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Abstract. Drivers, especially third party drivers, could contain mali-
cious code (e.g., logic bombs) or carefully designed-in vulnerabilities.
Generally, it is extremely difficult for static analysis to identify these
code and vulnerabilities. Without knowing the exact triggers that cause
the execution/exploitation of these code/vulnerabilities, dynamic taint
analysis cannot help either. In this paper, we propose a novel cross-
brand comparison approach to assess the drivers in a honeypot or test-
ing environment. Through hardware virtualization, we design and deploy
diverse-drivers based replicas to compare the runtime behaviour of the
drivers developed by different vendors. Whenever the malicious code
is executed or vulnerability is exploited, our analysis can capture the
evidence of malicious driver behaviour through comparison and differ-
ence telling. Evaluation shows that it can faithfully reveal various kernel
integrity/confidentiality manipulation and resource starvation attacks
launched by compromised drivers, thus to assess the trustworthiness of
the evaluated drivers.
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1 Introduction

Drivers, especially third party drivers, could contain malicious code (e.g., logic
bombs) and/or carefully designed-in vulnerabilities. Once got executed/exploited,
such compromised drivers render the attackers the opportunity of leveraging
drivers’ privilege to manipulate system integrity and data confidentiality. Even
worse, some attackers have successfully stolen certification from benign third-
party and easily obtained trust from the most cautious system engineers. For
instance, mrxcls.sys, a driver digitally signed with a compromised Realtek cer-
tificate, may be viewed as trusted and loaded into industrial OS by system
engineers. Once loaded, it injects malware Stuxnet into the victim OS, which
in turn causes catastrophe in Siemens supervisory control and data acquisition
industrial systems [2].

Fully assessing third party drivers before running them in most commodity
server systems is challenging. First, static analysis of such drivers is not always
possible due to the unavailability of their source code. Furthermore, carefully
designed-in vulnerability or malicious code triggered by some specific logic are
extremely difficult to be pinpointed during static analysis. Second, dynamic taint

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 42–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Assessing the Trustworthiness of Drivers 43

analysis (e.g., [37] and [11]) of driver code is generally infeasible, due to the un-
known taint seed during assessment. Without an accurate reference model, taint-
ing the entire code space of drivers can only reveal drivers’ behaviour, instead of
distinguishing legitimate actions from malicious ones. Last, besides promiscuous
attacks such as kernel integrity manipulation, some passive attacks, e.g., listening
post, launched by compromised drivers are more difficult to be captured.

Previous research proposes to protect kernel integrity from drivers by confin-
ing the drivers’ execution context, e.g., Nooks [30], Gateway [28], HUKO [35],
Device Driver Reuse and Isolation [24], and Mondrix [34]. Although these sys-
tems can effectively monitor drivers’ interaction with kernel functions or data,
deploying such isolation approach to assess drivers would cause a large number
of false positives or false negatives. For instance, both Gateway [28] and HUKO
[35] rely on explicitly white-listed legitimate entry points for control transfer
from drivers to OS kernel. However, such explicit and complete reference model
is quite difficult to be established in practice. We observe that legitimate drivers
indeed invoke kernel functions not defined in legitimate entry points occasion-
ally, which results in false positives. Moreover, frequently invoking kernel APIs
defined in legitimate entry points can also lead to Denial of Service attack due
to resource starvation, which causes false negatives.

In this paper, we present a novel driver evaluation approach, Heter-device, to
comprehensively assess drivers against an implicit and complete model before
putting any trust on them. Heter-device relies on virtual platforms to emulate
heterogeneous device (Heter-device) pairs (e.g., Intel 82540EM NIC and Realtek
RTL8139) for guest operating system replicas. Each replica loads heterogeneous
drivers corresponding to the devices it runs on. Heter-device approach stands on
the assumption that heterogeneous drivers should not have the same exploitable
vulnerability due to their separated developing processes. So they provide an im-
plicit and complete reference model for each other when trustworthiness assess-
ment is conducted via fine-grained auditing. Hence, by deploying Heter-device
as a high-interaction honeypot, we can closely compare the divergence of two
replicas when the vulnerable driver is being compromised and leveraged.

The two replicas with heterogeneous drivers are synchronized at the exported
function entry points, which are declared by OS kernel and implemented by each
driver.We start a fine-grained auditing of driver’s execution whenever kernel calls
the corresponding driver functions. During driver’s execution, every jump, call or
return to kernel or other kernel modules’ address space are logged for verification.
The logs from heterogeneous drivers are parsed and compared to check any
suspicious control flow redirection, e.g., one driver jumps to a kernel segment
written by itself, while the other does not exhibit such behaviour. Moreover, any
modification to key kernel data by drivers is recorded and verified against the
heterogeneous drivers to check if it is a legitimate modification or a malicious
manipulation.

We also deal with passive attacks launched from compromised drivers, e.g.,
network card driver intercepts incoming/outgoing packets and redirects them
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to remote entities. Thus, the network outgoing packets of the two replicas are
audited and compared to find mismatch. Additional amount of traffic on one
replica against the other suffices an alarm of confidentiality compromise. Finally,
abuse of kernel APIs, such as spin lock or kernel memory allocation requests,
may cause CPU or memory starvation. Hence, any call to these resource request
APIs from drivers is also verified against heterogeneous drivers. By placing the
synchronization and monitoring “sensors” in Heter-device, our honeypot can
faithfully reveal multiple attack vectors of compromised drivers, including kernel
integrity manipulation, resource starvation, and confidentiality tampering.

We target a honeypot or testing environment; accordingly, we implement
Heter-device framework based on open source QEMU [1] project for the follow-
ing reasons. First, QEMU facilitates our Heter-device architecture by providing
heterogeneous device emulation options for several types of devices, e.g., sound
card (sound blaster 16 or Gravis ultrasound GF1), Ethernet network card (Intel
82540EM NIC or Realtek RTL8139), video card (Cirrus Logic GD5446 Video
card or Standard VGA card with Bochs VBE extensions), and etc. Further-
more, it enables our fine-grained auditing of driver’s execution through binary
translation blocks. Specifically, since each jump of register eip generates a new
translation block in QEMU, we can simply monitor eip at the beginning of each
translation block to capture the driver’s execution context, rather than auditing
every instruction. Last, though the overhead of QEMU is significant, providing
good performance is not so critical in either honeypot or testing environment.

