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Abstract. The security of the networking infrastructure (e.g., routers and
switches) in large scale enterprise or Internet service provider (ISP) networks
is mainly achieved through mechanisms such as access control lists (ACLs) at
the edge of the network and deployment of centralized AAA (authentication,
authorization and accounting) systems governing all access to network devices.
However, a misconfigured edge router or a compromised user account may put
the entire network at risk. In this paper, we propose enhancing existing security
measures with an intrusion detection system overseeing all network management
activities. We analyze device access logs collected via the AAA system, partic-
ularly TACACS+, in a global tier-1 ISP network and extract features that can
be used to distinguish normal operational activities from rogue/anomalous ones.
Based on our analyses, we develop a real-time intrusion detection system that
constructs normal behavior models with respect to device access patterns and the
configuration and control activities of individual accounts from their long-term
historical logs and alerts in real-time when usage deviates from the models. Our
evaluation shows that this system effectively identifies potential intrusions and
misuses with an acceptable level of overall alarm rate.

1 Introduction

A fundamental aspect of network security is securing the networking infrastructure it-
self, which can be particularly challenging in a large scale enterprise or ISP (Inter-
net service provider) network. In such networks, hundreds or thousands of routers and
switches are widely dispersed among a geographically diverse set of offices and are
typically managed by a large team of network operators. It is imperative that the net-
working infrastructure and the information contained therein be fully protected against
any malicious priers and attackers. For example, information available at networking
devices, such as router configuration and traffic statistics, may contain confidential busi-
ness data of tremendous value to a business competitor. Divulging such information will
likely result in a significant disadvantage to the ISP’s business. Leakage of some criti-
cal security information in the router configuration such as QoS policy or firewall/ACL
(Access Control List) settings may subject the network to crafted and targeted attacks
such as DDoS (Distributed Denial of Service) attacks. Or in an even more devastating
scenario, malicious attackers gaining privileged access to the networking device might
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alter the network configuration to create havoc and paralyze the entire network and the
services it supports.

Given the risk of severe consequences, large scale networks typically devise and
deploy a range of security and protection measures for their networking devices. One
common practice is to utilize a combination of periphery protection and centralized au-
thentication and authorization for communication to networking devices. By restricting
premises access, unauthorized persons are blocked from gaining physical access to net-
working devices. Through careful configuration of ACLs at all network edge routers,
unauthorized network traffic is also blocked from reaching network devices. And fi-
nally, technologies such as TACACS+ (Terminal Access Controller Access-Control
System Plus) [2] and RADIUS (Remote Authentication Dial In User Service) [12],
ensure that only authenticated users (i.e. authorized network operators/administrators)
have access to routers and switches (either directly or remotely over the network).

The architecture above is very effective against threats from external attackers when
working properly. However, there is always the possibility that building security is
breached, allowing physical access to router hardware, or that ACLs on an edge router
are misconfigured, admitting attacking traffic. Furthermore, with a large team of net-
work operators, compromised users or compromised user accounts can be a critical
source of potential security troubles arising inside the network.

In this paper, we propose to add another layer of defense for networking infrastruc-
ture by overseeing all operations being done in the network, and automatically detecting
and raising alarms for “suspicious” activities. We leverage the existing authentication
and authorization framework and collect router/switch access logs in real-time. We de-
velop an anomaly detection system that compares on-going router/switch access ac-
tivities against a set of patterns or profiles constructed from historical data, and once
an anomaly is identified, triggers an alarm to network security managers for further
investigation of potential intrusions and misuses.

Although the concept of intrusion detection system is well established in computer
system security, applying the idea in networking device management remains unex-
plored, interesting, and challenging. To detect abnormal activities, we must obtain data
on routine/normal network management activities in a large scale network, analyze
that data, and determine what features best distinguish normal activities from abnor-
mal ones. In our study, we base our analysis on actual network data from one of the
largest ISP networks, which comprises tens of thousands of routers distributed world-
wide. We conduct an in-depth analysis on a wide range of different characteristics about
operators’ access patterns and identify useful features. The effectiveness of an intrusion
detection system is known to be limited by noisy baseline behavior and hence high false
positives. Thus, when developing the detection methodology and the prototype system
for capturing potential intrusions and misuses, we focus on managing false positives to
be well within an acceptable range. Any given attack is likely to come from a small
number of source subnets or accounts. Thus we aggregate detected “threat scores” by
their origin source addresses and login accounts. This allows us to amplify the signal of
offense and hence be able to detect offenders while they are still exploring the network
before large-scale damage is inflicted.
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Our contribution in this paper can be summarized as follows:

– We propose to systematically monitor and analyze the networking device access
logs to protect the networking infrastructure. To the best of our knowledge, this is
the first study that focuses on monitoring and auditing networking device access
and control logs to catch anomalous activities.

