
A Lone Wolf No More: Supporting Network
Intrusion Detection with Real-Time Intelligence

1 1,2, Aashish Sharma2, and Seth Hall1

1 International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract. For network intrusion detection systems it is becoming in-
creasingly difficult to reliably report today’s complex attacks without
having external context at hand. Unfortunately, however, today’s IDS
cannot readily integrate intelligence, such as dynamic blacklists, into
their operation. In this work, we introduce a fundamentally new capa-
bility into IDS processing that vastly broadens a system’s view beyond
what is visible directly on the wire. We present a novel Input Framework
that integrates external information in real-time into the IDS decision
process, independent of specific types of data, sources, and desired anal-
yses. We implement our design on top of an open-source IDS, and we
report initial experiences from real-world deployment in a large-scale
network environment. To ensure that our system meets operational con-
straints, we further evaluate its technical characteristics in terms of the
intelligence volume it can handle under realistic workloads, and the la-
tency with which real-time updates become available to the IDS analysis
engine. The implementation is freely available as open-source software.

1 Introduction

For network intrusion detection systems (IDS) it is becoming increasingly diffi-
cult to reliably report today’s complex attacks purely by looking at traffic on the
wire, without having any further external context at hand. For example, often
the best way to detect botnet communication is to monitor for connections to
known C&C servers that the security community has already identified. Likewise,
external malware registries can help determine if downloaded files contain mali-
cious code. A variety of efforts are collecting and disseminating such third-party
intelligence systematically, including blacklists such as Google’s Safebrowsing
URL list [11] and VirusTotal’s hash-based malware identification [29]. More so-
phisticated federated sharing initiatives—operated, e.g., by REN-ISAC for the
education community [18] and the Department of Energy’s Joint Cybersecurity
Coordination Center (JC3) [1]—enable real-time propagation of incident infor-
mation across their member institutions.

Unfortunately, however, today’s IDS cannot readily integrate such external
information into their processing. Their standard approach for using intelligence
remains to statically convert it into their rule languages, which severely limits
the attainable benefits. If they offer direct interfaces to the external world at all,
they typically restrict them to a small set of individual hard-coded applications.

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 314–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Johanna Amann , Robin Sommer

ja@so.in.tum.de

A Lone Wolf No More: Supporting Network Intrusion Detection 315

In this work, we introduce a fundamentally new capability into IDS processing
that vastly broadens a system’s view beyond what is visible directly on the wire.
We present a novel Input Framework that integrates external intelligence in
real-time into the IDS decision process, independent of specific types of data,
sources, and desired analyses. We design the framework so that it offers a simple
interface to IDS users while providing the flexibility to interface to a range of
local and remote intelligence sources. On the architectural side, we ensure that
even with rich external information, the Input Framework heeds to the stringent
performance requirements of high-volume, soft real-time packet processing.

We implement the Input Framework design on top of the open-source Bro IDS.
By offering a Turing-complete scripting language for expressing local policies,
Bro is ideally suited to exploit the full power of the new capability. Using our
implementation, we demonstrate three real-world use cases: (i) integration with
REN-ISAC and JC3 feeds; (ii) online virus checks of executables observed on
the network; and (iii) real-time database queries, with results integrated back
into the IDS decision process on the fly.

The goal of our work is to provide a new capability suitable for operational de-
ployment. As such, it is crucial to ensure that interface and implementation meet
operational demands, and we hence evaluate our work from that perspective.
First, we report operational experiences from a large-scale network environment
where operators are already deploying the implementation experimentally. Sec-
ond, we instrument our implementation to understand its technical properties,
such as the volume of intelligence it can handle in parallel to processing traffic,
and the latency with which updates become available to the IDS analysis.

Based on encouraging feedback from operators, we anticipate that our im-
plementation will become part of operations at further sites in the near future.
We release our code as open-source under a BSD license, and most of it is al-
ready integrated into the standard Bro distribution. We emphasize, however,
that conceptually our approach is not limited to the specific IDS we used, but
can similarly enable others systems to leverage intelligence effectively.

We structure the remainder of this paper as follows. §2 discusses related work.
§3 presents the design and architecture of the Input Framework, and §4 details
our implementation. §5 discusses three concrete use cases, including initial de-
ployment experiences with one of them at a large-scale network site. We evaluate
the performance of our implementation in §6, and we finally summarize in §7.

2 Related Work

The Input Framework provides a generic platform for integrating external in-
telligence into an IDS’ live packet processing. While we are not aware of any
current IDS that provides such a capability with a similar degree of flexibility, a
number of existing efforts provide evidence for the utility of our approach.

We find a wide variety of online services available that provide third-party intel-
ligence to network sites aiming to support their security efforts. Most commonly,
these offer blacklists of known bad actors or content. Examples include web sites

316 J. Amann et al.

listed on Google’s Safebrowsing URL list [11]; mail servers on Spamhaus’s Block
List (SBL, [23]);malware listedby registries likeVirusTotal [29] andTeamCymru’s
malware hash registry [7]; and suspicious IP addresses reported to DShield [10].
Whitelists alternatively help avoiding false positives; NIST for example provides a
list of hashes of known benign files that are part of OSs and applications [2]. More
general data sources can provide further context like whois domain information
and Team Cymru’s Bogon List of unroutable IP space. In addition to such public
services, a number of closed federations have emerged that distribute non-public
incident information across member institutions. This information is much more
context rich than the simple aforementioned blacklists, often containing features
like the IP address, URL, downloaded malware md5 hashes, and timestamps for
each incident. Examples include REN-ISAC’s Security Event System [18], DOE’s
JC3 feeds [1], and Argonne Lab’s Federated Model [6]. In §5 we show how our In-
put Framework integrates with the former two specifically. A particular benefit of
such federations is that sites with lower technical expertise can benefit from find-
ings and capabilities of their peers. In addition, a site may also have further local
resources to support an IDS: a database of valid user accounts can help detecting
brute-force SSH attacks, and a list of software running on local end hosts suggests
whether a victim is vulnerable to a specific exploit. It is generally all such context
information that we collectively refer to as intelligence .