Our evaluation shows that Heter-device is effective in revealing multiple at-
tack vectors of compromised drivers, e.g., kernel APIs abuse, malicious code
injection, key kernel data tampering, resource starvation, and sensitive infor-
mation leakage. Accordingly, typical real world use of Heter-device can be as
follows: the system engineers assess drivers using Heter-device first, and then
choose the trustworthy drivers1 to run their server systems. Compared to na-
tive QEMU execution, the performance overhead incurred by auditing control
flow transition and synchronization can be optimized to range from 20 % to 90
%, depending on the amount of kernel data to be audited. Heter-device driver
assessment only requires drivers’ binary code to run in network-oriented testing
environment (i.e., honeypot), and dose not involve any modification to driver
source code, compilers, or targeted operating systems.

The rest of this paper is organized as follows. The next section overviews
Heter-device threat model. Section 3 presents the design details of Heter-device
approach, focusing on Heter-device architecture, address-alias correlation, run-
time synchronization and multi-aspect auditing and verification. Section 4 sum-
marizes the implementation issues of Heter-device. In Section 5, we evaluate
Heter-device by case studies and measure its performance overhead. In Section
6, we discuss the limitation and future work of Heter-device. Finally, we present
related work in Section 7 and conclude in Section 8.

1 System engineers can either buy the corresponding real hardware devices or configure
virtual platforms to emulate those devices.
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2 Threat Model

In this paper, we assume that the device drivers are untrusted, either with vulnera-
bilities that can be exploited locally or remotely, or inherently malicious. Further-
more, we only focus on the exploitations that are carefully designed and crafted
by attackers. Otherwise, crashing the target system will definitely draw system
engineers’ attention to trace such consequence back to the root cause. Last, as the
base of Heter-device, we assume that heterogeneous drivers should have different
vulnerabilities or different malicious code, in terms of where and what the vulner-
abilities or malicious code are. Hence, at least one driver can serve as a criterion
to verify and alarm the other compromised driver’s execution.

It is generally believed to be challenging to verify the behaviour of untrusted
drivers in an efficient and robust way due to at least the following reasons. First,
drivers in most commodity OS have exactly the same privilege as kernel and
run in the same address space as kernel. Thus, any kernel module performing
auditing or monitoring tasks may be manipulated by the compromised driver.
Second, the attackers may leverage the compromised driver to tamper arbitrary
OS components (e.g., function pointers, file metadata, system call table, etc.),
to accomplish their intrusion goals. Hence, it is also quite difficult, if not im-
possible, to pinpoint the comprehensive auditing points covering all possible
damages/harms that could be caused by compromised drivers. Last, even if it
is possible to censor drivers’ execution efficiently and comprehensively, lacking a
complete reference model makes the verification of drivers’ behaviour challeng-
ing. Significant false positive or false negative is expected.

In this paper, we propose a novel approach, Heter-device, using driver-
diversity-based replica as a complete and implicit reference model, to assess
drivers in the following attack vectors:

Control Flow Manipulation. The control flow transition from driver to kernel
is tampered by compromised drivers, e.g., jumping to a specific address in the
middle of kernel functions, making suspicious kernel function calls to modify
critical registers, and etc.

Key Kernel Data/Code Manipulation. Compromised drivers tamper with
kernel code, static global variables, or key dynamic data specified by kernel
developers or system engineers, e.g., system call table, interrupt descriptor table,
double linked list pointers in process control block, and etc.

Confidentiality Manipulation. Compromised drivers intercept bypassing in-
formation or access sensitive files, and send them out through network to remote
unknown entities. For instance, compromised NIC driver intercepts all the in-
coming/outgoing packets and redirects them to attackers’ machine.

Resource Starvation. Compromised drivers abuse critical resources and in-
cur denial of service, e.g., dominating CPU by locking interrupts or exhausting
memory by endless allocation request.

Since we assume OS kernel is fully trusted, we don’t verify the control flow
transition from OS kernel to driver code, nor audit the driver’s data accessed
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by OS kernel. Furthermore, the function parameters and stack data passed be-
tween OS kernel and drivers are not verified currently, which could be leveraged
by compromised drivers to tamper kernel integrity in certain ways. For instance,
when calling a certain kernel API, attackers can launch a return-oriented at-
tack to jump to other kernel functions through carefully crafted parameters.
Such attack can indeed evade the auditing of Heter-device, but we believe that
currently it requires significant manual efforts of attackers2. Finally, since Heter-
device relies on underneath virtual platform to emulate heterogeneous devices
for guest OS replicas, we assume the virtual machine monitor is in the trusted
computing base. Exploiting bugs in virtual machine monitor, such as [3], and
then controlling the guest OS are not in the scope of this paper.

3 Heter-Device Design

In this section, we first describe the novel virtualized device diversity approach to
efficiently produce driver-diversity-based OS replicas, then present Heter-device
approach to evaluate drivers in multi-aspects.

3.1 Heter-Device Architecture

Figure 1 shows our Heter-device architecture with the front stage replica and
the back stage replica running as Guest OS atop the same Host OS. The device
diversity is produced by virtual platform to emulate heterogeneous devices for
the two VM replicas. The virtual platforms can run unmodified commodity OS
by giving the Guest OS the illusion that it runs on top of “real” hardware. Thus,
the guest OS will load corresponding drivers for the hardware devices that it
regards as “real”. In this way, the virtualized device diversity approach gains the
same security benefits as costly hardware diversity in a much cheaper manner.
For instance, software diversity approach enables two replicas to run on two
separated emulated platforms, one with Intel 82540EM NIC (Network Interface
Card), sound blaster 16 (sound card), Universal Host Controller Interface (USB
controller) and etc., the other with Realtek RTL8139 NIC, Gravis ultrasound
GF1(sound card), Intel Open Host Controller Interface (USB controller) and etc.