– We conduct an in-depth analysis and characterization on the TACACS+ logs col-
lected over more than six months from a tier-1 ISP network. We further identify a
set of features that can be utilized to distinguish suspicious activities from normal
operations — such as the login ID and origin IP prefix association pattern, the daily
number of distinct routers accessed, and the number of hops over which an operator
logs on to a router from a different router.

– we develop a tool for the ISP network. Our controlled experiment shows that it
successfully identifies injected “malicious” activities – with corresponding threat
scores significantly higher than those of day-to-day operational activities. When
used in real operation, the system produces no more than a few threat alerts per
day – a level at which network security managers are comfortable in conducting
further investigation. Many of the threats detected have been found interesting and
worth examining.

The rest of the paper is organized as follows. In Section 2, we provide an overview
of operational management activities in large scale IP networks and a brief introduc-
tion of the authentication, authorization, and accounting system from which we collect
logs. Section 3 presents our analysis result on the characteristics of normal operation
activities. Section 4 describes the rules and detection system that we build for detecting
and alerting on suspicious router accesses and controls. We evaluate our overall system
performance in Section 5. Based on our operational experience, we propose a further
enhancement to the system and evaluate its effectiveness in Section 6. We discuss re-
lated work in Section 7 and finally conclude the study in Section 8.

2 Background

2.1 Managing IP Networks

We first provide an overview of the various types of management activities in large scale
IP networks. We describe these in the setting of a global ISP network although many of
them are fundamental to large enterprise networks or regional ISP networks as well.

Managing a global ISP network requires a large team of network operators. These
operators are typically organized in tiers – lower tier operators respond to routine issues
following a set of predefined standard procedures, while more complex matters are
escalated to upper tier operators, who have deeper knowledge and understanding of
the network. Extremely complicated issues are escalated to a small group of experts,
possibly including designers and support teams of vendors of involved devices.

Different tiers of operators have different functional roles. Some may be dedicated to
the care of a high profile enterprise customer, in which case they will frequently access
provider edge (PE) routers but seldom touch backbone routers. Some operators may
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be responsible for servicing the metropolitan area network for a certain region. Others
may oversee control plane health (e.g., router CPU utilization) for the entire network.
Depending on their role, operators are expected to have distinct patterns of network
management activities.

Network operators often exercise control over routers and switches by logging on to
the device. Today, nearly all networking devices support console access via direct con-
nection to them and remote access via ssh/telnet. Control is exercised by invoking
a sequence of commands through the Command Line Interface (CLI) of the device’s
operating system. For example, on Cisco IOS, typing

ping 1.2.3.4
triggers a ping test from the router to the IP address. And typing

enable
configure terminal
interface Ethernet0
shutdown
exit

administratively shuts down the interface Ethernet0 at the router.
Note that Cisco IOS supports two different access levels – user level and privileged

level. The enable command in the above example enters the privileged level, in which
configuration change (configure terminal) is allowed. Such capability is widely
supported on other vendor systems such as Juniper JunOS as well. In addition, AAA
systems (described below) support finer grained command groups. A user cannot invoke
commands outside of his/her predetermined access levels or command groups.

In addition to operators typing commands via the CLI, ISPs rely on a broad range
of automated tools for their network management activities. These tools are typically
designed to perform a specific set of functions. For example, automation tools/systems
that perform configuration auditing periodically sweep through the entire network issu-
ing a show running-config command to collect active router configurations. An-
other tool might collect hardware, traffic, or protocol status and statistics information by
logging into the routers of interest and invoking commands such as show process
CPU history, show interfaces POS 1/0, and show ip bgp summary.
The tools may use designated logins when requesting access to networking devices.

Using the combination of function-level controls via various automated systems and
manual command-level controls, operators are able to accomplish a wide range of net-
work management tasks including provisioning and decommissioning customer services,
troubleshooting networking and service problems, performing device life cycle manage-
ment, taking measurements, and monitoring the health of the network and services.

2.2 Authentication, Authorization and Accounting

The networking infrastructure in large scale networks is typically protected by an AAA
(Authentication, Authorization, and Accounting) system. There are two mainstream
AAA frameworks widely used commercially – TACACS+ (Terminal Access Controller
Access-Control System Plus) [2] and RADIUS (Remote Authentication Dial In User
Service) [12]. While differing in some specifics, such as whether authentication and
authorization are separately maintained in user profiles, both systems use one or more
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common servers to verify a user’s identity (authentication) on login, verify access privi-
lege (authorization) on a per command basis, and record all users’ activites in their logs
(accounting). The log entries contain critical information which includes

(i) the timestamp of the access request
(ii) the IP address of the targeted network device (e.g., Loopback address)
(iii) the IP address of the remote user requesting access
(iv) the user’s login ID
(v) the command line executed
(vi) other information such as user terminal, privilege level, and timezone.

To use a TACACS+ or RADIUS system in a network, all routers in the network need
to be configured with the IP addresses of the servers – typically there are multiple
replicated servers for redundancy. A large network can further be divided into multiple
zones, for example, by the device type or by the autonomous system (AS) that they
belong to. Different zones may contain different user account and privilege settings.

