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Abstract. Deep Packet Inspection (DPI) serves as a major tool for Network In-
trusion Detection Systems (NIDS) for matching datagram payloads to a set of
known patterns that indicate suspicious or malicious behavior. Regular expres-
sions offer rich context for describing these patterns. Unfortunately, large rule
sets containing thousands of patterns coupled with high link-speeds leave most
regular expression matching methods incapable of matching at real-time without
specialized hardware.

We present GPP-grep, an NFA-based regular expression processing engine de-
signed for maximum performance on General Purpose Processors. The primary
contribution of GPP-grep is the utilization of the data-level parallelism available
in modern CPUs to reduce the overhead incurred when tracking multiple states
in NFA. In essence, we build and store the NFA in an architecture-friendly man-
ner that exploits locality and then traverse the NFA maximizing the parallelism
available and minimizing cache-misses and long-latency memory lookups. GPP-
grep demonstrates 24–57× improvement in throughput over standard finite au-
tomata techniques on a set of up to 1200 regular-expressions culled from the
NIDS Snort, and is within 1.3× of FPGA hardware-based techniques. GPP-grep
achieves 2 Gbps throughput on a dual-socket commodity CPU system allowing
for line-speed evaluation on commodity hardware.

1 Introduction

Pattern matching is a primary component of Network Intrusion Detection Systems
(NIDS) that employ Deep Packet Inspection (DPI). DPI necessitates the comparison
of every datagram payload against a set of known patterns. Fixed string patterns offer
limited ability for expressing the complexities of modern network attacks, especially in
the face of evasive techniques employed by attackers [15]. Regular expressions provide
much richer context with which to design signatures enabling not only greater precision,
but also greater resilience to evasive techniques. However, efficiently matching regular
expressions can prove intractable, especially when faced with large sets of regular ex-
pressions combined with a high volume of traffic, and can result in near-incapacitation
of NIDS when deployed in high-speed environments [12].
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To promote efficient regular expression matching the set of regular expressions are
reduced to Non-deterministic Finite Automata (NFA) or Deterministic Finite Automata
(DFA). While NFA provide for very compact memory utilization, they suffer in through-
put as multiple active states must be maintained as all possible paths through the NFA
are traversed. DFA exhibit faster throughput, as only one active state is ever needed,
but the number of states in the automata can grow exponentially and require excessive
amounts of system memory. Current automata solutions such as eXtended Finite Au-
tomata (XFA) [24], Hybrid Automata [3], Delayed input DFA (D2FA) [16], and Ordered
Binary Decision Diagrams [30] improve the memory and time efficiency of regular
expression matching. Similarly, hardware techniques employing Field Programmable
Gate Arrays (FPGA) [19], Graphics Processor Units (GPU) [26,5], or Cell proces-
sors [21] utilize specialized hardware to improve matching. However, specialized hard-
ware can prove expensive and unmanageable while purely automata-based techniques
do not necessarily exploit the parallelism already embedded in current multi-core and
many-core processors.

In this paper, we present GPP-grep, a high-speed, NFA-based, regular expression
engine for General Purpose Processors (GPP). GPP-grep exploits thread-level and data-
level parallelism to achieve gigabit processing rates. Further, GPP-grep utilizes special-
ized NFA construction and storage to both reduce the total number of active states and
exploit locality during NFA traversals. The primary contribution of GPP-grep stems
from its ability to merge efficient NFA construction, storage, and traversal techniques
with a more complete use of GPP processing power to arrive at a performance of up to
57× faster than traditional NFA engines and within 1.3× of a hard-wired FPGA-based
NFA engine (on a 12-core CPU system). With 1,200 real NIDS regular expressions
GPP-grep achieves real-time processing rates of 2 Gbps on commodity hardware.

2 Related Work

Regular expressions provide signature creators a wide context within which to describe
dynamic patterns such as those occurring in polymorphic worms or customized at-
tacks [15]. Unfortunately, matching thousands of regular expressions against the pay-
loads of many thousands of packets-per-second can result in total failure of a NIDS
in multi-gigabit environments [12]. DFA provide a fast software implementation for
matching but suffer from state explosion when ambiguous characters, such as wild-
card characters, are used in expressions. Such wild-card characters result in an expo-
nential increase in the number of states required for the DFA which, in turn, requires
much more memory to store. Since NIDS may employ thousands of regular expressions,
nearly 1,600 distinct regular expressions for the default-enabled rules of the Sourcefire
Vulnerability Research Team (VRT) Snort rule-set for August 11, 2011 [27], and since
these regular expression are complex expressions with an average of six wild-card char-
acters, DFA can grow too large to reside in main memory. Conversely, NFA have very
compact representations in terms of memory, but require wider bandwidth to traverse
as all possible paths through the NFA must be explored simultaneously. Traditionally,
NFA are not considered a viable solution for NIDS, nor for regular expression match-
ing, as the single state transitions of DFA appear to offer the best chance at throughput.
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However, the growth in number of regular expressions employed by NIDS, as well as
the propensity for these regular expressions to use wild-card characters, has begun to
make DFA matching infeasible as the resultant DFA are simply too large. Compres-
sion [1], rule rewriting [31], and add-on data [20] can create smaller DFA, but can also
result in added overhead and processing of the DFA.

