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Abstract. A cloud customer’s inability to verifiably trust an infrastructure
provider with the security of its data inhibits adoption of cloud computing. Cus-
tomers could establish trust with secure runtime integrity measurements of their
virtual machines (VMs). The runtime state of a VM, captured via a snapshot, is
used for integrity measurement, migration, malware detection, correctness valida-
tion, and other purposes. However, commodity virtualized environments operate
the snapshot service from a privileged VM. In public cloud environments, a com-
promised privileged VM or its potentially malicious administrators can easily
subvert the integrity of a customer VMs snapshot. To this end, we present Hy-
perShot, a hypervisor-based system that captures VM snapshots whose integrity
cannot be compromised by a rogue privileged VM or its administrators. Hyper-
Shot additionally generates trusted snapshots of the privileged VM itself, thus
contributing to the increased security and trustworthiness of the entire cloud in-
frastructure.

1 Introduction

The lack of verifiable trust between cloud customers and infrastructure providers is
a basic security deficiency of cloud computing [2, 14, 25, 31]. Customers relinquish
control over their code, data, and computation when they move from a self-hosted en-
vironment to the cloud. Recent research has proposed various techniques to protect
customers’ resources in the cloud [10, 19, 34]. We consider an alternate way to estab-
lish trust and provide customers with control: runtime verification of their rented virtual
machines’ (VMs) integrity. The runtime state of a VM, captured via a snapshot, can be
used for runtime integrity measurement [3, 5, 12], forensic analysis [42], migration [8],
and debugging [39]. The snapshot allows customers to know the state of their VMs and
establishes trust in the cloud environment.

Today’s commodity virtualization environments such as Xen [4], VMware [41], and
Hyper-V [24] capture a consistent runtime state of a virtual machine at a point in time
via the snapshot service. Each of these virtualized environments generates a snapshot
from a privileged VM, such as dom0 [4] or the root VM [24]. Since the privileged VM,
together with the hypervisor and the hardware, comprises the infrastructure platform’s
trusted computing base (TCB), the snapshot generation service and the resulting snap-
shot stored in the privileged VM are inherently trusted.
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Such unconditional trust in privileged VMs is sensible for a self-hosted private vir-
tualized infrastructure, but it does not generalize to today’s virtualization-based public
cloud computing platforms due to different administrative control and restrictions [6].
Cloud customers or tenants must trust the root VM to generate a true snapshot of their
VMs. Given that the root VM runs a full fledged operating system and a set of user-level
tools with elevated privileges, any vulnerability present in that substantial software col-
lection may be exploited by attackers or malware to compromise the integrity of the
snapshot process or the snapshot information itself. Customers must hence also rely
on an infrastructure provider’s administrators and administration policies to properly
manage the security of privileged VMs. Yet, the problem of malicious administrators is
serious enough that researchers have proposed technical measures to support multiple-
person control for administration [30].

In this work, we focus on the trust issues between customers and providers and pro-
pose a system called HyperShot that generates trusted snapshots of VMs even in the
presence of adversarial root VMs and administrators. HyperShot only relies on a hy-
pervisor and does not include the root VM in its TCB. Trust in the hypervisor itself
is established via hypervisor launch using Trusted Execution Technology (TXT) [15].
Our design departs from the existing snapshot generation approaches in that HyperShot
operates from the hypervisor rather than from the root VM. Since the hypervisor ex-
ecutes at a higher privilege level than the root VM, this design protects the snapshot
service from the compromised root VM. HyperShot protects the integrity of the gener-
ated snapshot with a cryptographic signature from a Trusted Platform Module (TPM)
that incorporates measurements of all trusted components and a hash of the snapshot
itself. Since the TPM is exclusively under the control of our hypervisor, these mea-
surements enable a verifying entity or customer to establish trust in a VM’s snapshot.
Since HyperShot does not trust the root VM and its administrators, it extends the same
snapshot generation functionality and trust guarantees to the root VM itself.

To allow customers and providers to obtain verifiable snapshots of VMs executing
in the cloud, we present a snapshot protocol that operates with minimal trust in the
cloud infrastructure itself. The design of HyperShot decouples the snapshot generation
process from the verification or analysis process. A customer can generate the snap-
shot in the cloud and can perform analysis at its own end or assign the verification
duties to a third party. This design reduces burden on cloud infrastructure providers
since customers can choose analysis software independent of the cloud provider. Hyper-
Shot’s snapshot of the root VM enables customers to verify the integrity of a provider’s
management VMs in a measurable way with the help of third parties trusted by both
providers and customers. We believe that this significantly contributes to the trustwor-
thiness and reliability of the cloud infrastructure provider as a whole.

To demonstrate the feasibility of our ideas, we have implemented a HyperShot pro-
totype based on Microsoft’s Hyper-V virtualization infrastructure; any other hypervisor
such as Xen or VMware is equally suitable for our work. The platform TCB in com-
modity virtualized environments is large and contains substantially more code than just
the hypervisor due to the inclusion of one or more privileged VMs to perform tasks like
I/O virtualization, peripheral access, and management [37]. Our design significantly re-
duces the platform TCB for the snapshot service by removing the privileged VM and its
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administrators from the TCB, an approach that is similar to the VMware ESXi architec-
ture [40]. HyperShot only adds ∼4K lines to the hypervisor codebase, which coupled
with the eviction of privileged VMs, nets a much smaller TCB.

Our choice of a commodity virtualization environment is motivated by the reliance of
today’s cloud infrastructures on full featured hypervisors, rather than on small security-
specific hypervisors like SecVisor [36] and TrustVisor [20]. These small hypervisors do
not support many features essential to public cloud environments, such as support of
multiple VMs and VM migration. Nevertheless, our trusted snapshot service is general,
and it can easily support security-specific hypervisors if cloud providers decide to move
towards these smaller hypervisors in the future.

