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Abstract. In recent years we have witnessed several complex and high-
impact attacks specifically targeting “binary” protocols (RPC, Samba
and, more recently, RDP). These attacks could not be detected by current
– signature-based – detection solutions, while – at least in theory – they
could be detected by state-of-the-art anomaly-based systems. This raises
once again the still unanswered question of how effective anomaly-based
systems are in practice. To contribute to answering this question, in this
paper we investigate the effectiveness of a widely studied category of
network intrusion detection systems: anomaly-based algorithms using n-
gram analysis for payload inspection. Specifically, we present a thorough
analysis and evaluation of several detection algorithms using variants
of n-gram analysis on real-life environments. Our tests show that the
analyzed systems, in presence of data with high variability, cannot deliver
high detection and low false positive rates at the same time.

1 Introduction

While most of the current commercial network intrusion detection systems (NIDS)
are signature-based, i.e., they recognize an attack when it matches a previously
defined signature, there is a large body of literature on anomaly-based detec-
tion. An anomaly-based NIDS raises an alert when the observed input does not
match the behavior that was previously observed; the underlying assumption
being that attack payloads “look different” than normal network traffic. In prin-
ciple, anomaly-based NIDS have one great advantage over signature-based ones:
they can detect threats for which there exists no signature yet, including zero-day
and targeted attacks. Targeted attacks are so complex and evasive that by defi-
nition cannot be detected by signature-based systems (false negative problem).
One famous example of targeted attack is Stuxnet [14], a malware designed to hit
specific embedded systems used in Iranian installations for uranium enrichment,
discovered in the late 2010. The subsequent analysis revealed that the malware
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exploits two previously unknown vulnerabilities in network services. Thus, while
the final target was a component typical of industrial control systems, (some
of) the vulnerabilities aimed at infecting local computers. Hence, those vulner-
abilities could have been used to attack “regular” business and home systems.
Other attacks specifically designed to target Industrial Control Systems (ICS -
which includes of nuclear power plants, oil and gas extraction and distribution
facilities) have been disclosed recently [3].

Given that signature-based systems are ineffective against targeted and zero-
day attacks and that most likely there exists no signature yet for the great
majority of the attacks that one can buy on the black market, an effective
anomaly-based NIDS would be the silver bullet thousands of enterprises and
governments are looking for.

Problem & Contribution. Although the field of anomaly detection is well estab-
lished in research, to date there are only few actual deployments of anomaly-
based NIDS worldwide. A common reason used for explaining this is that such
systems show poor performance with respect to false positive rate in real-life en-
vironments. More generally, Sommer and Paxson [29] argue that many machine
learning approaches (which are typically used in anomaly-based IDS) are not
effective enough for real-life deployments.

With this paper we want to shed a new light on the detection capabilities of
anomaly-based NIDS for payload inspection. We do so by focusing on systems
employing a form of n-gram-analysis as anomaly detection engine. To perform
the analysis, we apply selected algorithms to environments that widely utilize
binary protocols. Specifically,

– We perform thorough benchmarks using real-life data from binary-based
protocols, which have been lately targeted by high-impact cyber attacks,

– We include in the analysis a protocol that is specific for Industrial Control
Systems (also known as “SCADA”),

– We analyze and discuss the reasons why certain attack instances are (not)
detected by the chosen approaches,

– We discuss the feasibility of deploying such approaches in real-life environ-
ments, in particular w.r.t. the false positive rate, an issue that is seldom
discussed by authors in their work.

Our experiments show that n-gram analysis cannot be indiscriminately applied
to the whole network stream data, and that data with high variability are difficult
to model and analyze, confirming the conclusion of some earlier work on the
matter (see Section 6 for a more detailed discussion).

2 Preliminaries

In this section we introduce the concepts and the terminology that will be used
in the remaining of the paper.
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2.1 Anomaly-Based Network Intrusion Detection Systems

A detection system can use different sources to extract data features, namely
network traffic or system/application activities. In this embodiment we focus
on network-based approaches. These approaches monitor the network traffic in
a transparent way, without affecting the host performance and are thus often
preferred over host-based approaches. There are two types of anomaly-based
NIDS: (1) systems that analyse network flows and (2) systems that analyse the
actual payload. A flow-based approach takes into consideration features such
as the number of sent/received bytes, the duration of the connection and the
layer-4 protocol used. A payload-based approach considers features of individual
packet or communication payloads. Despite being complementary, the payload-
based approaches offer higher chances of detecting a broader set of threats and,
unlikely flow-based, these approaches can capture “semantic attacks”. Semantic
attacks exploit “a specific feature or implementation bug of some protocol or
application installed at the victim” [25]. In addition, most of the top security
risks (such as in the “OWASP Top 10” [33]) require the injection of some data
to exploit the vulnerability. Thus, we focus on payload-based approaches.

2.2 Binary Protocols

In contrast to text-based network protocols (such as HTTP, POP and SMTP),
binary protocols are designed to be processed by a computer rather than a
human. Such protocols are largely used in network services, such as distributed
file systems, databases, etc. In practical terms, the network payload of a binary
protocol is more compact if compared to text protocols, often unreadable by
a human and may resemble to attack payloads (since malware packets often
consists of binary fragments too). Due to these reasons the challenge of detecting
attacks in binary-based data is typically greater than in text-based data.