Our virtualized device diversity idea is inspired by both the hardware-based
diversity approach and the sweeping deployment of virtual platforms (e.g.,
VMware, Xen, KVM, QEMU and etc.) in the production server environment. In
this paper, we call the diverse devices with different models but performing the
same functionality, e.g., Intel 82540EMNIC and Realtek RTL8139 NIC, as a pair
of heterogeneous devices. As a result of pairs of heterogeneous devices emulated
by virtual platform, the guest OS kernel of each replica will load heterogeneous

2 The most recent work [21] fully automates the instruction sequence construction
that can be used by an attacker for malicious computations. However, the side-effect
of the construction time (2009 ms) and the runtime overhead (135 times slower) will
cause significant divergence on the logs of the two replicas, which will be caught by
Heter-device as CPU resource abuse.
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Fig. 1. Heter-device Software-based Diversity Architecture for Driver Assessment

drivers correspondingly, e.g., e1000 or 8139too kernel modules3. Except heteroge-
neous drivers, the guest operating systems on the front stage VM replica and the
back stage VM replica are exactly identical in terms of kernel version, installed
applications and services, other loaded modules, start-up scripts, and etc.

The external input should be redirected to both the two replicas. We imple-
ment the input replication at the Host OS, totally transparent to the Guest OS
replicas. Basically, every external input from network, keyboard, and mouse trig-
gers both the device emulation modules of the two virtual machines. Since the
input data from virtual disk is initialized by guest OS replicas, it does not need
to be replicated. The output from the two guest OS replicas is intercepted and
recorded by virtual machines. For instance, the network output traffic from each
replica is audited and verified to capture any confidentiality tampering through
network. During evaluation, we ensure that only the output from the front stage
replica is sent out, while the output from the back stage replica is discarded, to
guarantee the correctness of communication context.

3.2 Heter-Device Approach

There exist several challenges to assess drivers based on Heter-device architec-
ture, so we abstractly present our system design to tackle these challenges in the
following.

Address-Alias Correlation. Through pre-configuration, both the front stage
and back stage OS replicas can load root symbols (defined in System.map in

3 We focus our discussion on Linux operating system in this paper, but Heter-device
is easily transported to other operating systems through reasonable efforts.
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Linux) into the same memory address. However, other dynamic kernel data may
be loaded into different addresses, even if the data represents exactly the same
semantics. For instance, with the same kernel version and configuration, the two
OS replicas store the process descriptors of their root processes in the same
address (pointed by the root symbol init task). By traversing the double linked
list of all the processes on the two replicas, we observe exactly the same process
list, including kernel threads. However, the memory addresses storing all the
other process descriptors, except the root process descriptor, do not match. Such
address-alias of the same kernel data on the two replicas is prevalent and poses
challenge to our auditing of kernel function calls and key kernel data accessed
by evaluated drivers.

To tackle this challenge, we propose to correlate the address-alias kernel se-
mantics of the front stage and back stage replicas. First, we need to reconstruct
kernel semantics from raw physical memory of each replica respectively. Due
to the challenge of reconstructing dynamic kernel data, such issue catches re-
searchers’ continuous attention recently, e.g., [22], [7], [15], [25], [14] and etc.

Heter-device efficiently integrates both the out-of-VM and in-VM approaches
to comprehensively reconstruct kernel semantics. All kernel exported function
pointers can be referred to from root symbol definition (System.map file), which
is identical for both the replicas through default configuration. Some key kernel
data can also be referred to in a similar way, with additional effort of recur-
sive identification of kernel data structures. Regarding dynamic data of both
kernel and drivers, we insert a fully trusted kernel module into both the front
and back stage replicas, which notifies underneath virtual platforms about the
allocation/reclaim of kernel memory and loading/unloading of kernel modules.
With the reconstructed semantics, address-alias correlation recursively maps the
addresses of the same kernel semantics, either function pointers or kernel data
structures. Hence, it makes possible the efficient auditing and verification of
heterogeneous drivers’ execution.

Runtime Synchronization. Running the front stage and back stage replicas
at large may incur “out-of-band” comparison of heterogeneous drivers’ execution
on the two replicas. Though we delivered the replicated external input to the two
replicas at the virtual machine monitor level simultaneously, the corresponding
interrupt to CPU on each replica may not be “simultaneous”. Thus the actual
processing of the interrupt on the two replicas may still be “out-of-band”. Re-
searchers have proposed interrupt-redelivery approach for deterministic replay,
e.g., [16], [36], and [38], which could be leveraged by Heter-device to apply the
exact-replay-style synchronization. However, due to the heterogeneous driver
diversity introduced by Heter-device, synchronizing such diverse replicas poses
quite realistic challenges, such as different instruction execution sequences.

We observed that although the implementation of heterogeneous drivers is
different, they offer the same function interfaces to OS kernel. Such layered
design of most operating systems implies that OS kernel only needs to know how
to invoke the device driver’s methods, rather than to understand the detailed
implementation of driver’s methods. Figure 2 shows the interaction among NIC
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Fig. 2. NIC Driver Interaction with OS Kernel and Other Kernel Modules

driver, OS kernel and other kernel modules. Besides function call returns, the
control flow transition to NIC driver code must be through NIC interrupt handler
or NIC driver function calls. For instance, NIC driver (Linux version) has totally
18 methods, with 8 fundamental (e.g., open, stop, hard start xmit, and etc.) and
10 optional (e.g., poll, set mac address, change mtu, and etc.), indicating the
operations that can be performed on this network card.

OS kernel declares the corresponding driver function pointers and initialize
them during the loading of driver modules. As described in Figure 2, these driver
functions are the only entry points for the control flow to transit from OS kernel
or other kernel modules to this driver. Since OS kernel is fully trusted, it will
not redirect control flow to arbitrary driver addresses except driver function call
returns. More importantly, these entry points are identical for heterogeneous
drivers despite different implementation details of the driver functions. Address-
alias of the entry points on the two replicas can be resolved by correlating the
addresses of them together. Thus, the two replicas can be synchronized by the
entry points of the same device driver functions.