Past studies show the benefit of integrating external information into security
decisions. A recent study [19] at NCSA found that for 27% of all tracked inci-
dents external notifications triggered their investigation (and not the local IDS).
Verizon reports that “third parties discover data breaches much more frequently
than do the victim organizations themselves” [28]; they found 92% of all breaches
to fall into that category (49% when only considering larger organizations). It
is such experience that motivates federations like SES to automate intelligence
sharing. Another study [14] shows that attacks on different sites are often cor-
related and hit the separate networks within minutes. The authors recommend
to rapidly share IDS state as a countermeasure. In [20], the authors analyze e-
mail spam blacklists and find that local aggregation and reputation assignment
can improve their accuracy. Our approach aligns with that by making complex
intelligence available to the IDS and not only working on blacklists with pre-
determined yes/no decisions. We also find a number of specific detectors in the
literature that leverage intelligence as key ingredients, such as BotHunter [12].

Current IDS do not provide flexible mechanisms to integrate external informa-
tion. In our experience network operators today leverage intelligence by writing
scripts that either turn it into static IDS configurations or post-process the out-
put of an IDS offline. Indeed, Snort [17] distributes most of its blacklists in
the form of rules [4]; and the software underlying SES provides an option to
directly output Snort rules generated from received intelligence [5]. Likewise,
users of Suricata [24] and Bro [16] often auto-generate static configurations. Do-
ing so however tends to incur major performance hits, and also makes updating
an expensive operation that typically requires a restart. Worse, with signature-
based systems this approach constraints any analysis to basic byte-level pattern

A Lone Wolf No More: Supporting Network Intrusion Detection 317

matching—a model rarely constituting a good fit for higher-level intelligence
that often only augments, and not controls, security decisions.

Newer Snort versions feature an IP reputation preprocessor [21] that directly
imports IP-based black- and whitelists. It, however, requires specifically format-
ted input, does not operate on other information than IP addresses, and cannot
leverage the lists for any analysis going beyond simple allow/drop decisions. Bro
provides a generic communication interface [22] that can update state dynami-
cally. However, while a user could use this for integrating intelligence (and some
do, for a lack of alternatives), it remains low-level with no specific support for
interfacing intelligence sources.

In the literature, work on adding context to IDS decisions tends to focus on
correlation between IDS nodes (e.g., [8,26,27]), not higher-level intelligence shar-
ing with external entities. On the commercial side, many security appliances seem
to leverage forms of intelligence. For example, Symantec’s firewalls support black-
lists and blacklist sharing [25], and Damballa’s product line includes dynamic rep-
utation modules [15] based on Notos [3]. While taking a similar approach as we
advocate, the Input Framework is not limited to a specific data source or analysis.
Generally, we note that for commercial solutions it tends to be hard to say what
they do exactly, as specifics of their internals are rarely public.

3 Design

We now discuss the design of the Input Framework. We begin by looking at
the type of state that it targets in §3.1: external “intelligence” of low to medium
volume with potentially frequent updates. We discuss our main design objectives
in §3.2 and then present the high-level Input Framework architecture in §3.3.

3.1 Intelligence

Of all the run-time state that a typical IDS manages, the Input Framework
targets a specific subset that today’s systems support only insufficiently. Most
IDS implementations focus on two groups of state (see Fig. 1): (i) network
state derived directly from the monitored packet input, and (ii) configuration
state describing the types of analyses to perform, such as a set of signatures
or specific hosts to watch out for. The former group consists of volatile, high
volume data (e.g., the current set of active connections along with TCP and
application-layer information), and requires sophisticated schemes for efficient
management [9]. The configuration of an IDS, on the other hand, is of low
volume and static: changes tend to require an expensive reload operation that
interrupts the current analysis, often in the form of a full system restart.

We argue, however, that there is a third group of state that we term intelli-
gence state: externally provided context that, when correlated with the traffic
on the wire, can significantly increase the system’s detection capabilities. As
discussed in §2, such state includes blacklists of known bad actors and specifics
of the local environments. Conceptually, intelligence falls in between the two
former groups: it is of much lower volume, and more stable, than network state.

318 J. Amann et al.

High Low/medium Low

High Low/medium Static

Connection
table

Blacklists,
Network config

IDS rules

Network State Intelligence Configuration

Volume

Update frequency

Example

Fig. 1. IDS State

Intelligence however changes frequently, possibly multiple times per second, and
thus cannot become part of the IDS’s static configuration. Our Input Framework
specifically focuses on integrating such state into the IDS analysis.

3.2 Objectives

The goal of the Input Framework’s design is to offer a flexible mechanism to
integrate intelligence from a variety of sources, without negatively impacting
the IDS’ main task of analyzing a high-volume packet stream under soft real-
time constraints. To this end, we identify the following objectives for its design:

Adaptable to Different Sources. A crucial design goal is the ability to
interface to a range of potential input sources and formats. We require the Input
Framework to accommodate sources as different as flat files of ASCII and binary
data, sockets for live feeds, databases, and web services. Along with that comes
the requirement to support different modes for updates, including processing in-
telligence in regular batches as well as “pull” and “push” operation for real-time
streams. While adding new input sources necessarily requires tailored interface
code, the Input Framework should make extensions easy.

Simple, Yet Flexible User Interface. The interface that the Input Frame-
work exposes to the user should be easy to use and concise, with reasonable
defaults where it offers options. It needs to provide a unified view of all input
sources, abstracting from their individual characteristics. As intelligence will
originally arrive in a variety of formats that external parties determine, we need
to provide customization hooks that allow for on-the-fly preprocessing and fil-
tering. However, all external intelligence should fully integrate with the IDS’
standard analysis capabilities. Where possible, we want to transparently incor-
porate intelligence into the existing decision process.1

1 The specifics here depend on the capabilities the IDS provides. For example, for
a typical signature-based IDS it should be straight-forward to adapt the rule lan-
guage for doing simple match/no-match decisions derived from external blacklists.
However, it will be challenging to use such lists as a reputation indicator that only
contributes to a decision if such a concept does not already exist in the system.