2.3 N-Gram Analysis

N-gram analysis is a common technique for capturing features of data content.
This technique is used in various areas, such as monitoring system calls [16], text
analysis [10], packet payload analysis [35]. In the context of network payload
analysis, the current approaches use the concept of n-grams in different ways. In
particular, we distinguish two aspects:

1. The way an n-gram builds feature space - The extracted n-grams can be
used for building different feature spaces [12]: (a) count embedding (count
the number of different n-grams to describe the payload), (b) frequency
embedding (use relative frequency of byte values of an n-gram to describe the
payload, e.g. [1,6,36]) and (c) binary embedding (use the presence/absence
of specific n-grams to describe the payload, e.g., [35]).

2. The accuracy of payload representation - N-grams can represent the payload
in the following ways: (a) as an exact payload description (n-grams represent
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continuous sequences of bytes, e.g. in [6,35,36]) and (b) as an approximated
payload description (n-grams represent a compression or a reduction of the
exact payload, e.g., [17,28]).

Also, various systems employ different architectures and combinations of ap-
proaches to analyze n-grams (e.g., Markov models in [1], Self-Organizing Maps
in [6], hashing in [17]).

For performing our benchmarks we choose algorithms that are conceptually
different in the way the n-gram analysis is performed. Unfortunately, our choice
is also limited to the availability of implementations and the level of details in
algorithm descriptions.

2.4 Description of Analysed Systems

In the remaining of the section we introduce four algorithms that we select
for testing: PAYL, POSEIDON, Anagram and McPAD. These algorithms are
1) general-purpose enough to be used with multiple application-level protocols,
2) proposed by often cited papers in the IDS community or 3) claiming to im-
prove over the previous ones. Each algorithm requires as an input only the in-
coming network traffic, and does not perform any correlation between different
packets.

PAYL. Wang and Stolfo in [36] present their 1-gram-based payload anomaly
detector (PAYL). The system detects anomalies by combining 1-gram analysis
algorithm with a classification method based on clustering of packet payload
data length. The system employs a set of models : a model stores incrementally
the resulting values of the 1-gram analysis for packet payloads of length l, thus
each payload length has a different model. Each model stores two data series:
mean byte frequency (i.e., relative byte frequencies span across several payloads
of length l) and byte frequency standard deviation for each byte value (i.e., how
relative byte frequencies change across payloads). During the detection phase,
the same values are computed for incoming packets and then compared to model
values: a significant difference from the model parameters produces an alert.

When PAYL fails to detect an attack. Fogla et al. [15] show that PAYL’s detec-
tion can be evaded by mimicry attacks. PAYL is vulnerable to mimicry attacks
since it models only 1-gram byte distributions. By carefully crafting an attack
payload, an attacker is able to deceive the algorithm with additional bytes, which
are useless to carry on the attack, but match the statistics of normal models.

POSEIDON. Bolzoni et al. present POSEIDON [6], a system built upon a
modified PAYL architecture. PAYL uses data length field for choosing the right
model. By contrast, POSEIDON employs a neural network to classify packets
(and thus choose the most similar model) during the preprocessing phase. The
authors use Self-Organizing Maps (SOMs) [19] to implement the unsupervised
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clustering. First, the full packet payload is analyzed by the SOM, which returns
the value of the most similar neuron. That neuron model is then used for the
calculation of byte frequency and standard deviation values, as in PAYL.

When POSEIDON fails to detect an attack. Differently from PAYL, POSEIDON
is more resilient to mimicry attacks due to the combination of SOM and PAYL.
The SOM analyzes the input by taking into consideration byte value at i-th
position within the whole payload. Thus, extra bytes inserted by the attacker
would be taken into consideration as well, resulting in a different classification
than normal traffic. However, the granularity of the classification done by the
SOM is coarse. Thus, if the attack portion of the sample payload is small enough,
then the sample could be assigned to one of the clusters containing models
of regular traffic, and may go unnoticed because of a similar byte frequency
distribution.

Anagram. Wang et al. [35] present Anagram. The basic idea behind Anagram
is that the usage of higher-order n-grams (i.e., n-grams where n > 1) helps to
perform a more precise analysis. However, the memory needed to store average
and standard deviation values for each n-gram grows exponentially (256n, where
n is the n-gram order). For instance, 640GB of memory would be needed to store
5-grams statistics. To solve this issue, the authors propose to use a binary-based
n-gram analysis and store the occurred n-grams efficiently in a Bloom filters [5].
The binary-based approach implies a simple recording of the presence of distinct
n-grams during training. Since less information is stored in the memory, it be-
comes possible to effectively use higher-order n-grams for the analysis. Authors
show that this approach is more precise than the frequency-based analysis (e.g.,
used in PAYL) in the context of network data analysis. This is because higher-
order n-grams are more sparse than low-order n-grams, and gathering accurate
byte-frequency statistics becomes more difficult as the n-gram order increases.

When in detection mode, the current input is ranked using the number of
previously unseen n-grams.

When Anagram fails to detect an attack. There are two main reasons why Ana-
gram may fail to detect attack attempt. Firstly, the Bloom filter could saturate
during training. This is because the user may underestimate the number of
unique n-grams and allocates a small Bloom filter, during testing any n-gram
would be considered as normal. Secondly, Anagram will likely miss the detection
if the attack leverages a sequence of n-grams that have been observed during
testing.

