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Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 15th International Symposium on Research in Attacks, Intrusions,
and Defenses (RAID 2012), which took place in Amsterdam, The Netherlands,
during September 12–14, 2012.

For its 15th anniversary, the RAID symposium changed its name from “Re-
cent Advances in Intrusion Detection” to “Research in Attacks, Intrusions and
Defenses.” The new name reflects the broader scope of the conference that now
aims at bringing together leading researchers and practitioners from academia,
government, and industry to discuss novel research contributions related to any
area of computer and information security.

This year, there were six technical sessions presenting full research papers on
virtualization security, attacks and defenses, host and network security, fraud
detection and underground economy, Web security, and intrusion detection sys-
tems. Furthermore, there was an invited talk to present the most influential
paper presented in the first five years of the RAID conference and a poster
session presenting emerging research areas and case studies.

The RAID 2012 Program Committee received 84 full paper submissions from
all over the world. All submissions were carefully reviewed by independent re-
viewers on the basis of technical quality, topic, novelty, and overall balance. The
final decision took place at a Program Committee meeting on May 24 in San
Francisco, California, where 18 papers were eventually selected for presentation
at the conference and publication in the proceedings. The symposium also ac-
cepted 12 poster presentations, reporting early-stage research, demonstration of
applications, or case studies. An extended abstract of each accepted poster is
included in the proceedings.

The success of RAID 2012 depended on the joint effort of many people. We
would like to thank all the authors of submitted papers and posters. We would
also like to thank the Program Committee members and additional reviewers,
who volunteered their time to carefully evaluate all the submissions. Further-
more, we would like to thank the General Chair, Bruno Crispo, for handling
the conference arrangements; Marco Cova for handling the publication process;
William Robertson and Sotiris Ioannidis for publicizing the conference; Stefano
Ortolani for maintaining the conference website and helping with the local ar-
rangements; and the Vrije Universiteit in Amsterdam for hosting the conference.
We would also like to thank our sponsor Symantec, for supporting the conference.

September 2012 Davide Balzarotti
Salvatore Stolfo
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Trusted VM Snapshots
in Untrusted Cloud Infrastructures

Abhinav Srivastava1, Himanshu Raj2, Jonathon Giffin3, and Paul England2

1 AT&T Labs–Research
2 Microsoft Research

3 School of Computer Science, Georgia Institute of Technology
abhinav@research.att.com, {rhim,pengland}@microsoft.com,

giffin@cc.gatech.edu

Abstract. A cloud customer’s inability to verifiably trust an infrastructure
provider with the security of its data inhibits adoption of cloud computing. Cus-
tomers could establish trust with secure runtime integrity measurements of their
virtual machines (VMs). The runtime state of a VM, captured via a snapshot, is
used for integrity measurement, migration, malware detection, correctness valida-
tion, and other purposes. However, commodity virtualized environments operate
the snapshot service from a privileged VM. In public cloud environments, a com-
promised privileged VM or its potentially malicious administrators can easily
subvert the integrity of a customer VMs snapshot. To this end, we present Hy-
perShot, a hypervisor-based system that captures VM snapshots whose integrity
cannot be compromised by a rogue privileged VM or its administrators. Hyper-
Shot additionally generates trusted snapshots of the privileged VM itself, thus
contributing to the increased security and trustworthiness of the entire cloud in-
frastructure.

1 Introduction

The lack of verifiable trust between cloud customers and infrastructure providers is
a basic security deficiency of cloud computing [2, 14, 25, 31]. Customers relinquish
control over their code, data, and computation when they move from a self-hosted en-
vironment to the cloud. Recent research has proposed various techniques to protect
customers’ resources in the cloud [10, 19, 34]. We consider an alternate way to estab-
lish trust and provide customers with control: runtime verification of their rented virtual
machines’ (VMs) integrity. The runtime state of a VM, captured via a snapshot, can be
used for runtime integrity measurement [3, 5, 12], forensic analysis [42], migration [8],
and debugging [39]. The snapshot allows customers to know the state of their VMs and
establishes trust in the cloud environment.

Today’s commodity virtualization environments such as Xen [4], VMware [41], and
Hyper-V [24] capture a consistent runtime state of a virtual machine at a point in time
via the snapshot service. Each of these virtualized environments generates a snapshot
from a privileged VM, such as dom0 [4] or the root VM [24]. Since the privileged VM,
together with the hypervisor and the hardware, comprises the infrastructure platform’s
trusted computing base (TCB), the snapshot generation service and the resulting snap-
shot stored in the privileged VM are inherently trusted.

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 1–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A. Srivastava et al.

Such unconditional trust in privileged VMs is sensible for a self-hosted private vir-
tualized infrastructure, but it does not generalize to today’s virtualization-based public
cloud computing platforms due to different administrative control and restrictions [6].
Cloud customers or tenants must trust the root VM to generate a true snapshot of their
VMs. Given that the root VM runs a full fledged operating system and a set of user-level
tools with elevated privileges, any vulnerability present in that substantial software col-
lection may be exploited by attackers or malware to compromise the integrity of the
snapshot process or the snapshot information itself. Customers must hence also rely
on an infrastructure provider’s administrators and administration policies to properly
manage the security of privileged VMs. Yet, the problem of malicious administrators is
serious enough that researchers have proposed technical measures to support multiple-
person control for administration [30].

In this work, we focus on the trust issues between customers and providers and pro-
pose a system called HyperShot that generates trusted snapshots of VMs even in the
presence of adversarial root VMs and administrators. HyperShot only relies on a hy-
pervisor and does not include the root VM in its TCB. Trust in the hypervisor itself
is established via hypervisor launch using Trusted Execution Technology (TXT) [15].
Our design departs from the existing snapshot generation approaches in that HyperShot
operates from the hypervisor rather than from the root VM. Since the hypervisor ex-
ecutes at a higher privilege level than the root VM, this design protects the snapshot
service from the compromised root VM. HyperShot protects the integrity of the gener-
ated snapshot with a cryptographic signature from a Trusted Platform Module (TPM)
that incorporates measurements of all trusted components and a hash of the snapshot
itself. Since the TPM is exclusively under the control of our hypervisor, these mea-
surements enable a verifying entity or customer to establish trust in a VM’s snapshot.
Since HyperShot does not trust the root VM and its administrators, it extends the same
snapshot generation functionality and trust guarantees to the root VM itself.

To allow customers and providers to obtain verifiable snapshots of VMs executing
in the cloud, we present a snapshot protocol that operates with minimal trust in the
cloud infrastructure itself. The design of HyperShot decouples the snapshot generation
process from the verification or analysis process. A customer can generate the snap-
shot in the cloud and can perform analysis at its own end or assign the verification
duties to a third party. This design reduces burden on cloud infrastructure providers
since customers can choose analysis software independent of the cloud provider. Hyper-
Shot’s snapshot of the root VM enables customers to verify the integrity of a provider’s
management VMs in a measurable way with the help of third parties trusted by both
providers and customers. We believe that this significantly contributes to the trustwor-
thiness and reliability of the cloud infrastructure provider as a whole.

To demonstrate the feasibility of our ideas, we have implemented a HyperShot pro-
totype based on Microsoft’s Hyper-V virtualization infrastructure; any other hypervisor
such as Xen or VMware is equally suitable for our work. The platform TCB in com-
modity virtualized environments is large and contains substantially more code than just
the hypervisor due to the inclusion of one or more privileged VMs to perform tasks like
I/O virtualization, peripheral access, and management [37]. Our design significantly re-
duces the platform TCB for the snapshot service by removing the privileged VM and its
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administrators from the TCB, an approach that is similar to the VMware ESXi architec-
ture [40]. HyperShot only adds ∼4K lines to the hypervisor codebase, which coupled
with the eviction of privileged VMs, nets a much smaller TCB.

Our choice of a commodity virtualization environment is motivated by the reliance of
today’s cloud infrastructures on full featured hypervisors, rather than on small security-
specific hypervisors like SecVisor [36] and TrustVisor [20]. These small hypervisors do
not support many features essential to public cloud environments, such as support of
multiple VMs and VM migration. Nevertheless, our trusted snapshot service is general,
and it can easily support security-specific hypervisors if cloud providers decide to move
towards these smaller hypervisors in the future.

To demonstrate the usefulness of trusted snapshots, we integrated HyperShot with
the open source forensic utility Volatility [42] and with runtime integrity measurement
software called KOP [5]. Our security evaluation demonstrates HyperShot’s effective-
ness at mitigating various attacks on the snapshot service and on the snapshot itself.
Our detailed performance evaluation shows that HyperShot incurs a modest runtime
overhead on a variety of benchmarks.

In summary, we make the following contributions:

– We investigate the trust issues between cloud customers and providers and motivate
the need to reduce the effective platform TCB in the cloud by showing a concrete
attack on the snapshot originating from a malicious root VM.

– We propose trusted snapshots as a new cloud service for customers and design
a mechanism for trusted snapshot generation across all VMs, including the root
VM. Our design mitigates various attacks that compromise the snapshot service
and integrity of the generated snapshot. We implemented our design in the Hyper-
V hypervisor.

– We associate a hardware rooted trust chain with the generated snapshot by leverag-
ing trusted computing technologies. In particular, the hypervisor signs the snapshot
using a TPM. Trusted boot using TXT establishes trust in the hypervisor.

– We present a snapshot protocol allowing clients to request and verify VM snap-
shots. We demonstrate the use of trusted snapshots in various end-to-end scenar-
ios by integrating the trusted snapshot with forensic analysis and runtime integrity
measurement software.

2 Overview

2.1 Threat Model

Our threat model considers attacks that compromise the integrity of the snapshot either
by tampering with the snapshot file’s contents or with the snapshot service. We refer
to all entities that could perpetrate this attack from the root VM—whether it is a mal-
ware instance running in the root VM or a malicious administrator—collectively as a
malicious root VM. In particular, we consider the following types of attacks:

– Tampering: A malicious root VM may modify the generated snapshot file or the
runtime memory and CPU state of a target VM during the snapshot process to



4 A. Srivastava et al.
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Fig. 1. The existing Hyper-V snapshot
design places all components other than
memory protection inside the root VM,
which makes the snapshot service vul-
nerable to attacks by the root VM

remove memory regions that include evidence of malware or other activity unde-
sired by the customer.

– Reordering: A malicious root VM may reorder the content of memory pages in
the snapshot file without modifying the contents of individual pages. This may fool
integrity checking or forensic analysis utilities that expect a snapshot file’s contents
to be in certain order, leading to failures to locate security-relevant data in the file.

– Replaying: A malicious root VM may provide an old snapshot of a target VM that
does not contain any malicious components.

– Masquerading: A malicious root VM may try to intercept the snapshot request
and modify the request’s parameters, such as the target VM, to provide a snapshot
of a VM different than the one intended.

Note that attacks meant to compromise the snapshot process via introduction of a bad
hypervisor, such as bluepill [32] and SubVirt [17], are addressed by the use of trusted
computing techniques, as described later. We do not consider hardware attacks, such as
cold boot attacks on RAM and side channel attacks, specifically since these attacks may
compromise the confidentiality of a VM’s state while HyperShot’s goal is to protect the
integrity of the snapshot. Finally, we do not consider availability attacks, such as delet-
ing the snapshot file, crashing the root VM, or crashing the customer VMs during the
snapshot, and DMA-based attacks from rogue devices or rogue device drivers. DMA-
based attacks can be thwarted using IOMMU-based protection methods, as successfully
demonstrated by Nova [37] and TrustVisor [20]. We also assume minimal trust in the
cloud infrastructure to assign a globally unique identifier (guid) to a customer VM and
enforce the invariant that a VM with a particular guid can only be executing on one
physical machine at any given time. This infrastructure is independent of customers,
maintained by cloud providers, and it can be achieved with a much restricted core set
of machines. This assumption is already required in today’s cloud environments such
as EC2 and Azure for proper functioning of network-based services.

2.2 Threats to Existing Hyper-V Snapshot Mechanisms

A typical virtualization infrastructure includes a hypervisor, multiple guest VMs, and a
privileged management VM, such as the root VM or dom0. The current virtualization
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architecture supported by Hyper-V, Xen, and VMware ESX server allows the snapshot
service to operate from the privileged management VM. As shown in Figure 1, the root
VM in Hyper-V takes a guest VM’s snapshot with only minimal support from the hy-
pervisor. More specifically, the root VM only relies on the hypervisor to protect guest
memory pages from writes performed by the target guest VM being snapshotted. These
writes trigger the root VM’s copy-on-write (CoW) mechanism, where the root VM han-
dles faults (using a fault handler), copies the content of the page (using copy-on-fault)
before removing the protection, and resumes the guest VM’s execution. Concurrently,
the snapshot application also copies other guest memory pages. After completion of
the snapshot, the snapshot file is stored in the root VM and CoW protection on guest
memory pages is removed.

We evaluated the security of the existing Microsoft Hyper-V [24] snapshot mecha-
nism in a cloud environment under the threat model described above. We developed a
concrete tampering attack on a customer’s snapshot file by removing from it evidence
of malware infection and other important information that a malicious administrator
may want to hide from a customer. To launch the attack, we utilized a forensic analy-
sis utility called Volatility to extract information such as the list of running processes,
loaded drivers, opened files, and connections. We first opened the snapshot file in anal-
ysis mode and listed all running processes, and we then chose a process from the list
to remove—in a real threat scenario, this could be malware. Next, we used Volatility to
alter the list of running processes by rewriting the linked list used by Windows to store
all running processes. We repeated this experiment to remove a loaded driver from the
list of drivers. These malicious modifications will not be detected by the consumers
of this snapshot due to the lack of any measurable trust associated with the generated
snapshot.

3 HyperShot Architecture

In this section, we present the design goals of HyperShot and the detailed description
of its various components as shown in Figure 2.

3.1 Design Goals

We designed HyperShot to satisfy the following goals:

– Security: HyperShot creates trusted snapshots by protecting both the snapshotting
code and the generated snapshot data files against manipulation by malicious root
VMs. To secure the snapshot service, HyperShot deploys its components inside the
hypervisor. Since the hypervisor runs in a high-privileged mode, the untrusted root
VM cannot alter HyperShot’s components either in memory or in persistent storage.
To preserve the integrity of the snapshot files stored in the root VM, HyperShot
hashes the snapshot data of the target VM1 from the hypervisor and signs the hash
using the TPM. While manipulation is not directly prevented, the signed hashes

1 We use the term target VM to refer to any VM that is being snapshotted without distinguishing
whether it is a guest VM or the root VM. Any distinction is explicitly qualified.
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allow HyperShot or a customer to detect malicious alterations by the infrastructure
provider. Unlike existing snapshot generation techniques that include the root VM
in the platform TCB, HyperShot excludes the root VM and its administrators from
the TCB; hence it extends the same snapshot generation functionality and trust
guarantees to the root VM.

– Consistency: To capture a consistent state of the target VM, HyperShot does not
allow any modification to the target VM state without first recording the state as it
was at the time of the snapshot request.

– Performance: To keep the performance overhead moderate, HyperShot only pauses
the target VM for a minimal duration and then uses copy-on-write (CoW) to allow
the VM to continue execution during the snapshot. This design incurs low overhead
on applications executing inside the target VM.

HyperShot deploys all components inside the hypervisor; it keeps only a thin proxy
client in the root VM. HyperShot also protects the integrity of the snapshot from at-
tacks that originate due to a compromise of the proxy software executing inside the
root VM, as explained in Section 5.1. HyperShot moves only snapshot service related
functionality into the hypervisor, leaving the rest of the code inside the root VM. The
additional code added into the hypervisor totals ∼4K lines of source.

3.2 Enhanced Copy-on-Write Protection

HyperShot creates trusted and consistent snapshots of VMs executing in a virtualization
based cloud environment. One possible approach to enable consistency is to pause the
target VM during the entire snapshot process. This approach may impose severe run-
time overhead on applications running in the target VM during the snapshot generation.
Further, it still does not guarantee consistency since a malicious root VM may mod-
ify the state of the target VM while the target VM’s snapshot is in progress. To offer
both consistency and security, HyperShot utilizes an enhanced copy-on-write (CoW)
mechanism inside the hypervisor.
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To set up the enhanced CoW on a guest VM at the beginning of a snapshot, the
hypervisor pauses the guest VM and marks its memory pages read-only by iterating
across its address space. To protect the guest VM’s state from untrusted modifications
by the root VM during the snapshot, HyperShot also write-protects the corresponding
memory pages mapped in the root VM’s page tables. For snapshots of the root VM,
the CoW setup is performed only on the root VM’s address space because guest VMs
cannot access the root VM’s memory pages. Our CoW mechanism is different from
those used in live VM migration [8]. In particular, we copy memory page content prior
to modification rather than iteratively copying dirty pages after alteration.

3.3 Access Mediation

CoW setup allows HyperShot to mediate writes performed by the target VM to write-
protected memory pages. This design fulfills HyperShot’s goals of security and consis-
tency since it allows HyperShot to copy the content of memory pages before they are
modified. In particular, at each page fault on a write-protected page, HyperShot copies
the content of the faulted page before restoring the original access permissions. These
copies are stored in protected memory regions belonging to the hypervisor. In our im-
plementation, this memory is deposited by the root VM on-demand before the snapshot
of a VM is started. Once deposited, this memory becomes inaccessible from the root
VM, hence the snapshot data stored in this memory cannot be modified by the malicious
root VM. HyperShot keeps the content of the faulted and copied pages inside the hyper-
visor until the snapshot process is completed. This design is required both for security
and correctness because HyperShot allows changes to occur on the faulted pages after
copying the pages’ contents. Multiple guest physical addresses (GPAs) may map to the
same system physical address (SPA), so if a write-protected GPA faults and it mapped
to an SPA whose page has already been processed, then HyperShot takes the snapshot
of the faulted GPA and its hash from the stored copy rather than directly from the target
VM’s memory as the memory content may have been modified.

For the root VM’s snapshot, faults originate only from the root VM. However, for
a guest VM’s snapshot, HyperShot receives faults on a write-protected page both from
the guest and root VM. The faults occur from the guest VM as part of its own execution
and from the root VM as part of I/O and other privileged operations. The stock Hyper-V
hypervisor does not expect the root VM to generate page faults due to page protection
bits because the root VM has full access to all guest VMs’ memory pages. To handle
these new faults, HyperShot adds a new page fault handler in the hypervisor to facilitate
the copying of page contents and restoring of the original access permissions in the root
VM’s address space. The same page fault handler is used during the snapshot of the
root VM to handle page faults due to CoW setup on the root’s address space.

Finally, HyperShot provides persistent protection to the runtime environment of the
target VM. HyperShot mediates operations that map and unmap memory pages in the
target VM’s address space maintained by the hypervisor. If these changes involve a page
that is protected and not already copied, HyperShot copies the contents of the memory
page before it allows the operation to complete. In addition to recording memory pages,
HyperShot also snapshots the virtual CPU (vCPU) state associated with a target VM at
the beginning of a snapshot and stores all vCPU register values inside the hypervisor.
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3.4 Memory Copy

The memory copier is a component that resides in the hypervisor and closely works
with the HyperShot proxy to move memory contents into a generated snapshot file. The
proxy invokes a series of hypercalls in a loop during which it sequentially requests the
contents of each memory page by invoking the memory copier and writes to the file.
The copier is responsible for two tasks. First, it passes the contents of pages already
snapshotted via CoW to the proxy. Second, it snapshots remaining memory pages that
were not modified during the CoW, as the CoW mechanism would not have recorded
the contents of unwritten pages.

On a request from the HyperShot proxy, if the requested page is write-protected and
not already copied, the copier extracts the contents of the page from the target VM’s
memory, calculates a hash over the page’s content, and stores only its hash in the hy-
pervisor for the future use. It passes a copy of the content back to the HyperShot proxy.
If the requested page had already been copied during the CoW, the copier calculates the
hash on the previously stored content inside the hypervisor and sends the content back
to the proxy. Finally, if a requested memory page is not mapped in the target VM, all
zeroes are returned and a hash of the zero page is stored for the future use.

3.5 Hash Generation

To protect the integrity of the snapshot file from a malicious root VM, HyperShot cre-
ates message digests or hashes of the target VM’s memory pages before the snapshot
content is sent to the root VM. These hashes are stored inside the hypervisor, and thus
are not accessible to the root VM.

The hashing process works in two steps. In the first step, HyperShot generates the
SHA-1 hash of each individual memory page present in the target VM’s address space.
In the second step, it creates the composite hash of all the individual hashes calculated
in the first step:

Hcomposite = SHA-1(H1||H2||H3......||HM)
where M is the total number of guest memory pages and Hi is the SHA-1 hash of the
ith memory page.

To generate the composite hash, HyperShot follows a simple ordering: it always
concatenates individual hashes starting from the hash of the first memory page in the
target VM and continues up to the hash of the last page. This ordering is important—as
described earlier in Section 2.1, an attacker may launch a reordering attack by alter-
ing the snapshot file. To detect the page reordering attempts, HyperShot always ex-
pects the snapshot to be performed in sequential order, and it generates the composite
hash in the similar fashion. This design detects a page ordering attack as the composite
hash will not match during verification. We describe the snapshot verification process
in Section 4.2. We used a linear hash concatenation approach for simplicity, though
other efficient techniques, such as Merkle hash trees [22], could be used to generate a
composite.
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3.6 Integrity Protection of the Snapshot

HyperShot keeps the contents of CoW memory pages and the hashes of all pages in the
hypervisor memory until the snapshot is over; the individual hashes are used to gen-
erate the composite. Merely generating Hcomposite inside the hypervisor is insufficient
to maintain the integrity of the snapshot because malware or malicious administrators
can easily subvert the hash when it is transferred to the root VM. We must protect the
integrity of Hcomposite itself so that it cannot be modified inside the root VM. We use
hardware-supported signing in order to detect malicious tampering of Hcomposite and
leverage trusted computing technologies to establish a trusted environment for the sign-
ing operation.

Trusted computing technologies provide a basis for trusting a platform’s software
and hardware configurations based on a trust chain that is rooted in hardware. In par-
ticular, it provides the Trusted Platform Module (TPM) [38], which is available today on
most commodity hardware platforms. Each TPM has multiple 20-byte Platform Con-
figuration Registers (PCRs) used to record measurements related to the platform state,
such as those of various software components on the platform. These measurements
form a chain of trust, formed either statically at the platform’s boot time, or dynami-
cally at any time during execution. Most PCRs cannot be reset by software but only ex-
tended from their previous values. The TPM also contains an asymmetric endorsement
key (EK) that uniquely identifies the TPM and the physical host it is on. Due to security
and privacy concerns, a separate asymmetric attestation identity key (AIK) is used as
an alias for EK when signing remote attestations of the platform state (as recorded in
various PCRs). The process of establishing an AIK based on EK is described in de-
tail in [27]. The remote attestation process is based on the TPM’s quote functionality,
which signs a 20-byte sized data value using AIKpriv and a set of PCRs [38]. A more de-
tailed description of trusted computing technologies for today’s commodity platforms
is provided by Parno et al. [28].

HyperShot leverages a research prototype version of Hyper-V that provides a trusted
boot of the hypervisor. In particular, the hypervisor is launched via Intel’s TXT [15]
technology, and it is started before the root VM (compared to the stock Hyper-V ar-
chitecture where the hypervisor starts after the root VM). This late hypervisor launch
architecture is very similar to Flicker [21] and trusted Xen [7]. The trusted boot mea-
sures the platform TCB and records the measurements in a non-repudiable fashion in
the TPM’s PCRs 17, 18, and 22. The AIK is also loaded into the TPM before a signature
can be requested from the TPM in the form of a quote.

After the snapshot process is completed, the hypervisor records Hcomposite as part
of the system configuration in the resettable PCR 23. The quote request (described in
detail in Section 4) includes PCRs 17, 18, 22, and 23 in the signing process to ensure
(a) the integrity of the platform TCB via PCRs 17, 18, and 22; and (b) the integrity of
the generated snapshot itself via PCR 23. Note that in HyperShot, the TPM is under the
control of hypervisor and only a para-virtualized interface is provided to the root VM
to request a quote. A malicious root VM cannot send arbitrary raw TPM commands to
corrupt the TPM state. Also, the para-virtualized TPM interface presented to the root
VM does not allow resetting of PCR 23; only hypervisor is allowed to reset PCR 23.
This design protects the integrity of the measurement from the malicious root VM.
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3.7 DMA Considerations

A DMA operation occurring during a snapshot may alter memory pages of a target VM.
To ensure snapshot consistency, we modify the guest DMA processing code inside the
root VM at a point prior to the actual DMA. We add a hypercall in this code path to
pass the GPAs of memory pages being locked for the DMA. This ensures that the orig-
inal memory page is processed prior to the DMA if it had not already been copied for
the snapshot. We intercept guest DMA operations for consistency, and not for security
reasons. Our DMA interception code resides inside the root VM and is prone to attacks.
Our current implementation does not yet support interception of the root VM’s DMA
operations. Though it is possible by modifying the root’s DMA handler, it would also
not be secure. A future integration of IOMMU with CoW based protection will ensure
that any DMA write operation that bypasses the snapshot will fault and be either aborted
or restarted after the copy is made.

4 HyperShot Protocol

The snapshot protocol allows clients or challenging parties to securely retrieve trusted
snapshot and validation information from the providers or attesting system. HyperShot
generates snapshots of VMs at the request of a client. The protocol used by HyperShot
involves the following entities:

– Challenger: A customer or challenger is an entity who wishes to measure the
integrity of her VM running in the cloud. In HyperShot, a cloud infrastructure
provider can act as the challenger when it requests snapshots of the root VM of a
particular machine. Challengers can act as verifiers or can assign verification duty
to third parties whom they trust.

– HyperShot Service Front-End: The front-end routes the snapshot request to the
physical machine where the VM to be snapshotted is currently executing. It also
sends the snapshot file and TPM quote along with the AIK certificate back to the
customer. The HyperShot service front-end is a part of the minimal trusted cloud
infrastructure.

– Forwarder: The HyperShot proxy receives the request from the HyperShot service
front-end and uses the hypercall interface to pass the request to the hypervisor.

– Generator/Attestant: The generator is the HyperShot component inside the hyper-
visor that performs most of the work—it sets up proper CoW protections, copies
memory pages, protects the integrity of individual memory pages and the compos-
ite snapshot, and provides an attestation using the TPM. This is the key component
of the HyperShot TCB.

4.1 Snapshot Generation Protocol

Figure 3 depicts the HyperShot protocol with steps involved in the snapshot generation
process. The protocol starts when a challenger sends a snapshot request to the Hyper-
Shot service front-end in the cloud, identifying the VM to be snapshotted by the guid
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(assigned by the trusted part of the cloud infrastructure at the VM creation time). In
particular, the challenger first creates a non-predictable random nonce N, concatenates
it with the VMguid, and sends it to the HyperShot service (1). The nonce guarantees the
freshness of the request and thwarts replay attacks, whereas the VM identifier defeats
masquerading attacks.

On receiving a nonce and VMguid, the service front-end finds the physical host on
which the VMguid is running and forwards the request to the HyperShot proxy running
on that host. The proxy further forwards the request to the hypervisor and starts the CoW
setup process using the hypercall (2). Masquerading attempts in which a malicious root
VM modifies the VMguid that is being passed to the hypervisor can easily be detected
by the customer as the VMguid value will be used to create the final quote by the TPM.
Defenses against other forms of masquerading attacks such as “evil clone” are described
in Section 5.1.

After initiating the CoW, the forwarder also requests the hypervisor to load the pro-
tected key blob for AIK into the TPM, which is used later by the TPM to sign the snap-
shot (2a-2b). After the CoW setup, HyperShot starts copying the target VM’s memory
pages either through CoW faults or by servicing memory copy requests from the for-
warder (3). Once the memory copying process is over, the hypervisor generates the
composite hash Hcomposite and associates it with the nonce (4), and stores it for future
use.

Next, the forwarder requests a quote over the nonce and the VM identifier from the
hypervisor (5). The hypervisor resets PCR 23 (6), and then extends it with Hcomposite
corresponding to the nonce and the VM identifier (7):

PCR23 = Extend(0||Hcomposite)
The hypervisor then generates the following TPM Quote request (8):

TPM QuoteAIK(N||VMguid)[PCRs]
where AIK is the handle for an AIKpriv already loaded in the TPM, and PCRs is the set
of PCRs = {17, 18, 22, 23} to be included in the quote. As described earlier, PCRs 17,
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18, and 22 report the integrity of the platform TCB, while PCR 23 reports the integrity
measure for the snapshot.

The generated quote is sent back to the forwarder (9, 9a), which sends it to the
HyperShot service front-end, which in turn sends it to the challenger along with the
snapshot file and AIK certificate (9b). The snapshot verification process performed at
the verifier/challenger site is explained in the next section.

4.2 Snapshot Verification Protocol

The verification of the snapshot is straightforward, and it is performed completely in
software. In the first phase, the verifier ensures that the quote obtained from the for-
warder is valid. This requires completing the following steps:

– The verifier checks that AIKpub is indeed a valid AIK based on a certificate associ-
ated with the AIK obtained. Next, it verifies the signature from the quote process.

– It determines if the values of PCRs 17, 18, and 22 included in the quote correspond
to a known good hypervisor. The known good values of a hypervisor are known to
the verifier a priori. This informs the challenger that the hypervisor’s integrity was
maintained during the snapshot.

– It extracts Hsent as the value of PCR 23 included in the quote.

In the next phase, the verifier computes the composite hash, Hlocal, over the memory
contents contained in the snapshot file by using the same algorithm as used by Hy-
perShot (described in Section 3.5). Next, the verifier performs the extend operation (in
software):

Hfinal = Extend(0||Hlocal)
If Hfinal = Hsent, then the snapshot received by the verifier is trusted. Otherwise, the
verifier discards the snapshot and takes remedial action, such as informing the provider
or moving its work to an alternate provider.

5 Evaluation

HyperShot’s functionality extends the platform hypervisor with ∼4K lines of C code,
a modest increase compared to the original size of the hypervisor. This design results
in a large TCB reduction from the point of view of the snapshot service as HyperShot
does not rely on the root VM and its administrators [37]. Next, we provide a detailed
security and performance evaluation of HyperShot and its deployment strategy.

5.1 Security Analysis and Evaluation

We analyze the security of HyperShot against threats described in Section 2.1, such as
tampering, reordering, replaying, and masquerading. We first considered the tampering
attack and used the same attack as described in Section 2.2 to compromise the integrity
of the snapshot file. After the completion of the snapshot process but before the snapshot
is sent to the client, we used Volatility [42] to alter the generated snapshot file stored
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in the root VM. We deleted a process from the list of running processes. The modified
snapshot file and the TPM quote were sent to the verifier, which followed the protocol
described in Section 4.2. The verification failed since the hash calculated by the verifier
did not match the hash included in the trusted quote. Note that this attack was successful
on a system with stock Hyper-V snapshotting in the root VM.

Next, we analyzed an attacker’s ability to manipulate the snapshot via manipulation
of the proxy. An attacker may launch reordering attacks either by reshuffling the con-
tent of the snapshot file or by compromising the code and data of the HyperShot proxy.
HyperShot mitigates page reordering attacks by following a simple ordering when gen-
erating the composite hash. This design forces the proxy to copy memory pages in the
snapshot file in the same order. If this ordering is changed by malware instances or
malicious administrators, then the generated composite hash in the hypervisor will not
match with the hash calculated at the verifier. HyperShot also prevents other attacks
originating from the proxy software inside the root VM. An untrusted root VM may
force the proxy to skip the snapshot of some memory pages that they want to hide. To
defeat these attacks, the hypervisor ensures that the set of pages protected at the begin-
ning of the CoW setup is the same as the set of pages hashed, and if not, it does not
generate the TPM quote over the composite hash.

HyperShot thwarts replaying and masquerading attacks by using a nonce and VM
identifiers in the request from the clients. The nonce allows HyperShot to distinguish
between a new and the old request, while a VM identifier allows it to identify the tar-
get VM. Since the TPM quotes the generated snapshot using the nonce and the VM
identifier that it receives in the request, the verifier can check whether the snapshot
corresponds to a recent request and for the correct VM.

A different version of the masquerading attack may be launched by the root VM by
setting up an “evil” clone of the customer VM with malware in it. The root VM may
start this clone along with the customer VM (with a different guid, since the hypervi-
sor enforces the uniqueness of VM guids). Next, the root VM may divert all snapshot
requests to the correct VM and actual service requests that operate on customer private
data to the evil clone. A variant of the same attack has the root VM shutting down the
correct customer VM after a snapshot, starting the evil clone with the customer VM’s
guid, and forwarding service requests to the clone. These attacks can be mitigated by
using a communication protocol enhanced with attestation, such as a quote based on the
VM’s recent snapshot, in a manner similar to the one proposed by Goldman et al. [13].
They addressed the lack of linkage between the endpoint identity determination and
remote platform attestation, which is precisely the root of the evil clone problem. In
short, the solution requires generating an SSL certificate for the VM and incorporating
the hash of this certificate in the TPM quote, along with the VM’s snapshot hash. Both
of these values can be captured in vPCRs by our hypervisor.

Our security analysis demonstrates that HyperShot’s design effectively mitigates
attacks in a cloud environment. Although we have not explored any responses to an un-
trusted snapshot other than to discard it, it is plausible that in an operational cloud envi-
ronment, customers would escalate this security threat with the infrastructure provider.

We also evaluated the usefulness of a trusted snapshot by integrating the snapshot
generated by HyperShot with two runtime integrity management tools, Volatility [42]
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and KOP (Kernel Object Pinpointer) [5]. Volatility is an open source forensic tool that
analyzes OS memory images. It recognized the snapshot generated by HyperShot with-
out any modifications to its image parsing logic. We extracted information such as a
list of running processes, drivers, files, dlls, and sockets from a snapshot of a Windows
XP guest VM. With this information, customers could identify potentially malicious
software present in their VMs at the time of snapshot, without the possibility of any
tampering from the cloud infrastructure provider.

KOP uses offline static analysis of a kernel’s source code to enable systematic kernel
integrity checking by mapping kernel data objects in a memory snapshot. In its current
implementation, KOP supports Windows Vista and requires the memory image to be in
the crash dump format. In our experiment, we ran a kernel malware instance that hides
its presence by deleting itself from the list of loaded drivers inside a Vista guest VM.
We used an offline utility to convert a HyperShot snapshot into the crash dump format,
and we then ran KOP on the dump. KOP successfully found the hidden malicious driver
object in the kernel memory. Our integration demonstrates the usefulness of HyperShot
as an integral component for managing end-to-end runtime integrity management of
VMs in a public cloud environment.

5.2 Performance Evaluation

In this section, we present micro- and macro-benchmark results to quantify (1) the per-
formance impact of HyperShot’s trusted snapshot generation on target VMs, (2) the
demand put on system resources, specifically memory, and (3) the performance of end-
to-end snapshot generation and verification. All experiments are performed on an Intel
Quad Core 2.53 GHz machine with 4 GB of memory and Extended Page Table (EPT)
support [16]. EPT allows HyperShot to modify the GPA-to-SPA map using the second
level page table kept in the hypervisor, while the OS inside the VM manages the tra-
ditional first level page tables to map virtual address to GPA. For simplicity, we ran
the challenger application and the forwarder inside the root VM, which runs 64-bit
Windows Server 2008 R2, and obviated the service front-end. The guest VM was allo-
cated 1GB RAM, 1 CPU, and ran 32-bit Windows XP with service pack 3. For macro-
benchmark experiments, we used the Passmark Performance Test benchmark suite [29]
inside the guest VM.

HyperShot uses CoW to protect memory pages that generate faults whenever the
guest or root writes on these protected pages. On each CoW fault, besides changing the
page protection, HyperShot also copies the contents of the page if needed. The median
time to perform the additional copy operation is 6.45μs.

Next, we measured HyperShot’s overhead on different workloads using the Pass-
Mark benchmark suite running inside a guest VM. We used 5 representative bench-
marks to measure HyperShot’s impact on CPU, memory read and write, and sequential
disk read and write performance respectively. Each benchmark was executed for 30
times in a loop, and we snapshotted the VM during this loop’s execution. Each itera-
tion of the loop ran for a short period of time, so that multiple iterations (but not all)
were impacted by the snapshot process. The overall loop’s execution encompassed the
whole snapshot process. Mean results in Figure 4 indicate that HyperShot imposes no
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Fig. 4. Percentage overhead
incurred by HyperShot on
various workloads. Smaller
measurements are better

discernible overhead on CPU and memory read benchmarks, and a modest ∼12% over-
head on memory writes. This is expected, since CPU and memory read benchmarks
do not generate many CoW faults, while the memory write benchmark generates many
CoW faults when it writes data to the memory pages. Higher overheads for disk bench-
marks are due to a pro-active, per-page hypercall made by the root VM to copy a page
before any DMA operation in anticipation of a CoW fault. This hypercall is made even
if the page may already have been copied due to an earlier CoW fault or even if the page
will not generate a CoW fault due to a DMA write request (which reads the memory
page and writes to the device). This hypercall is serialized with the HyperShot proxy,
thereby effectively reducing the parallelism in the system.

We measured HyperShot’s CoW memory storage requirements for different work-
loads during the snapshot of a guest VM. These workloads have different runtime mem-
ory requirements and access patterns, and hence provide a good indicator of typical
memory usage by HyperShot. We calculate percentage memory consumption as

number of pages copied due to a CoW fault × 100%

total number of memory pages protected

The denominator represents an upper bound on the number of pages that will need to
be copied in the worst case. The total number of protected pages for a guest VM with 1
GB memory is 262,107.

The results shown in Table 1 are median values for 5 runs of each workload, with the
overall as a median of all 30 runs. These results indicate that the memory requirement
for HyperShot is <1.5% for all the workloads considered here, with memory write and
disk read benchmarks on the higher side since they generate more CoW faults. This
indicates that an alternative, more efficient, strategy for HyperShot would be to deposit
only a fraction of the total target VM memory size from the root VM to successfully
finish the snapshot, rather then its current strategy of depositing the amount equal to
target VM’s memory size. If more memory is needed during a guest VM’s snapshot,
the hypervisor can pause the guest VM (so it does not generate any further faults) and
request more memory to be deposited from the root VM. Note that it may not work for
all cases, e.g. if the fault is generated due to an access from the root VM, or if the root
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Table 1. Memory overhead due to CoW fault handling
for different workloads in a guest VM

Operations Number of CoW % Memory
Fault Consumption

Idle VM 1622 0.62
CPU workload 3588 1.37
Memory read 2793 1.07
Memory write 3688 1.41

Disk write 2955 1.13
Disk read 3032 1.16
Overall 3407 1.30

Table 2. Time to take SHA-1
hash of a single page of size 4KB
and the composite hash on the
VM of size 1024 MB

Operations Time
Single memory 149.0 μs
page hash
Composite hash 186.5 ms

VM itself is being snapshotted. In this case, HyperShot will have to abort and restart
the snapshot process.

In our next set of experiments, we quantify the performance of the snapshot gener-
ation and verification. First, we micro-benchmarked the time to perform hashing op-
erations. As described earlier, HyperShot performs two different hashes: (a) hashing
individual memory pages at the time of memory reads by the HyperShot proxy, and
(b) a composite hash at the end of the snapshot process. The results shown in Table 2
indicate that hashing operations are fast, and their impact on overall snapshot generation
is small.

Next, we measured the time to finish various stages of the snapshot process from
the HyperShot proxy for a guest VM and for an idle root VM. The guest VM was
either idle or was executing one of the 5 benchmarks from the PassMark suite described
earlier. We measured CoW setup time (initialization time), VM memory copy time,
cleanup time, and TPM quote time. Due to brevity, we have skipped the details for
each workload type. Not surprisingly, we found the overall time to be dependent more
on the number of memory pages being snapshotted and less on the workload itself.
For guest VMs of memory size 1 GB, the overall time to finish the snapshot was 39s,
of which 37s were spent in making the memory copy from the hypervisor one page at
a time and writing it to the snapshot file, 1s in obtaining the TPM quote, and 1s in
initialization and cleanup. Overall time for the root VM’s snapshot was 391s, of which
218s are spent in memory copy, 3s in initialization, 169s in cleanup, and 1s in TPM
quote. The increased cost for the root VM is due to both large memory size and a larger
number of CoW faults generated by the root VM during its normal execution. Further
performance improvements can be made by sharing memory page information between
the HyperShot proxy and the hypervisor so that it can avoid hypercalls for pages that
are deposited for CoW processing and are not part of snapshot, or have been copied
already in DMA setup path.

For the challenger, generating the hash for a snapshot of 1GB memory took 22s,
while the TPM quote validation in software and matching the hash to the one reported
in the quote took negligible time. We assume that the snapshot file and the TPM quote
would be transferred out-of-band to the challenger, and the cost of this step would
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depend on the network bandwidth between challenger and the cloud. As mentioned in
Section 4.1, the challenger could be the end-user of the cloud or any third party who
has been appointed on the behalf of the customer to verify the integrity of the snapshot.

Although further performance optimizations are possible, results from the prototype
implementation show that HyperShot’s design is viable, and it imposes moderate over-
head on the snapshotted VMs and on the overall platform.

5.3 Deployment Strategy

We envision that cloud providers would add the interface for trusted snapshot requests
to their web-based VM management front-end. This front-end communicates with the
management plane of the cloud infrastructure that controls hundreds of thousands of
machines, each running multiple VMs hosting customers code, data, and services. We
assume that each physical machine has a TPM chip, which is available today on most
commodity hardware platforms. Cloud providers set up each physical machine as it is
provisioned to the data center with software and credentials in order to participate as
part of the hosting infrastructure. As part of this provisioning, the system software on
the machine would generate the AIK using the TPM and would obtain an AIK certifi-
cate from a trusted certification authority (CA). This CA is either part of the trusted
infrastructure of the cloud provider or an external party, and the certificate ensures that
AIKpriv is protected by a physical TPM. This certificate is then shared with the Hyper-
Shot service front-end. On a request from a customer to generate a trusted snapshot, the
trusted infrastructure maps the globally unique identifier (guid) of the VM mentioned
in the request to a physical host running the customer’s VM. After generating the snap-
shot, the final quote, the AIK certificate associated with the physical machine, and the
snapshot are returned to the customer. The customer can use the certificate to validate
the AIK which is then used to verify the integrity of the snapshot. Since the contents of
a snapshot are integrity protected, the cloud provider is free to store the snapshot as it
deems fit—on a local disk, a network share, or using a cloud storage service such as S3
or EBS.

5.4 Discussion

HyperShot is vulnerable to a scrubbing attack where a malicious administrator or com-
promised root VM can scrub attack traces from the customer VM before the snapshot
process starts. A possible solution to this problem is to keep the snapshot request hid-
den from the malware until the CoW initialization is over. This requires an out-of-band
direct communication channel between the service front-end and the hypervisor on the
physical machine. It may be possible to establish such a channel over the secondary
management communication infrastructure using special purpose processors, such as
Intel AMT. The viability of this type of solution has been demonstrated by recent in-
tegrity measurement work [1]. An alternative solution makes the snapshot generation
an asynchronous process, with the hypervisor initiating the CoW protection at a ran-
dom point in time. HyperShot only records a VMs’ memory and registers; it does not
yet snapshot disk contents. We plan to extend it with an existing virtual disk snapshot
solution, such as Parallax [23] or the disk snapshotter available with Hyper-V.
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6 Related Work

Trust issues in cloud computing are an active area of research investigations. Recent
work has showed how to use untrusted cloud infrastructures to store and relay infor-
mation [10, 19]. Trusted computing and virtualization can further enable more gen-
eral purpose services in a public cloud environment. Santos et al. [34] presented a
TPM-based architecture to protect the confidentiality and integrity of data in the cloud.
Krautheim [18] proposed a new management and security model using TPMs called pri-
vate virtual infrastructure (PVI) for cloud computing. TrustVisor [20] provided safety of
computation using a TPM based design. Sailer et al. [33] designed and implemented a
trusted computing based integrity measurement architecture for desktops. Schiffman et
al. [35] proposed a centralized verification service that produces TPM-based attestation
of customers’ cloud instances for the integrity and transparency purposes. In a similar
manner, HyperShot uses trusted computing technologies such as TPM and secure boot
to enable a trusted snapshot capability in a cloud infrastructure, where only minimal
trust is placed in infrastructure and the hypervisor.

Past research has proposed various mechanisms to reduce the size of trusted com-
puting bases in virtualized environments. Murray et al. [26] proposed a disaggregation
based approach for Xen that split dom0 into multiple small privileged VMs, with em-
phasis on securing interfaces among them. Nova [37] proposed a micro-kernel inspired
design for a secure virtualization architecture. It minimized the amount of code in the
privileged hypervisor and moved more functionality into service VMs, thereby reduc-
ing the core platform TCB. Terra [11] offered security to customer VMs by developing
a small trusted virtual machine monitor and provided an isolated closed-box environ-
ment to execute sensitive applications. All of these approaches can be readily leveraged
by HyperShot by moving the snapshot functionality to its own service VM. However, in
order to provide similar trust guarantees as our hypervisor-based approach, the TCB for
this snapshot service VM must be carefully managed to limit it to just the hypervisor.

Many commercial virtualization platforms provide a VM snapshot facility based on
a CoW mechanism [9, 24]. However, these solutions depend upon the correct opera-
tion of the root VM, and they rely on potentially malicious administrators to assist in
the snapshot process [30]. In contrast to these systems, HyperShot does not rely on the
privileged VM and administrators and protects the integrity of a VM’s snapshot from
unwanted modification from these entities. HyperShot even supports snapshotting of
the privileged VM itself using the same mechanisms, a feature missing from current
virtualization solutions. These properties makes HyperShot more suitable for a virtual-
ization based public cloud infrastructure.

7 Conclusions

We investigated trust issues between cloud customers and providers. To allow customers
to establish trust in the public cloud infrastructures, we designed and developed Hy-
perShot, a system that securely snapshots a VM even in the presence of a malicious
root VM or malicious administrators. HyperShot employs TPM-based attestation and
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TXT-based trusted launch of the hypervisor to protect the integrity of the snapshot via
a signature and trusted reporting of the platform state. HyperShot extends the same
snapshot functionality and trust guarantees to the root VM itself. This enables cloud
infrastructure providers and customers alike to manage the security and integrity of their
VMs based on trusted snapshots. We integrated HyperShot with forensic and runtime
integrity measurement utilities. Our performance evaluations showed that HyperShot
incurs moderate overhead on the VMs’ performance.
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Abstract. Current monitoring solutions for virtual machines do not incorporate
both security and robustness. Out-of-guest applications achieve security by us-
ing virtual machine introspection and not relying on in-guest components, but
do not achieve robustness due to the semantic gap. In-guest applications achieve
robustness by utilizing guest OS code for monitoring, but not security, since an
attacker can tamper with this code and the application itself. In this paper we
propose SYRINGE, a secure and robust infrastructure for monitoring virtual ma-
chines. SYRINGE protects the monitoring application by placing it in a separate
virtual machine (as with the out-of-guest approach) but at the same time allowing
it to invoke guest functions (as with the in-guest approach), using a technique
known as function-call injection. SYRINGE verifies the secure execution of the
invoked guest OS code by using another technique, localized shepherding. The
combination of these two techniques allows SYRINGE to incorporate the best
of out-of-guest monitoring with that of in-guest monitoring. We implemented a
prototype of SYRINGE as a Linux application to monitor a guest running Win-
dows XP and have evaluated its performance and security. We also implemented
a monitoring application built on top of SYRINGE to demonstrate its usefulness.
Our results show that for a calling period of 1 second, the performance overhead
created in the guest by this application is 8%.

Keywords: Virtualization, Introspection, Semantic Gap, Security Monitoring.

1 Introduction

The increasing popularity of whole-system virtualization, fueled by the rapid growth of
industry trends such as cloud computing, creates the need for robust and secure infras-
tructures for monitoring virtual machines (VMs). By robustness we mean the ability
of the monitoring infrastructure to accommodate variations in a guest VM system’s
characteristics (e.g., syntax and semantics of data structures) across different software
releases. By security we mean protection against attacks targeting the monitoring infras-
tructure. Satisfying both of these requirements has proven itself a significant challenge.
One common type of VM monitoring, on which this work is focused, is the passive
monitoring of the guest OS’s internal state. There are two main approaches for imple-
menting this type of monitoring: out-of-guest and in-guest.
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The out-of-guest approach achieves good security by placing the monitoring applica-
tion in an isolated, security VM (SVM), from where it can securely monitor the guest
VM (GVM) using a technique known as virtual machine introspection (VMI) [1–5].
It does not usually rely on internal guest components to perform its monitoring, as
these components can be maliciously tampered with. VMI lacks robustness, however,
due to the semantic gap inherent to low-level monitoring across different VMs. Any
changes made to the syntax (i.e., internal disposition and location of fields) or semantics
(i.e., the meaning of the data stored in each field) of monitored GVM data structures
across different software releases can break introspection-based tools, which rely on
pre-determined and, in many cases, reverse engineered knowledge. This is especially
true for undocumented data structures, which are extremely common in closed-source
operating systems and applications.

The in-guest approach achieves better robustness by placing the monitoring applica-
tion inside the guest. So instead of directly parsing data structures in memory, in this
approach the monitoring application calls functions provided by the guest OS API to
get the information it needs (e.g., the list of active processes on the system) [6]. This
method naturally accommodates changes made to data structure syntax and semantics
across releases, as it uses the guest’s own code, which is changed accordingly by the
software vendor and has a public, documented API. This approach lacks the security of
the out-of-guest approach, however, since the application and the guest OS can be eas-
ily tampered with by malware to report fake monitoring results, or be simply disabled.
To fully protect an in-guest monitoring application is a very hard problem, and has
only been shown for small agents operating under limiting constraints [7, 8] or without
ensuring the applications’ availability [9].

In this paper we propose SYRINGE, an infrastructure for monitoring VMs that com-
bines the advantages of out-of-guest and in-guest approaches. SYRINGE satisfies both
security and robustness requirements by placing the monitoring application in an iso-
lated SVM, as done by the out-of-guest approach, but still using the GVM’s own code
for monitoring, as done by the in-guest approach. For this to work, (1) the SVM-resident
monitoring application must be able to call GVM functions and (2) the security of the
GVM’s code execution must be verifiable. These problems are respectively addressed
by two techniques: function-call injection and localized shepherding.

Function-call injection allows a monitoring application to be placed in the SVM
and still be able to invoke functions in the GVM. By carefully interrupting the GVM’s
execution and manipulating the contents of its virtual CPU and memory through intro-
spection, SYRINGE is able to inject a function call into the GVM. That is, when the
virtual CPU is resumed, it executes the selected function as if it had just been called
from inside the guest.

Localized shepherding is a novel technique for monitoring the execution of the in-
voked guest code against attacks. It is localized, because it only shepherds the thread of
guest code executed as a result of an injected function call, and only until it returns, be-
ing then disabled. First, it verifies the code in memory against a pre-compiled whitelist
to prevent code-patching attacks [10]. By using instrumentation, it also dynamically
evaluates instructions that can be used by an attacker to divert the code’s legitimate
control flow. With this, SYRINGE is able to detect attacks such as hooking [10] and
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return-oriented programming [11, 12]. Finally, it enforces atomic code execution to pre-
vent unauthorized tampering with temporary function state. When the invoked function
returns, all the instrumentation is undone and the guest continues executing normally.

SYRINGE combines function-call injection and localized shepherding to create a
robust VM monitoring infrastructure with strong security properties. It avoids the se-
mantic gap inherent to introspection by using guest OS API code instead of directly
parsing and reading data structures in memory. As such, changes in the syntax and
semantics of guest data structures commonly performed by patches and new software
releases do not affect SYRINGE, as long as the public exported API remains unaltered.
The localized shepherding of guest code ensures that most attacks directed against it
will be either prevented or detected, allowing the monitoring application to be notified.

We have implemented SYRINGE as a Linux library, using Windows XP as our mon-
itored guest OS, VMware ESX Server as the hypervisor, and VMware’s VMsafe API
as our introspection engine [13]. A monitoring application based on SYRINGE, SYR-
Mod, was implemented to illustrate SYRINGE’s capabilities. Our performance evalu-
ation revealed a maximum 8% guest performance overhead when the interval between
successive SYRINGE monitoring operations is above or equal to 1 second, for a rea-
sonably complex guest monitoring function. Our security evaluation tested the effect
of common malware attacks on SYRINGE’s monitoring. In all cases the attacks were
prevented or detected.

In summary, in this paper we claim the following contributions:

– Localized shepherding, a novel virtualization-based technique for verifying the se-
cure execution of guest code in a localized, on-demand fashion, using on-the-fly
instrumentation;

– The SYRINGE VM monitoring infrastructure, which combines function-call in-
jection and localized shepherding to achieve secure and robust VM monitoring.
We implemented a fully-functional prototype of SYRINGE on a platform running
VMware ESX Server and using VMware’s VMsafe introspection engine;

– An evaluation and discussion of SYRINGE’s performance and security against at-
tacks targeting the monitoring application and the guest.

This paper is organized as follows. Section 2 describes in detail the design and imple-
mentation of SYRINGE. Section 3 describes our performance and security evaluations
of SYRINGE. Section 4 describes our monitoring application and Section 5 discusses
the limitations of our system. Finally, Section 6 describes related work and Section 7
concludes our work.

2 SYRINGE VM Monitoring Infrastructure

SYRINGE’s design process started from a basic in-guest monitoring architecture, which,
as discussed previously, already incorporates the desired robustness. We then focused
on determining what additions and modifications should be done to it so as to make it
secure. In more concrete terms, this meant securing the two high-level entities involved
in in-guest monitoring: (1) the monitoring application and (2) the execution of guest OS
functions invoked by the application.
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Protecting the Monitoring Application. In this work we assume that the monitoring
application is a user-space program. This assumption is based on the fact that most
real-world monitoring applications such as AV scanners, intrusion detection systems
and system diagnostic tools are implemented in user-space application. Fully protect-
ing a user-space application (monitoring or otherwise) running inside an untrusted guest
OS is a hard problem. As demonstrated by Chen et al., it is possible to use virtualization
to protect the confidentiality and integrity of its code/data [9]. However, the control that
the guest OS has over the application’s resources (CPU time, memory, etc) means that
it is extremely difficult to ensure the application’s availability on an untrusted guest OS.
In other words, it would be easy for an attacker who has compromised the guest OS
to disable the application, or deny it essential computing resources controlled by the
OS. For these reasons, in SYRINGE we opted to remove the monitoring application
from the GVM, placing it in an isolated, trusted SVM. This move allowed us to secure
the application, but disrupted its ability to invoke guest OS functions. We solved this
problem with the function-call injection technique. Function-call injection enables the
monitoring application to be moved out of the GVM, but still retain the ability to in-
voke guest functions by injecting function calls into the GVM. This technique works by
interrupting the GVM’s execution at a pre-determined point and manipulating the con-
tents of its virtual CPU and memory using introspection, setting it to the desired target
function with the desired parameters. In its current form, SYRINGE only supports the
injection of function calls to kernel functions.

Protecting the Execution of the Invoked Guest OS Functions. We refer to the exe-
cution thread triggered inside the guest as a result of the function-call injection as the
monitoring thread. To protect the execution of the monitoring thread we introduce a
novel technique: localized shepherding. This technique basically performs on-demand
monitoring of the control-flow integrity of the monitoring thread by using on-the-fly
instrumentation, in accordance to a policy that we defined to address the most common
attacks that rely on control-flow manipulation. Together with function-call injection,
localized shepherding also ensures the atomic execution of the monitoring thread. This
property is necessary to prevent malicious threads from tampering with the monitoring
thread’s local state when their executions are interleaved. Atomic execution is imple-
mented by disabling interrupts at the start of the monitoring thread and shepherding
interrupt-related instructions to prevent them from being re-enabled.

SYRINGE was not designed as a general security system. Its goal is not to defend the
guest against attacks in general. SYRINGE focuses on the task of determining whether
the data returned by the monitoring thread to the monitoring application results from
a secure execution. If SYRINGE detects any form of tampering with the monitoring
thread, such as a control-flow violation, it will not attempt to repair it. For safety, it
will allow the monitoring thread to continue executing unshepherded, but will notify
the monitoring application in the SVM that the results returned by the function should
not be trusted. An attacker can exploit this fact to disrupt SYRINGE’s monitoring,
effectively causing a Denial of Service. The monitoring application, however, will know
at this point that the system has been compromised, at which point the best course of
action may be to restore the GVM to a previous snapshot or employ another type of
remediation procedure.
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The atomic execution property enforced by SYRINGE creates some functional lim-
itations. First, SYRINGE cannot shepherd guest code that relies on asynchronous code
execution, such as I/O or Deferred Procedure Calls (DPCs). This prevents certain types
of exceptions, such as page faults, from being handled properly. We do a detailed dis-
cussion of these limitations in Section 5.

2.1 Assumptions

In this work, we assume an underlying x86 architecture running a hypervisor with two
virtual machines: a monitored guest virtual machine (GVM); and a security virtual ma-
chine (SVM) in which SYRINGE will be deployed. Our whitelisting-based code in-
tegrity approach also assumes previous access to legitimate copies of the binaries com-
posing the guest OS’s kernel. On Windows, this includes the kernel executive (NTOS)
and other kernel-level modules. It does not include 3rd-party modules. We believe this
to be a reasonable assumption, given that this set of binaries is manageable in size and
relatively homogeneous for each particular OS version. A database of such binaries can
be easily created and automatically updated, for instance, when patches are issued by
the OS vendor. We also assume knowledge of the public Windows kernel API, which
includes function prototype and parameter type definitions.

Knowledge of the base address in guest memory for each loaded whitelisted binary
is also assumed. This information can be obtained through a variety of methods and
heuristics that are orthogonal to this work [14], and are thus not detailed here. We
further assume in our threat model that the GVM can be fully compromised by an
attacker, including its kernel. The system hardware, hypervisor, and SVM constitute
our trusted computing base.

2.2 Function-Call Injection

Function-call injection (FCI) secures the monitoring application by placing it in an
isolated SVM, while still keeping its ability to invoke GVM functions. This is the first
piece of our solution to the problem of creating a secure and robust VM monitoring
infrastructure. FCI essentially provides the ability for code running in one VM to call
a function in another VM and retrieve its results. FCI uses simple VM introspection
techniques. It can be viewed as a type of inter-VM Remote Procedure Call (RPC), but
without the need for an RPC server running on the destination.

SYRINGE currently assumes that the GVM only has one virtual CPU (VCPU) in
order to ensure atomicity for the monitoring thread. Multiple VCPU support would
require the virtualization infrastructure to be able to suspend individual VCPUs during
the guest’s execution. This is not the case, however, with ESX/VMsafe. Although this
assumption may be limiting for certain types of VMs, we believe it to be a consequence
of a platform limitation, rather than a fundamental flaw in our approach.

The first step in FCI is to interrupt the execution of the guest so that a function call
can be injected. Pre-selected injection contexts designate the execution contexts under
which the guest must be interrupted so that a function-call injection may occur. An
injection context is a tuple (PS , AI), where PS represents a surrogate process and AI

is an injection address. FCI can only happen when process PS is currently active in a
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1. Save guest VM Context
2. Set EIP = ADDR(F)
3. Copy arguments to stack
4. Set return address in stack
5. Update ESP
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1. Read result from guest VM
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3. Resume guest VM

Secure VM Guest VM

Injection 
Breakpoint

Return 
Breakpoint

ret

BP
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Fig. 1. Injecting a call to guest function F. (1) The GVM executes normally until it reaches an
injection context; (2) a breakpoint placed at the injection address transfers execution to the SVM
and suspends the GVM; (3) The SVM saves the guest VCPU context and sets its EIP to point
to F’s start address and copies F’s arguments to the stack, also updating its ESP; (4) the guest
VCPU is resumed and function F starts execution, as if it had just been called by guest code; (5)
F is executed; (6) control is returned to the SVM through another breakpoint placed at F’s return
address; (7) the guest VCPU’s context is set by the SVM to the saved context (8 and 9) when
resumed and it continues running from the point where it was originally interrupted.

guest virtual CPU (VCPU) and the instruction at AI is about to be executed by that same
VCPU. A surrogate process is identified by the physical address of its page directory
table (stored in the CR3 register). Each surrogate process can have its own injection
addresses, or they can be shared between multiple surrogates. Injection addresses can
be selected in the guest’s kernel-space, for injecting calls to kernel functions, or in user-
space for injecting calls to user-level API functions. Multiple distinct injection contexts
can be used. To minimize injection delay, it is important to choose injection contexts
that are reached frequently enough in the GVM’s normal execution. They must also
not be easily circumvented by a malicious entity in control of the guest OS. Details
concerning our choice of injection context are given in Section 2.4.

SYRINGE interrupts the GVM by using VMsafe page-table level breakpoints placed
at the injection addresses. We call these injection breakpoints. This type of breakpoint
cannot be detected or tampered with by the guest OS because it is implemented at
the hypervisor level, and is therefore transparent to the guest. Whenever the instruc-
tion corresponding to the injection address is executed, a trap is triggered, the GVM
is suspended, and control transferred to the hypervisor, and then to SYRINGE in the
SVM. SYRINGE then checks if the current CR3 value of the guest’s VCPU corre-
sponds to that of a surrogate process associated with the injection address where the
execution was interrupted. In case it does, SYRINGE determines that an injection con-
text has been reached. Injection contexts are only made active (i.e., the hypervisor-level



28 M. Carbone et al.

breakpoints are activated) when SYRINGE has requests queued for function-call in-
jections, otherwise the system runs normally without any performance penalty. In its
current form, SYRINGE allows only one monitoring thread to be running in the GVM.
In other words, function-call injections cannot overlap each other.

The operation of FCI is shown in Figure 1. Let us assume a function call
F (A0, ..., An), i.e., a call to the guest kernel function F with arguments Ai. Let us also
assume a stdcall or cdecl calling convention, so that arguments are placed on the
stack, in reverse order. When the injection breakpoint is triggered, SYRINGE first saves
the guest VCPU’s context so that it can be restored later and then sets the VCPU’s EIP
register to F’s starting address. F’s offset in its corresponding binary can be extracted
from the binary’s export table. Knowledge of the binary’s base address in memory is
listed as part of our assumptions and is obtained when SYRINGE is initialized.

Next, the stack needs to be set with arguments Ai and a return address. This is done
by using memory introspection to map the guest memory region corresponding to the
value of the VCPU’s ESP register and making the necessary changes. Arguments are
handled according to their evaluation semantics. Call-by-value arguments are copied
directly onto the stack. Call-by-reference arguments require a more careful treatment.
The data buffer referenced by the argument must be copied to the guest and the refer-
ence itself must be placed on the stack as an argument. SYRINGE provides two ways
of doing this. The simplest way is to place the data structure at the bottom of the cur-
rent stack frame and push a reference to it. Another possibility is to allocate a special
memory buffer inside the guest (for example, by injecting another function call to a
memory allocation function) and use it to store the referenced data structure. This is
useful in the case where the structure is too large to be placed on the stack. The return
address is set to a special memory location inside the guest containing another VMsafe
execution breakpoint—the return breakpoint—placed by SYRINGE. This can be any
memory location whose page does not contain valid code, so as to avoid unnecessary
VM switches caused by execution of code.

Once the stack is set, the value of ESP is updated to accommodate the arguments and
return address. To ensure atomicity, the guest’s VCPU state is modified so that regular
guest interrupts, hardware breakpoints, instruction-tracing exceptions and performance-
monitoring interrupts (PMIs) are disabled when the monitoring thread starts executing.
This is done by clearing the IF (Interrupt Flag) bit in the guest VCPU’s EFLAGS regis-
ter, bits 1 and 8 in IA32 DEBUGCTL; bits 0, 1, 32–34 in IA32 PERF GLOBAL CTR;
and bits 0–9, 13 in DR7.

Finally, at this point, the guest VCPU is resumed. F then begins to execute as if it
had been called with arguments Ai from inside the surrogate process, at the injection
address. This is our monitoring thread. At this point, the localized shepherding compo-
nent (described in Section 2.3) takes over and shepherds the monitoring thread. When
the final RET instruction is reached, the return breakpoint is triggered, suspending the
VCPU and passing control back to SYRINGE in the SVM. At this point, the result of
F’s execution is read from the eax register and returned to the monitoring application.
If any memory buffers have been passed by reference on the stack or heap to receive re-
sults from the function, it is the monitoring application’s responsibility to retrieve their
contents. Finally, SYRINGE restores the original VCPU context that was saved when
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Fig. 2. Localized shepherding of function F. (1) Page Verifier pre-builds a whitelist of the OS ker-
nel binaries. (2) Upon injection, Page Verifier verifies the code regions of the target page against
the whitelist, (3) Disassembler recursively disassembles the target function, recording the loca-
tions of critical instructions and (4) passing them to the Instrumenter. (5) Instrumenter patches all
critical instructions with INT3 breakpoints and (6) updates the in-guest opcode table. (7) When
triggered, a critical instruction breakpoint transfers control to SYRINGE’s in-guest Dynamic
Checker. (8) It consults the in-guest tables to determine whether it can evaluate the instruction
by itself. (9) If not, it passes control to the out-of-guest dynamic checker, which (10) updates
the in-guest call origin and target tables and, if necessary, (11) re-invokes the Disassembler to
analyze new code and the Page Verifier, if the control-flow has transitioned into a new page. This
process is conducted for all subsequent function calls.

the guest OS was first interrupted and resumes the GVM, which continues its original
execution thread from the point where it was interrupted.

2.3 Localized Shepherding

Localized shepherding is the second piece of our solution to the problem of creating a
secure and robust VM monitoring infrastructure. Localized shepherding monitors the
control-flow integrity and ensures the atomic execution of the monitoring thread. Fig-
ure 2 illustrates this process and the role played by each component.

Control-flow integrity is monitored by: (1) checking that all guest code executed
by the monitoring thread matches the pre-compiled whitelist database of OS API bi-
naries and (2) dynamically evaluating indirect control-flow transferring instructions in
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accordance to a pre-specified policy. Action (1) guarantees the integrity of direct
branches while action (2) monitors the integrity of indirect branches. Thus, together,
they cover all control-flow transfers. Action (1) further ensures that non-control-flow
related instructions are not modified by an attacker. If a control-flow integrity viola-
tion is detected, SYRINGE allows the execution of the monitoring thread to proceed
but sends an alert to the monitoring application in the SVM. This alert indicates that
malicious tampering has been detected during the execution and therefore the results
returned by the monitoring thread cannot be trusted.

Code integrity checking (action (1)) is performed by the Page Verifier component
through binary whitelisting. As stated in our assumptions, we assume previous access
to legitimate copies of the binaries composing the OS API (both user-space libraries
and kernel modules). These binaries are analyzed in an offline manner by the Page Ver-
ifier. Based on the metadata and content of each binary’s PE sections, the Page Verifier
constructs a database containing the location, size, and SHA1 hash corresponding to
each code (executable) section in each binary. This information is used at runtime to
check the integrity of the code being executed in the guest. Immediately before a func-
tion call to F is injected, SYRINGE activates the Page Verifier to check the integrity of
all the code present in the page where F’s starting address is located. If the page con-
tains a mixture of code and data, each code region in the page is checked individually.
A SHA1 hash is calculated for each code region and is compared against its corre-
sponding whitelisted hash. Any discrepancies indicate that the code has been modified.
This allows SYRINGE to detect code patching attacks, where an attacker maliciously
modifies the guest code, and notify the monitoring application. This process is repeated
whenever the control-flow of the monitoring thread transitions into a new page. Af-
ter being checked and before execution is allowed to begin, code pages are marked as
write-protected again by using VMsafe. This marking avoids the need for future checks
and prevents time-of-check-time-of-use (TOCTOU) race conditions.

Indirect branches (action (2)) are monitored by the Disassembler, Instrumenter, and
Dynamic Checker components. These components employ a combination of dynamic
recursive disassembly, code instrumentation and reference monitoring. The Disassem-
bler performs a recursive disassembly of the function, stopping at indirect control trans-
fer instructions and direct function calls. During this disassembly, it records the location
of all instructions whose execution needs to be trapped and evaluated at runtime to en-
sure control-flow integrity. We refer to these instructions as critical instructions and
they are shown in the top part of Table 1. When the Disassembler is done analyzing the
function, the Instrumenter instruments all critical instructions so that they can be eval-
uated by SYRINGE before being executed. This instrumentation consists of an INT3
instruction that overwrites the first byte of the critical instruction. The overwritten byte
is recorded by SYRINGE in a write-protected in-guest opcode table. The entry #3 of
the guest Interrupt Descriptor Table (IDT) is set to point to the in-guest component of
the Dynamic Checker. The guest’s IDT is write-protected by SYRINGE. The Disassem-
bler is invoked only for those cases where the target in question has not been analyzed
previously; otherwise, cached results are used by the Instrumenter for performance.

The Dynamic Checker is responsible for evaluating critical instructions according
to our control-flow integrity policy. This policy is shown in the top part of Table 1.
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Table 1. SYRINGE’s shepherding policy and handler types for critical instructions. The top part
shows those instructions related to control-flow integrity monitoring. The bottom part shows those
related to atomic execution enforcement.

Instruction Description Policy/Action Handler

Control-flow integrity

CALL r/m32
Indirect function call-
ing

Target must be in trusted code re-
gions. Update in-guest call-origin
table

In-guest and
Out-of-guest

JMP r/m32 Indirect jumping Target must be in current module
In-guest and
Out-of-guest

RET Function returning
Target must be present in pseudo-
shadow stack

In-guest

Atomic execution

STI/CLI
Interrupt enabling and
disabling

Skip instruction In-guest

POPF EFLAGS popping
Emulate, clearing the IF and TF bits
in the EFLAGS

In-guest

WRMSR
Writing to MSR IA32
DEBUGCTL or IA32
PERF GLOBAL CTR

Emulate, clearing bits 1 and 8
in the IA32 DEBUGCTL MSR
and bits 0, 1, 33–34 in IA32
PERF GLOBAL CTR

In-guest

MOV DR7, *
Writing to DR7 debug
register

Emulate, clearing bits 0–9 and 13 in
the DR7 register

In-guest

It has an in-guest component, which implements handlers for those critical instruction
invocations that do not need to be handled in the SVM. In-guest handling of critical
instructions greatly favors performance in comparison to out-of-guest handling, as it
does not require VM switches. The in-guest handlers are injected into the guest by
SYRINGE and are write-protected with support from the hypervisor. This protection is
effective because in-guest handlers do not require any persistent state to be maintained
and are present only when a monitoring thread is being executed. Thus, code write-
protection suffices to ensure their good behavior. The in-guest component is invoked by
all critical instructions. It determines the type of instruction by consulting the opcode
table and whether the instruction can be handled in-guest or not. If not, it generates a
trap so that the Dynamic Checker’s out-of-guest component can handle it.

Direct CALL instructions do not need to be dynamically evaluated, but are instru-
mented nevertheless so that their targets can be properly scanned and instrumented
before execution is allowed to continue. This instrumentation is only needed until the
instruction’s first execution, however, and is then removed. They are handled out-of-
guest. The target of indirect CALLs must be evaluated dynamically at every execution.
The in-guest handler first determines if the computed target of the indirect CALL has
been analyzed before, by consulting an in-guest target table, maintained by SYRINGE.
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This table is write-protected inside the guest. If so, then the target is legitimate and
execution is allowed to proceed. If not, the in-guest handler generates a trap and passes
control to the out-of-guest handler. The later then applies the following policy: the target
must be located inside the authorized memory ranges containing the whitelisted system
code, as determined previously by the Page Verifier. If this policy is satisfied, the target
is added to the target table. The handling of all CALL instructions (both direct and
indirect) also includes adding the address of the CALL to an in-guest call origin table.
This table is also write-protected and is used for the evaluation of RET instructions,
explained later. Indirect JMP instructions are handled exactly as described for indirect
CALLs with the one following policy difference: their targets must be located inside
the current module. The policies used for indirect CALLs and JMPs can detect a large
portion of attacks that rely on hooking [10] function and code pointers to hijack control-
flow.

All RET instructions are handled in-guest, except for the last one. The handler eval-
uates the RET by comparing its target against all the addresses contained in the call
origin table. The RET is considered legitimate if a match is found. This model differs
from a shadow stack in that, for a particular RET, the address of its originating CALL
is not necessarily at the top of the stack. As a result, our model allows a RET to re-
turn to the origin point of any CALLs that were executed previously by the monitoring
thread. A complete shadow stack implementation would require the RET in-guest han-
dler to have write access to the call-origin table, and thus open way to attacks. Thus, we
decided against it. Despite not being ideal, the number of allowed return targets is sig-
nificantly constrained so we believe that this policy is powerful enough to detect most
return address manipulation attacks such as return-oriented programming [11, 12].

Localized shepherding must also ensure that the monitoring thread is executed atom-
ically. As described in Section 2.2, FCI clears the IF flag in the VCPU’s EFLAGS
register, thereby ensuring that the monitoring thread will start executing with inter-
rupts disabled. Localized shepherding must ensure that they remain disabled through-
out its entire execution. The Instrumenter patches another set of critical instructions
that can affect atomic execution, and are shown in the bottom part of Table 1. In-
structions CLI and STI are commonly used in OSes to execute critical code sec-
tions atomically by temporarily disabling interrupts. SYRINGE’s policy is to simply
skip these instructions. Thus, they are simply overwritten with a NOP by the Instru-
menter for the duration of the monitoring thread’s execution. All other critical in-
structions are patched with int3, and are handled in-guest by the Dynamic Checker.
The handler for POPF pops the stack into the guest’s EFLAGS and clears the IF and
TF flags. SYRINGE ensures that hardware debugging and instruction tracing facili-
ties remain disabled by handling instructions WRMSR, when the destination is MSRs
IA32 DEBUGCTL or IA32 PERF GLOBAL CTR; and MOV, when the destination is
the CPU debugging control register DR7. Bits 1 and 8 are cleared in IA32 DEBUGCTL;
bits 0, 1, 32–34 in IA32 PERF GLOBAL CTR; and bits 0–9, 13 in DR7.

With regard to multiprocessing, our assumption that the GVM has just one VCPU
guarantees that simultaneous code execution in other CPUs is not an issue.

When the monitoring thread finishes executing (i.e., executes the final RET instruc-
tion) and SYRINGE reassumes control, the guest is restored to its original state.
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At this point, all patched critical instructions are un-patched and the IDT is restored
to its original content. Likewise, if external interrupts were enabled when the GVM
was interrupted by the FCI component, they will again be enabled when the guest is
resumed. This localized, on-demand variant of shepherding satisfies our secure moni-
toring properties while at the same time does not affect the guest’s normal performance
when monitoring operations are not being conducted.

Software exceptions present a challenge for localized shepherding. SYRINGE is ca-
pable of shepherding exceptions that happen during the execution of the monitoring
thread, as long as these exceptions are handled synchronously. This shepherding is done
by installing a read-breakpoint in the memory page containing the IDT, so that any at-
tempts to access a descriptor (as should happen during an exception) are trapped and
transfer control to SYRINGE. From this point on, the process is the same as the one
described above for regular function call invocations.

Exceptions requiring asynchronous activity, such as I/O, cannot be shepherded by
SYRINGE. This is a limitation shared with other works that leverage guest code, such
as Virtuoso [15]. Non-maskable interrupts (NMIs) are not handled either, since they
usually indicate a fatal hardware error that would require the GVM to be rebooted or
restored to a previous snapshot.

2.4 Implementation

SYRINGE was implemented as a Linux library using approximately 3,500 lines of C
and Python code. The function-call injection component makes up one third of the
code, while the localized shepherding code is the rest. VMware’s ESX Server 4.1 was
used as the hypervisor and VMware’s VMsafe was used as our introspection infrastruc-
ture [13]. VMsafe natively provides the introspection and breakpoint functionality used
by SYRINGE. Despite page-level breakpoints not being provided by other open-source
introspection infrastructures and hypervisors (such as XenAccess [2]), we would like
to emphasize that the mechanics of this technique are simple and well understood and
could therefore be incorporated into them.

In our prototype, we chose the OS’s system call dispatcher as the injection address,
and we allow all processes running in the system to act as surrogates. We selected as our
return breakpoint address location the start of the .data section of the kernel executive
module (NTOS).

3 Evaluation

We conducted a performance and security evaluation of SYRINGE. Our host machine
was an Intel Core i7 870 2.93GHz with 4 CPU cores, 8GB of RAM, running VMware
ESX Server 4.1. The GVM was configured with 1 VCPU, 1GB of RAM, running Win-
dows XP SP2. The SVM was configured with 1 VCPU, 1 GB of RAM, running Linux
CentOS 5.5.
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3.1 Security

We now analyze and evaluate SYRINGE’s security properties. Again, SYRINGE’s goal
is not to to act as a general attack prevention system. Its goal is to be able to tell, based
on the localized shepherding of the monitoring thread, wether the results returned by
the invoked guest function can be trusted or not and notify the monitoring application.
So it is possible for an attacker to cause a monitoring Denial of Service by repeatedly
attacking the monitoring thread, but not without SYRINGE knowing about it. At this
point, remediation rather than monitoring becomes the main concern.

SYRINGE applies a mixture of prevention and detection techniques against attacks
directed at itself and the monitoring thread.

Attacks against SYRINGE’s Components. Attacks against the monitoring applica-
tion and SYRINGE’s out-of-guest components are prevented by the isolation between
the GVM and SVM. In-guest components are protected as follows. For FCI, the injec-
tion and return breakpoints cannot be tampered with or disabled, since they operate at
the hypervisor level. Our choice of injection context (the system call dispatcher), com-
bined with the continuous monitoring of the MSR SYSENTER EIP register, ensure
that it cannot be easily circumvented.

For localized shepherding, several components are involved. The INT3 instrumen-
tation used to trap on critical instructions is protected by the write-protection of guest
code, which prevents the guest from modifying pages containing code being shep-
herded. This INT3 relies of the guest’s IDT to pass control to the dynamic checker’s in-
guest component. The IDT is write-protected from inside the hypervisor, preventing any
modifications from inside the guest. The dynamic checker’s in-guest component con-
sists of a code segment and three tables: the call origin table, the opcode table and the
target table. All three tables are write-protected, and can only updated by SYRINGE’s
out-of-guest components in the SVM. Since the code does not rely on any data main-
tained by the guest OS (only the three tables) and does not itself maintain any persistent
data across dynamic checker invocations, write-protecting its code is enough to protect
it against attacks. It is conceivable that an attacker could attempt to modify guest page
table mappings so that invocations to the in-guest dynamic checker could fail. While
this attack is possible, the memory pages containing the dynamic checker and the three
tables are locked in memory and its corresponding mappings are constantly monitored
by SYRINGE. Any changes to these mappings, being unexpected, are interpreted as an
attack and the monitoring application is notified.

Attacks against the Monitoring Thread. SYRINGE’s localized shepherding guards
the monitoring thread against attacks using a combination of prevention and detection
techniques.

Attacks attempting to patch the guest code cannot succeed given that, before being
executed, all code is checked by the Page Verifier against the binary whitelist database
and then write-protected. This step occurs atomically to eliminate the possibility of a
time-of-check-time-of-use race condition, where the code could be modified after being
checked and before being write-protected.



Secure and Robust Monitoring of VMs through Guest-Assisted Introspection 35

Table 2. Security evaluation results. SYRINGE was able to detect all the attacks and notify the
monitoring application.

Attack Target Result

Code Patching nt!ZwQueryInformationProcess code Detected by Page Verifier
Hooking KeServiceDescriptorTable[] pointer Detected by Dynamic Checker

Return-into-libc Return address on monitoring thread’s stack Detected by Dynamic Checker

Indirect control-flow instructions are patched by the Instrumenter and are evaluated
dynamically. Attacks directed at these instructions have their power severely restricted
by SYRINGE’s control-flow integrity policy. Function pointers cannot point anywhere
outside whitelisted code, indirect jumps cannot point anywhere outside their own mod-
ule and function returns must target the instruction following a CALL executed previ-
ously in the monitoring thread. This policy greatly restricts the effectiveness of function
pointer hooking, which in most cases rely on injected code; and jump-oriented [16, 17]
and return-oriented programming [11, 12], which need access to a large code base to
extract a good variety of gadgets. More fine-grained policies can be integrated into SY-
RINGE by using techniques such as alias analysis.

To empirically validate our claims above, we simulated one code patching, one hook-
ing and one return-into-libc attack. Results are show in Table 2. A function call to
ZwQueryInformationProcess was injected and then shepherded. The first at-
tack patched function ZwQueryInformation Process’s code, and was detected
by SYRINGE’s Page Verifier, which is responsible for checking the integrity of code
sections before they are executed. Hooking was performed on the system service de-
scriptor table (KeServiceDescriptorTable), on the entry corresponding to the NtQuery
InformationProcess system call. Since the hooked address is used by an indirect
function call instruction inside the system call dispatcher, it was trapped and evaluated
by the Dynamic Checker, which detected the attack, since the address pointed to in-
jected code. Return-into-libc was also detected by the Dynamic Checker, when it could
not find the function’s return destination in the call origin table, indicating that it had
been modified.

The atomicity property enforced by SYRINGE makes it difficult for attacks to tamper
with the monitoring thread’s state in the stack or heap. This state is only valid during
the time when the monitoring thread is executing, and we can be sure that no other
potentially malicious thread will be running during that time, and cannot tamper with
it. The only way to do so would be to exploit a software vulnerability, such as a stack
or heap overflow, in the shepherded code, so that the monitoring thread itself does the
tampering. This could be difficult however, given that the arguments passed to the top-
level function in the monitoring thread are controlled by SYRINGE.

