For
a virtual reality physical therapy, GestureTek Health developed a system called
IREXTM(Interactive Rehabilitation and Exercise System). The system involves
the user into a virtual game environment, where they are do clinician prescribed
therapeutic exercises. However it does not support a multimodal user interface.

A physical therapy system which based on the Nintendo� WiiTMsystem from
Kaasa Health3 is called Physiofun Balance Training. The system used the Wii in-
cluding Wii Balance Board and a TV. A similar approach to therapeutic balance
test and to comparable sensors is described by Dong et al. [4].

Ongoing projects for physical activities in rehabilitation are PAMAP4 and
MyRehab5. These systems analyze exercises and provides data for remote moni-
toring to evaluate by a medical supervisor. They helps patients to perform their
rehabilitation and monitored their level of activity. A lot of more projects exist,
like Silvergame 6, age@home 7 or KinectoTherapy 8. However all systems do not
support a multimodal user interface.

3 Overview of the Interactive Trainer

Our interactive training system integrates different sensor systems andmultimodal
input and output devices, controlled by a standard PC (see figure 1). To track the
body movement we use a Kinect camera and a custom-built inertial 3D-body near
sensor system9. The sensor platform was developed by Fraunhofer FIRST10. The
body movements for the therapeutical exercises are mapped by a combination of

1 http://www.smart-senior.de
2 http://www.gesturetekhealth.com/
3 http://www.kaasahealth.com/
4 Physical Activity Monitoring for Aging People http://www.pamap.org/
5 http://www.first.fraunhofer.de/home/projekte/myrehab/
6 http://www.silvergame.eu/
7 http://www.joanneum.at/index.php?id=4243&L=0
8 http://www.kinectotherapy.in
9 http://www.humotion.net/

10 http://www.first.fraunhofer.de/

http://www.smart-senior.de
http://www.gesturetekhealth.com/
http://www.kaasahealth.com/
http://www.pamap.org/
http://www.first.fraunhofer.de/home/projekte/myrehab/
http://www.silvergame.eu/
http://www.joanneum.at/index.php?id=4243&L=0
http://www.kinectotherapy.in
http://www.humotion.net/
http://www.first.fraunhofer.de/

Developing of a Multimodal Interactive Training System 63

Fig. 1. Interactive training system, final prototype

both sensor types, Kinect and body sensors. The recognized sensor data are ana-
lyzed in real-time andmapped to a body model displayed on the display in front of
the user. Green, yellow or red lines mark the body’s contours and provide imme-
diate feedback for correct or incorrect movements. Additional comments are pro-
vided both written and acoustically. Figure 2 shows the basic building blocks of
the system. Using a therapy editor, the therapist initially configures an individual

Fig. 2. Overview interactive training system

training plan for the senior [8]. Before starting a training session, the user gets his
individual and actualized training plan from the online database at Charité’s geri-
atric center, which is updated according to his personal training status. After the
training session, the training results data are transmitted to the electronic health
record in the safe and secure server back-end at the clinic. If needed, the system al-
lows the patient also to get into contact with a therapist via A/V-communication
as part of remote monitoring.

The design of the user interface including motivational elements is essential for
user acceptance. To create familiarity with the training system in short time, we

64 B. Hennig and N. Reithinger

(a) Female therapist (b) Male therapist

Fig. 3. Virtual therapist greets the user, avatar based design

used an avatar based approach (figure 3). The therapist avatar talks to the user
and visualizes reference movements. He or she – depending on the preferences
of the user – provides personal interaction. The user avatar is used to provide
immediate feedback to his movements, functioning as a sort of mirror of the user.
Immediate correctional feedback is provided through the color-coded body-parts
(see above) and through comments from the therapist avatar. The GUI was
designed and implemented by Nuromedia11 and is controlled by the Interaction
Manager for user interaction and by the sensor engine for the animation of the
user avatar.

4 Requirements for the Interaction

In focus of our target group and in focus of usage of the application we have a dif-
ferent approach of multimodal interaction compared to conventional multimodal
applications like interactive information systems, telephone applications, or mul-
timodal dialog systems like SmartKom [11]. Requirements come both from the
therapist’s side as well as from the interaction situation. Further requirements
exist for multimodal interaction system, see Dumas et al. [5], Jaimes and Sebe
[7] or Lalanne et al. [1] e.g..

4.1 Therapeutic Requirements

In a first step, our clinical partner, the Geriatrics Research Group at Charité,
held three focus group discussions about requirements of an interactive training
device. As a result, an easy-to-use interactive device with individual adjustment
possibilities and voice control, a therapeutic feedback system and game-based
exercises were identified. Personal therapeutic feedback should take place ap-
proximately every four weeks [10].

Based on this study, we defined requirements from the point of view of ther-
apists and end users, which also were relevant for the user interface. Most im-
portant is that the user interface do not disturb patients during therapeutic

11 http://www.nuromedia.com/

Developing of a Multimodal Interactive Training System 65

activities: The users must not think about how to interact with the system.
Therefore, a very easy to understand and operable user interface was neces-
sary. We had to take into account that not every patient can react with all
their senses, e.g. may have impaired hearing, or does not have fine control of
his extremities. Therefore, we support modalities, well known to the user, like
speech input and output. Additionally, simple input devices like a remote con-
trol should be supported, that are well known to the user from decade long
operations.

4.2 Multimodal Interaction

On the multimodal input site, user interaction via speech or with an easy-to-
use, but restricted input device like a remote control with number input is
to be preferred. Gesture recognition to control the application by gesture is
not supported, since gestures are neither natural in a therapeutic situation,
nor possible, since arm movements of the patient are part of the therapeuti-
cal movement therapy. Additionally, control gestures must first be learned. For
speech interaction we selected industry grade TTS (text-to-speech) and ASR
(automatic speech recognition) components from SVOX and NUANCE, respec-
tively. For ASR, we use a microphone placed close to the monitor: It cannot
be expected that the user is able to attach a microphone correctly nor that
the user can take care of the operations of a wireless microphone. A wired
microphone will be in the way of the user’s movements and is therefore not
possible. Current commercial state-of-the-art ASR allows us to realize this re-
quirement.

ASR and remote control are independent from each other, the user can choose
between them freely. However, the dialog design has to take into account that
the interaction has to be menu-like, and presented as text on the monitor in
order to be able to be controlled by number input. Also, the prompts have to
be visualized very clearly and in a big enough font-size so that visually impaired
users can read them easily, if their hearing abilities are degraded.

In practice, the therapist will select the appropriate preferred multimodal
input and output modes for the patient. If voice-control is not preferred, users
can navigate through dialogs or menus with a senior-friendly remote control
device, e.g. a device with fewer buttons and easy to operate layout.

To get therapeutically relevant improvements from the exercises, body move-
ments in different regions of the body must be evaluated. Without delay, the
interaction system has to provide feedback like Keep your upper body upright.
or Please keep your arms still.. The patient has to get this instructions to cor-
rect the movements immediately. Therefore, the dialog control cannot rely on
a turn based interaction sequence, it has to activate the feedback sequences
immediately after the error signals are received from the senor system. Fi-
nally, the must not lose the fun in the exercises, which requires motivating
intermediate feedback like That was very good. or You have received all the
stars..

66 B. Hennig and N. Reithinger

5 Controlling the Interaction

In this section we will describe the modules of the interaction system, the In-
teraction Manager and the Dialog Manager including knowledge management.

Fig. 4. Abstract Knowledge Management and Event System

5.1 The Interaction Manager

Figure 4 shows the general structure of the interaction system. In the cen-
ter of the system is the Interaction Manager. It processes synchronous and
asynchronous event from the user and the sensors. The core-setup, e.g., which
multimodal I/O technology is to be used, comes from the Customized Settings
knowledge source. If a specific device is connected, its messages will be posted
and/or received. In case of input messages, the Interaction Manager delegates
the processing to the Dialog Manager. The Dialog Manager interprets these mes-
sage and generates the feedback for the user, which is handled back through the
Interaction Manager. In a dialog state where speech input is possible, the ASR
recognition process is started and the microphone is activated by the Interac-
tion Manager. Therefore, no push-to-talk button is required, which is an absolute
requirement in the training situation. The pointing gesture device is always ac-
tivated. Once a message is received by either input modality, the Interaction
Manager stops ASR and closes the microphone.

The interaction system uses two different event systems, the synchronous and
asynchronous events. The synchronous events are used in direct user interaction.
The user controls the interaction flow with menu dialogs and control dialogs, e.g.
when talking about his health state. This corresponds to a standard turn-based
interaction.

Developing of a Multimodal Interactive Training System 67

The asynchronous event system processes input from the Motion Analysis
System or the Vital Sensors that can be posted anytime during the exercise.
They notify about errors and special events and should initiate feedback to
motivate, to correct, to inform, or to warn the user. The Interaction Manager
forwards these events to the Dialog Manager immediately as they occur. The Di-
alog Manager process these events, irrespective of its current state and generates
new user feedback events in order to supply instructions for the various output
channels.

The challenge of the Interaction Manager is to handle and to synchronize all
events for the dialog components. In default situations a user input via a point-
ing device has a higher priority than a posture message from Motion Analysis.
However in case of warnings, alarm events have a higher priority than all other
messages.

5.2 The Dialog Manager

The Dialog Manager controls the dialog flow. At its core we use SceneMaker 3
[6], a toolkit to create finite state machines (FSM) for the design and execution
of dialog automata. SceneMaker 3 merges the advantages of dialog management
based on FSMs and frame based knowledge representation, see e.g. [9,3].

For the dialog design we choose a mixture of Command and Control-, Menu-
and free Natural Language dialogs. In a therapeutic scenario various require-
ments influence the interaction flow. E.g., we provide some menus where the
user can choose the next path, e.g. the choice of a specific exercise scenarios, or
to report the state of his health.

Fig. 5. Randomized dialog design for diversified dialogs

Additionally, to motivate the user and to make the interaction more interest-
ing, we have implemented a randomized dialog design. A scene is a component
where we define the dialog flow. A dialog flow has a start point and can have
multiple end points for further scenes. Within the dialog flow we declare each
sentence of the conversation as one supernode (figure 5). Inside a supernode we
have the potential to define for one statement more than one sentence and/or
question (figure 6), at which the activation of a node is randomized.

68 B. Hennig and N. Reithinger

Fig. 6. Randomized question dialog diversified dialogs

The challenge is to match supernodes and its statement. For a small number
of combination < 4 it is manageable for a native speaker. An example on the
question of health is: How are you?, How do you feel today?, Mr. Smith how you
feel? or How are you today, Mr. Smith?. On each of these questions, the user

Fig. 7. Feedback collection by faulty arm posture

can respond with the same answer. I’m fine or I feel bad., e.g.. Training exercises
are tailored to a user or to user groups with the same rehabilitation needs. The
development of an individual dialog is task of the specialists, the therapists in
our case. The therapist in the normal training motivates or stimulates the user,
corrects faulty postures and warn at fall risks. These dialogs have to be modeled
in the dialog flow of our system.

Figure 7 shows the error and feedback handling for several incorrect arm
movements. If an error message is received from the motion analysis system, we
start the corresponding supernode. This corresponding message to the user can
be realized in four different versions, as shown in figure 8.

Developing of a Multimodal Interactive Training System 69

Fig. 8. Example of randomized feedback message of the same statement

6 Exemplary Multimodal Interactions

To provide an insight in the interaction with the system, we will describe a
short walk-through of the One leg standing training exercise. The user starts
the training system and is greeted by his virtual therapist (figure 3). Then he is
asked if he feels good or bad. The microphone is activated by the system, and
he can reply, e.g., with I’m fine or I feel bad12. As an alternative to speech, he
can also use the remote control: Button 1 for I’m fine or button 2 for I feel bad.
The alternatives are presented on the screen clearly to address every available
modality. Should the user feel bad, he is asked in the next step if he wants to
be connected with his therapist. If the user wishes a video call, is initiated by
the system. Otherwise, the system ends the training session. In the case of the
user feels well, the exercise selection starts (figure 9). The exercise selection only
shows the exercises that were previously selected by the therapist for the patient.

As an example, we describe briefly the therapeutic exercise ”one leg standing”
to improve the balance (figure 10). In that exercise the goal is to get the user
to stand stable with a correct body posture on one leg. Here, the upper part
of the body, the arms and the free leg should be kept stable. It starts in the
upright standing. To stay in balance, the arms should be kept lateral with a
small distance to the body. The next step is to pull up one knee, so that the
angle between thigh and hip is 90 degree. That position is to hold a certain period

12 The dialog is in German and were translated for this purpose.

70 B. Hennig and N. Reithinger

Fig. 9. Exercise selection dialog, weight shift back and forth (left/right), weight shift
lateral, one leg standing

of time between 1 and 20 seconds, depending on the user’s state of health. Right
after, he should repeat the procedure with the other leg. The evaluation during
the exercise measures the upright posture without balance movements of arms,
free leg or body, and the angle between thigh and hip. The described motion
flow is used to specify the recognition, analysis and evaluation of therapeutic
movements. All exercises, including the important parameters were developed
with therapists. To select the One leg standing, the user presses the number

(a) One leg standing (b) Pass a river

Fig. 10. Example of a therapeutic exercise and their corresponding game

4 on the remote control or voice commands One leg standing. If the user has
selected an exercise it is explained to him, if desired. An exercise is started,
first, a start counter counts down, so that the user can prepare himself for the
exercise. Then he follows the prescribed motion, e.g. see figure 10(a), that is also
visualized by the therapist’s avatar. If the system detects a wrong move or a
bad body posture, the user is immediately notified. We use different techniques
simultaneously, voice announcement, acoustic signals and graphical feedback.
When such an error occurs, the region with a bad posture is colored depending
on the error level. The first error level is colored yellow. For example, in figure
10(a) the bearing of the upper part of the body is not correct. The user leans
back slightly and at once he gets the friendly feedback not to lean back too far.

Developing of a Multimodal Interactive Training System 71

If a critical error is detected, for example, if the user just before falling down,
the therapist gets a message immediately to inform him about the critical event.

After an exercise, the user gets a break and then repeats the exercise. The
break time and repetitions are set by the therapist in the therapeutic editor.
In the end, the user receives an evaluation which shows him whether he has
improved or not. Afterwards he has the chance to make another exercise or
game. If no further exercises are scheduled, the therapist’s avatar will initiate a
terminating dialog and the system shuts down.

Motivation and retention to the training is of utmost importance. In addition
to the training exercises we developed a game for each therapeutic exercise that
takes up the theme of the therapeutic goal but has a more playful content.
The following exercises including games exist: Weight shift back and forth and
Drive a motorboat, Weight shift lateral standing and Slalom in standing, One
leg standing and Pass a river, Weight shift lateral sitting and Slalom sitting.
For the corresponding game Pass a river of the exercise One leg standing, the
same movement model is used. Also, the multimodal interaction is similar to the
training exercise.

7 Conclusion and Future Work

We developed and implemented the concept of multimodal interaction, dialog
management and design for an interactive trainer. The prototype was presented
for one week on the CeBit 2012, where visitors could test the system. This also
served as a pretest of the system before the final field test. Based on this experi-
ence, we now have a final prototype for the field test. This prototype comprises
real therapeutic assessments developed by a therapist for physiotherapy. The as-
sessments involve exercises for stroke patients and for people with an increased
risk of fall.

Both, the interactive training system and the therapeutic assessments will be
evaluated in our field test scenario at the end of the project. We deploy the
system in 21 field-test apartments with users from the real target group (≥ age
of 50) in their home environment. The patient is alone and nobody can help him
on site, once the system is installed. The evaluation period will be six weeks and
will start in the second quarter of 2012.

The result of the field test will provide us with data about which feedback
has the most influence, how much feedback is useful, and at which point the
user is stressed by the system. Also we will get information about the use of
modalities in real-life usage. It is a realistic test of usability and user acceptance
of the system, and will give us important insight in the robustness of multimodal
interaction in the target population of the system.

Acknowledgements. We thank our colleagues from SmartSenior, especially
from Charité, FhG First and Nuromedia, for the collaboration in the develop-
ment of the system. The development of the system was funded by the German
Ministry for Education and Research within the SmartSenior project (contract
number 16KT0902).

72 B. Hennig and N. Reithinger

References

1. ACM: Fusion Engines for Multimodal Input: A Survey. In: Proceedings of the 2009
International Conference on Multimodal Interfaces (2009)

2. ADVISORY COUNCIL on the Assessment of Developments in the Health Care
System. Coordination and integration – health care in an ageing society. Technical
report, Bundesministerium für Gesundheit (2009)

3. Bui, T.H.: Multimodal dialogue management - state of the art. Technical Report
TR-CTIT-06-01, Centre for Telematics and Information Technology University of
Twente, Enschede (January 2006)

4. Dong, L., Tan, M.S., Ang, W.T., Ng, C.K.: Interactive rehabilitation. In: i-CREATe
2009 Proceedings of the 3rd International Convention on Rehabilitation Engineer-
ing & Assistive Technology (2009)

5. Dumas, B., Lalanne, D., Oviatt, S.: Multimodal Interfaces: A Survey of Princi-
ples, Models and Frameworks. In: Lalanne, D., Kohlas, J. (eds.) Human Machine
Interaction. LNCS, vol. 5440, pp. 3–26. Springer, Heidelberg (2009)

6. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: Authoring scenes for adaptive, inter-
active performance. In: Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (2003)

7. Jaimes, A., Sebe, N.: Multimodal human computer interaction: A survey. Computer
Vision and Image Understanding 108(1-2), 116–134 (2007)

8. John, M., Klose, S., Kock, G., Jendreck, M., Feichtinger, R., Hennig, B., Rei-
thinger, N., Kiselev, J., Gövercin, M., Kausch, S., Polak, M., Irmscher, B.: Smart-
senior’s interactive trainer - development of an interactive system for a home-based
fall-prevention training for elderly people. Advanced Technologies and Societal
Change 7, 305–316 (2012)

9. McTear, M.F.: Spoken dialogue technology: Enabling the conversational user in-
terface. ACM Computing Surveys (CSUR) 34(1), 90–169 (2002)

10. VDE Verlag: Konzeption und Entwicklung eines interaktiven Trainingssystems zur
häuslichen Sturzprophylaxe und Schlaganfallrehabilitation, Demographischer Wan-
del - Assistenzsysteme aus der Forschung in den Markt of Ambient Assisted Living
- AAL - 4. Deutscher Kongress (January 2011)

11. Wahlster, W. (ed.): SmartKom: Foundations of Multimodal Dialogue Systems.
Springer, Heidelberg (2006)

PAC-Learning with General Class Noise Models

Shahin Jabbari1, Robert C. Holte2, and Sandra Zilles3

1 University of California, Los Angeles
shahin@cs.ucla.edu

2 University of Alberta
holte@cs.ualberta.ca
3 University of Regina
zilles@cs.uregina.ca

Abstract. We introduce a framework for class noise, in which most of
the known class noise models for the PAC setting can be formulated.
Within this framework, we study properties of noise models that enable
learning of concept classes of finite VC-dimension with the Empirical
Risk Minimization (ERM) strategy. We introduce simple noise models
for which classical ERM is not successful. Aiming at a more general-
purpose algorithm for learning under noise, we generalize ERM to a
more powerful strategy. Finally, we study general characteristics of noise
models that enable learning of concept classes of finite VC-dimension
with this new strategy.

1 Introduction

Modeling noise in learning is a problem that has been widely addressed in the
literature. Specific noise models have been formalized and studied with respect
to their effect on learnability. Unfortunately, often noise models with strong
positive learnability results are rather unrealistic models, whereas more realistic
noise models leave little room for positive results. This trade-off has not been
studied systematically—almost every previous study focuses on a specific noise
model and produces results only for that model. To address this shortcoming,
this paper provides a formal framework in which we can reason about a broad
class of noise models, and presents quite general conditions on noise models in
this class under which learnability in the PAC model [16] can be guaranteed.

The focus of this paper is on class noise (e.g., [1]), which allows the labels of
the examples given to the learner to be altered by noise, but not the instances
themselves to be altered (in contrast to other types of noise, e.g., [7]). In the
class noise setting, for an instance x from input space X , a distribution D over
X , and a target concept c, the noise rate of x given D and c is the probability
that the wrong label for x is observed, given that x is sampled with respect to D.

Classical noise models, such as random classification noise [1], malicious clas-
sification noise [14], and constant partition classification noise (CPCN) [6], are
rather restrictive. Random classification noise assumes that every instance x has
the same noise rate, the latter being independent of D and c. Malicious classifi-
cation noise allows different instances to have different noise rates but assumes

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 S. Jabbari, R.C. Holte, and S. Zilles

a common upper bound on all the noise rates, which is independent of D and
c. CPCN loosens these constraints by allowing the noise rate to depend on c as
well as x, but not on D. This allows one to model the type of noise that arises
in many natural settings when instances closer to the decision boundary have a
larger noise rate than instances far away from the decision boundary. However,
in CPCN the transition between these noise rates is not smooth, since noise rates
are determined by a finite partitioning of the set of all possible labeled examples.

The literature studies these noise models separately. Though the statistical
query model [9] gave a unified account of the learnability results of various noise
models, it does not permit the definition of new noise models that overcome the
limitations of the classical ones or to study general properties of noise that enable
PAC-learning of certain concept classes under specific classes of distributions.

We introduce a formal definition of “class noise model” in which many clas-
sical models can be formulated. Our flexible framework allows noise rates to
depend arbitrarily on x, D, and c. We then focus on the question of what makes
learning under some noise models harder than learning under others, and try
to gain insight into why all known noise models that produce general positive
learnability results are rather unrealistic. We address this question by proposing
formal properties on noise models under which PAC-learning is possible. Em-
pirical Risk Minimization (ERM) strategies [17], which were previously used to
prove that every PAC-learnable class is PAC-learnable under random classifica-
tion noise, simply return a concept c′ that minimizes the number of observed
examples whose labels disagree with those of c′. In a noisy setting, this kind of
strategy might not be generally successful, since the noise model might obfus-
cate the differences between concepts, i .e., two dissimilar concepts might look
very similar after applying noise, and vice versa. Therefore we generalize ERM
to a strategy that picks a concept whose expected behavior after applying noise
minimizes the number of disagreements with the sample. Under some additional
assumptions on the noise model, we show that similar properties as in the clas-
sical ERM case are sufficient for PAC-learning with this generalized strategy.

To sum up: As opposed to the research on agnostic learning, we study the
problem of finding a concept that approximates the underlying noise-free target
concept c, instead of approximating the observed (noisy) data. Our results sug-
gest that no realistic noise model will lead to a general solution to this problem in
the distribution-free setting. Our goal is not to show that approximating c under
severe noise is possible in general, but to study conditions on the noise models
under which this is possible. The main contributions of this work are: (i) a for-
mal basis for the design and study of new noise models as well as for classes of
distributions that ease learning. (ii) formal conditions under which ERM still
works; (iii) a generalization of ERM including conditions under which it solves
the learning problem we propose.

2 Preliminaries

We denote by X a set called the input space. For most of this paper, X = Rn

for some n ∈ N. A concept c is a subset of X or, equivalently, a binary-valued

PAC-Learning with General Class Noise Models 75

function on X . A concept class, C, is a set of concepts. A probabilistic concept
(or a noisy concept) c : X → [0, 1] is a real-valued function that assigns to
each element of X a value in the closed interval [0, 1]. Hence, a concept can be
considered as a special case of a probabilistic concept. Let D denote a probability
distribution over X and DX denote the set of all distributions over X . For a
distribution D and probabilistic concept c, the oracle, EX(c,D), is a procedure
that on each call returns a pair (x, y) ∈ X × {0, 1}, called an example, where
(i) x ∈ X is drawn with respect to D and (ii) y ∈ {0, 1} is drawn with respect to
the Bernoulli distribution over {0, 1} that assigns the probability c(x) to 1 and
the probability 1− c(x) to 0. If c is a concept, then for every (x, y) returned by
EX(c,D), y = c(x). In any example (x, y), x is called the instance and y is called
the label. Every multi-set S of examples is called a sample. We study learning in
the framework of PAC-learning [16].

Definition 1. [16] A concept class C is probably approximately correctly learn-
able (PAC-learnable), if there exists a learning algorithm L and a polynomial
m : R2 → R such that: for any target concept c ∈ C, for any ε, δ ∈ (0, 1/2) and
for any distribution D ∈ DX , if L is given access to EX(c,D) and inputs ε and
δ, then with probability at least 1 − δ, after seeing a sample S of �m(1/ε, 1/δ)�
examples, L outputs a concept c′ ∈ C satisfying Prx∼D[c′(x) �= c(x)] ≤ ε.1

One criticism of the PAC model is the unrealistic assumption that the oracle
always provides examples according to the true underlying distribution D and
the true target concept c. Often in practice information sources are susceptible
to noise. Several kinds of noise were proposed to remedy this problem. In our
research we focus on class noise, i .e., we assume in the examples returned by
the noisy oracle, the instances x given to the learner are drawn with respect to
D but with some probability η the labels may sometimes be flipped from c(x)
to 1 − c(x). η is called the noise rate and can vary with the instance, target
concept and distribution. Previously studied class noise models were proven not
to restrict PAC-learnability. Every PAC-learnable class is also PAC-learnable
under a random classification noise oracle [1], a malicious classification noise
oracle [14], or a CPCN oracle [13], as long as the noise rates are less than 1/2.

3 A General Framework for Modeling Class Noise

Random classification noise and malicious classification noise involve noise rates
that do not depend on the sampled instance x or on the target concept. In prac-
tice, this is unrealistic, since one might expect examples closer to the decision
boundary to be more susceptible to noise than examples farther away [4]. For ex-
ample, in optical character recognition, training examples for a certain character
are more likely to be mislabeled the more similar they are to another character.
The CPCN model addresses this issue, but does not allow for a smooth transition
between noise rates when traversing the instance space. Moreover, the CPCN
model does not allow the noise to depend on the distribution.

1 Run-time efficiency issues are out of the scope of this paper. Further, note that
Definition 1 is only sensible under mild measurability conditions.

76 S. Jabbari, R.C. Holte, and S. Zilles

One approach could be to introduce new noise models and compare them to
existing ones. However, learnability results would then concern only the partic-
ular chosen noise models and might not provide much insight into what makes
learning under noise difficult in general. Therefore, we abstract from specific
noise models and introduce a framework that (i) captures most of the class
noise models studied in the literature (Section 3.1), (ii) allows us to formalize
new class noise models (Section 3.2), and (iii) allows us to study general prop-
erties of noise models that are sufficient or necessary for learnability (Section 4).

3.1 Class Noise Models

Class noise can be considered as a procedure that converts a concept to a prob-
abilistic concept, because the correct label of an instance may be flipped.

Definition 2. A (class) noise model is a mapping Φ : 2X ×DX ×X → [0, 1].

Thus, noise can depend on the sampled instance x, the target concept c, and
the distribution D. For every c and D, each instance x has a defined noise rate
ηc,D(x), i .e., a probability with which its label is flipped, namely ηc,D(x) =
|c(x)−Φ(c,D, x)|. For example, random classification noise [1] can be defined by
Φ(c,D, x) = 1− η, if c(x) = 1, and Φ(c,D, x) = η, if c(x) = 0 where η ∈ [0, 1/2)
is the noise rate. As another example, CPCN [6] can be defined as follows. If
η = (η1, . . . , ηk) ∈ [0, 1/2)k, and π = (π1, . . . , πk) ⊆ (X × {0, 1})k is a k-tuple of
pairwise disjoint sets such that π1∪· · ·∪πk = X ×{0, 1}, then, for (x, c(x)) ∈ πi,
Φ(c,D, x) = 1− ηi, if c(x) = 1, and Φ(c,D, x) = ηi, if c(x) = 0.2

Sampling according to c and D (via EX(c,D)), followed by applying the noise
model Φ, is defined as sampling from the noisy concept Φ(c,D, ·). We then say
that a class C is learnable w.r.t. Φ if C is PAC-learnable as in Definition 1, where
the oracle EX(c,D) is replaced by sampling from the noisy concept Φ(c,D, ·).

PAC-learning is distribution-free, i .e., it requires the learner to be successful
for any combination of target concept and underlying distribution. In the pres-
ence of noise, distribution-free learning may be difficult, and even impossible
for many simple classes (see Proposition 1). Therefore, we sometimes restrict
the class of distributions when dealing with noise. For any D ⊆ DX , we say C
is learnable w.r.t. Φ and D, if we require the learner to be successful only for
distributions in D, not for any distribution in DX .

In our model, the learner is required to produce a concept that is similar to
the target concept before it is corrupted by noise. This is a different task than
agnostic learning [11], which requires the learner to find a concept that best

2 Malicious classification noise [14] cannot be modeled by Definition 2. This can be
easily fixed by using a mapping Φ : 2X ×DX ×X → 2[0,1] to a set of values between
0 and 1. This generalization allows defining malicious noise in which the adversary
has the option of picking the value of Φ from a subset of [0, 1] that depends on the
instance, the target concept and the distribution. Due to space constraints, we do
not discuss such models any further. However, even this generalization cannot model
noise that depends on the sequence of examples itself, e.g ., [5,9].

PAC-Learning with General Class Noise Models 77

approximates the probabilistic (noisy) concept observed. An extra difficulty of
our task arises from the fact that the noise process may generate two similar
probabilistic concepts from two dissimilar concepts. In fact, unlike in the agnostic
case, a necessary condition for PAC-learnability with any arbitrary error is that
the noise model Φ does not “make two distinct concepts equal.”

Lemma 1. Let Φ be a noise model. Let C be a concept class, c, c′ ∈ C with c �= c′

and D ⊆ DX . If there is some D ∈ D such that Φ(c,D, x) = Φ(c′, D, x) for all
x ∈ supp(D), then the learner cannot distinguish between c and c′ regardless of
the number of examples it receives.

An immediate consequence of Lemma 1 is that it implies a lower error bound of
Prx∼D[c(x) �= c′(x)]/2 for learning C w.r.t. Φ and D.

3.2 Defining New Noise Models

To illustrate the flexibility of our definition of noise, we introduce examples of
noise models in which the noise rate depends on the target concept, the instance,
and sometimes on the distribution. The first noise model was suggested by Shai
Ben-David (personal communication) and is based on the idea that noise is often
more likely when an instance lies close to the decision boundary.

In this model, the noise rate for an example (x, c(x)) is given by the probability
of an instance in the vicinity of x being labeled by 1− c(x), where c is the target
concept. In other words, the probability of x being labeled 1 by the oracle equals
the probability mass of the set of positively labeled instances in a ball around
x, relative to the mass of the whole ball around x. There are different ways of
defining the ball around an instance, e.g., the distance ball around x is defined
as DBρ(x) = {x′ ∈ X | dist(x, x′) < ρ} for some metric dist.

Definition 3. Let ρ ≥ 0. The ρ-distance random classification noise model,
Φdr(ρ), is defined by

Φdr(ρ)(c,D, x) = Prx′∼D[c(x′) = 1 | x′ ∈ DBρ(x)],

for x ∈ supp(D). Φdr(ρ)(c,D, x) = 0 for x /∈ supp(D).

To gain some intuition about this new noise model, we show that the class of
linear separators in R is learnable with respect to Φdr(ρ), where the metric in the
definition of the distance ball is the Euclidean distance.

Theorem 1. Let X = R and ρ ≥ 0. Let C be the class of linear separators in
R. C is learnable w.r.t. Φdr(ρ).

Theorem 1 is proven by showing that the noisy concepts Φdr(ρ) are all non-
decreasing functions, i .e., the probability of the label for x being 1 never de-
creases as x increases. Such probabilistic concepts can be approximated, with
high probability, in a sample-efficient way [10], which helps to reconstruct the
target concept approximately.

78 S. Jabbari, R.C. Holte, and S. Zilles

The second noise model follows a similar idea about the origin of noise but uses
a different definition for the ball around an instance. The weight ball, WBω(x),
around an instance x is the largest distance ball that has the mass of at most
ω with respect to the distribution i .e., WBω(x) = DBρ where ρ = sup {ρ′ |
Prx′∼D[x′ ∈ DBρ′(x)] ≤ ω}.

Definition 4. Let ω ∈ [0, 1]. The ω-weight random classification noise model,
Φwr(ω), is defined by

Φwr(ω)(c,D, x) = Pr x′∼D[c(x′) = 1 | x′ ∈WBω(x)],

for x ∈ supp(D). Φwr(ω)(c,D, x) = 0 for x /∈ supp(D).

The idea behind the weight ball is that the expertise of the expert labeling the
examples is built based on the same distribution with respect to which learning
takes place. If x is close to the decision boundary, but in a dense area, the expert
has more experience in the area around x and is thus less likely to make mistakes
than in the case where the area around x is sparse.

In general, the new noise models introduced in this section are restrictive. The
proof is based on Lemma 1 and is omitted due to space constraints.

Proposition 1. For any of the noise models Φ introduced in Section 3.2, there
exists a concept class C of finite VC-dimension that is not learnable w.r.t. Φ.

The criteria for distribution-free learning seem too restrictive though for realistic
settings; for example, often the distribution depends on the target concept. Thus,
in cases where distribution-free learning is not possible, we have to ask ourselves
whether the unrealistic requirements concerning unrestricted distributions are
the actual reason for the negative learnability result.

One idea for limiting the distributions was recently proposed [2]. Recall that
f : X → R is Lipschitz if |f(x)− f(x′)| ≤ γ · dist(x, x′) for all x, x′ ∈ X , given a
fixed γ > 0 and some metric dist. If f is a concept, the Lipschitz condition would
make f constant. Relaxing the definition by requiring the Lipschitz condition to
hold with some high probability, we can model situations in which no clear
margin between instances with different labels around the boundary exists.

Definition 5. [2] Let ψ : R→ [0, 1]. A function f : X → R is ψ-Lipschitz with
respect to a distribution D if for all γ > 0

Prx∼D[∃ x′ : |f(x) − f(x′)| > γ · dist(x, x′)] ≤ ψ(γ).

This gives us positive learnability results for classes that are not learnable if we
do not limit the distributions, if we don’t require that an arbitrarily low error
can be achieved.

Theorem 2. Let X = Rn for some n ∈ N and ρ ≥ 0 (ω ∈ [0, 1]). Let C be the
class of linear separators in Rn. Let D ⊂ DX such that for all c ∈ C and D ∈ D,
c is ψ-Lipschitz with respect to D. Then for all γ > 0, C is learnable w.r.t. Φdr(ρ)

(Φwr(ω)) and D, with a lower bound of ψ(γ) on the error bound.

PAC-Learning with General Class Noise Models 79

3.3 Noise Rates Different from 1/2

The positive results on learning in the classical noise models discussed above
(random classification noise, CPCN, malicious classification noise) assume that
the noise rate for any instance is always less than 1/2 unless the noise rates for
all the instances are always greater than 1/2. (The latter case can be reduced
to the former by flipping all the labels.)

The models introduced in Section 3.2 typically do not have this property.
Noise rates can be greater than 1/2 for some instance x and less than 1/2 for
another instance x′, given the same distribution and target concept, or they can
be greater than 1/2 for some instance x given a particular distribution D, and
less than 1/2 for x under some other distribution D′ �= D. However, for finite
instance spaces, learning under such noise models is still possible, namely if only
the instance determines whether the noise rate is above or below 1/2.

Theorem 3. Let X be finite. Let C be a concept class over X and Φ a noise
model such that ηc,D(x) �= 1/2 for all c ∈ C, D ∈ DX , and x ∈ X . If [ηc,D(x) >
1/2 ⇐⇒ ηc′,D′(x) > 1/2] for all c, c′ ∈ C, D,D′ ∈ DX , and x ∈ X , then C is
learnable w.r.t. Φ.

The idea behind the proof is that the probabilistic concepts generated by the
noise model can be learned by repeatedly sampling a set of instances that contain
an arbitrarily large portion of the distribution mass. The assumption that the
noise rates are not equal to 1/2 can be relaxed (at the cost of error values no
longer approaching zero) if we assume the weight of the area with noise rate
close to 1/2 is bounded (e.g., by applying Tsybakov’s noise condition [15]).

4 Minimum Disagreement Strategies

ERM [17] refers to learning algorithms that pick a concept c′ ∈ C that minimizes
the number of examples in the given sample S = {(x1, y1), . . . , (xm, ym)} that are
labeled differently than c′ would label them. In the absence of noise, yi = c(xi)
where c is the target concept. This means ERM picks a c′ ∈ C that minimizes
the empirical error, 1/m

∑m
i=1 |yi − c′(xi)|. When the sample size grows, this

corresponds to minimizing errD(c′, c) = Prx∼D[c′(x) �= c(x)], i .e., the expected
error of c′, which is supposed to be kept small in PAC-learning. We call a learning
algorithm that uses the ERM principle a minimum disagreement strategy. When
c and D are clear from the context, we use err(c′) instead of errD(c′, c) for brevity.

If C is infinite, it is in general impossible to compute a minimum disagreement
strategy. Then an approximation strategy typically reduces C to a finite set
C′ ⊂ C such that, for any target concept c ∈ C, at least one concept c′ ∈ C′ differs
from c by at most ε, and then applies the minimum disagreement strategy over
C′. If the target concept is the unique minimizer of the empirical error, every
such approximation strategy is called a minimum disagreement strategy as well.
This is used implicitly in the proofs of Theorems 4 and 6.

Given noise, a minimum disagreement strategy (with growing sample size)
minimizes the difference between the concept c′ and the noisy (probabilistic)

80 S. Jabbari, R.C. Holte, and S. Zilles

concept Φ(c,D, x) resulting from the target c when applying the underlying
noise model Φ, i .e., errD(c′, Φ(c,D, .)) = E[|c′(x) − Φ(c,D, x)|]. When c and D
are clear from the context, we use err(c′, Φ) instead of errD(c′, Φ(c,D, .)).

Minimum disagreement strategies, in the noise-free PAC case, are always suc-
cessful for classes of finite VC-dimension [3]. This result carries over to learning
from random classification noise [1]. The latter means that finding a concept
with low error is accomplished by finding a concept that looks most similar to
the noisy version of the target concept i .e., the minimizer of err(c, Φ). Obviously,
this is not possible in general (see Proposition 2). But if the noise model fulfills
some advantageous properties, minimum disagreement strategies still work.

In the following subsection, we analyze properties of class noise models un-
der which minimum disagreement strategies are successful. Since a minimum
disagreement strategy in the presence of noise returns the same concept as an
agnostic learner, these are properties under which the concept returned by an
agnostic learner satisfies the learning criteria in our framework.

4.1 Disagreement between Concepts and Noisy Samples

One desirable property of a noise model is that it won’t let two concepts c, c′ ∈ C
appear almost “equally similar” to the noisy version of the target concept, if c
is “much more similar” to the target concept than c′ is.

Definition 6. Let C be a concept class, D ⊆ DX a class of distributions and Φ
a noise model. Φ is distinctive with respect to C and D if there exist polynomial
functions f : (0, 1/2)→ (0, 1/2) and g : (0, 1/2)→ (0, 1) such that for any target
concept c ∈ C, for any c′, c̄ ∈ C, D ∈ D and ε ∈ (0, 1/2)

err(c′) < f(ε) ∧ err(c̄) > ε⇒ err(c̄, Φ)− err(c′, Φ) ≥ g(ε).

An example of a distinctive noise model is random classification noise for any
noise rate η < 1/2: Note that, in this model, err(c′, Φ) = η + (1 − 2η) err(c′)
for all c′ ∈ C [1]. Then f(ε) = ε/2 and g(ε) = ε(1 − 2η)/2 yield, as soon as
err(c′) < f(ε) and err(c̄) > ε, that err(c̄, Φ) − err(c′, Φ) = (1 − 2η)(err(c̄) −
err(c′)) ≥ ε(1− 2η)/2 = g(ε).

Distinctiveness guarantees learnability of classes of finite VC-dimension (of
course, sample bounds are higher in the noisy setting).

Theorem 4. Let C be a concept class of finite VC-dimension d and Φ a noise
model. If Φ is distinctive with respect to C and DX then C is learnable w.r.t. Φ
using a minimum disagreement strategy.

Proof. A minimum disagreement strategy, L, can learn any concept class of
finite VC-dimension in the agnostic setting when the examples are drawn from
any joint distribution over X × {0, 1} [8]. Fix the target concept c, D, and
δ, ε ∈ (0, 1/2). Let m(g(ε)/2, δ, d) and c′ be the sample complexity and concept
returned by L resp., when the examples are drawn from Φ. By the definition of
agnostic learning, err(c′, Φ) ≤ minc̄∈C err(c̄, Φ)+g(ε)/2 with probability ≥ 1−δ.

PAC-Learning with General Class Noise Models 81

By distinctiveness, {c} = arg minc̄∈C err(c̄, Φ). Thus, err(c′, Φ) ≤ err(c, Φ) +
g(ε)/2. Hence, err(c′) ≤ ε because otherwise err(c′, Φ) ≥ err(c, Φ) + g(ε), due
to distinctiveness. Therefore, learning in the presence of noise is equivalent to
agnostic learning under the assumptions of Theorem 4. ��

If both the concept class and the collection of distributions are finite, a weaker
property can be proven to be sufficient for learning. It simply requires the target
concept to always be the unique minimizer of err(c′, Φ), among all c′ ∈ C. This
property is necessary for learning with minimum disagreement strategies, since
otherwise, for small enough ε, picking the minimizer of the disagreement could
result in choosing a concept whose error is larger than ε, with high probability.

Definition 7. Let C be a concept class, D ⊆ DX , and Φ a noise model. Φ is
monotonic with respect to C and D if for any target concept c ∈ C, for any D ∈ D
and for any c′ ∈ C: err(c′) > 0⇒ err(c′, Φ) > err(c, Φ).

Monotonicity is implied by distinctiveness, since g(ε) > 0 for all ε in the definition
of distinctiveness. The sufficiency result mentioned above can be formulated as
follows. The proof is omitted due to space constraints.

Theorem 5. Let C be a finite concept class, D ⊆ DX finite, and Φ a noise
model. C is learnable w.r.t. Φ and D using a minimum disagreement strategy iff
Φ is monotonic w.r.t. C and D.

For random classification noise, minimum disagreement strategies are universal,
i .e., they are successful for every concept class that is PAC-learnable by any
other learning algorithm [1]. This is not true for all noise models as stated in
Proposition 2. (This result is due to [1], but we give our own proof).

Proposition 2. There exists a concept class C, a distribution D, and a noise
model Φ such that C is learnable w.r.t. Φ and {D}, but no minimum disagreement
strategy can learn C w.r.t. Φ and {D}.

Proof. Let X = {x1, x2}, C = {c1, c2, c3} where c1 = {x1, x2}, c2 = {x2},
and c3 = {x1}. Let D ∈ DX be defined by Prx∼D[x = x1] = 0.25 and
Prx∼D[x = x2] = 0.75. Let Φ be a noise model with Φ(c,D, x1) = |c(x1)− 0.75|
and Φ(c,D, x2) = |c(x2)−0.25| for any c ∈ C and suppose c2 is the target concept.
Then Φ(c2, D, x1) = Φ(c2, D, x2) = 0.75, err(c1) = 0.25, err(c3) = 1, err(c1, Φ) =
0.25, err(c2, Φ) = 0.375, and err(c3, Φ) = 0.625. Since c2 /∈ arg minc∈C err(c, Φ)
(err(c1, Φ) = 0.25 while err(c2, Φ) = 0.375), Φ is not monotonic with respect to C
and {D} (Φ is not distinctive with respect to C and {D} either.) By Theorem 5,
no minimum disagreement strategy can PAC-learn C w.r.t. Φ and {D}. ��

This proof relies on the noise rates exceeding 1/2, which might well happen in
realistic noise models. The noise models defined in Section 3.2 can also yield
noise rates greater than 1/2 on parts of the instance space. So far, for noise
rates exceeding 1/2, we only dealt with strategies for special cases on finite X
(Theorem 3). The following subsection deals with general strategies for learning
under noise in cases where minimum disagreement strategies might fail.

82 S. Jabbari, R.C. Holte, and S. Zilles

4.2 Disagreement between Noisy Concepts and Noisy Samples

Minimum disagreement strategies return a concept c′ that minimizes the dis-
agreement with the sample. Thus they ideally minimize err(c′, Φ), i .e., the dif-
ference between c′ and the noisy target concept. However, our goal is to return a
concept that minimizes E[|Φ(c′, D, x)− Φ(c,D, x)|], i .e., whose noisy version is
similar to the noisy target concept. When the target concept and the distribution
are clear from the context, with a slight abuse of notation, we use err(Φ(c′), Φ)
to denote E[|Φ(c′, D, x)− Φ(c,D, x)|].3

Note that the target concept, c, always minimizes err(Φ(c′), Φ) among all
c′ ∈ C, since err(Φ(c), Φ) = E[|Φ(c,D, x) − Φ(c,D, x)|] = 0. This is not the case
for err(c′, Φ) (see the proof of Proposition 2).

A natural strategy for minimizing err(Φ(c′), Φ) is to pick a concept whose
noisy version agrees best with the sample drawn from the noisy target concept.

Definition 8. Let C be a concept class, c ∈ C the target concept, D ∈ DX , and
Φ a noise model. Let S = {(x1, y1), . . . , (xm, ym)} be a sample of size m drawn
from the noisy concept Φ(c,D, ·). For any c′ ∈ C, err(c′, Φ,S) is defined by

err(Φ(c′), Φ, S) =
1

m

m∑
i=1

∣∣∣∣Φ(c′, D, xi)−
#+(xi,S)
#(xi,S)

∣∣∣∣
where for all x ∈ X , #+(x,S) = |{j ∈ {1, . . . ,m} | x = xj ∧ yj = 1}| and
#(x,S) = |{j ∈ {1, . . . ,m} | x = xj}|.

The term #+(xi,S)/#(xi,S) approximates Φ(c,D, xi) for the target concept c.
As sample size grows, #+(xi,S)/#(xi,S) → Φ(c,D, xi) and err(Φ(c′), Φ, S) →
err(Φ(c′), Φ). Unfortunately, to compute err(Φ(c′), Φ, S) for some c′, the learning
algorithm would have to know Φ(c′, D, x)—a probabilistic concept that depends
on the unknown distribution D. The best we could hope for is that Φ(c′, D, x)
can be approximated using knowledge about D obtained from sampling.

Definition 9. For any sample S={(x1, y1), . . . , (xm, ym)} of size m a distribu-
tion D(S) is defined by Prx′∼D(S)[x

′ = x] = #(x,S) · 1
m for all x ∈ X , where

#(x,S) = |{j ∈ {1, . . . ,m} | x = xj}|.

Replacing D by D(S) in Definition 8 allows us to approximate err(Φ(c′), Φ, S).

Definition 10. Let C be a concept class, c ∈ C the target concept, D ∈ DX ,
and Φ a noise model. Let S = {(x1, y1), . . . , (xm, ym)} be a sample of size m
drawn from the noisy concept Φ(c,D, ·). For any c′ ∈ C, err(Φ(c′), Φ,S) can be
estimated as follows (with #+(xi,S) and #(xi,S) as in Definition 8).

êrr(Φ(c′), Φ,S) = 1

m

m∑
i=1

∣∣∣∣Φ(c′, D(S), xi)−
#+(xi,S)
#(xi,S)

∣∣∣∣
3 This quantity was first introduced as variational distance [10].

PAC-Learning with General Class Noise Models 83

We call any algorithm that returns a concept minimizing êrr(Φ(c′), Φ,S) a noisy
minimum disagreement strategy. In essence, it is a form of maximum likelihood
process. Since êrr(Φ(c′), Φ,S) approximates err(Φ(c′), Φ,S) (which itself approx-
imates err(Φ(c′), Φ)), a noisy minimum disagreement strategy is expected to be
successful only if the êrr(Φ(c′), Φ,S) provides a good estimate of err(Φ(c′), Φ).

Definition 11. Φ is smooth with respect to concept class C and a class of distri-
butions D iff there is a function M : (0, 1/2)×(0, 1/2)→ N such that (1) M(ε, δ)
is polynomial in 1/ε and 1/δ, for ε, δ ∈ (0, 1/2); and (2) For all ε, δ ∈ (0, 1/2),
for all target concepts c ∈ C and for all D ∈ D: if S is a sample of at least
M(ε, δ) examples drawn from the noisy oracle then, with probability of at least
1− δ, for all c′ ∈ C we obtain | err(Φ(c′), Φ)− êrr(Φ(c′), Φ,S)| < ε.

Distinctiveness and monotonicity can be generalized to the new setting by re-
placing err(c, Φ) with err(Φ(c), Φ), resulting in noise-distinctiveness and noise-
monotonicity, resp. It is not hard to show that random classification noise is both
noise-distinctive (with f(ε) = ε/2 and g(ε) = ε(1− 2η)/2) and noise-monotonic.

Sufficiency of noise-distinctiveness for learning of classes of finite VC-dimen-
sion is guaranteed if the smoothness property is fulfilled.

Theorem 6. Let C be a concept class of finite VC-dimension d and Φ a noise
model. If Φ is both noise-distinctive and smooth with respect to C and DX then
C is learnable w.r.t. Φ using a noisy minimum disagreement strategy.

Proof. Let f and g witness the noise-distinctiveness of Φ w.r.t. C and D, and let
ε, δ ∈ (0, 1/2). We show that the noisy minimum disagreement strategy, with a
sample S of at least m = max(m1,m2,m3) examples, learns C w.r.t. Φ, where

m1 =

⌈
max(

4

f(ε)
ln(

8

δ
),

8d

f(ε)
ln(

8d

f(ε)
))

⌉
, m2 =

⌈
M(

g(ε)

2
,
δ

4
)

⌉
, m3 =

⌈
8

g(ε)2
ln(

3(m1
d + 1)

δ
)

⌉
.

m1 examples suffice to find a set CN of N ≤ m1
d+1 concepts in C among which

at least one has an error ≤ f(ε) with probability ≥ 1− δ
4 [12]. We show that the

noisy minimum disagreement strategy will return one of these N concepts.
Since Φ is smooth for C and DX , m2 examples are sufficient to satisfy Defini-

tion 11 with ε and δ replaced by g(ε)/2 and 1− δ/4, resp. Finally, m3 examples
are sufficient for a noisy minimum disagreement strategy to select a concept in
CN that has an error ≤ ε with probability ≥ 1−δ/2 (cf. proof of Theorem 4). ��
In parallel to Theorem 5, it is not hard to show that noise-monotonicity is
necessary for learning a finite concept class using a noisy minimum disagreement
strategy when the class of distributions is finite.

Finally, we show that noisy minimum disagreement strategies are a proper
generalization of minimum disagreement strategies.

Proposition 3. There is a concept class C over a finite input space X and a
noise model Φ such that C is learnable w.r.t. Φ using a noisy minimum disagree-
ment strategy, but no minimum disagreement strategy learns C w.r.t. Φ.

Proof. Let C and Φ be as in the proof of Proposition 2. Since |X | = 2, each
D ∈ DX is uniquely identified by the probability p with which x1 is sampled.

84 S. Jabbari, R.C. Holte, and S. Zilles

It is then easy to prove that Φ is smooth and that f(ε) = ε and g(ε) = ε/2
witness noise-distinctiveness of Φ w.r.t. C and DX . Theorem 6 then proves the
claim. ��

5 Conclusions

A high-level study of noise models, as our definition allows, gives insights into
conditions under which learning under noise in general can be guaranteed. We
hope that our formal framework and the insights gained from it will inspire the
definition of new, potentially more realistic noise models and classes of distribu-
tions under which sample-efficient learning is possible.

Acknowledgements. This work was supported by the Alberta Innovates Cen-
tre for Machine Learning (AICML) and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

1. Angluin, D., Laird, P.: Learning from noisy examples. Machine Learning 2, 343–370
(1988)

2. Ben-David, S., Shalev-Shwartz, S., Urner, R.: Domain adaptation–can quantity
compensate for quality? In: ISAIM (2012)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Classifying learnable
geometric concepts with the Vapnik-Chervonenkis dimension. In: STOC, pp. 273–
282 (1986)

4. Bshouty, N., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise. Theoretical
Computer Science 288, 255–275 (2002)

5. Crammer, K., Kearns, M., Wortman, J.: Learning from data of variable quality.
In: NIPS, pp. 219–226 (2005)

6. Decatur, S.: PAC learning with constant-partition classification noise and applica-
tions to decision tree induction. In: ICML, pp. 83–91 (1997)

7. Goldman, S., Sloan, R.: Can PAC learning algorithms tolerate random attribute
noise? Algorithmica 14, 70–84 (1995)

8. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Information and Computation 100, 78–150 (1992)

9. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of the
ACM 45, 983–1006 (1998)

10. Kearns, M., Schapire, R.: Efficient distribution-free learning of probabilistic con-
cepts. In: SFCS, pp. 382–391 (1990)

11. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic learning. Machine
Learning 17, 115–141 (1994)

12. Laird, P.: Learning from Good and Bad Data. Kluwer Academic Publishers (1988)
13. Ralaivola, L., Denis, F., Magnan, C.: CN = CPCN. In: ICML, pp. 721–728 (2006)
14. Sloan, R.: Four types of noise in data for PAC learning. Information Processing

Letters 54, 157–162 (1995)
15. Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. Annals of

Statistics 32, 135–166 (2004)
16. Valiant, L.: A theory of the learnable. In: STOC, pp. 436–445 (1984)
17. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)

Avoiding Moving Persons

by Using Simple Trajectory Prediction
and Spatio Temporal Planning

Jens Kessler, Jürgen Strobel, and Horst-Michael Gross

Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology,
98693 Ilmenau, Germany

Abstract. If a mobile robot operates within its environment, it should
take other persons into account while moving around. This work presents
an approach, which predicts the movements of persons in a very simple
way, and uses the predicted trajectories to plan a motion path for the
robot. The presented motion prediction and planning process is much
faster than real time. A potential field is applied to predict the person’s
movement trajectory, and a modified Fast Marching planner is used for
the planning process. The aim of this work is, to create an early avoid-
ing behavior of the robot, when the robot passes a person, to signal a
”busy”’-behavior towards the person.

1 Introduction

In the near future, the application space of mobile robots will be more and more
enhanced towards home environments, public care centers, and shopping malls.
In these environments, the behavior of a robot should equal human behavior,
especially when interacting with non-expert users. In experiments [12] it could
be shown, that humans tend to observe complex technical devices, like a robot,
as social entities. This causes the user to expect human-like behavior from a
mobile robot.

When investigating human-robot interaction, the scenario of ”a robot interact-
ing with a person” is the most common use-case. In our work, we want to em-
phasize the case of human-robot interaction, when the robot does not want to
interact with a person. For example, in nursing homes or hospitals, when the robot
is on a tour to collect food orders or drives to the charging platform, an interac-
tion with a randomly passing persons is not wanted. Interestingly, if humans do
not want to interact with each other, the spatial configuration between these non-
interaction partners signals the intention of each partner. Those spatial behavior
patterns are quite complex and are profoundly investigated by psychologists. One
aspect of spatial configurations and their meaning is described in the theory of the
personal space, created byHall [4]. In ourwork, we use the spatial configuration (or
distance) which corresponds to ”non interaction”. We use a simple mathematical
model of the personal space, and combine this model with the predicted motion of
an observed person. With this knowledge, a non-intrusive path towards a prede-
fined goal, which does not touch the personal space of a person, is planned.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 J. Kessler, J. Strobel, and H.-M. Gross

t0

t1

t2

a) b)

Fig. 1. The idea of the presented approach: the robot should be able to politely pass a
moving person. To do so, the person path is predicted (see a)) and the personal space
of the person is used in a spatio-temporal planning process to compute a feasible path.
In b), a planning wave is propagated from the robot origin towards the goal (cross).
This wavefront is deformed by the obstacles as well as the moving personal space from
the predicted trajectory. When the goal is reached by the wavefront, the robot path
could be extracted from calculated travel times.

Related work: A lot of work was done to investigate, if the model of the personal
space, originally created from human-human interaction patterns, is also valid for
human-robot interaction [2,17]. Indeed, spatial configurations carry information
about the intention of interaction partners, and are similar to the findings of
Hall. The personal space is used regularly in robotic applications to solve tasks
like approaching a person [8,16] or path planning [15].

The benefit of the method of Svenstrup[16] is, to deal with changing per-
son positions in a reactive way, but could get stuck in local minima due to the
potential field motion control. The method of Sisbot[15] is only defined in an
static environment, and does not consider time during the planning phase, so it
could not incorporate moving persons. Anyhow, it uses the same simple personal
space model than our approach. In [10], a rule based behavior was constructed
to pass a person in a feasible distance in straight floors. Since this behavior was
completely rule-based, it only works in floor-like environments and fails in un-
foreseen situations or environments, where the rules are not applicable. To our
knowledge, there are no additional known publications on the topic of politely
passing a moving person. However, there are many approaches which concern
spatio-temporal path planning, which is a basic technique of our approach. The
most advanced methods operate on planning trees. For example in [13,9], lattice
graphs are used to create a tree with spatial and temporal information, as long
as the motion prediction of the moving objects are certain. In case of uncertain
predictions, the algorithm only uses static spatial knowledge to plan further.
This algorithm is very time consuming and is not processable in real time on
a robot system. Another approach is presented by [6] and [8], where expand-
ing random trees are used to create an collision free path in space and time
to steer a robot. These approaches are very powerful in terms of describing the

Avoiding Moving Persons by Using Simple Trajectory Prediction 87

spatio-temporal information in state space, but fail when the robot deviates from
the planned path in space or time. In such cases, large parts of the tree have to
be re-calculated. In this work, a modified version of the Fast Marching planner
[14] is used to enable the robot to find an optimal path, even when minor devia-
tions from the optimal path occur. When incorporating moving objects into the
spatio-temporal planning process, one fundamental precondition is a sufficient
prediction of the motion trajectory of that object. It depends on the given task,
to what time interval this prediction has to be useful. In our task, the motion
trajectory is predicted in a duration of 10 seconds. A large set of prediction al-
gorithms exist, mostly using probability densities, which are build upon a large
set of trajectory observations [7,1]. The disadvantage of these approaches is the
need of an exhaustive data collection of trajectories over a long time. We prefer
an out-of-the-box approach, where the trajectory of a person is predicted using
the current motion direction and a potential field, presented in [6], to predict
the person movement for the next few seconds.

Presented approach: A modified version of the Fast Marching Method (see [14])
is used to propagate a virtual traveling wave into the environment. The passing
times of the wavefront through each point in space could be afterwards used
to extract an optimal path. The passing time of the wavefront is determined
by physical correct simulation of the wave. The travel speed in each point is
directly related to the maximal driving speed of the robot, and the restrictions
of traveling speed coming from the static and dynamic environment. The static
restrictions are the obstacles. The dynamic restrictions of the environment are
considered to come from the predicted motion trajectories of a person. A po-
tential field method is used to predict the trajectory of the moving person. A
brief overview of the key idea of the presented approach is shown in figure 1.
The prediction method is described in detail in section 2, while the modified
planning algorithm is presented in section 3. The paper is concluded by a set of
experiments in section 4.

2 Prediction of the Person’s Trajectory

In this section, the prediction of the person’s trajectory is presented. A very
simple, physically inspired model, also known as potential field, is proposed. This
model is often used in robot navigation to avoid obstacles or approach a target,
but here, it is used to predict near-future person movement for the next seconds.
Note, that short time estimators, like the prediction step of a Kalman filter or
the motion model of a particle filter, are not sufficient to predict a trajectory
over several seconds. These approaches assume piecewise linear motion, like this
approach also did, but the estimation is corrected by consecutive observations
during each time step, which are not available on longer prediction periods. Our
”correction” is done by the method of potential fields. The key idea is, to model
the environment as a set of point like electric charges, which create an electrical
field. This field could affect other charges by applying a force towards them. Two
forces are modeled to predict the motion trajectory. First, the pushing force of

88 J. Kessler, J. Strobel, and H.-M. Gross

obstacles is used to push a virtual person away to avoid collision. And second,
the pulling force of an infinite virtual target line in front of the person is modeled
to move the person forward. This line has a constant position, relative to the
current person position. Next, a detailed description of the potential field model
for an arbitrary configuration of charges is given.

2.1 The Potential Field

The presented approach uses two forces, which model the affected charges in
different ways. The theoretical background, how charges could create a force, is
identical in both cases. To calculate a force, coming from a generic set of charges
at different positions xi, the electric field at a position x is defined as:

E(x) =
n∑

i=0

Q−
i ·

x− xi

|x− xi|3
(1)

The resulting force on a negative charge is proportional to the vector E(x). To
compute the pushing forces of the obstacles, a grid based world representation
is used. If a cell contains an obstacle, a negative charge is defined there. A free
cell does not contain any charge. The resulting vector of the electric field could
be preprocessed in each free cell xf by evaluating the obstacle cells in a circular
neighborhood C of that cell.