Much research has sought to improve the efficiency of automata. Smith et al. present
XFA [24] which augment Finite State Automata (FSA) with added variables to track
state during processing. The added state information serves to provide the FSA with
enough hints on processing data that it can both perform faster and in less space, on
average, than vanilla FSA. Becchi et al. present Hybrid Finite Automata [3,4] which
employ a small, head, DFA for the most common states (closer to the root). However,
for matching that extends deep into the automata, tail NFA are employed to succinctly
represent these deeper and less traveled regions. This hybrid finite automata demon-
strated smaller size than a comparable DFA, but with a much better cache hit ratio and
faster processing. Kumar et al. [16,17] introduced Delayed input Deterministic Finite
Automata (D2FA) and Content addressed Delayed input Deterministic Finite Automata
(CD2FA). D2FA essentially combines identical transitions from multiple states to re-
duce the total number of states and, ultimately, the size of the Finite Automata. CD2FA
use content labels rather than state identifiers that allow skipping default transitions
in certain cases. The end results were much smaller than normal DFA that achieved
roughly the same memory bandwidth. Yang et al. [30] adopted an approach more
closely aligned with GPP-grep in that they sought to improve the throughput of NFA.
They employed Ordered Binary Decision Diagrams to maintain the space-efficiency
of typical NFA representations while greatly improving the NFA traversal throughput.
Also similar to GPP-grep, Shenoy et al [23] attempt to make the storage of state in
Finite State Machines more efficient.

Another common tactic is to take advantage of specialized high-compute platforms
to speed up regular expression matching. Mitra et al. [19] compile PCRE op-codes to
Very High speed integrated circuit Description Language (VHDL) so that the matching
can be executed on a Field Programmable Gate Array (FPGA). This allows the expres-
sion matching to occur in parallel across multiple NFA. The end result is a significant
increase in throughput. Other approaches include Smith et al. who map DFA/XFA to
Graphics Processing Units (GPU) [26], iNFAnt which also maps NFA to GPUs and
provides efficient traversal algorithms [5], the use of the Cell processor as illustrated by
Scarpazza et al. [21], and Meiners et al. [18] who employ TCAM to compactly encode
multiple DFA and achieve high throughput.

GPP-grep differs from these approaches by creating and implementing an efficient
automaton in a manner that fully utilizes the parallelism available in modern multi-core
and many-core processors. This presents several advantages for GPP-grep. First, it mit-
igates the need for specialized high-compute platforms by maximizing the full potential
of general purpose processors. Thus, GPP-grep can achieve performance benchmarks
comparable to hardware implementations on a low-cost, ubiquitous piece of hardware.
Secondly, the architecture-friendly layout for automata used in GPP-grep can extend to
other approaches, such as those mentioned earlier, to arrive at improved performance.
Finally, GPP-grep itself could benefit from the other approaches mentioned earlier thus
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potentially allowing for complimentary improvement through the combination of dif-
ferent approaches. Ultimately, GPP-grep attempts to merge both finite automata consid-
erations with general purpose processor considerations to arrive at a regular expression
matching engine that demonstrates improvements far beyond what either tactic might
manage alone.

3 Modern Architectures

Exposing instruction-level parallelism is critical to utilize the multiple functional units
within each processor core. This requires unrolling/software pipelining as well as proper
instruction scheduling to expose independent instructions for simultaneous execution.
In order to utilize all integrated cores, the application must expose thread-level par-
allelism. For regular expression matching, parallelization can be done across multiple
input packets, with each processor executing matches on different packets. Modern pro-
cessors also have wide vector Single Instruction, Multiple Data (SIMD) units that can
execute instructions on many data items in parallel. For regular expression matching
using NFA we utilize SIMD parallelism to perform the next state transitions of multiple
active states in parallel. These techniques are further described in Section 5.3.

Instructions with high latency can lead to low utilization of functional units since
they block the execution of dependent instructions. This is typically due to long latency
memory accesses which can be reduced if the working set of the application (the data
size for which the number of cache hits is 90%) fits in the last-level cache of the proces-
sor architecture. For regular expression matching the core traversal algorithm involves
accesses to distinct memory locations which will ordinarily not be present in cache. In
Section 5.2, we rearrange the nodes of the automaton to minimize the impact of cache
misses. In addition to cache misses, misses to an auxiliary structure called the Transla-
tion Lookaside Buffer (TLB), which is used to perform the conversion from virtual to
physical memory addresses prior to each memory access, can also result in significant
performance degradation. This is also reduced using our hierarchical blocking scheme
described in Section 5.2.

Finally, misses in cache also result in increased use of memory bandwidth. While the
compute resources in modern architectures have increased rapidly, memory bandwidth
is on a slower curve. To minimize bandwidth utilization, we attempt to ensure that
every piece of data brought into cache in the form of cache lines is fully utilized before
being evicted. This is ensured by the cache line blocking technique that we describe in
Section 5.2.

4 Efficient NFA Construction

The first step in matching regular expressions is to build a finite automaton from a set
of given regular expressions. Once construction of the finite automaton is complete,
strings of symbols are applied to the automaton as an input until a final (accept) state is
reached (a match) or the input is exhausted (no match).

An NFA may require as many state transitions per symbol as the total number of
states in the NFA plus the possible addition of an epsilon transition. An epsilon transi-
tion allows the advancement to a new state without consuming an input symbol. This
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creates a time complexity for each symbol of O(m) where m defines the total number
of states in the NFA. For single-byte symbols, this translates to as many as 256 tran-
sitions per state (excluding epsilon transitions). The benefit, however, is that the NFA
is very efficient in terms of space as only a single state exists for each possible state
from the generating alphabet. On the other hand, a DFA requires only one state tran-
sition per symbol, but needs a much larger amount of memory to adequately map all
possible traversals through the finite automaton. This burden on memory only grows
as the number of complex regular expression components, such as Kleene stars, that
directly lead to state explosion continue to increase both in frequency (number of rules
containing complex components) and density (number of components per expression)
with an average of six such components per regular expression in the Snort VRT [27]
rule set.