3.2 Performance

In this section, we investigate the performance of function-call injection and localized
shepherding. The reported results are wall-clock times, derived from the host CPU’s



36 M. Carbone et al.

0 17.5 35.0 52.5 70.0

26.920.313.1

nt!ZwQuerySystemInformation

miliseconds

Scanning Instrumenting Dynamic checking

Fig. 3. Shepherding execution time breakdown for the Windows executive’s
ZwQuerySystemInformation function, when used for a common monitoring task:
obtain the list of active modules in the guest. In the scanning phase represented above, 3163
bytes of code were disassembled by the Disassembler and 12 4KB code pages were verified and
write-protected by the Page Verifier. In the instrumenting phase, 53 critical instructions and 23
direct calls were patched/unpatched by the Instrumenter. Finally, in the dynamic checking phase,
17 critical instruction executions and 9 direct calls were handled by the out-of-guest Dynamic
Checker and 316 critical instructions executions were handled by the in-guest Dynamic Checker.

timestamp counter. In all experiments, five samples were taken for each measurement
and the median was used.

Function-call injection was evaluated by injecting a function call to a Windows ker-
nel function and measuring the time between when the injection starts and the target
guest function starts running (steps 2–4 in Figure 1). For this experiment, no parame-
ters were passed to the function. The entire operation, consisting of CPU and memory
introspection operations, followed by a VM switch, consumed an average of 0.7ms,
with a very low variance. We also measured the triggering delay for our selected in-
jection context, the OS system call dispatcher. This delay indicates the amount of time
that a monitoring application has to wait between its request for a function call to be
injected and the moment of injection. Results varied widely, ranging from a minimum
of 18ms to a maximum of 51ms, with a mean of 33ms. We consider this number to be
acceptable for most monitoring applications.

Localized shepherding was evaluated by injecting a function call to a guest OS
function and measuring the execution time consumed by each shepherding component.
Performance measurements corresponding to the run with the median execution time
and other shepherding statistics are shown in Figure 3. For this experiment, we se-
lected a function from the Windows kernel executive commonly used for monitoring:
ZwQuerySystemInformation.

The scanning and instrumenting phases were dominated by inter-VM page copying
operations that VMsafe uses for memory introspection. Performance could be improved
by using sharing-based introspection such as used by XenAccess. The dynamic check-
ing phase used about 50% of the total execution time, as shown in Figure 3, totaling
28.5ms. This time is almost entirely consumed by context switches between the SVM
and the GVM for critical instructions that need to be handled out-of-guest, and first-
time execution of direct calls, which are also handled out-of-guest. Considering that
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Fig. 4. Normalized execution time for the decompression of the Linux kernel source code tree in
the GVM. The interval between successive calls to ZwQuerySystemInformation is varied.

these 28.5ms correspond to just 17 critical instructions and 9 direct calls being handled
out-of-guest (out of 325), averaging 0.91ms per instruction, the importance of in-guest
handling cannot be overemphasized. If we were to handle all critical instructions out-of-
guest, the execution overhead created would make SYRINGE impractical for use in any
virtualized environment. Of the 17 instructions handled out-of-guest, 1 was an indirect
CALL executed by the system call dispatcher and 16 were indirect jumps triggered
by two different instructions. These 17 executions were handled out-of-guest because
the in-guest Dynamic Checker, by consulting the in-guest target table, determined that
their targets were being reached for the first time and so needed to be analyzed and
instrumented by SYRINGE. These were included in the target table to indicate that
all future indirect CALLs and JMPs instructions targeted at those addresses could be
handled in-guest. This allowed the following 88 executions of these instructions to be
analyzed in-guest. Direct and indirect CALL instructions, in their first execution, also
have the in-guest call origin table updated, so that RET instructions can be evaluated
in-guest. In our example, 211 RET instructions were executed and handled in-guest.
The execution of the actual guest code consumes an insignificant amount of time when
compared to shepherding, and is not shown in Figure 3.

4 Example Application

After measuring the performance of its individual components and its security proper-
ties, we evaluated SYRINGE in the context of a rudimentary monitoring application.
This application, named SYRMod, uses SYRINGE to periodically obtain a list of the
user and kernel modules loaded in the current process’ address space. The calling inter-
val can be defined by the application’s user. This module list is obtained by injecting a
call to and shepherding guest OS kernel function ZwQuerySystemInformation.
This is a generic wrapper function that can be used to obtain information about a Win-
dows system.
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After each invocation, when ZwQuerySystemInformation returns, SYRMod
is notified by SYRINGE. SYRMod then uses regular introspection to retrieve the results
from the guest OS’s memory, parsing and printing the list of modules to the SVM’s
standard output. This output includes, for each loaded module, the filesystem path of
its corresponding binary, base address in memory and size. The correctness and com-
pleteness of the list was verified. No security alerts were raised during the shepherding
phase, indicating that no integrity violations were detected with the code’s execution,
and that the results can be trusted.

We evaluated SYRMod’s performance impact on the guest. We varied the time inter-
val between successive callings of ZwQuerySystemInformation and measured
the time taken inside the guest to decompress the 2.6.33.7 Linux kernel source tree, a
64MB tar.bz2 file. The performance penalty comes from the suspension of all guest
activity when the monitoring thread is running. Results show a maximum overhead of
8% for a calling period of 1 second (Figure 4). Setting this period obviously depends on
the nature of the monitoring application and the type of information being retrieved. We
believe, however, that for many monitoring applications a 1 second period is considered
low enough so that our results indicate an acceptable performance penalty.

5 Limitations and Future Work

The techniques used by SYRINGE have limitations. Perhaps the most noticeable one is
SYRINGE’s intrinsic inability to shepherd the complete execution of certain operations.
Specifically, operations involving any type of asynchronous code execution, such as
reading a file from disk, cannot be shepherded by SYRINGE. This limitation is inherent
to the shepherding technique. We do not see it as a deal-breaker, though, since I/O
and asynchronous primitives (e.g., deferred procedure calls) are not commonly used by
information querying functions, such as ZwQuerySystemInformation.

The handling of page fault exceptions is also affected by this problem. In this case,
our current solution relies on first performing a non-shepherded call injection to the
target guest function so that all necessary pages can be swapped in, and then follow-
ing it with a shepherded call injection. Attacks targeting the non-shepherded call, by
modifying the code read from disk, would later be detected during the shepherded call.

The effect of guest OS internal synchronization mechanisms can be problematic for
SYRINGE. Due to the disabling of interrupts, it is possible for the shepherded code
to be blocked indefinitely by synchronization constructs, creating a deadlock situation.
We only rarely came across such a situation in our tests, but a more careful investiga-
tion on how to prevent and detect such occurrences is needed. One possible solution
would be to create a shepherding timeout mechanism that, if triggered, would cause
SYRINGE to re-enable interrupts inside the guest and notify the application of the fact.
The application can then choose to re-invoke the function at a later time.

Due to SYRINGE’s reliance on guest OS’s functions, it could be argued that its
monitoring capabilities are not as powerful as those of regular memory introspection.
The first is restricted to the results returned by a finite set of guest OS functions, while
the second can in principle retrieve any information from the guest’s memory. This
argument assumes that SYRINGE aims to completely replace regular introspection,



Secure and Robust Monitoring of VMs through Guest-Assisted Introspection 39

which is not true. We envision SYRINGE as an information extraction tool that, due to
its resilience to the semantic gap, can be used to aid many uses of regular introspection.

Finally, the control-flow integrity policy enforced by SYRINGE is coarse. Still, it
is sufficient to block kernel injected-code attacks, which is the most common type. A
more precise policy could be constructed by using techniques such as points-to analysis
to derive a smaller set of possible destinations for indirect control flow transfers and
include that knowledge in the dynamic checker’s policy [18].

6 Related Work

Secure monitoring of virtual machines has received much attention in the past 10 years
from academia and industry. The seminal work by Garfinkel et al. first introduced the
concept of virtual machine introspection (VMI), whereby the state of a GVM is pas-
sively analyzed by a monitor placed in a separate VM [1]. Multiple VMI-based so-
lutions have since been proposed to address specific problems such as tracking the
execution of guest processes [19], identifying covertly executing binaries [20], verify-
ing semantic integrity constraints [4], detecting persistent control-flow integrity viola-
tions [5], and detecting past vulnerability exploitations through record and replay [21].
These solutions are vulnerable to the semantic gap problem.

The protection of in-guest monitors has also been explored. Lares [7] and SIM [8]
protect a small agent inside the guest using hypervisor memory protection and addi-
tional address spaces. Nevertheless, the agent is subject to significant limitations that
would not allow such schemes to be used with sophisticated monitoring tools, such as
AV scanners. SYRINGE uses a hybrid in-guest/out-of-guest approach. SADE dynami-
cally injects a small agent into the guest that can call internal guest functions, but does
not protect the agent or the execution of guest code [6]. Overshadow uses virtualiza-
tion to protect an in-guest application’s confidentiality and integrity in the presence of
a compromised OS, but does not protect the execution of guest OS code or the ap-
plication’s availability [9]. Srinivasan et al. mitigates the semantic gap when actively
monitoring guest processes by moving them to the security VM while still maintaining
its interactions with the guest OS [22].

The Virtuoso project shares SYRINGE’s basic insight of leveraging the guest’s code
to minimize the semantic gap [15]. Virtuoso relies on pre-extracted execution traces of
guest monitoring functions to automatically generate introspection programs that can
be executed in the SVM. These traces must be extracted before any monitoring can be
performed, and must be re-extracted whenever the guest OS is updated. Virtuoso also
suffers from the fundamental incompleteness of dynamic analysis, which can create
significant runtime hazards for the generated introspection programs. SYRINGE shep-
herds the guest’s own internal execution, thus avoiding the hazards of execution trace
replaying and the need for a recurrent learning phase.

A brief discussion of the technique underlying function-call injection was first pre-
sented by Joshi et al. [21], and a more basic variant was later proposed by SADE [6].
Program shepherding was first proposed by Kiriansky et al. to protect systems against
application vulnerabilities [23]. It dynamically monitors the execution of control trans-
fer instructions in the program to ensure that it does not deviate from a certain control-
flow integrity policy. SYRINGE only requires indirect control transfers to be checked,



40 M. Carbone et al.

and ensures atomic execution. Also, our shepherding is not done system or application-
wide, but is localized to the monitoring thread and is activated/deactivated on-demand,
minimizing the performance impact.

7 Conclusion

We proposed SYRINGE, a secure and robust infrastructure for monitoring virtual ma-
chines. SYRINGE removes the monitoring application from the guest and uses function-
call injection to leverage the guest’s own functions, thus avoiding the semantic gap
problem. Security is achieved by verifying the execution of the guest code using local-
ized shepherding. We implemented SYRINGE using the VMsafe introspection engine
to monitor a guest OS running Windows XP. We evaluated its performance and security,
showing that all simulated attacks were detected. Finally, we built and demonstrated a
prototype application that uses SYRINGE to periodically obtain the list of loaded guest
modules. Its evaluation showed that for a calling period of 1 second, the overhead im-
posed by SYRINGE on the system is 8%.
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Abstract. Drivers, especially third party drivers, could contain mali-
cious code (e.g., logic bombs) or carefully designed-in vulnerabilities.
Generally, it is extremely difficult for static analysis to identify these
code and vulnerabilities. Without knowing the exact triggers that cause
the execution/exploitation of these code/vulnerabilities, dynamic taint
analysis cannot help either. In this paper, we propose a novel cross-
brand comparison approach to assess the drivers in a honeypot or test-
ing environment. Through hardware virtualization, we design and deploy
diverse-drivers based replicas to compare the runtime behaviour of the
drivers developed by different vendors. Whenever the malicious code
is executed or vulnerability is exploited, our analysis can capture the
evidence of malicious driver behaviour through comparison and differ-
ence telling. Evaluation shows that it can faithfully reveal various kernel
integrity/confidentiality manipulation and resource starvation attacks
launched by compromised drivers, thus to assess the trustworthiness of
the evaluated drivers.

Keywords: Driver code safety, diversity, hardware virtualization.

1 Introduction

Drivers, especially third party drivers, could contain malicious code (e.g., logic
bombs) and/or carefully designed-in vulnerabilities. Once got executed/exploited,
such compromised drivers render the attackers the opportunity of leveraging
drivers’ privilege to manipulate system integrity and data confidentiality. Even
worse, some attackers have successfully stolen certification from benign third-
party and easily obtained trust from the most cautious system engineers. For
instance, mrxcls.sys, a driver digitally signed with a compromised Realtek cer-
tificate, may be viewed as trusted and loaded into industrial OS by system
engineers. Once loaded, it injects malware Stuxnet into the victim OS, which
in turn causes catastrophe in Siemens supervisory control and data acquisition
industrial systems [2].

Fully assessing third party drivers before running them in most commodity
server systems is challenging. First, static analysis of such drivers is not always
possible due to the unavailability of their source code. Furthermore, carefully
designed-in vulnerability or malicious code triggered by some specific logic are
extremely difficult to be pinpointed during static analysis. Second, dynamic taint
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analysis (e.g., [37] and [11]) of driver code is generally infeasible, due to the un-
known taint seed during assessment. Without an accurate reference model, taint-
ing the entire code space of drivers can only reveal drivers’ behaviour, instead of
distinguishing legitimate actions from malicious ones. Last, besides promiscuous
attacks such as kernel integrity manipulation, some passive attacks, e.g., listening
post, launched by compromised drivers are more difficult to be captured.

Previous research proposes to protect kernel integrity from drivers by confin-
ing the drivers’ execution context, e.g., Nooks [30], Gateway [28], HUKO [35],
Device Driver Reuse and Isolation [24], and Mondrix [34]. Although these sys-
tems can effectively monitor drivers’ interaction with kernel functions or data,
deploying such isolation approach to assess drivers would cause a large number
of false positives or false negatives. For instance, both Gateway [28] and HUKO
[35] rely on explicitly white-listed legitimate entry points for control transfer
from drivers to OS kernel. However, such explicit and complete reference model
is quite difficult to be established in practice. We observe that legitimate drivers
indeed invoke kernel functions not defined in legitimate entry points occasion-
ally, which results in false positives. Moreover, frequently invoking kernel APIs
defined in legitimate entry points can also lead to Denial of Service attack due
to resource starvation, which causes false negatives.

In this paper, we present a novel driver evaluation approach, Heter-device, to
comprehensively assess drivers against an implicit and complete model before
putting any trust on them. Heter-device relies on virtual platforms to emulate
heterogeneous device (Heter-device) pairs (e.g., Intel 82540EM NIC and Realtek
RTL8139) for guest operating system replicas. Each replica loads heterogeneous
drivers corresponding to the devices it runs on. Heter-device approach stands on
the assumption that heterogeneous drivers should not have the same exploitable
vulnerability due to their separated developing processes. So they provide an im-
plicit and complete reference model for each other when trustworthiness assess-
ment is conducted via fine-grained auditing. Hence, by deploying Heter-device
as a high-interaction honeypot, we can closely compare the divergence of two
replicas when the vulnerable driver is being compromised and leveraged.

The two replicas with heterogeneous drivers are synchronized at the exported
function entry points, which are declared by OS kernel and implemented by each
driver.We start a fine-grained auditing of driver’s execution whenever kernel calls
the corresponding driver functions. During driver’s execution, every jump, call or
return to kernel or other kernel modules’ address space are logged for verification.
The logs from heterogeneous drivers are parsed and compared to check any
suspicious control flow redirection, e.g., one driver jumps to a kernel segment
written by itself, while the other does not exhibit such behaviour. Moreover, any
modification to key kernel data by drivers is recorded and verified against the
heterogeneous drivers to check if it is a legitimate modification or a malicious
manipulation.

We also deal with passive attacks launched from compromised drivers, e.g.,
network card driver intercepts incoming/outgoing packets and redirects them
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to remote entities. Thus, the network outgoing packets of the two replicas are
audited and compared to find mismatch. Additional amount of traffic on one
replica against the other suffices an alarm of confidentiality compromise. Finally,
abuse of kernel APIs, such as spin lock or kernel memory allocation requests,
may cause CPU or memory starvation. Hence, any call to these resource request
APIs from drivers is also verified against heterogeneous drivers. By placing the
synchronization and monitoring “sensors” in Heter-device, our honeypot can
faithfully reveal multiple attack vectors of compromised drivers, including kernel
integrity manipulation, resource starvation, and confidentiality tampering.

We target a honeypot or testing environment; accordingly, we implement
Heter-device framework based on open source QEMU [1] project for the follow-
ing reasons. First, QEMU facilitates our Heter-device architecture by providing
heterogeneous device emulation options for several types of devices, e.g., sound
card (sound blaster 16 or Gravis ultrasound GF1), Ethernet network card (Intel
82540EM NIC or Realtek RTL8139), video card (Cirrus Logic GD5446 Video
card or Standard VGA card with Bochs VBE extensions), and etc. Further-
more, it enables our fine-grained auditing of driver’s execution through binary
translation blocks. Specifically, since each jump of register eip generates a new
translation block in QEMU, we can simply monitor eip at the beginning of each
translation block to capture the driver’s execution context, rather than auditing
every instruction. Last, though the overhead of QEMU is significant, providing
good performance is not so critical in either honeypot or testing environment.

Our evaluation shows that Heter-device is effective in revealing multiple at-
tack vectors of compromised drivers, e.g., kernel APIs abuse, malicious code
injection, key kernel data tampering, resource starvation, and sensitive infor-
mation leakage. Accordingly, typical real world use of Heter-device can be as
follows: the system engineers assess drivers using Heter-device first, and then
choose the trustworthy drivers1 to run their server systems. Compared to na-
tive QEMU execution, the performance overhead incurred by auditing control
flow transition and synchronization can be optimized to range from 20 % to 90
%, depending on the amount of kernel data to be audited. Heter-device driver
assessment only requires drivers’ binary code to run in network-oriented testing
environment (i.e., honeypot), and dose not involve any modification to driver
source code, compilers, or targeted operating systems.

The rest of this paper is organized as follows. The next section overviews
Heter-device threat model. Section 3 presents the design details of Heter-device
approach, focusing on Heter-device architecture, address-alias correlation, run-
time synchronization and multi-aspect auditing and verification. Section 4 sum-
marizes the implementation issues of Heter-device. In Section 5, we evaluate
Heter-device by case studies and measure its performance overhead. In Section
6, we discuss the limitation and future work of Heter-device. Finally, we present
related work in Section 7 and conclude in Section 8.

1 System engineers can either buy the corresponding real hardware devices or configure
virtual platforms to emulate those devices.
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2 Threat Model

In this paper, we assume that the device drivers are untrusted, either with vulnera-
bilities that can be exploited locally or remotely, or inherently malicious. Further-
more, we only focus on the exploitations that are carefully designed and crafted
by attackers. Otherwise, crashing the target system will definitely draw system
engineers’ attention to trace such consequence back to the root cause. Last, as the
base of Heter-device, we assume that heterogeneous drivers should have different
vulnerabilities or different malicious code, in terms of where and what the vulner-
abilities or malicious code are. Hence, at least one driver can serve as a criterion
to verify and alarm the other compromised driver’s execution.

It is generally believed to be challenging to verify the behaviour of untrusted
drivers in an efficient and robust way due to at least the following reasons. First,
drivers in most commodity OS have exactly the same privilege as kernel and
run in the same address space as kernel. Thus, any kernel module performing
auditing or monitoring tasks may be manipulated by the compromised driver.
Second, the attackers may leverage the compromised driver to tamper arbitrary
OS components (e.g., function pointers, file metadata, system call table, etc.),
to accomplish their intrusion goals. Hence, it is also quite difficult, if not im-
possible, to pinpoint the comprehensive auditing points covering all possible
damages/harms that could be caused by compromised drivers. Last, even if it
is possible to censor drivers’ execution efficiently and comprehensively, lacking a
complete reference model makes the verification of drivers’ behaviour challeng-
ing. Significant false positive or false negative is expected.

In this paper, we propose a novel approach, Heter-device, using driver-
diversity-based replica as a complete and implicit reference model, to assess
drivers in the following attack vectors:

Control Flow Manipulation. The control flow transition from driver to kernel
is tampered by compromised drivers, e.g., jumping to a specific address in the
middle of kernel functions, making suspicious kernel function calls to modify
critical registers, and etc.

Key Kernel Data/Code Manipulation. Compromised drivers tamper with
kernel code, static global variables, or key dynamic data specified by kernel
developers or system engineers, e.g., system call table, interrupt descriptor table,
double linked list pointers in process control block, and etc.

Confidentiality Manipulation. Compromised drivers intercept bypassing in-
formation or access sensitive files, and send them out through network to remote
unknown entities. For instance, compromised NIC driver intercepts all the in-
coming/outgoing packets and redirects them to attackers’ machine.

Resource Starvation. Compromised drivers abuse critical resources and in-
cur denial of service, e.g., dominating CPU by locking interrupts or exhausting
memory by endless allocation request.

Since we assume OS kernel is fully trusted, we don’t verify the control flow
transition from OS kernel to driver code, nor audit the driver’s data accessed
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by OS kernel. Furthermore, the function parameters and stack data passed be-
tween OS kernel and drivers are not verified currently, which could be leveraged
by compromised drivers to tamper kernel integrity in certain ways. For instance,
when calling a certain kernel API, attackers can launch a return-oriented at-
tack to jump to other kernel functions through carefully crafted parameters.
Such attack can indeed evade the auditing of Heter-device, but we believe that
currently it requires significant manual efforts of attackers2. Finally, since Heter-
device relies on underneath virtual platform to emulate heterogeneous devices
for guest OS replicas, we assume the virtual machine monitor is in the trusted
computing base. Exploiting bugs in virtual machine monitor, such as [3], and
then controlling the guest OS are not in the scope of this paper.

3 Heter-Device Design

In this section, we first describe the novel virtualized device diversity approach to
efficiently produce driver-diversity-based OS replicas, then present Heter-device
approach to evaluate drivers in multi-aspects.

3.1 Heter-Device Architecture

Figure 1 shows our Heter-device architecture with the front stage replica and
the back stage replica running as Guest OS atop the same Host OS. The device
diversity is produced by virtual platform to emulate heterogeneous devices for
the two VM replicas. The virtual platforms can run unmodified commodity OS
by giving the Guest OS the illusion that it runs on top of “real” hardware. Thus,
the guest OS will load corresponding drivers for the hardware devices that it
regards as “real”. In this way, the virtualized device diversity approach gains the
same security benefits as costly hardware diversity in a much cheaper manner.
For instance, software diversity approach enables two replicas to run on two
separated emulated platforms, one with Intel 82540EM NIC (Network Interface
Card), sound blaster 16 (sound card), Universal Host Controller Interface (USB
controller) and etc., the other with Realtek RTL8139 NIC, Gravis ultrasound
GF1(sound card), Intel Open Host Controller Interface (USB controller) and etc.

Our virtualized device diversity idea is inspired by both the hardware-based
diversity approach and the sweeping deployment of virtual platforms (e.g.,
VMware, Xen, KVM, QEMU and etc.) in the production server environment. In
this paper, we call the diverse devices with different models but performing the
same functionality, e.g., Intel 82540EMNIC and Realtek RTL8139 NIC, as a pair
of heterogeneous devices. As a result of pairs of heterogeneous devices emulated
by virtual platform, the guest OS kernel of each replica will load heterogeneous

2 The most recent work [21] fully automates the instruction sequence construction
that can be used by an attacker for malicious computations. However, the side-effect
of the construction time (2009 ms) and the runtime overhead (135 times slower) will
cause significant divergence on the logs of the two replicas, which will be caught by
Heter-device as CPU resource abuse.
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Fig. 1. Heter-device Software-based Diversity Architecture for Driver Assessment

drivers correspondingly, e.g., e1000 or 8139too kernel modules3. Except heteroge-
neous drivers, the guest operating systems on the front stage VM replica and the
back stage VM replica are exactly identical in terms of kernel version, installed
applications and services, other loaded modules, start-up scripts, and etc.

The external input should be redirected to both the two replicas. We imple-
ment the input replication at the Host OS, totally transparent to the Guest OS
replicas. Basically, every external input from network, keyboard, and mouse trig-
gers both the device emulation modules of the two virtual machines. Since the
input data from virtual disk is initialized by guest OS replicas, it does not need
to be replicated. The output from the two guest OS replicas is intercepted and
recorded by virtual machines. For instance, the network output traffic from each
replica is audited and verified to capture any confidentiality tampering through
network. During evaluation, we ensure that only the output from the front stage
replica is sent out, while the output from the back stage replica is discarded, to
guarantee the correctness of communication context.

3.2 Heter-Device Approach

There exist several challenges to assess drivers based on Heter-device architec-
ture, so we abstractly present our system design to tackle these challenges in the
following.

Address-Alias Correlation. Through pre-configuration, both the front stage
and back stage OS replicas can load root symbols (defined in System.map in

3 We focus our discussion on Linux operating system in this paper, but Heter-device
is easily transported to other operating systems through reasonable efforts.
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Linux) into the same memory address. However, other dynamic kernel data may
be loaded into different addresses, even if the data represents exactly the same
semantics. For instance, with the same kernel version and configuration, the two
OS replicas store the process descriptors of their root processes in the same
address (pointed by the root symbol init task). By traversing the double linked
list of all the processes on the two replicas, we observe exactly the same process
list, including kernel threads. However, the memory addresses storing all the
other process descriptors, except the root process descriptor, do not match. Such
address-alias of the same kernel data on the two replicas is prevalent and poses
challenge to our auditing of kernel function calls and key kernel data accessed
by evaluated drivers.

To tackle this challenge, we propose to correlate the address-alias kernel se-
mantics of the front stage and back stage replicas. First, we need to reconstruct
kernel semantics from raw physical memory of each replica respectively. Due
to the challenge of reconstructing dynamic kernel data, such issue catches re-
searchers’ continuous attention recently, e.g., [22], [7], [15], [25], [14] and etc.

Heter-device efficiently integrates both the out-of-VM and in-VM approaches
to comprehensively reconstruct kernel semantics. All kernel exported function
pointers can be referred to from root symbol definition (System.map file), which
is identical for both the replicas through default configuration. Some key kernel
data can also be referred to in a similar way, with additional effort of recur-
sive identification of kernel data structures. Regarding dynamic data of both
kernel and drivers, we insert a fully trusted kernel module into both the front
and back stage replicas, which notifies underneath virtual platforms about the
allocation/reclaim of kernel memory and loading/unloading of kernel modules.
With the reconstructed semantics, address-alias correlation recursively maps the
addresses of the same kernel semantics, either function pointers or kernel data
structures. Hence, it makes possible the efficient auditing and verification of
heterogeneous drivers’ execution.

Runtime Synchronization. Running the front stage and back stage replicas
at large may incur “out-of-band” comparison of heterogeneous drivers’ execution
on the two replicas. Though we delivered the replicated external input to the two
replicas at the virtual machine monitor level simultaneously, the corresponding
interrupt to CPU on each replica may not be “simultaneous”. Thus the actual
processing of the interrupt on the two replicas may still be “out-of-band”. Re-
searchers have proposed interrupt-redelivery approach for deterministic replay,
e.g., [16], [36], and [38], which could be leveraged by Heter-device to apply the
exact-replay-style synchronization. However, due to the heterogeneous driver
diversity introduced by Heter-device, synchronizing such diverse replicas poses
quite realistic challenges, such as different instruction execution sequences.

We observed that although the implementation of heterogeneous drivers is
different, they offer the same function interfaces to OS kernel. Such layered
design of most operating systems implies that OS kernel only needs to know how
to invoke the device driver’s methods, rather than to understand the detailed
implementation of driver’s methods. Figure 2 shows the interaction among NIC
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Fig. 2. NIC Driver Interaction with OS Kernel and Other Kernel Modules

driver, OS kernel and other kernel modules. Besides function call returns, the
control flow transition to NIC driver code must be through NIC interrupt handler
or NIC driver function calls. For instance, NIC driver (Linux version) has totally
18 methods, with 8 fundamental (e.g., open, stop, hard start xmit, and etc.) and
10 optional (e.g., poll, set mac address, change mtu, and etc.), indicating the
operations that can be performed on this network card.

OS kernel declares the corresponding driver function pointers and initialize
them during the loading of driver modules. As described in Figure 2, these driver
functions are the only entry points for the control flow to transit from OS kernel
or other kernel modules to this driver. Since OS kernel is fully trusted, it will
not redirect control flow to arbitrary driver addresses except driver function call
returns. More importantly, these entry points are identical for heterogeneous
drivers despite different implementation details of the driver functions. Address-
alias of the entry points on the two replicas can be resolved by correlating the
addresses of them together. Thus, the two replicas can be synchronized by the
entry points of the same device driver functions.

Hence, the auditing and verification of drivers’ execution can be triggered by
sensors monitoring the entry points. Specifically, when OS kernel’s execution
encounters an entry point, i.e., OS kernel calls a driver function, the context of
current execution is recorded on the two replicas separately. Then, all the follow-
ing instruction sequences of the two replicas are audited respectively, until the
return to the previously logged context4. In particular, the entry point of the in-
terrupt handler function deserves special attention, since nested interrupts (new
interrupt comes during the processing of previous interrupt) may happen some-
times. Hence, each entry to driver’s interrupt handler function is sequenced, and
strictly matched to the corresponding return. In this way, the driver’s execution
can be identified apart from OS kernel’s execution.

4 Driver may also call kernel APIs during its execution. So the return to OS kernel
address space does not suffice the end of driver’s execution. Instead, only the return
to the caller’s execution context indicates the end.
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Kernel Integrity Mediation. Compromised drivers can leverage the ultimate
privilege to manipulate kernel integrity, e.g., hijacking control flow or tampering
kernel data. Below, we present the approach of auditing such kernel integrity that
could be tampered by compromised drivers based on Heter-device architecture.

Control Flow. For benign OS kernel and drivers, the control flow transitions
among them can be well regulated by confining exported functions. For instance,
Figure 2 shows that the control flow transition from OS kernel to drivers can be
made by calling functions exported by drivers. Besides call return or hardware
interrupt, the transition from benign drivers to OS kernel is through functions
exported by OS kernel itself or other kernel modules which may call exported
kernel APIs on behalf of the calling driver. Since we trust OS kernel, OS kernel
only calls functions exported by drivers to transit the control flow. However,
compromised drivers may directly jump to any address inside kernel or other
modules to continue execution. Moreover, they can inject malicious code into
OS kernel memory using DMA, and subvert function pointers on stack to the
injected code, to hijack the control flow transition.

Existing researches, e.g., Gateway [28] and HUKO [35], prevent such control
flow integrity manipulation by isolating address spaces of OS kernel and drivers.
Legitimate entry points for execution transition from drivers to OS kernel are
explicitly listed, e.g., system root symbols in Linux System.map). However, we
observe that legitimate drivers may invoke some kernel APIs not defined in their
legitimate entry point set. Rather, invoking kernel APIs frequently in their legit-
imate entry point set can also lead to denial of service attack through resource
starvation. Furthermore, compromised drivers may inject malicious code into
their own stack or heap to launch attack without violating control flow transi-
tion policies.

The runtime synchronization facilitates the fine-grained auditing of drivers’
execution, from the call to driver’s function to the corresponding return to caller.
During the auditing of driver’s execution, every jump or call out of driver’s code
address space is logged. These calls of kernel APIs or other kernel modules
should be verified against the two replicas. Since the implementation of the
heterogeneous drivers is different, strict verification of the sequence of their OS
kernel API calls would always fail. However, to provide the same functionality,
during assessment we observed a set of specific kernel APIs is frequently called by
heterogeneous drivers. For instance, the kernel API calls made by NIC converge
at irq locking/unlocking and memory allocation/deallocation.

We expect system engineers to manually analyze and verify the logged kernel
API calls made by heterogeneous drivers within each specific driver function.
Based on our experience, most system engineers (even those not quite familiar
with OS kernel) have a sense of which set of kernel APIs are relevant in a specific
driver function based on our cross-checking reference model. In addition, it is
also relatively easy for them to capture some outlier kernel API calls through the
pairwise comparison for further verification. For example, one volunteer system
engineer at the first glance, pointed out that rtl8139 open makes a kernel thread
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call, while e1000 open does not. Though such behaviour is finally verified as
benign, we believe that such significant variance deserves further verification.

Besides the outlier kernel APIs, the kernel APIs that are called with an ex-
tremely high frequency deserve further verification as well. For instance, endlessly
calling resource request kernel APIs will cause resource starvation as discussed in
Section 3.2. Repeatedly calling prepare to wait kernel APIwill put all the runnable
processes into sleep. Such malicious behaviour can be easily captured through the
comparison of the amount of each kernel API calls within a specific driver func-
tion against heterogeneous drivers. Furthermore, benign drivers typically will only
write data, rather than code, into their own stack/heap, or DMA-mapped kernel
memory. Thus, any jump/call to the address within driver’s stack/heap, or DMA-
mapped kernel memory is strictly verified to check if such behaviour is general for
the heterogeneous drivers to provide desired functionality. If not, further verifica-
tion should be given to the driver that exhibited such suspicious behaviour.

Data Integrity. Drivers have the privilege to modify any kernel control-relevant
or control-non-relevant data. Such modification by drivers should be strictly ver-
ified, rather than forbidden, since some of the modification might be legitimate
to provide some desired functionality. For instance, previous Linux kernel does
not export set current state API for drivers to change the state of a certain pro-
cess. Instead, drivers have to directly set the state of current running process
by current->state = TASK INTERRUPTIBLE. However, compromised drivers
may take advantage of those exported kernel APIs to hijack control flow, e.g.,
manipulating kernel control-relevant data, such as system call table, IDT, etc. A
particular process can also be hidden by tampering kernel control-non-relevant
data, such as pointers of double linked list processes.

Hence, we propose to verify the modification to key kernel data by heteroge-
neous drivers to capture any malicious manipulation. Beginning from the call to
driver functions, copy-on-write is triggered on the memory storing the key kernel
data on each replica, until the corresponding return to caller. Hence, the modifi-
cation to key kernel data can be accounted to the corresponding drivers. However,
driver’s execution may be disrupted by a preempted interrupt, which is handled
by OS kernel and corresponding interrupt handler. The modifications during the
preempted interrupt handling should be accounted to the driver that implements
the interrupt handler function. These modification logs of each driver function are
verified against heterogeneous drivers for any malicious manipulation.

We observe that most kernel data integrity manipulation is accompanied with
control flow hijacking, which can be identified as discussed in control flow ma-
nipulation. Regarding pure data integrity manipulation, kernel developers or
security engineers can provide a list of critical kernel data based on empirical
experiences or referring to kernel critical data profiling [32]. Generally, when the
amount of key kernel data to be verified becomes large, the runtime overhead
and the false positive of Heter-device verification will become significant. Hence,
we propose to select a subset of kernel integrity critical data as the verifica-
tion candidate, e.g., system call table, IDT, critical function pointers in process
descriptor, double linked list pointers, and etc.
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Confidentiality and Resource Consumption. Passive attacks, such as con-
fidentiality tampering or resource abuse, are challenging to be identified or de-
tected. Unfortunately, compromised drivers can leverage their ultimate privilege
to maliciously intercept any data flow or repeatedly request any critical system
resource, thus tampering confidentiality or crashing the system. Below, we dis-
cuss the methodology of relying on Heter-device architecture to capture such
passive attacks during driver assessment, and present the framework we inte-
grated into our approach.

Confidentiality. Compromised drivers can intercept bypassing data, call trans-
mission (hard start xmit in Linux) function in network card driver, and send
out to remote machines. Through control flow auditing and verification of het-
erogeneous drivers, the additional call to network card driver functions can be
captured and identified as suspicious as discussed in Section 3.2. However, if
network card driver itself is compromised, such data interception can be done
totally within its own execution context, without any call to functions in other
kernel modules. Although data flow auditing and verification of heterogeneous
drivers can be added to capture the data interception, it would incur significant
runtime overhead.

In this paper, we only focus on confidentiality leakage through network, that
is, the intercepted data is transmitted to remote machines through network
interface card. We assume that servers’ running environment has strict physical
access restrictions. Thus, it is out of our scope that the compromised drivers
intercept the data and write it to local disk, which is then fetched through local
access. Based on our assumption, we monitor and verify the network output of
the front stage and back stage replicas for any confidentiality leakage. When
deploying Heter-device architecture, OS kernel and service applications on the
two replicas are identical, and the incoming packets to the emulated network
cards are exactly replicated. So the output from the two replicas should be kept
in rhythm unless anomaly happens. Hence, the output from the two replicas are
matched with the combination of receiver’s IP and packet sequence number. The
additional traffic for information leakage from the compromised replica can be
captured and alarmed.

Resource Consumption. Compromised drivers can launch various resource abuse
attacks, and even cause denial of service due to resource starvation. Acquir-
ing/releasing interrupt lock, allocating/freeing memory and etc., are benign op-
erations for most drivers to provide desired functionality. However, such legit-
imate operations may be leveraged by compromised drivers to launch CPU or
memory starvation attacks. Certainly, it is infeasible to restrict these kernel APIs
from drivers, because benign drivers may not work or malfunction. Heter-device
captures such resource abuse attack by strictly auditing and verifying the re-
source request kernel APIs issued by heterogeneous drivers. Although different
implementation of heterogeneous drivers may cause variance in system resource
consumption, we believe significant variance must indicate suspicious driver, at
least inefficient implementation of the driver. System engineers can easily set up
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a threshold of such variance to alarm resource abuse. Based on our experience,
such variance threshold can be set from 5 % to 15 % based on various context
for reasonable false negative and false positive.

4 Implementation

In this section, we present the implementation of Heter-device framework. We
begin with Heter-device architecture deployment based on QEMU open source
project, followed by address-alias correlation for the heterogeneous drivers based
replicas. At last, we describe the implementation of the fine-grained mediation
of heterogeneous drivers’ execution.

4.1 Heter-Device Deployment

Software Diversity Architecture. Instead of deploying the replicas on costly
real heterogeneous devices platforms, we implement our Heter-device architecture
using QEMU, with one virtual machine as the front stage replica, and the other
one as the back stage replica. We configure the virtual machine (QEMU) to em-
ulate heterogeneous devices for the two replicas, i.e., one with Realtek RTL8139
NIC and Gravis ultrasound GF1, the other with Intel 82540EM NIC and sound
blaster 16. Although other heterogeneous devices options are also available, e.g.,
USB, video card and etc., we believe heterogeneous network cards and sound cards
are sufficient to demonstrate the proof-of-concept of Heter-device.

The disk image file is replicated for the two replicas to ensure the same guest
operating system (with kernel version 2.6.15), service applications, configura-
tions, startup scripts, and etc. Moreover, the two replicas are configured with the
same amount of memory and networking model. Hence, the only difference be-
tween the two replicas is heterogeneous drivers, which interact with underneath
heterogeneous devices. During the assessment of heterogeneous drivers, Heter-
device serves as “honeypot” to trigger either the inherently malicious drivers or
remote exploitation to drivers’ vulnerabilities.

Input Replication and Output Verification. To implement the external
input replication to the two replicas, we insert a small piece of replication code
into the host operating system kernel. Whenever there is any external input,
i.e., keyboard, mouse, network packet, to the front stage replica, the inserted
code on host OS kernel replicates the input and notifies both the two replicas
for incoming events. Since the virtual machine we use (QEMU) behaves as a
user process on host OS, the notification can be done either by signal or bit
masking based on the context. In contrast, the network output from each replica
is logged by the emulated network card of each virtual machine. On host OS,
we implement a verification process examining the logs from the two replicas.
In particular, it extracts the destination IP, sequence number information from
each packet and matches the corresponding packets from the two replicas. A
threshold of the amount of unmatched packets can be pre-determined, to alarm
any confidentiality leakage.
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Synchronization of Replicas. We rely on both virtual machine and guest OS
support to synchronize the front stage and back stage replicas at the granularity
of driver function calls. We assume that host OS runs on multi-core hardware
platform, thus each virtual machine is configured to run on a dedicated core
for maximum CPU capacity. We craft a trusted kernel module to monitor the
loading of heterogeneous drivers on each replica. For instance, it audits the pro-
cedure of initializing functions declared by OS kernel, e.g., the interrupt handler
function and other functions registered by the driver. The memory addresses of
these functions are sent to underneath virtual machine through a secure channel.
Only the functions implemented by both heterogeneous drivers are selected as
synchronization points for the two replicas. During runtime, the value of regis-
ter eip is monitored on both replicas to capture the synchronization points, as
discussed in Section 4.3.

4.2 Address-Alias Correlation

We focus our implementation on Linux OS and start from a set of root symbols
in System.map file. Since operating systems on the front stage and back stage
replicas are with the same kernel version and configuration, the symbols and their
addresses in System.map are exactly the same. Then we apply a CIL module [27]
on the source code of guest OS kernel to automatically extract type definitions
of kernel data structures. Finally, beginning from each correlated root symbol,
we recursively reconstruct memory semantics based on type definitions of kernel
data structures, and correlate the same data structure with address-alias.

In particular, in order to correlate task struct of each process, we start from
the data structure CPUState defined by QEMU to emulate the processor for
virtual machine. All the CPU registers can be referred to through the instance
of CPUState: env. From the register tr, we locate the kernel stack of the currently
running process. At the bottom of kernel stack resides the thread info structure,
which includes a pointer to the task struct of the corresponding process. By
traversing the double linked list processes through the task pointers on the two
replicas, we can obtain all the process descriptors and correlate their addresses
together.

4.3 Fine-Grained Driver Execution Mediation

QEMU is a binary translation based virtual machine, which facilitates fine-
grained auditing of guest OS execution. Instead of instruction-by-instruction
translation, QEMU implements translation block to improve performance. Specif-
ically, QEMU generates host code from a piece of guest code without control flow
redirection or static CPU state modification. Thus, for each translation block,
guest OS executes without QEMU intervention unless interrupt occurs. At the
end of each translation block, QEMU takes over the control and prepares for the
next translation block.

The translation block mechanism provides a perfect mediation approach for
drivers’ execution. We can audit the program counter at the beginning of each



Assessing the Trustworthiness of Drivers 55

translation block, which represents a control flow redirection, including return,
jump, or call, etc. In this way, the entry into or the leave from driver’s code section
can be recorded efficiently without monitoring every executed instruction. How-
ever, QEMU also implements translation block chaining for performance boost.
In particular, every time when a translation block returns, QEMU tries to chain
it to previous block, thus saving the overhead of context switch to QEMU emu-
lation manager. The translation block chaining indeed poses challenges for our
control flow redirection mediation, since QEMU emulation manager may miss
some redirections, i.e., some transitions between OS kernel and drivers.

In order to tackle this challenge, we trace down through the translation
block chain whenever QEMU emulation manager begins a new translation block.
QEMU defines TranslationBlock data structure for each translation block, where
we can locate the program counters of this block and the next one along the
chain. Hence, we can traverse the chain till the end to audit and record the
program counter at the each control flow redirection. However, key kernel data
cannot be recorded in this way since detailed execution context has not been
established yet during the pre-traversing of translation block chain. In order to
preserve the performance and key kernel data integrity, we mark the memory
regions storing those key kernel data as non-writeable. Any attempt to write to
the memory will be trapped to QEMU manager, and validated against the het-
erogeneous drivers. Currently, we assume that key kernel data always involves
some static code, data, critical function pointers, and etc.

5 Evaluation

In this section, we present experimental results on Heter-device framework in
three aspects. First, we present the comparison results on OS kernel APIs called
by different functions of heterogeneous drivers. Second, we show the effectiveness
of Heter-device in capturing compromised drivers by two case studies. Last,
we evaluate the performance overhead incurred by Heter-device approach. The
host OS is Ubuntu 10.10 with kernel version 2.6.35, and both of the two guest
operating systems are installed with Fedora 5 (kernel version 2.6.15). We choose
qemu-0.12.5 as the virtual machine monitor emulating two virtual platforms:
one with Realtek RTL8139 NIC and Gravis ultrasound GF1, the other with
Intel 82540EM NIC and sound blaster 16.

5.1 Profiling Heterogeneous Drivers

First, we load Heterogeneous NIC drivers e1000 and 8139too on the two repli-
cas running Intel 82540EM NIC and Realtek RTL8139 NIC respectively. Our
trusted kernel module monitors alloc netdev function to trace the newly allo-
cated net device structure for the network card. Then the function pointers in
net device, such as open, stop, hard start xmit, etc., are audited during the ini-
tialization of NIC drivers to obtain the addresses of these driver functions. The
functions implemented by both heterogeneous drivers are correlated as the syn-
chronization entries of the two replicas. We start to audit the control flow tran-
sition between OS kernel and NIC driver since the booting of the two replicas.
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Then we trigger a set of user commands (e.g., ssh, sftp, ping, and etc.) and appli-
cations (e.g., Firefox, Filezilla, and etc.), which involve network card operations,
to invoke the interaction between OS kernel and NIC driver. Simultaneously, the
kernel API calls issued by each synchronized function of heterogeneous drivers
are profiled.

Table 1 shows our profiling results of heterogeneous drivers e1000 and 8139too.
Although implemented by different teams, the same functions of heterogeneous
drivers typically invoke a similar set of kernel APIs. In particular, we find that
8139too calls kernel thread kernel API in open function. Thus, we monitor the
forked kernel thread and observe the following kernel APIs invoked during the
thread’s lifetime: daemonize, allow signal, interruptible sleep on timeout, refrig-
erator, flush signal, rtnl lock interruptible, rtnl unlock, and complete and exit.
Table 1 also indicates that previous works will generate lots of false positive when
referring to exported functions in System.map as trusted entries from drivers to
OS kernel5.

5.2 Case Study 1: Kernel Integrity Manipulation

We refer to the implementation of adore-ng kernel rootkit, and integrate its ma-
licious code into the function snd gf1 stop voice of gus (for Gravis ultrasound
GF1) driver. When users try to turn off the audio, the injected code gets ex-
ecuted to replace the functions of readdir, lookup, and get info with its own
implementation to hide files, processes and ports. The newly generated driver
gus is recompiled and loaded into OS kernel. In contrast, driver sb16 (for sound
blaster 16) remains unchanged.

During the assessment of drivers gus and sb16, we simulate user’s command to
turn off the audio, which is replicated to both replicas. The modification of those
static kernel data (function pointers) by driver gus is observed and alarmed,
while driver sb16 does not exhibit such behaviour. Then we clear this alarm,
let the two replicas run forward, and issue process and file listing commands.
We observe that the control flow transition from OS kernel to driver gus code
section through unrecognised entry. Afterwards, driver gus calls kernel APIs, i.e.,
readdir, lookup, and get info, from its execution context. In contrast, driver sb16
on the other replica is not involved in the process and file listing procedures.

5.3 Case Study 2: Resource Abuse and Confidentiality Tampering

With the kernel privilege of compromised driver, attackers can launch resource
starvation attack to reduce the productivity of the victim systems, or tamper
confidentiality by intercepting bypassing data. We simulate resource abuse by
inserting malicious code into the source code of RTL8139 NIC driver. In par-
ticular, after spin lock is called in function rtl8139 interrupt, repeated call of

5 Similar profiling has been performed on heterogeneous sound card drivers gus (for
Gravis ultrasound GF1) and sb16 (for sound blaster 16). The profiling results are
excluded due to page restriction.
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Table 1. Kernel APIs called by different functions in e1000 and 8139too. For each
synchronization function, the upper box contains the invoked kernel APIs defined in
System.map file of guest OS, while the lower box includes the indirected invoked kernel
APIs that are called by drivers through the following procedure. Drivers call some other
extern kernel functions (not defined in System.map file) by including some .h files, and
these functions in turn invoke the indirected kernel APIs identified by us.

Synch. Entry Kernel APIs by e1000 Kernel APIs by 8139too

*open

request irq, mod timer, kmalloc, netif carrier on, netif carrier off,
pci clear mwi, vmalloc node request irq, spin unlock irqrestore,

spin lock irqsave, kernel thread
dma alloc coherent, dma alloc coherent
alloc skb, aloc pages

*stop

free irq, netif carrier off, free irq, wait for completion,
mmset, vfree, kfree kill proc, spin lock irqsave,

spin unlock irqrestore
netpoll trap, dma free coherent, netpoll trap, dma free coherent
lock timer base, list del, kfree skb,
local irq save, local irq restore

*interrupt handler

spin lock, spin unlock, spin lock, spin unlock
eth type trans, netif rx
alloc skb, netpoll trap, kree skb netpoll trap, local irq save,

local irq save, local irq restore local irq restore

*tx timeout

schedule work spin lock, spin lock irqsave,
spin unlock, spin unlock irqrestore

spin lock, spin lock irqsave,
wake up

*do ioctl

request irq, spin unlock irqrestore spin lock irq, spin unlock irq
free irq, spin lock irqsave,
netif carrier off, mod timer
lock timer base, list del, kfree skb, capable
local irq save, local irq restore
netpoll trap

*hard start xmit

spin trylock, spin unlock irqrestore, spin lock irq, spin unlock irq
pskb pull tail, pskb expand head
local irq save, netpoll trap, kfree skb, netpoll trap
local irq restore

*poll

spin lock, spin unlock, disable irq spin lock, spin unlock,
enable irq, netif carrier ok netif receive skb
local irq save, kfree skb, local irq disable, alloc skb
local irq restore local irq enable, list del,

local irq save, local irq restore

*set multicast list
spin lock irqsave,
spin unlock irqrestore

*get stats
spin lock irqsave, spin lock irqsave,
spin unlock irqrestore spin unlock irqrestore
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Table 2. Runtime Performance of Different Benchmarks

Benchmark Key Kernel Data Whole Kernel

LMbench 1.2021 1.2444

Apache Benchmark 1.4420 2.8273

Interbench 1.3356 1.4160

Kernel Decompression 1.1663 1.2262

alloc skb is issued until kernel memory is overwhelmed. Then the driver is re-
compiled and loaded into OS kernel as 8139too module. We repeat a subset of
the user commands and applications in Section 5.1. During the assessment, af-
ter the synchronization of interrupt handler function entry, e1000 intr quickly
returns. However, rtl8139 interrupt continues running with lots of alloc skb calls
recorded. Our verification alarms such anomaly immediately with a pre-defined
difference threshold (200 in our experiment) reached.

Furthermore, we also simulate confidentiality tampering attack by injecting
malicious code into the packet transmission function e1000 xmit frame of e1000
NIC driver. The newly compiled e1000 module will intercept all the outgoing
packets and redirect them to a remote machine. During the assessment, we repli-
cate Apache http servers on both the two replicas, and simulate continuous client
requests to them on another machine. The verification on the front-tier proxy
matches the output packets from the two replicas. An alarm is signalled when
the amount of unmatched packets from the replica with e1000 module reaches
the pre-defined threshold (20 in our experiment) in two minutes.

5.4 Performance Evaluation

The runtime overhead of Heter-device highly depends on the amount of key ker-
nel data that needs to be verified. Table 2 shows the performance (the ratio of
Heter-device execution and QEMU native execution) of Heter-device architec-
ture based on several benchmarks. By key kernel data protection, we only verify
static key kernel data, including system call table, IDT, root symbols in Sys-
tem.map files. In contrast, by whole kernel protection, the entire kernel address
space is verified by Heter-device during driver assessment. During each round of
evaluation, both the heterogeneous NIC and sound card drivers are verified for
fine-grained control flow transition.

We use LMbench to evaluate the pipe bandwidth, and also evaluate the time
consumed to decompress Linux kernel 3.0 as shown in Table 2. Since both of
them involve little interaction with either NIC or sound card, the pipe bandwidth
and CPU capacity are mostly retained. We run Apache Benchmark to evaluate
the network performance, and Interbench to evaluate the audio performance.
Table 2 demonstrates that network throughput drops more significantly than
audio performance. We think the main reason is that NIC drivers interact more
frequently with OS kernel during packet transmission than sound card drivers
do during audio playing.
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6 Discussion and Future Work

In this section, we discuss limitations and future work of Heter-device. First, al-
though Heter-device architecture is totally compatible with most existing fault
tolerant systems, deploying Heter-device approach as a real-time compromised
driver detection system requires performance boost. Due to performance over-
head (largely incurred by QEMU), Heter-device is currently deployed as hon-
eypot to assess drivers before they are put into use in server systems. Hence,
it should be our future work to facilitate hardware support, such as Intel VT
or EPT techniques into our Heter-device architecture to feasibly detect compro-
mised drivers in responsive server environment.

Second, currently QEMU supports limited number of emulated devices. Most
existing device emulation modules in virtual machines such as virtualbox, Xen
and KVM are all based on QEMU. Hence, assessing other drivers, e.g., keyboard,
mouse and etc., is impossible right now on Heter-device architecture. Aware of
our design, attackers can craft malicious drivers only for those devices that have
not been emulated by QEMU. We suggest that system engineers consider the
devices that can be emulated by QEMU right now, thus facilitating the driver
assessment of Heter-device architecture. As the renaissance of virtualization, we
hope that such device emulation options will bloom in the near future, making
Heter-device more general and practical.

Third, there exist some counter-attacks to Heter-device architecture. As a
honeypot or testing approach, Heter-device cannot be claimed to be able to cap-
ture any malicious code or vulnerability of drivers. There is always the possibility
that the malicious code is not detected because the environment or the work-
load did not trigger it. Furthermore, transparently translating instructions [13]
and faithfully emulating hardware devices are challenging tasks. For instance,
QEMU can be detected by various methods as discussed in [20]. Aware of our
design, attackers can craft malicious code that first examines whether it runs on
emulated platforms. If so, the malicious code will “keep silent” to avoid being
detected or profiled. Otherwise, it will compromise the victim system. Hence, the
compromised drivers with “split-personality” can generally evade the auditing
and verification of Heter-device.

Last, existing Heter-device approach involves manual intervention during the
driver assessment. For instance, key kernel data to be recorded and verified
should be provided by system engineers in advance, though we also offer a can-
didate list. Moreover, the verification procedure (i.e., control flow transition ver-
ification) requires system engineers to investigate the variance to reduce false
positive. Furthermore, such manual inspection can also help to determine which
driver is compromised, since the two replicas serve as reference model for each
other rather than always treating one as golden standard. Our future work is set
to comprehensively profile the driver’s behaviour, thus improving the automa-
tion by providing more general key kernel data verification list and enforcing
more detailed verification policies.
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7 Related Work

In this section, we will first briefly review the state-of-art diversity techniques,
and then discuss prior approaches protecting kernel integrity or reliability from
driver faults or bugs.

Diversity Approach. Software diversity approach for intrusion detection has
been studied in several works, such as COTS [31], Behavioural Distance [19],
Diversified Process Replica [9], Detection of Split Personalities [8] and DRASP
[39]. COTS Diversity [31] and DRASP[39] applies N-version programming into
web servers to verify their interactions with the environment for any anomaly,
e.g., HTTP responses from those web servers. Generally, [8] and [39] are ideal to
detect anomaly targeting web servers, especially for most promiscuous attacks.
But for other attacks, such as denial of service attack, or resource abuse, compar-
ing network packets cannot work, since such attacks does not involve additional
network packet transmission. On the other hand, comparing network packets
is not always possible. For instance, if the payload is encrypted through IPsec,
comparing the payload is meaningless.

Behavioural Distance [19] and Detection of Split Personalities [8] aim to detect
intrusion or anomaly by comparing the system call sequences made by diverse ap-
plications. Diversified Process Replica [9] proposes non-overlapping processes ad-
dress spaces to defeat memory error exploits. Although all the above approaches
are effective in detecting compromised applications, the response or system call
comparison schemes cannot be applied to diverse drivers as in Heter-device.

The seminal work N-variant [12] proposes address space partition and instruc-
tion set tag diversities to detect divergences caused by intrusions. Although such
approaches are quite effective in detecting code injection related attacks, other
types of exploitation, such as direct kernel object manipulation, kernel APIs
abuse and confidentiality tampering can evade N-variant’s auditing. Heter-device
proposes heterogeneous device based diversity design, and specially focuses on
the auditing and verification of drivers to cover multiple attack vectors that
could be leveraged by compromised drivers.

Isolation Based Protection. Isolation-based approach continues drawing re-
searchers’ attention to protect OS kernel from buggy drivers for years. Nooks
([30] and [29]) pioneers the driver isolation approach to protect OS reliability
from driver failures. Mondrix [34] integrates hardware support to isolate kernel
modules by memory protection domains. Virtual machine technique has also
been applied to isolate OS from buggy drivers. For instance, [24] and [17] isolate
drivers by running a subset of untrusted drivers in a separated OS/VM domain,
thus achieving both driver reuse and isolation.

Moreover, efficient address space isolation approaches have been proposed to
protect kernel integrity [35] or monitor kernel APIs issued by untrusted ker-
nel extensions [28]. Neither HUKO [35] and Gateway [28] is not comprehensive
to assess drivers, because it doesnt cover kernel data integrity, confidentiality
manipulation and resource starvation attacks as Heter-device. Instead of ad-
dress space isolation, Heter-device audits drivers’ execution at a finer granularity:
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instruction sequences. Furthermore, besides kernel control flow or data integrity
protection which are the primary focus of previous approaches, Heter-device also
proposes feasible approach to capture confidentiality tampering and resource
abuse attacks launched by malicious drivers.

User Mode Driver Based Protection. User mode device driver framework
has been proposed recently to de-grant driver code’s privilege, thus ensuring
the kernel’s integrity ([4], [5], [23]). However, they either suffer from significant
performance degradation ([6], [26]), or require complete rewriting of driver code
and modifications to OS kernel ([5], [23]). Concerning the performance issue,
Microdrivers [18] present a novel approach to split driver code into both user
mode and kernel mode execution, with only performance-sensitive code remain-
ing in the kernel. Based on Microdriver, RPC monitor [10] protects kernel from
vulnerable driver by mediating all data transfers from untrusted user-mode ex-
ecution to kernel-mode execution to preserve kernel integrity. In addition, the
reference validation mechanism can be integrated into Microkernels (e.g., Nexus
[33]) to effectively audit driver’s behaviour against safety specification. In gen-
eral, Heter-device requires no rewriting of existing drivers, and is applicable to
most commodity operating systems.

8 Conclusion

In this paper, we present a novel diversity based honeypot, Heter-device, to
assess the trustworthiness of drivers from multiple aspects, including kernel in-
tegrity manipulation, resource starvation and confidentiality tampering. Heter-
device relies on virtual platforms to emulate heterogeneous devices for guest
operating systems, and correspondingly produce driver-diverse replicas. The di-
verse replicas are deployed as honeypot to audit and verify the heterogeneous
drivers’ execution by placing synchronization and monitoring “sensors”. We also
propose automatic address-alias correlation, a subset of kernel data for default
integrity protection, and a set of policies to defeat resource abuse and confiden-
tiality tampering. The case studies show that Heter-device can capture various
kernel integrity manipulation, resource starvation, and confidentiality tamper-
ing launched from compromised drivers, thus delivering the trustworthy drivers
after assessment.
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31. Totel, E., Majorczyk, F., Mé, L.: COTS Diversity Based Intrusion Detection and
Application to Web Servers. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 43–62. Springer, Heidelberg (2006)

32. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering Persistent Kernel Rootkits
through Systematic Hook Discovery. In: Lippmann, R., Kirda, E., Trachtenberg,
A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

33. Dan, W., Patrick, R., Kevin, W., Emin Gn, S., Fred, B.S.: Device Driver Safety
Through a Reference Validation Mechanism. In: 8th OSDI (2008)

34. Emmett, W., Krste, A.: Memory isolation for Linux using Mondriaan memory
protection. In: 12th SOSP (2005)

35. Xi, X., Donghai, T., Peng, L.: Practical Protection of Kernel Integrity for Com-
modity OS from Untrusted Extensions. In: 18th NDSS (2011)

36. Min, X., Vyacheslav, M., Jeffrey, S., Ganesh, V., Boris, W.: Retrace: Collecting
execution trace with virtual machine deterministic replay. In: 3rd MoBS (2007)

37. Heng, Y., Dawn, S., Manuel, E., Christopher, K., Engin, K.: Panorama: capturing
system-wide information flow for malware detection and analysis. In: 14th ACM
CCS (2007)

38. Shengzhi, Z., Xiaoqi, J., Peng, L., Jiwu, J.: Cross-Layer Comprehensive Intrusion
Harm Analysis for Production Workload Server Systems. In: 26th ACSAC (2010)

39. Shengzhi, Z., Peng, L.: Letting Applications Operate through Attacks Launched
from Compromised Drivers. In: AsiaCCS (2012)



Industrial Espionage and Targeted Attacks:
Understanding the Characteristics

of an Escalating Threat

Olivier Thonnard1, Leyla Bilge1,
Gavin O’Gorman2, Seán Kiernan2, and Martin Lee3

1 Symantec Research Labs, Sophia Antipolis, France
{Olivier Thonnard,Leylya Yumer}@symantec.com

2 Symantec Security Response, Ballycoolin Business Park, Dublin, Ireland
{Gavin OGorman,Sean Kiernan}@symantec.com

3 Symantec.cloud, Gloucester, UK
Martin Lee@symantec.com

Abstract. Recent high-profile attacks against governments and large industry
demonstrate that malware can be used for effective industrial espionage. Most
previous incident reports have focused on describing the anatomy of specific in-
cidents and data breaches. In this paper, we provide an in-depth analysis of a
large corpus of targeted attacks identified by Symantec during the year 2011. Us-
ing advanced TRIAGE data analytics, we are able to attribute series of targeted
attacks to attack campaigns quite likely performed by the same individuals. By
analyzing the characteristics and dynamics of those campaigns, we provide new
insights into the modus operandi of attackers involved in those campaigns. Fi-
nally, we evaluate the prevalence and sophistication level of those targeted attacks
by analyzing the malicious attachments used as droppers. While a majority of the
observed attacks rely mostly on social engineering, have a low level of malware
sophistication and use little obfuscation, our malware analysis also shows that at
least eight attack campaigns started about two weeks before the disclosure date of
the exploited vulnerabilities, and therefore were probably using zero-day attacks
at that time.

1 Introduction

In 2010, Stuxnet [8] and Hydraq [16] demonstrated dangers the security community had
long anticipated – that malware could be used for cyber-terrorism, real-world destruc-
tion and industrial espionage. Several other long term attacks against the petroleum
industry, non-governmental organizations and the chemical industry were also docu-
mented in 2011 [3]. Such targeted attacks can be extremely difficult to defend against
and those high-profile attacks are presumably just the tip of the iceberg, with many
more hiding beneath the surface.

While targeted attacks are still rare occurrences today compared to classical, profit-
oriented malware attacks, successful targeted attacks can be extremely damaging. One
of the recent high profile targeted attacks against RSA has reportedly cost the breached
organisation $66 million in direct costs alone [10,22]. Preventing such attacks from
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breaching organisations and causing subsequent harm depends on a detailed under-
standing of the threat and how attackers operate [18,2,17].

To understand the nature of targeted attacks, Symantec collected data on over 26,000
attacks that were identified as targeted during 2011. These attacks were based on emails
which contained a malicious payload. Using advanced data analytics based on multi-
criteria clustering and data fusion, we were able to identify distinct targeted attack cam-
paigns as well as define characteristics and dynamics of these campaigns. Our research
clearly demonstrates that a targeted attack is rarely a “single attack”, but instead at-
tackers are often quite determined and patient. A targeted attack is rarely an extremely
stealthy, tedious and manual attack limited to a very small number of targets. A certain
level of automation seems to be used by attackers and thus the notion of “campaigns”
exist, yet of a very different amplitude than other malicious, non-targeted activities per-
formed on a much larger-scale. We found also that these targeted attack campaigns can
either focus on a single (type of) organization or they can target several organizations
but with a common goal in mind. We refer to the latter ones as MOTA, for Massive
Organizationally Targeted Attacks, and demonstrate their existence by means of some
real world data we have analyzed.

A common belief with targeted attacks is that only large corporations, governments
and Defense industries, and more particularly senior executives and subject matter ex-
perts, are being targeted by such attacks. Our research has shown that, at least for our set
of targeted attacks collected in 2011, this was true only for 50% of the attacks. More-
over, while the ultimate goal of attackers is more than often to capture the knowledge
and intellectual property (IP) that senior-level employees have access to, they do not
have to attack them directly to steal the information they want.

The contributions of this paper are twofold. First, we focus on studying the character-
istics of a comprehensive set of targeted attacks sent via email and collected in the wild
by Symantec during the year 2011. More particularly, we show how those attacks are
being organized into long-running campaigns that are likely run by the same individuals
and we provide further insights into their modus operandi.

Secondly, we evaluate the prevalence and sophistication level of those targeted at-
tacks by analyzing more in-depth the malicious attachments used as droppers. While
a majority of the observed attacks rely mainly on social engineering, have a low level
of malware sophistication and use little obfuscation, our analysis also shows that, in at
least eight campaigns, attackers launched their attacks about two weeks before the dis-
closure date of the targeted vulnerabilities, and therefore were using zero-day attacks at
that time.

The structure of this paper is organized as follows. In Section 2, we start by defining
a targeted attack, describe its profile and common traits, and explain how we identified
the set of targeted attacks used for this analysis. Section 3 describes in more details
our experimental dataset and the attack features extracted from the emails. Then, in
Section 4 we describe how we identified attack campaigns and provide insights into
the way these campaigns are being orchestrated by attackers. Finally, in Section 5 we
evaluate the prevalence and sophistication level of the malware used as dropper in the
targeted attacks involved in those campaigns. Section 6 concludes the paper.
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2 Targeted Attacks: Definition and Common Traits

2.1 Profile of a Targeted Attack

The vast majority of non-targeted malware attacks do not exhibit evidence of selection
of recipients of the attack. In these cases, it appears as if the attacker wishes to compro-
mise a number of systems without regard to the identity of the systems. Presumably the
attacker believes that some of the systems may contain information that can be sold on,
or that the compromised systems may be monetised by other means.

In targeted attacks there is evidence that the attacker has specifically selected the
recipients of the attack. It may be that the attacker suspects that the attacked individuals
have access to high value information which the attacker wishes to compromise, or the
compromised systems can be used to launch attacks against other high value systems
or individuals. Another distinguishing feature of targeted attacks is that the malware is
distinct from that used in non-targeted attacks, and usually exhibits a higher degree of
sophistication.

The data provided by Symantec.cloud1 for this analysis only relates to targeted at-
tacks where the malware is contained as an attachment to an email. It would be naive
to expect that this is the only attack vector used by attackers. There may be other types
of malicious activities, such as hacking attacks, that are conducted against the indi-
viduals and organisations who receive email targeted attacks as part of the same cam-
paign. Targeted attacks themselves can take many forms. “Spear phishing” is a subset
of targeted attacks where malicious emails are sent to targeted individuals to trick them
into disclosing personal information or credentials to an attacker. Well designed attacks
sent to a handful of individuals that include information relevant to the professional or
personal interests of the victim may be particularly difficult for targets to identify as
malicious [6]. However, such attacks are beyond the scope of our dataset used for this
analysis.

The term “Advanced Persistent Threat” is often used in association with targeted at-
tacks. This term is problematic since it is often used inconsistently within the security
industry [2]. The National Institute of Standards and Technology, in part, defines the ad-
vanced persistent threat as “an adversary that possesses sophisticated levels of expertise
and significant resources which allow it to create opportunities to achieve its objectives
by using multiple attack vectors” [12]. On the other hand, others use the term to refer
to “any attack that gets past your existing defences, goes undetected and continues to
cause damage” [11].

Different researchers may choose the particular type of attack, the degree of sophisti-
cation and level of targeting use to define their own criteria for being a targeted attack.
Hence, the definition of a targeted attack might vary among researchers according to
the level of sophistication employed in different phases of the attack and the criteria
specified for selecting the victims. Our decision is to limit ourselves to targeted attacks
that meet a specific set of criteria defined as:

1 Symantec.cloud – http://www.symanteccloud.com/

http://www.symanteccloud.com/
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� low copy number attacks that infect victims with malicious email attachments,
� showing some clear evidence of a selection of the subject and the targets, e.g.,

emails that have an appealing subject or use a spoofed sender address in relation to
the activity or the position of the targeted recipients,

� and embedding a relatively sophisticated malware compared to that used in high
copy number attacks.

As described in Section 2.4, we use this set of criteria to detect instances of targeted
attacks through a semi-automated process which is validated manually by Symantec
threat analysts.

2.2 A Typical Modus Operandi

We observed that targeted attacks occur in several stages and we can usually distinguish
the following phases: incursion, discovery, capture and data exfiltration.

These stages are best described using an example of a real world compromise of a
defence contractor’s network which took place in July 2011. A forensic investigation
of the attack was performed, which allowed for the creation of a timeline showing how
the attackers operated2.

Incursion
Incursion is the stage in which an attacker attempts to penetrate a network. Attackers
can use a number of approaches to achieve this. A common technique, probably due to
the low level of effort required, is to send an email containing a malicious attachment
to a victim. Alternative approaches are for the attacker to locate Internet facing services
the victim is hosting on their network and attempt to penetrate those using some form
of exploit. In this instance, emails were sent to the victims.

Typically, the emails contain PDF attachments that exploit vulnerabilities to drop a
malicious backdoor trojan. When a victim receives the email and opens the attached
document, their computer is compromised. The malicious document drops a backdoor
trojan which connects to a remote command and control server and waits for commands
from the attacker. Figure 1 is a ’map’ of three PDF documents that were involved in
the attack. The three documents, although containing different malicious samples, are
otherwise identical. The PDFs are being created by a PDF ’exploit kit’, which takes an
empty PDF document and loads it with a malicious executable.

Discovery
At this point, the attacker can begin evaluating the network, identifying exactly what
has been compromised and begin spreading through the network. In the example used,
the contractor was compromised by an email which contained wsn.exe, as shown in
Figure 1. The email which contained this particular executable was not located. A visu-
alisation of that timeline is shown in Figure 2. Computer A is compromised at 09:43 on
July 14th by wsn.exe. The attacker consolidates the compromise by downloading ad-
ditional hacking tools on July 25th. Discovery begins on July 27th with the file n.bat.
This is a very simple batch script which scans the local network for open shares and
logs this list to a file. The attacker in then in a position to move onto the next stage.

2 Some file names have been changed to protect the identity of the victim.
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Fig. 1. Example of emails sent during the incursion phase

Capture
Having obtained a list of additional computers on the victim network, the attacker be-
gins to spread. On July 28th, the file 72492843 was created on Computer B. This file
is a backdoor trojan which gives the attacker a limited control of Computer B.

When the attacker determines that Computer B was a computer of interest, on August
10th, the attacker downloads msf.dat, a more advanced backdoor which contains a
password stealer and keylogger. The stolen data is logged to the local hard drive, ready
for exfiltration.

Exfiltration
The attacker downloads additional, more comprehensive backdoor tools, on August
12th, for Computer A and August 22nd for Computer B. These tools, referred to as Re-
mote Access Tools, or RATs, give the attacker complete control over the compromised
computer. These tools let the attacker easily upload stolen data, including documents,
passwords and logged key presses. The attacker can also perform more discovery from
newly compromised computers. The cycle of discovery, capture and exfiltration is thus
repeated until the attacker has thoroughly compromised the network and achieved his
or her goals. With regard to stolen data, in some cases (e.g. the Luckycat attacks [15])
we could identify command and control servers which had a list of stolen data. In that
particular instance, the attackers appear to have carefully picked both source code and
research documents related to military systems.
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Fig. 2. Timeline of attack

2.3 Signs of a Growing Menace

In 2005, targeted attacks were observed by Symantec.cloud at the rate of one attack per
week, rising to one or two per day during 2006, to approximately 60 per day during
2010, and approximately 100 per day towards the end of 2011 [14]. From April 2008
to April 2012, about 96,000 targeted attack emails have been identified and recorded by
Symantec, with just under 30,000 of these being identified during 2011 alone. Figure 3
illustrates the growing trend in targeted attack activity over time by showing the average
number of attacks blocked by Symantec on a daily basis in 2011.

These figures must be interpreted in the context of the 500,000 malware and phish
emails that are detected each day by Symantec.cloud. Targeted attacks remain rare when
compared with non-targeted malware. However, it is this rarity that makes detection all
the more difficult. Without large volumes of email to sample, it is not possible to collect
a corpus of such attacks containing enough samples to identify similarities between the
attacks.

Two targeted attacks, publicised over the last year, describe the capabilities of attack-
ers. Those are The Nitro Attacks [3] and The Rise of Taidoor [13]. The NITRO campaign
targets chemical and petroleum companies. The attackers do not employ sophisticated
exploits but instead rely on social engineering methods to trick victims into installing a
backdoor. E-mails sent to the victims contain a compressed, password protected archive.
The archive in turn contains a variant of Poison Ivy, a full featured RAT which gives
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an attacker complete control of compromised computers. Twenty nine companies in
the chemical industry were identified as being targeted and over 100 unique IPs were
compromised. The infections spanned multiple countries but were primarily located in
the United States of America. The ease with which the attackers compromised major
corporate entities demonstrates how serious such targeted attacks are.

The TAIDOOR attacks employ instead more sophisticated malware to compromise
victim computers. The victim industries vary, ranging from educational to think thanks.
Over 160 emails and more than 300 variants of this threat have been identified by
Symantec indicating the level of continuous effort required by the attackers.

2.4 Detecting Targeted Attacks

Targeted attacks can be identified by analysing emails containing malware which were
intercepted by Symantec.cloud’s email protection service. As explained in Section 2.1,
we identify a targeted attack as an email attack that meets a specific set of criteria. High
copy number malware containing emails, as evidenced by the malware or by the email
to which it is attached, are discarded. The low copy number attacks are analysed by
a semi-manual process to identify false positives, apparent prototypes for future high
copy number attacks, as well as low sophistication malware; all of these are discarded.
The remaining emails are manually screened to identify targeted malware containing
emails that exhibit a high degree of sophistication. These emails are logged and added
to the corpus of targeted attacks. The corpus of targeted attack emails almost certainly
includes some emails that may not be considered as targeted attacks according to other
criteria; equally there are almost certainly targeted attacks that should have been in-
cluded that have been omitted. Nevertheless, this corpus represents a large number of
sophisticated targeted attacks compiled according to a consistent set of criteria.
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Fig. 4. Left: Top targeted Sectors. Right: Most frequent document types seen as email attachments.

3 Experimental Dataset

For the rest of our analysis, we have focused on a corpus of 26,000 email attacks iden-
tified by Symantec.cloud during 2011 as targeted based on the set of criteria defined
previously in Section 2. A subset of 18,580 attack samples were then selected in an
automated email parsing and filtering phase based on additional criteria, such as a well-
formed and complete email header and body, a valid attachment, etc. Emails that could
not be parsed or decoded successfully were simply ignored for this analysis.

Emails written in a foreign language were automatically translated to English, to
facilitate the comparison of subject lines but also to understand the topics used by
the attackers. Every attachment was further analyzed in a Symantec dynamic analy-
sis platform (DAP) called RATS– the Response Auto-Analysis Threat System. RATS is
a dynamic analysis platform, which generates and warehouses meta-data on malicious
samples seen by Symantec. This meta-data is partially generated through Response-
owned data collection agents, as well as by leveraging wider data sources available to
Symantec (AV engines, CVE databases, etc). Dynamic data is collected through execut-
ing every sample in a sandbox environment and logging its activity on the file system
and on the network, allowing us to detect any network connection attempt to external
domains, which could possibly be linked to C&C activity. File parsers and other static
analysis tools extract file-level characteristics from the sample, such as document type
and the associated software application and version. Fig. 4 (right) shows for example
the distribution of document types seen as malicious attachments in our email dataset.
We can observe that malicious PDFs continue to be largely used in targeted attacks
(over 1/3rd of the attacks). However, malicious Zip and Rar archives start to be very
frequent too (27% of the attacks). Malicious documents exploiting some vulnerabil-
ity in Microsoft Office have been used as droppers in about 18% of targeted attacks.
It is also worth noting that PE32 executable attached to emails are quite infrequent in
targeted attacks (only 1% of attacks).

All email recipients were also categorized into activity sectors, based on the informa-
tion we have on our customers as well as public information sources on the companies
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and their business. This allows us to get insights into the top targeted sectors, as shown
in Fig. 4 (left). Not surprisingly, we observe that the most frequently targeted organiza-
tions are in the Government & Diplomatic sector. Note that the Military sector does not
seem to be often targeted directly, but rather indirectly through employees of Defense
and Aerospace industries or Governmental institutions.

Finally, we have extracted a number of email characteristics (or features), which
we think are potentially relevant to correlate attacks, and ultimately identify series of
attacks that are likely originating from the same individuals, forming what we identify
as attack campaigns in Section 4. Some of those extracted features are:

Origin-Related Features: these are characteristics of the source of the attack, such
as the IP address the email was originating from, the country and ISP associated
to the origin IP, the mailer agent used to send the email (e.g., Microsoft Outlook
Express 6.00.x), and the email From address used by the sender.

Attack-Related Features: these are characteristics of the attack by itself. Examples
include the attachment MD5 and filename, the date of the attack, the subject line
and body of the email, the language of the message, the character set used to en-
code the email, the AV signature given for the malicious attachment (if any), and
the document type of the attachment.

Target-Related Features: these include characteristics of the targeted recipient, such
as the destination fields (To, Cc or Bcc address fields of the email), the activity
sector of the recipient’s organization, etc.

Regarding attackers’ IP addresses, most of them were located in large industrialized
countries, with no particular pattern or abnormal bias for specific countries, and we
have never seen botnets in use in the targeted attacks we could identify. With respect to
mailer agents, most of them were apparently reflecting real mail clients with a substan-
tial proportion of targeted attacks (over 45%) sent through popular Webmail providers.
Only in 11% of the attacks, the emails had a fake, randomly chosen Mailer agent, per-
haps as an attempt to fool certain filters.

4 Analysis of Targeted Attack Campaigns

4.1 Methodology

To identify series of targeted attacks (i.e., attack campaigns) that are likely performed
by the same individuals, we have used an advanced data analytics software framework
named TRIAGE. Originally developed in the context of the WOMBAT project3, TRIAGE

is an attack attribution software that relies on data fusion algorithms and multi-criteria
decision analysis (MCDA) [23,21,19]. This TRIAGE technology can automatically
cluster virtually any type of attacks or security events based upon common elements
(or features) that are likely due to the same root cause. As a result, TRIAGE can iden-
tify complex patterns within a data set, showing varying relationships among series of
attacks or groups of disparate events. Previous analyses of various threat landscapes

3 Worlwide Observatory of Malicious Behaviors and Threats.
http://www.wombat-project.eu/

http://www.wombat-project.eu/
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Fig. 5. Illustration of the TRIAGE methodology

[20,4,5] have demonstrated that TRIAGE can provide insights into the manner by which
attack campaigns are being orchestrated by cyber criminals, and more importantly, can
help an analyst understand the modus operandi of their presumed authors.

The TRIAGE approach, as used in this analysis, is represented in Figure 5. For each
targeted attack, a number of attack features were selected from the set of characteristics
extracted previously (see Section 3). In this specific analysis, we have selected the fol-
lowing features, which we believe could be relevant for linking attacks originating from
the same team of attackers: the MD5 hash and the fuzzy hash (as given by ssdeep [9])
of the email attachment, the origin IP address, the From address, the email subject, the
sending date, the targeted mailbox (To field), the mailer agent, and the AV signature.

In the second step, TRIAGE builds relationships among attack samples with respect
to every selected attack feature by using appropriate similarity metrics [19]. In the final
step, all feature similarities are fused using an aggregation model reflecting some high-
level behavior defined by the analyst, e.g., at least k highly similar attack features (out
of n) are required to attribute different attack samples to the same campaign. In this
analysis, we have also assigned different weights to attack features, by giving a higher
importance to features like MD5, email subject, sender From and IP address; a lower
importance to the AV signature and mailer agent, and a medium importance to the other
features.

As outcome, TRIAGE identifies attack clusters that are called multi-dimensional clus-
ters (or MDC’s), as any pair of attacks within a cluster is linked by a number of common
traits. As explained in [19], a decision threshold can be chosen such that undesired link-
age between attacks are eliminated, i.e., to drop any irrelevant connection that is due to
a combination of small values or an insufficient number of correlated features.

4.2 Insights into Attack Campaigns

Our TRIAGE analysis tool has identified 130 clusters that are made of at least 10 at-
tacks correlated by various combinations of features. We hypothesize that those attack
clusters are likely reflecting different campaigns organized by the same individuals.
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Indeed, within the same cluster, attacks are always linked by at least 3 different attack
characteristics.

Figure 6 provides some global statistics calculated across all attack campaigns
identified by TRIAGE. This Table shows that the average targeted attack campaign will
comprise 78 attacks targeting 61 email addresses within a 4 days-period. Some attack
campaigns were observed lasting up to 9 months and targeting as many as 1,800
mailboxes.

Fig. 6. Global statistics of targeted attack campaigns identified by TRIAGE

Based on the number of targeted recipients and sectors, we have thus classified attack
campaigns into two main types:

� Type 1 – Highly targeted campaigns: highly focused attack campaigns targeting
only one or a very limited number of organizations within the same activity sector;

� Type 2 – Multi-sector campaigns: larger-scale campaigns that usually target a large
number of organizations across multiple sectors. This type of attacks fit the profile
of what we have dubbed Massive Organizationally Targeted Attack (MOTA).

4.3 Highly Targeted Campaigns: The Sykipot Attacks

2/3rd of the identified attack campaigns are targeting either a single or a very limited
number of organizations active in the same sector. Over 50% of those highly focused
campaigns target the Government & Defense sectors. However, other industries clearly
are experiencing such highly targeted attacks. Our results show that niche sectors are
usually more targeted by those very focused attacks. For example, industries active in
sectors like Agriculture, Construction, Oil and Energy mainly see attacks that are very
targeted at a small number of companies and individuals within them.