To demonstrate the usefulness of trusted snapshots, we integrated HyperShot with
the open source forensic utility Volatility [42] and with runtime integrity measurement
software called KOP [5]. Our security evaluation demonstrates HyperShot’s effective-
ness at mitigating various attacks on the snapshot service and on the snapshot itself.
Our detailed performance evaluation shows that HyperShot incurs a modest runtime
overhead on a variety of benchmarks.

In summary, we make the following contributions:

– We investigate the trust issues between cloud customers and providers and motivate
the need to reduce the effective platform TCB in the cloud by showing a concrete
attack on the snapshot originating from a malicious root VM.

– We propose trusted snapshots as a new cloud service for customers and design
a mechanism for trusted snapshot generation across all VMs, including the root
VM. Our design mitigates various attacks that compromise the snapshot service
and integrity of the generated snapshot. We implemented our design in the Hyper-
V hypervisor.

– We associate a hardware rooted trust chain with the generated snapshot by leverag-
ing trusted computing technologies. In particular, the hypervisor signs the snapshot
using a TPM. Trusted boot using TXT establishes trust in the hypervisor.

– We present a snapshot protocol allowing clients to request and verify VM snap-
shots. We demonstrate the use of trusted snapshots in various end-to-end scenar-
ios by integrating the trusted snapshot with forensic analysis and runtime integrity
measurement software.

2 Overview

2.1 Threat Model

Our threat model considers attacks that compromise the integrity of the snapshot either
by tampering with the snapshot file’s contents or with the snapshot service. We refer
to all entities that could perpetrate this attack from the root VM—whether it is a mal-
ware instance running in the root VM or a malicious administrator—collectively as a
malicious root VM. In particular, we consider the following types of attacks:

– Tampering: A malicious root VM may modify the generated snapshot file or the
runtime memory and CPU state of a target VM during the snapshot process to
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Fig. 1. The existing Hyper-V snapshot
design places all components other than
memory protection inside the root VM,
which makes the snapshot service vul-
nerable to attacks by the root VM

remove memory regions that include evidence of malware or other activity unde-
sired by the customer.

– Reordering: A malicious root VM may reorder the content of memory pages in
the snapshot file without modifying the contents of individual pages. This may fool
integrity checking or forensic analysis utilities that expect a snapshot file’s contents
to be in certain order, leading to failures to locate security-relevant data in the file.

– Replaying: A malicious root VM may provide an old snapshot of a target VM that
does not contain any malicious components.

– Masquerading: A malicious root VM may try to intercept the snapshot request
and modify the request’s parameters, such as the target VM, to provide a snapshot
of a VM different than the one intended.

Note that attacks meant to compromise the snapshot process via introduction of a bad
hypervisor, such as bluepill [32] and SubVirt [17], are addressed by the use of trusted
computing techniques, as described later. We do not consider hardware attacks, such as
cold boot attacks on RAM and side channel attacks, specifically since these attacks may
compromise the confidentiality of a VM’s state while HyperShot’s goal is to protect the
integrity of the snapshot. Finally, we do not consider availability attacks, such as delet-
ing the snapshot file, crashing the root VM, or crashing the customer VMs during the
snapshot, and DMA-based attacks from rogue devices or rogue device drivers. DMA-
based attacks can be thwarted using IOMMU-based protection methods, as successfully
demonstrated by Nova [37] and TrustVisor [20]. We also assume minimal trust in the
cloud infrastructure to assign a globally unique identifier (guid) to a customer VM and
enforce the invariant that a VM with a particular guid can only be executing on one
physical machine at any given time. This infrastructure is independent of customers,
maintained by cloud providers, and it can be achieved with a much restricted core set
of machines. This assumption is already required in today’s cloud environments such
as EC2 and Azure for proper functioning of network-based services.

2.2 Threats to Existing Hyper-V Snapshot Mechanisms

A typical virtualization infrastructure includes a hypervisor, multiple guest VMs, and a
privileged management VM, such as the root VM or dom0. The current virtualization
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architecture supported by Hyper-V, Xen, and VMware ESX server allows the snapshot
service to operate from the privileged management VM. As shown in Figure 1, the root
VM in Hyper-V takes a guest VM’s snapshot with only minimal support from the hy-
pervisor. More specifically, the root VM only relies on the hypervisor to protect guest
memory pages from writes performed by the target guest VM being snapshotted. These
writes trigger the root VM’s copy-on-write (CoW) mechanism, where the root VM han-
dles faults (using a fault handler), copies the content of the page (using copy-on-fault)
before removing the protection, and resumes the guest VM’s execution. Concurrently,
the snapshot application also copies other guest memory pages. After completion of
the snapshot, the snapshot file is stored in the root VM and CoW protection on guest
memory pages is removed.

We evaluated the security of the existing Microsoft Hyper-V [24] snapshot mecha-
nism in a cloud environment under the threat model described above. We developed a
concrete tampering attack on a customer’s snapshot file by removing from it evidence
of malware infection and other important information that a malicious administrator
may want to hide from a customer. To launch the attack, we utilized a forensic analy-
sis utility called Volatility to extract information such as the list of running processes,
loaded drivers, opened files, and connections. We first opened the snapshot file in anal-
ysis mode and listed all running processes, and we then chose a process from the list
to remove—in a real threat scenario, this could be malware. Next, we used Volatility to
alter the list of running processes by rewriting the linked list used by Windows to store
all running processes. We repeated this experiment to remove a loaded driver from the
list of drivers. These malicious modifications will not be detected by the consumers
of this snapshot due to the lack of any measurable trust associated with the generated
snapshot.