4.1 Challenges in NFA Construction

In order to design efficient NFA previous approaches emphasized the generic reduction
of states and transitions. However, reducing the number of “active” states is more im-
portant than simply reducing total states since the CPU has to deal with all the active
states for each symbol in the input string. When converting regular expressions into an
NFA, Thompson’s algorithm [28] is often adopted. In Thompson’s algorithm, ε is used
to represent an empty string and is termed the epsilon transition. Unfortunately, NFA
generated by Thompson’s algorithm have two major drawbacks: first, there are many
redundant states and transitions in the NFA, and second, there are many redundant ep-
silon transitions in the NFA that can significantly increase the number of active states
for a traversal. In order to reduce active states in NFA we can merge some states. Mini-
mizing NFA is a hard problem [13] thus it is necessary to develop heuristic methods to
control minimization in order to make the problem tractable.

4.2 Reducing the Number of Active States

An NFA is defined by a quintuple A = (S,Σ,δ,s0,F), where S is a finite set of states, Σ
is the alphabet, δ is the transition function, s0 is the initial state and F is the set of final
states.

Given an NFA, we reduce the number of active states by combining “mergeable”
states into one. Formally, given an NFA A = (S,Σ,δ,s0,F), let p and q be two different
states in S. Then, by combining p and q, we obtain another NFA, A′ = (S′,Σ,δ′,s0,F ′),
that satisfies the following conditions:

S′ = S−{q} , (1)

δ′(s,ω) =
{

δ(p,ω)∪δ(q,ω) if s = p
δ(s,ω) otherwise,

(2)

and

F ′ =
{
(F−{q})∪{p} if q ∈ F
F otherwise.

(3)
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Fig. 1. Various NFA types for the RE ((ab|ε)a|(a|ε)b); (a) MM (b) SM (c) SS

Let L(A) be the language accepted by A. Then states p and q are mergeable if and only if
L(A) = L(A′). In fact, there exists a weaker condition for two states to be mergeable [7].

Definition 1. The left language of a state s in an automaton A is
←−
L A(s) = {ω ∈ Σ∗ |

s ∈ δ(s0,ω)}.

Definition 2. The right language of a state s in an automaton A is
−→
L A(s) = {ω ∈ Σ∗ |

δ(s,ω)∩F 	=∅}.
Note the generalized usage of δ. It represents a set of NFA states reachable by the
string ω and any number of ε transitions preceding ω, following ω, and between any
successive symbols in ω. Additionally, [7] prove the following proposition.

Proposition 1. Two states, p and q, in an automaton A are mergeable if and only if←−
L A(p) =

←−
L A(q) or

−→
L A(p) =

−→
L A(q).

Unfortunately, testing the condition in Proposition 1 is NP-hard, requiring global knowl-
edge [6]. However, because we build an NFA from a regular expression, which is a
linear representation of the NFA, we do not need to deal with an arbitrary NFA. Based
on this observation, we propose a sufficient mergeability condition, and design a novel
heuristic algorithm to identify most mergeable states during a single-pass conversion
from a regular expression to an NFA.

Proposition 2. Two states, p and q, in an automaton A = (S,Σ,δ,s0,F) are merge-
able if δ(p,ε) = {q} and either (i)

⋃
c∈Σ δ(p,c) = ∅ or (ii) {(s,c) | c ∈ Σ∪{ε} ∧ q ∈

δ(s,c)} = {(p,ε)}.

Proof. Suppose p and q satisfy the condition in the proposition. We prove (i) and (ii)
separately.

(i) Because the epsilon transition is the only outgoing transition of p, we have δ(p,ω)=
⋃

t∈δ(p,ε) δ(t,ω). Since δ(p,ε) = {q}, the equation becomes δ(p,ω) = δ(q,ω). There-

fore,
−→
L A(p) =

−→
L A(q).

(ii) Because the epsilon transition from p to q is the only incoming transition of
q, for any ω such that q ∈ δ(s0,ω), we get p ∈ δ(s0,ω) by removing the last epsilon
transition. Similarly, for any ω such that p ∈ δ(s0,ω), we get q ∈ δ(s0,ω) by adding
another epsilon transition at the end. Therefore,

←−
L A(p) =

←−
L A(q).

Thus, by Proposition 1, p and q are mergeable. �
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Fig. 2. NFA produced by the Thompson Algorithm for the RE ((ab|ε)a|(a|ε)b)

Note that to test conditions in Proposition 2, we only need the local knowledge of out-
going transitions for p and incoming transitions for q. To demonstrate the effectiveness
of our state merging, we illustrate Thompson’s NFA for (ab|)a|(a|)b in Figure 2, and
the result of state merging in Figure 1(a), which has significantly fewer active states
than Thompson’s NFA.

4.3 Building an Efficient NFA

After merging states, we will get an NFA with each state having multiple transitions,
even for the same symbol, and multiple epsilon transitions (a multi-multi NFA, or MM).
Such an NFA requires a dynamic data structure, such as a linked list, to maintain all
outgoing transitions for each input symbol. A simpler way is to force each state to
have at most one transition per symbol and at most one epsilon transition (a single-
single NFA, or SS), and implement it as an array. Essentially, we wish to reduce an
MM to an SS. Then the whole transition table of a state can be stored as a single entity
with 257 elements (256 input symbols and one epsilon transition). To achieve at most
one transition per symbol, we have to introduce new epsilon transitions to distribute
multiple transitions for the same symbol over multiple states. In order to have room to
add such new epsilon transitions, we first remove epsilon transitions from MM using
Algorithm 1. For each epsilon transition from p to q followed by another transition from
q to r, Algorithm 1 adds a shortcut from p to r, and eventually removes the epsilon
transition.