A good example of highly targeted campaign is SYKIPOT, a long series of attacks
that has been running for at least the past couple of years4. These long-running series
of attacks are using the Sykipot family of malware, with a majority of these attacks
targeting the Defense industry or governmental organizations. The latest wave spiked
on December 1, 2011 with a huge uptick of targeted entities being sent a PDF containing
a zero-day exploit against Adobe Reader and Acrobat (CVE-2011-2462).

4 Unconfirmed traces of SYKIPOT date back to as early as 2006 in Symantec threat data.
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Fig. 7. An example of Sykipot email attack

The modus operandi of SYKIPOT attackers is actually always the same: they send to
carefully chosen targets an email with an appealing subject, sometimes using a spoofed
email address in relation to the activity or the position of the recipient, and containing a
malicious document, which usually exploits some vulnerability in Adobe or Microsoft
Office software products. Figure 7 shows an example of such email. To make it looking
more legitimate, the attacker used a sender address belonging to a large US administration
that is directly related (at least partially) to the business of the targeted Defense industry.

Figure 8 visualizes a SYKIPOT attack wave identified by TRIAGE in April 2011. Three
different attackers (red nodes) have sent about 52 emails to at least 30 mailboxes of em-
ployees working for two different Defense industries on three different dates. Many
subject lines (yellow key) are shared among attackers and two of them used the same
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Fig. 8. Visualizing a SYKIPOT campaign and the relationships between different attacks
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Fig. 9. Visualizing the complexity of relationships among TAIDOOR attacks

mailer agent from the very same IP address to launch the attacks. Note that three differ-
ent MD5s were used in this SYKIPOT campaign (nodes in purple).

4.4 Massive Organizational Targeted Attacks (MOTA): Nitro and Taidoor

About 1/3rd of attack campaigns are instead organized on a “large-scale” and fit the
profile of a Massive Organizationally Targeted Attack (MOTA), i.e., they target many
people in multiple organizations, working in different sectors, over multiple days. Most
of these large-scale campaigns are very well resourced, with up to 4 different exploits
used during the same campaign. Some are even multilingual – meaning that the lan-
guage used in the email attack is tuned to the targeted recipients (use of Chinese for
.cn recipient domains, Japanese for .jp, Russian for .ru, etc).

The TAIDOOR attacks, which we covered in a previous threat report [13], illustrate
also nicely this type of mass-scale attack campaign. These attacks can include a long
series of attack waves, sometimes spread over a long period of time (several months, or
even a few years in some cases). As illustrated in Figure 9, the relationships between
attackers in those campaigns are usually much more complex, involving many intercon-
nections at multiple levels (e.g., common MD5s, same mailer or IP address, etc). This
might indicate that several teams of attackers are collaborating or sharing some of their
resources (like malicious code, virtual servers to launch attacks, or intelligence data on
the targets). They usually target a very large number of recipients working for different
organizations, which can be active in completely different sectors.



Industrial Espionage and Targeted Attacks 77

The NITRO attacks are another example of mass-scale attack campaign also iden-
tified by TRIAGE. The bulk of the NITRO attacks was launched in late July 2011 and
continued into mid-September. Another unconfirmed NITRO campaign was also identi-
fied later in October 2011. As for many other targeted attacks, the purpose of the NITRO

attacks appears to be industrial espionage, mainly targeting the chemical and petroleum
industries, to collect intellectual property for competitive advantage. An example of
email sent during those NITRO attack waves is given below. In this campaign, Syman-
tec blocked over 500 attacks of this type, in which the attackers use a spoofed email
address (presumably coming from an IT support desk) to entice users to install a fake
Adobe software update packaged in a zip file, and which contains a zero-day exploit to
compromise the users machines. While most targeted recipients were employees work-
ing for chemical industries, our research has showed that the NITRO attackers have also
targeted senior executives working in the Defense industry and the Aerospace domain
during the same series of attacks in October 2011.

Case Study - The NR4 Campaign
Let’s focus on another case of MOTA campaign (Figure 10). NR4 is one mass-scale
attack campaign out of 130 identified by TRIAGE (note that there is no significance to
the name NR4). We do not know the ultimate goal of the attackers behind this campaign,
but we do know that they were targeting diplomatic and government organizations.

In this NR4 campaign, 848 attacks were made on 16 different days, over a 3 months
period. The attacks all originated from accounts on a popular free webmail service. All
attacks came from one of three different sender aliases. Multiple email subject lines
were used in the targeted attacks, all of potential interest to the recipients, with the
majority being about current political issues. Almost all targeted recipients were put in
BCC field of the email.

The first wave of attacks began 4/28/2011 from a single email alias. Four organi-
zations were targeted in this first series of attacks. One of these organizations saw the
CEO as well as media and sales people targeted. Over the course of the attack campaign
the CEO was targeted 34 times.

On 5/13/2011 a new email account began sending email to targets. It was from this
account that the majority of the attacks occurred. This aliases continued attacks on the
four previous organizations but added dozens of additional organizations. One organi-
zation first targeted in this attack wave was targeted 450 times. A total of 23 people
in the organization were targeted, with the main focus being on researchers within the
organization.

The final attack wave started 6/30/2011 and ended 19 days later. While attack-
ing a number of organizations already part of the campaign, it also targeted 5 new
organizations.

By 7/19/2011 the NR4 targeted campaign came to an end. During the 3 months of
this campaign hundreds of emails, in English and in Chinese (used against Chinese
speaking targets) arrived in targeted users mailboxes. While the content of the email
was constantly being changed, each email contained an attached PDF or RAR file with
the same exploit that would infect users once the attachment was opened. Interestingly,
we also found that the three attackers involved in this NR4 campaign have been using
the same C&C servers for controlling compromised machines and exfiltrating data.
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Fig. 10. Visualizing the NR4 targeted attack campaign (mass-scale type)

5 On the Prevalence and Sophistication Level of Targeted Attacks

In this Section, we aim at finding evidences that support the validity of following as-
sumptions we make about the targeted attacks:

� Targeted attacks employ more sophisticated exploitation methods compared to other
types of attacks, therefore, the attachment files in our experimental data set should
not be seen in the wild long before the attack dates we observed.

� Targeted attacks target only a limited number of organizations or sectors, therefore,
the attachment files or the dropped binaries after successful exploitations should
not be present on a large number of computers.

In addition to the endeavour to find such evidences, we perform deeper investigation
on the sophistication level of targeted attacks. To this aim, we enrich the existing infor-
mation about the attachment files used in targeted attacks by correlating a number of
components of Symantec’s Worldwide Intelligence Network Environment (WINE).

5.1 Investigating Historical Information

To achieve the goals set here above, we took advantage of the information provided
by Symantec’s dynamic malware analysis platform, by VirusTotal5 and by the WINE
platform [7].

The Symantec’s dynamic analysis platform (DAP) not only analyzes binary files
but also other file types such as *.pdf, *.doc, *.xlsx. To get a better understanding of
the intentions of the attackers, one reasonable approach is to analyze the files that are
downloaded after successful exploitations. Hence, we use Symantec’s DAP to acquire

5 VirusTotal – https://www.virustotal.com/

https://www.virustotal.com/
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a list of downloaded or created files (droppee) once the attachment file (dropper) has
been opened by the victims and has successfully compromised their computer. We have
then searched for all droppees in WINE to get some historical information on those
files. To validate our results, we also queried VirusTotals to be able to compare them
with other Anti-Virus companies’ findings.

WINE is a platform through which Symantec shares data with the research com-
munity6. WINE consists of a number of datasets such as a malware samples collec-
tion, binary files reputation data, A/V telemetry data, e-mail spam, URL reputation,
IPS telemetry and yet some others. The WINE datasets on which we performed our
analysis are the A/V telemetry and the binary reputation system. Since the beginning of
2009, the A/V telemetry records the detections of known threats for which Symantec
generated a signature and was subsequently deployed in anti-virus products. A typical
record in A/V telemetry data comprises several fields; however, in our analysis we only
use the detection time, the associated threat label and the hash (MD5 and SHA2) of the
malicious file.

The binary reputation data does not involve threat detections; instead, it includes all
binary files that were not detected by Symantec’s security products. This data allows us
to look back in time and get more insights about what happened before signatures for
malicious binaries were created. The binary reputation component records the down-
load date and time of all binaries, the source they were downloaded from and some
information about the binary file, such as the file name, the hash and the file size. Since
mid-2008, the binary reputation data is collected only from Symantec customers who
gave consent to share this invaluable information.

In summary, to investigate the prevalence and sophistication of the targeted attacks
studied in this paper, we apply the following methodology for each campaign TRIAGE

produces: (i) we prepare a list of MD5 hashes of the droppers employed in the at-
tacks. The droppers afterwards are searched in Symantec’s DAP to find the associated
droppees. (ii) Once dropper-droppee association list is constructed, both types of files
are searched in the A/V telemetry data to determine the lifetime of the targeted attacks
launched by each campaign. (iii) Finally, we search the droppees in the binary reputa-
tion data. Note that droppers in our experimental set cannot be found there, since binary
reputation data only stores binary files.

Correlating the results of the three WINE components7, we extract following infor-
mation about the dropper and droppees:

- The first and last time the file was detected to be malicious,

- The first and last time the file was downloaded by our customers before a detection
signature was generated for the specific threat,

- The number of machines that downloaded or attempted to download the file,

- The associated threat name and vulnerability id if it exists.

6 WINE provides external researchers access to security-related data feeds collected in the wild.
See http://www.symantec.com/WINE for more information.

7 The WINE data set used for this analysis is available to other researchers as “WINE 2012-
002”.

http://www.symantec.com/WINE


80 O. Thonnard et al.

In the following section, we show how we leveraged this information to find interesting
results about the prevalence and sophistication of the targeted attacks we analyzed in
this paper.

5.2 Malware Analysis Results

We performed a set of experiments to get more insights about the characteristics of
malware used in targeted attacks analyzed in this paper.

The first experiment consists in querying 18,850 attachment files in Symantec’s DAP
and VirusTotal. Not surprisingly, only 941 (5.0%) of the droppers used in targeted at-
tacks were identified. Therefore, we could not retrieve any information about 195 out
of 345 campaigns TRIAGE produces from either Symantec or any other A/V product.
Since a majority of the attachments were not found by any of the Anti-Virus scanners,
we could conclude that targeted attacks are not very prevalent. If they were as preva-
lent as other types of large-scale attacks, it would have been harder to stay undercover.
Another possible reasoning would be that targeted attacks are carried out through more
sophisticated techniques, and therefore, they manage to evade most of the security walls
and can stay hidden over longer periods of time.

In our second experiment, we parsed the analysis reports produced by Symantec’s
DAP to acquire the list of droppees that were downloaded or created after droppers
successfully compromised the victims. The droppers after the exploitation stage cre-
ated 1,660 distinct files. We then searched all droppers and their associated droppees
in WINE and extracted the information listed above. In WINE, we found records for
droppee/dropper detections and downloads for only 51 attack campaigns identified pre-
viously by TRIAGE. The explanation for not finding all dropper and droppees of the
remaining campaigns can be that the victims of the targeted attacks in our experimen-
tal dataset were not Symantec customers. Another reason could be related to the fact
that more sophisticated targeted attacks could use zero-day attacks, and therefore might
escape signature-based detection methods.

To measure the prevalence of those 51 attacks campaigns found in WINE, we com-
puted the number of computers reporting the presence of the droppees or the droppers.
The average number of machines that were subject to one of the attacks sourced by one
of the campaigns is only 5. Hence, this is also a strong evidence that seems to show that
targeted attacks are not very prevalent.

Targeted attacks are usually active for a limited period of time varying from a few
days to several months. To validate this claim, we compared the first and last time the
droppers/droppees were recorded in WINE with the start and end time of the targeted
attacks we have analyzed. In Figures 11(a) and 11(b), Δt1 represents the difference
between the start time of the attack and the first observation time of the related malware
in WINE, whereas Δt2 represents the difference between the end time of the targeted
attack and the last observation time of the related malware in WINE. Figure 11(a) shows
that the majority of the attachment files were not observed in the wild more than 2
weeks before the attack time specified by Symantec.cloud. On the other hand, droppees
exhibit a different behavior than droppers. Figure 11(b) shows that, while there are some
droppees that are never observed outside the attack window (i.e., the period in which
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Fig. 11. First and last detection time of the droppers/droppees in WINE compared to the first and
last day of the targeted attacks

the attack is being observed in the wild), there are also some campaigns that reuse old
malware to perform the subsequent stages of the targeted attack.

In the previous sections, we have shown that targeted attacks employ a wide range of
vulnerabilities. While some exploit old vulnerabilities (i.e., disclosed in 2009 or 2010),
approximately 50% of them exploit vulnerabilities that were disclosed in 2011. Since
we performed our analysis on data collected in 2011, it is possible that some of the tar-
geted attacks were actually zero-day attacks. A zero-day is defined to be an attack that
involves exploitation of a vulnerability that is still not publicly disclosed at the time of
the attack [1]. To identify the campaigns that might have performed zero-day attacks, we
compared their attack window with the disclosure date of the vulnerability they exploit.
As a result, eight campaigns started on average 16 days before the disclosure date; there-
fore, the attacks involved in those campaigns were apparently exploiting unknown vul-
nerabilities at that time (i.e., CVE-2011-0609, CVE-2011-0611 and CVE-2011-2462),
and thus we can safely conclude that the attackers were using zero-day attacks.

To the best of our knowledge, the remaining of the campaigns did not perform zero-
day attacks. However, attackers reacted very fast to deploy new exploits during their
attack campaign. Indeed, most of them started exploiting zero-day vulnerabilities just a
few days after the disclosure date.

The campaigns we have identified in this paper are associated with a number of dif-
ferent droppers during their lifetime. Attackers can create different droppers over time,
either to evade malware detection systems by applying polymorphism, or to increase
their effectiveness by adding new exploitation methods as new vulnerabilities are being
disclosed (e.g., Taidoor attacks). However, a majority of the campaigns do not up-
date their droppees over time or do not apply polymorphism at that stage. The graph in
Figure 12 shows that for almost 70% of the campaigns, a dropper downloads exactly
the same droppees, i.e., trojans or backdoors that are shared with other droppers used
within the same campaign.
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Fig. 13. AV labels for the droppers and droppers

As explained in Section 2, in a typical targeted attack scenario, the attackers first at-
tempt to compromise the victim to install a backdoor or a trojan such that in later stages
of the attack, data exfiltration can be realized. To find out whether the targeted attacks
we analyzed always follow the same lifecyle, as a final experiment we have identified
the threat categories that droppers and droppees fall into. Figure 13(a) illustrates that the
majority of the droppers fall into the Trojan or backdoor category. Therefore, it is fair
to conclude that, after the exploitation phase, most malicious attachments downloaded
another malicious binary that aims at installing a backdoor program. On the other hand,
only one quarter of the droppees were trojans or backdoors. This shows that some of
the campaigns reuse old malware and perform other malicious activities, in addition to
exfiltrating sensitive information from the targeted organization.
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6 Conclusion

Targeted attacks are still rare occurrences today compared to classical malware attacks,
which are usually more profit-oriented and performed on a much larger-scale. However,
this type of attacks can be extremely difficult to defend against and has the potential to
seriously impact an organization. In the longer-term, targeted attacks and APTs repre-
sent a significant threat against the economic prosperity of many companies and against
the digital assets of governmental organizations, as demonstrated by the recent high
profile attacks that made the headlines in 2010-2011.

To understand the real nature of targeted attacks and how those attacks are being
orchestrated by motivated and well resourced teams of attackers, we have conducted
an in-depth analysis of 18,580 email attacks that were identified as targeted by Syman-
tec.cloud during the year 2011. Using advanced TRIAGE data analytics, we were able
to attribute series of targeted attacks to attack campaigns likely performed by the same
individuals. By analyzing the characteristics and dynamics of those attack campaigns,
we have provided new insights into the modus operandi of the attackers involved in
various series of targeted attacks launched against industries and governmental organi-
zations. Our research has clearly demonstrated that a targeted attack is rarely a single
attack, but instead that attackers are often determined and patient, as they usually per-
form long-running campaigns which can sometimes go on for months while they target
in turn different organizations and adapt their techniques.

We also showed that about 2/3rd of attack campaigns were highly focused and tar-
geting only a limited number of organizations within the same activity Sector (such
as the SYKIPOT attacks), whereas 1/3rd of the campaigns were fitting the profile of a
Massive Organizationally Targeted Attack (MOTA) – i.e., targeting a large number of
organizations across multiple sectors (like in the NITRO and TAIDOOR attacks).

Finally, we have evaluated the prevalence and sophistication level of the targeted
attacks in our dataset by analyzing the malicious attachments used as droppers. While
a large deal of the attacks are apparently relying more on social engineering, have a
low level of sophistication and use little obfuscation, our malware analysis also showed
that, in at least eight attack campaigns, attackers were using zero-day exploits against
unknown vulnerabilities which were disclosed two weeks after the date of the first series
of attacks observed for those campaigns.
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Abstract. Memory error exploitations have been around for over 25
years and still rank among the top 3 most dangerous software errors.
Why haven’t we been able to stop them? Given the host of security
measures on modern machines, are we less vulnerable than before, and
can we expect to eradicate memory error problems in the near future?
In this paper, we present a quarter century worth of memory errors:
attacks, defenses, and statistics. A historical overview provides insights
in past trends and developments, while an investigation of real-world
vulnerabilities and exploits allows us to answer on the significance of
memory errors in the foreseeable future.

1 Introduction

Memory errors in C and C++ programs are among the oldest classes of
software vulnerabilities. To date, the research community has proposed and
developed a number of different approaches to eradicate or mitigate memory
errors and their exploitation. From safe languages, which remove the vulnera-
bility entirely [53,72], and bounds checkers, which check for out-of-bounds ac-
cesses [3,54,82,111], to countermeasures that prevent certain memory locations
to be overwritten [25,29], detect code injections at early stages [80], or prevent
attackers from finding [11,98], using [8,56], or executing [32,70] injected code.

Despite more than two decades of independent, academic, and industry-related
research, such flaws still undermine the security of our systems. Even if we con-
sider only classic buffer overflows, this class of memory errors has been lodged
in the top-3 of the CWE SANS top 25 most dangerous software errors for
years [85]. Experience shows that attackers, motivated nowadays by profit rather
than fun [97], have been effective at finding ways to circumvent protective mea-
sures [39,83]. Many attacks today start with a memory corruption that provides
an initial foothold for further infection.

Even so, it is unclear how much of a threat these attacks remain if all our
defenses are up. In two separate discussions among PC members in two of 2011’s
top-tier venues in security, one expert suggested that the problem is mostly
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solved as “dozens of commercial solutions exist” and research should focus on
other problems, while another questioned the usefulness of the research efforts,
as they clearly “could not solve the problem”. So which is it? The question of
whether or not memory errors remain a significant threat in need of renewed
research efforts is important and the main motivation behind our work.

To answer it, we study the memory error arms-race and its evolution in detail.
Our study strives to be both comprehensive and succinct to allow for a quick
but precise look-up of specific vulnerabilities, exploitation techniques or counter-
measures. It consolidates our knowledge about memory corruption to help the
community focus on the most important problems. To understand whether mem-
ory errors remain a threat in the foreseeable future, we back up our investigation
with an analysis of statistics and real-life evidence. While some papers already
provide descriptions of memory error vulnerabilities and countermeasures [110],
we provide the reader with a comprehensive bird-eye view and analysis on the
matter. This paper strives to be the reference on memory errors.

To this end, we first present (Section 2) an overview of the most important
studies on and organizational responses to memory errors: the first public discus-
sion of buffer overflows in the 70s, the establishment of CERTs, Bugtraq, and the
main techniques and countermeasures. Like Miller et al. [68], we use a compact
timeline to drive our discussion, but categorize events in a more structured way,
based on a branched timeline.

Second, we present a study of memory errors statistics, analyzing vulnerabil-
ities and exploit occurrences over the past 15 years (Section 3). Interestingly,
the data show important fluctuations in the number of reported memory error
vulnerabilities. Specifically, vulnerability reports have been dropping since 2007,
even though the number of exploits shows no such trend. A tentative conclusion
is that memory errors are unlikely to lose much significance in the near future
and that perhaps it is time adopt a different mindset, where a number of related
research areas are explored, as suggested in Section 4. We conclude in Section 5.

2 A High Level View of Memory Error History

The core history of memory errors, their exploitations, and main defenses tech-
niques can be summarized by the branched timeline of Figure 1.

Memory errors were first publicly discussed in 1972 by the Computer Security
Technology Planning Study Panel [5]. However, it was only after more than a
decade that this concept was further developed. On November the 2nd, 1988,
the Internet Worm developed by Robert T. Morris abruptly brought down the
Internet [86]. The worm exploited a buffer overflow vulnerability in fingerd.

In reaction to this catastrophic breach, the Computer Emergency Response
Team Coordination Center (CERT/CC) was then formed [22]. CERT/CC’s main
goal was to collect user reports about vulnerabilities and forward them to ven-
dors, who would then take the appropriate action.

In response to the lack of useful information about security vulnerabilities,
Scott Chasin started the Bugtraq mailing list in November 1993. At that time,
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many considered the CERT/CC of limited use, as it could take years before
vendors released essential patches. In contrast, Bugtraq offered an effective tool to
publicly discuss on the subject, without relying on vendors’ responsiveness [88].

In 1995, Thomas Lopatic boosted the interest in memory errors by describing
a step-by-step exploitation of an error in the NCSA HTTP daemon [63]. Shortly
after, Peiter Zatko (Mudge) released a private note on how to exploit the now
classic memory error: stack-based buffer overflows [112]. So far, nobody really
discussed memory error countermeasures, but after Mudge’s notes and the well-
known document by Elias Levy (Aleph One) on stack smashing [4], discussions
on memory errors and protection mechanisms proliferated.

The introduction of the non-executable (NX) stack opened a new direction in
the attack-defense arms-race as the first countermeasure to address specifically
code injection attacks in stack-based buffer overflows. Alexander Peslyak (Solar
Designer) released a first implementation of an NX-like system, StackPatch [34],
in April 1997. We discuss NX in Section 2.1.

A few months later, in January 1998, Cowan et al. proposed placing specific
patterns (canaries) between stack variables and a function’s return address to
detect corruptions of the latter [29]. Further details are discussed in Section 2.2.

After the first stack-based countermeasures, researchers started exploring other
areas of the process address space—specifically the heap. In early 1999, Matt
Conover and the w00w00 security team were the first to describe heap overflow
exploitations [27], which we discuss in Section 2.3.

On September 20, 1999, Tymm Twillman introduced format string attacks
by posting an exploit against ProFTPD on Bugtraq [101]. Format string exploits
became popular in the next few years and we discuss them in Section 2.4.

The idea of adding randomness to prevent exploits from working (e.g., in
StackGuard) was brought to a new level with the introduction of Address Space
Layout Randomization (ASLR) by the PaX Team in July 2001. We discuss the
various types of ASLR and its related attacks in Section 2.5.

Around the same time as the introduction of ASLR, another type of vulner-
ability, NULL pointer dereference, a form of dangling pointer, was disclosed in
May 2001. Many assumed that such dangling pointers were unlikely to cause
more harm than a simple denial of service attacks. In 2007 and 2008, however,
Afek and Sharabani and Mark Dowd showed that these vulnerabilities could very
well be used for arbitrary code injection as well [1,37]. Unfortunately, specific
defenses against dangling pointers are still mostly research-driven efforts [2].

Due to space limitations, a number of historical details were omitted in this
paper. The interested reader can refer to [102] for more information.

2.1 Non-executable Stack

Stack-based buffer overflows are probably the best-known memory error vulner-
abilities [4]. They occur when a stack buffer overflows and overwrites adjacent
memory regions. The most common way to exploit them is to write past the
end of the buffer until the function’s return address is reached. The corruption
of this code pointer (making it point to the buffer itself, partially filled with
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attacker-injected code) allows the execution of arbitrary code when the function
returns. A non-executable stack prevents such attacks by marking bytes of the
stack as non-executable. Any attempt to execute the injected code triggers a
program crash. The first non-executable stack countermeasure was proposed by
Alexander Peslyak (Solar Designer) in June 1997 for the Linux kernel [34].

Just a few months after introducing the patch, Solar Designer himself de-
scribed a novel attack that allows attackers to bypass a non-executable stack [33].
Rather than returning to code located on the stack, the exploit crafts a fake call
stack mainly made of libraries’ function addresses and arguments. Returning
from the vulnerable function has the effect of diverting the execution to the li-
brary function. While any dynamically linked library can be the target of this
diversion, the attack is dubbed return-into-libc because the return address is typ-
ically replaced with the address of proper C library functions (and arguments).

An enhancement of Solar Designer’s non-executable stack was quickly pro-
posed to withstand return-into-libc attacks [33]. However, shortly thereafter,
Rafal Wojtczuk (Nergal) circumvented Solar Designer’s refinement by taking ad-
vantage of specific ELF mechanisms (i.e., dynamic libraries, likely omnipresent
functions, and dynamic libraries’ function invocation via PLT) [73]. McDon-
ald [66] built on such results and proposed return-into-libc as a first stage loader
to run the injected code in a non-executable segment.

The PaX Team went far beyond a non-executable stack solution. With the PaX
project released in the year 2000 [99], they offered a general protection against
the execution of code injected in data segments. PaX prevents code execution
on all data pages and adds additional measures to make return-into-libc much
harder. Under PaX, data pages can be writable, but not executable, while code
pages are marked executable but not writable. Most current processors have
hardware support for the NX (non-executable) bit and if present, PaX will use it.
In case the CPU lacks this feature, PaX can emulate it in software. In addition,
PaX randomizes the mmap base so that both the process’ stack and the first
loaded library will be mapped at a random location, representing the first form
of address space layout randomization (Section 2.5).

One of the first attacks against PaX ASLR was published by Nergal [73] in
December, 2001. He introduced advanced return-into-libc attacks and exposed
several weaknesses of the mmap base randomization. He showed that it is easy
to obtain the addresses of libraries and stack from the Linux proc file system for
a local exploit. Moreover, if the attacker can provide the payload from I/O pipes
rather than the environment or arguments, then the program is exploitable.

OpenBSD version 3.3, released in May 2003, featured various memory error
mitigation techniques. Among these, WˆX proved to be effective against code-
injection attacks. As a memory page can either be writable or executable, but
never be both, injected code had no chances to get executed anymore.

In August 2005,Microsoft released the Service Pack 2 (SP2) of the Windows XP
OS, featuring Data Execution Protection (DEP)—which prevents code execution
of a program data memory [70].
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By this time all major OSes were picking up on memory error mitigation
techniques. NX stack was considered a strong protection against code-injection
attacks and vendors soon backed up software implementations by hardware
support for non-executable data. However, techniques like return-into-libc soon
showed how NX can only partially mitigate memory errors from being exploited.

In 2005, Krahmer [58] pioneered short code snippet reuse instead of entire
libc functions for exploit functionality—a direction that reached its zenith in
return-oriented programming (ROP). Attackers chain code snippets together to
create gadgets that perform predetermined but arbitrary computations [83]. The
chaining works by placing short sequences of data on the stack that drive the
flow of the program whenever a call/return-like instruction executes.

To date, no ROP-specific countermeasures have seen deployment in main-
stream OSes. Conversely, low-overhead bounds checkers [3,111] and practical
taint-tracking [16] may be viable solutions to defeat control-hijacking attacks.

2.2 Canary-Based Protections

Canaries represent a first line of defense to hamper classic buffer overflow attacks.
The idea is to use hard-to-predict patterns to guard control-flow data. The first of
such systems, StackGuard, was released on January 29, 1999 [29]. When entering
a function, StackGuard places a hard-to-predict pattern—the canary—adjacent
to the function’s return address on the stack. Upon function termination, it
compares the pattern against a copy. Any discrepancies would likely be caused
by buffer overflow attacks on the return address and lead to program termination.

StackGuard assumed that corruption of the return address only happens
through direct buffer overflows. Unfortunately, indirect writes may allow one to
corrupt a function return address while guaranteeing the integrity of the canary.
StackShield [96], released later in 1999, tried to address this issue by focusing
on the return address itself, by copying it to a “secure” location. Upon function
termination, the copy is checked against the actual return address. A mismatch
would result in program termination.

StackShield clearly showed that in-band signaling should be avoided. Unfor-
tunately, as we will see in the next sections, mixing up user data and program
control information is not confined to the stack: heap overflows (e.g., dynamic
memory allocator metadata corruption) and format bug vulnerabilities intermix
(in-band) user and program control data in very similar ways.

Both StackGuard and StackShield, and their Windows counterparts, have been
subject to a slew of evasions, showing how such defenses are of limited effect
against skilled attackers [21,81]. OnWindows, David Litchfield introduced a novel
approach to bypass canary-based protections by corrupting specific exception
handling callback pointers, i.e., structured exception handing (SEH), used during
program cleanup, when a return address corruption is detected [61].

Matt Miller subsequently proposed a protection against SEH exploitation [71]
that was adopted by Microsoft (Windows Server 2008 and Windows Vista SP1). It
organizes exception handlers in a linked list with a special and well-known termi-
nator that is checked for validity when exceptions are raised. As SEH corruptions
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generally make the terminator unreachable, they are often easy to detect. Un-
like alternative solutions introduced by Microsoft [17], Miller’s countermeasure
is backward compatible with legacy applications. Besides, if used in conjunction
with ASLR, it hampers the attackers’ ability to successfully exploit SEH.

Despite their initial weaknesses, canary-based protection spun off more coun-
termeasures. ProPolice, known also as Stack Smashing Protection (SSP), built on
the initial concept of StackGuard but addressed its shortcomings [40]; stack vari-
ables are rearranged such that pointers corruptions due to buffer overflows are
no longer possible. SSP was successfully implemented as a low-overhead patch
for the GNU C compiler and was included in mainstream from version 4.1.

2.3 Protecting the Heap

While defense mechanisms against stack-based buffer overflow exploitations were
deployed, heap-based memory errors were not taken into consideration yet.

The first heap-based buffer overflow can be traced to January 1998 [36], and
the first paper published by the underground research community on heap-based
vulnerabilities appeared a year later [27]. While more advanced heap-based ex-
ploitation techniques were yet to be disclosed, it nonetheless pointed out that
memory errors were not confined to the stack.

The first description of more advanced heap-based memory error exploits was
reported by Solar Designer in July 2000 [35]. The exploit shows that in-band
control information (heap management metadata) is still the issue, a bad prac-
tice, and should always be avoided, unless robust integrity checking mechanisms
are in place. Detailed public disclosures of heap-based exploitations appeared
in [7,65]. Such papers dug into the intricacies of the System V and GNU C li-
brary implementations, providing the readers with all the information required
to write reliable heap-based memory error exploits.

Windows OSes were not immune from heap exploitation either. BlackHat 2002
hosted a presentation by Halvar Flake on the subject [45], while more advanced
Unix-based heap exploitation techniques where published in August 2003 [55],
describing how to obtain a write-anything-anywhere primitive that, along with
information leaks, allow for successful exploits even when ASLR is in use.

More about Windows-based heap exploitations followed in 2004 [62]. The in-
troduction of Windows XP SP2, later that year, came with a non-executable heap.
In addition, SP2 introduced heap cookies and safe heap management metadata
unlink operations. Not long had to be waited for before seeing the first working
exploits against Microsoft latest updates [26,6,67]. With the release of Windows
Vista in January 2007, Microsoft further hardened the heap against exploita-
tion [64]. However, as with the Unix counterpart, there were situations in which
application-specific attacks against the heap could still be executed [51,107].

In 2009 and 2010 a report appeared where proof of concept implementations
of almost every scenario described in [78] were shown in detail [12,13].
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2.4 Avoiding Format String Vulnerabilities

Similarly to the second generation of heap attacks, but unlike classic buffer over-
flows, format string vulnerabilities (also known as format bugs) are easily ex-
ploited as a write-anything-anywhere primitive, potentially corrupting the whole
address space of a victim process. Besides, format bugs also allow to perform
arbitrary reads of the whole process address space. Disclosing confidential data
(e.g., cryptographic material and secrets [29,98]), executing arbitrary code, and
exploring the whole address space of a victim process are all viable possibilities.

Format string vulnerabilities were first discovered in 1999 while auditing
ProFTPD [101], but it was in the next couple of years that they gained popular-
ity. A format string vulnerability against WU-FTPD was disclosed on Bugtraq
in June 2000 [20], while Tim Newsham was the first to dissect the intricacies of
the attack, describing the fundamental concepts along with various implications
of having such a vulnerability in your code.

One of the most extensive articles on format string vulnerabilities was pub-
lished by Scut of the TESO Team [87]. Along with detailing conventional format
string exploits, he also presented novel hacks to exploit this vulnerability.

Protection against format string attacks was proposed by FormatGuard in [28].
It uses static analysis to compare the number of arguments supplied to printf-
like functions with those actually specified by the function’s format string. Any
mismatch would then be considered as an attack and the process terminated.
Unfortunately, the effectiveness of FormatGuard is bound to the limits of static
analysis, which leaves exploitable loopholes.

Luckily, format string vulnerabilities are generally quite easy to spot and
the fix is often trivial. Moreover, since 2010, the Windows CRT disables %n-
like directives by default. Similarly, the GNU C library FORTIFY_SOURCE patches
provide protection mechanisms, which make format string exploitations hard.
Even so, and although the low hanging fruit had been harvested long ago, the
challenge of breaking protection schemes remains exciting [79].

2.5 Address Space Layout Randomization

Memory error exploitations typically require an intimate knowledge of the ad-
dress space layout of a process to succeed. Therefore, any attempt to randomize
that layout would increase the resiliency against such attacks.

The PaX Team proposed the first form of address space layout randomization
(ASLR) in 2001 [99]. ASLR can be summarized succinctly as the introduction of
randomness in the address space layout of userspace processes. Such randomness
would make a class of exploits fail with a quantifiable probability.

PaX-designed ASLR underwent many improvements over time. The first
ASLR implementation provided support for mmap base randomization (July 2001).
When randomized mmap base is enabled, dynamically-linked code is mapped
starting at a different, randomly selected base address each time a program
starts, making return-into-libc attacks difficult. Stack-based randomization fol-
lowed quickly in August 2001. Position-independent executable (PIE) random-
ization was proposed in the same month. A PIE binary is similar in spirit to
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dynamic shared objects as it can be loaded at arbitrary addresses. This reduces
the risk of performing successful return-into-plt [73] or more generic return-
oriented programming attacks [83] (see next). The PaX Team proposed a kernel
stack randomization in October 2002 and, to finish their work, a final patch was
released to randomize the heap of processes.

Over time, OSes deployed mostly coarse-grained—often kernel-enforced—forms
of ASLR, without enabling PIE binaries. Such randomization techniques are gen-
erally able to randomize the base address of specific regions of a process address
space (e.g., stack, heap, mmap area). That is, only starting base addresses are
randomized, while relative offsets (e.g., the location of any two objects in the
process address space) are fixed. Thus, an attacker’s task is to retrieve the abso-
lute address of a generic object of, say, a dynamically-linked library of interest:
any other object (e.g., library functions used in return-into-libc attacks) can be
reached as an offset from it.

One of the first attacks against ASLR was presented by Nergal in 2001 [73]. Al-
though the paper mainly focuses on bypassing non-executable data protections,
the second part addresses PaX randomization. Nergal describes a novel tech-
nique, dubbed return-into-plt, that enables a direct call to the dynamic linker’s
symbol resolution procedure, which is used to obtain the address of the symbol
of interest. Such an attack was however defeated when PaX released PIE.

In 2002, Tyler Durden showed that certain buffer overflow vulnerabilities could
be converted into format string bugs, which could then be used to leak infor-
mation about the address space of the vulnerable process [38]. Such information
leaks would become the de-facto standard for attacks on ASLR.

In 2004, Shacham et al. showed that ASLR implementations on 32-bit plat-
forms were of limited effectiveness. Due to architectural constraints and kernel
design decisions, the available entropy is generally limited and leaves brute forc-
ing attacks a viable alternative to exploit ASLR-protected systems [90].

Finally, Fresi-Roglia et al. [47] detail a return-oriented programming [83] at-
tack able to bypass WˆX and ASLR. This attack chains code snippets of the
original executable and, by copying data from the global offset table, is then
able to compute the base addresses of dynamically linked shared libraries. Such
addresses are later used to build classic return-into-libc attacks. The attack pro-
posed is estimated to be feasible on 95.6% binaries for Intel x86 architectures
(61.8% for x86-64 architectures). This high success rate is caused by the fact
that modern OSes do not adopt or lack PIE.

A different class of attacks against ASLR protection, called heap spraying,
was described first in October 2004 when SkyLined published a number of heap
spraying attacks against Internet Explorer [91,92,93]. By populating the heap with
a large number of objects containing attacker-provided code, he made it possible
to increase the likelihood of success in referencing (and executing) it.

Heap spraying is mostly used to exploit cross-platform browser vulnerabilities.
Since scripting languages like JavaScript and ActionScript are executed on the
client’s machine (typically in web browser clients), heap spraying has become
the main infection vector of end-user hosts.
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Dion Blazakis went far beyond heap spraying by describing pointer inference
and JIT spraying techniques [14]. Wei et al. proposed dynamic code genera-
tion (DCG) spraying, a generalized and improved JIT spraying technique [108].
(Un)luckily DCG suffers from the fact that memory pages, which are about to
contain dynamically-generated code, have to be marked as being writable and
executable. Wei et al. found that all DCG implementations (i.e., Java, JavaScript,
Flash, .Net, Silverlight) are vulnerable against DCG spraying attacks. A new de-
fense mechanism to withstand such attacks was eventually proposed [108].

Finally, return-oriented programming, introduced in Section 2.1, may also be
used to bypass non-PIE ASLR-protected binaries (as shown by [47]). In fact, for
large binaries, the likelihood of finding enough useful code snippets to build a
practical attack is fairly high. Recent work on protecting against these attacks
involves instruction location randomization, in-place code randomization and
fine-grained address space randomization [48,52,77].

3 Data Analysis

We have analyzed statistics as well as real-life evidence about vulnerability and
exploit reports to draw a final answer about memory errors. To this end, we
tracked vulnerabilities and exploits over the past 15 years by examining the
Common Vulnerabilities and Exposures (CVE) and ExploitDB databases.

Figure 2a shows that memory error vulnerabilities have grown almost linearly
between 1998 and 2007 and that they started to attract attackers in 2003, where
we witness a linear growth in the number of memory error exploits as well.
Conversely, the downward trend in discovered vulnerabilities that started in 2007
is remarkable. Instead of a linear growth, it seems that the number of reported
vulnerabilities is now reversed. It is worth noting that such a drop mirrors a
similar trend in the total number of reported vulnerabilities. Figure 2b shows
the same results as percentages.

The spike in the number of vulnerabilities that started in 2003 may well have
been caused by the explosive growth of web vulnerabilities in that period (as
supported by [24]).

Figure 2a shows that web vulnerabilities first appeared in 2003 and rapidly
outgrew the number of buffer overflow vulnerabilities. Probably due to their
simplicity, the number of working web exploits also exceeded the number of
buffer overflow exploits in 2005. It is therefore plausible that the extreme growth
in vulnerability reports that started in 2003 had a strong and remarkable web-
related component. This seems to be reasonable as well: shortly after the dot-
com bubble in 2001, when the Web 2.0 started to kick in, novel web developing
technique were often not adequately tested against exploitation techniques. This
was probably due to the high rate at which new features were constantly asked
by end customers: applications had to be deployed quickly to keep up with
competitors. This race left little time to carefully perform code security audits.
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Fig. 2. Vulnerabilities and Exploits

As mentioned earlier, Figure 2a also shows a downward trend in the total
number of vulnerabilities over the years 2006–2010, as reported independently
in [68]. Memory errors were also affected by that trend and started to diminish in
early 2007. Despite such negative fluctuations, generic and memory error-specific
exploits kept growing linearly each month. The reasons for the downward trend
of reported vulnerabilities could be manifold; it could be that fewer bugs were
found in source code, fewer bugs were reported, or a combination thereof.

Assuming that the software industry is still growing and that, hence, the
number of lines of code (LoC) written each month still increases, it is hard to
back up the first hypothesis. More LoC results in more bugs: software reliability
studies have shown that executable code may contain up to 75 bugs per 1000
LoC [9,76]. CVEs look at vulnerabilities and do not generally make a difference
between plain vulnerabilities and vulnerabilities that could be exploited. Mem-
ory error mitigation techniques are unlikely to have contributed to the drop in
reported vulnerabilities. Most defense mechanisms that we have discussed earlier
do not result in safer LoC (for which static analysis can instead help [103]); they
only prevent exploitation of vulnerable—usually poorly written—code.

However, if we look carefully at the data provided by analyzing CVE entries,
as depicted in Figure 2a, we see that the number of web vulnerabilities follows
the same trend as that of the total number of vulnerabilities. It seems that both
the exponential growth (2003–2007) and drop (2007–2010) in vulnerabilities is
related to fundamental changes in web development. It is reasonable to assume
that companies, and especially web developers, started to take web programming
more seriously in 2007. For instance, developers may well have become more
aware of attacks such as SQL injections or Cross Site Scripting (XSS). If so, this
would have raised web security concerns, resulting in better code written.

Similarly, static (code) analysis may have started to be included in the soft-
ware development life-cycle. Static code analysis for security tries to find weak-
nesses in a program that might lead to security vulnerabilities. In general, the
process is to evaluate a system (and all its components) based on its form,
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structure, content or documentation for non-conformance in access control, in-
formation flow, or application programming interface. Considering the high cost
involved in manual code review, software industry prefers using automated code
analyzers. IBM successfully demonstrated JavaScript analysis [109] by analysing
678 websites (including 178 most popular websites). Surprisingly, 40% of the web-
sites were found vulnerable and 90% of vulnerable applications had 3rd party
code. Another interesting take on static analysis can be observed in the surveys
published by NIST [75,74]. A remarkable number of previously reported vul-
nerabilities were found in popular open-source programs using a combination of
results reported by different tools. For instance, [103] reports intriguing figures
showing the industry has confidence in static analysis. The software and IT in-
dustry are the biggest requester, followed by the finance sector for independent
security assessments of their applications. Furthermore, 50% of the companies
resubmitted 91–100% of their commercial application (after the first submis-
sions revealed security holes) for code analysis. The growing trust of industry in
static analysis could be one of the reasons for a drop in the number of reported
vulnerabilities from the last few years.

To substantiate the second hypothesis (i.e., less bugs are reported), it is nec-
essary and helpful to have a more social view on the matter. There could be a
number of reasons why people stopped reporting bugs to the community.

Empirical evidence about “no full disclosure due to bounties” advocates this
statement very well. Ten years ago, the discovery of a zero-day vulnerability
would have likely had a patch and a correspondence with the application au-
thors/vendor about the fix, likely on public mailing lists. Today, big companies
like Google and Mozilla give out rewards to bug hunters as long as they do not
disclose the vulnerability [69]. Similarly, bug hunters may choose to not disclose
zero day vulnerabilities in public, but sell them instead to their customers [43].

Where companies send out rewards to finders of vulnerabilities, useful zero-
days could yield even more in underground and private markets. This business
model suggests that financial profit may have potentially been responsible for the
downward trend. While more and more people start buying things online and use
online banking systems, it becomes increasingly interesting for criminals to move
their activities to the Internet as well. Chances that issues found by criminals
are reported as CVEs are negligible.

At the same time, full disclosure [113] as it was meant to be, is being avoided
[50,44]. As an example for this shift in behavior, researchers were threatened for
finding a vulnerability [49], or, as mentioned above, they may well sell them to
third parties on private markets. This was also recently backed up by Lemos and
a 2010-survey that looked at the relative trustworthiness and responsiveness of
various organizations that buy vulnerabilities [60,42].

In conclusion, it is reasonable to believe that the drop in vulnerabilities is
caused by both previous hypotheses. The software industry has become more
mature during the last decade, which led to more awareness about what poten-
tial damage a vulnerability could cause. Web developers or their audits switched
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to more professional platforms instead of their home-brew frameworks and elim-
inated easy vulnerabilities by simply writing better code. This growing profes-
sionalism of the software industry also contributed to the fact that bugs are no
longer reported to the public, but sold to either the program’s owners or the
underground economy.

3.1 Categorizing Vulnerabilities and Exploits

We further categorized memory error vulnerabilities and exploits in 6 different
classes (based on their CVEs descriptions): stack-based, heap-based, integer is-
sues, NULL pointer dereference and format string. Figures 3a and 3b show the
classification for vulnerabilities and exploits, respectively.

From Figures 3a and 3b we make the following observations which may help to
draw our final conclusions. First, format string vulnerabilities were found all over
the place shortly after they were first discovered. Over the years, however, the
number of format string errors dropped to almost zero and it seems that they are
about to get eliminated totally in the near future. Second, integer vulnerabilities
were booming in late 2002, and, despite a small drop in 2006, they are still out
there as of this writing (see [102]). Last, old-fashioned stack and heap memory
errors are still by far (about 90%) the most exploited ones, counting for about
50% of all the reported vulnerabilities. There is no evidence to make us believe
this will change in the near future.

4 Discussion

To answer the question whether memory errors have become a memory of the
past, a few more observations need to be taken into consideration.

Impact. Let us first take a closer look at the impact of memory error vulnera-
bilities. After all, if this turns out to be negligible, then further research on the
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Table 1. Breakdown of exploited vulnerabilities in popular exploit toolkits

Pack Exploits Memory Errors Unspecified Other Updated

Nuclear 12 6 (50%) 3 (25%) 0 (0%) Mar. 2012
Incognito 9 4 (44%) 1 (33%) 0 (0%) Mar. 2012
Phoenix 26 14 (54%) 7 (27%) 5 (19%) Mar. 2012
BlackHole 15 6 (40%) 7 (46%) 2 (13%) Dec. 2011
Eleonore 31 18 (58%) 6 (19%) 7 (23%) May. 2011
Fragus 14 11 (79%) 1 (7%) 2 (14%) 2011
Breeding Life 15 8 (53%) 6 (40%) 1 (6%) ?
Crimepack 19 10 (53%) 2 (11%) 7 (37%) Jul. 2010

All 104 66 (63%) 12 (12%) 26 (25%)

topic may just well be a questionable academic exercise. To provide a plausible
answer, we analysed different exploit packs by studying the data collected and
provided by contagio malware dump1. Table 1 shows the number of exploits (with
percentages too) a given exploit pack supports and it is shipped with. The column
Memory Errors reports those related to memory errors, while Unspecified refers to
exploit of vulnerabilities that have not been fully disclosed yet (and chances are
that some of these are memory error-related, e.g., CVE-2010-0842). Conversely,
the column Other refers to exploits that are anything but memory error-related
(e.g., an XSS attack).

Table 1 clearly shows that in at least 63% of the cases, memory error exploits
have been widely deployed in exploit packs and have thus a large impact on the
security industry, knowing that these exploit packs are responsible for large-scale
hosts infections.

Support of Buffer Overflows by Design. Second, we observe that the num-
ber of memory vulnerabilities in a specific program is highly dependent on the
programming language of choice. Looking closely at the C programming lan-
guage, we observe that it actually needs to support buffer overflows. Consider,
for example, an array of a simple C struct containing two fields, as depicted in
Figure 4a. A memset()-like call may indeed overflow a record (Figure 4b). In
this case, the overflow is not a programming error, but a desired action. Having
such overflows by design, makes the programming language more vulnerable and
harder to protect against malicious overflows. Considering that unsafe program-
ming languages such as C and C++ are and have been among the most popular
languages in the world for a long time already (as supported by the TIOBE Pro-
gramming Community Indexes), careful attention should be paid by developers
to avoid memory error vulnerabilities.

1 http://contagiodump.blogspot.com/2010/06/overview-of-exploit-

packs-update.html

http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-update.html
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(a) Memory layout (b) Memory layout after memset()

Fig. 4. Buffer overflow support in C

Deployment of Mitigation Techniques. Third, we observe that mitigation
techniques are not always deployed by modern OSes. The reasons could be man-
ifold. For instance, implementing a specific mitigation technique on legacy (or
embedded) systems may require non-existent hardware support, or it may in-
cur non-negligible overheads. Similarly, alternative mitigation techniques may
require recompilation of essential parts of a system, which cannot be done due
to uptime requirements or lack of source code.

Patching Behaviour. Another issue relates to the patching behaviour. Not
only end users, but also system administrators appear to be lazy when it comes
to patching vulnerabilities or updating to newer software versions. During our
research on exploit kits, we found that even recently updated exploit packs still
come with exploits for quite dated vulnerabilities, going back to 2006. This is
backed up by other studies [59,100].

Motivation. Finally, even when all mitigation techniques are deployed, skilled
and well-motivated attackers can still find their way into a system [41,104,106,105].

Looking back at Figure 2a, it is reasonable to say that some form of awareness
has arisen among developers. On the other hand, Figure 2b shows that memory
errors have a market share of almost 20%—a number that did not change much
over the last 15 years, and something of which we have no evidence that it is
about to change in the foreseeable future. The fact that over 60% of all the
exploits reported in Table 1 are memory error-related, does not improve the
scenario either.

4.1 Research Directions

Memory errors clearly still represent a threat undermining the security of our
systems. We would like to conclude by sketching a few research directions that
we consider both important and promising.

Information Leakage, Function Pointer Overwrites and Heap Inconsis-
tencies. Information leakage vulnerabilities are often used to bypass (otherwise
well-functioning) ASLR, enabling an attacker to initiate a return-into-libc or
ROP attack [89]. Function pointer overwrites and heap inconsistencies form a
class of vulnerabilities that cannot be detected by current stack smashing de-
tectors and heap protectors. These vulnerabilities are often exploited to allow
arbitrary code execution [105]. Recent studies try to address these problems by
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introducing more randomness at the operating system level[77,48,52] and, to-
gether with future research, will hopefully result in better protections against
these classes of vulnerabilities [14].

Low-Overhead Bounds Checkers. Bounds checking aims at defining the
boundaries of memory objects therefore avoiding overflows, which represent
probably the most important class of memory errors. Although state-of-the-art
techniques have drastically lowered the overhead imposed [111,3], the runtime
and memory pressure of such countermeasures are still non-negligible.

Non-control Data Attacks. While ordinary attacks against control data are
relatively easy to detect, attacks against non-control data can be very hard to
spot. These attacks were first described by Chen et al. in [23], but a real-world
scenario (an attack on the Exim mailserver), was recently described by Sergy
Kononenko [57]. Although the attack uses a typical heap overflow, it does not
get detected by NX/DEP, ASLR, WˆX, canaries nor system call analysis, as it
does not divert the program’s control flow.

Legacy Systems and Patching Behaviour. As discussed earlier, lazy patch-
ing behaviour and unprotected legacy systems (as well as financial gain) are
probably the main reasons of the popularity of exploit kits. Sophisticated patch-
ing schemes, and disincentivizing automatic patch-based exploit generation [18],
should be the focus of further research.

Static and Dynamic Analysis to Detect Vulnerabilities. By using novel
analysis techniques on vulnerable code, one may succeed in detecting vulnera-
bilities, and possibly harden programs before the application is deployed in a
production environment. Research on this topic is ongoing [94,95] and may help
to protect buffer overflow vulnerabilities from being exploited. However, it is nec-
essary to extend these approaches to provide comprehensive protection against
memory errors on production environments [46,30,19,84].

Sandboxing. To reduce the potential damage that an exploitable vulnerability
could cause to a system, more research is needed on containment mechanisms.
This technique is already widely adopted on different platforms, but even in its
sophisticated forms (e.g., the Android’s sandbox), it comes with weaknesses and
ways to bypass it [31].

5 Conclusion

Despite half a century worth of research on software safety, memory errors are
still one of the primary threats to the security of our systems. Not only is this
confirmed by statistics, trends, and our study, but it is also backed up by evi-
dence showing that even state-of-the-art detection and containment techniques
fail to protect against motivated attackers [41,104]. Besides, protecting mobile
applications from memory errors may even be more challenging [10].



102 V. van der Veen et al.

Finding alternative mitigation techniques is no longer (just) an academic
exercise, but a concrete need of the industry and society at large. For instance,
vendors have recently announced consistent cash prizes to researchers who will
improve on the state-of-the-art detection and mitigation techniques against mem-
ory error attacks [15], showing their concrete commitment towards a long-standing
battle against memory error vulnerabilities.
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Abstract. The authenticity of a piece of data or an instruction is cru-
cial in mitigating threats from various forms of software attacks. In spite
of various features against malicious attacks exploiting spurious data,
adversaries have been successful in circumventing such protections. This
paper proposes a memory access validation scheme that manages infor-
mation on spurious data at the granularity of cache line size. A validation
unit based on the proposed scheme answers queries from other compo-
nents in the processor so that spurious data can be blocked before control
flow diversion. We describe the design of this validation unit as well as its
integration into the memory hierarchy of a modern processor and assess
its memory requirement and performance impact with two simulators.
The experimental results show that our scheme is able to detect the syn-
thesized payload injection attacks and to manage taint information with
moderate memory overhead under acceptable performance impact.

Keywords: Memory access validation, Code injection attack, Return-
to-libc attack, Return-oriented programming, Information flow tracking.

1 Introduction

When intruding into vulnerable systems, malicious parties usually inject their
payload over a communication channel like a network device into a victimized
process’ address space. Payloads crafted for such attacks generally consist of
machine code combined with control flow data in code injection attacks or control
flow data followed by arguments for the existing procedure pointed to by the
data, as can be seen in return-to-libc attacks. Despite architectural features and
software mitigation approaches against such attacks, malicious parties have been
able to bypass such techniques. Usually, such circumvention techniques take
advantage of the inherent limitations of the base features on which those features
and mitigation approaches are based - such as the coarse granularity of access
control attributes or a limitation in randomization.

One noteworthy observation on exploited vulnerabilities is that control flow
data that is vulnerable to compromise is still referenced for the next instruc-
tion address without any validation. For example, return addresses in an active
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stack frame are blindly referenced for the next instruction address upon exiting
a sub-procedure. As is widely known, there are several mitigation approaches
against stack-compromising attacks - inserting canaries [1], stack-layout reorga-
nization, Return-Address encryption [2][3], Stack-frame allocation [4], and ASLR
against return-to-libc. However, most of those protection measures still allow
the processor core to fetch the next instruction address from vulnerable stack
frames without verifying the authenticity of the memory word to be referenced.
Stack-compromising attacks exploit this blind behavior thereby diverting control
flow into locations that they want to fetch instructions from. Although ASLR
approaches can mitigate threats from such attacks, as shown in [5], such miti-
gations that merely reduce the likelihood through randomization can be easily
circumvented. Furthermore, return-oriented-programming (ROP) attacks [6] are
able to synthesize a viable attack vector only with existing machine codes in
a given address space. These observations imply that more complete and solid
protection for control flow integrity is required.

In this paper, we propose a memory access validation scheme. The validation
unit based on this scheme gathers information on memory blocks containing
spurious data transferred through unreliable I/O devices, and updates the infor-
mation to reflect status changes in those blocks at runtime. At the same time, the
processor components related to control flow redirection ask this unit whether
the memory block to be referenced for the next instruction or its address is au-
thentic or not. The unit returns the taint status of the queried memory address
to the the component for further actions like the triggering of exceptions.

Contribution. Our contribution made in this work is as follows.

– We propose a memory access validation scheme supporting the virtual mem-
ory systems of multi-tasking environments. Existing hardware components
involved in control flow redirection query the validation unit authenticity of
a memory block to be referenced for the next instruction or its address.

– For this validation scheme, we discuss practical issues on Information Flow
Tracking (IFT) with regard to memory hierarchy. Based on our observations,
we introduce a two-level approach design for memory access validation that
supports small granularity as well as virtual memory systems.

– We propose two storage formats for each level of our validation scheme,
and these formats are organized to support our design. We also propose
integration approaches and a caching structure so as to alleviate runtime
overhead.

– We apply our validation scheme to two simulators and show that our val-
idation scheme is able to thwart the synthesized payload injection attacks
and to manage taint information on memory blocks containing spurious data
with low false-positive rates and 12.3 percent performance overhead.

This paper is organized as follows. We first describe the background and moti-
vation for our validation scheme in Section 2. Section 3 describes the memory
access validation scheme with taint information storage formats. We evaluate
the proposed scheme in Section 4. Section 5 discusses various aspects of our
validation scheme. Finally, this paper concludes in Section 6.
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2 Background and Motivation

2.1 Control-Flow Integrity

Control-Flow Integrity proposed by Mart́ın et al [7] enforces software execution
to follow a path of a Control-Flow Graph (CFG) determined ahead of time. The
CFI approach instruments vulnerable indirect branch instructions and their tar-
get locations with IDs and associated ID-check routines. Before invocation of an
indirect branch, the instrumented ID-check routine compares the ID hard-coded
prior to the branch with the ID marked in the target location. This comparison
verifies that the control flow redirection conforms the CFG. If two IDs match,
the program execution contiues to the target location. Otherwise, the ID-check
routine invokes thwarting procedure. Because the ID-check routines are writ-
ten with the same instruction set as the protected program, no modification is
required at both the OS kernel and the processor hardware level.

Although the CFI implementation instruments only machine code, nearly half
of the instrumented codes are referenced as data by the ID-check routines be-
fore instruction fetch. This is because the ID-check routine accesses the target
location as data to read the ID marked in the location before control flow redi-
rection. In viewpoint of the memory hierarchy, at least one data cache line must
serve this ID check while an ID occupies only a small portion of one cache line (4
Bytes out of 32 or 64 Bytes). This inefficient data cache utilization could result
in high data cache miss rates.

2.2 Spurious Raw Data in Attacks

Attacks and Spurious Raw Data. Malicious parties have devised various
circumvention techniques and upgraded their payloads against many counter
measures. Most of these circumvention techniques exploit limitations or vulner-
abilities of the base feature of the protection measures as discussed previously.
One noteworthy observation of malicious payloads is that they are injected into
the victimized process’ address space through unreliable I/O at runtime. How-
ever, simply incorporating a validation mechanism referring to attributes like
“tainted” into existing functionalities - especially the address translation fea-
tures of a virtual memory system - would not be desirable. This is because of
limitations like the coarse granularity of the virtual memory system or runtime
overhead from the OS kernel’s frequent intervention for attribute management.

Figure 1 illustrates the coarse granularity problem. While a page frame size is
usually 4K Bytes and access control attributes are applied for each page frame,
stack frame sizes are usually much smaller than the page frame size and vary
depending on invoked sub-procedures. In our simulations, most stack frames
were smaller than 1K Bytes and varied from four Bytes to 8K Bytes. These
results mean that an attribute value representing authenticity of a page frame
would not be able to differentiate (b) from (c) as well as (d).

The most fundamental countermeasure that is able to address these inherent
limitations appears to be the Information Flow Tracking (IFT) protection. In the
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Fig. 1. Active stack region and spurious data (a) normal active stack frame with-
out spurious data / (b) Safe stack frame containing spurious data / (c) Stack frame
overflowed by brute-force return-to-libc attack / (d) Stack frame overflowed by return-
oriented-programming attack

following section, we briefly explore IFT-based protections and discuss practical
issues in its integration into the memory hierarchy of modern microprocessors.

Information Flow Tracking. Information flow tracking (IFT) traces spurious
data originating from unreliable sources like I/O devices throughout program
execution. If spurious data or any data derived arithmetically from spurious data
is referenced for control flow (such as indirect jumps), the processor triggers a
trap with regard to the security policies configured by the OS kernel. Hardware-
based IFT protections [8][9] augment taint bits (or tags) in registers as well as
memory blocks in main memory, and some of them assigns a dedicated bus to
exchange taint information across storage elements in the target system.

Minos [8] focuses on preventing attacks compromising control flow data and
integrating taint tags into every storage element of a targeted architecture. Minos
stores 1-bit taint tag to every 32-bit word as 33rd bit from the memory system
level to the register level in the processor core. This approach accommodates
synchronization between taint tags and their target memory words. However,
such synchronization requires non-trivial changes in the memory access interface
like a separate DRAM to contain taint tags and the widened memory bus for
taint tags.

Suh et al [9] proposes a multi-granularity taint tags approach that contains
taint status data in main memory. This approach can alleviate memory over-
head from taint status data because one taint bit can represent taint statuses of
multiple Bytes - up to a page frame size. In multi-granularity tags approach, the
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OS kernel must allocate memory space for security tags when a memory block in
a newly allocated frame gets tainted. The authors claim that granularity switch-
ing from one to another (for example, all-tainted-page to one-Byte granularity)
occurs infrequently therefore the performance overhead is insignificant.

Raksha [10] investigates a hybrid IFT approach that takes advantage of both
hardware-based and software-based techniques in order to achieve low-runtime
overhead. A variation of Raksha is proposed by the same authors [11]. This
approach decouples IFT functionality onto a dedicated coprocessor, thereby not
requiring modifications in the design or layout of the main processor.

Software-based approaches utilize binary translation and an emulation envi-
ronment to mark and trace taint data at runtime [12][13]. Unlike hardware-based
IFT protections, software-based approaches dynamically translate machine code
into other code instrumented with taint tracking instructions, while the exist-
ing hardware platform is utilized as is. However, the runtime overhead from
instrumenting machine code could be considerable - even up to a forty fold slow
down with a caching structure for translated machine codes. In [14], the authors
present an interesting observation that most taint propagations are zero-to-zero,
which means safe data sources to a safe destination. They take advantage of
this observation to skip machine code instrumentation for basic blocks doing
safe-to-safe memory transactions, thereby can reducing overhead significantly.

Our work proposes a hardware-based memory access validation scheme, there-
fore we continue to discuss technical issues related to hardware-based IFT works.
In this paper, IFT will refer to hardware-based IFT unless otherwise noticed.

2.3 Motivation

Memory Hierarchy and IFT. In general, IFT approaches track propagation
of spurious data from unreliable I/O at a fine granularity - like one byte - and
trigger an exception upon detecting suspicious activity with regard to their se-
curity policies. However, the memory systems of modern microprocessors are
designed to access memory in fixed-size blocks. The first problem regarding the
taint tags of IFT approaches is how to store them. Obviously, augmenting every
byte of the whole system with a one-bit tag is not a desirable approach because
it would impose 12.5 percent storage overhead overall (1-bit for every byte).

The second problem is how to incorporate taint bit management into the ex-
isting memory hierarchy. In most microprocessor architectures, cache line man-
agements are transparent to the software level. In the meantime, memory page
frame management depends heavily on the OS kernel - from simple allocation/de-
allocation to sophisticated handlings like demand paging and page swapping. In
such environments, incorporating a propagation-tracking functionality into exist-
ing cache controllers and the paging unit would require non-trivial and invasive
modifications in both the hardware and software domains.

The third problem is about synchronization of taint information and its target
memory word. Assuming that taint bits per sub-cache-line are not augmented at
each byte but grouped in one block, those taint bits are just instances of special
purpose data structure accessed by the IFT unit. This suggests that management
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of the taint status data be synchronized with that of the corresponding cache
lines throughout the cache hierarchy. Such synchronization pertains to not only
the cache level but also the virtual memory system level - this is because of
the address space management of multi-tasking OS kernels. Like the OS kernel
manages the address translation information for each address space and the
paging unit traverses translation entries, the OS kernel allocates memory space
for taint status data for one address space, and the IFT unit accesses it for taint
status update without accessing another space’s data.

Our Goal. The vulnerabilities exploited by malicious parties and the observa-
tions presented in the previous section provide us with a different view on how
to handle information on spurious data and how to utilize them.

First of all, we choose memory accesses with fine granularity as our target
objects for both taint status management and validations referring to taint status
data. Validating memory accesses has several advantages in implementation and
integration. For example, various events triggered in memory hierarchy - like
cache misses - could be utilized for validation invocation.

Second, the observations on the memory hierarchy of modern microprocessors
suggest that a memory access validation scheme should cope with a multi-tasking
environment and support a virtual memory system. This design goal is very
important, because (a) taint status would be contained in main memory to
support arbitrary number of active processes and (b) taint status data sets for
each address space must be strictly separated from one another to prevent the
cross-contamination of taint statuses. We try to minimize modifications required
to satisfy this design goal by utilizing existing hardware components and simple
data storage formats.

Finally, these two design goals must be accomplished with a reasonable per-
formance overhead. To minimize the performance overhead of a memory access
validation mechanism, we take various aspects into consideration - the existing
memory architecture, taint status management in main memory, and a caching
structure for taint status data.

In summary, our goal in this paper is to propose a memory access validation
scheme that prevents spurious data from influencing control flow redirection and
supports the virtual memory system of multi-tasking environments.

3 Mechanism

3.1 Overview

Our validation scheme consists of two major parts: the validation unit in the
processor and the taint status information in main memory. Figure 2 illustrates
the overview of our validation scheme.

The validation unit is a hardware unit that gathers, updates, and refers to
taint statuses of memory blocks in a program’s address space. This unit gathers
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(a) Overview of our validation scheme

/* INSN SRC,DST */
mov (%edx),%eax
add %ecx,%eax
mov %eax,4(%edi)

(b) Taint propagation sam-
ple code for x86-32

Fig. 2. Overview block diagram and taint propagation sample code

information on memory blocks containing spurious data by monitoring I/O oper-
ations between user applications and the OS kernel. If a memory block no longer
contains spurious data, the validation unit updates the gathered information so
as to prevent a false alarm. Other hardware components involved in control flow
redirection query this validation unit whether a memory block to be referenced
is spurious or not. If so, this unit triggers an exception for the OS kernel to ter-
minate the process under attack. Otherwise, the program execution resumes. All
of these operations are triggered asynchronously by hardware events like cache
misses and are transparent to software modules including the OS kernel.

The major difference between this approach and IFT approaches is that the
proposed scheme validates only memory accesses directly related to control flow
redirections, while taint propagation through arithmetic operations and pointer-
based memory accesses are left untracked.

In Figure 2, dark gray arrows show the control/signal paths of the proposed
scheme. As these arrows indicate, the signals to/from our validation unit do not
go beyond L1 caches or the branch predictor. Meanwhile, the light gray arrows
stand for the signal path utilized by IFT approaches. We use the sample code
given with the block diagram for this taint propagation. When the processor
core executes the first instruction, the IFT unit must merge the taint status of
the edx register and that of the memory word pointed to by the same register
and must transfer the merged taint status to the augmented taint bit of the eax
register in the register file (the D-cache to the register file propagation). The unit
must merge the taint tag of the ecx to that of the eax register at the second
instruction (register to register propagation). Finally, the taint statuses of the
two registers - eax and edi - must be merged and saved into the taint tag of
the memory word indirectly pointed to by the edi register with a 4-Byte offset
(the register file to the D-cache propagation). To support propagations like this
sample code, the resource scheduler must be modified to buffer the taint tags
associated with pending instructions for pipelining. This change would increase
implementation complexity and power consumption.
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Our validation scheme takes a rather simplified approach compared to other
IFT approaches by not tracking propagation beyond the caches or the branch
predictor - in other words, omitting the light gray arrows in Figure 2. This ap-
proach has advantages in simpler implementations and fewer invocations for vali-
dation at the loss of fine-grained protection available in IFT approaches. Because
our scheme does not communicate with the resource scheduler, the processor’s
pipeline would not require modifications for buffering taint tags. Meanwhile, the
dominance of safe-to-safe memory transactions observed and adopted for opti-
mization in [14] substantiates our approach in terms of the simplification of taint
status reference and tracking. According to the authors, in case of an Apache
web server, about 98 percent of tag propagations are from the safe sources to
safe destinations, and others like unsafe-to-safe account for less than 2 percent
combined. We note that our justification for this simplification does not imply
that fine-grained tracking in IFT is unnecessary and admit that our approach has
limitations caused by this simplification. Section 5 discusses this issue further.

3.2 Taint Status Information Organization

Fine Granularity and Memory Page Frame. Like other IFT approaches,
it is essential to support a granularity smaller than a page frame size in a mem-
ory access validation scheme (Figure 1). Moreover, the OS kernel allocates/de-
allocates memory page frames on the fly, and access attempts to unallocated
address ranges trigger exceptions. Based on these circumstances, we propose a
two-level approach for our validation scheme - the first level dealing with page
frames and the second level dealing with the memory blocks in the page frames
listed in the first level. Only if our validation unit finds that the page frame
that a queried memory block belongs to contains spurious data, would it pro-
ceed to the next level dealing with memory blocks in the page frame. Otherwise,
the queried memory block is considered “authentic” and instruction execution
continues. In this work, we have chosen virtual address space as our reference
address space to support multi-tasking OS kernels.

Matrix Format for Page Frame Numbers. For the first level of taint status
data, the proposed scheme manages page frame numbers (PFNs) of page frames
containing spurious data in matrix format - like an array of arrays. Each PFN is
placed in its assigned sub-array - in matrix term a “row”, and specified bit fields
of a PFN are used as the row index. There are two benefits of this format; (a)
the validation unit can manage PFNs like cache lines in set-associative caches
with replacement policies; (b) whether or not a page frame contains spurious
data can be quickly determined by doing a linear search over its assigned row.

We design our validation scheme to manage fixed number of PFNs in each
matrix - 32, 64, 128, or 256. This estimation is based on our experimental result
with I/O-intensive applications (GCC toolchain, Apache web server, and sshd
server) that more than 99.8 percent of I/O-active address spaces utilize fewer
than 256 pages for I/O. The I/O-active address space in this work refers to an
address space that directly communicates with I/O devices through system calls
like read during execution time.
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Fig. 3. Row index and memory block ID assignment example in a virtual address -
32-bit architecture with 4K Bytes page frame and 32-Byte cache line, 8×N page frame
number matrix

Validation Granularity and Taint Status Information in Bitmap
Format. In this work, we chose the cache line size for validation granular-
ity. Managing the taint status at the granularity of cache line size has several
advantages; (a) cache hit/miss statuses could be utilized for taint status man-
agement; (b) we could put only validated memory blocks into a cache so that
cache lines in the cache no longer needed to be validated. The limitation from
this coarse granularity compared to IFT approaches will be discussed in Section
5.3.

In this work, we chose the bitmap format for our second level storage format.
Each bit of a bitmap indicates the taint status of the corresponding memory
block (with cache line size) in a page frame that is listed in the associated PFN
matrix. Because there are 32, 64, 128, or 256 PFNs in a PFN matrix, the same
number of bitmaps for those PFNs will be stored in an array. For simplicity, we
designed a bitmap array to be placed right next to the PFN matrix.

Matrix/Bitmap Location. Both PFN matrices and bitmap arrays must be
stored in main memory and are traversed by our validation unit at runtime. In
this work, we propose to concatenate our taint data (one PFN matrix and one
bitmap) to one of the paging tables of a virtual address space to be protected.
Such an augmented data structure facilitates synchronization of address space
changes and taint status data switching. In other words, our validation unit
would be able to locate the active PFN matrix and its bitmap array without an
additional special purpose register for taint status data.

The location of the queried memory block’s taint status is determined as
follows. As explained previously, each PFN is placed in its assigned row and
specified bit fields of a PFN are used as the row index in the matrix. Because
each bitmap in the bitmap array corresponds to a PFN in the matrix, we use
the coordination of a PFN in the matrix to calculate the index for the associated
bitmap stored in the bitmap array. For the memory block level, we use the MSBs
of the page offset of the memory block’s address as the identifier within a page
frame. Figure 3 shows an example of row assignment and memory block ID
extraction.

Memory Space Requirement. The memory requirement for two taint infor-
mation for one address space - one PFN matrix and one bitmap array - can be
calculated with the following equation (CLS : Cache line size / PGN : Number
of page frame numbers / BMP : Bitmap).
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4× PGN︸ ︷︷ ︸
PFNMatrix

+
4096

CLS
÷ 8× PGN︸ ︷︷ ︸

BMParray

(1)

For the matrix structure, we assign one 32-bit word for PFN matrix element
and utilize higher bit fields (20 bits) for PFN and remaining lower bit fields
for other purposes - like checksums for PFNs and bitmaps. Depending on the
matrix configuration, memory consumption of these storage formats could go
up to 5K Bytes (32-Byte cache line / 256 PFNs) or 3K Bytes (64-Byte cache
line / 256 PFNs) per address space. In case of the 32-bit x86 architecture, at
least 8K Bytes are required to initialize one virtual address space, and this size
increases by 4K Bytes for every 4M-Byte newly allocated address range. This
means that the memory overhead for address space initialization would account
for 62.5%/37.5% and would decrease as more page frames are allocated.

We believe that our approach in taint status data augmentation has three
advantages as follows; (a) the memory access interface does not require non-
trivial modifications like Minos because taint status data is contained in main
memory; (b) hardware designs required for implementation - like LRU, bitmap
- are already available; and (c) taint status data needs to be allocated and
initialized only at once at the initialization of a protected address space.

3.3 Taint Operation

There are three operations to be processed on taint information - Paint, Erase,
and Lookup. If a requested PFN is found in the PFN matrix, the Paint operation
sets the bit field representing the taint status of a memory block that is written
with spurious data transferred via I/O. As user applications request I/O oper-
ations to its O/S kernel through the system call interface, the straightforward
approach to activating the Paint operations is to make the hardware unit han-
dling system calls invoke the Paint operation with arguments like the starting
address of a I/O buffer and its size. The Erase operation clears the bit field that
corresponds to a memory block being overwritten with data from a register. The
Lookup operation answers validation queries issued from other hardware com-
ponents by referring to the bit field representing the taint status of a requested
memory block.

The procedure after failing to locate a requested PFN in the matrix varies
depending on the requested operation. Only the Paint operation puts the PFN
into its assigned row in the matrix (either by finding an available spot or replacing
an existing one) and initializes the linked bitmap in the bitmap array. If the
Erase or Lookup operation fails to locate the PFN in the matrix, the validation
unit returns a miss. The hardware component that issued the query ignores the
response and resumes execution. Note that frequent misses do not necessarily
mean that this matrix structure is unsuitable for managing PFNs. This is because
queries that result in misses certainly include ones targeting memory pages that
have never been involved in an I/O operation.
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3.4 Integration into Memory Hierarchy and Return Address Stack

The basic design of this validation scheme is highly likely to incur significant
overhead as every memory write will request a taint status update (with the
Erase operation) in the taint information contained in main memory. In addition,
frequent validation queries will also increase the performance overhead.

Our approach against overhead is to invoke the proposed validation scheme
in cache miss handlers and a branch predictor. When a dirty cache line in a
data cache is to be replaced with a missed cache line, a write-back procedure
stores the victimized line into a next level cache before read-in of the missed
cache line. By requesting the Erase operation for a replaced dirty cache line in
the data cache miss handler, we can reduce the number of Erase requests.

Unlike the Erase operation, validation queries must be selectively issued. This
is because validating every memory read will trigger unnecessary exceptions for
memory accesses to spurious but harmless data like (b) in Figure 1. In this work,
we propose two validation query points to counter two types of payload injection
attacks - code injection attacks and stack-compromising attacks.

In order to counter code injection attacks, we design the instruction cache
miss handler to issue validation queries. Because the injected payload(s) for a
code injection attack has never been accessed for instruction fetch before, an
instruction cache miss will be observed at an instruction fetch attempt to the
payload after control flow redirection. One thing to be aware of with regard to
this utilization approach is that, among cache miss handlers, only an instruction
cache miss handler should issue validation queries.

In modern processor architectures, unified caches are widely adopted as the
high-level cache - like a unified L2 cache. In general, a unified cache is larger
than a low-level instruction cache and a data cache combined. This means that
an instruction cache miss at a low-level cache could be served with a cache line
of the high-level unified cache. In this case, the miss handler of the unified cache
wouldn’t be invoked for a cache line containing spurious data. If we want to utilize
a unified L2 cache for access validation, we need an additional procedure for the
cache controller; this procedure must distinguish hit-miss statuses with regard
to the purpose of a memory access and issue a validation query accordingly.

The second query point is at a miss prediction of the Return Address Stack
(RAS), and this is for countering two types of stack-compromising attacks -
return-to-libc attacks and return-oriented-programming attacks. As is widely
known, the processor core pushes return addresses for call instructions into the
RAS and the branch predictor pops contained addresses out of the stack for
speculative execution. This stack contains a limited number of return addresses
in a circular buffer. In the following explanation, we use Figure 1 as an example
and assume that the processor core has already pushed “Return to B”, followed
by “Return to A”, into the RAS just before the attack.

In return-to-libc attacks, a stack frame is overwritten with a crafted payload
through a buffer overflow. This payload contains the starting address of a li-
brary procedure to be exploited and arguments arranged for the procedure as
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illustrated in (c) in Figure 1. During a stack overflow, the starting address usu-
ally replaces a return address previously pushed by the processor - “Random”
pointed to by the stack register for a brute-force attack. As the corrupted return
address in the stack frame would differ from the corresponding entry in the RAS
- “Random” in the stack frame against “Return to A” in the RAS, an RAS miss
should be triggered to discard operands updated during speculative execution
based on the branch prediction from the RAS. Therefore, validating a memory
word triggering a RAS miss can detect return-to-libc attacks.

Meanwhile, the recent prevalence of 64-bit architectures makes brute-force
return-to-libc attacks less threatening because of the increased entropy com-
pared to 32-bit architectures [5]. However, the stack region is still attractive
to adversaries as demonstrated in return-oriented-programming attacks [6]. Our
claim is that our validation scheme is effective against those attacks as well.

The same reasoning on the interaction between the RAS and return-to-libc
attacks can be applied to return-oriented-programming attacks. As noted in [6],
the easiest way to place a payload filled with gadgets into a victimized process’
address space is through stack overflow. Each gadget consists of a pointer to
instruction sequences concluding with return and data words referenced by
those instruction sequences doing a basic operation like load, store, or addition.

For example using (d) of Figure 1, assume that “Addr code k” points to a code
snippet of (pop %edx; ret;). When the control flow is redirected to this snippet,
the pop loads the value “Imm word k” into the edx register. The ret instruction
in the snippet reads “Addr code l” for its next instruction address. In the given
example, at least two mismatches would incur RAS miss predictions during
execution of the payload - “Return to A” in the RAS against “Addr code j”
in the stack frame and “Return to B” against “Addr code k”. Therefore, our
validation approach with the RAS miss handler is effective against ROP attacks.

The RAS must issue not only validation queries but also Erase queries in order
to prevent false alarms under two following cases. In these cases, the processor
core is forced to fetch return addresses for the next instruction addresses not from
the RAS but from the memory word pointed to by the stack register. Without
Erase queries, our validation unit would trigger false alarms for memory words
that once contained spurious data and then are updated with legitimate return
addresses later. One case is under the underflowed RAS buffer. Because circular
buffers adopted for the RAS implementation have a limited number of entries
and all of the RAS entries are discarded at various events like context switchings
or miss-predictions, the RAS may have underflows. After an RAS underflow, the
processor must fetch return addresses from memory word pointed to by the stack
register. This approach mandates our validation unit to invoke validation queries
for such return address fetches. Therefore, all of the taint statuses of memory
words containing legitimate return addresses must be properly updated with
Erase queries at call instructions to prevent false alarms.

The other case in which the processor core fetches return addresses from the
stack region for the next instruction address is when a longjmp is utilized. Invok-
ing a longjmp violates the last-in/first-out order of stack frames by bypassing
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multiple stack frames. As the longjmp implementation updates the stack register
for stack frame bypassing while the RAS entries remain unchanged, RAS-miss
predictions will be triggered at the return instruction encountered first and our
validation unit must be invoked. Because of the same reason as the underflowed
RAS buffer, the taint statuses for legitimate return addresses must be properly
updated with Erase queries.

Legitimately invoking longjmp will not trigger false alarm in our validation
scheme, because the longjmp implementation does not manipulate stack frames
in main memory but restores execution contexts of the processor - i.e. hardware
register values including the stack register - from the jmp_buf buffer. As the stack
pointer register will point another uncompromised word in the stack frames, our
validation scheme will not trigger false alarm for legitimate longjmps.

3.5 Caching Structure

We propose a caching structure for our taint status data. The three operations
described in Section 3.3 and PFN replacements are processed on this cache
structure, not on the matrices and the bitmap arrays in main memory. Figure 2
illustrates this structure - our validation unit refers to only its internal cache for
taint status data. This structure allows our validation scheme to operate while
not influencing the existing (memory) cache operation like CFI (Section 2.1).

The proposed caching structure consists of a row cache and a bitmap cache.
The row cache stores the most recently accessed row and is filled with all of the
PFNs in the row that a requested frame number belongs to. This row-loading
enables our validation scheme to promptly determine whether or not the PFN
of a requested virtual address is contained in the matrix (Section 3.2). If the
row index of a requested PFN does not match that of PFNs in the row cache,
modified PFNs in the row cache are written back to the PFN matrix in main
memory. After write-back, all PFNs in the row that the requested PFN belongs
to are loaded into the row cache. If a requested PFN is found in the row cache
(either after a row cache hit or row cache loading), our validation unit proceeds
to the bitmap cache. Otherwise, the unit returns a “miss” and aborts the query
processing. The bitmap cache has the same number of slots as the number of
elements in the row cache, and each slot is allocated for the linked bitmap of
each PFN in the row cache. Unlike the row cache, each slot of the bitmap cache
is filled with the original bitmap in main memory only when its corresponding
PFN is requested. We use this request-based bitmap loading approach because
which bitmap slot will be referenced is unknown at a row cache loading.