A Lone Wolf No More: Supporting Network Intrusion Detection 319

Input manager

Detection engine:
Analysis

Network events Actions

Stream requests Data in IDS format

Readers

Manage streams
Convert data

E.g. Files, Databases, Sockets

Filter

Data
sources

Apply filters

Input
streams

Source or sink specific readers

Create streams

Receive data

Fig. 2. Framework Architecture

Asynchronous Operation. All I/O must execute fully asynchronously. Ac-
cessing external state can take a significant amount of time during which packet
processing needs to proceed normally without blocking. This is particularly cru-
cial for high-latency sources such as databases or web services hosted remotely.
Likewise, as a stream of intelligence is coming in, processing must interleave with
traffic analysis to avoid causing packet drops. Nevertheless, from the analysis’
perspective, the state must be consistent at all times.

Real-Time Operation. The Input Framework needs to make incoming in-
telligence available to the IDS analysis rapidly. While we cannot control lags
introduced by an external source (like the time it takes a database to respond
to a query), we strive to keep the Input Framework’s internal latency low.

3.3 Architecture

Fig. 2 shows the architecture for the Input Framework that we design to ad-
dress the above objectives. In the following we discuss the frameworks main
components in an order roughly following the data flow. As some parts of the
architecture depend on the specific IDS that one integrates with, we can only
sketch them in abstract terms. However, the discussion will become more con-
crete in §4 where we describe our implementation inside a specific IDS.

When integrating the Input Framework, the IDS’ core analysis and detection
engine remains mostly unchanged but gains the capability to specify external
intelligence sources that it wants to access. From the engine’s perspective, each
intelligence source corresponds to a stream that it creates on-demand as its
configuration defines. When opening a stream, it passes along the necessary
control information such as type of input (e.g., file, database), location (i.e., a
filename or a remote socket), as well as the expected layout of the data that the
stream will later forward. For the latter, we represent all intelligence in a unified,
column-based format and pass a description along with the stream request.

The Input Framework’s manager is the central interface between analysis
engine and external intelligence sources. It receives the engine’s request to open
a stream, spawns a new reader instance, and instructs it to connect to the

320 J. Amann et al.

corresponding source. We differentiate between types of readers: a file reader,
e.g., reads from local files, and a database reader queries a remote database.

The readers forward all intelligence to the manager, which passes it on the
analysis engine. However, rather than directly making it available, data from
the readers first passes through an optional set of filters that may reduce and
transform the input before it gets applied. As the filters run inside the analysis
engine, they have access to the full IDS state.

Generally, each reader decides on the model for forwarding input to the man-
ager. A file reader could, for example, read a file once at startup and then keep
monitoring it for changes in regular intervals, passing updates on as noticed. On
the other hand, a reader connecting to a real-time network feed would instead
forward intelligence immediately as it arrives on its input socket.

In our architecture, manager and readers communicate via a simple API that
is fully decoupled from the core of the IDS. This make it particularly easy to
add new readers as they are not at all concerned with the system’s potentially
complex internals. In principle, one could even connect a single manager imple-
mentation to different IDS implementations just by adapting the upstream inter-
face accordingly. On a technical level, decoupling the readers makes it straight-
forward to run them in separate threads, which simplifies the implementation of
asynchronous I/O. With that, the only critical point potentially impacting the
IDS’ packet processing remains the manager/engine interface.

4 Implementation

We implement the Input Framework architecture on top of the Bro IDS. By
providing a Turing-complete scripting language for expressing custom detection
policies, Bro fits well with the capabilities that the Input Framework offers: we
add a new script-level API that allows users to configure external intelligence
sources, which Bro then maps transparently into standard data structures. In
the following, we discuss the main aspects of our implementation in terms of its
internal structure (§4.1) and its user interface (§4.2).

4.1 Integration

Fig. 3 shows how our implementation integrates into Bro.When processing net-
work input, Bro internally reduces the voluminous stream of packets to a series
of higher-level network events that reflect the key steps of the underlying activ-
ity. 2 A policy interpreter then executes scripts written in a specialized, high-level
language 3 that expresses both a site’s custom security policy and general forms
of high-level analysis (e.g., scan detection [13]) in terms of the event stream. A
crucial point is that these events are policy neutral : Bro itself makes no judgment

2 Bro provides both generic transport analysis and application-specific analysis. It
understands for example specifics of HTTP, DNS, SMB, and many other protocols.

3 “A domain-specific Python.”

A Lone Wolf No More: Supporting Network Intrusion Detection 321

as to whether the events reflect malicious or benign traffic but rather leaves that
determination to a user’s custom scripts.

As layed out by our general architecture (see §3.3), a central manager acts
as the interface between the Bro core and intelligence sources. The manager
spawns separate reader threads for each source. When reading data, these readers
pass it on to the manager via thread-safe queues. The manager then feeds the
information into either the event stream or directly into the policy interpreter by
adding to its data structures, executing filters, and calling script layer functions.
We detail all of these further below.

The interface between the manager and Bro’s core is performance critical as it
needs to trade-off processing incoming intelligence with that of network traffic.
Generally, the latter receives priority as its volume prevents Bro from buffering
packets to any significant degree. However, to satisfy our real-time constraint, in-
coming intelligence cannot just wait for lulls in the traffic stream (which in most
environments will never occur) but instead propagates incrementally, interleaved
with traffic analysis. Internally, Bro already provides an I/O loop structure that
allows to balance packet processing with further asynchronous input. The input
manager hooks into this loop structure as an additional data source.

4.2 User Interface

Our Input Framework implementation integrates fully into Bro’s domain-specific
scripting language. In the following, we walk through the main parts of the script-
level interface that the Input Framework exposes to the user. As a simple running
example, we consider importing a blacklist of hosts, formatted as a 3-tuple (IP
address, reason, timestamp) where IP address is the host’s address, reason a
textual description of the host’s offense, and timestamp a Unix-timestamp in-
dicating since when the list entry exists. Stored in a tab-separated file, the list
could look like this:

ip reason timestamp
66.249.66.1 connected to honeypot 1333252748
208.67.222.222 too many DNS requests 1330235733
192.150.186.11 sent spam 1333145108

Reading Files. The Input Framework can directly import files such as the above
into tables, a associative array type that Bro’s scripting language provides, much
like hashes in Perl. To do so, the user declares the columns to extract from the
file by defining two corresponding record types (records are similar to structs in
C): one for the table index and one for its values. In our example, assuming we
want to use the IP address as the table index and the other two columns as its
value, we can define the following types:

type Index: record { ip: addr; };

type Value: record { reason: string;
timestamp: time; };

322 J. Amann et al.

Input Manager

Messages

Ascii Reader
Thread

Ascii Reader
Thread

DB Reader
Thread

User Scripts

Events

Main Thread Child Threads

Packets

Bro Core Input Framework

Messages

Messages

Fig. 3. Input framework implementation in Bro

When reading the blacklist file, the Input Framework will use the records’
field names (ip and reason/timestamp) to locate the corresponding columns,
and it will interpret their content according the fields’ types (addr and time are
Bro’s built-in script types for IP addresses and time values, respectively.).