3 Characteristics of Normal Operation Activities

As described in the Introduction, our objective is to monitor all operational activities
in the network and detect potential intrusions and misuses. We start by examining nor-
mal network operational activities recorded in the AAA logs. We focus on aspects that
would best distinguish normal activities from actions that an external or internal at-
tacker might take. In the following analyses, we use data collected from a global tier-1
ISP network which generates tens of millions of TACACS+ log entries from tens of
thousands of routers per day.

3.1 Failed Login Attempts

The most intuitive way to separate potential attacks from legitimate accesses is to check
whether they can readily pass authentication. Attackers may expose themselves by in-
putting wrong login credentials. However, it is also expected that legitimate users some-
times “fat finger” their login ID or password. Thus, we examine failed login attempts in
normal AAA logs (using one month’s data).

Figure 1 plots the cumulative distribution function (CDF) of the number of con-
secutive login attempts before a successfully authenticated login. We consider a login
request within one minute of a preceding one with the same origin IP, the same lo-
gin ID, and the same target networking device as a consecutive login. We observe that
more than 99.992% of logins pass authentication the first time. More than 85% of the
remaining ones input the correct credentials the next time, and it is extremely rare that
a user fails more than five times before finally getting it right. The ratio of login failure
is considerably lower than that typically seen in computer systems[18]. This is likely
due to the predominance of logins generated by automated network management tools
– a unique characteristic of network infrastructure operations. Figure 1 demonstrates
the potential of alarming on intruders when a small number (e.g., 6) of repeated failed
logins are observed.

The above type of monitoring can be defeated if the attacker has a list of valid login
IDs and device names – they can use a different login ID or target a different device
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when an attempt fails. We can improve detection by looking for consecutive login fail-
ures from a common origin IP irrespectively of the login ID attempted. Figure 2 plots
the CDF of the number of consecutive (i.e., less than one minute apart from the preced-
ing one) login failures. We observe that around 85% of the rejected login attempts are
either rectified or abandoned in six times or fewer. However, there are some login at-
tempts going as high as a few hundreds in a row. Manual inspection finds that they were
due to network management scripts running out of sync with router CLI (e.g. sending
password when login ID is expected or vice versa). This rarely occurs, but when it does
it produces many consecutive login failures – and should correctly trigger an alarm.

3.2 Login Access Pattern

As described in Section 2, an AAA log entry contains login access information charac-
terized by the user login ID, the origin IP address, and the target router IP address. We
define a login session as the network management activities sharing the common triple
and being close in time (e.g., with an idle timeout of 10 minutes).

The login access information can be valuable in capturing attackers. For example, an
origin IP that is not part of a block of addresses previously seen as an originating address
in the logs is a strong indication that the network periphery protection may have a hole.
Furthermore, each network operator typically has a rather stable set of work locations
from which he/she manages the network, and due to his/her role, there can be a fixed
set of network devices that the operator typically manages. So source and destination
IP addresses will tend to be consistent over time for many operators.

We first look at the association of the operators’ login and the origin IP address.
Figure 3 plots the CDF of the number of distinct origin IP addresses associated with a
login ID in a month. We observe that 68% of login IDs manage the network from only
one IP address. If we consider common origin subnets (with varying size), the number
rises to 75% for /24 IP prefixes and 80% for /16 IP prefixes. In the rest of the paper, we
will use /24 IP prefixes when aggregating origin IP address – it is not excessively large,
yet can accommodate most of logins from the same facility/office.
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prefix association

Figure 3 also shows that even with /24 origin IP prefixes, about 1% of the login IDs
access the network from more than 10 distinct IP prefixes. Looking into those, we find
that there are cases when an operator first logs on from a gateway server to a router,
and then logs on to other routers from that router. The loopback IP address1 of the first
hop router appears as the origin IP for the second access session. While such “stepping-
stone” access sessions are not common, they do occur – operators use this either for
convenience or under certain network conditions, for example, when direct access to
the other routers is unavailable. We can tighten our rule to deal with this situation by
excluding sessions which originate on a router or switch. This removes “stepping stone”
sessions from the analysis. The solid line in Figure 4 plots the number of distinct origin
IP prefixes against the rank of login IDs – to protect proprietary information, we nor-
malize the rank of login IDs to be between 0 and 1. We find above 78% of users have
only one (non-stepping-stone) origin IP prefix and no one logs on from more than 4
distinct IP prefixes. This indicates that there exists a strong stability in the access pat-
tern characterized by login ID and origin IP prefix combination – deviating from it can
be a symptom of attacks. Figure 4 also plots the stability of this access pattern month
by month – the shaded area indicates that the same login ID and IP prefix association
has appeared in the preceding month. This demonstrates strong predictability based on
past access behavior pattern (the unshaded area is mostly due to new users or infrequent
users who only access the network in the second month).