3 HyperShot Architecture

In this section, we present the design goals of HyperShot and the detailed description
of its various components as shown in Figure 2.

3.1 Design Goals

We designed HyperShot to satisfy the following goals:

– Security: HyperShot creates trusted snapshots by protecting both the snapshotting
code and the generated snapshot data files against manipulation by malicious root
VMs. To secure the snapshot service, HyperShot deploys its components inside the
hypervisor. Since the hypervisor runs in a high-privileged mode, the untrusted root
VM cannot alter HyperShot’s components either in memory or in persistent storage.
To preserve the integrity of the snapshot files stored in the root VM, HyperShot
hashes the snapshot data of the target VM1 from the hypervisor and signs the hash
using the TPM. While manipulation is not directly prevented, the signed hashes

1 We use the term target VM to refer to any VM that is being snapshotted without distinguishing
whether it is a guest VM or the root VM. Any distinction is explicitly qualified.
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allow HyperShot or a customer to detect malicious alterations by the infrastructure
provider. Unlike existing snapshot generation techniques that include the root VM
in the platform TCB, HyperShot excludes the root VM and its administrators from
the TCB; hence it extends the same snapshot generation functionality and trust
guarantees to the root VM.

– Consistency: To capture a consistent state of the target VM, HyperShot does not
allow any modification to the target VM state without first recording the state as it
was at the time of the snapshot request.

– Performance: To keep the performance overhead moderate, HyperShot only pauses
the target VM for a minimal duration and then uses copy-on-write (CoW) to allow
the VM to continue execution during the snapshot. This design incurs low overhead
on applications executing inside the target VM.

HyperShot deploys all components inside the hypervisor; it keeps only a thin proxy
client in the root VM. HyperShot also protects the integrity of the snapshot from at-
tacks that originate due to a compromise of the proxy software executing inside the
root VM, as explained in Section 5.1. HyperShot moves only snapshot service related
functionality into the hypervisor, leaving the rest of the code inside the root VM. The
additional code added into the hypervisor totals ∼4K lines of source.

3.2 Enhanced Copy-on-Write Protection

HyperShot creates trusted and consistent snapshots of VMs executing in a virtualization
based cloud environment. One possible approach to enable consistency is to pause the
target VM during the entire snapshot process. This approach may impose severe run-
time overhead on applications running in the target VM during the snapshot generation.
Further, it still does not guarantee consistency since a malicious root VM may mod-
ify the state of the target VM while the target VM’s snapshot is in progress. To offer
both consistency and security, HyperShot utilizes an enhanced copy-on-write (CoW)
mechanism inside the hypervisor.
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To set up the enhanced CoW on a guest VM at the beginning of a snapshot, the
hypervisor pauses the guest VM and marks its memory pages read-only by iterating
across its address space. To protect the guest VM’s state from untrusted modifications
by the root VM during the snapshot, HyperShot also write-protects the corresponding
memory pages mapped in the root VM’s page tables. For snapshots of the root VM,
the CoW setup is performed only on the root VM’s address space because guest VMs
cannot access the root VM’s memory pages. Our CoW mechanism is different from
those used in live VM migration [8]. In particular, we copy memory page content prior
to modification rather than iteratively copying dirty pages after alteration.

3.3 Access Mediation

CoW setup allows HyperShot to mediate writes performed by the target VM to write-
protected memory pages. This design fulfills HyperShot’s goals of security and consis-
tency since it allows HyperShot to copy the content of memory pages before they are
modified. In particular, at each page fault on a write-protected page, HyperShot copies
the content of the faulted page before restoring the original access permissions. These
copies are stored in protected memory regions belonging to the hypervisor. In our im-
plementation, this memory is deposited by the root VM on-demand before the snapshot
of a VM is started. Once deposited, this memory becomes inaccessible from the root
VM, hence the snapshot data stored in this memory cannot be modified by the malicious
root VM. HyperShot keeps the content of the faulted and copied pages inside the hyper-
visor until the snapshot process is completed. This design is required both for security
and correctness because HyperShot allows changes to occur on the faulted pages after
copying the pages’ contents. Multiple guest physical addresses (GPAs) may map to the
same system physical address (SPA), so if a write-protected GPA faults and it mapped
to an SPA whose page has already been processed, then HyperShot takes the snapshot
of the faulted GPA and its hash from the stored copy rather than directly from the target
VM’s memory as the memory content may have been modified.

For the root VM’s snapshot, faults originate only from the root VM. However, for
a guest VM’s snapshot, HyperShot receives faults on a write-protected page both from
the guest and root VM. The faults occur from the guest VM as part of its own execution
and from the root VM as part of I/O and other privileged operations. The stock Hyper-V
hypervisor does not expect the root VM to generate page faults due to page protection
bits because the root VM has full access to all guest VMs’ memory pages. To handle
these new faults, HyperShot adds a new page fault handler in the hypervisor to facilitate
the copying of page contents and restoring of the original access permissions in the root
VM’s address space. The same page fault handler is used during the snapshot of the
root VM to handle page faults due to CoW setup on the root’s address space.

Finally, HyperShot provides persistent protection to the runtime environment of the
target VM. HyperShot mediates operations that map and unmap memory pages in the
target VM’s address space maintained by the hypervisor. If these changes involve a page
that is protected and not already copied, HyperShot copies the contents of the memory
page before it allows the operation to complete. In addition to recording memory pages,
HyperShot also snapshots the virtual CPU (vCPU) state associated with a target VM at
the beginning of a snapshot and stores all vCPU register values inside the hypervisor.
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3.4 Memory Copy

The memory copier is a component that resides in the hypervisor and closely works
with the HyperShot proxy to move memory contents into a generated snapshot file. The
proxy invokes a series of hypercalls in a loop during which it sequentially requests the
contents of each memory page by invoking the memory copier and writes to the file.
The copier is responsible for two tasks. First, it passes the contents of pages already
snapshotted via CoW to the proxy. Second, it snapshots remaining memory pages that
were not modified during the CoW, as the CoW mechanism would not have recorded
the contents of unwritten pages.