Next, we define the table that will receive the content of the file:

global blacklist: table[addr] of Value;

Note that the types for table index and values correspond to the Index and
Value records, respectively.4 Now that we have defined the types and the table,
we use an Input Framework API function to read the blacklist in from a file: 5

Input::add_table(source="blacklist.tsv", idx=Index,
val=Value, destination=blacklist);

Once read, further script code can test whether the blacklist contains a specific
address:

if (192.150.186.11 in blacklist)
alarm(...)

When executing the add_table function, the Input Framework’s manager in-
ternally spawns a new reader thread and then immediately returns back to
the caller. While the new thread is parsing the blacklist in the background,
it continuously forwards entries to the manager, which in turn adds them to
the blacklist table incrementally. Script processing continues in parallel, and
other event handlers will hence “see” each new entry immediately. In addition,
the Input Framework flags completion by triggering a callback event that users
can implement for logic requiring that all data has made it into the table.
4 For the table index we “roll out” the fields because Bro’s tables do not support record

types as keys. They do however allow for index tuples so if our blacklist were indexed
by, say, two addresses, we would write table[addr,addr] of Value.

5 In this and later examples we simply Bro’s syntax slightly for better readability.

A Lone Wolf No More: Supporting Network Intrusion Detection 323

Updating. Many intelligence sources will see frequent updates, either batched
in regular intervals or continuously in the form of a stream. Our implementation
provides three mechanisms to accommodate updates.

The most direct mechanism is to call the API’s force_update function, which
will trigger a re-read of a stream’s source data (for reader types that support
it). The Input Framework will then add any new values to the corresponding
table, remove ones that no longer exist, and update any that have changed to
their new values. Using force_update is a good choice if one knows when to
expect a change, such as when one has run an external command. Alternatively,
one can also put a reader into automatic update mode (via a flag passed to the
add_table call). In this mode, the reader thread will continually check the source
file for modifications and trigger the update operation automatically. Automatic
updating works well with files that an external script retrieves regularly from a
remote location (for instance via cron).

Finally, for readers that receive continuous streams of intelligence, they may
also individually add/delete/modify table entries as they get updates. Keeping
with the file example, this mode corresponds to “tailing” a file on a Unix system.
Usually, however, such streaming readers will have a persistent connection to an
external data source. For example, new blacklist entries could be coming in via
a network connection, or a database reader may subscribe to live query updates.

Filtering. Often it is beneficial to prefilter the information coming in from
an intelligence source. In our blacklist example we might, for example, only want
to consider entries added within the last few days. Our implementation offers
corresponding hooks that can modify or remove entries before they land in the
table. Such a hook comes in the form of a callback function that the Input
Framework runs for any table update under consideration. The hook receives
the line to be added to the table and the information whether the entry is new,
changed or updated. The hook function returns a boolean that signals if the
change is to be applied or rejected. If the hook rejects a change, the element is
not added for new elements, not updated for changed elements and not deleted
for removed elements. In our blacklist example, we could use that to only consider
blacklist entries that are not older than five days.

One assigns such a filter to a stream by passing the function as an additional
argument to the add_table call. We emphasize that filters can access all of
Bro’s already accumulated state, including other script-level tables and data
structures. They can even modify other tables, which for example allows to split
intelligence from a single source across a set of related tables.

Triggering Events. Some types of intelligence do not map directly to a table
structure. For example, a source may be sending information that Bro must
react upon immediately, rather than storing it for later inspection. To support
such applications, our Input Framework implementation offers a second, simpler
reading mode in which the manager triggers an event callback for every entry
it receives. The callback’s arguments are similar to that of the filter function
described above but do not include table-specific elements like the index value.

324 J. Amann et al.

4.3 Reader Types

Our current Input Framework implementation supports three types of intelli-
gence readers. As we show in our examples above, it can read ASCII files in the
form of typed tab-separated columns. We kept the format’s specifics compati-
ble to Bro’s structured log files, which now enables users to read log files back
in, providing a powerful mechanism to maintain rich state persistently across
restarts.6

The second supported format is “raw” content, in which the reader simply
passes on the content of a file as a raw blob. This mode can only trigger events,
not table updates, as there is no further structure associated with the data.
Optionally, the raw reader can also split a file at predefined separator characters.
It is, for example, possible to get one event for each line in a file. As an extension,
the raw reader can take its input not only from files but also from the output
of custom shell commands. This feature enables in particular to query external
web services using a utility like curl. The following code snippet demonstrates
how Bro can retrieve a JSON file on the fly:

Define the type that will store the data.
type JSON: record { data: string; };

Define the handler that will process the JSON data.
event got_data(value: JSON) {

... Code to process data goes here ...
}

Trigger the request.
Input::add_event(source="curl www.host.com/list.json |",

fields=JSON, event=got_data, reader=Input::RAW);

The add_event call creates a new reader thread that first executes the external
command and returns the output asynchronously by generating a got_data
event. The event handler can then further parse the data.7 Note how the source
argument ends with a pipe symbol to indicate that the value reflects a command
to execute, not a file name.

Finally, as our third reader type, we develop a PostgresSQL interface that
executes SQL queries and forwards the result back to Bro, mapping it either
transparently into a table or into events, as described above. We discuss this
reader in more detail in §5.4 where we show a concrete usage scenario. We also
add a PostgresSQL log writer to Bro. In combination, reader and writer enable
users to perform arbitrary bi-directional database transactions in real-time, all
in parallel to Bro’s normal packet processing and with full access to its global
state.
6 Bro’s logging system indeed complements our work by providing a corresponding
output framework.