Going back to the “stepping-stone” sessions, by matching the ssh command on the
first hop router and the remote login request on the second router, we can reconstruct
the chain of stepping-stones. Figure 5 plot the distribution function of the length of
these chains and the outbound fan-out of these chains. It is evident that both attributes
are bound by a small number (e.g., 7) in normal operational activities. In contrast, an
intruder working from a compromised router may attempt to gain information from a
large number of other routers, which is likely to produce long chains or high fan-outs.
Watching those attributes closely can be an effective way to catch the intruder.

We next turn to the association between the networking device and the IP prefix from
which management activities originate. The solid line in Figure 6 plots the number of

1 Address assigned to a virtual interface commonly used for network management.
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distinct origin IP prefixes versus the rank of the networking device IDs. As in Figure 4,
we normalize the ranks to be between 0 and 1 to protect proprietary information. We
find that 48% of the routers are only controlled from hosts within one /24 IP block dur-
ing a one-month period. These control activities are likely routine network auditing and
health monitoring. A small portion of the network devices are managed from a small
number of (e.g., 2-7) IP prefixes, which correspond to the network operation centers
(NOCs) responsible for those devices. Furthermore, some cross-region access can be
unexpected in normal operations – it is suspicious if an operator from a regional NOC
in Japan requests access to a router serving IPTV in the USA. Catching abnormal as-
sociations between routers and origin IP prefixes can be an effective way of identifying
such cases. The shaded area in Figure 6 shows the overlapping associations that have
appeared in the preceding month; this demonstrates the predictability of these associa-
tions, as the overlapping is very significant.

Finally, we examine the association between login IDs and network devices. Many
users or software tools have limited scope in terms of the networking devices managed.
The solid line in Figure 7 plots the number of distinct network zones (described in
Section 2) that each login ID has accessed in one month. We again normalize the x-axis
to avoid disclosing the size of the operator work-force. We observe that the majority of
login IDs have a very limited scope (e.g., less than 3 zones) while a few of high-tier
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operators or software tool IDs access many zones. The stability of the login IDs’ access
pattern is depicted by the month over month comparison shown in the shaded area. We
observe a strong predictability that can be utilized for detecting intrusions or misuses.

3.3 User Behavior

As mentioned in Section 2, different login IDs (corresponding to different operators or
network management tools) have different roles/functions. Each user is likely to have a
roughly stable behavior in access schedule (frequency), type of control (e.g., monitor-
ing, or troubleshooting, or configuration change), and class of commands (e.g., SONET
controller settings versus ACL configurations). Significant deviation from normal be-
havior can be a symptom of an account becoming compromised and an intruder imper-
sonating the owner of the login account. In this subsection, we examine the properties
of such user behaviors exhibited in normal network management activities.

We first examine the inter-session time distribution. Figure 8 plots the maximum
difference in days between two consecutive logins from the same ID in a six-month pe-
riod. We observe a wide variability among different login IDs. Many login IDs access
the network on a regular basis, with a gap of at most a few days. But there are a con-
siderable number of login IDs that only access the network occasionally. This suggests
that it may be helpful to profile login IDs in different groups according to their access
frequency.

Figure 9 shows the CDF of the average number of login sessions per login ID per
day in a representative month. Here we exclude the days when the login ID is not active
from the average statistic. The tail part of the curve, which goes several order of mag-
nitude larger, is cut off so that we do not disclose the exact number of devices in the
network. We observe that the majority of the login IDs have only a few login sessions
per day. For example, 65% of IDs log onto the network no more than 5 times daily (on
average). There are also many software tools and network management scripts produc-
ing over a hundred login sessions on daily basis. A login account suddenly changing its
behavior, especially from having a small number of login sessions daily to a large num-
ber of them on a given day, is unusual or abnormal behavior and should be examined
to see if it indicates a problem. Similarly, Figure 9 also shows the CDF of the aver-
age number of distinct networking devices accessed per login ID per day. Compared
to number of sessions, it shows even more concentration – 65% of IDs log on to no
more than 2 networking devices daily (on average). The tail portion of the curve again
is dominated by software tools monitoring a large number of devices regularly, such
as network configuration auditing tools. A surge in the number of distinct networking
devices that a user initiates in a short period of time might be an intruder scouting for
information. To understand the variability on this metric, Figure 10 shows a scatter plot
of the coefficient of variation (CV) versus the mean – each point represents one login
ID. We find that most of the CVs are bound by a small number (e.g., 3), while the login
IDs with large number of average daily device accesses typically have much smaller
CVs – suggesting that they can be more tightly bounded.

The set of router control commands and configurations used by a login ID is expected
to exhibit some stability too. For a login account used by a software tool, the set of
commands is determined by programming and rarely changes. For an operator’s login,
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the subset of commands should be subject to his/her privilege level and tightly related
to his/her job role. However, extracting the exact association between login ID and the
subset of the commands from knowledge about network operations is a challenging task
– for example through code analysis of the software tools or meticulous review of all
operation job functions.