Hence, the auditing and verification of drivers’ execution can be triggered by
sensors monitoring the entry points. Specifically, when OS kernel’s execution
encounters an entry point, i.e., OS kernel calls a driver function, the context of
current execution is recorded on the two replicas separately. Then, all the follow-
ing instruction sequences of the two replicas are audited respectively, until the
return to the previously logged context4. In particular, the entry point of the in-
terrupt handler function deserves special attention, since nested interrupts (new
interrupt comes during the processing of previous interrupt) may happen some-
times. Hence, each entry to driver’s interrupt handler function is sequenced, and
strictly matched to the corresponding return. In this way, the driver’s execution
can be identified apart from OS kernel’s execution.

4 Driver may also call kernel APIs during its execution. So the return to OS kernel
address space does not suffice the end of driver’s execution. Instead, only the return
to the caller’s execution context indicates the end.
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Kernel Integrity Mediation. Compromised drivers can leverage the ultimate
privilege to manipulate kernel integrity, e.g., hijacking control flow or tampering
kernel data. Below, we present the approach of auditing such kernel integrity that
could be tampered by compromised drivers based on Heter-device architecture.

Control Flow. For benign OS kernel and drivers, the control flow transitions
among them can be well regulated by confining exported functions. For instance,
Figure 2 shows that the control flow transition from OS kernel to drivers can be
made by calling functions exported by drivers. Besides call return or hardware
interrupt, the transition from benign drivers to OS kernel is through functions
exported by OS kernel itself or other kernel modules which may call exported
kernel APIs on behalf of the calling driver. Since we trust OS kernel, OS kernel
only calls functions exported by drivers to transit the control flow. However,
compromised drivers may directly jump to any address inside kernel or other
modules to continue execution. Moreover, they can inject malicious code into
OS kernel memory using DMA, and subvert function pointers on stack to the
injected code, to hijack the control flow transition.

Existing researches, e.g., Gateway [28] and HUKO [35], prevent such control
flow integrity manipulation by isolating address spaces of OS kernel and drivers.
Legitimate entry points for execution transition from drivers to OS kernel are
explicitly listed, e.g., system root symbols in Linux System.map). However, we
observe that legitimate drivers may invoke some kernel APIs not defined in their
legitimate entry point set. Rather, invoking kernel APIs frequently in their legit-
imate entry point set can also lead to denial of service attack through resource
starvation. Furthermore, compromised drivers may inject malicious code into
their own stack or heap to launch attack without violating control flow transi-
tion policies.

The runtime synchronization facilitates the fine-grained auditing of drivers’
execution, from the call to driver’s function to the corresponding return to caller.
During the auditing of driver’s execution, every jump or call out of driver’s code
address space is logged. These calls of kernel APIs or other kernel modules
should be verified against the two replicas. Since the implementation of the
heterogeneous drivers is different, strict verification of the sequence of their OS
kernel API calls would always fail. However, to provide the same functionality,
during assessment we observed a set of specific kernel APIs is frequently called by
heterogeneous drivers. For instance, the kernel API calls made by NIC converge
at irq locking/unlocking and memory allocation/deallocation.

We expect system engineers to manually analyze and verify the logged kernel
API calls made by heterogeneous drivers within each specific driver function.
Based on our experience, most system engineers (even those not quite familiar
with OS kernel) have a sense of which set of kernel APIs are relevant in a specific
driver function based on our cross-checking reference model. In addition, it is
also relatively easy for them to capture some outlier kernel API calls through the
pairwise comparison for further verification. For example, one volunteer system
engineer at the first glance, pointed out that rtl8139 open makes a kernel thread
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call, while e1000 open does not. Though such behaviour is finally verified as
benign, we believe that such significant variance deserves further verification.

Besides the outlier kernel APIs, the kernel APIs that are called with an ex-
tremely high frequency deserve further verification as well. For instance, endlessly
calling resource request kernel APIs will cause resource starvation as discussed in
Section 3.2. Repeatedly calling prepare to wait kernel APIwill put all the runnable
processes into sleep. Such malicious behaviour can be easily captured through the
comparison of the amount of each kernel API calls within a specific driver func-
tion against heterogeneous drivers. Furthermore, benign drivers typically will only
write data, rather than code, into their own stack/heap, or DMA-mapped kernel
memory. Thus, any jump/call to the address within driver’s stack/heap, or DMA-
mapped kernel memory is strictly verified to check if such behaviour is general for
the heterogeneous drivers to provide desired functionality. If not, further verifica-
tion should be given to the driver that exhibited such suspicious behaviour.

Data Integrity. Drivers have the privilege to modify any kernel control-relevant
or control-non-relevant data. Such modification by drivers should be strictly ver-
ified, rather than forbidden, since some of the modification might be legitimate
to provide some desired functionality. For instance, previous Linux kernel does
not export set current state API for drivers to change the state of a certain pro-
cess. Instead, drivers have to directly set the state of current running process
by current->state = TASK INTERRUPTIBLE. However, compromised drivers
may take advantage of those exported kernel APIs to hijack control flow, e.g.,
manipulating kernel control-relevant data, such as system call table, IDT, etc. A
particular process can also be hidden by tampering kernel control-non-relevant
data, such as pointers of double linked list processes.

Hence, we propose to verify the modification to key kernel data by heteroge-
neous drivers to capture any malicious manipulation. Beginning from the call to
driver functions, copy-on-write is triggered on the memory storing the key kernel
data on each replica, until the corresponding return to caller. Hence, the modifi-
cation to key kernel data can be accounted to the corresponding drivers. However,
driver’s execution may be disrupted by a preempted interrupt, which is handled
by OS kernel and corresponding interrupt handler. The modifications during the
preempted interrupt handling should be accounted to the driver that implements
the interrupt handler function. These modification logs of each driver function are
verified against heterogeneous drivers for any malicious manipulation.

We observe that most kernel data integrity manipulation is accompanied with
control flow hijacking, which can be identified as discussed in control flow ma-
nipulation. Regarding pure data integrity manipulation, kernel developers or
security engineers can provide a list of critical kernel data based on empirical
experiences or referring to kernel critical data profiling [32]. Generally, when the
amount of key kernel data to be verified becomes large, the runtime overhead
and the false positive of Heter-device verification will become significant. Hence,
we propose to select a subset of kernel integrity critical data as the verifica-
tion candidate, e.g., system call table, IDT, critical function pointers in process
descriptor, double linked list pointers, and etc.
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Confidentiality and Resource Consumption. Passive attacks, such as con-
fidentiality tampering or resource abuse, are challenging to be identified or de-
tected. Unfortunately, compromised drivers can leverage their ultimate privilege
to maliciously intercept any data flow or repeatedly request any critical system
resource, thus tampering confidentiality or crashing the system. Below, we dis-
cuss the methodology of relying on Heter-device architecture to capture such
passive attacks during driver assessment, and present the framework we inte-
grated into our approach.