After removing epsilon transitions, we serialize all outgoing transitions for the same
symbol using new epsilon transitions. The pseudocode is shown in Algorithm 2. Note
that every state on the chain of epsilon transitions created by this algorithm has exactly
one incoming epsilon transition and one outgoing transition. In this way, we can guar-
antee that each state has at most one transition per input symbol and at most one epsilon
transition. Given an MM NFA as shown in Figure 1(a), its SS counterpart is shown in
Figure 1(c). We can use a similar algorithm to build an SM (a single-multi NFA), as
shown in Figure 1(b). The only difference is to connect a new state n in Algorithm 2 to
s directly using an epsilon transition instead of inserting it into the epsilon chain.

Overall, the algorithm to optimize an NFA created from a given set of regular ex-
pressions requires three steps: first, to create a compact NFA by merging states; second,
to remove all epsilons from the NFA; and third, to force a single-transition per input
symbol by creating an epsilon chain. This simplifies the memory representation of an
NFA and its traversal algorithm, as we explain in Section 5.
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Algorithm 1. Remove-Epsilons(State s)

if s has been marked then
return

end if
mark s visited
for all e such that e is an epsilon transition out of s do

d← destination of e
if d has not yet been marked AND d 	= s then

add transitions in d AND NOT in s to the transitions of s
if d is accepting then

set s to accept
end if

end if
remove e

end for
for all t such that t is a transition out of s do

d← destination of t
Remove-Epsilons(d)

end for

5 Efficient Layout and Traversal

In this section, we describe our architecture-friendly NFA layout and the efficient traver-
sal algorithm. These optimizations are aimed at reducing the traversal cost and the re-
sultant working set (the most frequently accessed data), thereby resulting in increased
NFA processing throughput.

5.1 Motivation

NFA are typically stored using an adjacency list representation, with each state storing
its outgoing symbol and ε-transitions. The NFA traversal algorithm maintains a list of
active states, labeled AS, initialized to the Start state(s). For each input symbol α,
the traversal consists of the following two steps:

Step 1: Computing the list of neighboring states (NS) for the symbol α for all states
in AS.

Step 2: Computing the ε-closure1 of all the states in NS, and assigning the resultant
states to AS.

In the case where AS consists of the End state(s), a match is found, and the NFA
execution may continue until AS contains no End state(s) (to find the longest sub-string
match). On the other hand, in the case where all the input symbols are processed without
ever reaching End state(s), the input stream does not match any regular expression in
the set of regular expressions.

1 By definition, ε-closure of any state A consists of the state A and all the states reachable using
ε-transitions from ε-neighbors of A.
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Algorithm 2. Force-Single-Transition-Per-Symbol (State s)

if s has been marked then
return

end if
mark s visited
for all c such that c ∈ Σ do

if there are multiple transitions for c then
for all t such that t is a transition s

c−→ d except the first do
remove t
insert a new state n at the head of epsilon chain
add a transition n

c−→ d
end for

end if
end for
for all t such that t is a transition out of s do

d← destination of transition
Force-Single-Transition-Per-Symbol(d)

end for

The runtime of the traversal algorithm is dependent on the following 3 factors: (1)
For each active state in AS, the time taken to lookup the neighboring states in Step 1. (2)
The time taken to lookup the ε-neighbors (and the subsequent ε-closure) for each state
in NS in Step 2. (3) Maintaining a unique list of states in AS and NS to avoid redundant
computation.

Typical implementations use either linear or log-time complexity algorithms [2] to
lookup neighbors and maintain unique lists. One primary reason has been the focus
on reducing the total memory footprint and using compact representation at the ex-
pense of increased traversal cost. In contrast, our layout aims to exploit the existence of
hardware caches and reduce the actual working set to make it fit in the cache, thereby
minimizing the access cost and thus reducing the instructions required for the traver-
sal. This layout makes our traversal algorithm compute-bound (rather than latency or
bandwidth-bound), and also provides an opportunity to exploit the Single Instruction,
Multiple Data (SIMD) execution units to further improve run-times.

5.2 Architecture-Friendly Layout

For the remainder of this section, let S denote the set of symbols, and |S | the cardinality
of S (e.g. 256 for 8-bit input symbols—the most common case). Furthermore, let M
denote the set of states (also referred to as nodes). We define the depth of any node as
the shortest distance (in terms of number of edges) traversed from the Start state to
that node. By definition, the Start state has a depth of zero.

On modern architectures, the data transfers (from main memory to caches, and within
caches) are performed at the granularity of cache lines (typically 64 bytes or longer). In
order to reduce memory accesses during traversal, it is important to reduce the number
of accessed cache-lines, which implies storing temporally coherent data in proximity.
Note that the NFA traversal involves neighborhood queries for all the active states for a
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Fig. 3. (a) Layout for single-neighbor case. (b) Layout for multiple-neighbor case. (c) 2-Level
hierarchical blocking of NFA nodes.

specific input symbol under consideration. Hence we need to store the transitions from
various states for any given symbol close to each other. We therefore cluster all the tran-
sitions into (|S |+1) groups (|S | for symbols and one for ε transitions). We now describe
our layout for these transitions for any particular symbol. For ease of explanation, the
remainder of the section uses the term symbol to include both input symbols and the ε
transition.

We adopt different layout schemes dependent on whether we wish to construct a
Single-neighbor (S) NFA where all the states have≤ 1 neighbor or a Multiple-neighbor
(M) NFA where states may have many neighbors. These NFA represent different design
choices and are constructed as explained in Section 4.3. Consider the S case, and the
symbol α. It is indeed possible for some states to have no transition for α. However, in
the Single-neighbor NFA we must provide exactly one neighbor for every state in our
layout in order to provide for a predictable data structure as illustrated in Figure 3(a).
Thus, our layout employs a Dummy state for all non-existent transitions. While this
increases the total number of states for the NFA by one, it offers an efficient method for
determining no transitions.