In contrast, we take an approach that is based on historical data analysis and is de-
tached from the semantics of router control commands, as follows: (a) we tokenize the
commands (i.e., separate words in the command by white space); (b) we consider the
tokens that contain any number as parameters (e.g., IP address) and remove those to-
kens; (c) we remove any non-alphabetic characters in each of the tokens and convert the
remainder into lower case letters – we will refer to these as the keywords; (d) we profile
each user with the set of keywords used.

Figure 11 shows the likelihood that a keyword is present in a command (sorted in
decreasing order) based on one month of logs. We observe a strong skewness in the dis-
tribution, which can be well modeled by Zipf’s distribution. The high ranked keywords
are those used in monitoring network health (e.g., ping, vrf, show). And most of the
bottom ranked ones are some arbitrary tokens (such as customer name) referenced in
the description field of certain router configurations or some misspellings (due to typos
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Fig. 13. Detection System Architecture

by operators) of other keywords. It is sufficient to keep track a subset of keywords (e.g.,
top 1000) and represent the remainder simply as the other keyword. Figure 12 shows
the stability of the use of keywords per login ID, which plots the average cosine similar-
ity of the keyword frequency distribution comparing one day against the previous active
day. Login IDs with a high number of daily log entries trend to have high predictability
one day to another. Deviation from the regular command keywords, especially for a
software tool account, can be a symptom of an intruder impersonating the owner of the
account.

4 Design of an Online Intrusion Detection System

Based on the analysis from the previous section, we design an online intrusion detection
system that oversees the network management activities of the ISP network and detects
and alarms on anomalous patterns. Figure 13 shows the system architecture. We collect
logs from AAA servers in near real-time. The logs are fed into an online preprocessing
module, which extracts critical information and updates on an entry by entry basis the
running states of sessions, login IDs, origins, and commands that are required for the
different intrusion detection rules. Periodically (e.g., once a day) the running states are
fed into an offline profiling module in which the different profiles required by the rules
are updated – the initial profiles can be constructed via offline analysis of an extended
period of historical data. The online rule checkers examine the running states against
the profiles and rules and tag the corresponding log entries with a threat score. An
aggregation module then sums the threat score in a window according to the login ID or
origin IP. Finally, an alarming and presentation module makes the information available
to network security operators.

4.1 Domain Knowledge-Based Rules

We first define a set of rules that is specific to the network under study. We maintain
a list of the IP address blocks that belong to the ISP network and check the origin IP
of each AAA log entry against the list. An IP address from outside of the network
indicates a breach of the ISP’s periphery protection, and consequently the log entry is
given a high threat score.

We also track the timestamp of the last login failure from each origin IP address and
if a new failed login attempt is observed within T1 seconds we update the timestamp
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and increment the count of consecutive login failures for the origin IP. Once the count
exceeds a threshold N1, we output the entries of these login attempts and assign a threat
score to each of them. The timestamp and failure counts are reset when a successful
login from the origin IP is made or the timeout T1 is exceeded. With such a rule in
place, an intruder that attempts to stay under the radar has to significantly slow down
its attack, reducing the efficacy of the attack and prolonging the exposure.

There is also a rule in this category for stepping stone sessions. We trace stepping
stone accesses as they occur and when the length of the access chain becomes greater
than a threshold N2 or the fan out becomes greater than N3, we assign a threat score to
the sessions involved.

Finally, as a countermeasure to sophisticated intruders hiding themselves by disabling
AAA logging right after gaining access to the network elements, we assign a high threat
score to any log entry that modifies AAA logging settings (e.g.,tacacs-server com-
mand on Cisco IOS). In the ISP network, changes to AAA logging settings should not
happen in normal circumstances, so this rule should never generate a false trigger.

4.2 Rules Based on Access Pattern Profiles

In our daily association profile we keep track of the following attributes: (1) origin
IP prefix (2) login ID (3) 〈 login ID, origin IP prefix 〉 (4) 〈 login ID, device zone 〉
(5) 〈 origin IP prefix, device zone 〉. For each entry we track the most recent date of
appearance and the cumulative number of appearances. We delete an entry when the
most recent appearance is more than T2 (e.g., 180) days and add new entries to the long
term profile once their count is sufficiently large.

We assign a threat score to sessions that do not match the existing profile. Note that
if a session is from a new origin IP or new login ID, we do not include the threat score
due to the lack of associations in (3), (4) and (5). The weight of the threat score of
new associations of (3), (4) is set to be higher as the cumulative count of the login ID
increases – our confidence to assert suspicious activities increases with more history
data. Similarly, the weight of the threat score for (5) increases when the cumulative
count for the corresponding origin IP prefix increases.

4.3 Rules Based on Statistical Models of the Access Profile

We track the mean and variance of the following attributes: (1) daily number of sessions
per login ID, (2) daily number of distinct routers accessed per login ID, and (3) daily
frequency count of command keywords per login ID for top N4 and the other keywords.