Eobs(xf) =
n∑

i=0

1 · x− xi

|x− xi|3
, (xi ∈ C(xf)) ∩ (xi = obstacle) (2)

The person itself is attracted by an infinite virtual line of positive charges. The
position of that line is constant relative to the person. An example setting is
shown in figure 2. This pulling field is defined by the infinite virtual target line L
in front of the person, consisting of an infinite number of charges. Theoretically,
the equation of the resulting vector could be formulated as:

Etarget(xf) =

∫ ∞

i=−∞
−1 · x− xi

|x− xi|3
dxi , xi ∈ L(xf) (3)

If the line is always tangential towards the person’s view direction, each point
at line L could be paired with a corresponding (mirrored) point, where the sum
of the corresponding field vectors directs towards the view direction. So, the
final sum is an infinite number of vectors, pointing towards the view direction.
Points, which are far away, apply nearly tangential forces, which are also very
small, and so the sum of all these forces remains a finite number. Considering
these facts, the resulting force from the tangential line could be approximated by
a constant force in view direction of the person, where the strength is a parameter
of the prediction algorithm. So, the overall resulting force is the vector sum of a
force towards the current view direction, and a disturbing force, sourced by the
obstacle configuration:

F (x) = Q−(Eobs(x) +Etarget(x)) (4)

Avoiding Moving Persons by Using Simple Trajectory Prediction 89

-

--

-

- -
+

+ +
+

Fig. 2. This image shows the
resulting vector field Eobs(x),
which is sourced by the neg-
ative charges of the obstacle
cells. The resulting force on
the moving person is defined
by two components. The push-
ing field Eobs of the obstacles
and the pulling force Etarget

of the virtual target line. This
results in a field vector Eres,
which is proportional to the
applied force.

Since the vector field Eobs(x) is only determined by the obstacle configuration,
it could be processed off line. In such a way, the calculation of the resulting force
F (x) is a very efficient operation.

2.2 Motion Prediction

The idea of predicting the trajectory is simply, to simulate the movement of
a zero-mass, charged particle by considering the force F (xj) in the currently
predicted position xj , applied to the particle. Here, only the preprocessed static
electric field is needed and a valid person position and walking direction of the
person. A sufficient prediction of the person’s trajectory for the next ten seconds
could be provided by calculating the motion of the charged ”person particle”.
If the motion of a charged particle within the resulting force field should be
processed, the well known momentum equation could be used for that:

m · vt+1 = m · vt + F ·Δt

vt+1 = vt + F /m ·Δt (5)

Here, m denotes the mass of the charged particle, vn denotes the speed at time
n, and Δt is the time interval for one simulation step. It could be seen, that the
mass influences the update of the speed. With a huge mass, the speed update
is fairly slow and could lead to collisions. This changes, when the mass tends to
small values, since than the speed tends to infinity and the speed vector tends
to follow only the force vector F . Since a collision free path of the person should
be constructed, the particle should mainly react on the resulting force F , and
only an approximation of the momentum equation is used to update the current
person speed:

vt+1 = 0 + |vt| ·
F

|F | ·Δt (6)

It could be seen, that the mass of the particle is defined by m = |F |/|vt| and the
speed direction of the previous motion step is not used. This assumption differs

90 J. Kessler, J. Strobel, and H.-M. Gross

a)

x

y

x ,T0 0 x ,T1 1

x ,V(x)i

r0 r1

s0

s1

i

d
T=r /Vi i

b1) b2)

t t+t

t

t+2t

Fig. 3. In image a), the details of the interpolation of one cell element of the wavefront
are shown. They are described in detail in the text. On the right side b) a full simulation
step is shown, where the personal space intersects the wavefront. Note, that only the
marked elements of the wavefront are investigated for the current speed configuration.
The wavefront is only updated with the current configuration until the elements reach
the simulation time t+Δt, shown in b1). Afterwards, the personal space configuration
is updated to t + Δt and the propagation of the wave is executed, until t + 2Δt is
reached (see b2)).

from a physical plausible approach. By re-defining the momentum equation, only
the direction of the person prediction is influenced by the potential field and the
absolute value of the person speed is left constant. The trajectory of the moving
person is calculated by sequentially applying equation 6. The predicted person’s
path is used for the robot’s motion planning.

3 The Adapted Fast Marching Planner

The most common planning approaches [3,5] use only binary values to encode
cell traversability and have to create graphs from these binary information to
compute optimal paths. In our approach, the Fast Marching Method from Setian
[14] is used for robot path planning. It also operates on a regular grid. Each
grid cell contains a cost value, that reflects the speed a wavefront is able to
travel through this cell. Small values are assigned to cells, which should not be
penetrated by the wavefront, like obstacles, whereas high values are assigned to
free space and the wave can travel freely. Anyhow, all positive real values can be
applied to the map cells, which is the major advantage of this planning method.
Fast Marching computes to which time the wavefront crosses a cell. Our main
idea is to calculate the cell crossing speed at the time, the cell is reached by the
wavefront. This is the main difference to other approaches (e.g. E* [11]), where
the travel speed of each cell is constant all the time. The benefit of the Fast
Marching Method is the ability, to construct monotonical raising functions with
any configuration of positive speed values, which is essential for a path planning
algorithm to apply gradient descent for path following.

Avoiding Moving Persons by Using Simple Trajectory Prediction 91

3.1 The Fast Marching Method

In the standard case, static velocity values are assigned for each cell, where free
space is set to vmax, and near zero values are assigned to obstacle cells. The
Fast Marching Method tries to find a numeric solution of the so called Eikonal
equation v(x) · |ΔT (x)| = 1. The solution of this equation describes the evo-
lution of a closed curve in time T , reacting on the different speeds v(x) at the
positions x. At most speed configurations, the solution could not be found in
closed form. Fast Marching proposes a very simple numeric solution to solve
this problem by sequntially interpolating small parts of the current wavefront
to the next timestep. The ”oldest” parts of the wavefront are propagated first.
An expansion step is done by interpolating the wavefront for the current cell
element xi with the two neighboring elements with the smallest traveling times.
For the interpolation of the cell element, the traveling times T0, T1 and positions
x0,x1 of the two neighboring elements are considered. Also the current valid
speed of that cell v(xi) has to be known and is static for the standard case. In
the first step, the positions s0, s1 of possible sources of the wavefront are calcu-
lated. Details of the geometric interpretation of the used values are sketched in
figure 3 a):

r0 = v(xi) ∗ T0

r1 = v(xi) ∗ T1

sx = (d2 + r20 − r21)/2d

sy = ±
√

r20 − s2x

s0 = 〈sx ; +sy〉
s1 = 〈sx ; −sy〉

Here, d is the distance between x0 and x1 and defines the X-axis of the solution.
As seen in figure 3a), there exist two possible sources s0, s1 of the wave origin
to reach x0 in T0 and x1 in T1. The most distance source to our point xi is
chosen, since the point xi would already have been interpolated if the nearest
source is the correct one. With the correct source sj , the interpolation of the
wave crossing time at position xi is easy:

Ti =
|xi − sj |
v(xi)

(7)

Note, that for very small values of the traveling speed, the passing time Ti will
become very large and such elements are expanded very late in the propagation
process. This is the case when the wave hits an obstacle cell, or the inner part
of the personal space in our case.

3.2 Adaptation for Predicted Motions

To adapt the described interpolation method to time variant traveling speeds
of v(xi, t), a number of changes are necessary. First, the planning direction is

92 J. Kessler, J. Strobel, and H.-M. Gross

reversed. In our case, the traveling times of the wave have the physical meaning,
that the robot could actually cross that cell at the calculated passing time. So,
the current robot position is the source of the wavefront. Setting the wave source
to the initial robot position also helps to fuse the motion prediction with the
planning process, since it is also known, at which time the person is at which
position, and therefor the planning has to be applied forward in time.

Second, the fusion process is the fundamental change in wavefront propaga-
tion. The system starts from a time t0 and updates the prediction of the person
movement as well as the propagation of the wavefront in time intervals Δt. This
means for the n-th planning step, that only those elements from the open list
are expanded, whose travel times are smaller than t0 + n ·Δt and only for the
expanded elements, the dynamic speed function v(xi, t0 + n ·Δt) is evaluated.

The dynamic speed function consists of two parts: the static part vst(xi)
from the obstacle configuration, where the robot could drive in free space at a
predefined speed (defined within each cell), and a dynamic part vdyn(xi, t0 +
n · Δt), coming from the predicted motion trajectory of the person and their
corresponding personal space:

vst(xi) =

{
vmax · d(xi)−dmin

dmax−dmin
, if d(xi) ≤ dmax

vmax , else
(8)

vdyn(xi, t0 + n ·Δt) = 1− exp

(
|xi − xp(t0 + n ·Δt)|2

2πσ2
p

)
(9)

Here, d(xi) is the distance to the next obstacle cell, and xp(t0 + n · Δt) is the
predicted position of the person at the current simulation time. The personal
space was defined by Hall [4] to be above 2.6 meters to symbolize non-interaction,
and so, the value of σp is set to 2.6 meters. The fusion is done by a simple
minimum operation:

v(xi, t0 + n ·Δt) = min(vst(xi), vdyn(xi, t0 + n ·Δt)) (10)

Note, that high values of the personal space have not the same influence on the
wavefront like obstacles, since the wave could travel very slowly through these
cells. In this way, the wavefront travels around a person without touching the
personal space, when enough free space is available. If the environments gets
more narrow, the wave starts to travel through the personal space and the robot
is allowed to penetrate that space without changing the algorithm.

3.3 Following the Calculated Path

The planning is complete, if the wavefront has reached the predefined target
cell. Now, each cell passed by the wavefront contains a passing time, where the
resulting driving path is calculated by gradient descent from the target towards
the robot’s original position. The robot has to follow this path as good as possible
with the defined speeds, also calculated during the planning process. If the person

Avoiding Moving Persons by Using Simple Trajectory Prediction 93

deviates to much from the predicted path in space or time, a replanning has to
be performed. This is done, if the Euclidean distance |(xpred

p − xobs
p), (ypredp −

yobsp), (tpred − tobs)| is above a certain threshold.

4 Experiments and Results

In our experiments two typical scenarios with different characteristics where
evaluated. At the one hand, we evaluated the planning and prediction process
regarding the quality of the path, and at the other hand, we evaluated the
processing time, needed to create the path. The scenarios should only present
a preliminary test of the feasibility of our method and do not present a full
experimental coverage.

b)a)

Fig. 4. In a), an example of the force field is shown, which is used for motion prediction.
In b) the navigation function of the passing times of the wave from the wide space
scenario is shown. The traveling time raises, when the wavefront hits the personal
space of the person during planning. A detailed view of that part of the function is
shown on the right.

The first scenario tests a passage with narrow space in our living lab. Here,
a person moves on a straight line, and the robot has to cross this line by taking
into account the currently measured walking speed of the person. In the second
scenario, the person meets the robot in a wide corridor. The person moves also
in a straight line and the robot should approach a goal behind the person by
driving in the opposite direction. Here, the person should move directly towards
the robots original position and the robot has to avoid the person. Both scenarios
use the map of our lab for planning. The map has a resolution of 10cm per cell.
The resulting planning function and the associated cell speeds, which correspond
to the passing time of the wavefront, are shown in figure 5 for the narrow space
scenario and figure 6 for the wider space passing scenario. It can be seen, that
in both cases the personal space of the moving person slows down the wavefront

94 J. Kessler, J. Strobel, and H.-M. Gross

t=0.5s t=1s

t=2.4s t=4s

robot

target

person

a) b) c)

Fig. 5. In part a): snapshots of the propagation of the wavefront in a narrow passage.
The robot starts on the left side and has to reach the goal on the lower right. The
person is located at the bottom (circles) and crosses the path of the robot. Note, that
every second in simulation time the color of the wavefront changes from red to green
to visualize the form of the wavefront. Part b) shows the calculated travel speed, the
robot should drive upon traveling through each cell. Dark blue values mean very slow
speeds while light red values indicate the maximal allowed speed. In part c) the final
path with avoiding behavior is shown as a dashed line, while the original path, without
a person being present, is shown as a solid line.

and guides the wavefront around the person. When the goal is reached by the
wavefront, gradient descent is used to extract the optimal path. Figures 6 c) and
5 c) also show the planning results, when no person is present.

To enable the robot to react on person movement, it should be able to plan
the path much faster than real time. In fact, it must be possible to plan the
path in a fraction of a second for multiple seconds beforehand. If not, the person
has moved already when the path is calculated, and the estimation is not valid
anymore at the time the robot starts moving.

We measure the average runtime of the algorithm with different prediction
intervals Δt for a total prediction period of 10 seconds. Smaller time intervals
Δt mean more accurate motion prediction and wave propagation. Table 1 shows
the results of the runtime investigation. In average, the method is capable of
predicting and planning 13 times faster than real time. We chose a simulation
interval of 0.5 seconds for the motion prediction and the update of the planning
function, since this time provides good accuracy by providing still good perfor-
mance. The prediction and planning of ten seconds of motion can be done in 770
milliseconds.

The calculation of the force field Eobs is constant for the given map and is
done once before the algorithm starts. Since this is a time consuming operation,
it took 10.3 seconds for the given map of the lab to build the vector field. For
the experiments a standard dual core mobile processor with 2.1 GHz was used.
Only one core does the wavefront propagation since this is a highly sequential
task and it is hard to parallelize this algorithm.

Avoiding Moving Persons by Using Simple Trajectory Prediction 95

t=1s t=3s t=5s t=7s

robot
target

person

a)

b) c)

Fig. 6. Here, the wide space scenario is shown, where the person heads directly towards
the robot original position and the robot has to avoid the person, since the robot’s
target lies behind the person. For a full description of a), b), and c), please refer to
figure 5.

Table 1. Overview of the resulting computation times for different prediction intervals
Δt for the person’s trajectory prediction and wave propagation. Here, tavg is the average
computation time, while tσ is the variance of the computation time per iteration step.
On prediction steps up to 0.5 seconds, the system is able to predict and plan 13 times
faster than real time. Only on small simulation steps, this factor begins to fall. In our
scenario tests, a simulation time step of 0.5 seconds is chosen.

Simulation Step Δt=3s Δt=1.5s Δt=0.5s Δt=0.2s

tavg 75ms 75ms 75ms 89.2ms
tσ 72ms 35ms 18ms 13.4ms

Speed factor 13 13 13 11

5 Conclusion and Future Work

In this work, an approach for spatio-temporal path planning with regard of one
moving person is shown. The main benefit is the possibility to create a path
under all circumstances. If possible, the robot avoids the personal space of a
person, when there is enough space. If not, the robot at least slows down. At
the one hand, this behavior of the robot has to be investigated in further exper-
iments. At the other hand, an investigation has to be done, what happens if the
robot could not keep track of the planned path and planned time and deviates
from the given task.

Acknowledgment. This work was financed by the project AAL-2009-2-049
”Adaptable Ambient Living Assistant” (ALIAS) co-funded by the European
Commission and the Federal Ministry of Education and Research (BMBF) in
the Ambient Assisted Living (AAL) program.

96 J. Kessler, J. Strobel, and H.-M. Gross

References

1. Bruce, A., Gordon, G.G.: Better motion prediction for people-tracking. In: Proc.
ICRA (2004)

2. Dautenhahn, K., et al.: How may i serve you? a robot companion approaching a
seated person in a helping context. In: Proc. HRI, pp. 172–179 (2006)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

4. Hall, E.T.: The hidden dimension. Doubleday, NY (1966)
5. Hart, E.P., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Transactions on Systems, Science and Cyber-
netics 4, 100–107 (1968)

6. Hoeller, F., Schulz, D., Moors, M., Schneider, F.E.: Accompanying persons with a
mobile robot using motion prediction and probabilistic roadmaps. In: Proc. IROS,
pp. 1260–1265 (2007)

7. Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., Hagita, N.: A communication
robot in a shopping mall. IEEE Transactions on Robotics 26(5), 897–913 (2010)

8. Kessler, J., Scheidig, A., Gross, H.-M.: Approaching a person in a socially accept-
able manner using expanding random trees. In: Proc. ECMR, pp. 95–100 (2011)

9. Likhachev, M., Ferguson, D.: Planning long dynamically-feasible manuevers for
autonomous vehicles. Int. Journal of Robotics Research 28(8), 933–945 (2009)

10. Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Evaluation of passing distance for
social robots. In: Proc. RO-MAN (2006)

11. Philippsen, R.: Motion Planning and Obstacle Avoidance for Mobile Robots in
Highly Cluttered Dynamic Environments, PHD Thesis. Univ. of Toulouse, Ecole
Polytechnique Federale de Lausanne (2004)

12. Reeves, B., Nass, C.: The Media Equation: How People Treat Computers, Televi-
sion, and New Medial Like Real People and Places. CSLI Press, Stanford (1996)

13. Rufli, M., Siegwart, R.: On the application of the d* search algorithm to time-based
planning on lattice graphs. In: Proc. ECMR, pp. 105–110 (2009)

14. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

15. Sisbot, E.A.: Towards Human-Aware Robot Motions, PHD Thesis. Univ. of
Toulouse, Toulouse (2006)

16. Svenstrup, M., Tranberg, S., Andersen, H.J., Bak, T.: Pose estimation and adap-
tive robot behaviour for human-robot interaction. In: Proc. ICRA, pp. 3571–3576
(2009)

17. Takayama, L., Pantofaru, C.: Influences on proxemic behaviours in human-robot
interaction. In: Proc. IROS, pp. 5495–5502 (2009)

Unsupervised Nearest Neighbors with Kernels

Oliver Kramer

Computational Intelligence Group
Department of Computing Science

University of Oldenburg
oliver.kramer@uni-oldenburg.de

Abstract. In this paper we introduce an extension of unsupervised
nearest neighbors for embedding patterns into continuous latent spaces
of arbitrary dimensionality with stochastic sampling. Distances in data
space are employed as standard deviation for Gaussian sampling in la-
tent space. Neighborhoods are preserved with the nearest neighbor data
space reconstruction error. Similar to the previous unsupervised near-
est neighbors (UNN) variants this approach is an iterative method that
constructs a latent embedding by selecting the position with the low-
est error. Further, we introduce kernel functions for computing the data
space reconstruction error in a feature space that allows to better han-
dle non-linearities. Experimental studies show that kernel unsupervised
nearest neighbors (KUNN) is an efficient method for embedding high-
dimensional patterns.

1 Introduction

Efficient, and robust dimensionality reduction (DR) methods are required to
process high-dimensional patterns, e.g., for visualization, as preprocessing for
classification, and other methods like symbolic algorithms. With increasing data
sets, and improved sensor systems, DR becomes an important problem class
in machine learning. DR methods perform a mapping F : Rd → Rq from
a high-dimensional data space Rd to a latent space of lower dimensionality
Rq with q < d. Non-parametric DR methods compute low-dimensional rep-
resentations X = [xi]

N
i=1 ∈ Rq×N for N high-dimensional observed patterns

Y = [yi]
N
i=1 ∈ Rd×N . Famous DR methods are principal component analysis

(PCA) [2] for linear manifolds, and isometric mapping (ISOMAP) [14], as well
as locally linear embedding (LLE) [11] for non-linear dimensionality reduction.
UNN is a fast approach that allows to iteratively construct low-dimensional em-
beddings in O(N2), and has been introduced for embedding patterns in discrete
latent topologies [3,5].

In this work we present extensions of UNN for embedding of patterns to man-
ifolds of arbitrary dimensionality that preserve data space neighborhoods. The
paper is structured as follows. Section 2 introduces a stochastic variant of UNN,
and presents related work. Section 3 introduces kernel functions for computa-
tion of the data space reconstruction error in a feature space. An experimental

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 97–106, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 O. Kramer

comparison of all approaches, and a variety of kernel functions is presented in
Section 4. Conclusions are drawn in Section 5.

2 Unsupervised Nearest Neighbors

UNN is a fast approach for dimensionality reduction. It fits K-nearest neighbor
(KNN) regression into the framework of unsupervised regression. UNN itera-
tively constructs a solution by placing latent points at positions that minimize
the KNN data space reconstruction error (DSRE), which is defined by

E(X) :=
1

N
‖Y − fKNN (X)‖2F , (1)

where the output of KNN regression given the pattern matrix X = [xi]
N
i=1 is a

matrix fKNN (X) = [fKNN (xi)]
N
i=1, whose columns are the KNN mappings from

pattern xi to data space Rd. We define the contribution of latent position xi to
the DSRE when embedding y′ as

e(xi,y
′,X) := ‖y− fKNN (X)‖2. (2)

In the following, we introduce an UNN variant that can embed points into con-
tinuous latent spaces of arbitrary dimensionality, i.e., q ≥ 1.

2.1 UNN with Stochastic Embeddings

The idea of UNN with stochastic embeddings is to randomly generate points
near the closest embedded points in latent space, and choose the position that
achieves the lowest DSRE with KNN. Algorithm 1.1 shows the pseudocode of
UNN with stochastic embeddings. Later, we extend the concept of neighborhood
relations in data space to a kernel-induced feature space.

Algorithm 1.1. UNN with stochastic embeddings

1: input: Y, K, κ
2: repeat
3: choose y′ ∈ Y
4: look for closest pattern y∗ with latent position x∗

5: for i = 1 to κ do
6: xi ∼ N(x∗, σ) with σ = δ(y′,y∗)
7: end for
8: choose x′ = argmini=1,...,κ e(xi,y

′,X)
9: Y = Y\y′

10: until Y = ∅

Let y′ be a pattern from the matrix Y of patterns that has to be embedded.1

The idea is to first look for the closest pattern y∗ with latent position x∗ among

1 For the sake of a simple notation we use the notation for sets, e.g., y′ ∈ Y to express
that a column vector y′ is randomly chosen from matrix Y, and Y\y′ to express
that column vector y′ is removed from Y.

Unsupervised Nearest Neighbors with Kernels 99

the embedded patterns. Then, test κ random latent positions xi with i = 1, . . . , κ
sampled based on the Gaussian distribution

xi ∼ N(x∗, σ). (3)

The standard deviation σ is chosen according to the distance between pattern y′,
and the nearest embedded pattern y∗ in data space

σ = δ(y′,y∗) (4)

with distance measure δ(·). This kind of sampling reflects valuable information
about distance relations in data space. Patterns with large distances in data
space are with a higher probability further away in latent space than points
with low distances. The DSRE is computed for every latent position, and the
latent position x′ with minimal DSRE is chosen to embed y′:

x′ = arg min
i=1,...,κ

e(xi,y
′,X) (5)

This step is iteratively repeated until all patterns have been embedded. The
result of the complete process depends on the order the patterns y′ ∈ Y are
put into the iteratively growing manifold, on the number κ of positions that are
tested, and also on the random values generated for sampling in latent space.

2.2 Related Work

UNN is based on unsupervised regression, which became famous for kernel den-
sity regression (e.g., cf [9]), but has also been applied to radial basis function
networks [12], Gaussian processes [7], and neural networks [13]. Recently, we
fitted nearest neighbor regression to the unsupervised regression framework [3]
employing an iterative approach, and introduced extensions w.r.t. robust loss
functions [5]. UNN is a fast approach that allows to iteratively construct one-
dimensional embeddings in O(N2) with KNN. It has been introduced for discrete
latent space topologies, i.e., latent sorting [3]. The idea is to test all possible la-
tent positions of embeddings on a line, and choose the position that leads to the
lowest DSRE. Following this scheme a solution is iteratively constructed until
all points are embedded. A faster variant only tests the dimensionality reduction
errors of the neighbored positions of the latent point with the closest pattern
in data space. Evolutionary continuous, and combinatorial variants have been
analyzed in [4]. A related approach based on particle swarm embeddings has
recently been introduced [6].

3 Kernel UNN

Kernel functions have become very popular in the last decade, and are important
ingredients of many state-of-the-art methods in machine learning. The motiva-
tion for employing kernel functions is to cope with non-linearities in data space.
In this section we extend the stochastic iterative embedding algorithm to the
kernel variant KUNN.

100 O. Kramer

3.1 Kernel Functions

Kernel methods take advantage of an interesting property of a reproducing kernel
Hilbert space. The kernel trick is the effect that all operations in a feature
space of higher dimensions can be expressed by scalar products. A kernel is
a real-valued function of two input space elements that corresponds to a scalar
product of its arguments mapped to some metric feature space. A kernel function
k : Rd × Rd → R induces a feature mapping φ : Rd → F into some potentially
high-dimensional feature space F such that

k(y,y′) := 〈φ(y), φ(y′)〉. (6)

Basis of many kernel methods is a kernel matrix K that contains the pairwise
similarities of patterns. Often employed kernel functions are linear, polynomial,
and Gaussian kernels. The linear kernel is based on the inner product

k(y,y′) := 〈y,y′〉, (7)

which is one in case of identity, and zero in case vectors are orthogonal. The
polynomial kernel

k(y,y′) := 〈y,y′〉p (8)

employs a polynomial function with p ∈ N. An often employed kernel function,
in particular for support vector classification and regression, is the radial basis
function kernel (RBF-kernel)

k(y,y′) := exp
(
−γ‖y− y′‖2

)
(9)

with γ > 0, which is sometimes chosen as γ = 1/σ2 with bandwidth σ. The
hyperbolic tangent is another kernel function that is a bit less common. It is
defined as

k(y,y′) := tanh(a · 〈y,y′〉+ b) (10)

with a > 0, and b < 0. In the following, we employ kernel functions for the DSRE
computation of UNN. The kernel functions will be experimentally analyzed in
Section 4.

3.2 Kernelization of DSRE

In UNN the employment of kernel functions for computation of the DSRE al-
lows to capture non-linear structures in data space corresponding to non-linear
Voronoi boundaries. For each pattern y′, and its mapping φ(y′) into feature
space, we look for the closest embedded pattern φ(y∗) in feature space. Similar-
ity can directly be expressed with kernel function k(·):

y∗ = argmax
i

k(y′,yi) (11)

With a kernel the DSRE e(x,y, ·) is computed in feature space as follows:

Unsupervised Nearest Neighbors with Kernels 101

e(x,y, ·) = ‖φ(f(x)) − φ(y)‖2 (12)

= 〈φ(f(x)), φ(f(x))〉 − 2〈φ(f(x)), φ(y)〉 + 〈φ(y), φ(y)〉 (13)

= k(f(x), f(x)) − 2k(f(x),y) + k(y,y) (14)

The kernel DSRE is the basis of the embeddings of the following experimental
part.

4 Experimental Analysis

In the following experimental study we compare the behavior of the introduced
methods on selected artificial data sets. Besides visualization, we compare the ex-
perimental results w.r.t. the DSRE, and the co-ranking-matrix measure ENX in-
troduced by Lee and Verleysen [8], measuring the fraction of preserved ranks in
latent space within a neighborhood of size K. Neighborhood preserving embed-
dings achieve a high value. For a definition, and derivation of ENX we refer to [8].

4.1 RBF-Kernel

One of the most frequently employed kernel functions is the RBF-kernel, on
which we pay special attention in the following. We explore the influence of
kernel bandwidth γ of the RBF-kernel in the following experimental analysis.

Table 1. Analysis of kernel bandwidth γ of KUNN with RBF-kernel on the Digits
data set with N = 300 patterns, and settings K = 10, κ = 30. The best results are
shown in bold, the second best in italic figures.

data Digits Boston

γ DSRE ENX DSRE ENX

1.0 1.30 ± 0.01 0.30± 0.01 2.43 ± 0.10 0.29± 0.01
10−4 1 .11 ± 0 .02 0 .45 ± 0 .01 2 .15 ± 0 .12 0 .42 ± 0 .01
10−8 0.91± 0.01 0.50± 0.01 1.14± 0.15 0.62± 0.04

Table 1 shows the normalized DSRE2, and ENX of KUNN with RBF-kernel for
three settings of γ, i.e., γ = 1.0, 10−4, and 10−8. The figures show the mean
DSRE, and the corresponding standard deviation of 25 runs. The results show
that the choice of γ has a significant influence on the learning result. The best
embedding w.r.t. the DSRE has been achieved for γ = 10−8 in case of data set
Digits, and also γ = 10−8 in case of Boston. As of γ = 10−9 the achieved DSRE
varies only after the tenth decimal place. Figures 1(a), and 1(b) show exemplary
embeddings for the bandwidth settings γ = 1.0, and γ = 10−6 on the Digits data
set. The distribution of the majority of latent points is comparatively narrow for
γ = 1.0 due to outliers, while for γ = 10−6 the manifold becomes broader, and
well distributed. The plots confirm the choice for γ determined in Table 1, i.e.,
the tendency towards smaller settings for γ (corresponding to a larger σ).

2 The normalized ’kernel-free’ DSRE is EN(X) = 1
N
E(X).

102 O. Kramer

KUNN, RBF 1.0

(a)

KUNN, RBF 10 -6

(b)

KUNN, polynomial

(c)

KUNN, hyperbolic tangent

(d)

Fig. 1. Comparison of embeddings with KUNN for RBF-kernel with parameter set-
tings (a) γ = 1.0, and (b) γ = 10−6, as well as (c) a polynomial (p=4), and (d) a
hyperbolic tangent kernel on the Digits data set (a = 10−6, and b = −10−2), and
K = 10, κ = 30, N = 1, 000

4.2 Kernel Function Comparison

The influence of the kernel function type on the embedding result is analyzed in
the following. The comparison includes the linear kernel, the polynomial kernel,
and the hyperbolic tangent kernel. Table 2 shows an experimental comparison of
the three kernel functions on Digits, and Boston w.r.t. DSRE, and ENX . The lin-
ear kernel is parameter-free. For the polynomial kernel we chose p = 2, and for
the hyperbolic tangent we chose a = 10−6, and b = −10−2. We can observe
that the polynomial kernel achieves better results than the linear kernel in min-
imizing the DSRE, and maximizing the co-ranking-matrix measure ENX on the
Digits, and vice versa on the Boston data set. But the co-ranking-matrix value is
comparatively bad. Only the fraction of about 0.3 of the data space neighborhood
ismaintained in latent space. On the contrary, the hyperbolic tangent kernel shows
surprisingly good results that even outperform the RBF-kernel on both data sets.
Figures 1(c), and 1(d) show a visualization of exemplary embeddings of the poly-
nomial kernel (p = 4), and the tangent kernel (a = 10−6, and b = −10−2). In
particular, the hyperbolic tangent is able to separate the different classes.

Unsupervised Nearest Neighbors with Kernels 103

Table 2.Comparison of linear, polynomial, and hyperbolic tangent kernel onDigits, and
Boston with N = 300, K = 5, and κ = 30

kernel linear polynomial tangent

data DSRE ENX DSRE ENX DSRE ENX

Digits 1.14± 0.03 0.31± 0.01 1 .12 ± 0 .01 0 .32 ± 0 .01 0.85± 0.02 0.56± 0.01
Boston 1 .87 ± 0 .04 0 .31 ± 0 .01 1.90 ± 0.08 0.31± 0.01 1.00± 0.07 0.68± 0.01

4.3 Comparison between KUNN, LLE, and ISOMAP

Last, we compare UNN with stochastic embeddings, and KUNN with kernel
functions to ISOMAP, and LLE w.r.t. neighborhood size K. The embeddings of
the Digits data set of UNN without kernel, and KUNN are shown in Figure 2
(a), and (b). Different classes are separated, and similar digits are neighbored.
KUNN achieves a better separation of different classes than UNN without kernel.
In comparison to the LLE result the embeddings are smoother. Also ISOMAP
computes a smooth embedding with similar patterns lying close to each other in
latent space.

Table 3. Comparison of DSRE, and ENX with UNN, KUNN, LLE, and ISOMAP on
the two test data sets Digits, and Boston with each N = 300 patterns. ISOMAP, and
KUNN achieve the lowest DSRE, and show the best ability to preserve neighborhoods
in latent space (κ = 30, and 25 repetitions)

Digits UNN KUNN ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX DSRE ENX

5 1.14± 0.02 0.31 ± 0.01 0.86± 0.01 0.55± 0.01 1 .00 0 .45 1.23 0.30
10 1.27± 0.03 0.31 ± 0.01 1.03± 0.01 0 .53 ± 0 .01 1.03 0.54 1.08 0.50
30 1.52± 0.01 0.40 ± 0.01 1 .33 ± 0 .02 0 .57 ± 0 .01 1.28 0.64 1.42 0.51

Bost. UNN KUNN ISOMAP LLE

K DSRE ENX DSRE ENX DSRE ENX DSRE ENX

5 1.94± 0.11 0.31 ± 0.01 1.00± 0.07 0.68± 0.01 1 .05 0 .67 2.56 0.35
10 2.32± 0.03 0.30 ± 0.02 1 .57 ± 0 .08 0 .62 ± 0 .01 1.38 0.65 2.21 0.42
30 3.30± 0.04 0.37 ± 0.01 2.85± 0.18 0.56 ± 0.02 2.05 0.74 2 .33 0 .72

To evaluate the embeddings quantitatively, we again employ the DSRE, and
ENX . The experimental results can be found in Table 3. From the analysis of
different kernels in Section 4.2, we choose the hyperbolic tangent kernel with
parameters a = 10−6, and b = −10−2. Again, UNN, and KUNN have been
run 25 times, and the corresponding mean values, and standard deviations are
shown. Comparing UNN to KUNN we can observe that the employment of a
kernel function can improve the embeddings achieving results that are statisti-
cally significant. KUNN achieves lower DSRE results, and larger neighborhood
preserving values ENX . In general, a low DSRE is strongly correlated to a high
ENX result. When we compare the UNN variants to ISOMAP, and LLE, we

104 O. Kramer

UNN, no kernel

(a)

KUNN, RBF 10-2

(b)

LLE

(c)

ISOMAP

(d)

Fig. 2. Embeddings of (a) UNN, (b) KUNN employing an RBF-kernel with γ = 10−2,
(c) LLE, and (d) ISOMAP on the Digits data set (K = 10, κ = 30, N = 1, 000)

ISOMAP

(a)

KUNN

(b)

Fig. 3. Comparison of embeddings of the ISOMAP-Faces data set of (a) ISOMAP with
K = 50, and (b) KUNN with RBF-kernel, and γ = 10−4

Unsupervised Nearest Neighbors with Kernels 105

can observe that KUNN is better on the Digits data set for small neighborhood
sizes, i.e., K = 5, 10, while ISOMAP is superior in two cases on Boston. With
one exception (Boston, and K = 30), KUNN is superior to LLE w.r.t. both
measures.

In a last experiment we compare ISOMAP, and KUNN with RBF-kernel on
the ISOMAP-Faces data set that is employed in the original ISOMAP arti-
cle [14]. This data set contains images of a statue with different poses, and
lights. Figure 3 shows the results of (a) ISOMAP with K = 50, and (b) KUNN
using the RBF-kernel with setting γ = 10−4, and neighborhood size K = 5.
Both approaches compute topology preserving embeddings: similar poses, and
lights of the statue are neighbored in latent space.

5 Conclusions

Dimensionality reduction has an important part to play in a world with a steadily
growing information infrastructure. Many dimensionality reduction methods have
been proposed in the past. But most are comparatively inefficient. In this pa-
per we introduced a simple yet effective approach for embedding patterns to
latent spaces of arbitrary dimensionality with an iterative KNN-based strategy.
Neighborhoods are preserved employing the KNN-based DSRE, while distances
are preserved by Gaussian sampling in latent space with variances based on
distances in data space. The approach is extended by the concept of kernel-
function induced features spaces to handle non-linearities in data space. Various
kernel functions are employed: from linear to hyperbolic tangent kernels. The
latter achieved surprisingly low DSRE, and high co-ranking-matrix values. The
experiments have shown that KUNN is competitive with famous methods like
ISOMAP, and LLE. Employing kernel functions for the DSRE turns out to im-
prove the dimensionality reduction result significantly. While the runtime com-
plexity of ISOMAP is O(N2 logN), and LLE takes O(N2), KUNN is computing
a manifold in O(N2), and can be accelerated to O(N logN) employing space
partitioning data structures for the neighborhood queries in data, and latent
space, e.g., k-d-trees [1], and balltrees [10].

References

1. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

2. Jolliffe, I.: Principal component analysis. Springer series in statistics. Springer, New
York (1986)

3. Kramer, O.: Dimensionalty reduction by unsupervised nearest neighbor regression.
In: Proceedings of the 10th International Conference on Machine Learning and
Applications (ICMLA), pp. 275–278. IEEE (2011)

4. Kramer, O.: On Evolutionary Approaches to Unsupervised Nearest Neighbor Re-
gression. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di
Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Lang-
don, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A.,

106 O. Kramer

Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar,
A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 346–355.
Springer, Heidelberg (2012)

5. Kramer, O.: On unsupervised nearest-neighbor regression and robust loss functions.
In: International Conference on Artificial Intelligence, pp. 164–170. SciTePress
(2012)

6. Kramer, O.: A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality
Reduction. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht,
A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 1–12. Springer,
Heidelberg (2012)

7. Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. Journal of Machine Learning Research 6, 1783–
1816 (2005)

8. Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction: Rank-
based criteria. Neurocomputing 72(7-9), 1431–1443 (2009)

9. Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsu-
pervised kernel regression. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(9), 1379–1391 (2005)

10. Omohundro, S.M.: Five balltree construction algorithms. Technical report, Inter-
national Computer Science Institute (ICSI) (1989)

11. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290, 2323–2326 (2000)

12. Smola, A.J., Mika, S., Schölkopf, B., Williamson, R.C.: Regularized principal man-
ifolds. Journal of Machine Learning Research 1, 179–209 (2001)

13. Tan, S., Mavrovouniotis, M.: Reducing data dimensionality through optimizing
neural network inputs. AIChE Journal 41(6), 1471–1479 (1995)

14. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

A Compact Encoding of Pseudo-Boolean

Constraints into SAT

Steffen Hölldobler, Norbert Manthey, and Peter Steinke

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

peter@janeway.inf.tu-dresden.de

Abstract. Many different encodings for pseudo-Boolean constraints into
the Boolean satisfiability problem have been proposed in the past. In this
work we present a novel small sized and simple to implement encoding.
The encoding maintains generalized arc consistency by unit propagation
and results in a formula in conjunctive normal form that is linear in size
with respect to the number of input variables. Experimental data con-
firms the advantages of the encoding over existing ones for most of the
relevant pseudo-Boolean instances.

1 Introduction

Due to various improvements in satisfiability testing (see e.g. [14,15,19,8]) SAT
solvers are successfully applied to many domains like electronic design automa-
tion [12,6], periodic scheduling [11], or cryptography [10]. To encode a problem
into SAT it is often necessary to translate cardinality constraints or general
pseudo-Boolean (PB) constraints. In this work we focus on the latter.

PB constraints of the form
∑n

i=1 wixi ≤ k are a special case of 0-1 integer
linear programming [9], where k and wi are integers, xi are Boolean variables,
and n is the number of variables. Besides translating PB constraints into SAT,
there also exists solvers that handle these constraints natively. We show that
native domain solvers can be outperformed by encoding PB and using SAT
solvers, when appropriate encodings are applied.

There are different ways of translating a PB constraint into a SAT instance
(see e.g. [2,5,9]), which differ in the size of the resulting formula and the prop-
erties, which help a SAT solver to find a solution in a smaller time span. Two
properties are particularly important, both of which are related to unit propaga-
tion, the main inference rule within a modern SAT solver: (i) the ability to detect
inconsistencies by unit propagation and (ii) maintaining general arc consistency
by unit propagation. The former is achieved by running into a conflict as soon as
an inconsistency is observed, whereas the latter is achieved if unit propagation
assigns all variables that are not part of any solution of a constraint to false.

In particular, to encode PB constraints into SAT instances the following meth-
ods have been applied: binary decision diagrams (BDD) [2,9], sorting and adder
networks [9] as well as the so-called local watchdog encoding [5]. BDDs and the

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 107–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 S. Hölldobler, N. Manthey, and P. Steinke

local watchdog encoding maintain general arc consistency. The former requires
O(n3 log(k)) clauses and variables, the latter usesO(n3 log(n) log(k)) clauses and
O(n2 log(n) log(k)) variables w.r.t. a PB constraint of the form

∑n
i=1 wixi ≤ k.

There also exist encodings that require much less clauses, namely sorting net-
works and adder networks, but these encodings do not maintain general arc con-
sistency in general. Sorting networks encode a PB constraint with O(n log2(n))
clauses and maintain arc consistency only for cardinality constraints, which are
a special case of PB constraints. Adder networks require O(n log(k)) clauses.

The contributions of this paper are the following: We present a new translation
from PB constraints into SAT instances, called the sequential weight counter
(SWC) encoding. For a PB constraint of the form

∑
i wixi ≤ k, where 1 ≤ i ≤ n,

this encoding requires O(nk) clauses and auxiliary variables while preserving
the ability to detect inconsistencies and to maintain general arc consistency
by unit propagation. In contrast to the other encodings, the SWC encoding
depends only linearly on n and k. Furthermore, its structure is simple and easy to
understand compared to complex BDDs or sorting networks. Analyzing instances
of recent PB competitions shows that for more than 99% of the PB constraints
the SWC encoding produces a smaller SAT formula than with BDDs of [2] or
the watchdog encoding [5]. Finally, we provide an experimental analysis that
empirically verifies the practicability of the new encoding.

The paper is structured as follows: the background of SAT and PB solving
is given in Sect. 2. In Sect. 3 the sequential weight counter encoding is intro-
duced, followed by an empirical evaluation in Sect. 4. Some final conclusions are
presented in Sect. 5.

2 Preliminaries

Let V be a finite set of Boolean variables. The set of literals V ∪ {x | x ∈ V }
consists of positive and negative Boolean variables. A clause is a finite disjunc-
tion of literals and a formula (in conjunctive normal form (CNF)) is a finite
conjunction of clauses. We sometimes consider clauses and formulas as sets of
literals and sets of clauses, respectively. A unit clause is a clause that contains
a single literal.

An interpretation J is a (partial or total) mapping from the set of variables to
the set {1, 0} of truth values; it is represented by a set J of literals, also denoted
by J , with the understanding that a variable x is mapped to 1 if x ∈ J and is
mapped to 0 if x ∈ J . If J can be determined from the context, then we simply
write x = 1 or x = 0 in case of J(x) = 1 and J(x) = 0, respectively. If a variable
x is neither mapped to 1 nor to 0 by J , we say the variable is undefined and
write J(x) = undef or, for short, x = undef. This notion can be easily lifted to
literals. One should observe that {x, x} �⊆ J for any x and J .

A clause C is satisfied by an interpretation J if J(l) = 1 for some literal
l ∈ C. An interpretation satisfies a formula F if it satisfies every clause in F . If
there exists an interpretation that satisfies F , then F is said to be satisfiable or
consistent, otherwise it is said to be unsatisfiable or inconsistent. The reduct F |J

A Compact Encoding of Pseudo-Boolean Constraints into SAT 109

of a formula F with respect to an interpretation J is the formula obtained from
F by evaluating F under J and simplifying the formula: all satisfied clauses are
removed, and from all the remaining clauses all x with J(x) = 0 and all x with
J(x) = 1 are removed.

In the sequel we will use gate representations for special propositional formu-
las, where the equivalence connective ⇔ can be transformed according to the
standard rules of propositional logic into conjunctive normal form. The conjunc-
tion x⇔ (xi ∧ xj) is represented by an AND gate with the input bits xi and xj

and the output bit x. We will refer to AND gates with the symbol &. Similarly
we represent the disjunction x ⇔ (xi ∨ xj) by an OR gate. Again, xi and xj

are input bits and x is the output bit. The symbol used for OR gates is ≥1.
Depending on the circuit, sometimes only a single direction of the equivalence
needs to be encoded [20,16].

One of the most important inference rules in modern SAT solvers is unit
propagation (UP) [7]. Let F be a formula and J be an interpretation, then unit
propagation extends an interpretation if there is a unit clause in F |J : F, J !up
F, J ∪{l} if {l} ∈ F |J . Let !∗up be the transitive and reflexive closure of !up. UP
detects a conflict in a formula F and an interpretation J , if the resulting reduct
contains the empty clause: F, J !∗up F, J ′ and {} ∈ F |J′ .

A pseudo-Boolean (PB) constraint is defined over a finite set of Boolean vari-
ables xi and has the form

∑
i wixi � k, where wi (called weights) and k are

integers, � is one of the following classical relational operators =, >,<,≤ or ≥,
and 1 ≤ i ≤ n, where n is the number of variables in the PB constraint. W.l.o.g.
in this work we consider only PB constraints that use the ≤ operator and where
each weight is 1 ≤ wi ≤ k. As presented in [9,17], each PB constraint can be
transformed into an equivalent PB constraint that matches this construction.
This may introduce negative variables x that can be handled like positive liter-
als in the constraint or that can be replaced by a fresh positive variable z. In the
latter case z ⇔ x has to be encoded in the resulting formula. For more details
we refer the reader to [17].

We define the multiplication of Boolean variables x and integers a, with re-
spect to an interpretation J, as follows: for each integer a ∈ Z we define a ·x = a
if J(x) = 1 and a · x = 0 if J(x) = 0. A PB constraint is consistent or satisfiable
iff
∑

i=1 wixi ≤ k holds for some interpretation J, and is inconsistent other-
wise. The PB decision problem asks if for a set of PB constraints there exists an
interpretation such that all PB constraints are satisfied.

3 Sequential Weight Counter Encoding

In this section we present the sequential weight counter (SWC) encoding, which
is a new encoding for PB constraints of the form

∑
i wixi ≤ k into SAT. The

SWC encoding is a modification of the sequential counter (SEQ) encoding [18],
which translates cardinality constraints into SAT. The SWC encoding needs the
same amount of clauses as the SEQ encoding, viz. at most n(2k + 1) clauses
and (n − 1)k auxiliary variables, and – like SEQ – maintains generalized arc

110 S. Hölldobler, N. Manthey, and P. Steinke

Table 1. Distribution of k with respect to n in PB constraints

Number of Constraints k > n2 n2 ≥ k > n k ≤ n

22 014 154 0.56% 0.23% 99.2%

consistency (GAC) by unit propagation. However, the SWC encoding needs
more clauses and variables than an adder network for PB constraints, which
requires O(n log(k)) variables and clauses [9], but adder networks do not main-
tain GAC by unit propagation. On the contrary, if k ≤ n2 the SWC encoding
needs less variables and clauses than the watchdog encoding [5] – which produces
O(n3 log(n) log(k)) clauses and O(n2 log(n) log(k)) variables. The watchdog en-
coding is the currently best known encoding of PB constraints maintaining gen-
eralized arc consistency by unit propagation [5] with respect to asymptotic space
complexity.

We have analyzed the set of PB instances from recent PB competitions, where
we only considered PB constraints where at least one weight wi is greater than
1. Table 1 shows the distribution of PB constraints in the instances of the PB
benchmark 2011 and 2010.1 The analysis reveals that k ≤ n holds for 99% of the
considered PB constraints. Comparing the two GAC encodings for the extreme
case k = n, the SWC generates at most 2n2 + n clauses and the watchdog
encoding generates O(n3 log(n) log(n)) clauses. In this case, our encoding has a
quadratic complexity and the watchdog encoding a cubic complexity. Only in
the rare case where k ≥ n3 the watchdog encoding results in less clauses. Hence
the novel encoding improves the state of the art in practice.

In the following, we briefly discuss the SEQ encoding and define the SWC
encoding in Sect. 3.1. In Sect. 3.2 we prove that the SWC encoding detects
inconsistency and maintains GAC by unit propagation.

3.1 From Sequential Counters to Sequential Weight Counters

Sequential Counters. Setting all weights wi in a PB constraint to 1 results in
a cardinality constraint

∑
i xi ≤ k, allowing at most k variables to be assigned

to 1, where 1 ≤ i ≤ n. These constraints and their encodings into SAT instances
are well studied (see e.g. [18,4]).

The idea of the SEQ encoding is to sequentially count from left to right the
number of variables which have been assigned to 1 by the current interpreta-
tion J . This process can be encoded by circuits [18]. Each intermediate sum
is encoded by a unary representation with the help of auxiliary variables si,j ,
1 ≤ i ≤ n and 1 ≤ j ≤ k, such that si,k is the most significant digit. The value
of j is used to represent the value of the ith sum. Intuitively, if and only if among

1 http://www.cril.univ-artois.fr/PB11/benchs/PB11-SMALLINT.tar

http://www.cril.univ-artois.fr/PB11/benchs/PB11-BIGINT.tar

http://www.cril.univ-artois.fr/PB10/benchs/PB10-selected-benchs.tar

http://www.cril.univ-artois.fr/PB11/benchs/PB11-SMALLINT.tar
http://www.cril.univ-artois.fr/PB11/benchs/PB11-BIGINT.tar
http://www.cril.univ-artois.fr/PB10/benchs/PB10-selected-benchs.tar

A Compact Encoding of Pseudo-Boolean Constraints into SAT 111

x1 x2 xn

s1,1

s1,2

s1,k

s2,1

s2,2

s2,k

sn,1

sn,2

sn,k

(a)

xi

≥1 si,1

≥1 si,2

≥1 si,k

&

&

si−1,1

si−1,2

si−1,k−1

si−1,k

(b)

Fig. 1. SEQ encoding: (a) An overview over the whole circuit showing the connection
of the input bits and output bits between the single circuits for each variable xi. (b)
The detailed circuit for a single input variable xi.

the variables x1, x2, . . . , xi of the PB constraint at least j variables are set to 1
by J , the variable si,j should also be set to 1 by UP and the encoding. Therefore,
we introduce a number si≥ for the ith sum that is defined as:

si≥ :=

⎧⎪⎨⎪⎩
j if si,j = 1 ∧ si,j+1 �= 1 ∧ j < k

k if si,k = 1

0 else

Hence, si≥ represents the number of variables x1, x2, . . . , xi which are assigned
to 1 by J (see Fig. 1). As an example, consider the cardinality constraint x1 +
x2 + x3 + x4 ≤ 3, assume that the interpretation J maps x1 = x3 = 1 and
x2 = x4 = undef, and suppose we are interested in the question how many of
the first three variables are assigned to 1 by J . In this case, s3,1 = s3,2 = 1,
s3,3 = undef, and s3≥ = 2.

The counting mechanism is illustrated in Fig.1(a) and can be implemented
by gates: An OR gate in Fig.1(b) ensures that if the input bit si−1,j is set to 1,
then the output bit si,j is set to 1 as well. Thus, for the two sums si≥ and si+1

≥
in unary representation we find that si≥ ≤ si+1

≥ holds. An output bit si,j is also
set to 1 if the input variable xi and the previous input bit si−1,j−1 are set to 1.
This behavior is ensured by the AND gate.

For the encoding of the circuit the Tseitin transformation [20] is used. In
addition a formula is added, which excludes the sum to become greater than k:

si,1 ⇔ xi ∨ si−1,1 for 1 ≤ i ≤ n,
si,j ⇔ (xi ∧ si−1,j−1) ∨ si−1,j for 1 ≤ i ≤ n, 1 < j ≤ k,
⊥ ⇔ xi ∧ si−1,k,

where ⊥ denotes a formula, that is always false. Because the OR and AND gates
in the SEQ encoding occur only positively, only the ⇐ directions are required
for the transformation into conjunctive normal form [16]. For more information
about the SEQ encoding we refer to [18].

112 S. Hölldobler, N. Manthey, and P. Steinke

Sequential Weight Counters. To extend the encoding of a cardinality con-
straint to an encoding of a PB constraint we replace the coefficients 1 by weights
1 ≤ wi ≤ k for each variable xi. If J(xi) = 1 we have to set the output bits
si,j+1, si,j+2,. . . ,si,j+wi to 1, where j is the largest index with si−1,j = 1, thus
we sum up the values of the weights wi for each assigned variable xi = 1 in-
stead of counting the number of assigned variables xi = 1. The new mecha-
nism is achieved by modifying one input of the AND gates. The equivalence
si,j⇔ (xi ∧ si−1,j−1) ∨ si−1,j of the SEQ encoding is replaced by

si,j⇔ (xi ∧ si−1,j−wi) ∨ si−1,j .

If j − wi ≤ 0 we can skip the AND gate and just use the OR gate with
si,j ⇔ (xi ∨ si−1,j). Fig.2(b) illustrates this substitution. The connections of the
counters remains unchanged as shown in Fig.2(a). The final modification is to
force the sum to be smaller or equal to k:

⊥ ⇔ xi ∧ si−1,k+1−wi .

Since we have to ensure that the sum is smaller or equal than k, we can drop
the circuit for xn and the gates of the actual sum, because the formula

⊥ ⇔ xn ∧ sn−1,k+1−wn

already achieves this property. For a PB constraint
∑

i wixi ≤ k with 1 ≤ i ≤ n
and the Tseitin transformation the conjunction of the following formulas encodes
the constraint into SAT:

si−1,j ∨ si,j for 2 ≤ i < n, 1 ≤ j ≤ k, (1)

xi ∨ si,j for 1 ≤ i < n, 1 ≤ j ≤ wi, (2)

si−1,j ∨ xi ∨ si,j+wi for 2 ≤ i < n, 1 ≤ j ≤ k − wi, (3)

si−1,k+1−wi ∨ xi for 2 ≤ i ≤ n. (4)

Hence, the SWC encoding requires 2nk − 4k + w1 + n− 1 clauses and k (n− 1)
auxiliary variables. As shown in Fig.2(b) the structure of the encoding is simple
to understand and the formula can be easily encoded. We will show in Theorem 4
in the next section that the SWC encoding correctly encodes a PB constraint∑n

i=1 wixi ≤ k, where 1 ≤ wi ≤ k and k ≥ 1.

3.2 Properties of the SWC Encoding

In this section, we prove properties of the SWC encoding, i.e., we show that
it allows to detect inconsistencies as well as that it maintains GAC by unit
propagation. For this, we first look at the generic definition of generalized arc
consistency:

Following [3], in a constraint C ⊆ D1 × · · · ×Dk on the variables x1, . . . , xk

with domains D1, . . . , Dk, a variable xi is generalized arc consistent (GAC) –
also known as hyper-arc consistent – if for every a ∈ Di there exists a d ∈ C

A Compact Encoding of Pseudo-Boolean Constraints into SAT 113

x1 x2 xn

s1,1

s1,2

s1,k

s2,1

s2,2

s2,k

sn,1

sn,2

sn,k

(a)

xi

≥1 si,1

≥1 si,wi

≥1 si,1+wi

≥1 si,k

&

&

si−1,1

si−1,wi

si−1,1+wi

si−1,k

si−1,k−wi

(b)

Fig. 2. SWC encoding: (a) Overview. (b) The detailed circuit for xi.

such that a = d[i], where d[i] denotes the ith element of d. The constraint C is
generalized arc consistent (GAC) if all variables xj with 1 ≤ j ≤ k are GAC.
One should observe that an inconsistent constraint C cannot be GAC because
there does not exist any solution d ∈ C.

If a constraint C is not GAC, then there exist an element a in the domain of
some variable xi which can be removed from the domain of xi without removing
any solution of C. It is beneficial to remove such unnecessary elements as soon
as possible in order to prune the search space.

Returning to PB constraints, we recall that the domain of each variable oc-
curring in a PB constraint of the form

∑
i wixi ≤ k is initially the set {1, 0}. We

define the minimum sum min sum(C, J) of a PB constraint C with respect to
an interpretation J as

min sum(C, J) =
∑
{wi | J(xi) = 1},

where the sum of a finite set {e1, e2, . . . , em} of integers is
∑m

i=1 ei.
We can now apply GAC to PB constraints: A variable xi of a consistent PB

constraint C of the form
∑

i wixi ≤ k, where 1 ≤ wi ≤ k, is GAC with respect
to an interpretation J if

(1) J(xi) = 0
(2) J(xi) = 1
(3) min sum(C, J) ≤ k − wi.

In case (1) and (2), the variable xi is already assigned and therefore this variable
must be GAC because, otherwise, the PB constraint would not be consistent.
Case (3) states that there exists a solution for the PB constraint where xi = 1.
Note that assigning a variable xi to 0 in a consistent PB constraint in the given
form always preserves consistency. We can assign to 0 every variable xi which
does not meet one of the conditions until the constraint is GAC without loosing
a solution for the constraint.

Now we can define the properties that a PB encoding into SAT should meet.
Let E(C) be an encoding of a PB constraint C into a SAT instance, where C is
of the form

∑n
i=1 wixi ≤ k:

114 S. Hölldobler, N. Manthey, and P. Steinke

– E(C) is said to detect inconsistency by unit propagation if the following
holds: Whenever C is inconsistent with respect to an interpretation J , then
UP detects a conflict in E(C) with respect to J .

– E(C) is said to maintain generalized arc consistency by unit propagation if
the following holds: If C is not GAC with respect to an interpretation J ,
then E(C), J !∗up E(C), J ′ such that we find xi ∈ J ′ for all variables xi of
C which are not GAC with respect to J .

Let J be an interpretation that maps some variables xi to truth values, but
leaves all auxiliary variables unassigned, i.e. J(si,j) = undef. From now on every
variable assignment is considered w.r.t. an interpretation J ′, where J ′ is achieved
by UP: E(C), J !∗up E(C), J ′ and E(C) is the SWC encoding for the PB con-
straint C. This can be done w.l.o.g. because for each interpretation J ′′ ⊇ J that
satisfies E(C), J ′ ⊆ J ′′ holds.

In the rest of this section we prove that the SWC encoding detects inconsis-
tency and maintains GAC by UP.

Lemma 1.
∑
{wj | xj = 1, 1 ≤ j ≤ i} = si≥.

If we arbitrarily assign 1 or 0 to the variables xi, si≥ is the value of the sum∑
{wj | xj = 1, 1 ≤ j ≤ i}. This is obvious from the definitions of the encoding.

The clauses (1),(2) and (3) imply the mapping for the auxiliary variables si,j by
UP for every variable xi in exactly that way.

Now we can prove that SWC detects consistency by UP:

Corollary 2. The Sequential Weight Counter encoding detects inconsistency by
UP.

Proof. With Lemma 1 and the clause si−1,k−wi ∨xi ∈ E(C) this follows directly,
since

∑
{wj | xj = 1, 1 ≤ j ≤ n} > k implies that there exists a variable xi = 1

with si−1
≥ + wi ≥ k, hence si−1,k−wi = 1.

In analogy to si≥ we define si<, where si≥ is counting the sum from left to right,

i.e.:
∑i

a=1 waxa, and si< from right to left, i.e.:
∑i+1

a=n waxa.

si< =

{
k − u+ 1 where u is the smallest number with si,u = 0

0 else

The auxiliary variable si,j is set to 0 if and only if
∑
{wa | xa = 1, i < j ≤ n} ≥

k − j + 1.

Lemma 3.
∑
{wj | xj = 1, i < j ≤ n} = si<

Proof (sketch). We consider the sum
∑
{wj | xj = 1, i < j ≤ n} as a fixed

sequence of addends wj in descending order according to j . Now we can prove the
lemma by induction, starting with the first addend wi in the sum (i.e. there exists
no xl = 1, with l > i). With si−1,k−wi+1∨xi ∈ E(C) we get sj−1

< = wj =
∑
{wj}.

For the induction step we show that for each xa = 1 with a < i we find a clause

A Compact Encoding of Pseudo-Boolean Constraints into SAT 115

sa−1,j ∨xa ∨ sa,j+wa ∈ E(C) such that sa,j+wa = 0 is the previous addend of the
sum:

sa−1
< = wa + sa< = wa +

∑
{wl | xl = 1, a < l ≤ n}

For each xj �= 1 it follows from the definitions of SWC that si−1
< = si<, since

si−1,j ∨ si,j ∈ E(C). ��
From Lemma 1 and 3 follows that:

xi �= 1⇒ si−1
≥ = si≥ (5)

si≥ + si< = min sum(C, J) (6)

Now we can prove that SWC is an encoding for the PB constraint and that the
SWC encoding maintains GAC by UP.

Theorem 4. The SWC is an encoding for the PB constraint
∑n

i=1 wixi ≤ k in
CNF, requiring O(nk) clauses and O(nk) auxiliary variables.