All of the modified elements in row and bitmap caches must be written-back to
the original data in main memory at the following events; (a) row cache miss; (b)
context switching; (c) interrupt/exception; and (d) cache control instruction (e.g.
cache flush). Three events other than row cache misses must invoke row/bitmap
cache write-backs because they affect cache lines statuses.
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4 Experiment

We used two simulators in our experiment - the Bochs x86 simulator and Sim-
pleScalar. The Bochs x86 simulator was for attack simulations with the synthe-
sized payload injection attacks and for large-scale statistics from an I/O intensive
application running on a multi-tasking OS kernel. The SimpleScalar simulator
with its architectural parameters was to assess the performance impact from our
validation scheme.

4.1 Experimental Environment

In our simulation, the following configurations were applied to get statistics from
both simulators; (a) Cache line size - 32 / 64 Bytes; (b) Matrix size - 32 / 64
/ 128 / 256 PFNs; (c) Number of columns in matrix - 4 / 8 columns; and (d)
Replacement policy - LRU / FIFO / Random. The row assignment exemplified
in Figure 3 was used for our experiments.

We modified the Bochs simulator to have a single-level cache structure (one
32KB I-cache and one 32KB D-cache) as well as a 32-entry RAS in order to
emulate the integration approach suggested in Section 3.4. The caching struc-
ture proposed in Section 3.5 was also implemented as described. read system
calls from user applications running on the Linux OS were trapped to query
Paint operations with I/O buffer addresses and their sizes (Section 3.3). On this
modified simulator, we compiled the Linux kernel source codes with the GCC
toolchain, and gathered statistics. We chose this process because many source
code files with various sizes are read during compilation/linking and because the
parallel compilation of the toolchain utilizes multi-tasking features.

We modified SimpleScalar as we did the Bochs simulator. For performance im-
pact assessment, latencies were added to those modifications - in miss handlers
for L1 I/D-caches, and miss-prediction of RAS. As the baseline SimpleScalar
does not assess the performance impact from system calls, only the overhead
from Lookup and Erase operations was assessed in our simulation. Instead, we
programmed our SimpleScalar to flush both the row cache and the bitmap cache
at every system call to create a conservative simulation environment. For laten-
cies of row/bitmap caches, we assumed that those caches were implemented with
the same circuitry as L2 caches; therefore the same latencies were used. We ran
the SPEC2K benchmark suite for performance impact assessment.

4.2 Effectiveness Evaluation

We verified the effectiveness of the proposed scheme with two types of synthesized
attacks on the modified Bochs simulator. For this evaluation, we programmed
two benchmark suites - one for code injection attacks and one for an ROP attack.
Each suite consists of two software modules - one is the virtual device driver that
delivers a payload to user-space applications through the read system call and
the other is the user application with the buffer overflow vulnerability.



A Memory Access Validation Scheme against Payload Injection Attacks 121

Table 1. Architectural parameters for SimpleScalar. (L1 cache and RAS configurations
are same as configurations for Bochs simulation).

Architectural parameters Value

L2 Unified cache 256 K Bytes, 8-way set assoc., LRU

L1/L2 latency 4 / 42 cycles

DDR3 memory latency 72 / 2 cycles
(First-chunk / inter-chunk) (DDR3, 1333MT/s, 8-burst-deep prefetch)

Row cache / Bitmap cache 42 / 42 cycles
hit latency

Number of instructions 10,000,000

The code injection attack benchmark was the modified version of the bench-
mark proposed in [15] with the virtual device driver. The ROP attack benchmark
was by our own and executed code snippets (implanted in the heap region) only
by overflowing an stack frame with a payload containing four gadgets from [6].

The modified Bochs simulator were able to detect all of the synthesized at-
tacks. In case of the code injection attack benchmark, our simulator detected
executions of injected payloads through the I-cache miss handler. In addition, in-
voking validation queries at RAS miss-predictions was effective against attacks
diverting the control flow redirection by compromising return addresses. The
modified simulator also successfully detected all of the de-references of the code
snippet addresses contained in the four gadgets through RAS miss-predictions.

4.3 Matrix Structure Evaluation

The most important metric regarding the matrix format is the miss rate of the
Lookup operations, because PFN matrices have to reliably manage PFNs used
for I/O. Experimental results were collected only from our modified Bochs sim-
ulator. This is because the input files for SPEC2K benchmarks running on Sim-
pleScalar were not large enough to populate PFN matrices. For reliable statistics
from our modified Bochs simulator, more than 400 I/O-active address spaces
were profiled for each matrix configuration in our experiments. The percentages
for each operation were; 51.34% from Lookup, 48.65% from Erase, and less than
0.001% from Paint.

Experimental results are shown in Figure 4. We found that (a) smaller matri-
ces were susceptible to Lookup misses regardless of their replacement policies;
(b) the LRU replacement policy outperformed the two other policies by orders of
magnitude; and (c) a PFN matrix for one address space had to contain at least
64 entries to ensure low miss rates with LRU. This figure also suggests that the
random replacement policy could be an alternative to LRU if we can allocate
enough memory space for taint information (such as 256-PFN matrix) in order
to achieve low miss rates in the Lookup operation.
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Fig. 4. Miss rates of Lookup queries - Misses per Million Lookups (smaller is better)

4.4 Row Cache/Bitmap Cache Evaluation

We evaluated the cache structure proposed in Section 3.5 with two statistics -
one is the hit rates of the row/bitmap caches and the other is the distribution
of the write-back size under a row cache miss. Only the results from the Bochs
simulator are presented due to the same circumstance as the matrix evaluation
- small input sizes for SPEC2K benchmarks for SimpleScalar.

The row cache hit rates were not high - between 0.610 and 0.709 (for 32-Byte
cache line) or between 0.560 and 0.679 (for 64-Byte cache line), and 8-column
matrices showed slightly higher hit rates than 4-column matrices. Meanwhile, the
bitmap cache rates were high - from 0.961 to 0.998 and no significant differences
were observed among replacement policies and matrix configurations.

The write-back sizes for row cache misses vary depending on how many
row/bitmap cache elements have been modified. Regardless of replacement poli-
cies or the number of columns, all of the write-back size distributions were similar
to other configurations; one bitmap write-back accounted for more than 99.5 per-
cent of the total write backs. Other write backs like one new PFN with one new
bitmap were less than 1 percent.

4.5 Performance Impact

We chose the IPC (Instructions Per Clock) statistics from the SimpleScalar for
our performance metric, and Figure 5 shows normalized IPC values. The average
IPC degradation was 12.3 percent, and the largest degradation was 48 percent.
Experiments with the 32-Byte cache line size exhibited results similar to Figure
5 except for less degradation in several benchmarks.

Differences in performance degradation were mostly caused by queries and
row cache misses. In case of swim with less than 1 percent degradation, only
about 30,000 queries were issued while 10 million instructions were executed
and the row cache hit rate was low - from 49.7 to 52 percent. On the other hand,
apsi issued about 1.2 million queries, and the row cache hit rate was as high as
99.2 percent. This benchmark had no performance degradation. Galgel suffered
the largest performance degradation; about 200,000 queries were issued, and the
row cache hit rate ranged between 32.0 (64 pages) and 47.8 (128 pages) percent.
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Fig. 5. IPC from SPEC2K benchmark - 64-Byte cache line, 32/256 PFN matrix, 4/8
columns

With the proposed caching structure, the read-in size for the row cache is
16 Bytes (4-column matrix) or 32 Bytes (8-column matrix) while one bitmap
is 8 or 16 Bytes (Section 3.5). Although the row cache size is small compared
to the cache line size (32/64 Bytes), row cache read-ins influenced the overall
performance. There are several reasons for this performance degradation - (a)
our row/bitmap cache structure does not have high-speed secondary storages; (b)
the first-chunk latency of the DDR3 memory interface is large; and (c) row cache
misses are triggered more frequently than system calls and context switchings.

In summary, the experimental results with the modified SimpleScalar and
SPEC2K benchmarks show that our validation scheme imposes modest perfor-
mance impact, mostly influenced by queries and row cache misses. Unfortu-
nately, according to results presented in Section 4.4, our row cache hit rates
were found to be low in kernel compilation experiment. This implies that the
performance degradation in I/O-intensive applications like kernel compilation or
internet browsing could be significant. We note that we tried different row index
assignments from Figure 3 to put contiguous PFNs in one row so as to exploit
spatial locality in the row cache. However, the experimental results exhibited
much higher Lookup miss rates. Our understanding is that the virtual addresses
randomized by ASLR incurred frequent thrashings in PFN matrices.

5 Discussion

5.1 System Software Support

As the OS kernel manages system resources related to multi-tasking features,
the proposed validation scheme needs system software support.

The first is memory allocation for the PFNmatrix and the bitmaps per address
space. If a process is to be protected with the proposed validation scheme, the
OS kernel has to allocate memory space for its taint information - one PFN
matrix and one bitmap array. Because taint status data for one address space
is concatenated to one of the paging tables as proposed in Section 3.2, the OS
kernel can easily manage memory regions allocated for taint status information.
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The OS kernel must initialize one PFN matrix and its associated bitmap array
with zero values, because I/O activities must be logged and referenced only by
our validation unit.

The second required support is to handle shared memory pages. Multi-tasking
OS kernels extensively utilize shared memory pages for various purposes, like
shared library procedures and the Inter-Process Communication feature. Be-
cause we assign one taint information set per address space, taint status changes
occurring in memory pages of one address space are unknown to other address
spaces sharing those pages. This problem could be addressed by making the
OS kernel duplicate taint statuses from one address space to another at critical
events like context switching. The OS kernel is responsible for this synchroniza-
tion because the kernel manages the page sharing information.

5.2 False Positive

The proposed scheme has two false positives cases. This section briefly discusses
how such false positives could occur and how to eliminate them.

The first false positive is from the matrix structure. Figure 4 shows the miss
rates of Lookup operations with regard to matrix configurations. The miss rates
shown in this figure essentially represent the false-positive rates of our validation
scheme, because a hardware component which got “miss” as a response from the
validation unit must continue instruction execution. This false positive can be
prevented by allocating enough space for the taint status data.

The second case is caused by cache line size granularity. If a part of a string
buffer allocated for spurious data happens to share the same memory block (with
a cache line size) with a memory word containing a return address and an RAS
miss prediction is observed due to an underflowed circular buffer, a false alarm
will be triggered. During our experiments with the Bochs simulator, we observed
false alarms caused by this problem. A remedy for this problem is to organize
memory layouts in a way such that taint-candidate data and control flow data
are placed far enough apart not to share a cache line. This work-around could
increase memory consumption for an extended memory layout as a side effect.

5.3 Vulnerability and Limitations

Vulnerability of Taint Information. This validation scheme is vulnerable
to rootkits compromising a target system with the same access level as its OS
kernel. A plausible attack scenario is that a rootkit attack duplicates a sparsely-
marked bitmap to other bitmap locations. If a rootkit identifies or crafts a
sparsely-marked bitmap and populates a vulnerable process’ bitmap array with
this bitmap using the duplication procedure described in Section 5.1, our valida-
tion scheme would not be able to detect attacks accessing memory blocks whose
taint status information has been compromised.
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Limitations. The proposed validation scheme has two limitations. One limita-
tion is that our protection scheme is unable to detect the execution of relocated
foreign objects. By exploiting existing procedures or runtime environments like
the JavaScript engine, malicious parties can relocate their payload(s) and redi-
rect control flow to the payload - like heap-spraying attacks. As the proposed
scheme does not track taint propagation across registers and the L1 data cache,
memory blocks containing relocated foreign objects are highly unlikely to be
marked as tainted. So, instruction fetch attempts to relocated payloads could be
allowed without being blocked by our validation scheme.

Another limitation is that our validation scheme cannot detect attacks exploit-
ing indirect branches other than returns - like (call *) or (jmp *). During
an indirect branch execution, the next instruction address contained in the data
cache is loaded into the program counter either via a general purpose regis-
ter (register indirect jump) or directly from the cache (memory indirect jump).
Because these branches do not trigger RAS misses and our scheme does not
validate data cache accesses, our validation unit is unable to detect exploitation
of indirect branches for return-to-libc-style or ROP-without-returns attack [16].

6 Conclusion

In this paper, we have proposed a hardware mechanism to validate memory
accesses influencing control flow redirection. The validation unit based on the
proposed scheme manages the taint statuses of memory blocks for each address
space at the cache line size granularity. This unit answers queries from other
hardware components involved in control flow redirection. We also have proposed
integration approaches and caching structures to alleviate performance overhead.
Experiments with two simulators showed that proposed scheme is able to detect
the synthesized payload injection attacks and to manage taint information with
a limited amount of memory. Performance degradation varied from negligible to
significant depending on the number of queries and row cache performance.

We have two major future works for this validation scheme. One is to augment
the taint bit and to track its propagation at the register level while supporting
our row/bitmap cache structure in order to address two limitations. The other
work is to apply this scheme to 64-bit architecture. Because the bit width of a
memory address is doubled (at most) compared to 32-bit architecture, we would
need a sophisticated mechanism to alleviate the miss penalty of row cache misses.
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Abstract. The proliferation of malware in recent years has motivated
the need for tools to detect, analyze, and understand intrusions. Though
analysis and detection can be difficult, malware fortunately leaves arti-
facts of its presence on disk. In this paper, we present Dione, a flexible
policy-based disk I/O monitoring and analysis infrastructure that can
be used to analyze and understand malware behavior. Dione interposes
between a system-under-analysis and its hard disk, intercepting disk ac-
cesses and reconstructing a high-level semantic view of the disk and all
operations on it. Since Dione resides outside the host it is analyzing,
it is resilient to attacks and misdirections by malware that attempts to
mislead or hide from analyzers. By performing on-the-fly reconstruction
of every operation, Dione maintains a ground truth of the state of the
file system which is always up-to-date—even as new files are created,
deleted, moved, or altered.

Dione is the first disk monitoring infrastructure to provide rich, up-
to-date, low-level monitoring and analysis for NTFS: the notoriously
complex, closed-source file system used by modern Microsoft Windows
computing systems. By comparing a snapshot obtained by Dione’s live-
updating capability to a static disk scan, we demonstrate that Dione
provides 100% accuracy in reconstructing file system operations. Despite
this powerful instrumentation capability, Dione has a minimal effect
on the performance of the system. For most tests, Dione results in a
performance overhead of less than 10%—in many cases less than 3%—
even when processing complex sequences of file system operations.

Keywords: Malware Analysis, Instrumentation, File System, Digital
Forensics.

1 Introduction

As the arms race between malware creators and security researchers intensifies,
it becomes increasingly important to develop tools to understand, detect, and
prevent intrusions. The amount of malware has not only proliferated in recent
years, but it has also become more sophisticated, employing methods to hide
from or mislead malware detection mechanisms. As a result, it is critical to obtain
information about malware that is as close to the truth as possible, which often

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 127–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



128 J. Mankin and D. Kaeli

means working at the lowest level possible. While researchers have had success
using memory introspection [7,20,22], disk I/O instrumentation is also a critical
tool for the analysis and detection of malware. Disk-level events provide a wealth
of information about the state and history of a system. As a result, a flexible disk
I/O analysis and instrumentation infrastructure provides key insight to better
understand malware behavior.

In this paper, we present Dione: A Disk I/O aNalysis Engine. Dione is
a flexible, policy-based disk monitoring infrastructure which facilitates the col-
lection and analysis of disk I/O. It uses information from a sensor interposed
between a System-Under-Analysis (SUA) and its hard disk. Since it monitors
I/O outside the reach of the Operating System (OS), it cannot be misdirected
or thwarted by rootkits—even those that have achieved superuser-level privi-
lege. Dione reconstructs high-level file system operations using only intercepted
metadata and disk sector addresses; while this reconstruction is performed with
a high degree of accuracy, the performance impact of instrumentation is minimal.
Dione only requires basic disk access information that can be obtained by many
types of sensors, including both physical hardware sensors and virtualization-
based sensors. It can, therefore, be used to analyze and detect malware that
utilizes anti-sandbox or virtualization-evasion techniques, which have become
increasingly common [3,8,19].

Rootkits, which can gain administrator privilege in order to control a system
and hide themselves and other evidence of infection, often leave behind traces
of disk activity, even when they eventually cover their tracks [14]. Persistent
rootkits make changes to files on disk in order to survive reboots; this may
include modifications to OS configuration files and system binaries. Even non-
persistent rootkits, which reside purely in memory, may still present artifacts
of infection through disk activity. This activity could include loading dynamic
libraries, log-file scrubbing, and file time-stamp tampering [21].

In a simple world, a disk monitor could reside in the OS, where rich, high-
level APIs expose semantics such as files and their properties, as well as the
high-level operations which create, delete, and modify them. Unfortunately, this
is not practical from a security perspective, as it is a well-understood problem
that any malware that has escalated its privilege to the administrator level could
then thwart or misdirect any data collection and analysis. For this reason, it is
more desirable and secure to move the interposer outside the reach of the OS.

Unfortunately, housing a disk instrumentation engine outside the OS prohibits
easy access to high-level constructs and operations. The Semantic Gap problem
occurs when there is no mapping between low-level information (e.g., disk sectors
and raw metadata) and high-level information (e.g., files and their properties).
Fortunately, this challenge has been addressed in previous work with open-source
libraries and drivers [6,26]. However, the Temporal Gap problem, in which low-
level events across time must be reconstructed to identify high-level file system
operations, has not been addressed in detail.

Unlike many low-level disk instrumentation approaches, Dione analyzes
Windows systems running the NTFS file system. Furthermore, it performs live
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updating, resulting in a view of the file system that is always up-to-date (except
for any delay as writes are flushed to disk). Dione works by pre-populating its
data structures with a reconstructed view of the file system of the SUA. Then, as
the SUA runs, Dione intercepts all disk accesses through the use of a sensor. For
each sector accessed, Dione determines which file it belongs to and whether it
has intercepted file contents or metadata. Next, Dione determines whether the
file system state changed (e.g., due to a file being created, deleted, etc.). If so,
it updates its high-level view of the file system state. Finally, Dione determines
if any policies apply to that file, and if so, performs the appropriate action.

In this paper, we evaluate the accuracy, utility, and performance of Dione.
We integrate Dione with a popular virtualization infrastructure in order to in-
vestigate the disk I/O of a virtual SUA. We also evaluate the performance of full
disk instrumentation and the accuracy of Dione’s live updating capability. Fi-
nally, we demonstrate the utility of Dione by instrumenting real-world malware
samples and using the results to identify and analyze the malware.

2 Related Work

Much of the previous work in disk analysis focused on Intrusion Detection Sys-
tems (IDSs). Kim and Spafford’s Tripwire monitored Unix systems for unautho-
rized modifications to the file system [15]. Tripwire performed file-level integrity
checks and compared the result to a reference database. While it worked quite
well to discover changes to files, it could only detect modifications between scans.
Stolfo el al. also developed a host-based file system access anomaly detection sys-
tem [27]. They utilized a file system sensor which wrapped around a modified file
system to extract information about each file access. Both host-based solutions
require a trusted OS. Conversely, Pennington et al. implemented a rule-based
storage IDS that resided on an NFS server; their IDS monitored disk accesses
for changes to specified attributes and file system operations [21].

While host-based IDSs are problematic because a privileged rootkit can over-
ride or misdirect malware detectors, IDSs based on Virtual Machine Introspec-
tion (VMI) offer both high visibility and isolation from compromised OSs. Payne
et al. proposed requirements to guide any virtual machine monitoring infrastruc-
ture, and implemented XenAccess to incorporate VMI capabilities [20]. However,
the disk-monitoring in their implementation can only be performed on para-
virtualized OSes, such as Linux. Azmandian et al. used low-level architectural
events and disk and network accesses in their machine learning-based VMI-IDS,
though they did not utilize high-level disk semantics [1]. Zhang et al. presented a
storage-monitoring infrastructure very similar to ours [29]. However, their moni-
toring framework was only implemented for FAT32 file systems, which is far less
complex than NTFS and is rarely used in modern systems.

Jiang et al. also implemented a VMI-IDS, called VMwatcher, which incorpo-
rated disk, memory, and kernel-level events [12]. They too could not analyze the
ubiquitous NTFS file system, and instead required that Windows VMs use the
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Linux ext2/ext3 file system. The VMI-IDS of Joshi et al. detected intrusions
before the vulnerability was disclosed [13]. However, their solution to inspecting
disk accesses required invoking code in the address space of the guest itself, and
subsequently performing a checkpoint and rollback.

Other researchers have acknowledged the role of disk accesses in malware
intrusions by providing rootkit prevention solutions. With Rootkit Resistant
Disks, Butler et al. provided a hardware-based solution to block accesses to
sensitive directories, as long as these directories reside on a separate partition [4].
Chubachi et al. also provided a mechanism to block accesses to disk that could
operate on a file-level granularity [9]. Unfortunately, they need to create a sector-
based “watch-list” before the system boots and do not have a live updating
capability to keep the list current as the system runs.

Previous work has also addressed the role of dynamic analysis and instru-
mentation for malware forensic analysis and classification, and yields informa-
tion about disk activities. In-host solutions include DiskMon [24], part of the
Sysinternals tools, and CWSandbox [28]; both provide disk access instrumen-
tation capabilities for Windows systems. Similarly, Janus [11], DTrace [5], and
Systrace [23] provide in-host instrumentation for Unix-based systems through
system call interposition, also providing the ability to instrument disk accesses.

Given that in-host solutions can be misled or thwarted by advanced mal-
ware, more recent work has moved the analysis outside the host. Kruegel et al.’s
TTAnalyze (later renamed Anubis) uses an emulation layer to profile malware,
including file system activities, of a Windows guest [18]. Similarly, King et al.’s
BackTracker uses a virtualized environment to gather process and file system-
related events that led to a system compromise of a Linux guest [16]. Krishnan
et al. created a whole-system analysis, combining memory, disk, and system call
introspection [17]. However, their disk monitoring relies on periodic disk scans
to connect blocks to files, and does not perform live updating.

3 Dione Overview

Dione is a flexible, policy-based disk I/O monitoring and analyzing infrastruc-
ture. Dione maintains a view of the file system under analysis. A disk sensor
intercepts all accesses from the System-Under-Analysis (SUA) to its disk, and
passes that low-level information toDione. The toolkit then reconstructs the op-
eration, updates its view of the file system (if necessary), and passes a high-level
summary of the disk access to an analysis engine as specified by the user-defined
policies. The rest of this section discusses Dione in more detail.

3.1 Threat Model and Assumptions

In our threat model, the SUA is untrusted and can be compromised, even by
by malware with administrator-level privileges that can hide its presence from
host-level detection mechanisms.

We assume that there is a sensor that interposes between the SUA and its hard
disk and provides disk access information. This sensor can be a software sensor
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Fig. 1. High-level overview of Dione Architecture

(e.g., a virtualization layer) or a hardware sensor. We assume that both the
sensor providing the disk access information and the Analysis Machine (that is,
the machine which runs Dione) are trusted. Therefore, in a virtualization-based
solution, neither the hypervisor nor the virtual analysis domain is compromised.

3.2 Dione Operation

There are four discrete components to Dione: A sensor, a processing engine, an
analysis engine, and the Dione Manager. The Dione architecture is shown in
Figure 1.

The Sensor interposes between the SUA and its disk. It intercepts each disk
access, and summarizes the access in terms of a sector address, a count of con-
secutive sectors, the operation (read/write), and the actual contents of the disk
access (data being read, or data being written). The sensor type is flexible. It
can be a physical sensor, which interposes between a physical SUA and the anal-
ysis machine, and extracts the disk access information from the protocol (e.g.,
SATA) command headers to send to Dione. It can also be a virtual sensor, such
as a hypervisor, which intercepts the disk I/O of a virtual SUA.

The Processing Engine is a daemon on the analysis machine. The multi-
threaded Dione daemon interacts with both the user and the sensor. It receives
disk access information from the sensor, and performs three steps. The first step
is Disk Access Classification; for each sector, it determines which file it belongs
to (if known) and whether the access was to file content or metadata. In the
Live Updating phase, it compares the intercepted metadata to its view of the file
system to determine if any high-level changes occurred. It passes the high-level
access summary to the Policy Engine, which determines if any policies apply to
the file accessed. If so, it passes the information along to the analysis engine.
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Table 1. Commands used for communication with the Dione daemon

Command Description

declare-rule Declare a new rule for instrumentation. Types of rules include:
– Record: Record an access or file operation
– Timestamp Alert: Alert if a timestamp is reversed.
– Hide Alert: Alert if a file is hidden
– MBR Alert: Alert if the master boot record is accessed.

delete-rule Delete a previously-declared rule

list List all rules

apply Bulk-apply declared rules to File Record data structures

scan Perform a full scan of a disk image (or mounted disk partition),
creating all File Records from the raw bytes and automatically
applying all declared rules

save Save the state of the Dione File Record hierarchy to a file to be
loaded from later

load Load the Dione File Record hierarchy from a previously-saved
configuration file

The Analysis Engine performs some action on the information it has re-
ceived from the processing engine. Currently, the analysis engine logs the accesses
to a file, but future work will extend the analysis engine to perform malware clas-
sification or on-the-fly intrusion detection.

The Dione Manager is a command line program which the user invokes to
send commands to the Dione daemon. The commands can be roughly divided
into Rule Commands and State Commands and are summarized in Table 1.

Included in the Rule Command category are commands to declare, delete, list,
or bulk-apply rules. The policies currently supported are summarized in Table 1.
However, Dione is built to flexibly support the creation of new rule types. The
State Command category contains rules to load and save a view of the state of
the file system under analysis. The load step is necessary to pre-populate internal
Dione data structures with a summary of the file system. This step is required
before Dione will begin monitoring I/O. The goal of this stage is that Dione
will already know everything about the file system before the SUA boots, so
that it can immediately begin monitoring and analyzing disk I/O. This step can
be accomplished with a disk scan, which reconstructs the file system from the
raw bytes of the disk, or by loading a previously saved configuration file.

3.3 Live Updating

As the SUA boots and runs, new files are created, deleted, moved, expanded,
shrunk, and renamed. As a result, the pre-populated view of the SUA’s file
system, including the mappings between sectors and files, quickly become out-
of-date, reducing the accuracy of the monitoring and logging of disk I/O. The
solution to this problem is Live Updating: an on-the-fly reconstruction of disk
events based solely on the intercepted disk access information.



Dione: A Flexible Disk Monitoring and Analysis Framework 133

The next sections detail the challenges and solutions to live updating. As
our implementation is initially geared toward Windows systems with the NTFS
file system, and NTFS is a particularly challenging file system to perform live
updating on, we will begin with an introduction to those NTFS concepts which
are necessary for accurately describing the live updating implementation.

NTFS Concepts. Many of the challenges of interpreting NTFS arise from
its scalability and reliability. Scalability is accomplished through a flexible disk
layout and many levels of indirection. Reliability is accomplished through re-
dundancy and by ordering writes in a systematic way to ensure a consistent
result.

The primary metadata structure of NTFS is the Master File Table, or MFT.
The MFT is composed of entries, which are each 1KB in size. Each file or di-
rectory has at least one MFT entry to describe it. The MFT entry is flexible:
The first 42 bytes are the MFT entry header and have a defined purpose and
format, but the rest of the bytes store only what is needed for the particular
file it describes. In NTFS, everything is a file—even file system administrative
metadata. This means that the MFT itself is a file: This file is called $MFT,
and its contents are the entries of the MFT (therefore, the MFT has an entry in
itself for itself). Figure 2 shows a representation of the MFT file, and expands
$MFT’s entry (which always resides at index 0 in the MFT).

Everything associated with a file is stored in an attribute. The attribute
types are pre-defined by NTFS to serve specific purposes. For example, the
$STANDARD INFORMATION attribute contains access times and permissions, and
the $FILE NAME attribute contains the file name and the parent directory’s MFT
index. Even the contents of a file are stored in an attribute, called the $DATA

attribute. The contents of a directory are references to its children; these too are
stored in attributes.

Each attribute consists of the standard attribute header, a type-specific header,
and the contents of the attribute. If the contents of an attribute are small, then
the contents will follow the headers and will reside in the MFT entry itself. If the
contents are large, then an additional level of indirection is used. In this case,
a runlist follows the attribute header. A runlist describes all the disk clusters1

that actually store the contents of the attribute, where a run is described by
a starting cluster address plus a count of consecutive clusters. In the example
MFT of Figure 2, the contents of the $STANDARD INFORMATION and $FILE NAME

attributes are resident. Since the content of the $DATA attribute is large, this
attribute is not resident. Its runlist indicates that the $MFT data content can
be found in clusters 104-107 and 220-221.

It is easy to see that a small file will occupy only the two sectors of its MFT
entry. A large file will occupy the two sectors of its MFT entry, plus the content
clusters themselves. Consider, then, the problem of a very large file on a highly
fragmented disk: it might take more than the 1024 bytes just to store the content

1 In NTFS terminology, a cluster is the minimum unit of disk access, and is generally
eight sectors long in modern systems.
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...

Name: 
 $STANDARD_
 INFORMATION
Type ID: 16
Resident: 1 

Created: 
 2011 06 06 
 20:04:37
File Modified: 
 2011 09 06 
 15:31:32 
MFT Modified: 
 2011 09 06 
 15:31:32 
Accessed: 
 2011 09 06 
 15:31:32 

MFT Entry Header

Signature: FILE
Seq Num: 1
In-Use: 1
Is-Directory: 0
Base Ref: 0 

Name: 
 $FILE_NAME
Type ID: 48
Resident: 1 

Name: $MFT
Parent MFT: 5 

...

...

Name: 
 $DATA
Type ID: 128
Resident: 0 

Run 0: 
   Start: 104
   Count: 4
Run 1: 
   Start: 220
   Count: 2...

Cluster
104

105

106

107

220

221

Unused SpaceAttribute Headers Attribute Content

Fig. 2. Representation of the MFT, which is saved in a file called $MFT. The first entry
holds the information to describe $MFT itself; the contents of this entry are expanded
to show the structure and relevant information of a typical MFT entry.

runlist. In this case, NTFS scales with another level of indirection and another
attribute, and multiple non-base MFT entries are allocated (in addition to the
base entry) to store all attributes.

NTFS Live Updating Challenges. There are two big challenges to live up-
dating: overcoming the Semantic Gap and the Temporal Gap. The Semantic Gap
is a well-studied problem in which low-level data must be mapped to high-level
data. In our case, we need to map the raw byte contents of a disk access to files
and their properties. We utilize and build upon the open-source The Sleuth Kit
(TSK) [6] to do much of the work to bridge the semantic gap.

The Temporal Gap occurs when low-level behaviors occurring at different
points in time must be pieced together to reconstruct high-level operations.
The high-level operations that Dione monitors include file creation, deletion,
expansion, move/rename, and updates in MAC times and the hidden property.

The first challenge of live updating is identifying the fields in an intercepted
MFT entry for which a change indicates a high-level operation. For some
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operations, a combination of changes across multiple intercepted MFT entries
indicates that a certain high-level operation has occurred. Due to file system re-
liability constraints, these changes will be propagated to disk in an inconvenient
ordering. Therefore,Dionemust piece together the low-level changes across time
in order to reconstruct high-level events.

The biggest challenge resulting from the temporal gap is the detection of
file creation. An intercepted MFT entry lacks two critical pieces of information:
the MFT index of that entry, and the full path of the file it describes. For a
static image, it is not a challenge to calculate both. However, in live analysis,
the metadata creation will occur before the $MFT file’s runlist is updated—and
just like any other file, $MFT can expand to a non-contiguous location on disk.
Therefore, it can be impossible to determine (at the time of interception) the
MFT index of a newly created file. In fact, it can be impossible to determine at
interception time whether a file creation actually occurred in the first place.

A similar challenge arises in determining the absolute path of a file. The MFT
entry contains only the MFT index of that file’s parent, not its entire path. If the
parent’s file creation has not yet been intercepted, or the intercepted parent did
not have an MFT index when its creation was intercepted (due to the previously
described problem), Dione cannot identify the parent to reconstruct the path
at the time of interception. This situation occurs quite frequently whenever an
application is being installed. In this case, many (up to hundreds or thousands)
of files are created in a very short amount of time. Since the OS bunches writes
to disk in one delayed burst, many hierarchical directory levels are created in
which Dione cannot determine files’ paths.

The temporal gap also proves a challenge when a file’s attributes are divided
over multiple MFT entries. As Dione will only intercept one MFT entry at a
time, it will never see the full picture at once. Therefore, it needs to account for
the possibility of only intercepting a partial view of metadata, and to keep track
of non-base entries in addition to base entries.

NTFS Live Updating Operation. Live updating in Dione occurs in three
steps. First, file metadata is intercepted as it is written to disk. Next, the per-
tinent properties of the file are parsed from the metadata, resulting in a recon-
structed description of the file whose metadata was intercepted. Finally, Dione
uses the intercepted sector, the existing view of the file system, and the recon-
structed file description from the second step to determine what event occurred.
It updates the internalDione data structures to represent the file system change.

After intercepting an access to disk, Dione looks at the intercepted disk
contents and approximates whether the disk contents “look like” metadata (i.e.,
whether the contents appear to be an intercepted MFT entry). If it looks like
metadata, Dione parses the raw bytes and extracts the NTFS attributes. It
also attempts to calculate the MFT index by determining where the intercepted
sector falls within Dione’s copy of the MFT runlist. With this calculated index,
it can attempt to retrieve a File Record. There are two outcomes of this lookup:
either a valid File Record is retrieved, or no File Record matches the index.
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Table 2. Summary of the artifacts for each file system operation. An MFT index is
computed based on the intercepted sector and the known MFT runlist. If a file record
is found with the calculated index, properties of the file record are compared with
properties parsed from the intercepted metadata.
∗ A replacement is characterized by a file deletion and creation within the same flush
to disk, whereby the same MFT entry is reused.

Operation Artifacts

File Deletion – In-Use flag off in intercepted MFT entry header

File Replacement∗
– Creation Time: Intercepted > FileRecord, OR

MFT Entry Sequence Number: Intercepted > FileRecord

File Rename – File Name: Intercepted �= FileRecord

File Move – Parent’s MFT Index: Intercepted �= FileRecord

File Shrink/Expand
– Runlist: Intercepted �= FileRecord, OR
– Non-base entry created or deleted

Timestamp Reversal – MAC Times: Intercepted < FileRecord

File Hidden – Hidden flag: Intercepted = 1 AND FileRecord = 0

If a valid File Record is found, Dione will compare the extracted attributes to
those attributes found in the existing File Record. If any changes are detected,
it will modify the File Record to reflect the changes. A summary of the semantic
and temporal artifacts of each type of file operation is presented in Table 2.

If a valid File Record is not found, it means one of three things. In the first
case, a new file has just been created, and it has been inserted into a “hole” in
the MFT. The file creation can be verified because the intercepted sector falls
within the known runlist of the MFT. In the second case, a new file has just been
created, but the MFT was full, and thus it could not be inserted into a hole.
The MFT index cannot be calculated, because the intercepted sector does not
fall in $MFT’s runlist. Dione buffers a reference to this file in a list called the
Wait Buffer.2 Eventually Dione will intercept the $MFT file’s expansion, the
file creation will be validated, and the MFT index and path can be constructed.
In the final case, the intercepted data had the format of metadata (e.g., the
data looked like an MFT entry), but the data actually turned out to be the
contents of another file. This happens for redundant copies of metadata and for
the journal file $Logfile; additionally, a malicious user could create file contents
which mimic the format of a MFT entry. In any of these cases, a reference to
this suspected file—and the sector at which it was discovered—will be saved in

2 A newly-created file will also be placed in theWait Buffer if it has a valid MFT index,
but its path cannot be constructed because its parent has yet to be intercepted.
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the Wait Buffer. However, the Wait Buffer will be periodically purged of these
File Records when their corresponding sectors are verified as belonging to a file
which is not $MFT.

The root of trust of Dione is established and maintained by verifying the
location of the MFT during the initial scan or load (the step described in Sec-
tion 3.2). Dione maintains a list of all sectors that contain metadata via the
runlist of the $MFT file. Since that runlist is only updated when $MFT’s meta-
data is intercepted (and the address of this metadata is known and unchanging),
the list of sectors containing valid metadata is always verified. Therefore, when
data that looks like metadata is encountered, it is only processed as metadata if
it falls within this list. The only exception to this rule is for new file creation;
as discussed above, this case is handled through the Wait Buffer. Therefore, a
malicious user cannot forge metadata in order to evade or trick the system.

4 Experimental Results

Next, we evaluate the accuracy and performance of Dione and demonstrate its
utility using real-world malware. Though Dione is a flexible instrumentation
framework capable of collecting and analyzing data from both physical and vir-
tual sensors, we use a Xen-based solution which utilizes the virtualization layer
as a data-collecting sensor.

4.1 Experimental Setup

Our virtualization-based solution uses the Xen 4.0.1 hypervisor. Our host system
contains a dual-core Intel Xeon 3060 processor with 4 GB RAM and Intel VMX
hardware virtualization extensions to enable full-virtualization. The 160 GB,
7200 RPM SATA disk was partitioned with a 25 GB partition for the root
directory and a 80 GB partition for the home directory. The virtual machine
SUA runs Windows XP Service Pack 3 with the NTFS file system.

Xen uses a QEMU daemon to handle disk requests for a fully-virtualized (e.g.,
Windows) guest domain; this daemon resides in Domain 0. We implemented a
sensor-side API (the DiskMonitor), which is linked into the Xen QEMU emulator
code. The only modifications necessary to integrate Dione with Xen are to
initialize the DiskMonitor and to call a function when performing a disk access.
This function takes as parameters the starting sector address, the consecutive
sector count, the operation type, and the actual disk contents that are read or
will be written. The TrafficMonitor communicates this information to the Dione
process via shared memory.

4.2 Accuracy Evaluation

In order to gauge the accuracy of live updating, we ran a series of tests to
determine if Dione correctly reconstructed the file system operations for live
updating. For our tests, we chose installation and uninstallation programs, as
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Table 3. Breakdown of file system operations for each benchmark. The subset of file
creations which wait for the delayed expansion of the MFT are also indicated. Note:
The “All” test is not a sum of the individual tests, because the OS also creates, deletes,
and moves files, and the number of these may differ slightly between tests.

Program Creations (Delayed) Deletions Moves Errors

OpenOffice Install 3934 3930 1 0 0

Gimp Install 1380 1380 0 0 0

Firefox Install 152 135 71 0 0

OpenOffice Uninstall 353 62 3788 3836 0

Gimp Uninstall 5 0 1388 0 0

Firefox Uninstall 6 0 80 0 0

All 6500 6114 5986 3815 0

they perform many file system operations very quickly and stress the live up-
dating system. We chose three open source applications (OpenOffice, Gimp, and
Firefox), and performed both an installation and a uninstallation for each. We
also ran an all-inclusive test that installed all three, then uninstalled all three.

These benchmarks perform a varying number of changes to the file system
hierarchy. Table 3 lists each of the seven benchmarks and the number of file
creations, deletions, and moves. As discussed in Section 3.3, if many new files
are created at once and the MFT does not have enough free space to describe
them, there is a delay between when the file creation is intercepted and when
the file creation can be verified. We include the number of delayed-verification
file creations in Table 3, as these stress Dione’s live updating accuracy.

For each test, we started from a clean Windows XP SP3 disk image. We
executed one of the seven programs in a VM, instrumenting the file system.
We shutdown the VM, and dumped Dione’s view of the dynamically-generated
state of the file system to a file. We then ran a disk scan on the raw static disk
image, and compared the results of the static raw disk scan to the results of
the dynamic execution instrumentation. An error is defined as any difference
between the dynamically-generated state and the static disk scan. This includes
a missing file (missed creation), an extraneous file (missed deletion), a misnamed
file, a file with the wrong parent ID or path, a file mislabeled as a file or directory,
a file mislabeled as hidden, a file with any incorrect timestamp, or a file with an
incorrect runlist. Table 3 shows the results of the accuracy tests. In each case,
Dione maintained a 100% accurate view of the file system, with no differences
between the dynamically-generated view and the static disk scan.

4.3 Performance Evaluation

In order to gauge the performance degradation associated with Dione’s disk
I/O instrumentation, we ran two classes of benchmarks: one dominated by file
content reads and writes, and one dominated by file metadata reads and writes.
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Iozone Benchmark. Iozone generates and measures a variety of file opera-
tions. It varies both the file size and the record size (e.g., the amount of data
read/written in a given transaction). Because it creates very large files, reading
and writing to the same file for each test, this is a content-heavy benchmark
with very little metadata being processed.

We ran all Iozone tests on a Windows XP virtual machine with a 16 GB
virtual disk and 512 MB of virtual RAM. We used the Write and Read tests
(which stream accesses through the file), and Random Write and Random Read
(which perform random accesses). We varied the file size from 32 MB to 4 GB,
and chose two record sizes: 64 KB and 16 MB. We ran each test 50 times to
average out some of the variability that is inherent with running a user-space
program in a virtual machine.

For each test, we ran three different instrumentation configurations. For the
Baseline configuration, we ran all the tests without instrumentation (that is,
with Dione turned off). In the second configuration, called Inst, Dione is on,
and performing full instrumentation of the system. There are, however, no rules
in the system, so it does not log any of these accesses. This configuration mea-
sures the minimum cost of instrumentation, including live updating. The final
configuration is called Inst+Log. For these tests, Dione is on and providing in-
strumentation; additionally, a rule is set to record every access to every file on
the disk. Figure 3 shows the results of the tests. Each of the lines represents the
performance with instrumentation, relative to the baseline configuration.

For the Read Iozone tests (Figures 3(a) and 3(b)), the slowdown attributed to
instrumentation is near 0 for files 512 MB and smaller. Since the virtual machine
has 512 MB of RAM, Windows prefetches and keeps data in the page cache for
nearly the entire test. Practically, this means that the accesses rarely go to the
virtual disk. Since Dione only instruments actual I/O to the virtual disk—and
not file I/O within the guest OS’s page cache—Dione is infrequently invoked.

At larger file sizes, Windows needs to fetch data from the virtual disk, which
Xen intercepts and communicates to Dione. At this point, the performance of
instrumentation drops relative to the baseline case. In the worst case for stream-
ing reads, Dione’s no-log instrumentation achieves 97% of the performance of
the uninstrumented execution.

For the random read tests with large file sizes, there is a larger penalty
paid during instrumentation. Recall that Dione incurs a penalty relative to
the amount of data accessed on the virtual disk. Therefore, the penalty is higher
when more accesses are performed than are necessary. Windows XP utilizes
intelligent read-ahead, in which the cache manager prefetches data from a file
according to some perceived pattern [25]. For random reads, the prefetched data
may be evicted from the cache before it is used, resulting in more accesses than
necessary. This also explains why the penalty is not as high for the tests using
the larger record size (for a given file size). Windows adjusts the amount of data
to be prefetched based on the size of the access, so the ratio of prefetched data to
file size increases with increasing record sizes. With more prefetched data, there
is a higher likelihood that the data will be used before it is evicted from the cache.
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Fig. 3. Performance of instrumentation, normalized to the baseline (no instrumenta-
tion) configuration for Iozone benchmarks for streaming and random read and write
tests

Fortunately, this overhead is unlikely to be incurred in practice, as random-access
of a 2 GB file is rarely performed.

Another observation is that the performance of Dione actually improves for
streaming and random reads as file sizes grow larger than 1 and 2 GB, respec-
tively. This is explained by considering the multiple levels of memory hierarchy
in a virtualized system. As the file size grows larger than the VM’s RAM, I/O
must go to the virtual disk. However, the file may still be small enough to fit in
the RAM of the host, as the host will naturally map files (in this case, the VM’s
disk image) to its own page cache. Thus, disk reads are not performed from
the physical disk until the working size of the file becomes larger than available
physical RAM. Since physical disk accesses are very slow, any cost associated
with Dione’s instrumentation is negligible compared to the cost of going to disk.

The Iozone Write tests (Figures 3(c) and 3(d)) show some performance degra-
dation at small files sizes. Windows must periodically flush writes to the virtual



Dione: A Flexible Disk Monitoring and Analysis Framework 141

disk, even if the working set fits in the page cache. However, the performance im-
pact is minimal regardless of file size, with a worst-case performance degradation
of 10% (though generally closer to 3%). Additionally, the random write tests do
not have the same penalty associated with random reads. Since Windows only
writes dirty blocks to disk, there are fewer unnecessary accesses to disk.

It is also noticeable that speedup values are sometimes greater than 1 for
the 32 MB file size write tests. This would imply that a benchmark will run
faster with instrumentation than without. In reality, this effect is explained by an
optimization Windows uses when writing to disk. Instead of immediately flushing
writes to disk, writes are buffered and flushed as a burst to disk. With this Lazy-
Writing, one eighth of the dirty pages are flushed to disk every second, meaning
that a flush could be delayed up to eight seconds [25]. From the perspective of the
user—and therefore, the timer—the benchmark is reported to have completed. In
reality, the writes are stored in the page cache and have yet to be flushed to disk.
Most long-running benchmarks will have flushed the majority of their writes to
disk before the process returns. However, a short-running benchmark—such as
the Iozone benchmarks operating on a 32 MB file—may still have outstanding
writes to flush. The time it will take to flush these will vary randomly through
the tests. We reported a 21-24% standard deviation (normalized to the mean)
for the baseline, instrumentation, and logging tests. This effect is examined in
more detail in the next section.

For all tests, the cost of logging all accesses is relatively low, falling anywhere
from 0-8%. For these tests, the root directory (under which the logs were stored)
was on a separate partition than the disk image under instrumentation. There-
fore, logging introduced an overhead, as the disk alternated between writing to
the log file and accessing the VM’s disk image. This performance penalty can be
reduced by storing the log on the same partition as the disk image. Future work
can also reduce the overhead by buffering log messages in memory—performing
a burst write to the log—to reduce the physical movements of the disk.

Installation Benchmarks. In the second set of performance experiments, we
evaluated the overhead of benchmarks that are high in metadata accesses. These
tests will heavily stress the live updating part of Dione’s execution, which com-
prises the bulk of the computation performed in Dione. We ran the same six
install/uninstall benchmarks as the accuracy tests listed in Table 3. We ran each
test ten times to average out variations inherent in running a user-space appli-
cation on a virtual machine. For each run, we started from the same clean disk
image snapshot. We used a Windows XP SP3 virtual machine with an 8 GB
virtual disk and 512 MB of virtual RAM.

We compared the baseline execution (with no instrumentation) to full instru-
mentation with Dione, with and without logging. Figure 4 shows the execution
time for the three configurations, as well as the performance of Dione’s instru-
mentation relative to the baseline execution. As Figure 4 shows, even when the
workload requires frequent metadata analysis for live updating, the overhead of
instrumentation is low. Without logging, the full instrumentation of the bench-
marks causes a 1-5% performance degradation.
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Fig. 4. Evaluation of Dione instrumentation for Open Office, Gimp, and Firefox In-
stall/Uninstall benchmarks

The three benchmarks with the least penalty are OpenOffice installation
and uninstallation and Gimp installation. These experience between 1-2% per-
formance degradation for instrumentation without logging. Figure 4(b), which
graphs the average execution time of the six benchmarks, provides more insight.
These three benchmarks are the longest running of the six benchmarks, which is
important because of how Windows performs writes to disk. As described in the
previous section, writes could be delayed as long as eight seconds before they
are flushed from the VM’s page cache. While the program is reported to have
completed, there are still outstanding writes that need to be flushed to disk.
This effect is especially pronounced in any program with a runtime on the same
order of magnitude as the write delay.

We can see this effect in Figure 4(a), which includes error bars showing the
normalized standard deviation for the 10 runs of each benchmark. The 3 longest-
running benchmarks also have the lowest standard deviations. This means that
the results of these three tests are the most precise, and the average reflects
the true cost of instrumentation. While two of the three shortest-running bench-
marks have the highest reported cost of instrumentation, the standard deviation
between tests is greater than the reported performance penalty. The execution
time of the Firefox Uninstall is dwarfed by the time Windows may delay its
writes—as reflected in its high standard deviation. In practice, this means that
a user is unlikely to ever notice a slowdown attributed to disk instrumentation
for short bursts of disk activity.

The Inst+Log tests show a 0-9% performance degradation compared to the
baseline. In these tests, the disk image resided on the same partition as the log
file. Therefore, the cost of logging to a file was lower than for the content tests.
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4.4 Malware Case Studies

Next, we demonstrate the utility of Dione for forensic analysis by instrument-
ing two real-world malware samples and using the resulting logs to perform
forensic analysis on the intrusion. In each case, we ran unlabeled malware on a
clean, non-networked Windows XP virtual machine and instrumented the mal-
ware installation and the system upon reboot. We instrumented the entire file
system by setting policies to record all accesses, timestamp reversals, and hide-
file operations. We analyzed the logs and identified the samples by searching
malware description databases based on the resulting file system operations and
file names.

We found that Dione is quite useful for identifying and analyzing malware
based on the intentional effects on the file system, such as the creation of files
and directories. We also found that it is useful for understanding malware based
on the unintentional effects on the file system, such as the loading of system
libraries and the creation of system trace files. While the forensic analysis process
was performed manually, future work looks to automate this process, using the
disk access traces to perform automatic clustering or classification of unknown
malware samples.

Backdoor.Bot The first real-world malware sample we discuss is the Back-
door.Bot malware [2], a Trojan first discovered in 2008. This malware opens a
backdoor to the infected machine. It creates a directory and a process named
spoolsv; since spoolsv is also the name of a legitimate Windows process, this ma-
licious process is able to hide in plain sight from the average user. The malware
is distributed with an image named xmas.jpg.

When the malware is first executed, Dione observes the creation of several
files and directories. First, it creates the top-level directory, WINDOWS\Temp
\spoolsv. This directory is created with the hidden flag already set, so that it
cannot be viewed by the user. In the spoolsv directory, 12 more files are created
with their hidden property already set, including the executable spoolsv.exe. Six
other files are also created without their hidden property set, but that reside in
the hidden spoolsv directory anyway. One of these files is the image file xmas.jpg;
it is displayed to the user after the malware installs to deceive the user into
believing that he simply opened an image file.

In addition to detecting infection through the intentional creation of the
spoolsv directory and its contents, Dione can also deduce that some meaningful
applications are run by the malware though unintentional file system artifacts.
In order to speed up the time to load an application, Windows creates a trace
file to enable fast future loading of the application. These trace files are stored
in the WINDOWS\Prefetch directory. Therefore, the creation or access of one
of these prefetch files indicates that the corresponding application has been run.
Dione intercepts and records the creation of two prefetch files corresponding to
cmd.exe and regedit.exe. This indicates that the malware has used cmd to launch
regedit to modify the Windows Registry.
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FakeAlert Defender. The FakeAlert System Defender trojan, identified by
McAfee labs in 2011 [10], is “scareware” that modifies the file system in order
to scare the user into purchasing an application to clean his system.

A few seconds after the malware has been executed, the user will see several
error messages pop up alerting the user about different types of disk failures.
As the user looks through his folders, all files will appear to have been deleted,
though all directories remain. When the user reboots, the desktop is black, and it
appears as if all files, directories, and even executables are lost. Instrumentation
with Dione provides insight into how all of these actions are accomplished.

As the malware is executed, Dione observes that it first renames the origi-
nal malicious file with a randomly-generated name with the extension .exe.tmp.
It moves this file to the Documents and Settings\%user name%\Local Settings
directory, which is hidden by default. Next, it creates a randomly-named ex-
ecutable in the Documents and Settings\All Users\Application Data directory,
which is also hidden by default. As it does with any newly-loaded application,
Windows creates a prefetch file for the executable in WINDOWS\Prefetch.

Next, Dione observes that the malware performs the following steps with
the goal of creating a copy of the file system hierarchy in a temporary folder.
First, it creates a randomly-named directory in Documents and Settings\%user
name%\Local Settings\Temp, and some numerically-named subfolders (e.g., 1,
4). Within these subfolders, the malware creates new directories, maintaining the
hierarchy of the original filesystem. It then iterates through the user’s existing
file system hierarchy, and moves all files (not directories) into the corresponding
directory under the Temp folder. The result is a hidden replication of the original
hierarchy. While the original directory hierarchy also remains, all folders are
empty, so it appears to the user that all his files have disappeared.

Once the user reboots, Dione observes the malware reversing the timestamp
on the original malware executable. Finally, the malware iterates through every
file and directory in the file system and changes its property to hidden, complet-
ing the deception that every file and directory on the disk has been deleted.

5 Conclusions

In this paper, we introduced Dione: a flexible, disk I/O instrumentation in-
frastructure for analyzing the ubiquitous Windows NTFS file system. Disk I/O
is intercepted by a sensor, which passes disk access information to Dione for
analysis. By residing outside the host, Dione is protected from the malware it is
instrumenting. However, Dione has to bridge both the semantic and temporal
gaps—not just reconstructing high-level semantics from low-level metadata, but
also reconstructing high-level file operations from low-level events. We discussed
the challenges of reconstructing disk operations, a process we call Live Updating,
which ensures that Dione always has an up-to-date view of the file system.

We demonstrated that Dione achieves 100% accuracy in tracking disk op-
erations and reconstructing high-level operations. We showed that despite this
powerful instrumentation capability, Dione does not suffer from large perfor-
mance degradation. We evaluated Dione’s performance with workloads that
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generate a large volume of content accesses, as well as workloads that generate
a high rate of metadata accesses and stress the live updating system. Dione
preserves over 90% of the performance of native execution for most tests. We
demonstrated the utility of Dione for forensic analysis by instrumenting two
real-world malware intrusions. We showed that Dione can detect suspicious file
operations that are hidden from the user, including file creations, timestamp
reversals, file hiding, and the launching of applications to alter OS state.
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Abstract. Packet traceback in mobile ad hoc networks (MANETs) is a technique
for identifying the source and intermediaries of a packet forwarding path. While
many IP traceback techniques have been introduced for packet attribution in the
Internet, they are not directly applicable in MANETs due to unique challenges of
MANET environments.

In this work, we make the first effort to quantitatively analyze the impacts
of node mobility, attack packet rate, and path length on the traceability of two
types of well-known IP traceback schemes: probabilistic packet marking (PPM)
and hash-based logging. We then present the design of an authenticated K-sized
Probabilistic Packet Marking (AK-PPM) scheme, which not only improves the
effectiveness of source traceback in the MANET environment, but also provides
authentication for forwarding paths. We prove that AK-PPM can achieve asymp-
totically one-hop precise, and present the performance measurement of AK-PPM
in MANETs with both analytical models and simulations.

Keywords: Traceback, MANET, Probabilistic Packet Marking, Packet Source
Identification, Path Reconstruction.

1 Introduction

Packet attribution includes identifying the source node of packets as well as the for-
warding path from the source to the destination during the communication [1, 2]. Both
source and path information can help the defender to identify the attack source and
locate its geographic location in many mobile ad hoc networks (MANETs) applica-
tions, such as defending Denial-of-Service (DoS) attacks [3] and false data injection
attacks [4]. In business applications, packet attribution can be used in a positive way to
provide the trustworthiness (or credibility) of data received by a destination node (e.g.,
data sink node). Data credibility is not just about who reports the data, but also the path
the data comes from [5].

Many IP traceback protocols have been proposed for the Internet [6–8]. Among
these, two types of IP traceback schemes dominate the literature: probabilistic packet
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marking (PPM) [8, 9] and hash-based logging [7, 10]. However, these IP traceback
techniques are not directly applicable in MANETs due to several unique challenges
in MANETs. First, packet forwarding paths in MANETs are easy to change due to
node mobility [11], which causes the difficulty in reconstructing the attack path from a
victim back to the attack source. Second, unlike the fixed routers in the Internet which
are often assumed trusted, forwarding nodes in MANETs cannot be assumed as trusted,
and compromised nodes may collude to confuse the traceback techniques. Moreover,
because both the scale of a MANET and its data traffic rate are much smaller than that
of the high-speed Internet, traceback in MANETs must be more efficient. So far, very
little research has been done on traceback in MANETs [12–14].

In this paper, we make the first effort to quantitatively analyze the impact of node
mobility on the performance of two representative traceback schemes (i.e. PPM and
logging schemes). We formulate the impact of network parameters (e.g., the length
of an attack path, the victim response time, and the mobility) on the traceability of
these schemes in MANETs. Our analytical results show that (i) the traceability of both
schemes decreases as node mobility increases; (ii) a PPM scheme is vulnerable to low-
rate attacks, while a logging scheme performs poorly when a victim has a relatively
high intrusion response time.

Further, we propose a new authenticated K-sized Probabilistic Packet Marking (AK-
PPM) Scheme, which considers the efficiency and security requirements of traceback in
the MANET environment. Our AK-PPM scheme stores multiple (up to K) marks within
a single packet; thus, with the same number of packets received by a victim, more infor-
mation about the forwarding path can be collected. Also, the AK-PPM scheme includes
chained authentication mechanisms to protect the integrity of the mark sequence within
a packet from being manipulated by colluding nodes in a forwarding path. We prove that
is always asymptotically one-hop precise; that is, given enough attack packets, it can al-
ways trace to either an attack node, or the one-hop neighborhood of an attack node.
We use analytical models and simulations to measure the performance of AK-PPM in
MANETs of different settings.

2 Preliminaries

2.1 Network Model and Security Assumptions

In a MANET, nodes form a network on-the-fly and forward packets for one another.
Nodes can establish trust through either a PKI, a Trusted Third Party (TTP), or pre-
distributed shared keys. Further, any two nodes in the network, as long as knowing
each other’s id, can efficiently establish a pairwise key based on one of the existing
schemes [15–17]. The key used in the message authentication code (MAC) generation
at an intermediate node is its pairwise key share with the victim node. Therefore, mali-
cious nodes cannot impersonate any benign node to the victim node. The link between
two neighboring nodes is authenticated. During data forwarding, every packet is authen-
ticated in a hop-by-hop fashion [18] with the pairwise key shared between neighboring
nodes; thus, a malicious node cannot impersonate any good node and invalid packets
are dropped right away. Such settings exist in many military MANET applications.
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S V
u1 u2 b3 u4 u5

Source Colluding Node Destination

Fig. 1. An attack path AM of packet M where node S and node b3 are the compromised nodes.
S injects bogus packets, and b3 conspires to neutralize the traceback attempt.

Without loss of generality, consider a forwarding path AM of packet M in Figure 1.
For a node ui located on a forwarding path between the source S and the destination
V , a node uj is called its upstream node if uj is closer to S than ui is. Similarly, uj is a
downstream node of ui if uj is closer to V . The distance of ui from V on a path is the
number of hops(i.e. nodes) between ui and V on the path. For example, the distance of
b3 to V is 2 in the Figure 1.

In the case of identifying the attack source node in a DoS attack, it is reasonable
to assume the victim (i.e., destination) node has installed an appropriate intrusion de-
tection system (IDS) (e.g., Snort [19]) which can detect the malicious intrusion in the
first place. This is a realistic assumption for intrusion detection based on attack packets
received by destination node. A path may become broken for various reasons. In this
study, we focus on the factor of node mobility. The Link Duration between two neigh-
bor nodes on the path is defined the length of time interval during which two nodes are
within each other’s transmission range.

2.2 Attack Model

We assume the adversary may compromise one or multiple nodes and take full control
of the compromised node(s). For example, in Figure 1, the source node S and the in-
termediate node b3 are compromised and are both at the disposal of the adversary. b3
may alter the packet’s marks (if existing in the packet) or drop traceback queries. We
present more details about specific attacks when introducing the proposed schemes in
later Section 6.1.

Since a compromised node possesses a valid security credential, the injected packets
will not be detected by its downstream nodes. However, because the links are authen-
ticated, an attack source cannot impersonate any normal (benign) node. To hide itself,
it will not put its address into the packet source field, and act as if it was a data for-
warder for the packets while spoofing valid source ids. The attack source may change
its location over time to hide itself.

2.3 Traceback Objectives

Ideally, a traceback procedure can identify the source node S and reconstruct the attack
path AM . However, this goal is difficult to achieve due to two reasons.

Firstly, the source node S may never reveal its true identity so as to hide itself from
traceback (a.k.a., the first-hop problem [13]). Thus, the best a traceback scheme can
achieve is to identify the immediate downstream neighbor (e.g., u1) of the attack source
and reconstruct the path from the victim up to it. Once u1 is identified, it relies on other
online or offline analysis/detection measures (e.g., neighbor watching [20] or human
intelligence) to identify the source node.
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Secondly, compromised nodes on the attack path (e.g., b3) may collude in order to
confuse the traceback process. In an extreme case, b3 may manipulate all attack packets
going through it or even sacrifice itself to protect S. In this study, we assume that, from
the attacker’s perspective, the exposure of any one of its controlled nodes may have the
same impact on the potential of future attacks. We call it a success when the immediate
downstream neighbor of an attack source (e.g., S) or colluding node (e.g., b3) on the
attack path is identified.

3 Traceability Analysis of Existing Schemes for MANETs

Intuitively, an IP traceback scheme is not well suited for MANETs. However, no con-
crete analysis to quantify such intuition has been reported in the literature. A quanti-
fied analysis will clearly show how the current IP traceback protocols are susceptible
in MANETs and it will serve as a metric for evaluating any new proposed traceback
scheme for MANETs. As such, we will first make a traceability analysis of existing IP
traceback schemes before presenting new schemes.

The common IP traceback schemes in the literature can be roughly categorized into
marking-based schemes and logging-based schemes. Therefore, our discussion below
will be focused on these two approaches. We define traceability T as the success rate of
traceback in MANETs. T measures the probability that a traceback can be successfully
performed before the attack forwarding path changes. We call it a success when the
immediate downstream neighbor of an attack node (e.g., S or b3) is identified.

3.1 Marking-Based Schemes

In a marking-based scheme, e.g., probabilistic packet marking (PPM) [9, 21], inter-
mediate nodes (probabilistically) mark the packets being forwarded with partial path
information, which later on allows a receiver to reconstruct the forwarding path given a
modest number of the marked packets.

Scheme Description. Take the edge sampling based PPM algorithm [9] as an example.
An IP traceback mark consists of a distance field and a start-end pair. Every intermedi-
ate node decides to either inscribe a packet (with a preset probability p), or not to mark
(with probability 1 − p). As nodes are allowed to overwrite the existing mark in the
received packet, nodes closer to V will have more chance to leave their marks in pack-
ets. Relying on the relation between the distance to V and the distribution of received
marks, a traceback can reconstruct the attack path with order from u1 to V . Here we
assume that each packet carries only one mark at a time,and the nodes between u1 and
V are trustworthy.

Traceability Analysis for MANETs. For an attack pathAM of length d, the victim can
trace to the attack source only if it receives at least one packet marks from the immediate
neighbor u1 of the attack source before the path breaks up. Hence, the traceability of
PPM for MANETs ,Tppm, is determined by two factors: packet rate γ and path duration
PD, given a marking probability p. Let Xu1 denotes the number of packets that the
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victim has to receive before receiving the marking from u1. The expected number of
packets E(Xu1) is:

E(Xu1) = 1/(p(1− p)d−1) (1)

If the attacker sends the packets at a constant packet rate γ, then the expected time
Tmarku1

by which the victim receives the marking from u1 would be

Tmarku1
= E(Xu1)/γ. (2)

Sadagopan et al. [22] proposed a theoretical model to approximate the path duration
based on the analysis of statistical extensive simulation results. According to [22], path
duration can be approximated by an exponential distribution when the network nodes
move in moderate to high velocities. The exponential random variable has the following
cumulative distribution function (CDF)

FPD(t, d) =

{
1− e

−λ0dv
R

t, t ≥ 0

0, t < 0
(3)

where R denotes the radio transmission range, d denotes path length, v denotes the
maximum velocity of a mobile node, and λ0 is the proportionality constant.

Given the set of packets received by V , the victim V can launch a path reconstruction
procedure [21] to reconstruct the order of marks(i.e., hops) on the path. Suppose that
the reconstruction procedure is always performed correctly. The farthest hop u1 will
always be identified if V have received at least one mark from u1. Thus, we define the
traceability to identify u1 as the probability that the path duration PD is greater than
Tmarku1

. The u1-traceability for PPM is

Tppmu1
= 1− FPD(Tmarku1

, d) (4)

According to Equation 2 and 3, we may derive the traceability Tppm,u1 as

Tppm,u1(d, γ) = exp{ −λ0v

R · p(1− p)d−1
· d
γ
} (5)

The problem of marking every intermediate node in the path can be formalized as a
Coupon Collector’s Problem with sample size as one [21, 23]. Briefly, the number of
trials required to select one of each of d coupons (i.e. hops in our case) can be estimated
as d(H(d) +O(1)), where H(d) = 1/1 + 1/2 + ...+ 1/d.

Note that, in works such as [21], H(d) was replaced by ln(d). However, we know
that H(d) → ln(d) if and only if d → ∞. As the number of hops d in MANETs is
small, the replacement may cause errors. For example, when d is less than e ≈ 2.7148,
the value of ln(d)

p(1−p)d−1 will be less than 1
p(1−p)d−1 . Thus, we use H(d) in our study

instead of ln(d). Because the mark of one node may be overwritten by downstream
nodes in a PPM scheme, the upper bound of the number of packets required to collect
marks of all hops can be estimated as

E(Xpath(d)) < H(d)/(p(1− p)d−1) (6)
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We derive the lower bound of path traceability Tppm,path(d), i.e., the probability of
reconstructing an entire path of length d within the path duration PD.

Tppm,path(d)(d, γ) > exp{ −λ0v

R · p(1− p)d−1
· d ·H(d)

γ
} (7)
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Fig. 2. Traceability Tppm,u1

Traceability Evaluation. To demonstrates the limitation of PPM in MANETs, we
show the impacts of packet rate and mobility on the traceability Tppm,u1 and Tppm,path

in Figure 2. The parameters applied in experiments are: λ0 = 0.59, R = 250m, v = 10
m/s (in Figure 2(a)), p = 1

20 , γ = 10 pkt/sec (in Figure 2(b)).
From Figure 2(a) and (b), one can conclude that the traceability of a PPM scheme

decreases when d increases. Also, the efficiency of traceability drops when the packet
rate decreases or the mobility of network increases. For example, an attacker may con-
trol the packet rate at 1 pkt/s and launch the attack at six or seven hops away from the
victim to avoid traceback with PPM schemes. Since d and γ affect Tppm reversely and
v, R, and p are environment variables, we consider the traceability as a function of d
and γ, i.e., Tppm,u1 = f(d, γ). Unfortunately, both the path length d and the packet
rate γ are controlled by the adversary. The victim can basically do nothing to improve
the traceability in the PPM scheme. Therefore, the application of PPM traceback in
MANETs, i.e. mind,γ Tppm,u1(d, γ), overwhelmingly favors the attacker.

3.2 Logging-Based Schemes

In a logging-based scheme, intermediate nodes record the message digest of a
forwarded packet; thus, every packet leaves a trail on the path from its source to its
destination. To reduce the storage overhead for keeping the message digests, a typical
space-efficient data structure called Bloom filter can be used. A practical architecture,
Source Path Isolation Engine (SPIE) (also known as the hash-based traceback) was
proposed in [7], in which the SPIE-deployed routers audit the traffic and digest the in-
variant portion of each packet for later queries. When the victim identifies an attack,
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it launches a traceback query to a traceback agent that is authorized to poll each of the
intermediate nodes. Each polled node identifies the false packet trail by looking it up in
its own Bloom filter and reports the result to the agent. The traceback agent rebuilds the
attack graph with the help of the information about the network topology.

Scheme Description. To conduct on-line traceback for MANETs,the victim quickly
responds to an attack by initiating a traceback process. The traceback query is expected
to rapidly propagate along the reverse attack path, hoping that it can reach the neighbor
of the attack source before the attack path breaks up. After processing the packet M ,
V finds that M is an attack packet(e.g., containing malicious code), so it sends out a
traceback request along the reverse path of AM .

Traceability Analysis for MANETs. Analogous to the PPM based scheme, the path
duration PD also controls traceability here. Thus, we consider the traceback behav-
ior from two points of view: path duration and traceback latency. In logging-based
schemes, a traceback is successful when the traceback latency is smaller than path du-
ration PD. The traceback latency consists of the end-to-end propagation delays plus the
victim IDS response time tresp. Unlike in the PPM based schemes, path reconstruction
and u1 identification here are performed altogether in one round of traceback query.
Therefore, we define the traceability Tlog with regard to a detected attack packet x as
Tlog = Pr{PD > tSV + tV S + tresp}. As a traceback process will only be initi-
ated after the victim node receives the attack packet x successfully, we can rewrite the
traceability formula as

Tlog = Pr{PD > tSV + tV S + tresp|PD > tSV }. (8)

As described previously, PD can be modeled as an exponential random variable that is
memoryless. Thus, Equation 8 can be reduced to

Tlog = Pr{PD > tV S + tresp} (9)

Assuming the end-to-end delay is uniformly distributed and is proportional to the path
length d (i.e., tSV ∝ d and tV S ∝ d), the traceability Tlog will then be a function of d
and tresp. Based on Equation 3, we have

Tlog(d, tresp) = 1− FPD(tV S + tresp) = exp{−λ0dv

R
(k · d+ tresp)} (10)

where k is the average delay in an intermediate node. Clearly, Tlog decreases as the
node mobility (i.e., v) increases. Similar to the way we treat v and Tppm, because v
and tresp affects Tlog in the same trend and v is an environment variable, we study the
impact of tresp on Tlog instead.

Traceability Evaluation. Compared with a marking-based scheme, the logging-based
online traceback scheme is more fair. The victim node controls the response time tresp
and the attacker only controls the length of the attack path d. According to Equation 10,
we notice that Tlog ↘ 0 as d ↗ ∞. Thus,Tlog unfairly favors the adversary when the
path length d is unbounded. But, the longer the attack path is, the more likely the attack
packet will be lost due to the changes in topology.
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3.3 Review of Factors

Basing on our analytic results on PPM and logging-based schemes, several factors
should be considered when designing traceback schemes for MANETs.

Attack Packet Rate. In MANETs, the attack packet rate required to launch DoS or
DDoS attacks may be much lower [24]. Firstly, the targeted mobile node is more re-
source restricted, requiring lower attack packet rate to exhaust its resources (e.g., band-
width consumption attack). Secondly, to protect the attack source from being exposed
or from exhausting resources, the attacker may reduce the attack packet rate. Therefore,
traceback schemes in MANETs have to adapt to the cases with low attack packet rates.
PPM schemes may find it difficult to receive markings from u1 and all other nodes on
the path. In contrast, logging-based schemes are more resistent to low-rate attacks.

Communication Overhead. Due to the limited bandwidth in MANETs, a traceback
scheme should introduce little traffic bandwidth overhead so as to prevent the down-
grade of network services. PPM schemes generate little communication overhead, es-
pecially when marks are stored in the packet header. Logging-based schemes, however,
generate much more communication overhead by sending traceback queries and receiv-
ing responses from the network.

Resource Costs. One assumption made in most existing traceback schemes is that all
involved nodes are willing to cooperate during the traceback, by marking or logging
the packets. In MANETs, the willingness of nodes may be affected by the cost for co-
operation in the traceback, such as the cost of bandwidth, computing power, storage,
and battery power. Thus, traceback schemes should avoid excessive workload on mo-
bile nodes in order to make the scheme feasible to deploy in MANETs. In this case,
PPM schemes usually demand comparatively lower resource consumption on nodes
than logging-based schemes do.

Speed of Traceback. Improving the speed of traceback will help reduce the damage of
DoS attacks to the network. Moreover, in MANETs, the speed of traceback is also im-
portant to identify the attack source and locate its geographic location. For example, the
location information can be used to physically isolate or remove the attack source after
traceback . The longer time it takes by the traceback the less chance the attacker can be
found. Unfortunately, both PPM schemes and logging-based schemes have drawbacks
in terms of speed. PPM schemes have to wait passively until enough marked attack
packets have been received. On the other hand, logging-based schemes actively send
traceback queries to the network but have to wait until receiving enough responses.
Moreover, when the response time of the IDS in the victim is large, the attack path
could become broken when a traceback is launched.

In general, PPM schemes seem to be more adaptable than logging-based schemes
because the resource consumption of nodes and network is a critical issue in MANETs.
However, improvements are needed on existing PPM schemes.

4 Improving Traceback Efficiency with Multiple Marks

Most existing marking based schemes store marks in the packet header [21]. Due to the
fixed size of IP header space, the amount of routing information that can be carried in
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an IP packet is limited. For example,the single bit based PPM schemes in [25] and [26]
require a huge number of packets for a successful path reconstruction. Differently, in
MANETs, the packet format is relatively flexible, making it feasible for MANET de-
signers to allocate more space in the packet header for multiple marks. Therefore, we
may store multiple marks within a single packet to improve the efficiency of traceback.
In untrusted MANETs, enabling multiple marks in a packet faces two challenges.

Challenge I: How to Determine the Number of Allowed Marks in the Packet? The
number of marks allowed per packet is a key factor to the traceback efficiency. The
more marks allowed, the more information a packet can carry about the forwarding
path. Thus, if the number of marks is too small (e.g., single mark in [9]), both source
identification and path reconstruction will require a huge amount of packets. To another
extreme, if the number of marks is unrestricted (e.g., nested marking approach in [27]),
the amount of payload information in a packet will be affected.

Challenge II: How to Protect the Integrity of Marks and Their Ordered Sequence
in a Packet under the Colluding Attacks? A malicious intermediate node on the for-
warding path may attempt to alter the marks carried by packets, in order to hide the
source node and itself. Security mechanisms are needed in the mark design to protect
the integrity of mark sequence and allow the victim node to detect the manipulation if
existing.

We will address these two challenges in the following sections one by one.

5 K-Sized Probabilistic Packet Marking Scheme

In this section, we present a base scheme of K-sized Probabilistic Packet Marking (K-
PPM) scheme, which improves the efficiency of packet traceback by allowing multiple
marks in a packet. The proposed K-PPM scheme can be applied in trusted MANETs
where the intermediate nodes are trusted. In the next section, we present an extended
scheme that provides protection in untrusted MANETs.

5.1 Scheme Design

K-PPM scheme consists of two phases. In the first phase, every node in the MANET
inscribes packets it is forwarding with a predefined probability p. Whenever source
attribution is needed (e.g., DoS attack detected), a path reconstruction algorithm will be
executed at the destination node based on the marks carried in received packets.

Marking Scheme. In the proposed K-PPM scheme, every packet contains a K-sized
queue (i.e.,Q), which is managed by the First-In First-Out (FIFO) replacement algo-
rithm. Each mark in Q consists of two node IDs. One is the ID of the current node
which is forwarding this packet (i.e.,rcv), and the other is the ID of the node from
whom the current node receives this packet (i.e., sdr).

Initially, when a packet leaves the source S, the queue Q is empty. When the packet
arrives at an intermediate node ui on the path, the node places a mark in the packet
with a preset probability p. If the node decides to mark, it will generate a new mark
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containing its node ID i as rcv, and append this mark to the end of Q. If the queue is
full already when arriving, the first (i.e., oldest or leftmost) mark in the queue will be
discarded so that a new mark can be appended if ui decides to mark. On the other hand,
if ui decides not to mark the packet, it will pass the packet to its downstream neighbor
with no modification.

Path Reconstruction. With the collected marks, we first build a directed graph G =
(V,E): V consists of the set of nodes whose IDs appeared in received marks (either as
a sdr or a rcv) at the destination node; and E consists of edges created by two rules:

Rule One: Assign a directed edge j → i if there exists a received mark within which
the sdr is node j and the rcv is node i;

Rule Two: Assign a directed edge j → i if node i is the sdr of a received mark and
node j is the rcv of its left adjacent mark in Q. Because nodes appearing in the left
adjacent mark must be upstream nodes in the forwarding path.

In G, let I denote the set of nodes whose in-degree is 0, and let O denote the set of
sink nodes whose out-degree is 0. Suppose that all packets traveled through the same
forwarding path. With a sufficient amount of received packets, the sizes of I and O will
be narrowed down to 1. The only node left in I will be output as the identified source
node and the longest path from the node in I to the node in O will be output as the
identified forwarding path.

With insufficient number of received packets, the accuracy of source identification
and path reconstruction may be affected. First, the longest path may not traverse all
nodes in G. In this case, we utilize the distribution of received marks to infer the order
of nodes. Because the marking process is probabilistic with permission of dequeue,
nodes closer to the destination node will have more chance to keep their marks in the
packets. Due to the space limit, please refer to [9] for the detailed procedure. Second,
the size of I may not be one. In this case, I represents a hotspot where any one of them
has equal chance to be the real source node. Thus, extra investigation, e.g., neighbor
monitoring [20] and physical security [28], can be conducted on nodes in I .

5.2 Improvement for u1 Identification

We analyze the traceability of the proposed K-PPM scheme in the same setting as in
Figure 1. Let Ek(Xu1) denote the expected number of packets that the victim has to
receive before receiving the mark from u1. In the K-PPM scheme, the mark from u1

will remain in the packet as long as the packet is later marked by no more than K − 1
downstream nodes. If more than K − 1 nodes mark the packet after u1, the mark from
u1 will be discarded from the queue according to the FIFO policy. Thus, the expected
number of packets, Ek(Xu1), can be computed as:

Ek(Xu1) =
1

p
∑k−1

i=0 (
(

i
d−1

)
pi(1− p)d−1−i)

. (11)

In Equ. 11, the value of 0 ≤ i ≤ k−1 represents the number of marks within the packet,
other than that from u1. We claim that the K-PPM always requires less expected packets
to receive a mark from u1 (i.e., Ek(Xu1) ≤ E(Xu1)). The proof is as follows: When
k = 1, we see that Ek(Xu1) =

1

p
∑k−1

i=0 (( i
d−1)pi(1−p)d−1−i)

= 1
p(1−p)d−1−i = E(Xu1).
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Thus, we show that, when k = 1, Ek(Xu1) and E(Xu1) are equivalent. When k > 1,∑k−1
i=0 (

(
i

d−1

)
pi(1− p)d−1−i) is always greater than

∑0
i=0(

(
i

d−1

)
pi(1− p)d−1−i), thus

greater than p(1− p)d−1−i. �
Accordingly, we derive the traceability Tk−ppm,u1 with respect to node u1 as

Tk−ppm,u1(d, γ) = exp{ −λ0v

R · p∑k−1
i=0 (

(
i

d−1

)
pi(1− p)d−1−i)

· d
γ
} (12)

In Figure 3(a) and 3(b), we compare the K-PPM scheme with PPM scheme in terms
of u1 traceability. The default setting in these two figures are λ0 = 0.59, R = 250m
,K = 4, p = 0.5,v = 10 m/s(in Figure 3(a)), γ = 10 pkt/sec(in Figure 3(b)). Clearly,
the K-PPM scheme can greatly improve the traceability in all mobility and attack packet
rate settings.
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Fig. 3. Traceability Tk−ppm,u1

5.3 Improvement for Path Reconstruction

We formulate the path reconstruction problem in K-PPM scheme as a Coupon Col-
lector’s Problem with random sample size [29, 30]. In our case, the sample size is a
random integer value between 0 and the size of queue, i.e., K . Following the approx-
imation equation given in [30], we present the approximation of expected number of
packets required to reconstruct a path with d intermediate nodes as:

Ek(XPathd
) ≈

∑d−1
i=0

1
d−i∑d−1

i=0
1

d−i
Pr{L > i} +

∑d−1
r=1

1
d−r

Pr{L > r}∑r
j=1 1/(d − j + 1)

[
∑d−1

i=0 1/(d − i)Pr{L > i}]2 (13)

In the above Equation 13, L represents the number of marks carried by a packet and
Pr{L > i} represents the probability that L is greater than a value i. In our case, L
is restricted by K and d, the length of path. This approximation is accurate when K is
small with respect to d according to [29]. Thus, the value of Pr{L > i} for 0 ≤ i ≤ d
can be computed by:
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– when d ≤ K,
• if i > d, Pr{L > i} = 0;
• if i ≤ d, Pr{L > i} = 1−∑i

j=0 Pr{L = j};

• Pr{L = i} =
(
i
d

)
pi(1− p)d−i for 0 ≤ i ≤ d;

– when d > K
• if i > K, Pr{L > i} = 0;
• if i ≤ K, Pr{L > i} = 1−∑i

j=0 Pr{L = j};

• Pr{L = i} =
(
i
d

)
pi(1− p)d−i for 0 ≤ i < K; Pr{L = K} = 1−∑K−1

j=0 Pr{L =
j};

In Figure 4(a) and 4(b), we present an example of comparison with p = 0.5, k = 4,
λ0 = 0.59, R = 250m , v = 10 m/s(in Figure 4(a)), γ = 10 pkt/sec(in Figure 4(b)).
Through the comparison, we show that, the proposed K-PPM is more resistent to the
increase of mobility and the decrease of packet rate, thus it is more suitable to be applied
in MANETs than PPM scheme.

Moreover, by examining the Equations ( 12) and ( 13), the traceability of a K-PPM
scheme decreases when d increases. Also, the efficiency of traceability drops when the
packet rate decreases or the mobility of network increases. Luckily, the destination node
can increase K to improve the traceability in the K-PPM scheme. Therefore, the K-PPM
scheme is a more fair scheme compared with a PPM scheme, in which both the u1 iden-
tification and path reconstruction can be described as: mind,γ maxK Tk−ppm(d, γ,K).
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Fig. 4. Traceability Tk−ppm,path

5.4 Parameter Selections

Of all parameters, K and p are defined by the network administrator. K is decided
according to the tradeoff between traceback efficiency and overhead. The impact of p on
traceability varies, depending on the path length. If p is too small, not enough marks can
be collected at the victim. If it is too big, marks from nodes closer to the attack source
are likely to be dequeued. In both cases, the traceability will be low. To maximize the
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usage of allocated space while avoiding too few markings, it is recommended that p be
set according to equation K = p ∗ dest, where dest denotes the estimated path length in
a specific MANET. Detailed evaluations are presented in Section 7.