On a request from the HyperShot proxy, if the requested page is write-protected and
not already copied, the copier extracts the contents of the page from the target VM’s
memory, calculates a hash over the page’s content, and stores only its hash in the hy-
pervisor for the future use. It passes a copy of the content back to the HyperShot proxy.
If the requested page had already been copied during the CoW, the copier calculates the
hash on the previously stored content inside the hypervisor and sends the content back
to the proxy. Finally, if a requested memory page is not mapped in the target VM, all
zeroes are returned and a hash of the zero page is stored for the future use.

3.5 Hash Generation

To protect the integrity of the snapshot file from a malicious root VM, HyperShot cre-
ates message digests or hashes of the target VM’s memory pages before the snapshot
content is sent to the root VM. These hashes are stored inside the hypervisor, and thus
are not accessible to the root VM.

The hashing process works in two steps. In the first step, HyperShot generates the
SHA-1 hash of each individual memory page present in the target VM’s address space.
In the second step, it creates the composite hash of all the individual hashes calculated
in the first step:

Hcomposite = SHA-1(H1||H2||H3......||HM)
where M is the total number of guest memory pages and Hi is the SHA-1 hash of the
ith memory page.

To generate the composite hash, HyperShot follows a simple ordering: it always
concatenates individual hashes starting from the hash of the first memory page in the
target VM and continues up to the hash of the last page. This ordering is important—as
described earlier in Section 2.1, an attacker may launch a reordering attack by alter-
ing the snapshot file. To detect the page reordering attempts, HyperShot always ex-
pects the snapshot to be performed in sequential order, and it generates the composite
hash in the similar fashion. This design detects a page ordering attack as the composite
hash will not match during verification. We describe the snapshot verification process
in Section 4.2. We used a linear hash concatenation approach for simplicity, though
other efficient techniques, such as Merkle hash trees [22], could be used to generate a
composite.
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3.6 Integrity Protection of the Snapshot

HyperShot keeps the contents of CoW memory pages and the hashes of all pages in the
hypervisor memory until the snapshot is over; the individual hashes are used to gen-
erate the composite. Merely generating Hcomposite inside the hypervisor is insufficient
to maintain the integrity of the snapshot because malware or malicious administrators
can easily subvert the hash when it is transferred to the root VM. We must protect the
integrity of Hcomposite itself so that it cannot be modified inside the root VM. We use
hardware-supported signing in order to detect malicious tampering of Hcomposite and
leverage trusted computing technologies to establish a trusted environment for the sign-
ing operation.

Trusted computing technologies provide a basis for trusting a platform’s software
and hardware configurations based on a trust chain that is rooted in hardware. In par-
ticular, it provides the Trusted Platform Module (TPM) [38], which is available today on
most commodity hardware platforms. Each TPM has multiple 20-byte Platform Con-
figuration Registers (PCRs) used to record measurements related to the platform state,
such as those of various software components on the platform. These measurements
form a chain of trust, formed either statically at the platform’s boot time, or dynami-
cally at any time during execution. Most PCRs cannot be reset by software but only ex-
tended from their previous values. The TPM also contains an asymmetric endorsement
key (EK) that uniquely identifies the TPM and the physical host it is on. Due to security
and privacy concerns, a separate asymmetric attestation identity key (AIK) is used as
an alias for EK when signing remote attestations of the platform state (as recorded in
various PCRs). The process of establishing an AIK based on EK is described in de-
tail in [27]. The remote attestation process is based on the TPM’s quote functionality,
which signs a 20-byte sized data value using AIKpriv and a set of PCRs [38]. A more de-
tailed description of trusted computing technologies for today’s commodity platforms
is provided by Parno et al. [28].

HyperShot leverages a research prototype version of Hyper-V that provides a trusted
boot of the hypervisor. In particular, the hypervisor is launched via Intel’s TXT [15]
technology, and it is started before the root VM (compared to the stock Hyper-V ar-
chitecture where the hypervisor starts after the root VM). This late hypervisor launch
architecture is very similar to Flicker [21] and trusted Xen [7]. The trusted boot mea-
sures the platform TCB and records the measurements in a non-repudiable fashion in
the TPM’s PCRs 17, 18, and 22. The AIK is also loaded into the TPM before a signature
can be requested from the TPM in the form of a quote.

After the snapshot process is completed, the hypervisor records Hcomposite as part
of the system configuration in the resettable PCR 23. The quote request (described in
detail in Section 4) includes PCRs 17, 18, 22, and 23 in the signing process to ensure
(a) the integrity of the platform TCB via PCRs 17, 18, and 22; and (b) the integrity of
the generated snapshot itself via PCR 23. Note that in HyperShot, the TPM is under the
control of hypervisor and only a para-virtualized interface is provided to the root VM
to request a quote. A malicious root VM cannot send arbitrary raw TPM commands to
corrupt the TPM state. Also, the para-virtualized TPM interface presented to the root
VM does not allow resetting of PCR 23; only hypervisor is allowed to reset PCR 23.
This design protects the integrity of the measurement from the malicious root VM.
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3.7 DMA Considerations

A DMA operation occurring during a snapshot may alter memory pages of a target VM.
To ensure snapshot consistency, we modify the guest DMA processing code inside the
root VM at a point prior to the actual DMA. We add a hypercall in this code path to
pass the GPAs of memory pages being locked for the DMA. This ensures that the orig-
inal memory page is processed prior to the DMA if it had not already been copied for
the snapshot. We intercept guest DMA operations for consistency, and not for security
reasons. Our DMA interception code resides inside the root VM and is prone to attacks.
Our current implementation does not yet support interception of the root VM’s DMA
operations. Though it is possible by modifying the root’s DMA handler, it would also
not be secure. A future integration of IOMMU with CoW based protection will ensure
that any DMA write operation that bypasses the snapshot will fault and be either aborted
or restarted after the copy is made.