McPAD. Perdisci et al. present “Multiple-classifier Payload-based Anomaly
Detector” (McPAD) [28] with a specific goal of an accurate detection of shell-
code attacks. The authors use a modified version of the 2-gram analysis, com-
bined with a group of one-class Support Vector Machine (SVM) classifiers [34].
The 2-gram analysis is performed by calculating the frequency of bytes that are
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ν positions apart from each other. By contrast, a typical 2-gram analysis mea-
sures the frequency of 2 consecutive bytes. By varying the parameter ν, McPAD
constructs several representation of the payload in different feature spaces. For
example, for ν=0..m, McPAD builds m different representations of the packet
payload. When in testing mode, a packet is flagged as anomalous if a combination
(e.g., majority) of SVM outputs acknowledge the payload as anomalous.

When McPAD fails to detect an attack. By design, McPAD tries to give a wide
representation of the payload (i.e. add more context by constructing byte pairs
that are several positions apart). This may represent a difficulty in two cases.
First, this is an approximate representation and that may imply a poorly de-
scribed payload in case of slight differences between the training sample and an
attack [1]. This may lead to a high false positive rate and a low detection rate.
Secondly, McPAD uses different classifiers that have to come into an “agree-
ment” to decide if a particular packet is anomalous or not. A problem may arise
when, due to an approximate payload representation, several classifiers are mis-
led by the byte pair representation and result in outvoting “correct” classifiers.
In such case, the system might miss the detection.

3 Approach

We believe that one of the main reasons for poor performance of anomaly-based
NIDS lies in the intrinsic limitation of commonly applied algorithm for con-
tent analysis: n-gram analysis. Since performing a comprehensive test to verify
the ability of an IDS of identifying (all) attacks and to spot its weaknesses is
unfeasible [22], we proceed to experimentally address our claim. We present a
comparative analysis and evaluate the effectiveness of anomaly-based algorithms
that analyse network payloads by using some form of n-gram analysis.

To verify the effectiveness of different algorithms we execute a number of
steps: 1) collect network and attack data, 2) obtain a working implementation
of each algorithm, 3) run the algorithms and analyse the results.

Obtaining the data. We acknowledge that optimal conditions for evaluating the
performance of an IDS consist of running tests on unprocessed data from real
networks [2]. Thus we first collect real-life data from different network environ-
ments, which are currently being operated. The past research is typically focused
on benchmarking the algorithms with the HTTP protocol, although the authors
do not explicitly restrict the scope of their algorithms to this protocol. We fo-
cus on the analysis of binary protocols. In particular, we analyse an example of
a binary protocol found in a typical LAN (such as a Windows-based network
service) and an example of a binary protocol typically found in an ICS.

Windows is the most used OS in the world, and every instance runs by de-
fault certain network services that are often used within LANs. For instance,
the SMB/CIFS protocols [20] are used to exchange files between two comput-
ers, while other services (e.g. RPC) run on the top of it to provide additional
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functionalities. Although Windows systems are usually secured against abuses
of such service from the Internet, corporate users take advantage of this feature
quite often. An attacker that would develop an exploit for a zero-day vulnerabil-
ity leveraging this protocol could potentially affect a large number of systems. In
the last decade several malware [8,14] exploited SMB/CIFS to operate botnets
and carry on other malicious activities.

As described in the introduction, ICS have lately become a valuable target
for cyber attackers. Considering the sensitive character of such environments,
the detection of cyber attacks plays a crucial role, sometimes even in homeland
security. Lately, we have witnessed an increasing number of vulnerabilities dis-
covered in software used in critical facilities, mainly due to the poor software
development cycles that several vendors adopted, and the “security by obscurity”
paradigm used to “protect” legacy devices.

We collect attacks in two different datasets. Our focus is on data injection
attacks that have a high impact (see [27]).

Obtaining the implementations. Secondly, to carry out the benchmarks, we need
working prototypes of all the algorithms we want to test. We could obtain an
implementation of POSEIDON and McPAD from the authors. For the other two
algorithms, we write our own implementation1 based on the description found
in the papers. To be sure that our implementation is correct, we need to verify
that our results resemble the ones shown in the benchmarks of the respective
original papers.

Analysing the results. The last step of our evaluation is the analysis of results
with a focus on the identification of reasons for (un)successful detection.

3.1 Evaluation Criteria

The effectiveness of an IDS is mainly determined by the detection and false pos-
itive rates. The detection rate indicates the number of attack instances correctly
identified by the IDS (true positives), w.r.t. the total number of attack instances.
The false positive rate indicates the amount of samples that the IDS flags as at-
tacks when they are actually not. False positives are a major limiting factor in
this domain because, differently from other classification problems, their cost is
high [4].

Detection rate. To provide a detailed overview of the detection capabilities of
each algorithm, we consider both the number of correctly detected packets in
the attack set and the number of detected attack instances. In fact, not all
attacks show malicious payload within one single packet. Although an algorithm
that exhibits a high per-packet detection rate has a higher chance of detecting
attack instance, we do not argue that a low per-packet detection rate implies
an equivalently low per-instance detection. In summary, we consider an alarm

1 We intend to disclose the implementations in near future.
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as a true positive if the algorithm is able to trigger at least one alert packet per
attack instance.