Confidentiality. Compromised drivers can intercept bypassing data, call trans-
mission (hard start xmit in Linux) function in network card driver, and send
out to remote machines. Through control flow auditing and verification of het-
erogeneous drivers, the additional call to network card driver functions can be
captured and identified as suspicious as discussed in Section 3.2. However, if
network card driver itself is compromised, such data interception can be done
totally within its own execution context, without any call to functions in other
kernel modules. Although data flow auditing and verification of heterogeneous
drivers can be added to capture the data interception, it would incur significant
runtime overhead.

In this paper, we only focus on confidentiality leakage through network, that
is, the intercepted data is transmitted to remote machines through network
interface card. We assume that servers’ running environment has strict physical
access restrictions. Thus, it is out of our scope that the compromised drivers
intercept the data and write it to local disk, which is then fetched through local
access. Based on our assumption, we monitor and verify the network output of
the front stage and back stage replicas for any confidentiality leakage. When
deploying Heter-device architecture, OS kernel and service applications on the
two replicas are identical, and the incoming packets to the emulated network
cards are exactly replicated. So the output from the two replicas should be kept
in rhythm unless anomaly happens. Hence, the output from the two replicas are
matched with the combination of receiver’s IP and packet sequence number. The
additional traffic for information leakage from the compromised replica can be
captured and alarmed.

Resource Consumption. Compromised drivers can launch various resource abuse
attacks, and even cause denial of service due to resource starvation. Acquir-
ing/releasing interrupt lock, allocating/freeing memory and etc., are benign op-
erations for most drivers to provide desired functionality. However, such legit-
imate operations may be leveraged by compromised drivers to launch CPU or
memory starvation attacks. Certainly, it is infeasible to restrict these kernel APIs
from drivers, because benign drivers may not work or malfunction. Heter-device
captures such resource abuse attack by strictly auditing and verifying the re-
source request kernel APIs issued by heterogeneous drivers. Although different
implementation of heterogeneous drivers may cause variance in system resource
consumption, we believe significant variance must indicate suspicious driver, at
least inefficient implementation of the driver. System engineers can easily set up
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a threshold of such variance to alarm resource abuse. Based on our experience,
such variance threshold can be set from 5 % to 15 % based on various context
for reasonable false negative and false positive.

4 Implementation

In this section, we present the implementation of Heter-device framework. We
begin with Heter-device architecture deployment based on QEMU open source
project, followed by address-alias correlation for the heterogeneous drivers based
replicas. At last, we describe the implementation of the fine-grained mediation
of heterogeneous drivers’ execution.

4.1 Heter-Device Deployment

Software Diversity Architecture. Instead of deploying the replicas on costly
real heterogeneous devices platforms, we implement our Heter-device architecture
using QEMU, with one virtual machine as the front stage replica, and the other
one as the back stage replica. We configure the virtual machine (QEMU) to em-
ulate heterogeneous devices for the two replicas, i.e., one with Realtek RTL8139
NIC and Gravis ultrasound GF1, the other with Intel 82540EM NIC and sound
blaster 16. Although other heterogeneous devices options are also available, e.g.,
USB, video card and etc., we believe heterogeneous network cards and sound cards
are sufficient to demonstrate the proof-of-concept of Heter-device.

The disk image file is replicated for the two replicas to ensure the same guest
operating system (with kernel version 2.6.15), service applications, configura-
tions, startup scripts, and etc. Moreover, the two replicas are configured with the
same amount of memory and networking model. Hence, the only difference be-
tween the two replicas is heterogeneous drivers, which interact with underneath
heterogeneous devices. During the assessment of heterogeneous drivers, Heter-
device serves as “honeypot” to trigger either the inherently malicious drivers or
remote exploitation to drivers’ vulnerabilities.

Input Replication and Output Verification. To implement the external
input replication to the two replicas, we insert a small piece of replication code
into the host operating system kernel. Whenever there is any external input,
i.e., keyboard, mouse, network packet, to the front stage replica, the inserted
code on host OS kernel replicates the input and notifies both the two replicas
for incoming events. Since the virtual machine we use (QEMU) behaves as a
user process on host OS, the notification can be done either by signal or bit
masking based on the context. In contrast, the network output from each replica
is logged by the emulated network card of each virtual machine. On host OS,
we implement a verification process examining the logs from the two replicas.
In particular, it extracts the destination IP, sequence number information from
each packet and matches the corresponding packets from the two replicas. A
threshold of the amount of unmatched packets can be pre-determined, to alarm
any confidentiality leakage.
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Synchronization of Replicas. We rely on both virtual machine and guest OS
support to synchronize the front stage and back stage replicas at the granularity
of driver function calls. We assume that host OS runs on multi-core hardware
platform, thus each virtual machine is configured to run on a dedicated core
for maximum CPU capacity. We craft a trusted kernel module to monitor the
loading of heterogeneous drivers on each replica. For instance, it audits the pro-
cedure of initializing functions declared by OS kernel, e.g., the interrupt handler
function and other functions registered by the driver. The memory addresses of
these functions are sent to underneath virtual machine through a secure channel.
Only the functions implemented by both heterogeneous drivers are selected as
synchronization points for the two replicas. During runtime, the value of regis-
ter eip is monitored on both replicas to capture the synchronization points, as
discussed in Section 4.3.

4.2 Address-Alias Correlation

We focus our implementation on Linux OS and start from a set of root symbols
in System.map file. Since operating systems on the front stage and back stage
replicas are with the same kernel version and configuration, the symbols and their
addresses in System.map are exactly the same. Then we apply a CIL module [27]
on the source code of guest OS kernel to automatically extract type definitions
of kernel data structures. Finally, beginning from each correlated root symbol,
we recursively reconstruct memory semantics based on type definitions of kernel
data structures, and correlate the same data structure with address-alias.