Proof. From the corollary 2 we know that setting the variables xi such that the
sum

∑n
i=1 wixi > k leads to an inconsistent formula by the encoding. Hence we

only have to show that setting the variables xi such that
∑n

i=1 wixi ≤ k does
not lead to a contradiction. Having only the clauses (1),(2) and (3), it follows
that any assignment of the variables xi does not lead to a contradiction, since
xi = 1 only implies the mapping for an auxiliary variable si,j positively (i.e.
si,j = 1) and in each of these clauses si,j occurs positively. Setting xi = 0 results
in no implication, since xi does not occur positively in any clause. Similar to the
proof of lemma 3, we can prove that the implications of the clause (4) lead to a
contradiction if and only if

∑n
i=1 wixi > k. ��

Theorem 5. The Sequential Weight Counter encoding maintains GAC by UP.

Proof. Assume there is a variable xi that is not GAC with respect to C, hence
xi = undef. Since xi is not GAC, min sum(C, J) > k−wi holds (i.e. we cannot
assign xi = 1). With (5) and (6) we have:

min sum(C, J) = si≥ + si< = si−1
≥ + si<

Hence there exists a lower bound l for the ith sum that represents the value of
the i − 1th sum (l = si−1

≥ because si−1,l = 1) and an upper bound u for the ith

sum si,u = 0 such that u = k − si< + 1. If the difference between l and u is less
equal than wi, xi needs to be set to xi = 0:

si−1
≥ + si< > k − wi ⇔

l + k − u+ 1 > k − wi ⇔
l + wi + 1 > u (7)

case u ≤ wi

with xi ∨ si,u ∈ E(C) this directly contradict our assumption.

116 S. Hölldobler, N. Manthey, and P. Steinke

case u > wi

with (7) we know that l ≥ 1 and there exists a j ≤ l with j + wi = u. With
si−1,j ∨ xi ∨ si,j+wi ∈ E(C) this contradicts our assumption. ��

4 Results

In this section we want to show the usefulness of the proposed sequential weight
counter (SWC) encoding. The first advantage of the encoding is its simple struc-
ture. Compared to translating a PB constraint into SAT by a BDD [9,2], the
presented algorithm is conceptionally easy.

As a basis for the experiments we use all decision PB instances of PB com-
petitions 2010 and 2011.1Note, that from the big int PB instances none of the
selected solving methods can solve a single instance within the timeout. There-
fore, we decided to drop these instances from the benchmark. In total, there are
278 PB instances in the benchmark. The experiments have been performed on
an AMD Opteron CPU with 2.66GHz, a memory limit of 2GB and a timeout
of 1800 s.

Before all the single constraints are translated into SAT, we simplified them as
follows: For a constraint

∑
i wixi ≤ k we immediately assign xi to 0, if wi > k.

Furthermore, all constraints with
∑

i wi ≤ k are removed. Constraints of the
form

∑
i li ≥ 1 are encoded as a single clause. Finally,

∑
i li ≤ k is translated

by an appropriate cardinality constraint encoding [4]. We have not used the
watchdog encoding for several reasons: (i) this encoding almost always produces
more clauses than the SWC encoding, (ii) the encoding is complex to implement
and (iii) using the tool that has been used in [5] would also encode all special
PBs with the watchdog encoding.

To compare the impact of the novel encoding, we translated all PB instances
into SAT and solved them with the SAT solver glucose 2 because of its high
performance in recent SAT competitions.2 Table 2 compares the number of
solved PB instances among the encodings and gives the average time that has
been used to solve a single instance. Encoding PB constraints with BDD has
been done according to [9]. We furthermore added the configuration BEST, that
selects for each PB the encoding that produces the least number of clauses. By
fixing the encoding, the solver with both BDD and SWC solve already a large
number of instances. However, there is no clear benefit for either of the two
encodings. By using SWC the solver can solve exactly the same instances as by
using BDD and another three instances more. For 58 instances of the 126 com-
monly solved instances, with BDDs one can solve the instance faster whereas
for the remaining 68 instances with SWC the answer is returned more quickly.
As already seen in other fields, a portfolio approach usually increases the per-
formance of solvers [21] and could be applied to PB solving as well. By choosing
always the best encoding the configuration BEST solves another 12 instances
and also decreases the run time per instance. Thus, for the translation to SAT
the SWC encoding provides a clear benefit.

2 We provide the tool at http://tools.computational-logic.org .

http://tools.computational-logic.org

A Compact Encoding of Pseudo-Boolean Constraints into SAT 117

Table 2. Comparing the performance of PB solving approaches

Encoding BDD SWC BEST bsolo clasp

Solved instances 126 129 141 98 120

Run time 180.49 s 193.74 s 142.77 s 136.43 s 138.08 s

Since PB can be solved also natively or by handling PB constraints inside
a SAT solver, we furthermore compared our approach with successful systems
of the last PB competition. bsolo is a native PB solver [13] and clasp [1]
is a SAT solver that can handle PB constraints inside the solver without a
translation to SAT. These solvers are also compared to the translation to SAT
in Table 2. Again, the configuration BEST solves 21 more instances then the
best of the native solvers, and solves all the instances that have been solved by
the native solvers. Summarizing the evaluation it can be stated that adding the
SWC encoding to the portfolio of available PB encodings results in a noticeable
performance improvement for PB solvers.

5 Conclusion and Future Work

In this work we presented the SWC encoding, a new encoding for PB constraints
of the form

∑n
i=1 wixi ≤ k into SAT. The SWC encoding allows unit propaga-

tion to quickly prune the search space by maintaining GAC and needs at most
n (2k+1) clauses and (n− 1)k auxiliary variables. This is a significant improve-
ment to the state of the art for PB constraints with k ≤ n2: To the best of
our knowledge so far the local watchdog encoding generates the fewest clauses,
namely O(n3 log(n) log(k)) clauses, while maintaining GAC. This contribution
is highly relevant, because for 99% of the PB constraints even k ≤ n holds.

The new encoding is not only a nice and simple encoding, but also provides
a performance improvement for solving PB instances. By always choosing the
encoding that requires the smallest number of clauses, our PB solver can solve 12
instances more than by forcing to use a single encoding only. With our approach
21 more instances of the PB benchmark can be solved compared to successful
solvers from recent PB competitions.

For future work we leave a detailed comparison between the known encodings,
the SWC, binary decision diagrams, local watchdog and the non-GAC encodings.
With the help of a detailed empirical investigation we want to extend our current
research to a competitive SAT-based PB solver that can also solve optimization
instances fast.

References

1. Potsdam answer set solving collection, http://potassco.sourceforge.net/
2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: BDDs for Pseudo-

Boolean Constraints – Revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011.
LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011)

http://potassco.sourceforge.net/

118 S. Hölldobler, N. Manthey, and P. Steinke

3. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)
4. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality Net-

works and Their Applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 167–180. Springer, Heidelberg (2009)

5. Bailleux, O., Boufkhad, Y., Roussel, O.: New Encodings of Pseudo-Boolean Con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009)

6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Proc. DAC, pp. 317–320 (1999)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Comm. ACM 5(7), 394–397 (1962)

8. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

9. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT.
JSAT 2(1-4), 1–26 (2006)

10. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium Using SAT Solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer,
Heidelberg (2008)

11. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:
Solving Periodic Event Scheduling Problems with SAT. In: Jiang, H., Ding, W.,
Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer,
Heidelberg (2012)

12. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: Proc. FMCAD, pp.
20–26 (2007)

13. Manquinho, V.M., Marques-Silva, J.P.: On using cutting planes in pseudo-Boolean
optimization. JSAT 2(1-4), 209–219 (2006)

14. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proc. DAC, pp. 530–535 (2001)

16. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

17. Roussel, O., Manquinho, V.: Pseudo-Boolean and Cardinality Constraints, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, ch. 22, pp. 695–733. IOS
Press (2009)

18. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

19. Sörensson, N., Biere, A.: Minimizing Learned Clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2(115-125), 10–13 (1968)

21. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)

Small Talk Is More than Chit-Chat

Exploiting Structures
of Casual Conversations for a Virtual Agent

Nikita Mattar and Ipke Wachsmuth

Artificial Intelligence Group, Bielefeld University
Universitätsstr. 25, 33615 Bielefeld, Germany
{nmattar,ipke}@techfak.uni-bielefeld.de

Abstract. An approach of improving the small talk capabilities of an
existing virtual agent architecture is presented. Findings in virtual agent
research revealed the need to pay attention to the sophisticated struc-
tures found in (human) casual conversations. In particular, existing dia-
logue act tag sets lack of tags adequately reflecting the subtle structures
found in small talk. The approach presented here structures dialogues on
two different levels. The micro level consists of meta information (speech
functions) that dialogue acts can be tagged with. The macro level is
concerned with ordering individual dialogue acts into sequences. The ex-
tended dialogue engine allows for a fine-grained selection of responses,
enabling the agent to produce varied small talk sequences.

1 Introduction

Research in the field of Embodied Conversational Agents has shown that it is not
sufficient to restrict conversations between agents and humans to task-oriented
topics. Findings suggest that small talk supports the deepening of relationships
between virtual agents and human interaction partners. Especially when dealing
with interactions over the long run it is inevitable to enable the agent to develop
a close relationship to the human interactant. This trend is reflected in the
emergence of new research areas of “more sociable” agents like companion agents.
For details cf. [3].

First attempts of integrating small talk into task-oriented dialogues were re-
stricted to common topics like the weather. While this is sufficient to fill short
gaps between tasks, recently the focus shifted towards more elaborate small talk
capabilities in order to further enhance the bonding between agent and human.

In some cases, even small talk can be regarded as task-oriented. Since it serves
the purpose of establishing relationships it might be a very important goal for
people to successfully engage in small talk with others. While a lot of people
might complain that they do not like to participate in small talk, others are not
capable of doing it. Still these people might benefit from training small talk. To
enable a virtual agent to coach a human interlocutor doing small talk, the agent
has to have a clear representation of small talk. Furthermore, the agent should

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 119–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

120 N. Mattar and I. Wachsmuth

perform small talk on different levels of complexity and therefore must be able
to select from different sequences and strategies for conducting small talk.

The paper is structured as follows. In the section to follow we discuss the
nature of small talk and casual conversations in human dialogue and briefly
review relevant research on this issue in the virtual agents domain. In Section 3,
the main section, we introduce our approach on how to improve the small talk
capabilities of a virtual agent architecture by tagging dialogue acts with meta
information in order to achieve a variety of small talk sequences. In Section 4
we describe how we plan to evaluate our system, and present our ideas how this
work is to be continued.

2 Related Work

2.1 Small Talk and Casual Conversations

Small talk has been defined as a “conversation about things which are not im-
portant, often between people who do not know each other well” [1]. According
to Schneider [16] small talk can be classified as a special kind of casual conversa-
tion (which is influenced by social distance), in that small talk is more likely to
happen if the social distance is greater, whereas casual conversation in general
can be conducted between strangers or friends. Furthermore, small talk topics
are much broader than commonly assumed. Schneider [16] suggests three situ-
ation categories from which topics can be chosen during small talk, but points
out that use of topics differs among, and even within, cultures. He proposes a
sequence for discussing a topic during small talk, consisting of an initial ques-
tion/answer pair, followed by several further turns of question/acknowledgment
or idling behavior, often referred to as “Schneiders sequence”.

The main purpose of casual conversations is the maintenance of social identi-
ties and relations. Eggins and Slade [6] state that, while there are no restrictions
of topic selection in casual conversations, the structure of casual conversations is
an important part of the process of creating and maintaining social roles. They
consider speech functions to be a fundamental part of discourse structure and
present a network of speech functions intended to be used to annotate and ana-
lyze casual conversations. While the authors have in mind conversations between
friends or workmates when talking about casual conversations, the common un-
derstanding of small talk is one of discourse mainly occurring between strangers,
or at least people that are not close friends.

In conclusion, even when small talk is about things which are not important,
the skill of conducting small talk is important in that it helps to establish social
relations. Thus small talk is more than “chit-chat” in the sense of idle talk.

2.2 Virtual Agent Research

The idea to use human-like dialogues was early adopted in recommender systems.
Those systems where intended to operate in a closed task domain and therefore
only task specific dialogue capabilities were implemented.

Small Talk Is More than Chit-Chat 121

With the emergence of virtual agents the need for more elaborate dialogue sys-
tems arose. Bickmore and Cassell [4] introduce the idea of implementing small talk
in their agent REA, an embodied conversational agent for a real estate sales do-
main. In addition to pursuing its task-oriented goal, REA tries to accomplish non-
task-oriented, interpersonal goals by engaging the interlocutor in small talk. The
interpersonal goals mainly serve the purpose to prepare the interlocutor for the
next task-oriented dialogue move, by making him feel more comfortable and re-
laxed. In [5] Bickmore and Cassell identified user trust to be most important for
their scenario. With the aid of small talk, the agent is enabled to affect this di-
mension by e.g. establishing common ground and conducting “facework”. An ac-
tivation network-based approach is used for discourse planning, allowing for a fine
grained control of REA’s conversational strategies. However, since user responses
are mainly ignored, there seems to be no need for structuring the dialogues on ut-
terance level.

Meguro et al. [13] use an HMM-based approach to compare so called listening-
oriented dialogues to casual conversations. They successfully trained HMMs to
distinguish between the two dialogue types. Analysis of the HMMs gave further
insight into the structural differences of listening-oriented dialogues and casual
conversations, namely the frequency of tags and the transitions between them.
Novielli and Strapparava [14] use HMMs for automatic dialogue act classifica-
tion of utterances. They exploit differences in dialogue patterns for categorizing
different types of users.

Klüwer [10] criticizes that, despite the fact that small talk has been acknowl-
edged an important part of human-agent conversations, no computational model
has been developed, and even the most prominent annotation schemes for dia-
logue acts lack a specialized tag set for social acts. The author presents a set of
dialogue acts intended as an extension for existing tag sets. Her analysis of a di-
alogue corpus reveals the occurrence of several different sequences during small
talk, supporting her claim that the use of a single sequence (e.g. Schneider’s
sequence) may not be sufficient.

Endrass et al. [7] investigate cultural differences in small talk and evaluate
their findings using virtual agents. Summarizing literature they state that small
talk dialogues in Asian and Western culture differ in structure, in that Western
small talk dialogues tend to be more sequential than the Asian ones. Using
Schneider’s sequence as a basis for their computational model of small talk,
they plan to adapt the sequences according to the cultural background of the
interlocutor.

In conclusion, while there are many indications in the current literature that
more elaborate small talk capabilities for virtual agents would seem advanta-
geous, research on this issue has only begun. We consider the structuring of
dialogue in varied small talk sequences an important starting point for further
progress.

122 N. Mattar and I. Wachsmuth

3 Structuring Dialogue

To motivate our aim to provide a fine grained structure for small talk dialogues,
consider the short, fictitious example dialogue depicted in Fig. 1. In fact, sev-
eral different dialogues can be constructed by omitting certain utterances. E.g.
sequences consisting of the utterances 1,3 ; 1,2,3 ; 1,3,4,5 ; 1,3,6,7 ; 1,2,3,4,5,6,7,
etc. all resemble short conversations that make perfect sense. However, the com-
plexity of the sequences differ. One could even argue that they not only differ in
terms of structure, but in the level of commitment they convey. In fact, if the
whole conversation only consists of Question-Answer (QA) pairs (like the 1,3
sequence) the dialogue could be considered rather superficial.

1. A: Do you like soccer?

2. A: I mean do you like watching it on tv?

3. B: Sometimes.

4. A: Uhh hu.

5. B: I sometimes do watch world cup matches. I am

not that much into watching every game that’s on.

6. A: So, you don’t like soccer?

7. B: Well not that much!

Fig. 1. Short example of a dialogue

3.1 Present System Architecture

The architecture of our agent consists of a BDI interpreter, based on JAM [9]. Be-
liefs about the world are stored as facts in the agent’s world knowledge. Actions
of the agent are guided by his internal goals, intentions, and external events. The
agent is able to sense his environment through cameras and microphones. Per-
cepts received through these sensors lead to reactive and deliberative behaviors
of the agent.

While the agent is able to generate synthetic speech, interlocutors use a key-
board for input in the present setting. Utterances received as input through the
keyboard are processed in the agent’s deliberative component. The conversa-
tional behavior of the agent is realized within the deliberative component, either
as response to the utterance of an interlocutor or as proactive behavior.

In order to generate a response to an utterance, the keyboard input is pro-
cessed in several steps within the deliberative component. The first step is the
interpretation of the textual input. Pattern matching rules classify the input
among general semantic concepts [11]. In a second step a communicative func-
tion of the utterance is determined, by again employing rules matching certain
features of the input. The communicative function consists of three parts – the
performative, reference, and content part – covering semantic and pragmatic
aspects of the utterance [11].

Small Talk Is More than Chit-Chat 123

The original input and the assigned communicative function are passed on
to the dialogue engine. Within the dialogue engine an appropriate response is
determined from a set of rules. To be more precise, the plan with the highest
utility for the current goal, among all BDI plans constituting the agent’s dia-
logue knowledge, is selected and executed. As a last step, the behavior planner
generates a multi-modal utterance that is then performed by the agent.

Our agent is employed as a museum guide, thus main effort was put into the
design of the agent’s presentation capabilities. Therefore, task-oriented dialogue
knowledge is structured into small units [11], while small talk capabilities of the
agent are mainly restricted to simple keyword matching and direct responses,
resulting in short QA sequences. However, both types of dialogue rely on the
communicative function in order to determine subsequent utterances.

In the following we present our approach of extending the dialogue engine
to allow for a fine grained control of small talk and small talk sequences. In
our approach, structuring of dialogues takes place on two different levels within
our dialogue engine. The micro level consists of meta information that dialogue
acts can be tagged with. Ordering of different dialogue acts into sequences, and
therefore dialogues, is conducted on the macro level.

3.2 Micro Level

The concept of tagging dialogue acts with meta information is already present
in the dialogue engine in terms of the communicative function. Extending this,
we introduce another meta information – the speech function. Figure 2 depicts
an utterance of the example dialogue as represented in the dialogue engine. The
two types of meta information are discussed in the following.

<act communicative_function="askFor.content.dislikesSoccer"

speech_function="rejoinder.track.probe" >

So, you don’t like soccer?

</act>

Fig. 2. XML notation of a dialogue act of our agent annotated with meta information.

Communicative Function. The communicative function meta information
consists of three parts reflecting different information about the dialogue act of
the agent and his interlocutors (see Fig. 3). Information about the speaker’s in-
tention is conveyed in the performative part. The reference level part determines
the level of dialogue the act refers to: the interaction, discourse, and content
level. The content part contains the semantic part of the dialogue act. E.g. it
may contain the topic the utterance refers to (cf. [11]).

Only two different types, provide and askFor, are distinguished in the per-
formative part of the function. These two types correspond to the giving and
demanding speech roles used by Halliday [8]. While being applicable for simple
small talk consisting of QA pairs, the distinction of only two performatives in
the communicative function is not suitable to structure the conversation on a
fine-grained level.

124 N. Mattar and I. Wachsmuth

<performative>.<reference level>.<content>[arguments]

Fig. 3. Three independent parts constitute the communicative function of the dialogue
engine [11]

Speech Function. The speech function meta information can be considered
an extension of the communicative function further specifying the action of the
dialogue act. Halliday [8] suggests four basic speech functions, two for each speech
role, to capture the commodity and role of dialogue initiating moves (cf. [6]), and
eight corresponding responding speech functions. Eggins and Slade [6] provide
a finer subclassification of Halliday’s basic speech functions, in order to account
for the more subtle structure of casual conversations. Their speech functions are
classified among four subcategories as illustrated in Fig. 4.

Fig. 4. Speech function network for casual conversations after [6]

As stated in Sect. 2.1 small talk is considered a subset of casual conversations.
For this reason, we argue to exploit the speech functions for casual conversations
in conversational agents that are to engage in more sophisticated small talk. In
the initial implementation a subset of the speech functions suggested in [6] is
used. An overview of the speech functions used in our dialogue engine is given
in Table 1. In addition to the speech functions an example of an utterance, and
its corresponding communicative function (if existent), is given. Note that some
speech functions share the same communicative function.

3.3 Macro Level

The macro level is concerned with deciding how to select appropriate dialogue
acts during conversation. One of the aims of using meta information is the
reusability of generic utterances. E.g. utterances used as feedback channel, like
“Uhh hu”, can be used in a lot of situations, regardless of the content of prior
utterances. On the other hand, related work (cf. Sect. 2.2) and the example
given in Fig. 1 revealed that a variety of different sequences may occur within
small talk conversations. Meguro et al. [13] demonstrated that even the type of
conversation can be inferred from the transitions of dialogue acts.

As stated in Sect. 1, in some situations it may be crucial to reliably produce a
certain sequence. E.g. in small talk training applications the agent should start
with a very simple sequence, like Question-Answer. Over the course of training
more complex sequences may have to be produced. Exploiting the introduced

Small Talk Is More than Chit-Chat 125

Table 1. Subset of speech functions taken from Eggins and Slade [6]

Move
Type

Speech
Function

Communicative Function Utterance

o
p
e
n

attending provide.interaction.greeting Hey!

offer provide.discourse
.offer.guessingGame

Shall we play a funny guessing
game?

statement provide.content.weather The weather is really nice to-
day.

question askFor.content.likesSoccer Do you like soccer?

c
o
n
ti
n
u
e

monitor askFor.content.confirmation You know?

elaborate askFor.content.likesSoccer I mean do you like watching it
on tv?

re
sp

o
n
d

register Mmm

support.reply provide.content.confirmation Right!

confront.reply provide.content.disagree No, sorry!

re
jo
in
d
e
r

check askFor.content.who Who?

confirm askFor.content.confirmation Did he?

probe askFor.content.dislikesSoccer So, you dont like soccer?

counter askFor.content.confirmation Does this even matter?

126 N. Mattar and I. Wachsmuth

Fig. 5. Simple QA sequence. Dashed line represents the end of a turn.

Fig. 6. Complex sequence. Dashed lines represent end of turns.

speech function meta information, a fine grained control of the course of con-
versations is possible. Figure 5 and Fig. 6 depict two possible sequences in our
system, a simple QA, and a more complex sequence.

The following two problems have to be solved in order to enable the dialogue
engine to select an appropriate response to an interlocutor’s utterance:

1. Utterance tagging:Assign an appropriate speech function to interlocutor’s
utterance

2. Utility adjustment: Determine probability values for speech function can-
didates and adjust utility values of corresponding plans

Utterance Tagging. When annotating dialogues between two participants,
the speech function of an utterance can be determined by only referring to the
previous speech function (cf. [6]). But, as stated above, the dialogue engine
should be able to produce structured sequences like the one presented in Fig.
6. It is obvious, that in this case, it is not sufficient to rely on the immediate
predecessor of the current utterance. In the first case, the reply utterance of B

Small Talk Is More than Chit-Chat 127

is followed by a probe utterance. In the second case, it is followed by a reply
utterance.

One option to assign speech functions to utterances would be to use a sim-
ilar approach as used for deriving the communicative function, as described in
[11]. However, this would require to provide dedicated rules for every possible
sequence, resulting in a lot of redundant rules that only differ in the context of
their sequence. Therefore, the process of assigning the speech function is done
as a post processing step following the interpretation stage (cf. [11]) after every
utterance of the agent’s interlocutor. It is carried out by utilizing JAM’s feature
of employing Java methods. The Java part contains a representation of possible
sequences, the sequence that is currently produced, the advancement in the cur-
rent sequence, and a mapping of conversational to speech functions. The method
for selecting the speech function is provided with the communicative function of
the utterance that was determined during the interpretation stage. As output
it returns the best matching speech function for the utterance. This way the
communicative function is mapped to a corresponding speech function. By ex-
ploiting the sequence’s history, utterances with similar communicative functions
can be distinguished.

Algorithm 1 depicts the pseudo code for determining the speech function of
an utterance. Given the communicative function CF and a set of speech functions
sequence_sfs that are given due to the current position in the sequence, a set
of possible speech functions is calculated. The speech function with the highest
probability is selected and returned.

Algorithm 1. Pseudo code for selecting the speech function of an utterance

function select sf(CF : cfunction, sequence sfs : {sfunction})
possible sfs = ∅

for each sfunction SF with cfunction CF do
possible sfs = possible sfs ∪ {SF}

end for

if possible sfs ∩ sequence sfs �= ∅ then
return sfunction SF from (possible sfs ∩ sequence sfs)

with probability(SF) == max
else

return sfunction SF from possible sfs
with probability(SF) == max

end if
end function

Utility Adjustment. The BDI-based implementation of the dialogue engine
allows for a flexible solution of providing alternatives for the agent’s next dialogue
contribution. Since utterances of our agent are represented within BDI plans,
the utility values of these plans can be exploited to guide the agent’s responses.

128 N. Mattar and I. Wachsmuth

Plan:{

NAME: "rule-0001 - continue.extend"

GOAL: PERFORM match;

PRECONDITION:

(assign $util 10);

(assign $util (* $util $continueextend));

(FACT turn-holder "system");

BODY:

PERFORM collect-act

(+ "<act sfunction=\"continue.extend\">

I mean do you like watching it on tv?

</act>");

UTILITY: $util;

}

Fig. 7. The utility value of a BDI plan is altered according to the probability of its
speech function

The utility values define an order among plans. The plan with the highest utility
value is selected as the most promising for fulfilling the current goal.

In contrast to the utterance tagging task described above, probabilities for
possible following speech functions have to be determined after dialogue con-
tributions of the agent and his interlocutor. Consider Fig. 6 with A being the
agent. After A’s first contribution A could try to hold the turn and continue
with a further utterance. Accordingly, a probability value ∈ [0, 1] is determined
for every speech function known by the system (cf. Table 1) in the utility ad-
justment step after every utterance. To be accessible by the dialogue plans, the
probabilities are stored as facts within the engine’s dialogue knowledge.

Figure 7 depicts a simplified plan of our system. The utility value of the plan is
multiplied by the corresponding speech function probability in the precondition
part.

4 Conclusion and Future Work

In this paper an approach of improving small talk capabilities of an embodied
conversational agent was presented. Speech functions of human casual conversa-
tions are used to tag utterances on the micro level. On the macro level, the tagged
utterances can be ordered into arbitrary sequences found in human-human di-
alogues. Using these speech functions, our extended dialogue engine is able to
produce various dialogue sequences as introduced in the example dialogue in
Sect. 3.

In order to determine if the use of speech functions to structure dialogues on
a fine-grained level actually leads to enhanced interactions, an evaluation with
human interlocutors is planned. One possibility considered is to integrate the
enhanced dialogue engine in the museum setting the agent daily operates in.
Pfeiffer et al. [15] provide information about the mean length of dialogues (in

Small Talk Is More than Chit-Chat 129

terms of time and utterances) between the agent and his visitors in the museum
setting. Following [2], an improvement in dialogue length could be judged to
indicate an overall improvement of the system’s acceptance due to its increased
small talk capabilities. An accompanying questionnaire will be used to obtain
additional hints about the qualitative changes. Since only a subset of the speech
functions suggested for casual conversations in [6] was used to demonstrate the
possibility of integrating speech functions into an existing dialogue engine, results
of the evaluation could be used to assess if the full set of speech functions for
casual conversations is actually needed.

In our initial approach speech functions are determined relying on the com-
municative function. An improvement could be the use of a machine learning
approach to assign speech functions as described in [14]. Another option would
be to focus on a more linguistically motivated approach. Following Halliday, Eg-
gins and Slade [6] make use of mood and modality of the grammatical realizations
of moves to identify speech functions.

The importance of being able to produce structured sequences in certain ap-
plications was stressed throughout this paper. However, the possibility to adapt
the choice of sequences is important for an agent that engages in elaborate small
talk to improve the relationship with his interlocutors. Bickmore and Cassell
[5] found that the acceptance of an agent using small talk may also depend on
the interlocutor’s personality. Eggins and Slade state that conversations with
close friends tend to be more confronting than the ones we have with work col-
leagues, because “conversations between close friends involve as much probing
of differences between friends as confirming the similarities which brought them
together as friends in the first place” [6]. Consequently, in future work we will
focus on how information supplied by a Person Memory (cf. [12]) of an agent
can be further used to improve the small talk conversation in terms of dialogue
structure.

References

1. Small talk (2012),
http://dictionary.cambridge.org/dictionary/british/

small-talk?q=small+talk (accessed April 27, 2012)
2. Benyon, D., Hansen, P., Webb, N.: Evaluating human-computer conversation in

companions. In: Proc. 4th International Workshop on Human-Computer Conver-
sation (2008)

3. Benyon, D., Mival, O.: From human-computer interactions to human-companion
relationships. In: Proceedings of the First International Conference on Intelligent
Interactive Technologies and Multimedia, pp. 1–9. ACM (2010)

4. Bickmore, T., Cassell, J.: Small talk and conversational storytelling in embodied
conversational interface agents. In: AAAI Fall Symposium on Narrative Intelli-
gence, pp. 87–92 (1999)

5. Bickmore, T., Cassell, J.: Relational agents: a model and implementation of build-
ing user trust. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 396–403. ACM (2001)

6. Eggins, S., Slade, D.: Analysing Casual Conversation. Cassell (1997)

http://dictionary.cambridge.org/dictionary/british/small-talk?q=small+talk
http://dictionary.cambridge.org/dictionary/british/small-talk?q=small+talk

130 N. Mattar and I. Wachsmuth

7. Endrass, B., Rehm, M., André, E.: Planning small talk behavior with cultural
influences for multiagent systems. Computer Speech & Language 25(2), 158–174
(2011)

8. Halliday, M.: An Introduction To Functional Grammar, 2nd edn. Edward Arnold
(1994)

9. Huber, M.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of
the Third Annual Conference on Autonomous Agents, pp. 236–243. ACM (1999)

10. Klüwer, T.: “I Like Your Shirt” - Dialogue Acts for Enabling Social Talk in Con-
versational Agents. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R.
(eds.) IVA 2011. LNCS, vol. 6895, pp. 14–27. Springer, Heidelberg (2011)

11. Kopp, S., Gesellensetter, L., Krämer, N.C., Wachsmuth, I.: A Conversational Agent
as Museum Guide – Design and Evaluation of a Real-World Application. In:
Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.)
IVA 2005. LNCS (LNAI), vol. 3661, pp. 329–343. Springer, Heidelberg (2005)

12. Mattar, N., Wachsmuth, I.: Who Are You? On the Acquisition of Information
about People for an Agent that Remembers. In: ICAART 2012 - Proceedings of
the 4th International Conference on Agents and Artificial Intelligence, pp. 98–105.
SciTePress (2012)

13. Meguro, T., Higashinaka, R., Dohsaka, K., Minami, Y., Isozaki, H.: Analysis of
listening-oriented dialogue for building listening agents. In: Proceedings of the SIG-
DIAL 2009 Conference: The 10th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pp. 124–127. Association for Computational Linguistics
(September 2009)

14. Novielli, N., Strapparava, C.: Dialogue Act Classification Exploiting Lexical Se-
mantics. In: Conversational Agents and Natural Language Interaction: Techniques
and Effective Practices, pp. 80–106. Information Science Reference (2011)

15. Pfeiffer, T., Liguda, C., Wachsmuth, I.: Living with a Virtual Agent: Seven Years
with an Embodied Conversational Agent at the Heinz Nixdorf MuseumsForum.
Group (2011)

16. Schneider, K.P.: Small talk: analysing phatic discourse. Hitzeroth (1988)

Clustering Based on Density Estimation

with Sparse Grids

Benjamin Peherstorfer1, Dirk Pflüger2, and Hans-Joachim Bungartz1

1 Technische Universität München, Department of Informatics
Boltzmannstr. 3, 85748 Garching, Germany

2 Universität Stuttgart, SimTech/Simulation of Large Systems, IPVS
Universitätsstr. 38, 70569 Stuttgart, Germany

Abstract. We present a density-based clustering method. The clusters
are determined by splitting a similarity graph of the data into connected
components. The splitting is accomplished by removing vertices of the
graph at which an estimated density function of the data evaluates to val-
ues below a threshold. The density function is approximated on a sparse
grid in order to make the method feasible in higher-dimensional settings
and scalable in the number of data points. With benchmark examples
we show that our method is competitive with other modern clustering
methods. Furthermore, we consider a real-world example where we clus-
ter nodes of a finite element model of a Chevrolet pick-up truck with
respect to the displacements of the nodes during a frontal crash.

Keywords: clustering, density estimation, sparse grids.

1 Introduction

Clustering is one of the standard tasks in data mining. It is the process of dividing
data points of a set S = {x1, . . . , xM} into groups (“clusters”) to reveal their
hidden structures. Here, we use a density-based notion of clusters and define a
cluster as a dense region (“where many data points are”) surrounded by a region
of low-density (“where few data points are”), cf. [5]. However, there are almost
as many definitions of clustering and cluster as there are clustering methods, see,
e.g., the survey [18] and the references therein for further examples. Note that
in contrast to supervised learning tasks in data mining we do not have labels
associated to the data points in the set S. This means the grouping of the data
points into clusters has to be accomplished without additional knowledge about
the data.

One of the most prominent and also one of the oldest clustering methods is
k-means [8]. Nowadays there are many efficient implementations available, e.g.,
[12]. However, it is well-known that the initial guess of the cluster centers can
distinctly influence the outcome because the employed algorithms to solve the
underlying optimization problem typically find only a locally optimal solution.
Initialization strategies [1] can only remedy this problem for certain examples
and might not perform well in all situations. Furthermore, k-means can only find

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 131–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

clusters with a convex shape. Thus, if a data set consists of clusters with non-
convex boundaries, k-means fails to find a good partition. We will demonstrate
this with our benchmark examples below.

Spectral clustering is a class of more recent clustering methods which can
find clusters of non-convex shape. The data is represented by a similarity graph
which is then partitioned such that the “flow” (the sum of weights of the edges)
between clusters is minimized [13]. To solve the underlying graph partitioning
problem an eigenproblem with dimension equaling the number of data points
has to be solved. This is a major drawback if a large number of data points has
to be clustered. By extending the method with sub-sampling techniques, this
problem can be overcome to some extent [2,15].

Density-based clustering methods take the density of the data samples into ac-
count. They closely implement the idea that a cluster is a region of high-density
surrounded by a region of low-density. Of the many clustering methods of this
kind we consider the two arguably most prominent representatives DBSCAN [5]
and DENCLUE [10]. Broadly speaking, DBSCAN finds clusters by determin-
ing so-called core objects which are points lying in a dense region. Core objects
with overlapping neighborhood are then grouped into one cluster. Whereas DB-
SCAN does not explicitly represent the density function corresponding to the
data, DENCLUE employs kernel density estimation and hill-climbing to find
local maxima, i.e. cluster centers. These methods again find clusters of arbi-
trary shape and are even well suited for large data sets. Furthermore, they do
not need the number of clusters k as input parameter but can determine by
themselves how many clusters are in the data. However, note that the number
of clusters cannot be uniquely defined for a data set (see below) and thus the
number determined by density-based clustering methods can only be considered
as heuristical. Nevertheless, this is a huge advantage compared to k-means and
spectral clustering methods.

Our method can be considered as a density-based clustering method as well,
but whereas DBSCAN connects core objects and DENCLUE uses hill-climbing
to find cluster centers, we pursue a more global approach. We first represent the
data by a similarity graph. This is a standard task in machine learning. We then
employ the nonparametric density estimation method [9] which uses a grid to
approximate the density function. This means the method scales well with a large
number of data points. Unfortunately, a straightforward grid-based discretization
cannot be applied to problems with more than three or four dimensions (“curse
of dimensionality”). Hence, we use sparse grids [3] to make it also scalable in the
number of dimensions. Having the similarity graph and the estimated density
function, we split the graph into various components by removing vertices at
which the density function evaluates to values below a certain threshold. The
components of the graph represent the cluster centers. In certain situations it
might be useful to simple treat all data points corresponding to the deleted
vertices as noise. But we will also see how we can easily assign those points
to reasonable clusters if this is necessary. The method can again find clusters
of arbitrary shape and, just as for DBSCAN and DENCLUE, the number of

Density-Based Clustering with Sparse Grids 133

components gives a good indication of how many clusters we can expect to have
in the data. Furthermore, as we will argue below, the method is again suited for
large data sets.

We will report on several benchmark examples and show how our method
performs compared to k-means, spectral clustering and DBSCAN. We will also
present results of a real-world application where we cluster nodes of a finite
element model of a car used for crash simulations.

2 Sparse Grids

Before we discuss in the next section the density estimation method on which
our clustering method relies, we first need to summarize the most important
facts about sparse grids. See [3] for a detailed description.

It is very common in machine learning algorithms to represent a function
f ∈ V as a linear combination of kernels associated to data points (kernel den-
sity estimation, kernel ridge regression, kriging, etc. [8]). In contrast, in a grid-
based approach a function fN ∈ VN can be represented as a linear combination
fN(x) =

∑N
i=1 αiφi(x) where the basis Φ = {φi}Ni=1 comes from a grid and spans

the function space VN . Hence, the number of basis functions does not increase
with the number of data points in contrast to classical approaches with kernels.
However, a straightforward conventional discretization with 2 grid points in
each dimension suffers the curse of dimensionality: The number of grid points is
of the order O(2d), depending exponentially on the dimension d. For sufficiently
smooth functions, sparse grids enable us to reduce the number of grid points by
orders of magnitude to only O(2 · �d−1) while keeping a similar accuracy as in
the full grid case [3]. Note that we denote the sparse grid space of level � ∈ N

with V
(1)
 and that the level � controls how many grid points are employed. Even

though certain smoothness assumptions are required in theory, sparse grids have
also been successfully applied for not so smooth functions in data mining, see,
e.g., [7,17,16].

3 Density Estimation on Sparse Grids

The idea of our clustering method is to split the similarity graph representing the
data into components by removing those vertices which lie in low-density regions.
In order to find low-density regions we need to estimate the density function of
our data. Whereas DBSCAN does not explicitly form an approximation of the
density function and DENCLUE uses kernel density estimation, we employ the
density estimation approach introduced in [9]. The idea is to start with a highly
over-fitted initial guess fε and then use spline smoothing to obtain a smoother
and more generalized approximation f̂ of the density function of the underlying
data S = {x1, . . . , xM}. However, for us, the most crucial advantage of this

approach is that the approximation f̂ is discretized on grid points and not on
kernels centered at the data points. This makes the method scalable in the

134 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

number of data points. In this section, we give a brief description of the density
estimation method [9] and show how to employ sparse grids in order to make
the method not only scalable in the number of data points but also scalable in
the number of dimensions.

Let fε be an initial guess of the density function of the data S = {x1, . . . , xM}.
We are then looking for f̂ in a function space V such that

f̂ = argmin
u∈V

∫
Ω

(u(x)− fε(x))
2 dx+ λ‖Lu‖2L2,

where ‖Lu‖2L2 is a regularization or penalty term imposing a smoothness con-
straint. For example, L might be chosen to be ∇ but we will present another
better suited regularization term below. The λ ∈ R is a regularization parameter
and controls the trade-off between fidelity and smoothness. However, experience
has shown that the method is not very sensitive to this parameter and λ = 10−5

is a good choice, cf. Sec. 5 and Sec. 6. After some transformations we obtain the
variational equation∫

Ω

u(x)s(x)dx + λ

∫
Ω

Lu(x) · Ls(x)dx =
1

M

M∑
i=1

s(xi), ∀s ∈ V, (1)

with the test functions s ∈ V and with fε =
1
M

∑M
i=1 δxi where δxi is the Dirac

delta function centered on xi. Note that other choices of fε are possible, see [9].
Instead of employing the finite element method with full grids, as proposed in

[9], we employ sparse grids to find f̂ . Let Φ = {φ1, . . . , φN} be the (hierarchical)
basis functions of a sparse grid space V

(1)
 of level � ∈ N, cf. Sec. 2. We are then

looking for f̂ ∈ V
(1)
 . We set the test space to the sparse grid space V

(1)
 and

follow the usual Galerkin approach. We obtain the system of linear equations

(B + λP)α = f, (2)

where Bij = (φi, φj)L2 , Pij = (Lφi,Lφj)L2 and fi = 1
M

∑M
j=1 φi(xj). More

details on the derivation of this system of linear equations can be found in [6].
Let us have a look at the system (2) from a computational perspective in the

context of sparse grids. The matrices B and P of (2) are of size N × N where
N is the number of grid points. Thus, the number of unknowns is independent
from the number of data points. For example, if we have a grid consisting of
only 5,000 grid points but we have 100,000 data points, we still need to solve a
system of linear equations of the size 5,000 only. Furthermore, efficient algorithms
exist to compute the matrix-vector product with the matrices B and P for the
hierarchical basis Φ of a sparse grid space [16]. Additionally, it has been shown

that in the case of the hierarchical basis and sparse grids the term
∑N

i=1 α
2
i is

a very good choice for ‖Lu‖2L2, see [16]. The advantage of this choice is that
the matrix P becomes the identity matrix I and thus the matrix-vector product
becomes very cheap.

Note that we are not interested in any statistical properties (unit integrand,
moments, etc.) of the estimated density. We only use it to indicate regions of
low- and high-density.

Density-Based Clustering with Sparse Grids 135

(a) (b) (c) (d) (e)

Fig. 1. Our density-based clustering method involves the following steps: representing
the data (a) by a similarity graph (b), estimating the density function of the data
(c), splitting the graph into components by removing vertices at which the density
function evaluates to values below a threshold ε (d), assigning labels to the remaining
vertices depending on their component, and classifying the data points which have
been removed from the similarity graph (e).

4 Clustering with Estimated Densities

In this section, we describe in more detail our method based on density estima-
tion with sparse grids. The idea is to represent the data by a similarity graph and
to split this graph into several components by removing the vertices at which
the estimated density function evaluates to values below a certain threshold. The
steps of our method are visualized in Fig. 1.

In the first step, we represent the data S = {x1, . . . , xM}, see Fig. 1(a), by
a similarity graph G = (S,E) with vertices S and edges E, see Fig. 1(b). Note
that the vertices are the data points. Here and in the following examples we
always use nearest neighbor graphs with the Euclidean distance as similarity
measure. This means we compute the Euclidean distances between the data
points and connect the data points with their n nearest neighbors. Computing
a nearest neighbor graph is a standard task in machine learning and can be
performed with various implementations (e.g. BOOST1, ANN2). Even though
the construction of the graph is in O(M2), it can be easily parallelized which
makes processing of large amounts of data very easy. In step two, we compute
the estimated density function f̂ of our data with the approach described in
the previous section, see Fig. 1(c). Again, this is scalable to many data points
because we employ a grid-based discretization, cf. Sec. 3. Then (step three)
we delete all vertices S̃ and the related edges Ẽ of the graph G at which the
estimated density function f̂ evaluates to a value below a threshold ε. In other
words, we remove those vertices S̃ (i.e. data points) of the graph which lie inside
a region of low-density. Hence, the parameter ε controls what we consider to be
a low-density region. The result is a graph Ĝ = (Ŝ, Ê) := (S \ S̃, E \ Ẽ) which
is split into several, say k, (connected) components each representing a cluster
center, see Fig. 1(d). Thus, so far, we obtained a clustering of the data points
Ŝ = S \ S̃ remaining in the graph, i.e., we assign (step four) the labels 1, . . . , k
to the components of the graph Ĝ (descending with the number of vertices in
the component) and associate the label i to all data points in component i.

1 http://www.boost.org/
2 http://www.cs.umd.edu/∼mount/ANN/

136 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

In the end, we have the labels ŷ1, . . . , ŷM̂ ∈ {1, . . . , k} and the clustered data

point Ŝ = {x̂1, . . . , x̂M̂}. We can now either stop here, and treat the removed

data points S̃ as outliers, or we consider the set Ŝ and the labels ŷ1, . . . , ŷM̂
as training data of a classification problem. Hence, step five is to construct
a classifier for this data with any classification method and to employ it to
classify the remaining data points S̃. Even though we have also tested more
sophisticated classification approaches such as SVM [4] and sparse-grid-based
classification [16], a simple and very fast nearest neighbor classifier based on
approximated nearest neighbors (ANN4) has always worked well enough in the
following examples3. As sketched in Fig. 1, the algorithm to cluster the data
S = {x1, . . . , xM} can be summarized in the following five steps:

1. Construct a similarity graph G = (S,E) to represent the data points in S.

2. Employ sparse-grid-based density estimation to compute f̂ , cf. Sec. 3.

3. Create graph Ĝ = (Ŝ, Ê) = (S \ S̃, E \ Ẽ) with k (connected) components
by deleting vertices S̃ and related edges Ẽ at which the estimated density
function f̂ evaluates to values below threshold ε.

4. Depending on their component, assign labels ŷ1, . . . , ŷM̂ ∈ {1, . . . , k} to the

remaining vertices (i.e. data points) in Ŝ.

5. Optional: Train classifier on data Ŝ with labels ŷ1, . . . , ŷM̂ and obtain labels

for the data points in S̃.

Before we go on with the benchmark examples in the next section, we would
like to make a few comments about the parameters of the method. For the
density estimation, we have to choose the regularization parameter λ and the
level (thus the number of grid points) of the sparse grid. For the similarity
graph, we have to choose the number of neighbors n. And finally we need to
determine the threshold ε to specify what is to be considered as a low-density
region. Results have shown that the level of the sparse grid, the regularization
parameter λ and the number of nearest neighbors n have only a minor effect on
the clustering result and a reasonable guess is usually sufficient, see our examples
in Sec. 5 and Sec. 6. Hence, we concentrate on the choice of the threshold ε. In
Fig. 2(a) we plot the estimated density function of a data set with three clusters
with different distinctiveness. In Fig. 2(d) we show the number of components
against the threshold ε. On the one hand, we see that if we choose the threshold
too low (< 0.2) then the two very distinctive clusters are not separated because
the estimated density function is still above the threshold between them, see
Fig. 2(b). On the other hand, if we choose the threshold too high (≥ 0.4) then
we miss the small cluster because the estimated density function is not high
enough at the not so strong cluster, see Fig. 2(f). However, we also see that we
have a large region (0.2 ≤ ε < 0.4) where our method correctly predicts three
clusters. Of course, there might be some outliers, see Fig. 2(e). We will see the
same behavior in the benchmark and in real-world examples in the following
sections.

3 The number of neighbors has been automatically determined by cross validation.

Density-Based Clustering with Sparse Grids 137

(a) estimated density function (b) ε = 0.1, 2 clusters (c) ε = 0.3, 3 clusters

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

#
co
m
p
on

en
ts

threshold ε

(d) nr. of components (e) ε = 0.36, 4 clusters (f) ε = 0.45, 2 clusters

Fig. 2. This simple example demonstrates the effect of the threshold ε on the clustering.
If the threshold is set too low (a) we may miss clusters with very many points, if it is
set too high (f) we may not be able to capture clusters with just a few points. Note
that we only plotted every tenth point of the data set in order to make the symbols
better legible.

5 Benchmark Examples

In this section, we want to demonstrate the performance of our density-based
clustering approach on some common benchmark examples. We compare our
method to k-means, spectral clustering and DBSCAN for which we used the
implementation in scikit-learn [14]. Tab. 1 shows the ARI (adjusted rand
index) [11] corresponding to the cluster assignment obtained by our method and
by k-means, spectral clustering and DBSCAN for three benchmark data sets.
For spectral clustering we used the Gaussian kernel with bandwidth σ and an
n-nearest neighbor graph. For DBSCAN we had to choose the threshold ε and
the minimum number of points m required to form a cluster. The parameter
configurations have been determined by running each method for a range of
parameters. We kept the parameter configuration for which the method yielded
the highest ARI. These parameter configurations are documented in Tab. 1. Note
that this was only possible because we knew the cluster assignments. For our
method, we give in Sec. 6 some motivation how to best choose the parameters
in the more practical case where the clustering is not known beforehand.

The threeS data set [6] contains 675 data points of three spheres (three di-
mensions) of different size which are tangled with each other. It is clear that
the three clusters (i.e. the three spheres) cannot be linearly separated. That is
why k-means fails completely to detect the three clusters. However, all other

138 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

Table 1. The ARI (adjusted rand index) of the cluster assignment obtained by our
proposed method, k-means, spectral clustering and DBSCAN and the used parameter
configurations. ARI of 1 means perfect clustering. Note that we employed a sparse grid
without boundary points for the olive oil data set.

proposed method k-means spect. clust. DBSCAN

ARI ε n λ � ARI ARI n σ ARI ε m

threeS [6] 1.00 0.15 10 1e-05 7 with b. 0.26 1.00 13 0.45 1.00 0.85 5
threeSnoise [6] 0.73 0.17 13 1e-05 7 with b. 0.31 0.87 13 9.23 0.73 0.93 18

olive [19] 0.97 0.02 5 1e-10 5 w/out b. 0.32 0.69 8 56.62 0.62 0.42 6

methods are able to find a perfect cluster assignment. The threeSnoise data
set follows the same idea as the threeS data set but contains even more noise.
This is clearly reflected in the corresponding ARIs which decrease rapidly for
our method, spectral clustering and DBSCAN. Another benchmark example is
the olive oil data set [19] which contains eight fatty acids (8 dimensions) of 572
Italian olive oils (572 data points). These oils come from three different regions
in Italy (South, North, Sardinia). Thus, we want to group the data points into
three clusters. The results are shown again in Tab. 1. Whereas spectral cluster-
ing and DBSCAN achieve an ARI of at most 0.70, our method handles the data
set very well and we obtain a cluster assignment with ARI 0.97. In that case,
the density estimation method might have played a decisive role because we set
the regularization parameter λ to only 1e-10 and thus almost over-fitted our es-
timated density function to our data. We then had to use a very small threshold
ε of only 0.02 in order to capture the third cluster. As we have demonstrated
in the previous section and in Fig. 2, this means that the third cluster is very
weak, i.e. the value of the estimated density function at the third cluster is very
low compared to the two other clusters. This can also be verified by plotting
the number of components versus the threshold ε, see Fig. 3(a). Clearly, only
if we choose the threshold very small we have more than one component. The
threshold ε = 0.02 has been chosen because this is approximately the mean of
the interval where we have exactly three components, i.e., where our method
correctly predicts three clusters.

6 Clustering Car Crash Data

In this section, we consider a finite element model of a Chevrolet C2500 pick-up
truck4 which is used to simulate a frontal crash. We want to group the nodes
of the finite element model with respect to the moving intensity and moving
patterns of the nodes during the crash. Let M ≈ 66, 000 be the number of
nodes n1, . . . , nM ∈ N in the finite element model of the car. We compute the
displacements di = xT

i −x0
i ∈ R3 for all i = 1, . . . ,M where x0

i and xT
i denote the

position of node ni at the beginning of the crash (time 0) and at the end (time
T), respectively. Our data set S = {d1, . . . , dM} ⊂ R3 contains the displacements
of the nodes during the crash.

4 http://www.ncac.gwu.edu/

Density-Based Clustering with Sparse Grids 139

0

1

2

3

4

5

6

0 0.04 0.08 0.12

#
co
m
p
on

en
ts

threshold ε

(a) Components for olive data set. (b) The position of the four beams in the car.

Fig. 3. In (a) the curve of the nr. of components versus the threshold ε shows that our
method correctly predicts three clusters at ε ≈ 0.02 for the olive oil data set. In (b) we
show the position of the four beams in the car model.

We first consider only four beams of the car model (with ≈ 7, 000 nodes), see
Fig. 3(b), but their behavior during the crash distinctly influences the whole car.
We apply our density-based clustering method on their displacements. Just as in
the previous examples, we set the sparse grid level to 5 (with boundary points,
1,505 grid points), the regularization parameter λ to 1e-05 and the number of
nearest neighbors for the similarity graph construction to 10. The threshold ε
is in [0.01, 0.25] ⊆ R, and to get an idea about how many clusters we should
have a look for, we plot the number of components versus the threshold ε in
Fig. 4(a). We can distinguish four intervals [0.08, 0.11], [0.14, 0.16], [0.19, 0.21]
and [0.22, 0.25] at which our method distinctly predicts 6, 5, 3 and 2 clusters,
respectively. They are marked by circles in Fig. 4(a). In Fig. 4(b)-(e) we also plot
four cluster assignments, each of them corresponding to one of these intervals.
For the smallest threshold ε = 0.1 we have multiple clusters in the front of the
beams but if we increase ε they disappear. This suggests that these clusters are
not very strong, i.e. even though the estimated density function has local maxima
in these regions they are rather small compared to local maxima corresponding
to other clusters. Thus, if the threshold is set too high, we cannot capture them
anymore. However, as described in Sec. 4 and Fig. 2, even if we loose clusters by
increasing the threshold, we can also gain clusters: If local maxima corresponding
to the clusters are very high, the peaks of the estimated density function might
become only separated after a certain threshold. That is why new clusters appear
in the rear of the beams if the threshold ε is increased from 0.1 (Fig. 4(b)) to 0.15
(Fig. 4(c)). Overall, the clusters in the rear of the beams seem to be more stable
than the clusters in the front because they start to appear not until ε = 0.15
and are still there at ε = 0.23. From a car engineering point of view this is an
interesting fact because this means that on the one hand the nodes in the front
of the beams do not have a common moving pattern (e.g. they do not move
in one direction), i.e., they are more or less scattered randomly. On the other
hand, in the rear we find quite strong clusters which suggests a common moving
pattern for all nodes in the rear. By visualizing the four beams during all time
steps we can indeed verify that the front is crushed completely whereas the rear
of the beams moves more smoothly, cf. again Fig. 3(b) for a visualization of the
four beams at the last time step.

140 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

1
2
3
4
5
6
7
8
9
10

0 0.05 0.1 0.15 0.2 0.25

#
co
m
p
on

en
ts

threshold ε

(a) nr. of components

(b) ε = 0.1 (c) ε = 0.15

(d) ε = 0.20 (e) ε = 0.23

Fig. 4. Cluster assignments of the four selected beams (b)-(e) with respect to different
thresholds ε (a)

We now cluster all ≈ 66, 000 nodes of the whole car at once and we want
to compare the result with the clustering of the four beams of the previous
paragraph. A particular challenge in this setting is that the whole car exhibits
many different effects leading to a large number of clusters, i.e. a large number
of peaks in the estimated density function. In order to be able to represent
each of these peaks, the estimated density function has to be approximated on
a sparse grid with many grid points (i.e., we need a high level). Even though
not considered in this work, adaptive sparse grids allow us to only refine certain
parts of the sparse grid and thus a huge saving with respect to the number
of grid points can be achieved, see, e.g., [16] for a discussion in the context of
classification. Here, we simply increase the sparse grid level to 9 (18,943 grid
points) and do not center points on the boundary. We do not need boundary
points anymore because the data set contains so many noisy points scattered
all over the domain that nothing important is happening near the boundary.
The regularization parameter λ is set to 1e-08 to better fit the data. Again, this
is useful because we have so many data points. All other parameters are kept
as in the previous paragraph. In Fig. 5(a) we plot the number of components
versus the threshold. We cannot find regions of ε where our method distinctly
predicts a number of clusters anymore. However, if we plot the moving average
of the previous ten data points, we can recognize a flat region of the moving
average near ε = 0.2. The corresponding cluster assignment of the four selected
beams is shown in Fig. 5(b). We see that it consists of only three clusters. A few
points are obviously not correctly clustered. Clearly, the clustering we find if we
cluster the whole car with ≈ 66, 000 nodes at once (Fig. 5(b)) is similar to the
one we find if we cluster only the four selected beams with only ≈ 7, 000 nodes
(Fig. 4(b)-(e)). Again, we could find an appropriate threshold ε looking for flat
regions in the curve which shows the number of components versus the threshold
ε, see Fig. 5(a). On an Intel Core i7-870 with 8GB RAM clustering all nodes
takes 37 seconds. If the threshold ε is changed, we do not have to recompute
the graph or the density function and thus the new cluster assignment can be
visualized within a few seconds.

Density-Based Clustering with Sparse Grids 141

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5

#
co
m
p
on

en
ts

threshold ε

#components
moving average

(a) nr. of components (b) four beams, ε = 0.2

Fig. 5. In (a) we show the number of components versus the threshold ε for the whole
car, and in (b) the clustering of the four beams with threshold ε = 0.2

7 Conclusions

We have presented a density-based clustering method which is distinctly different
from other density-based clustering methods in two points: First, the density
function is approximated on a grid. Thus, it is well suited for a vast number
of data points. In order to make this grid-based approach feasible in higher
dimensions, we employed sparse grids. Second, we determine clusters by splitting
a similarity graph into connected components. This is a more global view instead
of the local approaches of DBSCAN (connecting core objects) or DENCLUE
(hill-climbing). Furthermore, creating the similarity graph and finding connected
components are standard tasks and various efficient implementations exist. Thus,
the implementational effort is kept at a minimum.

Just as other density-based methods, our method can find clusters with non-
convex boundaries as well. Applying the method to benchmark examples has
shown that this method performs well compared to k-means, spectral clustering
and DBSCAN. We also applied the method to a real-world example where we
clustered the nodes of a finite element model of a car. We demonstrated how
we can use the number of components as a function of the threshold ε either to
give an indication of the number of clusters in the data set (crash data) or as a
means to find a good threshold ε if the number of clusters is known (olive oil).
Furthermore, by comparing cluster assignments obtained with different threshold
ε, we can determine how stable a cluster is. This is valuable information which
goes beyond just providing a cluster assignment.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, pp. 1027–1035. SIAM, Philadelphia (2007)

142 B. Peherstorfer, D. Pflüger, and H.-J. Bungartz

2. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-
of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In:
Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge (2004)

3. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)
4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)
5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In: Simoudis, E., Han, J.,
Fayyad, U.M. (eds.) Second International Conference on Knowledge Discovery and
Data Mining, pp. 226–231. AAAI Press (1996)

6. Franzelin, F.: Classification with Estimated Densities on Sparse Grids. Master’s
thesis, Institut für Informatik, Technische Universität München (September 2011)

7. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Comput-
ing 67(3), 225–253 (2001)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

9. Hegland, M., Hooker, G., Roberts, S.: Finite element thin plate splines in density
estimation. ANZIAM Journal 42 (2009)

10. Hinneburg, A., Gabriel, H.-H.: DENCLUE 2.0: Fast Clustering Based on Kernel
Density Estimation. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA
2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007)

11. Hubert, L., Arabie, P.: Comparing partitions. J. of Classification 2(1), 193–218
(1985)

12. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An
efficient k-means clustering algorithm: analysis and implementation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24(7), 881–892 (2002)

13. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17,
395–416 (2007)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

15. Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: A Sparse-Grid-Based Out-of-Sample
Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps.
In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 112–121. Springer,
Heidelberg (2011)

16. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Ver-
lag Dr. Hut, München (2010)

17. Pflüger, D., Peherstorfer, B., Bungartz, H.J.: Spatially adaptive sparse grids for
high-dimensional data-driven problems. J. of Complexity 26(5), 508–522 (2010)

18. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on
Neural Networks 16(3), 645–678 (2005)

19. Zupan, J., Novic, M., Li, X., Gasteiger, J.: Classification of multicomponent
analytical data of olive oils using different neural networks. Analytica Chimica
Acta 292(3), 219–234 (1994)

A Comparison between Cognitive

and AI Models of Blackjack Strategy Learning

Marvin R.G. Schiller and Fernand R. Gobet

Brunel University, London, UK
{marvin.schiller,fernand.gobet}@brunel.ac.uk

Abstract. Cognitive models of blackjack playing are presented and in-
vestigated. Blackjack playing is considered a useful test case for theories
on human learning. Curiously, despite the existence of a relatively simple,
well-known and optimal strategy for blackjack, empirical studies have
found that casino players play quite differently from that strategy. The
computational models presented here attempt to explain this result by
modelling blackjack playing using the cognitive architecture CHREST.
Two approaches to modeling are investigated and compared; (i) the com-
bination of classical and operant conditioning, as studied in psychology,
and (ii) SARSA, as studied in AI.

1 Introduction

Research in AI and cognitive science has made important contributions to un-
derstanding the difficulties underlying a myriad of learning tasks by devising
and investigating learning algorithms. In this paper, we address the question
of how human learning, which is governed by underlying psychological mecha-
nisms, is modelled and investigated using a cognitive architecture (in our case,
CHREST [1]). As the learning task, we use a game that relies both on chance
and strategy, and for which empirical data shows that human players deviate
from theoretically optimal strategies: blackjack. Models in CHREST simulate
the information-processing of human players; they play the game, observe the
outcomes, process and store the relationships between blackjack hands, actions
and outcomes in long-term memory, and select actions accordingly. CHREST
uses a mechanism that implements emotional memory, i.e. patterns of infor-
mation in memory (chunks) may be associated with emotional tags, which are
learned from experience with the environment. Using this basic framework, we
investigate models based on theories in psychology and decision-making, and
study how they compare to SARSA (cf. e.g. [2]), an AI algorithm modelling
reinforcement learning, in explaining data from human casino players.

