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Abstract. Electricity theft is estimated to cost billions of dollars per
year in many countries. To reduce electricity theft, electric utilities are
leveraging data collected by the new Advanced Metering Infrastructure
(AMI) and using data analytics to identify abnormal consumption trends
and possible fraud. In this paper, we propose the first threat model for the
use of data analytics in detecting electricity theft, and a new metric that
leverages this threat model in order to evaluate and compare anomaly
detectors. We use real data from an AMI system to validate our approach.

1 Introduction

The smart grid refers to the modernization of the power grid infrastructure with
new technologies, enabling a more intelligently networked automated system
with the goal of improving efficiency, reliability, and security, while providing
more transparency and choices to electricity consumers. One of the key tech-
nologies being deployed currently around the globe is the Advanced Metering
Infrastructure (AMI).

AMI refers to the modernization of the electricity metering system by replac-
ing old mechanical meters by smart meters. Smart meters are new embedded
devices that provide two-way communications between utilities and consumers,
thus eliminating the need to send personnel to read the meters on site, and
providing a range of new capabilities, such as, the ability to monitor electric-
ity consumption throughout the network with finer granularity, faster diagnosis
of outage—with analog meters, utilities learned of outages primarily by con-
sumer call complaints—automated power restoration, remote disconnect, and
the ability to send information such as dynamic pricing or the source of elec-
tricity (renewable or not) to consumers, giving consumers more—and easier to
access—information about their energy use.

Smart meters are, by necessity, billions of low-cost commodity devices, with
an operational lifetime of several decades and operating in physically insecure
locations [16]. Hardening these devices by adding hardware co-processors and
tamper resilient memory might increase the price of smart meters by a few
dollars, and because utilities have to deploy millions of devices, the reality of the
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market is that these additions are not considered cost-effective in practice, and
are not even recommended as a priority [21].

Therefore, while some basic protective measures have been developed (tamper-
evident seals, secure link communications), they are not enough to prevent suc-
cessful attacks during the meter lifespan. In addition to vulnerabilities identified
by security researchers [17,9]—some of them allowing rogue remote firmware
updates [20]—hacked smart meters have been used to steal electricity, costing a
single U.S. electric utility hundreds of millions of dollars annually, as reported
by a cyber-intelligence bulletin issued by the FBI [14]. The FBI report warns
that insiders and individuals with only a moderate level of computer knowledge
are likely able to compromise and reprogram meters with low-cost tools and
software readily available on the Internet. The FBI report also assesses with
medium confidence that as smart grid use continues to spread throughout the
country, this type of fraud will also spread because of the ease of intrusion and
the economic benefit to both the hacker and the electric customer.

Detecting electricity theft has traditionally been addressed by physical checks
of tamper-evident seals by field personnel and by using balance meters [10].
While valuable, these techniques alone are not enough. Tamper evident seals
can be easily defeated [5] and balance meters can detect that some of the cus-
tomers connected to it are misbehaving, but cannot identify exactly who they
are. Despite the vulnerabilities of smart meters, the high-resolution data they
collect is seen as a promising technology to improve electricity-theft detection.
In general, utilities are gathering more data from many devices and they are
leveraging big data analytics [15] to obtain better situational awareness of the
health of their system. One of the key services offered by Meter Data Manage-
ment (MDM) vendors for turning big data into actionable information is called
revenue assurance, where data analytics software is used by the utility on the
collected meter data to identify possible electricity theft situations and abnor-
mal consumption trends [13]. Big data analytics is thus a new cost-effective way
to complement the use of balance meters (which are still necessary to detect
when electricity thieves connect directly to the power distribution lines instead
of tampering with the meter) and physical personnel checking for tamper-evident
seals.

In this paper we focus on the problem of data analytics in MDM systems for
detecting electricity theft. While some MDM vendors are already offering this
functionality, their methods and algorithms are not publicly available, so it is
impossible to evaluate the effectiveness of these tests. In addition, the few papers
available on the topic have limitations [18,19,11,6]: (1) They do not consider a
threat model, and therefore, it is not clear how the detection algorithm will
work against sophisticated attackers, (2) they have lower resolution data, and
therefore they tend to focus on nonparametric statistics, instead of leveraging
advanced signal processing algorithms, and (3) they assume a dataset of attack
examples to test the accuracy of the classifiers, and therefore the evaluation will
be biased depending on how easy it is to detect attacks available in the database,
and the effectiveness of the classifier will be unknown to unseen attacks.
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In this paper we make the following contributions: (1) We introduce an at-
tacker model for anomaly detectors in MDM systems. Previous work never as-
sumed an intelligent attacker and therefore might have easily been evaded by an
advanced attacker. This threat model is particularly important in digital meters,
as an attacker with access to a tampered meter can send an arbitrary fine-grained
attack signal with a precision that was not previously available with mechani-
cal attacks to meters (such as using powerful magnets to affect the metrology
unit). (2) We introduce a new metric for evaluating the classification accuracy
of anomaly detectors. This new metric takes into consideration some of the fun-
damental problems in anomaly detection when applied to security problems: (a)
the fact that attack examples in a dataset might not be representative of fu-
ture attacks (and thus a classifier trained with such attack data might not be
able to detect new smart attacks), and (b) in many cases it is hard to get at-
tack data for academic studies—this is particularly true for SCADA data and
data from sensor and actuators in industrial or power grid systems—therefore
we argue that we have to avoid training and evaluating classifiers with imbal-
anced and unrepresentative datasets. (3) Using real AMI data (6 months of 15
minute reading-interval for 108 consumers) provided by an utility, we evalu-
ate the performance of electricity-theft detection algorithms, including a novel
ARMA-GLR detector designed with the goal of capturing an attack invariant
(reducing electricity bill) in the formal model of composite hypothesis testing.