In particular, in order to correlate task struct of each process, we start from
the data structure CPUState defined by QEMU to emulate the processor for
virtual machine. All the CPU registers can be referred to through the instance
of CPUState: env. From the register tr, we locate the kernel stack of the currently
running process. At the bottom of kernel stack resides the thread info structure,
which includes a pointer to the task struct of the corresponding process. By
traversing the double linked list processes through the task pointers on the two
replicas, we can obtain all the process descriptors and correlate their addresses
together.

4.3 Fine-Grained Driver Execution Mediation

QEMU is a binary translation based virtual machine, which facilitates fine-
grained auditing of guest OS execution. Instead of instruction-by-instruction
translation, QEMU implements translation block to improve performance. Specif-
ically, QEMU generates host code from a piece of guest code without control flow
redirection or static CPU state modification. Thus, for each translation block,
guest OS executes without QEMU intervention unless interrupt occurs. At the
end of each translation block, QEMU takes over the control and prepares for the
next translation block.

The translation block mechanism provides a perfect mediation approach for
drivers’ execution. We can audit the program counter at the beginning of each
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translation block, which represents a control flow redirection, including return,
jump, or call, etc. In this way, the entry into or the leave from driver’s code section
can be recorded efficiently without monitoring every executed instruction. How-
ever, QEMU also implements translation block chaining for performance boost.
In particular, every time when a translation block returns, QEMU tries to chain
it to previous block, thus saving the overhead of context switch to QEMU emu-
lation manager. The translation block chaining indeed poses challenges for our
control flow redirection mediation, since QEMU emulation manager may miss
some redirections, i.e., some transitions between OS kernel and drivers.

In order to tackle this challenge, we trace down through the translation
block chain whenever QEMU emulation manager begins a new translation block.
QEMU defines TranslationBlock data structure for each translation block, where
we can locate the program counters of this block and the next one along the
chain. Hence, we can traverse the chain till the end to audit and record the
program counter at the each control flow redirection. However, key kernel data
cannot be recorded in this way since detailed execution context has not been
established yet during the pre-traversing of translation block chain. In order to
preserve the performance and key kernel data integrity, we mark the memory
regions storing those key kernel data as non-writeable. Any attempt to write to
the memory will be trapped to QEMU manager, and validated against the het-
erogeneous drivers. Currently, we assume that key kernel data always involves
some static code, data, critical function pointers, and etc.

5 Evaluation

In this section, we present experimental results on Heter-device framework in
three aspects. First, we present the comparison results on OS kernel APIs called
by different functions of heterogeneous drivers. Second, we show the effectiveness
of Heter-device in capturing compromised drivers by two case studies. Last,
we evaluate the performance overhead incurred by Heter-device approach. The
host OS is Ubuntu 10.10 with kernel version 2.6.35, and both of the two guest
operating systems are installed with Fedora 5 (kernel version 2.6.15). We choose
qemu-0.12.5 as the virtual machine monitor emulating two virtual platforms:
one with Realtek RTL8139 NIC and Gravis ultrasound GF1, the other with
Intel 82540EM NIC and sound blaster 16.

5.1 Profiling Heterogeneous Drivers

First, we load Heterogeneous NIC drivers e1000 and 8139too on the two repli-
cas running Intel 82540EM NIC and Realtek RTL8139 NIC respectively. Our
trusted kernel module monitors alloc netdev function to trace the newly allo-
cated net device structure for the network card. Then the function pointers in
net device, such as open, stop, hard start xmit, etc., are audited during the ini-
tialization of NIC drivers to obtain the addresses of these driver functions. The
functions implemented by both heterogeneous drivers are correlated as the syn-
chronization entries of the two replicas. We start to audit the control flow tran-
sition between OS kernel and NIC driver since the booting of the two replicas.
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Then we trigger a set of user commands (e.g., ssh, sftp, ping, and etc.) and appli-
cations (e.g., Firefox, Filezilla, and etc.), which involve network card operations,
to invoke the interaction between OS kernel and NIC driver. Simultaneously, the
kernel API calls issued by each synchronized function of heterogeneous drivers
are profiled.

Table 1 shows our profiling results of heterogeneous drivers e1000 and 8139too.
Although implemented by different teams, the same functions of heterogeneous
drivers typically invoke a similar set of kernel APIs. In particular, we find that
8139too calls kernel thread kernel API in open function. Thus, we monitor the
forked kernel thread and observe the following kernel APIs invoked during the
thread’s lifetime: daemonize, allow signal, interruptible sleep on timeout, refrig-
erator, flush signal, rtnl lock interruptible, rtnl unlock, and complete and exit.
Table 1 also indicates that previous works will generate lots of false positive when
referring to exported functions in System.map as trusted entries from drivers to
OS kernel5.

5.2 Case Study 1: Kernel Integrity Manipulation

We refer to the implementation of adore-ng kernel rootkit, and integrate its ma-
licious code into the function snd gf1 stop voice of gus (for Gravis ultrasound
GF1) driver. When users try to turn off the audio, the injected code gets ex-
ecuted to replace the functions of readdir, lookup, and get info with its own
implementation to hide files, processes and ports. The newly generated driver
gus is recompiled and loaded into OS kernel. In contrast, driver sb16 (for sound
blaster 16) remains unchanged.

During the assessment of drivers gus and sb16, we simulate user’s command to
turn off the audio, which is replicated to both replicas. The modification of those
static kernel data (function pointers) by driver gus is observed and alarmed,
while driver sb16 does not exhibit such behaviour. Then we clear this alarm,
let the two replicas run forward, and issue process and file listing commands.
We observe that the control flow transition from OS kernel to driver gus code
section through unrecognised entry. Afterwards, driver gus calls kernel APIs, i.e.,
readdir, lookup, and get info, from its execution context. In contrast, driver sb16
on the other replica is not involved in the process and file listing procedures.