False positive rate. The usual approach to document the performance of an IDS
is to relate the false positive rate with the detection rate. This is done by drawing
so called Receiver Operating Characteristic (ROC) curves. The benchmarks from
the original papers of the proposed algorithms express the false positive rate as
a percentage. However, such number has little meaning to the final users. A
better way to express the false positive rate is in terms of the number of false
positives per time unit. We establish two different thresholds: 10 false positives
per day and 1 false positive per minute. The former value is proposed in [21] as
a reasonable number for a user to maintain trust in the system. The latter is, in
our opinion, the highest rate at which a human can verify alerts generated by
an IDS. It is worth noting that anomaly-based IDSes, unlikely signature-based
ones, do not provide information regarding the attack classification. Thus, the
user might require additional time to investigate whether the alert is a true or a
false positive. For each data set we compute these two thresholds based on the
number of actual packets included in the verification sub data set after having
split the original data set.

Since we do not make the data sets attack-free before hand, and thus some
“noise” could have been collected as well, we need a way to verify that the alerts
generated while processing the verification sub data set are actual false positives.
To do that, we use a signature-based IDS (the popular open-source Snort), which
is automatically fed with the network stream for which an alert was triggered
during verification.

Commonly, in IDS evaluation papers the authors stop their analysis by re-
porting on the true and false positive rates. We believe that inspecting which
attacks are detected, which are not detected and why, would provide useful infor-
mation to fully understand when an algorithm could perform better than others
(and for which threats). This kind of analysis can provide insights for future im-
provements. Finally we aim at evaluating the effectiveness of combining diverse
algorithms to boost the detection rate.

4 Description of Network Data

In this section we describe in detail the background data set and attack data sets
that will be used for benchmarking the detection algorithms. The chosen data
sets comprise network traffic taken from two environments. We use the publicly
available vulnerabilities and high impact exploits to run the tests.

4.1 Web Data Set

The following data sets are a collection of network traces of web traffic (in
particular, the HTTP protocol).
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DSDARPA. The DARPA 1999 data set [21] is a standard data set used as ref-
erence by a number of researchers. Despite being anachronistic (and criticized
in several works [23]), three of the algorithms we test have used this data set to
compare their performance to previous works. Thus, we use the DARPA data set
to verify that our own implementations of PAYL and Anagram offer comparable
detection and false alert rates with the tests reported in the research papers of
the detection algorithms.

ASHTTP . This attack set is presented by Ingham and Inoue in [18], and has
been used also by the authors of McPAD for their benchmarks. It comprises 66
diverse attacks, including 11 shellcodes, which were collected from public attack
archives. The attacks are instances of buffer overows, input validation errors
(other than buffer overflows), signed interpretation of unsigned values and URL
decoding errors.

4.2 LAN Data Set

DSSMB This data set includes network traces from a large University network.
Samples have been collected through a week of observations. The average data
rate of incoming and outgoing packets is ∼40Mbps.

In particular, we focus on the SMB/CIFS protocol, and even more on SMB/
CIFS messages which encapsulate RPC messages (see Section 5.2). The average
packet rate for this traffic is ∼22/sec. Based on this we calculate the false pos-
itive rate threshold for obtaining 10 alerts per day as 0.0005% and the one for
obtaining 1 alert per minute as 0.073%.

ASSMB . This attack data set is made of seven attack instances which exploit
four different vulnerabilities in the Microsoft SMB/CIFS protocol: ms04-011,
ms06-040, ms08-067 and ms10-061 [7].

ms04-011 is a vulnerability of certain Active Directory service functions in
LSASRV.DLL of the Local Security Authority Subsystem Service (LSASS) of
several Microsoft Windows versions. We select this vulnerability because it is
used by the worm Sasser [26]. We collect two different attack instances for
this vulnerability. One trace is downloaded from a public repository of network
traces [13] where the attack payload is split in three fragments and contains a
shellcode of 3320 bytes. The shellcode is made of a number of NOP instruc-
tions (byte value 0x90), followed by valid x86 instructions and a sequence of the
ASCII character ‘1’. The second instance is generated through the Metasploit
framework [24]. The attack payload is split into three fragments and contains a
shellcode of 8204 bytes to remotely launch a command shell in the victim host.

m06-040 is a vulnerability of the Microsoft Server RPC service. In particular,
the vulnerability allows a stack overflow during the canonicalization of a net-
work resource path. The specified path can be crafted to execute arbitrary code
after the exploitation. We collect the attack instance from a public repository of
network traces [13].
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ms08-067 is a vulnerability of the Microsoft Server RPC service which exploits
a similar weakness as the one described in m06-040, with the same effects. We
select this vulnerability because it is used by Conficker [8] and Stuxnet, two
high-impact pieces of malware. We collect two different attack instances for
this vulnerability. One instance was downloaded from a public repository [13],
while the other one was generated by us using the metasploit framework. In the
first instance the payload contains a shellcode of 684 bytes, while in the second
instance the shellcode is 305 bytes long only.

ms10-061 is a vulnerability of the PrintSpooler RPC service. When printer
sharing is enabled, the PrintSpooler service does not properly validate spooler
access permissions. Remote attackers can create files in a system directory, and
consequently execute arbitrary code, by sending a crafted print request over RPC.
We select this vulnerability because it was used by Stuxnet to successfully propa-
gate in both regular backoffice LANs as well as in industrial control system envi-
ronments. We collect two different attack instances for this vulnerability, both of
them are generated through the metasploit framework. In one instance the attack
payload is a binary file (the meterpreter executable), which accounts for 69832
bytes spanned over 18 fragments, while in the other instance the payload consists
of a DLL file, which accounts for 1735 bytes spanned over three fragments.