4 HyperShot Protocol

The snapshot protocol allows clients or challenging parties to securely retrieve trusted
snapshot and validation information from the providers or attesting system. HyperShot
generates snapshots of VMs at the request of a client. The protocol used by HyperShot
involves the following entities:

– Challenger: A customer or challenger is an entity who wishes to measure the
integrity of her VM running in the cloud. In HyperShot, a cloud infrastructure
provider can act as the challenger when it requests snapshots of the root VM of a
particular machine. Challengers can act as verifiers or can assign verification duty
to third parties whom they trust.

– HyperShot Service Front-End: The front-end routes the snapshot request to the
physical machine where the VM to be snapshotted is currently executing. It also
sends the snapshot file and TPM quote along with the AIK certificate back to the
customer. The HyperShot service front-end is a part of the minimal trusted cloud
infrastructure.

– Forwarder: The HyperShot proxy receives the request from the HyperShot service
front-end and uses the hypercall interface to pass the request to the hypervisor.

– Generator/Attestant: The generator is the HyperShot component inside the hyper-
visor that performs most of the work—it sets up proper CoW protections, copies
memory pages, protects the integrity of individual memory pages and the compos-
ite snapshot, and provides an attestation using the TPM. This is the key component
of the HyperShot TCB.

4.1 Snapshot Generation Protocol

Figure 3 depicts the HyperShot protocol with steps involved in the snapshot generation
process. The protocol starts when a challenger sends a snapshot request to the Hyper-
Shot service front-end in the cloud, identifying the VM to be snapshotted by the guid
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(assigned by the trusted part of the cloud infrastructure at the VM creation time). In
particular, the challenger first creates a non-predictable random nonce N, concatenates
it with the VMguid, and sends it to the HyperShot service (1). The nonce guarantees the
freshness of the request and thwarts replay attacks, whereas the VM identifier defeats
masquerading attacks.

On receiving a nonce and VMguid, the service front-end finds the physical host on
which the VMguid is running and forwards the request to the HyperShot proxy running
on that host. The proxy further forwards the request to the hypervisor and starts the CoW
setup process using the hypercall (2). Masquerading attempts in which a malicious root
VM modifies the VMguid that is being passed to the hypervisor can easily be detected
by the customer as the VMguid value will be used to create the final quote by the TPM.
Defenses against other forms of masquerading attacks such as “evil clone” are described
in Section 5.1.

After initiating the CoW, the forwarder also requests the hypervisor to load the pro-
tected key blob for AIK into the TPM, which is used later by the TPM to sign the snap-
shot (2a-2b). After the CoW setup, HyperShot starts copying the target VM’s memory
pages either through CoW faults or by servicing memory copy requests from the for-
warder (3). Once the memory copying process is over, the hypervisor generates the
composite hash Hcomposite and associates it with the nonce (4), and stores it for future
use.

Next, the forwarder requests a quote over the nonce and the VM identifier from the
hypervisor (5). The hypervisor resets PCR 23 (6), and then extends it with Hcomposite
corresponding to the nonce and the VM identifier (7):

PCR23 = Extend(0||Hcomposite)
The hypervisor then generates the following TPM Quote request (8):

TPM QuoteAIK(N||VMguid)[PCRs]
where AIK is the handle for an AIKpriv already loaded in the TPM, and PCRs is the set
of PCRs = {17, 18, 22, 23} to be included in the quote. As described earlier, PCRs 17,
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18, and 22 report the integrity of the platform TCB, while PCR 23 reports the integrity
measure for the snapshot.

The generated quote is sent back to the forwarder (9, 9a), which sends it to the
HyperShot service front-end, which in turn sends it to the challenger along with the
snapshot file and AIK certificate (9b). The snapshot verification process performed at
the verifier/challenger site is explained in the next section.

4.2 Snapshot Verification Protocol

The verification of the snapshot is straightforward, and it is performed completely in
software. In the first phase, the verifier ensures that the quote obtained from the for-
warder is valid. This requires completing the following steps:

– The verifier checks that AIKpub is indeed a valid AIK based on a certificate associ-
ated with the AIK obtained. Next, it verifies the signature from the quote process.

– It determines if the values of PCRs 17, 18, and 22 included in the quote correspond
to a known good hypervisor. The known good values of a hypervisor are known to
the verifier a priori. This informs the challenger that the hypervisor’s integrity was
maintained during the snapshot.

– It extracts Hsent as the value of PCR 23 included in the quote.

In the next phase, the verifier computes the composite hash, Hlocal, over the memory
contents contained in the snapshot file by using the same algorithm as used by Hy-
perShot (described in Section 3.5). Next, the verifier performs the extend operation (in
software):

Hfinal = Extend(0||Hlocal)
If Hfinal = Hsent, then the snapshot received by the verifier is trusted. Otherwise, the
verifier discards the snapshot and takes remedial action, such as informing the provider
or moving its work to an alternate provider.

5 Evaluation

HyperShot’s functionality extends the platform hypervisor with ∼4K lines of C code,
a modest increase compared to the original size of the hypervisor. This design results
in a large TCB reduction from the point of view of the snapshot service as HyperShot
does not rely on the root VM and its administrators [37]. Next, we provide a detailed
security and performance evaluation of HyperShot and its deployment strategy.