Now consider the Multiple-neighbor (M) case. Different states may have varying
number of neighbors, and hence we need to store a count for the number of neighbors.
Furthermore, in order to reduce the number of accessed cache-lines, we need to store
the count close to the state IDs. We therefore store the count followed subsequently by
the neighboring IDs. This representation requires storing a pointer to the address of the
memory location storing count (Figure 3(b)).

Our NFA layout described so far stores the states in increasing order, starting from
state ID 0. However, the traversal pattern follows a specific order—for any given state,
it accesses its neighboring (outgoing) state IDs. To improve cache locality, we need to
store all the neighbors of a node close to each other. Doing so for all depths results in
a breadth-first storage. However, this increases the storage distance between any node
and its neighbors at larger depths. For input streams matching the given NFA, the depth
of active states increases as we traverse through the inputs, thereby resulting in memory
accesses that are separated by increasing distances. As described in Section 3, memory
is laid out as pages and, for memory accesses offset by more than the page size, each
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access would result in a TLB miss which would increase memory access latency. In the
worst case, we may incur a TLB miss for each symbol of the input stream. We propose
a hierarchical blocking scheme that reorders the state IDs and reduces both the number
of cache and TLB misses simultaneously.

Hierarchical 2-Level Blocking. The aim of hierarchical blocking is to partition the
nodes into groups that fit entirely in a memory page (typical size of 4KB). Furthermore,
we need to rearrange nodes within every page so that a node and its neighbors are stored
close to each other—thereby fully exploiting a cache-line. We refer to this as our hier-
archical blocking scheme. Assuming a 32-bit representation for each state, we can fit
16 states in a cache-line and 1K nodes in a 4KB memory page. We perform a global re-
ordering of the nodes, and apply the same permutation to the states for all the symbols.

We start with the root node (Start state), and perform a depth-first traversal of
the graph and assign depth values to all the nodes. Furthermore, we maintain a list of
nodes that have not been assigned to any cluster—initialized to all the states in the NFA.
We begin clustering by including the Start state and all its neighbors (irrespective of
the symbol). We make progress by picking one of the unassigned nodes at the lowest
depth and including it and its unassigned neighbors in the cluster. We continue the
process until the threshold for the number of nodes in a page is reached. We then start
clustering for the next page by either continuing with the neighbors of the node just
being considered or starting with a new unassigned node. The process is terminated
when all the NFA states have been assigned to any of the clusters.

We now describe our scheme for performing cache-line blocking within each cluster.
We maintain a list of nodes that have not been assigned an index within the cluster. We
start with the node at the lowest depth, and consider its neighboring states in the cluster.
In the case where the number of unassigned neighbors is greater than 16 (the maximum
number of neighbors within a cache-line), we assign the neighbors contiguously. We
continue with the remaining neighbors, and assign them in a similar fashion. If the
number of unassigned neighbors is less than 16, we fill up the cache-line partially and
then continue with the process by selecting the unassigned node at the lowest depth.
The process is carried out until all the nodes have been assigned an index (Figure 3(c)).

For any distribution of the symbols in the input stream, our hierarchical blocking
scheme aims to reduce the average number of cache- and TLB-misses. In practice, the
NFA traversal spends most of its time in the first few levels of the NFA, which are
clustered together by our algorithm. Hence we have very few cache- and TLB-misses
as shown in Section 6. Using our blocking scheme, we obtain a large performance
improvement (of around 2.7×) for large NFA. Note that we reorder the nodes for each
of the MM, SM and SS types of NFA as a pre-process step.

5.3 Traversal Algorithm

We first explain our technique to maintain unique lists in O(1) time for our NFA layout,
followed by the complete traversal algorithm for different NFA types. We maintain a
time stamp (referred to as τ, and initialized to zero) for the simulation that gets updated
for each step of the NFA traversal. Furthermore, we maintain an array (referred to as
TimeStamp), that stores one time stamp value per state—representing the time stamp
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for the most recent access. This requires an additional two accesses per state (to check
and potentially update its time stamp), but helps maintain unique states without the
significant overhead due to sorting or linear searches. For each input symbol, τ gets in-
cremented by one for the symbol-transitions and again incremented for the ε transitions.
Depending on the granularity of the time stamp, we need to reset the TimeStamp array
for all the states once the timer τ truncates to zero. Assuming a 32-bit timer, this reset
process needs to be performed after traversing through 2 MB of input packets, rendering
the amortized cost to be negligible.

We first describe the traversal algorithm for the Single-neighbor (S) case. Let α be
the input symbol, and τ represent the current time step. Before starting the execution,
TimeStamp[Dummy] ← τ. Consider the Step 1 of the traversal (Section 5.1). The
traversal consists of:

(a) Loading the next active state (Si) in AS, followed by
(b) Looking up its α neighbor (say Sα

i),
(c) Looking up the corresponding time stamp value (τ′) of the neighbor
(TimeStamp[Sα

i]).
(d) Comparing τ′ and τ, and
(e) In case τ′ 	= τ, TimeStamp[Sα

i]← τ and append Sα
i to NS (since τ′ = τ implies

that Sα
i ∈ NS).

The same process is carried out for Step 2 (for S case).
In the case of Multiple-neighbors (M), we replace the above steps by the following

computations. We first (i) compute the address of the memory location containing the
counter of the number of neighbors, and (ii) lookup the counter value. The rest of the
process involves iterating over all the neighbors, and performing steps (a)–(e).

The M case clearly involves the added overhead of address computation and access-
ing the counter value prior to starting the efficient process of neighbor lookup and ap-
pending entries the list of unique active states. Further, it carries the additional overhead
of loop computation and checking for termination. For a small number of neighbors this
overhead contributes substantially to execution time, but gets amortized for large num-
bers of neighbors.