4.3 ICS Data Set

DSModbus To test the anomaly detection algorithms on ICS networks we collect
a data set of traces from the industrial control network of a real-world plant over
30 days of observation. The average throughput on this network is ∼800Kbps.

This data set includes network traces of one of the most common protocols
used in such environments, Modbus/TCP [32]. Modbus was developed more than
30 years ago initially as a protocol used in serial channels, while the TCP/IP
variant was introduced approximately 15 years ago to allow the serial protocol
to be used in TCP/IP networks. Modbus/TCP features basic instructions and
functions. Its structure is relatively simple, and operators of critical infrastruc-
tures usually repeat a limited set of operations, thus reducing the variability of
the transmitted data. In fact, the maximum size of a Modbus/TCP message is
256 bytes. Thus, a Modbus/TCP message is always contained in one single TCP
segment. Observations onDSModbus reveal that the average size of Modbus/TCP
messages is 12.02 bytes (in DSSMB it is 535.5 bytes). In the observed DSModbus,
the number of duplicated TCP segment payloads is high (96.08%), in contrast to
the other data set (e.g., DSSMB has 31.37%). In other words, more than 9 TCP
segments out of 10 carry a Modbus/TCP message that is a perfect duplicate
of some other message already observed. The average packet rate for Modbus
incoming traffic is ∼96/sec. Based on this observation, we calculate the false
positive rate threshold for generating 10 alerts per day as 0.00012% and the
threshold for generating 1 alert per minute as 0.017%.

ASModbus. The attack data set is made of 163 attack instances, which exploit
diverse vulnerabilities of the Modbus/TCP implementations. There are fewer
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publicly known attacks against Modbus/TCP devices than SMB/CIFS attacks.
Network traces for a good deal of these attacks can be downloaded from the web-
site of an ICS security firm [11]. The exploited vulnerabilities can be categorised
in two large families: unauthorised use and protocol errors.

Unauthorized use consist of two attack types: (a) “weird” clients talking to
the Modbus server and (b) messages used only for diagnostics and special main-
tenance, which are thus seldom seen in the network traffic. By issuing these
special messages, the attacker is often able to achieve a complete take over of
the device.

Protocol errors are mainly fuzzing attempts against a device. For instance,
these attacks are carried out by sending data not compliant with the protocol
specifications (e.g. a too short protocol data unit). The outcome of such attacks
can range from the unavailability of the device up to the control of the execution
flow (see Cui and Stolfo [9] for a more detailed discussion).

5 Benchmarks

In this section we show the results of our benchmarks and compare the perfor-
mances of the algorithms for each data set.

Setting up and tuning the algorithms. For each dataset we split the background
traffic into two sets, one for training and one for verification. The splitting is
performed randomly, by sampling the network streams. Each split sub data set
accounts for nearly 50% of the original data. The training sub data set is used
to build the detection profiles for each algorithm, while the verification one is
used to evaluate the number of false positives raised by the algorithm. Finally,
we run the algorithms on the attack data set.

For performing the benchmarks we need to set up several starting parameters
for each algorithm.

PAYL. As introduced in the original paper, the size of the PAYL model can
be reduced by merging profiles when their number becomes too large. For each
data set we perform several runs using different values of the merging parameter.
Finally, for the DSDARPA data set we set the parameter value to 0.12. For the
remaining data sets we do not merge profiles, as the total number of profiles
remains low (up to 150, compared to 480 in DSDARPA). As the “smoothing
factor”, we use the same value (0.001) suggested by Ingham and Inoue in [18].
We apply the algorithm to individual TCP segment payloads.

Anagram. For each data set we run tests with different n-gram sizes (n size
of 3, 5, 7, 9 and 12). Since we obtain the best results with the 3-grams, we set
this as the standard n-gram size. As in the original paper, we set the size of the
Bloom filter to 2MB. We do not use the “bad content model” proposed by the
authors because it would be ineffective as they build it with virus samples, and
our attack data sets do not include viruses.

POSEIDON. For all tests we use a SOM with fixed number of neurones
(96). Also, we set the number of instances for training the SOM at 10000.
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McPAD. For all tests we use the best performing parameters as proposed
in [28]. Those are: number of clusters k = 160, desired false positive rate for each
SVM classifier set to 1% and maximum probability as combination rule for the
output of the SVM classifiers.

For each algorithm we vary the value of the threshold to observe how the false
positive and detection rates change.

5.1 Implementation Verification

To verify the correctness of our implementations we run initial tests using
DSDARPA data set (since that was the only common data set used in 3 orig-
inal algorithm benchmarks). Instead of using DARPA attack dataset, we use
the ASHTTP for testing. There are two main reasons for this: (1) the original
attack instances of the DARPA data set do not reflect at all modern attacks,
and (2) not all the algorithms have been benchmarked against the attack set of
DARPA (Anagram is the exception). Thus, it would be impossible to faithfully
reproduce the previous experiments. In Table 1 we summarize the results of this
first round of benchmarks: for each algorithm we report the highest detection
rate we achieve, and the corresponding false positive rate.

Table 1. Test results on DSDARPA and testing with ASHTTP

FPR DR
(packet-based) (packet-based)

PAYL 0.00% 90.73%

POSEIDON 0.004% 92.00%

Anagram 0.00% 100.00%

McPAD 0.33% 87.80%

All the algorithms show high detection and low false positive rates. When
compared to the original papers, these results match our expectations, thus we
can be reasonably sure that our re-implementations are not (too) dissimilar from
the original ones in terms of completeness and accuracy.