2 Evaluation of Classifiers in Adversarial Environments

In this section we describe a new general way of evaluating classifiers in adver-
sarial environments. Because this framework can be used for other problems,
we introduce the model in a general classification setting. We focus on two top-
ics: (1) adversarial classification, or how to evaluate the effectiveness of a
classifier when the attacker can create undetected attacks, and (2) adversarial
learning, or how to prevent an attacker from providing false data to our learning
algorithm.

2.1 Adversarial Classification

In machine learning, classifiers are traditionally evaluated based on a testing
dataset containing examples of the negative (normal) class and the positive
(attack) class. However, in adversarial environments there are many practical
situations where we cannot obtain examples of the attack class a priori. There
are two main reasons for this: (1) by definition, we cannot obtain examples of
zero-day attacks, and (2) using attack examples which are generated indepen-
dently of the classifier implicitly assumes that the attacker is not adaptive and
will not try to evade our detection mechanism.

In this paper we argue that instead of using a set of attack samples for evalu-
ating classifiers, we need to find the worst possible attack for each classifier and
evaluate the classifier by considering the costs of this worst-case attack.
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Model and Assumptions: We model the problem of evaluating classifiers by
generating worst-case attack patterns as follows:

1. A random process generates observations x ∈ X . These observations are the
realization of a random vector X with distribution P0.

2. We assume x is only observed by a sensor (e.g., a smart meter), and the
sensor sends y to a classifier. Thus while P0 is known to the world, the
specific sample x is only known to the sensor.

3. The sensor can be in one of two states (1) honest, or (2) compromised. If the
sensor is honest, then y = x. If the sensor is dishonest, then y = h(x), where
h : X → X is a function such that the inferred probability distribution P1 for
Y satisfies a Relation (the attacker intent): g(X) R g(Y ) (e.g., E[Y ] < E[X ]
where E[X ] is the expectation of the random variable X).

4. The classifier f : X → {n, p} outputs a decision: A negative n for concluding
that y is a sample of P0 and a positive p to decide that y is a sample of P1.

A Metric for Evaluating Classifiers in Adversarial Environments: In
order to generate attacks we propose a cost function C(xi, yi) to generate attack
vectors yi by modifying the original value xi such that yi is the attack that
maximizes C(xi, yi) while being undetected. In particular, we assume we are
given:

1. A set N = {x1, . . . , xm} ∈ Xm where each xi is assumed to be a sample from
P0. Note that xi ∈ X . A common example is X = R

d, i.e., each observation xi

is a vector of real values with dimension d. In a smart-metering application
this can mean that xi corresponds to the meter readings collected over a
24-hour period.

2. A value α ∈ [0, 1] representing an upper bound on the tolerable false alarm
probability estimate in the set N .

3. A cost function C : X × X → R representing the cost of a false negative.
4. A set of candidate classifiers F = {f0, . . . , fq}, where each classifier is pa-

rameterized by a threshold τ used to make a decision. If we want to make
explicit the threshold used by a particular classifier we use the notation fi,τi .

Calculating the Adversarial Classification Metric

1. ∀fi,τi ∈ F find the threshold that configures the classifier to allow a false
alarm rate as close as possible to the upper bound α. If no such threshold
exists, then discard the classifier (since it will always raise more false alarms
than desired).

τi∗ = argmaxτi∈R Pr[fi,τi(X) = p|X ∼ P0] (1)

subject to: Pr[fi,τi(X) = p|X ∼ P0] ≤ α (2)

This formal definition can be empirically estimated by the following equa-
tions:

τi∗ = argmax
τi∈R

|{x∈N :fi,τi (x)=p}|
|N| (3)

subject to:
|{x∈N :fi,τi (x)=p}|

|N| ≤ α (4)
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2. Among all classifiers that satisfy the false alarm constraint, find the worst
possible undetected attacks for each of them. Let y = h(x) denote the attack
strategy based on observation x, then the optimal attack strategy requires
an optimization over the functional space h:

C(fi) = maxh E[C(X,h(X))]

subject to: fi,τi∗(h(x)) = n if fi,τi∗(x) = n and h(x) = x if fi,τi∗(x) = p

Notice that if the negative sample raises a false alarm then the attacker
just forwards this value. While in practice an attacker might want to stay
undetected at all times (∀x, f(h(x)) = n), this would lower the attacker’s
gain (e.g., the amount of electricity the attacker can steal). We are therefore,
considering the most conservative case where we allow the attacker to steal
more without being detected (we count alarms generated by h(x) = x as
false alarms, and therefore allow the attacker to remain undetected with this
aggressive attack). Given a dataset of negative examples, we can empirically
estimate this functional optimization problem by the following equations:

C(fi) = max[y1,...,ym]∈Xm

∑
xi∈N C(yi, xi)

Subject to: fi,τi∗(yi) = n if fi,τi∗(xi) = n and yi = xi if fi,τi∗(yi) = p

3. The best classifier fi∗ is the one with the minimum cost for the most costly
undetected attack:

fi∗ = arg min
fi∈F

C(fi) (5)

2.2 Adversarial Learning

Another fundamental evaluation criteria should be the resilience and counter-
measures deployed for adversarial learning. In general, the idea of learning some
basic properties of a random process and then using them to detect anomalies
sounds intuitive; however, in several cases of interest the random process may be
non-stationary, and therefore we might need to retrain the classifier periodically
to capture this concept drift.

Retraining a classifier opens the vulnerability that a smart attacker might
force us to learn false normal models by poisoning the dataset. For our smart
meter example, the attacker can send fake sensor measurement readings that
lower average consumption but that do not raise alarms (when classified) so
they can be used as part of the new training set. Over a period of time, our new
estimated probability models will be different from the real process generating
this data. We refer to these attacks as contamination attacks because they inject
malicious data used to train the classifiers.

To evaluate the susceptibility of classifiers to contamination attacks, we study
how these attacks can be generated and discuss a countermeasure in Section 4.2.
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3 Electricity-Theft Detectors and Attacks

AMI systems collect and send electricity consumption data to the utility com-
pany several times per day. Electricity consumption data for a consumer is a time
series Y1, Y2, . . . , where Yi is the electricity consumption of the utility customer
in Watt-hours [Wh] from time period between measurement Yi−1 to measure-
ment Yi. The time between recorded measurements can change between different
AMI deployments, as there is no standard defining the granularity of these mea-
surements; however, a common measurement frequency is to take a recording
every 15 minutes.

If an attacker obtains access to the meter, or is able to impersonate it, the
attacker can send any arbitrary time series Ŷ1, Ŷ2, . . . back to the utility. Depend-
ing of the goal of the attacker, this false time-series can have different properties.
In this paper we focus on attacks that electric utilities are most interested in
detecting: electricity theft.

The goal of an attacker who steals electricity is to create a time series Ŷ1, Ŷ2, . . .
that will lower its energy bill. Assuming the billing period consists of N mea-
surements, the false time series should satisfy the following attack invariant
for periods of time where electricity is billed at the same rate:

N∑

i=1

Ŷi <

N∑

i=1

Yi. (6)

While one of the goals of the smart grid is to provide more flexible tariffs, these
demand-response systems are still experimental and are currently deployed in
trail phases. In addition, while the electric utility we are working with has a
Time Of Use (TOU) program, all the traces we received were of their flat rate
program (most of their customers do not take advantage of TOU). Therefore,
while in future work we might need to consider other utility functions for the
attacker (e.g., minYt

∑
CosttYt) for the current work we focus on an attacker

who only wants to minimize
∑

Yi. The main goal of this paper is to establish a
sound evaluation methodology that can be extended for different cost-models.

In this section we propose several electricity-theft detectors to capture this
attack invariant. While these detection algorithms have been studied extensively
in the statistics and machine learning literature, this is the first work that studies
how to apply them for electricity-theft detection.

To use the concept of worst possible undetected attack as outlined in Section
2, we define the following objective for the attacker: the attacker wants to send
to the utility a time-series Ŷi that will minimize its electricity bill: minŶi

∑
Ŷi,

subject to the constraint that a detector will not raise an alarm with Ŷi. We as-
sume a very powerful attacker who has complete knowledge about each detection
algorithm, the parameters that a detector uses, and has a complete historical
data recorded on his own smart meter. This is indeed a very strong adversary
model and might not represent the average risk of a utility; however, we want to
build a lower-bound on the operational performance of the classifiers. The evalu-
ation of classifiers using machine-learning and statistics in adversarial conditions
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has been historically performed under fairly optimistic assumptions [22], there-
fore we would like to motivate future research for evaluating attack-detection
algorithms in worst-possible scenarios so their performance is not overstated.

3.1 Average Detector

One of the most straightforward ways to construct an electricity-theft detector
is to use an average of the historical electricity consumption under the same
conditions. This is in fact the way utilities used to detect metering abnormalities
pre-AMI systems [12]: given a gross measurement (e.g., average or total power
consumption for a month) Y , determine if Y is significantly lower than the
historical average.