5.1 Security Analysis and Evaluation

We analyze the security of HyperShot against threats described in Section 2.1, such as
tampering, reordering, replaying, and masquerading. We first considered the tampering
attack and used the same attack as described in Section 2.2 to compromise the integrity
of the snapshot file. After the completion of the snapshot process but before the snapshot
is sent to the client, we used Volatility [42] to alter the generated snapshot file stored
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in the root VM. We deleted a process from the list of running processes. The modified
snapshot file and the TPM quote were sent to the verifier, which followed the protocol
described in Section 4.2. The verification failed since the hash calculated by the verifier
did not match the hash included in the trusted quote. Note that this attack was successful
on a system with stock Hyper-V snapshotting in the root VM.

Next, we analyzed an attacker’s ability to manipulate the snapshot via manipulation
of the proxy. An attacker may launch reordering attacks either by reshuffling the con-
tent of the snapshot file or by compromising the code and data of the HyperShot proxy.
HyperShot mitigates page reordering attacks by following a simple ordering when gen-
erating the composite hash. This design forces the proxy to copy memory pages in the
snapshot file in the same order. If this ordering is changed by malware instances or
malicious administrators, then the generated composite hash in the hypervisor will not
match with the hash calculated at the verifier. HyperShot also prevents other attacks
originating from the proxy software inside the root VM. An untrusted root VM may
force the proxy to skip the snapshot of some memory pages that they want to hide. To
defeat these attacks, the hypervisor ensures that the set of pages protected at the begin-
ning of the CoW setup is the same as the set of pages hashed, and if not, it does not
generate the TPM quote over the composite hash.

HyperShot thwarts replaying and masquerading attacks by using a nonce and VM
identifiers in the request from the clients. The nonce allows HyperShot to distinguish
between a new and the old request, while a VM identifier allows it to identify the tar-
get VM. Since the TPM quotes the generated snapshot using the nonce and the VM
identifier that it receives in the request, the verifier can check whether the snapshot
corresponds to a recent request and for the correct VM.

A different version of the masquerading attack may be launched by the root VM by
setting up an “evil” clone of the customer VM with malware in it. The root VM may
start this clone along with the customer VM (with a different guid, since the hypervi-
sor enforces the uniqueness of VM guids). Next, the root VM may divert all snapshot
requests to the correct VM and actual service requests that operate on customer private
data to the evil clone. A variant of the same attack has the root VM shutting down the
correct customer VM after a snapshot, starting the evil clone with the customer VM’s
guid, and forwarding service requests to the clone. These attacks can be mitigated by
using a communication protocol enhanced with attestation, such as a quote based on the
VM’s recent snapshot, in a manner similar to the one proposed by Goldman et al. [13].
They addressed the lack of linkage between the endpoint identity determination and
remote platform attestation, which is precisely the root of the evil clone problem. In
short, the solution requires generating an SSL certificate for the VM and incorporating
the hash of this certificate in the TPM quote, along with the VM’s snapshot hash. Both
of these values can be captured in vPCRs by our hypervisor.

Our security analysis demonstrates that HyperShot’s design effectively mitigates
attacks in a cloud environment. Although we have not explored any responses to an un-
trusted snapshot other than to discard it, it is plausible that in an operational cloud envi-
ronment, customers would escalate this security threat with the infrastructure provider.

We also evaluated the usefulness of a trusted snapshot by integrating the snapshot
generated by HyperShot with two runtime integrity management tools, Volatility [42]
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and KOP (Kernel Object Pinpointer) [5]. Volatility is an open source forensic tool that
analyzes OS memory images. It recognized the snapshot generated by HyperShot with-
out any modifications to its image parsing logic. We extracted information such as a
list of running processes, drivers, files, dlls, and sockets from a snapshot of a Windows
XP guest VM. With this information, customers could identify potentially malicious
software present in their VMs at the time of snapshot, without the possibility of any
tampering from the cloud infrastructure provider.

KOP uses offline static analysis of a kernel’s source code to enable systematic kernel
integrity checking by mapping kernel data objects in a memory snapshot. In its current
implementation, KOP supports Windows Vista and requires the memory image to be in
the crash dump format. In our experiment, we ran a kernel malware instance that hides
its presence by deleting itself from the list of loaded drivers inside a Vista guest VM.
We used an offline utility to convert a HyperShot snapshot into the crash dump format,
and we then ran KOP on the dump. KOP successfully found the hidden malicious driver
object in the kernel memory. Our integration demonstrates the usefulness of HyperShot
as an integral component for managing end-to-end runtime integrity management of
VMs in a public cloud environment.

5.2 Performance Evaluation

In this section, we present micro- and macro-benchmark results to quantify (1) the per-
formance impact of HyperShot’s trusted snapshot generation on target VMs, (2) the
demand put on system resources, specifically memory, and (3) the performance of end-
to-end snapshot generation and verification. All experiments are performed on an Intel
Quad Core 2.53 GHz machine with 4 GB of memory and Extended Page Table (EPT)
support [16]. EPT allows HyperShot to modify the GPA-to-SPA map using the second
level page table kept in the hypervisor, while the OS inside the VM manages the tra-
ditional first level page tables to map virtual address to GPA. For simplicity, we ran
the challenger application and the forwarder inside the root VM, which runs 64-bit
Windows Server 2008 R2, and obviated the service front-end. The guest VM was allo-
cated 1GB RAM, 1 CPU, and ran 32-bit Windows XP with service pack 3. For macro-
benchmark experiments, we used the Passmark Performance Test benchmark suite [29]
inside the guest VM.