Improving ILP (Instruction-Level Parallelism). During the NFA traversal, a node
may access cache-lines that are not resident in the cache. This scenario arises as we
traverse deeper into the NFA graph. Such accesses may incur long latencies and stall the
execution pipeline. In order to reduce the impact of such latencies on the execution time,
we issue software prefetches in advance, before actually accessing such cache-lines.
This reduces (and in most cases eliminates) the memory latency stalls. We modify our
traversal algorithm as follows. During the execution of Step 1, we look at the subsequent
input symbol (say β). As we identify and add states to the NS, we also issue software
prefetches for all the memory locations storing the neighbors of these states (for symbol
β and ε neighbors). This process is carried out during the execution of Step 2. Note that
we can issue prefetches for all memory accesses, except for the ones that arise from the
ε-transitions of the ε-neighbors of states in NS.

In addition to software prefetches, we also perform loop unrolling while iterating
over the active states. Since steps (a), (b), and (c) above are completely independent for
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the various active states, these instructions increase the amount of parallel instructions
available for the processor scheduler to improve the IPC (Instructions Per Cycle), and
hence reduce the effective amount of execution cycles.

Exploiting Thread- and Data-Level Parallelism. We exploit the available multiple
cores on current CPUs by dividing the input packets among the cores. This requires
keeping a separate copy of the TimeStamp, AS and NS arrays. Since the cores perform
independent traversals, we obtain near-linear scaling with number of cores.

In order to further reduce the executed instructions, we take advantage of the SIMD
execution units available on modern computing units. We exploit SIMD by operating
on multiple active states simultaneously. Modern CPUs have a SIMD width of 128-bits,
and hence we operate on four active states simultaneously. Although there exist schemes
that exploit SIMD by performing traversal on multiple input streams simultaneously,
they do not achieve any speedup on CPUs [8].

For the Single-neighbor S case, performing step (a) in SIMD involves doing an
aligned vector load from the memory into a vector register, while step (b) involves
gathering the α neighbors for four different states (hence four memory addresses) into
a register. Similarly step (c) is another gather operation from the TimeStamp array,
while step(d) is a vector compare (equality between two registers). Finally step (e)
needs to be performed only for the SIMD lanes that correspond to states which failed
the equality test. Two operations are performed for the same—a masked scatter oper-
ation to update the TimeStamp array, and a packed vector store [22] to the NS array.
Similarly for the M case, steps (i) and (ii) translate to vector gather instructions that
gather the addresses of the memory locations storing the counter value, followed by an-
other gather to obtain the count values themselves. The remaining operations can utilize
SIMD in a similar fashion to S.

The speedup due to SIMD is governed by the following 3 factors: (i) efficient hard-
ware support for load, compare, gather, scatter and packed-store vector instructions, (ii)
the number of active states that are available for SIMDfication, and (iii) the results of
comparison in step (d) that compute the number of elements that need to be scattered
and pack-stored.

The current generation of CPUs do not have efficient support for gather, scatter and
packed-store instructions. We therefore emulated them using scalar instructions. Hard-
ware support for these instructions would have a greater impact on reduction in run-
time. We provide performance numbers for SIMD speedup in Figure 4(a) in Section 6.1.
Finally, we note that a kernel implementation reduces the overhead of context switches
and user-space copies and serves to further improve performance. As such, we have
implemented GPP-grep in the Linux 2.6 kernel.

5.4 Analytical Model

To predict performance we create an analytical model by computing the total number
of ops2 executed during the traversal (for an active state and the input symbol). The
corresponding number of cycles depends on memory access patterns. Our layout is also

2 1 op implies 1 operation or 1 executed instruction.
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optimized for efficient memory access and achieves close to maximal IPC (detailed
results in Section 6.2). Thus with appropriate NFA layout optimizations, our analytical
model may also project the number of executed cycles.

First consider the Single-neighbor (S) case. For each active state the total cost of
the Steps one and two, as outline in Section 5.1, is the sum of the sub-steps (a)–(e)
and is termed coststep1/2. However, step (e) is only executed with certain probability,
dependent on the input stream and NFA characteristics. Let ρ denote the corresponding
probability. Furthermore, we also issue software prefetch instructions to improve the
IPC. This adds to the instruction overhead too. Let the cost of prefetches be denoted
by costpref. Let the number of symbol neighbors be Nsymbol and the ε-closure consist
of Nε elements. Therefore coststep1/2 = costpref + cost(a) + cost(b) + cost(c) + cost(d) +
ρcost(e), and hence costS = (Nsymbol + Nε) coststep1/2. For the Multiple-neighbor (M)
case, we also need to include the overhead of steps (i) and (ii) (Section 5.3). Hence
costM = (Nsymbol + Nε) coststep1/2 + coststep(i) + coststep(ii).

For any given architecture, the costs for each of the above terms is known, and can
be plugged in to get an estimate of the number of executed ops. We provide data and
the projected results by our model in Figure 4(b) in Section 6. We believe the model
serves as a metric to compare the performances of different architectures for the NFA
traversal with different NFA representations.

6 Experimental Evaluation

We now evaluate the performance of GPP-grep on the Intel Xeon DP Westmere-EP
X5680 CPU. Our CPU platform has 2 sockets with a total of 12 cores running at
3.33 GHz. Our system has 12 GB RAM and runs SUSE Enterprise Edition Linux 11.
The peak CPU compute power per socket is 150 Gops (300 Gops on 2 sockets) and
achievable memory bandwidth of 44 GBps on 2 sockets.