With AMI systems utilities can now obtain a fine grained view of the con-
sumption pattern, where

∑N
i=1 Yi = Y and N is the number of measurements

to compute the average. To use this electricity-theft indicator in AMI systems
we can calculate Ȳ = 1

N

∑N
i=1 Yi and then raise an alarm if Ȳ < τ , where τ is a

variable threshold.
Our average detector implementation calculates the detection threshold τ as

follows. We consider a detector to handle an average of daily record.

1. Given a training dataset, say T days in the most recent past, we can compute
T daily averages, Di (i = 1, . . . , T ).

2. τ = mini(Di)

Determining the threshold in this way, we do not encounter any false positives
within the training dataset.

An attacker equipped with knowledge of τ and our implementation can mount
an optimal attack by simply sending τ as Ŷi all the day. Even though this attack
results in an entirely “flat” electricity usage pattern, the average detector cannot
detect this anomaly.

3.2 ARMA-GLR

One of the advantages of fine-grained electricity consumption patterns produced
by the smart grid is that we can leverage sophisticated signal processing al-
gorithms to capture more properties of normal behavior. We selected Auto-
Regressive Moving Average (ARMA) models to represent a normal electricity
consumption probability distribution p0 because ARMA processes can approx-
imate a wide range of time-series behavior using only a small number of pa-
rameters. ARMA is a parametric approach, and has the potential to perform
better than nonparametric statistics if we can model p0 and the optimal attack
appropriately.

We train from our dataset an ARMA probability distribution p0 (we used the
auto.arima function in the forecast library in R [2] to fit ARMA models of our
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data by using the Yule-Walker equations and the Akaike information criteria)
defined by the following equation:

Yk =

p∑

i=1

AiYk−i +

q∑

j=0

BjVk−j (7)

where V is white noise distributed as N (0, σ).
An attacker will choose a probability distribution that changes the mean value

of the sequence of observations. Therefore the attack probability distribution (pγ)
is defined by

Yk =

p∑

i=1

AiYk−i +

q∑

j=0

Bj(Vk−j − γ) (8)

where γ > 0 is an unknown value and quantifies how small will the attacker
select Eγ [Y ] (the expectation of Y under probability distribution pγ).

Given Y1, . . . , Yn, we need to determine what is more likely: is this time series
distributed according to p0, or pγ? To address this problem we prove the following
theorem.

Theorem 1. Among all changes that lower the mean of an ARMA stochastic
processes, the optimal classification algorithm in the Neyman-Pearson sense is
to raise an alarm if ε̄2 is greater than a threshold τ : where ε̄ = 1

n

∑n
i=1 εi, εk is

the innovation process

Yk − E0[Yk|Y1, . . . , Yk−1] where E0 is the expectation under probability p0, (9)

and where we assume ε̄ is smaller than zero. (If ε̄ ≥ 0 then we decide that there
is no attack.)

Proof. An optimal classification algorithm in the Neyman-Pearson sense refers
to a classifier that given a fixed false alarm rate, will maximize the probability of
detection. Given two probability distributions p0 and pγ defining the distribution
of Yi under each class, the optimal classifier in the Neyman-Pearson sense is a
likelihood ratio test:

ln
pγ(Y1, . . . , Yn)

p0(Y1, . . . , Yn)
= −γ

σ

n∑

i=1

(εi +
γ

2
) (10)

However, we do not know the value of γ as an attacker can choose any arbitrary
value. Therefore we need to use the Generalized Likelihood Ratio (GLR) test to
find the maximum likelihood estimate of γ given the test observations Y1, . . . , Yn.

ln
supγ>0 pγ(Y1, . . . , Yn)

p0(Y1, . . . , Yn)
= max

γ>0

n∑

i=1

(− εiγ

σ
− γ2

2σ
) (11)



218 D. Mashima and A.A. Cárdenas

To find the maximum (assuming the constraint γ > 0 is not active):

∂f

∂γ
=

n∑

i=1

(− εi
σ

− γ

σ
) = 0 which implies γ = −

n∑

i=1

εi
n

= −ε̄ (12)

as long as γ > 0 (i.e., the optimization constraint is not active).
Therefore, the final GLR test (if ε̄ < 0) is:

ε̄

σ

n∑

i=1

(εi − ε̄

2
) =

ε̄2

σ
(n− 1

2
) (13)

and since 1
σ (n− 1

2 ) is constant for the test, we obtain our final result.

By using one-step-ahead forecast, we calculate the innovation process εi. The
threshold τ is determined based on the maximum ε̄2 observed in the training
dataset. The optimal attack strategy is as follows:

1. Calculate E =
√
τ

2. Send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi−1]− E

where E0[Yi|Ŷ1, . . . , Ŷi−1] is the predicted ith value based on the observed mea-
surements (including crafted ones) by the ARMA model.