We use the EWMA (Exponentially Weighted Moving Average) algorithm in estimat-
ing the running statistics for attribute X on day t:

Meant = αXt + (1− α)Meant−1

V art = α(Xt −Meant)
2 + (1− α)V art−1

When computing the daily average, we exclude the case where the corresponding at-
tribute is zero on day t – for example, when the user is inactive on the day.
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If at any time, the daily cumulative counts reach or exceed a pre-calculated threshold
for the attribute, we will assign a threat score to the access sessions involved.

The thresholds are determined as follows. Since the login IDs that have a high num-
ber of daily sessions (i.e., the highly active accounts) exhibit low variability as shown
in Section 3.3, we set the thresholds in the same way as anomaly detection in Gaussian
random variables: Threshold = Mean + N4 × V ar1/2. For the login IDs that have a
moderate number of daily sessions, we set the threshold to be the product of a constant
factor and the mean value: Threshold = Mean×N5. This is based on the observation
that the coefficients of variation are bound by a small constant. And finally for the large
portion of login IDs that only access the network occasionally, we set the threshold to
be a small constant: Threshold = N6. Once an attribute exceeds the defined threshold,
a threat score is assigned. The value (weight) of the threat score is set according to a
sublinear function of the corresponding attribute (the daily cumulative count) value.

4.4 Aggregation of Threat Scores

Using the rules above, in the course of a day, we maintain an updated set of AAA log
entries that are assigned non-zero threat scores together with the rule triggered – to
aid further examination by network security operators. Suspicious log entries can be
noise (i.e., triggered by abnormal activities of low interest to security) – for example,
an operator starting to use a new set of commands can trigger a violation detection by
the user-keyword-rule. To reduce the chance that a network security operator has to
investigate a non-critical violation, we further aggregate these log entries by login ID
and by origin IP. The idea is that real attackers may be caught by multiple rules and by
aggregating the threat scores on a per login ID or per origin IP basis they can be further
distinguished from non-critical anomalies.

To achieve this, we use a moving window of T3 (e.g., 1 day), and sum up the threat
score within the window for all login IDs and origin IPs. We then set a threshold N7

based on historical data. When we observe an aggregate threat score exceeding N7,
we generate an alarm to the network security operators. We also display all suspicious
activities on a dashboard report from which network security operators can pull infor-
mation on demand.

5 Evaluation

We evaluate our system from two perspectives – the rate of anomalies detected from
day-to-day network management activities and the effectiveness of detecting artificially
injected anomalous activities. The former quantifies the resources required to investi-
gate potential misuses and intrusions. The latter quantifies the chance that an anomaly
goes undetected by our system.

5.1 Running System Performance

Figure 14 shows the distribution of the aggregate threat score in a month using two types
of aggregations – by login ID (solid line) and by origin IP address (dashed line). We ob-
serve that about 93% of login IDs and 84% of origin IPs pass the system without raising
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any threat score. Meanwhile, there exist a small number of cases in which the system
reports a high threat score. By manual inspection, we find most of them correspond to
unusual network changes such as a newly deployed network management center or a
major software upgrade on an existing network management tool. We will see an ex-
ample of this in Section 5.3. We also find that a non-negligible fraction of cases, mostly
with a relatively low threat score (e.g., less than 4), correspond to a small number of
log entries from either a newly enabled or a very infrequently used account. Profiles
for such accounts are difficult to construct based on history, and they typically do not
generate many activities to drive the threat score high. We will propose and evaluate
a system enhancement to further reduce the false alarms due to new user accounts in
Section 6.

Figure 14 defines the tradeoff curves between the alarming rate and the sensitivity to
anomalous activities. Raising the alarm threshold (the N6 in Section 4.4), reduces the
number of cases that security operators have to investigate but also reduces the chance
of catching a stealthy intrusion. For a concrete example, setting N6 to 5 would produce
a few alarms per week on average, which is quite manageable for the network security
operators.

We note that the above N6 and several others as described in Section 4 are param-
eters used in the system. We do not present the exact values for the parameters in our
running system due to security considerations. Instead, we show through an example
our reasoning on parameter selection. Figure 15 shows the solid line in Figure 14 with
a varying α value used in the EWMA estimate. Note the x-axis is in log scale. Differ-
ent α values effectively factor in different amounts of history data. Setting α = 0.05
effectively ignores (e.g., weight less than 0.01) data more than 90 active days old while
α = 0.3 effectively ignores data more than 13 active days old. However, Figure 15
shows there is little difference in the threat scores among the four different α values –
indicating that a short history is sufficient for the system.

5.2 Controlled Experiment

Due to the lack of real attack observed in the network, we manually generate a set of
data with anomalies for the performance test. Using Figure 14 as a reference point,
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we design a controlled experiment as follows. We first randomly select 50 pairs of non-
overlapping login IDs. We then take one day’s worth of AAA logs from our running
system and substitute the login ID field in the log entries such that the two login IDs in
each of the chosen pairs are switched. Finally, we feed the manipulated AAA logs into
our running system and monitor the output.