This paper is organised as follows. In Sect. 2 we discuss previous work in-
vestigating strategies in blackjack, both in psychology and AI. In Sect. 3 the
cognitive architecture CHREST is introduced. Sect. 4 describes our modelling
and Sect. 5 presents the results, which are discussed in Sect. 6.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 143–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 M.R.G. Schiller and F.R. Gobet

2 Blackjack Strategies: Modelling and the Role of
Learning

Blackjack is played by one or several players (independently) against a dealer.
At the start of a game, each player makes a bet and is dealt two cards face-up
and their combined value is considered (figure cards count as 10 except the ace,
which may count as 1 or 11, to the favour of the player). The dealer also obtains
two cards, one of which is dealt face-up (the upcard). The goal of the player is
to obtain a total that is as close to 21 as possible without exceeding 21, in which
case the player immediately loses the game and thus the bet (going bust). If
the initial two cards of the player add to 21 (blackjack), the player immediately
wins the game and 2.5 times the amount of the original bet. Such hands that
include an ace that may count as 11 without the total exceeding 21 are called
soft (as opposed to hard) hands. Players may successively request to be dealt
additional cards (hit) or to content themselves with the current total (stand).
Further actions the player may take are splitting a pair hand, and doubling a
bet (see e.g. [3, Sect. 3]), but these actions are not relevant for the remainder of
this paper. After all players have made their choices, it is the dealer’s turn to
play according to a fixed rule (which may vary in different casinos); usually the
dealer is required to hit at a total of 16 or less and to stand at 17. If the dealer
busts, all players who have not bust receive 2 times the amount of the original
bet (i.e. a net win of the size of the bet). If the dealer stands at a score of at
most 21, the remaining players with a higher score win 2 times the original bet,
otherwise they either draw (and receive back their bet) or lose their bet.

Wagenaar [4] notes that – even though strategies exist to maximise the returns
of playing – the performance of blackjack players in the casino is not optimal.
The question of what strategies people actually adopt when playing blackjack,
and how they relate to learning, has not been answered conclusively. In this
paper we propose a cognitive model (implemented using the cognitive architec-
ture CHREST [1]) that relates blackjack strategy to theories in psychology and
decision-making, and compare this to a traditional AI algorithm, SARSA.

2.1 Blackjack Strategies

Never bust is a strategy where the player hits at a total of 11 and below, and
stands at a hard total of 12 or more. According to simulations [4], players using
never bust are expected to lose 8% of their original investment on average.Mimic
the dealer is a strategy where the player hits at 16 and stands at 17, like the
dealer. The expected loss is 6% per game according to [4]. Both of these strategies
are inferior to the basic strategy introduced by [5]. It can be represented in the
form of decision tables taking into account the player’s total and the dealer’s
upcard, and which prescribe one out of four actions (stand, hit, double, split).
Different tables apply to hard hands, soft hands, and pair hands. Wagenaar [4]
notes that this strategy can be learned very easily. It results in an expected loss
of 0.4 % per game, which is relatively favourable for the player. In combination
with a supplementary technique (card counting, as discussed by [4]), a positive

Models of Blackjack Strategy Learning 145

expected return can be achieved. Sub-optimal play results in a larger house edge,
i.e. expected losses of the player. Walker et al. [6] found that Australian players
violated the basic strategy on 14.6% of the hands, resulting in a house edge of
2.4 % (instead of 0.8% with the basic strategy1).

To assess what type of strategy blackjack players in the casino are actually
playing, Wagenaar studied the games2 of 112 players and compared their play
to the basic strategy. For each combination of the player’s total and the dealer’s
upcard, it was established how often the players (on average) deviated from
the basic strategy. Table 1 is adapted from [4] and shows the proportion of
deviations from the basic strategy for hard non-pair hands (pair hands, which
allow for splitting, were not further investigated in [4]). The table includes only
players’ totals from 12 to 17, since players always hit at 11 or less, and always
stood at 18 or more. Wagenaar found that players are more likely to violate basic
when they are required to hit (the underlined area) than when they are required
to stand. Wagenaar discusses possible reasons for this kind of “conservatism” of
standing where hitting offers a greater chance to win (e.g. regret minimisation,
delaying bad news, blaming the dealer’s luck). Wagenaar formulates this bias in
the players’ actions as a linear logistic model, but does not explore whether or
how it might be related to learning.

2.2 Modelling Learning in Blackjack

A number of studies on blackjack strategies and learning have been contributed
by researchers in mathematics and AI, who were either interested in optimal
playing strategies or efficient machine-learning algorithms. Less is known about
the blackjack skills of actual players, as investigated in [4], [6] and [7].

Work by mathematicians and statisticians (e.g. [5]) makes use of knowledge
of the mechanics of blackjack (composition of decks, random drawing) in their
search for optimality. In contrast, strategy acquisition in blackjack can be con-
sidered as a learning problem based solely on playing experience, which makes
the analysis more challenging, and which is done in AI to investigate the capa-
bilities of machine learning algorithms (e.g. bootstrapping [8] and evolutionary
algorithms [3]). The work by Perez-Uribe and Sanchez [2] is interesting in that
they use the SARSA algorithm, a reinforcement learning mechanism based on
temporal difference learning and Q-learning. However, this work does not anal-
yse the relationship between their models and the behaviour of human players.
Furthermore, this work did not consider the value of the face-up dealer’s card,
and therefore it does not offer the possibility to compare the learned strategies
to the basic strategy, one of the objectives of this paper.

Reinforcement learning in the context of decision-making tasks has been in-
tensively studied with the Iowa Gambling Task, a kind of four-armed bandit
problem (cf. [9]). Subjects have to select cards from four decks with different

1 Differences wrt. the house edge reported in [4] are due to rule variations.
2 Since observers had no control over the length of stay, the number of hands recorded
for each player varies (median=74 hands, cf. [4]).

146 M.R.G. Schiller and F.R. Gobet

schedules of rewards and punishments. [10] and [9] propose an elaborate model
for subjects’ decision making behaviour on the task, the expectancy valence (EV)
model. It models the learning of players’ expectations and action selection via
softmax selection/Boltzmann exploration. In this paper, we extend the use of
some of these principles to the study of blackjack play.

3 CHREST

CHREST (Chunk Hierarchy and REtrieval STructures) is a cognitive architec-
ture that enables the modelling of human processes of perception (in particular
visual attention), learning and memory. CHREST is a symbolic architecture
based on chunking theory [11] and template theory [12]. Chunking theory posits
that information is processed, learned and retrieved in the form of patterns,
which can be used as one coherent unit of knowledge, and which are referred to
as chunks. CHREST is composed of an input analysis component, a short-term
memory component (for different modalities: visual, auditory, action) and a long-
term memory component which is organised in a network structure. Technically,
patterns form nodes in the network structure of long-term memory. Retrieval is
via an index structure referred to as discrimination network, which is learned
incrementally. Furthermore, cross-links can be learned within long-term mem-
ory within and across chunks of different modalities. Patterns are formed when
information is perceived via the input analysis component and passed on to
short-term and long-term memory, where they are learned – i.e. integrated into
the network structure – incrementally. Any chunk in long-term memory (LTM)
can be associated with an emotional tag that is retrieved when the chunk is re-
trieved. In general, emotional tags in CHREST follow the paradigm of [13] and
[14] by representing emotions as combinations on several dimensions of primary
basic emotions (e.g. joy, acceptance, fear, surprise, sadness, disgust, anger, an-
ticipation according to [14]). In this paper, however, we only use two dimensions
of emotions (joy and sadness), in keeping with the parsimony of similar previous
models for the Iowa Gambling Task (cf. Sect. 2.2). Emotional tags are learned
via an association learning mechanism using a so-called Δ-rule (illustrated in
the next section). This rule is part of psychological theories on classical condi-
tioning [15] as well as the decision-theoretic model proposed by [10].

CHREST runs as a computer program in Java (with interfaces for scripts in
other languages), to enable simulations and testing of cognitive models. CHREST
has previously been used to model phenomena in various domains of human
information-processing and expertise, including board games (Go, chess and
awalé), language acquisition in children, and physics.

4 Modelling

CHREST models played blackjack, to investigate in how far the learning imple-
mented by these models accounts for (i) the behaviour observed by Wagenaar
[4] as described in Sect. 2, and (ii) the choices that the basic strategy prescribes

Models of Blackjack Strategy Learning 147

instead. Since the actions of splitting and doubling are not relevant for modelling
Wagenaar’s data, our model is simplified by only considering hitting vs. standing
(like [2]). As a further simplification, each game is dealt from a complete deck
of cards. For simplicity we also assume that bets are held constant, and wins
and losses are always represented as multiples of “1” bet. Our model is based
on the hypothesis that players experience constant reinforcement and reward
(of positive and negative valence) while playing, which follows a random ratio
schedule. This experience is likely to enter the player’s memory and to influence
decision-making, in conflict or in addition to fixed strategies. For making an ac-
tion, the model (i) visually recognises the total of the player’s hand, (ii) visually
recognises the value of the dealer’s upcard, and (iii) retrieves the set of possible
actions in action memory associated with that situation. Depending on previous
experience, these situation-specific actions are associated with emotional tags
of positive and/or negative valence. Depending on these values, the action to
be performed is selected, the immediate outcomes are observed, and the model
adjusts its expectations (using the Δ-rule).

4.1 CHREST Model (Model 1)

The model starts out with a representation of the possible losing and winning
outcomes of blackjack. Monetary wins and losses carry emotional tags attached
to these outcomes as follows; wins are directly represented in the “joy” dimension
and losses in the “sadness” dimension. The possible outcomes are (i) losing
(joy:0, sadness:1), (ii) blackjack win (joy:2.5, sadness:1), (iii) ordinary win (joy:2,
sadness:1), (iv) push (joy:1, sadness:1). An alternative approach is to map the net
wins onto a single dimension of “joy” (which can then also take negative values).
The second approach assumes that players mentally offset bets and wins prior
to experiencing their rewarding effect. We additionally included this variant of
our model in the analysis, as discussed in the results.

Each game of blackjack requires the player to make one or several choices
based on the current “state” of the game; i.e. the situation described by the
player’s cards and the dealer’s upcard. Each game is terminated with a win, loss
or draw after a finite number of iterations of the following steps.

1) Recognition. The model receives its own hand and the dealer’s upcard
as input. The model retrieves a chunk that represents the combination of its
own total, together with an indicator whether the hand is soft or hard, and the
dealer’s upcard from long-term memory (e.g. “14-10-soft” if presented with Ace,
3 and dealer’s upcard 10). If such a chunk does not exist or is incomplete, learning
of such a chunk (according to chunking theory, cf. [1]) takes place instead. If the
chunk has been linked to actions or carries an emotional tag (due to previous
playing), these are retrieved. Any such “player’s hand” or “state” chunk may
have been linked with two different action chunks (hit/stand), each of which
may have an emotional tag (resulting from previous experience with the action
for that specific hand).

148 M.R.G. Schiller and F.R. Gobet

2) Action Selection. Based on the emotional tags for hit/stand actions linked
to the chunk representing the player’s hand in long-term memory, one is chosen
over the other probabilistically via softmax selection as follows. For both options,
the expected value of taking that action is taken to be the difference between
the “joy” and “sadness” values of their emotional tags (and 0 otherwise). Let
EvSTAND(x, y, z, t) denote the expected value of the STAND action for the hand
characterised by a total of x, a dealer’s upcard value of y, and the indicator for
soft/hard hands z. Furthermore, assume that the model has previously encoun-
tered the current choice situation (e.g. “14-10-soft”) t times. Then the probability
that the model stands (rather than hits) is defined by the Boltzmann softmax:

Pr[STAND(x, y, z, t)]=
exp(θ(t) ·EvSTAND(x, y, z, t))

exp(θ(t) ·EvSTAND(x, y, z, t)) + exp(θ(t) · EvHIT(x, y, z, t))
(1)

where θ(t)=(t
10)

c. The function θ(t) regulates the transition of the model from
exploration in the beginning of learning (i.e. choosing actions at random with
equal probability) towards exploitation of the learned values (where differences
in the learned values Ev determine the choices to a large degree), cf. [9]. The
parameter c represents the rigour with which the model transits from explo-
ration to exploitation, if c is chosen to be positive (and vice versa otherwise).
Thus, when nothing is known about both actions, chances of either being se-
lected are fifty-fifty. With more experience, the model becomes more sensitive
to the differences in the emotional tags and makes a more rigorous selection.
The value 1/θ(t) is called temperature [9]. This form of action selection is anal-
ogous to the use of softmax selection in modelling the Iowa Gambling Task with
the EV model [9,10]. A difference, however, is that our model maintains indi-
vidual temperatures for the different constellations of the player’s and dealer’s
hand, whereas the temperature in the EV model is global. This way, we take
into account the inherent imbalance in how often different constellations oc-
cur in blackjack.

3) Action and Reinforcement/Conditioning. The model carries out the
selected action and obtains the results from the environment; either (i) the game
ends with a win/loss/draw, or (ii) the model hits and remains in the game, and
can thus make another choice. In both cases, association learning takes place,
where the hand and the selected action are associated with positive and negative
emotions based on the outcome. This uses the Δ-rule, which applies when a
chunk x (a hand, or an action) is followed by a reward r. For each emotional
dimension e, the emotional value of the chunk x is updated by the amount

Δxe := α(re − xe). (2)

The parameter α (with 0 ≤ α ≤ 1) is called the learning rate or update rate3. In
case (i) the reward is a blackjack win/loss outcome as defined at the beginning of

3 Low values of α represent slow learning and slow forgetting, whereas high values
represent a bias towards recent events and a more limited memory [9,10].

Models of Blackjack Strategy Learning 149

this section, then both the (previous) hand and the action are credited this way
(classical and operant conditioning). In case (ii), the reward is represented by
the emotional tag associated with the new hand. For example, if the HIT action
was chosen for the hand “14-10-soft”, and the player is dealt a king, the new
hand is “14-10-hard”. The emotional tag associated with “14-10-soft” is updated
with the Δ-rule and “14-10-hard” as a reward. Similarly, the emotional tag of
the action chunk“14-10-soft→hit” is updated in the same way. Thus, the values
of the emotional tags for hands propagate from those hands that are likely to
receive immediate reward (or punishment) towards those that are more likely to
represent an intermediate stage of the game. The model continues with the next
choice as described by 1).

4.2 Attribution

In his analysis of casino players, Wagenaar [4] observed that the probability of
hitting correlates with the probability of busting after drawing one card. As il-
lustrated in Table 1, players are likely to hit at a hard hand of 12 and to be
gradually more likely to stand as totals approach 16. This raises the question
whether the behaviour of players can be conceived as “fitting” their decisions to
the probability of busting, and ignoring other aspects of decision-making, and
several hypotheses for this behaviour (attribution bias, delaying) are discussed
by Wagenaar. We assume that affective conditioning requires stimuli to co-occur
in short-term memory. This contiguity is playing an important role for crediting
the player’s actions with the emotional consequences (losing or winning). Per-
ceptions that happen in between the player’s action and the outcome (e.g. the
dealer’s actions), are likely to enter short-term memory and interfere with this
contiguity. This results in a bias towards learning actions that are immediately
punished or rewarded (busting or having blackjack) and against outcomes that
involve the dealer’s actions. In this paper, we use an explicit parameter that
quantifies this bias, rather than model the perception of the dealer’s actions in
detail. We define an attribution bias att ∈ [0, 1] that inhibits the learning of out-
comes delayed by the dealer’s actions. Technically, we use a reduced learning rate
α′ = α(1 − att).

4.3 SARSA (Model 2)

The above described learning mechanism is similar, but not identical to a well-
known reinforcement learning algorithm in AI, SARSA. Since SARSA has been
described in detail elsewhere (e.g. [2]), we concentrate on the differences to the
above algorithm. The simulations in this paper use a modification of Model 1
that implements a version of SARSA. Instead of using the above Δ-rule, actions
are reinforced by the rule

Δxe := α(re + γx′
e − xe), (3)

where x is the emotional tag associated with the action that has been taken, r
is the emotional tag associated with the immediate reward (wins/loss/draw if

150 M.R.G. Schiller and F.R. Gobet

the game has finished, nothing otherwise), and x′ is the emotional tag associated
with the next action that the model will take (according to action selection) if the
model is allowed another choice (in case the game continues after hitting). This is
done for all emotional dimensions indexed by e, sadness and joy. The parameter
γ (in the range [0,1]) is used to tune down the contribution of the intermediate
reward x′ represented by staying in the game vis-a-vis actual reward r. Apart
from the incremental learning of chunks, which we retain from the previous
model, this implements a version of SARSA. In brief, the differences between
the two variants of our model are the following:

– Model 1 maintains estimated values for both the player’s hands and actions
related to hands, Model 2 only for the latter.

– When Model 1 hits and is presented with a new choice, the hit action is
credited by the general (action-unspecific) value of the new hand. Instead,
Model 2 credits the action with the hypothetical value of the next action
that will be chosen (i.e. it looks further ahead).

– The parameter γ regulates the contribution of expected vs. actual reward.

4.4 Model Fitting

Because the game of blackjack has an important stochastic element, for each of
the models described above, and each set of parameters, we constructed ten in-
stances with the same parameters, and calculated the fit relative to (i) the basic
strategy, and (ii) the data from [4] in Table 1. Since this procedure is relatively
time-consuming, and models have three parameters (α, c, and either att or γ) we
performed a relatively coarse-grained grid search (550 combinations of parame-
ters) to explore different models and to optimise their parameters (using the sum
of squared errors of the models’ percentages of standing in the different cases).
We consider it more important to understand how the different models compare
rather than pinpoint the exact location of the optimal parameters (which, due to
the stochastic nature of the game, is very difficult anyway). We applied this pro-
cedure to models that played 10,000 blackjack games each (equivalent to roughly
194–333 hours of play, according to [4]4). To ease the analysis, we assume that
all models always hit at a total of less than 11, and stand at a hard total of at
least 18. It is a plausible assumption that human players start off with a similar
rule of thumb when learning blackjack, and Wagenaar’s data shows that human
players generally do not violate this simple rule.

5 Results

We measured in how far our models account for the learning of both (i) observed
decision-making by casino players (as represented byWagenaar’s data in Table 1)
and (ii) ideal decision making (as represented by the corresponding excerpt of
the basic strategy, indicated by underlining in the table) by calculating r2 (for

4 Wagenaar [4] estimates that 30 hands in succession equal 35-60 minutes of playing.

Models of Blackjack Strategy Learning 151

r2

att

Fig. 1. Comparison illustrating the role of att for the fit of the CHREST model wrt.
the basic strategy (α = 0.1, c = 3) and Wagenaar’s data (α = 0.2, c = 3)

the percentage of standing, as opposed to hitting, in the different cases) and
comparing the patterns in the decision tables. Table 2 shows the decision making
pattern of Model 1 fitted to Wagenaar’s empirical data, with r2=0.81. The main
phenomena in Wagenaar’s data are present: when the dealer’s total is low, players
sometimes hit when they should stand. When the dealer’s total is high, then the
model is more likely to stand the higher the player’s total.

Table 3 shows the decision making pattern of Model 1 fitted to the basic
strategy. The fit is r2 = 0.79. The model uses an attribution bias of 0.4. This
bias is less than for the model fitted to the empirical data (as expected), but
it is nevertheless surprising, since one would expect that a bias is likely to be
detrimental to learning the optimal strategy. A possible explanation is that the
attribution factor makes the model play more conservatively (i.e. stand rather
than hit), and since the table contains more situations where the basic strategy
mandates standing over hitting, our optimisation is slightly biased towards those
situations (and thus, conservatism). Despite the relatively good fit, the model
still falls noticeably short of attaining the basic strategy, illustrating how difficult
it is to learn the strategy by playing. To assess the contribution of the attribution
factor att, we compare the fit of the two models while varying att, as shown in
Fig. 1. This shows that the attribution factor indeed contributes towards the
fit of the model for Wagenaar’s data. Interestingly, the model does not seem
to depend on using separate dimensions of joy and sadness – a similar fit is
obtained using only one emotional dimension where rewards reflect the net win
only (r2 =0.80 for Wagenaar’s data with α=0.4, c=3, att=0.4 and r2 =0.76
for the basic strategy, with α=0.2, c=5, att=0.3).

Table 4 shows the decision making pattern using Model 2 with parameters
α=0.2, c=2 and γ=0.1, which results in an unexpectedly close fit to Wagenaar’s
data, r2=0.91. In particular, this model exceeds the model in Table 2 by better
representing the trend of players to hit at a low total and to stand at a high total
when the dealer’s upcard is high. The fact that γ is found to have a very low
value means that the contribution of expected reward counts only with a factor
of 0.1 relative to immediate reward, and thus represents a strong bias towards
immediate reward. By contrast, our grid search produced only moderate results
when fitting Model 2 to the basic strategy, not better than r2=0.6.

152 M.R.G. Schiller and F.R. Gobet

Table 1. Percentage of decisions of casino players that violate the basic strategy for
hard non-pair hands. Underlined percentages indicate those cases where the basic strat-
egy requires hitting (in all other cases the basic strategy requires standing). Table
adapted from [4] and shading was added (gray represents the percentage of hitting).

Dealer’s Upcard

Player’s total 2 3 4 5 6 7 8 9 10 11

12 14.5 33.7 47.7 44.1 29.9 9.4 9.0 9.3 7.7 3.7

13 49.5 23.3 17.4 8.2 8.2 28.2 22.5 17.6 17.8 8.3

14 24.5 10.4 4.0 1.3 4.8 35.7 38.1 39.1 47.4 27.8

15 6.3 3.6 2.5 4.1 3.5 77.6 78.4 63.9 71.5 48.1

16 3.0 0 0 0 0 89.7 86.2 82.8 89.6 71.6

17 0 0 0 0 0 0 1.2 0 0.5 1.2

Table 2. Percentage of deviations from the basic strategy of 100 instances of Model
1 with 10,000 games of training (each) during 1000 further games (each), fitted on
Wagenaar’s data in Figure 1, with parameters α = 0.2, c = 3, att = 0.5

Dealer’s Upcard

Player’s total 2 3 4 5 6 7 8 9 10 11

12 57.7 54.4 31.8 27.9 32.9 33.7 26.0 36.9 16.5 15.1

13 32.0 26.9 19.4 14.5 24.5 35.4 37.1 41.7 21.0 19.7

14 20.6 14.8 13.9 13.0 13.8 52.0 39.8 55.7 26.7 22.2

15 18.6 15.6 7.6 9.8 11.8 48.5 55.9 64.2 55.5 35.6

16 11.8 12.4 7.0 5.0 10.8 57.2 67.1 62.5 67.3 49.4

17 3.8 1.7 1.6 3.4 2.1 2.2 10.9 9.2 5.1 21.1

Table 3. Percentage of deviations from the basic strategy of 100 instances of Model 1
with 10,000 games of training (each) during 1000 further games (each), fitted on the
basic strategy (α = 0.1, c = 3, att = 0.4)

Dealer’s Upcard

Player’s total 2 3 4 5 6 7 8 9 10 11

12 43.9 46.5 34.3 28.3 35.3 19.6 37.3 36.2 10.6 20.4

13 48.4 34.1 30.1 27.2 22.5 33.3 33.9 34.5 12.0 23.2

14 27.1 28.9 15.1 18.9 11.6 37.3 32.0 34.8 24.4 28.3

15 14.3 11.8 9.5 15.7 13.3 50.7 49.4 51.3 30.8 31.1

16 15.2 10.8 10.5 7.7 9.9 42.5 58.1 63.2 50.3 36.1

17 5.6 4.8 4.8 1.5 1.4 3.2 18.0 18.5 13.2 39.2

Table 4. Percentage of deviations from the basic strategy of 100 instances of Model
2 with 10,000 games of training (each) during 1000 further games (each), fitted on
Wagenaar’s data in Figure 1, with parameters α = 0.2, c = 2, γ = 0.1

Dealer’s Upcard

Player’s total 2 3 4 5 6 7 8 9 10 11

12 36.8 36.5 50.0 47.2 46.7 17.8 13.9 6.8 3.0 4.4

13 40.7 42.0 32.8 31.8 27.4 25.5 21.6 20.2 9.7 8.6

14 23.7 23.0 18.5 13.2 20.9 50.4 49.1 36.2 18.7 22.3

15 13.8 14.7 13.8 12.6 8.7 70.0 53.3 63.8 55.0 32.4

16 12.5 8.2 9.7 8.2 8.1 84.8 77.4 74.3 83.3 61.9

17 4.9 5.0 1.6 1.0 1.8 2.1 5.8 3.1 0.7 6.5

Models of Blackjack Strategy Learning 153

Average
win
(per unit
bet)

Number of games played for training

Fig. 2. Comparison between average wins of models and fixed strategies, relative to
the amount of training

Fig. 2 presents the average wins achieved by the different models (evaluated
in batches of 100, on 1000 different games each), relative to the number of games
they are trained on, and relative to the unit bet. They perform quite similarly.
In particular, their profitability falls in between the simple strategies and the
basic strategy – similarly to the casino players in the empirical studies.

6 Conclusion

This paper has investigated in how far the behaviour of blackjack players in the
casino can be modelled as being the result of learning. Our models were found to
generate a behaviour similar to that observed by Wagenaar [4], which is half-way
between the basic strategy and a bias to avoid busting. We compared the fit of
two different approaches to modelling Wagenaar’s data; which are mainly in-
spired by previous work on conditioning, decision making and SARSA. Whereas
the fit of both investigated variants is very encouraging, the fit of the model
combining SARSA and softmax turned out to be slightly superior in accounting
for Wagenaar’s data. However, one needs to be cautious with the interpretation,
since our results also highlight the very stochastic nature of the game, which
makes model fitting difficult. Furthermore, we used batches of models with the
same parameters to model populations of players. In how far the models account
for individual differences (e.g. use of explicit strategies) still needs to be tested.
This work highlights how difficult it is for a player to learn blackjack by play-
ing (rather than intentionally learning the basic strategy). Our models remain
still far from optimal performance as compared to the basic strategy, even with
parameters fitted for that goal and 10,000 hands of experience.

An important question raised in this paper is the role of biases on the learning
of strategies. We found that a bias towards immediate outcomes (the attribu-
tion bias) contributed towards the fit of Model 1 to Wagenaar’s empirical data.

154 M.R.G. Schiller and F.R. Gobet

The γ parameter of Model 2 (the SARSA-variant) has a similar role, since it
discounts expected reward relative to immediate reward, and was found to play
a crucial role. Future work may address other sources of bias that may play a
role in the learning of strategies in casino games such as blackjack. For example,
imbalances in the valence of winning a certain amount as compared to losing the
same amount, like in the EV model [10], can be incorporated and investigated.

The presented blackjack model mainly hinges on association and reinforce-
ment learning, but not so much on other aspects that CHREST is famous for,
such as chunking. Future work may investigate models that rely on both of
these kinds of aspects, to model behaviour in games (and other problem solv-
ing tasks) with a richer structure of patterns to be memorised and recognised,
e.g. poker.

Acknowledgments. This work was funded by a grant from the British Academy,
under contract number BR100096.We thank three anonymous reviewers for their
useful comments.

References

1. Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.H., Jones, G., Oliver, I., Pine,
J.M.: Chunking mechanisms in human learning. Trends in Cognitive Sciences 5,
236–243 (2001)

2. Perez-Uribe, A., Sanchez, E.: Blackjack as a test bed for learning strategies in
neural networks. In: IEEE International Joint Conference on Neural Networks,
IJCNN 1998, vol. 3, pp. 2022–2027 (1998)

3. Kendall, G., Smith, C.: The evolution of blackjack strategies. In: The 2003 Congress
on Evolutionary Computation, CEC 2003, vol. 4, pp. 2474–2481 (2003)

4. Wagenaar, W.: Paradoxes of gambling behaviour. Erlbaum, Hillsdale (1988)
5. Thorp, E.: Beat the dealer: A winning strategy for the game of twenty-one: A

scientific analysis of the world-wide game known variously as blackjack, twenty-
one, vingt-et-un, pontoon or Van John. Blaisdell Pub. Co. (1962)

6. Walker, M., Sturevska, S., Turpie, D.: The quality of play in Australian casinos.
In: Finding the Edge: Mathematical Analysis of Casino Games. Institute for the
Study of Gambling and Commercial Gaming (2000)

7. Chau, A.W.L., Phillips, J.G., Von Baggo, K.L.: Departures from sensible play in
computer blackjack. Journal of General Psychology 127(4), 426–438 (2000)

8. Widrow, B., Gupta, N.K., Maitra, S.: Punish/reward: Learning with a critic in
adaptive threshold systems. IEEE Transactions on Systems, Man and Cybernet-
ics 3, 455–465 (1973)

9. Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., Wagenmakers, E.J.: Bayesian pa-
rameter estimation in the expectancy valence model of the Iowa gambling task.
Journal of Mathematical Psychology 54, 14–27 (2010)

10. Busemeyer, J.R., Stout, J.C.: A contribution of cognitive decision models to clinical
assessment: Decomposing performance on the Bechara gambling task. Psychologi-
cal Assessment 14, 253–262 (2002)

Models of Blackjack Strategy Learning 155

11. Simon, H.A., Chase, W.G.: Skill in chess: Experiments with chess-playing tasks and
computer simulation of skilled performance throw light on some human perceptual
and memory processes. American Scientist, 394–403 (1973)

12. Gobet, F., Simon, H.A.: Templates in chess memory: A mechanism for recalling
several boards. Cognitive Psychology 31, 1–40 (1996)

13. Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion. Wiley (1999)
14. Plutchik, R.: Emotion: A psychoevolutionary synthesis. Harper & Row, New York

(1980)
15. Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: Variations in

the effectiveness of reinforcement and nonreinforcement. In: Black, A.H., Prokasy,
W.F. (eds.) Classical Conditioning II: Current Research and Theory, pp. 64–99.
Appleton-Century-Crofts, New York (1972)

Plan Recognition by Program Execution

in Continuous Temporal Domains

Christoph Schwering, Daniel Beck, Stefan Schiffer, and Gerhard Lakemeyer

Knowledge-based Systems Group, RWTH Aachen University, Aachen, Germany
(schwering,beck,schiffer,gerhard)@kbsg.rwth-aachen.de

Abstract. Much of the existing work on plan recognition assumes that
actions of other agents can be observed directly. In continuous temporal
domains such as traffic scenarios this assumption is typically not war-
ranted. Instead, one is only able to observe facts about the world such
as vehicle positions at different points in time, from which the agents’
plans need to be inferred. In this paper we show how this problem can be
addressed in the situation calculus and a new variant of the action pro-
gramming language Golog, which includes features such as continuous
time and change, stochastic actions, nondeterminism, and concurrency.
In our approach we match observations against a set of candidate plans
in the form of Golog programs. We turn the observations into actions
which are then executed concurrently with the given programs. Using
decision-theoretic optimization techniques those programs are preferred
which bring about the observations at the appropriate times. Besides
defining this new variant of Golog we also discuss an implementation
and experimental results using driving maneuvers as an example.

1 Introduction

Much of the work on plan recognition, e.g. [9,4,7,5,14], has made the assump-
tion that actions of other agents are directly observable. In continuous temporal
domains such as traffic scenarios this assumption is typically not warranted. In-
stead, one is only able to observe facts about the world such as vehicle positions
at different points in time, from which the agents’ actions and plans need to
be inferred. Approaches which take this view generally fall into the Bayesian
network framework and include [13,3,11]. One drawback of these approaches is
that actions and plans can only be represented at a rather coarse level, as the
representations are essentially propositional and time needs to be discretized.

On the other hand, action formalisms based on first-order logic are very ex-
pressive and are able to capture plans at any level of granularity, including
parallelism, continuous change and time. As we will see, this makes it possible
to model the behavior of agents directly in terms of actions such as changing the
direction of a vehicle or setting a certain speed. In a sense, this expressiveness al-
lows to combine actions into plans or programs, whose execution can be thought
of as an abstract simulation of what the agents are doing. This and parame-
terized actions yield a huge flexibility in formulating possible agent plans. Plan

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 156–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Plan Recognition by Program Execution in Continuous Temporal Domains 157

recognition in this framework boils down to finding those plans whose execution
are closest in explaining the observed data.

In this paper, we propose an approach to plan recognition based on the action
programming language Golog [10], which itself is based on the situation calcu-
lus [12,16] and hence gives us the needed expressiveness. The idea is, roughly, to
start with a plan library formulated as Golog programs and to try and match
them online with incoming observations. The observations are translated into
actions which can only be executed if the fact observed in the real world also is
true in the model. These actions are executed concurrently with the given pro-
grams. Decision-theoretic optimization techniques are then used to select those
among the modified programs whose execution bring about a maximum number
of observations at just the right time.

Many of the pieces needed for a Golog dialect which supports this form of plan
recognition already exist. These include concurrency [6], continuous change [8],
stochastic actions [16], sequential time [15], and decision theory [2]. As we will
see, these aspects need to be combined in novel ways and extended. The main
contributions of the paper then are the definition of a new Golog dialect to sup-
port plan recognition from observations and to demonstrate the feasibility of the
approach by applying it to traffic scenarios encountered in a driving simulator.1

The rest of the paper is organized as follows. In the next section, we briefly
outline our example traffic scenario. Section 3 introduces our new Golog variant
prGolog, followed by a formal specification of an interpreter and a discussion of
how plan recognition by program execution works in this framework. In Section
6, we present experimental results. Then we conclude.

2 Driving Maneuvers: An Example Domain

In this section we briefly introduce our example domain and some of the modeling
issues it raises, which will motivate many of the features of our new Golog dialect.

In our simulator a human controls a vehicle on a two-lane road with other
cars controlled by the system. The goal is to recognize car maneuvers involv-
ing both the human-controlled car and others on the basis of observed global
vehicle positions which are registered twice a second. For simplicity we assume
complete knowledge and noise-free observations. We would like to model typical
car maneuvers such as one vehicle passing another in a fairly direct and intuitive
way. For that it seems desirable to build continuous time and continuous change
directly into the modeling language. Among other things, this will allow us to
define constructs such as waitFor(behind(car1, car2)), which lets time pass con-
tinuously until car1 is behind car2. To actually steer a car in the model, we will
use actions to set the speed and to change the orientation (yaw). For simplicity
and for complexity reasons, we assume that such changes are instantaneous and
that movements are modeled by linear functions (of time) as in [8]. Concurrency
comes into play for two reasons. For one, with multiple agents present they

1 We remark that the only other existing work using Golog for plan recognition [7] is
quite different as it assumes that actions are directly observable.

158 C. Schwering et al.

(a) (b)

Fig. 1. Two cars driving straight with different tolerances

need to be able to act independently. For another, observations will be turned
into special actions which are executed concurrently with the agents’ programs.
Technically we will make use of ConGolog’s notion of interleaved concurrency [6].

To see where probabilities come into play, we need to consider a complication
which results from a mismatch between a simple model of driving in a straight
line and reality, especially when a human controls a car. Most likely the human
will oscillate somewhat even when his or her plan is to drive straight, and the
amount of oscillation may vary over time and among individuals (see Figure 1
for two examples). Since the observed data will also track such oscillations, a
straight-line model is not able to explain the data. Instead we introduce toler-
ances of varying width and likelihood, where the width indicates that a driver
will deviate at most this much from a straight line and the likelihood estimates
the percentage of drivers which exhibit this deviation. Technically, this means
that the action which changes the direction of a car is considered a stochas-
tic action in the sense of [2,16]. We use a discretized log-normal distribution,
where each outcome determines a particular tolerance. In a similar fashion, set-
ting the speed introduces tolerances along the longitudinal axis to accommodate
differences between the actual speed and the model.

3 The Action Language prGolog

prGolog is our new dialect of the action language Golog [10]. Golog is based on
Reiter’s version of the situation calculus [16] which is a sorted second-order lan-
guage to reason about dynamic systems with actions and situations. A dynamic
system is modeled in terms of a basic action theory (BAT) D which models the
basic relationships of primitive actions and situation dependent predicates and
functions, called fluents. A situation is either the initial situation S0 or a term
do(a, s) where s is the preceding situation and a is an action executed in s.
The main components of a BAT D are (1) precondition axioms Poss(a, s) ≡ ρ
that denote whether or not the primitive action a is executable in situation s,
(2) successor state axioms which define how fluents evolve in new situations, and
(3) a description of the initial situation S0. A successor state axiom for a fluent
F (x, s) has the form F (x, do(a, s)) ≡ γ+

F (x, a, s) ∨ F (x, s) ∧ ¬γ−
F (x, a, s) where

γ+
F and γ−

F describe the positive and negative effects on fluent F , respectively.
Our simple model of a car consists of primitive actions that instantaneously

change the vehicle’s velocity and yaw, respectively. Furthermore, there are fluents
x(v, s) and y(v, s) for the x and y-coordinates of the car v. Here, the x-axis points
in the forward/backward direction and the y-axis in the left/right direction.

prGolog offers the same programming constructs known from other Golog
dialects: deterministic and stochastic actions, test actions φ?, sequences δ1; δ2,

Plan Recognition by Program Execution in Continuous Temporal Domains 159

nondeterministic branch δ1 | δ2 and choice of argument πv . δ, interleaved concur-
rency δ1 ‖ δ2, and others like if-then-else and while-loops, which are not needed
in this paper. Also, to simplify the presentation, we use procedures as macros.

The prGolog programs in the plan library describe the plans an agent could
be following. A lane change of a car v can be characterized as follows:

proc leftLaneChange(v, τ)

πθ .(0◦ < θ ≤ 90◦)?;waitFor(onRightLane(v), τ); setYaw(v, θ, τ);
πτ ′ .waitFor(onLeftLane(v), τ ′); setYaw(v, 0◦, τ ′).

This program leaves certain aspects of its execution unspecified. The angle θ at
which the car v steers to the left may be nondeterministically chosen between
0◦ and 90◦. While the starting time τ of the passing maneuver is a parameter
of the procedure, the time τ ′ at which v gets back into the lane is chosen freely.
The points in time are constrained only by means of the two waitFor actions in
a way such that the car turns left when it is on the right lane and goes straight
ahead when it is on the left lane. onRightLane and onLeftLane stand for formulas
that specify what it means to be on the right and on the left lane, respectively.
Using the procedure above an overtake maneuver can be specified as

proc overtake(v, w)

πτ1 .waitFor(behind(v, w), τ1); leftLaneChange(v, τ1);

πτ2 . πz . setVeloc(v, z, τ2);

πτ3 .waitFor(behind(w, v), τ3); rightLaneChange(v, τ3).

3.1 Stepwise Execution

To carry out plan recognition online, we will need to execute programs incre-
mentally. ConGolog [6] introduced a transition semantics that does exactly this:
a transition from a configuration (δ, s) to (δ′, s′) is possible if performing a single
step of program δ in situation s leads to s′ with remaining program δ′.

3.2 Time and Continuous Change

In the situation calculus, actions have no duration but are executed instan-
taneously. Hence, to get the position of a vehicle at a certain point in time,
continuous fluents like x(v, s) and y(v, s) need to return functions of time which
can be evaluated at a given time to get a concrete position. As in ccGolog [8],
y(v, s) returns a term linear (a0, a1, τ0) which stands for the function of time
f(τ) = a0 + a1 · (τ − τ0). The definition of successor state axioms for x(v, s) and
y(v, s) to represent the effects of primitive actions is lengthy but straightforward.

We adopt sequential, temporal Golog’s [15] convention that each primitive ac-
tion has a timestamp parameter. Since these timestamped actions occur in situ-
ation terms, each situation has a starting time which is the timestamp of the last
executed action. The precondition of a waitFor(φ, τ) action restricts the feasible
timestampsτ to points in time at which the conditionPoss(waitFor(φ,τ), s)≡φ[s, τ]

160 C. Schwering et al.

holds. Here the syntax φ[s, τ] restores the situation parameter s in the fluents in
φ and evaluates continuous fluents at time τ . This precondition already captures
the “effect” of waitFor, because just by occurring in the situation term, it shifts
time to some point at which φ holds.

3.3 Stochastic Actions and Decision Theory

We include stochastic actions in prGolog which are implemented similarly to [16].
The meaning of performing a stochastic action is that nature chooses among a
set of possible outcome actions. Stochastic actions, just like primitive actions,
have a timestamp parameter. The setYaw action mentioned in the lane change
program is a stochastic action. All outcomes for setYaw set the yaw fluent to the
same value, they only differ in the width of the tolerance corridor described in
Section 2 and Figure 1. In particular, the outcome actions are setYaw∗(v, θ,Δ, τ)
whereΔ specifies the width of the tolerance corridor. Note that only the tolerance
parameter Δ follows some probability distribution; the vehicle identifier v, the
angle θ, and the timestamp τ are taken as they stand. We introduce a new fluent
for the lateral tolerance, Δy(v, s) whose value is the Δ of the last setYaw∗ action.
For setVeloc(v, z, τ) we proceed analogously.

Stochastic actions introduce a second kind of uncertainty in programs: while
nondeterministic features like the pick operator πv . δ represent choice points
for the agent, the outcome of stochastic actions is chosen by nature. To make
nondeterminism and stochastic actions coexist, we resolve the former in the spirit
of DTGolog [2]: we always choose the branch that maximizes a reward function.

4 The Semantics of prGolog

For each program from the plan library we want to determine whether or not
it explains the observations. To this end we resolve nondeterminism (e.g., con-
currency by interleaving) decision-theoretically: when a nondeterministic choice
point is reached, the interpreter opts for the alternative that leads to a situation
s with the greatest reward r(s). To keep computation feasible only the next l
actions of each nondeterminstic alternative are evaluated. In Section 5 a reward
function is shown that favors situations that explain more observations. Thus
program execution reflects (observed) reality as closely as possible.

The central part of the interpreter is the function transPr(δ, s, l, δ′, s′) = p
which assigns probabilities p to one-step transitions from (δ, s) to (δ′, s′). A
transition is assigned a probability greater zero iff it is an optimal transition wrt
reward function r and look-ahead l; all other transitions are assigned a proba-
bility of 0. transPr determines the optimal transition by inspecting all potential
alternatives as follows: (1) compute all decompositions γ; δ′ of δ where γ is a next
atomic action of δ, (2) find a best decomposition γ; δ′, and (3) execute γ. By
atomic action, we mean primitive, test, and stochastic actions. A decomposition
is considered best if no other decomposition leads to a higher-rewarded situation
on average after l more transitions.

Plan Recognition by Program Execution in Continuous Temporal Domains 161

At first, we will define the predicateNext(δ, γ, δ′) that determines all decompo-
sitions γ; δ′ of a program δ. We proceed with the function transAtPr(γ, s, s′) = p
which holds if executing the atomic action γ in s leads to s′ with probability
p. Then, we define a function value(δ, s, l) = v which computes the estimated
reward v that is achieved after l transitions of δ in s given that nondeterminism
is resolved in an optimal way. value is used to rate alternative decompositions.
With these helpers, we can define transPr(δ, s, l, δ′, s′) = p.

In our definition we often use if ∃x . φ(x) then ψ1(x) else ψ2 as a macro for
(∃x . φ(x)∧ψ1(x))∨ (∀x .¬φ(x)∧ψ2) where x is also visible in the then-branch.

4.1 Program Decomposition

Next(δ, γ, δ′) holds iff γ is a next atomic action of δ and δ′ is the rest. It very
much resembles ConGolog’s Trans predicate except that it does not actually
execute an action. Like ConGolog, we need to quantify over programs; for the
details on this see [6]. Here are the definitions of Next needed for this paper:

Next(Nil , γ, δ′) ≡ False

Next(α, γ, δ′) ≡ γ = α ∧ δ′ = Nil (α atomic)

Next(πv . δ, γ, δ′) ≡ ∃x .Next(δvx, γ, δ
′)

Next(δ1; δ2, γ, δ
′) ≡ ∃δ′1 .Next(δ1, γ, δ′1) ∧ δ′ = δ′1; δ2 ∨

Final(δ1) ∧Next(δ2, γ, δ
′)

Next(δ1 ‖δ2, γ, δ′) ≡ ∃δ′1 .Next(δ1, γ, δ′1) ∧ δ′ = δ′1 ‖δ2 ∨
∃δ′2 .Next(δ2, γ, δ′2) ∧ δ′ = δ1 ‖δ′2.

δvx stands for the substitution of x for v in δ. Final(δ) holds iff program execution
may terminate, e.g., for δ = Nil . We omit it for brevity.

4.2 Executing Atomic Actions

Now we turn to executing atomic actions with transAtPr . Test actions are the
easiest case because the test formula is evaluated in the current situation:

transAtPr(φ?, s, s′) = p ≡ if φ[s] ∧ s′ = s then p = 1 else p = 0.

Primitive actions have timestamps encoded as parameters like in sequential,
temporal Golog, which are of the newly added sort real [15]. The BAT needs to
provide axioms time(A(x, τ)) = τ to extract the timestamp τ of any primitive
action A(x, τ) and the function start(do(a, s)) = time(a) which returns a situa-
tion’s start time. The initial time start(S0) may be defined in the BAT. Using
these, transAtPr can ensure monotonicity of time:

transAtPr(α, s, s′) = p ≡
if time(α[s]) ≥ start(s) ∧ Poss(α[s], s) ∧ s′ = do(α[s], s)

then p = 1 else p = 0.

162 C. Schwering et al.

When a stochastic action β is executed, the idea is that nature randomly
picks a primitive outcome action α. The axiomatizer is supposed to provide two
macros Choice(β, α) and prob0(β, α, s) = p as in [16]. The former denotes that
α is a feasible outcome action of β, the latter returns the probability of nature
actually choosing α in s. Probabilities are of sort real. The number of outcome
actions must be finite. The axiomatizer must ensure that (1) any executable
outcome action has a positive probability, (2) if any of the outcome actions is
executable, then the probabilities of all executable outcome actions add up to 1,
(3) no stochastic actions have any outcome action in common, and (4) primitive
outcome actions do not occur in programs as primitive actions. The transAtPr
rule returns the probability of the outcome action specified in s′ if its precondi-
tion holds and 0 otherwise:

transAtPr(β, s, s′) = p ≡
if ∃α, p′ .Choice(β, α) ∧ transAtPr(α, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0.

4.3 Rating Programs by Reward

The function value uses transAtPr to determine the maximum (wrt nondeter-
minism) estimated (wrt stochastic actions) reward achieved by a program. For
a program δ and a situation s, value inspects the tree of situations induced
by stochastic actions in δ up to a depth of look-ahead l or until the remain-
ing program is final and computes the weighted average reward of the reached
situations:

value(δ, s, l) = v ≡

if ∃v′ . v′ = max
{(γ,δ′)|Next(δ,γ,δ′)}

∑
{(s′,p)|transAtPr(γ,s,s′)=p∧p>0}

p · value(δ′, s′, l − 1) ∧

l > 0 ∧ (Final (δ) ⊃ v′ > r(s))

then v = v′ else v = r(s).

The expression max{(γ,δ′)|Next(δ,γ,δ′)} f(γ, δ′) = v stands for

∃γ, δ′ .Next(δ, γ, δ′) ∧ v = f(γ, δ′) ∧ (∀γ′, δ′′)(Next(δ, γ′, δ′′) ⊃ v ≥ f(γ′, δ′′)).

For an axiomatization of the sum we refer to [1].

4.4 Transition Semantics

Finally, transPr simply looks for an optimal decomposition γ; δ′ and executes γ:

transPr(δ, s, l, δ′, s′) = p ≡
if ∃γ .Next(δ, γ, δ′) ∧ transAtPr(γ, s, s′) > 0 ∧(
∀γ′, δ′′ .Next(δ, γ′, δ′′) ⊃ value(γ; δ′, s, l) ≥ value(γ′; δ′′, s, l)

)
then transAtPr(γ, s, s′) = p else p = 0.

Plan Recognition by Program Execution in Continuous Temporal Domains 163

The function is consistent, i.e., transPr(δ, s, l, δ′, s′) returns a unique p, for
the following reason: If a primitive or a test action is executed, the argument is
trivial. If a stochastic action β is executed, this is reflected in s′ = do(α, s) for
some primitive outcome action α and the only cause of α is β due to requirements
(3) and (4). We will see that transPr is all we need for online plan recognition.

5 Plan Recognition by Program Execution

In our framework, plan recognition is the problem of executing a prGolog pro-
gram in a way that matches the observations. An observation is a formula φ
which holds in the world at time τ according to the sensors (e.g., φ might tell
us the position of each car at time τ). For each of the, say, n vehicles, we
choose a δi from the pre-defined programs as hypothetical explanation for the
ith driver’s behavior. These hypotheses are combined to a comprehensive hy-
pothesis δ = (δ1 ‖ . . . ‖ δn) which captures that the vehicles act in parallel. We
determine whether or not δ explains the observations. By computing a confidence
for each explanation we can ultimately rank competing hypotheses.

To find a match between observations and program execution, we turn each
observation into an action match(φ, τ) which is meant to synchronize the model
with the observation. This is ensured by the precondition Poss(match(φ, τ), s) ≡
φ[s, τ] which asserts that the observed formula φ actually holds in the model at
time τ . Hence, an executed match action represents an explained observation.

Plan recognition can be carried out online roughly by repeating two steps:
(1) If a new observation is present, merge the match action into the rest program.
(2) Execute the next step of the hypothesis program.
In practical plan recognition, it makes sense to be greedy for explaining as many
observations as possible, with the ultimate goal of explaining all of them. This
behavior can be easily implemented with our decision-theoretic semantics. Recall
that the interpreter resolves nondeterministic choice points by opting for the
alternative that yields the highest reward r(s) after l further look-ahead steps.
We achieve greedy behavior when we provide the reward function

r(s) = number of match actions in s.

While being greedy is not always optimal, this heuristic allows us to do plan
recognition online. Since the interpreter can execute no more than l match ac-
tions during its look-ahead, nondeterminism is resolved optimally as long as the
program contains at least l match actions. Thus, (2) is more precisely:
(2) If the program contains at least l match actions, execute the next step.

We now detail steps (1) and (2). Let δ be the hypothesis. The initial plan
recognition state is {(δ, S0, 1)} because, as nothing of δ has been executed yet,
it may be a perfect hypothesis. As time goes by, δ is executed incrementally.
However, the set grows because each outcome of a stochastic action must be
represented by a tuple in the set.

Incoming observations are merged into the candidate programs by appending
them with the concurrency operator. That is, when φ is observed at time τ we

164 C. Schwering et al.

replace all configurations (δ, s, p) with new configurations (δ ‖match(φ, τ), s, p).
When the number of match actions in δ is at least l, we are safe to update
the configuration by triggering the next transition. Thus, upon matching the
observation φ at time τ , a state Si of the plan recognition evolves as follows:

Si+1 = {(δ′, s′, p′) | (δ, s, p) ∈ Si, δ contains ≥ l − 1 match actions,

D ∪ C |= p · transPr(δ‖match(φ, τ), s, l, δ′, s′)=p′ ∧ p′ > 0}
∪ {(δ‖match(φ, τ), s, p) | (δ, s, p) ∈ Si, δ contains < l − 1 match actions}

where D is a BAT and C are the axioms of our language. To simplify the pre-
sentation we assume complete information about the initial situation S0.

Finally, we roughly describe how hypotheses can be ranked. Generally the idea
is to sum the probabilities of those executions that explain the observations. By
this means the hypothesis go straight is ranked very well in Figure 1a, whereas
the wide oscillations in Figure 1b cut off many of the likely but small tolerances.
A complication arises because transPr does not commit to a single nondetermin-
istic alternative if both are equally good wrt their reward. While our implemen-
tation simply commits to one of the branches which are on a par, transPr returns
positive probabilities for all of them. With requirements (3) and (4) from Subsec-
tion 4.2 it is possible to keep apart these alternative executions. For space reasons
we only sketch the idea: let Ui ⊆ Si be a set of configurations (δ, s, p) that stem
from one of the optimal ways to resolve nondeterminism. Then the confidence of

Ui being an explanation so far is
∑

(δ,s,p)∈Ui
p · r(s)

r(s)+m(δ) where m(δ) is the num-

ber of match actions that occur in the program δ. This weighs the probability of
reaching the configuration (δ, s, p) by the ratio of explained observations r(s) in
the total number of observations r(s) +m(δ). Since there are generally multiple

Ui, the confidence of the whole hypothesis is maxUi

∑
(δ,s,p)∈Ui

p · r(s)
r(s)+m(δ) .

6 Classifying Driving Maneuvers

We have implemented a prGolog interpreter and the online plan recognition
procedure in ECLiPSe-CLP,2 a Prolog dialect. We evaluated the system with a
driving simulation, TORCS,3 to recognize driving maneuvers. Our car model is
implemented in terms of stochastic actions like setVeloc and setYaw and fluents
like x and y which are functions of the velocity, yaw, and time. The preconditions
of primitive actions, particularly of waitFor and match, impose constraints on
these functions. For performance reasons we restrict the physical values like yaw
and velocity to finite domains and allow only timestamps to range over the full
floating point numbers so that we end up with linear equations. To solve these
linear systems we use the constraint solver COIN-OR CLP.4 The look-ahead to
resolve nondeterministic choice points varies between two and three.

2 http://www.eclipseclp.org/
3 http://torcs.sourceforge.net/
4 http://www.coin-or.org/

Plan Recognition by Program Execution in Continuous Temporal Domains 165

We modified the open source racing game TORCS for our purposes as a
driving simulation. Twice a second, it sends an observation of each vehicle’s
noise-free global position (Xi, Yi) to the plan recognition system. According to
our notion of robustness, it suffices if the observations are within the model’s
tolerance. The longitudinal and lateral tolerance of each driver Vi is specified
by the fluents Δx (Vi) and Δy(Vi) (cf. Section 3). Therefore, TORCS generates
formulas of the form

φ = ∧i |x(Vi)−Xi| ≤ Δx (Vi) ∧ |y(Vi)− Yi| ≤ Δy(Vi).

Thus, the plan recognition system needs to search for possible executions of the
candidate programs that match the observed car positions. If a smaller toler-
ance is good enough to match the observations, the confidence in the candidate
program being an explanation for the observation is higher.

In our experiments, the online plan recognition kept the model and reality in
sync with a delay of about two to five seconds. A part of this latency is inher-
ent to our design: a delay of (look-ahead)/(observations per second) seconds is
inevitable because some observations need to be buffered to resolve nondeter-
minism reasonably. This minimal latency amounts to 1.5 s in our setting, the
rest is due to computational limitations.

6.1 Passing Maneuver

In our first scenario, a human-controlled car passes a computer-controlled car. To
keep the equations linear, both cars have nearly constant speed (about 50 km/h
and 70 km/h, respectively). Six test drivers drove 120 maneuvers in total, 96
of which were legal passing maneuvers (i.e., overtake on the left lane) and 24
were random non-legal passing maneuvers. We tested only one hypothesis which
consisted of a program overtake for the human driver and a program go straight
for the robot car. Note that even though the robot car’s candidate program is
very simple, it is a crucial component because the passing maneuver makes no
sense without a car to be passed. Hence, this is an albeit simple example of
multi-agent plan recognition.

We encountered neither false positives nor false negatives: For all non-passing
maneuvers the candidate program was rejected (confidence 0.0). In case the
driver indeed did pass the robot car, our system valued the candidate program
by a clearly positive confidence: 0.54 on average with standard deviation ±0.2.

6.2 Aggressive vs Cautious Passing

In the second experiment, the human may choose between two ways to pass
another vehicle in the presence of a third one as depicted in Figure 2. Robot car
A starts in the right lane and B follows at a slightly higher speed in the left lane.
The human, C, approaches from behind in the right lane with the aim to pass A.
C may either continuously accelerate and attempt to aggressively pierce through
the gap between B and A. Alternatively, if C considers the gap to be too small,

166 C. Schwering et al.

C

B

A

Fig. 2. While B passes A, C may choose between two maneuvers

he or she may decelerate, swing out behind B, and cautiously pass A. To keep
the equations linear, we approximate acceleration by incrementing the velocity
in the model iteratively instead of setting it just once. Our system compares two
competing hypotheses, one for C driving cautiously and one for the aggressive
maneuver. The candidates for A and B are simply go straight again. Note that
although the programs for A and B are very simple, they are crucial because
otherwise A and B would not move in the model.

We conducted this experiment 24 times with two different test drivers for
C, each driving aggressively and cautiously in equal shares. When C behaved
cautiously, this hypothesis was rated 0.3 on average (±0.11) while the aggressive
hypothesis was rated 0.0. When C drove aggressively, the aggressive program was
rated 0.57 on average (±0.12) and the cautious hypothesis was rejected with 0.0.
Hence, the system distinguished correctly between the alternative hypotheses.

7 Discussion and Conclusion

In this paper, we proposed a new action language for specifying the behavior
of multiple agents in terms of high-level programs. Among other things, the
language combines decision theory to resolve nondeterminism with concurrency,
and it supports temporal flexibility as well as robustness using stochastic actions.

On top of this language, we built online plan recognition by program execution.
Observations are translated into match actions which are executed concurrently
with candidate programs. Based on the decision-theoretic component and the
transition semantics, a greedy heuristic, which preferred a maximal number of
matched observations, worked well in our experiments.

The handling of continuous time and robustness distinguishes our approach
from others like [9,4,7,5,14]. Neither of the approaches supports continuous time
and change. [7,5] also simulate candidate plans, but they require an action sensor,
which is not given in continuous domains. Also, they do not provide any means
to handle the mismatch between model and reality (cf. Section 2). While we
use the plan library to reduce the space of explanations, [14] builds upon a pre-
defined set of goals for which optimal plans (wrt a cost function) are computed
and compared to the observed actions. This might lead to explanations that
appear atypical to humans. We could achieve similar behavior with a program
like (πa . a)∗;φ? which boils down to planning for goal φ. However, it is not clear
whether or not [14] could handle fluent observations in continuous domains. Note
that our approach also works if observations are sparser than in our experiments
– the system just needs to match fewer observations.

Plan Recognition by Program Execution in Continuous Temporal Domains 167

However, much more needs to be done to deal with real-world traffic sce-
narios. We believe that recognition can be improved with more realistic models
of acceleration and the like. Also, qualitative models like QTC [17] should be
considered. The assumption of complete information also needs to be relaxed.
Finally, we are interested not only in recognizing plans but to predict potentially
dangerous future situations to assist the driver.

Acknowledgements. We thank the anonymous reviewers for their helpful sug-
gestions. The first author is supported by the B-IT Graduate School.

References

1. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence 111(1-2), 171–208 (1999)

2. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proc. of the 17th Nat’l Conf. on
Artificial Intelligence (AAAI 2000), Menlo Park, CA, pp. 355–362 (July 2000)

3. Bui, H.H., Venkatesh, S., West, G.: Policy recognition in the abstract hidden
markov model. Journal of Artificial Intelligence Research 17, 451–499 (2002)

4. Charniak, E., Goldman, R.: A probabilistic model of plan recognition. In: Proc. of
the Ninth Nat’l Conf. on Artificial Intelligence (AAAI 1991), pp. 160–165 (1991)

5. Geib, C., Goldman, R.: A probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence 173, 1101–1132 (2009)

6. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artif. Intell. 121, 109–169 (2000)

7. Goultiaeva,A.,Lespérance,Y.:Incrementalplanrecognitioninanagentprogramming
framework. In: Geib, C., Pynadath, D. (eds.) Proc. of the AAAIWorkshop on Plan,
Activity, and Intent Recognition (PAIR 2007), pp. 52–59. AAAI Press (July 2007)

8. Grosskreutz, H., Lakemeyer, G.: cc-Golog – an action language with continuous
change. Logic Journal of the IGPL 11(2), 179–221 (2003)

9. Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: Proc. of the Fifth Nat’l
Conf. on Artificial Intelligence (AAAI 1986), pp. 32–37 (1986)

10. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. J. Log. Program. 31, 59–84 (1997)

11. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation
routines. Artificial Intelligence 171(5-6), 311–331 (2007)

12. McCarthy, J.: Situations, Actions, and Causal Laws. Technical Report AI Memo
2 AIM-2, AI Lab, Stanford University (July 1963)

13. Pynadath, D.V., Wellman, M.P.: Accounting for context in plan recognition, with
application to traffic monitoring. In: Proc. of the Eleventh Annual Conf. on Un-
certainty in Artificial Intelligence (UAI 1995), pp. 472–481. Morgan Kaufmann
(1995)

14. Ramirez, M., Geffner, H.: Plan recognition as planning. In: Proc. of the 21st Int’l
Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 1778–1783 (2009)

15. Reiter, R.: Sequential, temporal GOLOG. In: Proc. of the Int’l Conf. on Principles
of Knowledge Representation and Reasoning (KR 1998), pp. 547–556 (1998)

16. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

17. Van de Weghe, N., Cohn, A.G., Maeyer, P.D., Witlox, F.: Representing moving
objects in computer-based expert systems: the overtake event example. Expert
Systems with Applications 29, 977–983 (2005)

Modeling Human Motion Trajectories

by Sparse Activation of Motion Primitives
Learned from Unpartitioned Data

Christian Vollmer1, Julian P. Eggert2, and Horst-Michael Gross1

1 Ilmenau University of Technology,
Neuroinformatics and Cognitive Robotics Lab,

98684 Ilmenau, Germany
christian.vollmer@tu-ilmenau.de

2 Honda Research Institute Europe GmbH
63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

Abstract. We interpret biological motion trajectories as being com-
posed of sequences of sub-blocks or motion primitives. Such primitives,
together with the information, when they occur during an observed tra-
jectory, provide a compact representation of movement in terms of events
that is invariant to temporal shifts. Based on this representation, we
present a model for the generation of motion trajectories that consists
of two layers. In the lower layer, a trajectory is generated by activat-
ing a number of motion primitives from a learned dictionary, according
to a given set of activation times and amplitudes. In the upper layer,
the process generating the activation times is modeled by a group of
Integrate-and-Fire neurons that emits spikes, dependent on a given class
of trajectories, that activate the motion primitives in the lower layer.
We learn the motion primitives together with their activation times and
amplitudes in an unsupervised manner from unpartitioned data, with a
variant of shift-NMF that is extended to support the event-like encoding.
We present our model on the generation of handwritten character trajec-
tories and show that we can generate good reconstructions of characters
with shared primitives for all characters modeled.