3.3 Nonparametric Statistics

A concern regarding the ARMA-GLR detector is that it is only guaranteed to
be optimal if ARMA processes can be used to model accurately normal elec-
tricity consumption behavior and attack patterns. To address these concerns
we evaluate two more algorithms: nonparametric statistics (in this section) and
unsupervised learning (in the following section).

Nonparametric statistics are robust to modeling errors: they have better clas-
sification accuracy when our model assumptions for the time-series is not ac-
curate enough. This is a particularly important property for security problems,
as we generally do not have good knowledge about the probability distribution
properties of attacks.

A number of nonparametric algorithms have been designed to detect changes
in the mean of a random processes. In this work we consider EWMA
(Exponentially-weighted Moving Average) control chart [1] and Non-parametric
CUSUM [8]. Because of space constraints and the fact that nonparametric test
did not perform well in our experimental results, we omit the implementation
details in this section and just give a brief overview of each detector and our
attack.

A detector based on EWMA chart can be defined as EWMAi = λYi + (1 −
λ)EWMAi−1 where λ is a weighting factor and 0 < λ ≤ 1 and Yi is one
of the time series measurements (i.e. meter readings). An alarm is raised if
EWMAi < τ , where τ is a configurable parameter. An attacker with knowl-
edge of τ can create an attack as follows: While EWMAi−1 > τ , send Ŷi =
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MAX(0, τ−(1−λ)EWMAi−1

λ ). When EWMAi−1 = τ , send Ŷi = τ . The idea here
is that, before the EWMA statistic hits the threshold, an attacker attempts to
reduce the meter-reading value as much as possible, and once it reaches τ , the
attacker sends τ .

On the other hand, the Non-parametric CUSUM statistic for detecting a
change in the mean of a random process is defined by Si = MAX(0, Si−1 +
(μ − Yi − b)) (i = 1, . . . , N), where μ is the expected value of the time-series,
and b is a “slack” constant defined so that E[|μ − Yi| − b] < 0 under normal
operation. An alarm is raised if Si > τ . Our attack against this CUSUM-based
detector is as follows: Calculate M = τ+Nb

N and send Ŷi = μ − M . Note that
this attack can take advantage of the total margin calculated as τ +Nb.

3.4 Unsupervised Learning

One of the most successful algorithms for anomaly detection is the Local Outlier
Factor (LOF) [7]. In our experiments we used RapidMiner [3] to calculate LOF
scores. A LOF detector is implemented as follows:

1. Create a vector containing all measurements of a day to be tested in order,
Vtest = {Y1, . . . , YN} where N is the number of measurements per day.

2. For all days in a training dataset, create vectors in the same way, Vi =
{Xi1, . . . XiN} (i = 1, . . . , T ).

3. Create a set containing Vtest and all Vis, and apply LOF to this set.
4. If LOFtest < τ where LOFtest is a score corresponding to Vtest, conclude

Vtest is normal and exit.
5. If Ȳ (= 1

N

∑N
i=1 Yi) <

1
NT

∑T
i=1

∑N
j=1 Xij , raise an alarm.

Because a high LOF score just implies that the corresponding data point is
considered an outlier, we can not immediately conclude that high LOF score
is a potential energy theft. In order to focus on detecting energy theft we only
consider outliers with lower than average energy consumption.

While we are not able to prove that the following attack against our LOF
detector is optimal because of the complexity of LOF, in the experimental section
we show how our undetected attack patterns for LOF were better than the
optimal attacks against other algorithms.

1. Among daily records in the training dataset whose LOF scores are less than
τ , pick the one with the minimum daily sum, which we denote {Y ∗

1 , . . . , Y
∗
N}.

2. Find the maximum constant B such that {Ŷ1, . . . , ŶN}, where Ŷi = Y ∗
i −B,

does not raise an alarm.
3. Send Ŷi.

4 Experimental Results

We use real (anonymized) meter-reading data measured by an electric utility
company during six months. The meter readings consisted of 108 customers
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with a mix of residential and commercial consumers. The meter readings were
recorded every 15 minutes. Because our dataset contains measurements that
were sent immediately after installation, we assume the meter readings during
this period are legitimate.

4.1 Adversarial Evaluation: Cost of Undetected Attacks

To complete the evaluation proposed in Section 2, we now define the cost function
C as follows:

C(Y, Ŷ ) = MAX(

N∑

i=1

Yi − Ŷi, 0)

where Y = {Y1, . . . , YN} is the actual electricity usage and Ŷ = {Ŷ1, . . . , ŶN} is
the fake meter reading crafted by an attacker.

Note that, if the actual usage is very small, the term
∑N

i=1 Yi− Ŷi can become
negative, which means that an attacker will pay more money. We assume that a
sophisticated attacker can turn the attack off and let real readings go unmodified
when the actual electricity consumption is expected to be lower than the crafted
meter readings. Under this strategy, the cost is always positive or equal to 0.