7 Alternatively, one could parse the JSON externally as part of the executed command
and use the ASCII reader to receive it in a structured form.

A Lone Wolf No More: Supporting Network Intrusion Detection 325

Our Input Framework implementation provides a simple self-contained API
for implementing new readers that makes it straight-forward to add further types
of input. In particular, we are planing to add interfaces to other databases as
well as to syslog clients.

5 Deployment Scenarios

To support our claim that the Input Framework introduces a fundamentally new
IDS capability, we now examine its potential from a deployment perspective. In
§5.1 we first examine the need for trusting external intelligence as an overarch-
ing operational concern that current IDS do not sufficiently address. In §5.2 we
discuss a real-world application of the Input Framework that is already in oper-
ational deployment at the Lawrence Berkeley National Laboratory. Finally, §5.3
and §5.4 discuss two further usage scenarios that we prototype as case studies
and expect to similarly move into operations. We note that many specifics of our
Input Framework design and implementation evolved through close interaction
with network operators at a number of sites, and the discussion in this section
captures much of the feedback we received.

5.1 To Trust or Not to Trust?

From an operational perspective, trust is a crucial concern when integrating
third-party intelligence into a site’s security decisions. Consider a site with a
policy to automatically block connectivity for malicious external IP addresses.
With external IP blacklists coming in for example from a federation like REN-
ISAC, the operators need to decide which of the addresses justify a block. On
a technical level, simply blocking all of them is rarely feasible due to limits on
the number of rules that firewalls can handle. But more importantly, there is
rarely any local control on what exactly the intelligence feeds include and hence
their information requires additional vetting and a process to develop confidence
in the quality of the data. In particular, operational usage needs to account for
policy differences between sites—the IP address of a P2P tracker, or an undernet
IRC server, may be criticial to block for one site, yet tolerated at another. Also,
any accidental inclusions risk severely impacting legitimate traffic (finding IPs
from Akamai or Amazon AWS blacklisted is not unusual). Furthermore, some
feeds (like REN-ISAC’s) contain additional qualifying information such as sever-
ity ratings, confidence levels assigned to an entry, or number of distinct sources
reporting it. Such ratings tend to be highly subjective and are thus often insuf-
ficient to trigger automated action on their own. They may however contribute
to crossing a threshold when combined with further orthogonal evidence.

Operationally, a crucial shortcoming of many IDS implementations is their
lack of support for the fine-granular decisions that such considerations require.
Accordingly, we see operators falling back to externally vetting information via
custom scripts before then converting them into static IDS rules. That, however,
lacks any flexibility to go beyond simple black/white decisions. There is no way
to convert a dynamic reputation scheme into a standard signature.

326 J. Amann et al.

The Input Framework addresses such concerns by providing the means to in-
corporate intelligence into the IDS decision process itself, rather than leaving it
to external pre- or postprocessing. Doing so not only fundamentally improves
detection capabilities and response times, but also provides considerable work-
flow improvements by eliminating the external process that attempts to fit the
intelligence into what the IDS configuration language supports.

5.2 Federated Blacklists

Our Input Framework implementation is in operational deployment at the Law-
rence Berkeley National Laboratory (LBNL), where the cyber security team uses
it to integrate both SES feeds and JC3 feeds into the Lab’s Bro installation. In
the following we report on their experience with the new capability after nearly
2 months of use. LBNL adopted use of the Input Framework due to its ability
to continuously integrate crucial indicators into the monitoring infrastructure
as quickly as they are published. Prior to the Input Framework, it was not
operationally feasible to repeatedly restart their IDS potentially multiple times
an hour as feeds were published in an adhoc manner. Additionally, incorporating
policies by hand was an error prone process causing unintentional delays.

LBNL prefers using the SES and JC3 limited-circulation feeds over other pub-
lic sources as they supply vetted data and are continuously maintained. As such,
these feeds allow for tight integration with the IDS and enable to automate de-
cisions as their semantics are well understood. The institutions behind the feeds
also allow LBNL to go back upstream and inquire about potential false positives
or borderline cases. The SES feed is updated automatically once per day and
the JC3 feed is downloaded manually from a secure server when updates are re-
leased. The SES feed contains individual subfeeds for spam, scanners, phishing,
suspicious nameservers, and suspicious networks. In general, these feeds contain
different types and volumes of intelligence in the order of 300–3000 lines per
subfeed. Typical entries for SES are an malicious host’s IP address, event times-
tamp, domain, port, URL and file MD5 hash, as appropriate. Each item also
comes with a separate severity rating as well as a confidence level. JC3 provides
malicious domains and IP addresses, augmented with information about which
sites reported the threat and also threat-level estimates.

LBNL uses the Input Framework’s table interface (see §4.2) to directly im-
port the feeds into a set of Bro tables. External scripts query the feeds from
the providers and write them to disk. The Input Framework then picks up the
changes transparently. LBNL also uses the filter mechanism to modify data dur-
ing imports. For example, some SES subfeeds do not contain hostnames as a
separate column but only come with complete URLs to malware. However, these
rarely appear as a whole in network traffic and LBNL hence uses a custom filter
function to extract the hostname and turn it into a table index on the fly. Fur-
thermore, LBNL joins several feeds into a single table by configuring multiple
sources that all write to the same destination.

During the two months of deployment, this setup has proven to improve
LBNL’s detection capabilities in a number of ways. As an example, HTTP

A Lone Wolf No More: Supporting Network Intrusion Detection 327

scanners are notoriously difficult to detect reliably because it is difficult to distin-
guish a malicious scanner from a search engine’s web crawler. However, having
intelligence feed integration, LBNL can now tie feed data to Bro’s TCP-level
scan detector. When the latter finds a possible scanner, the IDS checks to see if
the IP is blacklisted; if so, it blocks it automatically. Combining the two detec-
tors in this way allows to quickly block HTTP scanners without subjecting all
blacklisted IPs to that treatment (and thus preventing many unjustified blocks).
A similar approach works well for encrypted SSH and HTTPS traffic, which
an IDS cannot further inspect at the content-level. The Input Framework has
already triggered investigations in several such cases.