6 AK-PPM Scheme

In this section, we present an extended scheme, named AK-PPM (authenticated K-sized
Probabilistic Packet Marking), to perform the traceback with the same efficiency as the
proposed base scheme in untrusted MANET environments.

We first introduce the possible attacks toward the K-PPM scheme, then present the
detailed design of AK-PPM scheme, and finally analyze its security.

6.1 Possible Attacks

The integrity of mark sequence in packets is crucial to the correctness of source attribu-
tion. Therefore, in AK-PPM, we focus on colluding attacks that could be launched by a
malicious intermediate node on the forwarding path at the integrity of mark sequence in
a packet. The purpose of these attacks is to conceal the real source node of a forwarding
path. A colluding node succeeds if it can launch the attack without being noticed by the
verifier at V .

Specifically, we consider the following possible attacks: (1) No-Mark Attacks: the
colluding node may remove all marks in Q; (2) Mark Altering Attacks: the colluding
node may modify the marks; (3) Mark Re-ordering Attacks: the colluding node may re-
order the existing marks in Q; (4) Mark Insertion Attacks: the colluding node may insert
at least one faked mark in Q; (5) Mark Deletion Attacks: the colluding node may ar-
bitrary drop marks in Q; (6) Prefix Removal Attack: the colluding node may dequeue
marks from the head of Q when Q is not full, dequeue one or many marks without
adding its mark, or dequeue multiple marks while only adding its own mark. (7) Suffix
Removal Attack: the colluding node may remove one or many marks from the tail of
Q. (8) Jamming Attack: the colluding node(s) may jam Q by faked or legitimate marks
(when the attack has control of multiple nodes in the network).

6.2 Scheme Objectives

The objective of AK-PPM scheme is to detect those attacks and identify either the real
source node or the colluding node. Note that simply computing a single MAC over the
entire packet (e.g., as in the nested marking scheme [27]) does not solve the attacks in
our case, because of the dequeue operation in the K-PPM scheme. Briefly, if a mark is
dequeued, all MACs including this dequeued mark will not be verifiable by the receiver.

Therefore, the AK-PPM scheme extends the base scheme by introducing a new
chained authentication mechanism to protect the integrity of the mark sequence within
a packet from being manipulated by colluding nodes in a forwarding path. Through se-
curity analysis in the end of this section, we prove that is always asymptotically one-hop
precise; that is, given enough attack packets, it can always trace to either an attack (i.e.,
source or colluding) node, or the one-hop neighborhood of an attack node.
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6.3 Revised Mark Design

In AK-PPM, an intermediate node will still mark the packet with the probability p.
However, the mark format will be different. In Figure 5, we explain the details of AK-
PPM with K = 2. Initially, S sends out a message M towards the destination V with a
random variableF = F0. Let Hk be a MAC function. If an intermediate node ui, whose
previous hop is uj , decides to inscribe the packet, it will update the value of F = F ⊕
Hki(M |ui), here ki is the pairwise key shared between ui and V . Note that a node can
easily compute its pairwise key shared with another node given each other’s id [15–17].
The MAC of M |ui serves as its “footprint” and we will see in the verification phase how
it helps detect the marks in Q from being removed starting from the end. It also inserts
its own mark marki in the queue Q. In its mark, ui includes its id and its previous
hop uj , the position Ii (1 ≤ Ii ≤ K , starting from the leftmost) of its mark in Q after
adding its mark, a MAC Hki(markj) over the previous mark markj in Q (or a MAC of
M if no previous mark exists), and a second MAC Hki(M |F |uj|ui|Ii|Hki(markj)).
The new marki will be appended at the end of Q. Note that here the first MAC in the
mark provides an authenticated link to the previous mark; as a result, all the marks in a
packet are protected in a chained structure. Removing any existing mark in the middle
of Q will cause the chain to be broken and hence detected. If Q is already full, its first
mark will be dequeued. If the node ui decides not to inscribe the packet, it will simply
forward the received packet to the downstream neighbor node without any change.

⊗

⊗

⊗

Fig. 5. An example of marking procedure

6.4 Mark Verification

As forwarding nodes in MANETs cannot be assumed as trusted, we have to verify the
integrity of marks carried in received packets before using them in traceback. For each
received packet, the destination V verifies the marks in Q in a backward order starting
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from the end of Q. Given a mark marki whose marker is ui and the previous hop is
uj (shown in the beginning of the mark), V first identifies its pairwise key ki shared
with ui. With ki, it computes the value MACx = Hki(M |F |uj |ui|Ii|MAC1

i ) where
MAC1

i is the first MAC in marki, and then compare MACx with the second MAC
in marki. If the two MAC values are the same, we know the mark marki has not
been tampered. Thus, we can use its first MAC to verify whether the link between the
current mark marki and the left adjacent mark markj is authenticated. Specifically,
we compute the value of Hki(markj) and compare it with the first MAC in marki. If
the results match, it means markj was the last mark in Q when ui was adding its own
mark marki at the time of packet forwarding.

If the mark marki itself is not tampered, we continue to check if there exist illegal
enqueue/dequeue operations in Q using the position variable Ii. As mentioned in the
marking phase, according to our policy a node is allowed to dequeue the first mark of
Q if and only if Q is already full when it tries to insert its own mark at the end of
Q. Thus, if Q in the received packet is not full, the position of each mark, contained
in each mark, should be exactly the same as its current position in Q. If Q is full, the
position value in the last mark must be K . As a result, a valid position sequence {Ii}
will be either K or fewer consecutive items from the list {1, 2, ...,K,K} depending on
whether Q is full or not. If an inconsistency is detected, there must be some violation
of the enqueue/dequeue policy (e.g., dequeue marks when Q is not full) in the stored
marks. For example, when K = 3, it could be {1, 2} (when the queue is not full),
{1, 2, 3} (when the queue is full but no dequeue happened), {2, 3, 3} or {3, 3, 3} (when
dequeue happened). On the other hand, {2, 3} is not legitimate because it indicates a
malicious node in the path removed the first mark without adding its own one.

At last, we verify the value of F , which is used to prevent a malicious intermediate
node from removing marks from the end of Q without being detected. During the mark-
ing process, every node ui inscribing the packet has updated F with its “footprint”, i.e.
Hki(M |ui). SinceF is part of input to the second MAC in the last mark, if the mark is not
tampered, F will be authenticated. We will then compute F = F ⊕Hki(M |ui), which
should be the F used in the calculation of the second MAC in the left adjacent mark.
Iteratively, we can derive the value of F used in the construction of each mark in Q in
the reverse order. This is possible because ⊕ is symmetric. If an intermediate malicious
node removed the last mark in Q, it will also need to updateF correctly. Otherwise none
of the marks can be verified. This will require the malicious node to know the secret key
shared between the previous marker and the destination node to compute the “footprint”
correctly.

6.5 Security Analysis

Mark Integrity Assurance. We prove that the compromise of integrity of Q will al-
ways be detected in the proposed AK-PPM scheme.

Claim 1: Dropping marks from the end of Q will be detected.
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Proof: Every node inscribing the packet updates F with its “footprint”. If an interme-
diate malicious node removes marks from the end of Q, the inconsistency on value F
will be detected in mark verification.

Claim 2: Dropping marks from the beginning of Q will always be detected.

Proof: The position variable Ii in a mark shows the status of Q when this mark is
enqueued. As mentioned in mark verification, inconsistency can be detected on Ii if
illegal dequeue operations were done by an intermediate malicious node.

Claim 3: Any enqueue/dequeue operation that violates the enqueue/dequeue policy will
be detected.

Proof: The same as the proof of the previous claim.

Claim 4: Removing or inserting marks in the middle of Q will be detected.

Proof: The first MAC in every mark within Q provides an authenticated link to its
previous mark. Consider a mark marki and its previous mark markj in Q. If an in-
termediate malicious node deletes markj or adds a new mark after markj , it will be
detected by marki in mark verification.

Traceback Capacity Analysis. We prove that AK-PPM is always asymptotically one-
hop precise no matter whether the attack path is trusted or untrusted.

Definition 1 (Trusted Attack Path): an attack path is trusted if all intermediate nodes
in this attack path between attack source S and destination V are legitimate nodes.

Definition 2 (Untrusted Attack Path): an attack path is untrusted if there exist at least
one colluding node in the attack path.

Definition 3 (One-hop precise): A traceback scheme is one-hop precise if it can always
trace to either an attack node (i.e., the attack source or a colluding node in the path), or
the one-hop neighborhood of an attack node.

Definition 4 (Asymptotically One-hop precise): A traceback scheme is asymptotically
one-hop precise if it can always achieve one-hop precision when enough attack packets
are received at destination node V .

Theorem 1. The AK-PPM scheme is asymptotically one-hop precise if the attack path
is trusted.

Proof: First of all, in AK-PPM, the destination node V is able to receive marks from
every node in the trusted path when enough attack packets are received, because every
intermediate node in the attack path will inscribe the packet with the probability p.
Further, the enqueue/dequeue operation allows the nodes closer to V to inscribe the
packet event when Q is full.

Secondly, we prove that AK-PPM is asymptotically consecutively traceable. Con-
sider two consecutive legitimate forwarding nodes uj and ui. As we have just proved,
V is able to receive marks from both uj and ui. When K ≥ 2, V will be able to re-
ceive packets which carry marks from both uj and ui. As both nodes are neighbors in
the path, their marks must be neighboring with the same order in Q. With the chained
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structure, an authenticated link from uj to ui can be verified. Therefore, if we can trace
to ui, we can trace to uj as well.

In [27], the author has proven that a scheme can achieve one-hop precision if and
only if it is consecutively traceable. Therefore, the proposed AK-PPM scheme is asymp-
totically one-hop precise.

Theorem 2. AK-PPM is asymptotically one-hop precise if there exists only one collud-
ing node in the attack path.

Proof: Let b denote the colluding node. For packets passing through b, it will have two
choices: either tamper the existing marks in Q in order to hide S from traceback, or not
tamper the marks. If b decides to tamper the marks, according to Theorem 1, we can
trace to b because the sub-path between b and V is a trusted path. If b decides not to
tamper the marks, S will be traced. In either case, an attack node is identified and we
achieve our goal.

Theorem 3. AK-PPM is asymptotically one-hop precise if there exist more than one
colluding node in the attack path.

Proof: If all colluding nodes do not tamper the marks within packets, S will be traced.
Otherwise, let b denote the colluding node closest to V , which tampers the marks within
packets it forwarded. As we have shown in Theorem 2, we will be able to trace to b.
Again, in either case, an attack node is identified and we achieve our goal.

Corollary 1. AK-PPM is always asymptotically one-hop precise.

Proof: With Theorem 1, 2, and 3, we come to the Corollary 1 that, AK-PPM is always
asymptotically one-hop precise.

6.6 Parameter Selections

The proposed AK-PPM requires K ∗ Size(Mark) + Size(F ) of extra space in every
packet. Each mark consists of two node IDs, a position index up to K , and two MAC
values, so its size is 2|ID| + log2(K)� + 2|H()|. The MAC value can be generated
by a secure one-way hash function. The detailed settings are decided by the network
administrator. Suppose that K = 3, |ID| = 8 bits, |H()| = 16 bits, |F | = 16 bits. The
per-packet overhead of AK-PPM is (16 + 3 ∗ (16 + 2 + 32)) = 166 bits = 21 Bytes.
Suppose that we do not change the IP header and store all marks within the packet
payload. For a packet of size 512 bytes, the overhead rate is 4%. To further lower the
marking overhead, we may make a tradeoff between security and performance. For
example, we may reduce the size of the MACs contained in the marks to one byte. In
the previous example, it will give us the per packet overhead of 15 bytes. Because the
number of attack packets is not big in an MANET, a one-byte MAC could be sufficient
to filter out forged packets.

6.7 Anonymous ID

In the AK-PPM scheme, an intermediate node will include its node ID in generated
marks. If the included node ID is in plaintext, the colluding node on the path may selec-
tively drop only packets which contain marks generated by nodes close to S
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(i.e., selective dropping attack). So that the later traceback will end at an upstream
node of the colluding node that is far from S. To avoid other nodes knowing who have
inscribed the packet, an intermediate node may include an anonymous ID instead of its
real ID in plaintext. Depending on the initiator of traceback, the design of anonymous
ID can be different. If the traceback will be launched by the network administrator, the
intermediate node may use a pseudo ID that is verifiable by the network administrator
only. If the traceback will be launched by V and the intermediate node shares a paired
key with V , we may use the paired key to encrypt the node ID and use the encrypted ID
in the mark. Further, we may add randomness in the anonymous ID (e.g., by applying
Counter-Mode Encryption) to prevent attackers from mapping the anonymous IDs with
their real ID/nodes by observing the packet traffic.

7 Simulation and Evaluation

We use simulations to show (1) how to select proper values for parameters K and p,
and (2) the improvement of traceability by the proposed AK-PPM scheme.

7.1 Simulation Settings

Our simulations are based on the GlomoSim 2.03 simulator. Major simulation param-
eters are listed below: physical link bandwidth (2 Mbps), transmission range (R =
250m), number of nodes (100), territory (3000m×3000m), MAC layer protocol (IEEE
802.11). The AK-PPM scheme is implemented in the network layer. In the network
layer, we apply the DSR routing protocol.

In the simulation, we randomly chose two nodes as the attack source and the des-
tination node, respectively. The attack node sends packets to the destination node in a
constant rate (i.e., γ). γ is chosen from 1, 5, and 10 pkt/sec to simulate different attack
intensities. An intermediate node follows the marking policy proposed in the AK-PPM
scheme with probability p chosen in the range of 0.05 and 1.0. In addition, K is cho-
sen from 1 to 5. We evaluate the performance of the AK-PPM protocol while changing
these three parameters. By default, γ = 10pkts/s, p = 0.5, and K = 4. For each param-
eter setting, we ran the simulation for at least 20 times. Each simulation run lasts two
hours in simulation time. Every node moves in the random waypoint mobility model at
a speed uniformly distributed between 0 and 10m/s.

7.2 Simulation Results

Figure 6 shows the simulation results for traceability of both source and path.

Parameter p: As shown in Figure 6(a) and (b), increasing p does not necessarily im-
prove the traceability. The curves can be divided into two parts. When d ≤ K = 4,
because no mark overwriting happens, a larger p will certainly improve the traceability.
However, when d > K , the traceability will also be affected by possible mark dequeu-
ing operations. In this case, when p is large, the probability that marks of u1 and other
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Fig. 6. Simulation Results

nodes far from V are overwritten will be high. For example, we see a swift downgrade
of traceability when p = 0.9 in both figures.

Parameter K: the size of queue K represents the space in a packet reserved for source
attribution. In Figure 6(c) and (d), p is set as 0.5 and we show the impact of K to the
traceability in the proposed AK-PPM scheme. When K = 1, the AK-PPM scheme is
the same as the PPM scheme. From these two figures, we can see that increasing K
will obviously improve traceability, especially for source identification. However, the
improvement is not significant when the d is small. In summary, to maximize the usage
of allocated space while avoiding insufficient marking, it is recommended that p and K
be set according to equation K = p∗dest, where dest denotes the estimated path length
in a specific MANET.

Low Packet Rate γ: the packet rate γ will be small in cases, such as low rate DoS
attacks [24], In Figure 6(e) and (f), we show the impact of the attack packet rate on
traceability when K = 4 and p = 0.5. For comparison, we also show the simulation
result of PPM scheme on the same traces. As we can see, compared to the PPM scheme,
the downgrade of traceability for AK-PPM is less significant, meaning that the AK-
PPM scheme is more resistent to low-rate attacks.

8 Related Work

About traceback schemes in MANETs, Thing and Lee [12] conducted simulation stud-
ies to investigate the feasibility of applying SPIE, PPM, and ITrace protocols in MANETs.
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However, no quantitative study about node mobility is presented and the factor of mo-
bility is considered by simulations. Zarai et al. [31] and Kim et al. [32] proposed cluster-
based traceback schemes only for MANETs with trusted nodes. Kim and Helmy [14]
proposed a traceback scheme in MANETs, named SWAT . Their scheme utilizes the
small world model and sends the attack traffic signature to neighbor nodes of a victim
which observe similar attack traffic. The major drawback of SWAT is the large amount
of communication cost during the traceback. Huang and Lee [13] first introduced the
concept of hotspot-based traceback and proposed traceback schemes to reconstruct the
attack path in MANETs. Again, the communication overhead in the network in the ma-
jor drawback. Recently, Hsu et al. [33] proposed a hotspot-based traceback protocol
for MANETs, which divides a forwarding path dynamically into multiple smaller inter-
weaving fragments. Unlike previous traceback schemes, our proposed AK-PPM scheme
is much light-weighted and is secure in untrusted MANETs. It places little computation
workload to the intermediate nodes. Once an attack is identified, no additional query is
required to reconstruct the attack path.

In addition, [34] and [27] adopt multiple marks but neither takes mobility into con-
sideration. In [34], the authors proposed a router stamping scheme for wired networks,
and discussed the tradeoff between the number of marks allowed in a packet and the
performance of identifying the u1 node on the path. However, all intermediate nodes on
the attack path are assumed trusted and no security mechanism was presented to protect
marks. Also, path reconstruction was not discussed in this work. In [27], the authors
proposed a Probabilistic Nested Marking approach for traceback in sensor networks,
which protects the integrity of multiple marks stored in packets using cryptographic
techniques. However, the number of marks in the proposed scheme is unrestricted, mak-
ing it difficult to packet format design. When the path is long, the large amount of marks
will take too much space in the packet. Also, there exists a flaw in the proposed nested
marking scheme which could allow a colluding node in the path to remove the marks in
the end without being detected. We propose a new authenticated K-sized Probabilistic
Packet Marking (AK-PPM) scheme, which improves the efficiency of traceback in the
untrusted MANET environment.

9 Conclusion

In this paper, we made the first effort to quantitatively analyze the impacts of node mo-
bility, attack packet rate, and path length on the traceability of well-known IP traceback
schemes. We then presented an K-PPM and an AK-PPM scheme for source attribution
in trusted and untrusted MANET environments, respectively. The proposed schemes
can improve the efficiency of source identification and forwarding path reconstruction.
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Abstract. One-Click Hosters (OCHs) such as Rapidshare and now de-
funct Megaupload are popular services where users can upload and store
large files. Uploaders can then share the files with friends or make them
publicly available by publishing the download links in separate directories,
so-called direct download or streaming sites. While OCHs have legitimate
use cases, they are also frequently used to distribute pirated content.Many
OCHs operate affiliate programmes to financially reward the uploaders of
popular files. These affiliate programmes are controversial for allegedly fi-
nancing piracy, and theywere prominently cited in the criminal indictment
that lead to the shutdown of Megaupload, once among the world’s 100
largest web sites. In this paper, we provide insights into how much money
uploaders of pirated content could earn on a range of direct download and
streaming sites. While the potential earnings of a few uploaders are non-
negligible, for most uploaders these amounts are so low that they cannot
rationally explain profit-oriented behaviour.

Keywords: One-Click Hosting, Piracy, Uploader Income, Affiliate Pro-
grammes.

1 Introduction

Piracy is the most common illicit activity on the Internet. Every day, millions of
people use P2P networks or One-Click Hosters (OCHs) such as Hotfile, Rapid-
share and formerly Megaupload to share copyrighted content without permission.
File sharing based on OCH works in a division of labour: OCHs provide the stor-
age but no search functionality, and external direct download or streaming sites
host searchable repositories of download links pointing to the OCHs.

OCHs are large businesses financed through advertisement and subscription
fees; several of them are among the 100 largest web sites worldwide. Because
OCHs have various legitimate use cases, they claim immunity against their users’
copyright infringements under the U.S. Digital Millennium Copyright Act.

However, many OCHs also operate controversial affiliate programmes in order
to attract new paying members. These affiliate programmes financially reward
uploaders based on the number of downloads and member subscriptions that
they generate. For instance, Megaupload used to reward one million downloads
with $ 1,500 and WUpload used to pay up to $ 40 per one thousand downloads.
These affiliate programmes are controversial for allegedly encouraging users to
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upload copyrighted content and thereby funding piracy. For instance, Mega-
upload’s former affiliate programme and their knowledge that affiliates uploaded
pirated content were a central element of the criminal indictment1 that lead
to the seizure of Megaupload’s assets, the detention of its operators, and the
shutdown of the site on 19 January 2012.

In this paper, we investigate how much money uploaders can earn by ille-
gally uploading pirated content and posting download links on a range of direct
download and streaming sites. The order of magnitude of an uploader’s income
tells us whether the affiliate programme and the associated rewards should be
considered as a major factor in the uploader’s motivation, or if they could be
seen as just a minor concomitant effect.

Measuring uploader income is a challenging task: Almost no OCH reports how
often a file was downloaded, and most direct download and streaming sites do
not display how often a download link was clicked. Furthermore, even if these
data are known, nothing reveals whether an uploader actually participates in an
OCH’s affiliate programme.

We tackle this problem in the following way: We crawl three large direct
download/streaming sites that make click data available. Using the click data,
we compute an uploader’s maximum income for the links posted on the site
under the assumption that every click generated a valid download, and that the
uploader participated in the affiliate programme. In order to estimate how many
clicks correspond to an actual download, we correlate the click data with the
number of downloads on the few OCHs that make download data available.

Our results show that most uploaders earn next to nothing; they do not exhibit
apparent profit-oriented behaviour. However, we also observe that a handful of
uploaders upload large numbers of files each day and generate so much traffic
that they could earn up to a few hundred dollars per day. For these uploaders,
at least some degree of profit-oriented behaviour is probable.

Our findings have implications on proposed anti-piracy measures such as the
U.S. draft bill SOPA and similar projects in other countries that aim at inter-
rupting the revenue stream of piracy: Such measures, by definition, can affect
only profit-oriented actors. Given that we observe a large number of altruistic
uploaders, these measures run the risk of having only little effect overall.

In this paper, we make the following contributions:

– We are the first to use large-scale empirical data to estimate the distribution
of uploader income through affiliate programmes. We contrast the income
with indicators for the effort invested by uploaders. This tells us about the
motivations of uploaders with respect to profit seeking or altruism.

– We are the first to provide insights into how the shutdown of Megaupload and
the associated cancellations of other OCHs’ affiliate programmes affected ille-
gal uploader income. This gives us ground truth to judge the success of anti-
piracy measures that aim to curb piracy by removing financial incentives.

1 Superseding indictment, U.S. v. Kim Dotcom et al., 1:12-cr-00003-LO (E.D. Va.,
Feb. 16, 2012) at ¶ 58; ¶ 73 g−j, v, y, bb, jj, pp, qq, uu, ppp, qqq, www, xxx; and
¶ 102.
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2 Background

One-Click Hosters (OCHs) have various legitimate use cases, such as storing
backups or exchanging large files instead of sending them as email attachments.
Because the purpose of this paper is to measure illegal uploader income relating
to piracy, we focus the background information given in this section on illicit file
sharing and on ways of monetising pirated content.

2.1 OCH-Based File Sharing and Streaming

One-Click Hosters such as Rapidshare, Megaupload, Hotfile or Mediafire provide
web-based storage for potentially large files. Users can upload files through a sim-
ple web interface. For each uploaded file, the OCH provides a unique download
link to the uploader. Because most OCHs do not make uploaded files public or
offer search capabilities, uploaders seeking to publish their files need to post the
corresponding download links on third-party web sites. There is a great variety
of such sites, ranging from general-purpose discussion boards and blogs to more
specialised content indexing sites, so-called direct download sites. These sites of-
fer a catalogue of links, supplied by site staff and sometimes independent users,
including categories such as movies, TV shows, games, music, ebooks, and soft-
ware. So-called streaming sites index movies and TV shows using an embedded
video player provided by OCHs such as Megavideo, VideoBB and Putlocker. In
the following, we will use the term link or indexing site to refer to all types of
“underground” web sites that are specialised in supplying links to pirated content
hosted on OCHs.

As Fig. 1 shows, relationships between OCHs and indexing sites can be com-
plex: Some uploaders spread their links over many indexing sites. An individual
indexing site typically contains several copies of the same content hosted on dif-
ferent OCHs, and sometimes even several “mirror” copies of the same file hosted
on the same OCH. Instead of posting the original download link, some uploaders
use URL shorteners or “link protection services”. The purpose of these services
is to protect download links against automated extraction by web crawlers run
by copyright holders to automatically take down files that infringe their copy-
right. Sometimes, these services are also used to better monetise links, such as
by displaying advertisements before redirecting the user to the OCH.

2.2 OCH Affiliate Programmes

One-Click Hosters usually offer a free, advertisement-based service and a pre-
mium subscription service. In order to convert free users into paying members,
the free service is artificially limited in the bandwidth, and free users need to
wait between consecutive downloads. According to the indictment2, Megaupload

2 Superseding indictment, U.S. v. Kim Dotcom et al., 1:12-cr-00003-LO (E.D. Va.,
Feb. 16, 2012) at ¶ 4.
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Fig. 1. The OCH ecosystem: Indexing sites can refer to a range of OCHs, the same
download link can be posted on several indexing sites, mirror copies of the same file
can be hosted on different OCHs or even on the same OCH, and links can be hidden
behind a layer of redirection by using URL shorteners, for instance

received at least 150 million dollars in subscription fees and 25 million dollars
for advertising between September 2005 and 5 January 2012.

There are hundreds of competing OCHs. In order to attract user traffic and
generate membership sales, most OCHs offer affiliate programmes for uploaders
and indexing sites. Affiliate programmes differ widely in the amounts paid, but
they are always a combination of these basic building blocks:

Pay Per Download (PPD). A small amount of money is paid for each (full)
download, such as $ 15 for 1000 downloads. Often, the amount differs according
to the country of the downloader; Table 1 shows as an illustration the rates
that were paid by WUpload until late November 2011. Some OCHs use different
affiliate “levels” to weigh the payouts according to the past performance (which
includes the conversion rate: premium sales per traffic). In most cases, only
uploaders can participate in PPD programmes.

Table 1. PPD rates for WUpload, per 1000 downloads, retrieved on 30 October 2011.
Country group A: US, UK, DE. Group B: AU, AT, BE, CN, DK, FI, FR, IE, IT,
JP, NL, NZ, NO, SA, SG, SE, CH, AE. Group C: BR, BG, CY, CZ, GR, HU, IR,
KW, LV, LT, LU, PL, PT, QA, RO, RU, ZA, ES, TR. Group D: All others. WUpload
discontinued the programme in late November 2011.

Size/Country A B C D

1−50 MB $5 $ 3 $ 2 $ 1

51−100 MB $12 $ 8 $ 5 $ 3

101−250 MB $19 $ 15 $ 12 $ 5

251−400 MB $27 $ 20 $ 18 $ 7

401−2048 MB $33 $ 26 $ 22 $ 10

2048+ MB $40 $ 28 $ 24 $ 12
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Pay Per Sale (PPS). A commission is paid for each premium sale or extension
of subscription (“rebill”). The amounts paid are the same across all countries,
and both uploaders and website owners can participate. For instance, WUpload
used to reward uploaders with 70% of new premium subscriptions in their PPS-
only affiliate programme. Webmasters could earn 10% of the sales to visitors
that came from the webmaster’s site.

Sometimes, uploaders can choose from different “formulas” such as PPD only,
PPS only, or 50% of PPD + 50% of PPS. Not surprisingly, new OCHs tend to
pay more generously, either through higher rates, or by running “promotions”
during which each affiliate’s payout is doubled, for instance. In the aftermath of
the Megaupload shutdown, many OCHs discontinued their affiliate programmes
(including VideoBB, Fileserve and Filepost), converted their affiliate programme
into PPS only (Uploaded), disabled file sharing functionality (Filesonic and later
WUpload) or decided to shut down voluntarily (X7).

Indexing sites can generate income through advertising, the PPS component
of OCH affiliate programmes, by uploading files themselves (and fully leveraging
OCH affiliate programmes), and sometimes by collecting donations. For the pur-
pose of this paper, however, the revenue of OCHs and indexing sites is considered
out of scope as we focus on uploader income through the PPD component of
OCH affiliate programmes.

3 Methodology

Estimating uploader income is a difficult task because the sale and download
transactions rewarded in affiliate programmes cannot easily be observed from an
outsider’s perspective. Sales data are kept secret by all OCHs, and only a few
OCHs report the number of downloads of each file. A few indexing sites display
how often a file has been “downloaded”, which in reality means how often the
link has been clicked.

In this paper, we focus on uploader income through the PPD component of
affiliate programmes because it is the only type of income that we can measure
empirically and on a large scale. We estimate uploader income by extracting
the links posted on three large indexing sites along with click-through counters
that are displayed on these sites. Whenever possible, we compare this data with
ground-truth download data that a few OCHs supply in their APIs.

3.1 Data Sources

The income through PPD depends on the number of files an uploader has, how
often each file is downloaded, and what amount the OCH pays for each download.
The latter information can be obtained from the OCHs’ websites since most
OCHs openly advertise their affiliate programmes, if they have one, and allow
any user to join. Data about the number of downloads is much more difficult to
obtain; most OCHs and indexing sites do not make it publicly available.
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To prepare our study, we visited the most popular indexing sites in a range of
countries and checked what metadata they published. For our study, we retained
three sites that counted the number of clicks of each link:

– Dpstream.net is the largest streaming site in France and contains movies
and TV shows. For our study, we crawled the movies section only. While
the site did not make any click data available, around half of the movies
were hosted on VideoBB, an OCH that reports view data for their videos.
(Today, the site uses a different set of OCHs.) In our analysis, we use the
ground-truth view data instead of the (unavailable) click data.

– Iload.to is the largest direct download site in Germany (it is preceded only
by two streaming sites). It consists of a directory of links that are provided
by staff, a separate exchange board with user uploads, and various other
community functions. We focussed on the section with staff uploads because
it displayed the number of clicks of each link. The content published on
the site includes movies, TV shows, music, ebooks, games, software, and
pornographic material.

– Redlist-ultimate.be is a Belgian file sharing community with a large index
of movies, TV shows, music, ebooks, games, and software. Links can be
submitted by registered users only, and there are various filter rules and
staff intervention to keep the index organised. Each link is annotated with
additional information such as the name of the uploader and the number
of clicks. The site is not as popular as the two other sites, but it publishes
valuable information about registered users, such as the number of uploads
and downloads, and the total time spent logged in. Out of the registered
users, 79% report France as their country.

The vast majority of the content posted on these indexing sites is being commer-
cially exploited and is sometimes even available before the official release date
in stores. During our measurements, we witnessed only a dozen content items
that seemed to be shared legitimately, and their popularity was low compared
to the remaining (pirated) content on the sites.

3.2 Data Sets

To obtain data sets with the links posted on indexing sites, along with the
corresponding click data, we performed a series of crawls on the three indexing
sites mentioned above. Table 2 lists the key characteristics of these three sites
and the data sets that we extracted from them.

For dpstream and redlist, we carried out a series of full crawls during which
we extracted all the existing content and metadata. (Our dpstream data set is
restricted to VideoBB links in the movies section of the site.) We repeatedly per-
formed full crawls during one month. For redlist, we performed an additional se-
ries of crawls in March 2012, slightly less than two months after Megaupload had
been shut down, to assess the impact of this event on the file sharing ecosystem.

Due to the very high number of content objects (movies, TV show episodes
etc.) indexed on iload, a full crawl would have taken too long to complete.
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Table 2. The indexing sites crawled for this study and the types of data available on
these sites. Media content is broken down into downloads and streams. Click data is
provided by the indexing site; OCH views (or downloads) are ground truth collected
from the respective OCH. Dpstream is limited to movies hosted on VideoBB and uses
OCH views instead of click data. For iload, clicks and payout refer to the first 30 days
in the lifetime of all objects that are added on a single day.

Name dpstream iload redlist-oct redlist-mar

Alexa Rank 1507 (FR: 70) 2976 (DE: 144) 15405 (FR: 735)

Downloads ✗ ✓ ✓

Streams ✓ few ✗

Crawl Start 18 Feb 2011 4 Apr 2011 3 Oct 2011 8 Mar 2012

Crawl End 23 Mar 2011 10 Jul 2011 5 Nov 2011 22 Mar 2012

Crawl Type full new content full

Click Data ✗ ✓ ✓

Uploader Data ✓ few ✓

OCH Views ✓ few ✗ few

# Content 10,950 total 421 added/day 114,475 total 43,418 total

# Links 11,026 total 7,674 added/day 358,297 total 109,492 total

# Clicks/day 16,349 223,691 (future) 140,996 148,090

$ Payout/day 32.70 1,010.50 (future) 184.79 1028.48

Comments films/VideoBB future 30 days pre/post Mega* shutdown

Instead, we crawled only the new content that was added to the site: We re-
quested the site’s RSS feed every hour to discover new content. At the same
time, for all discovered objects, we periodically (and repeatedly) retrieved the
associated pages to track the evolution of the number of clicks. We ran this
experiment for around three months, until iload stopped publishing click data.

Our crawler was capable of detecting more than 500 different link types from
300 different OCHs. In order not to distort the click count when extracting links
from the indexing sites, the crawler kept track of its requests and we adjusted
the final click data accordingly. For each discovered link that referred to an
OCH that made download data available, we furthermore retrieved the number
of downloads from the OCH’s API every two days.

To extract information about the OCHs’ affiliate programmes, we visited the
websites of more than 50 OCHs used on the three indexing sites in October 2011
and again in March 2012. Several OCHs modified their affiliate programmes dur-
ing our study. For instance, Megaupload discontinued their affiliate programme
in summer 2011, thus we use their rates for iload but not for redlist.

The amounts paid per download are often differentiated by the file size and
by the country of the downloader, as illustrated for WUpload in Tab. 1. To look
up a consistent payout value for all files, we make the following assumptions:
For links found on dpstream and redlist, we assume all downloaders to be
located in France; for iload, we use the payout amounts for Germany. These
assumptions correspond to the countries where most of the sites’ users come from.
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We furthermore assume a constant file size of 101MB because this is a common
(and conservative) value on file sharing sites [9]. For streaming links, we assume
a video length of 90 minutes because most of the streaming links found in our
data sets correspond to movies. (Most TV shows only have download links.)

3.3 Ethics

All the data in our data sets was collected from public sources that are accessible
to every Internet user. Our data sets contain no IP addresses or real names; the
most private information that we possess are the (publicly visible) user names of
the users who posted links, and in some cases the user names of the file uploaders.
However, these names are freely chosen by the users and we have no means to
map these user names to a real-world identity. Therefore, our analysis does not
negatively affect the privacy of any individual uploader.

3.4 Metrics

The direct way to infer the income of uploaders is to use view or download data
supplied by the OCH and multiply it with the PPD amount. Unfortunately, only
the dpstream data set has a representative amount of OCH-provided view data.
For the other data sets, we infer the income indirectly through the number of
clicks observed on indexing sites.

To approximate an uploader’s income generated by PPD programmes, we
define the value v of a link l ∈ L as follows:

vα(l) = clicks(l)× α× payout(och(l)) , (1)

where clicks(l) is the amount of clicks reported on the indexing site for a given
time frame, α is the click-download ratio, that is, the fraction of clicks that
result in a valid download, and payout(och(l)) is the amount of money paid by
the OCH of the link for one download. Note that the value of a link is different
from the uploader’s income because it refers to potential income that depends,
among others, on the actual value of α. We discuss this issue in more detail in
Sect. 3.5.

We express the number of clicks as daily averages. For dpstream and redlist,
our data sets contain a sequence of full crawls, as shown in Fig. 2 for two crawls.
In the regular case, we have one observation of cd clicks in the first crawl at
time td, and another observation of ce ≥ cd in the second crawl at time te. We
compute the average number of clicks per day as ce−cd

te−td
. Note that we consider

only links present in the first crawl; links that are added at a later time will be
discarded. Similarly, if a link is deleted before we can take a second snapshot,
we cannot compute the number of clicks. On redlist, a full crawl took between
six and ten days to complete.

The sites that we have crawled contain tens to hundreds of thousands of links,
and not all of the links receive a click between two successive crawls. Therefore,
we use the first crawl to determine the set of links that will be considered, and
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Fig. 2. Click computation for full crawls (dpstream and redlist)

Fig. 3. Click computation for crawls for new content (iload)

the click counts observed in the last crawl to compute daily averages3. This trade-
off permits us to improve accuracy for unpopular content while not penalising
popular content (with quickly decaying popularity) too much.

While the data for dpstream and redlist covers the existing content on the
site (both old and new), the data set for iload contains only new links that
were added to the site. For this site, we use a different definition of “average
daily clicks”. As diagrammed in Fig. 3, we start tracking a new link when it is
published at time t0, and we take successive snapshots of the number of clicks ci
at time ti, i ≥ 0. Our goal is to estimate how many clicks cx a new link generates
in the first tx = 30 days of its lifetime. In contrast to the full crawls, the click
count snapshots are taken in different time intervals, according to the degree
of utilisation of the crawler. In order to obtain an accurate estimate of cx, we
perform linear interpolation between the latest click count ca observed before tx,
and the earliest click count cb observed after tx. The estimated value for the click
count after thirty days is then cx = ca+(cb−ca) · tx−ta

tb−ta
.4 This metric defines the

value of a link with respect to the number of clicks that the link will generate in
the first thirty days of its lifetime. We can use this metric to compute for each
day how much future value an uploader generates by adding new links to the
site. We can furthermore average over all days to obtain the daily future value
generated by adding new links to the site.

To summarise these metrics, for dpstream and redlist, we compute for each
existing link how many clicks it receives per day. On iload, we characterise the

3 In the case that a link is deleted in the meantime, we use the latest click observation
that we have, but divide by the total time span between the first and the last crawl,
that is, around 23 days for redlist-oct.

4 If the link is deleted before tx and we have no observation cb, we simply use cx = ca.
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dynamics of the page by computing not only how many links are added to the
site each day, but also how many clicks these new links generate in the first thirty
days of their lifetime.

3.5 Limitations

Due to the methodology we have chosen, we can compute the distribution of
uploader income, but we cannot know if an uploader actually participates in the
affiliate programme. Yet, previous work has shown [4] how rapidly OCHs that
discontinued their affiliate programmes lost user traffic, which suggests that those
affiliate programmes were a driving factor behind these OCHs’ popularity.

In most of our data sets, the click-download ratio α is unknown. If users post
their links on various indexing sites in addition to the three sites of our data
sets, it is possible that α > 1. On the other hand, α < 1 if visitors click on the
link without downloading the file, as it can happen when the file was deleted
from the OCH. Furthermore, some OCHs count only completed downloads and
take into account only one download per day and IP address. We address this
issue by using OCH-provided ground truth on download data in dpstream. For
iload and redlist, we compute the maximum value of a link on the indexing
site as the payout generated by the indexing site’s traffic with α = 1. This
definition ignores the payout contribution due to traffic from other indexing
sites and assumes that every click generates a download. In the few instances
where both click and download data is available, we can estimate α and scale
down the maximum link value to obtain a more realistic approximation.

Since content uploaders and link posters are not necessarily the same person,
what we estimate in this paper is how much the links are worth that users post
on indexing sites. We refer to this as (potential) uploader income because it is
what uploaders can make if they are interested.

For practical reasons, we need to make a range of simplifying assumptions,
such as a static file size and downloader country. Furthermore, we do not consider
any payout threshold (which can be up to $ 200 for some OCHs) that prevents
uploaders with low income from being paid. For this reason, the results that we
provide in this paper should be seen as best-effort approximations that hold on
the long term.

4 Results

Each of our data sets provides us with insights into different aspects of the mon-
etisation of pirated content: Dpstream gives us a global view on the distribution
of uploader income based on ground-truth data (Sect. 4.1). Iload shows the
value of individual links and assesses their depreciation over time (Sect. 4.2).
Redlist allows us to characterise individual uploaders, including the effort that
they put into their activity and their importance to the functioning of the site
(Sect. 4.3). The second redlist crawl furthermore provides us with insights into
the effects of the Megaupload shutdown on the money-making opportunities in
the file sharing ecosystem (Sect. 4.4).
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4.1 Uploader Income

To compute the income distribution of uploaders, we consider the VideoBB links
posted in the movies section of dpstream, France’s largest piracy-based stream-
ing site. VideoBB links are available for approximately half of the movies. Be-
cause we use view data retrieved directly from VideoBB, we expect our results
to be very close to what VideoBB actually paid to participating affiliates.

Figure 4 ranks the site’s users by their income and plots the users’ share of
the site-wide income and total number of VideoBB links. From a global point
of view, the income is concentrated on a few uploaders. For instance, the top 4
uploaders earn more than 30% of the total income. The top 50 users receive
almost 80% of the total income and provide around 70% of the links. One could
argue that anti-piracy measures targeting the top 50 uploaders seem promising
as the site would lose a large portion of its links. While true in this specific case,
we show in Sect. 4.3 that this intuition is wrong in a more general scenario.
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Fig. 4. Value and link share in dpstream: Associates each of the 585 uploaders, ranked
by their income, with their share of the site-wide income of $ 32.70 per day (above) and
the fraction of the total 11,026 links that they provided (below). A few users generate
most of the value and most users earn almost nothing. While the users with the highest
income also provide most links, the share of links provided is disproportionately small
compared to the income share.

With a site-wide daily payout of $ 32.70, the potential earnings of individual
uploaders are surprisingly low: 60% of the users post content that is worth
less than one cent per day, and even the top uploader can earn only $ 5.26 per
day. While the low income in absolute terms appears to preclude profit-oriented
uploader behaviour, the dpstream data set does not reveal much about the effort
associated with an uploader’s activity, that is, how often an uploader needs to
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provide new links in order to have a steady stream of revenue. Furthermore, it
is unclear where uploaders are based and whether the amount of their income
should be assessed according to western standards or to those of a developing
country. We come back to these issues in the following sections.

4.2 The Value of a Link

We use the iload data set to analyse the popularity of content objects and the
choice of OCH made by the uploaders. The popularity of content objects such
as movies, episodes of TV shows, games or ebooks is important because only
popular objects can yield any significant payout. The choice of OCH is crucial
because it determines how well an object’s popularity can be monetised.

In the data set, we keep track of new objects being added to the site. Because
iload is specialised in the timely publication of releases leaked by the Warez
Scene5, we can assume that the content is “fresh” when it is posted and analyse
how its popularity evolves over time. Figure 5(a) shows a box plot of the weekly
click distribution per content object. The popularity of content decreases very
quickly: While the median number of clicks is 59 in the first week, it drops to
less than 5 clicks per week in the following weeks. The 99th percentile drops from
4,383 in the first week to 300−366 in the following weeks. Even though the click
distribution exhibits outliers that continue to receive more than 10,000 clicks per
week, the vast majority of content becomes “worthless” after only one week. As
a result, uploaders wishing to make money need to regularly post fresh content.

When looking at the popularity of individual objects as shown in Fig. 5(b),
it becomes clear that the site posts a lot of relatively unpopular content. For
instance, 25% of all new movies receive less than 100 clicks in the first 30 days;
only 3% of the movies receive more than 10,000 clicks in the same time span. An
object with a few hundred clicks per month makes a couple of dollars at most
and cannot generate any noticeable income through advertising either. Note fur-
thermore that each object uploaded on iload corresponds to several alternative
links and mirror copies on at least a half dozen OCHs. We argue that for such ob-
jects, even if automated, the cost of uploading can hardly be amortised by the
income generated by these objects. The reason for posting unpopular objects
might rather be a matter of prestige.

This issue becomes even more acute at the level of granularity of individual
links: Within the first 30 days, a single link can make up to $ 335.29. However,
only the top 20 links achieve a potential payout of more than $ 100 in their first
30 days. The median, even if considering only links that received at least one
click, is merely 2 cents for 30 days. Only by adding 421 new objects (7,674 new
links) every day can iload achieve a significant income: For all content posted
at most 30 days ago, the combined PPD income is up to $ 1,010.50 per day.

Figure 6 breaks down the recent content objects’ clicks and value by OCH.
Although Megaupload, Uploaded, X7 and Fileserve are the most popular OCHs
with uploaders, only Megaupload is equally popular with downloaders. In fact,

5 For an introduction to the Warez Scene, refer to [8], [7] and [3].



Paying for Piracy? An Analysis of OCHs’ Controversial Reward Schemes 181

1 2 3 4 5
week

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

c
li
c
k
s
 p

e
r 

o
b
je

c
t

(a) Content hotness on iload: 75% of the
objects receive less than 20 clicks per week
once the object is older than one week.

10
0

10
1

10
2

10
3

10
4

10
5

object click rank in category

10
0

10
1

10
2

10
3

10
4

10
5

10
6

c
li
c
k
s
 w

it
h
in

 f
ir

s
t 

3
0

 d
a
y
s

Series

XXX

Movies

Games

Music

(b) Object popularity on iload: Most of
the new objects receive only few clicks
within the first 30 days.

Fig. 5. Content object popularity on iload: Popularity (a) per week and (b) by cate-
gory

the OCHs most popular with downloaders pay the least competitive rates or
nothing at all to uploaders. (OCHs without payout account for 24.1% of the
links and 30.6% of the clicks.) Most links (95%) seem to be uploaded by staff of
the site and their policy to provide links to OCHs with low or no payout reduces
the potential income of the site. While this finding might suggest that the site
does not attempt to maximise PPD profit, one should keep in mind that the
overall popularity of the site might suffer if the users’ favourite OCHs are not
offered, which is particularly important for users who have paid for premium
services on one OCH.

So far, the value of links computed for iload was based on α = 1. Iload
posts a small number (16,553) of VideoBB streams. For these links, we estimate
α ≈ 0.40 by linear regression as shown in Fig. 7(a) (correlation coefficient 0.69,
R2 = 1), which means that the actual payout is significantly lower than what
the click count alone would suggest. In the redlist-mar data set, we estimate
α ≈ 0.73 (correlation coefficient 0.65, R2 = 0.90) for Files-Save (Fig. 7(b)) and
α ≈ 1.75 (correlation coefficient 0.65, R2 = 0.99) for Fufox (Fig. 7(c)). Here,
α > 1 suggests that those links are also posted on sites other than redlist.
Note, however, that none of the latter two OCHs rewards uploaders with cash.

Many large downloads are split into smaller parts. In order to reassemble the
original file, the downloader needs to download all parts of such a group of links.
However, Fig. 7(d) shows that there is a difference of 32% (correlation coefficient
0.87, R2 = 1) between the link with the lowest and the link with the highest
click count. In other words, only 32% of the users who were interested in a file
proceeded to download it entirely. These results illustrate that in most cases,
α = 1 induces a conservative upper bound on the actual number of downloads.
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Fig. 6. Clicks (dark grey) and value (light grey) of links on iload for the top 15 OCHs:
Some OCHs pay much higher rates than others, and the site also makes use of OCHs
that do not pay any rewards at all

To summarise, most objects make money only for a limited time (one week)
and need to be replaced regularly in order for the uploader to earn a regular in-
come. The choice of OCHs and especially the large quantities of highly unpopular
objects suggest that iload is not maximising its profitability.

4.3 Characteristics of Top Content Uploaders

Redlist contains insightful data about the users registered on the site. We use
this data to answer whether uploading can be profitable—how much work in
terms of uploaded files and online time the best earning uploaders carry out,
and how much their potential income might be worth to them, by looking at
which countries these uploaders come from. Furthermore, we investigate how
essential the top uploaders are to the functioning of the site.

We use the redlist-mar data set because it is more recent and reflects bet-
ter the current state of the site after the shutdown of Megaupload. It contains
101,300 registered users, out of which 7,960 logged in at least once during the
week of the crawl and 275 posted at least one link. The median number of links
that downloaders click on is slightly larger than the median number of links that
uploaders post (Fig. 8). However, the activity distribution of uploaders is more
heavy-tailed with a few uploaders posting more than 100 links every day. Simi-
larly, 30% of all active uploaders and 70% of the 50 highest earning uploaders
spend more than one hour logged in per day, whereas this is the case for only
4% of the users who do not post links. These numbers illustrate that the top
uploaders invest a significant effort into their activity.
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Fig. 7. Estimating the click-download ratio α by linear correlation: (a)–(c) use ground
truth obtained from the OCH, (d) uses the difference between the most and least
frequently clicked link in multipart downloads

The median income for the top 50 highest earning uploaders is $ 11.74 for a
median of 1.6 hours spent logged in and 10 files posted each day. (The top up-
loader earns $ 113.17 for an online time of around 8 hours and 200 files uploaded
each day.) While this daily income would be worthwhile for an uploader based
in a developing country, Fig. 9 shows that the vast majority of uploaders come
from western countries, notably France. For reference, the current minimum le-
gal wage in France is $ 12.50 per hour. This indicates that even the top uploaders
earn relatively little compared to the work that they are doing.

Table 3(c) displays the overlap between the 50 uploaders with the highest
income, links and clicks, respectively. Around 36% of the users who provide
most links are not among the best earning users. The fact that these uploaders
do not imitate the behaviour of the best earning uploaders suggests that even
the top uploaders do not all aim to maximise their income.

To assess the importance of the 50 highest earning uploaders for content avail-
ability on the site, we count how many content objects would become unavailable
if all links provided by these users were removed. This corresponds to a scenario
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Table 3. Set intersections of the top 50 uploaders ranked by income (I), number of
links (L) and number of clicks (C) in the two redlist data sets

(a) between oct11 and mar12

Income Links Clicks

Income 14
Links 7
Clicks 5

(b) within oct11

Links Clicks

I 21 19
L 41

(c) within mar12

Links Clicks

I 32 42
L 37

where the 50 highest earning uploaders stop uploading when the corresponding
OCHs discontinue their affiliate programmes. We find that excluding the top 50
uploaders would remove 80% of the total income and 58.5% of all links, but
only 39.7% of the content objects and 21.7% of the traffic: Many content ob-
jects have alternative download links provided by other users, and the content
objects that have only links provided by the top uploaders are relatively unpop-
ular overall. Consequently, anti-piracy measures aimed at disrupting economic
upload incentives would have a limited effect on this site.

In summary, even most of the top 50 highest earning uploaders earn less than
the minimum legal wage in their home country. Furthermore, redlist is rather
resilient against the exclusion of its top 50 uploaders.
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Fig. 9. Top 50 uploader’s countries in redlist-mar: The vast majority of the highest
earning uploaders come from western countries

4.4 The Impact of the Megaupload Shutdown

In October 2011, before the shutdown, Megaupload was the most popular OCH
on redlist as shown in Fig. 10(a). Because Megaupload had already ended its
affiliate programme at that time, redlist generated just $ 184.79 per day.

After the shutdown of Megaupload, several other OCHs discontinued their
affiliate programmes. Figure 10(b) shows that in March 2012, redlist used
more OCHs than before that did not pay any rewards at all. Rapidshare, an
OCH that had previously lost popularity due to its anti-piracy measures [4],
regained significant popularity. Somewhat paradoxically, however, the shutdown
of Megaupload lead to a more than fivefold increase in the daily income (up
to $ 1,028.48) because Depositfiles and Uploaded, two OCHs with competitive
affiliate programmes, became the two most popular OCHs on the site.

Overall, the number of available content objects decreased drastically by 62%
after Megaupload was closed, but the site quickly recovered and even increased
its total click traffic by 5%. These events illustrate that in the OCH ecosystem
with its current diversity, even the shutdown of a major actor does not durably
slow down the pace of file sharing.

5 Discussion

Our measurements show that the potential income of most uploaders is very low.
Hence, these uploaders must have a different incentive rather than money. On
the other hand, a few uploaders can earn significant amounts of money. This mix
of uploader motivations has implications on proposed anti-piracy measures.
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Fig. 10. The daily number of clicks (dark grey) and daily maximum payout (light
grey) for the Top 15 OCHs on redlist (a) before and (b) after the shutdown of
Megaupload. Note that dl.free.fr is not shown in redlist-oct because the crawler
did not recognise these links at that time.
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A recent focus in copyright enforcement appears to be on money flows [5].
For instance, the Stop Online Piracy Act (SOPA) proposed in the U.S. con-
tains provisions to prevent advertising and payment services from processing
payments in relation to online piracy. While principally aimed at site operators,
profit-oriented uploaders are indirectly affected by their dependence on affiliate
programmes. However, as we have shown in this paper, profit-oriented uploaders
are a small minority of all uploaders, and they are not essential for the ecosystem
to survive. The majoritarian altruistic uploaders are not affected by this class
of measures as long as sites remain available where they can upload and share
their files.

More generally, our findings suggest that the overall impact of the OCHs’ affil-
iate programmes on piracy activities may be overstated: Most users upload con-
tent despite earning next to nothing. Discontinuation of the affiliate programmes
would deprive profit-oriented pirates of their illegal income, but it seems that
these programmes are not the main driving force behind OCH-based piracy.

6 Related Work

Previous work in the area of OCH [1], [6], [9] focusses on network and workload-
level measurements such as file sizes, download speeds, and the service archi-
tecture. These studies are partially based on network traces, and partially on
crawls of indexing sites similar to our work. While some of the works depict
OCH as an emerging alternative to BitTorrent for piracy, they do not deal with
money-making opportunities or uploader motivations.

The closest work to ours is a short technical report published recently by
Zubin Jelveh and Keith Ross [4]. The authors use payment screenshots posted in
a webmaster forum to analyse the range of uploader income through Filesonic’s
PPD and PPS affiliate programme. In contrast to our work, the results by Jelveh
and Ross reflect actual payouts. Based on 151 earnings screenshots covering 2,653
days, they report an average uploader income of $ 33.69 per day (minimum $ 0,
maximum $226.27). This income range is generally consistent with what we
find in our study. Beyond what we can analyse with our methodology, Jelveh
and Ross find that income through PPD averages $ 21.12 as opposed to $ 46.10
through PPS. While providing actual ground truth data, the data set analysed
by Jelveh and Ross suffers from a selection bias: Most uploaders do not make
their income public. Furthermore, it is unknown where and how often uploaders
post links, and what content they upload. While our methodology can only
give an estimation of the actual uploader income, we compute a much more
representative distribution of the income over uploaders. Furthermore, we use
more comprehensive information about uploaders and content to calculate the
value of links and the effort behind uploading, and we thereby obtain hints at
the financial or altruistic motivations of uploaders.
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Cuevas et al. [2] study the characteristics of initial seeders in BitTorrent. They
find evidence for major initial content uploaders behaving in a non-altruistic
way. Their result differs from our work in two ways: Firstly, BitTorrent does
not have a direct mechanism to financially reward content uploaders; profit is
usually generated by using uploads as a way to advertise external websites or to
distribute malware. Secondly, it is common for OCH-based uploaders to copy a
file and re-upload it on the same (or another) OCH. Therefore, OCH indexing
sites often have a high number of alternative downloads for the same content,
which decreases the potential income for individual uploaders.

For a recent news article [5], Joe Karaganis conducted an anonymous income
survey among BitTorrent site operators. Summarising the results, Karaganis
characterises these sites as “financially fragile but low cost operations, depen-
dent on volunteer labor, subsidized by users and founders, and characterized
by a strong sense of mission to make work more widely available within fan
communities”.

7 Conclusion

There is no black and white answer to uploader income in OCH-based file sharing:
Most uploaders can earn only trivial amounts of money through OCHs’ affiliate
programmes and can be characterised as altruistic. A small number of very
active uploaders, however, can earn in the order of hundred dollars per day and
are more likely to be motivated by financial gain. Yet, the OCH file sharing
ecosystem does not depend on these uploaders; most of the popular content
would remain available if the links provided by the highest earning uploaders
were excluded. The implication is that even in the OCH ecosystem with its
money-mad reputation, anti-piracy measures that are premised on profit-driven
uploader behaviour might not be as effective as the content industry believes. In
order to sustainably address piracy, a holistic approach would be required that
also removes incentives for altruistic uploaders, and for downloaders in general.
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Samuel Marchal, Jérôme François, Radu State, and Thomas Engel

SnT - University of Luxembourg, Luxembourg,
firstname.lastame@uni.lu

Abstract. Phishing is an important security issue to the Internet, which
has a significant economic impact. The main solution to counteract this
threat is currently reactive blacklisting; however, as phishing attacks are
mainly performed over short periods of time, reactive methods are too
slow. As a result, new approaches to early identify malicious websites
are needed. In this paper a new proactive discovery of phishing related
domain names is introduced. We mainly focus on the automated detec-
tion of possible domain registrations for malicious activities. We leverage
techniques coming from natural language modelling in order to build pro-
active blacklists. The entries in this list are built using language models
and vocabularies encountered in phishing related activities - “secure”,
“banking”, brand names, etc. Once a pro-active blacklist is created, on-
going and daily monitoring of only these domains can lead to the efficient
detection of phishing web sites.

Keywords: phishing, blacklisting, DNS probing, natural language.

1 Introduction

The usage of e-commerce, e-banking and other e-services is already current prac-
tice in the life of modern Internet users. These services handle personal and con-
fidential user data (login, password, account number, credit card number, etc.)
that is very sensitive. As a result, threats emerged for which attackers attempt
to steal this data and use it for lucrative purposes. An example of these threats is
phishing, a criminal mechanism employing both technical subterfuge and social
engineering to abuse the naivety of uninformed users. Phishing mainly targets
(75%) financial and payment activities and its cost is estimated to many billion
of dollars per year1.

Phishing attacks leverage some techniques such as e-mail spoofing or DNS
cache poisoning to misdirect users to fake websites. Attackers also plant crime-
ware directly onto legitimate web server to steal users data. However, the two
last techniques require to penetrate web servers or change registration in DNS
server, which might be difficult. Most often, phishers try to lure Internet users by
having them clicking on a rogue link. This link seemed to be trustworthy because
it contained a brand name or some keywords such as secure or protection.

1 http://www.brandprotect.com/resources/phishing.pdf, accessed on 04/04/12.

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 190–209, 2012.
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Current protecting approaches rely on URL blacklists being integrated in
client web browsers. This prevents users from browsing malicious URLs. Google
Safe Browsing2 or Microsoft Smart Screen3 are two examples and their effi-
ciency has been proved in [14]. However, as reported in [21], the average uptime
of phishing attacks is around 2 days and the median uptime is only 12 hours. Due
to this very short lifetime, reactive blacklisting is too slow to efficiently protect
users from phishing; hence, proactive techniques must be developed. The previ-
ous report also points out that some phishing attacks involve URLs containing
unique number in order to track targeted victims. The only common point be-
tween these unique URLs remains their domain name; as a result domain name
blacklisting should be more efficient and useful than URL blacklisting. More-
over, it emphasizes that one maliciously registered domain name is often used
in multiple phishing attacks and that each of them use thousands of individual
URLs. As a result, the identification of only one phishing domain name can lead
to protect Internet users from tens of thousand malicious URLs.

According to recent reports [21, 1] from the Anti Phishing Working Group
(APWG), the number of phishing attacks is fast growing. Between the first half
of 2010 and the first half of 2011 the number of phishing attacks raised from
48,244 to 115,472 and the number of dedicated registered domains from 4,755
to 14,650. These domains are qualified as maliciously registered domains by
the APWG. These counts highlight the trend that attackers prefer to use more
and more their own maliciously registered domains rather than hacked named
domains for phishing purposes. Moreover, observations reveal that malicious
domain names and particularly phishing ones are meaningful and composed of
several words to obfuscate URLs. Attackers insert some brands or keywords
that are buried in the main domain name to lure victims, as for instance in
protectionmicrosoftxpscanner.com, google-banking.com or
domainsecurenethp.com. As a result, this paper focuses on the identification of
such phishing domain names that are used in URL obfuscation techniques.

This paper introduces a pro-active domain monitoring scheme that generates
a list of potential domain names to track in order to identify new phishing activ-
ities. The creation of the list leverages domain name features to build a natural
language model using Markov chains combined with semantic associations. We
evaluate and compare these features using real malicious and legitimate datasets
before testing the ability of our approach to pro-actively discover new phishing
related domains.

The rest of this paper is organized as follows: Section 2 describes the design
of the architecture and the steps to follow to generate malicious domain names.
Section 3 introduces the datasets used for the validation and experimentation.
In section 4, differences between malicious and legitimate domains are analyzed
and domain name generation is tested in some real case studies. Finally, related

2 http://code.google.com/apis/safebrowsing/, accessed on 04/04/12.
3 http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/

features/smartscreen-filter, accessed on 04/04/12.

http://code.google.com/apis/safebrowsing/
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/smartscreen-filter
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/smartscreen-filter
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work is discussed in section 5. We conclude in section 6 and point out the further
research to be done.

2 Modeling a Phisher’s Language

Phishers are human and will generate names for their domains using some sim-
ple patterns. They will use names that are similar to legitimate domain names,
append some other words that come from a target vocabulary and leverage some
domain specific knowledge and expertise. Thus, we argue that pro-active mon-
itoring can emulate this process and generate potential domains to be tracked
permanently. This tracking can be done on a daily basis and thus detect new
phishing sites. This requires however to generate domain names that are or will
be involved in phishing activities. These names follow a model build on statis-
tical features. The domain names considered in our work are composed of two
parts, the top level domain (TLD) and the second level domain also called main
domain. In this approach, the TLD can be either only one level domain “.com”
or more “.org.br”, we refer to Public Suffix List4 to identify this part of the
URL and the main domain is considered as the label preceding the TLD. For
the rest of the paper these domains (main domain + TLD) will be called two-
level-domains. Assuming a dataset containing domain names and URLs such
as:

• www.bbc.co.uk

• wwwen.uni.lu/snt/

• secan-lab.uni.lu/index.php?option=com user&view=login

Features are extracted only from the two-level-domains, which are respectively
bbc.co.uk, with bbc the main domain and co.uk the TLD, for the first one
and uni.lu for the two others, with uni the main domain and lu the TLD. The
domain names generated are also two-level-domains.

2.1 Architecture

An overview of our approach is illustrated in Figure 1 where the main input
is a list of known domains related to malicious activities. Based on that, the
first stage (1) decomposes the name and extracts two main parts: the TLD
and the main domain. Then, each of these two is divided into words (2). For
TLD, a simple split regarding the dot character is sufficient but for the second,
a real word segmentation is required to catch meaningful words. As illustrated
here with a small example, macromediasetup.com/dl.exe, the following words are
extracted:

• TLD: com
• main domain: macro, media, set, up

4 http://publicsuffix.org, accessed on 08/03/12.

http://publicsuffix.org
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Fig. 1. Proactive Malicious Domain Name Discovery – Overview

These features are then used to build a model (3) by computing statistics, as
for example the length distribution of the main domain in words as well as a
Markov chain for representing probabilistic word transitions. The statistics and
Markov chain model are computed for each level. Next, this model is combined
(4) with semantic extensions. This leads to generating similar words (only for
the main domain) and a list of potential malicious domain is built. These latter
are checked online (5) for potential phishing activities. The online validation is
not described in this paper, but can be done with various techniques: signature-
based approach, honeypots, manual analysis, etc. Hence, our experiments are
based on publicly available blacklists for cross-validation (see section 3).

2.2 Features Extraction

Features: Given a set of two-level-domains as D = {d1, ...., dp}, a set of words
as W = {w1; ....;wp} and a set of domain levels L = {l1; l2} where l1 is the TLD
and l2 is the main domain, we define:

• #lenl,n the number of domains d ∈ D having the lth level (l ∈ L) composed
of n words

• #wordl,w the number of domains d ∈ D containing the word w ∈ W at the
level l ∈ L

• #fisrtwordl,w the number of domains d ∈ D having the lth level (l ∈ L)
starting with the word w ∈ W

• #biwordsl,w1,w2 the number of domains d ∈ D containing the consecutive
words w1 and w2 ((w1, w2) ∈ W 2) at the level l ∈ L

The following list groups the features extracted from a list of domains or URLs:

• distlenl,n: the distribution of the length n ∈ N expressed in word for a level
l ∈ L and defined as:

distlenl,n =
#lenl,n∑
i∈N

#lenl,i
(1)
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• distwordl,w : the distribution of the number of occurrences of a word w ∈ W
at the level l ∈ L and defined as:

distwordl,w =
#wordl,w∑
i∈W #wordl,i

(2)

• distfirstwordl,w : the distribution of the number of occurrences of a word
w ∈ W as first word for the level l ∈ L and defined as:

distfirstwordl,w =
#fisrtwordl,w∑
i∈W #fisrtwordl,i

(3)

• distbiwordsl,w1,w2 : the distribution of the number of occurrences of a word
w2 ∈ W following the word w1 ∈ W for the level l ∈ L and defined as:

distbiwordsl,w1,w2 =
#biwordsl,w1,w2∑
i∈W #biwordsl,w1,i

(4)

Word Extraction: Themain domain of DNS names can be composed of several
words like computeraskmore or cloud-anti-malware. Using a list of separat-
ing characters, as for instance “-” is too restrictive. We have thus used a word
segmentation method, similar to the one described in [22]. The process is recur-
sive by successively dividing the label in 2 parts that give the best combination,
i.e. with the maximum probability, of the first word and the remaining part.
Therefore, a label l is divided in 2 parts for each position i and the probability
is computed:

P (l, i) = Pword(pre(l, i))P (post(l, i)) (5)

where pre(l, i) returns the substring of l composed of the first i characters and
sub(l, i) of the remaining part. Pword(w) returns the probability of having the
word W equivalent to its frequency in a database of text samples.

TLDs are split in different labels using the separating character “.”.

2.3 Domain Names Generation Model

The generator designed for domain generation is mainly based on an n-gram
model. Coming from natural language processing an n-gram is a sequence of
n consecutive grams. These grams are usually characters, but in our approach,
grams are words. We especially focus on bigrams of words that are called biwords.
These couples of words are further used to build a Markov chain through which
two-level-domains are generated.

Markov Chain: A Markov chain is a mathematical system that undergoes
transitions from one state to another. Each possible transition between two states
can be taken with a transition probability. Two Markov chains are defined in the
domain generation model, one for each level, l1 and l2. The states of the Markov
chains are defined as the words w ∈ W and the probability of transition between
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two words w1 and w2 for the level l ∈ {1; 2} is given by distbiwordsl,w1,w2 . A
part of a created Markov chain is given in Table 1 for some transitions, and
the associated probabilities, starting from the word pay. In order to generate
new names the Markov chain is completed with additional transitions that have
never been observed - this technique is called additive smoothing or Laplace
smoothing. For each state s, a small probability (0.05) is assigned for transitions
to all the words that have been observed at the level l and for which s does
not have any transition yet. This probability is shared between the words of the
level l according to the distribution distwordl,w . The same method is applied for
states s that do not have any existing transitions. In this case, their transitions
follow the probability given by the distribution distwordl,w .

Table 1. Example of Markov chain transitions for the state pay

Transition per z for secure bucks bill process pay account soft page ...

Probability 0.13 0.1 0.06 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03 ...

For two-level-domains generation, the first state is randomly initialized us-
ing distfirstwordl,w , the number of transitions that must be completed in the
Markov chain is randomly determined using distlenl,n. Given these two param-
eters by applying n steps from word w in the Markov chain, a label is generated
for the level l.

Semantic Exploration: The words composing the main domains of differ-
ent malicious domains often belong to the one or more shared semantic fields.
Given some malicious domain names such as xpantiviruslocal.com, xpantivirus-
planeta.com, xpantivirusmundo.com and xpantivirusterra.com, it clearly appears
that they are related. Applying the word extraction process, from all of these do-
mains, the words “xp”, “anti” and “virus” will be extracted and the four words
“local”, “planeta”, “mundo” and “terra” will be extracted from each of them.
These four words are closely related, particularly the three last ones. As a result,
given one of these domains, the remaining three could be found as well. However,
even if this intuitive conclusion is obvious for human, it is more complicated to
implement it in an automatic system.

For this purpose, DISCO [12] is leveraged, a tool based on efficient and accu-
rate techniques to automatically give a score of relatedness between two words.
To calculate this score, called similarity, DISCO defines a sliding window of four
words. This window is applied to the content of a dictionary such as Wikipedia5

and the metric ‖w, r, w′‖ is calculated as the number of times that the word w′

occur r words after the word w in the window, therefore r ∈ {−3; 3}\{0}. Table
2 highlights an example of the calculation of ‖w, r, w′‖ for two sample pieces of
text. Afterwards the mutual information between w and w′, I(w, r, w′) is defined
as:

I(w, r, w′) = log
(‖w, r, w′‖ − 0.95)× ‖∗, r, ∗‖

‖w, r, ∗‖ × ‖∗, r, w′‖ (6)

5 http://www.wikipedia.org, accessed on 04/04/12.

http://www.wikipedia.org
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Finally, the similarity sim(w1, w2) between two words w1 and w2 is given by the
formulae:

sim(w1, w2) =

∑
(r,w)∈T (w1)∩T (w2)

I(w1, r, w) + I(w2, r, w)∑
(r,w)∈T (w1)

I(w1, r, w) +
∑

(r,w)∈T (w2)
I(w2, r, w)

(7)

where T (w) is all the pairs (r, w′) | I(w, r, w′) > 0.
Using this measure and given a word w1, DISCO returns the x most related

words ordered by their respective similarity score sim(w1, w2). Based on the
words extracted from the main domain, DISCO is used to compose new labels
for the main domain.

Table 2. Example of co-occurrence counting (2 windows centered on services)

position -3 -2 -1 0 +1 +2 +3

sample 1 a client uses services of the platform

sample 2 the platform provides services to the client

||services,−3, a|| = 1 ||services,−3, the|| = 1
||services,−2, client|| = 1 ||services,−2, platform|| = 1
||services,−1, uses|| = 1 ||services,−1, provides|| = 1
||services, 1, of || = 1 ||services, 1, to|| = 1
||services,2,the|| = 2 ||services, 3, client|| = 1
||services, 3, platform|| = 1

A complete example of label generation is illustrated in Figure 2 for the level
2 (main domain) with (1), the selection of the length of the label in words, and
(2) the selection of the first word that starts the label. The Markov chain is
applied for the remaining words to generate (3). For each word at the step (2)
and (3), DISCO is applied to generate other words. The same scheme generates
TLD for the level 1 without using DISCO.

Fig. 2. Main domain generator
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3 Dataset

For assessing our approach, two datasets are selected. The first one is a ma-
licious dataset composed of domain names from which maliciousness has been
confirmed. The second dataset is a legitimate dataset containing non-malicious
domain names. In a first step, these will be used to show that the features intro-
duced in section 2.2 allow to discriminate phishing domain names from legitimate
ones. In a second step, the malicious dataset will be used to show the efficiency
of the generation of phishing domain names.

3.1 Malicious Dataset

To compose the dataset of malicious domain names, three freely downloadable
blacklists are used. These have been selected because each of them proposes an
historical list of blacklisted domains ordered by their discovery date. These have
been collected during at least the last three years. This is an essential dataset
requirement in order to test the predictability of the approach.

• PhishTank6: PhishTank is a community website where anybody can submit
a suspicious phishing URL that will be further checked and verified. The
downloaded historical blacklist contains 3,738 phishing URLs.

• DNS-BH7: DNS-Black-Hole aims to maintain an up-to-date list of domains
that spread malware and spyware. A list of 17,031 malicious domains is
available.

• MDL8: Malware Domain List is another community project aimed at cre-
ating and maintaining a blacklist of domains involved in malware spreading.
This list contains 80,828 URL entries.

DNS-BH and MDL are not only dedicated to phishing, but also to malware dif-
fusion. These two lists have been chosen because as described in [1], diffusion
of malware designed for data-stealing and particularly crimeware is a big part
of phishing activities. This various dataset allows also to strengthen the vali-
dation of our approach (introduced in section 4). Following the extraction of
the distinct domain names from the 101,597 URLs and the deletion of dupli-
cated entries between the three lists, the final dataset contains 51,322 different
two-level-domains. Out of these 51,322 domain names, 39,980 have their main
domain divisible in at least two parts.

3.2 Legitimate Dataset

The objective is to faithfully represent realistic normal domain names. This
dataset is selected to show that even if malicious domains use some brands

6 http://www.phishtank.com, accessed on 15/03/12.
7 http://www.malwaredomains.com, accessed on 15/03/12.
8 http://www.malwaredomainlist.com, accessed on 15/03/12.

http://www.phishtank.com
http://www.malwaredomains.com
http://www.malwaredomainlist.com
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included in the URLs of famous websites in order to mimic them, they still
disclose differences. Two sources are chosen to compose this “legitimate” dataset.

• Alexa9: Alexa is a company that collects browsing behavior information
in order to report statistics about web traffic and websites ranking. From
Alexa’s “top 1000000 sites” list, 40,000 domain names are randomly picked
in the top 200,000 domains.

• Passive DNS: To diversify this dataset and in order to have the same
amount of domain names in each dataset, we had it completed with 11,322
domain names extracted from DNS responses. DNS responses were passively
gathered from DNS recursive servers of some Luxembourg ISPs. We ensure
that these domain names are not present in the initial dataset from Alexa.

The normal dataset contains 51,322 entries. 38,712 names have their main do-
main divisible in at least two parts. Hence, we have two datasets: a legitimate
one and a malicious one of equivalent size.

4 Experiments

4.1 Datasets Analysis

In this section metrics and statistical parameters extracted from each dataset are
compared to demonstrate that features described before are able to distinguish
malicious from legitimate domains. A first proposition is to analyze the number
of words that composes the main domain name #len2,n. Main domains that
can be split in at least two parts are considered. The malicious dataset contains
39,980 such domain names and the legitimate dataset 38,712. Figure 3 shows
the distribution of the ratio of main domains that are composed from 2 to 10
words (distlen2,n | n ∈ {2; 10}) in the legitimate dataset and in the malicious
dataset.

69% of legitimate main domains are composed of two words whereas only
50% of malicious are. For all upper values, the ratio for malicious domains is
higher than for legitimate ones. This shows that malicious main domains tend
to be composed of more words than legitimate main domains.

The following analysis studies the composition similarity between the domain
names of the different datasets. Two probabilistic distributions are extracted
from the domain names:

• the different labels of the TLDs: ∀w ∈ W,P1(w) = distword1,w
• the different words that compose the main domains : ∀w ∈ W,P2(w) =
distword2,w

We used the Hellinger Distance to evaluate the similarity in each dataset and dis-
similarity between datasets. The Hellinger Distance is a metric used to quantify

9 http://www.alexa.com, accessed on 15/03/12.

http://www.alexa.com
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Fig. 3. distlen2,n | n ∈ {2; 10} for malicious and legitimate dataset

the similarity (or dissimilarity) between two probabilistic distributions P and
Q. In continuous space, the definition is:

H2(P,Q) =
1

2

∫ (√
dP

dλ
−
√

dQ

dλ

)2

dλ (8)

The equivalent function in discrete space distribution is given by:

H2(P,Q) =
1

2

∑
x∈P∪Q

(√
P (x) −

√
Q(x)

)2

(9)

It’s an instance of f-divergence as well as KL-divergence metric. Hellinger Dis-
tance is symmetric and bounded on [0; 1] where 1 is a total dissimilarity (P ∩Q =
∅) and where 0 means that P and Q have the same probabilistic distribution.

This metric is preferred rather than more usual metric such as Jaccard Index
or KL-divergence. Jaccard Index only considers the presence or not of an element
in two datasets but never considers the probability associated to an element. KL-
divergence metric is an non-symmetric measure as well as unbounded function
([0;+∞]). Finally, KL-divergence requires that Q includes at least the same
elements of P : ∀iP (i) > 0 ⇒ Q(i) > 0. This constraint may not be satisfied with
our datasets.

The malicious dataset and legitimate datasets are randomly split in five
smaller subsets, respectively mal-x and leg-x | x ∈ {1; 5}, of equivalent size
(∼ 10000 domains). Table 3 shows the Hellinger Distance for TLDs distribu-
tion between all the subset P1(w). Globally all the TLDs are quite the same
in all subsets (0 < H(P,Q) < 0.15), a clear difference is although present in
H(P,Q) when P and Q are picked from the same dataset (leg/leg or mal/mal,
H(P,Q) ∼ 0.015) or from two different datasets (leg/mal, H(P,Q) ∼ 0.130).
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Table 3. Hellinger Distance for TLDs (leg=legitimate, mal=malicious)

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 0.133 0.136 0.133 0.129 0.134 0.014 0.012 0.013 0.014
mal-2 0.134 0.140 0.135 0.131 0.135 0.014 0.012 0.013
mal-3 0.135 0.139 0.134 0.131 0.136 0.013 0.013
mal-4 0.130 0.136 0.131 0.127 0.132 0.013
mal-5 0.134 0.138 0.132 0.129 0.134
leg-1 0.017 0.017 0.018 0.019
leg-2 0.018 0.020 0.018
leg-3 0.016 0.019
leg-4 0.017

0.0 0.04 0.08 0.12 0.16 0.20

Table 4 considers the words-in-main-domain distribution P2(w). Here, the
distributions are more scattered (0.4 < H(P,Q) < 0.6); however, difference is
higher between subsets created from distinct datasets (H(P,Q) ∼ 0.56) and
subsets of the same dataset. Moreover, we can see that malicious main domains
show more similarity between them (H(P,Q) ∼ 0.44) than legitimate main
domains between them (H(P,Q) ∼ 0.50).

Table 4. Hellinger Distance for words (leg=legitimate, mal=malicious)

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 0.564 0.571 0.561 0.566 0.565 0.446 0.439 0.443 0.438
mal-2 0.565 0.569 0.566 0.571 0.565 0.445 0.447 0.446
mal-3 0.561 0.566 0.563 0.569 0.564 0.448 0.444
mal-4 0.563 0.567 0.558 0.564 0.561 0.447
mal-5 0.564 0.565 0.554 0.555 0.558
leg-1 0.501 0.494 0.490 0.493
leg-2 0.493 0.497 0.496
leg-3 0.490 0.491
leg-4 0.489

0.4 0.44 0.48 0.52 0.56 0.6

Table 5 provides the statistics of the Markov chains for each dataset for
the main domain level. The number of initial states is given by Card(V ) |
∀w ∈ V,#fisrtwordl2,w > 0, the number of states corresponds to Card(W ) |
∀w ∈ W,#wordsl2 ,w > 0 and the number of transitions before implementa-
tion of Laplace smoothing is Card(U2) | ∀(w1, w2) ∈ U2,#biwordsl2,w1,w2 > 0.
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This table strengthens the assertion that words present in malicious main do-
mains are more related together than those present in legitimate main domains,
because Hellinger Distance is lower between malicious subsets compared to legit-
imate subsets despite the higher number of words (states) in the Markov chain
created from the malicious dataset.

These experiments show that our model built on top of blacklist will be able
to generate proactively maliciously registered domains with a limited impact
regarding legitimate ones.

Table 5. Markov Chain statistics for main domain

Metrics Legitimate Malicious

# initial states 14079 14234

# states 23257 26987

# transitions 48609 56286

4.2 Types of Generated Domains

The dataset chosen for the rest of the experiments is the whole malicious dataset
introduced in section 3.1. This dataset is split in two subsets and depending
on the experiment performed, the domains selection technique to compose the
subsets and the number of domains in each subset vary. One of these subsets
is called the training set, from which the features described in section 2.2 are
extracted in order to build the word generation system depicted in Figure 2,
section 2.1. Based on it, new domain names are generated and their maliciousness
is confirmed only if they belong to the second subset called the testing set.

The term probing campaign is defined as the generation of one million of
unique two-level-domains that are checked in term of existence and malicious-
ness. A domain name is considered as existing if it is actually reachable over the
Internet, i.e. it is mapped to an IP address. For each generated domain, a DNS
A request is performed and according to the DNS response status, the domain
name is considered as existing (status = NOERROR) or non-existing (status =
NXDOMAIN). For more information about DNS and its operation, the reader must
refer to [17–19].

The first step of the experiments aims at analyzing the existence and the type
of generated domains. Figure 4 is an histogram depicting the run of five probing
campaigns using a generation model trained on 10% of the malicious dataset,
each of the five complete rectangle represents the number of existing domains
generated. We can see that over one million unique domains probed, between
80,000 and 110,000 so around 10% are potentially reachable over the Internet.
These existing domains are divided in three categories represented distinct filling
pattern in the histograms.

The white one represents the number of wildcarded domains. Domain wild-
carding is a technique that consists in associating an IP address to all possible
subdomains of a domain by registering a domain name such as *.yahoo.com. As
a result all DNS queries sent for a domain containing the suffix yahoo.comwill be



202 S. Marchal et al.

Fig. 4. Distribution of domains discovered
regarding their types
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answered with a NOERROR status DNS response containing always the same IP ad-
dress. This technique is useful to tolerate Internet users typing mistakes, or mis-
spelling of subdomain without any consequence. For instance, DNS requests for
domain such as wwe.yahoo.com, snt.yahoo.com or anyotherlabel.yahoo.com
will return the same IP address. However some TLDs such as .ws, .tk, .us.com,
etc. apply also wildcarding. As a result these TLDs have been identified in order
to discard all generated two-level-domains that contain one of them. We can see
that these domains represent between 75% and 85% (from 60,000 to 90,000) of
the domains discovered.

The remaining part is composed of two other categories. First some do-
mains are registered but lead to websites of domain name resellers such as Go-
Daddy or Future Media Architect. A lot of meaningful domain names belong
to this category, around 4,000 per campaign. Some examples of such domains
are freecolours.com or westeurope.com. Regarding a probing campaign, the
IP addresses obtained through DNS responses are stored and sorted by their
number of occurrences. The IP addresses having more than fifty occurrences
are manually checked to see if they are either related to real hosting or domain
selling. Around fifty IP addresses and ranges have been identified as leading to
domain name resellers. These domains are also discarded in our study, as they
are not likely to be malicious domains. Finally the black part represents the
domains that are unknown and have to be checked to confirm if they are related
to phishing or not. As highlighted in Figure 4, the remaining potential malicious
domains represent only between 15,000 and 20,000 domains out from one million
of generated ones. This reduction is automated and allows discarding a lot of
domain names, which will reduce the overhead of the checking process.
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For domains of the unknown part that are known to be really legitimate or
phishing, a score, MCscore, is calculated. This latter measures the similitude
with the underlying training dataset, which have been used for building the
model. Assuming a two-level-domain w1w2 . . . wn.tld where wi is the ith word
composing the name, wi may have been generated using DISCO from an original
word observed w′

i. MCscore is computed as follows:

MCscore = distfirstword2,w′
1
× simw1,w

′
1
×

n∏
i=1

distbiwords2,wi,w
′
i+1

× simwi+1,w
′
i+1

(10)

The first word probability is multiplied by each probability of crossed transition
in the Markov chain. If some parts are found using DISCO, the similarity score
given in equation (7) is used (simwi,wi = 1 else).