Keywords: sparse coding, non-negative matrix factorization, motion
primitives, spiking neurons.

1 Introduction

Studies in animal motor control suggest that the motor system consists of a
control hierarchy, where a number of low-level motor primitives control muscle
activations to perform small movements and a higher level controls the sequen-
tial activation of those motor primitives to perform complex movements [1]. In
addition, motor primitives are shared amongst high-level motions.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 168–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling Human Motion Trajectories 169

0 50 100 150

0.5

0.0

0.5

1.0

ẋ

0 50 100 150

t

1.0

0.5

0.0

0.5

1.0

ẏ

15 10 5 0 5 10 15
x

15

10

5

0

y

Fig. 1. Ten example handwritten character trajectories of the letter ’a’ of our dataset,
plotted as velocity space over time (left) and in pen space (right). Throughout this
paper, training of the models and generation of trajectories is done in velocity space.
The pen space representation is obtained by integrating the velocity over time. The
pen space is shown for an intuitive visualization.

We present a model for the generation of motion trajectories that is inspired
from those results. We demonstrate our model on the generation of handwritten
character velocity trajectories (see Fig. 1).

We model a trajectory as being composed of short parts that are shared
between different trajectories and form a dictionary. We call those parts motion
primitives. In a generative interpretation, a motion primitive can be activated at
a certain point in time to generate a characteristic temporal sequence of points
in space for a short time period. This dictionary can be learned from data, as
will be presented later. See Fig. 2 for an exemplary set of motion primitives that
have been learned from handwritten character trajectories. Given a dictionary of
motion primitives, a trajectory can then be represented by the activation times
and amplitudes of those primitives for generating the trajectory (see Fig. 3).
This representation provides an alternative encoding of the trajectory in terms
of sparse events, also called a sparse code.

As will be shown later, for similar trajectories, the activation times and am-
plitudes are again similar. Thus, we can characterize different classes of trajec-
tories, e.g. the character classes ’a’, ’b’, etc., by the typical activation times and
amplitudes of the motion primitives for those classes. To generate a trajectory
from a desired class, first the activations have to be sampled and then the motion
primitives have to be activated according to those activations.

Thus, we have a two-layered model for character trajectory generation. In the
lower layer, given a set of activation times, a trajectory is generated by activating
a number of motion primitives, that have been learned beforehand. As learning
algorithm, we use the Non-negative Matrix Factorization (NMF).

In the upper layer of our two-layered model, the exact order and timing of
the primitives is controlled with a timing model that stores knowledge about the
typical activation times and amplitudes of the primitives for a desired class of

170 C. Vollmer, J.P. Eggert, H.-M. Gross

0 20 40 60 80 100 120

0.2

0.1

0.0

0.1

0.2
ẋ

0 20 40 60 80 100 120

t

0.2

0.1

0.0

0.1

0.2

ẏ

4 3 2 1 0 1 2 3 4
x

4

3

2

1

0

1

2

3

4

y

Fig. 2. Exemplary selection of motion primitives learned from the handwritten char-
acter data set in velocity space (left) and in pen space (right). In the left plot, the
motion primitives (separated by dashed lines) have been appended to each other for
visualization.

trajectories. The process generating the activation times is modeled by a group of
Integrate-and-Fire (I&F) neurons (one for each motion primitive) that generate
spikes, dependent on a given class of trajectories. The spikes are interpreted
as activation times for the motion primitives in the lower layer. The input to
the I&F neurons is the class-specific temporal activation density, which is also
learned from the data.

We discuss related work in Sec. 2. Our approach is described in detail in Sec.
3. In Sec. 4, we show that we can generate visually appealing characters and
illustrate some crucial parameter dependencies. Finally, we conclude our work
in Sec. 5.

2 Related Work

There are a variety of approaches for sequencing of motion by means of motion
primitives. The research in this area can be divided into two groups. In the
first group, the existence of motion models is assumed that have been hand-
crafted or learned in isolation in a supervised manner. In this group the most
prominent approaches model motion primitives with Hidden Markov Models
(see e.g. [6]) or Dynamic Movement Primitives (see e.g. [9]). Approaches in this
group typically aim at a representation that can be used for reproduction on
humanoid robots. In the second group, motion models are learned from the data
in an unsupervised manner (see e.g. [12] and [5]). Those approaches typically aim
at finding representations of data that are interpretable and uncover interesting
features in the data. Our approach belongs to the second group.

In the domain of time series processing, sparse coding has been mainly used
for auditory signal coding. In [8], the authors aim at computing a sparse rep-
resentation of natural audio signals in form of spike trains, where the spikes
mark activations of a fixed and hand-crafted set of basis functions. Given this
set of basis functions, the amplitude and timing of their activations are learned.

Modeling Human Motion Trajectories 171

The authors argue that such a representation provides a very efficient encoding
and uncovers the underlying event-like structure of the signal. This work has
been extended (e.g. in [11]) to also learn the basis functions to find an optimal
dictionary or code of the signal. The authors show that the emerging basis func-
tions can be compared to auditory receptors in animals and thus are naturally
interpretable.

The main problem of such approaches is that the gradient-based techniques,
used for optimization of the activations and the basis functions, lead to multi-
ple adjacent activations with high values (activation traces; see Fig. 4 left), as
opposed to sharply localized spikes desired for a sparse encoding. As a conse-
quence, instead of optimizing the activations directly, heuristics like Matching
Pursuit are used, where the subset of the activations is selected one after an-
other by correlation with the basis functions and thresholding. We show in this
paper, however, that temporally isolated activities can also be achieved without
selection heuristics, but instead by directly formulating a penalty for adjacent
activities and including this penalty as an additional energy-term for the basis
vector decomposition model. During optimization, the penalty term naturally
leads to a competition between rivaling activities, eliminating adjacent activa-
tions (see Fig. 4 right).

More recently, NMF has been applied to find patterns in data like neural
spike trains [10] or walking cycles of human legs with constant frequency [5]. The
length of the basis vectors must be specified manually and is typically chosen to
be of the length of the expected patterns, e.g. a single spike pattern or a single
walking cycle. However, for human movement data like handwriting, where a
pattern in this sense is a whole character, NMF in this form can not be applied
due to temporal variations of the underlying patters, like different speed profiles.
Our approach is to interpret a pattern to be a combination of even smaller sub-
parts (see Fig. 3), where the parts themselves have a lower temporal variability
and the variability of the whole pattern is captured by shifting the parts in a
small local region.

The above mentioned models address only the learning of basis functions and
their activations. Our model additionally learns typical activation patterns for
different classes of trajectories. In [12] an approach is presented, which is similar
to our approach, but where the primitives in the lower layer are modeled by a
factorial HMM (fHMM). To the contrary, we use a sparse coding framework,
specifically the Non-negative Matrix Factorization (NMF), for learning the mo-
tion primitives, together with their activation times from unpartitioned training
trajectories in an unsupervised manner. Further, in contrast to [12], where the
layers are learned jointly, we separate the learning for the benefit of decreased
computational complexity.

3 Method

In the following, the steps for learning the parameters of the layers in our model
and for the generation of the trajectories will be described. The learning pro-
cedure consists of three stages. In the first stage motion primitives are learned

172 C. Vollmer, J.P. Eggert, H.-M. Gross

from training trajectories in an unsupervised manner. In the second stage the
activations of those motion primitives for all training trajectories in one class
are temporally aligned. In the third stage, the aligned activities of all training
trajectories in one class are used to learn class-specific intensity matrices (the
activation density) of the I&F neurons that control the sequence of primitives.

3.1 Motion Primitive Learning

We formulate the motion primitive learning in the NMF framework. In general,
with NMF one can decompose a set of N input samples into a small number
K ' N of basis vectors and coefficients, called activations, to superimpose
these to reconstruct the inputs. By imposing a non-negativity constraint and
specific sparsity constraints on the activations, the resulting basis vectors are
interpretable as parts that are shared amongst the inputs and constitute an
alphabet (or dictionary) underlying the data [7].

We use a combination of two variants of NMF called semi-NMF and shift-
NMF for learning the motion primitives from the handwritten character velocity
profiles. Semi-NMF [3] relaxes the non-negativity constraint, such that only the
activations are required to be non-negative. This allows the motion primitives
to have positive and negative values, which we require for the velocity-based
trajectory representation. Shift-NMF [4] introduces translation-invariant basis
vectors. Thus, a basis vector can occur anywhere in the input, which is necessary
for temporal signals with reoccurring patterns. See Fig. 3 for an example of the
resulting representation.

For ease of notation, we separate the spatial dimensions (ẋ and ẏ) of the
trajectories into distinct matrices, denoted by the upper index d. LetVd ∈ RN×T

denote the matrix of N training trajectories of length T (shorter trajectories are

0 50 100 150

1.0

0.5

0.0

0.5

1.0

1.5

ẋ

V 0

0,t

0 50 100 150

t

1.0

0.5

0.0

0.5

1.0

1.5

ẏ

V 1

0,t

15 10 5 0 5 10 15
x

12

10

8

6

4

2

0

2

4

y

W
0

W
4

W
6

W
12

W
17

W
19

Fig. 3. Reconstruction of one character ’a’ from the training data set after decompo-
sition with NMF, according to eqs. 1 to 6. Left: reconstruction of the velocity profile
of one input character (black line) by the learned parts (colored thick lines), scaled
by their corresponding learned activations (vertical colored lines). The activations rep-
resent a sparse code of the trajectory. Right: velocity reconstruction (left) integrated
over time, resulting in the position of the pen. The parts have also been colored. Note
that shown here are the temporally integrated versions of the actual parts.

Modeling Human Motion Trajectories 173

padded with zeros), with elements V d
n,t. The single trajectories are denoted as

vectors Vd
n. Let W

d ∈ RK×L be the matrix of K basis vectors of length L, with
elements W d

k,l. We denote the single basis vectors by Wd
k. Let H ∈ RN×K×T be

the tensor of activations Hn,k,t of the k-th basis vector in the n-th reconstruction
at time t. In semi-NMF the activations are constrained to be non-negative, and
thus ∀n, t, k : Hn,k,t ≥ 0.

We learn Wd and H with NMF by minimizing the following energy function

F =
1

2

∑
d

∥∥Vd −Rd
∥∥2
2
+ λg

∑
n,k,t

Hn,k,t + λhh(H) . (1)

The matricesRd ∈ RN×T are the reconstructions of the trajectories by activation
of the basis vectors Wd through activations H, which can be formulated as a
temporal convolution

Rd
n,t =

∑
k

∑
t′

Hn,k,t′Ŵ
d
k,t−t′ . (2)

Here, we introduced normalized basis vectors Ŵd
k, where the normalization is

done jointly over all dimensions d. This normalization is necessary during learn-
ing to avoid scaling problems as described in [4].

The first two terms of the energy function 1 formalize the standard approxi-
mation scheme commonly used for sparse non-negative matrix factorization (see
e.g. [2]), where the first term is the distance measure and the second term is a
penalization of the overall sum of activations. Additionally, we introduced the
function h, which is crucial to get an encoding interpretable as spike-like activa-
tions and will be described later.

This optimization problem can be solved by alternatingly updating one of the
factors H or Wd, while holding the other fixed. For semi-NMF usually a combi-
nation of least-squares regression of the basis vectors and multiplicative update
of the activations is used [3]. The former, however has very high computational
demands in the case of shift-NMF and is not applicable for our problem. Thus,
we have to resort to gradient descent techniques. The following steps are re-
peated iteratively until convergence after initializing H and Wd with Gaussian
noise.

1. Build reconstruction according to Eq. 2
2. Update the activities by gradient descent and make them non-negative

Hn,k,t ← max
(
Hn,k,t − ηH∇Hn,k,t

F, 0
)

(3)

∇Hn,k,t
F = −

∑
d,t′

(
V d
n,t′ −Rd

n,t′
)
Ŵ d

k,t′−t + λg + λh∇Hn,k,t
h (4)

3. Build reconstruction according to Eq. 2
4. Update the basis vectors by gradient descent

W d
k,l ← W d

k,l − ηW∇Wd
k,l

F (5)

∇Wd
k,l

F = −
∑
n,d′

∑
t′

(
V d′
n,t′ −Rd′

n,t′

)
Hn,k,t′−l∇Wd

k,l
Ŵ d′

k,l (6)

174 C. Vollmer, J.P. Eggert, H.-M. Gross

The factors ηH and ηW are the learning rates. Note that the temporal correla-
tions (all the sums over t′) can be computed very efficiently in Fourier space.
Note further, that expansion of the gradient in eq. 6 introduces dependencies
between the dimensions. The derivation of the update equations by gradient
descent from eq. 1 is straight forward and, thus, ommitted here.

Since two slightly shifted versions of the same basis vector are highly corre-
lated with each other, typically, there are multiple non-zero activities at adjacent
locations, which contradicts our idea of spike-like activations that are temporally
isolated (see Fig. 4 (left)). Although non-isolated activities might give smoother
trajectories, for the interpretation of the activities as temporal events that mark
the beginning of motion parts, it is important to have clearly segregated activa-
tion peaks. In most approaches this is implemented by a heuristic like Matching
Pursuit, which selects a subset of few activations beforehand. Instead, we enforce
sharply localized activations directly by formulating a penalty for adjacent acti-
vations into the energy function by adding a term h that introduces a competition
between adjacent activities. The competition is implemented by convolution of
the activations with a triangular kernel function zH(k, k′, t − t′) that penalizes
neighboring activities.

h(H) =
∑
n,k,t

Hn,k,t

∑
k′,t′

zH(k, k′, t− t′)Hn,k′,t′ (7)

zH(k, k′, t− t′) =

{
0 if k = k′, t− t′ = 0(
1−

∣∣∣ t−t′
w

∣∣∣) · I (∣∣∣ t−t′
w

∣∣∣ < 1
)

otherwise
, (8)

where w is the kernel width, which we set to twice the length of the basis vectors.
In the case of k = k′, activities of the same basis vector and adjacent to t are
penalized, such that isolated spike-like activities emerge. In the case of k �= k′,
the activities of all other basis vectors that try to reconstruct the same part
of the input are penalized. Thus, we enforce that approximately only one basis
vector can be active during a time interval of L (the length of a basis vector)
steps and that it can be active only once during that interval. See Fig. 4 for an
illustration of the effect of the local activity competition.

After applying NMF to the data, we have a representation of the input in
terms of learned basis vectors and activities. We interpret the basis vectors as
motion primitives and their corresponding activities as temporal activations of
the motion primitives. See Fig. 3 for an illustration of the resulting representa-
tion.

We observed that the activations are similar for trajectories of the same class.
Thus, we can characterize a class by the average activations of a class. This will
be used to build a model for the generation of activities for a given class.

3.2 Alignment of Activity Patterns

On top of the motion primitive layer we build a model for the generation of
activations of motion primitives, given a character class. This model will be

Modeling Human Motion Trajectories 175

0 20 40 60 80 100 120 140

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
H

0
,k
,t

k=1

k=2

k=4

k=5

k=7

k=8

k=9

0 20 40 60 80 100 120 140

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
0
,k
,t

k=2

k=5

k=6

k=7

k=8

Fig. 4. Effect of the local activity competition. Without local activity competition
(left), the activities (vertical colored lines) are distributed over adjacent locations.
With the local sparsity extension (right), only one activity in a local cluster wins and
all other activities are forced to zero.

parametrized by an intensity matrix I ∈ RK×T which is the relative frequency
of an activation greater than zero of primitive Wk at time t and a scaling matrix
S ∈ RK×T , which is the average amplitude of an activation of the k-th primitive
at time t

Ik,t =
1

N

∑
n

H̄n,k,t , Sk,t =

∑
n Hn,k,t

NIk,t
, (9)

where H̄n,k,t = Θ(Hn,k,t) is the binarized activity and Θ is the Heavyside func-
tion.

The training trajectories in the data set, however, exhibit some variation in
start time and average speed, which is also reflected in the activation patterns
after the NMF step. This negatively affects the computation of I (see blue line
in Fig. 5 (left)) and S, because instead of having localized peaks, the intensities
are spread over time. We align the activity patterns by associating with each
training trajectory an offset an and stretching factor bn and optimizing an and bn
iteratively by gradient ascent on the correlation between the individual activity
pattern H̄n,k,t and a linear interpolation of Ik,t. After this optimization, we apply
eq. 9 again, but with the aligned activities, i.e. corrected by an and bn to get
the aligned intensity matrix Î and the aligned scaling matrix Ŝ.

3.3 Activity Generation

To model the generation of activities in the upper layer, we use a stochastic
Integrate-and-Fire (I&F) model. For each motion primitive, there is one I&F
neuron that activates the motion primitive by generating a spike. As input to
the neurons, we use the average activations we computed earlier as the aligned
intensity matrix Îk,t (see Sec. 3.2).

The k-th neuron generates spikes vk,t ∈ {0, 1}, which are interpreted as acti-
vation times of basis primitives, and thus are the generated counterpart of H̄n,k,t.

176 C. Vollmer, J.P. Eggert, H.-M. Gross

0 50 100 150

t

0

2

4

7

10

12

13

17

18

19
k

I
kt

ˆI
kt

0 50 100 150

t

0

2

4

7

10

12

13

17

18

19

k

ˆS
kt

Fig. 5. Left: unaligned (I) and aligned (̂I) intensity matrices for the character ’a’ for
the first ten basis vectors with highest maximum intensity. The intensities have been
normalized to the maximum intensity of 0.235. Right: scaling matrix obtained from
the aligned activity patterns for the same set of basis vectors. The scaling values have
been normalized to the maximum value of 5.83.

The internal state uk,t of the k-th neuron is modeled by a leaky integrator

uk,t =

⎧⎪⎨⎪⎩
uk,t−1 − νuk,t−1 + Îk,t : t− t′ ≥ δtref

Îk,t − νuk,t−1 : t− t′ = 1

0 : 1 < t− t′ < δtref ,

(10)

where t′ is the time of the last spike before t, δtref is the absolute refractory
time during which the load remains zero, and ν ∈ (0, 1) controls the amount of
leakage. The neuron fires, i.e. vk,t = 1, when uk,t exceeds a noisy threshold θt,
which is sampled from a Gaussian during each simulation step.

After simulation of the I&F neurons, vk,t indicates the activation times for the
motion primitives. For reconstruction of the actual trajectory, we also need the
average amplitudes of the activations, which we computed earlier as the scaling
matrix Ŝ (see Sec. 3.2), since the generated spikes are only binary and they
have to be scaled to actually use them as activations of the basis primitives.
The generated trajectory, which we call R̃d ∈ RT , is then computed by the
convolution of the basis vectors with the scaled spikes

R̃d
t =

∑
k

∑
t′

vk,t′ Ŝk,t′Ŵ
d
k,t−t′ . (11)

4 Results

We demonstrate our model on the Character Trajectories Data Set [12] available
from the UJI Machine Learning Repository. We use the subset of all characters
consisting of only one stroke, since there is no principled approach to deal with
trajectories consisting of multiple strokes and, thus, having a large discontinuity,
yet. This will be investigated in future research.

Modeling Human Motion Trajectories 177

20 15 10 5 0 5 10
x

20

15

10

5

0

y

W
0

W
4

W
13

W
17

W
18

W
19

Fig. 6. Generation of trajectories through spiking neurons. Left: Process of spike gener-
ation, where the upper plot shows the aligned intensity matrix Î, the middle plot shows
the resulting load uk,t from the integration by the I&F model according to eq. 10, and
the lowest plot shows the spikes vk,t that are generated and scaled by Ŝk,t. Right: the
trajectory that results from the convolution of the basis vectors with the scaled spikes
in pen space, according to eq. 11.

Figure 6 shows the results of the sampling of one character trajectory. It can
be seen from the lowest plot on the left side, that exactly one spike is generated
in regions of high intensity (as indicated by the upper plot on the left).

The most crucial parameter of our model is the number of motion primitives,
which must be chosen manually, because it has great influence on the quality
of the reconstructions in the NMF step (see Sec. 3.1). Figure 7 (left) shows the
reconstruction error, which is a measure of the quality of the approximation
of the input, dependent on the number of character classes |C| (i.e. ’a’, ’b’,
etc.) in the training data set and the number of basis components used. For a
fixed number of classes, e.g. |C| = 20, the reconstruction error decreases with
increasing number of motion primitives. From K = 15 to K = 20 there is only a
minor decrease in reconstruction error. This indicates that K = 20 is sufficient
for this data set. Note, however, that this is highly dependent on the data set.
The necessity to manually choose the number of basis components is a restriction
of our approach. However, one can automatize the selection process by running
the optimization multiple times with increasing number of basis components
and stop when the relative decrease in error through addition of a basis vector
is small.

We tested the behavior of the reconstruction error, when the variability of
the training data is reduced, by reducing the number of character classes |C|.
As expected, for a smaller number of character classes, the reconstruction error
saturates at smaller K. Thus, the less variability in the data set the fewer motion
primitives are needed. Except for Fig. 7 (left), in all the simulations of this paper,
we consistently used K = 20 motion primitives. Figure 7 (right) shows the 20
learned basis vectors in pen space. Note, that motion primitives that seem similar
here differ in their speed of execution.

178 C. Vollmer, J.P. Eggert, H.-M. Gross

2 3 5 7 10 15 20

K

20

25

30

35

40

45

50

55

F
/
N

|C|=1

|C|=2

|C|=5

|C|=8

|C|=13

|C|=20

4 3 2 1 0 1 2 3 4 5
x

5

4

3

2

1

0

1

2

3

4

y

Fig. 7. Left: relation between cost F (normalized on the number of inputs N), number
of basis vectors K and number of classes |C|. Choosing more than K = 15 basis vectors
does not result in significant decrease of reconstruction error. Right: 20 learned basis
primitives in pen space (i.e. temporally integrated). Overlapping basis vectors that
appear very similar here, differ in the speed of execution.

Figure 8 shows a number of representatives of successfully generated charac-
ters for all classes. The quality of the generated characters is sensible on the
mean of the Gaussian firing threshold (see Sec. 3.3). If it is is chosen too high,
some parts are not activated and thus missing in the trajectory, which results
in defects in some characters. Further the scaling of the basis vectors sometimes
results in overlong strokes like in the characters ’l’ and ’m’.

Fig. 8. The top row shows one example training character for each class from the train-
ing data set. The other rows show successfully generated samples for all 20 character
classes. For some classes of the generated characters, like ’d’ and ’z’, small defects like
missing parts can be observed.

Modeling Human Motion Trajectories 179

5 Conclusion

We presented a model for learning the generation of handwritten characters
based on a locally sparsified and translationally invariant NMF decomposition
followed by an event-based activation through spiking neurons. The decomposi-
tion of the input patterns into smaller parts and their corresponding composition
by learning their timing regime allows for an efficient handling of the temporal
variations inherent in human movement data. We have shown that with the
proposed model the handwritten characters can be successfully synthesized as a
sequence of successive stroke parts.

The Integrate-and-Fire model for activation of primitives, however, sometimes
results in defects in the resulting trajectories. Here we see room for improvement.
The fact that our model delivers single, isolated spikes in regions with high
intensity, invites for direct statistical models e.g. of Hidden Markov type. This
will be investigated in future research.

References

1. Bizzi, E.: Modular organization of motor behavior in the frog’s spinal cord. Trends
in Neurosciences 18(10), 442–446 (1995)

2. Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative Matrix and Tensor
Factorizations. Wiley (2009)

3. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorization
for clustering and low-dimension representation (2006)

4. Eggert, J., Wersing, H., Körner, E.: Transformation-invariant representation and
NMF. In: Proceedings of the 2004 IEEE International Joint Conference on Neural
Networks, vol. 4, pp. 2535–2539. IEEE (2004)

5. Kim, T., Shakhnarovich, G., Urtasun, R.: Sparse Coding for Learning Interpretable
Spatio-Temporal Primitives. In: Advances in Neural Information Processing Sys-
tems 22 (December 2010)

6. Kulic, D., Ott, C., Lee, D., Ishikawa, J., Nakamura, Y.: Incremental learning of full
body motion primitives and their sequencing through human motion observation.
International Journal of Robotics Research 31(2), 330–345 (2011)

7. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factor-
ization. Nature 401(6755), 788–791 (1999)

8. Lewicki, M.S., Sejnowski, T.J.: Coding time-varying signals using sparse, shift-
invariant representations. In: Advances in Neural Information Processing Systems
11 (1999)

9. Meier, F., Theodorou, E., Stulp, F., Schaal, S.: Movement segmentation using
a primitive library. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3407–3412. IEEE (2011)

10. Roux, J.L., de Cheveign, A., Parra, L.C.: Adaptive Template Matching with Shift-
Invariant Semi-NMF. In: Advances in Neural Information Processing Systems 21
(2009)

11. Smith, E., Lewicki, M.S.: Efficient coding of time-relative structure using spikes.
Neural Computation 17(1), 19–45 (2005)

12. Williams, B., Toussaint, M., Storkey, A.: A primitive based generative model to
infer timing information in unpartitioned handwriting data. In: Proceedings of the
20th International Joint Conference on Artifical Intelligence, IJCAI 2007 (2007)

Nogoods in Qualitative

Constraint-Based Reasoning

Matthias Westphal and Julien Hué

Department of Computer Science, University of Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany
{westpham,hue}@informatik.uni-freiburg.de

Abstract. The prevalent method of increasing reasoning efficiency in
the domain of qualitative constraint-based spatial and temporal reason-
ing is to use domain splitting based on so-called tractable subclasses. In
this paper we analyze the application of nogood learning with restarts in
combination with domain splitting. Previous results on nogood recording
in the constraint satisfaction field feature learnt nogoods as a global con-
straint that allows for enforcing generalized arc consistency. We present
an extension of such a technique capable of handling domain splitting,
evaluate its benefits for qualitative constraint-based reasoning, and com-
pare it with alternative approaches.

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a knowledge represen-
tation discipline that deals with information about relations between objects
defined on infinite domains, such as time and space. For example, two entities
in space might “overlap” or one is a “part of” the other. A common reasoning
task considered in QSTR is to solve constraint satisfaction problems over infinite
domains with constraints from a fixed finite set of relations. With only a finite
number of qualitative relations posing as constraints between entities, the idea
is to employ inference techniques to tighten these constraints.

Constraint-based QSTR problems can be considered as entirely symbolic tasks
where the qualitative relations are treated as symbols. Naturally, this leads to
a constraint satisfaction problem on a finite domain where qualitative relations
are possible values and constraint propagation enforces matching relation tuples.
This type of QSTR has mostly benefited from the development of large tractable
subclasses used by domain splitting branching rules [1,2].

Recently encodings of these problems into Boolean SAT-formulas have at-
tracted considerable interest. The obtained benchmarking results [3,4] indicate
that the constraint-based QSTR methods very often result in good runtime due
to the use of fast, optimized constraint propagation algorithms and domain split-
ting. However, the results also show that the exploration of the search space is
worse on very hard problems compared to SAT solvers on optimized encodings.
This suggest that a blend of SAT/CSP and QSTR techniques should produce
better results. More specifically, associated with runtime distributions is the

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 180–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Nogoods in Qualitative Constraint-Based Reasoning 181

technique of restarting search with learning so-called nogoods – parts of the
search space that do not contain a solution.

We pursue the questions of the impact of nogood learning and restarts on
QSTR problems and how nogood learning can beneficially be used with special-
ized constraint propagation and domain splitting. There is a number of different
approaches that can be taken – here, we focus on solutions that put nogoods
on top of arbitrary propagation techniques. In particular, we mainly discuss a
lightweight solution that does not perform a conflict analysis at each conflict
which has the benefit of being easier to integrate and causes almost no time
overhead on easy problem instances. We only briefly discuss our experience with
conflict analysis at each conflict.

The outline of this paper is as follows. In the next section we give standard
definitions for concepts from constraint satisfaction. In Section 3 we give some
background on QSTR and in Section 4 we introduce techniques to combine no-
goods with domain splitting. Section 5 outlines our implementation and evaluates
the proposed techniques. Finally, Section 6 gives our conclusions.

2 Notation

We define several standard concepts of CSPs.

Definition 1. A finite constraint satisfaction problem (finite CSP) is an
ordered tuple 〈V ,D, C〉, where (i) V is a finite set of variables, (ii) D is a finite set
of values (the domain), (iii) C is a finite set of constraints, where each constraint(
(v1, . . . , vn), R

)
consists of a relation R on Dn and a scope v1, . . . , vn ∈ V.

Definition 2. A solution ϕ of a finite CSP 〈V ,D, C〉 is a function ϕ : V → D
such that for each constraint

(
(v1, . . . , vn), R

)
∈C it holds

(
ϕ(v1), . . . , ϕ(vn)

)
∈R.

We consider depth-first search (DFS) with an inference algorithm φ. To this
end, let dom(v) ⊆ D denote the set of remaining domain values of a variable
v ∈ V at a search node. For backtracking search, we restrict ourselves to a 2-
way branching scheme that employs a domain splitting branching rule [5] which
restricts possible values of a domain rather than assigning a specific value.

Definition 3. A decision on a variable v ∈ V during DFS on a finite CSP
〈V ,D, C〉 is a unary constraint on v, written v ← D = {a1, . . . , an} � dom(v),
that restricts the remaining values of v at succeeding search nodes.

In the 2-way branching scheme, we first perform a positive decision v ← D at
a search node, and once we backtrack to this node, a negative decision v �← D
which is a shorthand for v ← dom(v) \D. Each branch of the search tree can be
seen as a sequence of decisions 〈v1 ← D1, . . . , vn ← Dn〉, where at each search
node i we apply φ after enforcing vi ← Di. The remaining values of each variable
v ∈ V are restricted by φ and we backtrack whenever dom(v) = ∅.

In order to combine nogoods with domain splitting, we require generalized
nogoods which cover not only assignments of single values to variables, but also
arbitrary sets of values.

182 M. Westphal and J. Hué

Definition 4 ([6]). A generalized nogood of a finite CSP 〈V ,D, C〉 is a se-
quence of decisions 〈v1 ← D1, . . . , vn ← Dn〉 such that there is no solution for
〈V ,D, C ∪ { (vi, Di) | 1 ≤ i ≤ n }〉.

3 Qualitative Constraint-Based Reasoning

Usually constraint satisfaction problems are assumed to be defined on a finite
domain. Solutions (or a proof that none exists) are usually generated by explicitly
assigning values to variables. In contrast, within constraint-based QSTR one
considers constraints on infinite domains like time (e.g. the domain Q) or space
(e.g. the domain Q2). Hence, there is no basic default method like enumerating
possible solutions to handle such problems. A key idea in QSTR is to consider
as input constraint languages build on finitely many constraint relations. In this
work, we consider input languages built on a partition scheme defined as follows.

Definition 5 ([7]). A partition scheme on an infinite domain D∞ is a finite
set B of binary relations on D∞ that forms a partition of D∞ × D∞, contains
the identity relation { (x, x) | x ∈ D∞ }, and is closed under converses (B−1 :=
{ (y, x) | (x, y) ∈ B } ∈ B for B ∈ B).

Relation Example

I before J I
J

I meets J I
J

I overlaps J I
J

I during J I
J

I starts J I
J

I finishes J I
J

I equals J I
J

Relation Example

x disconnected y x
y

x externally connected y
x y

x partially overlaps y x
y

x non-tangential proper part y
y
x

x tangential proper part y x y

x equals y x, y

Fig. 1. Base relations (without converses); left : Allen’s Interval Calculus, right : RCC-8

Elements of B are called base relations of the partition scheme and exhaus-
tively describe possible, distinct relations between entities. As an example con-
sider the base relations of Allen’s Interval Calculus [8] (AIC) for temporal rea-
soning and the Region Connection Calculus [9] with 8 base relations (RCC-8) for
spatial reasoning in geographic information systems, depicted in Fig. 1.

To deal with indefinite knowledge we allow disjunctions of base relations to
form relations between entities, e.g. if x1 happened before or after x2 we can
write (x1 beforex2 ∨ x1 after x2). We write B∗ to denote the set of all pos-
sible disjunctions of base relations. This allows us to form logic statements
about the relationship between multiple entities x1, . . . , xn ∈ D∞ by a formula:∧

1≤i<j≤n(
∨

1≤l≤k xiB
l
ij xj), B

l
ij ∈ B. Such formulas are referred to as qualitative

constraint networks.

Nogoods in Qualitative Constraint-Based Reasoning 183

The fundamental reasoning task for qualitative constraint networks is the
consistency problem, i.e., deciding whether the input is consistent wrt. given
inference rules. We here use the relation-algebraic approach that utilizes com-
position (denoted by ◦) on relations to establish local consistency on D∞. The
composition approach (often referred to as path consistency) is equivalent to a
complete set of valid inference rules of the form

∀x, y, z ∈ D∞ : (x R′ y ∧ y R′′ z)→ ¬(x R z), (1)

for R,R′, R′′ ∈ B∗ and R = (R′ ◦R′′). In other words these rules remove those
base relations from every triple that are not locally consistent. For example, we
can conclude that (x ≺ y) ∧ (y ≺ z) ∧ (x + z) is contradictory, since (x ≺
y ∧ y ≺ z) → ¬(x + z ∨ x = z) is a valid rule. Thus, dealing with qualitative
constraint networks can be cast as a finite constraint satisfaction problem. Here,
V = { xij | i < j } ,D = B∗, C = { inference rules (1) }, where xij refers to the
relation between xi and xj . The latter can be used as an intensional constraint
to avoid grounding the rules to tables for all triples. Enforcing these rules is
equivalent to generalized arc consistency (GAC) (see, e.g. [3] for a discussion
and related work). In general, the set of constraints C can be seen as a global
constraint where the inference used is not necessarily built on rules in the form
of (1), e.g. [10]. However, we stick to these rules in this work as it is a general
approach to several qualitative formalisms. The nogood technique introduced
herein is also applicable to specialized inference algorithms.

It is clear that valid rules in the form of (1) can be used to refute statements
as every rule itself is a logically correct inference. The converse, however, is not
necessarily true, as it depends on a “local-to-global” consistency property1 of
the used qualitative calculus (and D∞). Whether there is such a set of rules that
is refutation complete, depends on the used relations and D∞. Problems of this
type are in general undecidable, but both AIC and RCC-8 have good properties
in this regard as we will briefly discuss next.

For both AIC and RCC-8, rules (1) are not refutation complete on the sets B∗

(reasoning here is in fact NP-complete). However, the rules are refutation com-
plete for B. Moreover, these rules are refutation complete for the sets ORD-horn
for AIC, and Ĥ8 for RCC-8. Both ORD-horn and Ĥ8 are strictly larger than the
set of base relations and are maximal tractable subclasses (see [1,2] for detailed
discussion and proofs). The set ORD-horn covers 868 of all the 8192 relations

in AIC, Ĥ8 covers 148 of all the 256 relations in RCC-8. Such tractable sub-
sets motivate the following approach for solving instances that has been used in
qualitative reasoners: (a) use domain splitting to refine relations such that they
are included in a fixed tractable set, (b) maintain local consistency by using the
inference rules on qualitative relations. Wrt. (a), it has been shown [11] that
decisions should need only to take place once per variable on a search branch.

1 Not to be confused with “global consistency” which is a stronger property.

184 M. Westphal and J. Hué

4 Nogoods in Constraint-Based QSTR

There exist different approaches to learning nogoods. We mainly consider the
lightweight approach of Lecoutre et al. [12] where nogoods are only extracted
from search once a solver restarts. Another approach is the work by Katsirelos
and Bacchus [6] where nogoods are learnt from each conflict. We here analyze
how the lightweight approach, originally only considering decisions as assign-
ments of single values, can be extended to generalized nogoods and where this
generalization worsens complexity bounds. For this we only briefly repeat dis-
cussion and arguments found in the work by Lecoutre et al. as our focus is on
domain splitting. More details (without domain splitting) can be found in their
paper. In the following, we assume a finite CSP 〈V ,D, C〉 and use the following
notation for complexity bounds: n as the number of variables in V , d as the size
of the domain D, N as the set of learnt nogoods.

4.1 Extracting Nogoods from Search

The easiest way to learn nogoods during search is to use the current sequence
of decisions whenever backtracking occurs. Hence, we limit ourselves to nogoods
that are (sub-)sequences of decisions starting from the root node of the search
tree. This makes extracting and using nogoods easier, but also means that no-
goods derived in this way are useless for the current DFS, because the 2-way
branching scheme already incorporates information from such failures. For this
reason, we use nogoods in combination with restarts of the DFS.

It is sufficient to only consider the last branch of the search to derive no-
goods, since due to the 2-way branching scheme all previous decision failures are
accounted for. To extract the set of nogoods, we consider all prefixes of the cor-
responding sequence of decisions that end in a negative decision. For each such
sequence 〈v1 ← D1, . . . , vi �← Di〉, 〈v1 ← D1, . . . , vi ← Di〉 was shown to be a
nogood. All negative decisions can be stripped from each nogood since negative
decisions were implied by the search. Additionally, we can try to minimize these
nogoods by looking for a subset of its decisions where inference already finds a
contradiction as in [12]. The number of nogoods derived from a search branch is
unaffected by the generalization to domain splitting, unlike space complexity.

Proposition 1. The space complexity of storing all nogoods that can be ex-
tracted from a search branch is O(n2d) for singleton assignments [12] and
O(n2d2) for domain splitting.

Proof. We argue as in [12]: there are O(nd) nogoods derived from the branch,
each of them covering O(n) positive decisions. Each decision (with domain split-
ting) requires O(d) space and hence O(n2d2) space is required to store nogoods.

4.2 Using Nogoods for Inference

Following the approach by Lecoutre et al., we treat nogoods as additional con-
straints and take them into account when establishing GAC. Each nogood

Nogoods in Qualitative Constraint-Based Reasoning 185

〈v1 ← D1, . . . , vn ← Dn〉 constitutes the constraint dom(v1) �⊆ D1 ∨ · · · ∨
dom(vn) �⊆ Dn. For propagation, we consider a lazy data structure built on
watched literals.

Unfortunately, our extension to generalized nogoods causes the original ap-
proach of [12] to be not directly applicable. For singleton assignments it is suf-
ficient to check if a variable equals a previous decision. For decisions based on
domain splitting, we need to check subset relations. We stick to the idea of
watched literals and extend the original idea by Lecoutre et al. as follows. We
associate two watched literals with each nogood, but a decision v ← D is associ-
ated with a watched literal (v, a) where a �∈ D. As long as a (v, a) is part of the
network, the restriction associated with the decision v ← D has not happened
in the network and the watched literal is valid. Further, we need to make sure
that both watched literals of a nogood are on different variables, since two valid
watched literals guarantee GAC and otherwise restrictions on domain values
apply.

Algorithm 1. Propagation with watched literals for nogood constraints.

1: function propagate(queue)
2: while queue �= ∅ do
3: v ← pick and remove variable from queue
4: for each a removed by revise or removed on v do
5: if not removed(v, a, queue) then
6: return false
7: for every constraint C involving v do
8: for w ∈ scope(C) \ {v} do
9: if revise(w, C) then
10: if dom(w) = ∅ then
11: return false

12: queue ← queue ∪ {w}
13: return true

Algorithm 1 gives the constraint propagation with GAC for generalized no-
goods. It is a regular propagation function with a revise function that handles
the constraints C and additional lines 4-6 that take care of learnt nogoods. The
function removed will handle the learnt nogoods and we invoke it O(nd) times
in our scheme, as opposed to the original algorithm by Lecoutre et al. which
only invokes it if a domain becomes singleton (which only happens O(n) times).

Algorithm 2 details removed and shows how watched literals are managed
and GAC performed on nogoods. In order to achieve a low time complexity,
we note that the order of decisions in a nogood is originally unimportant, such
that we can arrange them in a way where decisions that cannot be watched
anymore are ordered before the currently watched ones. The consequence is that
during constraint propagation every decision in a nogood is analyzed only until
it cannot be watched anymore. This requires a preprocessing step before each
constraint propagation that moves the currently watched decisions to the front of
the nogood, and requires modifying the for-loop over decisions in removed, such
that only decisions behind the currently watched ones are considered (see [12]).

186 M. Westphal and J. Hué

Algorithm 2. Enforce generalized arc consistency on N .

1: function removed(v, a, queue) � a was just removed from dom(v)
2: for each nogood N that watches (v, a) do
3: Let (v′, a′) be the other watched literal in N
4: Let D′ be the assigned set in v′ ← D′ ∈ N
5: if dom(v′) ∩Dv′ �= ∅ then � applicable
6: changed ← false

7: for each decision v′′ ← D′′ ∈ N , v′′ �= v′ do
8: if dom(v′′) �⊆ D′′ then
9: Let (v′′, a′′), such that a′′ ∈ dom(v′′) \D′′

10: Replace (v, a) with (v′′, a′′)
11: changed ← true

12: break
13: if not changed then � enforce GAC
14: dom(v′) ← dom(v′) \D′

15: if dom(v′) = ∅ then return false

16: queue ← queue ∪ {v′}
17: return true

Proposition 2. Enforcing GAC with the watched literal approach for gener-
alized nogoods adds an additional cost of O(nd2|N |) to the time complexity of
existing constraint propagation.

Proof. Working on a decision of a nogood incurs a cost of O(d) (set theoretic
operations). Every decision of a nogood can only be considered O(d) times. We
obtain O(nd2) for each nogood, i.e., the overall complexity O(nd2|N |).

5 Implementation and Evaluation of the Techniques

We have implemented the proposed lightweight nogood technique for domain
splitting, the original technique by Lecoutre et al. [12], and further the extraction
of nogoods via backchaining from conflicts by Katsirelos and Bacchus [6]. The
proposed technique has been implemented in the qualitative constraint solver
GQR 2 [13,3] and thus we have optimized constraint propagators for the inference
rules. GQR represents domains as bitsets and assigns a predefined weight to each
base relation estimating its restrictiveness wrt. composition [14,2]. These weights
allow us to estimate the restrictiveness of remaining domain values by the sum
of the elements’ weights.

Further, we use 2-way branching and maintain GAC (cf. Section 3). The se-
lection of variables is based on dom/wdeg [15], where domain size is replaced
with the weight of the domain. Depending on the used branching strategy, value
selection considers sets contained in a fixed predefined tractable subclass (cf. Sec-
tion 3, domain splitting) or any included singleton value. We here choose a sub-
set of the domain with maximum weight with cardinality used for tie-breaking.

2 http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Resources/GQR

http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Resources/GQR

Nogoods in Qualitative Constraint-Based Reasoning 187

Propagation is handled by a coarse-grained scheme [16], as depicted in Algo-
rithm 1. The queue used is a priority-queue that returns a variable where the
weight of the domain is minimal [14].

For all nogood schemes, we perform unbounded learning, i.e., no extracted
nogood is deleted or ignored. Restarts are based on a geometric restart policy
based on the number of decision failures. The first DFS run is terminated after
10 failures and the limit for the next run is increased by a factor of 1.5.

We evaluate the discussed nogood approaches with the qualitative calculi AIC
and RCC-8. Although we have implemented the generic approach for extracting
nogoods from conflicts presented by Katsirelos and Bacchus [6], we do not detail
here due to a lack of space and the observed running times significantly showing
their generic method is unsuited to this framework.

We compare the following branching strategies with nogoods: (a) singleton as-
signments without restarts or nogoods (b) singleton assignments with the origi-
nal nogood approach from [12], (c) domain splitting without restarts or nogoods,
and (d) domain splitting with our presented nogood approach. For (c), (d) we

use as tractable subclasses ORD-horn [1] for AIC and Ĥ8 [2] for RCC-8. We

write B for (a), B+N for (b), ORD-horn (or Ĥ8) for (c) and ORD-horn+N (or

Ĥ8 +N) for (d). To at least briefly illustrate the behaviour of SAT solvers, we
include results for the specialized encoding of the AIC from [4] called IA2SAT
which is based on network decomposition. We here use the simplification version
of MiniSAT 2.2.0 [17] as backend.

Unfortunately, there is no large set of benchmark instances from applications,
such that we have to rely on randomly generated qualitative constraint networks
as in [1,2,3]. For AIC, we derive random instances by fixing the number of
considered entities, e, the average number of non-trivial qualitative relations an
entity is involved in, c, and the average size of variables’ initial domain, l. This
is the so-called A-model [1], and we write A(e, c, l) to denote the corresponding
set of problems. We set l to be half the number of base relations to obtain a
uniform distribution of relation labels. The set of pairs of entities with non-
trivially relations and the used qualitative relations are chosen randomly, such
that they average around c and l, respectively. In particular, c controls the
tightness of the constraint problem and we use it to obtain problems from the
phase transition. For RCC-8, we use the H-model with the set ofNP8 [1,2], which
only differs from the A-model in requiring selected qualitative relations to be not
included in Ĥ8. For each considered set we generated 1 000 problem instances.
All experiments were conducted on an Intel Xeon CPU with 2.66 GHz, 4 GB
memory, and a CPU time limit of 2 hours.

Tables 1-4 contain our obtained results where the best results are highlighted.
As far as the runtime of the solver is concerned, we can conclude that both
lightweight approaches have a positive impact. The addition of restarts and
nogoods significantly lowers the average number of decisions and the runtime in
every considered setup. We note here that changing the restarting strategy from
the geometric scheme to the Luby sequence, changing the initial restart constant,
or even applying minimization to the learnt nogoods as in [12] causes little change

188 M. Westphal and J. Hué

in the results. The presented results for domain splitting with restarts based on
the geometric scheme without minimization are the best we have observed.

From the results, we further conclude that B + N does not achieve the effi-
ciency of ORD-horn or Ĥ8 approaches. The gap between singleton assignments
and domain splitting remains significant and domain splitting with restarts and
lightweight nogoods outperforms all other variants. For 100 entity networks, we
can see the nogood approaches to achieve a speedup of about 25-50% for medium
to hard instances with very little overhead on easy instances (Tables 1,3). The
nogood approaches have an even more significant impact on larger networks,
where we can observe reductions of more than 50% (see Tables 2,4). Here the
given constraints in networks are less dense and thus (without learnt nogoods)
perhaps less restrictive.

Finally, Fig. 2 gives a per instance instance comparison for the hardest set of
problems in AIC, A(150, 10.5, 6.5). We can see for both nogood techniques the
runtime on satisfiable instances becomes scattered (most likely due to restarts),
while runtimes on unsatisfiable instances deviate less but show a positive trend

Table 1. Times and decisions for AIC in each set A(100, c, 6.5)

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

10.0 B 997 34 044.83d 395d 1 140d 7 976d 46 478d
78.67s 0.28s 1.96s 17.96s 100.43s

B +N 999 19 601.61d 403d 754d 2 736d 14 754d
39.09s 0.24s 0.82s 4.68s 24.94s

ORD-horn 1 000 3 646.24d 102d 368d 1 395d 5 771d
6.87s 0.11s 0.60s 2.66s 10.62s

ORD-horn +N 1 000 2 111.70d 129d 336d 1 051d 3 014d
3.57s 0.12s 0.38s 1.56s 4.96s

10.5 B 993 57 959.71d 113d 1 168d 13 451d 91 228d
126.71s 0.15s 1.93s 27.12s 215.01s

B +N 996 37 156.55d 86d 767d 5 249d 41 549d
70.43 s 0.11s 0.98s 9.08s 82.20s

ORD-horn 1 000 6 716.61d 57d 388d 2 230d 10 076d
12.56s 0.06s 0.59s 4.18s 19.57s

ORD-horn +N 1 000 4 169.03d 60d 335d 1 344d 5 688d
7.03s 0.07s 0.42s 2.08s 9.34s

IA2SAT 1 000 15 401.87d 2 016d 9 694d 22 680d 36 388d
56.59s 34.15s 46.96s 65.91s 99.47s

11.0 B 995 35 040.04d 23d 507d 4 477d 38 619d
76.42s 0.03s 0.71s 7.76s 78.06s

B +N 996 19 680.94d 25d 401d 2 781d 20 910d
36.28s 0.03s 0.45s 4.48s 34.75s

ORD-horn 1 000 3 839.38d 13d 209d 1 144d 5 694d
7.23s 0.02s 0.29s 1.94s 10.57s

ORD-horn +N 1 000 2 882.40d 18d 198d 911d 4 354d
5.03s 0.03s 0.25s 1.39s 7.31s

Nogoods in Qualitative Constraint-Based Reasoning 189

Table 2. Times and decisions for AIC in the set A(150, 10.5, 6.5)

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

10.5 ORD-horn 889 161 697.01d 3 702d 39 021d 358 550d –
746.97s 16.38s 182.29s 1 632.30s –

ORD-horn +N 929 135 370.43d 2 424d 17 822d 173 075d 1 089 146d
578.11s 9.25s 74.74s 727.24s 4 695.58s

IA2SAT 967 98 011.87d 32 152d 81 126d 146 257d 252 273d
1 105.24s 377.95s 728.56s 1 446.35s 3 155.23s

Table 3. Times and decisions for RCC-8 in each set H(100, c, 4.0)

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

14.5 B 1 000 5 941.69d 1 561d 1 922d 3 846d 9 903d
7.92s 0.27s 0.98s 4.25s 14.34s

B +N 1 000 3 442.47d 1 557d 1 824d 2 616d 5 740d
3.26s 0.25s 0.54s 1.79s 6.73s

Ĥ8 1 000 1 105.05d 115d 303d 951d 2 595d
1.01s 0.07s 0.24s 0.83s 2.34s

Ĥ8 +N 1 000 843.40d 188d 364d 727d 1 694d
0.63s 0.08s 0.17s 0.48s 1.36s

15.0 B 1 000 8 790.21d 816d 1 989d 4 947d 16 149d
12.87s 0.29s 1.47s 5.96s 24.56s

B +N 1 000 7 182.89d 747d 1 854d 3 495d 8 805d
9.19s 0.28s 0.93s 3.14s 10.48s

Ĥ8 1 000 1 705.25d 164d 478d 1 500d 3 926d
1.58s 0.11s 0.39s 1.33s 3.71s

Ĥ8 +N 1 000 1 315.95d 200d 511d 1 200d 2 577d
1.08s 0.10s 0.30s 0.88s 2.12s

15.5 B 1 000 6 537.62d 177d 1 412d 3 301d 10 673d
9.58s 0.15s 0.68s 3.61s 14.90s

B +N 1 000 4 339.76d 174d 1 225d 2 600d 6 541d
5.60s 0.15s 0.57s 2.46s 7.93s

Ĥ8 1 000 1 437.97d 99d 315d 1 031d 2 710d
1.32s 0.06s 0.23s 0.92s 2.52s

Ĥ8 +N 1 000 1 197.78d 128d 352d 954d 2 198d
1.01s 0.07s 0.21s 0.72s 1.84s

(cf. Fig. 2). We also have to acknowledge that the proposed technique does not
strongly reduce the heavy-tailed behavior (cf. Fig. 2).

In summary, nogoods with restarts clearly improve the robustness and ef-
ficiency with little overhead on easy instances. The proposed technique is an
improvement and clearly outperforms IA2SAT on instances with 100 entities,
and for 150 entities with the exception of the hardest 10% of instances.

190 M. Westphal and J. Hué

Table 4. Times and decisions for RCC-8 in the set H(150, 16.0, 4.0)

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

16.0 Ĥ8 989 105 926.94d 2 395d 11 043d 65 433d 273 493d
226.87s 4.76s 23.12s 137.88s 604.58s

Ĥ8 +N 992 57 999.05d 1 241d 3 802d 20 172d 116 095d
120.45s 1.81s 7.10s 41.68s 232.59s

Fig. 2. Plotted data for AIC A(150, 10.5, 6.5)

6 Conclusion

In this paper, we have discussed and analyzed an extension of the nogood record-
ing and inference technique presented by Lecoutre et al. [12] to a branching
scheme with domain splitting. The overhead caused by the extension to domain
splitting is low polynomial and the method is still efficient.

We have further shown how nogood techniques are applicable in the field
of qualitative constraint-based reasoning and help to improve the efficiency of
constraint solving. The profound impact of nogood learning and restarts that
we demonstrate also helps to understand empirical results of recently studied
SAT encodings. Our results show that the approach is well suited to improve
qualitative reasoning procedures, in particular because it can be used with any
inference algorithm on qualitative relations.

With regard to learning nogoods from conflicts, we note that while the generic
method of Katsirelos and Bacchus [6] has not performed well in our case, we
have not tried alternative, specialized methods tailored towards the considered
constraints. It was shown by Katsirelos and Bacchus that it is often desirable to
construct such specialized methods for extracting nogoods. Moreover, it would
be interesting to consider the impact of structural restrictions as considered by
Boolean SAT encodings [4] in the context of extracting nogoods.

Nogoods in Qualitative Constraint-Based Reasoning 191

Another interesting point for qualitative reasoning is the question whether a
general approach building on inference rules as used here is desirable or if a focus
on specialized inference methods for particular formalisms is more beneficial.

Acknowledgements. This work is an improved version of earlier work that
appeared as a poster [18]. We are grateful for helpful comments from our previ-
ous coauthors Stefan Wölfl and Jason Li on work done for the poster. Further,
we thank reviewers for suggestions and comments. This work was supported by
DFG (Transregional Collaborative Research Center SFB/TR 8 Spatial Cogni-
tion, project R4-[LogoSpace]).

References

1. Nebel, B.: Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-horn class. Constraints 1(3), 175–190 (1997)

2. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. Journal of
Artificial Intelligence Research (JAIR) 15, 289–318 (2001)

3. Westphal, M., Wölfl, S.: Qualitative CSP, finite CSP, and SAT: Comparing meth-
ods for qualitative constraint-based reasoning. In: Boutilier, C. (ed.) IJCAI 2009,
pp. 628–633 (2009)

4. Li, J.J., Huang, J., Renz, J.: A divide-and-conquer approach for solving interval
algebra networks. In: Boutilier, C. (ed.) IJCAI 2009, pp. 572–577 (2009)

5. van Beek, P.: Backtracking search algorithms. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming. Elsevier (2006)

6. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Veloso, M.M., Kamb-
hampati, S. (eds.) AAAI 2005, pp. 390–396. AAAI Press/The MIT Press (2005)

7. Ligozat, G., Renz, J.: What Is a Qualitative Calculus? A General Framework.
In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI),
vol. 3157, pp. 53–64. Springer, Heidelberg (2004)

8. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

9. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Nebel, B., Rich, C., Swartout, W.R. (eds.) KR 1992, pp. 165–176 (1992)

10. Bodirsky, M., Kára, J.: A fast algorithm and datalog inexpressibility for temporal
reasoning. ACM Trans. Comput. Log. 11(3) (2010)

11. Condotta, J.-F., Ligozat, G., Saade, M.: Eligible and Frozen Constraints for Solving
Temporal Qualitative Constraint Networks. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 806–814. Springer, Heidelberg (2007)

12. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods
from restarts. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4),
147–167 (2007)

13. Westphal, M., Wölfl, S., Gantner, Z.: GQR: A fast solver for binary qualitative con-
straint networks. In: Proceedings of the AAAI 2009 Spring Symposium on Bench-
marking of Qualitative Spatial and Temporal Reasoning Systems (2009)

14. van Beek, P., Manchak, D.W.: The design and experimental analysis of algorithms
for temporal reasoning. Journal of Artificial Intelligence Research 4, 1–18 (1996)

192 M. Westphal and J. Hué

15. Boussemart, F., Hemery, F., Lecoutre, C., Säıs, L.: Boosting systematic search
by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI 2004, pp.
146–150. IOS Press (2004)

16. Bessière, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Elsevier (2006)

17. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Westphal, M., Wölfl, S., Li, J.J.: Restarts and nogood recording in qualitative
constraint-based reasoning. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI
2010, pp. 1093–1094. IOS Press (2010)

Stochastic Gradient Descent with GPGPU

David Zastrau and Stefan Edelkamp

Faculty 3—Mathematics and Computer Science, University of Bremen,
P.O. Box 330 440, 28334 Bremen, Germany

Abstract. We show how to optimize a Support Vector Machine and
a predictor for Collaborative Filtering with Stochastic Gradient Descent
on the GPU, achieving 1.66 to 6-times accelerations compared to a CPU-
based implementation. The reference implementations are the Support
Vector Machine by Bottou and the BRISMF predictor from the Netflix
Prices winning team. Our main idea is to create a hash function of the in-
put data and use it to execute threads in parallel that write on different
elements of the parameter vector. We also compare the iterative opti-
mization with a batch gradient descent and an alternating least squares
optimization. The predictor is tested against over a hundred million data
sets which demonstrates the increasing memory management capabilities
of modern GPUs. We make use of matrix as well as float compression to
alleviate the memory bottleneck.

1 Introduction

General Purpose GPU (GPGPU) computing is an ongoing field of research
that has been dynamically evolving over the last few years. The continuation
of Moore’s Law seems to depend on the efficient application of parallel plat-
forms. We support evidence that parallel programs on the GPU offer a growing
field of research for many machine learning [14] methods. The techniques have
been chosen by the criteria of accelerated Stochastical Gradient Decent (SGD)
search. Our main goal is to show that parallel SGD obtains adequate precision
while achieving proper speedups at the same time. We conduct two case studies.

Support Vector Machines (SVMs) belong to the most frequently applied ma-
chine learning techniques that can exploit SGD for training. SVMs are, however,
not typical applications for parallelization, due to data dependencies and high
memory requirements. In addition, there exist very efficient CPU implementa-
tions like Leon Bottou’s SVM that significantly outperforms well-known libraries
for the given training data, so that we take it as an appropriate benchmark for
a fast sequential implementation. Bottou’s implementation is already a factor of
about 50 faster than LIBSVM 1 (but can deal only with linear kernels). Catan-
zaro et al. [3] used CUDA to achieve a 9 to 35-times speedup compared to training
with LIBSVM. Classification was even 81 to 138-times faster. Both implemen-
tations used Sequential Minimal Optimization [8]. However, they didn’t imple-
ment regression and no 32-bit-floating-point-arithmetic. The software package

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 193–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 D. Zastrau and S. Edelkamp

by Carpenter [2] also uses Sequential Minimal Optimization to optimize SVMs
and supports regression as well as 64-bit floating point arithmetic. Their code
runs 13 to 73 times faster for training and 22 to 172 faster for classification than
the CPU reference implementation.

Collaborative Filtering (CF) has become a relevant research subject since
the public offer of the Netflix Price [12]. The original training data set poses
a challenge to the GPU memory management capabilities. Furthermore, matrix
factorization is well suited for parallel applications. We investigated if even those
applications might benefit from GPGPU. Kato & Hosino [5] claim that they were
able to speed up the training for Singular Value Composition by a factor of 20. In
this work they use the same gradient as Webb and an own algorithm for matrix
compression. However, they just use randomly generated data and they do not
give information regarding the precision of the results.

Next, we present GPGPU essentials leading to the infrastructure we used.
Then we consider SGD and its parallelization on the GPU and turn to the two
scenarios with individual performance studies.