More generally, LBNL finds that steering subsets of intelligence into corre-
sponding protocol-specific analyses leads to more reliable alarms than the stan-
dard approach of matching broadly against the bulk of the traffic. For example,
LBNL uses a hook into Bro’s TCP analysis to trigger intelligence lookups for the
addresses of every newly established connection. Likewise, all DNS requests and
replies lead to checks for the corresponding domain names. While already valu-
able on their own, one can also correlate matches across protocols. For instance,
a blacklisted path may first appear in an HTTP request followed by a DNS
lookup for a malicious domain. Indeed, the majority of intelligence-triggered
alerts currently corresponds to such DNS-after-HTTP matches.

5.3 Online Virus Checks

As a second deployment scenario, we prototype online virus checks using the
popular malware checking service VirusTotal [29]. While network-level virus
checking is not a novel concept, most solutions operate as proxies that actively
intercept TCP sessions. A few commercial systems seem to support passive virus
checks (e.g., by FireEye and Netwitness) but we are not aware of available open-
source solutions doing live packet-level scans. The Input Framework makes it
straight-forward to support such functionality within an existing IDS.

In fact, with the Input Framework in place the main challenge is not interfac-
ing to a virus checker but extracting files from network traffic. Here, we leverage
the file extraction features that Bro’s HTTP engine provides, including its sup-
port for content downloaded in chunks or from multiple sessions simultaneously.
Hence it is, for example, possible to recognize viruses in files where a user first
aborted a download and later resumed it at the aborted position.

We implemented online virus checking as a plugin to Bro’s file analysis frame-
work that is currently in development and scheduled to be part of an upcoming
release. The framework supports reassembly for files transferred non-linearly and
provides a convenient hooking point for handling files across protocols in a stan-
dardized way. A plugin for VirusTotal provides two alternative operation modes:
it can either (i) calculate an MD5 hash for a file on the fly and submit that to
the VirusTotal API for checking against its database; or (ii) submit the file in
whole to the service. In both cases, VirusTotal returns a JSON-string indicating
the results that we then parse in a Bro script using the Input Framework’s event
interface. If there is a match, the script can take action such as notifying an

328 J. Amann et al.

operator or disconnecting the victim system. An alternative to using VirusTotal
would be to instead call a local virus scan engine. Doing so can be beneficial if
privacy concerns prevent online lookups.

The Bro script providing the VirusTotal functionality on top of the Input
Framework is just about one hundred lines long, including empty lines and com-
ments. To avoid an excessive number of lookups, it allows to optionally analyze
only a subset of all files, such as selected file types, or content from specific IP
addresses or CIDR ranges. During our testing, we indeed detected a malicious
file transfer from an compromised host in a 600MB real-world trace.

5.4 Database Interface

Our initial implementation also provides a database reader that connects to
PostgresSQL. The reader supports both importing data once from a DB table,
and continuously as updates from live queries arrive. Compared to the text-based
intelligence we have used in our examples so far, the database interface opens
up further potential by providing real-time access to external intelligence that
exceeds a volume that an IDS could handle itself internally.

To demonstrate this capability, we consider a setting where the IDS flags sus-
picious activity for its operators but also augments the alert with further context
about the attack source. Specifically, we want to integrate whois information into
the notification, such as the time when a domain was registered and its admin-
istrative contact information. The Bro-side for that comes in two parts: (i) we
hook into Bro’s processing to execute a database query via the Input Framework
when an alarm triggers; and (ii) when the database’s reply arrives, we augment
the alarm accordingly and then pass it on for further processing. Somewhat
simplified8 the query looks like this:

add_event(source="select * from whois where domain=’"+ domain +";",
name=<uid>, event=got_reply, reader=Input::POSTGRES);

Here, the uid is an automatically generated unique identifier that later allows
the got_reply handler to associate a reply with the corresponding query.

We test this approach using an internally maintained PostgresSQL database
that contains complete whois information for several million domains, and we
find it to work as expected. In practice, one could extend this scenario in a
number of ways. For example, rather than just augmenting alerts, the IDS can
use the database information to further assess the threat, such as by elevating
an alarm’s priority when it involves recently registered domains.

More generally, this scenario demonstrates how the Input Framework can
make intelligence available to the IDS on demand, without needing to move all
the information into the system itself. Database connections is the most powerful
of all our examples, and we expect that operators will start relying on them
extensively as they become familiar with the new capability.
8 We configure the database connection separately. In practice, one must ensure to

sanitize the domain to avoid SQL injection attacks.

A Lone Wolf No More: Supporting Network Intrusion Detection 329

6 Performance Evaluation

To understand the performance of our implementation we perform a set of mea-
surements to determine (i) the intelligence volume it can handle under realistic
workloads; and (ii) the latency with which real-time input becomes available to
the IDS analysis.

6.1 Benchmark Reader

We create a dedicated benchmark reader for our measurements. Rather than
connecting to an actual intelligence source, that reader generates artificial data
with characteristics that we can freely configure. The reader first examines the
data types requested via the Input Framework API (see §4), and then generates
corresponding table updates and events. For example, when the API requests in-
telligence of string type, the benchmark reader returns a random byte sequence.
It recursively fills in fields of record types and can hence generate arbitrarily
complex data structures on the fly. One can configure the rate with which it
sends updates and also an optional increase of that rate over time.

6.2 Realistic Workloads

It is challenging to benchmark IDS systems with realistic workloads in a way
that is repeatable and has reproducible results. We cannot just run the system
on live traffic because continuous variations in packet volume and mix would not
allow for fair comparisons of different configurations executed sequentially. We
however also cannot run offline from traces as Bro would process the packets as
quickly possible (i.e., at 100% CPU usage), without the normal lags seen during
real-time operation that the Input Framework uses to interleave intelligence up-
dates with the packet processing. To overcome these problems, we leverage Bro’s
pseudo-realtime mode [22] which combines the best of both worlds. In that mode,
Bro reads its input from a trace, yet it mimics real-time behavior by introducing
artificial delays into the packet processing, corresponding to timestamp differ-
ences of consecutive packets. Doing so results in reproducible operation that is
comparable to using the Input Framework on live traffic.