Figure 5 represents the cumulative sums of the ratio of domains (in %) that
have a score lower than x for each kind of label. These curves show that globally
phishing related domain names have a higher MCscore than legitimate ones,
around ten times higher. Even if a high number of domains are labeled as un-
known and some of them are legitimate, it is easy to discard a lot of them in
order to keep a set containing a main part of malicious domains. If we consider
as malicious only the generated domains having a MCscore higher than 0.001,
then 93% of the legitimate domains will be discarded while 57% of the malicious
domains will be kept. This technique can be used to avoid the use of a domain
checking technique, as introduced in 2.1, or to reduce its workload.

4.3 Efficiency and Steadiness of Generation

This section assesses the variation of the efficiency of the malicious domain
discovery regarding the ratio of domains in the testing set and in the training
set. Five probing campaigns are performed with a ratio that varies from 10%
training/90% testing (10/90) to 90% training/10% testing (90/10), the subsets
are randomly made up. Figure 6(a) shows the number of malicious domains
generated regarding the total number of probed names.

On one hand the best result is given by 30% training/70% testing with a total
number of 508 phishing domains discovered. When the testing set size decreases,
there are less domain names candidates that can be found, which implies that
more domains are discovered with 30/70 than 90/10. On the other hand, the
curve representing 10% training/90% testing grows faster, and after only 100,000
probes more than the half (217 domains) of the total number of phishing domains
generated are found. Following the curve’s trend, if more probes are performed, a
reasonable assumption is that more malicious domain names can be discovered.

Figure 6(b) depicts the steadiness of the discovery results. Five probing cam-
paigns are performed for the ratio that yields the best result: 30% training/70%
testing. The training and testing sets are randomly made up and are different for
each campaign. Observations are similar for every tests which lead to discover
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Fig. 6. Number of domains discovered regarding the number of probes

around 500 phishing domains. Moreover, half of the discovered phishing domains
are generated during the first 200,000 generations, highlighting the ability of our
system to generate the most likely malicious domains in priority before being
discarded for next probes.

4.4 Predictability

This experiment evaluates the time between the date when a malicious domain
name can be generated using the generator and the date it is actually blacklisted.
The training set is composed of the 10% oldest blacklisted domains and the
remaining 90% belong to the testing set. The testing set represent 34 months of
blacklisted domains and the training set 4 months. Figure 7 depicts the number
of malicious domain names generated regarding the number of months they are
actually blacklisted after their generation (m+x). A large quantity of generated
malicious domains appears in first four months after their generation, 14 in
the two following months and 23 more in the next two months. This shows
that domain name composition follows fashion schemes because more malicious
domains that are discovered appear just after the ones that are used to train the
model. However, it is worth noting that such domains continue to be discovered
in the present showing that even old datasets can be useful to generate relevant
malicious domains

4.5 Strategy Evaluation

We have described in section 2 the two core building blocks for generating do-
main names: the Markov chain model and the semantic exploration module. The
impact of each module is assessed with respect to four strategies:

• MC: the Markov chain model alone.
• MC + 5 DISCO: the Markov chain model and for each selected state of the
Markov chain the five most related words, regarding DISCO, are tested.
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• MC + 5/20 DISCO: the Markov chain model and for each selected state of
the Markov chain five words randomly picked from the twenty most related
words, regarding Disco, are tested.

• MC + 5/50 DISCO: the Markov chain model and for each selected state of
the Markov chain five words randomly picked from the fifty most related
words, regarding Disco, are tested.

The objective of this assessment is to identify the best tradeoff between the suc-
cess rates in discovering rogue domain names with respect to the computational
effort.

Figure 8 shows the number of actual generated malicious domain names with
respect to the number of probes performed over a probing campaign. The same
training set is used to build the generation model for the four different probing
campaigns. It clearly comes out that the Markov chain model alone yields the
best results in term of number of malicious domain names discovered with a to-
tal of 370. However even if DISCO strategies are able to generate only between
57 and 90 malicious domain names over these campaigns depending on the tech-
nique, between 79% and 85% of these generated domains are unique, i.e. none of
the other strategies are able to find them. If a global probing is targeted all the
part of the generation module must be used in order to discover the maximum of
phishing related domain names. However, the Markov chain model is sufficient
to find out domains over a short period of time.

5 Related Work

Because of their essential role, anti-phishing and identification of malicious do-
main are increasingly popular and addressed in several previous works. Two ma-
jor approaches exist: methods based on blacklists and heuristics-based methods.
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Heuristic-based approaches rely on classification algorithms to identify
whether a domain is malicious or not, based on features extracted from dif-
ferent sources. The leveraging of machine learning techniques to classify on the
fly, domains as malicious or benign is widely used, with either batch methods
such as SVM, Naive Bayes, Logistic Regression(like in [2–4]), or on-line classifi-
cation algorithms such as Confidence Weighted (CW), Adaptive Regularization
of Weight (AROW), Passive-Aggressive (PA) (see [5, 9, 15]).

Their differences are mainly related to the feature set. In [2–4], the building
of classification models relies on passively gathered DNS queries to figure out
predominantly malware domains involved in botnet communications. However
for phishing detection purposes, it can be either host-based features (WHOIS
info, IP prefix, AS number) in [15] or web page content-based features in [25].

The majority of features are however extracted directly from URLs. These
can be for instance the type of protocol, hostname, TLD, domain length, length
of URL, etc. In [5, 9, 11], the authors particularly focus on the tokens that
compose a complete URL, which includes the domain as well as the path and
the query. In these studies, the classification is based on the relative position
of these tokens (domain or path level for instance) or the combination of these
tokens (token1.token2/token3/token4?token5=token6 ). The conclusion is that
tokens that occur in phishing URLs belong to a limited dictionary and tend to
get reused in other URLs. Moreover, Garera et al., in [8], are the first to use the
occurrences of manually defined words (secure, banking, login, etc.) in URL as
features. In [13], Le et al. use both batch and on-line classification techniques to
show that lexical features extracted from URLs are sufficient to detect phishing
domains. Even also based on lexical features, our work is different as we consider
meaningful words that compose the same label of a domain name. Moreover, our
work consists in a predictive and active discovery rather than classification of
domain names observed on network traffic.

There have been other works taken advantage of URL based lexical analysis
for different purposes. In [27], statistical measures are applied to alphanumeric
characters distribution and bigrams distribution in URLs in order to detect
algorithmically generated fluxing domains. The same technique is used in [6]
to detect DNS tunnels and, in [26], Xie et al. generate signature for spamming
URLs using Regular Expressions. URLs related to the same spam campaign are
grouped for creating a signature based on regular expression.

This work is close to our approach but only lead to disclose domain names
related to a specific spam campaign from which some domain names have been
already observed. Our approach is more general and allows discovering new
phishing domains that have no apparent relations with previous ones.

Blacklisting approaches consist in the partially manual construction of a
list of malicious URLs that will be used by web browser or e-mail client in
order to prevent the users to access them. Due to their short lifetime, the early
identification of phishing websites is paramount, as a result several methods
have been proposed to avoid reactive blacklisting and develop more proactive
methods. In [10], Hao et al. analyze early DNS behavior of newly registered
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domains. It is demonstrated that they are characterized by DNS infrastructure
pattern and DNS lookup patterns monitored as soon as they are registered, such
as either a wide scattering of resource records across the IP address space in
only few regions, or resource records that are often hosted in tainted autonomous
systems. A very close approach is used in [7] to build proactive domain blacklists.
Assuming a known malicious domain, zone information is mined to check if other
domains are registered at the same time, on the same name server and on the
same registrar. However, this approach cannot be widely applied because domain
zone information is not always available and needs a prior knowledge.

Predictive blacklisting is also addressed in [28] where it’s assumed that a host
should be able to predict future attackers from the mining of its logs. Hence,
a host can create its own customized blacklist well fitted to its own threats.
The composition of this blacklist relies also on other machines’ logs that are
considered as similar. This similarity score is calculated using the number of
common attackers between two victims and stored into a graph explored using a
PageRank algorithm to estimate whether a domain is likely to conduct an attack
against a particular victim or not. The similarity calculation is refined in[23].

Another proactive blacklisting approach to detect phishing domains is ad-
dressed through Phishnet in [20]. This work is the closest to ours, the idea is
to discover new phishing URLs based on blacklist of existing phishing URLs.
As in [26], URLs are clustered based on their shared common domain names,
IP addresses or directory structures, then a regular expression is extracted from
each cluster. The variable part of regular expression is exploited to generate new
URLs instead of only compare existing URLs to extracted patterns like in [26].
Though this method is more proactive than the previous ones, it is only able
to disclose URLs related to already blacklisted URLs that are likely to belong
to the same phishing attack. Whereas these URLs are part of a very small pool
of domains, our approach is capable to extend the knowledge about distinct
phishing attacks. Therefore these approaches are quite complementary.

Finally we have already treated and proved the efficacy of algorithmic domain
generation based on Markov chain in [24]. We apply this technique on bigrams
in order to perform a discovery of all the subdomains (www, mail, ftp) of a given
domain (example.com). We extend this approach in [16], based on an existing
list of subdomains, we leverage semantic tools and incremental techniques to
discover more subdomains.

6 Conclusion and Future Work

This paper introduces an efficient monitoring scheme for detecting phishing sites.
The main idea consists in generating a list of potential domain names that might
be used in the future by an attacker. This list can be checked on a daily basis to
detect the apparition of a new phishing site. The list is generated using language
models applied to known ground truth data. We have proposed a novel technique
to generate domain names following a given pattern that can be learned from
existing domain names. This domain generation leverages a Markov chain model
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and relevant lexical features extracted from a semantic splitter. Domain specific
knowledge is added from semantic tools. The efficiency of this generation tool is
tested on the real world datasets of phishing domain names. We proved that our
method is able to generate hundreds of new domain names that are actually re-
lated to phishing and appear to be in use in the period following their generation.
To the best of our knowledge, our approach is the only one to propose proactive
generation and discovery of malicious domains, which is complementary to state
of the art approaches that addressed proactive blacklisting of URLs.

In future works, the remaining part of the architecture, the domain checker, will
be implemented shortly. Furthermore, the feedback from this checker will be used
to adapt the Markov chain transition probability through reinforcement learning
in order to strengthen the generation model. The code is available on request.
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Abstract. Electricity theft is estimated to cost billions of dollars per
year in many countries. To reduce electricity theft, electric utilities are
leveraging data collected by the new Advanced Metering Infrastructure
(AMI) and using data analytics to identify abnormal consumption trends
and possible fraud. In this paper, we propose the first threat model for the
use of data analytics in detecting electricity theft, and a new metric that
leverages this threat model in order to evaluate and compare anomaly
detectors. We use real data from an AMI system to validate our approach.

1 Introduction

The smart grid refers to the modernization of the power grid infrastructure with
new technologies, enabling a more intelligently networked automated system
with the goal of improving efficiency, reliability, and security, while providing
more transparency and choices to electricity consumers. One of the key tech-
nologies being deployed currently around the globe is the Advanced Metering
Infrastructure (AMI).

AMI refers to the modernization of the electricity metering system by replac-
ing old mechanical meters by smart meters. Smart meters are new embedded
devices that provide two-way communications between utilities and consumers,
thus eliminating the need to send personnel to read the meters on site, and
providing a range of new capabilities, such as, the ability to monitor electric-
ity consumption throughout the network with finer granularity, faster diagnosis
of outage—with analog meters, utilities learned of outages primarily by con-
sumer call complaints—automated power restoration, remote disconnect, and
the ability to send information such as dynamic pricing or the source of elec-
tricity (renewable or not) to consumers, giving consumers more—and easier to
access—information about their energy use.

Smart meters are, by necessity, billions of low-cost commodity devices, with
an operational lifetime of several decades and operating in physically insecure
locations [16]. Hardening these devices by adding hardware co-processors and
tamper resilient memory might increase the price of smart meters by a few
dollars, and because utilities have to deploy millions of devices, the reality of the
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market is that these additions are not considered cost-effective in practice, and
are not even recommended as a priority [21].

Therefore, while some basic protective measures have been developed (tamper-
evident seals, secure link communications), they are not enough to prevent suc-
cessful attacks during the meter lifespan. In addition to vulnerabilities identified
by security researchers [17,9]—some of them allowing rogue remote firmware
updates [20]—hacked smart meters have been used to steal electricity, costing a
single U.S. electric utility hundreds of millions of dollars annually, as reported
by a cyber-intelligence bulletin issued by the FBI [14]. The FBI report warns
that insiders and individuals with only a moderate level of computer knowledge
are likely able to compromise and reprogram meters with low-cost tools and
software readily available on the Internet. The FBI report also assesses with
medium confidence that as smart grid use continues to spread throughout the
country, this type of fraud will also spread because of the ease of intrusion and
the economic benefit to both the hacker and the electric customer.

Detecting electricity theft has traditionally been addressed by physical checks
of tamper-evident seals by field personnel and by using balance meters [10].
While valuable, these techniques alone are not enough. Tamper evident seals
can be easily defeated [5] and balance meters can detect that some of the cus-
tomers connected to it are misbehaving, but cannot identify exactly who they
are. Despite the vulnerabilities of smart meters, the high-resolution data they
collect is seen as a promising technology to improve electricity-theft detection.
In general, utilities are gathering more data from many devices and they are
leveraging big data analytics [15] to obtain better situational awareness of the
health of their system. One of the key services offered by Meter Data Manage-
ment (MDM) vendors for turning big data into actionable information is called
revenue assurance, where data analytics software is used by the utility on the
collected meter data to identify possible electricity theft situations and abnor-
mal consumption trends [13]. Big data analytics is thus a new cost-effective way
to complement the use of balance meters (which are still necessary to detect
when electricity thieves connect directly to the power distribution lines instead
of tampering with the meter) and physical personnel checking for tamper-evident
seals.

In this paper we focus on the problem of data analytics in MDM systems for
detecting electricity theft. While some MDM vendors are already offering this
functionality, their methods and algorithms are not publicly available, so it is
impossible to evaluate the effectiveness of these tests. In addition, the few papers
available on the topic have limitations [18,19,11,6]: (1) They do not consider a
threat model, and therefore, it is not clear how the detection algorithm will
work against sophisticated attackers, (2) they have lower resolution data, and
therefore they tend to focus on nonparametric statistics, instead of leveraging
advanced signal processing algorithms, and (3) they assume a dataset of attack
examples to test the accuracy of the classifiers, and therefore the evaluation will
be biased depending on how easy it is to detect attacks available in the database,
and the effectiveness of the classifier will be unknown to unseen attacks.
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In this paper we make the following contributions: (1) We introduce an at-
tacker model for anomaly detectors in MDM systems. Previous work never as-
sumed an intelligent attacker and therefore might have easily been evaded by an
advanced attacker. This threat model is particularly important in digital meters,
as an attacker with access to a tampered meter can send an arbitrary fine-grained
attack signal with a precision that was not previously available with mechani-
cal attacks to meters (such as using powerful magnets to affect the metrology
unit). (2) We introduce a new metric for evaluating the classification accuracy
of anomaly detectors. This new metric takes into consideration some of the fun-
damental problems in anomaly detection when applied to security problems: (a)
the fact that attack examples in a dataset might not be representative of fu-
ture attacks (and thus a classifier trained with such attack data might not be
able to detect new smart attacks), and (b) in many cases it is hard to get at-
tack data for academic studies—this is particularly true for SCADA data and
data from sensor and actuators in industrial or power grid systems—therefore
we argue that we have to avoid training and evaluating classifiers with imbal-
anced and unrepresentative datasets. (3) Using real AMI data (6 months of 15
minute reading-interval for 108 consumers) provided by an utility, we evalu-
ate the performance of electricity-theft detection algorithms, including a novel
ARMA-GLR detector designed with the goal of capturing an attack invariant
(reducing electricity bill) in the formal model of composite hypothesis testing.

2 Evaluation of Classifiers in Adversarial Environments

In this section we describe a new general way of evaluating classifiers in adver-
sarial environments. Because this framework can be used for other problems,
we introduce the model in a general classification setting. We focus on two top-
ics: (1) adversarial classification, or how to evaluate the effectiveness of a
classifier when the attacker can create undetected attacks, and (2) adversarial
learning, or how to prevent an attacker from providing false data to our learning
algorithm.

2.1 Adversarial Classification

In machine learning, classifiers are traditionally evaluated based on a testing
dataset containing examples of the negative (normal) class and the positive
(attack) class. However, in adversarial environments there are many practical
situations where we cannot obtain examples of the attack class a priori. There
are two main reasons for this: (1) by definition, we cannot obtain examples of
zero-day attacks, and (2) using attack examples which are generated indepen-
dently of the classifier implicitly assumes that the attacker is not adaptive and
will not try to evade our detection mechanism.

In this paper we argue that instead of using a set of attack samples for evalu-
ating classifiers, we need to find the worst possible attack for each classifier and
evaluate the classifier by considering the costs of this worst-case attack.
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Model and Assumptions: We model the problem of evaluating classifiers by
generating worst-case attack patterns as follows:

1. A random process generates observations x ∈ X . These observations are the
realization of a random vector X with distribution P0.

2. We assume x is only observed by a sensor (e.g., a smart meter), and the
sensor sends y to a classifier. Thus while P0 is known to the world, the
specific sample x is only known to the sensor.

3. The sensor can be in one of two states (1) honest, or (2) compromised. If the
sensor is honest, then y = x. If the sensor is dishonest, then y = h(x), where
h : X → X is a function such that the inferred probability distribution P1 for
Y satisfies a Relation (the attacker intent): g(X) R g(Y ) (e.g., E[Y ] < E[X ]
where E[X ] is the expectation of the random variable X).

4. The classifier f : X → {n, p} outputs a decision: A negative n for concluding
that y is a sample of P0 and a positive p to decide that y is a sample of P1.

A Metric for Evaluating Classifiers in Adversarial Environments: In
order to generate attacks we propose a cost function C(xi, yi) to generate attack
vectors yi by modifying the original value xi such that yi is the attack that
maximizes C(xi, yi) while being undetected. In particular, we assume we are
given:

1. A set N = {x1, . . . , xm} ∈ Xm where each xi is assumed to be a sample from
P0. Note that xi ∈ X . A common example is X = R

d, i.e., each observation xi

is a vector of real values with dimension d. In a smart-metering application
this can mean that xi corresponds to the meter readings collected over a
24-hour period.

2. A value α ∈ [0, 1] representing an upper bound on the tolerable false alarm
probability estimate in the set N .

3. A cost function C : X × X → R representing the cost of a false negative.
4. A set of candidate classifiers F = {f0, . . . , fq}, where each classifier is pa-

rameterized by a threshold τ used to make a decision. If we want to make
explicit the threshold used by a particular classifier we use the notation fi,τi .

Calculating the Adversarial Classification Metric

1. ∀fi,τi ∈ F find the threshold that configures the classifier to allow a false
alarm rate as close as possible to the upper bound α. If no such threshold
exists, then discard the classifier (since it will always raise more false alarms
than desired).

τi∗ = argmaxτi∈R Pr[fi,τi(X) = p|X ∼ P0] (1)

subject to: Pr[fi,τi(X) = p|X ∼ P0] ≤ α (2)

This formal definition can be empirically estimated by the following equa-
tions:

τi∗ = argmax
τi∈R

|{x∈N :fi,τi (x)=p}|
|N| (3)

subject to:
|{x∈N :fi,τi (x)=p}|

|N| ≤ α (4)
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2. Among all classifiers that satisfy the false alarm constraint, find the worst
possible undetected attacks for each of them. Let y = h(x) denote the attack
strategy based on observation x, then the optimal attack strategy requires
an optimization over the functional space h:

C(fi) = maxh E[C(X,h(X))]

subject to: fi,τi∗(h(x)) = n if fi,τi∗(x) = n and h(x) = x if fi,τi∗(x) = p

Notice that if the negative sample raises a false alarm then the attacker
just forwards this value. While in practice an attacker might want to stay
undetected at all times (∀x, f(h(x)) = n), this would lower the attacker’s
gain (e.g., the amount of electricity the attacker can steal). We are therefore,
considering the most conservative case where we allow the attacker to steal
more without being detected (we count alarms generated by h(x) = x as
false alarms, and therefore allow the attacker to remain undetected with this
aggressive attack). Given a dataset of negative examples, we can empirically
estimate this functional optimization problem by the following equations:

C(fi) = max[y1,...,ym]∈Xm

∑
xi∈N C(yi, xi)

Subject to: fi,τi∗(yi) = n if fi,τi∗(xi) = n and yi = xi if fi,τi∗(yi) = p

3. The best classifier fi∗ is the one with the minimum cost for the most costly
undetected attack:

fi∗ = arg min
fi∈F

C(fi) (5)

2.2 Adversarial Learning

Another fundamental evaluation criteria should be the resilience and counter-
measures deployed for adversarial learning. In general, the idea of learning some
basic properties of a random process and then using them to detect anomalies
sounds intuitive; however, in several cases of interest the random process may be
non-stationary, and therefore we might need to retrain the classifier periodically
to capture this concept drift.

Retraining a classifier opens the vulnerability that a smart attacker might
force us to learn false normal models by poisoning the dataset. For our smart
meter example, the attacker can send fake sensor measurement readings that
lower average consumption but that do not raise alarms (when classified) so
they can be used as part of the new training set. Over a period of time, our new
estimated probability models will be different from the real process generating
this data. We refer to these attacks as contamination attacks because they inject
malicious data used to train the classifiers.

To evaluate the susceptibility of classifiers to contamination attacks, we study
how these attacks can be generated and discuss a countermeasure in Section 4.2.
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3 Electricity-Theft Detectors and Attacks

AMI systems collect and send electricity consumption data to the utility com-
pany several times per day. Electricity consumption data for a consumer is a time
series Y1, Y2, . . . , where Yi is the electricity consumption of the utility customer
in Watt-hours [Wh] from time period between measurement Yi−1 to measure-
ment Yi. The time between recorded measurements can change between different
AMI deployments, as there is no standard defining the granularity of these mea-
surements; however, a common measurement frequency is to take a recording
every 15 minutes.

If an attacker obtains access to the meter, or is able to impersonate it, the
attacker can send any arbitrary time series Ŷ1, Ŷ2, . . . back to the utility. Depend-
ing of the goal of the attacker, this false time-series can have different properties.
In this paper we focus on attacks that electric utilities are most interested in
detecting: electricity theft.

The goal of an attacker who steals electricity is to create a time series Ŷ1, Ŷ2, . . .
that will lower its energy bill. Assuming the billing period consists of N mea-
surements, the false time series should satisfy the following attack invariant
for periods of time where electricity is billed at the same rate:

N∑
i=1

Ŷi <

N∑
i=1

Yi. (6)

While one of the goals of the smart grid is to provide more flexible tariffs, these
demand-response systems are still experimental and are currently deployed in
trail phases. In addition, while the electric utility we are working with has a
Time Of Use (TOU) program, all the traces we received were of their flat rate
program (most of their customers do not take advantage of TOU). Therefore,
while in future work we might need to consider other utility functions for the
attacker (e.g., minYt

∑
CosttYt) for the current work we focus on an attacker

who only wants to minimize
∑

Yi. The main goal of this paper is to establish a
sound evaluation methodology that can be extended for different cost-models.

In this section we propose several electricity-theft detectors to capture this
attack invariant. While these detection algorithms have been studied extensively
in the statistics and machine learning literature, this is the first work that studies
how to apply them for electricity-theft detection.

To use the concept of worst possible undetected attack as outlined in Section
2, we define the following objective for the attacker: the attacker wants to send
to the utility a time-series Ŷi that will minimize its electricity bill: minŶi

∑
Ŷi,

subject to the constraint that a detector will not raise an alarm with Ŷi. We as-
sume a very powerful attacker who has complete knowledge about each detection
algorithm, the parameters that a detector uses, and has a complete historical
data recorded on his own smart meter. This is indeed a very strong adversary
model and might not represent the average risk of a utility; however, we want to
build a lower-bound on the operational performance of the classifiers. The evalu-
ation of classifiers using machine-learning and statistics in adversarial conditions
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has been historically performed under fairly optimistic assumptions [22], there-
fore we would like to motivate future research for evaluating attack-detection
algorithms in worst-possible scenarios so their performance is not overstated.

3.1 Average Detector

One of the most straightforward ways to construct an electricity-theft detector
is to use an average of the historical electricity consumption under the same
conditions. This is in fact the way utilities used to detect metering abnormalities
pre-AMI systems [12]: given a gross measurement (e.g., average or total power
consumption for a month) Y , determine if Y is significantly lower than the
historical average.

With AMI systems utilities can now obtain a fine grained view of the con-
sumption pattern, where

∑N
i=1 Yi = Y and N is the number of measurements

to compute the average. To use this electricity-theft indicator in AMI systems
we can calculate Ȳ = 1

N

∑N
i=1 Yi and then raise an alarm if Ȳ < τ , where τ is a

variable threshold.
Our average detector implementation calculates the detection threshold τ as

follows. We consider a detector to handle an average of daily record.

1. Given a training dataset, say T days in the most recent past, we can compute
T daily averages, Di (i = 1, . . . , T ).

2. τ = mini(Di)

Determining the threshold in this way, we do not encounter any false positives
within the training dataset.

An attacker equipped with knowledge of τ and our implementation can mount
an optimal attack by simply sending τ as Ŷi all the day. Even though this attack
results in an entirely “flat” electricity usage pattern, the average detector cannot
detect this anomaly.

3.2 ARMA-GLR

One of the advantages of fine-grained electricity consumption patterns produced
by the smart grid is that we can leverage sophisticated signal processing al-
gorithms to capture more properties of normal behavior. We selected Auto-
Regressive Moving Average (ARMA) models to represent a normal electricity
consumption probability distribution p0 because ARMA processes can approx-
imate a wide range of time-series behavior using only a small number of pa-
rameters. ARMA is a parametric approach, and has the potential to perform
better than nonparametric statistics if we can model p0 and the optimal attack
appropriately.

We train from our dataset an ARMA probability distribution p0 (we used the
auto.arima function in the forecast library in R [2] to fit ARMA models of our
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data by using the Yule-Walker equations and the Akaike information criteria)
defined by the following equation:

Yk =

p∑
i=1

AiYk−i +

q∑
j=0

BjVk−j (7)

where V is white noise distributed as N (0, σ).
An attacker will choose a probability distribution that changes the mean value

of the sequence of observations. Therefore the attack probability distribution (pγ)
is defined by

Yk =

p∑
i=1

AiYk−i +

q∑
j=0

Bj(Vk−j − γ) (8)

where γ > 0 is an unknown value and quantifies how small will the attacker
select Eγ [Y ] (the expectation of Y under probability distribution pγ).

Given Y1, . . . , Yn, we need to determine what is more likely: is this time series
distributed according to p0, or pγ? To address this problem we prove the following
theorem.

Theorem 1. Among all changes that lower the mean of an ARMA stochastic
processes, the optimal classification algorithm in the Neyman-Pearson sense is
to raise an alarm if ε̄2 is greater than a threshold τ : where ε̄ = 1

n

∑n
i=1 εi, εk is

the innovation process

Yk − E0[Yk|Y1, . . . , Yk−1] where E0 is the expectation under probability p0, (9)

and where we assume ε̄ is smaller than zero. (If ε̄ ≥ 0 then we decide that there
is no attack.)

Proof. An optimal classification algorithm in the Neyman-Pearson sense refers
to a classifier that given a fixed false alarm rate, will maximize the probability of
detection. Given two probability distributions p0 and pγ defining the distribution
of Yi under each class, the optimal classifier in the Neyman-Pearson sense is a
likelihood ratio test:

ln
pγ(Y1, . . . , Yn)

p0(Y1, . . . , Yn)
= −γ

σ

n∑
i=1

(εi +
γ

2
) (10)

However, we do not know the value of γ as an attacker can choose any arbitrary
value. Therefore we need to use the Generalized Likelihood Ratio (GLR) test to
find the maximum likelihood estimate of γ given the test observations Y1, . . . , Yn.

ln
supγ>0 pγ(Y1, . . . , Yn)

p0(Y1, . . . , Yn)
= max

γ>0

n∑
i=1

(− εiγ

σ
− γ2

2σ
) (11)
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To find the maximum (assuming the constraint γ > 0 is not active):

∂f

∂γ
=

n∑
i=1

(− εi
σ

− γ

σ
) = 0 which implies γ = −

n∑
i=1

εi
n

= −ε̄ (12)

as long as γ > 0 (i.e., the optimization constraint is not active).
Therefore, the final GLR test (if ε̄ < 0) is:

ε̄

σ

n∑
i=1

(εi − ε̄

2
) =

ε̄2

σ
(n− 1

2
) (13)

and since 1
σ (n− 1

2 ) is constant for the test, we obtain our final result.

By using one-step-ahead forecast, we calculate the innovation process εi. The
threshold τ is determined based on the maximum ε̄2 observed in the training
dataset. The optimal attack strategy is as follows:

1. Calculate E =
√
τ

2. Send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi−1]− E

where E0[Yi|Ŷ1, . . . , Ŷi−1] is the predicted ith value based on the observed mea-
surements (including crafted ones) by the ARMA model.

3.3 Nonparametric Statistics

A concern regarding the ARMA-GLR detector is that it is only guaranteed to
be optimal if ARMA processes can be used to model accurately normal elec-
tricity consumption behavior and attack patterns. To address these concerns
we evaluate two more algorithms: nonparametric statistics (in this section) and
unsupervised learning (in the following section).

Nonparametric statistics are robust to modeling errors: they have better clas-
sification accuracy when our model assumptions for the time-series is not ac-
curate enough. This is a particularly important property for security problems,
as we generally do not have good knowledge about the probability distribution
properties of attacks.

A number of nonparametric algorithms have been designed to detect changes
in the mean of a random processes. In this work we consider EWMA
(Exponentially-weighted Moving Average) control chart [1] and Non-parametric
CUSUM [8]. Because of space constraints and the fact that nonparametric test
did not perform well in our experimental results, we omit the implementation
details in this section and just give a brief overview of each detector and our
attack.

A detector based on EWMA chart can be defined as EWMAi = λYi + (1 −
λ)EWMAi−1 where λ is a weighting factor and 0 < λ ≤ 1 and Yi is one
of the time series measurements (i.e. meter readings). An alarm is raised if
EWMAi < τ , where τ is a configurable parameter. An attacker with knowl-
edge of τ can create an attack as follows: While EWMAi−1 > τ , send Ŷi =
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MAX(0, τ−(1−λ)EWMAi−1

λ ). When EWMAi−1 = τ , send Ŷi = τ . The idea here
is that, before the EWMA statistic hits the threshold, an attacker attempts to
reduce the meter-reading value as much as possible, and once it reaches τ , the
attacker sends τ .

On the other hand, the Non-parametric CUSUM statistic for detecting a
change in the mean of a random process is defined by Si = MAX(0, Si−1 +
(μ − Yi − b)) (i = 1, . . . , N), where μ is the expected value of the time-series,
and b is a “slack” constant defined so that E[|μ − Yi| − b] < 0 under normal
operation. An alarm is raised if Si > τ . Our attack against this CUSUM-based
detector is as follows: Calculate M = τ+Nb

N and send Ŷi = μ − M . Note that
this attack can take advantage of the total margin calculated as τ +Nb.

3.4 Unsupervised Learning

One of the most successful algorithms for anomaly detection is the Local Outlier
Factor (LOF) [7]. In our experiments we used RapidMiner [3] to calculate LOF
scores. A LOF detector is implemented as follows:

1. Create a vector containing all measurements of a day to be tested in order,
Vtest = {Y1, . . . , YN} where N is the number of measurements per day.

2. For all days in a training dataset, create vectors in the same way, Vi =
{Xi1, . . . XiN} (i = 1, . . . , T ).

3. Create a set containing Vtest and all Vis, and apply LOF to this set.
4. If LOFtest < τ where LOFtest is a score corresponding to Vtest, conclude

Vtest is normal and exit.
5. If Ȳ (= 1

N

∑N
i=1 Yi) <

1
NT

∑T
i=1

∑N
j=1 Xij , raise an alarm.

Because a high LOF score just implies that the corresponding data point is
considered an outlier, we can not immediately conclude that high LOF score
is a potential energy theft. In order to focus on detecting energy theft we only
consider outliers with lower than average energy consumption.

While we are not able to prove that the following attack against our LOF
detector is optimal because of the complexity of LOF, in the experimental section
we show how our undetected attack patterns for LOF were better than the
optimal attacks against other algorithms.

1. Among daily records in the training dataset whose LOF scores are less than
τ , pick the one with the minimum daily sum, which we denote {Y ∗

1 , . . . , Y
∗
N}.

2. Find the maximum constant B such that {Ŷ1, . . . , ŶN}, where Ŷi = Y ∗
i −B,

does not raise an alarm.
3. Send Ŷi.

4 Experimental Results

We use real (anonymized) meter-reading data measured by an electric utility
company during six months. The meter readings consisted of 108 customers
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with a mix of residential and commercial consumers. The meter readings were
recorded every 15 minutes. Because our dataset contains measurements that
were sent immediately after installation, we assume the meter readings during
this period are legitimate.

4.1 Adversarial Evaluation: Cost of Undetected Attacks

To complete the evaluation proposed in Section 2, we now define the cost function
C as follows:

C(Y, Ŷ ) = MAX(

N∑
i=1

Yi − Ŷi, 0)

where Y = {Y1, . . . , YN} is the actual electricity usage and Ŷ = {Ŷ1, . . . , ŶN} is
the fake meter reading crafted by an attacker.

Note that, if the actual usage is very small, the term
∑N

i=1 Yi− Ŷi can become
negative, which means that an attacker will pay more money. We assume that a
sophisticated attacker can turn the attack off and let real readings go unmodified
when the actual electricity consumption is expected to be lower than the crafted
meter readings. Under this strategy, the cost is always positive or equal to 0.

There are a number of ways to configure an electricity-theft detector. Ideally
we would like to train anomaly detections with seasonal information, but given
that our data only covers half a year, experiments in this section focus on a
setting where electricity theft detectors are re-trained daily based on the last
T -days data.

The experiments are conducted as follows. For each customer,

1. Set i = 0
2. Pick records for 4 weeks starting at the ith day as a training dataset (i.e.

T = 28).
3. By using this training data set, compute parameters, including τ .
4. Pick a record of a day just after the training dataset as testing data.
5. Test the data under the detection model trained to evaluate false positive

rate. If the result is negative (i.e. normal), attacks are mounted and the cost
of the undetected attack is calculated.

6. Increment i and go back to Step 2.

Given the limited set of data we had, finding the optimal training length is
outside the scope of this work. We chose a 4-week sliding window because we
saw on preliminary results that it gave us a good trade-off between average
loss and false alarms. As we obtain more data, we plan to consider in future
work year-long datasets so we can fit seasonal models into our experiments and
analyze in-depth the optimal training length.
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Fig. 1. Trade-off between false positive rate (the probability of false alarm) and average
cost per attack

For each detector, we conducted 2,808 tests using the dataset of 108 customers,
and for the cases that were claimed negative, we mounted attacks. The results
are summarized in the trade-off curves in Fig. 1. The average cost per attack is
calculated by dividing the total cost by the number of attacks performed.

As can be seen from the figure, the ARMA-GLR detector worked well. The
average detector also is effective, but when the false positive rate is around
5%, its cost is higher than ARMA-GLR by approximately 1 KWh. It was some-
what surprising that the average detector outperformed the two online detectors:
CUSUM and EWMA. One of the problems of these detectors is that they are
designed to detect changes in a random process as quick as possible, and while
this might have advantages for quick detection, it forced us to set very high
thresholds τ to prevent false alarms in the 4-week-long training dataset. Detec-
tors like ARMA-GLR and the average detectors on the other hand, smooth out
sudden changes and are not susceptible to short-term changes of the random
process. The cost of the LOF detector is the largest for all false positive rates
evaluated.

Monetary Loss Caused by Undetected Electricity Theft. While assign-
ing monetary losses to computer attacks is a difficult problem, one of the ad-
vantages of the dataset we have is that our data is directly related to the source
of revenue of the utility company, and thus, it is easier to quantify the costs of
potential attacks.

Using the electricity consumption rate charged by the utility company during
the period of time we have available (while the utility company offers time-of-use
prices, the tested customers belong to the flat rate program) we calculated that
the (lower-bound) average revenue per-customer per-day is �1.256 dollars.
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(a) Average customer
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(b) Customer with largest consumption

Fig. 2. Estimated annual loss over # of compromised meters with 5% false positive
rate. Notice that the x and y axes are in log-scales.

From the experimental results, we picked one result whose false positive rate
in the testing dataset is nearly 5% for each detector (we cannot achieve exact
5% in all detectors), and then, we calculated the average monetary loss for
optimal attacks per-customer per-day. The result is summarized in Table 1. 5%
false positive rate may seem too high, but utilities do not have investigate them
equally. Instead, they could choose to focus on large-consumption customers to
protect major portion of their revenue.

Table 1 shows that (at 4.2% false alarm rate), ARMA-GLR can protect 62% of
the revenue of the utility against optimal attacks, while the remaining detectors
fair much worse, most of them even protecting less than 50% of the revenue at
higher false alarm rates.

While in practice detecting electricity theft is a much more complex prob-
lem (as mentioned in the introduction it involves the use of balance meters and
personnel inspections), and the anomaly detection tests considered in this pa-
per should only be considered as indicators of theft, and not complete proof
of theft, we believe these numbers are helpful when utility companies create a
business case for investments in security and revenue protection. For example,
we can study the average losses as the number of compromised meters increases
(Fig. 2(a)). In this example we notice that the losses reported in studies about
electricity theft [14,4] would require about 10,000 randomly compromised me-
ters. However, if we look at the losses caused by the top electricity consumers
(commercial meters) (Fig. 2(b)), the same amount of losses can be achieved by
about 100 compromised meters (or close to 10,000 compromised meters if we use
ARMA-GLR detectors). While prices of electricity vary globally, we can infer
that to achieve the losses previously reported, a large portion of hacked meters
must correspond to large commercial consumers.
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Table 1. Monetary loss caused by un-
detected electricity theft (5% false pos-
itive rate)

Detector FP Rate Average Loss Revenue Lost

Average 0.0495 �0.55 43%
EWMA 0.0470 �0.852 68%
CUSUM 0.0491 �0.775 62%
LOF 0.0524 �0.975 77%

ARMA-GLR 0.0423 �0.475 38%
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Fig. 3. Average loss ratio under
contamination attack

4.2 Adversarial Learning: Detecting Contaminated Datasets

To evaluate the impact of contamination attacks discussed in Section 2.2, we
show experiments using the same configuration as the ones used in the previous
section. In this experiment, the optimal undetected attack is fed back into fu-
ture training datasets. Namely, the training dataset of the second day includes
an attack generated in the previous day, the training dataset of the third day
contains two attack patterns generated for the first and the second day, and so
forth.

We ran experiments for three disjoint time periods and calculated their aver-
age. The results are shown in Fig. 3. As can be seen from the plot, we can see
increasing trends for all detectors except the LOF detector, which implies that
LOF is more resilient to contamination attacks. In addition, the impact on the
ARMA-GLR detector is much more significant than for the average detector. An
intuitive explanation for this result is that ARMA models capture trends (un-
like the average detector) therefore if we continue training ARMA models with
a trend towards lower electricity consumption provided by an attacker, then the
ARMA-GLR test will assume that future downward trends are normal.

Possible Countermeasures. A typical contamination attack pattern for the
ARMA-GLR detector has the shape like the one shown in Fig. 4(a), in which
we can see “roughly” a linear decreasing trend. A similar trend can be found in
the case of other detectors. A straightforward way to identify such a pattern is
fitting a linear model for the entire (or part of) a training dataset. We can ex-
pect that the resulting model would have negative slope significantly larger than
other non-hacked customers. We applied linear regression for the contamination
attack pattern of each customer. We also did the same for non-hacked meters for
comparison. The results are summarized in Fig. 5(a). Though all of the attack
patterns have negative slope, Fig. 5(a) shows this alone is not discriminative
enough. Fortunately, we can find a clear difference in determination coefficients
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(R2) shown in Fig. 5(b)—determination coefficients are a measure of how well
can a regression predict future values. High R2, say R2 > 0.6, with negative
slope effectively indicates the existence of attacks. We manually investigated the
attack patterns with low R2 (those lower than 0.6) and found that all of them
hit zero in the middle. For instance, the attack pattern shown in Fig. 4(b) gets
to zero very quickly and remains at zero afterwards. Consecutive zeros is an
indication of an anomaly and many utilities flag these events already, so the
only attacks that will not be detected by the determination coefficients will be
discovered by traditional rules.

The approach using linear regression also worked for other detectors since
optimal attacks against them result in the similar, monotonically decreasing
trends. While a motivated attacker can try to contaminate the training dataset
at a slower pace so it is not detected, this will severely increase its effort and
lower the effectiveness of its attacks.
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(b) Contamination attack with low R2

Fig. 4. Attack patterns under 14-day contamination attack experiment

5 Discussion

5.1 Cross-Correlation among Customers to Improve Detectors

One possible way to identify attacks is to use cross-correlation among customers
in nearby areas, assuming that honest customers exhibit similar trends while
malicious customers have trends different from theirs. To evaluate this strategy,
assuming that all 108 customers in the dataset are in the same neighborhood,
we picked 7 daily consumption patterns from each of 108 customers and calcu-
late cross covariance with the remaining 107 consumption patterns of the same
day. Then, the average and quantile of these 107 cross covariances is calculated.
Similarly, we calculated cross covariance between an attack pattern against the
ARMA-GLR detector (Section 3.2) and original consumption patterns of the
other 107 customers.
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Fig. 5. Distribution of slopes and determination coefficients of contamination attack
patterns under linear model
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Fig. 6. Distribution of average and 75 percentile of cross covariances

While we did not see significant difference in terms of 25 percentile and median
of the 107 cross covariance values, their average and 75 percentile could be useful.
Fig. 6 implies that a crafted attack pattern tends to exhibit a trend different from
many of other customers’ consumption patterns. Even though this alone can not
be considered as definitive indication of attack, we could use it as an additional
factor for electricity theft detection leveraging alarm fusion technologies.

In addition to cross-correlation, we can use outlier detection algorithms such
as LOF [7], to identify outliers, exhibiting different trends in their electricity con-
sumption patterns when compared to other similar consumers. In this direction,
we have conducted some preliminary analyses. We smoothed daily electricity
consumption patterns of a certain day in our dataset by using a low-pass filter.
Then we normalized them since our focus here is anomaly in terms of shape
and trends, not necessarily high or low consumption anomalies. Fig. 7 shows
some samples of consumption patterns with top-5 (greater than 2.4) and low
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(less than 1.0) LOF scores. While inliers with low LOF scores are categorized
into a couple of “typical” usage patterns, like the one shown in Fig. 7(a), we can
identify unique patterns, including “artificially-looking” ones (Fig. 7(b)). We will
continue this area of research in future work.
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(a) Typical patterns identified by LOF
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(b) Outliers identified by LOF

Fig. 7. LOF can Find Unusual Activity Patterns

5.2 Use of Auto-correlation of Residuals in ARMA-GLR Detector

Based on the definition of attack strategy we tested in Section 3.2, we can ex-
pect that the sequence of residuals of generated attack patters have high auto-
correlation, which can be a possible indication of attack. We have also explored
this direction.

One of the possible metrics to quantify such auto-correlation is the Durbin-

Watson statistic, defined as d =
∑N

i=2(ei−ei−1)
2

∑
N
i=1 e2i

, where ei denotes the ith residual

and N is the number of measurements in the series. In general, we can infer that
there exists auto-correlation when d < 1.0. Following this idea, we added the test
of auto-correlation in residuals for the ARMA-GLR detector. Namely, for time-
series patterns that passed the GLR test, we apply the test based on Durbin-
Watson statistics. Using this approach we found that by setting the threshold
for d around 1.0, it can detect all of the attacks mounted against ARMA-GLR as
discussed in 3.2. The empirical relation between threshold values and the false
positive rate, where false positives are counted only based on Durbin-Watson
test (i.e. regardless of the result of ARMA-GLR test), is shown in Fig. 8(a).

Although we found that the use of Durbin-Watson statistics is effective to
detect attacks against the ARMA-GLR detector, unfortunately it is not difficult
to create attacks to defeat this other measure. For instance, a slightly modified
attack strategy shown below would give attackers almost the same gain as the
one he could do in case of the ARMA-GLR detector. When τ is the threshold
used for the ARMA-GLR test,
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1. Calculate E =
√
τ

2. When i is an even number, send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi]− 2E. Otherwise, just
send Ŷi = E0[Yi|Ŷ1, . . . , Ŷi].

This attack generates a sequence of residuals where 0 and 2E appear alterna-
tively and results in having d approximately 2.0, which implies that attack can
not be detected based on the threshold that is usually set around 1.0, while the
total gain of an attacker is almost equal. As can be seen in Fig. 8(b), the trade-
off curves are very similar. The weakness of the Durbin-Watson statistic is that
it only considers first-order auto-correlation, so using higher-order correlation,
such as Breusch-Godfrey Test or Ljung-Box Test, would make attacks harder.
We will continue exploring ways to improve our detectors against sophisticated
attackers in future work.
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(b) Trade-off curves of ARMA-GLR and
ARMA-GLR + Durbin Watson.

Fig. 8. Plots related to Durbin-Watson tests

5.3 Energy Efficiency

One of the goals of the smart grid is to give incentives for users to reduce their
electricity consumption. In some cases (such as the installation of solar panels),
the electric utility will know the consumer has installed these systems because
the utility has to send personnel to approve the installation and allow them to
sell electricity back to the grid. However, in some other cases, the incorpora-
tion of other green-energy technology might be unknown to the utility. In this
case any anomaly detection algorithm will raise a false alarm. The best we can
do is complement anomaly detection mechanisms with other information (e.g.,
balance meters) and in the case of false alarms, retrain new models with the
new equipment in place. These changes are part of the non-stationarity of the
random process we considered in this work.
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6 Conclusions

In this paper we introduced the first rigorous study of electricity-theft detection
from a computer-security perspective. While previous work has introduced other
methods for electricity-theft detection, we argue that the incorporation of a new
adversarial classification metric, and new mechanisms that consider adversarial
learning are fundamental contributions to this growing area.

While all of the results in this paper consider pessimistic scenarios (the most-
powerful attacker), we anticipate that these algorithms will perform much bet-
ter under average cases where the attacker does not know the algorithms or time-
intervals we use for anomaly detection and where it may not be able to compute
optimal attack strategies. In addition, it is important to point out that the pro-
posed anomaly detectors will only output indicators of an attack: a utility com-
pany will not only look at time-series anomalies as sources of attacks, but also at
balance meters, smart meter tampering alarms, and might send personnel for pe-
riodic field monitoring reports. Combining all this information will give the utility
good situational awareness of their network and accurate electricity-theft reports.

We plan to continue extending our work in multiple directions. For instance,
optimal attacks are often artificial: e.g., the attacks against our average detector
are constant values, therefore, adding additional mechanism that take advantage
of the “shape” of the signal would be effective.We also plan to studymore in-depth
cross-correlation among nearby customers as an indicator of anomalies. Another
approach to design classifiers resilient to attackers include the addition of random-
ness so the attacker cannot know at any time the state of the classifier.One example
can be to leverage randomness in the use of training data, so an attacker would not
know the exact configuration of the classifier. Finally, as we obtain datasets con-
taining longer-periods of time, we plan to leverage accurate seasonal models and
correlation with other factors, such as weather and temperature.
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Abstract. Through injecting dynamic script codes into compromised
websites, attackers have widely launched search poisoning attacks to
achieve their malicious goals, such as spreading spam or scams, dis-
tributing malware and launching drive-by download attacks. While most
current related work focuses on measuring or detecting specific search
poisoning attacks in the crawled dataset, it is also meaningful to design
an effective approach to find more compromised websites on the Internet
that have been utilized by attackers to launch search poisoning attacks,
because those compromised websites essentially become an important
component in the search poisoning attack chain.

In this paper, we present an active and efficient approach, named
PoisonAmplifier, to find compromised websites through tracking down
search poisoning attacks. Particularly, starting from a small seed set
of known compromised websites that are utilized to launch search poi-
soning attacks, PoisonAmplifier can recursively find more compromised
websites by analyzing poisoned webpages’ special terms and links, and
exploring compromised web sites’ vulnerabilities. Through our 1 month
evaluation, PoisonAmplifier can quickly collect around 75K unique com-
promised websites by starting from 252 verified compromised websites
within first 7 days and continue to find 827 new compromised websites
on a daily basis thereafter.

1 Introduction

Search Engine Optimization (SEO) manipulation, also known as “black hat”
SEO, has been widely used by spammers, scammers and other types of attackers
to make their spam/malicious websites come up in top search results of pop-
ular search engines. Search poisoning attacks, as one particular type of “black
hat” SEO, inject malicious scripts into compromised web sites and mislead vic-
tims to malicious websites by taking advantages of users’ trust on search results
from popular search engines. By launching search poisoning attacks, attackers
can achieve their malicious goals such as spreading spam, distributing malware
(e.g., fake AntiVirus tools), and selling illicit pharmacy [14]. For example, in
April 2011, many search terms (e.g., those related to the royal wedding be-
tween Britain Prince William and Catherine Middleton) are poisoned with Fake

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 230–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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AntiVirus links [15]. These links mislead victims to install fake Security Shield
AntiVirus software. In 2011, one research group from Carnegie Mellon University
also reported substantial manipulation of search results to promote unauthorized
pharmacies by attackers through launching search poisoning attacks [3].

Essentially, search poisoning attacks compromise benign websites by injecting
malicious scripts either into existing benign webpages or into newly created
malicious pages. Then, these scripts usually make the compromised websites
respond with different web content to users that visit via or not via particular
search engines. Specifically, once the compromised websites recognize that the
requests are referred from specific search engines, the compromised websites may
lead the users to malicious websites through multiple additional redirection hops.
However, if the compromised websites recognize that the requests are directly
from users, the compromised websites will return normal content rather than
malicious content. Thus, this kind of cloaking makes the attack very stealthy and
difficult to be noticed. In addition, the good reputation of these (compromised)
websites (e.g., many are reputable .edu domains) essentially help boost the search
engine ranks and access opportunities of malicious webpages. In this case, it is
meaningful to discover those compromised websites as many as possible to stop
such search poisoning attacks.

Most current state-of-the-art approaches to find such compromised websites
merely utilize pre-selected key terms such as “Google Trends [6]”, “Twitter
Trending Topics [16]” or specific “spam words” to search on popular search
engines. However, the number of newly discovered compromised websites by us-
ing this kind of approaches is highly restricted to those pre-selected key terms.
First, the limited number of the pre-selected terms will restrict the number of
compromised websites that could be found. Second, since these terms usually be-
long to some specific semantic topics, it will be hard to find more compromised
websites in different categories. In addition, since many pre-selected key terms
(e.g., Google Trends) are also widely used in benign websites, such approaches
will also search out many benign websites leading to low efficiency.

In this paper, we propose a novel and efficient approach, PoisonAmplifier,
to find compromised websites on the Internet that are utilized by attackers to
launch search poisoning attacks. Specifically, PoisonAmplifier consists of five
major components: Seed Collector, Promote Content Extractor, Term Ampli-
fier, Link Amplifier, and Vulnerability Amplifier. Seed Collector initially collects
a small seed set of compromised websites by searching a small number of terms
on popular search engines. Then, for each known compromised website, Promote
Content Extractor will extract “promoted web content”, which is promoted by
compromised website exclusively to search engine bots, but not seen by normal
users. This web content is essentially promoted by attackers and usually has
close semantic meaning with final malicious website (e.g, illicit pharmacy con-
tent). Through extracting specific query terms from “promoted web content”,
Term Amplifier will find more compromised websites by searching those query
terms instead of simply using pre-selected key terms. The intuition behind de-
signing this component is that attackers tend to provide similar key terms for
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search engine bots to index the webpages. For each compromised website, Link
Amplifier first extracts two types of links: inner-links and outer-links. Inner-links
refer to those links/URLs in the promoted web content of the compromised web-
site. Outer-links refer to those links/URLs in the web content of other websites,
which also have link of known compromised website. Then, Link Amplifier finds
more compromised web sites by searching those inner-links and outer-links. The
intuition is that the links in the promoted content tend to link to other compro-
mised websites. Also, the websites linking to known compromised websites may
also link to other (unknown) compromised websites. Vulnerability Amplifier will
find more compromised websites, which have similar system or software vulnera-
bilities to existing known compromised websites. The intuition is that attackers
tend to exploit similar vulnerabilities to compromise websites to launch search
poisoning attacks. Through implementing a prototype system, PoisonAmplifier,
our approach can find around 75,000 compromised web sites by starting from
252 known comprised websites within first 7 days and continue to find 827 new
compromised websites everyday on average thereafter. In addition, our approach
can achieve a high Amplifying Rate1, much higher than existing work [22,23].

The major contributions of this paper can be summarized as follows.

– We propose PoisonAmplifier, a new, active, and efficient approach to find
more compromised websites by analyzing attackers’ promoted content and
exploiting common vulnerabilities utilized by the attackers. Rather than sim-
ply using pre-selected (static) keywords to search on popular search engines,
PoisonAmplifier is more effective and efficient to discover more compromised
websites.

– We implement a prototype system and evaluate it on real-world data.
Through our evaluation, PoisonAmplifier can find around 75,000 compro-
mised websites by starting from only 252 verified compromised websites
within first 7 days.2 As a comparison with two recent studies using pre-
selected terms, it takes 9 months to collect 63K compromised websites in
[22] and 1 month to collect 1K compromised websites in [23]. Furthermore,
PoisonAmplifier can discover around 4 times and 34 times compromised
websites by analyzing the same number of websites, compared with [22] and
[23].

The rest of the paper is structured as follows. We describe the background and
our targeted search poisoning attacks in Section 2. We present the whole system
design of PoisonAmplifier in Section 3 and the evaluation in Section 4. We discuss
our limitations in Section 5 and current related work in Section 6. Finally, we
conclude our work in Section 7.

1 It is the ratio of the number of newly discovered compromised websites to the number
of seed compromised websites.

2 This speed is limited by the search rate constraint imposed by the Google search
engine.
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2 Background

In this Section, we first provide a brief overview on how our targeted search poi-
soning attacks work. Then, we present two typical methods utilized by attackers
to promote malicious content in search engines to launch such search poisoning
attacks.

2.1 Threat Model

Search Engine Optimization (SEO) is the process of optimizing websites to have
higher search engine ranks. It includs white hat SEO and black hat SEO. Unlike
white hat SEO, which increases search ranks by constructing websites to be more
easily crawled by search engines, black hat SEO techniques attempt to obtain
high rankings by violating search engines’ policies such as keyword stuffing [12],
hiding texts [9], and cloaking [2].

Fig. 1. The work flow of search poisoning attacks

In our work, we focus on one specific type of black hat SEO techniques, named
Search Poisoning Attack, which usually responds with malicious content to the
users referred via search engines, while responds with non-malicious content to
the direct visiting users. Next, we will describe how this search poisoning attack
works.

As illustrated in Figure 1, to launch such a search poisoning attack, an
attacker typically needs to first compromise a website by exploiting the web-
site’s system/software vulnerabilities, and then injects malicious scripts (PHP
or Javascript) into the compromised website (labeled as 1© in Figure 1). The
core of such search poisoning attack is the ability for the compromised website
to utilize injected malicious scripts to recognize different origins of the requests.
Specifically, once the compromised website finds that the requests originate from
crawler bots such as Google Bots, the website responds with web content contain-
ing special keywords and URLs injected by attackers. These special keywords
and URLs are essentially what attackers desire to promote exclusively to the
search engine crawler bots and hope to be indexed by the search engines( 2©).
Then, if a user queries those keywords on search engines ( 3©) and sends requests
to the compromised website by clicking on the search results, the user will be a
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desired target victim because he shows interest in finding this website. In this
case, the compromised server will provide malicious content to the user ( 4©).
The malicious response could directly be malicious web content or it redirects
the user to malicious websites through multiple redirection hops ( 5©). However,
if the request originates from direct users (not via specific search engines), the
attackers will not intent to expose the malicious content. This cloaking tech-
nique can make the attack very stealthy. In this case, the website will return
non-malicious content ( 6©).

In our work, we define the web content responded by the compromised website
(after redirection if it has) to the crawler bot as “Bot View”, to users via the
search engine as “Searcher View”, and to users not via the search engine as
“User View”. We apply a similar technique used in [22,25] to collect the ground
truth on whether a website is compromised by search poisoning attack or not,
i.e., whether its Searcher View and User View are different. More precisely, we
conservatively consider the two views (Searcher/User) are different only when
the final domain names (after redirection if there is any) are different [22]. In
this way we can reduce false positives (due to dynamics in normal websites) and
increase our confidence.3

2.2 Methods of Responding Malicious Content

As described in Section 2.1, in such search poisoning attacks, the compromised
websites need to recognize the crawler bot to promote malicious content in search
engines. Next, we describe two typical methods utilized by attackers to promote
malicious content: tampering normal web pages, and creating new malicious web
pages.

(a) Bot View (b) User View

Fig. 2. A case study of tampering normal web pages

Tampering Normal Web Pages. In this way, when attackers compromise
the website, they will inject malicious content into normal web pages. Once the
compromised website recognizes that a request is from a search crawler bot, it
will reply with both injected malicious content and normal web page content.
Once the compromised website recognizes that a request is from a user’s direct
visit (not referred from search engines), it will reply with the normal webpage.
As a case study illustrated in Figure 2, an attacker compromised a professor’s

3 Note that we may have very few false negatives using this conservative comparison.
However that is not a problem for us because our goal is not on the precise detection
but on the high efficiency in finding more compromised websites.



PoisonAmplifier: A Guided Approach of Discovering Compromised Websites 235

personal homepage to launch search poisoning attack. Under such an attack, the
Bot View contains both illicit pharmacy content such as “get Viagra sample” (as
seen in the upper part of Figure 2(a)) and the professor’s personal information
(as seen in the lower part of Figure 2(a)), and the User View only contains
correct personal information (as seen in Figure 2(b)).

Creating Malicious Web Pages. In this way, unlike tampering existing nor-
mal web pages, attackers will upload or create totally new malicious web pages
and only provide malicious content as Bot View to the search crawler bot. This
content may be totally irrelevant to the themes of the whole website. As a case
study illustrated in Figure 3, the attacker compromised a furniture company’s
website, which is implemented using a vulnerable version of WordPress [17].
Through exploiting the vulnerabilities of the WordPress, the attacker promoted
casino content in Bot View to the search engine through creating a new malicious
webpage hosted in the compromised website (as seen in Figure 3(a)). However,
the attacker will provide a web page displaying “Not Founded” to users, who
visit the same URL without using the search engine (as seen in Figure 3(b)).

(a) Bot View (b) User View

Fig. 3. A case study of creating malicious Web pages

3 System Design

3.1 Intuition

Our design of PoisonAmplifier is based on the following three major intuitions:

Intuition 1: Attackers tend to use a similar set of keywords in multi-
ple compromised websites (in the Bot View) to increase the visibil-
ity to desired users through search engines. Attackers usually artificially
construct the content of Bot View, which will be indexed by search engines,
to increase the chance of making compromised websites be searched through
search engines. More specifically, similar to keyword stuffing [12], a common
way of achieving this goal is to put popular keywords (those words are fre-
quently searched by users on search engines such as Google Trends) into the
Bot View. In this way, different compromised websites may share the similar
popular keywords to draw attentions from victims. However, since many popu-
lar benign websites may also use these popular keywords and thus occupy high
search ranks, it is difficult to guarantee high search ranks for those compromised
websites that may be not very popular. As a supplement, another way is to buy
some “distinguishable keywords” from specific websites [11]. These keywords
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may be not so popular as those popular terms. However, they tend to have low
competition in search engines, i.e., they are not widely contained in the websites
and can be effectively used to search out target websites. Thus, through promot-
ing these words in the Bot View, the compromised websites could occupy high
search ranks when users query these keywords in search engines. Thus, attackers
may use these “distinguishable keywords” in multiple compromised websites to
increase their search ranks.

In addition, since some attackers desire to reply malicious content to their
target victims rather than arbitrary users, they tend to put specific keywords
into the Bot View of compromised websites, which have close semantic meanings
to the promoted websites. For example, some attackers tend to post pharmacy
words into the Bot View, because they will finally mislead victims who are in-
terested in buying pharmacy to malicious websites selling illicit pharmacy. In
this way, different attackers who promote similar malicious content may sponta-
neously use similar keywords in the Bot View.

Based on this intuition, once we obtain those specific keywords injected by
attackers into the Bot View of known compromised websites, we can search these
keywords in search engines to find more compromised websites.

Intuition 2: Attackers tend to insert links of compromised websites in
the Bot View to promote other compromised websites; and the web-
sites containing URLs linking to known compromised websites may
also contain URLs linking to other unknown compromised websites.
To increase the chance of leading victims to malicious websites, attackers usu-
ally use multiple compromised websites to deliver malicious content. Thus, to
increase the page ranks of those compromised websites to search engines or to
help newly created webpages on compromised websites to be indexed by search
engines, attackers tend to link these compromised websites with each other by
inserting links of compromised websites into the Bot View. In addition, attackers
with different malicious goals may spontaneously promote links of compromised
websites into the same popular third-party websites such as forums and online
social network websites, either because these third-party websites are easy to be
indexed by search engines or they do not have sanitation mechanisms. Based on
this intuition, we can find more compromised websites by searching the URLs
in the Bot View linking to known compromised websites, and by searching the
URLs in the web content of other websites, which have already been exploited to
post URLs linking to known compromised websites.

Intuition 3: Attackers tend to compromise multiple websites by ex-
ploiting similar vulnerabilities. Once attackers compromise some specific
websites by exploiting their system/software vulnerabilities to launch search
poisoning attacks, they tend to use similar tricks or tools to compromise other
websites with similar vulnerabilities to launch search poisoning attacks. Based
on this intuition, once we know the vulnerabilities exploited by attackers to some
compromised websites, we can find more compromised websites by searching web-
sites with similar vulnerabilities.
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3.2 System Overview

We next introduce the system overview of PoisonAmplifier, based on the three
intuitions described in Section 3.1. As illustrated in Figure 4, PoisonAmplifier
mainly contains five components: Seed Collector, Promoted Content Extractor,
Term Amplifier, Link Amplifier, and Vulnerability Amplifier.

– Similar to other existing work [27,23], the goal of Seed Collector is to
collect a seed set of compromised websites by searching initial key terms
(e.g., Google Trends) in popular search engines.

– For each compromised website, Promoted Content Extractor will first
work as a search engine bot to crawl the website’s Bot View, and then work
as a real user to obtain the websites’ User View. Then, Promoted Content
Extractor will extract those content that exists in the website’s Bot View but
does not exist in the website’s User View. This content, defined as “promoted
content”, is essentially what attackers desire to promote into search engines.

– After extracting the promoted content, Term Amplifier extracts special
key terms by analyzing the promoted content and querying these key terms
in search engines to find more compromised websites.

– Link Amplifier extracts URLs in the promoted content. Link Amplifier
will also extract URLs contained in the web content of third-party websites,
which have already been posted links to known compromised websites. Then,
Link Amplifier will analyze these URLs to find more compromised websites.

– By analyzing system/software vulnerabilities of those seed compromised
websites and newly found compromised websites through using Term Ampli-
fier and Link Amplifier, Vulnerability Amplifier finds more compromised
websites by searching other websites with similar vulnerabilities.

Fig. 4. The system architecture of PoisonAmplifier

3.3 Seed Collector

As illustrated in Figure 5, Seed Collector mainly uses the following four steps to
collect seed compromised websites: (1) it first uses Google Trends [6], Twitter
trends[16], and our customized key terms as initial key terms to search on search
engines. (2) For each term, it will extract the links of the top M search results
showed in the search engine4. (3) For each link, Seed Collector crawls its Searcher

4 In our experiment, we choose M = 200.
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View and User View through utilizing HttpClient-3.x package[10]5 to set differ-
ent HTTP header parameters and values. Specifically, to crawl the Searcher View
of the website linked by each search result, we send HTTP requests with cus-
tomized Http Referrer (http://www.google.com/?q=“term”) to simulate a user
to visit the website through searching Google. To crawl the User View, we send
HTTP requests with customized values of UserAgent in the HTTP header (e.g.,
UserAgent: Mozilla/5.0 (Windows NT 6.1), AppleWebKit/535.2 (KHTML, like
Gecko), Chrome/15.0.874.121, Safari/535.2) to simulate a user to directly visit
the website. For both User View and Searcher View, the seed collector follows
their redirection chains and gets their final destination URL. (4) For each link,
if its final destination domains between User View and Searcher View are dif-
ferent, we consider that this linking website is compromised and output it as a
compromised website.

Fig. 5. Flow of Seed Collector

3.4 Promoted Content Extractor

As described in Section 2.1, the essence of the search poisoning attack is to recog-
nize different request origins and provide differentweb content to crawler bots (Bot
View), to users via search engines (Searcher View), and to users not via search en-
gines (User View). And attackers tend to inject specific content into the Bot View
to increase the chances of their compromised websites to be searched out in search
engines. They may also tend to inject malicious content that is related to the fi-
nal promoted destinationmaliciouswebsites. This content is usually different from
normal web content, and can not be seen by users without using search engines.

The goal of the Promoted Content Extractor is to extract that injected content
in the Bot View of known compromised webpages, which may also be contained
in other compromised websites. Note that the Bot View may also contain normal
content that is not injected by attackers and will be displayed in the User View.
To be more effective, PoisonAmplifier only extracts and analyzes the content
that is in the Bot View but is not in the User View, i.e., the content will be
indexed by crawler bots, but not be seen by users directly visiting the websites.
As illustrated in Figure 6, for each compromised website, Promoted Content Ex-
tractor crawls its Bot View and User View through sending crafted requests from
crawler bots and users without using search engines, respectively. Specifically,
to crawl the Bot View, we send request with customized value of UserAgent

5 This package can handle HTTP 3xx redirection and provide flexible HTTP header
configuration functions.
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in the HTTP header (e.g., UserAgent: Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)) to mimic a Google bot visit. Promoted
Content Extractor crawls the User View in the same way as Seed Collector.
Then, Promoted Content Extractor extracts HTML content that appears in the
Bot View but not in the User View. Then, it will further filter web content
that is used for displaying in the web browsers such as HTML Tags and CSS
codes, and also remove dynamic web function related codes such as Javascripts,
which are not unique enough to help further amplification. Finally, it outputs
this extracted “Promoted Content” after filtering.

Fig. 6. Flow of Promoted Content Extractor

It is worth noting that some legitimate websites with dynamic server-side
codes can also return different content or even redirect to different websites for
every request no matter where the visit is from (User View or Bot View), which
may lead to false positives in our extracted promoted content. To decrease this
kind of false positives, we crawl the User View twice within a short time period.
In this case, if the two User Views are different, we will conservatively consider
that this website is not compromised (even its User View and Searcher View
may be different) and discard it for promoted content extraction.

3.5 Term Amplifier

Based on Intuition 1 in Section 3.1, the goal of Term Amplifier is to find more
compromised websites through searching specific query terms extracted from
promoted content.

It is worth noting that if we use less distinguishable content as query terms
to search, we can obtain a higher recall number (more compromised websites
could be returned) but a lower accuracy (top search results are less likely to
be compromised websites), and vice versa. In addition, in order to obtain a
higher accuracy, it is practical to focus on analyzing replied search results with
top search ranks rather than analyzing all search results. Thus, the essential
part of Term Amplifier is how to extract effective query terms from promoted
content, through searching which we can obtain as many compromised websites
as possible with a high accuracy. One option is to use each word/phrase in the
content as one query term. However, in this way, some terms may be so general
that most returned websites are benign, leading to a low accuracy. Another
option is to use the “n-gram” algorithm [13] (n ≥ 2). In this way, some terms may
be so distinguishable that many compromised websites will be missed, leading
to a low recall number.
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Fig. 7. Flow of Term Amplifier

In our work, we design an algorithm, named “distinguishable n-gram”, to ex-
tract query terms. As illustrated in Figure 7, Term Amplifier first tokenizes the
promoted content into a sequence of phrases {Pi|i = 1, 2, . . . , N} by using the
tokenizer of any non-Alphanumeric character except “blank”, such as “comma”,
“semicolon”, and “question mark”. Then, for each phrase Pi, Term Amplifier
will exactly search it on the search engine. If the number of returned search re-
sults SNi is lower than a threshold TD

6, we consider Pi as a “distinguishable”
term and directly add it into a term set, named TermBank. Otherwise, Term
Amplifier combines the phrases of Pi and Pi+1 as a new query term to search. If
this new term is “distinguishable”, we add it into TermBank; otherwise, Term
Amplifier combines the phrases of Pi, Pi+1 and Pi+2 as a new term to search.
This process will continue until the number of phrase in the new term is equal
to n. If the new term with n phrases is still not “distinguishable”, the algorithm
will discard the phrase Pi. In this way, TermBank comprises all the distinguish-
able terms extracted from the promoted content. The detailed description of
“distinguishable n-gram” algorithm is shown in Algorithm 1.

Algorithm 1. Distinguishable n-gram Algorithm

Tokenize promoted content into phrases {Pi|i = 1, 2, . . . , N}
for i := 1 to N do

for j := 0 to n− 1 do
Search “Pi Pi+1 . . . Pi+j” on the search engine to get SNi

if SNi ≤ TD then
Add ‘Pi Pi+1 . . . Pi+j” into TermBank
CONTINUE

end if
end for

end for
Return TermBank

After building TermBank, similar to Seed Collector, Term Amplifier uses each
query term in TermBank to search in the search engine and identifies compro-
mised webpages through comparing their Searcher Views and User Views.

3.6 Link Amplifier

Based on Intuition 2 in Section 3.1, Link Amplifier first extracts two types of
links: inner-links and outer-links. Inner-links refer to those links/URLs in the

6 TD can be tuned with the consideration of the tradeoff between the accuracy and
the recall number. In our preliminary experiment, we choose TD = 1, 000, 000.
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promoted web content of the compromised websites (as illustrated in the left
part of Figure 8). Outer-links refer to those links/URLs in the web content
of third-party websites, which have been posted with URLs linking to known
compromised websites (as illustrated in the right part of Figure 8). We utilize
Google dork [7] to locate the outer-links. For example, if one compromised web-
site “seed.com” is obtained through searching one seed term “seedTerm”, then
we obtain those websites through searching “intext:seed.com intext:seedTerm”
on Google. Then we crawl all the websites in search results, which usually are
blogs or comments that contain ”seed.com” and other scam links. Then, similar
to Term Amplifier, for each inner-link and outer-link, Link Amplifier crawls its
Searcher View and User View, and considers the linking website as compromised
website if the Searcher View and User View are different.

Fig. 8. The illustration of inner-links and outer-links

We acknowledge that since those third-party websites may also post many
benign links, many of outer-links will not link to compromised websites, leading
to a relatively low accuracy. However, one of the benefits is that, through analyz-
ing those outer-links, we can find more categories of compromised websites. For
example, through analyzing outer-links from compromised websites selling illicit
pharmacy, we could find compromised websites that promote other topics such
as “adult/sexy content”. One case study of a forum webpage posting outer-links
to both “adult” and “pharmacy” websites can be seen in Appendix A. Further-
more, we can still somehow increase the accuracy through focusing on only those
third-party websites that have posted scam terms. This is because that this kind
of websites are more likely to be used to promote malicious content by attackers
than other websites. Thus, the links posted in such websites are more suspicious.

3.7 Vulnerability Amplifier

Once an attacker compromises a website to launch search poisoning attack by
exploiting specific system/software vulnerabilities of the websites, it is very likely
that he uses the same vulnerability to compromise more websites. For example,
once some attackers know about the vulnerabilities of some specific version of
“WordPress” [17] and successfully use some existing tools to compromise some
websites that are implemented through using that specific version of WordPress,
they may try to find other vulnerable websites that are also implemented with
that version of WordPress. One possible simple way of finding those vulnerable
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websites could be to search keywords such as “powered by WordPress” on search
engines.

Based on Intuition 3 in Section 3.1, Vulnerability Amplifier essentially mimics
the way of attackers to find those compromised websites. Specifically, Vulner-
ability Amplifier first collects compromised websites by using Term Amplifier
and Link Amplifier. Then, it will analyze possible system/software vulnerabil-
ities of those compromised websites and extract the web content signature of
the websites that utilize those vulnerable software. In our preliminary work, we
only focus on analyzing the vulnerabilities of one specific software WordPress7,
which is a very popular target for attackers[1]. For example, one vulnerability of
“Timthumb.php” in the WordPress themes allows attackers to upload and exe-
cute arbitrary php scripts. Vulnerability Amplifier will find compromised web-
sites through searching those websites that use WordPress and contain at least
one scam word. Since the URLs of the websites developed using WordPress
typically contain a string of “wp-content”, we can find those websites through
searching Google Dork “inurl:wp-content intext:scamWord”. After visiting each
of such websites, Vulnerability Amplifier examines whether it is compromised or
not by comparing its Searcher View and User View.

Currently, Vulnerability Amplifier still requires some manual work to extract
search signatures. In the future, we plan to incorporate some techniques sim-
ilar to existing automatic signature generation studies (e.g., AutoRE [30]) to
automate some of the tasks.

4 Evaluation

In this section, we evaluate PosionAmplifier in two stages. For the first stage,
we evaluate PoisonAmplifier regarding its effectiveness, efficiency, and accuracy
with first 7 days’ data. We also check the “discovery diversity” among differ-
ent components in terms of finding exclusive compromised websites, i.e, how
different the discovered compromised websites by different components are. In
addition, we examine how existing Google security diagnostic tools in labeling
malicious/compromised websites work on our found compromised websites. In
the second stage, we extend the time to 1 month to verify if the PoisonAmplifier
can constantly find new compromised websites.

4.1 Evaluation Dataset

As mentioned in Section 3, the seed term set consists of three categories: Google
Trends, Twitter Trends and our customized keywords. For the Google Trend
Topics, we crawled 20 Google Trend keywords each day for a week. In this
way, we collected 103 unique Google Trends topics. For the Twitter Trends, we
collected top 10 hottest Twitter trends each day for a week. In this way, we

7 Even though we only analyze the vulnerabilities of one specific software in this work,
our approach can easily include other types of system/software vulnerabilities, which
is our future work.
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collected 64 unique Twitter Trends topics. For the customized key terms, we
chose one specific category of scam words – pharmacy words8. Specifically, we
chose 5 pharmacy words from one existing work [26], which provides several
categories of scam words. We also manually selected another 13 pharmacy words
from several pharmacy websites. Table 1 lists all 18 pharmacy words used in our
study.

Table 1. 18 seed pharmacy words

kamagra diflucan levitra phentermine propecia lasix

viagra amoxil xanax cialis flagyl propeciatramadol

zithromax clomid Viagra super active cialis super active cipro pharmacy without prescription

Then, for each of 18 pharmacy words, we obtained another 9 Google Suggest
words through Google Suggest API [8]. In this way, we finally collected 165
unique pharmacy words. Table 2 summarizes the number and unique number of
seed terms for each category.

Table 2. The number of seed terms for three different categories

Category # of terms # of unique terms

Google Trend 140 103

Twitter Trend 70 64

Pharmacy 180 165

Total 390 332

Then, for each of these 332 unique seed terms, we searched it on “Google.com”
and collected the top 200 search results9. Then, for each search result, we use
the similar strategy as in [22] to determine whether a website is compromised by
examining whether the domain of its Searcher View and User View are different.
In this way, we finally obtained 252 unique seed compromised websites through
using those 332 seed terms. We denote this dataset as SI , which is used in Stage
I. After one week’s amplification process, we denote the amplified terms and
compromised websites from Stage I as SII , which is the input for Stage II to
recursively run PoisonAmplifier for 1 month.

8 In our preliminary experiment, we only use pharmacy words. However, our approach
is also applicable to other categories of words such as “adult words” or “casino
words”.

9 In our experiment, we only focus on the search poisoning attacks on Google. However,
our approach can be similarly extended to other search engines such as “yahoo.com”
and “baidu.com”. Also, the number of 200 can be tuned according to different ex-
periment settings.
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4.2 Evaluation Results

Effectiveness. To evaluate the effectiveness of our approach, we essentially
check how many new compromised websites can be found through amplifying
dataset SI . To measure the effectiveness, we use a metric, named “Amplifying
Rate (AR)”, which is the ratio of the number of newly found compromised
websites to the number of seed compromised websites. Thus, a higher value of
AR implies that the approach is more effective in finding compromised websites
based on the seed compromised websites.

Table 3 shows the number of newly found compromised websites for each
component. We can see that Term Amplifier has the highest AR of 323, which
confirms that Term Amplifier can be very effective in discovering compromised
websites. Even though Inner-link Amplifier and Outer-link Amplifier have rela-
tively lower ARs than Term Amplifier, they can still discover over 10 times more
compromised websites from the seeds. Actually, the reason why Term Amplifier
can obtain a higher AR is mainly because we can extract much more query
terms than inner-links and outer-links from the promoted content. In this way,
we can essentially search out much more websites that contain the query terms
from the search engine. In addition, even though we only focus on analyzing one
specific software in our Vulnerability Amplifier, we can still discover over 4 times
more compromised websites from the seeds. Overall, starting from only 252 seed
compromised websites, these four strategies can totally discover around 75,000
unique compromised websites, and achieve a overall high amplifying rate of 296.
The distribution information of these compromised websites in terms of their
Top Level Domain(TLD) is show in Figure 10(a).

Table 3. The effectivenss of PoisonAmplifier

Component # seed compromised website # unique compromised websites Amplifying Rate

TermAmplifier 252 69,684 323.03

Inner-linkAmplifier 252 2,468 10.63

Outer-linkAmplifier 252 2,401 10.34

VulnerabilityAmplifier 252 482 4.49

Total (Unique) 252 74,671 296.31

Efficiency. To evaluate the efficiency of our approach, we essentially examine
whether the websites visited by PoisonAmplifier are more likely to be compro-
mised websites or not. To measure the efficiency, we use another metric, named
“Hit Rate (HR)”, which is the number of newly found compromised websites to
the total number of websites visited by PoisonAmplifier. Thus, a higher Hit Rate
implies that our approach is more efficient, because it means our approach can
find more compromised websites by visiting fewer websites. Next, we evaluate
the efficiency of individual amplification component, as well as the efficiency of
different types of query keywords.

Component Efficiency. Table 4 shows the number of visited websites, the
number of newly found compromised websites, and the values of hit rate for
each component.



PoisonAmplifier: A Guided Approach of Discovering Compromised Websites 245

Table 4. The efficiency of different components

Component # Visited Websites # Compromised Websites Hit Rate

TermAmplifier 684,540 69,684 10.18%

Inner-linkAmplifier 3,097 2,468 79.69%

Outer-linkAmplifier 353,475 2,401 0.68%

VulnerabilityAmplifier 45,348 482 1.06%

Total 1,086,496 74,671 6.87%

From this table, we can see that Inner-link Amplifier can achieve the highest
hit rate of 79.69%. This confirms that attackers tend to promote links of compro-
mised websites to the search engine bots. The hit rate of Term Amplifier is around
10%, which is lower than that of Inner-link Amplifier. However, Term Amplifier
can discovermuchmore compromisedwebsites than that of Inner-linkAmplifier in
terms of overall quantity, because we essentially extract significantly more terms
than inner-links to search on the search engine. The hit rate of Outer-link Am-
plifier is relatively low, which is mainly because most of those outer-links are be-
nign or do not have redirections. However, through using Outer-link Amplifier,
we can find new types of scam terms promoted by different attackers. This is very
useful to increase the diversity of the seed terms and to find more types of com-
promised websites. Vulnerability Amplifier also has a relatively low hit rate, be-
cause most top ranked websites with “WordPress” are benign. However, similar
to Outer-link Amplifier, Vulnerability Amplifier also provides a method to find
more (new) types of scam words and compromised websites.

Term Efficiency. We also analyze the term efficiency in finding compromised
websites, i.e., which kinds of terms can be used to efficiently search out com-
promised (rather than normal) websites. Specifically, we compare three types
of terms: seed terms (those 332 seed terms used in the Seed Collector), pro-
moted phrases (the sequence of phrases obtained through tokenizing promoted
content), and distinguishable terms (all the terms in TermBank obtained by
utilizing “Distinguishable n-gram Algorithm”). Essentially, we use these three
types of terms to search on Google to find compromised websites by utilizing
Term Amplifier.

As seen in Figure 9, among these three types of terms, our extracted dis-
tinguishable terms can achieve the highest hit rate. Specifically, around 60% of
distinguishable terms’ hit rates are less than 0.2, while around 80% of promote
phrases and 90% of seed terms have such values. This implies that using dis-
tinguishable terms is more effective to find compromised websites. In addition,
over 60% of seed terms’ hit rates are nearly zero, which shows that the current
pre-selected terms are not very efficient compared to our new terms extracted
from promoted content.