2 GPGPU Essentials

GPGPU programming refers to using the Graphical Processing Units (GPUs) for
scientific calulations other than mere graphics. In contrast to Central Processing
Units (CPUs), GPUs are programmed through kernels that are run on each
core and executed by a set of threads. Each thread of the kernel executes the
same code. Threads of a kernel are grouped in blocks. Each block is uniquely
identified by its index and each thread is uniquely identified by the index within
its block. The dimensions of the thread and the thread block are specified at
the time of launching the kernel. Programming GPUs is facilitated by APIs and
supports special declarations to explicitly place variables in some of the memories
(e.g., shared, global, local), predefined keywords (variables) containing the block
and thread IDs, synchronization statements for cooperation between threads, a
runtime API for memory management (allocation, deallocation), and statements
to launch functions on the GPU. This minimizes the dependency of the software
from the given hardware.

The memory model loosely maps to the program thread-block-kernel hierar-
chy. Each thread has its own on-chip registers, which are fast, and off-chip local
memory, which is quite slow. Per block there is also an on-chip shared mem-
ory. Threads within a block cooperate via this memory. If more than one block
is executed in parallel then the shared memory is equally split between them.
All blocks and threads within them have access to the off-chip global memory
at the speed of RAM. Global memory is mainly used for communication be-
tween the host and the kernel. Threads within a block can communicate also via
light-weight synchronization.

GPUs have many cores, but the computational model is different from the
one on the CPU. A core is a streaming processor with some floating point and
arithmetic logical units. Together with some special function units, streaming

Stochastic Gradient Descent with GPGPU 195

Table 1. Comparison between several techniques for parallel programming

Properties
API

OpenMP Pthreads MPI GPGPU OpenGL

Architecture MIMD MIMD MIMD SIMD SIMD

Synchronisation
• lock-step + + + + +
• bulk + + + +/- -
• fine-Grain + + + +/- -

Model
Process-Interaction shared

memory
shared
memory

message
passing

shared
memory -

• Task Parallelism (+) + + + -
• Data Parallelism + (+) (+) + +

Scalability + - - + -
Transparency - + + + +
Overhead (implementation) + ◦ ◦ - -
Overhead (resources) + + ◦ - -

processors are grouped together to form streaming multiprocessors. Program-
ming a GPU requires a special compiler, which translates the code to native
GPU instructions. The GPU architecture mimics a single instruction multiple
data computer with the same instructions running on all processors. It sup-
ports different layers for accessing memory. GPUs forbid simultaneous writes to
a memory cell but support concurrent reads.

On the GPU, memory is structured hierarchically, starting with the GPU’s
global memory called video RAM, or VRAM. Access to this memory is slow, but
can be accelerated through coalescing, where adjacent accesses with less than
word-width number bits are combined to full word-width access. Each streaming
multiprocessor includes a small amount of memory called SRAM, which is shared
between all streaming multiprocessors and can be accessed at the same speed as
registers. Additional registers are also located in each streaming multiprocessor
but not shared between streaming processors. Data has to be copied to the
VRAM to be accessible by the threads.

Since frameworks like CUDA have enabled programmers to utilize the in-
creased memory and thread management capabilities of modern GPUs, there is
a wider selection of applications for GPGPU. Multiple levels of threads, memory,
and synchronization provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. Thus gradi-
ent based mini-batch or even iterative optimization techniques such as SGD may
be efficiently run in parallel on the GPU. Regarding flexibility and capabilities
GPGPU is positioned between high level parallel programming lnguages such as
OpenMP and classical shader programming (see Table 1).

To illustrate the potential of GPGPU programming for machine learning we
experimented with a Boltzman machine for solving TSPs [7]. They belong to
the class of auto-associative networks that have one layer of neurons. They are
completely connected, meaning that changes in activity of a single neuron prop-
agate iteratively across the whole network. Boltzmann Machines do not sup-
port direct feedback, i.e., a neuron is not connected to itself. Thus, in principal

196 D. Zastrau and S. Edelkamp

auto-associative networks are no neural networks. A Boltzmann Machine is in-
herently parallel and thus we obtained a 487-fold speedup for 30 towns. While
the application scales almost linearly on the GPU, it scales exponentially on the
CPU. For more than 120 consumption exceeds the limits of the grapics device.

We encapsulate data fields that needs to be copied between CPU and GPU to
minimize the number of data transfers and to store the data in the order in which
it is accessed by the threads. Size and indices of data fields are encapsulated and
data fields are buffered since older GPU architectures only support 32-bit words.
The indices are stored in 1-dimensional texture memory, since this contains a
cache even in older GPU architectures and every thread frequently accesses the
indices. Besides, this reduces memory complexity because data is conglomerated
in a buffer and thus data transfers are handled in one single transaction. If
required it is also possible to just copy single data fields of arbitrary size.

Concerning the infrastructure, the running time is evaluated with functions
from the NVIDIA CUDA Event API. It guarantees precise measurements even if
the program execution is handed to the GPU for several seconds for synchronous
calls in the worst case. The GPU (GeForce GTX 470) of the experiments has
been overclocked by Zotac. It contains 14 streaming processors. Since the warp
size is currently 32, there will be at most 30 · 14 · 32 = 13440 concurrent threads
at a time on the chip that will be executed with a shader clock frequency of
1215 MHz. The memory size (1280 MB) is sufficient for all data sets that are
used in this work. As opposed to older GPUs its shared memory size is 64 KB
(older architectures normally have 16 kilobyte of shared memory) and supports
atomic floating point arithmetic. The CPU (i5-7502) from Intel has 2.66GHz
clock frequency and 8192 KB Cache. The operating system was Ubuntu 11.04
32 bit. Dependent on the algorithm and its input data it was necessary to close
the X-server before running the program. We used Valgrind as a profiling tool
to identify the parts of the application with a high arithmetic complexity.

3 Stochastic Gradient Descent and Parallelization

SGD approximates the true gradient for each new training example by θ =
θ − η

∑N
i=1∇L(θi), where θ is a weight vector, η is the (adaptive) learning rate

and L is some loss function. SGD is inherently sequential and tends to converge
to local minima for non-convex problems. As a compromise θ may be updated
by mini-batches, consisting of the sum of several training examples. The idea of
mini-batches complements the semi-parallel CUDA programming paradigma

SGD converges to a good global solution, while the parallel computation of
the gradients is likely to produce poor results because the parallel processing
of the input data has the negative side effect that threads do not profit from
and even more do not consider the changes in the objective that other threads
are performing at the same time. A hybrid approach is to use the non-optimal
parallel solution to rapidly converge to some adequate solution and than further
improve this solution by using the CPU-based solution. This approach combines
the shorter execution time for one training iteration on the GPU with the better

Stochastic Gradient Descent with GPGPU 197

precision on the CPU. The time for data transfer alone often exceeds the com-
plete CPU-based training time. Therefore, it is necessary to also implement the
validation on the GPU. Although the validation only requires reading access, we
adopted the memory access pattern from the training procedure.

Bottou [1] states that SGD is well suited for SVMs because the problem
is based on a simple convex objective function. This also applies well for CF.
Even for SVMs we found that almost 70% of the CPU instructions are used
for vector addition and scalar products, an indicator that the application might
benefit from GPGPU. But since the vector length is most often limited to a few
dozen elements, standard functions such as those from the CUBLAS-library are
practically inapplicable. The input data is already provided as support vectors,
which are used to fix θ in each episode. Since the vectors lengths vary greatly,
they cannot be simply partitioned on thread blocks with a fixed number of
threads. Additionally each training episode requires numerous memory accesses
to θ that do not exhibit spatial locality which could be efficiently exploited by
the VRAM-controller. As a solution to this problem, θ might be loaded into
shared memory. Considering the limited shared memory size of only 64KB the
training data has to be loaded piecewise and a hash function has to be defined so
that every thread may infer its input data from its thread ID. In other words the
hash function allows a block of threads to load exactly those elements of θ into
shared memory which are needed for the training data that has been assigned
to this block.

4 Application: Collaborative Filtering

Matrix Factorization for CF is based on the idea that any matrix R ∈ RN×M

with ratings can be approximated by a matrix P ∈ RN×K of user IDs and a
matrix Q ∈ RK×M with article IDs: R ≈ PQ. Here N is the number of users,
M is the number of articles and K is the number of parameters, that are used
to characterize those. The bigger one chooses K the more precisely R can be
approximated. This approach holds the advantage to generalize to non-existent
ratings based on two low-dimensional matrices. Takács et al. [11] calculate the
prediction error by

eui =
1

2
((rui − r̂ui)

2 + λpT
upu + λqT

i qi), (1)

where rui is the actual rating, r̂ui the prediction and λ is a regularization factor.

Thus the gradient may be calculated by

∂

∂puk
e′ui = −eui · qki + λ · puk (2)

∂

∂qki
e′ui = −eui · puk + λ · qki (3)

and therefore the SGD update rule in each step for user puk and movie qki is:

p′uk = puk + ηp(u, i, k) · (eui · qki − λp(u, i, k) · puk) (4)

q′ki = qki + ηq(u, i, k) · (eui · puk − λq(u, i, k) · qki). (5)

198 D. Zastrau and S. Edelkamp

To compare the SGD to a batch optimization we also implemented an Alternat-
ing Least Squares optimization on the GPU where the update step is basically
pu = Wudu, where du denotes the input-output covariance vector and Wu is
the updated inverted covariance matrix of input.

Although solving this least squares problem normally involves matrix inver-
sion, Koren et al. [6] developed an update rule that is based on the Sherman–
Morrison formula and only shows quadratic complexity.

The idea is to adjust the inverted covariance matrix in each step to the new
training example rather than completely recalculate it.

Wu = Wu −
(Wuqi)⊗ (qT

i Wu)

1 + qT
i Wuqi

(6)

du = du + qi · rui (7)

This technique is also based on matrix factorization but yields the advantage that
P and Q are alternately being updated so that either P or Q can be treated as
in- or output and be written in parallel.

Fig. 4 shows that first of all P and Q are being compressed to the required
dimensions. Afterwards a hash function φ is being created that maps every user
to the movies he has rated. Thus multiple threads can simultaneously process the

Fig. 1. Control flow in Collaborative Filtering

Stochastic Gradient Descent with GPGPU 199

ratings by one user in a shared memory. Next the training data is transferred to
the GPU and the optimization is being performed. Batch (ALS) and mini-batch
(ASGD) optimization need an extra step to load the data into shared memory.

As application we choose the Netflix-competition that was finished in 2009 and
awarded the winners with one million US-Dollar. First of all, Netflix provided
with over hundred million user ratings the biggest real data set for collabora-
tive filtering so far. Secondly, during the competition many interesting machine
learning techniques have been developed. Two of them, both based on matrix
factorization, will be accelerated by the GPU in this work. Netflix is an on-
line DVD rental agency, which uses an AI-based system to recommend movies
to users based on their previous purchases. The system that Netflix used until
the conclusion of the competition on September 21st in 2009 had a root mean
squared error (RMSE) of 0.95256. The RMSE is defined as follows (τ denotes
the training set):

RMSE =
√

SSE/ | τ | with SSE =
∑

(u,i)∈τ

e2ui =
∑

(u,i)∈τ

(
rui −

K∑
k=1

pukqki

)2

Töscher et al. [12] won the competition with a final RMSE of 0.8554. They used
(amongst others) an estimator called Biased Regularized Incremental Simulta-
neous Matrix Factorization (BRISMF). It has been introduced in 2008 in the
context of a progress report for the Netflix competition. It also uses SGD. We re-
implemented BRISMF for the GPU, Fig. 2 shows the profile of time vs. accuracy
for our implementation of BRISMF using the netflix data.

Before measuring the RMSE for the first time we train the model once with
the complete training data set which is why the RMSE only improves by about
10 percent afterwards. This first training episode is also the reason why the
curves do not start at time zero. We see that the naive parallelization gives good
results. The error (0.9101) is slightly bigger than the original one (0.9068), on

Fig. 2. BRISMF time-accuracy trade-off for K = 40

200 D. Zastrau and S. Edelkamp

Fig. 3. SGD and ASGD for K = 10

Fig. 4. SGD and ASGD for K = 40

the other hand we measure a speedup of 1088/180 = 6.04. It should be noted
that the overall precision for both programs increases if we increase K.

The comparison between SGD, ASGD and ALS in Fig. 3 shows, that alter-
nating SGD yields the worst results. Although ASGD shows a 80/30 ≈ 2.66-fold
speedup and gives always the same results, it converges to 0.941, as opposed to
0.922 for SGD on the CPU (for K = 10). While a greater value for K gives up to
9-fold speed-up, Fig. 4 shows that the precision remains on a clearly lower level.

5 Application: Support Vector Machine

Raw data presented to a supervised statistical machine learning algorithm [10]
is often mapped to a set of numerical values, called the feature vector. The
classification problem deals with the prediction of the labels l of previously
unknown feature vectors x ∈ Rd that constitute the test data. During training,

Stochastic Gradient Descent with GPGPU 201

Fig. 5. Control flow in SVM training

a partitioning of the feature space Rd is learned, where each partition is assigned
a label based on a set of training samples with known label. The challenge is to
approximate the unknown distribution without overfitting the training data.

Support Vector Machines [13] achieve this task by learning coefficients for
a kernel mapping to a high-dimensional space, where a linear class border is
spanned up by a number of support vectors that outline the data.

We keep the presentation brief as there are text books on SVMs and related
kernel methods [4,9]. Theoretically, it should be sufficient to determine the class
border by just three support vectors. However, it is not known in advance if
any of the known kernels realises a suitable mapping. The use of generic kernels
instead leads to a much larger number of support vectors (which critically influ-
ence classification time). In the worst case finding a separating hyperplane takes
quadratic time in the number of data points.

Leon Bottou [1] uses a SVM to classify text documents. He applies stochastic
gradient decent for training and classifying wrt. a linear SVM. This state-of-
the-art already gives good results after a very short time (order-of-magnitudes
speedup) compared to other libraries, like SVMLight or SVMPerf2. The gradient
update rule for an observation x and corresponding classification y is given by

2 http://leon.bottou.org/projects/sgd

202 D. Zastrau and S. Edelkamp

Fig. 6. A hash function to map input to threads during parallel execution

θt+1 = θt − ηt∇�(xi(t), yi(t); θt)− ηt · ∇r(θt), (8)

where θ is the weight vector, ηt is the learning rate at time t, ∇ is the first
derivative, � is some loss function and i(t) is some random index. The error on
the validation data can be checked by summing over all misclassifications:

Number of errors =
∑
i

{
1, if yi(θ · xi − b) < 0

0, else.
(9)

The control of flow is shown in Fig. 5. The compression of the input vectors
in Fig. 6 is implemented with an STL-vector and has been accelerated with
OpenMP. While the support vectors vary in length and are scattered across θ,
the hash function sorts the input data so that every block of threads processes
an equal amount of spatially correlated input data. The hash is like a register
that enables each thread to map its input to the global weight vector. This is
significantly more efficient on the GPU than transferring the indices itself for
each thread, because this would double the size of input data. Creating the hash
and resorting the input data is implemented with arrays since dynamic data
structures like lists are too slow and would over-compensate the speedup from
the following calculation of φ.

int n = 0 ;
for (id = min ; id < max ; ++id) {

weight = input [id] ;
i f (hash [weight] . map >= |θ|)

hash [weight] . map = n++;
output [id] = hash [weight] . map ; }

To speed up the data transfer, floating point numbers are compressed to 16-
bit integers on the CPU via the OpenEXR3-library and extracted on the GPU
via half2float, which is very accurate especially for input values near zero

3 http://www.openexr.com

Stochastic Gradient Descent with GPGPU 203

Fig. 7. SVM episodes on GPU/CPU with and without validation

and does not affect the overall precision. Threads collaborate block-wise during
training. At first all of the weights, which are required by the threads, are loaded
into shared memory. Then comes a thread barrier. Finally each of the thread
processes adds the delta to the shared memory. The mapping of shared memory
into global memory is implemented by the hash function. Afterwards there is
another thread barrier before the threads collaboratively write the delta from
the shared memory to the global memory, i.e. add it to θ. Loading the data works
analogous for the validation. Each thread checks for the correct classification and
adds one to the global error counter in case its wrong. The training data size
is substantial (≈ 350MB). Since training takes only about 1.4 seconds and the
training data must be first of all uploaded to the GPU, the best possible speed-up
is limited. The results with/without cross validation are shown in Fig. 7. It shows
that training on the CPU is faster for up to four training episodes because of
the initial computational overhead for creating a hash function and transferring
data to the GPU. After five episodes the combined training and validation is
faster on the GPU.

6 Concluding Remarks

In this paper we showed, that GPUs are already suited to accelerate machine
learning techniques with gradient decent. We used different optimization tech-
niques to minimize the memory requirements on the GPU and were able to
process hundreds of megabytes on the GPU efficiently. Momentarily, parame-
ters have to be adjusted sometimes to the specific GPU architecture, although

204 D. Zastrau and S. Edelkamp

this is likely to change in the future. We tested local as well as global gradients
and compared speed, precision and scalability of each method. We were able to
accelerate BRISMF by a factor of 6 while SVMs showed a 1.66-fold speedup.

References

1. Bottou, L.: Stochastic gradient SVM (2010),
http://leon.bottou.org/projects/sgd#stochastic_gradient_svm

2. Carpenter, A.: cuSVM: a CUDA implementation of SVM (2009),
http://patternsonascreen.net/cuSVMDesc.pdf

3. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training
and classification on graphics processors. In: ICML, pp. 104–111 (2008)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press (2000)

5. Kato, K., Hosino, T.: Singular value decomposition for collaborative filtering on a
GPU. Materials Science and Engineering 10(1), 12–17 (2010)

6. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42, 30–37 (2009)

7. L-Applegate, D., Bixby, R.E., Chvatal, V., Cook, W.J.: The Travelling Salesman
Problem. Princeton University Press (2006)

8. Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support
vector machines (1998),
http://research.microsoft.com/pubs/69644/tr-98-14.pdf

9. Schoelkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2001)
10. Summa, M.G., Bottou, L., Goldfarb, B., Murtagh, F., Pardoux, C., Touati, M.

(eds.): Statistical Learning and Data Science. Chapman & Hall (2011)
11. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Matrix factorization and neighbor

based algorithms for the Netflix Prize problem. In: ACM Conf. on Recommendation
Systems, pp. 267–274 (2008)

12. Toescher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the Netflix Grand
Prize (2009)

13. Vapnik, V.N., Chervonenkis, A.Y.: Theory of Pattern Recognition. Nauka, USSR
(1974) (in Russian)

14. Zastrau, D.: Beschleunigte Maschinelle Lernverfahren auf der GPU (2011),
http://anonstorage.net/PStorage/74.diplomarbeit-david-zastrau.pdf

http://leon.bottou.org/projects/sgd#stochastic_gradient_svm
http://patternsonascreen.net/cuSVMDesc.pdf
http://research.microsoft.com/pubs/69644/tr-98-14.pdf
http://anonstorage.net/PStorage/74.diplomarbeit-david-zastrau.pdf

Improved Query Suggestion by Query Search

Xiaomin Zhang1, Sandra Zilles2, and Robert C. Holte3

1 Amazon.com
xiaominz@amazon.com

2 University of Regina
zilles@cs.uregina.ca

3 University of Alberta
holte@cs.ualberta.ca

Abstract. At the Web Intelligence conference in 2009, Jiang, Zilles, and Holte
introduced a novel approach to query suggestion based on query search (QSQS),
as well as a system-centered evaluation method. For each potentially relevant doc-
ument, QSQS creates a complex query—called a lexical alias for the document—
that ranks the document in its top 20. A technique called Query Search then builds
query suggestions by simplifying the lexical alias.

The present paper improves the state of the art by proposing two new query
suggestion systems, IQSQS and GQSQS. Both replace the generation of lexical
aliases by a simpler and more effective term selection process. They differ in their
control structure: IQSQS builds query suggestions separately for each potentially
relevant document, GQSQS builds them for a set of documents at once.

Both our new systems substantially outperform QSQS in the measures intro-
duced by Jiang et al. to evaluate QSQS; we achieve improvements of up to 30
percent in these measures for short user queries and up to 100 percent for long
user queries. We show empirically that query expansion, which forces the user’s
query to be included in each suggested query, is significantly superior to allowing
the system the freedom to include or exclude terms from the user’s query at its
discretion.

1 Introduction

It is well known that users of search engines such as Google are unlikely to view docu-
ments beyond the top 20 returned by a query [15,6,5]. A query is therefore only effective
in satisfying a user’s information needs if relevant documents are returned in its top 20.
If a user’s initial query is not effective, it is necessary to issue subsequent queries until
an effective one is found. Query suggestion systems assist the user in this process by
suggesting a small number of alternative queries that are likely to be effective.

In this paper we follow the approach to query suggestion pioneered by Jiang et
al. [9,7] and present two query suggestion systems, called IQSQS and GQSQS, that are
substantially superior to Jiang et al.’s system according to their own evaluation mea-
sures (called MCC and MEC) and methodology. These systems are our paper’s main
contributions. An additional contribution is strong experimental evidence that query
suggestion systems aiming to score well according to MCC and MEC should do query
“expansion”, i.e., they should add terms to the user’s query rather than creating queries
that do not contain the user’s query.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 205–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 X. Zhang, S. Zilles, and R.C. Holte

2 Query Suggestion by Query Search (QSQS)

Following Jiang et al., we say that a query “covers” a document if the document is
among the top 20 documents returned by the search engine when the query is issued.
Jiang et al.’s approach to query suggestion is based on their observation [8] that the
probability of a document being relevant to the user’s initial query is inversely propor-
tional to the rank of the document in the initial query’s results list. A query suggestion
that covers documents that the initial query ranks high (but not in its top 20, since the
user has already seen and rejected those) is therefore more likely to be effective than
a query suggestion that covers documents that the initial query ranks low. They called
the documents returned in positions 21–120 by the initial query “reference documents”
and designed their query suggestion system to find queries that cover these documents.

2.1 Objective and Evaluation

Jiang et al. [9] evaluated a set of query suggestions by the number of reference docu-
ments the set covers, either collectively (“MCC”) or on average individually (“MEC”).1

For example, if the set of query suggestions contains 10 queries that collectively
cover a total of 75 reference documents, MCC for this set of suggestions would be 75.
If each of the suggested queries, considered individually, covered 8 reference docu-
ments, MEC would be 8.0. In general, MCC can be no larger than 100, the number of
reference documents. The maximum possible value for MEC is 20, the largest number
of reference documents a single query can potentially cover. For a given MEC value,
the maximum possible value for MCC when 10 queries are suggested is 10*MEC. This
happens only if no reference document is covered by two different suggested queries.
The difference between MCC and this maximum value is an indication of the overlap
in the set of reference documents covered by different suggested queries. In the ex-
treme case, when exactly the same set of reference documents is covered by each of the
suggested queries, MCC will equal MEC.

MCC and MEC relate to the standard Recall measure in the following way. Recall is
the ratio of the number of retrieved relevant documents over the number of all relevant
documents. In our context, all and only the reference documents are considered relevant.
Since their number is always 100, it can be ignored. Retrieving a document by a query
in our context means covering it, i.e., returning it among the top 20 results. Hence MCC
measures the collective Recall of the set of query suggestions a system returns, whereas
MEC measures the expected Recall of a single query suggestion, averaged over all
query suggestions returned for one initial query.

In a similar way, it would be possible to compute Precision values for Jiang et al.’s
system and our new systems. High Precision values are not what we strive for though,
for the following reason. Achieving high Precision means that the query suggestions
made by the system cover as few non-reference documents as possible. As opposed to
that, one of our declared goals is to have a substantial number of non-reference docu-
ments among the results covered by a query suggestion, in order to allow for a more

1 This is the simpler pair of measures Jiang et al. proposed. The other measures take into account
the exact ranks of the reference documents covered. “MCC” is an abbreviation for “Measure
of Cumulative Coverage”, “MEC” means “Measure of Expected Coverage”.

Improved Query Suggestion by Query Search 207

diverse set of documents to be displayed to the user and to take into account the fact
that the assumption that only the reference documents are relevant is not realistic. We
hence restrict the evaluation of our systems to the MCC and MEC measures.

The aim of the system developed by Jiang et al. [9], which we call Query Suggestion
by Query Search (QSQS), is to find a set of 10 suggested queries that maximizes MCC
and, as a secondary criterion, also maximizes MEC.

2.2 The QSQS System Architecture

The design of the QSQS system closely follows the design of Martin and Holte’s system
for finding content-based addresses for web documents [12] and makes heavy use of
their “Query Search” method. Query Search is a generic method for finding a query
that covers a document by forming queries from various subsets of a given set of search
terms and testing if the document is covered by issuing those queries to the search
engine and examining their top 20 results.

Pseudocode describing the key steps in the QSQS system is given in Algorithm 1.
The first processing stage (lines 1 to 4), called “Lexical Alias Search”, constructs, for
each reference document, a query, called the document’s lexical alias, that covers the
document. The second processing stage (lines 5 to 10), called “Query Suggestion Can-
didate Search”, uses the lexical aliases to construct a set of queries from which the final
query suggestions will be drawn. The third processing stage (lines 11 to 16) uses a
greedy method to select the final set of K queries to suggest to the user.

Algorithm 1. Query Suggestion by Query Search (QSQS)
Input: a set RefDocs of reference documents and a number K
Output: a set QS containing K query suggestions
1: // Lexical Alias Search
2: for all d ∈ RefDocs do
3: use Query Search to find a lexical alias for d, LAd, based on d’s title terms and most

frequent terms
4: end for
5: // Query Suggestion Candidate Search
6: initialize QSC, the set of query suggestion candidates, to be empty.
7: for all d ∈ RefDocs do
8: use Query Search to find the set, QSCd, of minimal subqueries of LAd that cover d
9: QSC = QSC ∪QSCd

10: end for
11: // Greedy Selection of final Query Suggestions
12: initialize QS to be empty.
13: for i = 1 to K do
14: add to QS the query qs ∈ QSC that most increases MCC (break ties to maximally

increase MEC)
15: remove qs from QSC
16: end for
17: return QS

208 X. Zhang, S. Zilles, and R.C. Holte

3 Improvements to QSQS

In this section we describe a system, IQSQS, that follows the same general pattern of
processing as QSQS. The key difference is that lexical aliases are not used in IQSQS.
The primary role of lexical aliases in QSQS is to supply a sequence of search terms
that will be combined in various ways to create candidate query suggestions. Instead of
finding a lexical alias for each document d, ISQS constructs an ordered set of search
terms drawn from document d. These are chosen and ordered based on their ability to
cover any of the reference documents, not just the document from which they are drawn.
By focusing, from the outset, on overall coverage rather than the coverage of a single
document, it is hoped that the set of candidate queries constructed from these terms will
be much better than the candidate queries constructed from the lexical aliases.

Algorithm 2. Improved Query Selection by Query Search (IQSQS)
Input: the user’s query, Q0, the set RefDocs of reference documents for Q0, a number N ≤ 20,

and a number K
Output: a set QS containing K query suggestions
1: // Term Selection
2: for all d ∈ RefDocs do
3: quickly find a set, Fd, of up to 20 terms in d that are likely to be useful in constructing

queries with high coverage
4: score each term in Fd according to its coverage when combined with Q0 to form a query
5: sort Fd (highest scoring term first) and delete all but the first N terms
6: end for
7: // Query Suggestion Candidate Generation
8: initialize QSC, the set of query suggestion candidates, to be empty.
9: for all d ∈ RefDocs do

10: generate a set, QSCd, of queries built from terms in Fd

11: QSC = QSC ∪QSCd

12: end for
13: // Greedy Selection of final Query Suggestions
14: initialize QS to be empty.
15: for i = 1 to K do
16: add to QS the query qs ∈ QSC that most increases MCC (break ties to maximally

increase MEC)
17: remove qs from QSC
18: end for
19: return QS

Pseudocode for IQSQS is shown in Algorithm 2. The first processing stage (lines 1
to 6), “Term Selection”, replaces the “Lexical Alias Search” stage in QSQS. The second
processing stage (lines 7 to 12) serves exactly the same purpose as the “Query Sugges-
tion Candidate Search” and is similar in many of its details. The third processing stage
(lines 13 to 18) is identical to QSQS’s. We will now describe the first two stages of
IQSQS in detail.

Improved Query Suggestion by Query Search 209

3.1 Term Selection

For each reference document d, the Term Selection stage has two steps: pre-selection
(line 3 in Algorithm 2) and final selection (lines 4 and 5).

The input to the pre-selection step is the entire set of terms in the reference docu-
ment, which may number in the thousands. Pre-selection reduces this number to around
20, a manageable number for the somewhat expensive scoring function used in the fi-
nal selection step. Most term selection methods can be applied here, we examined two.
The “Frequency” method selects the 20 terms that occur most frequently in the docu-
ment; the “Snippet” method uses the terms in the fragment of text extracted from the
document that Google returns to indicate the connection between the document and the
user’s initial query. An experimental comparison (not reported here, see [22] for details)
showed that IQSQS’s MCC and MEC scores with either of these methods were virtually
the same. In the remainder of our experiments we used snippets for term pre-selection.

The final selection of terms involves scoring each term t individually by appending
it to the user’s initial query Q0 and issuing the resulting query, which we will refer to as
“Q0 + t”, to the Google API so that its coverage can be assessed. Our coverage score
takes into account two factors, OC (Overall Coverage score) and LA (Lexical Alias
score). For term t in the set Fd of terms for document d, the OC score is the number of
reference documents that Q0 + t covers, and the LA score is 1 if Q0 + t covers d and 0
otherwise. These two scores are multiplied by weights and summed up to get the term’s
final score. In our experiments the weight for LA was three times the weight for OC.

3.2 Query Suggestion Candidate Generation

For each reference document, a small set of terms have now been selected and ordered
according to the OC and LA scores. The next processing stage creates queries from
these terms that will be the candidates for suggesting to the user. A set of candidates is
created for each reference document using the selected terms for that document.

Although there are only a small number of terms to consider at a time, the number
of possible queries that can be created from even as small a number of terms as 10 is
astronomical. Every different subset is a different query, as is every different ordering
of the terms. As we will see below, repeating a term in a query changes the results
returned in the top 20 and therefore provides yet another way of defining queries from
terms. Terms could also be combined into phrases (a sequence of terms surrounded
by double quotes), or adorned with special directives (such as “+”), and so on. It is
certainly possible to generate queries using the full range of options available, but in
IQSQS, like QSQS, we have taken a very simple approach, only generating queries
by taking subsets of the terms that have been selected for each reference document. In
addition, we severely restrict the size of these subsets. The order of the terms in a query
is always the order in which they occur in Fd.

We considered two ways of generating candidate queries from a given set Fd of
terms. The first, AC, sets N , the number of selected terms, to 10, and generates all sub-
sets (with no repetitions) of sizes 1 to 3, thus generating 820 (10+10*9+10*9*8) query
suggestion candidates per reference document. The second method, BS, uses beam
search to enable N to be larger; all pre-selected terms are considered instead of just 10.

210 X. Zhang, S. Zilles, and R.C. Holte

Table 1. Comparison of Query Suggestion Candidate Generation methods on short user queries

MCC MEC
AC 56.66 7.26
BS 53.90 6.69

Q0AC 70.88 8.99
Q0BS 70.82 9.15

BS first ranks all the pre-selected terms by their OC scores, using each individually as
a length 1 query. Then, all length 2 queries that can be created by expanding one of the
B top-scoring length 1 queries are ranked with respect to their OC score. B is called
the “beam width”; it was 15 in our experiments. Finally, BS generates all the length 3
queries that can be created by expanding one of the B top-scoring length 2 queries. All
queries of lengths 1–3 thus generated are considered as query suggestion candidates.

We are interested in whether there is any benefit for query suggestions to include
the user’s initial query Q0 as part of the query suggestion; we therefore considered
variations of AC and BS called Q0AC and Q0BS. The query suggestion candidates
for Q0AC are computed by taking each query suggestion candidate created by AC and
appending it to Q0. For Q0BS the beam search generates potential query suggestions
exactly as described above but it evaluates a query q via the OC score of Q0 + q.

3.3 Experiment Comparing AC , BS, Q0AC and Q0BS

We compare the MCC and MEC scores of the query suggestions produced by AC, BS,
Q0AC and Q0BS on 50 short user queries (length 2 or less) drawn at random from the
250 short queries used in Jiang et al.’s experiments [9,7]. The average MCC and MEC
scores over the 50 queries are shown in Table 1.

The most obvious conclusion from Table 1 is that including Q0 in a query suggestion
is of enormous benefit, increasing both MCC and MEC by approximately 25% regard-
less of whether AC or BS is used to generate query suggestion candidates. In all our
results, the statistical significance of the difference in the scores (MCC or MEC) of two
systems was determined using a sign test. Each of the 50 queries used in an experiment
was considered an independent Bernoulli trial, with the null hypothesis being that it was
equally likely, in any given trial, for either system to outperform the other. A difference
was considered significant if the p-value computed in this way was less than 0.01 (p =
the probability of the observed difference occurring by chance). The scores (MCC or
MEC) of the system (AC or BS) with Q0 used in the query are significantly better than
the scores of the same system without Q0 used in the query.

The difference in scores (MCC or MEC) between the system using AC and the sys-
tem using BS are fairly small but statistically significant; AC outperforms BS on both
measures. The MCC and MEC differences between Q0AC and Q0BS are not statisti-
cally significant. As a final comparison we ran these two systems on 50 long user queries
(length 3 or more) drawn at random from the 250 long queries used in Jiang et al.’s ex-
periments [9,7]; the average MCC and MEC scores are shown in Table 2. The MCC
and MEC differences between the two methods are statistically significant (p < 0.001).

Improved Query Suggestion by Query Search 211

Table 2. Comparison of Q0AC and Q0BS on long queries

MCC MEC
Q0AC 73.83 9.70
Q0BS 78.05 10.66

We conclude that Q0BS is the best of the Query Suggestion Candidate Generation
methods we explored and use it in subsequent experiments involving IQSQS.

4 Greedy Query Suggestion by Query Search (GQSQS)

QSQS and IQSQS process each reference document individually to accumulate a set of
query suggestion candidates and, at the very end, select K of them as query suggestions.
In a second variant on Jiang et al.’s system, we change the control structure. Instead
of generating query suggestion candidates for each reference document separately, we
generate one query suggestion at a time from terms extracted from all reference docu-
ments, each time aiming for the largest possible MCC increase. The pseudocode of this
system, Greedy Query Suggestion by Query Search (GQSQS), is shown in Algorithm 3.

GQSQS first identifies a set F of promising search terms in the same way IQSQS
generates terms (line 3). The system then proceeds in K rounds, where K is the number
of query suggestions to be produced. In each round, one query suggestion is generated
in the following way. The first processing stage (lines 8 to 11), “Term Selection”, selects
terms from F in a way that is similar to IQSQS, except for a change in the coverage
score measure, which takes into account the whole set of remaining (not yet covered)
reference documents. Query suggestion candidates are generated (line 13) on the se-
lected terms as in IQSQS, with Q0BS. In each round the query that most increases
MCC is chosen (breaking ties by selecting a query that also most increases MEC) and
added to the set of final query suggestions (line 14). At the end of each round, we up-
date the set of not yet covered reference documents (line 16) and, for each search term,
update the set of covered documents accordingly (line 18).

The modified coverage score of a term t, used by GQSQS in the term selection stage,
results from adding together the two following scores:

– the OC (Overall Coverage) score of t, as used in the term selection stage by IQSQS,
– the EOC (Extra Overall Coverage) score, for the current round index i, which

equals the number of reference documents covered by Q0 + t but not yet covered
by the query suggestions added to the set QS in rounds prior to round i.

Terms achieving the highest modified coverage score are ranked highest.

5 Comparison of QSQS, IQSQS, and GQSQS

To compare QSQS to our two new systems, we ran experiments using the same sets of
50 short queries and 50 long queries as used for the experiments reported in Section 3.
In these experiments, we used the Q0BS method for generating query suggestion can-
didates in IQSQS and GQSQS.

212 X. Zhang, S. Zilles, and R.C. Holte

Algorithm 3. Greedy Query Suggestion by Query Search (GQSQS)
Input: the user’s query, Q0, the set RefDocs of reference documents for Q0, a number N ≤ 20,

and a number K
Output: a set QS containing K query suggestions
1: initialize QS, the set of query suggestions, to be empty
2: initialize DocsToCover, the set of not yet covered reference documents, to equal RefDocs
3: quickly find a set, F , of terms occurring in documents in RefDocs that are likely to be useful

in constructing queries with high coverage score wrt RefDocs
4: for each t ∈ F do
5: Covered(t) = set of documents in RefDocs that are covered by the query Q0 + t
6: end for
7: for i = 1 to K do
8: // Term Selection
9: using the size of Covered(t), score each term in F according to its modified coverage

score wrt DocsToCover when combined with Q0 to form a query
10: sort F (highest scoring term first)
11: Fi = the set of the first N terms in F
12: // Query Suggestion Generation
13: generate a set, QSCi, of queries built from terms in Fi

14: add to QS the query qsi ∈ QSCi that most increases MCC (break ties to maximally
increase MEC)

15: // Update Set of Documents to be Covered
16: remove the reference documents covered by qsi from DocsToCover
17: for each t ∈ F do do
18: Covered(t) = Covered(t) ∩ DocsToCover
19: end for
20: end for
21: return QS

The resulting average MCC and MEC scores for QSQS, IQSQS, and GQSQS are re-
ported in Table 3. Our results show IQSQS and GQSQS superior to QSQS on both short
queries and long queries. Sign tests (see Section 3) show the performance differences
between IQSQS and QSQS (and between GQSQS and QSQS) to be highly significant
(p < 10−5 in every case). Hence we consider our new systems a substantial improve-
ment over the state of the art. The MCC and MEC values achieved are noteworthy in
their own right, not just in comparison with QSQS’s. An MCC value over 67 means that
over two-thirds of the reference documents are covered by one or more of the queries
our systems suggest. An MEC value over 9 means that, on average, more than 9 of the
top 20 documents retrieved by the each of the queries our systems suggest are reference
documents, i.e., highly likely to be relevant to the user’s needs.

Most of the documents that our suggested queries retrieve that are not reference
documents are novel documents, i.e., not documents covered by the user’s initial query.
For IQSQS on the short queries, for example, of the 20 documents covered by one of our
query suggestion, approximately 9 are reference documents (MEC=9.15, see Table 3),
2 are documents covered by the user’s original query, and the remaining 9 were ranked
beyond position 120 by the initial query. Our suggested queries are therefore achieving

Improved Query Suggestion by Query Search 213

Table 3. Comparison of QSQA, IQSQS, and GQSQS, on short and long queries

Short Query Long Query
System MCC MEC MCC MEC
QSQS 54.80 6.89 42.86 5.34
IQSQS 70.82 9.15 78.05 10.66
GQSQS 63.88 9.73 68.82 11.08

a good balance between retrieving reference documents (very likely to be relevant given
that the initial query’s top 20 are not relevant), reminding the user of documents covered
by the initial query, and injecting novelty into the set of results.

The observations that IQSQS outperforms GQSQS in terms of MCC, and that the
opposite is true for MEC, are both highly significant statistically (p < 0.005 in both
cases). In conclusion, both systems offer excellent performance in terms of both MCC
and MEC. Applications that place greater emphasis on MCC should use IQSQS, and
those that place greater emphasis on MEC should use GQSQS.

6 Query Suggestion Examples

Table 4 shows the queries suggested by Google, by QSQS, and by our methods IQSQS
and GQSQS, for the queries “volcanos in italy”, “herbs” and “ibm thinkpad 760c”.

The most striking feature of Google’s query suggestions are how “understandable”
they are. It is very easy to imagine the subtopics they are intended to retrieve. How-
ever as the MCC and MEC scores show, these query suggestions are extremely poor
at retrieving reference documents. Exactly the opposite is true of the queries suggested
by our systems. They have relatively high MCC and MEC values, but in many cases it
is not at all clear what subtopics they represent. We believe this is not a failing of our
systems, or something that could be easily fixed by adding to our scoring criteria some
measure of “understandability”. We believe that the ranking functions used by Google,
and undoubtedly other modern search engines too, have become sufficiently sophisti-
cated and unintuitive that understandable query suggestions will often not be effective
in satisfying a user’s information needs.

A particular example of this phenomenon is the effect of repeating a term more than
once; see Table 4. The effect on the documents returned in the top 20, like the effect of
ordering the terms (which we observed in our work but did not systematically study), is
substantial and largely unintuitive. Consider, for example, the query suggestion “herbs
herbs” generated by IQSQS for the initial query “herbs”. Here the reference document
term “herbs” was appended to the initial query. IQSQS selects “herbs herbs” because
this query covers more reference documents than other query suggestion candidates. In
particular, the top 20 results for “herbs” are substantially different from those for “herbs
herbs”. Many documents covered by “herbs herbs” contain the term “herbs” twice in
key positions such as the title. For instance, the titles of some top results for “herbs
herbs” from Google (Nov. 24th, 2010) are “Herbs To Herbs”, “Herbs Herbals herb and
herbal remedies – HerbsHerbals.com”, “Herb’s Herbs & Such”, “Medicinal herbs –
Affordable herbs”, etc. These are not among the top results for the query “herbs”.

214 X. Zhang, S. Zilles, and R.C. Holte

Ta
bl

e
4.

T
he

qu
er

y
su

gg
es

ti
on

s
fo

r
th

e
qu

er
ie

s
“v

ol
ca

no
s

in
it

al
y”

,“
he

rb
s”

an
d

“i
bm

th
in

kp
ad

76
0c

”
by

G
oo

gl
e,

Q
S

Q
S

,a
nd

ou
r

m
et

ho
ds

,a
s

of
N

ov
.2

4,
20

10
G

oo
gl

e
Q

SQ
S

IQ
SQ

S
G

Q
SQ

S
m

aj
or

vo
lc

an
oe

s
in

it
al

y
it

al
y

vo
lc

an
oe

s
vo

lc
an

os
in

it
al

y
st

ud
ie

s
vo

lc
an

o
vo

lc
an

oe
s

vo
lc

an
os

in
it

al
y

vo
lc

an
os

fa
m

ou
s

vo
lc

an
oe

s
in

it
al

y
vo

lc
an

os
w

or
ld

w
id

e
vo

lc
an

os
in

it
al

y
it

al
y

vo
lc

an
os

in
it

al
y

it
al

y
or

g
m

an
y

vo
lc

an
oe

s
it

al
y

vo
lc

an
o

et
na

it
al

y
vo

lc
an

os
in

it
al

y
vo

lc
an

o
er

up
te

d
vo

lc
an

oe
s

vo
lc

an
os

in
it

al
y

pa
ci

fi
c

vo
lc

an
os

gr
ow

in
g

th
re

e
vo

lc
an

oe
s

it
al

y
vo

lc
an

oe
s

it
al

y
ac

tiv
e

vo
lc

an
os

in
it

al
y

ca
m

s
ac

tiv
e

ea
st

vo
lc

an
os

in
it

al
y

ja
pa

n
vo

lc
an

o
di

ag
ra

m
ph

ot
o

vo
lc

an
os

in
it

al
y

vo
lc

an
o

fe
b

7
vo

lc
an

os
in

it
al

y
la

nd
s

it
al

ia
n

vo
lc

an
os

vo
lc

an
os

in
it

al
y

tv
et

na
vo

lc
an

os
in

it
al

y
33

50
vo

lc
an

oe
s

fo
rc

es
na

tu
re

m
ou

nt
vo

lc
an

os
in

it
al

y
m

od
er

at
e

er
up

ti
on

s
vo

lc
an

os
in

it
al

y
br

ie
f

pa
ci

fi
c

w
or

ld
vo

lc
an

o
in

fo
rm

at
io

n
en

cy
cl

op
ed

ia
co

m
vo

lc
an

os
in

it
al

y
ex

pl
or

e
er

up
ti

on
vo

lc
an

os
in

it
al

y
up

lo
ad

ed
on

li
ne

vo
lc

an
o

in
fo

rm
at

io
n

vo
lc

an
oe

s
vo

lc
an

os
in

it
al

y
vo

lc
an

os
sp

ec
ifi

ca
ll

y
vo

lc
an

os
in

it
al

y
de

al
am

az
on

co
m

vo
lc

an
o

ad
ve

nt
ur

e
gu

id
e

vo
lc

an
os

in
it

al
y

pa
ci

fi
c

vo
lc

an
os

in
it

al
y

di
ag

ra
m

M
C

C
=

5
M

E
C

=
1.

5
M

C
C

=
35

M
E

C
=

3.
7

M
C

C
=

60
M

E
C

=
7.

2
M

C
C

=
49

M
E

C
=

6.
3

li
st

of
he

rb
s

he
rb

s
he

rb
al

he
rb

s
co

m
he

rb
s

he
rb

s
he

rb
s

le
ar

n
he

rb
ty

pe
s

of
he

rb
s

he
rb

s
w

eb
si

te
he

rb
s

co
m

pa
ny

he
rb

s
si

te
he

rb
s

he
rb

s
co

co
ok

in
g

he
rb

s
he

rb
s

co
m

he
rb

s
he

rb
al

pr
ov

id
es

he
rb

s
he

rb
s

co
m

w
eb

si
te

gr
ow

in
g

he
rb

s
he

rb
s

he
rb

ga
rd

en
s

ga
rd

en
in

g
he

rb
s

he
rb

s
ga

rd
en

s
he

rb
s

in
fo

rm
at

io
n

cu
li

na
ry

he
rb

s
in

fo
rm

at
io

n
he

rb
s

he
rb

s
in

fo
rm

at
io

n
he

rb
s

m
ed

ic
al

he
rb

si
te

pi
ct

ur
es

of
he

rb
s

he
rb

s
or

ga
ni

c
he

rb
s

co
m

vi
ta

m
in

s
he

rb
s

he
rb

s
m

ed
ic

in
al

he
rb

s
he

rb
st

or
e

he
rb

s
he

rb
al

he
rb

s
dr

yi
ng

se
ed

s
m

et
ho

d
he

rb
s

ga
rd

en
s

he
rb

al
m

ed
ic

in
e

m
ed

ic
in

al
he

rb
s

he
rb

s
he

rb
s

ch
in

es
e

he
rb

al
he

rb
s

he
rb

s
in

fo
rm

at
io

n
da

ta
ba

se
he

rb
s

ho
m

e
he

rb
s

he
rb

ol
og

y
1

he
rb

s
re

m
ed

ie
s

si
te

he
rb

gr
ow

in
g

he
rb

he
rb

al
he

rb
s

he
rb

s
ed

uc
at

io
n

pr
og

ra
m

s
he

rb
s

se
ed

s
M

C
C

=
15

M
E

C
=

1.
9

M
C

C
=

47
M

E
C

=
6.

1
M

C
C

=
54

M
E

C
=

5.
7

M
C

C
=

52
M

E
C

=
6.

8
th

in
kp

ad
76

0c
re

pl
ac

em
en

t
ib

m
th

in
kp

ad
76

0c
75

5
76

0
ib

m
ib

m
th

in
kp

ad
76

0c
w

ho
le

sa
le

76
0

th
in

kp
ad

76
0c

ib
m

th
in

kp
ad

76
0c

36
5

76
0

ib
m

ib
m

th
in

kp
ad

76
0c

56
0

36
5

76
0c

95
47

ib
m

th
in

kp
ad

76
0c

76
0

do
nt

m
ai

li
ng

ib
m

th
in

kp
ad

76
0c

ca
r

ib
m

ce
nt

re
th

in
kp

ad
75

5c
v

ib
m

th
in

kp
ad

76
0c

lc
d

24
ib

m
th

in
kp

ad
76

0c
35

5
m

em
or

y
ib

m
th

in
kp

ad
76

0c
ib

m
th

in
kp

ad
76

0c
95

46
pa

ge
la

pt
op

ib
m

th
in

kp
ad

76
0c

re
pa

ir
76

0c
76

0c
d

ib
m

th
in

kp
ad

76
0c

fi
x

ib
m

th
in

kp
ad

76
0c

29
76

0c
95

46
pr

od
uc

t
ib

m
th

in
kp

ad
76

0c
19

95
ib

m
th

in
kp

ad
76

0c
37

0
sh

op
pi

ng
ib

m
th

in
kp

ad
76

0
re

vi
ew

s
ib

m
th

in
kp

ad
76

0c
re

pl
ac

em
en

t7
60

ld
ib

m
th

in
kp

ad
76

0c
sh

op
th

in
kp

ad
76

0c
w

in
ib

m
th

in
kp

ad
76

0c
vi

st
a

76
0

ib
m

ib
m

th
in

kp
ad

76
0c

w
ho

le
sa

le
75

5c
d

ib
m

76
0c

ba
tt

er
y

ib
m

th
in

kp
ad

76
0c

76
0

im
ag

e
co

m
ib

m
th

in
kp

ad
76

0c
56

0e
75

5
38

0
M

C
C

=
0

M
E

C
=

0.
0

M
C

C
=

60
M

E
C

=
8.

2
M

C
C

=
80

M
E

C
=

11
.0

M
C

C
=

63
M

E
C

=
11

.4

Improved Query Suggestion by Query Search 215

If nowadays effective query suggestions necessarily border on being incomprehen-
sible in terms of which subtopics they represent, research on query suggestion must
pursue two goals. The first, represented by this paper, is to find ever better ways to cre-
ate effective query suggestions without requiring that the queries be comprehensible.
The second aim is to find comprehensible summaries of document sets, e.g., by cluster
labelling methods [11,16,3,2,4,17] or multi-document text summarization [10,14].

7 Related Work

The approach to query suggestion introduced by Jiang et al. [9] of using Query Search
to create query suggestions, is fundamentally different than other approaches because
it evaluates the queries it creates by issuing them to the search engine and observing
the documents returned in the top 20, rather than using a surrogate evaluation mea-
sure such as the similarity of the terms in the suggested query to those in the user’s
query [11,1,18,19,21]. Most similar to our approach is the pseudo-relevance feedback
approach (also called blind-relevance feedback) [13,20]. This assumes that the top T
documents in the results of the user’s query are relevant (including the top 20, unlike
our approach) and extracts terms from these documents that best discriminate them
from the documents not in the top T . These terms are used to construct query sugges-
tions, but, unlike our approach, these suggestions are not evaluated by observing the
results they return.

8 Conclusion

We proposed two new query suggestion systems using query search, based on Jiang et
al.’s QSQS system [9]. The changes to QSQS consist mainly of replacing the construc-
tion of lexical aliases by a more elegant and more effective process of term selection.
Query suggestion candidates are no longer generated by simplifying a complex query (a
lexical alias) top-down, but by forming queries from promising search terms bottom-up.
The two systems we present both use this method but vary in their control structure.

Both new systems substantially outperform QSQS in the measures that were pro-
posed by Jiang et al. and that were explicitly used as objective functions in the design of
QSQS. IQSQS improves QSQS by about 30% (both MCC and MEC) on short queries,
and on long queries by about 80% (MCC) and 100% (MEC); GQSQS is even more ef-
fective in terms of MEC on long queries. Part of this improvement is due to forcing our
systems to return queries that expand the initial query, as we verified empirically. This
suggests that including the initial query in a query suggestion is generally advisable.

Acknowledgements. We thank Google’s University Research Program for providing
access to the Google API2 and Shen Jiang for his help in early stages of this work. We
gratefully acknowledge financial support by Google, the Alberta Innovates Centre for
Machine Learning (AICML), and Canada’s Natural Sciences and Engineering Research
Council (NSERC).

2 See http://research.google.com/university/search/docs.html
for documentation.

216 X. Zhang, S. Zilles, and R.C. Holte

References

1. Carpineto, C., Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to auto-
matic query expansion. ACM Transactions on Information Systems (TOIS) 19, 1–27 (2001)

2. Chen, J., Zaı̈ane, O.R., Goebel, R.: An unsupervised approach to cluster web search results
based on word sense communities. In: WI 2008, pp. 725–729 (2008)

3. Cutting, D., Karger, D., Pederson, J., Tukey, J.: Scatter/gather: a cluster-based approach to
browsing large document collections. In: ACM SIGIR 1992, pp. 318–329 (1992)

4. Geraci, F., Pellegrini, M., Maggini, M., Sebastiani, F.: Cluster generation and labeling for
web snippets: A fast, accurate hierarchical solution. Internet Mathematics 3, 413–443 (2006)

5. Jansen, B., Spink, A.: How are we searching the world wide web?: a comparison of nine
search engine transaction logs. Inf. Process. Manage. 42(1), 248–263 (2006)

6. Jansen, B., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis
of user queries on the web. Inf. Process. Manage. 36(2), 207–227 (2000)

7. Jiang, S.: Searching for queries to improve document retrieval in web search. Master’s thesis,
University of Alberta (2009)

8. Jiang, S., Zilles, S., Holte, R.: Empirical analysis of the rank distribution of relevant docu-
ments in web search. In: WI 2008, pp. 208–213 (2008)

9. Jiang, S., Zilles, S., Holte, R.: Query suggestion by query search: a new approach to user
support in web search. In: WI 2009, pp. 679–684 (2009)

10. Lin, C.-Y., Hovy, E.: From single to multi-document summarization. In: ACL, pp. 457–464
(2002)

11. Manning, C., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

12. Martin, J., Holte, R.: Searching for content-based addresses on the world-wide web. In: Pro-
ceedings of the 3rd ACM Conference on Digital Libraries, pp. 299–300 (1998)

13. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: ACM SIGIR
1998, pp. 206–214 (1998)

14. Radev, D., Jing, H., Sty, M., Tam, D.: Centroid-based summarization of multiple documents.
Inf. Process. Manage. 40(6), 919–938 (2004)

15. Silverstein, C., Rauch Henzinger, M., Marais, H., Moricz, M.: Analysis of a very large web
search engine query log. SIGIR Forum 33(1), 6–12 (1999)

16. Stein, B., Zu Eissen, S.M.: Topic identification: framework and application. In: Proceedings
of the International Conference on Knowledge Management, pp. 522–531 (2004)

17. Treeratpituk, P., Callan, J.: Automatically labeling hierarchical clusters. In: Proceedings of
the 2006 International Conference on Digital Government Research, pp. 167–176 (2006)

18. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: ACM SIGIR 1994,
pp. 61–69 (1994)

19. Wang, X., Zhai, C.: Mining term association patterns from search logs for effective query
reformulation. In: Proceedings of the 17th ACM Conference on Information and Knowledge
Management, pp. 479–488 (2008)

20. White, R., Clarke, C., Cucerzan, S.: Comparing query logs and pseudo-relevance feedback
for web-search query refinement. In: ACM SIGIR 2007, pp. 831–832 (2007)

21. Xu, J., Croft, W.: Query expansion using local and global document analysis. In: ACM SIGIR
1996, pp. 4–11 (1996)

22. Zhang, X.: Search term selection and document clustering for query suggestion. Master’s
thesis, University of Alberta (2010)

Knowledge-Base Revision

Using Implications as Hypotheses

Özgür Lütfü Özçep

Institute for Software Systems (STS)
Hamburg University of Technology

Hamburg, Germany
oezguer.oezcep@tu-harburg.de

Abstract. In semantic integration scenarios, the integration of an as-
sertion from some sender into the knowledge base (KB) of a receiver
may be hindered by inconsistencies due to ambiguous use of symbols;
hence a revision of the KB is needed to preserve its consistency. This
paper analyses the new family of implication based revision operators,
which exploit the idea of revising hypotheses on the semantic relatedness
of the receiver’s and sender’s symbols. In order to capture the specific
inconsistency resolution strategy of these operators, the novel concept
of uniform sets, which are based on prime implicates, is elaborated. Ac-
cording to two main results of this paper these operators lend themselves
to practical use in systems for semantic integration: First, the operators
are finitely representable. Second, the non-sceptical versions of these op-
erators can be axiomatically characterised by postulates, which provide
a full specification of the operators’ effects.

Keywords: belief revision, semantic integration, postulate, prime
implicate.

1 Introduction

Belief revision [1] deals with the problem of integrating an assertion stemming
from an agent (sender) into a knowledge base (KB) of another agent (receiver).
If the receiver trusts the incoming information—and classical belief revision as-
sumes he does—the integration may trigger a revision of the KB because the
trigger may be incompatible with the KB; hence some of its formulas have to be
eliminated. Belief revision explains the incompatibility with false information in
the KB. Therefore, the elimination of formulas in the KB is an adequate means.

But if the diagnosis for the incompatibility is not false information but am-
biguous use of symbols, a different strategy seems more appropriate. For ex-
ample, suppose an agent (the receiver) uses the terminus “article” to denote a
publication either in proceedings or in journals while the sender agent uses it to
mean publications in journals only. The receiver has different sentences in his
KB in which he uses “article” in this sense. So, a trigger sentence stemming from
the sender may lead to inconsistencies with the receiver’s KB. In order to resolve

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 217–228, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 Ö.L. Özçep

the inconsistencies, it would not be a good idea to eliminate only one sentence
of the KB that contains “article” and that is involved in the conflict; because
the next time the receiver integrates a (different) trigger from the sender, the
other interpretation of “article” may again lead to inconsistencies.

An appropriate means to deal with conflicts caused by ambiguous use of sym-
bols between different agents is first to state hypotheses on the semantical re-
latedness of symbols from different agents and second to eliminate some of the
hypotheses that are involved in the conflict. This is the general approach of
semantic integration based on semantic mappings (or bridging axioms) for het-
erogeneous knowledge bases [4,17,21]. Every KB is assigned a unique name space,
and semantic mappings associate symbols of different name spaces. In the case of
the example above this means distinguishing between the use of “article” in the
receiver’s name space and in the sender’s name space and initially hypothesising
that the uses are equivalent. If the integration of a trigger containing “article”
into the receiver’s KB leads to inconsistency, a proper strategy for resolving the
conflict is eliminating the equivalence hypothesis and possibly replacing it by a
weaker hypothesis compatible with the trigger (e.g., by hypothesising that the
sender’s use is narrower (wider) than the receiver’s use).

Based on this strategy for inconsistency resolution, this paper investigates a
new class of operators for revising propositional KBs with propositional triggers.
The hypotheses used in these operators are implications of the form p′ → p or
p→ p′ where p′ stands for the p in the name space of the receiver, and p is the
p of the sender. These operators generalise the revision operators of [6] which
considers biimplications of the form p↔ p′ only. Using implications rather than
biimplications allows for a more fine-grained analysis of what caused the conflict
between the sender’s trigger and the receiver’s KB.

Though the technical definitions of the revision operators of this paper and of
[6] are similar, the theory developed in this paper deviates considerably from that
in [6]. On of its main innovative features is a formal specification and analysis of
the uniformity property which distinguishes the implication (and biimplication)
based operators from classical belief-revision operators. The main idea of the
analysis is first to equivalently represent the KB by its most atomic components
(prime implicates) and then describe the effect of the implication based operators
on the prime implicates by uniform closure conditions.

The implication based revision operators provide a useful abstract implemen-
tation model for semantic integration scenarios in which conflicts caused by am-
biguous use of symbol between heterogeneous KBs have to be resolved. Though
the definitions of the operators are based on infinite sets, they can be described
equivalently by finite operators that are appropriate for implementation means
(see Th. 2). This is the first main result of this paper. Moreover, anyone imple-
menting the non-sceptical versions of these operators gets a declarative specifi-
cation of their properties (including uniformity): as a second main result (Th. 4)
this paper describes a set of axiomatic postulates which are fulfilled by the oper-
ators and which characterise them in the sense that all other operators fulfilling
them are representable as implication based choice revision operators.

Knowledge-Base Revision 219

The paper is structured as follows: The second section provides background
on propositional logic and belief revision. The third section discusses the revision
operators of J. Delgrande and T. Schaub [6]. The following section introduces the
implication based revision operators and shows that these are indeed different
from the operators of Delgrande and Schaub. Moreover, the finite representabil-
ity by a partial polarity flipping operator is proved. The last section before the
section on related work and the conclusion gives an axiomatic characterisation
of non-sceptical implication based revision operators by postulates.

Proofs of all results in this paper can be found in the technical report [18].

2 Logical Preliminaries

This section introduces notation and concepts from propositional logic and belief
revision that are used in the paper. I take for granted the syntax and semantics
(interpretation, entailment etc.) of propositional logic, the notion of (sub)clause
and the notion of the conjunctive (disjunctive) normal form, CNF (DNF).