For our evaluations we capture a 5-minute packet trace at the uplink of UC
Berkeley. The campus’ upstream connectivity consists of two 10 GE links, with
daytime average rates of 3-4Gb/s total. Such a volume is much more than a
single Bro instance can handle, and we thus record only a subset corresponding
to a more realistic setting. Specifically, we capture the traffic that a single Bro
instance analyzes in the Berkeley campus’ NIDS Cluster [27], which corresponds
to 1

28 of all flows. The resulting trace contains 100M unique IP addresses and
330K flows. 81% of the packets are TCP, and port 80 is the most common port
(31,7%). The average data rate is 222 MBit/s at about 40K packets/sec.

For our measurements we use a current development version of Bro with a
recommended, complex default configuration. When running without the Input
Framework, a Bro process exhibits a CPU load of 50-80% while processing the

330 J. Amann et al.

trace on our evaluation system9, which is about the level realistic for live oper-
ation without incurring packet drops.

6.3 Sustainable Load

We measure the load of the main Bro thread when the benchmark reader gener-
ates certain fixed numbers of events per second. Besides system characteristics
such as CPU and memory resources, the sustainable data rate depends on the
complexity of the involved data types (i.e., the record definitions), and on the
reading mode in use (table updates or events).

For simple events, consisting just of a timestamp, we measure a limit of about
42,000 events/sec. Fig. 4 compares the CPU utilization for three different rates.
For each rate, the plot shows the probability density of CPU load samples mea-
sured in 1s intervals over the course of processing the 5-min input trace. For
comparison, we also show the load for a baseline run that does not activate the
Input Framework. We see that at 10,000 events/sec, the CPU load increases just
slightly (average 51% vs. 49%). At 36,000 events/sec it increases more noticably
(average 58%), and at 50,000 events/sec individual CPU samples exceed 1.0s,
i.e., more than the system can support.10

0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

CPU utilization

P
ro

ba
bi

lit
y

de
ns

ity

●

●

●

●

●

●

●

● base load
10,000 events/s
36,000 events/s
50,000 events/s

Fig. 4. Input Framework load increases Fig. 5. Event latency evaluation

We repeat similar measurements with more complex events as well as with
simple and complex tables. For the complex case, the record type contains 14
different data fields, of which 5 are list types (which is more than operations
are likely to use). The sustainable loads for complex events are about 4,000
entries per second. For simple tables, the Input Framework can handle about
9 The system has two quad-Core Xeon E4530 CPUs @2.66 GHz and 12 GB RAM.

10 With Bro’s pseudo-realtime mode, a CPU sample >1s means that the time required
for processing 1s of network traffic exceeded 1s of real-time, which in live operation
would have resulted in packet loss.

A Lone Wolf No More: Supporting Network Intrusion Detection 331

20,000 entries per second and for complex tables about 2,000 entries per second.
The CPU loads at those rates are similar to those in Fig. 4 and we thus skip
corresponding plots. We also examine system load with very low data rates (10s
of updates/sec), which is more likely what one will see in typical deployments.
For these, we do not see any measurable load increase.

Overall, we conclude that even with complex intelligence data, our imple-
mentation can sustain more than 3,000 insertions/sec while processing a typical
packet load with a complex IDS analysis configuration. With less complex in-
put, it achieves rates matching that of the packet input(!). The observed CPU
increase is hardly surprising at such high rates. Operationally, however, the most
relevant result is a different one: having headroom to accommodate high update
frequencies is good, yet most deployments will never see such rates. For them,
the we find that the Input Framework does not increase CPU usage.

6.4 Latency

From an operations perspective, the time it takes to make intelligence updates
available to the IDS analysis is another important factor for operations. Con-
sequently, we also measure the Input Framework’s latency, i.e., the difference
between the time when it receives an update from a source until that becomes
available at the scripting layer. We configure the benchmark reader to generate
events that include the current timestamp, and a receiving Bro script then calcu-
late the difference. As in the load evaluation, we use Bro’s pseudo-realtime mode
running again on the same trace file. We performe a series of measurements, each
time increasing the rate at which the benchmark reader sent events. We stop the
series at the maximal attainable rate of 42,000 events/sec.

Fig. 5 visualizes the measured latencies for each rate in the form of a bar plot.
(Note the logarithmic scale on the y-axis.) The whiskers end at 1.5*IQR+Q3,
all other points are considered outliers and plotted as a dot. We see that the
latencies remain very small, averaging around 1.4ms. There are a few infrequent
cases that have latencies in excess of 100 msec (less than 0.4%)—however, even
in the worst case, the latency is under 900 ms. The minimum time difference
is 4 µsec and hence in the order of measurement inaccuracies. Interestingly, the
latencies do not change much at all as the rate increases, indicating that as long
as the Input Framework can operate at a rate, it will forward updates rapidly.
Overall, we conclude that the Input Framework does not add significant delays
after receiving intelligence from a source.

7 Conclusion and Outlook

The global security community is collecting a treasure trove of third-party intel-
ligence that can support operations staff in automating incident detection and
investigation, including many forms of blacklists recording known bad actors and
malicious content. Unfortunately, network intrusion detection systems still miss
out on fully leveraging this potential for making more reliable decisions as they
do not offer corresponding interfaces for flexibly integrating such knowledge.

332 J. Amann et al.

In our work, we present a novel architecture that adds unconstrained in-
telligence access as a new capability to the IDS toolbox. We design an Input
Framework that adapts to a variety of sources, provides a simple yet flexible
user interface, and integrates smoothly with an IDS’ main task of analyzing
high-volume packet streams under soft real-time constraints. We implement an
initial version of the Input Framework on top of the open-source Bro IDS. We
also prototype a set of usage scenarios that exploit the power of the new capa-
bility, including integration with federated intelligence sharing initiatives, online
virus checks for downloaded files, and real-time interaction with a PostgresSQL
database for assessing the relevance of alarms on the fly. Furthermore, separate
benchmark measurements confirm that our implementation is well-suited to han-
dle frequent real-time intelligence updates while adding virtually no delay before
making it available to the IDS analysis.