To find what specific terms are most efficient, we further analyze the terms
with the top five hit rates in TermBank. As seen in Table 5, we can see that
all these five terms’ hit rates are higher than 79%. In addition, we also find
that three of these five terms have the same semantic meanings of sub-phrase
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as “No Prescription Needed”. That may be due to the reason that attackers
frequently use such phrases to allure victims, because many kinds of pharmacy
drugs need prescription to buy in reality. The other two terms contain the names
of two popular drugs: “Diflucan” (an anti-fungal medicine) and “Nimetazepam”
(working specifically on the central nervous system).

Table 5. Terms with Top Five Hit Rates

Term Hit Rate

Order Diflucan from United States pharmacy 90%=180/200

Buy Online No Prescription Needed 87%=174/200

Buy Cheap Lexapro Online No Prescription 85%=170/200

Online buy Atenolol without a prescription 83%=166/200

Nimetazepam interactions 79.5%=159/200

Diversity among Different Components. In this section, we analyze the di-
versity of newly found compromised websites among different components, i.e.,
we examine how many compromised websites of each component are exclusive,
which can not be found by other components. The intuition is that if one com-
ponent can find the compromised websites that can not be found by another
component, then these components are very complementary and they can be
combined together to be effective in discovering compromised websites. To mea-
sure the diversity, we use a metric, named “Exclusive Ratio (ER)”, which is the
ratio of the number of compromised websites that are only found by this com-
ponent to the total number of compromised websites found by this component.

As seen in Table 4, we can find that all four components can obtain high
exclusive ratios, higher than 88%. This observation shows that all these four
components are complementary and it makes perfect sense to combine them
together to achieve high effectiveness in discovering new compromised websites.
Also, we can find that Term Amplifier’s exclusive ratio is over 99%. That is
mainly because Term Amplifier can find more compromised websites through
visiting more websites.

Comparison with Existing Work. In this experiment, we first compare the
performance of PoisonAmplifier with two existing work: Leontiadis et al. [22]
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Table 6. Exclusive ratio of different components

Component TermAmplifier Inner-linkAmplifier Outer-linkAmplifier VulnerabilityAmplifier

Exclusive Ratio 99.56% 96.11% 89.09% 88.77%

and Lu et al. [23] (both of them use pre-selected terms). To further verify the
performance of the pre-selected term method used in above two work, we tested
this method with our dataset. Table 7 shows the comparison result.

Table 7. The comparison of effectiveness with existing work

Research Work # Seed Terms # Visited Websites # Compromised Websites Hit Rate Time

Leontiadis et al. [22] 218 3,767,040 63,000 1.67% 9 months

Lu et al. [23] 140 500,000 1,084 0.2% 1 months

Pre-selected terms 322 64,400 252 0.39% 7 days

PoisonAmplifier 332 1,086,496 74,671 6.87% 7 days

From this table, we can see that compared with [22], based on a similar number
of seed terms, our work can find more compromised websites with a higher hit
rate within a significantly shorter period. Also, compared with [23], our approach
uses much fewer seed terms, but discovers much more compromised websites
with a much higher hit rate within a significantly shorter period. Compared
with pre-selected terms method, with the same number of seed terms and same
evaluation time, our approach can find much more compromised websites. Also,
the hit rate of our approach is the highest, which is around 4 times and 34 times
as that of [22] and [23], respectively. This observation shows that our approach is
more efficient and effective in discovering/collecting compromised websites, since
our approach does not highly rely on the pre-selective keywords (pre-selective
keywords typically lead to a low hit rate, which has also been verified by [19]),
which are used by both existing approaches.

Comparison with Google Security Diagnostic Tools. We conducted an-
other experiment to further evaluate the effectiveness of our approach. We want
to test whether our newly found compromised websites are also detected in a
timely fashion by Google’s two state-of-the-art security diagnostic tools: Google
Safe Browsing (GSB) [5] and Google Security Alert [4]. GSB is a widely used URL
blacklist to label phishing websites and malware infected websites. Google Secu-
rity Alert is another security tool, which labels compromised websites through
showing the message “This site maybe compromised” within Google search re-
sults.

We first check how many new compromised websites found by each component
are labelled as “phishing” or “malware infected”. As seen in Table 8, we found
that GSB labels only 547 websites as “malware infected” and zero as “phishing”
through examining all 74, 671 newly found compromised websites. We next check
how Google Security Alert works on our newly found compromised websites.
Specifically, we sampled 500 websites (which were randomly selected from those
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Table 8. Labeling results by using GSB

Component # Compromised Websites # Phishing # Malware Infected

TermAmplifier 69,684 0 536

Inner-linkAmplifier 2,468 0 2

Outer-linkAmplifier 2,401 0 3

VulnerabilityAmplifier 482 0 6

Total (Unique) 74,671 0 547

74, 671 compromised websites) and finally found none of them were labelled as
compromised.

Through the above experiments, we can find that most of our newly found
compromised websites have not been detected by current Google security diag-
nostic tools. Although we do not argue that our approach is more effective than
those two Google security tools, this observation shows that our approach can
be effectively utilized to discover many new compromised websites that Google
has not yet detected.

Accuracy. In this paper, we collect the ground truth through comparing the dif-
ference between Searcher View and User View, which proves to be a conservative
and effective approach to identify search poisoning attacks [22,25]. To further
gain more confidence, we have conducted a manual verification on 600 randomly
sampled URLs from all labelled compromised websites, and all of these sample
websites were manually verified as indeed compromised websites.

Constancy. To evaluate the constancy of our approach, we essentially examine
whether PoisonAmplifier can continue to find new compromised websites over
time. Figure 10(b) is the distribution of new crawled compromised websites in
Stage II. We can see that during the first several days, our system can find
more new compromised websites because Term Amplifier inherits a large num-
ber of terms from data SI . With these terms, our system can efficiently find
other compromised websites sharing similar terms. After that, the daily newly
found compromised websites decrease quickly due to the exhaustion of terms.
However, Link Amplifier and Vulnerability Amplifier can keep finding new terms
and compromised websites everyday because the attackers keep promoting and
attacking everyday. In this case, our system can still constantly find new com-
promised websites everyday leading to 26,483 new found compromised websites
during 1 month’s recursive amplification process.

5 Limitations

In this section, we will discuss the limitations of our work.
We first acknowledge that since we mainly utilize pharmacy keywords as ini-

tial terms in our evaluation, this method may generate some bias. We use illicit
pharmacy as a specific case study to evaluate our approach mainly because it
is a typical target of search poisoning attack. However, our approach can be
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(a) Distribution based on Top Level Domain (b) Daily new found compromised websites.

Fig. 10. Statistics of found compromised websites

easily applied to other scenarios such as fake AntiVirus or web scams through
changing customized keywords. In addition, through our evaluation, we can also
observe that even though we use pharmacy keywords as initial customized key-
words, those newly found compromised websites could be injected with content
related to other scenarios. Thus, PoisonAmplifier can discover a broader range of
compromised websites, instead of being restricted to only those used to promote
illicit pharmacy by attackers.

We also acknowledge that since it is still difficult for Promoted Content Ex-
tractor to accurately filter all dynamic content, this may decrease the perfor-
mance (in terms of hit rate) of our approach. However, visiting websites multiple
times can somehow relieve this kind of problem. In addition, we indeed manu-
ally checked several hundred randomly sampled compromised websites and we
have not found such kind of false positives so far. Also, our Distinguishable n-
gram Algorithm can filter some general terms (generate by dynamic content)
and reduce their impact.

In addition, we realize that once attackers know about the principle of our
approach, they may try to evade our approach through providing non-malicious
content to our Bot View with the utilization of IP-based cloaking techniques. For
example, they may refuse to deliver malicious content if they find the IP address
from our crafted Google bot crawler does not match known addresses of Google.
However, as an alternative technique of Bot View by manipulating Http Referer,
we can use the cache results of search engines such as Google cache as Bot View.
In such way, we can obtain the Bot View of those compromised websites, as long
as attackers want to make their content crawled and indexed by popular search
engines to launch search poisoning attacks. Besides, attackers may also try to
decrease the effectiveness of our approach through inserting noisy content into
their injected content. However, if the noisy content is general, our system will
drop them based on our “Distinguishable n-gram Algorithm”. Otherwise we can
still consider these noisy data as “real” promoted content as long as they are
shared in multiple compromised websites.
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6 Related Work

Measurement and Understanding of Search Poisoning Attacks. Cloak-
ing techniques are commonly used in search poisoning attacks, which have been
analyzed and measured in many existing work [27] [28] [29]. Wu et al. present
the earliest measurement study of cloaking techniques [27]. This work provides a
way of identifying cloaking techniques through crawling webpages multiple times
(using both user and crawler identifiers) and comparing the replied content.

In terms of search poisoning attacks, Wang et al. [25] investigate the dynamic
property and show that the majority of compromised websites remain high in
search results. Leontiadis et al. present a detailed measurement study of search
poisoning attacks in the scenario of illicit online pharmacy [22]. Moore et al.
provide an in-depth study on Google Trending Terms and Twitter Trending
Topics that are abused to attract victims [24]. Through analyzing 60 million
search results and tweets, this work characterizes how trending terms are used
to perform search poisoning attacks and to spread social network spam.

Detection of Search Poisoning Attacks. Besides understanding search poi-
soning attacks, several approaches have been proposed to detect such attacks.
John et al. [21] analyze a specific case study of search poisoning attacks and
propose an automatic detection method based on detection insights obtained
through the observation that the new created page(named SEO page in the pa-
per) always contains trending terms and exhibit patterns not previously seen by
search engines on the same domain. Lu et al. [23] present an in-depth study on
analyzing search poisoning attacks and redirection chains, then build a detection
system based on several detection features extracted from browser behaviors,
network traffic, and search results.

Unlike most existing studies that try to understand or detect search poi-
soning attacks, our work focuses more on efficiently and effectively identify-
ing(amplifying) more websites compromised by the search poisoning attacks,
given a small seed set. We think this is an important problem not addressed so
far. Our work is essentially motivated by these existing studies and is comple-
mentary to them.

In addition, the intuition behind our work is that we try to use attackers’
tricks against them. Specifically, our work tries to find compromised websites
through exploiting attackers’ promoted content, which are injected by the at-
tackers to attract the search engine bot and search traffic. In such case, John
et al. [20] have similar ideas but target on a different problem, in which the au-
thors propose a framework to find more malicious queries by generating regular
expressions from a small set of malicious queries. In a recent concurrent study,
EvilSeed[19] also shares similar inspiration but with different target and tech-
niques. It searches the web for pages that are likely malicious by starting from a
small set of malicious pages. To locate the other nearby malicious pages, they de-
sign several gadgets to automatically generate search queries. However, with the
three oracles used in their work, Google’s Safe Browing blacklist[5], Wepawet[18],
and a custom-built tool to detect sites that host fake AV tools, EvilSeed cannot
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handle more stealthy attacks such as Search Poisoning Attacks discussed in this
paper. That is, EvilSeed can only find a small subset of these cloaking attacks
that PoisonAmplifier can find. In addition, since PoisonAmplifier extracts the
content that the attackers intend to promote while EvilSeed uses much more
generic signatures in its SEO gadget, PoisonAmpifier can find more search poi-
soning compromised websites more efficiently and effectively than EvilSeed, e.g.,
the hit rate of EvilSeed is 0.93% in its SEO gadget compared with 6.87% hit
rate in PoisonAmplifier. We consider PoisonAmplifier as a good complement to
EvilSeed.

7 Conclusion

In this work, we have designed and implemented a novel system, PoisonAmpli-
fier, to discover compromised websites that are utilized by attackers to launch
search poisoning attack. Based on intrinsic properties of search poisoning attack,
PoisonAmplifier first extracts attackers’ promotion content in a small seed set
of known compromised websites. Then, PoisonAmplifier utilizes Term Ampli-
fier and Link Amplifier to find more compromised websites through searching
specific terms and links in those promotion content on search engines. Poison-
Amplifier also utilizes Vulnerability Amplifier to find more compromised web-
sites, which have similar system/software vulnerabilities to existing known com-
promised websites. Our evaluation shows that PoisonAmplifier can find nearly
75,000 compromised websites by starting from 252 verified compromised web-
sites within first 7 days. Also, compared with two related work, PoisonAmplifier
can find around 4 times and 34 times compromised websites by analyzing the
same number of websites.
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A Case Study of Outer-Link

As seen in Figure 11, we first find the forum webpages through searching the
websites that are known compromised websites - here is a pharmacy target com-
promised website. Then, through analyzing the forum webpage’s content, we can
also find other compromised websites with “Adult” content.

Fig. 11. Example of outer-link
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Abstract. In the constant evolution of the Web, the simple always gives
way to the more complex. Static webpages with click-through dialogues
are becoming more and more obsolete and in their place, asynchronous
JavaScript requests, Web mash-ups and proprietary plug-ins with the
ability to conduct cross-domain requests shape the modern user experi-
ence. Three recent studies showed that a significant number of Web appli-
cations implement poor cross-domain policies allowing malicious domains
to embed Flash and Silverlight applets which can conduct arbitrary re-
quests to these Web applications under the identity of the visiting user.
In this paper, we confirm the findings of the aforementioned studies and
we design DEMACRO, a client-side defense mechanism which detects
potentially malicious cross-domain requests and de-authenticates them
by removing existing session credentials. Our system requires no training
or user interaction and imposes minimal performance overhead on the
user’s browser.

1 Introduction

Since the release of the World Wide Web by CERN, the online world has dramat-
ically changed. In this ever-expanding and ever-changing Web, old technologies
give way to new ones with more features enabling developers to constantly en-
rich their Web applications and provide more content to users. This evolution
of the Web is one of the main reasons that the Internet, once accessible by an
elite few, is now populated by almost 2 billion users1.

Two of the most popular platforms for providing enriched Web content are
Adobe Flash and Microsoft Silverlight.Through their APIs, developers can serve
data (e.g. music, video and online games) in ways that couldn’t be traditionally
achieved through open standards, such as HTML. The latest statistics show a
95% and 61% market penetration of Flash and Silverlight respectively, attesting
towards the platforms’ popularity and longevity [17].

Unfortunately, history and experience have shown that functional expansion
and attack-surface expansion go hand in hand. Flash, due to its high market

1 http://www.internetworldstats.com

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 254–273, 2012.
� Springer-Verlag Berlin Heidelberg 2012



DEMACRO: Defense against Malicious Cross-Domain Requests 255

penetration, is a common target for attackers. The last few years have been
a showcase of “zero-day” Flash vulnerabilities where attackers used memory
corruption bugs to eventually execute arbitrary code on a victim’s machine [1].

Apart from direct attacks against these platforms, attackers have devised ways
of using legitimate Flash and Silverlight functionality to conduct attacks against
Web applications that were previously impossible. One of the features shared by
these two platforms is their ability to generate client-side cross-domain requests
and fetch content frommany remote locations. In general, this is an opt-in feature
which requires the presence of a policy configuration. However, in case that a site
deploys an insecure wildcard policy, this policy allows adversaries to conduct a
range of attacks, such as leakage of sensitive user information, circumvention of
CSRF countermeasures and session hijacking. Already, in 2007 a practical attack
against Google users surfaced, where the attacker could upload an insecure cross-
domain policy file to Google Docs and use it to obtain cross-domain permissions
in the rest of Google’s services [18]. Even though the security implications of
cross-domain configurations are considered to be well understood, three recent
studies [13,14,9] showed that a significant percentage of websites still utilize
highly insecure policies, thus, exposing their user base to potential client-side
cross-domain attacks.

To mitigate this threat, we present DEMACRO, a client-side defense mech-
anism which can protect users against malicious cross-domain requests. Our
system automatically identifies insecure configurations and reliably disarms po-
tentially harmful HTTP requests through removing existing authentication in-
formation. Our system requires no training, is transparent to both the Web
server and the user and operates solely on the client-side without any reliance
to trusted third-parties.

The key contributions of this paper are as follows:

– To demonstrate the significance of the topic matter, we provide a practical
confirmation of this class of Web application attacks through the analysis of
two vulnerable high-profile websites.

– We introduce a novel client-side protection approach that reliably protects
end-users against misconfigured cross-domain policies/applets by removing
authentication information from potentially malicious situations.

– We report on an implementation of our approach in the form of a Fire-
fox extension called DEMACRO. In a practical evaluation we show that
DEMACRO reliably protects against the outlined attacks while only imply-
ing a negligible performance overhead.

The rest of this paper is structured as follows: Section 2 provides a brief overview
of cross-domain requests and their specific implementations. Section 3 discusses
the security implications of misconfigured cross-domain policies, followed by two
novel real-world use cases in Section 4. Section 5 presents in detail the design and
implementation of DEMACRO. Section 6 presents an evaluation of our defense
mechanism, Section 7 discusses related work and we finally conclude in Section 8.
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2 Technical Background

In this section we will give a brief overview of client-side cross-domain requests.

2.1 The Same-Origin Policy

The Same-Origin Policy (SOP) [19] is the main client-side security policy of the
Web. In essence, the SOP enforces that JavaScript running in the Web browser
is only allowed access to resources that share the same origin as the script itself.
In this context, the origin of a resource is defined by the characteristics of the
URL (namely: protocol, domain, and port) it is associated with, hence, confining
the capabilities of the script to its own application. The SOP governs the access
both to local, i.e., within the browser, as well as remote resources, i.e., network
locations. In consequence, a JavaScript script can only directly create HTTP
requests to URLs that satisfy the policy’s same-origin requirements. Lastly, note
that the SOP is not restricted to JavaScript since other browser technologies,
such as Flash and Silverlight, enforce the same policy.

2.2 Client-Side Cross-Domain Requests

Despite its usefulness, SOP places limits on modern Web 2.0 functionality, e.g.,
in the case of Web mash-ups which dynamically aggregate content using cross-
domain sources. While in some scenarios the aggregation of content can happen
on the server-side, the lack of client-side credentials and potential network restric-
tions could result in a less-functional and less-personalized mash-up. In order to
accommodate this need of fetching resources from multiple sources at the client-
side, Flash introduced the necessary functionality to make controlled client-side
cross-domain requests. Following Flash’s example, Silverlight and newer versions
of JavaScript (using CORS [25]) added similar functionality to their APIs. For the
remainder of this paper wewill focus onFlash’s approach as it is currently themost
wide spread technique [14]. Furthermore, the different techniques are very similar
so that the described approach can easily be transferred to these technologies.

2.3 An Opt-In Relaxation of the SOP

As we will illustrate in Section 3, a general permission of cross-domain requests
would result in a plethora of dangerous scenarios. To prevent these scenarios,
Adobe designed cross-domain requests as a server-side opt-in feature. A website
that desires its content to be fetched by remote Flash applets has to imple-
ment and deploy a cross-domain policy which states who is allowed to fetch
content from it in a white-list fashion. This policy comes in form of an XML
file (crossdomain.xml) which must be placed at the root folder of the server
(see Listing 1 for an example). The policy language allows the website to be
very explicit as to the allowed domains (e.g. www.a.net) as well as less explicit
through the use of wildcards (e.g. *.a.net). Unfortunately the wildcard can be
used by itself, in which case all domains are allowed to initiate cross-domain
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requests and fetch content from the server deploying this policy. While this can
be useful in case of well-defined public content and APIs, in many cases it can
be misused by attackers to perform a range of attacks against users.

Listing 1 . Exemplary crossdomain.xml file

<cross -domain -policy >

<site -control

permitted -cross -domain -policies="master -only" />

<allow -access -from domain="a.net"/>

</cross -domain -policy >

2.4 Client-Side Cross-Domain Requests with Flash

Figure 1 gives an overview of how Flash conducts client-side cross-domain re-
quests in a legitimate case. (The general scenario is equivalent for Silverlight and
only differs in the name and the structure of its policy file). If the domain a.net

would like to fetch data from the domain b.net in the user’s authentication con-
text, it has to include an applet file that implements cross-domain capabilities.
This file can either present the fetched data directly or pass it on to JavaScript
served by a.net for further processing. As already explained earlier, b.net has to
white-list all domains that are allowed to conduct cross-domain requests. There-
fore, b.net hosts a cross-domain policy named crossdomain.xml in it’s root
folder. (So the url for the policy-file is http://b.net/crossdomain.xml). If the
Flash applet now tries to conduct a requests towards b.net, the Flash Player
downloads the cross-domain policy from b.net and checks whether a.net is
white-listed or not. If so, the request is granted and available cookies are at-
tached to the request. If a.net is not white-listed the request is blocked by the
Flash Player in the running browser.

3 Security Implications of Client-Side Cross-Domain
Requests

In this section we present two classes of attacks that can be leveraged by an
adversary to steal private data or to circumvent CSRF protection mechanisms.

3.1 Vulnerable Scenario 1: Insecure Policy

For this section we consider the same general setup as presented in section 2.4.
This time however, b.net hosts personalized, access-controlled data on its do-
main and at the same time allows cross-domain requests from any other domain
by white-listing a wildcard (“*”) in its cross-domain policy. As a result any
Flash/Silverlight applet is allowed to conduct arbitrary requests towards b.net
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Fig. 2. Vulnerable Flash Proxy

with the user’s session cookie attached to it. Thus, an adversary is able to craft
an applet file that can access the personalized, access-controlled data on b.net.
The last step for the attacker is to lure users into visiting a website that em-
beds the malicious file. This could either be achieved through social networks,
social engineering or through the abuse of other vulnerabilities such as cross-site
scripting on vulnerable sites. The more popular the website hosting the insecure
policy is, the more chances the attacker has that the users who end up visiting
the malicious domain will provide him with authenticated sessions.

3.2 Vulnerable Scenario 2: Insecure Flash Proxies

As we have recently shown [10], an insecure cross-domain policy is not the
only condition which enables adversaries to conduct the attacks outlined in
Section 3.1: The second misuse case results from improper use of Flash or
Silverlight applets. As stated in Section 2.4, an applet is able to exchange
data with JavaScript for further processing. For security reasons, communica-
tion between JavaScript and Flash/Silverlight applets is also restricted to the
same domain. The reason for this is that, as opposed to other embedded con-
tent such as JavaScript, embedded Flash files keep their origin. Consequently,
JavaScript located on a.net cannot communicate with an applet served by
b.net even if that is embedded in a.net. But, as cross-domain communica-
tion is also sometimes desirable in this setup, an applet file can explicitly offer
communication capabilities to JavaScript served by a remote domain. There-
fore, Flash utilizes a white-listing approach by offering the ActionScript direc-
tive System.security.allowDomain(domain). With this directive, an applet
file can explicitly allow cross-domain communication from a certain domain or
white-list all domains by using a wildcard.
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We have shown that these wildcards are also misused in practice: Several pop-
ular off-the-shelf cross-domain Flash proxies include such wildcard directives,
and thus, allow uncontrolled cross-domain JavaScript-to-Flash communication.
If such a Flash applet offers cross-domain network capabilities and at the same
time grants control over these capabilities to cross-domain JavaScript, an at-
tacker can conduct requests in the name of the website serving the applet file.

Figure 2 shows the general setup for this attack. An adversary sets-up a web-
site hacker.net that includes JavaScript capable of communicating with a Flash
applet served by a.net. This applet includes a directive that allows communica-
tion from JavaScript served by any other domain. Thus, the attacker is able to
instruct the Flash applet to conduct arbitrary requests in the name of a.net. If
JavaScript from hacker.net now conducts a request towards a.net via the vul-
nerable applet, the request itself is not happening cross-domain as a.net is the
sender as well as the receiver. Therefore, the Flash Player will grant any request
without even checking if there is a cross-domain policy in place at a.net. Conse-
quently, the attacker can conduct cross-domain requests and read the response
as if a.net would host a wildcard cross-domain policy. Furthermore, the adver-
sary is also able to misuse existing trust relationships of other domains towards
a.net. So, if other domains white-list a.net in their cross-domain policy, the at-
tacker can also conduct arbitrary cross-domain requests towards those websites
by tunneling them through the vulnerable proxy located on a.net (please refer
to [10] for details concerning this class of attacks).

3.3 Resulting Malicious Capabilities

Based on the presented use and misuse cases we can deduce the following mali-
cious capabilities that an attacker is able to gain.

1. Leakage of Sensitive Information: As an adversary is able to conduct arbi-
trary requests towards a vulnerable website and read the corresponding re-
sponses, he is able to leak any information that is accessible via the HTML of
that site including information that is bound to the user’s session id. Thus,
an attacker is able to steal sensitive and private information [8].

2. Circumvention of Cross-Site Request Forgery Protection: In order to protect
Web applications from cross-site request forgery attacks, many websites uti-
lize a nonce-based approach [4] in which a random and unguessable nonce is
included into every form of a Web page. A state changing request towards a
website is only granted if a user has requested the form before and included
the nonce into the state changing request. The main security assumption of
such an approach is that no one else other than the user is able to access
the nonce and thus, nobody else is able to conduct state changing requests.
As client-side cross-domain requests allow an adversary to read the response
of a request, an attacker is able to extract the secret nonce and thus bypass
CSRF protections.

3. Session Hijacking: Given the fact that an adversary is able to initiate HTTP
requests carrying the victim’s authentication credentials, he is essentially



260 S. Lekies et al.

able to conduct a session hijacking attack (similar to the one performed
through XSS vulnerabilities). As long as the victim remains on the Web page
embedding the malicious applet, the attacker can chain a series of HTTP
requests to execute complex actions on any vulnerable Web application under
the victim’s identity. The credentials can be used by an attacker either in
an automated fashion (e.g. a standard set of requests towards vulnerable
targets) or interactively, by turning the victim in an unwilling proxy and
browsing vulnerable Web applications under the victim’s IP address and
credentials (see Section 6.1).

3.4 General Risk Assessment

Since the first study on the usage of cross-domain policies conducted by Jeremiah
Grossman in 2006 [7], the implementation of cross-domain policies for Flash
and Silverlight applets is becoming more and more popular. While Grossman
repeated his experiment in 2008 and detected cross-domain policies at 26% of
the top 500 websites, the latest experiments show that the adoption of policies
for the same set of websites has risen to 52% [14]. Furthermore, the amount of
wildcard policies rose from 7% in 2008 up to 11% in 2011. Those figures clearly
show that client-side cross-domain requests are of growing importance.

Three recent studies [9,13,14] investigated the security implications of cross-
domain policies deployed in the wild and all came to the conclusion that cross-
domain mechanisms are widely misused. Among the various experiments, one
of the studies [14] investigated the Alexa top one million websites and found
82,052 Flash policies, from which 15,060 were found using wildcard policies in
combination with authentication tracking and, thus, vulnerable to the range of
attacks presented in Section 3.

4 Real-World Vulnerabilities

To provide a practical perspective on the topic matter, we present in this Section
two previously undocumented, real-world cases that show the vulnerabilities
and the corresponding malicious capabilities. These two websites are only two
examples of thousands of vulnerable targets. However, the popularity and the
large user base of these two websites show that even high profile sites are not
always aware of the risks imposed by the insecure usage of client-side cross-
domain functionality.

4.1 Deal-of-the-Day Website: Insecure Wildcard Policy2

The vulnerable website features daily deals to about 70 million users world-wide.
At the time of this writing, it was ranked on position 309 of the Alexa Top Sites.
When we started investigating cross-domain security issues on the website, a

2 Anonymized for publication.
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crossdomain.xml file was3 present, which granted any site in the WWW arbitrary
cross-domain communication privileges (see Listing 2). This policy can be seen
as a worst case example as it renders void all restrictions implied by the Same-
Origin Policy and any CSRF protection. On the same domain under which the
policy was served, personal user profiles and deal registration mechanisms were
available. Hence, an attacker was able to steal any information provided via
the HTML user interface. As a proof-of-concept we implemented and tested
an exploit which was able to extract any personal information4. Furthermore,
it was possible to register a user for any deal on the website as CSRF tokens
included into every form of the website could be extracted by a malicious Flash
or Silverlight applet.

Listing 2 . The website’s crossdomain.xml file

<cross -domain -policy>

<site -control permitted -cross -domain -policies="all" />

<allow -access -from domain="*" />

<allow -http -request -headers -from domain="*" headers ="*" />

</cross -domain -policy>

4.2 Popular Sportswear Manufacturer: Vulnerable Flash Proxy5

As discussed in Section 3, even without a wildcard cross-domain policy, an at-
tacker is able to conduct arbitrary cross-domain requests under certain circum-
stances. For this to be possible, a website needs to host a Flash or Silverlight
file which is vulnerable to the second misuse case presented in Section 3.2.

We found such a vulnerable flash proxy on a Web site of a popular sportswear
manufacturer that offers an online store for its products. Although the website’s
cross-domain policy only includes non-wildcard entries, it hosts a vulnerable
Flash proxy which can be misused to circumvent the restrictions implied by the
Same-Origin Policy.

Besides leaking private data and circumventing CSRF protections, the vulner-
ability can be exploited even further by an attacker to misuse existing trust rela-
tionships of the sportswear manufacturer with other websites. As the vulnerable
Flash proxy enables an adversary to conduct client-side cross-domain requests in
the name of the company, other websites which white-list the sportswear man-
ufacturer’s domain in their cross-domain policies are also exposed to attacks.
During our tests, we found 8 other websites containing such a white-list entry.

3 The vulnerability has been reported and fixed in the meantime.
4 Notice: We only extracted our own personal information and, hence, did not attack
any third person.

5 Anonymized for Publication.
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5 Client-Side Detection and Mitigation of Malicious
Cross-Domain Requests

In Section 3.4 we showed that plug-in-based cross-domain techniques are widely
used in an insecure fashion and thus users are constantly exposed to risks result-
ing from improper configuration of cross-domain mechanisms (see Section 3 for
details). In order to safeguard end-users from these risks we proposeDEMACRO,
a client-side protection mechanism which is able to detect and mitigate malicious
plug-in-based cross-domain requests.

5.1 High-Level Overview

The general mechanism of our approach functions as follows: The tool observes
every request that is created within the user’s browser. If a request targets a
cross-domain resource and is caused by a plugin-based applet, the tool checks
whether the request could potentially be insecure. This is done by examining
the request’s execution context to detect the two misuse cases presented in
Section 3: For one, the corresponding cross-domain policy is retrieved and checked
for insecure wildcards. Furthermore, the causing applet is examined, if it exposes
client-side proxy functionality. If one of these conditions is met, the mechanism
removes all authentication information contained in the request. This way, the
tool robustly protects the user against insecurely configured cross-domain mech-
anisms. Furthermore, as the request itself is not blocked, there is only little risk
of breaking legitimate functionality.

While our system can, in principle, be implemented in all modern browsers,
we chose to implement our prototype as a Mozilla Firefox extension and thus
the implementation details, wherever these are present, are specific to Firefox’s
APIs.

5.2 Disarming Potentially Malicious Cross-Domain Requests

A cross-domain request conducted by a plug-in is not necessarily malicious as
there are a lot of legitimate use cases for client-side cross-domain requests. In
order to avoid breaking the intended functionality but still protecting users from
attacks, it is crucial to eliminate malicious requests while permitting legitimate
ones. As described in Section 3.1 the most vulnerable websites are those that
make use of a wildcard policy and host access-controlled, personalized data on
the same domain; a practice that is strongly discouraged by Adobe [2]. Hence,
we regard this practice as an anti-pattern that carelessly exposes users to high
risks. Therefore, we define a potentially malicious request as one that carries
access credentials in the form of session cookies or HTTP authentication headers
towards a domain that serves a wildcard policy. When the extension detects such
a request, it disarms it by stripping session cookies and authentication headers.
As the actual request is not blocked, the extension does not break legitimate
application but only avoids personalized data to appear in the response.
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Furthermore, DEMACRO is able to detect attacks against vulnerable Flash
proxies as presented in Section 3.2. If a page on a.net embeds an applet file
served by b.net and conducts a same-domain request towards b.net user cre-
dentials are also stripped by our extension. The rationale here is that a Flash-
proxy would be deployed on a website so that the website itself can use it rather
than allowing any third party domain to embed it and use it.

5.3 Detailed Detection Algorithm

While DEMACRO is active within the browser it observes any request that
occurs. Before applying actual detection and mitigation techniques, DEMACRO
conducts pre-filtering to tell plugin- and non-plugin-based requests apart

. If a plugin-based request is observed, DEMACRO needs to check whether
the request was caused by a Silverlight or a Flash Applet, in order to download
the corresponding cross-domain policy file

. With the information in the policy file DEMACRO is now able to reveal the
nature of a request by assessing the following values:

1. Embedding Domain: The domain that serves the HTML document which
embeds the Flash or Silverlight file

2. Origin Domain: The domain that serves the Silverlight or Flash file and is
thus used by the corresponding plug-in as the origin of the request

3. Target Domain: The domain that serves the cross-domain policy and is the
target for the request

4. Cross-domain whitelist: The list of domains (including wildcard entries)
that are allowed to send cross-domain requests to the target domain. This
information is received either from the Silverlight or Flash cross-domain
policy.

Depending on the scenario, the three domains (1,2,3) can either be totally dis-
tinct, identical or anything in between. By comparing these values DEMACRO
is able to detect if a request was conducted across domain boundaries or if a
vulnerable proxy situation is present. For the former, the extension additionally
checks whether the policy includes a wildcard. If such a potentially malicious sit-
uation is detected the extension removes existing HTTP authentication headers
or session cookies from the request. Figure 3 summarizes our detection algorithm.

In the remainder of this section, we provide technical details how DEMACRO
handles the tasks of request interception, plugin identification, and session iden-
tifier detection.

Requests Interception and Redirect Tracing: In order to identify plug-
in-based requests, DEMACRO has to examine each request at several points
in time. Firefox offers several different possibilities to intercept HTTP requests,
but none of them alone is sufficient for our purpose. Therefore, we leveraged the
capabilities of the nsIContentPolicy and the nsIObserver interfaces.



264 S. Lekies et al.

Fig. 3. Detection and Mitigation Algorithm

The nsIContentPolicy interface offers a method called shouldLoad which is
called each time an HTTP request is initiated and before the actual HTTPChannel
object is created6. Thereby, the method returns a boolean value indicating
whether a request should be conducted by Firefox or not. Since we do not want
to block a request but only modify its header fields, this method cannot fully
serve our purpose. But as it is the only method that receives the url of the
webpage and the DOM object that caused the request, we need to intercept
page requests here and detect the origin of a request. A request originating from
either a HTMLObjectElement or from a HTMLEmbedElement is categorized as a
plug-in-based request.

The nsIObserver interface offers the observemethod which is called at three
different points in time:

1. http-on-modify-request: Called each time before an HTTP request is sent.
2. http-on-examine-response: Called each time before the response is passed

back to the caller.
3. http-on-examine-cache-response: Called instead of http-on-examine-

response when the response is completely read from cache.

Thereby, the observe method receives an HTTPChannel object as a parameter
which can be used to modify request as well as response header fields. If the ex-
tension detects a potentially malicious request, it can thus disarm it by stripping
existing session information in Cookie fields and by removing Authentication

header fields.
To prevent an attacker from hiding cross-domain requests behind local redi-

rects, the extension also needs to keep track of any redirect resulting from a

6 The HTTPChannel object is used to conduct the request and read the response.
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plug-in-based request. This is also done in the observe method at the http-on-
examine-response event. If a 3xx status code of a plug-in-based request is de-
tected, the redirect location will be stored for examination of follow-up requests.

During experimentation with DEMACRO we noticed that Web applications
tend to initiate a new session if an existing session identifier is not present in
a user’s cookie headers. More precisely, if a session identifier never reaches the
application, the application emits a Set-Cookie header which includes a new
session identifier. If this header reaches the user’s browser it will override ex-
isting cookies with the same name for the corresponding domain and therefore
the user’s authenticated session is replaced by an unauthenticated one. As this
can obviously lead to undesired side-effects and possible denial of service at-
tacks, DEMACRO additionally examines each response of potentially malicious
requests and removes Set-Cookie headers before allowing the response to be
interpreted by the browser.

Plug-In Identification: In order for DEMACRO to investigate the correct
cross-domain policy, our system must detect whether the underlying request
was caused by a Silverlight or by a Flash applet. Since the HTTP request itself
does not carry any information about its caller, we developed a mechanism for
Firefox to distinguish between Flash and Silverlight requests.

As stated above, the only point in time where we have access to the request-
causing DOM element is the call of the shouldLoadmethod in the nsIContent-
Policy interface. But, due to the fact that Silverlight and Flash files can both be
embedded into a page by using either an HTMLObjectElement or an HTMLEmbed-

Element, we need to examine the exact syntax used to embed those files for each
element. By testing standard and less-standard ways of embedding an applet to
a page, we resulted to the detection mechanism shown in Listing 3. In case the
detection mechanism fails, the extension simply requests both policies, in order
to prevent an attacker who is trying to circumvent our extension by using an
obscure method to embed his malicious files.

Table 1. Default session naming for the most common Web frameworks

Web Framework Name of Session variable

PHP phpsessid

ASP/ASP.NET asp.net sessionid
aspsessionid

JSP x-jspsessionid
jsessionid

Session-Cookie Detection: As described earlier, it is necessary to differenti-
ate between session information and non-session information and strip the for-
mer while preserving the latter. The reasoning behind this decision is that while
transmitting session identifiers over applet-originating cross-domain requests can
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Listing 3. Object and Embed detection (pseudocode)

function detectPlugin (HTMLElement elem ){

var type = elem.getAttribute ("type");

var data = elem.getAttribute ("data");

var src = elem.getAttribute ("src");

switch(type.startsWith ){

case " application /x-silverlight ": return flash;

case " application /x-shockwave -flash": return silverlight ;

default:

}

if(data =="data:application /x-silverlight ")

return silverlight ;

if(data.endsWith(".swf")) return flash;

switch(src.endsWith ){

case ".swf": return flash;

case ".xap": return silverlight ;

default:

}

return -1;

}

lead to attacks against users, non-session values should be allowed to be trans-
mitted since they can be part of a legitimate Web application’s logic.

DEMACRO utilizes a techniques initially described by Nikiforakis et al. [16]
and Tang et al. [23] that attempts to identify session identifiers at the client-side.
The approach consists of two pillars. The first one is based on a dictionary check
and the second one on measuring the information entropy of a cookie value:

The dictionary check is founded on the observation that well known Web
frameworks use well-defined names for session cookies - see Table 1. By recog-
nizing these values we are able to unambiguously classify such cookies as session
identifiers. Furthermore, in order to detect custom naming of session identifiers,
we characterize a value as a session cookie if it’s name contains the string “sess”
and if the value itself includes letters as well as numbers and is more than ten
characters long. We believe that this is a reasonable assumption since all the
session identifiers generated by the aforementioned frameworks fall within this
categorization.

The second pillar is based on the fact that session identifiers are long ran-
dom strings. Thus their entropy, i.e., the number of bits necessary to represent
them, is by nature higher than non-random strings. DEMACRO first compares
a cookie variable’s name with its dictionary and if the values are not located it
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then calculates the entropy of the variable’s value. If the result exceeds a cer-
tain threshold (acquired by observing the resulting entropy of session identifiers
generated by the PHP programming framework), the value is characterized as a
session identifier and is removed from the outgoing request.

This session identifier technique works without the assistance of Web servers
and offers excellent detection capabilities with a false negatives rate of ~3% and
a false-positive ratio of ~0.8% [16].

6 Evaluation

6.1 Security

In this section we present a security evaluation of DEMACRO. In order to test
its effectiveness, we used it against MalaRIA [15], a malicious Flash/Silverlight
exploit tool that conducts Man-In-The-Middle attacks by having a user visit
a malicious website. MalaRIA tunnels attacker’s requests through the victim’s
browser thus making cross-domain requests through the victim’s IP address and
with the victim’s cookies. We chose Joomla, a popular Content Management
System, as our victim application mainly due to Joomla’s high market penetra-
tion [5]. Joomla was installed on a host with a wild-card cross-domain policy,
allowing all other domains to communicate with it through cross-domain re-
quests.

Our victim logged in to Joomla and then visited the attacker’s site which
launched the malicious proxy. The attacker, situated at a different browser, could
now initiate arbitrary cross-domain requests to our Joomla installation. Without
our countermeasure, the victim’s browser added the victim’s session cookie to
the outgoing requests, thus authenticating the attacker as the logged-in user.
We repeated the experiment with DEMACRO activated. This time, the plug-in
detected the cross-domain requests and since the Joomla-hosting domain im-
plemented a weak cross-domain policy, it stripped the session-identifier before
forwarding the requests. This means that while the attacker could still browse
the Joomla website through the victim’s browser, he was no longer identified as
the logged-in user.

Apart from the security evaluation with existing and publicly available ex-
ploits, we also implemented several test-cases of our own. We implemented Flash
and Silverlight applets to test our system against all possible ways of conducting
cross-domain requests across the two platforms and we also implemented sev-
eral vulnerable Flash and Silverlight applets to test for the second misuse case
(Section 3.2). In all cases, DEMACRO detected the malicious cross-domain re-
quests and removed the authentication information. Lastly we tested our system
against the exploits we developed for the real-world use cases (See Section 4)
and were able to successfully prevent the attacks in both cases.

6.2 Compatibility

In order to test DEMACRO ’s practical ability to stop potentially malicious cross-
domain requests while preserving normal functionality, we conducted a survey of
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Table 2. Nature of requests observed by DEMACRO for Alexa Top 1k websites

Request Type #Requests

Non-Cross-Domain 77,988 (98.6%)

Safe Cross-Domain 414 (0.52%)

Unsafe Cross-Domain
Without Cookies 387 (0.49%)

With Session Cookies 275 (0.34%)
With Non-Session Cookies 29 (0.05%)

Total 79,093 (100%)

the Alexa top 1,000 websites. We used the Selenium IDE 7 to instrument Firefox
to automatically visit these sites twice. The rationale behind the two runs is the
following: In the first run, DEMACRO was deactivated and the sites and ad
banners were populating cookies to our browser. In the second run, DEMACRO
was enabled and reacting to all the insecure cross-domain requests by stripping-
off their session cookies that were placed in the browser during the first run. The
results of the second run are summarized in Table 2.

In total, we were able to observe 79,093 HTTP requests, of which 1,105 were
conducted by plug-ins across domain boundaries. 691 of the requests were con-
sidered insecure by DEMACRO and thus our system deemed it necessary to
remove any session cookies found in these requests. Of the 691, approximately
half of them did not contain cookies thus these requests were not modified. For
the rest, DEMACRO identified at least one session-like value in 275 requests
which it removed before allowing the requests to proceed.

In order to find out more about the nature of the insecure requests that
DEMACRO modified, we further investigated their intended usage: The 275
requests were conducted by a total of 68 domains. We inspected the domains
manually and discovered that almost half of the requests where performed by
Flash advertising banners and the rest by video players, image galleries and
other generic flash applications. We viewed the websites first with DEMACRO
de-activated and then activated and we noticed that in all but one cases, the
applications were loading correctly and displaying the expected content. The one
case that did not work, was a Flash advertisement that was no-longer functional
when session cookies were stripped away from its requests.

One can make many observations based on the aforementioned results. First
of all, we observe that the vast majority of requests do not originate from plugins
which experimentally verifies the commonly-held belief that most of the Web’s
content is served over non-plugin technologies. Another interesting observation is
that 50% of the cross-domain plugin-originating requests are towards hosts that
implement, purposefully or accidentally, weak cross-domain policies. Finally, we
believe that the experiments show that DEMACRO can protect against cross-
domain attacks without negatively affecting, neither the user’s browsing experi-
ence nor a website’s legitimate content.

7 http://seleniumhq.org/projects/ide/

http://seleniumhq.org/projects/ide/


DEMACRO: Defense against Malicious Cross-Domain Requests 269

Table 3. Best and worst-case microbenchmarks (in seconds) of cross-domain requests

1,500 C.D. requests Firefox FF & DEMACRO Overhead/req.

JavaScript 27.107 28.335 0.00082

Flash 184 210 0.00173

6.3 Performance

Regardless of the benefits of a security solution, if the overhead that its use
imposes is too large, many users will avoid deploying it. In order to evaluate the
performance of our countermeasure we measured the time needed to perform
a large number of cross-domain requests when a) issued by JavaScript and b)
issued by a Flash applet.

JavaScript Cross-Domain Requests: This experiment presents the mini-
mum overhead that our extension will add to a user’s browser. It consists of
an HTML page which includes JavaScript code to fetch 1,500 images from a
different domain than the one the page is hosted on. Both domains as well as
the browsing user are situated on the same local network to avoid unpredictable
network inconsistencies. The requests originating from JavaScript, while cross-
domain, are not part of the attack surface explored in this paper and are thus
not inspected by our system. The experiment was repeated 5 times and the first
row of Table 3 reports the time needed to fetch all 1,500 images with and without
our protecting system. The overhead that our system imposes is 0.00082 seconds
for each cross-domain request. While this represents the best-case scenario, since
none of the requests need to be checked against weak cross-domain policies, we
believe that this is very close the user’s actual everyday experience where most
of the content served is done so over non-plugins and without crossing domain
boundaries, as shown in Section 6.2.

Flash Cross-Domain Requests: In this experiment we measure the worst-
case scenario where all requests are cross-domain Flash-originating and thus
need to be checked and processed by our system. We chose to measure “Flash-
Gallery” 8, a Flash-based image gallery that constructs its albums either from
images on the local disk of the webserver or using the public images of a given
user on Flickr.com. Cross-domain accesses occur in the latter case in order for
the applet to fetch the necessary information of each image’s location and finally
the image itself. A feature that made us choose this applet over other Flash-based
image galleries is its pre-emptive loading of all available images before the user
requests them. Thus, the applet will perform all cross-domain requests needed
without any user interaction.

To avoid the network inconsistencies of actually fetching 500 images from
Flickr, we implemented the necessary subset of Flickr’s protocol to successfully
provide a list of image URIs to the Flash applet, in our own Web application

8 http://www.flash-gallery.org/

http://www.flash-gallery.org/
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which we hosted on our local network. Using our own DNS server, we resolved
Flickr.com to the host of our Web application instead of the actual Web service.
This setup, allowed us to avoid unnecessary modifications on the client-side, i.e.
the Flash platform, our plug-in and the Flash applet, and to accurately mea-
sure the imposed worst-case overhead of our solution. According to the current
protocol of Flickr.com, an application first receives a large list of image iden-
tifiers. For each identifier, the applet needs to perform 3 cross-domain requests.
One to receive information about the image, one to fetch the URIs of different
image sizes and finally one to fetch the image itself. We configured our Web
service to return 500 image identifiers which in total correspond to 1,500 cross-
domain requests. Each transfered image had an average size of 128 Kilobytes.
Each experiment was repeated 5 times and we report the average timings.

The second row of Table 3 reports the results of our experiment. Without
any protection mechanisms, the browser fetched and rendered all images in 184
seconds. The reason that made these requests so much slower than the non-
protected JavaScript requests of Section 6.3 is that this time, the images are
loaded into the Flash-plugin and rendered, as part of a functioning interactive
image gallery on the user’s screen. With our system activated, the same task
was accomplished in 210 seconds, adding a 0.00173 seconds overhead to each
plugin-based cross-domain request in order to inspect its origin, the policy of
the remote-server and finally perform any necessary stripping of credentials.

It is necessary to point out that this overhead represents the upper-bound of
overhead that a user will witness in his every-day browsing. In normal circum-
stances, the majority of requests are not initiated by Flash or Silverlight and
thus we believe that the actual overhead will be closer to the one reported in
the previous section. Additionally, since our experiments were conducted on the
local network, any delay that DEMACRO imposes affects the total operation
time much more than requests towards remote Web servers where the round-trip
time of each request will be significantly larger.

7 Related Work

One of the first studies that gave attention to insecure cross-domain policies for
Flash, was conducted by Grossman in 2006 [7]. At the time, 36% of the Alexa
top 100 websites had a cross-domain policy and 6% of them were using insecure
wildcards. Kontaxis et al. [13] recently reported that now more than 60% of
the same set of websites implement a cross-domain policy and the percentage
of insecure wildcard policies has increased to 21%. While we [14] used a more
conservative definition of insecure policies, we also came to the conclusion that
the cross-domain traffic through Flash and Silverlight is a real problem.

To the best of our knowledge this paper presents the first countermeasure
towards this increasingly popular problem. The nature of the problem, i.e. server-
side misconfigurations resulting to poor security, allows for two categories of
approaches. The first approach is at the server-side, where the administrator
of a domain configures the cross-domain policy correctly and thus eliminates
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the problem all together. While this is the best solution, it a) depends on an
administrator to realize the problem and implement a secure policy and b) needs
to be repeated by all administrators in all the domains that use cross-domain
policies. Practice has shown that adoption of server-side countermeasures can
be a lengthy and often incomplete process [27]. For these reasons we decided
to focus our attention on the client-side where our system will protect the user
regardless of the security provisions of any given site.

Pure client-side security countermeasures against popular Web application
attacks have in general received much attention due to their attractive “install
once, secure all” nature. Kirda et al. [12] attempt to stop session hijacking at-
tacks conducted through cross-site scripting (XSS) [26] at the client side using
a proxy which blocks requests towards dynamically generated URIs leading to
third-party domains. Nikiforakis et al. [16] and Tang et al. [23] tackle the same
problem through the identification of session identifiers at the client-side and
their subsequent separation from the scripts running in the browser. Vogt et
al. [24] also attempt to prevent the leakage of session identifiers through the
use of static analysis and dynamic data tainting, however Russo et al. [20] have
shown that the identifiers can still be leaked through the use of side channels.

Moving on to Cross-Site Request Forgeries, Johns and Winter [11] propose a
solution where a client-side proxy adds tokens in incoming URLs (based on their
domains) that bind each URL with their originating domain. At each outgoing
request, the domain of the request is checked against the originating domain
and if they don’t match, the requests are stripped from their credentials. De
Ryck et al. [21] extend this system, by moving it into the browser where more
context-information is available. Shahriar and Zulkernine [22] propose a detec-
tion technique where each cross-domain request is checked against the visibility
of the code that originated it in the user’s browser. According to the authors,
legitimate requests will have originated from visible blocks of code (such as a
visible HTML form) instead of hidden code (an invisible auto-submitting form
or JavaScript code). None of the above authors consider cross-domain requests
generated by Flash and Silverlight.

Client-side defense mechanisms have also been used to protect a user’s online
privacy. Egele et al. [6] designed a client-side proxy which allows users to make
explicit decisions as to which personal information gets transmitted to third-
party social network applications. Beato et al. propose a client-side access-control
system for social networks, where the publishing user can select who will get
access to the published information [3].

8 Conclusion

In this paper we have shown that the increasingly popular problem of insecure
Flash/Silverlight cross-domain policies is not just an academic problem, but a
real one. Even high profile sites carelessly expose their users to unnecessary
risks by relying on misconfigured policies and plugin applets. In order to protect
security aware users from malicious cross-domain requests we propose a client-
side detection and prevention mechanism, DEMACRO. DEMACRO observes all
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requests that occur within the user’s web browser and checks for potential ma-
licious intent. In this context, we consider a request to be potentially harmful,
if it targets a cross-domain resource on a Web server that deploys an insecure
wildcard policy. In such a case, DEMACRO disarms potentially insecure cross-
domain requests by stripping existing authentication credentials. Furthermore,
DEMACRO is able to prevent the vulnerable proxy attack in which a vulnerable
Flash application is misused to conduct cross-domain requests under a foreign
identity. We examine the practicality of our approach, by implementing and eval-
uating DEMACRO as a Firefox extension. The results of our evaluation suggest
that our system is able to protect against malicious cross-domain requests with
a negligible performance overhead while preserving legitimate functionality.
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Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 87–100. Springer, Heidelberg
(2011)

17. Rich internet application (ria) market share,
http://www.statowl.com/custom_ria_market_penetration.php

18. Rios, B.B.: Cross domain hole caused by google docs,
http://xs-sniper.com/blog/Google-Docs-Cross-Domain-Hole/

19. Ruderman, J.: The Same Origin Policy (August 2001),
http://www.mozilla.org/projects/security/components/same-origin.html

(October 01, 2006)
20. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking Information Flow in Dynamic

Tree Structures. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 86–103. Springer, Heidelberg (2009)

21. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Transpar-
ent Client-Side Mitigation of Malicious Cross-Domain Requests. In: Massacci, F.,
Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 18–34. Springer,
Heidelberg (2010)

22. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery
attacks. In: 2010 IEEE 21st International Symposium on Software Reliability En-
gineering (ISSRE), pp. 358–367 (2010)

23. Tang, S., Dautenhahn, N., King, S.T.: Fortifying web-based applications automat-
ically. In: Proceedings of the 8th ACM Conference on Computer and Communica-
tions Security (2011)

24. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vigna, G.: Cross
Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In:
Proceedings of the 14th Annual Network and Distributed System Security Sympo-
sium, NDSS 2007 (2007)

25. W3C. Cross-Origin Resource Sharing, http://www.w3.org/TR/cors/
26. The Cross-site Scripting FAQ, http://www.cgisecurity.com/xss-faq.html
27. Zhou, Y., Evans, D.: Why Aren’t HTTP-only Cookies More Widely Deployed? In:

Proceedings of 4th Web 2.0 Security and Privacy Workshop, W2SP 2010 (2010)

http://erlend.oftedal.no/blog/?blogid=107
http://www.statowl.com/custom_ria_market_penetration.php
http://xs-sniper.com/blog/Google-Docs-Cross-Domain-Hole/
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.w3.org/TR/cors/
http://www.cgisecurity.com/xss-faq.html


FlashDetect: ActionScript 3 Malware Detection

Timon Van Overveldt1, Christopher Kruegel2,3, and Giovanni Vigna2,3

1 Katholieke Universiteit Leuven, Belgium
timon.vanoverveldt@student.kuleuven.be

2 University of California, Santa Barbara, USA
{chris,vigna}@cs.ucsb.edu

3 Lastline, Inc.

Abstract. Adobe Flash is present on nearly every PC, and it is in-
creasingly being targeted by malware authors. Despite this, research into
methods for detecting malicious Flash files has been limited. Similarly,
there is very little documentation available about the techniques com-
monly used by Flash malware. Instead, most research has focused on
JavaScript malware.

This paper discusses common techniques such as heap spraying, JIT
spraying, and type confusion exploitation in the context of Flash mal-
ware. Where applicable, these techniques are compared to those used in
malicious JavaScript. Subsequently, FlashDetect is presented, an off-
line Flash file analyzer that uses both dynamic and static analysis, and
that can detect malicious Flash files using ActionScript 3. FlashDetect
classifies submitted files using a naive Bayesian classifier based on a set
of predefined features. Our experiments show that FlashDetect has
high classification accuracy, and that its efficacy is comparable with that
of commercial anti-virus products.

Keywords: Flash exploit analysis, malicious ActionScript 3 detection,
Flash type confusion.

1 Introduction

Adobe Flash is a technology that provides advanced video playback and anima-
tion capabilities to developers through an advanced scripting language. The files
played by Flash, called SWFs, are often embedded into webpages to be played
by a browser plugin, or are embedded into a PDF file to be played by a copy of
the Flash Player included in Adobe’s Acrobat Reader. The technology is nearly
ubiquitous on the desktop: over 99% of all PC users have the Flash browser
plugin installed, according to Adobe [1]. However, over the last couple of years,
the Flash Player has increasingly become the target of exploitation [18,23,10],
with at least 134 high-severity vulnerabilities that have been identified in the
Flash Player since January 2009 [15].

Since version 9 appeared in 2006, the Flash Player has supported two script-
ing languages, ActionScript 2 (AS2) and ActionScript 3 (AS3), each with its
own virtual machine. Traditionally, exploits have targeted the older AS2 virtual
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machine. However, a number of critical vulnerabilities discovered in the AS3 vir-
tual machine have resulted in an ever growing number of exploits targeting this
virtual machine. Even exploits targeting the AS2 virtual machine increasingly
turn to AS3 to perform part of the attack. For example, a heap spray might be
performed in AS3 before running an AS2 script that exploits an old vulnerability.

Despite the increasing importance of successful solutions to Flash exploit detec-
tion, academic research describing such solutions has been scarce. A lot of research
has instead focused on JavaScript malware detection. However, without a sound
detector for Flash malware, even the most advanced JavaScript malware detector
could be circumvented by performing all or part of the attack in Flash.

In this paper, we present FlashDetect, an offline Flash file analyzer and
malware detector. FlashDetect combines static bytecode analysis with dy-
namic analysis using an instrumented version of the Lightspark flash player [19]
to enable a high detection rate while maintaining a low false positive rate. The
analysis of a Flash file is based on a set of simple yet effective predefined features.
These features are used to classify a Flash file using a combination of a naive
Bayesian classifier and a single vulnerability-specific filter. FlashDetect is an
evolution of OdoSwiff, presented by Ford et al. in [6]. However, in contrast to
OdoSwiff, FlashDetect focuses solely on the analysis Flash files using AS3,
while OdoSwiff mainly covered AS2 exploits. Given the significant differences
between AS2 and AS3, we had to develop an entire new set of features and de-
tection techniques. Additionally, OdoSwiff did not employ a naive Bayesian
classifier, instead relying solely on threshold-based filters.

The contributions made by this paper include:
– Insight into Common Flash Exploit Techniques.

Techniques commonly used in malicious Flash files, such as obfuscation, heap
spraying, and type confusion exploitation are discussed.

– Detection Based on a Combination of Static and Dynamic Analysis.
A hybrid approach to analyzing Flash files is presented, in which the strengths
of static and dynamic analysis are combined.

– Classification Based on Predefined Features.
Classification is performed by a combination of a naive Bayesian classifier
and a single vulnerability-specific filter. The naive Bayesian classifier is based
on a set of predefined features.

– Evaluation.
The merits of our approach are confirmed. Tests performed on 691 benign
files and 1,184 malicious files show low false negative and false positive rates
of around 1.87% and 2.01%, respectively. These rates are shown to be com-
parable with or better than those of commercial anti-virus products

The rest of this paper is organized as follows. A number of common techniques
employed by ActionScript 3 malware are outlined in Section 2. FlashDetect’s
implementation details are discussed in Section 3, while Section 4 lists the set
of features used for classification. Section 5 presents the experimental results.
Finally, FlashDetect’s limitations are discussed in Section 6, while Section 7
discusses related publications.
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2 Common Flash Exploit Techniques

This section provides a brief overview of some common techniques employed
by Flash malware. Where applicable, comparisons are made with techniques
common to JavaScript malware.

2.1 Obfuscation

Obfuscation is often employed by malicious JavaScript or shellcode, and ma-
licious Flash files are no exception. Obfuscation techniques differ according to
the technology available for obfuscation. For example, JavaScript is an inter-
preted language lacking a bytecode representation. Consequently, obfuscation in
JavaScript often consists of identifier mangling and/or repeated calls to eval().
Shellcode obfuscation, on the other hand, is often achieved by packing the binary
data in a specific format, possibly using the XOR operation

We have examined hundreds of malicious Flash files to determine if and how
they perform obfuscation, and to develop ways of detecting such obfuscation.
The description that follows is the result of that effort.

Flash files are created by compiling ActionScript 3 scripts into a bytecode
representation and wrapping that bytecode in an SWF container. Because the
ActionScript 3 virtual machine interprets bytecode, a JavaScript-style eval()
function is not supported. Consequently, Flash obfuscation techniques have more
in common with obfuscation techniques for shellcode than with those for
JavaScript.

Note that we distinguish two types of obfuscation. The first type is source-code
level obfuscation (e.g. identifier renaming). This type of obfuscation is heavily
used in JavaScript malware, but given that ActionScript is distributed in byte-
code form, it is less prevalent in Flash malware. The second type of obfuscation
consists of multiple levels of embedded code. Since our detector will analyze the
bytecode of a Flash file, we are most interested in the latter form of deobfusca-
tion.

Though ActionScript 3 does not support eval(), it does support the runtime
loading of SWF files. This is achieved by calling Loader.loadBytes() on a
ByteArray containing the SWF’s data. Using the DefineBinaryData SWF tag,
arbitrary binary data can be embedded into an SWF file. At runtime, the data
becomes available to ActionScript in the form of a ByteArray instance.

The DefineBinaryData SWF tag is often used in combination with the
Loader.loadBytes() method to implement a primitive form of obfuscation.
However, given that static extraction of DefineBinaryData tags is fairly easy
using a range of commercial or open-source tools, obfuscation almost never stops
there. Instead, malicious Flash files often encode or encrypt the embedded binary
data and decode it at runtime before calling Loader.loadBytes().

As is the case with JavaScript [8], obfuscation is actively used by both be-
nign and malicious Flash files, as evidenced by commercial obfuscators such as
DoSWF [5] and Kindi [11]. Thus, the mere presence of obfuscated code is not
a good indicator of the maliciousness of a Flash file. Therefore, a need for a
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dynamic extraction method arises, allowing static analysis to be performed af-
ter deobfuscation. To this end, we have modified the Lightspark flash player so
that each time Loader.loadBytes() is called, the content of the ByteArray is
dumped into a file for later analysis. This allows for reliable extraction of embed-
ded SWFs, as long as the deobfuscation code path is reached. In cases where the
deobfuscation code path is not reached and no files are dynamically extracted,
we fall back to a simple static extractor.

2.2 Heap Spraying

Heap spraying is an extremely common technique found in contemporary mal-
ware, and as such, it is commonly employed in ActionScript 3 malware. As is the
case with obfuscation techniques, the way a heap spray is performed depends on
the environment in which it needs to be performed. For example, in JavaScript,
heap sprays are often performed by creating a string, and repeatedly concatenat-
ing the string with itself. In ActionScript 3, the most common way to perform
a heap spray is through the use of a ByteArray.

The ByteArray class available in ActionScript 3 provides byte-level access to
a chunk of data. It allows reading and writing of arbitrary bytes, and also allows
the reading and writing of the binary representation of integers, floating point
numbers, and strings. The implementation of the ByteArray class in the Action-
Script 3 virtual machine uses a contiguous chunk of memory that is expanded
when necessary to store the contents of the array. Therefore, the ByteArray class
is a prime candidate for performing heap sprays.

Heap spraying code often uses one ByteArray containing the shellcode to be
written, and a second ByteArray to perform the actual heap spray on. A simple
loop is then used to repeatedly copy the first array’s contents into the second.
This results in the second array’s memory chunk becoming very large, covering
a large portion of the process’s memory space with shellcode. Another common
way to perform a heap spray is to use a string that contains the hexadecimal,
base64, or some other encoding of the shellcode. This string is then decoded
before being repeatedly written into a ByteArray, until it covers a large portion
of the memory space.

2.3 JIT Spraying

The concept of JIT spraying in ActionScript 3 has been introduced in [2]. In
that paper, the author shows how the JIT compiler in the ActionScript 3 virtual
machine can be forced to generate executable blocks of code with almost identical
semantics to some specified shellcode. It is shown that a chain of XOR operations
performed on a set of specially crafted integers is compiled to native code in such
a way that, when the code is jumped into at an offset, it is semantically equivalent
to the given shellcode. The concept of JIT spraying is significant because it allows
bypassing the Data Execution Protection (DEP) feature present in most modern
operating systems.
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We have observed that exploits targeting the Flash Player and using JIT
sprays are fairly common. It seems that the most common way in which a JIT
spray is performed consists of repeatedly loading an embedded SWF file contain-
ing the bytecode that performs the repeated XOR operations. This repetition
ensures that multiple blocks of executable shellcode are present in the memory
of the Flash player. Furthermore, the shellcode itself often contains a NOP-sled
to further enhance the chances of successful exploitation.

2.4 Malicious ActionScript 3 as Exploit Facilitator

Although a range of vulnerabilities have allowed the ActionScript 3 virtual ma-
chine to be a target for exploitation, another common use of Flash malware
seems to be that of a facilitator of other exploits. We have observed instances
where a malicious Flash file merely performs a heap spray, without trying to
gain control of execution. This seems to indicate that the malicious file is meant
to facilitate another exploit, for example one targeting a JavaScript engine. The
rationale behind this behavior is that Flash files are often embedded in other
resources, and as such, they can facilitate exploits targeting the technologies
related to those resources.

For example, exploits targeting a JavaScript engine might use ActionScript 3
to perform a heap spray, after which the actual control of execution is gained
through a vulnerability in the JavaScript engine. However, the value of such
types of exploits is declining, as browsers are increasingly separating the browser
from its plugins by running those plugins in separate processes. Another possible
scenario in which a malicious Flash file acts as an exploit facilitator is that in
which a Flash file is embedded in a PDF. In such a case, the Flash file might
perform a heap spray, while the actual control of execution is gained through
a vulnerability in the JavaScript engine in Adobe’s Acrobat Reader. Finally,
as mentioned in the previous section, ActionScript 3 is often used to facilitate
exploits targeting the ActionScript 2 virtual machine.

These examples illustrate that Flash is a versatile tool for malware authors,
as Flash files can be used both to launch full-fledged attacks, as well as to act
as a facilitator for the exploitation of other technologies.

2.5 Type Confusion Exploitation

A relatively recent development has been the exploitation of type confusion
vulnerabilities present in both the ActionScript 2 and ActionScript 3 virtual
machine. These types of exploits are interesting since they often allow an at-
tacker to construct a very reliable exploit that completely bypasses both Data
Execution Protection and Address Space Layout Randomization, without relying
on heap or JIT spraying. There are a number of vulnerabilities for which the
exploit code, or at least parts of it, have been published. Among these are CVE-
2010-3654 and CVE-2011-0609, which relate to the ActionScript 3 virtual ma-
chine, and CVE-2011-0611, which relates to the ActionScript 2 virtual machine.
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Listing 1.1. Implementation of the 3 classes used to exploit CVE-2010-3654.

1 class OriginalClass {
2 static public function getPointer (o:Object):uint { return 0; }
3 static public function tagAsNumber (u:uint):* { }
4 static public function fakeObject (p:uint):SomeClass { return null; }
5 }
6
7 class ConfusedClass {
8 static public function getPointer(o:Object):Object { return o; }
9 static public function tagAsNumber(p:uint):uint { return p | 0x7 }

10 static public function fakeObject(p:uint):uint { return p; }
11 }
12
13 class SomeClass {
14 public function someMethod():* {}
15 }

Other security advisories, such as CVE-2012-0752, are also known to relate to
type confusion vulnerabilities, although their exploit code is not public yet.

An exploit for CVE-2010-3654 is presented by Li in [13]. We present a slightly
simplified adaption of this exploit, to illustrate the way in which a type confusion
exploit works.

ActionScript 3 Virtual Machine Implementation. The ActionScript 3
virtual machine operates on data types called ‘atoms.’ Atoms consist of 29 bits
of data followed by a 3-bit type-tag. The data can either be an integer or an
8-byte-aligned pointer to some larger data (as is the case for atoms representing
objects or floating point numbers). The type-tags allow the virtual machine to
support runtime type detection when a variable’s type is not specified in the
source code.

The ActionScript 3 virtual machine also contains a JIT compiler that compiles
ActionScript 3 methods to native code. The native code for such a method
works solely with native data types, not atoms. Thus, native code methods
return ActionScript objects as pointers, integers as 32-bit integers, and floating
point numbers as pointers to IEEE 754 double precision numbers. Code calling
a native code method then wraps the result into a type-tag to form an atom, so
that the result can be used by the virtual machine. The type-tag that is used
when wrapping native code results depends on the method’s return type, which
is specified by the class definition.

Elements of a CVE-2010-3654 Exploit. An exploit for CVE-2010-3654
consists of three classes. Listing 1.1 lists the implementation of those three
classes. To trigger the vulnerability, the list of identifiers in the compiled byte-
code is modified such that the name of ConfusedClass’s identifier is changed
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to OriginalClass. After this modification, the list of identifiers will have two
entries named OriginalClass. The result is that in vulnerable version of the
Flash player, the ConfusedClass is ‘type confused’ with the OriginalClass.

When ConfusedClass is confused with OriginalClass, calls to methods
of OriginalClass instead end up calling the native code implementations of
ConfusedClass’s corresponding methods. However, when wrapping the results
of these native code methods, the type-tag that is used depends on the re-
turn types defined in OriginalClass. This mismatch, where on the one hand
ConfusedClass’s native code methods are called, while on the other hand
OriginalClass’s return types are used, results in an exploitable vulnerability.

The following sections show how this vulnerability can be used to leak addresses
of objects, read arbitrary memory and gain control of execution.

Leaking Objects’ Memory Addresses. Because of the type confusion, the
pointers to the Objects returned by ConfusedClass.getPointer are wrapped
in uint type-tags (as specified by OriginalClass), exposing the pointer to
the ActionScript 3 runtime. For example, OriginalClass.getPointer(new
ByteArray()) will actually call ConfusedClass.getPointer and return the
memory address of the ByteArray in the form of an integer.

Reading Arbitrary Memory Addresses. Similarly, the integers returned
by ConfusedClass.tagAsNumber end being used as if they are atoms with a
type-tag. This is because the type of the returned value needs to be inferred
at runtime, as no type is specified in OriginalClass. The 0x7 type-tag that is
added by ConfusedClass.tagAsNumber is that of a floating point number atom.

In the ActionScript 3 virtual machine, the data of a floating point number
atom is an 8-byte-aligned pointer to an IEEE 754 double precision number.
Thus, after a call to tagAsNumber, the given integer will be used as if it is an
8-byte-aligned pointer pointing to valid IEEE 754 data.

This effectively allows an attacker to read arbitrary memory locations by
passing the memory location to tagAsNumber and then writing the ‘fake’ floating
point number to a ByteArray. This results in the 8 bytes at the given location
being written into the ByteArray. These bytes can then be read separately using
the methods provided by the ByteArray class.

Gaining Control of Execution. Finally, by passing a memory address to the
fakeObjectmethod, one can create a ‘fake’ object of type SomeClass whose rep-
resentation is supposedly stored at the given memory location. When someMethod
is called on this fake object, the virtual machine will access the object’s vtable at
a certain offset from the given memory address, look up the method’s address,
and then jump to it. Thus, by specifically crafting the memory at the given
memory location, the attacker can make the virtual machine hand over control
of execution to a piece of memory under his control. Crafting such a chunk of
memory can easily be done by using a ByteArray instance and then leaking
the address of that ByteArray’s data using a combination of the previous two
techniques.
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Bypassing DEP. It is clear that by being able to leak pointers to objects, read
arbitrary memory addresses and gain control of execution, one can easily create a
basic exploit that bypasses ASLR. However, DEP still prevents such exploits from
working, since any shellcode produced in ActionScript will be non-executable.

There is, however, an important element that circumvents this last hurdle:
the first 4 bytes of an ActionScript object’s representation point to a memory
address in the Flash player DLL that is always at constant offset to the start of
the DLL. Thus, by reading these 4 bytes, an attacker can infer the base address
of the Flash player DLL in the process’s memory.

Since the DLL contains a call to VirtualProtect, an attacker can use the
information to discover the address of that function. Therefore, all an attacker
needs to do to circumvent DEP is to create a return-oriented programming attack
that calls VirtualProtect on some shellcode, using the gadgets available in the
DLL. Afterwards, the shellcode, which can be arbitrarily large, can be jumped
to and executed.

2.6 Environment-Identifying Code

Environment-identifying code reads some property and compares it to some
constant. The result is then used in a conditional branch. Such code is often
used to selectively launch an exploit only if the Flash file is being executed
by a vulnerable version of the Flash player. Therefore, a malicious Flash file
might not exhibit distinctive behavior if such environment-identifying code fails
to identify a vulnerable Flash player instance. From our observations we have
concluded that environment-identifying code is fairly common in malicious Flash
files. Since environment-identification is often used to target specific versions of
the Flash runtime, it is not possible to instrument the Lightspark player to return
a single version string that is vulnerable to all exploits.

To improve the detection rate and to maximize the chances of successfully
deobfuscating any embedded SWF files, we have instrumented the Lightspark
player to taint all environment-identifying properties. More precisely, all prop-
erties of the Capabilities class are tainted. These taint values are propagated
through all basic ActionScript 3 operations (e.g., string concatenation). Subse-
quently, whenever an ifeq (‘if equals’) branch depends on a tainted value, that
branch is forcibly, taken no matter what the actual result of the comparison
operation is. On the other hand, complementary ifne (‘if not equals’) branches
depending on tainted values are never taken.

Listing 1.2 contains a simplified excerpt of a real malicious sample performing
environment-identification. The sample matches the Flash player’s version (ob-
tained from the Capabilities.versionproperty) to a predefined set of versions.
Each version has an accompanying embedded SWF file containing an exploit tar-
geting that version. With the original Lightspark player, chances are high that
both ifne conditional branches would be taken, resulting in the malicious Flash
file not launching any exploit. However, because of the use of taint-propagation,
none of the ifne branches are taken in our analysis environment, resulting in
the last exploit being loaded.
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Listing 1.2. Excerpt of a sample using environment-identifying bytecode

1 getlex flash.system::Capabilities
2 getproperty version
3 coerce String
4 setlocal 15
5 getlocal 15
6 pushstring "WIN 9,0,115,0"
7 ifne L1
8

9 // load exploit targeting Windows Flash Player version 9.0.115
10
11 L1: getlocal 15
12 pushstring "WIN 9,0,16,0"
13 ifne L2
14

15 // load exploit targeting Windows Flash Player version 9.0.16
16
17 L2: // this Flash player is not vulnerable, do not load any exploit

Note that this simple approach works well, as most environment-identifying
code uses inclusive rules to determine vulnerable Flash players. That is, in-
stead of determining that a given Flash player instance is not vulnerable, most
environment-identifying code determines that a given instance is vulnerable.
However, it is clear that this approach can be circumvented, a scenario that is
discussed in more detail in Section 6.

3 Detector Implementation

FlashDetect’s analysis of a Flash file is split into three phases. In the first
phase, the Flash file is dynamically analyzed using an instrumented version of
the Lightspark flash player. The second phase leverages a static analysis of the
ActionScript 3 bytecode of the Flash file (including any bytecode found through
deobfuscation during the dynamic analysis phase). Finally, in the last phase, the
Flash file is classified using the set of features described in Section 4.

3.1 Phase I: Dynamic Analysis

The dynamic analysis of submitted Flash files is performed by an instrumented
version of the Lightspark flash player that saves a trace of interesting events, such
as the calling of methods, access to properties, or the instantiation of classes.
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After the dynamic analysis, this trace is analyzed to determine the values of the
features used for classification.

Additionally, the instrumented Lightspark version saves every SWF file that is
loaded at runtime. This allows the subsequent static analysis to take into account
both the original SWF file and any other embedded, possibly obfuscated, SWF
files that were loaded at runtime.

During the dynamic analysis, as soon as the first bytecode instruction is exe-
cuted, a timer is started with a given timeout value. When the timer runs out,
the dynamic analysis ends. This way, each Flash file is analyzed for more or less
the same amount of time. At the same time, starting the timer only after the
first instruction has executed ensures that the time spent loading a Flash file
has no effect on the actual amount of time for which the file’s scripted behavior
is analyzed.

3.2 Phase II: Static Analysis

After performing the dynamic analysis, we perform a static analysis of both the
original SWF file as well as any deobfuscated SWF files. The majority of the
static analysis phase is spent analyzing the ActionScript 3 bytecode found in the
SWFs. However, a small part of the static analysis checks for commonly exploited
vulnerabilities in the Flash player’s SWF parser, such as integer overflows in
SWF tags.

As is the case with the dynamic analysis, the goal of the static analysis is to de-
termine the values for the set of features used for classification. Some feature val-
ues are determined during both the dynamic and static analysis phase. For exam-
ple, the feature that captures a Flash file accessing the Capabilities.version
property, commonly used for environment-identification purposes, is detected
during both analysis phases.

Checking the same feature during both phases might seem redundant, but
it has a practical advantage. As the Lightspark flash player is a fairly recent
project, it does not yet run all Flash files correctly. Hence, it is possible that
the dynamic analysis phase will be cut short because of an unexpected error.
However, because the same feature is also checked in the static analysis phase,
chances are high that the feature will still be correctly detected. On the other
hand, since it is possible to obfuscate property or method names, static analysis
might fail to detect certain features. However, as long as the dynamic analysis
succeeds, that feature will still be detected correctly.

3.3 Phase III: Classification

A naive Bayesian classifier is used to classify submitted samples using the set of
features mentioned earlier. The classifier accepts features with both a Boolean
value domain and a continuous value domain. A Laplacian correction is applied
to Boolean features to convert zero-probabilities to very small probabilities.
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As is common with naive Bayesian classifiers, the normal distribution is used
to model continuous features. Thus, the probability of continuous features is
estimated using the normal probability density function.

f(x, μ, σ2) =
1

σ
√
2π

exp
(−(x − μ)2

2σ2

)
Additionally, calculated probabilities are clamped to a minimum probability of
1e-10 , so as to prohibit any single feature from influencing the classification
decision too much.

Finally, there is one feature that we consider a definitive indicator of mali-
ciousness, and for which we bypass the naive Bayesian classifier. This feature is
discussed in Section 4.

4 Features Used for Classification

Our features can be grouped according to the type of behavior they characterize.
Boolean features are marked by (B), while continuous features are marked by
(C).

Features Related to Embedded and Obfuscated SWF Files or Shell-
code. The group consists of the following features:

– shellcode (B): indicates whether the sctest tool from the Libemu library
detected shellcode embedded in the Flash file.

– load-loadbytes, loader-load (B): indicate whether the Flash file uses the
loadBytes or load methods of the Loader class to load SWF files at runtime.

– obfuscation-method-ratio (C): represents the ratio of deobfuscation-
related method calls to the overall number of method calls; the methods
are fromCharCode(), charCodeAt and slice() of the String class, in ad-
dition to parseInt. These methods are frequently used in deobfuscation in
the wild.

– bytearray-method-ratio (C): the ratio of ByteArray-related method calls
to the total number method calls. A large ratio is indicative of deobfuscation
and/or heap spraying.

– bytearray-callprop-ratio (C): the ratio of ByteArraymethod-calling byte-
code instructions to the total number method-calling instructions. A large
ratio is indicative of deobfuscation and/or heap spraying.

– avg-pushstring-char-range (C): the average range of characters in
pushstring instructions; indicative of strings containing binary data such
as shellcode.

– avg-base64-pushstring-length (C): the average length of strings pushed
by pushstring instructions that match the base64 character set; indicative
of obfuscated data.
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Of the above features, the shellcode, bytearray-callprop-ratio, avg-pushstring-
char-range and avg-base64-pushstring-length features are only checked during
the static analysis phase. The obfuscation-method-ratio and bytearray-method-
ratio features are only checked during the dynamic analysis phase. The loader-
loadbytes and loader-load features are checked during both phases of the analysis.

Features Related to Environment-Awareness

– checks-url (B): indicates whether the Flash file checks the URL of
the webpage it is embedded in; the feature indicates access to the
LoaderInfo.url property or access through the ExternalInterface class
to the window.location property of the embedding HTML page. Most ma-
licious files do not check the URL, while a lot of benign files do, so this
feature is indicative of benign behavior rather than malicious behavior.

– external-interface (B): indicates whether the Flash file uses any of the
methods of the ExternalInterface class to communicate with the external
host of the Flash plugin, such as the web browser. Most malicious files do
not use ExternalInterface, while a lot of benign files do, so this feature is
indicative of benign behavior rather than malicious behavior.

– checks-capabilities (B): indicates whether the Flash file uses any of the
properties of the Capabilities class; indicative of environment-identification
often used by malicious files in the wild. Additionally, there are five fea-
tures that specifically indicate access to the version, playerType, and
isDebugger properties of the Capabilities class.

All features in this group are checked during both analysis phases.

Features Related to General Runtime Behavior. The features in this
group all provide an indication how a given Flash file behaves in very general
terms. For example, a very high amount of method calls or high ratio of push
opcodes is often indicative of deobfuscation or heap spraying.

– method-calls-per-second, method-calls-per-cpusecond (C): the num-
ber of built-in methods (provided by the Flash Player runtime) called during
the dynamic analysis phase, normalized by the running time in terms of wall
clock or CPU time, respectively. These features each have another variant
in which the value is additionally normalized by the size of the bytecode
present in the SWF file.

– avg-opcode-ratio (C): a group of features that indicate the ratio of a
certain opcode to the total number of opcodes. The opcodes for which ratios
are determined are bitxor, the push opcodes used to push data on the stack,
and the call opcodes used to call methods.

The values to the avg-opcode-ratio features are determined during the static anal-
ysis phase, while the other features’ values are determined during the dynamic
analysis phase.
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Vulnerability-Specific Features

– bad-scene-count (B): indicates whether an invalid SceneCount value was
detected inside the DefineSceneAndFrameLabelData SWF tag. This is in-
dicative of an exploit targeting the CVE-2007-0071 vulnerability.

The value to this feature is determined during the static analysis phase.
This feature is used because some malicious files only trigger the CVE-2007-

0071 vulnerability, without containing any other malicious content or bytecode.
These files are probably meant to be embedded inside other files that do contain
malicious content (e.g. shellcode), to act as exploit triggers.

Given that these types of malicious files would not be detected by the other
features, we use this vulnerability-specific feature, enabling a fair comparison
with other detection products. Given that the presence of this feature is such
a definitive sign of maliciousness, we immediately consider files exhibiting the
feature to be malicious, bypassing the naive Bayesian classifier, as mentioned
earlier in Section 3.3.

5 Evaluation

5.1 Sample Selection

To evaluate the accuracy of FlashDetect, we tested the classifier on a set of
Flash files that are known to be malicious or benign.

Benign Samples. The benign samples were manually verified to be benign and
were gathered by crawling the following sources:

– Miniclips.com, an online games website.
– Various websites offering free Flash webdesign templates.
– Google search results for the query filetype:swf.