5.2 Tests with LAN Data Set

We first perform the test onDSSMB by using all the SMB/CIFS packets directed
to the TCP ports 139 or 445. However, none of the algorithm can perform well
enough under these conditions. For example, the Bloom filter used by Anagram
saturates with 3-grams during the training phase. Consequently, no attack in-
stance is further detected, even with the lowest threshold. Increasing either the
size of n-grams or the size of the Bloom filter cannot solve the issue of undetected
attacks. In the former case, the Bloom filter saturates even with fewer training
packets. In the latter case, even with a filter size of 20MB (10 times bigger than
the size suggested by the authors) which does not cause full saturation, no attack
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is detected with false positives rates lower than 4%. Other algorithms exhibit
similar detection problems, with at least one attack instance detected only with
false positive rates higher than 1%.

This result alone would imply a complete failure for this protocol. We believe
the reason why the algorithms poorly perform on SMB/CIFS is because of the
high variability of the analyzed payload. In fact, SMB/CIFS is mainly used to
transfer files between Windows computers. Such files are contained in the request
messages processed by the algorithms and can be of any type, from simple text
files to compressed binary archives or even encrypted data.

We acknowledge that all attack instances publicly available exploit vulnerabil-
ities of the Windows RPC service by leveraging SMB/CIFS, which can encapsu-
late RPC messages. Thus, we re-run the test on a filtered data set. In particular,
we extract only SMB/CIFS messages that carry RPC data (∼1% of the origi-
nal SMB/CIFS traffic). By doing this, we are implicitly providing a semantical
hint to the algorithms. We expect this to improve both the detection and false
positive rates.

The results of this round of tests are summarized on Table 2. Anagram
achieves a 0.00% false positive rate while still being able to detect 3 attack
instances. Anagram also achieves the lowest false positive rate among the tested
algorithms when detecting all of the attack instances, a rate lower than the ad-
justed false positive of 1 alert per minute. McPAD generates the highest false
positive rate, and it is impossible to lower that no matter which combination of
parameters we choose. We believe that the main reason for this lies in the fact
that McPAD implements the approximate payload representation, that, in such
variable conditions, provides poor payload description.

There is no need to evaluate how a combined approach, i.e., using all the algo-
rithms simultaneously, would perform since Anagram is already outperforming
the other algorithms.

Finally, we process all false positives with SNORT to verify that none of them
is actually a true positive.

Analysis of detected and undetected attacks. By considering which attack in-
stance is detected the most, we observe that all the algorithms can detect an
attack instance exploiting the ms04-011 vulnerability. In particular, of the three
segments composing the attack payload, only one is always identified as anoma-
lous. Here we report a fragment of it:

0230 59 35 1c 59 ec 60 c8 cb cf ca 66 4b c3 c0 32 7b Y5.Y.‘....fK..2{

0240 77 aa 59 5a 71 76 67 66 66 de fc ed c9 eb f6 fa w.YZqvgff.......

0250 d8 fd fd eb fc ea ea 99 da eb fc f8 ed fc c9 eb ................

0260 f6 fa fc ea ea d8 99 dc e1 f0 ed cd f1 eb fc f8 ................

0270 fd 99 d5 f6 f8 fd d5 f0 fb eb f8 eb e0 d8 99 ee ................

0280 ea ab c6 aa ab 99 ce ca d8 ca f6 fa f2 fc ed d8 ................

0290 99 fb f0 f7 fd 99 f5 f0 ea ed fc f7 99 f8 fa fa ................

02a0 fc e9 ed 99 fa f5 f6 ea fc ea f6 fa f2 fc ed 99 ................

02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

...

05a0 90 90 90 90 90 90 90 90 ........
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Table 2. Test results on DSSMB and testing with ASSMB

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.004% 1.43% 2/7
0.007% 3.35% 3/7
0.01% 6.65% 4/7
0.05% 23.92% 5/7
4.41% 66.51% 6/7
11.05% 85.02% 7/7

POSEIDON

0.007% 6.22% 2/7
0.007% 10.04% 3/7
1.27% 37.32% 4/7
2.28% 50.23% 6/7
3.32% 58.37% 6/7
5.39% 66.98% 7/7

Anagram

0.00% 0.95% 2/7
0.00% 22.48% 3/7
0.02% 37.32% 7/7
2.34% 55.50% 7/7
8.39% 63.64% 7/7

McPAD

19.02% 60.38% 7/7
20.62% 60.86% 7/7
22.31% 61.35% 7/7
27.61% 65.21% 7/7
97.39% 90.00% 7/7

We verify that this particular segment is flagged as anomalous by all the algo-
rithms because of the long sequence of the byte value 0x90, which corresponds to
the NOP instruction of the shellcode. Although there are individual bytes with
value 0x90 in the training set, we verify that there is never a sequence of three
bytes with this value. This explains why Anagram can identify as anomalous
a vast majority of the 3-grams in the aforementioned payload. Also PAYL and
POSEIDON will identify an anomalous byte frequency distribution, in which the
byte value 0x90 peaks above all the others. Similarly, the fact that the payload
consists of continuous 0x90 bytes implies that McPAD classifiers will be able to
recognize the peak in the frequency of these 2-grams.