HyperShot uses CoW to protect memory pages that generate faults whenever the
guest or root writes on these protected pages. On each CoW fault, besides changing the
page protection, HyperShot also copies the contents of the page if needed. The median
time to perform the additional copy operation is 6.45µs.

Next, we measured HyperShot’s overhead on different workloads using the Pass-
Mark benchmark suite running inside a guest VM. We used 5 representative bench-
marks to measure HyperShot’s impact on CPU, memory read and write, and sequential
disk read and write performance respectively. Each benchmark was executed for 30
times in a loop, and we snapshotted the VM during this loop’s execution. Each itera-
tion of the loop ran for a short period of time, so that multiple iterations (but not all)
were impacted by the snapshot process. The overall loop’s execution encompassed the
whole snapshot process. Mean results in Figure 4 indicate that HyperShot imposes no
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Fig. 4. Percentage overhead
incurred by HyperShot on
various workloads. Smaller
measurements are better

discernible overhead on CPU and memory read benchmarks, and a modest ∼12% over-
head on memory writes. This is expected, since CPU and memory read benchmarks
do not generate many CoW faults, while the memory write benchmark generates many
CoW faults when it writes data to the memory pages. Higher overheads for disk bench-
marks are due to a pro-active, per-page hypercall made by the root VM to copy a page
before any DMA operation in anticipation of a CoW fault. This hypercall is made even
if the page may already have been copied due to an earlier CoW fault or even if the page
will not generate a CoW fault due to a DMA write request (which reads the memory
page and writes to the device). This hypercall is serialized with the HyperShot proxy,
thereby effectively reducing the parallelism in the system.

We measured HyperShot’s CoW memory storage requirements for different work-
loads during the snapshot of a guest VM. These workloads have different runtime mem-
ory requirements and access patterns, and hence provide a good indicator of typical
memory usage by HyperShot. We calculate percentage memory consumption as

number of pages copied due to a CoW fault × 100%

total number of memory pages protected

The denominator represents an upper bound on the number of pages that will need to
be copied in the worst case. The total number of protected pages for a guest VM with 1
GB memory is 262,107.

The results shown in Table 1 are median values for 5 runs of each workload, with the
overall as a median of all 30 runs. These results indicate that the memory requirement
for HyperShot is <1.5% for all the workloads considered here, with memory write and
disk read benchmarks on the higher side since they generate more CoW faults. This
indicates that an alternative, more efficient, strategy for HyperShot would be to deposit
only a fraction of the total target VM memory size from the root VM to successfully
finish the snapshot, rather then its current strategy of depositing the amount equal to
target VM’s memory size. If more memory is needed during a guest VM’s snapshot,
the hypervisor can pause the guest VM (so it does not generate any further faults) and
request more memory to be deposited from the root VM. Note that it may not work for
all cases, e.g. if the fault is generated due to an access from the root VM, or if the root
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Table 1. Memory overhead due to CoW fault handling
for different workloads in a guest VM

Operations Number of CoW % Memory
Fault Consumption

Idle VM 1622 0.62
CPU workload 3588 1.37
Memory read 2793 1.07
Memory write 3688 1.41

Disk write 2955 1.13
Disk read 3032 1.16
Overall 3407 1.30

Table 2. Time to take SHA-1
hash of a single page of size 4KB
and the composite hash on the
VM of size 1024 MB

Operations Time
Single memory 149.0 µs
page hash
Composite hash 186.5 ms

VM itself is being snapshotted. In this case, HyperShot will have to abort and restart
the snapshot process.

In our next set of experiments, we quantify the performance of the snapshot gener-
ation and verification. First, we micro-benchmarked the time to perform hashing op-
erations. As described earlier, HyperShot performs two different hashes: (a) hashing
individual memory pages at the time of memory reads by the HyperShot proxy, and
(b) a composite hash at the end of the snapshot process. The results shown in Table 2
indicate that hashing operations are fast, and their impact on overall snapshot generation
is small.

Next, we measured the time to finish various stages of the snapshot process from
the HyperShot proxy for a guest VM and for an idle root VM. The guest VM was
either idle or was executing one of the 5 benchmarks from the PassMark suite described
earlier. We measured CoW setup time (initialization time), VM memory copy time,
cleanup time, and TPM quote time. Due to brevity, we have skipped the details for
each workload type. Not surprisingly, we found the overall time to be dependent more
on the number of memory pages being snapshotted and less on the workload itself.
For guest VMs of memory size 1 GB, the overall time to finish the snapshot was 39s,
of which 37s were spent in making the memory copy from the hypervisor one page at
a time and writing it to the snapshot file, 1s in obtaining the TPM quote, and 1s in
initialization and cleanup. Overall time for the root VM’s snapshot was 391s, of which
218s are spent in memory copy, 3s in initialization, 169s in cleanup, and 1s in TPM
quote. The increased cost for the root VM is due to both large memory size and a larger
number of CoW faults generated by the root VM during its normal execution. Further
performance improvements can be made by sharing memory page information between
the HyperShot proxy and the hypervisor so that it can avoid hypercalls for pages that
are deposited for CoW processing and are not part of snapshot, or have been copied
already in DMA setup path.

For the challenger, generating the hash for a snapshot of 1GB memory took 22s,
while the TPM quote validation in software and matching the hash to the one reported
in the quote took negligible time. We assume that the snapshot file and the TPM quote
would be transferred out-of-band to the challenger, and the cost of this step would
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depend on the network bandwidth between challenger and the cloud. As mentioned in
Section 4.1, the challenger could be the end-user of the cloud or any third party who
has been appointed on the behalf of the customer to verify the integrity of the snapshot.