Figure 16 presents the CDF curves of the aggregate threat score based on the origi-
nal AAA logs (dashed line) and the synthetic data (solid line) respectively. We find that
our system is able to detect many of the behavior changes introduced by the login ID
swapping. 72 out of the 100 login IDs report non-zero threat score and among them,
30 login IDs have a threat score higher than 10. This result highlights the sensitivity of
our system – we do not expect one user impersonating another can always be caught
(for example two operators with the same role may hardly be distinguishable), but com-
pared to the baseline threat score distribution under normal operation, the synthetically
generated ID-swappings stand out significantly.

For a closer look at how our system detects anomalous behaviors, Figure 17 and Fig-
ure 18 compare the contribution to the threat score from rules based on access pattern
profiles with the contribution from rules based on statistical models of the access profile
respectively. For each of the 100 login IDs, we plot their threat score against the differ-
ence in the daily average access frequency to the substituting login ID in the AAA logs.
For example, a login ID abc, with 16 sessions per day on average, which is replaced by
login id xyz, with an average of 1024 sessions per day, would have its threat score plotted
at 6 (i.e. log(1024) − log(16)) on the x-axis. We observe that both the access pattern
changes and the access statistics changes have contributed to the high threat score. The
higher the difference in the amount of access activities between the pair of swapped lo-
gin IDs, the higher the resulting threat scores – with the exception in Figure 18 on the
negative side of the x-axis. The exception arises because the rules based on the statisti-
cal models are one-sided, i.e., we do not alert on a “busy” user suddenly becoming less
active, as this behavior change does not seem to pose any security threat.

5.3 Operational Case Studies

We now look at an example in which our system alerted with a high threat score. Fig-
ure 19 plots the aggregate thread score of a particular login ID over the course of four
days. The login ID is used by a software tool that periodically initiates ping commands
among the various provider edge (PE) routers of the VPN customers to monitor their
VPN health.

Starting in the afternoon of day 2 of the plot, we observe a fast increase in the threat
score by the login ID. In less than two hours, the threat score passed the 99.5% alarming
threshold and kept rising. It turned out that the software tool was upgraded that day and
the new control sessions included a show version command that collects the router
OS version across the network – similar to what might occur if an intruder attempted to
collect information as preparation for attacks. After validating the change of behavior
due to software upgrade, we included the pattern change in the profile update at the end
of day, which greatly reduced the threat score on day 3. The corresponding statistical
models were further updated at the end of day 3 and the new pattern then got fully
captured by the profiles. Hence, there was no more threat score on day 4.
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We next take a look at an example where a system alert was triggered due to a new
user appearing in the system. In this case, a new operator X started a session to a device
between 1:30 and 1:59; since this was a newly created login ID, bearing no historical
association to either the network zone or the origin IP, the session produced a threat
score of 1.5 at the end of the session. Later on in the day, X logged on to four more
devices in the same network zone between 3:20 and 3:40 in 21 different login sessions,
pushing the threat score to 7.7 and triggering an alarm. A network security manager
examined the alarm and checked X’s information from a corporate directory service.
The threat was quickly dismissed when it was learned that X was a new member of
the organization that manages the network zone in question. We will show next how
we take the operational experience acquired in such scenarios and enhance our system
specifically for newly provisioned login IDs.

6 A System Enhancement Handling New Login IDs

Operational experience has provided a valuable insight – when investigating a threat
alert regarding a user login, network security officers often depend on the user’s infor-
mation in the corporate directory in addition to the access traces and profiles from our
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system. Inspired by this, we look into how to utilize the corporate directory information
to further reduce the false threat alerts.

6.1 Quantitative Analysis

We first create an automation capability that queries the corporate directory service
for any given login ID. In particular, we obtain the corporate hierarchy information of
the owner of the login ID by following the management chain up until reaching the
president of the ISP. We then examine how users across the corporate hierarchy relate
in terms of network access patterns and behaviors.

Figure 20 plots the CDF of the profile distance with respect to the access patterns
(Section 4.2 (3), (4)) – measured by the l2norm of the difference in their profile vector
between a pair of user login IDs. We define the corporate distance of a pair of users as
the maximum number of hops for them to reach a common manager – two operators
sharing the same direct supervisor would have a corporate distance of 1, and two sharing
the same second-level-up manager would have a corporate distance of 2, etc. Different
lines in Figure 20 correspond to user pairs of different corporate distances.

We observe that users that are organizationally close have similar access profiles.
The further apart two users are in corporate distance, the more distinct their network
access patterns are. When we focus on the case in which two operators are under the
same direct manager (the solid line), we find that in 26% of the cases they have identical
access pattern; and in 56% of the cases, their difference is no more than 3 (e.g., having
access to 3 different network zones). This suggests that using the profiles of other team
members can serve as a reasonable approximation when the operator’s own history is
not fully established.