There are a number of ways to configure an electricity-theft detector. Ideally
we would like to train anomaly detections with seasonal information, but given
that our data only covers half a year, experiments in this section focus on a
setting where electricity theft detectors are re-trained daily based on the last
T -days data.

The experiments are conducted as follows. For each customer,

1. Set i = 0
2. Pick records for 4 weeks starting at the ith day as a training dataset (i.e.

T = 28).
3. By using this training data set, compute parameters, including τ .
4. Pick a record of a day just after the training dataset as testing data.
5. Test the data under the detection model trained to evaluate false positive

rate. If the result is negative (i.e. normal), attacks are mounted and the cost
of the undetected attack is calculated.

6. Increment i and go back to Step 2.

Given the limited set of data we had, finding the optimal training length is
outside the scope of this work. We chose a 4-week sliding window because we
saw on preliminary results that it gave us a good trade-off between average
loss and false alarms. As we obtain more data, we plan to consider in future
work year-long datasets so we can fit seasonal models into our experiments and
analyze in-depth the optimal training length.
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Fig. 1. Trade-off between false positive rate (the probability of false alarm) and average
cost per attack

For each detector, we conducted 2,808 tests using the dataset of 108 customers,
and for the cases that were claimed negative, we mounted attacks. The results
are summarized in the trade-off curves in Fig. 1. The average cost per attack is
calculated by dividing the total cost by the number of attacks performed.

As can be seen from the figure, the ARMA-GLR detector worked well. The
average detector also is effective, but when the false positive rate is around
5%, its cost is higher than ARMA-GLR by approximately 1 KWh. It was some-
what surprising that the average detector outperformed the two online detectors:
CUSUM and EWMA. One of the problems of these detectors is that they are
designed to detect changes in a random process as quick as possible, and while
this might have advantages for quick detection, it forced us to set very high
thresholds τ to prevent false alarms in the 4-week-long training dataset. Detec-
tors like ARMA-GLR and the average detectors on the other hand, smooth out
sudden changes and are not susceptible to short-term changes of the random
process. The cost of the LOF detector is the largest for all false positive rates
evaluated.

Monetary Loss Caused by Undetected Electricity Theft. While assign-
ing monetary losses to computer attacks is a difficult problem, one of the ad-
vantages of the dataset we have is that our data is directly related to the source
of revenue of the utility company, and thus, it is easier to quantify the costs of
potential attacks.

Using the electricity consumption rate charged by the utility company during
the period of time we have available (while the utility company offers time-of-use
prices, the tested customers belong to the flat rate program) we calculated that
the (lower-bound) average revenue per-customer per-day is �1.256 dollars.
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(b) Customer with largest consumption

Fig. 2. Estimated annual loss over # of compromised meters with 5% false positive
rate. Notice that the x and y axes are in log-scales.

From the experimental results, we picked one result whose false positive rate
in the testing dataset is nearly 5% for each detector (we cannot achieve exact
5% in all detectors), and then, we calculated the average monetary loss for
optimal attacks per-customer per-day. The result is summarized in Table 1. 5%
false positive rate may seem too high, but utilities do not have investigate them
equally. Instead, they could choose to focus on large-consumption customers to
protect major portion of their revenue.

Table 1 shows that (at 4.2% false alarm rate), ARMA-GLR can protect 62% of
the revenue of the utility against optimal attacks, while the remaining detectors
fair much worse, most of them even protecting less than 50% of the revenue at
higher false alarm rates.

While in practice detecting electricity theft is a much more complex prob-
lem (as mentioned in the introduction it involves the use of balance meters and
personnel inspections), and the anomaly detection tests considered in this pa-
per should only be considered as indicators of theft, and not complete proof
of theft, we believe these numbers are helpful when utility companies create a
business case for investments in security and revenue protection. For example,
we can study the average losses as the number of compromised meters increases
(Fig. 2(a)). In this example we notice that the losses reported in studies about
electricity theft [14,4] would require about 10,000 randomly compromised me-
ters. However, if we look at the losses caused by the top electricity consumers
(commercial meters) (Fig. 2(b)), the same amount of losses can be achieved by
about 100 compromised meters (or close to 10,000 compromised meters if we use
ARMA-GLR detectors). While prices of electricity vary globally, we can infer
that to achieve the losses previously reported, a large portion of hacked meters
must correspond to large commercial consumers.



Evaluating Electricity Theft Detectors in Smart Grid Networks 223

Table 1. Monetary loss caused by un-
detected electricity theft (5% false pos-
itive rate)

Detector FP Rate Average Loss Revenue Lost

Average 0.0495 �0.55 43%
EWMA 0.0470 �0.852 68%
CUSUM 0.0491 �0.775 62%
LOF 0.0524 �0.975 77%

ARMA-GLR 0.0423 �0.475 38%
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Fig. 3. Average loss ratio under
contamination attack

4.2 Adversarial Learning: Detecting Contaminated Datasets

To evaluate the impact of contamination attacks discussed in Section 2.2, we
show experiments using the same configuration as the ones used in the previous
section. In this experiment, the optimal undetected attack is fed back into fu-
ture training datasets. Namely, the training dataset of the second day includes
an attack generated in the previous day, the training dataset of the third day
contains two attack patterns generated for the first and the second day, and so
forth.