We also observe that both PAYL and POSEIDON fail to detect one attack
instance exploiting the ms06-040 vulnerability, when the false positive rate is
below 2%. A fragment of the payload of such attack instance is reported below:

0170 52 df 47 2c 0c 86 de fe fe b9 f6 68 ae 23 4f a5 R.G,.......h.#O.

0180 81 53 79 43 fc fc 31 58 af ad 6e 30 29 f7 50 8a .SyC..1X..n0).P.

0190 4a e1 78 43 30 6a 55 75 58 72 6e 4f 42 48 4c 42 J.xC0jUuXrnOBHLB

01a0 36 34 33 4a 51 38 69 42 52 37 39 46 59 49 79 71 643JQ8iBR79FYIyq

01b0 7a 62 38 48 4e 47 68 48 7a 52 59 6e 38 76 55 78 zb8HNGhHzRYn8vUx

01c0 41 4d 57 61 57 66 68 30 48 4c 30 61 76 73 61 6b AMWaWfh0HL0avsak

01d0 7a 56 65 4d 32 42 76 64 64 43 64 41 45 75 75 53 zVeM2BvddCdAEuuS

01e0 4f 7a 41 4f 70 6b 30 37 4c 45 70 66 73 44 73 49 OzAOpk07LEpfsDsI

01f0 66 57 39 65 31 59 45 6e 43 38 52 62 76 57 65 50 fW9e1YEnC8RbvWeP

0200 59 63 54 77 7a 63 32 4f 50 4f 52 6b 71 4c 33 4b YcTwzc2OPORkqL3K

0210 65 7a 69 62 72 57 4e 6d 58 33 4b 56 70 50 6c 45 ezibrWNmX3KVpPlE
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This fragment contains a large majority of printable characters, thus one would
expect that, since RPC over SMB/CIFS messages are mostly binary, a detection
algorithm based on byte frequency distribution would be able to detect such pay-
load. However, RPC over SMB/CIFS is also used to feed remote print spoolers
with files to print. For example, in the filtered data set used for training we can
identify the following fragment which is part of a PDF file sent to the spooler:

0200 09 2f 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 ./@opStackLevel

0210 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 @opStackLevel 1

0220 61 64 64 20 64 65 66 0d 0a 09 09 63 6f 75 6e 74 add def....count

0230 64 69 63 74 73 74 61 63 6b 20 31 20 73 75 62 0d dictstack 1 sub.

0240 0a 09 09 40 64 69 63 74 53 74 61 63 6b 43 6f 75 ...@dictStackCou

0250 6e 74 42 79 4c 65 76 65 6c 20 65 78 63 68 20 40 ntByLevel exch @

0260 64 69 63 74 53 74 61 63 6b 4c 65 76 65 6c 20 65 dictStackLevel e

0270 78 63 68 20 70 75 74 0d 0a 09 09 2f 40 64 69 63 xch put..../@dic

0280 74 53 74 61 63 6b 4c 65 76 65 6c 20 40 64 69 63 tStackLevel @dic

0290 74 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 61 64 tStackLevel 1 ad

Similar to the previous fragment, this fragment also contains a vast majority
of printable characters. Due to the high variability of data, the threshold for
detecting such fragment had to be set in such a way that many normal samples
were classified as anomalous.

5.3 Tests with ICS Data Set

The results of this round of tests are summarized on Table 3. Anagram shows
outstanding results in this test, and this does not come unexpected. The messages
in this data set are rather short and the number of duplicates is also high (more
than 95%). This is a perfect combination for Anagram and its binary-based
approach. Anagram detects most of attack instances with a false positive rate
that is lower than the adjusted false positive rate of 10 alerts per day. When
detecting all of the attack instances, the false positive rate is still one order of
magnitude lower than the adjusted false positive rate of 1 alert per minute.

McPAD also performs well with respect to the false positive. This is expected
because the analysed Modbus traffic is expressed in messages of fixed length
structure and with a limited range of values in used bytes. This results in McPAD
accurately modeling relationships in the message structure.

PAYL seems to have a better packet-rate detection rate than POSEIDON.
However, POSEIDON always performs better with respect to the instance-based
detection rate as well as lower false positive. When the two algorithms are tuned
to detect all of the attack instances, they both generate an overwhelming number
of false positives, triggering on almost every packet.

With respect to the false positives generated during the verification phase, no
raised alert turned out to be a true positive when processed with Snort. This
is largely expected due to 1) the small number of available signatures for the
Modbus protocol, and 2) the fact that the industrial control network from which
we collected traffic from is highly isolated from other networks, with only a fixed
number of hosts communicating. Thus, the chance of “noise” is substantially
low.

Similarly to the previous test, there is no reason to test how a combination
of algorithms would perform, because Anagram outperforms all the other algo-
rithms in terms of detection and false positive rates.
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Table 3. Test results on DSModbus and testing with ASModbus

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.00% 62.57% 101/163
0.00% 92.63% 150/163
9.25% 95.70% 155/163
95.00% 100.00% 163/163

POSEIDON

0.04% 3.07% 4/163
0.07% 77.30% 125/163
0.37% 95.09% 154/163
7.65% 97.54% 158/163
97.81% 100.00% 163/163

Anagram

0.00% 3.68% 5/163
0.00005% 10.42% 16/163
0.00007% 18.40% 29/163
0.00007% 96.93% 157/163
0.002% 100.00% 163/163

McPAD

0.041 6.31% 10/163
0.044 96.93% 157/163
0.045 96.93% 157/163
0.046 96.93% 157/163