Although further performance optimizations are possible, results from the prototype
implementation show that HyperShot’s design is viable, and it imposes moderate over-
head on the snapshotted VMs and on the overall platform.

5.3 Deployment Strategy

We envision that cloud providers would add the interface for trusted snapshot requests
to their web-based VM management front-end. This front-end communicates with the
management plane of the cloud infrastructure that controls hundreds of thousands of
machines, each running multiple VMs hosting customers code, data, and services. We
assume that each physical machine has a TPM chip, which is available today on most
commodity hardware platforms. Cloud providers set up each physical machine as it is
provisioned to the data center with software and credentials in order to participate as
part of the hosting infrastructure. As part of this provisioning, the system software on
the machine would generate the AIK using the TPM and would obtain an AIK certifi-
cate from a trusted certification authority (CA). This CA is either part of the trusted
infrastructure of the cloud provider or an external party, and the certificate ensures that
AIKpriv is protected by a physical TPM. This certificate is then shared with the Hyper-
Shot service front-end. On a request from a customer to generate a trusted snapshot, the
trusted infrastructure maps the globally unique identifier (guid) of the VM mentioned
in the request to a physical host running the customer’s VM. After generating the snap-
shot, the final quote, the AIK certificate associated with the physical machine, and the
snapshot are returned to the customer. The customer can use the certificate to validate
the AIK which is then used to verify the integrity of the snapshot. Since the contents of
a snapshot are integrity protected, the cloud provider is free to store the snapshot as it
deems fit—on a local disk, a network share, or using a cloud storage service such as S3
or EBS.

5.4 Discussion

HyperShot is vulnerable to a scrubbing attack where a malicious administrator or com-
promised root VM can scrub attack traces from the customer VM before the snapshot
process starts. A possible solution to this problem is to keep the snapshot request hid-
den from the malware until the CoW initialization is over. This requires an out-of-band
direct communication channel between the service front-end and the hypervisor on the
physical machine. It may be possible to establish such a channel over the secondary
management communication infrastructure using special purpose processors, such as
Intel AMT. The viability of this type of solution has been demonstrated by recent in-
tegrity measurement work [1]. An alternative solution makes the snapshot generation
an asynchronous process, with the hypervisor initiating the CoW protection at a ran-
dom point in time. HyperShot only records a VMs’ memory and registers; it does not
yet snapshot disk contents. We plan to extend it with an existing virtual disk snapshot
solution, such as Parallax [23] or the disk snapshotter available with Hyper-V.
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6 Related Work

Trust issues in cloud computing are an active area of research investigations. Recent
work has showed how to use untrusted cloud infrastructures to store and relay infor-
mation [10, 19]. Trusted computing and virtualization can further enable more gen-
eral purpose services in a public cloud environment. Santos et al. [34] presented a
TPM-based architecture to protect the confidentiality and integrity of data in the cloud.
Krautheim [18] proposed a new management and security model using TPMs called pri-
vate virtual infrastructure (PVI) for cloud computing. TrustVisor [20] provided safety of
computation using a TPM based design. Sailer et al. [33] designed and implemented a
trusted computing based integrity measurement architecture for desktops. Schiffman et
al. [35] proposed a centralized verification service that produces TPM-based attestation
of customers’ cloud instances for the integrity and transparency purposes. In a similar
manner, HyperShot uses trusted computing technologies such as TPM and secure boot
to enable a trusted snapshot capability in a cloud infrastructure, where only minimal
trust is placed in infrastructure and the hypervisor.

Past research has proposed various mechanisms to reduce the size of trusted com-
puting bases in virtualized environments. Murray et al. [26] proposed a disaggregation
based approach for Xen that split dom0 into multiple small privileged VMs, with em-
phasis on securing interfaces among them. Nova [37] proposed a micro-kernel inspired
design for a secure virtualization architecture. It minimized the amount of code in the
privileged hypervisor and moved more functionality into service VMs, thereby reduc-
ing the core platform TCB. Terra [11] offered security to customer VMs by developing
a small trusted virtual machine monitor and provided an isolated closed-box environ-
ment to execute sensitive applications. All of these approaches can be readily leveraged
by HyperShot by moving the snapshot functionality to its own service VM. However, in
order to provide similar trust guarantees as our hypervisor-based approach, the TCB for
this snapshot service VM must be carefully managed to limit it to just the hypervisor.

Many commercial virtualization platforms provide a VM snapshot facility based on
a CoW mechanism [9, 24]. However, these solutions depend upon the correct opera-
tion of the root VM, and they rely on potentially malicious administrators to assist in
the snapshot process [30]. In contrast to these systems, HyperShot does not rely on the
privileged VM and administrators and protects the integrity of a VM’s snapshot from
unwanted modification from these entities. HyperShot even supports snapshotting of
the privileged VM itself using the same mechanisms, a feature missing from current
virtualization solutions. These properties makes HyperShot more suitable for a virtual-
ization based public cloud infrastructure.

7 Conclusions

We investigated trust issues between cloud customers and providers. To allow customers
to establish trust in the public cloud infrastructures, we designed and developed Hy-
perShot, a system that securely snapshots a VM even in the presence of a malicious
root VM or malicious administrators. HyperShot employs TPM-based attestation and
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TXT-based trusted launch of the hypervisor to protect the integrity of the snapshot via
a signature and trusted reporting of the platform state. HyperShot extends the same
snapshot functionality and trust guarantees to the root VM itself. This enables cloud
infrastructure providers and customers alike to manage the security and integrity of their
VMs based on trusted snapshots. We integrated HyperShot with forensic and runtime
integrity measurement utilities. Our performance evaluations showed that HyperShot
incurs moderate overhead on the VMs’ performance.
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