5.3 Case Study 2: Resource Abuse and Confidentiality Tampering

With the kernel privilege of compromised driver, attackers can launch resource
starvation attack to reduce the productivity of the victim systems, or tamper
confidentiality by intercepting bypassing data. We simulate resource abuse by
inserting malicious code into the source code of RTL8139 NIC driver. In par-
ticular, after spin lock is called in function rtl8139 interrupt, repeated call of

5 Similar profiling has been performed on heterogeneous sound card drivers gus (for
Gravis ultrasound GF1) and sb16 (for sound blaster 16). The profiling results are
excluded due to page restriction.
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Table 1. Kernel APIs called by different functions in e1000 and 8139too. For each
synchronization function, the upper box contains the invoked kernel APIs defined in
System.map file of guest OS, while the lower box includes the indirected invoked kernel
APIs that are called by drivers through the following procedure. Drivers call some other
extern kernel functions (not defined in System.map file) by including some .h files, and
these functions in turn invoke the indirected kernel APIs identified by us.

Synch. Entry Kernel APIs by e1000 Kernel APIs by 8139too

*open

request irq, mod timer, kmalloc, netif carrier on, netif carrier off,
pci clear mwi, vmalloc node request irq, spin unlock irqrestore,

spin lock irqsave, kernel thread
dma alloc coherent, dma alloc coherent
alloc skb, aloc pages

*stop

free irq, netif carrier off, free irq, wait for completion,
mmset, vfree, kfree kill proc, spin lock irqsave,

spin unlock irqrestore
netpoll trap, dma free coherent, netpoll trap, dma free coherent
lock timer base, list del, kfree skb,
local irq save, local irq restore

*interrupt handler

spin lock, spin unlock, spin lock, spin unlock
eth type trans, netif rx
alloc skb, netpoll trap, kree skb netpoll trap, local irq save,

local irq save, local irq restore local irq restore

*tx timeout

schedule work spin lock, spin lock irqsave,
spin unlock, spin unlock irqrestore

spin lock, spin lock irqsave,
wake up

*do ioctl

request irq, spin unlock irqrestore spin lock irq, spin unlock irq
free irq, spin lock irqsave,
netif carrier off, mod timer
lock timer base, list del, kfree skb, capable
local irq save, local irq restore
netpoll trap

*hard start xmit

spin trylock, spin unlock irqrestore, spin lock irq, spin unlock irq
pskb pull tail, pskb expand head
local irq save, netpoll trap, kfree skb, netpoll trap
local irq restore

*poll

spin lock, spin unlock, disable irq spin lock, spin unlock,
enable irq, netif carrier ok netif receive skb
local irq save, kfree skb, local irq disable, alloc skb
local irq restore local irq enable, list del,

local irq save, local irq restore

*set multicast list
spin lock irqsave,
spin unlock irqrestore

*get stats
spin lock irqsave, spin lock irqsave,
spin unlock irqrestore spin unlock irqrestore
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Table 2. Runtime Performance of Different Benchmarks

Benchmark Key Kernel Data Whole Kernel

LMbench 1.2021 1.2444

Apache Benchmark 1.4420 2.8273

Interbench 1.3356 1.4160

Kernel Decompression 1.1663 1.2262

alloc skb is issued until kernel memory is overwhelmed. Then the driver is re-
compiled and loaded into OS kernel as 8139too module. We repeat a subset of
the user commands and applications in Section 5.1. During the assessment, af-
ter the synchronization of interrupt handler function entry, e1000 intr quickly
returns. However, rtl8139 interrupt continues running with lots of alloc skb calls
recorded. Our verification alarms such anomaly immediately with a pre-defined
difference threshold (200 in our experiment) reached.

Furthermore, we also simulate confidentiality tampering attack by injecting
malicious code into the packet transmission function e1000 xmit frame of e1000
NIC driver. The newly compiled e1000 module will intercept all the outgoing
packets and redirect them to a remote machine. During the assessment, we repli-
cate Apache http servers on both the two replicas, and simulate continuous client
requests to them on another machine. The verification on the front-tier proxy
matches the output packets from the two replicas. An alarm is signalled when
the amount of unmatched packets from the replica with e1000 module reaches
the pre-defined threshold (20 in our experiment) in two minutes.

5.4 Performance Evaluation

The runtime overhead of Heter-device highly depends on the amount of key ker-
nel data that needs to be verified. Table 2 shows the performance (the ratio of
Heter-device execution and QEMU native execution) of Heter-device architec-
ture based on several benchmarks. By key kernel data protection, we only verify
static key kernel data, including system call table, IDT, root symbols in Sys-
tem.map files. In contrast, by whole kernel protection, the entire kernel address
space is verified by Heter-device during driver assessment. During each round of
evaluation, both the heterogeneous NIC and sound card drivers are verified for
fine-grained control flow transition.

We use LMbench to evaluate the pipe bandwidth, and also evaluate the time
consumed to decompress Linux kernel 3.0 as shown in Table 2. Since both of
them involve little interaction with either NIC or sound card, the pipe bandwidth
and CPU capacity are mostly retained. We run Apache Benchmark to evaluate
the network performance, and Interbench to evaluate the audio performance.
Table 2 demonstrates that network throughput drops more significantly than
audio performance. We think the main reason is that NIC drivers interact more
frequently with OS kernel during packet transmission than sound card drivers
do during audio playing.
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6 Discussion and Future Work

In this section, we discuss limitations and future work of Heter-device. First, al-
though Heter-device architecture is totally compatible with most existing fault
tolerant systems, deploying Heter-device approach as a real-time compromised
driver detection system requires performance boost. Due to performance over-
head (largely incurred by QEMU), Heter-device is currently deployed as hon-
eypot to assess drivers before they are put into use in server systems. Hence,
it should be our future work to facilitate hardware support, such as Intel VT
or EPT techniques into our Heter-device architecture to feasibly detect compro-
mised drivers in responsive server environment.

Second, currently QEMU supports limited number of emulated devices. Most
existing device emulation modules in virtual machines such as virtualbox, Xen
and KVM are all based on QEMU. Hence, assessing other drivers, e.g., keyboard,
mouse and etc., is impossible right now on Heter-device architecture. Aware of
our design, attackers can craft malicious drivers only for those devices that have
not been emulated by QEMU. We suggest that system engineers consider the
devices that can be emulated by QEMU right now, thus facilitating the driver
assessment of Heter-device architecture. As the renaissance of virtualization, we
hope that such device emulation options will bloom in the near future, making
Heter-device more general and practical.