Figure 21 and Figure 22 plot the CDF of the absolute difference in the daily average
number of sessions (Section 4.3 (1)) and the daily average number of distinct devices
accessed (Section 4.3 (2)) respectively. In both cases, we observe decreasing trends
in the behavioral similarity as users’ corporate distances increase, although the gaps
are smaller compared to Figure 20. Focusing on the solid lines, we find that in 65%
of the cases when users have a common direct reporting manager, their daily average
number of sessions exercised differs by no more than 5 and their daily average number
of distinct devices accessed differs by no more than 2. We have also observed a similar
commonality in the profile of command token frequencies. These point to the good
potential of bootstrapping profile building for newly provisioned login IDs using their
peers’ profiles.

6.2 Profile Bootstrapping

As described in the operational case examples, network security managers sometimes
dismiss system generated threats based on the additional information regarding the job
function of the operator. Ideally, if domain knowledge of all different job functions and
their expected access profiles were available, we could incorporate it into the system.
However, such domain knowledge is implicit, highly distributed across various orga-
nizations, and evolving over time. Hence it is operationally challenging to acquire and
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maintain. Instead, we propose to take a data-driven approach that does not require do-
main knowledge input, based on the analysis above.

Specifically, we organize user login IDs into classes based on the login owner’s man-
agement hierarchy. We then construct class-profiles based on the profiles of the mem-
bers of the class. When a new login ID appears in the AAA log, the system queries the
corporate directory service to obtain the user class to which the new login ID belongs.
The class profile is then used as the bootstrapping profile for the user. The bootstrapping
profile is replaced by the user’s own profile once adequate history has been observed
for the login ID. This boostrapping process aligns in principle with the model training
techniques using scarce data [13].

To construct the class-profiles, we take the median statistic on each dimension (i.e.,
a feature in the profile of login ID) among all users (u) belonging to the class (C).
Specifically,

ProfileC = 〈fC
1 , fC

2 , ...〉,wherefC
i = medianu∈Cf

u
i

This is applicable to both binary flags (e.g., whether a login ID and network zone asso-
ciation exists) or numerical values (e.g., average number of sessions per day). Using the
median is known to produce an estimator of cluster centroid that is robust to outliers[9].

6.3 Effectiveness of the Enhancement

Comparing the threat alert rate with and without profile bootstrapping, for the same
month of data from Section 5.1, we find that profile bootstrapping has reduced the
threat alerts (using a threshold N6 = 5) by 60% for login IDs with inadequate history
(less than or equal to seven active days of history). The overall threat alert rate (for all
login IDs) is consequently reduced by 17% with profile bootstrapping.

7 Related Work

Our work falls into the area of IDS (Intrusion Detection Systems) in computer and
networking security, which dates back to 1980 when Anderson[1] first proposed a



312 J. Chu et al.

computer security surveillance system. Over time, the research area has become more
active as the Internet grew in scale and application diversity and new security threats
constantly emerged.

IDS broadly divide into two categories: host-based (HIDS)[7,8,4,10,15] and network-
based (NIDS)[6,16,5,3] — HIDS typically rely on information about running processes
to catch intrusions to computer host(s); NIDS typically analyze network traffic in order
to detect attacks.

Another taxonomy of IDS is based on detection principles[17]: anomaly-based IDS
(AIDS) [16,7,5,8,4,10,15] capture anomalous traffic or processes based on analysis of
normal patterns. Signature-based IDS (SIDS) [11,14,3,6] use known signatures of at-
tacks to alert on viral activities. Our work aligns with AIDS in principle.

Masquerader detection is a branch of IDS. A masquerader is an attacker who obtains
a user’s password, penetrates the access control system and impersonates a legitimate
user. Lunt et al [7] designed IDES as the first IDS handling masquerader detection,
using a simple yet effective statistical model. Recently, different machine learning tech-
niques such as Genetic Algorithm [4], Naive Bayesian classification[10], and Support
Vector Machine [15] have been applied in this area. In this study, we build user behav-
ior models from access and command invocation patterns using statistical methods and
alert based on deviation from the model. It remains as future work to evaluate whether
more sophisticated machine learning algorithms can improve sensitivity and accuracy
in our problem setting.

8 Conclusion

In this paper, we have studied the problem of protecting the networking infrastructure
and the information available therein for large scale enterprise or ISP networks. We have
proposed to enhance existing security measures with an intrusion detection system over-
seeing all network management activities. By analyzing device access logs collected via
the AAA system in a global tier-1 ISP network, we have gained tremendous insights on
the features that distinguish normal operational activities from rogue/anomalous ones.
We have further developed a real-time intrusion detection system that builds statistical
models to profile normal operational activities and alerts in real-time on any deviation
from the profiles. Our evaluation demonstrates that this system effectively identifies
potential intrusions and misuses with an acceptable overall alarm rate.

For future work, we would like to explore using more sophisticated machine learning
techniques in addition to statistical methods to capture anomalous activities, using other
network logs, and using other information such as network maintenance schedules to
suppress alarms about “intended anomalies”. We are also interested in further introduc-
ing automated mitigation control based on detected anomalies to the AAA system such
that an attack or intrusion can be stopped as early as possible.
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