We ran experiments for three disjoint time periods and calculated their aver-
age. The results are shown in Fig. 3. As can be seen from the plot, we can see
increasing trends for all detectors except the LOF detector, which implies that
LOF is more resilient to contamination attacks. In addition, the impact on the
ARMA-GLR detector is much more significant than for the average detector. An
intuitive explanation for this result is that ARMA models capture trends (un-
like the average detector) therefore if we continue training ARMA models with
a trend towards lower electricity consumption provided by an attacker, then the
ARMA-GLR test will assume that future downward trends are normal.

Possible Countermeasures. A typical contamination attack pattern for the
ARMA-GLR detector has the shape like the one shown in Fig. 4(a), in which
we can see “roughly” a linear decreasing trend. A similar trend can be found in
the case of other detectors. A straightforward way to identify such a pattern is
fitting a linear model for the entire (or part of) a training dataset. We can ex-
pect that the resulting model would have negative slope significantly larger than
other non-hacked customers. We applied linear regression for the contamination
attack pattern of each customer. We also did the same for non-hacked meters for
comparison. The results are summarized in Fig. 5(a). Though all of the attack
patterns have negative slope, Fig. 5(a) shows this alone is not discriminative
enough. Fortunately, we can find a clear difference in determination coefficients
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(R2) shown in Fig. 5(b)—determination coefficients are a measure of how well
can a regression predict future values. High R2, say R2 > 0.6, with negative
slope effectively indicates the existence of attacks. We manually investigated the
attack patterns with low R2 (those lower than 0.6) and found that all of them
hit zero in the middle. For instance, the attack pattern shown in Fig. 4(b) gets
to zero very quickly and remains at zero afterwards. Consecutive zeros is an
indication of an anomaly and many utilities flag these events already, so the
only attacks that will not be detected by the determination coefficients will be
discovered by traditional rules.

The approach using linear regression also worked for other detectors since
optimal attacks against them result in the similar, monotonically decreasing
trends. While a motivated attacker can try to contaminate the training dataset
at a slower pace so it is not detected, this will severely increase its effort and
lower the effectiveness of its attacks.
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(a) Contamination attack with high R2
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(b) Contamination attack with low R2

Fig. 4. Attack patterns under 14-day contamination attack experiment

5 Discussion

5.1 Cross-Correlation among Customers to Improve Detectors

One possible way to identify attacks is to use cross-correlation among customers
in nearby areas, assuming that honest customers exhibit similar trends while
malicious customers have trends different from theirs. To evaluate this strategy,
assuming that all 108 customers in the dataset are in the same neighborhood,
we picked 7 daily consumption patterns from each of 108 customers and calcu-
late cross covariance with the remaining 107 consumption patterns of the same
day. Then, the average and quantile of these 107 cross covariances is calculated.
Similarly, we calculated cross covariance between an attack pattern against the
ARMA-GLR detector (Section 3.2) and original consumption patterns of the
other 107 customers.
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Fig. 5. Distribution of slopes and determination coefficients of contamination attack
patterns under linear model
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Fig. 6. Distribution of average and 75 percentile of cross covariances

While we did not see significant difference in terms of 25 percentile and median
of the 107 cross covariance values, their average and 75 percentile could be useful.
Fig. 6 implies that a crafted attack pattern tends to exhibit a trend different from
many of other customers’ consumption patterns. Even though this alone can not
be considered as definitive indication of attack, we could use it as an additional
factor for electricity theft detection leveraging alarm fusion technologies.

In addition to cross-correlation, we can use outlier detection algorithms such
as LOF [7], to identify outliers, exhibiting different trends in their electricity con-
sumption patterns when compared to other similar consumers. In this direction,
we have conducted some preliminary analyses. We smoothed daily electricity
consumption patterns of a certain day in our dataset by using a low-pass filter.
Then we normalized them since our focus here is anomaly in terms of shape
and trends, not necessarily high or low consumption anomalies. Fig. 7 shows
some samples of consumption patterns with top-5 (greater than 2.4) and low
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(less than 1.0) LOF scores. While inliers with low LOF scores are categorized
into a couple of “typical” usage patterns, like the one shown in Fig. 7(a), we can
identify unique patterns, including “artificially-looking” ones (Fig. 7(b)). We will
continue this area of research in future work.
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(a) Typical patterns identified by LOF
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(b) Outliers identified by LOF

Fig. 7. LOF can Find Unusual Activity Patterns

5.2 Use of Auto-correlation of Residuals in ARMA-GLR Detector

Based on the definition of attack strategy we tested in Section 3.2, we can ex-
pect that the sequence of residuals of generated attack patters have high auto-
correlation, which can be a possible indication of attack. We have also explored
this direction.