Analysis of detected and undetected attacks. To understand why Anagram works
so well with Modbus traffic consider the following two Modbus messages. The
first one is a valid read request (identified by the 8th byte with value 0x03 which
corresponds to the request “function code”):

35 ae 00 00 00 06 00 03 0c 7f 00 64

The following fragment is an attack instance attempting to corrupt the PLC
memory by invoking a vulnerable diagnostic function (byte value 0x08) with
invalid data (bytes 0x00 0x04 0x00 0x00 ):

00 00 00 00 00 06 0a 08 00 04 00 00

We first observe that the anomalous value in this payload are the byte value of the
function code, and the subsequent four bytes (never observed in the training set
on that same positions). There are 6 3-grams over 10 (60%) which are not present
in the valid request. The number of distinct 3-grams observed during training is
not much bigger than the one observable in the aforementioned request, due to
the large number of duplicated payloads. Thus, with such a small packet size,
even a few bytes with unusual value can make a big difference.

On the other hand, from the results in Table 3 we see that for all the algorithms
there is always a significant increase in the amount of false positives raised when
the threshold is adjusted to detect all attack instances. We observe that the
attack instances that do not get detected before the threshold is adjusted are
similar to the one in the following example:

00 00 00 00 00 02 0a 11
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This 8 bytes long message is the smallest possible Modbus message allowed by
the protocol specification. We acknowledge that this request is not unusual only
because of its size, but also because the function code value 0x02 (corresponding
to the request “report slave ID”) was never observed during training. We have
verified that the only 3-gram in this payload not observed during the training
is the last one 0x02 0x0a 0x11. Thus, in spite of the small size of this payload,
the threshold has to be lowered in order to detect it. Detecting such anomalous
packet (with only one anomalous n-gram) in a bigger message would be much
more difficult.

6 Related Work

To the best of our knowledge, Ingham and Inoue describe the most recent frame-
work for testing the performance of IDS algorithms [18]. The authors focus on
HTTP traffic. The framework is based on the general principle that testing dif-
ferent IDS algorithms on the same network environment and with the same net-
work and attack data allows a better comparison of the algorithms’ performance,
which would be impossible by re-using the results of the unrelated, individual
tests run by the algorithm developers. They collect background web traffic from
four different websites and create a publicly available set of network traces.
The traces contain instances of web attacks generated by running exploitation
tools downloaded from popular vulnerability repositories (e.g., BugTraq, Secu-
rityFocus and the Open Source Vulnerability Database). There are other IDS
evaluation frameworks, as reported in [18], but are all quite dated.

In [31] Song et al. show that polymorphic behaviour in shellcodes is too greatly
spread to be modeled effectively. The authors note that it is difficult to model
data with high variability, especially in case the adversary is able to inject some
“normal” looking n-grams into the attack payload to make it look legitimate.
Our experiments with SMB traffic confirm that, not only this observation is
true for polymorphic shellcode traffic, but even for regular attacks that do not
leverage any evasion techniques.

7 Conclusion

In this paper we present a thorough analysis of several n-gram-based algorithms
for network-based anomaly detection. We investigate the performance of state-
of-the-art detection algorithms when analyzing network traffic from two binary
protocols. We believe our analysis allows us to draw interesting observations and
conclusions.

First, despite the fact that the attack instances on the SMB/CIFS proto-
cols are correctly detected, all studied algorithms incur in a high penalty in
terms of false positives they raise. Concretely, it would be expensive to deploy
them independently in a real environment. On the other hand, if we restrict
the field to the Modbus protocol alone, Anagram detects almost every attack
instance with a rate of false positives lower than the 10 alerts per day threshold.
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We believe that with such performance the algorithm could be deployed in a real
environment.

Second, all studied algorithms trigger on the exploitation payload. We can
observe this by selecting two different attack instances that exploit the same
vulnerability, but using two different attack payloads. In several cases, while one
instance is detected even with a low threshold, to detect both attacks one needs
to increase the threshold significantly. The previously missed attack instance
usually contains a small-size attack payload, and thus “blends” more easily with
the normal payload data, thereby avoiding detection.

Third, there is no absolute best algorithm among the ones we studied. Ana-
gram performs slightly better than the rest when analyzing the filtered SMB/CIFS
and the Modbus protocols, but it is also the one performing worst when the filter
is not applied. Technically, this is due to the fact that the unfiltered SMB/CIFS
traffic contains several n-grams that are also present in the attack payloads. This
supports the intuition that variability of the network traffic has a great impact
on the performance of these systems. Indeed, every studied algorithm is affected
by this, allowing us to conclude that, rather than the single implementation, it
is the underlying principle of capturing regularity in the unstructured packet
payload that does not hold true. Our results show that n-gram analysis quickly
becomes incapable of capturing relevant content features when analysing mod-
erately variable traffic. This problem could be partly alleviated by deploying
the detection system in combination with some other sensor that will verify the
correctness of alerts [35]. We believe that a more promising approach is the one
focusing on identifying chunks of payload (that represent some kind of semantic
units) and applying the n-gram analysis on those. For example, several authors
propose to exploit the syntactical knowledge of the HTTP protocol to improve
the overall performance of anomaly-based systems, e.g. in [30]. We foresee that
a similar approach could be applied to binary protocols as well. Another issue
that remains still open is how to “measure” traffic variability without having to
run several empirical experiments.
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