Let P be a set of propositional symbols; form(P) denotes the set of propo-
sitional logical formulas over P , which are denoted by lowercase greek letters
α, β Finite sets of formulas are called knowledge bases or belief bases and
are denoted by B as well as primed and indexed variants of B (e.g. B1, B′,
B̄). symb(B) is the set of propositional symbols in B. Int(P) denotes the set of
interpretations (assignments) I with domain P . I |= B for a set B is a short
notation for I |=

∧
B. The set of consequences of B over the set of propositional

symbols S is CnS(B) = {α ∈ form(S) | B |= α}. If the index is left out in some
context, then the consequences have to be understood with respect to the maxi-
mal set of propositional symbols discussed in the context. If two sets B1 and B2

have the same sets of consequences of formulas in form(S), write B1 ≡S B2. For
α ∈ form(P) and S ⊆ P , the clausal closure of α w.r.t. S is the set clauseClS(α)
of clauses that have only symbols from S and that follow from α.

Let ΘS denote an operator that, given a formula α and a set S of symbols
S ⊆ P , computes a formula representing all consequences of α that do not
contain symbols in S. (Compare the general framework of forgetting in [14].)
This operator will be used as a technical aid for calculating belief-revision results
based on hypotheses. For I ∈ Int(S) let αI be defined as follows: Substitute all
occurrences of p ∈ S in α where pI = I(p) = 1 by �, else ⊥ is substituted for p.
Now letΘS : α �→

∨
I∈Int(S) αI . For arbitrary S ⊆ P let ΘS(α) = Θsymb(α)∩S(α).

For example, let α = (p∧ q)∨ (r∧ s) and S = {p, r}. Then ΘS = ((⊥∧ q)∨ (⊥∧
s))∨ ((⊥∧q)∨ (�∧s))∨ ((�∧q)∨ (⊥∧s))∨ ((�∧q)∨ (�∧s)). This is equivalent
to the formula s∨ q. The following facts concerning ΘS for S ⊆ P can be proved
easily. For all α ∈ form(P): α |= ΘS(α) and CnP\S(α) = CnP\S(ΘS(α)). Note,
that ΘS(α) can be described as the quantified boolean formula ∃S.α.

The new operators defined in this paper are based on the concept of dual
remainder sets, a concept similar to the concept of remainder sets [2] used in
the classical paper of Alchourrón, Gärdenfors and Makinson (AGM) [1] for the
construction of partial-meet revision functions. Let B

!

α, the dual remainder

220 Ö.L. Özçep

sets modulo α, denote the set of inclusion maximal subsets X of B that are
consistent with α, i.e., X ∈ B

!

α iff X ⊆ B, X ∪ {α} is consistent and for
all X̄ ⊆ B with X ⊂ X̄ the set X̄ ∪ {α} is not consistent. The notion of
dual remainders is extended to arbitrary belief bases B1 as second argument by
defining B

!

B1 as B

! ∧
B1.

An analysis of belief-revision functions involves the investigation of postulates
they fulfil. Some postulates for belief-base revision operators ∗ that I will refer
to are given below. (In contrast to belief-sets [1] belief bases [10] do not have to
be logically closed.)

(BR1) B ∗ α �|= ⊥ if α �|= ⊥.
(BR2) α ∈ B ∗ α.
(BR3) B ∗ α ⊆ B ∪ {α}.
(BR4) For all β ∈ B either B ∗ α |= β or B ∗ α |= ¬β.
(BR5) If for all B̄ ⊆ B: B̄ ∪ {α} |= ⊥ iff B̄ ∪ {β} |= ⊥, then (B ∗ α) ∩ B =

(B ∗ β) ∩B.

Postulate (BR1) is the consistency postulate [1]; it says that the revision result
has to be consistent in case the trigger α is consistent. Postulate (BR2) is the
success postulate [8]; the revision must be successful in so far as α has to be in
the revision result. (BR3) is called the inclusion postulate for belief-base revision
[12, p. 200]. The revision result of operators fulfilling it are bounded from above.
Postulate (BR4) is the tenacity postulate [9]; it states that the revision result is
complete with respect to all formulas of B. Postulate (BR5) is the logical unifor-
mity postulate for belief-base operators [11]. It says that the revision outcomes
are determined by the subsets (in)consistent with the trigger.

3 Revision Based on Hypotheses

One example for belief-revision operators that are based on hypotheses are the
operators of Delgrande and Schaub [6]. The general idea is to internalize the
symbols of the receiver’s KB thereby dissociating the name spaces of the re-
ceiver, who holds the KB, and the sender, who is the holder of another KB from
which the trigger stems. Both name spaces are related by one special form of
formula (bridging axiom), namely the biimplication. Holding to a biimplication
p↔ p′ means believing that the propositional symbol p of the receiver (holder of
B) has the same meaning as the propositional symbol p of the sender. In order
to resolve inconsistencies the internalized KB stays untouched, but some subset
of the biimplications are eliminated. If p ↔ p′ is eliminated during the revision
process, this can be interpreted as diagnosing the inter-ambiguity of p between
the sender and the agent as the culprit for the inconsistency. After the elimina-
tion the name space dissociation is abandoned by retaining only those formulas
of the old vocabulary. I recapitulate the definitions of the operators and their
properties because the revision operator I will introduce is an extension, which
uses implications p′ → p and p→ p′ as hypotheses.

For a given set of propositional symbols P let P ′ denote the set {p′ | p ∈ P} of
internal or internalized propositional symbols. Similarly B′ denotes the pendant

Knowledge-Base Revision 221

of B where all symbols p are substituted by the corresponding internalized vari-
ant p′. I use the following space saving abbreviations (for p ∈ P): ←→p = p↔ p′,
−→p = p → p′ and ←−p = p′ → p. A belief-change scenario 〈B1, B2, B3〉 consists
of three sets Bi (i ∈ {1, 2, 3}) of formulas over the set of propositional symbols
P . B1 is the initial KB of the receiver, B2 is a KB that must be contained in
the change result and B3 is a KB that is not allowed to be in the change re-
sult. Classical revision of B with α is modelled by the belief-change scenario
〈B, {α}, ∅〉; classical contraction of B with α is modelled by the belief-change
scenario 〈B, ∅, {α}〉. A belief-change extension [6, p. 9] (bc extension for short) of
the belief change scenario 〈B1, B2, B3〉 is a set of the form CnP(B′

1 ∪B2 ∪EQi),
where EQi ⊆ EQ = {←→p | p ∈ P} is an inclusion maximal set of biimplications
fulfilling the following integrity condition: Cn(B′

1 ∪B2 ∪EQi)∩ (B3 ∪ {⊥}) = ∅.
If no such EQi exists, then let form(P) be the only bc extension.

In case of classical belief revision—represented by 〈B, {α}, ∅〉—the set of bc
extensions Ei have the form Ei = CnP(B′ ∪ EQi ∪ {α}), where ⊥ /∈ Cn(B′ ∪
{α} ∪ EQi). Let (Ei)i∈I be the family of all bc extensions in the belief-change
scenario 〈B, {α}, ∅〉. A selection function c over the index set I selects exactly
one index c(I) ∈ I. With these notions, the operators of choice revision �c based
on a selection function c and sceptical revision � are defined as follows.

Definition 1. [6, p. 11] B �c α = Ek (for c(I) = k) and B � α =
⋂

i∈I Ei.

Though the revision results under both operators �c,� are not finite, Delgrande
and Schaub can show that these operators are finitely representable. That is
more formally, for an operator ◦ ∈ {�c,�} one can define an operator ◦fin
such that it operates on a finite KB B as left argument, a formula α as right
argument and outputs a finite KB B ◦fin α such that Cn(B) ◦ α = Cn(B ◦fin
α). The corresponding finite operators are based on substituting propositional
symbols by their negation, thereby flipping the polarity of the symbols. Let
B = 〈B, {α}, ∅〉 be a bc scenario and EQi a set of biimplications. The formula
�α�i results from α by substituting all occurrences of propositional symbols p ∈
P\symb(EQi) with their negation ¬p. Let (Ei)i∈I be the family of bc extensions
over B and c a selection function with c(I) = k. Then Delgrande and Schaub
define the flipping operators by �B� =

∨
i∈I

∧
β∈B�β�i and �B�c =

∧
β∈B�β�k

and finite revision operators by:

B �fin
c α = �(B, {α}, ∅)�c ∧ α and B �fin α = �(B, {α}, ∅)� ∧ α

The finite representability is stated in Theorem 1.

Theorem 1. [6, p. 17] B �c α ≡ B �fin
c α and B � α ≡ B �fin α.

This theorem evokes a new perspective on what has caused the inconsistency
between the KB and the trigger: a flip in the polarity of a propositional symbol.
By re-flipping the propositional symbols that caused the inconsistency the result
becomes consistent. A remarkable point here is that the flip of a propositional
symbol concerns all its occurrences in the formula, it is a kind of uniform flipping.
This uniformity can be interpreted as a systematic use of the proposition in just
the opposite sense. Referring to the example of the introduction, the receiver
would have to substitute all occurrences of “article” by its negation.

222 Ö.L. Özçep

4 Using Implications as Hypotheses

By using the set of implications Impl = {−→p ,←−p | p ∈ P} as set of hypotheses
instead of the set of biimplications EQ = {←→p | p ∈ P} new classes of revision
operators result. This generalisation from biimplications to implications as hy-
potheses allows for a more fine-grained diagnosis of the properties of the symbol
p that are responsible for the inconsistency. While in the case of Delgrande’s and
Schaub’s operators the diagnosis is a rough “The sender’s and the receiver’s p
have different meanings and so an inconsistency is caused”, the implication based
operators account for the “direction” in which the inconsistency was caused. If
the hypothesis p′ → p is eliminated, but p → p′ is kept in the revision result,
then the diagnosis for the inconsistency is the following: the hypothesis that the
meaning of the receiver’s p is narrower than (or equal to) the sender’s meaning
of p leads to an inconsistency. But still we can hold on to the hypothesis that
the meaning of the sender’s p is narrower than the receiver’s meaning of p.

The notion of belief extension for biimplication based revision is easily adapted
to the case of implications; a set CnP(B∪{α}∪X) is an implication based belief
extension iff X ∈ Impl

!

(B′ ∪ {α}). (Remember that

!

denotes the operator for
dual remainder sets defined in Section 2). Let (Impli)i∈I be the set of all impli-
cation based consistent belief set extensions of 〈B, {α}, ∅〉 and c be a selection
function for I with c(I) = k. The new operators are defined as follows:

Definition 2. The implication based choice revision �Impl
c and the implication

based sceptical revision �Impl are defined by :

B �Impl
c α = Implk (for c(I) = k) and B �Impl α =

⋂
i∈I

Impli

As in the case of the Delgrande/Schaub revision operators, one can finitely rep-
resent the results by an operation on the KB. The finite representation uses the
notion of positive and negative occurrences of propositional symbols. For conve-
nience, I assume that only the connectors ∧,∨ and ¬ are allowed in the formulas;
this is no real restriction as this set of connectors is functionally complete. An
occurrence of a propositional symbol is syntactically positive iff it occurs in the
scope of an even number of negation symbols, otherwise it is syntactically nega-
tive. I also speak of the (positive, negative) polarity of a propositional symbol’s
occurrence. In contrast to the polarity switching of [6], the operator of partial
flipping does not change the polarity of all occurrences of a symbol p but only
of those of a particular polarity—depending on which implication −→p or ←−p is
missing in the given set of implications.

Definition 3. Let (Impli)i∈I be the family of belief extensions for a belief-change
scenario B = (B, {α}, ∅) and let Implk be an implication based belief extension
chosen by the selection function, c(I) = k. Then define the operator of partial

flipping �B�Impl
k = �B�Impl

c in the following way: If p → p′ /∈ Implk, then switch
the polarity of the negative occurrences of p in

∧
B (by adding ¬ in front of

these occurrences). If p′ → p /∈ Implk, then switch the polarity of the positive

occurrences of p in
∧

B. Let �B�Impl =
∨

i∈I�B�
Impl
i .

Knowledge-Base Revision 223

With this definition at hand, the following representation theorem follows:

Theorem 2. The following equivalences hold:
B �Impl

c α ≡ �(B, {α}, ∅)�Impl
c ∧ α and B �Impl α ≡ �(B, {α}, ∅)�Impl ∧ α

A simple example shows that �Impl
c is different from the operators �c, �.

Example 1. Let be given P = {p, q}, B = {p↔ q}, and α = ¬(p ↔ q). Writing
B in CNF (as (p ∨ ¬q) ∧ (¬p ∨ q)), one can see that it has a positive and a
negative occurrence of p, q, respectively. But these different polarities are not
dealt with by the biimplication based hypotheses. The two inclusion maximal sets
of biimplications are EQ1 = {←→p } and EQ2 = {←→q }. Let I = {1, 2} and c1(I) =
1, c2(I) = 2. Using Θ{p′,q′} or the representation theorem we can calculate the

outcomes: B �c1 α = B �c2 α = B � α = CnP(p↔ ¬q).
On the other hand, the implication based revision operator recognizes the po-

larities of the propositional symbols; hence, more possibilities to resolve the con-
flict result. Here, there are four possibilities given by the following four inclusion
maximal sets of implications: Impl1 = CnP({←→q ,−→p }), Impl2 = CnP({←→q ,←−p }),
Impl3 = CnP({−→q ,←→p }), and Impl4 = CnP({←−q ,←→p }). These lead to four differ-
ent choice revisions. Let I = {1, 2, 3, 4} and c(I) = i. The corresponding revision
results are: B �Impl

c1 {α} = B �Impl
c4 {α} = CnP(¬p ∧ q) and B �Impl

c2 {α} =

B �Impl
c3 {α} =CnP(p ∧ ¬q). For illustration, the calculation of the equation

B1 := B �Impl
c1 {α} = CnP(¬p ∧ q) is given below.

B1 = CnP({p′ ↔ q′,¬(p↔ q),←→q ,−→p })
= CnP(Θ{p′,q′}((p′ ↔ q′) ∧ ¬(p↔ q) ∧←→q ∧ −→p))

= CnP((¬(p↔ q) ∧ q) ∨ (¬(p↔ q) ∧ ¬q ∧ ¬p))
= CnP ((¬(p↔ q) ∧ q)) = CnP (q ∧ ¬p)

In particular, �Impl
c1 gives results different from those of �c1,�c2 and �.

The example above does not exclude the possibility that the sceptical versions
of the biimplication based revision operators and the sceptical versions of the
implication based revision operators are the same; it could be the case that the
effects of a fine-grained conflict resolving strategy by distinct maximal sets of
implications nullify each other. But again, we can show with an example that
the use of implications as (enhanced) set of hypotheses has different affects on
sceptical revision than the use of biimplications.

Example 2. Let be given B = (¬p ∧ q ∧ r ∧ ¬t) ∨ (p ∧ ¬q ∧ r ∧ t) and α =
(p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t). The maximal sets of biimplications are

EQ1 = {←→r ,
←→
t } and EQ2 = {←→r ,←→p ,←→q }. For neither of these sets the model

corresponding to I := ¬p∧q∧¬r∧ t is implied. More concretely, using Theorem
1, one calculates: B � α = (�B�1 ∨ �B�2) ∧ α = ((p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧
r ∧ t) ∨ (¬p ∧ q ∧ r ∧ t) ∨ (p ∧ ¬q ∧ r ∧ ¬t)) ∧ α ≡ (p ∧ ¬q ∧ r ∧ ¬t). In contrast
to this, there is a maximal set of implications Impl1 that together with B′ ∪{α}

224 Ö.L. Özçep

implies I, namely Impl1 = {←→t ,−→p ,←−q ,−→r }. So one can calculate:

B �Impl
1 α = ((¬p ∧ q ∧ ¬r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t)) ∧ α ≡ ¬p ∧ q ∧ ¬r ∧ t

Now, B �Impl
1 α |= B �Impl α; hence I |= B �Impl α but I �|= B � α.

5 A Representation Theorem

Following the usual approach in classical belief revision [1], I will characterise
the non-sceptical implication based revision operators �Impl

c by postulates. Ac-
cording to the terminology used in the belief revision literature (cf. [12]), the
main theorem of this section (Theorem 4) can be described as a representa-
tion result: there is a set of postulates such that the class of revision operators
�Impl

c represents (modulo equivalence) all revision operators fulfilling that set
of postulates. Using postulates is a well established methodology in belief re-
vision for declaratively specifying the properties (or the interface) of revision
operators that one wants to construct or has constructed. In addition to an
implementation-independent specification of revision operators, postulates offer
a logical means to compare different revision operators.

The main distinctive feature of Delgrande’s and Schaub’s operators �c,� as
well as of �Impl

c ,�Impl is that these operate on a finite set B of formulas as left
argument, but do not depend on the specific representation of B. So in contrast
to belief-base revision operators they are operators on the knowledge level [16]
and thus should be termed knowledge-base revision operators [7]. In order to
adapt the postulates for belief-base revision one has to replace all references to
the set B and its subsets by syntax insensitive concepts.

The key for the adaptation is the use of prime implicates entailed by the
KB B. Roughly, prime implicates are the most atomic clauses implied by B.
Let be given a set of propositional symbols P and a subset S ⊆ P thereof. Let
α ∈ form(P). Let α be a non-tautological formula. The set primeS(α) of prime
implicates of α over S is defined in the following way.

primeS(α) = {β ∈ clauseClS(α) | ∅ �|= β and β has no

proper subclause in clauseClS(α)}

For tautological formulas α let primeS(α) = {p∨¬p}, where p is the first propo-
sitional symbol occurring in α with respect to a fixed order of P . For example, let
α = (p∨q)∧(¬q∨r) and S = {p, q, r}. Then prime{p,q,r}(α) = {p∨q,¬q∨r, p∨r}.
For knowledge bases let primeS(B) = primeS(

∧
B).

A well known but fundamental fact is that the set of prime implicates of a KB
B is equivalent to B itself: prime(B) ≡ B. An additional relevant fact is that if
B1 ≡ B2, then prime(B1) = prime(B2). These facts justify the perspective on the
set of prime implicates as a canonical representation for the knowledge contained
in the KB. Moreover, these facts are a useful means for understanding the syntax-
insensitive conflict resolution strategy of knowledge-base revision operators.

Knowledge-Base Revision 225

A second adaptation of the belief-base postulates concerns the uniformity of
the operators �c,� as well of �Impl

c ,�Impl. The conflicts between B and the
trigger α are handled on the level of symbols and not on the level of formulas.
Therefore, in order to mirror this effect on the prime implicates one has to
impose a uniformity condition. If, e.g., the hypothesis p′ → p is eliminated in
the conflict resolution process, then formulas of the knowledge base B, in which
p occurs positively, are not preserved in the revision result. In general, if a set
of implication based hypotheses Im is given, then B′ ∪ Im preserves a subset
of prime implicates of B which fulfils some closure condition concerning the
polarities of symbols. These sets of prime implicates can be characterised as
uniform sets according to the following definition.

Definition 4. Let B ⊆ form(P) be a KB. A set X ⊆ prime(B) is called uniform
w.r.t. to B and implications, X ∈ U Impl(B) for short, iff the following closure
condition holds: If pr ∈ prime(B) is such that (a) symb(pr) ⊆ symb(X) and (b)
for all symbols p in pr there is a prp ∈ X that contains p in the same polarity,
then pr is contained in X, i.e., pr ∈ X.

Example 3. Let B = {p ∨ q, p ∨ r ∨ s, r ∨ t, s ∨ u}. Then prime(B) = B. Now,
among all subsets X ⊆ prime(B) only the set X := {p ∨ q, r ∨ t, s ∨ u} is
not uniform as it would have to contain p ∨ r ∨ s, too. Formally, U Impl(B) =
Pow(prime(B)) \ {{p∨ q, r∨ t, s∨u}}. (Pow(X) denotes the power set of X , i.e.
the set of all subsets of X .)

A proper justification for Definition 4—in the sense that it really captures the
intended concept—is Theorem 3 below. It shows that for all B, Im one can find
a uniform set X that is equivalent to B′ ∪ Im. The set X exactly describes the
collection of logical atoms (prime implicates) of the receiver’s KB B that are
preserved after dissociating the name spaces of the sender and receiver (step
from B to B′) and adding hypotheses on the semantical relatedness in Im.

Theorem 3. Let P and P ′ be disjoint sets of propositional symbols. Let B be
a KB and σ be a injective substitution for some subset S = {p1, . . . , pn} ⊆ P
such that σ(S) = {p′1, . . . , p′n} ⊆ P ′ and let Im be a set of implication based
hypotheses containing at most primed symbols of σ(S). Then there is a uniform
set X ∈ U Impl(B) such that: B′ ∪ Im ≡P X.

Now, we give postulates for revision operators ∗ that characterise the implication
based choice revision operators. They are variants of the postulates mentioned
in the section on logical preliminaries.

(R1) B ∗ α �|= ⊥ if B �|= ⊥ and α �|= ⊥.
(R2) B ∗ α |= α.
(R3) There is a set H ⊆ U Impl(B) s.t. B ∗ α ≡

∧⋃
H ∧ α or B ∗ α ≡

∧⋃
H .

(R4) For all X ∈ U Impl(B) either B ∗ α |= X or B ∗ α |= ¬
∧

X .
(R5) For all Y ⊆ U Impl(B): If

⋃
Y ∪ {α} |= ⊥ iff

⋃
Y ∪ {β} |= ⊥, then

{X ∈ U Impl(B) | B ∗ α |= X} = {X ∈ U Impl(B) | B ∗ β |= X}.

226 Ö.L. Özçep

Postulate (R1) can be termed the postulate of weak consistency; it says that the
revision result has to be consistent (satisfiable) in case both the trigger α and
the KB B are consistent. The consistency postulate for AGM belief revision and
belief base revision (BR1) is stronger as it demands the consistency also in the
case where only α is consistent. Postulate (R2) is a weak success postulate; the
revision must be successful in so far as the result has to imply α. It is weaker than
the postulate (BR2) for belief bases. (R3) is an adapted version of the inclusion
postulate for belief base revision (BR3), which can be rewritten as: There is a
B̄ ⊆ B such that B ∗ α = B̄ ∪ {α} or B ∗ α = B̄. In (R3) B is replaced by the
set of uniform sets w.r.t. B, and set identity is shifted to equivalence. Postulate
(R4) can be called uniform tenacity. It is a very strong postulate, which states
that all uniform sets w.r.t. to B either follow from the result or are falsified. This
postulate captures the maximality of the operator �Impl

c . Postulate (R5) is an
adaptation of the logical uniformity postulate for belief-base operators (BR5). It
says that the revision outcomes w.r.t. to the revision operator ∗ are determined
by the uniform sets implied by the revision result.

Postulates (R1)–(R5) are sufficient to represent the class of implication based
choice revision operators modulo equivalence.

Theorem 4. A revision operator ∗ fulfils the postulates (R1)–(R5) iff it can be
equivalently described as �Impl

c for some selection function c.

6 Related Work

The work described in this paper follows in general the belief-revision tradition
as initiated by the pioneering work of AGM [1], but has main differences due to
a different explanation of the inconsistencies. Moreover, classical belief-revision
functions à la AGM operate on a logically closed (and hence infinite) set called
belief set and a formula which triggers the revision of the belief set into a new
belief set. In belief-base revision [10] the revised KB is allowed to be an arbitrary
not necessarily closed (finite) set of sentences called belief base. The negative
property of belief-base revision of being syntax sensitive is remedied in the case of
knowledge-base revision operators which are exemplified by the revision operators
of this paper as well as those of [6] and [5].

The revision operators of this paper are based on the elimination of hypothe-
ses that have the role of semantic mappings [17]. The idea of using belief revision
techniques to revise semantic mappings has already been worked in the litera-
ture [15], [21]. But these approaches consider the set of semantic mappings as
the object of revision, while the approach of this paper considers the semantic
mappings as revision aids that are deleted after the revision.

The notion of a prime implicate is used in the approaches of [20], [22], [3]. In
contrast to the approach of this paper, these do not use prime implicates in the
formulation of the postulates; they (only) define new belief-revision operators
based on prime implicates and show that they fulfil some classical postulates.

The implication based revision operators exhibit a symbol-oriented rather
than a sentence-oriented strategy for inconsistency resolution. A different

Knowledge-Base Revision 227

symbol-oriented approach is described by Lang and Marquis [13]. Their
revision operators do not use hypotheses but the well-known concept of
forgetting [14].

7 Conclusion and Outlook

I have presented a new type of revision operator, which resulted as a generalisa-
tion of Delgrande’s and Schaub’s operators [6] by considering implications rather
than biimplications as hypotheses. Similar to a result of [6], it can be shown that
the operators are finitely representable and hence suitable for implementation.

But we have seen (cf. beginning of Section 4) that the generalisation from
biimplications to implications adds the value of having a more fine-grained di-
agnosis of what exactly leads to the ambiguity. Moreover, I described postulates
that integrate the uniformity property in order to characterise the implication
based operators. Delgrande and Schaub [6] show which (classical) postulates
their operators fulfil but do not give a representation theorem. In this paper,
I could at least show that the implication based choice revision can be charac-
terised by a set of postulates (Theorem 4). A slightly different notion of uniform
set leads to a representation theorem for biimplication based choice revision.

I motivated the perspective to consider the sets of biimplications and im-
plications as hypotheses on the semantical relatedness of symbols belonging to
different name spaces. This perspective leads naturally to the question what
other initial sets of hypotheses on the semantical relatedness could be used as
a basis for new revision operators. In fact, one could consider bridging axioms
like p′ ↔ q, which relate symbols hypothesised to be synonyms. Using a set H
of such creative hypotheses may induce operators that are quite different from
classical revision operators as the former may not be conservative: B′ ∪H may
imply formulas β ∈ form(P) that do not already follow from B. Such creative
behaviour does not occur for H = Imi or H = EQi.

There already exist approaches in the area of ontology alignment where more
expressive semantic mappings are handled (e.g., [4]). We note that the framework
of this paper is extendable to more expressive KR formalisms like first order logic
[19] by using a more syntactical notion of prime implicate.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510–530 (1985)

2. Alchourrón, C.E., Makinson, D.: Hierarchies of regulations and their logic. In:
Hilpinen, R. (ed.) New Studies in Deontic Logic, pp. 125–148. D. Reidel Publishing
(1981)

3. Bienvenu, M., Herzig, A., Qi, G.: Prime implicate-based belief revision operators.
In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI,
vol. 178, pp. 741–742. IOS Press (2008)

228 Ö.L. Özçep

4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
Contextualizing ontologies. Web Semantics: Science, Services and Agents on the
World Wide Web 1(4), 325–343 (2004)

5. Dalal, M.: Investigations into a theory of knowledge base revision: preliminary
report. In: Proceedings of the 7th National Conference on Artificial Intelligence
(AAAI 1988), pp. 475–479. AAAI Press, St. Paul (1988)

6. Delgrande, J.P., Schaub, T.: A consistency-based approach for belief change. Ar-
tificial Intelligence 151(1-2), 1–41 (2003)

7. Eschenbach, C., Özçep, Ö.L.: Ontology revision based on reinterpretation. Logic
Journal of the IGPL 18(4), 579–616 (2010) (first published online August 12, 2009)

8. Gärdenfors, P.: Rules for rational changes of belief. In: Pauli, T. (ed.) Philosophical
Essays Dedicated to Lennart Aquist on his Fiftieth Birthday, pp. 88–101. Philo-
sophical Society and Department of Philosophy, Uppsala University (1982)

9. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
The MIT Press, Bradford Books, Cambridge, MA (1988)

10. Hansson, S.O.: Belief Base Dynamics. Ph.D. thesis, Uppsala University (1991)
11. Hansson, S.O.: Reversing the Levi identity. J. of Phil. Logic 22, 637–669 (1993)
12. Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers (1999)
13. Lang, J., Marquis, P.: Reasoning under inconsistency: A forgetting-based approach.

Artificial Intelligence 174(12-13), 799–823 (2010)
14. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on

Relevance, pp. 154–159 (1994)
15. Meilicke, C., Stuckenschmidt, H.: Reasoning support for mapping revision. Journal

of Logic and Computation (2009)
16. Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)
17. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD

Record 33(4), 65–70 (2004)
18. Özçep, O.L.: Knowledge-base revision using implications as hypotheses (extended

version). Technical report, Institute for Softwaresystems (STS), Hamburg Univer-
sity of Technology (2012),
http://www.sts.tu-harburg.de/tech-reports/papers.html or
http://dl.dropbox.com/u/65078815/oezcep12KnowledgeTRExtended.pdf

19. Özçep, O.L.: Minimality postulates for semantic integration. Accepted for Publi-
cation in the Proceedings of BNC@ECAI 2012 (2012)

20. Pagnucco, M.: Knowledge Compilation for Belief Change. In: Sattar, A., Kang,
B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 90–99. Springer, Heidelberg
(2006)

21. Qi, G., Ji, Q., Haase, P.: A conflict-based operator for mapping revision. In: Grau,
B.C., Horrocks, J., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd Interna-
tional Workshop on Description Logics (DL 2009). CEUR Workshop Proceedings,
vol. 477 (2009)

22. Zhuang, Z.Q., Pagnucco, M., Meyer, T.: Implementing Iterated Belief Change Via
Prime Implicates. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 507–518. Springer, Heidelberg (2007)

http://www.sts.tu-harburg.de/tech-reports/papers.html
http://dl.dropbox.com/u/65078815/oezcep12KnowledgeTRExtended.pdf

Improving Confidence of Dual Averaging

Stochastic Online Learning via Aggregation

Sangkyun Lee

Fakultät für Informatik, LS VIII
Technische Universität Dortmund

44221 Dortmund, Germany
sangkyun.lee@tu-dortmund.de

Abstract. Stochastic online learning algorithms typically exhibit slow
convergence speed, but their solutions of moderate accuracy often suffice
in practice. Since the outcomes of these algorithms are random variables,
not only their accuracy but also their probability of achieving a certain
accuracy, called confidence, is important. We show that a rather simple
aggregation of outcomes from parallel dual averaging runs can provide
a solution with improved confidence, and it can be controlled by the
number of runs, independently of the length of learning processes.

1 Introduction

In stochastic online learning, we search for the solutions of the convex optimiza-
tion problem

w∗ ∈ argmin
w∈Rn

φ(w) := R(w) + Ψ(w). (1)

Here R(w) is the risk of a predictor fw : X → Y, parametrized linearly by
w ∈ Rn, for some input and output spaces X and Y. For a convex loss func-
tion � : Y × Y → R+, we define the risk as the expected loss against an (un-
known) probability distribution P(X,Y), that is, R(w) := E[�(fw(X), Y)] =∫
X ,Y �(fw(X), Y)dP(X,Y). Then R(w) is also a convex function.

The second term Ψ(w) in (1) is a convex regularizer such that Ψ : Rn → R ∪
{−∞,+∞}, which is closed (every level set of Ψ is closed) and proper (domΨ :=
{w | Ψ(w) < +∞} �= ∅ and {w | Ψ(w) = −∞} = ∅). We also assume that domΨ
is a closed set. Regularizers promote certain structures in w∗, such as sparsity
(Ψ(w) = ‖w‖1) or group sparsity (Ψ(w) =

∑G
g=1 ‖wg‖2, wg is a subvector of w).

1.1 Regularized Dual Averaging

We consider the regularized dual averaging (RDA) [5] for finding a solution of
(1). RDA is an extension of the primal-dual averaging method [3], and works
better on finding solution structures since it identifies the optimal manifold [2].
The RDA algorithm is shown in Algorithm 1.

The convergence of RDA can be described as follows.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 229–232, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

230 S. Lee

Algorithm 1. The RDA Algorithm.

Initialize: set w1 = 0, w̄1 = 0, and ḡ0 = 0. θ > 0 is given.
for t = 1, 2, . . . , T do

Sample ξt from Ξ and compute a subgradient gt ∈ ∂�(fwt(Xξt), Yξt);
Update the dual average: ḡt =

t−1
t
ḡt−1 +

1
t
gt;

Compute the next iterate:

wt+1 = argminw:‖w−wt‖≤D

{
〈ḡt, w〉+ Ψ(w) + θ√

t
‖w‖2

}
;

Update the primal average, w̄t+1 = t
t+1

w̄t−1 +
1

t+1
wt+1;

end

Proposition 1 (A Single RDA). For the iterates w1, w2, . . . , wT generated by

the RDA algorithm with θ = 2G
D , an average of the iterates w̄T := 1

T

∑T
t=1 wt

satisfies that for a given error level ε > 0,

P (φ(w̄T)− φ(w∗) ≤ ε) ≥ β, β = 1− e
− 1

8

(
ε
√

T
DG −1

)2

,

when T =

⌈
(DG)2

ε2

(
1 + 2

√
2
√
ln 1

1−β

)2⌉
, where D := supw,w′∈domΨ ‖w − w′‖

and G := supw∈domΨ,ξt∈Ξ ‖gt‖ with gt ∈ ∂�(fw(Xξt), Yξt). We call β ∈ (0, 1) the
confidence of achieving the error level ε.

Proof. Under the given conditions, Theorem 5 of [5] implies that

P

(
φ(w̄T)− φ(w∗) ≥ DG√

T
+

2
√
2DG

√
ln(1/δ)√

T

)
≤ δ, ∀T ≥ 1, δ ∈ (0, 1).

Replacing ε =
1+2

√
2
√

ln(1/δ)√
T

DG and δ = 1− β leads to the claim. ��

2 Aggregated Regularized Dual Averaging

We propose a simple approach based on an aggregated outcomes from indepen-
dent runs of RDA, to obtain solutions with improved confidence.

Theorem 1 (Aggregated RDA). Suppose that we have K independent RDA
runs of the same length T , all using θ = 2G/D, to obtain the iterates

wk
1 , w

k
2 , . . . , w

k
T and their averages w̄k

T = 1
T

∑T
t=1 w

k
t for k = 1, 2, . . . ,K.

For an error level ε > 0 and confidence β ∈ (0, 1), the aggregated average
¯̄wT,K = 1

K

∑K
k=1 w̄

k
T satisfies

P (φ(¯̄wT,K)− φ(w∗) ≤ ε) ≥ β, β = 1− e
− Kε2

8(DG)2 ,

when

T =

⌈
4(DG)2

ε2

⌉
, K =

⌈
8(DG)2

ε2
ln

(
1

1− β

)⌉
.

Improving Confidence of Dual Averaging via Aggregation 231

Proof. Let us define the gap sequence δT,k for the iterates of each RDA run by

δT,k := max
w:‖w−wk

t ‖≤D

{
T∑

t=1

(
〈gkt , wk

t − w〉 + Ψ(wk
t)− TΨ(w)

)}
, k = 1, 2, . . . ,K,

where gkt ∈ ∂�(fwk
t
(Xξkt

), Yξkt
). If we also define ĝkt := E[gkt | ξk1 , ξk2 , . . . , ξkt−1],

which is a subgradient of R(wk
t) due to [4], then together with the convexity of

R(·), we obtain

δT,k ≥
T∑

t=1

(
〈gkt , wk

t − w∗〉+ Ψ(wk
t)− Ψ(w∗)

)
=

T∑
t=1

(
〈ĝkt , wk

t − w∗〉+ Ψ(wk
t)− Ψ(w∗)

)
−

T∑
t=1

〈ĝkt − gkt , w
k
t − w∗〉

≥
T∑

t=1

(
R(wk

t)−R(w∗) + Ψ(wk
t)− Ψ(w∗)

)
−

T∑
t=1

〈ĝkt − gkt , w
k
t − w∗〉

≥ T
(
φ(w̄k

T)− φ(w∗)
)
−

T∑
t=1

zkt .

Here we have defined zkt := 〈ĝkt −gkt , w
∗−wk

t 〉. Using the fact that δT,k ≤ DG
√
T

for each k [5, Corollary 2(a) and Appendix B.2], summing up the above inequality
for k = 1, 2, . . . ,K, and using the convexity of φ, we get

T∑
t=1

K∑
k=1

zkt ≥ T

K∑
k=1

(
φ(w̄k

T)− φ(w∗)
)
−

K∑
k=1

δT,k

≥ TK (φ(¯̄wT,K)− φ(w∗))−DGK
√
T .

(2)

The random variables z̄kT := 1
T

∑T
t=1 z

k
t for k = 1, 2, . . . ,K are independent by

definition, and

|z̄kT | ≤
1

T

T∑
t=1

‖gkt − ĝkt ‖‖w∗ − wk
t ‖ ≤ 2DG,

E[z̄kT] =
1

T

T∑
t=1

E
[
〈E[gkt | ξk1 , ξk2 , . . . , ξkt−1]− ĝkt , w

∗ − wk
t 〉
]
= 0.

From the Hoeffding’s inequality [1] on 1
K

∑K
k=1 z̄

k
T , we obtain for any η > 0 that

P

(
φ(¯̄wT,K)− φ(w∗) ≥ DG√

T
+ η

)
(2)

≤ P

(
1

K

K∑
k=1

z̄kT ≥ η

)
≤ e

− Kη2

2(DG)2 ,

Then our claim follows when we replace ε/2 := DG√
T

and η := ε/2. ��

232 S. Lee

 1 2 4 8 16 32 64

0.41687

0.43652

0.45709

0.47863

K

Di
ffe

re
nc

e
in

 E
m

pi
ric

al
 R

is
k

RDA

1

RDA
K

 1 2 4 8 16 32 64

0.99312

0.99357

0.99403

0.99449

0.99495

K

Te
st

 A
cc

ur
ac

y

RDA

1

RDA
K

Fig. 1. (Left) Difference in empirical risk R̂(¯̄wT,K)−R̂(ŵ∗). (Right) Test set accuracy.
Mean and standard deviation over 30 trials are shown. All axes are in logarithmic scale.

3 Experiments

We consider logistic regression with �1-regularization (Ψ(·) = 0.01‖ · ‖1) on the
MNIST data set (http://yann.lecun.com/exdb/mnist/), classifying the digits
6 and 7. The entire set is randomly split into a training set (m = 12183 examples)
and a test set (1986 examples), where n = 780. We fix T = 10m for all runs.
We simulate a possibly infinite streaming data source by creating new examples
adding Gaussian noise to the original m training examples.

The results are shown in Figure 1. On the left, we present the accuracy of
¯̄wT,K in terms of R̂(¯̄wT,K) − R̂(ŵ∗), where R̂(·) is an empirical risk on the m
examples. For the fixed T , the accuracy of RDAK was better than that of RDA1.
Rapid decrease in the deviation of solutions from RDAK supports our improving
confidence argument. The plot on the right shows test prediction performance.
Although our analysis does not directly extend to this type of performance mea-
sure, the plot shows that the uncertainty diminishes as K increases for RDAK.

Acknowledgements. This work was supported by Deutsche Forschungsge-
meinschaft (DFG) in the Collaborative Research Center SFB 876 “Providing
Information by Resource-Constrained Analysis”, project C1.

References

1. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58(301), 13–30 (1963)

2. Lee, S., Wright, S.: Manifold identification of dual averaging methods for regularized
stochastic online learning. In: Proceedings of the 28th International Conference on
Machine Learning, pp. 1121–1128 (2011)

3. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical
Programming 120, 221–259 (2009)

4. Rockafellar, R.T., Wets, R.J.B.: On the interchange of subdifferentiation and con-
ditional expectation for convex functionals. Stochastics 7(3), 173–182 (1982)

5. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research 11, 2543–2596 (2010)

http://yann.lecun.com/exdb/mnist/

Supporting Fuzzy Metric Temporal Logic Based

Situation Recognition by Mean Shift Clustering

David Münch, Eckart Michaelsen, and Michael Arens

Fraunhofer IOSB, Gutleuthausstraße 1, 76275 Ettlingen, Germany
{david.muench,eckart.michaelsen,michael.arens}@iosb.fraunhofer.de

Abstract. This contribution aims at assisting video surveillance opera-
tors with automatic understanding of situations in videos. The situations
comprise many different agents interacting in groups. To this end we ex-
tended an existing situation recognition framework based on Situation
Graph Trees and Fuzzy Metric Temporal Logic. Non-parametric mean-
shift clustering is utilized to support the logic-based inference process for
such group-based situations, namely to improve efficiency. Additionally,
the underlying knowledge base was augmented to also handle multi-
agent queries and the situation inference was adapted to also handle
inference for group-based situations. For evaluation the publicly avail-
able BEHAVE video dataset was used consisting of partially annotated
real video data of persons. The results show that the proposed system
is capable of correctly and efficiently understanding such group-based
situations.

Keywords: Situation Recognition, Situation Graph Trees (SGT), Fuzzy
Metric Temporal Logic (FMTL), Mean-Shift Clustering.

1 Introduction

Automatic video understanding is an important and challenging task. Frequent
queries in surveillance for security issues consider not primarily the actions of
individuals but instead situations where a couple of humans act as a group.
A knowledge-based logic understanding approach can handle such reasoning by
introducing a group concept. This will be instantiated from data containing
individuals based on predicates such as proximity. However, such concept may
cause considerable computational effort. In such situations logical systems –
in their emphasis of soundness – tend to lead to deep exponentially branching
search. Here, benign predicates such as proximity – not only in space, but also in
time or intention etc. – allow the utilization of machine learning methods to aid
the search. In this work we propose an automatic video understanding system
for assisting human operators in surveillance applications.

Situation recognition using Fuzzy Metric Temporal Logic and Situation Graph
Trees in the domain of traffic is presented by [1], in the domain of human be-
havior in [3], and in the domain of video surveillance in [5]. [4] presents a way
to include a kind of Hough-transform into a knowledge-based representation.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 233–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

234 D. Münch, E. Michaelsen, and M. Arens

Fig. 1. Two snapshots from the BEHAVE video dataset [2]. The proposed SGT/FMTL
framework recognizes the situations InGroup (yellow, thick) and concurrently Approach
(red, thin) of a person (left). Mean-shift clustering results of frame 5370 (right).

This approach demonstrates how the combinatorial limitations of rule-based sys-
tems can be supported by prominent non-declarative methods such as clustering.
The declarative aspect remains; moreover the declarative approaches become
productive systems in real applications.

2 Methods

The SGT/FMTL framework was originally used within the cognitive vision
system architecture described in [6]. The framework is extended in [5] to rec-
ognize multiple concurrent situations with each situation having an indepen-
dent Degree of Validity. Basic knowledge is encoded in FMTL rules. On the
one hand, basic knowledge is canonical knowledge such as relations like Dis-
tance is(agent,patient,distance), on the other hand these FMTL rules are con-
cepts on a lower level with minor complexity such as Have distance(agent2,
agent6,small) which means that the distance of agent2 and agent6 is small. The
knowledge about the expected situations in the domain of video surveillance is
encoded in an SGT.

We assume a calibrated camera and a given transformation from the real
observed scene to the image plane. The mean-shift clustering is performed in
the provided ground plane of the observed scene. The density to be considered
is the spatial and temporal proximity of persons. Figure 1 (right) depicts the
mean-shift clustering result for an example image sequence where five persons
are present. Two groups of two persons each are walking together and one single
person is passing by one group. The applied clustering performs well without
merging the single person with the group.

When there occur more agents the number of binary and n-ary relations to be
examined by the inference process exponentially rises. We overcome this severe
limitation and introduce list-based rules in the SGT/FMTL framework. Other
languages such as Prolog support list-based computations. Motivated by its pure
functionality we extended the knowledge base and inference process of FMTL
by so called filters which apply predicates on a whole list, see Equation (1).
Internally the call/N predicate is called recursively on the whole input list.
In [7] the use of call/N is discouraged. Thus, we introduce and apply call/3

Supporting Fuzzy Metric Temporal Logic Based Situation Recognition 235

throughout this work. In Equation (1) the proposed Truefilter is shown. It is
implemented as FMTL rule. The � operator is the temporal always operator,
all the other syntax is standard logic syntax. When trying to satisfy Equation (1),
Equation (2) is recursively called until end recursion terminating. The variables
of Truefilter are defined as follows: res contains all elements of in with Fun(agent,
elem, parameter) true.

�{Truefilter (in, Fun, agent, parameter, res) ← (1)

Truefilter (in, Fun, agent, parameter, res) ∧ res <> []}

�{Truefilter ([elem|in], Fun, agent, parameter, res) ← (2)

functor = ..[Fun, agent, elem, parameter]

∧ [(call(functor) ∧ res = [elem|new] ∧ !) ∨ res = new]

∧ Truefilter (in, Fun, agent, parameter,new)}

Thus, the introduction of list-based rules in the SGT/FMTL framework allows
easily recognizing situations where more than two agents are involved. However
this combinatorial explosion of satisfying instances leads to a decreasing runtime
of the FMTL inference engine.

3 Evaluation

The proposed methods were evaluated on the BEHAVE video dataset [2]. Not for
every frame but for some parts of the video there exists annotated ground-truth.
The situations of interest are: InGroup, Approach, WalkTogether, Meet, Split,
Ignore, Chase, Fight, RunTogether, and Following. It has to be said that Meet
occurs only once in the ground-truth and Ignore twice. Thus, both situations
cannot be evaluated properly.

W
a
lk
T
o
g
et
h
er

R
u
n
T
o
g
et
h
er

In
G
ro
u
p

A
p
p
ro
a
ch

S
p
li
t

C
h
a
se

F
o
ll
ow

in
g

WalkToget. .45 .1 .3 .1 0 0 .05

InGroup 0 0 .9 .05 .05 0 0

Approach .05 0 .3 .6 .05 0 0

Split 0 0 .25 .05 .7 0 0

[sec]
0

200
400
600
800

1000
1200
1400

[frame]

1-11200

18000-23700

24300-35200

35450-47160

47300-58400

59800-66750

67210-76800

originalVideo
withoutClustering

withClustering

Fig. 2. The confusion matrix of situation recognition applied to frames 18000− 23700
(left). On the left the actual situation; above the recognized situation. The duration of
the original video file and the runtime with and without the clustering (right).

236 D. Münch, E. Michaelsen, and M. Arens

Table 2 (left) depicts the confusion matrix of frames 18000 − 23700 of the
BEHAVE video dataset. The true positive rate of the seven situations to be rec-
ognized is almost 1 when using an interval based measure as e.g. proposed in [8].
Thus, practically no situation is missed. But there do arise some false positives.
The confusion matrix gives a short overview of these. In Figure 2 (right) the run-
time of the presented approach without and with the mean-shift clustering from
Section 2 is shown. It can be seen that applying mean-shift clustering on the
whole BEHAVE video dataset reduces the runtime of the situation recognition
significantly. Thus, in this case real-time processing is reached.

4 Conclusion

In this article the SGT/FMTL situation recognition framework was extended
by the concept “group”. Thus, situations in which groups of individuals interact
can be described more naturally. In order to do so we made use of certain higher-
order logic programming mechanisms processing logical queries on possibly large
data bases. Thus, the declarative SGT model describing the interaction of groups
of people on surveillance videos turns out to be tractable in real-time on con-
temporary standard hardware. For verification we used the publicly available
BEHAVE video dataset as representative example.

The introduced clustering concept needs further comparative evaluation on
larger datasets. As real-time performance is achieved with this improvement
the next steps are the integration into a multi-camera network. We have shown
that the clustering performs well on basic “group” concepts; therefore we will
investigate in how far such methods can be applied on higher levels such as how
the same behavior of agents leads to groups.

References

1. Arens, M., Gerber, R., Nagel, H.H.: Conceptual representations between video sig-
nals and natural language descriptions. IVC 26(1), 53–66 (2008)

2. Blunsden, S., Fisher, R.: The behave video dataset: ground truthed video for multi-
person behavior classification. Annals of the BMVA 2010(4), 1–12 (2010)

3. González, J., Rowe, D., Varona, J., Roca, F.X.: Understanding dynamic scenes based
on human sequence evaluation. IVC 27(10), 1433–1444 (2009)

4. Michaelsen, E., Doktorski, L., Arens, M.: Shortcuts in production-systems. In:
PRIA, vol. 2, pp. 30–38 (2008)

5. Münch, D., Jüngling, K., Arens, M.: Towards a Multi-purpose Monocular Vision-
based High-Level Situation Awareness System. In: International Workshop on Be-
haviour Analysis and Video Understanding (ICVS 2011), p. 10 (2011)

6. Nagel, H.H.: Steps toward a cognitive vision system. AI Mag. 25(2), 31–50 (2004)
7. Naish, L.: Higher-order logic programming in prolog. Tech. rep. Workshop on Multi–

Paradigm Logic Programming (1996)
8. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance

video. In: CVPR, pp. 3153–3160 (2011)

Ontology-Based Information Extraction

for French Newspaper Articles

Kamel Nebhi

LATL, Department of linguistics
University of Geneva

Switzerland
kamel.nebhi@unige.ch

Abstract. In this paper, we describe a rule-based approach to perform
automated semantic annotation of named entities in a corpus of news-
paper articles. The originality of our system is in the fact that it es-
tablishes a connection between the French named entity, the DBpedia
ontology and the DBpedia databank. We present our system, discuss its
architecture and report the first evaluation results.

Keywords: Ontology-based Information Extraction, Semantic Web,
Linked Data.

1 Introduction

The goal of the Semantic Web, as described by Tim Berners-Lee [1], is to bring
meaning to the Web, creating an environment where software agents can readily
carry out sophisticated tasks of users. Thus, the realization of this Web of data on
a large scale implies the widespread annotation of Web documents with ontology-
base knowledge markup.

In this paper, we present an Ontology-based Information Extraction (OBIE)
system for French newspaper articles using a rule-based approach. Our system
establishes relation between named entities in a text, the ontological standard-
ized semantic content of the DBpedia ontology and the DBpedia databank.

This article is structured as follows : section 2 defines Ontology-based In-
formation Extraction; section 3 describes the proposed system architecture. In
section 4, we present the first evaluation results. We conclude and give some
perspectives in section 5.

2 OBIE

Information Extraction (IE) is a key NLP technology to introduce supplemen-
tary information and knowledge into a document. The term “Ontology-based
Information Extraction” has been conceived only a few years ago and has re-
cently emerged as a subfield of IE. OBIE is different from traditional IE because
it finds type of extracted entity by linking it to its semantic description in the

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 237–240, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 K. Nebhi

formal ontology. The task of OBIE has received a specific attention in the last
few years [9] with many publications that describe systems. Several of these sys-
tems have not been integrated in the general schema of Semantic Web and are
essentially developed for English documents. To solve this problem, we propose
an OBIE system for French that uses Linked Data such as DBpedia databank.

3 System Description

Our OBIE system is built on GATE [3] to annotate entities in text and relate
them to the DBpedia ontology1 where appropriate. The DBpedia ontology is
a shallow, cross-domain ontology, which has been manually created based on
the Wikipedia projects. The ontology organizes the knowledge according to a
hierarchy of 320 classes and 1650 different properties.

Fig. 1. Ontology-based Information Extraction Architecture

Figure 1 describes the architecture of our OBIE system. The source data is a
set of newspaper articles from LeMonde.fr. Semantic annotation is performed by
GATE with respect to the DBpedia ontology. The GATE application consists of
a set of processing resources executed in a pipeline over a corpus of documents.
The pipeline consists of 4 parts :

– Linguistic pre-processing
– Gazetteer (used to identify entities directly via look-up)
– Rule-based semantic annotation
– Final output creation

The linguistic pre-processing phase contains GATE components such as tokeni-
sation and sentence splitter. It also contains specific tools like TreeTagger for
French part-of-speech tagging. The gazetteer lookup phase comprises combi-
nation of default gazetteer lists from ANNIE2 and some newly gazetteer lists

1 http://wiki.dbpedia.org/Ontology
2 GATE is distributed with an IE system called ANNIE (A Nearly-New IE system).
It comprises a set of core processing like tokeniser, sentence splitter, POS tagger,
Gazetteers, JAPE transducer, etc.

http://wiki.dbpedia.org/Ontology

Ontology-Based Information Extraction for French Newspaper Articles 239

extract from Wikipedia and DBpedia. The grammar rules for creating seman-
tic annotation are written in a language called JAPE [4] which is a finite state
transducer. The rules are based on pattern-matching using several informations
taken from the gazetteer or the part-of-speech tags. In total, the application
contains approximately 100 grammar rules.

For example, the rule of the Figure 2 is used to identify a city directly via look-
up in gazetteer. So the string “Liverpool” found in the text might be annotated
with the features :

class : http://dbpedia.org/ontology/City

inst. : http://dbpedia.org/ontology/#Liverpool

linked-data : http://dbpedia.org/data/Liverpool

Rule : CityLookup
({Lookup . minorType == c i t y }) : c i tyLabe l
−−>
: c i t yLabe l {

St r ing c i t y = st r ingFor (doc , c i tyLabe lAnnots) ;
S t r ing baseUr i = ”http :// dbpedia . org /”
newFeatures . put (” c l a s s ” , baseUri + ” ontology /City ”) ;
newFeatures . put (” i n s t ” , baseUr i + ” ontology/#” + c i t y) ;
newFeatures . put (” l inked−data” , baseUr i + ”data/” + c i t y)

;
}

Fig. 2. An example of a JAPE rule

4 Experience

Traditional IE systems are evaluated using Precision, Recall and F-Measure.
These measures are inadequate when dealing with ontologies. In order to take
ontological similarity into account our OBIE system was evaluated using the
Balanced Distance Metric [6]. To evaluate the performance of the system we ap-
plied the processing resources on the evaluation corpora of 40 newspaper articles

Table 1. Results

F1 BDM F1

Location 0.92 0.94
Organization 0.91 0.95

Person 0.90 0.94

Total 0.91 0.94

240 K. Nebhi

of LeMonde.fr. We manually annotated these documents with the concepts of
the DBpedia ontology. Then, we compare the system with the gold standard.
For the evaluation, we only use Person, Organization and Location named entity
categories. In table 1, the system achieved a traditional F-Measure of 91% and
an augmented F-Measure of 94%.

5 Conclusion - Further Work

In this paper we have presented an Ontology-based Information Extraction sys-
tem for French newspaper articles. We have successfully integrated the system
in the general schema of Semantic Web using Linked Data. As our evaluation
shows, performance measured through BDM look promising.

In future work, we intend to provide deeper linguistic processing with the
Fips analyzer [8]. We also try to integrate the application into a ReSTful Web
service [7].

References

1. Berners-Lee, T., Fischetti, M.: Weaving the web: The original design and ultimate
destiny of the World Wide Web by its Inventors. Harper, San Francisco (1999)

2. Brewster, C.: Natural Language Processing as a Foundation of the Semantic Web.
Now Publishers Inc., Delft (2009)

3. Cunningham, H., et al.: Text Processing with GATE (Version 6). University of
Sheffield (2011)

4. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine. Technical report, University of Sheffield (2000)

5. Handschuh, S., Staab, S.: Annotation for the Semantic Web. IOS Press, Amsterdam
(2003)

6. Maynard, D., Peters, W., Li, Y.: Evaluating Evaluation Metrics for Ontology-Based
Applications: Infinite Reflection. In: Proc. of 6th International Conference on Lan-
guage Resources and Evaluation (LREC), Marrakech (2008)

7. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
8. Wehrli, E.: Fips, a deep linguistic multilingual parser. In: ACL 2007 Workshop on

Deep Linguistic Processing, Prague, Czech Republic (2007)
9. Wimalasuriya, D.C., Dou, D.: Ontology-Based Information Extraction: An Intro-

duction and a Survey of Current Approaches. Journal Inf. Science (2010)

Semantic Approach to Identity
in Coreference Resolution Task�

Maciej Ogrodniczuk1 and Magdalena Zawisławska2

1 Institute of Computer Science, Polish Academy of Sciences
2 Institute of Polish Language, Warsaw University

Abstract. It has been recently discussed in linguistics that the notion
of identity in the task of coreference resolution is of continuous nature,
ranging from “complete” identity to non-identity. The current paper con-
fronts this idea with experimental data for Polish, resulting in a new ap-
proach to the notion of identity. It extends the definition of coreference
with speaker/recipient relation, believed to be valid for all languages,
and explains the near-identity with lexical and conceptual means. The
theory is supported with Polish-English examples presenting difficulties
in coreference interpretation.

1 Introduction

Two recent works on the nature of identity-of-reference relation in coreference
resolution by Recasens et al. [1,2] discuss the situation when “two references
denote almost the same thing”. Such need is said to arise when e.g. metonymy
is used to refer to objects non-identical in strict sense, but carrying the common
reference due to traditional reading (such as the White House denoting the US
president). To express this phenomenon, a concept of near-identity is introduced
in line with “complete” identity and non-identity and the typology of corefer-
ential relations is presented with four main types (name metonymy, meronymy,
class and spatio-temporal function) and 15 subtypes, based on the nature of dif-
ference between coreferent objects and degree of their similarity. This concept is
further extended by referring to mental space and conceptual blending theories
[3] and introducing dual operations of refocusing and neutralization.
The above-mentioned ideas are currently being tested in a Computer-based

methods for coreference resolution in Polish texts project financed by the Polish
National Science Centre and targeted at implementation of coreference resolution
tools for Polish. One of its subtasks is preparation of the manually annotated
corpus containing identity-of-reference direct nominal coreference (the Polish
Coreference Corpus, PCC), 15% complete (wrt. target size) at the moment of
paper submission. The results of this first annotation phase encourage us to
dispute the concept of near-identity and redefine the notion of coreference by
inclusion of the speaker in the process of signalling coreference.
� The work reported here was carried out within the Computer-based methods for coref-
erence resolution in Polish texts (CORE) project financed by the Polish National
Science Centre (contract number 6505/B/T02/2011/40).

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 241–244, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

242 M. Ogrodniczuk and M. Zawisławska

2 Verification of the Typology of Identity

The first stage of the annotation resulted in an interesting observation. First
of all, the annotators were quite confident with distinguishing the “complete
identity” relation from the near-identity. The latter was selected not as rarely as
expected, making 13% of the total links (calculating the number of identity links
as identity cluster size minus one). However, a closer adjudicator examination
indicated that the quasi-identity links were mostly used to represent semantic
relations between lexical items such as mero-/holonymy (part-whole, element-
set), sometimes hyperonymy, or other relations, e.g:

(1) PL: impreza ←→ balanga
EN: a party ←→ the bash

(2) PL: trzy córki ←→ najmłodsza, 12-letnia
EN: three daughters ←→ the youngest, 12-years-old one

(3) PL: (zniszczyć) pszczoły ←→ barć
EN: (to destroy) bees ←→ a hollow in a tree where bees live

Taking into account only the “true” quasi-identical links following assumptions
resulting from the classification of Recasens et al., they appeared considerably
less frequently (3.4% of the total number of links, using the method of calcu-
lation described above). This disparity poses a fundamental question about the
character of identity, its relation to quasi-identity and the way it is perceived by
recipients of the textual message (here: the annotators). To answer it, we have
to rethink the nature of quasi-identity and probably supplement the definition
of coreference.

3 From Pragmatics to Speaker-Recipient Relation

Recasens et al. define coreference as “a scalar relation holding between two (or
more) linguistic expressions that refer to DEs [discourse entities] considered to be
at the same granularity level relevant to the linguistic and pragmatic context”.
This example definition, corresponding to the common understanding of coref-

erence, takes into account only the recipient’s point of view in the process of
decoding the textual content. The term is itself fuzzy — it is not clear whether
coreference is primarily linguistic or conceptual phenomenon. While most NLP
researchers stop at the border of discourse-world entities, the conceptual level
should be also taken into consideration: the knowledge, experience and beliefs
about the world common (or individual) to the speaker and the recipient due
to differences in environment, culture, education etc. Then come two additional
layers influencing the process: the language — the imperfect tool we describe the
world with, and pragmatics, making the message intelligible. All these means are
used by the speaker to intentionally “establish the coreference” which in turn
the recipient “decodes”.

Semantic Approach to Identity in Coreference Resolution Task 243

4 Does Near-Identity Really Exist?

Following this argumentation we can confront the sheer idea of near-identity
as a “continuum, ranging from full identity to non-identity” ([2], p. 1139). Such
vagueness of identity does not appear to be the property of objects, but a matter
of interpretation, safe from blurring their identity. A popular quasi-identical
example of spatio-temporal pseudo-splitting of an object into its multiple layers
does not really seem to split the object at all — a person aged 3 and 40 is
still the same person (as far as identity is concerned). On the contrary, sharing
a set of features is not enough to make two objects identical — they are at
most similar, which does not require invocation of the new term of near-identity.
All relations described as such by [1] are in principle either semantic relations
between expressions in the text or similarity relations between the discourse-
world objects. What makes this interpretation possible is referring to the role of
the speaker who triggers the impression that the recipient should perceive one
object as two different entities.