One of the possible metrics to quantify such auto-correlation is the Durbin-

Watson statistic, defined as d =
∑N

i=2(ei−ei−1)
2

∑
N
i=1 e2i

, where ei denotes the ith residual

and N is the number of measurements in the series. In general, we can infer that
there exists auto-correlation when d < 1.0. Following this idea, we added the test
of auto-correlation in residuals for the ARMA-GLR detector. Namely, for time-
series patterns that passed the GLR test, we apply the test based on Durbin-
Watson statistics. Using this approach we found that by setting the threshold
for d around 1.0, it can detect all of the attacks mounted against ARMA-GLR as
discussed in 3.2. The empirical relation between threshold values and the false
positive rate, where false positives are counted only based on Durbin-Watson
test (i.e. regardless of the result of ARMA-GLR test), is shown in Fig. 8(a).

Although we found that the use of Durbin-Watson statistics is effective to
detect attacks against the ARMA-GLR detector, unfortunately it is not difficult
to create attacks to defeat this other measure. For instance, a slightly modified
attack strategy shown below would give attackers almost the same gain as the
one he could do in case of the ARMA-GLR detector. When τ is the threshold
used for the ARMA-GLR test,
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1. Calculate E =
√
τ

2. When i is an even number, send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi]− 2E. Otherwise, just
send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi].

This attack generates a sequence of residuals where 0 and 2E appear alterna-
tively and results in having d approximately 2.0, which implies that attack can
not be detected based on the threshold that is usually set around 1.0, while the
total gain of an attacker is almost equal. As can be seen in Fig. 8(b), the trade-
off curves are very similar. The weakness of the Durbin-Watson statistic is that
it only considers first-order auto-correlation, so using higher-order correlation,
such as Breusch-Godfrey Test or Ljung-Box Test, would make attacks harder.
We will continue exploring ways to improve our detectors against sophisticated
attackers in future work.
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(a) False positive rates for Durbin-Watson
statitics.

0.05 0.10 0.15

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

8
5

0
0

9
0

0
0

False Positive Rate

ARMA−GLR

ARMA−GLR + Durbin Watson

A
v
e

ra
g

e
 L

o
s
s
 p

e
r 

A
tt

a
c
k
 [

W
h

] 
  

  
  

  
 

(b) Trade-off curves of ARMA-GLR and
ARMA-GLR + Durbin Watson.

Fig. 8. Plots related to Durbin-Watson tests

5.3 Energy Efficiency

One of the goals of the smart grid is to give incentives for users to reduce their
electricity consumption. In some cases (such as the installation of solar panels),
the electric utility will know the consumer has installed these systems because
the utility has to send personnel to approve the installation and allow them to
sell electricity back to the grid. However, in some other cases, the incorpora-
tion of other green-energy technology might be unknown to the utility. In this
case any anomaly detection algorithm will raise a false alarm. The best we can
do is complement anomaly detection mechanisms with other information (e.g.,
balance meters) and in the case of false alarms, retrain new models with the
new equipment in place. These changes are part of the non-stationarity of the
random process we considered in this work.
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6 Conclusions

In this paper we introduced the first rigorous study of electricity-theft detection
from a computer-security perspective. While previous work has introduced other
methods for electricity-theft detection, we argue that the incorporation of a new
adversarial classification metric, and new mechanisms that consider adversarial
learning are fundamental contributions to this growing area.

While all of the results in this paper consider pessimistic scenarios (the most-
powerful attacker), we anticipate that these algorithms will perform much bet-
ter under average cases where the attacker does not know the algorithms or time-
intervals we use for anomaly detection and where it may not be able to compute
optimal attack strategies. In addition, it is important to point out that the pro-
posed anomaly detectors will only output indicators of an attack: a utility com-
pany will not only look at time-series anomalies as sources of attacks, but also at
balance meters, smart meter tampering alarms, and might send personnel for pe-
riodic field monitoring reports. Combining all this information will give the utility
good situational awareness of their network and accurate electricity-theft reports.

We plan to continue extending our work in multiple directions. For instance,
optimal attacks are often artificial: e.g., the attacks against our average detector
are constant values, therefore, adding additional mechanism that take advantage
of the “shape” of the signal would be effective.We also plan to studymore in-depth
cross-correlation among nearby customers as an indicator of anomalies. Another
approach to design classifiers resilient to attackers include the addition of random-
ness so the attacker cannot know at any time the state of the classifier.One example
can be to leverage randomness in the use of training data, so an attacker would not
know the exact configuration of the classifier. Finally, as we obtain datasets con-
taining longer-periods of time, we plan to leverage accurate seasonal models and
correlation with other factors, such as weather and temperature.
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