We collected regular expressions from the Snort rule-sets as provided by the VRT [27].
We choose random subsets consisting of 200, 400, 600, 800, 1000, and 1200 regular
expressions from the backdoor, exploit, spyware, web-activex, and web-client rule-sets
as the basis for the NFA and our analysis. We employ a packet trace from the 1999
DARPA Intrusion Detection Evaluation Data Sets distributed by the MIT Lincoln Lab-
oratory [9], and simulate a million packets as input data.

We first describe the impact of various algorithmic and architectural optimizations
that we performed in GPP-grep. We then discuss the key static and runtime character-
istics of NFA traversal and show that they correlate well to the performance model.
Finally, we compare the performance of our regular expression matching against other
state-of-the-art systems.

6.1 Impact of Optimizations

Figure 4(a) shows the speedup obtained over the baseline PCRE (v8) performance due
to the various optimizations with the baseline PCRE performance normalized to 1. We
parallelized PCRE for a fair comparison. The speedups obtained from each optimiza-
tion are multiplicative on top of previous optimizations. The lowermost bar gives the
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(a) Speedup over PCRE with various opti-
mizations.

(b) Comparison of real instructions executed
per input symbol to performance model pre-
dictions across MM, SM, and SS NFA.

Fig. 4. Speedup and fit to Analytical Model

impact of our efficient NFA construction that helps reduce the number of active states
and efficient layout that enables a constant time neighbor lookup/addition to the ac-
tive state list as described in Section 5.2. This provides a large benefit of 9–17× over
PCRE. The effect of this optimization is primarily to reduce the number of instructions
executed. In the absence of architectural optimizations, some of the impact of such in-
struction reduction weakens for large NFA due to increasing cache and TLB misses and
consequently lower IPC. Thus we see a smaller benefit for large regular expression sets.
This motivates the need for our architectural optimizations.

The next bar is the impact of picking NFA with multiple transitions per symbol and
multiple epsilon transitions (MM) versus a single transition per symbol and epsilon
transition (SS). This impact is consistently 1.5–1.8× on top of the previous optimiza-
tions. As before, the impact is primarily instruction reduction due to efficient address
computation possible in the SS code (Section 5.3).

The next benefits come from an improvement in IPC. The impact of hierarchical NFA
blocking increases with NFA size (larger number of regular expressions) up to a max-
imum of an additional multiplicative impact of 2.7×. As described in Section 5.2, this
is due to a decrease in the number of cache and TLB misses. The next IPC optimization
is the impact of ILP optimizations such as unrolling and software prefetching described
in Section 5.3. This has an impact of 1.1–1.4×, and has more impact for larger NFA
(similar to hierarchical blocking). This also includes the effect of SMT (Simultaneous
Multi-Threading), which helps hide memory latency when software prefetching tech-
niques do not succeed. This occurs, for instance, when fetching nodes that are in the
ε-closure of an active state but not in the neighbor list of the state—we do not prefetch
these nodes and rely on SMT.

Finally, we also obtain up to a 1.3× speedup due to the impact of using SIMD in-
structions. Since we use SIMD to process multiple active states at once, the impact of
SIMD increases when we have a relatively large number of active states. This happens
for larger NFA that correspond to more regular expressions. Hence our SIMD speedup
increases with increasing numbers of regular expressions.
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Table 1. Runtime characteristics of NFA traversal

NFA # REs # # Avg. Active Max Active Avg.
Type states transitions States States Depth

MM 200 15,883 1,922,997 4.2 24 3.5
400 43,535 6,729,191 5.4 42 6.1
600 62,188 9,462,802 7.0 46 8.9
800 83,965 13,118,674 13.1 81 11.0

1000 106,815 16,915,665 19.2 82 12.9
1200 137,927 22,833,917 23.6 94 14.3

SM 200 16,291 1,923,405 4.3 24 3.7
400 44,336 6,729,992 5.4 42 7.1
600 63,377 9,463,991 6.9 46 10.2
800 85,503 13,120,212 13.0 81 13.5

1000 108,762 16,917,612 18.9 83 15.0
1200 140,322 22,836,312 23.7 96 18.1

SS 200 16,252 1,957,905 4.3 24 3.7
400 44,288 6,804,066 5.2 43 8.1
600 63,313 9,580,679 6.8 47 15.1
800 85,424 1,327,3108 13.1 82 17.6

1000 108,731 17,124,534 19.0 84 20.5
1200 140,491 23,088,684 23.6 98 23.2

6.2 Performance Analysis

Table 1 shows the salient static and runtime characteristics of the MM, SM, and SS
NFA. Col. 5 shows average number of active states during traversal. The average num-
ber of active states is a good indicator of the number of instructions required to perform
the traversal. Col. 7 shows the average depth of NFA states traversed, which gives us
an indication of the true working set of traversal. This has implications on the number
of cache misses during traversal. Table 1 also illustrates that the number of active states
increases with the number of regular expressions. Since the number of active states di-
rectly impacts the number of instructions (and hence final performance), we expect to
see a drop in performance for larger sets of regular expressions. Further, all three NFA
types—MM, SM, and SS—have similar numbers of active states. However, the number
of instructions executed for SS is the least because we can use the fact that there is only
one neighbor per symbol and only one ε transition to simplify the address calculations
during traversal.
Comparison with Performance Model. To compute the number of ops for various
operations listed in Section 5.4, we analyzed the static assembly file and hand-counted
the number of instructions. These numbers were then plugged in together with the av-
erage number of symbol neighbors and nodes in the ε-closure to compute the projected
number of instructions. Our projected number matches closely to actual results, only
slightly less (5–10%) than the real performance, and is illustrated in Figure 4(b). This is
due to the register spills and fills that are not accounted for by our model. Furthermore,
our optimized layout results in a per-core IPC of around 1.8 on 12 cores, and hence the
resultant run-times are also within 8–12% of the projected run-times (obtained using
the maximum per-core IPC of 2).
Working Set Analysis. We measured the working set (data size for which the number
of cache hits is≥ 90%), for our MM, SM, and SS NFA types with our input regular ex-
pression sets. The working set increases with increasing number of regular expressions
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Fig. 5. Working Set and Throughput Evaluation

and is highest for the SS type. Even for the SS type NFA for 1200 regular expressions
(our largest input), the working set entirely fits in the L3 cache (12 MB per socket).
However, the working set usually does not fit in the L2 caches of the individual cores.
Finally, we do see an improvement in IPC using the software prefetches described in
Section 5.3. The results of those improvements are illustrated in Figure 5(a).