5 Linguistic and Conceptual Reasons of Difficulties in
Coreference Interpretation

A closer look at the experimental data shows that it is our conceptual system
and language which may make the interpretation of coreference difficult for the
recipient. Below we present an initial classification of situations which correspond
to this problem based on experimental data from PCC and several external
sources. In our opinion these cases can be explained without referring to the
notion of near-identity, but appear as a result of disturbance of the interpretation
of the text by the recipient (due to numerous reasons):

– violation of the linguistic system or poor stylistics:

(4) PL: parówki dla dzieci, które mają dużo mięsa
EN: sausages for children, which contain lots of meat

– limitations of the linguistic system; for example, Polish does not use articles
for signalling the (in)definite character of objects, which sometimes makes it
unclear whether the text refers to “an entity” or “the particular entity”,
– lexical reasons; the speaker can use different tools to indicate coreference, such
as anaphora, synonymy, hyperonymy. Very often phrases can carry contradic-
tory semantic features and at the same time stay coreferent in a particular
text:

(5) PL: Anna: Co to za okropne zielsko?
Jan: Ładna roślinka, ale Ø parzy!
Piotr: To pokrzywa — zioło, które obniża poziom cukru we krwi.

EN: Ann: What is this horrible weed?
John: Nice plantlet, but it stings!
Peter: It’s a nettle — a herb which reduces blood sugar level.

244 M. Ogrodniczuk and M. Zawisławska

– different perspectives of discussing the same object (particularly specific to
dialogues):
(6) PL: Podobało mi się to przedstawienie — powiedział Jan. ØUśmiechnął

się do Marii. — A mnie nie! Nie rozumiem, coś ty zobaczył w tym
kiczu! — skrzywiła się Maria.

EN: I liked the show — said John. He smiled to Mary. — And I hated it.
I can’t understand what you saw in this kitsch! — grimaced Mary.

– syntactic reasons (e.g. hidden predicative usage of nominal phrases or simple
ellipsis, easily mistaken for near-identity):
(7) Have you read “Gone with the Wind”?

No, but I’ve seen [the film based on] it (the book).
– differences between the speaker and recipient’s conceptual systems:
(8) The Einstein-Rosen-bridge is a hypothetical topological feature of space-

time. (...) However, there is no observational evidence for the wormhole.
– redefinition of the object or category contrary to their real features:
(9) PL: ØJestem teraz bardziej doświadczony, ale Øbrakuje mi starego

mnie, gdy Øbyłem bardziej spontaniczny.
EN: I am now more experienced, but I miss my old self, when I was
more spontaneous.

6 Conclusions

Our annotation experiments with identity vs. quasi-identity show that the com-
mon definition of coreference should be enhanced with the speaker/recipient
relation, being the factor that makes the reference resolvable. Although the the-
ory of refocusing and neutralization can help with the most straightforward
cases of quasi-identity relations (such as name metonymy or instantiation of the
discourse entity in different temporal or physical locations), the conceptual back-
ground seems better explanation of the underlying phenomena of the ostensible
identity change.

References

1. Recasens, M., Hovy, E., Marti, M.A.: A Typology of Near-Identity Relations for
Coreference (NIDENT). In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J.,
Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh
International Conference on Language Resources and Evaluation, LREC 2010, Val-
letta, Malta. European Language Resources Association, ELRA (2010)

2. Recasens, M., Hovy, E., Marti, M.A.: Identity, non-identity, and near-identity: Ad-
dressing the complexity of coreference. Lingua 121(6), 1138–1152 (2011)

3. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books (2002)

Matching Points of Interest

from Different Social Networking Sites

Tatjana Scheffler1, Rafael Schirru1,2, and Paul Lehmann3

1 DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany
{tatjana.scheffler,rafael.schirru}@dfki.de

2 University of Kaiserslautern, Gottlieb-Daimler-Strasse,
67663 Kaiserslautern, Germany

3 Brandenburg University of Applied Sciences, Magdeburger Str. 50,
14770 Brandenburg an der Havel, Germany

Abstract. Valuable user-generated information about locations (points
of interest, POIs) is stored in various online social media platforms. Merg-
ing the data associated with one POI is hard because the platforms lack
common identifiers. In addition, user-generated data is commonly faulty
or contradictory. Here we present an approach matching POIs from Qype
and Facebook Places to their counterparts in OpenStreetMap. The algo-
rithm uses different similarity measures taking the geographic distance
of POIs into account as well as the string similarity of selected metadata
fields, showing good results.

Keywords: Data Integration, Social Networks, User-Generated Con-
tent, Points of Interest.

1 Introduction

In recent years, users have contributed valuable information about locations
(points of interest, POIs) in community projects such as OpenStreetMap1 (OSM)
as well as in commercial social networks like Yelp or its German variant, Qype.2

These platforms often provide different types of information for the same ob-
jects, for example ratings (Qype), check-ins (Facebook Places3), descriptions,
categories, etc. For researchers and application developers it is often necessary to
merge these distinct representations of POIs in order to obtain rich and complete
information about the associated locations. Unfortunately the records represent-
ing the POIs do not share a common identifier across platforms thus making their
matching a difficult task. In this paper we present an approach matching POIs
from Qype and Facebook Places to their counterparts in OSM. The algorithm
uses different similarity measures taking the geographic distance of POIs into
account as well as the string similarity of selected metadata fields.

1 http://www.openstreetmap.org/
2 http://www.qype.com/
3 http://www.facebook.com/facebookplaces

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 245–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.openstreetmap.org/
http://www.qype.com/
http://www.facebook.com/facebookplaces

246 T. Scheffler, R. Schirru, and P. Lehmann

2 Related Work

Elmagarmid et al. survey methods proposed in the literature tackling the issue
of lexical heterogeneity, i. e., records have fields that are identically structured
across databases, but different representations of the data are used to refer to
the same real-word objects (e. g., 44 West Fourth Street vs. 44 W. 4th St.) [3]. A
data integration approach used for similarity joins in data bases is presented by
Cohen [1]. Dozier et al. present Concord, a generic tool for constructing record
resolution systems [2]. The tool streamlines the matching task into several steps,
including finding a correspondence between fields in the two data bases, defining
similarity functions between the fields, and setting up a machine learner to train
and use a model for distinguishing good and bad matches. To our knowledge,
all of these previous approaches do not specifically deal with POI data.

3 Approach

Our approach integrating POIs from different social platforms is a three staged
process. First we apply a geo filter restricting the search space to a smaller
number of candidate POIs. For the POIs in the candidate list we apply string
preprocessing on their titles and then conduct a two phase matching process.

We use the geographic coordinates (latitude and longitude) of the POIs to
localize the search space and reduce the number of comparisons that are required
to find the counterpart of a query POI in the OSM data base. For that purpose we
determine a bounding box of configurable size d (d = 0.01◦ in our experiments)
around the query POI and add all POIs from OSM that lie within the borders
of the bounding box to a list of matching candidates. This list is used as the
basis for further processing.

In order to match POI title strings the titles are normalized by removing
non-alphanumeric characters, lowercasing and filtering stop words. The string
matching phase is itself divided into a two phase process. In the first phase we
check whether the title of a candidate POI is within a 10% edit distance of the
title of the query POI, i. e., the number of required edit operations is less or equal
than 10% of the length of the title of the query POI. The edit distance between
two titles of POIs s1 and s2 is the minimum number of required edit operations
(insertion, deletion, substitution) to transform s1 into s2. The measure is often
also referred to as Levenshtein distance (e.g., [4] p. 58). If this condition is met,
the candidate POI is counted as a match.

In case that no match can be found in phase one, our approach calculates
the cosine similarity between the TF-IDF weighted term vectors representing
the query POI and the candidates. TF-IDF is a term weighting measure that is
widely used in the field of information retrieval [5]. It assigns a higher weight
to terms that are supposed to be more discriminative, i. e., terms that appear
frequently in one document but rarely in the whole document corpus. In our
system the titles of the matching candidates and query POI constitute the cor-
pus for the TF-IDF measure. We represent each document as a bag of words.

Matching Points of Interest from Different Social Networking Sites 247

The document representations are mapped to a vector space where each axis
represents a term and the respective value is its weight as determined by TF-
IDF. The similarity between the query document and a matching candidate is
then obtained by calculating their cosine similarity (cf. [4], pp. 120-123). In order
to count a match, we require a minimum cosine similarity between the vectors
of two POIs of 0.5. If candidate POIs exceeding this threshold are available, the
most similar candidate is selected as a match. Otherwise no match has been
detected.

4 Evaluation

To evaluate our algorithm, we manually chose 50 random POIs in the area
of Berlin from Facebook Places and 50 POIs from Qype respectively. Then we
obtained the detailed metadata of the POIs from the platforms. From Qype only
the metadata of 49 POIs could be obtained. When developing the algorithm, we
split the data in training (34 instances FB Places, 33 instances Qype) and test
data (16 instances). However, as the amount of data is rather small, we chose
to present the results based on the complete data set for each platform. To
determine the accuracy of our approach, we add the number of correct matches
and the number of POIs for which it has been correctly detected that an OSM
match does not exist.

We compare the results of our approach (geo filter combined with string pre-
processing and a vector space model, GSV) with two baseline algorithms:

Nearest Point of Interest (NP): The first baseline is selection of the nearest
POI, within a threshold radius of 0.001◦. This baseline only takes the geographic
location of a POI into account without considering other metadata. We calculate
the Euclidean distance between the query POI and the candidate POIs from the
OSM data base, disregarding the curvature of the earth. However as all POIs in

Fig. 1. Accuracy of the baseline approaches nearest POI (NP), longest common sub-
string (LCS) and our method (GSV) for the platforms Qype and FB Places

248 T. Scheffler, R. Schirru, and P. Lehmann

our data base are restricted to the area of Berlin/Germany this measurement is
precise enough for our purposes.

Longest Common Substring (LCS): The second baseline selects the can-
didate whose title shares the longest common substring with the target POI,
independent of location. If several candidates have a LCS of equal length, we
select the one with the highest ratio of the length of the LCS to the length of
the candidate’s title. Minimum ratio of candidate to target POI title is 40%.

In general it can be observed that the geographic information on its own
(method NP) does not lead to satisfactory results when integrating POIs from
different platforms. Comparing the titles of the POIs (method LCS) results in
a higher accuracy. However the best results are obtained when geo data is com-
bined with string similarities in the matching process. Figure 1 shows the overall
accuracy of the approaches. For Qype our approach achieves an overall accuracy
of 79% compared to 45% for NP and 67% for LCS. For FB Places the accuracy
of our method is 64% against 30% for NP and 60% for LCS.

5 Conclusion and Future Work

In this paper we presented an approach matching the representations of POIs
from different platforms to obtain rich descriptions about locations. The method
combines geographic information with string similarities thus achieving a higher
accuracy in the matching process than two baseline approaches that either rely
on geographic information or string similarity respectively. In our future work we
have to consider further metadata that is often annotated for POIs. For instance,
category information is often available which can help to distinguish POIs that
lie close around a famous place (e.g., a square) and carry the name of the place.

Acknowledgements. This research has been funded by the Investitionsbank
Berlin in the project “Voice2Social”, and co-financed by the European Regional
Development Fund.

References

1. Cohen, W.W.: Data integration using similarity joins and a word-based information
representation language. ACM Trans. Inf. Syst. 18, 288–321 (2000)

2. Dozier, C., Molina-Salgado, H., Thomas, M., Veeramachaneni, S.: Concord - a tool
that automates the construction of record resolution systems. In: Proceedings of the
Entity 2010 Workshop at LREC 2010, Valetta, Malta (2010)

3. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
online edn. Cambridge University Press (April 2009)

5. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation 28(1), 11–21 (1972)

Semi-analytic Natural Number Series Induction

Michael Siebers and Ute Schmid

Cognitive Systems Group
Faculty Information Systems and Applied Computer Science

University of Bamberg
{michael.siebers,ute.schmid}@uni-bamberg.de

Abstract. The induction of natural number series is a prototypical in-
telligence test task. We present a system which solves this task semi-
analytically. As first step the term structure defining a given number
series is guessed. Then the semi-instantiated formula is used to abduct
new number series examples which can be solved more easily.

Keywords: natural number series, example abduction.

1 Introduction

In cognitive science research inductive reasoning is considered as ba-
sic mechanism for knowledge expansion by exploiting previous experience
(Tenenbaum et al., 2006). Induction problems such as number series or geomet-
ric matrix series address general, analytical intelligence. That is, one can assume
that persons with a high skill in such tasks will also show high performance in
more complex induction problems such as identifying operator sequences in prob-
lem solving domains such as Tower of Hanoi (Schmid and Kitzelmann, 2011). To
our knowledge, there are only two approaches concerned with solving number se-
ries problems: Burghardt (2005) applied anti-unification modulo equation theory
to solve typical intelligence test problems; Ragni and Klein (2011) investigated
how well number series of the On-Line Encyclopedia of Integer Sequences (OEIS)
can be predicted with a neural network approach. Both of these approaches are
not intended as cognitive models.

In the following, we will present an algorithm which tries to realize a more
human-like strategy when dealing with number series problems. In this approach
enumeration and search are much stronger restricted as in the previous ap-
proaches and hypothesis formation is guided by an analytical strategy. In sec-
tion 3 we will evaluate our new algorithm. We will conclude with further research
questions.

2 Inducing Natural Number Series Definitions

A natural number series is a sequence of natural numbers such that each el-
ement is defined algorithmically. For example, the number of days per month

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 249–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

250 M. Siebers and U. Schmid

starting in January 2000 (31, 29, 31, . . .), or the natural numbers starting from
two (2, 3, 4, . . .). The later series can be defined more formally as b0 = 2;
bn = bn−1 + 1.

A number series may depend on an auxiliary series. The series a : 1, 3, 6, 10, . . .
can be defined using the series b from above as a0 = 1; an = an−1 + bn−1.

In this paper we will focus on finding formulas for number series. Other types
of regularities, e.g. numbers being prime or being sorting alphabetically, will not
be covered. Every natural number series formula can be expressed bym constants
c0, . . . , cm−1 (the initial elements), and r terms t0, . . . , tr−1, which are applied
sequentially alternating to calculate the consecutive elements:

an =

{
cn for 0 ≤ n < m

t(n−m) mod r for n ≥ m

Here a term is either a constant number, the value of some predecessor an−i, the
position number n of the current element, or some value of an auxiliary number
series b(n+j), where 0 < i ≤ m and j ≥ −m. Additionally terms are recursively
defined: If t1 and t2 are terms then (t1 0 t2) with 0 ∈ {+,−,×,÷,̂} is also a
term. These are all terms.

A term structure is an abstract representation of a term holding only term
types instead of terms, e.g, (〈Predecessor〉+ 〈Constant〉), instead of (an−2 + 5).

Finding a formula for a given series of natural numbers x0, . . . , xs−1 is a search
problem. Find m, c0, . . . , cm−1, r and t0, . . . , tr−1 such that an = xn. We propose
a combination of heuristic search and analytical simplification: Given a number
series tupels of m, c0, . . . , cm−1, r and r term structures are enumerated heuristi-
cally. For each tupel instantiations for the term structures are semi-analytically
searched that correctly predict the number series. The first found instantiation
is returned.

2.1 Term Structure Enumeration

The enumeration heuristic can be summarized as follows: (a)Assume that no
initial constants are needed (m = 0), increase m if necessary; (b)Begin with
easy term structures, increase complexity if necessary; (c)Allow auxiliary series
only if process fails otherwise.

Complexity of term structures is defined as an ordering: constants < prede-
cessor < positions value < auxilary series. For compound terms (t10 t2) prefere
structure trees with lower height. Within each height order trees according to
the used operator (+ < − < × < ÷ <̂).

Since this is a first implementation we restricted the induction process to one
term (r = 1) and used no terms with a height above 3.

Additionally to the heuristic we can make certain simplifications: (1)Terms
using division hardly ever define a natural number series, so do not induce the
division operator; (2)As multiplication with negative numbers is allowed, do
not induce the subtraction operator; (3)Terms which could be expressed more
naturally (e.g., 〈Position〉 + 〈Position〉) are omitted as far as possible; (4) Each

Semi-analytic Natural Number Series Induction 251

Input: A number series x1, . . . , xs−1

for m ∈ {0, . . . , � s
3
�} do

∀i ∈ {0, . . . , m− 1} ci = xi;
foreach term structure ts in increasing complexity excluding aux. series do

t ← induce term for ts, x, m;
if t �= error then

return Definition with c0, . . . , cm−1, t;
end

end

end
repeat above loop allowing auxiliary series;

Algorithm 1. Main loop of semi-analytic number series induction.

inducible regularity patterns must occure at least twice in a series, first to build a
hypothesis and then to test this hypothesis. As regularities depend on the initial
constants at most one third of the series should consist of constants: m ≤ 1 s32.

2.2 Semi-analytical Search

A term is searched that calculates every number of the number series not already
covered by the initial constants: A 〈Constant〉 can be instantiated iff all numbers
are equal; for 〈Predecessor〉 all allowed predecessors from an−1 to an−m are tried;
a 〈Position〉 succeeds iff xn = n; for 〈Aux. Series〉 the main induction is applied
on the numbers to predict1.

For (ts1 0 ts2) the search branches. If the search is to succeed the following
equation must hold: t2(n) = an 0−1 t1(n). Consequently terms for ts1 are enu-
merated and the desired output of t2 is calculated. The semi-analytic search is
then applied to the new calculated series and ts2. If 0 is not commutative the
same is conducted again exchanging the roles of ts1 and ts2.

3 Evaluation

Though the OEIS contains a lot of series, most of them are to complex to be
induced by human observers despite beeing tagged as easy (e.g. the Catalan

numbers Cn = (2n)!
n!(n+1)!). Consequently, since we take a cognitive view on number

series induction, we did not test our approach on the OEIS as Ragni and Klein
(2011) did. Instead we compiled our own collection of number series2. The col-
lection consists of 25.000 randomly created number series using addition, sub-
traction, division, multiplication and exponentiation. Up to 4 initial constants
and 4 interleaving terms were used.

1 The recursive application of the main induction is only sensible in a recursed appli-
cation of the semi-analytic search.

2 The number series collection is available for download at
www.uni-bamberg.de/kogsys/services/forschung/projects/numberseries.

www.uni-bamberg.de/kogsys/services/forschung/projects/numberseries

252 M. Siebers and U. Schmid

We induced the number series definitions using 12 numbers and evaluated on
3 numbers. The evaluation result was considered correct iff all three numbers
were predicted correctly.

Our system induced 93.2% of the definitions correct. This high accuracy is
surprising, as our system cannot induce definitions with interleaving terms. Nev-
ertheless, many interleaved series were predicted correctly. For example the series
0, 7, 8, 21, 16, 35, 24, . . . , created by the formula a2n = 8n; a2n+1 = 14n + 7 is
correct predicted by a0 = 0; a1 = 7; a2 = 8; a3 = 21; an = 2an−2 − an−4.

4 Conclusion

The first prototype of our system is already able to induce a wide range on
natural number series. In a next step it will be extended to allow for induction
of interleaving definitions. Although many interleaving definitions can be repre-
sented alternatively, humans usually grasp interleaved definitions more easily.

For our approach we used term structure complexity as search heuristic, and
thus as difficulty measure. In the context of intelligence tests, the difficulty of
number series problems is usually characterized by the percentage of subjects in a
representative study which solved a given problem. However, from a perspective
of cognitive oriented AI, it is of interest to analyse difficulty on the level of
the complexity of mental operations involved in detecting the regularity which
underlies as series. Such a cognitive analysis was up to now only presented for
another classical test of inductive intelligence – the Raven Progressive Matrix
Test (Lovett et al., 2010).

Furthermore, to make our approach more cognitively plausible, not only the
term structure and the operator difficulty, but also the starting number of a series
should be taken into account, since it is to be expected that regularities in larger
numbers are harder to detect for humans than in smaller numbers. A further
aspect is to identify series characteristics which trigger search for auxiliary series
in human problem solvers.

References

Burghardt, J.: E-generalization using grammars. Artificial Intelligence 165, 1–35 (2005)
Lovett, A., Forbus, K., Usher, J.: A structure-mapping model of Raven’s Progressive

Matrices. In: Proceedings of CogSci 2010 (2010)
Ragni, M., Klein, A.: Predicting Numbers: An AI Approach to Solving Number Series.

In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 255–259. Springer,
Heidelberg (2011)

Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cognitive
Systems Research 12(3), 237–248 (2011)

Tenenbaum, J., Griffiths, T., Kemp, C.: Theory-based Bayesian models of inductive
learning and reasoning. Trends in Cognitive Sciences 10(7), 309–318 (2006)

The Online Encyclopedia of Integer Sequences (2012), http://oeis.org/

http://oeis.org/

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 253–256, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dependency Parsing with Efficient Feature Extraction

Alexander Volokh and Günter Neumann

DFKI. Stuhlsatzenhausweg 3. 66123 Saarbrücken, Germany
{alexander.volokh,neumann}@dfki.de

Abstract. The fastest parsers currently can parse an average sentence in up to
2.5ms, a considerable improvement, since most of the older accuracy-oriented
parsers parse only few sentences per second. It is generally accepted that the
complexity of a parsing algorithm is decisive for the performance of a parser.
However, we show that the most time consuming part of processing is feature
extraction and therefore an algorithm which allows efficient feature extraction
can outperform a less complex algorithm which does not. Our system based on
quadratic Covington's parsing strategy with efficient feature extraction is able to
parse an average English sentence in only 0.8ms without any parallelisation.

1 Introduction

Dependency parsers have recently become very popular and beneficial for many natu-
ral language processing (NLP) tasks, because of their ability to reliably capture useful
information within a sentence. However, the quality of the result is not the only re-
quirement. Many applications, especially those which work with huge amounts of
data or applications where processing has to be done online within milliseconds, re-
quire parsing to be particularly fast in order to be eligible for use.

In the 2000s, the very popular CoNLL-X [2] shared tasks in dependency parsing
brought a lot of progress to the field. However, the evaluation highly preferred accu-
racy and efficiency was neglected. Some of the most widely used parsers from that
time, e.g. MaltParser_SVM [7], Stanford Parser [5] or MST Parser [6], have great
accuracies but can only parse around 3 sentences per second. The more recent works:
e.g. MaltParser_Liblinear, Ensemble [8], mate-tools [1] or ClearParser [3] have better
efficiencies. MaltParser trained with linear classifiers can parse up to 1 sentence in
2.5ms, Ensemble in 10 ms, Bohnet's parser - 77ms and ClearParser - 2.29 ms.

All dependency parsers can be split into two approaches: transition-based and
graph-based. Whereas the accuracies of these systems are quite similar, the numbers
above clearly demonstrate that transition-based systems are more efficient (mate-tools
is the only graph-based). We will restrict ourselves to the transition-based.

Transition-based systems start at some initial configuration and perform a sequence
of transitions to some final configuration, such that the desired dependency graph is
derived in the process. There are plenty of parsing strategies with different sets of
possible transitions, which are capable of solving this task. It is usually considered
that the number of configurations is the most important property for the efficiency of
the algorithm. E.g. Nivre's arc-standard (AS) and arc-eager (AE) algorithms [7] re-
quire O(n) transitions, whereas Covington's parsing strategy [4] requires O(n2) in the

254 A. Volokh and G. Neumann

worst-case. Therefore there are a lot different variations of Nivre's algorithm (includ-
ing all of the above parsers), whereas Covington's strategy is much less popular.

However, the number of configurations is not the only important property of an al-
gorithm. It is rather important how long it takes to perform a transition from one con-
figuration to another. We have used profiling technology in order to determine which
parts of code amount for which percentage of execution time and found out that most
of the running time is spent for extracting features (also reported by [1] for their
graph-based system), which are used to predict the most probable transition. Even
though less complex algorithms require feature extraction less often, we will show
that feature extraction costs vary considerably across different strategies.

In this paper we show that Covington's parsing strategy is particularly suitable for
efficient feature extraction. Despite the fact that its theoretical complexity is quadratic
in the length of the sentence, in practice the worst-case never occurs and thus it can
easily outperform linear strategies without efficient feature extraction. In our experi-
ments we could achieve parsing speed of 0.8 ms per sentence.

2 Complexity in Theory

Given a sentence s, consisting out of words w1 to wn the objective of a transition-
based parsing strategy is to find all dependencies (wi, l, wj), i.e. pairs of words wi and
wj, which stand in a syntactic relation l. The most naive strategy to do that is to ex-
amine every possible pair of words and link them if necessary. Covington's strategy
proposes an intelligent refinement to this. First, when searching for potential links for
a word j it works backward. This way heads and dependents are found earlier, be-
cause they are more likely to be near than far away. Second, many pairs are discarded
because they violate permissibility, i.e. well-formedness constraints of a dependency
tree. Examples of such constrains are that words can have only one head, the whole
structure can have only one root, there can be no cycle and if necessary that there are
no crossing branches (projectivity). The worst-case complexity remains O(n2).

Nivre's AE or AS algorithms propose a further restriction of the search space. They
use two stacks and allow only top elements from these stacks to be linked, which
guarantees that no invalid dependency structure comes into being. Additionally, al-
ready processed words are removed from the stacks, such that they are no longer eli-
gible for other words to come. This way the algorithms have O(n) complexity.

3 Complexity in Practice

Let us consider the sentence Economic1 news2 had3 little4 effect5 on6 financial7 mar-
kets8.9. We have used MaltParser, which has all algorithms implemented, with option
“-m testdata” in order to analyse how many transitions are necessary to parse the data.
With Nivre's arc-eager strategy it took 16 transitions to parse the example sentence,
for Nivre's arc-standard 17 transitions were necessary and for Covington's algorithm
33 word pairs are examined, however, 17 of them are not permissible and thus there
are only 16 real configurations. By real configurations we mean those for which

 Dependency Parsing with Efficient Feature Extraction 255

feature vectors actually have to be constructed and the correct transition has to be
predicted. For non-permissible states it is not necessary and they therefore hardly
influence the overall performance. Thus the theoretically more complex Covington's
strategy in practice does not re-quire more real configurations than Nivre's linear al-
gorithms. We have performed similar experiments for the whole CoNLL English
development data and found out that for these 1337 sentences 63916 real configura-
tions are required with Covington's algorithm, 64137 with AE and 65148 with AS.

4 Feature Extraction

In order to predict what transition should be performed in which parser state, the pars-
er state is trans-formed into a feature vector and according to the previously learned
model the best transition is selected. The algorithms presented in this paper require a
similar number of feature templates in order to achieve similarly competitive perfor-
mance. In MaltParser arc-standard default algorithm runs with 21 different templates,
arc-eager with 22 and Covington's algorithm also uses 22 feature templates.

In his PhD [7] Nivre differentiates between static and dynamic feature templates.
Static templates always return the same value for the same input, e.g POS tags of the
words never change. Dynamic feature templates might change their output in course
of processing, e.g. the dependency label of a word is null in the beginning and
changes to some non-null value as soon as the word gets a head.

The decisive difference between the algorithms is that many other features, which
actually are also static can only be reused in Covington's and not in Nivre's algo-
rithms, where the reusability of features is limited, because one never knows what the
stacks will look like and it would be too memory intensive to keep all possibilities in
memory until it is clear which one of them is correct. The reusability of static features
considerably improves the performance of an algorithm, since it is no longer neces-
sary to look up the value of a feature and then its index in a global alphabet (mapping
of strings to unique integers constructed during the training of the model; might con-
tain tens of thousands of different values and thus is not so fast) so often. Instead, we
consult the global mapping only once for all features which are used many times and
store those in a different local (i.e. valid only within the current sentence) data struc-
ture from where they can be retrieved much faster.

Additionally, in order to compensate for the lack of a kernel, which creates con-
joined features implicitly, one has to add artificial feature combinations manually. In
MaltParser's feature models for Liblinear around 40% are feature combinations,
which are concatenations of basic features.

String is an immutable basic type in Java, each time you append something a new
String is created, the old value is stored the new value is added, and the old String is
thrown away. The longer the strings the longer the concatenations take, but even for
typical feature lengths of ~10 characters it takes around 0.25 µs. For 780,000 feature
combinations (the amount required for 65000 configurations) it would mean around
0.2 seconds, i.e. around 20% of the whole time if one aims to parse a sentence in less
than 1ms. Therefore it is even more important that feature combinations are reused
whenever possible, since they contain costly string operations.

256 A. Volokh and G. Neumann

Even though String operations are expensive in Java, there are no alternatives.
Tricks like translating features to integers and substituting concatenation by multipli-
cation do not work better, since they require a mapping from the String values to ints
and the look up in such large collections is even more expensive than concatenation.

5 Results and Conclusion

We have implemented a system which is based on Covington's parsing strategy and
reuses static features whenever possible. We could achieve a parsing speed of 0.8
ms/sentence for an average English sentence (24.41 words). Despite the worse theo-
retical complexity, we have shown that in practice other properties are more impor-
tant. In particular, that most of the execution time is spent on feature extraction and
thus the suitability of an algorithm for efficient feature extraction is decisive.

For space reasons we could not discuss the accuracies of different algorithms and
models. However, running MaltParser with default models has shown that the accura-
cy of Covington's algorithm for English is better than the accuracy with Nivre's algo-
rithms. Both the default MaltParser's model and a model where the feature conjunc-
tions are replaced by static ones have very similar accuracies.

The tests were performed on a 2.4 GHz CPU with only one core used.

Acknowledgements. The work presented here was partially supported by a research
grant from the German Federal Ministry of Education and Research (BMBF) to the
DFKI project Deependance (FKZ. 01IW11003).

References

1. Bohnet, B.: Top Accuracy and Fast Dependency Parsing is not a Contradiction. In:
COLING 2010, Beijing, China (2010)

2. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In:
Proceedings of CONLL-X, New York, pp. 149–164 (2006)

3. Choi, J.D., Palmer, M.: Getting the Most out of Transition-based Dependency Parsing. In:
ACL: HLT 2011, Portland, Oregon, USA, pp. 687–692 (2011)

4. Covington, M.A.: A Fundamental Algorithm for Dependency Parsing. In: Proceedings of
the 39th Annual ACM Southeast Conference (2000)

5. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL 2003, pp. 423–430
(2003)

6. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-Projective Dependency Parsing using
Spanning Tree Algorithms. In: HLT 2005 (2005)

7. Nivre, J.: Inductive Dependency Parsing (Text, Speech and Language Technology). Sprin-
ger-Verlag New York, Inc., Secaucus (2006)

8. Surdeanu, M., Manning, C.D.: Ensemble Models for Dependency Parsing: Cheap and
Good? In: NAACL 2010 (2010)

Strategies for Modelling Human Behaviour
for Activity Recognition with Precondition-Effect Rules

Kristina Yordanova, Frank Krüger, and Thomas Kirste

University of Rostock, Institute of Computer Science, MMIS Group, Germany
{kristina.yordanova,frank.krueger2,thomas.kirste}@uni-rostock.de

http://mmis.informatik.uni-rostock.de

Abstract. The manner in which the human behaviour and the environment are
modelled greatly influences the activity recognition performance in context-aware
systems and an inappropriate choice of modelling mechanism could lead to un-
wanted or unexpected model behaviour. In this work we present an approach for
modelling human behaviour based on precondition-effect rules, and discuss in
detail different modelling strategies. As a result, the paper provides useful guide-
lines for modelling human behaviour for activity recognition, including best prac-
tices and pitfalls that should be avoided for one to build a successful model.

Keywords: human behaviour modelling, activity recognition, causal models

1 Introduction and Background

In a world where intelligent devices and environments are becoming part of our ev-
eryday life, activity recognition plays a central role. There are two main directions to
activity recognition – using training data and using prior knowledge. In the first case, a
model is trained on a specific dataset and later it is able to classify new observations as
belonging to a specific situation or activity. Although powerful, if it is applied to new
settings or situation, the model performance usually drops significantly and is not able
to correctly recognise the activity resulting in expensive collection of new sensor data.
To solve this problem, the second type of approaches for activity recognition could be
used. These approaches do not use training data, but rather take their knowledge from
context information. This information is encoded in human behaviour models that de-
scribe the user actions, the environment, and the interactions between them [4,5]. One
such approach is to define a catalogue of abstract actions that can later be parameterised
with problem-specific details. Such actions are based on causal links ensuring the ac-
tion execution only if a specific state of the world is true. Later, the model is mapped to
a probabilistic inference machine that allows probabilistic reasoning about the current
user state and her intentions. The current state is estimated based on observations, while
to infer the intention, the likelihood of all possible execution paths is calculated and the
one with the highest likelihood is selected [6].

This paper discusses such approach where the user actions are described as Com-
putational Causal Behaviour Models (CCBM) [2]. The aim of the paper is not to dis-
cuss the activity recognition process, as we already presented it in previous work [6,3].
Rather, its aim is to discuss our modelling experiences and to present useful modelling
strategies that greatly influence the model performance during activity recognition.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 257–261, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://mmis.informatik.uni-rostock.de

258 K. Yordanova, F. Krüger, and T. Kirste

2 Modelling Paradigm

CCBM describes user actions in terms of operators with preconditions and effects, and
given an initial world state, a goal, and an observation model, they are compiled into
a probabilistic model such as HMM or particle filter with which state estimation and
intention inference can be done [1]. In CCBM the actions are modelled as abstract oper-
ators in extended PDDL-like notation which can later be parameterised with problem-
specific values, allowing the reusability of the model for different settings. Given a set
of predicates P= {p1, p2, ..., pn}, states s and s’, and an action a = (V, Ppre, Peff−,
Peff+), where V is a set of parameters, Ppre ⊂ P is a set of preconditions, Peff− ⊂ P
is a set of negative effects, and Peff+ ⊂ P is a set of positive effects, an action a can be
specified as a mapping from state s to s’ with s = Ppre being the state of the world before
a is executed, and s’ = (s - Peff− + Peff+) being the state of the world after a takes
place. Additionally, the notation provides parallel actions execution when more than
one agents are specifies. Furthermore, the durations definition was extended to support
probability distributions. Apart from the action definition, the notation specifies obser-
vations which link the domain specification with the observation model p(y|x) needed
for performing probabilistic inference.

3 Strategies for Modelling Human Behaviour

Every modelling formalism has its specific mechanisms for building a good model.
CCBM for activity recognition is not an exception. Below are some mechanisms that
provide good recognition performance.

Durative Actions: Our notation is able to define duration probability density functions.
However, additional mechanism is needed to ensure that the effects taking place at
the beginning of the action will not affect the world after the action is over. To avoid
this problem, a start-end action pair can be defined. Such pair is a macro structure
that collapsed would represent a non-durative action with preconditions, those of the
start-action, and effects – the effects of start-action and end-action. To ensure that the
parameter-specific information is carried from the begin-action to the end-action, or that
no other actions take place during the macro execution, lock flags are used.

Effects that Influence Multiple Agents: When multiple users influence each other’s
actions, the modelling could become complicated. To ensure that a single user action
changes the state of the world of all present agents, the clause forall can be used. It
ensures that the effects of the action will be true for all agents. Similarly, the when
clause ensures that only when specific state of the world holds, the effect can take place.

Multiple Agents that Influence One Action: In situations where the execution of a
given action depends on multiple agents, to ensure that the preconditions for this action
are satisfied by all agents, a forall clause could be used in the action precondition.

Parallel and Interleaving Actions: The notation allows multiple agents to execute
their actions in parallel, but it is rather an agent’s personal choice to execute a given

Strategies for Modelling Human Behaviour for Activity Recognition 259

action. To ensure that actions will be executed in parallel, forall clause can be used in
the action’s preconditions. Similarly, interleaving actions can be modelled either im-
plicitly, by removing lock flags which allows for other actions to take place in between
start-end action pair; or they could be modelled explicitly, by defining the action’s pre-
conditions and effects so that the preconditions are satisfied only after the start-action
has taken place, and whose effects are needed for the end-action to be executed.

Repeating Behaviour, Forgetfulness and Pauses: Although there is no explicit mech-
anism to model repeating behaviour, one way of achieving it, is to introduce counter
objects and a predicate that makes use of the counters and that is set to true every time
an action is executed. Similarly, forgetful behaviour could be modelled by introducing
an action that allows for one to retreat her steps and repeat the action. In a similar man-
ner, pauses could be modelled by introducing an action, with preconditions satisfied by
the begin part of the action to be paused, and effect satisfying the preconditions of the
end part of the action.

Object Type Hierarchy: In CCBM every parameter is of the default type object, if no
other type is assigned to it, or it could belong to one of the types or subtypes, introduced
by the model designer. The usefulness of types and subtypes comes from the fact that
one could define a complex type hierarchy, allowing the limitation of parameters the
predicates use, and reducing the resulting state-space.

Reusable Actions: The action abstraction is useful for defining operators that could be
reused in different settings, provided that they are later parameterised with the suitable
problem-specific parameters. However, this abstraction also has its drawbacks – the
more reusable an action is, the more grounded predicates it produces, which results
is a huge state-space. Although in previous work we showed that our mechanism can
still perform activity recognition with a state-space of more than 600 000 states [6], it
hinders the model performance. Thus one should be extremely careful when defining
abstract actions and to find the middle ground between reusability and performance.

4 Real World Example

To show the importance of using appropriate strategies, we built a new model for the
3-Person meeting scenario described in [3] and tested it on the same dataset. We esti-
mated the state of the separate users, and their team behaviour by mapping the model
to a particle filter that 49 times performed forward filtering with different random seeds
on 20 3min long meeting. The runs are due to the fact that the particle filter performs
an approximate inference and we want to reduce the influence a given seed could pro-
duce and to bring it nearer to exact inference. Thus, the estimated state was calculated
by majority vote. The MSE for for the agent behaviour was 0.0565, and for the team
behaviour – 0.0885, which stands to show that the model is able to recognise the user
activities with more than 90% accuracy. The incorrectly recognised states are due to
the transition states, where the filter estimated earlier or later the start and end of the
activities.

260 K. Yordanova, F. Krüger, and T. Kirste

5 Discussion and Conclusion

In our work we showed that by choosing appropriate modelling strategies for CCBM,
our tool is able to recognise the multiagent behaviour with 94% accuracy and team one
with accuracy of about 91%. Compared to our results in [3] where a simple CCBM
was used to recognise the users’ states from the same dataset with accuracy of 62%, the
current results imply that the modelling mechanisms and strategies influence the model
performance. The process of finding successful modelling strategies was one of trials
and errors and led us to the following lessons learned. To build a successful model (1)
one should use locks to enforce specific behaviour and limit the possible actions; (2)
use preconditions with forall clauses to track multiagent behaviour; (3) use effects that
influence multiple agents to force the agents to follow a common goal; (4) if one is able
to model an action with a simple mechanism, one should not use complex structures
that will make the model difficult to understand and will probably increase the state
space; (5) use type hierarchy to reduce the state-space; (6) use normal durations for
long lasting activities; (7) use exponential or normal durations for short activities; (8)
insert actions for forgetfulness and pauses to make the model more flexible; and (9) use
macros to represent durative actions especially when multiagent behaviour is estimated.
On the other hand we learned some strategies that one should not use when trying to
achieve good model performance. Namely, (1) do not use locks that create block states
which do not lead to the goal; (2) do not use models for team behaviour to track parallel
actions execution; (3) carefully use when clauses as they could increase the state-space
exponentially; (4) do not use exponential durations for long lasting activities; and (5)
carefully use too abstract actions as they increase the state space immensely.

In the future, we intend to continue our work in the field of activity recognition
with Computational Causal Behaviour Models and to gather more modelling examples
and experience. Furthermore, we intend to extend our work toward defining abstract
action templates that could be reused in different settings without the need of the model
designer to remodel them every time they are used.

Acknowledgements. This work is supported by the German Research Foundation
(DFG) as part of the graduate school MuSAMA (grant no. GRK 1424/1).

References

1. Kirste, T.: Making use of intentions. Technical Report CS-01-11, Institut für Informatik, Uni-
versität Rostock, Rostock, Germany (March 2011) ISSN 944-5900

2. Kirste, T., Krüger, F.: CCBM-A tool for activity recognition using Computational Causal Be-
havior Models. Technical Report CS-01-12, Institut für Informatik, Universität Rostock (May
2012) ISSN 0944-5900

3. Krüger, F., Yordanova, K., Burghardt, C., Kirste, T.: Towards creating assistive software by
employing human behavior models. Journal of Ambient Intelligence and Smart Environ-
ments 4(3), 209–226 (2012)

4. Wurdel, M., Burghardt, C., Forbrig, P.: Supporting ambient environments by extended task
models. In: Proceedings of AMI 2007 Workshop on Model Driven Software Engineering for
Ambient Intelligence Application, Darmstadt, Germany (November 2007)

Strategies for Modelling Human Behaviour for Activity Recognition 261

5. Roy, P.C., Giroux, S., Bouchard, B., Bouzouane, A., Phua, C., Tolstikov, A., Biswas, J.: A
Possibilistic Approach for Activity Recognition in Smart Homes for Cognitive Assistance
to Alzheimer’s Patients. In: Chen, L., Nugent, C.D., Biswas, J., Hoey, J., Khalil, I. (eds.)
Activity Recognition in Pervasive Intelligent Environments. Atlantis Ambient and Pervasive
Intelligence, vol. 4. Atlantis Press (April 2011)

6. Yordanova, K., Krüger, F., Kirste, T.: Context aware approach for activity recognition based
on precondition-effect rules. In: Proceedings of the Workshop COMOREA at PerCom 2012,
Lugano, Switzerland (March 2012)

Gated Boosting:

Efficient Classifier Boosting and Combining

Mohammad Reza Yousefi and Thomas M. Breuel

Image Understanding and Pattern Recognition Group,
Department of Computer Science, TU Kaiserslautern, Germany

{yousefi,tmb}@iupr.com

Abstract. We study boosting by using a gating mechanism, Gated
Boosting, to perform resampling instead of the weighting mechanism
used in Adaboost. In our method, gating networks determine the dis-
tribution of the samples for training a consecutive base classifier, con-
sidering the predictions of the prior base classifiers. Using gating net-
works prevents the training instances from being repeatedly included in
different subsets used for training base classifiers, being a key goal in
achieving diversity. Furthermore, these are the gating networks that de-
termine which classifiers’ output to be pooled for producing the final
output. The performance of the proposed method is demonstrated and
compared to Adaboost on four benchmarks from the UCI repository, and
MNIST dataset.

1 Introduction

AdaBoost is one of the most popular combining methods among those that
adaptively change the training set distribution [2]. Initially, AdaBoost generates
a base classifier from a uniform distribution of training samples. According to
the first classifier error, a new distribution over the training set is calculated,
such that the weights of the misclassified samples are increased, and the weights
of those correctly classified are decreased. Consecutive classifiers are trained with
new distributions formed in a similar way, and therefore they are more focused
on the difficult samples that were misclassified by their previous classifiers. The
final output for a given input sample is determined by weighted averaging of the
base classifiers’ outputs.

In this paper, we propose a novel method for boosting base classifiers by an
efficient resampling step, as well as a simple, yet effective, way of combining
the base classifiers’ outputs. In our proposed method, called Gated Boosting,
a sequence of base classifiers, similar to AdaBoost, are trained with different
distributions of the training set; however, the training set distribution for each
base classifier, is determined by gating networks which are trained to point out
to parts of the input space that the previous base classifiers made errors in. The
gating networks also determine which of the base classifiers can contribute to
form the ensemble output for a given input sample. Our proposed method is
distinguished from the previously mentioned boosting methods, by introducing
the novel resampling and combining method carried out by the gating networks.

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 262–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Gated Boosting: Efficient Classifier Boosting and Combining 263

2 Gated Boosting

Given an integer L as the number of base classifiers, Gated Boosting trains L base
classifiers (Cl) along with L corresponding gating networks (Ml). For training a
base classifier Cl, the training set Sl is generated from T according to the weights
of each training sample that is being updated by the gating networkMl−1. A gating
network updates a training sample’s weights based on its distance to the prototype
of the correct and incorrect classifications of its corresponding base classifier.

The prototype estimation, performed by the gating networks, is done similar
to the local mean-based method introduced in [4]. Succinctly stated, the gating
network Ml, for each training sample, calculates the distance to the prototype
of the K-nearest neighbours in each of the two classes of correct and incorrect
classifications of the base classifier Cl. And if the distance of the ith sample to
the prototype of correct classifications of Cl, d

l
c(i), is smaller than its distance

to the prototype of its incorrect classifications, dlw(i), its weight remains un-
changed, whereas if dlw(i) is smaller than dlc(i), relative to the value of dlw(i), the
sample’s weight (Wl(i)) is increased (the samples’ weights are normalized using
a normalizing constant, Ql, to ensure that Wl(i) represents a true distribution).

Gated boosting algorithm is described in Algorithm 1 in more detail. In form-
ing C∗(x), the gating network’s output, Ml(x) is either 0 or 1, in correspondence
to the cases where a base classifier’s output is stopped or allowed for being con-
sidered in the final output, respectively. Ultimately, the average votes of those
classifiers that are gated through, produce the final ensemble output.

Algorithm 1. The Gated Boosting Algorithm

input : Training set T , classifier C, integer L
output: Classifier C∗

1 For the n training samples in T , initialize W1(i) = 0, i = 1, . . . , n;
2 Initialize by training C1 on T , and form gating M1;
3 for l ← 2 to L do

4 Wl(i) ←
Wl−1(i)+

⎧⎨
⎩0 if Ml−1(i) = 1 (when dl−1

c (i) < dl−1
w (i))

dl−1
w (i) if Ml−1(i) = 0 (when dl−1

c (i) ≥ dl−1
w (i))

Ql
;

5 train classifier Cl using Sl, sampled from T according to Wl(i), and form
gating Ml;

6 end

7 return C∗(x) =
∑L

l=1 Ml(x)×Cl(x)∑L
l=1

Ml(x)
;

In order to classify a sample x, the following steps are performed:

• dlc(x) and dlw(x) are obtained by each gating network l

• Ml(x) =

{
1 if dlc(x) < dlw(x)

0 if dlc(x) ≥ dlw(x)

• Return C∗(x) as the classification, according to step 7 in Algorithm 1.

264 M.R. Yousefi and T.M. Breuel

The main advantage of Gated Boosting lies in its robust resampling scheme.
Using the distance-based weighting scheme, not only the misclassified samples,
but also a set of neighbouring samples which are prone to be misclassified by the
previous base classifies, are resampled as the training set for a consecutive base
classifier. Furthermore, gating networks provide information on whether their
corresponding base classifiers can perform a correct classification on a given
input, or not. This information can be effectively utilized for producing the final
output by combining the output of base classifiers, which justifies the operation
in forming C∗(x).

3 Experiments and Results

We conducted a set of experiments on four benchmarks (Satimage, Parkinson
Telemonitoring, Statlog, and Letter) from the UCI repository1 and MNIST 2

dataset, in order to compare the performance of Gated Boosting with Adaboost
in classification tasks.

Table 1. Test error rates of Gated Boosting and AdaBoost algorithms on different
datasets. The base MLP parameters are represented as n@m, in which n and m refer
to the number of hidden nodes and iterations for each network, respectively.

Dataset Method
Base Base MLP Gating

Error Rate (%)
MLPs Parameters Parameters

MNIST
Gated Boosting 10 18@40 K = 5 2.81

AdaBoost 10 18@40 − 3.29

Letter
Gated Boosting 10 20@60 K = 5 6.33

AdaBoost 10 20@60 − 9.96

Satimage
Gated Boosting 10 35@50 K = 5 16.94

AdaBoost 10 35@50 − 24.66

Parkinson
Gated Boosting 20 70@85 K = 2 48.41

AdaBoost 20 70@85 − 72.33

Statlog
Gated Boosting 10 50@70 K = 2 7.22

AdaBoost 10 50@70 − 11.24

In our experiments, the base classifiers in both boosting methods are Multi-
layer Perceptron (MLP) neural networks [3]. In our implementations, we used
boosting by resampling [6]. The distance calculations in the gating networks are
performed using the fast approximate nearest neighbour library [5]. Choice of
the value K (the number of neighbours the gating networks used for prototype
estimation) depends on the dataset; however, choosing an excessively large value

1 UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml
2 The MNIST Databse of Handwritten Digits. http://yann.lecun.com/exdb/mnist

http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist

Gated Boosting: Efficient Classifier Boosting and Combining 265

for K slightly deteriorates the performance. In our experiments, K = 2, for
smaller datasets like Statlog and Parkinson, and K = 5 for larger ones like
MNIST, turned out to yield the lowest classification error.

As shown in Table 1 Gated Boosting, overall, gave better results that out-
performed AdaBoost by reducing the error rate between 36.45%, for the Letter
dataset, to 14.59% for the MNIST dataset. The error rates are the average of
20 times running each algorithm. Each MLP base classifier in this experiment
is the one with the smallest training error picked out of five times running with
different initial weights.

4 Conclusion

This paper has described a boosting algorithm that provides improved clas-
sification performance, compared to the similar Adaboost method, by taking
advantage of gating networks, which effectively update the distribution of each
base classifier training instances based on the predictions of all the prior base
classifiers. Furthermore, gating networks provide a more reliable way of combin-
ing the outputs of the base classifiers, by knowing which base classifier(s) are
good at classifying a given instance.

Observing the behaviour of Adaboost and Gated Boosting in the resampling
phase, in case of a simple binary classification task (not shown here for brevity)
can provide insights on the advantages of a gating mechanism in the adaptive
boosting process, which is probably the more effective step in forming robust
boosting classifiers [1]. The proposed method was demonstrated on a set of
benchmarks from UCI repository and the MNIST dataset, showing the superior
performance of Gated Boosting to AdaBoost.

Future work includes extending the algorithm towards a more scalable and
parallelizable method. Also, comprehensive experiments and comparisons with
different variants of Adaboost can be performed on a variety of small- and large-
scale datasets to examine the pros and cons of each boosting method in different
contexts.

References

1. Breiman, L.: Bias, variance, and arcing classifiers. Tech. Rep. 2 (1996)
2. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

3. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1999)
4. Mitani, Y., Hamamoto, Y.: A local mean-based nonparametric classifier. Pattern

Recognition Letters 27(10), 1151–1159 (2006)
5. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-

rithm configuration. In: International Conference on Computer Vision Theory and
Application, VISSAPP 2009, pp. 331–340. INSTICC Press (2009)

6. Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A.: Resampling or
Reweighting: A Comparison of Boosting Implementations. In: 2008 20th IEEE In-
ternational Conference on Tools with Artificial Intelligence, pp. 445–451 (2008)

Author Index

Arens, Michael 233
Armbrust, Christopher 1

Beck, Daniel 156
Beckert, Bernhard 13
Beierle, Christoph 49
Berns, Karsten 1
Breuel, Thomas M. 262
Bruns, Daniel 13
Bungartz, Hans-Joachim 131

Edelkamp, Stefan 25, 193
Eggert, Julian P. 168

Federholzner, Tim 25
Federmann, Christian 37
Finthammer, Marc 49

Gobet, Fernand R. 143
Gross, Horst-Michael 85, 168

Hennig, Ben 61
Hölldobler, Steffen 107
Holte, Robert C. 73, 205
Hué, Julien 180

Jabbari, Shahin 73

Kessler, Jens 85
Kiekbusch, Lisa 1
Kirste, Thomas 257
Kissmann, Peter 25
Kramer, Oliver 97
Krüger, Frank 257

Lakemeyer, Gerhard 156
Lee, Sangkyun 229
Lehmann, Paul 245

Manthey, Norbert 107
Mattar, Nikita 119
Michaelsen, Eckart 233
Münch, David 233

Nebhi, Kamel 237
Neumann, Günter 253

Ogrodniczuk, Maciej 241
Özçep, Özgür Lütfü 217

Peherstorfer, Benjamin 131
Pflüger, Dirk 131

Reithinger, Norbert 61
Ropertz, Thorsten 1

Scheffler, Tatjana 245
Schiffer, Stefan 156
Schiller, Marvin R.G. 143
Schirru, Rafael 245
Schmid, Ute 249
Schwering, Christoph 156
Siebers, Michael 249
Steinke, Peter 107
Strobel, Jürgen 85

Vollmer, Christian 168
Volokh, Alexander 253

Wachsmuth, Ipke 119
Westphal, Matthias 180

Yordanova, Kristina 257
Yousefi, Mohammad Reza 262

Zastrau, David 193
Zawis�lawska, Magdalena 241
Zhang, Xiaomin 205
Zilles, Sandra 73, 205

	Title
	Preface
	Organization
	Table of Contents
	Long Papers
	Verification of Behaviour Networks Using Finite-State Automata
	Introduction
	Related Work
	Behaviour Network Modelling and Verification
	The Behaviour-Based Architecture iB2C
	Finite-State Automata and Uppaal
	Modelling Behaviour Networks Using Finite-State Automata
	Verification of Behaviour Network Models

	Example
	Conclusion and Future Work
	References

	Formal Semantics of Model Fields in Annotation-Based Specifications
	Introduction
	The Java Modeling Language
	Semantics of JML Expressions
	Semantics of Terms
	A Generalization of Terms

	A Novel Approach to Model Field Semantics
	Discussion
	An Improved Approach

	Related Work
	Conclusion and Outlook
	References

	Searching with Partial Belief States in General Games with Incomplete Information
	Introduction
	General Game Playing
	GDL
	GDL-II

	Handling Incomplete Information
	Full Belief States
	Partial Belief States
	Choosing a Move for a (Full or Partial) Belief State

	Experiments
	Games Played
	Results in the Games

	Conclusions and Future Work
	References

	A Machine-Learning Framework for Hybrid Machine Translation
	Introduction
	Related Work
	Methodology
	Classification-Based Hybrid Machine Translation
	An Extensible, Total Order on Translations
	Machine Learning Using Joint, Binarised Feature Vectors
	Feature Set for Training a Binary Classifier
	Creating Hybrid Translations Using an SVM Classifier

	Experiments
	Evaluation
	Automatic Metrics' Scores
	System Contribution

	Conclusion
	Summary of Findings
	Outlook on Future Work

	References

	Using Equivalences of Worlds for Aggregation Semantics of Relational Conditionals
	Introduction
	Background: Aggregation Semantics
	Normalized Optimization Problem for ME Operator
	A GIS Algorithm for ME Using Lagrange Multipliers
	Equivalences of Worlds
	A GIS Algorithm Using Equivalence Classes of Worlds
	Conclusions and Further Work
	References

	Developing of a Multimodal Interactive Training System in Therapeutic Calisthenics for Elderly People
	Introduction
	Related Work
	Overview of the Interactive Trainer
	Requirements for the Interaction
	Therapeutic Requirements
	Multimodal Interaction

	Controlling the Interaction
	The Interaction Manager
	The Dialog Manager

	Exemplary Multimodal Interactions
	Conclusion and Future Work
	References

	PAC-Learning with General Class Noise Models
	Introduction
	Preliminaries
	A General Framework for Modeling Class Noise
	Class Noise Models
	Defining New Noise Models
	Noise Rates Different from 1/2

	Minimum Disagreement Strategies
	Disagreement between Concepts and Noisy Samples
	Disagreement between Noisy Concepts and Noisy Samples

	Conclusions
	References

	Avoiding Moving Persons by Using Simple Trajectory Prediction and Spatio Temporal Planning
	Introduction
	Prediction of the Person's Trajectory
	The Potential Field
	Motion Prediction

	The Adapted Fast Marching Planner
	The Fast Marching Method
	Adaptation for Predicted Motions
	Following the Calculated Path

	Experiments and Results
	Conclusion and Future Work
	References

	Unsupervised Nearest Neighbors with Kernels
	Introduction
	Unsupervised Nearest Neighbors
	UNN with Stochastic Embeddings
	Related Work

	Kernel UNN
	Kernel Functions
	Kernelization of DSRE

	Experimental Analysis
	RBF-Kernel
	Kernel Function Comparison
	Comparison between KUNN, LLE, and ISOMAP

	Conclusions
	References

	A Compact Encoding of Pseudo-Boolean Constraints into SAT
	Introduction
	Preliminaries
	Sequential Weight Counter Encoding
	From Sequential Counters to Sequential Weight Counters
	Properties of the SWC Encoding

	Results
	Conclusion and Future Work
	References

	Small Talk Is More than Chit-Chat
	Introduction
	Related Work
	Small Talk and Casual Conversations
	Virtual Agent Research

	Structuring Dialogue
	Present System Architecture
	Micro Level
	Macro Level

	Conclusion and Future Work
	References

	Clustering Based on Density Estimation with Sparse Grids
	Introduction
	Sparse Grids
	Density Estimation on Sparse Grids
	Clustering with Estimated Densities
	Benchmark Examples
	Clustering Car Crash Data
	Conclusions
	References

	A Comparison between Cognitive and AI Models of Blackjack Strategy Learning
	Introduction
	Blackjack Strategies: Modelling and the Role of Learning
	Blackjack Strategies
	Modelling Learning in Blackjack

	CHREST
	Modelling
	CHREST Model (Model 1)
	Attribution
	SARSA (Model 2)
	Model Fitting

	Results
	Conclusion
	References

	Plan Recognition by Program Execution in Continuous Temporal Domains
	Introduction
	Driving Maneuvers: An Example Domain
	The Action Language prGolog
	Stepwise Execution
	Time and Continuous Change
	Stochastic Actions and Decision Theory

	The Semantics of prGolog
	Program Decomposition
	Executing Atomic Actions
	Rating Programs by Reward
	Transition Semantics

	Plan Recognition by Program Execution
	Classifying Driving Maneuvers
	Passing Maneuver
	Aggressive vs Cautious Passing

	Discussion and Conclusion
	References

	Modeling Human Motion Trajectories by Sparse Activation of Motion Primitives Learned from Unpartitioned Data
	Introduction
	Related Work
	Method
	Motion Primitive Learning
	Alignment of Activity Patterns
	Activity Generation

	Results
	Conclusion
	References

	Nogoods in Qualitative Constraint-Based Reasoning
	Introduction
	Notation
	Qualitative Constraint-Based Reasoning
	Nogoods in Constraint-Based QSTR
	Extracting Nogoods from Search
	Using Nogoods for Inference

	Implementation and Evaluation of the Techniques
	Conclusion
	References

	Stochastic Gradient Descent with GPGPU
	Introduction
	GPGPU Essentials
	Stochastic Gradient Descent and Parallelization
	Application: Collaborative Filtering
	Application: Support Vector Machine
	Concluding Remarks
	References

	Improved Query Suggestion by Query Search
	Introduction
	Query Suggestion by Query Search (QSQS)
	Objective and Evaluation
	The QSQS System Architecture

	Improvements to QSQS
	Term Selection
	Query Suggestion Candidate Generation
	Experiment Comparing AC, BS, Q0AC and Q0BS

	Greedy Query Suggestion by Query Search (GQSQS)
	Comparison of QSQS, IQSQS, and GQSQS
	Query Suggestion Examples
	Related Work
	Conclusion
	References

	Knowledge-Base RevisionUsing Implications as Hypotheses
	Introduction
	Logical Preliminaries
	Revision Based on Hypotheses
	Using Implications as Hypotheses
	A Representation Theorem
	Related Work
	Conclusion and Outlook
	References

	Short Papers
	Improving Confidence of Dual Averaging Stochastic Online Learning via Aggregation
	Introduction
	Regularized Dual Averaging

	Aggregated Regularized Dual Averaging
	Experiments
	References

	Supporting Fuzzy Metric Temporal Logic Based Situation Recognition by Mean Shift Clustering
	Introduction
	Methods
	Evaluation
	Conclusion
	References

	Ontology-Based Information Extraction for French Newspaper Articles
	Introduction
	OBIE
	System Description
	Experience
	Conclusion - Further Work
	References

	Semantic Approach to Identity in Coreference Resolution Task
	Introduction
	Verification of the Typology of Identity
	From Pragmatics to Speaker-Recipient Relation
	Does Near-Identity Really Exist?
	Linguistic and Conceptual Reasons of Difficulties in Coreference Interpretation
	Conclusions
	References

	Matching Points of Interest from Different Social Networking Sites
	Introduction
	Related Work
	Approach
	Evaluation
	Conclusion and Future Work
	References

	Semi-analytic Natural Number Series Induction
	Introduction
	Inducing Natural Number Series Definitions
	Term Structure Enumeration
	Semi-analytical Search

	Evaluation
	Conclusion
	References

	Dependency Parsing with Efficient Feature Extraction
	Introduction
	Complexity in Theory
	Complexity in Practice
	Feature Extraction
	Results and Conclusion
	References

	Strategies for Modelling Human Behaviour for Activity Recognition with Precondition-Effect Rules
	Introduction and Background
	Modelling Paradigm
	Strategies for Modelling Human Behaviour
	Real World Example
	Discussion and Conclusion
	References

	Gated Boosting: Efficient Classifier Boosting and Combining
	Introduction
	Gated Boosting
	Experiments and Results
	Conclusion
	References

	Author Index