Third, there exist some counter-attacks to Heter-device architecture. As a
honeypot or testing approach, Heter-device cannot be claimed to be able to cap-
ture any malicious code or vulnerability of drivers. There is always the possibility
that the malicious code is not detected because the environment or the work-
load did not trigger it. Furthermore, transparently translating instructions [13]
and faithfully emulating hardware devices are challenging tasks. For instance,
QEMU can be detected by various methods as discussed in [20]. Aware of our
design, attackers can craft malicious code that first examines whether it runs on
emulated platforms. If so, the malicious code will “keep silent” to avoid being
detected or profiled. Otherwise, it will compromise the victim system. Hence, the
compromised drivers with “split-personality” can generally evade the auditing
and verification of Heter-device.

Last, existing Heter-device approach involves manual intervention during the
driver assessment. For instance, key kernel data to be recorded and verified
should be provided by system engineers in advance, though we also offer a can-
didate list. Moreover, the verification procedure (i.e., control flow transition ver-
ification) requires system engineers to investigate the variance to reduce false
positive. Furthermore, such manual inspection can also help to determine which
driver is compromised, since the two replicas serve as reference model for each
other rather than always treating one as golden standard. Our future work is set
to comprehensively profile the driver’s behaviour, thus improving the automa-
tion by providing more general key kernel data verification list and enforcing
more detailed verification policies.
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7 Related Work

In this section, we will first briefly review the state-of-art diversity techniques,
and then discuss prior approaches protecting kernel integrity or reliability from
driver faults or bugs.

Diversity Approach. Software diversity approach for intrusion detection has
been studied in several works, such as COTS [31], Behavioural Distance [19],
Diversified Process Replica [9], Detection of Split Personalities [8] and DRASP
[39]. COTS Diversity [31] and DRASP[39] applies N-version programming into
web servers to verify their interactions with the environment for any anomaly,
e.g., HTTP responses from those web servers. Generally, [8] and [39] are ideal to
detect anomaly targeting web servers, especially for most promiscuous attacks.
But for other attacks, such as denial of service attack, or resource abuse, compar-
ing network packets cannot work, since such attacks does not involve additional
network packet transmission. On the other hand, comparing network packets
is not always possible. For instance, if the payload is encrypted through IPsec,
comparing the payload is meaningless.

Behavioural Distance [19] and Detection of Split Personalities [8] aim to detect
intrusion or anomaly by comparing the system call sequences made by diverse ap-
plications. Diversified Process Replica [9] proposes non-overlapping processes ad-
dress spaces to defeat memory error exploits. Although all the above approaches
are effective in detecting compromised applications, the response or system call
comparison schemes cannot be applied to diverse drivers as in Heter-device.

The seminal work N-variant [12] proposes address space partition and instruc-
tion set tag diversities to detect divergences caused by intrusions. Although such
approaches are quite effective in detecting code injection related attacks, other
types of exploitation, such as direct kernel object manipulation, kernel APIs
abuse and confidentiality tampering can evade N-variant’s auditing. Heter-device
proposes heterogeneous device based diversity design, and specially focuses on
the auditing and verification of drivers to cover multiple attack vectors that
could be leveraged by compromised drivers.

Isolation Based Protection. Isolation-based approach continues drawing re-
searchers’ attention to protect OS kernel from buggy drivers for years. Nooks
([30] and [29]) pioneers the driver isolation approach to protect OS reliability
from driver failures. Mondrix [34] integrates hardware support to isolate kernel
modules by memory protection domains. Virtual machine technique has also
been applied to isolate OS from buggy drivers. For instance, [24] and [17] isolate
drivers by running a subset of untrusted drivers in a separated OS/VM domain,
thus achieving both driver reuse and isolation.

Moreover, efficient address space isolation approaches have been proposed to
protect kernel integrity [35] or monitor kernel APIs issued by untrusted ker-
nel extensions [28]. Neither HUKO [35] and Gateway [28] is not comprehensive
to assess drivers, because it doesnt cover kernel data integrity, confidentiality
manipulation and resource starvation attacks as Heter-device. Instead of ad-
dress space isolation, Heter-device audits drivers’ execution at a finer granularity:
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instruction sequences. Furthermore, besides kernel control flow or data integrity
protection which are the primary focus of previous approaches, Heter-device also
proposes feasible approach to capture confidentiality tampering and resource
abuse attacks launched by malicious drivers.

User Mode Driver Based Protection. User mode device driver framework
has been proposed recently to de-grant driver code’s privilege, thus ensuring
the kernel’s integrity ([4], [5], [23]). However, they either suffer from significant
performance degradation ([6], [26]), or require complete rewriting of driver code
and modifications to OS kernel ([5], [23]). Concerning the performance issue,
Microdrivers [18] present a novel approach to split driver code into both user
mode and kernel mode execution, with only performance-sensitive code remain-
ing in the kernel. Based on Microdriver, RPC monitor [10] protects kernel from
vulnerable driver by mediating all data transfers from untrusted user-mode ex-
ecution to kernel-mode execution to preserve kernel integrity. In addition, the
reference validation mechanism can be integrated into Microkernels (e.g., Nexus
[33]) to effectively audit driver’s behaviour against safety specification. In gen-
eral, Heter-device requires no rewriting of existing drivers, and is applicable to
most commodity operating systems.

8 Conclusion

In this paper, we present a novel diversity based honeypot, Heter-device, to
assess the trustworthiness of drivers from multiple aspects, including kernel in-
tegrity manipulation, resource starvation and confidentiality tampering. Heter-
device relies on virtual platforms to emulate heterogeneous devices for guest
operating systems, and correspondingly produce driver-diverse replicas. The di-
verse replicas are deployed as honeypot to audit and verify the heterogeneous
drivers’ execution by placing synchronization and monitoring “sensors”. We also
propose automatic address-alias correlation, a subset of kernel data for default
integrity protection, and a set of policies to defeat resource abuse and confiden-
tiality tampering. The case studies show that Heter-device can capture various
kernel integrity manipulation, resource starvation, and confidentiality tamper-
ing launched from compromised drivers, thus delivering the trustworthy drivers
after assessment.
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