This Input Framework implementation is already in operational deployment at
the Lawrence Berkeley National Laboratory where the Lab’s security team finds
it to significantly improve their detection capabilities. With the Input Frame-
work’s generic approach to integrating intelligence, we are looking forward to the
operations community developing further powerful applications as they become
familiar with the new capability.

Acknowledgments: We would like to thank the Lawrence Berkeley National
Laboratory for their collaboration. This work was supported by the U.S. Army
Research Laboratory and the U.S. Army Research Office under MURI grant No.
W911NF-09-1-0553; a fellowship within the Postdoc-Programme of the German
Academic Exchange Service (DAAD); by the Director, Office of Science, Office
of Safety, Security, and Infrastructure, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231; and by the US National Science Foundation
under grant OCI-1032889. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors or originators and do
not necessarily reflect the views of the DAAD, the ARL/ARO, the DOE, or the
NSF, respectively.

References

1. Department of Energy Cyber Joint Cybersecurity Coordination Center,
http://www.doecirc.energy.gov/

2. National Software Reference Library, http://www.nsrl.nist.gov/
3. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a Dy-

namic Reputation System for DNS. In: USENIX Security (2010)
4. Blacklist.rules, ClamAV, and Data Mining, http://vrt-blog.snort.org/2011/02/

blacklistrules-clamav-and-data-mining.html
5. Collective Intelligence Framework,

http://code.google.com/p/collective-intelligence-framework/
6. Cyber Fed Model – Community-Wide Cyber Security Alert Distribution,

http://web.anl.gov/it/cfm/
7. Cymru, T.: Malware Hash Registry, http://www.team-cymru.org/Services/MHR/

http://www.doecirc.energy.gov/
http://www.nsrl.nist.gov/
http://vrt-blog.snort.org/2011/02/blacklistrules-clamav-and-data-mining.html
http://vrt-blog.snort.org/2011/02/blacklistrules-clamav-and-data-mining.html
http://code.google.com/p/collective-intelligence-framework/
http://web.anl.gov/it/cfm/
http://www.team-cymru.org/Services/MHR/

A Lone Wolf No More: Supporting Network Intrusion Detection 333

8. Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion-Detection Alerts.
In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103.
Springer, Heidelberg (2001)

9. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational Experiences with
High-Volume Network Intrusion Detection. In: ACM CCS (2004)

10. DShield.org Recommended Block List, http://feeds.dshield.org/block.txt
11. Google Safe Browsing API, http://code.google.com/apis/safebrowsing
12. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting

Malware Infection through IDS-driven Dialog Correlation. In: USENIX Security
(2007)

13. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan Detection
Using Sequential Hypothesis Testing. In: IEEE Security and Privacy (2004)

14. Katti, S., Krishnamurthy, B., Katabi, D.: Collaborating against common enemies.
In: IMC (2005)

15. Ollmann, G.: Blacklists & Dynamic Reputation. White paper (2011),
http://www.damballa.com/downloads/r_pubs/WP_Blacklists_Dynamic_
Reputation.pdf

16. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Com-
puter Networks 31(23–24), 2435–2463 (1999)

17. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: Systems Ad-
ministration Conference (1999)

18. Security Event System, http://www.ren-isac.net/ses
19. Sharma, A., Kalbarczyk, Z., Barlow, J., Iyer, R.K.: Analysis of Security Data From

a Large Computing Organization. In: IEEE DSN (2011)
20. Sinha, S., Bailey, M., Jahanian, F.: Improving SPAM Blacklisting through Dynamic

Thresholding and Speculative Aggregation. In: NDSS (2010)
21. Snort 2.9.1 release announcement, http://blog.snort.org/2011/08/

snort-291-has-been-released-including.html
22. Sommer, R., Paxson, V.: Exploiting Independent State For Network Intrusion De-

tection. In: ACSAC (2005)
23. The Spamhaus Block List, http://www.spamhaus.org/sbl
24. Open Information Security Foundation: Suricata Download,

http://www.openinfosecfoundation.org/index.php/downloads
25. Symantec - Configuring blacklisting for base event types with IDS/IPS on Syman-

tec Gateway Security 5400 Series 2.x, http://www.symantec.com/business/
support/index?page=content&id=TECH81936

26. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

27. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS
Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637,
pp. 107–126. Springer, Heidelberg (2007)

28. Verizon: Data Breach Investigations Report. Tech. rep. (2012),
http://www.wired.com/images_blogs/threatlevel/2012/03/Verizon-Data-
Breach-Report-2012.pdf

29. VirusTotal Public API,
https://www.virustotal.com/documentation/public-api/

http://feeds.dshield.org/block.txt
http://code.google.com/apis/safebrowsing
http://www.damballa.com/downloads/r_pubs/WP_Blacklists_Dynamic_Reputation.pdf
http://www.damballa.com/downloads/r_pubs/WP_Blacklists_Dynamic_Reputation.pdf
http://www.ren-isac.net/ses
http://blog.snort.org/2011/08/snort-291-has-been-released-including.html
http://blog.snort.org/2011/08/snort-291-has-been-released-including.html
http://www.spamhaus.org/sbl
http://www.openinfosecfoundation.org/index.php/downloads
http://www.symantec.com/business/support/index?page=content\&id=TECH81936
http://www.symantec.com/business/support/index?page=content\&id=TECH81936
http://www.wired.com/images_blogs/threatlevel/2012/03/Verizon-Data-Breach-Report-2012.pdf
http://www.wired.com/images_blogs/threatlevel/2012/03/Verizon-Data-Breach-Report-2012.pdf
https://www.virustotal.com/documentation/public-api/

	A Lone Wolf No More: Supporting Network Intrusion Detection with Real-Time Intelligence
	Introduction
	Related Work
	Design
	Intelligence
	Objectives
	Architecture

	Implementation
	Integration
	User Interface
	Reader Types

	Deployment Scenarios
	To Trust or Not to Trust?
	Federated Blacklists
	Online Virus Checks
	Database Interface

	Performance Evaluation
	Benchmark Reader
	Realistic Workloads
	Sustainable Load
	Latency

	Conclusion and Outlook
	References