6.3 Comparison with State of the Art Systems

Figure 5(b) demonstrates the throughput of GPP-grep using the best performing SS
NFA. Also, Figure 5(b) shows the speedup of GPP-grep over PCRE and Bro (v.1.5.1)
systems. After our optimizations, we obtain a final throughput between 2 and 9.3 Gbps,
with a performance of 2 Gbps for 1200 regular expressions. The absolute performance
of GPP-grep drops with increases in the number of regular expressions. This results
from increases in the number of active states as the number of regular expressions grows
and is shown in Table 1.

We parallelized both PCRE and Bro. PCRE uses NFA with small working sets; these
scale perfectly with the number of cores. GPP-grep is 24–57× faster than parallel PCRE,
depending on the number of regular expressions. The speedup improves with larger sets
of regular expressions. This is because PCRE provide best performance when handling
regular expressions one at a time; hence the runtime is proportional to the number of
regular expressions. However, the number of active states in GPP-grep only increases
by about 1.5× from 200 to 600 regular expressions though there is a sudden increase in
the number of active states from 600 onwards resulting in a stabilization of the speedup
over PCRE. GPP-grep is also 5–24× faster than Bro. Since the Bro system demonstrated
poor results when run one regular expression at a time, we grouped all the regular ex-
pressions together. The Bro system adopts a DFA based approach for matching. For
greater than 600 regular expressions, the DFA sizes generated by Bro were greater than
our system memory of 12 GB. Hence we do not report the resultant performance num-
bers. Our experiments indicate that the Bro system rapidly becomes bandwidth bound
for 400 regular expressions and beyond, since the working set of the DFA does not fit
in the L3 cache. Bandwidth bound applications are unable to take advantage of the full
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computational capabilities of multi-core platforms; we only obtained a parallel scala-
bility of about 3.6× on 12 cores for the 600 regular expression DFA. On the other hand,
the working set of the NFA produced by GPP-grep fits in the L3 cache, even for large
numbers of regular expressions—hence we are compute-bound and scale near-linearly
with the 12 cores of a Xeon X5680. The difference in parallel runtime scaling results
in an increase in speedup over Bro as the number of regular expressions increases.

We compare our performance with the FPGA based solution proposed by Mitra et
al. [19]. We first note that our single-threaded PCRE performance for 200 regular ex-
pressions is similar to their PCRE performance (also for 200 Snort regular expressions)
on a single 3.0 GHz Xeon; this indicates that the regular expressions used have similar
complexity in terms of active states, making our performance comparisons fair. They
report a speedup of 335× over single-threaded PCRE for 200 regular expressions when
using FPGAs, while we are about 258× faster than single threaded PCRE on a single
CPU (24× faster than PCRE running on 12 cores). Thus our CPU performance is about
1.3× off their FPGA performance using commodity processors. Further, our CPU im-
plementation can scale to a much larger number of regular expressions, while FPGA are
more resource limited in terms of on-board memory and do not scale as well to larger
sets of regular expressions.

7 Discussion

Our fast regular expression matching algorithm is useful in contexts other than NIDS.
In particular, XML queries expressed in XPath [29] often have to be matched against
incoming documents in publish/subscribe systems [10] where efficient regular expres-
sion matching would prove a boon. Containment queries on trees and graphs wherein
the task is to match a tree (or graph) against another tree (or graph), as illustrated by
GraphDB [14], pose another potential arena for GPP-grep. Improving NFA traversal
can be applied to the general graph traversals used in many contexts including graph
searches and graph matching similar to the A* graph search which, in several forms,
found use in graph database shortest path searches [14], as well as matches of sub-
graphs in protein databases, image databases, and software repositories [11].

The performance of our SIMD algorithm for graph traversal would further improve
with hardware support for gathers/scatters and packed-store operations. The upcoming
Intel MIC (Many Integrated Core) architecture will add such support and should im-
prove SIMD utilization [22]. Coupling this with a kernel implementation is conducive
to System-on-Chip (SoC) implementations where packet I/O is combined with match-
ing on a single chip and which makes this approach applicable to current and future
trends in regular expression processing. Finally, we note that our algorithm will bene-
fit from any technique that helps further minimize the number of active states during
traversal such as: XFA [25] and HFA [2]. Our techniques are complementary and should
result in cumulative improvement.

8 Conclusion

We present GPP-grep, a fast regular expression processing engine on commodity gen-
eral purpose processors. GPP-grep exploits thread-level and data-level parallelism, and
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employs an architecture-friendly layout and graph traversal scheme to improve effi-
ciency. On a dual-socket commodity CPU system, GPP-grep attains a maximum through-
put of 9.3 Gbps, and is up to 57× faster than traditional PCRE engines. In the future we
hope to expand this engine to present a single tool for handling NIDS DPI processing of
all criteria for any rule, fixed string or regular expression, in one pass. Ultimately, GPP-
grep offers an economical solution, both financially and in terms of system resources,
for high-speed regular expression matching.
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