Additionally, the benign sample set includes Flash files submitted to Wepawet
that, after manual verification, were found to be benign. In total, the benign
sample set consists of 691 Flash files.

Malicious Samples. The malicious samples were gathered from files submitted
to Wepawet, and they were manually verified to be malicious. Hence, the samples
were categorized according to their similarity, as shown in Table 1. The table also
shows whether or not the files in each category contain embedded/obfuscated
SWF files, and whether or not the environment-identifying Capabilities class
is accessed. Note that 7 out of 12 categories use embedded, possibly obfuscated,
SWFs, while 4 out of 12 categories perform environment-identification.

Table 2 shows the fraction of benign and malicious files that access the dif-
ferent properties of the Capabilities class that are used for environment-
identification, and that are also used as features for classification.
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Table 1. Categorization of malicious samples with the number of samples. Also shown
is whether or not embedded SWF files are used, and whether or not the environment-
identifying Capabilities class is accessed.

Group Number of Embedded Capabilities
samples files access

zasder 1016 � �
corrupt-obfuscated-avm1 49 � �
uncategorized 24 � �
loaderinfo-parameters-sc 16
pop 15
hs 14 �
woshi2bbd-jitspray 11 � �
jitegg 10 �
flashspray 9
badscene 9
doswf-sc1 6 �
heapspray-1 5

Total 1184

Table 2. Fraction of files that access the different properties of the Capabilities class

isDebugger playerType version

Benign files 0.330 0.378 0.421
Malicious Files 0.003 0.872 0.870

Finally, some of the categories are notable for the way the exploits work.

– Zasder. Contains files that employ environment-identification and multiple
levels of obfuscation, and eventually try to exploit CVE-2007-0071 [14].

– Corrupt-obfuscated-avm1. Contains files that load an obfuscated Action-
Script 2 Flash file with a corrupt structure that presumably triggers some
vulnerability in the Flash player. As such, these files are good examples of
ActionScript 3 being used as an ActionScript 2 exploit facilitator.

– Woshi2bbd-jitspray. These files repeatedly load an obfuscated SWF that
contains JIT spraying bytecode, after which a final SWF is loaded that
presumably tries to exploit some vulnerability.

– Flashspray. These files only call a JavaScript function called FLASHSPRAY
in the HTML page embedding the file. They are presumably used to circum-
vent JavaScript malware detectors. Again, these files are good examples of
malicious ActionScript 3 in an exploit facilitating role, this time probably
facilitating an exploit targeting a browser vulnerability.
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5.2 Experimental Results

To test the efficacy of the classifier, we hand-picked a set of training samples from
the malicious samples. This set of 47 samples includes at least one sample from
each category. This way, no single category is over-represented in the training
data, even if that category has many more samples than the others. For the
benign training data, we randomly selected 47 benign samples. The classifier was
then trained on the training samples, and tested on the remaining 1781 samples.
We repeated this test 20 times, each time with a different set of randomly selected
benign training samples.

In addition to testing the classifier using manually selected malicious train-
ing samples, we tested the classifier using randomly selected samples. For this
purpose, we partitioned the randomized malicious samples into 20 disjunct sets.
Subsequently, we used each set in turn as the malicious training sample set. An
equal number of benign training samples accompanying the malicious training
samples were again randomly selected. By the pigeonhole principle, this setup
ensures that for all but the three largest malicious categories, there is at least
one test in which such a category is not represented in the training samples. This
provides a way to test the classifier’s performance on malicious flash files of a
previously unknown category.

Error Rates. Figure 1 contains the ROC curves displaying the accuracy of our
classifier at various classification thresholds, using both manually selected and
randomly selected malicious training samples. These ROC curves show the true
positive rate as a function of the false positive rate, visualizing the trade-offs
required to achieve a given accuracy.
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Fig. 1. ROC curves displaying FlashDetect’s accuracy at various classification
thresholds, when using manually or randomly selected training samples. The right-
hand plot zooms in on the upper corner of the left-hand plot.
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As shown in the plot, when using manually selected training samples, a false
positive rate of 0% is reached at a true positive rate of around 91.5% (i.e. a
false negative rate of around 8.5%). A true positive rate of more than 99.9% is
reached at a false positive rate of around 16%. However, a true positive rate of
exactly 100% is only reached at a false positive rate of around 88.7%. Also note
that an equilibrium between false positive and false negative rates is achieved
at around 2%, at a classification threshold of 25 (marked with an ‘x’). It is at
this equilibrium that the classifier’s accuracy is most balanced, and as such, this
is the threshold we use in the next experiment, comparing our performance to
that of commercial anti-virus products.

The plot also shows the performance of the classifier using randomly selected
training samples, as described earlier. It is clear that the classifier is less accurate
when using randomly selected samples than when using manually selected sam-
ples. However, the performance is not significantly worse, with an equilibrium
between false positive and false negatives at around 3%, compared to 2% when
using manually selected samples. Thus, we conclude that while manual sample
selection increases the classifier’s accuracy, it does not significantly bias towards
malicious files of known categories.

Comparison with Commercial Anti-Virus Products. To support our
claim that FlashDetect’s performance is comparable with or better than that
of commercial anti-virus (AV) products, we include a comparison of Flash-
Detect’s efficacy with that of AV products. We used the VirusTotal [24] service
to run 43 commercial and open-source AV products on our test sample set. The
results of the five best-performing AV products, as determined by the false neg-
ative rate, are compared to FlashDetect’s results, at a set classifier threshold
of 25.

The first row of Table 3 lists the false negative rates for the five best-performing
AV products, together with FlashDetect’s rates. As shown, FlashDetect’s
average false negative rate is less than that of four out of the five best-performing
AV products. It is also interesting to note that out of the 43 AV products we
tested, 35 products had a false negative rate in excess of 65%, and 32 products
had a false negative rate in excess of 90%.

The second row of Table 3 lists the false positive rates. Note that Flash-
Detect’s false positive rate is worse than that of the top five AV products. This
can be explained by the fact that these AV products probably use signature-
based detection methods (confirmed for four out five). However, given that
FlashDetect is able to reach a comparable false negative rate with a rela-
tively low false positive rate, we conclude that FlashDetect’s performance is
certainly competitive with that of commercial AV products.

6 Limitations

Identifying the Presence of FlashDetect. Malicious Flash files might
try to identify the presence of FlashDetect. The Lightspark player is still a
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Table 3. FlashDetect’s false negative and false positive rates at a classifier threshold
of 25 compared to the five best-performing AV products

FlashDetect AV1 AV2 AV3 AV4 AV5

False negatives 1.87% 0.97% 2.64% 2.73% 2.74% 2.81%

False positives 2.01% 0.42% 0.00% 0.27% 0.27% 0.27%

relatively young project, and thus, it still has a long way to go before its behavior
perfectly matches that of the official Flash player. This provides malware writ-
ers with a number of ways to detect the presence of Lightspark, and as a result,
FlashDetect. This limitation is inherent to the implementation of Flash-
Detect’s dynamic analysis phase. However, we assume that as the Lightspark
project matures it will become increasingly harder to differentiate Lightspark
from the official Flash player.

Environment-Identifying Code Circumvention. The method for handling
environment-identifying code described in Section 2.6 is obviously not very ro-
bust. For example, the current method can easily be circumvented by using
exclusive matching instead of inclusive matching. That is, matching against non-
vulnerable version instead of vulnerable versions. Additionally, comparison in-
structions besides ifeq and ifne are not checked for environment-identification.

However, from our observations we conclude that, since most malicious Flash
files currently found in the wild use inclusive environment-identification based on
direct equality instructions, the current method is quite effective at enhancing
detection rates. Nevertheless, in the future, a more robust method to handle
environment-identifying code would be in order. Such a method could consist of
a multi-execution virtual machine capable of simultaneously analyzing multiple
code branches, such as described for JavaScript in [12].

Dependence of Certain Features on a Measure of Time. During the dy-
namic analysis phase, the Flash file is run for a limited amount of time. There-
fore, the usefulness of the dynamic analysis phase inherently depends on the
fact that, in general, malicious files will attempt exploitation as soon as possi-
ble. Additionally, certain dynamic features (e.g., method-calls-per-second) used
for classification are inherently dependent on a measure of time.

The usefulness of time-dependent features and indeed, the dynamic analysis
phase in general, could be reduced if malicious files were to delay the start of
exploitation for a certain amount of time. Therefore, the dependence of certain
features on a measure of time is an inherent limitation of our system.

However, launching an exploit as soon as possible is advantageous to malware
authors as it increases the chances of the exploit being successful. Consequently,
one can argue that maximizing the number of successful exploitations is more
important to malware authors than evading detection. Indeed, the complete lack
of obfuscation in some of the malicious samples we have observed indicates that
some malware authors do not even bother to evade detection anymore.
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Overall Robustness of Features. Some of the individual features used for
classification may not be very robust. Examples are the time-dependent dynamic
features. However, the combination of all features being used together results in
a robust system. Indeed, the features used detect a number of different types of
behavior, such as obfuscation, JIT spraying, or environment-identification. Most
of these types of behavior are detected by more than one feature, and they are
often detected during both the dynamic and static analysis phase. This results
in a robust system capable of detecting a wide range of low-level exploits.

7 Related Work

7.1 Exploit Techniques

Blazakis [2] discusses JIT spraying attacks against the ActionScript 3 virtual
machine. Li [13] discusses the exploitation of the type confusion vulnerability
CVE-2010-3654, while [9] discusses a very similar vulnerability CVE-2011-
0609. An exploit using sophisticated obfuscation techniques that targets CVE-
2007-0071 is dissected by Liu in [14].

7.2 Malware Detection

FlashDetect’s implementation is an evolution of OdoSwiff described by
Ford et al. [6]. Additionally, [6] is one of only a very limited set of publications
on the specific topic of malicious Flash file detection. Instead, most of the closest
related research discusses malicious JavaScript detection approaches.

Cova et al. describe JSAND [3], a tool for analyzing JavaScript with an
approach that is related to FlashDetect’s approach, using classification based
on a set of dynamic and static features. However, JSAND and FlashDetect
use different features, due to the different nature of JavaScript and ActionScript.

Ratanaworabhan et al. [21] discuss Nozzle, a dynamic JavaScript analyzer
that specifically focuses on detecting heap spraying code injection attacks. Noz-
zle’s approach consists of interpreting individual objects on the heap as code
and statically analyzing that code for maliciousness. This approach differs sub-
stantially from FlashDetect’s approach, as FlashDetect’s analysis is based
on determining the general behavior of a Flash file through indicators such as
the methods called by the file. Additionally, FlashDetect is not specifically
focused on the detection of heap spraying exploits, but instead focuses on the
more broader set of low-level exploits.

Zozzle [4] is a static JavaScript analyzer by Curtsinger et al. that also uses
a naive Bayesian classifier to detect malicious files. However, the features used
by Zozzle for classification are automatically extracted from the JavaScript’s
abstract syntax tree. In contrast, FlashDetect’s static features are predefined,
and it also uses predefined, dynamically extracted features.

The recent work on Rozzle by Kolbitsch et al. [12] describes an implementa-
tion for multi-execution in JavaScript. Their approach to multi-execution could
be applied to Lightspark to enable the robust handling of Flash files using
environment-identification.
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There are several malware detection systems that use low-interaction or
high-interaction honeyclients. Examples are HoneyMonkey [25], Capture-
HPC [22], Moshcuk et al. [16,17], Provos et al. [20], and Monkey-Spider [7].
FlashDetect differs from such systems in that it does not automatically crawl
websites. Instead, FlashDetect is designed to be used in conjunction with
some other analyzer that feeds samples into FlashDetect for further analy-
sis. Additionally, in contrast to high-interaction honeyclients, FlashDetect’s
analysis provides more insight into how an exploit works. High-interaction honey-
clients on the other hand provide more insight into the effects of an exploit, some-
thing which FlashDetect does not currently do. However, in high-interaction
honeypots, exploits must succeed for them to be detected, while this is not the
case for FlashDetect.

8 Conclusion

We discussed several techniques commonly used by Flash malware. We have
discussed how malware using ActionScript 3 often takes on a role of exploit fa-
cilitator, showing that a successful solution to detecting malicious Flash files is
crucial. Subsequently, we have introduced FlashDetect, which uses a novel
approach combining static and dynamic analysis to examine Flash files. Flash-
Detect’s classification is based on a combination of predefined features. We
have shown how these features, when used with a naive Bayesian classifier and
a single vulnerability-specific filter, allow for high classification accuracy with a
minimal amount of false negatives.
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Abstract. The security of the networking infrastructure (e.g., routers and
switches) in large scale enterprise or Internet service provider (ISP) networks
is mainly achieved through mechanisms such as access control lists (ACLs) at
the edge of the network and deployment of centralized AAA (authentication,
authorization and accounting) systems governing all access to network devices.
However, a misconfigured edge router or a compromised user account may put
the entire network at risk. In this paper, we propose enhancing existing security
measures with an intrusion detection system overseeing all network management
activities. We analyze device access logs collected via the AAA system, partic-
ularly TACACS+, in a global tier-1 ISP network and extract features that can
be used to distinguish normal operational activities from rogue/anomalous ones.
Based on our analyses, we develop a real-time intrusion detection system that
constructs normal behavior models with respect to device access patterns and the
configuration and control activities of individual accounts from their long-term
historical logs and alerts in real-time when usage deviates from the models. Our
evaluation shows that this system effectively identifies potential intrusions and
misuses with an acceptable level of overall alarm rate.

1 Introduction

A fundamental aspect of network security is securing the networking infrastructure it-
self, which can be particularly challenging in a large scale enterprise or ISP (Inter-
net service provider) network. In such networks, hundreds or thousands of routers and
switches are widely dispersed among a geographically diverse set of offices and are
typically managed by a large team of network operators. It is imperative that the net-
working infrastructure and the information contained therein be fully protected against
any malicious priers and attackers. For example, information available at networking
devices, such as router configuration and traffic statistics, may contain confidential busi-
ness data of tremendous value to a business competitor. Divulging such information will
likely result in a significant disadvantage to the ISP’s business. Leakage of some criti-
cal security information in the router configuration such as QoS policy or firewall/ACL
(Access Control List) settings may subject the network to crafted and targeted attacks
such as DDoS (Distributed Denial of Service) attacks. Or in an even more devastating
scenario, malicious attackers gaining privileged access to the networking device might
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alter the network configuration to create havoc and paralyze the entire network and the
services it supports.

Given the risk of severe consequences, large scale networks typically devise and
deploy a range of security and protection measures for their networking devices. One
common practice is to utilize a combination of periphery protection and centralized au-
thentication and authorization for communication to networking devices. By restricting
premises access, unauthorized persons are blocked from gaining physical access to net-
working devices. Through careful configuration of ACLs at all network edge routers,
unauthorized network traffic is also blocked from reaching network devices. And fi-
nally, technologies such as TACACS+ (Terminal Access Controller Access-Control
System Plus) [2] and RADIUS (Remote Authentication Dial In User Service) [12],
ensure that only authenticated users (i.e. authorized network operators/administrators)
have access to routers and switches (either directly or remotely over the network).

The architecture above is very effective against threats from external attackers when
working properly. However, there is always the possibility that building security is
breached, allowing physical access to router hardware, or that ACLs on an edge router
are misconfigured, admitting attacking traffic. Furthermore, with a large team of net-
work operators, compromised users or compromised user accounts can be a critical
source of potential security troubles arising inside the network.

In this paper, we propose to add another layer of defense for networking infrastruc-
ture by overseeing all operations being done in the network, and automatically detecting
and raising alarms for “suspicious” activities. We leverage the existing authentication
and authorization framework and collect router/switch access logs in real-time. We de-
velop an anomaly detection system that compares on-going router/switch access ac-
tivities against a set of patterns or profiles constructed from historical data, and once
an anomaly is identified, triggers an alarm to network security managers for further
investigation of potential intrusions and misuses.

Although the concept of intrusion detection system is well established in computer
system security, applying the idea in networking device management remains unex-
plored, interesting, and challenging. To detect abnormal activities, we must obtain data
on routine/normal network management activities in a large scale network, analyze
that data, and determine what features best distinguish normal activities from abnor-
mal ones. In our study, we base our analysis on actual network data from one of the
largest ISP networks, which comprises tens of thousands of routers distributed world-
wide. We conduct an in-depth analysis on a wide range of different characteristics about
operators’ access patterns and identify useful features. The effectiveness of an intrusion
detection system is known to be limited by noisy baseline behavior and hence high false
positives. Thus, when developing the detection methodology and the prototype system
for capturing potential intrusions and misuses, we focus on managing false positives to
be well within an acceptable range. Any given attack is likely to come from a small
number of source subnets or accounts. Thus we aggregate detected “threat scores” by
their origin source addresses and login accounts. This allows us to amplify the signal of
offense and hence be able to detect offenders while they are still exploring the network
before large-scale damage is inflicted.
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Our contribution in this paper can be summarized as follows:

– We propose to systematically monitor and analyze the networking device access
logs to protect the networking infrastructure. To the best of our knowledge, this is
the first study that focuses on monitoring and auditing networking device access
and control logs to catch anomalous activities.

– We conduct an in-depth analysis and characterization on the TACACS+ logs col-
lected over more than six months from a tier-1 ISP network. We further identify a
set of features that can be utilized to distinguish suspicious activities from normal
operations — such as the login ID and origin IP prefix association pattern, the daily
number of distinct routers accessed, and the number of hops over which an operator
logs on to a router from a different router.

– we develop a tool for the ISP network. Our controlled experiment shows that it
successfully identifies injected “malicious” activities – with corresponding threat
scores significantly higher than those of day-to-day operational activities. When
used in real operation, the system produces no more than a few threat alerts per
day – a level at which network security managers are comfortable in conducting
further investigation. Many of the threats detected have been found interesting and
worth examining.

The rest of the paper is organized as follows. In Section 2, we provide an overview
of operational management activities in large scale IP networks and a brief introduc-
tion of the authentication, authorization, and accounting system from which we collect
logs. Section 3 presents our analysis result on the characteristics of normal operation
activities. Section 4 describes the rules and detection system that we build for detecting
and alerting on suspicious router accesses and controls. We evaluate our overall system
performance in Section 5. Based on our operational experience, we propose a further
enhancement to the system and evaluate its effectiveness in Section 6. We discuss re-
lated work in Section 7 and finally conclude the study in Section 8.

2 Background

2.1 Managing IP Networks

We first provide an overview of the various types of management activities in large scale
IP networks. We describe these in the setting of a global ISP network although many of
them are fundamental to large enterprise networks or regional ISP networks as well.

Managing a global ISP network requires a large team of network operators. These
operators are typically organized in tiers – lower tier operators respond to routine issues
following a set of predefined standard procedures, while more complex matters are
escalated to upper tier operators, who have deeper knowledge and understanding of
the network. Extremely complicated issues are escalated to a small group of experts,
possibly including designers and support teams of vendors of involved devices.

Different tiers of operators have different functional roles. Some may be dedicated to
the care of a high profile enterprise customer, in which case they will frequently access
provider edge (PE) routers but seldom touch backbone routers. Some operators may
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be responsible for servicing the metropolitan area network for a certain region. Others
may oversee control plane health (e.g., router CPU utilization) for the entire network.
Depending on their role, operators are expected to have distinct patterns of network
management activities.

Network operators often exercise control over routers and switches by logging on to
the device. Today, nearly all networking devices support console access via direct con-
nection to them and remote access via ssh/telnet. Control is exercised by invoking
a sequence of commands through the Command Line Interface (CLI) of the device’s
operating system. For example, on Cisco IOS, typing

ping 1.2.3.4
triggers a ping test from the router to the IP address. And typing

enable
configure terminal
interface Ethernet0
shutdown
exit

administratively shuts down the interface Ethernet0 at the router.
Note that Cisco IOS supports two different access levels – user level and privileged

level. The enable command in the above example enters the privileged level, in which
configuration change (configure terminal) is allowed. Such capability is widely
supported on other vendor systems such as Juniper JunOS as well. In addition, AAA
systems (described below) support finer grained command groups. A user cannot invoke
commands outside of his/her predetermined access levels or command groups.

In addition to operators typing commands via the CLI, ISPs rely on a broad range
of automated tools for their network management activities. These tools are typically
designed to perform a specific set of functions. For example, automation tools/systems
that perform configuration auditing periodically sweep through the entire network issu-
ing a show running-config command to collect active router configurations. An-
other tool might collect hardware, traffic, or protocol status and statistics information by
logging into the routers of interest and invoking commands such as show process
CPU history, show interfaces POS 1/0, and show ip bgp summary.
The tools may use designated logins when requesting access to networking devices.

Using the combination of function-level controls via various automated systems and
manual command-level controls, operators are able to accomplish a wide range of net-
work management tasks including provisioning and decommissioning customer services,
troubleshooting networking and service problems, performing device life cycle manage-
ment, taking measurements, and monitoring the health of the network and services.

2.2 Authentication, Authorization and Accounting

The networking infrastructure in large scale networks is typically protected by an AAA
(Authentication, Authorization, and Accounting) system. There are two mainstream
AAA frameworks widely used commercially – TACACS+ (Terminal Access Controller
Access-Control System Plus) [2] and RADIUS (Remote Authentication Dial In User
Service) [12]. While differing in some specifics, such as whether authentication and
authorization are separately maintained in user profiles, both systems use one or more
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common servers to verify a user’s identity (authentication) on login, verify access privi-
lege (authorization) on a per command basis, and record all users’ activites in their logs
(accounting). The log entries contain critical information which includes

(i) the timestamp of the access request
(ii) the IP address of the targeted network device (e.g., Loopback address)
(iii) the IP address of the remote user requesting access
(iv) the user’s login ID
(v) the command line executed
(vi) other information such as user terminal, privilege level, and timezone.

To use a TACACS+ or RADIUS system in a network, all routers in the network need
to be configured with the IP addresses of the servers – typically there are multiple
replicated servers for redundancy. A large network can further be divided into multiple
zones, for example, by the device type or by the autonomous system (AS) that they
belong to. Different zones may contain different user account and privilege settings.

3 Characteristics of Normal Operation Activities

As described in the Introduction, our objective is to monitor all operational activities
in the network and detect potential intrusions and misuses. We start by examining nor-
mal network operational activities recorded in the AAA logs. We focus on aspects that
would best distinguish normal activities from actions that an external or internal at-
tacker might take. In the following analyses, we use data collected from a global tier-1
ISP network which generates tens of millions of TACACS+ log entries from tens of
thousands of routers per day.

3.1 Failed Login Attempts

The most intuitive way to separate potential attacks from legitimate accesses is to check
whether they can readily pass authentication. Attackers may expose themselves by in-
putting wrong login credentials. However, it is also expected that legitimate users some-
times “fat finger” their login ID or password. Thus, we examine failed login attempts in
normal AAA logs (using one month’s data).

Figure 1 plots the cumulative distribution function (CDF) of the number of con-
secutive login attempts before a successfully authenticated login. We consider a login
request within one minute of a preceding one with the same origin IP, the same lo-
gin ID, and the same target networking device as a consecutive login. We observe that
more than 99.992% of logins pass authentication the first time. More than 85% of the
remaining ones input the correct credentials the next time, and it is extremely rare that
a user fails more than five times before finally getting it right. The ratio of login failure
is considerably lower than that typically seen in computer systems[18]. This is likely
due to the predominance of logins generated by automated network management tools
– a unique characteristic of network infrastructure operations. Figure 1 demonstrates
the potential of alarming on intruders when a small number (e.g., 6) of repeated failed
logins are observed.

The above type of monitoring can be defeated if the attacker has a list of valid login
IDs and device names – they can use a different login ID or target a different device
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when an attempt fails. We can improve detection by looking for consecutive login fail-
ures from a common origin IP irrespectively of the login ID attempted. Figure 2 plots
the CDF of the number of consecutive (i.e., less than one minute apart from the preced-
ing one) login failures. We observe that around 85% of the rejected login attempts are
either rectified or abandoned in six times or fewer. However, there are some login at-
tempts going as high as a few hundreds in a row. Manual inspection finds that they were
due to network management scripts running out of sync with router CLI (e.g. sending
password when login ID is expected or vice versa). This rarely occurs, but when it does
it produces many consecutive login failures – and should correctly trigger an alarm.

3.2 Login Access Pattern

As described in Section 2, an AAA log entry contains login access information charac-
terized by the user login ID, the origin IP address, and the target router IP address. We
define a login session as the network management activities sharing the common triple
and being close in time (e.g., with an idle timeout of 10 minutes).

The login access information can be valuable in capturing attackers. For example, an
origin IP that is not part of a block of addresses previously seen as an originating address
in the logs is a strong indication that the network periphery protection may have a hole.
Furthermore, each network operator typically has a rather stable set of work locations
from which he/she manages the network, and due to his/her role, there can be a fixed
set of network devices that the operator typically manages. So source and destination
IP addresses will tend to be consistent over time for many operators.

We first look at the association of the operators’ login and the origin IP address.
Figure 3 plots the CDF of the number of distinct origin IP addresses associated with a
login ID in a month. We observe that 68% of login IDs manage the network from only
one IP address. If we consider common origin subnets (with varying size), the number
rises to 75% for /24 IP prefixes and 80% for /16 IP prefixes. In the rest of the paper, we
will use /24 IP prefixes when aggregating origin IP address – it is not excessively large,
yet can accommodate most of logins from the same facility/office.
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Figure 3 also shows that even with /24 origin IP prefixes, about 1% of the login IDs
access the network from more than 10 distinct IP prefixes. Looking into those, we find
that there are cases when an operator first logs on from a gateway server to a router,
and then logs on to other routers from that router. The loopback IP address1 of the first
hop router appears as the origin IP for the second access session. While such “stepping-
stone” access sessions are not common, they do occur – operators use this either for
convenience or under certain network conditions, for example, when direct access to
the other routers is unavailable. We can tighten our rule to deal with this situation by
excluding sessions which originate on a router or switch. This removes “stepping stone”
sessions from the analysis. The solid line in Figure 4 plots the number of distinct origin
IP prefixes against the rank of login IDs – to protect proprietary information, we nor-
malize the rank of login IDs to be between 0 and 1. We find above 78% of users have
only one (non-stepping-stone) origin IP prefix and no one logs on from more than 4
distinct IP prefixes. This indicates that there exists a strong stability in the access pat-
tern characterized by login ID and origin IP prefix combination – deviating from it can
be a symptom of attacks. Figure 4 also plots the stability of this access pattern month
by month – the shaded area indicates that the same login ID and IP prefix association
has appeared in the preceding month. This demonstrates strong predictability based on
past access behavior pattern (the unshaded area is mostly due to new users or infrequent
users who only access the network in the second month).

Going back to the “stepping-stone” sessions, by matching the ssh command on the
first hop router and the remote login request on the second router, we can reconstruct
the chain of stepping-stones. Figure 5 plot the distribution function of the length of
these chains and the outbound fan-out of these chains. It is evident that both attributes
are bound by a small number (e.g., 7) in normal operational activities. In contrast, an
intruder working from a compromised router may attempt to gain information from a
large number of other routers, which is likely to produce long chains or high fan-outs.
Watching those attributes closely can be an effective way to catch the intruder.

We next turn to the association between the networking device and the IP prefix from
which management activities originate. The solid line in Figure 6 plots the number of

1 Address assigned to a virtual interface commonly used for network management.
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distinct origin IP prefixes versus the rank of the networking device IDs. As in Figure 4,
we normalize the ranks to be between 0 and 1 to protect proprietary information. We
find that 48% of the routers are only controlled from hosts within one /24 IP block dur-
ing a one-month period. These control activities are likely routine network auditing and
health monitoring. A small portion of the network devices are managed from a small
number of (e.g., 2-7) IP prefixes, which correspond to the network operation centers
(NOCs) responsible for those devices. Furthermore, some cross-region access can be
unexpected in normal operations – it is suspicious if an operator from a regional NOC
in Japan requests access to a router serving IPTV in the USA. Catching abnormal as-
sociations between routers and origin IP prefixes can be an effective way of identifying
such cases. The shaded area in Figure 6 shows the overlapping associations that have
appeared in the preceding month; this demonstrates the predictability of these associa-
tions, as the overlapping is very significant.

Finally, we examine the association between login IDs and network devices. Many
users or software tools have limited scope in terms of the networking devices managed.
The solid line in Figure 7 plots the number of distinct network zones (described in
Section 2) that each login ID has accessed in one month. We again normalize the x-axis
to avoid disclosing the size of the operator work-force. We observe that the majority of
login IDs have a very limited scope (e.g., less than 3 zones) while a few of high-tier
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operators or software tool IDs access many zones. The stability of the login IDs’ access
pattern is depicted by the month over month comparison shown in the shaded area. We
observe a strong predictability that can be utilized for detecting intrusions or misuses.

3.3 User Behavior

As mentioned in Section 2, different login IDs (corresponding to different operators or
network management tools) have different roles/functions. Each user is likely to have a
roughly stable behavior in access schedule (frequency), type of control (e.g., monitor-
ing, or troubleshooting, or configuration change), and class of commands (e.g., SONET
controller settings versus ACL configurations). Significant deviation from normal be-
havior can be a symptom of an account becoming compromised and an intruder imper-
sonating the owner of the login account. In this subsection, we examine the properties
of such user behaviors exhibited in normal network management activities.

We first examine the inter-session time distribution. Figure 8 plots the maximum
difference in days between two consecutive logins from the same ID in a six-month pe-
riod. We observe a wide variability among different login IDs. Many login IDs access
the network on a regular basis, with a gap of at most a few days. But there are a con-
siderable number of login IDs that only access the network occasionally. This suggests
that it may be helpful to profile login IDs in different groups according to their access
frequency.

Figure 9 shows the CDF of the average number of login sessions per login ID per
day in a representative month. Here we exclude the days when the login ID is not active
from the average statistic. The tail part of the curve, which goes several order of mag-
nitude larger, is cut off so that we do not disclose the exact number of devices in the
network. We observe that the majority of the login IDs have only a few login sessions
per day. For example, 65% of IDs log onto the network no more than 5 times daily (on
average). There are also many software tools and network management scripts produc-
ing over a hundred login sessions on daily basis. A login account suddenly changing its
behavior, especially from having a small number of login sessions daily to a large num-
ber of them on a given day, is unusual or abnormal behavior and should be examined
to see if it indicates a problem. Similarly, Figure 9 also shows the CDF of the aver-
age number of distinct networking devices accessed per login ID per day. Compared
to number of sessions, it shows even more concentration – 65% of IDs log on to no
more than 2 networking devices daily (on average). The tail portion of the curve again
is dominated by software tools monitoring a large number of devices regularly, such
as network configuration auditing tools. A surge in the number of distinct networking
devices that a user initiates in a short period of time might be an intruder scouting for
information. To understand the variability on this metric, Figure 10 shows a scatter plot
of the coefficient of variation (CV) versus the mean – each point represents one login
ID. We find that most of the CVs are bound by a small number (e.g., 3), while the login
IDs with large number of average daily device accesses typically have much smaller
CVs – suggesting that they can be more tightly bounded.

The set of router control commands and configurations used by a login ID is expected
to exhibit some stability too. For a login account used by a software tool, the set of
commands is determined by programming and rarely changes. For an operator’s login,
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the subset of commands should be subject to his/her privilege level and tightly related
to his/her job role. However, extracting the exact association between login ID and the
subset of the commands from knowledge about network operations is a challenging task
– for example through code analysis of the software tools or meticulous review of all
operation job functions.

In contrast, we take an approach that is based on historical data analysis and is de-
tached from the semantics of router control commands, as follows: (a) we tokenize the
commands (i.e., separate words in the command by white space); (b) we consider the
tokens that contain any number as parameters (e.g., IP address) and remove those to-
kens; (c) we remove any non-alphabetic characters in each of the tokens and convert the
remainder into lower case letters – we will refer to these as the keywords; (d) we profile
each user with the set of keywords used.

Figure 11 shows the likelihood that a keyword is present in a command (sorted in
decreasing order) based on one month of logs. We observe a strong skewness in the dis-
tribution, which can be well modeled by Zipf’s distribution. The high ranked keywords
are those used in monitoring network health (e.g., ping, vrf, show). And most of the
bottom ranked ones are some arbitrary tokens (such as customer name) referenced in
the description field of certain router configurations or some misspellings (due to typos
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Fig. 13. Detection System Architecture

by operators) of other keywords. It is sufficient to keep track a subset of keywords (e.g.,
top 1000) and represent the remainder simply as the other keyword. Figure 12 shows
the stability of the use of keywords per login ID, which plots the average cosine similar-
ity of the keyword frequency distribution comparing one day against the previous active
day. Login IDs with a high number of daily log entries trend to have high predictability
one day to another. Deviation from the regular command keywords, especially for a
software tool account, can be a symptom of an intruder impersonating the owner of the
account.

4 Design of an Online Intrusion Detection System

Based on the analysis from the previous section, we design an online intrusion detection
system that oversees the network management activities of the ISP network and detects
and alarms on anomalous patterns. Figure 13 shows the system architecture. We collect
logs from AAA servers in near real-time. The logs are fed into an online preprocessing
module, which extracts critical information and updates on an entry by entry basis the
running states of sessions, login IDs, origins, and commands that are required for the
different intrusion detection rules. Periodically (e.g., once a day) the running states are
fed into an offline profiling module in which the different profiles required by the rules
are updated – the initial profiles can be constructed via offline analysis of an extended
period of historical data. The online rule checkers examine the running states against
the profiles and rules and tag the corresponding log entries with a threat score. An
aggregation module then sums the threat score in a window according to the login ID or
origin IP. Finally, an alarming and presentation module makes the information available
to network security operators.

4.1 Domain Knowledge-Based Rules

We first define a set of rules that is specific to the network under study. We maintain
a list of the IP address blocks that belong to the ISP network and check the origin IP
of each AAA log entry against the list. An IP address from outside of the network
indicates a breach of the ISP’s periphery protection, and consequently the log entry is
given a high threat score.

We also track the timestamp of the last login failure from each origin IP address and
if a new failed login attempt is observed within T1 seconds we update the timestamp
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and increment the count of consecutive login failures for the origin IP. Once the count
exceeds a threshold N1, we output the entries of these login attempts and assign a threat
score to each of them. The timestamp and failure counts are reset when a successful
login from the origin IP is made or the timeout T1 is exceeded. With such a rule in
place, an intruder that attempts to stay under the radar has to significantly slow down
its attack, reducing the efficacy of the attack and prolonging the exposure.

There is also a rule in this category for stepping stone sessions. We trace stepping
stone accesses as they occur and when the length of the access chain becomes greater
than a threshold N2 or the fan out becomes greater than N3, we assign a threat score to
the sessions involved.

Finally, as a countermeasure to sophisticated intruders hiding themselves by disabling
AAA logging right after gaining access to the network elements, we assign a high threat
score to any log entry that modifies AAA logging settings (e.g.,tacacs-server com-
mand on Cisco IOS). In the ISP network, changes to AAA logging settings should not
happen in normal circumstances, so this rule should never generate a false trigger.

4.2 Rules Based on Access Pattern Profiles

In our daily association profile we keep track of the following attributes: (1) origin
IP prefix (2) login ID (3) 〈 login ID, origin IP prefix 〉 (4) 〈 login ID, device zone 〉
(5) 〈 origin IP prefix, device zone 〉. For each entry we track the most recent date of
appearance and the cumulative number of appearances. We delete an entry when the
most recent appearance is more than T2 (e.g., 180) days and add new entries to the long
term profile once their count is sufficiently large.

We assign a threat score to sessions that do not match the existing profile. Note that
if a session is from a new origin IP or new login ID, we do not include the threat score
due to the lack of associations in (3), (4) and (5). The weight of the threat score of
new associations of (3), (4) is set to be higher as the cumulative count of the login ID
increases – our confidence to assert suspicious activities increases with more history
data. Similarly, the weight of the threat score for (5) increases when the cumulative
count for the corresponding origin IP prefix increases.

4.3 Rules Based on Statistical Models of the Access Profile

We track the mean and variance of the following attributes: (1) daily number of sessions
per login ID, (2) daily number of distinct routers accessed per login ID, and (3) daily
frequency count of command keywords per login ID for top N4 and the other keywords.

We use the EWMA (Exponentially Weighted Moving Average) algorithm in estimat-
ing the running statistics for attribute X on day t:

Meant = αXt + (1− α)Meant−1

V art = α(Xt −Meant)
2 + (1− α)V art−1

When computing the daily average, we exclude the case where the corresponding at-
tribute is zero on day t – for example, when the user is inactive on the day.
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If at any time, the daily cumulative counts reach or exceed a pre-calculated threshold
for the attribute, we will assign a threat score to the access sessions involved.

The thresholds are determined as follows. Since the login IDs that have a high num-
ber of daily sessions (i.e., the highly active accounts) exhibit low variability as shown
in Section 3.3, we set the thresholds in the same way as anomaly detection in Gaussian
random variables: Threshold = Mean + N4 × V ar1/2. For the login IDs that have a
moderate number of daily sessions, we set the threshold to be the product of a constant
factor and the mean value: Threshold = Mean×N5. This is based on the observation
that the coefficients of variation are bound by a small constant. And finally for the large
portion of login IDs that only access the network occasionally, we set the threshold to
be a small constant: Threshold = N6. Once an attribute exceeds the defined threshold,
a threat score is assigned. The value (weight) of the threat score is set according to a
sublinear function of the corresponding attribute (the daily cumulative count) value.

4.4 Aggregation of Threat Scores

Using the rules above, in the course of a day, we maintain an updated set of AAA log
entries that are assigned non-zero threat scores together with the rule triggered – to
aid further examination by network security operators. Suspicious log entries can be
noise (i.e., triggered by abnormal activities of low interest to security) – for example,
an operator starting to use a new set of commands can trigger a violation detection by
the user-keyword-rule. To reduce the chance that a network security operator has to
investigate a non-critical violation, we further aggregate these log entries by login ID
and by origin IP. The idea is that real attackers may be caught by multiple rules and by
aggregating the threat scores on a per login ID or per origin IP basis they can be further
distinguished from non-critical anomalies.

To achieve this, we use a moving window of T3 (e.g., 1 day), and sum up the threat
score within the window for all login IDs and origin IPs. We then set a threshold N7

based on historical data. When we observe an aggregate threat score exceeding N7,
we generate an alarm to the network security operators. We also display all suspicious
activities on a dashboard report from which network security operators can pull infor-
mation on demand.

5 Evaluation

We evaluate our system from two perspectives – the rate of anomalies detected from
day-to-day network management activities and the effectiveness of detecting artificially
injected anomalous activities. The former quantifies the resources required to investi-
gate potential misuses and intrusions. The latter quantifies the chance that an anomaly
goes undetected by our system.

5.1 Running System Performance

Figure 14 shows the distribution of the aggregate threat score in a month using two types
of aggregations – by login ID (solid line) and by origin IP address (dashed line). We ob-
serve that about 93% of login IDs and 84% of origin IPs pass the system without raising
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any threat score. Meanwhile, there exist a small number of cases in which the system
reports a high threat score. By manual inspection, we find most of them correspond to
unusual network changes such as a newly deployed network management center or a
major software upgrade on an existing network management tool. We will see an ex-
ample of this in Section 5.3. We also find that a non-negligible fraction of cases, mostly
with a relatively low threat score (e.g., less than 4), correspond to a small number of
log entries from either a newly enabled or a very infrequently used account. Profiles
for such accounts are difficult to construct based on history, and they typically do not
generate many activities to drive the threat score high. We will propose and evaluate
a system enhancement to further reduce the false alarms due to new user accounts in
Section 6.

Figure 14 defines the tradeoff curves between the alarming rate and the sensitivity to
anomalous activities. Raising the alarm threshold (the N6 in Section 4.4), reduces the
number of cases that security operators have to investigate but also reduces the chance
of catching a stealthy intrusion. For a concrete example, setting N6 to 5 would produce
a few alarms per week on average, which is quite manageable for the network security
operators.

We note that the above N6 and several others as described in Section 4 are param-
eters used in the system. We do not present the exact values for the parameters in our
running system due to security considerations. Instead, we show through an example
our reasoning on parameter selection. Figure 15 shows the solid line in Figure 14 with
a varying α value used in the EWMA estimate. Note the x-axis is in log scale. Differ-
ent α values effectively factor in different amounts of history data. Setting α = 0.05
effectively ignores (e.g., weight less than 0.01) data more than 90 active days old while
α = 0.3 effectively ignores data more than 13 active days old. However, Figure 15
shows there is little difference in the threat scores among the four different α values –
indicating that a short history is sufficient for the system.

5.2 Controlled Experiment

Due to the lack of real attack observed in the network, we manually generate a set of
data with anomalies for the performance test. Using Figure 14 as a reference point,
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we design a controlled experiment as follows. We first randomly select 50 pairs of non-
overlapping login IDs. We then take one day’s worth of AAA logs from our running
system and substitute the login ID field in the log entries such that the two login IDs in
each of the chosen pairs are switched. Finally, we feed the manipulated AAA logs into
our running system and monitor the output.

Figure 16 presents the CDF curves of the aggregate threat score based on the origi-
nal AAA logs (dashed line) and the synthetic data (solid line) respectively. We find that
our system is able to detect many of the behavior changes introduced by the login ID
swapping. 72 out of the 100 login IDs report non-zero threat score and among them,
30 login IDs have a threat score higher than 10. This result highlights the sensitivity of
our system – we do not expect one user impersonating another can always be caught
(for example two operators with the same role may hardly be distinguishable), but com-
pared to the baseline threat score distribution under normal operation, the synthetically
generated ID-swappings stand out significantly.

For a closer look at how our system detects anomalous behaviors, Figure 17 and Fig-
ure 18 compare the contribution to the threat score from rules based on access pattern
profiles with the contribution from rules based on statistical models of the access profile
respectively. For each of the 100 login IDs, we plot their threat score against the differ-
ence in the daily average access frequency to the substituting login ID in the AAA logs.
For example, a login ID abc, with 16 sessions per day on average, which is replaced by
login id xyz, with an average of 1024 sessions per day, would have its threat score plotted
at 6 (i.e. log(1024) − log(16)) on the x-axis. We observe that both the access pattern
changes and the access statistics changes have contributed to the high threat score. The
higher the difference in the amount of access activities between the pair of swapped lo-
gin IDs, the higher the resulting threat scores – with the exception in Figure 18 on the
negative side of the x-axis. The exception arises because the rules based on the statisti-
cal models are one-sided, i.e., we do not alert on a “busy” user suddenly becoming less
active, as this behavior change does not seem to pose any security threat.

5.3 Operational Case Studies

We now look at an example in which our system alerted with a high threat score. Fig-
ure 19 plots the aggregate thread score of a particular login ID over the course of four
days. The login ID is used by a software tool that periodically initiates ping commands
among the various provider edge (PE) routers of the VPN customers to monitor their
VPN health.

Starting in the afternoon of day 2 of the plot, we observe a fast increase in the threat
score by the login ID. In less than two hours, the threat score passed the 99.5% alarming
threshold and kept rising. It turned out that the software tool was upgraded that day and
the new control sessions included a show version command that collects the router
OS version across the network – similar to what might occur if an intruder attempted to
collect information as preparation for attacks. After validating the change of behavior
due to software upgrade, we included the pattern change in the profile update at the end
of day, which greatly reduced the threat score on day 3. The corresponding statistical
models were further updated at the end of day 3 and the new pattern then got fully
captured by the profiles. Hence, there was no more threat score on day 4.
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We next take a look at an example where a system alert was triggered due to a new
user appearing in the system. In this case, a new operator X started a session to a device
between 1:30 and 1:59; since this was a newly created login ID, bearing no historical
association to either the network zone or the origin IP, the session produced a threat
score of 1.5 at the end of the session. Later on in the day, X logged on to four more
devices in the same network zone between 3:20 and 3:40 in 21 different login sessions,
pushing the threat score to 7.7 and triggering an alarm. A network security manager
examined the alarm and checked X’s information from a corporate directory service.
The threat was quickly dismissed when it was learned that X was a new member of
the organization that manages the network zone in question. We will show next how
we take the operational experience acquired in such scenarios and enhance our system
specifically for newly provisioned login IDs.

6 A System Enhancement Handling New Login IDs

Operational experience has provided a valuable insight – when investigating a threat
alert regarding a user login, network security officers often depend on the user’s infor-
mation in the corporate directory in addition to the access traces and profiles from our
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system. Inspired by this, we look into how to utilize the corporate directory information
to further reduce the false threat alerts.

6.1 Quantitative Analysis

We first create an automation capability that queries the corporate directory service
for any given login ID. In particular, we obtain the corporate hierarchy information of
the owner of the login ID by following the management chain up until reaching the
president of the ISP. We then examine how users across the corporate hierarchy relate
in terms of network access patterns and behaviors.

Figure 20 plots the CDF of the profile distance with respect to the access patterns
(Section 4.2 (3), (4)) – measured by the l2norm of the difference in their profile vector
between a pair of user login IDs. We define the corporate distance of a pair of users as
the maximum number of hops for them to reach a common manager – two operators
sharing the same direct supervisor would have a corporate distance of 1, and two sharing
the same second-level-up manager would have a corporate distance of 2, etc. Different
lines in Figure 20 correspond to user pairs of different corporate distances.

We observe that users that are organizationally close have similar access profiles.
The further apart two users are in corporate distance, the more distinct their network
access patterns are. When we focus on the case in which two operators are under the
same direct manager (the solid line), we find that in 26% of the cases they have identical
access pattern; and in 56% of the cases, their difference is no more than 3 (e.g., having
access to 3 different network zones). This suggests that using the profiles of other team
members can serve as a reasonable approximation when the operator’s own history is
not fully established.

Figure 21 and Figure 22 plot the CDF of the absolute difference in the daily average
number of sessions (Section 4.3 (1)) and the daily average number of distinct devices
accessed (Section 4.3 (2)) respectively. In both cases, we observe decreasing trends
in the behavioral similarity as users’ corporate distances increase, although the gaps
are smaller compared to Figure 20. Focusing on the solid lines, we find that in 65%
of the cases when users have a common direct reporting manager, their daily average
number of sessions exercised differs by no more than 5 and their daily average number
of distinct devices accessed differs by no more than 2. We have also observed a similar
commonality in the profile of command token frequencies. These point to the good
potential of bootstrapping profile building for newly provisioned login IDs using their
peers’ profiles.

6.2 Profile Bootstrapping

As described in the operational case examples, network security managers sometimes
dismiss system generated threats based on the additional information regarding the job
function of the operator. Ideally, if domain knowledge of all different job functions and
their expected access profiles were available, we could incorporate it into the system.
However, such domain knowledge is implicit, highly distributed across various orga-
nizations, and evolving over time. Hence it is operationally challenging to acquire and
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maintain. Instead, we propose to take a data-driven approach that does not require do-
main knowledge input, based on the analysis above.

Specifically, we organize user login IDs into classes based on the login owner’s man-
agement hierarchy. We then construct class-profiles based on the profiles of the mem-
bers of the class. When a new login ID appears in the AAA log, the system queries the
corporate directory service to obtain the user class to which the new login ID belongs.
The class profile is then used as the bootstrapping profile for the user. The bootstrapping
profile is replaced by the user’s own profile once adequate history has been observed
for the login ID. This boostrapping process aligns in principle with the model training
techniques using scarce data [13].

To construct the class-profiles, we take the median statistic on each dimension (i.e.,
a feature in the profile of login ID) among all users (u) belonging to the class (C).
Specifically,

ProfileC = 〈fC
1 , fC

2 , ...〉,wherefC
i = medianu∈Cf

u
i

This is applicable to both binary flags (e.g., whether a login ID and network zone asso-
ciation exists) or numerical values (e.g., average number of sessions per day). Using the
median is known to produce an estimator of cluster centroid that is robust to outliers[9].

6.3 Effectiveness of the Enhancement

Comparing the threat alert rate with and without profile bootstrapping, for the same
month of data from Section 5.1, we find that profile bootstrapping has reduced the
threat alerts (using a threshold N6 = 5) by 60% for login IDs with inadequate history
(less than or equal to seven active days of history). The overall threat alert rate (for all
login IDs) is consequently reduced by 17% with profile bootstrapping.

7 Related Work

Our work falls into the area of IDS (Intrusion Detection Systems) in computer and
networking security, which dates back to 1980 when Anderson[1] first proposed a
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computer security surveillance system. Over time, the research area has become more
active as the Internet grew in scale and application diversity and new security threats
constantly emerged.

IDS broadly divide into two categories: host-based (HIDS)[7,8,4,10,15] and network-
based (NIDS)[6,16,5,3] — HIDS typically rely on information about running processes
to catch intrusions to computer host(s); NIDS typically analyze network traffic in order
to detect attacks.

Another taxonomy of IDS is based on detection principles[17]: anomaly-based IDS
(AIDS) [16,7,5,8,4,10,15] capture anomalous traffic or processes based on analysis of
normal patterns. Signature-based IDS (SIDS) [11,14,3,6] use known signatures of at-
tacks to alert on viral activities. Our work aligns with AIDS in principle.

Masquerader detection is a branch of IDS. A masquerader is an attacker who obtains
a user’s password, penetrates the access control system and impersonates a legitimate
user. Lunt et al [7] designed IDES as the first IDS handling masquerader detection,
using a simple yet effective statistical model. Recently, different machine learning tech-
niques such as Genetic Algorithm [4], Naive Bayesian classification[10], and Support
Vector Machine [15] have been applied in this area. In this study, we build user behav-
ior models from access and command invocation patterns using statistical methods and
alert based on deviation from the model. It remains as future work to evaluate whether
more sophisticated machine learning algorithms can improve sensitivity and accuracy
in our problem setting.

8 Conclusion

In this paper, we have studied the problem of protecting the networking infrastructure
and the information available therein for large scale enterprise or ISP networks. We have
proposed to enhance existing security measures with an intrusion detection system over-
seeing all network management activities. By analyzing device access logs collected via
the AAA system in a global tier-1 ISP network, we have gained tremendous insights on
the features that distinguish normal operational activities from rogue/anomalous ones.
We have further developed a real-time intrusion detection system that builds statistical
models to profile normal operational activities and alerts in real-time on any deviation
from the profiles. Our evaluation demonstrates that this system effectively identifies
potential intrusions and misuses with an acceptable overall alarm rate.

For future work, we would like to explore using more sophisticated machine learning
techniques in addition to statistical methods to capture anomalous activities, using other
network logs, and using other information such as network maintenance schedules to
suppress alarms about “intended anomalies”. We are also interested in further introduc-
ing automated mitigation control based on detected anomalies to the AAA system such
that an attack or intrusion can be stopped as early as possible.
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A Lone Wolf No More: Supporting Network
Intrusion Detection with Real-Time Intelligence

Abstract. For network intrusion detection systems it is becoming in-
creasingly difficult to reliably report today’s complex attacks without
having external context at hand. Unfortunately, however, today’s IDS
cannot readily integrate intelligence, such as dynamic blacklists, into
their operation. In this work, we introduce a fundamentally new capa-
bility into IDS processing that vastly broadens a system’s view beyond
what is visible directly on the wire. We present a novel Input Framework
that integrates external information in real-time into the IDS decision
process, independent of specific types of data, sources, and desired anal-
yses. We implement our design on top of an open-source IDS, and we
report initial experiences from real-world deployment in a large-scale
network environment. To ensure that our system meets operational con-
straints, we further evaluate its technical characteristics in terms of the
intelligence volume it can handle under realistic workloads, and the la-
tency with which real-time updates become available to the IDS analysis
engine. The implementation is freely available as open-source software.

1 Introduction

For network intrusion detection systems (IDS) it is becoming increasingly diffi-
cult to reliably report today’s complex attacks purely by looking at traffic on the
wire, without having any further external context at hand. For example, often
the best way to detect botnet communication is to monitor for connections to
known C&C servers that the security community has already identified. Likewise,
external malware registries can help determine if downloaded files contain mali-
cious code. A variety of efforts are collecting and disseminating such third-party
intelligence systematically, including blacklists such as Google’s Safebrowsing
URL list [11] and VirusTotal’s hash-based malware identification [29]. More so-
phisticated federated sharing initiatives—operated, e.g., by REN-ISAC for the
education community [18] and the Department of Energy’s Joint Cybersecurity
Coordination Center (JC3) [1]—enable real-time propagation of incident infor-
mation across their member institutions.

Unfortunately, however, today’s IDS cannot readily integrate such external
information into their processing. Their standard approach for using intelligence
remains to statically convert it into their rule languages, which severely limits
the attainable benefits. If they offer direct interfaces to the external world at all,
they typically restrict them to a small set of individual hard-coded applications.
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In this work, we introduce a fundamentally new capability into IDS processing
that vastly broadens a system’s view beyond what is visible directly on the wire.
We present a novel Input Framework that integrates external intelligence in
real-time into the IDS decision process, independent of specific types of data,
sources, and desired analyses. We design the framework so that it offers a simple
interface to IDS users while providing the flexibility to interface to a range of
local and remote intelligence sources. On the architectural side, we ensure that
even with rich external information, the Input Framework heeds to the stringent
performance requirements of high-volume, soft real-time packet processing.

We implement the Input Framework design on top of the open-source Bro IDS.
By offering a Turing-complete scripting language for expressing local policies,
Bro is ideally suited to exploit the full power of the new capability. Using our
implementation, we demonstrate three real-world use cases: (i) integration with
REN-ISAC and JC3 feeds; (ii) online virus checks of executables observed on
the network; and (iii) real-time database queries, with results integrated back
into the IDS decision process on the fly.

The goal of our work is to provide a new capability suitable for operational de-
ployment. As such, it is crucial to ensure that interface and implementation meet
operational demands, and we hence evaluate our work from that perspective.
First, we report operational experiences from a large-scale network environment
where operators are already deploying the implementation experimentally. Sec-
ond, we instrument our implementation to understand its technical properties,
such as the volume of intelligence it can handle in parallel to processing traffic,
and the latency with which updates become available to the IDS analysis.

Based on encouraging feedback from operators, we anticipate that our im-
plementation will become part of operations at further sites in the near future.
We release our code as open-source under a BSD license, and most of it is al-
ready integrated into the standard Bro distribution. We emphasize, however,
that conceptually our approach is not limited to the specific IDS we used, but
can similarly enable others systems to leverage intelligence effectively.

We structure the remainder of this paper as follows. §2 discusses related work.
§3 presents the design and architecture of the Input Framework, and §4 details
our implementation. §5 discusses three concrete use cases, including initial de-
ployment experiences with one of them at a large-scale network site. We evaluate
the performance of our implementation in §6, and we finally summarize in §7.

2 Related Work

The Input Framework provides a generic platform for integrating external in-
telligence into an IDS’ live packet processing. While we are not aware of any
current IDS that provides such a capability with a similar degree of flexibility, a
number of existing efforts provide evidence for the utility of our approach.

We find a wide variety of online services available that provide third-party intel-
ligence to network sites aiming to support their security efforts. Most commonly,
these offer blacklists of known bad actors or content. Examples include web sites



listed on Google’s Safebrowsing URL list [11]; mail servers on Spamhaus’s Block
List (SBL, [23]);malware listedby registries likeVirusTotal [29] andTeamCymru’s
malware hash registry [7]; and suspicious IP addresses reported to DShield [10].
Whitelists alternatively help avoiding false positives; NIST for example provides a
list of hashes of known benign files that are part of OSs and applications [2]. More
general data sources can provide further context like whois domain information
and Team Cymru’s Bogon List of unroutable IP space. In addition to such public
services, a number of closed federations have emerged that distribute non-public
incident information across member institutions. This information is much more
context rich than the simple aforementioned blacklists, often containing features
like the IP address, URL, downloaded malware md5 hashes, and timestamps for
each incident. Examples include REN-ISAC’s Security Event System [18], DOE’s
JC3 feeds [1], and Argonne Lab’s Federated Model [6]. In §5 we show how our In-
put Framework integrates with the former two specifically. A particular benefit of
such federations is that sites with lower technical expertise can benefit from find-
ings and capabilities of their peers. In addition, a site may also have further local
resources to support an IDS: a database of valid user accounts can help detecting
brute-force SSH attacks, and a list of software running on local end hosts suggests
whether a victim is vulnerable to a specific exploit. It is generally all such context
information that we collectively refer to as intelligence .

Past studies show the benefit of integrating external information into security
decisions. A recent study [19] at NCSA found that for 27% of all tracked inci-
dents external notifications triggered their investigation (and not the local IDS).
Verizon reports that “third parties discover data breaches much more frequently
than do the victim organizations themselves” [28]; they found 92% of all breaches
to fall into that category (49% when only considering larger organizations). It
is such experience that motivates federations like SES to automate intelligence
sharing. Another study [14] shows that attacks on different sites are often cor-
related and hit the separate networks within minutes. The authors recommend
to rapidly share IDS state as a countermeasure. In [20], the authors analyze e-
mail spam blacklists and find that local aggregation and reputation assignment
can improve their accuracy. Our approach aligns with that by making complex
intelligence available to the IDS and not only working on blacklists with pre-
determined yes/no decisions. We also find a number of specific detectors in the
literature that leverage intelligence as key ingredients, such as BotHunter [12].

Current IDS do not provide flexible mechanisms to integrate external informa-
tion. In our experience network operators today leverage intelligence by writing
scripts that either turn it into static IDS configurations or post-process the out-
put of an IDS offline. Indeed, Snort [17] distributes most of its blacklists in
the form of rules [4]; and the software underlying SES provides an option to
directly output Snort rules generated from received intelligence [5]. Likewise,
users of Suricata [24] and Bro [16] often auto-generate static configurations. Do-
ing so however tends to incur major performance hits, and also makes updating
an expensive operation that typically requires a restart. Worse, with signature-
based systems this approach constraints any analysis to basic byte-level pattern
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matching—a model rarely constituting a good fit for higher-level intelligence
that often only augments, and not controls, security decisions.

Newer Snort versions feature an IP reputation preprocessor [21] that directly
imports IP-based black- and whitelists. It, however, requires specifically format-
ted input, does not operate on other information than IP addresses, and cannot
leverage the lists for any analysis going beyond simple allow/drop decisions. Bro
provides a generic communication interface [22] that can update state dynami-
cally. However, while a user could use this for integrating intelligence (and some
do, for a lack of alternatives), it remains low-level with no specific support for
interfacing intelligence sources.

In the literature, work on adding context to IDS decisions tends to focus on
correlation between IDS nodes (e.g., [8,26,27]), not higher-level intelligence shar-
ing with external entities. On the commercial side, many security appliances seem
to leverage forms of intelligence. For example, Symantec’s firewalls support black-
lists and blacklist sharing [25], and Damballa’s product line includes dynamic rep-
utation modules [15] based on Notos [3]. While taking a similar approach as we
advocate, the Input Framework is not limited to a specific data source or analysis.
Generally, we note that for commercial solutions it tends to be hard to say what
they do exactly, as specifics of their internals are rarely public.

3 Design

We now discuss the design of the Input Framework. We begin by looking at
the type of state that it targets in §3.1: external “intelligence” of low to medium
volume with potentially frequent updates. We discuss our main design objectives
in §3.2 and then present the high-level Input Framework architecture in §3.3.

3.1 Intelligence

Of all the run-time state that a typical IDS manages, the Input Framework
targets a specific subset that today’s systems support only insufficiently. Most
IDS implementations focus on two groups of state (see Fig. 1): (i) network
state derived directly from the monitored packet input, and (ii) configuration
state describing the types of analyses to perform, such as a set of signatures
or specific hosts to watch out for. The former group consists of volatile, high
volume data (e.g., the current set of active connections along with TCP and
application-layer information), and requires sophisticated schemes for efficient
management [9]. The configuration of an IDS, on the other hand, is of low
volume and static: changes tend to require an expensive reload operation that
interrupts the current analysis, often in the form of a full system restart.

We argue, however, that there is a third group of state that we term intelli-
gence state: externally provided context that, when correlated with the traffic
on the wire, can significantly increase the system’s detection capabilities. As
discussed in §2, such state includes blacklists of known bad actors and specifics
of the local environments. Conceptually, intelligence falls in between the two
former groups: it is of much lower volume, and more stable, than network state.
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Intelligence however changes frequently, possibly multiple times per second, and
thus cannot become part of the IDS’s static configuration. Our Input Framework
specifically focuses on integrating such state into the IDS analysis.

3.2 Objectives

The goal of the Input Framework’s design is to offer a flexible mechanism to
integrate intelligence from a variety of sources, without negatively impacting
the IDS’ main task of analyzing a high-volume packet stream under soft real-
time constraints. To this end, we identify the following objectives for its design:

Adaptable to Different Sources. A crucial design goal is the ability to
interface to a range of potential input sources and formats. We require the Input
Framework to accommodate sources as different as flat files of ASCII and binary
data, sockets for live feeds, databases, and web services. Along with that comes
the requirement to support different modes for updates, including processing in-
telligence in regular batches as well as “pull” and “push” operation for real-time
streams. While adding new input sources necessarily requires tailored interface
code, the Input Framework should make extensions easy.

Simple, Yet Flexible User Interface. The interface that the Input Frame-
work exposes to the user should be easy to use and concise, with reasonable
defaults where it offers options. It needs to provide a unified view of all input
sources, abstracting from their individual characteristics. As intelligence will
originally arrive in a variety of formats that external parties determine, we need
to provide customization hooks that allow for on-the-fly preprocessing and fil-
tering. However, all external intelligence should fully integrate with the IDS’
standard analysis capabilities. Where possible, we want to transparently incor-
porate intelligence into the existing decision process.1

1 The specifics here depend on the capabilities the IDS provides. For example, for
a typical signature-based IDS it should be straight-forward to adapt the rule lan-
guage for doing simple match/no-match decisions derived from external blacklists.
However, it will be challenging to use such lists as a reputation indicator that only
contributes to a decision if such a concept does not already exist in the system.
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Asynchronous Operation. All I/O must execute fully asynchronously. Ac-
cessing external state can take a significant amount of time during which packet
processing needs to proceed normally without blocking. This is particularly cru-
cial for high-latency sources such as databases or web services hosted remotely.
Likewise, as a stream of intelligence is coming in, processing must interleave with
traffic analysis to avoid causing packet drops. Nevertheless, from the analysis’
perspective, the state must be consistent at all times.

Real-Time Operation. The Input Framework needs to make incoming in-
telligence available to the IDS analysis rapidly. While we cannot control lags
introduced by an external source (like the time it takes a database to respond
to a query), we strive to keep the Input Framework’s internal latency low.

3.3 Architecture

Fig. 2 shows the architecture for the Input Framework that we design to ad-
dress the above objectives. In the following we discuss the frameworks main
components in an order roughly following the data flow. As some parts of the
architecture depend on the specific IDS that one integrates with, we can only
sketch them in abstract terms. However, the discussion will become more con-
crete in §4 where we describe our implementation inside a specific IDS.

When integrating the Input Framework, the IDS’ core analysis and detection
engine remains mostly unchanged but gains the capability to specify external
intelligence sources that it wants to access. From the engine’s perspective, each
intelligence source corresponds to a stream that it creates on-demand as its
configuration defines. When opening a stream, it passes along the necessary
control information such as type of input (e.g., file, database), location (i.e., a
filename or a remote socket), as well as the expected layout of the data that the
stream will later forward. For the latter, we represent all intelligence in a unified,
column-based format and pass a description along with the stream request.

The Input Framework’s manager is the central interface between analysis
engine and external intelligence sources. It receives the engine’s request to open
a stream, spawns a new reader instance, and instructs it to connect to the



corresponding source. We differentiate between types of readers: a file reader,
e.g., reads from local files, and a database reader queries a remote database.

The readers forward all intelligence to the manager, which passes it on the
analysis engine. However, rather than directly making it available, data from
the readers first passes through an optional set of filters that may reduce and
transform the input before it gets applied. As the filters run inside the analysis
engine, they have access to the full IDS state.

Generally, each reader decides on the model for forwarding input to the man-
ager. A file reader could, for example, read a file once at startup and then keep
monitoring it for changes in regular intervals, passing updates on as noticed. On
the other hand, a reader connecting to a real-time network feed would instead
forward intelligence immediately as it arrives on its input socket.

In our architecture, manager and readers communicate via a simple API that
is fully decoupled from the core of the IDS. This make it particularly easy to
add new readers as they are not at all concerned with the system’s potentially
complex internals. In principle, one could even connect a single manager imple-
mentation to different IDS implementations just by adapting the upstream inter-
face accordingly. On a technical level, decoupling the readers makes it straight-
forward to run them in separate threads, which simplifies the implementation of
asynchronous I/O. With that, the only critical point potentially impacting the
IDS’ packet processing remains the manager/engine interface.

4 Implementation

We implement the Input Framework architecture on top of the Bro IDS. By
providing a Turing-complete scripting language for expressing custom detection
policies, Bro fits well with the capabilities that the Input Framework offers: we
add a new script-level API that allows users to configure external intelligence
sources, which Bro then maps transparently into standard data structures. In
the following, we discuss the main aspects of our implementation in terms of its
internal structure (§4.1) and its user interface (§4.2).

4.1 Integration

Fig. 3 shows how our implementation integrates into Bro.When processing net-
work input, Bro internally reduces the voluminous stream of packets to a series
of higher-level network events that reflect the key steps of the underlying activ-
ity. 2 A policy interpreter then executes scripts written in a specialized, high-level
language 3 that expresses both a site’s custom security policy and general forms
of high-level analysis (e.g., scan detection [13]) in terms of the event stream. A
crucial point is that these events are policy neutral : Bro itself makes no judgment

2 Bro provides both generic transport analysis and application-specific analysis. It
understands for example specifics of HTTP, DNS, SMB, and many other protocols.

3 “A domain-specific Python.”
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as to whether the events reflect malicious or benign traffic but rather leaves that
determination to a user’s custom scripts.

As layed out by our general architecture (see §3.3), a central manager acts
as the interface between the Bro core and intelligence sources. The manager
spawns separate reader threads for each source. When reading data, these readers
pass it on to the manager via thread-safe queues. The manager then feeds the
information into either the event stream or directly into the policy interpreter by
adding to its data structures, executing filters, and calling script layer functions.
We detail all of these further below.

The interface between the manager and Bro’s core is performance critical as it
needs to trade-off processing incoming intelligence with that of network traffic.
Generally, the latter receives priority as its volume prevents Bro from buffering
packets to any significant degree. However, to satisfy our real-time constraint, in-
coming intelligence cannot just wait for lulls in the traffic stream (which in most
environments will never occur) but instead propagates incrementally, interleaved
with traffic analysis. Internally, Bro already provides an I/O loop structure that
allows to balance packet processing with further asynchronous input. The input
manager hooks into this loop structure as an additional data source.

4.2 User Interface

Our Input Framework implementation integrates fully into Bro’s domain-specific
scripting language. In the following, we walk through the main parts of the script-
level interface that the Input Framework exposes to the user. As a simple running
example, we consider importing a blacklist of hosts, formatted as a 3-tuple (IP
address, reason, timestamp) where IP address is the host’s address, reason a
textual description of the host’s offense, and timestamp a Unix-timestamp in-
dicating since when the list entry exists. Stored in a tab-separated file, the list
could look like this:

ip reason timestamp
66.249.66.1 connected to honeypot 1333252748
208.67.222.222 too many DNS requests 1330235733
192.150.186.11 sent spam 1333145108

Reading Files. The Input Framework can directly import files such as the above
into tables, a associative array type that Bro’s scripting language provides, much
like hashes in Perl. To do so, the user declares the columns to extract from the
file by defining two corresponding record types (records are similar to structs in
C): one for the table index and one for its values. In our example, assuming we
want to use the IP address as the table index and the other two columns as its
value, we can define the following types:

type Index: record { ip: addr; };

type Value: record { reason: string;
timestamp: time; };
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When reading the blacklist file, the Input Framework will use the records’
field names (ip and reason/timestamp) to locate the corresponding columns,
and it will interpret their content according the fields’ types (addr and time are
Bro’s built-in script types for IP addresses and time values, respectively.).

Next, we define the table that will receive the content of the file:

global blacklist: table[addr] of Value;

Note that the types for table index and values correspond to the Index and
Value records, respectively.4 Now that we have defined the types and the table,
we use an Input Framework API function to read the blacklist in from a file: 5

Input::add_table(source="blacklist.tsv", idx=Index,
val=Value, destination=blacklist);

Once read, further script code can test whether the blacklist contains a specific
address:

if ( 192.150.186.11 in blacklist )
alarm(...)

When executing the add_table function, the Input Framework’s manager in-
ternally spawns a new reader thread and then immediately returns back to
the caller. While the new thread is parsing the blacklist in the background,
it continuously forwards entries to the manager, which in turn adds them to
the blacklist table incrementally. Script processing continues in parallel, and
other event handlers will hence “see” each new entry immediately. In addition,
the Input Framework flags completion by triggering a callback event that users
can implement for logic requiring that all data has made it into the table.
4 For the table index we “roll out” the fields because Bro’s tables do not support record

types as keys. They do however allow for index tuples so if our blacklist were indexed
by, say, two addresses, we would write table[addr,addr] of Value.

5 In this and later examples we simply Bro’s syntax slightly for better readability.
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Updating. Many intelligence sources will see frequent updates, either batched
in regular intervals or continuously in the form of a stream. Our implementation
provides three mechanisms to accommodate updates.

The most direct mechanism is to call the API’s force_update function, which
will trigger a re-read of a stream’s source data (for reader types that support
it). The Input Framework will then add any new values to the corresponding
table, remove ones that no longer exist, and update any that have changed to
their new values. Using force_update is a good choice if one knows when to
expect a change, such as when one has run an external command. Alternatively,
one can also put a reader into automatic update mode (via a flag passed to the
add_table call). In this mode, the reader thread will continually check the source
file for modifications and trigger the update operation automatically. Automatic
updating works well with files that an external script retrieves regularly from a
remote location (for instance via cron).

Finally, for readers that receive continuous streams of intelligence, they may
also individually add/delete/modify table entries as they get updates. Keeping
with the file example, this mode corresponds to “tailing” a file on a Unix system.
Usually, however, such streaming readers will have a persistent connection to an
external data source. For example, new blacklist entries could be coming in via
a network connection, or a database reader may subscribe to live query updates.

Filtering. Often it is beneficial to prefilter the information coming in from
an intelligence source. In our blacklist example we might, for example, only want
to consider entries added within the last few days. Our implementation offers
corresponding hooks that can modify or remove entries before they land in the
table. Such a hook comes in the form of a callback function that the Input
Framework runs for any table update under consideration. The hook receives
the line to be added to the table and the information whether the entry is new,
changed or updated. The hook function returns a boolean that signals if the
change is to be applied or rejected. If the hook rejects a change, the element is
not added for new elements, not updated for changed elements and not deleted
for removed elements. In our blacklist example, we could use that to only consider
blacklist entries that are not older than five days.

One assigns such a filter to a stream by passing the function as an additional
argument to the add_table call. We emphasize that filters can access all of
Bro’s already accumulated state, including other script-level tables and data
structures. They can even modify other tables, which for example allows to split
intelligence from a single source across a set of related tables.

Triggering Events. Some types of intelligence do not map directly to a table
structure. For example, a source may be sending information that Bro must
react upon immediately, rather than storing it for later inspection. To support
such applications, our Input Framework implementation offers a second, simpler
reading mode in which the manager triggers an event callback for every entry
it receives. The callback’s arguments are similar to that of the filter function
described above but do not include table-specific elements like the index value.



4.3 Reader Types

Our current Input Framework implementation supports three types of intelli-
gence readers. As we show in our examples above, it can read ASCII files in the
form of typed tab-separated columns. We kept the format’s specifics compati-
ble to Bro’s structured log files, which now enables users to read log files back
in, providing a powerful mechanism to maintain rich state persistently across
restarts.6

The second supported format is “raw” content, in which the reader simply
passes on the content of a file as a raw blob. This mode can only trigger events,
not table updates, as there is no further structure associated with the data.
Optionally, the raw reader can also split a file at predefined separator characters.
It is, for example, possible to get one event for each line in a file. As an extension,
the raw reader can take its input not only from files but also from the output
of custom shell commands. This feature enables in particular to query external
web services using a utility like curl. The following code snippet demonstrates
how Bro can retrieve a JSON file on the fly:

# Define the type that will store the data.
type JSON: record { data: string; };

# Define the handler that will process the JSON data.
event got_data(value: JSON) {

... Code to process data goes here ...
}

# Trigger the request.
Input::add_event(source="curl www.host.com/list.json |",

fields=JSON, event=got_data, reader=Input::RAW);

The add_event call creates a new reader thread that first executes the external
command and returns the output asynchronously by generating a got_data
event. The event handler can then further parse the data.7 Note how the source
argument ends with a pipe symbol to indicate that the value reflects a command
to execute, not a file name.

Finally, as our third reader type, we develop a PostgresSQL interface that
executes SQL queries and forwards the result back to Bro, mapping it either
transparently into a table or into events, as described above. We discuss this
reader in more detail in §5.4 where we show a concrete usage scenario. We also
add a PostgresSQL log writer to Bro. In combination, reader and writer enable
users to perform arbitrary bi-directional database transactions in real-time, all
in parallel to Bro’s normal packet processing and with full access to its global
state.
6 Bro’s logging system indeed complements our work by providing a corresponding
output framework.

7 Alternatively, one could parse the JSON externally as part of the executed command
and use the ASCII reader to receive it in a structured form.
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Our Input Framework implementation provides a simple self-contained API
for implementing new readers that makes it straight-forward to add further types
of input. In particular, we are planing to add interfaces to other databases as
well as to syslog clients.

5 Deployment Scenarios

To support our claim that the Input Framework introduces a fundamentally new
IDS capability, we now examine its potential from a deployment perspective. In
§5.1 we first examine the need for trusting external intelligence as an overarch-
ing operational concern that current IDS do not sufficiently address. In §5.2 we
discuss a real-world application of the Input Framework that is already in oper-
ational deployment at the Lawrence Berkeley National Laboratory. Finally, §5.3
and §5.4 discuss two further usage scenarios that we prototype as case studies
and expect to similarly move into operations. We note that many specifics of our
Input Framework design and implementation evolved through close interaction
with network operators at a number of sites, and the discussion in this section
captures much of the feedback we received.

5.1 To Trust or Not to Trust?

From an operational perspective, trust is a crucial concern when integrating
third-party intelligence into a site’s security decisions. Consider a site with a
policy to automatically block connectivity for malicious external IP addresses.
With external IP blacklists coming in for example from a federation like REN-
ISAC, the operators need to decide which of the addresses justify a block. On
a technical level, simply blocking all of them is rarely feasible due to limits on
the number of rules that firewalls can handle. But more importantly, there is
rarely any local control on what exactly the intelligence feeds include and hence
their information requires additional vetting and a process to develop confidence
in the quality of the data. In particular, operational usage needs to account for
policy differences between sites—the IP address of a P2P tracker, or an undernet
IRC server, may be criticial to block for one site, yet tolerated at another. Also,
any accidental inclusions risk severely impacting legitimate traffic (finding IPs
from Akamai or Amazon AWS blacklisted is not unusual). Furthermore, some
feeds (like REN-ISAC’s) contain additional qualifying information such as sever-
ity ratings, confidence levels assigned to an entry, or number of distinct sources
reporting it. Such ratings tend to be highly subjective and are thus often insuf-
ficient to trigger automated action on their own. They may however contribute
to crossing a threshold when combined with further orthogonal evidence.

Operationally, a crucial shortcoming of many IDS implementations is their
lack of support for the fine-granular decisions that such considerations require.
Accordingly, we see operators falling back to externally vetting information via
custom scripts before then converting them into static IDS rules. That, however,
lacks any flexibility to go beyond simple black/white decisions. There is no way
to convert a dynamic reputation scheme into a standard signature.



The Input Framework addresses such concerns by providing the means to in-
corporate intelligence into the IDS decision process itself, rather than leaving it
to external pre- or postprocessing. Doing so not only fundamentally improves
detection capabilities and response times, but also provides considerable work-
flow improvements by eliminating the external process that attempts to fit the
intelligence into what the IDS configuration language supports.

5.2 Federated Blacklists

Our Input Framework implementation is in operational deployment at the Law-
rence Berkeley National Laboratory (LBNL), where the cyber security team uses
it to integrate both SES feeds and JC3 feeds into the Lab’s Bro installation. In
the following we report on their experience with the new capability after nearly
2 months of use. LBNL adopted use of the Input Framework due to its ability
to continuously integrate crucial indicators into the monitoring infrastructure
as quickly as they are published. Prior to the Input Framework, it was not
operationally feasible to repeatedly restart their IDS potentially multiple times
an hour as feeds were published in an adhoc manner. Additionally, incorporating
policies by hand was an error prone process causing unintentional delays.

LBNL prefers using the SES and JC3 limited-circulation feeds over other pub-
lic sources as they supply vetted data and are continuously maintained. As such,
these feeds allow for tight integration with the IDS and enable to automate de-
cisions as their semantics are well understood. The institutions behind the feeds
also allow LBNL to go back upstream and inquire about potential false positives
or borderline cases. The SES feed is updated automatically once per day and
the JC3 feed is downloaded manually from a secure server when updates are re-
leased. The SES feed contains individual subfeeds for spam, scanners, phishing,
suspicious nameservers, and suspicious networks. In general, these feeds contain
different types and volumes of intelligence in the order of 300–3000 lines per
subfeed. Typical entries for SES are an malicious host’s IP address, event times-
tamp, domain, port, URL and file MD5 hash, as appropriate. Each item also
comes with a separate severity rating as well as a confidence level. JC3 provides
malicious domains and IP addresses, augmented with information about which
sites reported the threat and also threat-level estimates.

LBNL uses the Input Framework’s table interface (see §4.2) to directly im-
port the feeds into a set of Bro tables. External scripts query the feeds from
the providers and write them to disk. The Input Framework then picks up the
changes transparently. LBNL also uses the filter mechanism to modify data dur-
ing imports. For example, some SES subfeeds do not contain hostnames as a
separate column but only come with complete URLs to malware. However, these
rarely appear as a whole in network traffic and LBNL hence uses a custom filter
function to extract the hostname and turn it into a table index on the fly. Fur-
thermore, LBNL joins several feeds into a single table by configuring multiple
sources that all write to the same destination.

During the two months of deployment, this setup has proven to improve
LBNL’s detection capabilities in a number of ways. As an example, HTTP
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scanners are notoriously difficult to detect reliably because it is difficult to distin-
guish a malicious scanner from a search engine’s web crawler. However, having
intelligence feed integration, LBNL can now tie feed data to Bro’s TCP-level
scan detector. When the latter finds a possible scanner, the IDS checks to see if
the IP is blacklisted; if so, it blocks it automatically. Combining the two detec-
tors in this way allows to quickly block HTTP scanners without subjecting all
blacklisted IPs to that treatment (and thus preventing many unjustified blocks).
A similar approach works well for encrypted SSH and HTTPS traffic, which
an IDS cannot further inspect at the content-level. The Input Framework has
already triggered investigations in several such cases.

More generally, LBNL finds that steering subsets of intelligence into corre-
sponding protocol-specific analyses leads to more reliable alarms than the stan-
dard approach of matching broadly against the bulk of the traffic. For example,
LBNL uses a hook into Bro’s TCP analysis to trigger intelligence lookups for the
addresses of every newly established connection. Likewise, all DNS requests and
replies lead to checks for the corresponding domain names. While already valu-
able on their own, one can also correlate matches across protocols. For instance,
a blacklisted path may first appear in an HTTP request followed by a DNS
lookup for a malicious domain. Indeed, the majority of intelligence-triggered
alerts currently corresponds to such DNS-after-HTTP matches.

5.3 Online Virus Checks

As a second deployment scenario, we prototype online virus checks using the
popular malware checking service VirusTotal [29]. While network-level virus
checking is not a novel concept, most solutions operate as proxies that actively
intercept TCP sessions. A few commercial systems seem to support passive virus
checks (e.g., by FireEye and Netwitness) but we are not aware of available open-
source solutions doing live packet-level scans. The Input Framework makes it
straight-forward to support such functionality within an existing IDS.

In fact, with the Input Framework in place the main challenge is not interfac-
ing to a virus checker but extracting files from network traffic. Here, we leverage
the file extraction features that Bro’s HTTP engine provides, including its sup-
port for content downloaded in chunks or from multiple sessions simultaneously.
Hence it is, for example, possible to recognize viruses in files where a user first
aborted a download and later resumed it at the aborted position.

We implemented online virus checking as a plugin to Bro’s file analysis frame-
work that is currently in development and scheduled to be part of an upcoming
release. The framework supports reassembly for files transferred non-linearly and
provides a convenient hooking point for handling files across protocols in a stan-
dardized way. A plugin for VirusTotal provides two alternative operation modes:
it can either (i) calculate an MD5 hash for a file on the fly and submit that to
the VirusTotal API for checking against its database; or (ii) submit the file in
whole to the service. In both cases, VirusTotal returns a JSON-string indicating
the results that we then parse in a Bro script using the Input Framework’s event
interface. If there is a match, the script can take action such as notifying an



operator or disconnecting the victim system. An alternative to using VirusTotal
would be to instead call a local virus scan engine. Doing so can be beneficial if
privacy concerns prevent online lookups.

The Bro script providing the VirusTotal functionality on top of the Input
Framework is just about one hundred lines long, including empty lines and com-
ments. To avoid an excessive number of lookups, it allows to optionally analyze
only a subset of all files, such as selected file types, or content from specific IP
addresses or CIDR ranges. During our testing, we indeed detected a malicious
file transfer from an compromised host in a 600MB real-world trace.

5.4 Database Interface

Our initial implementation also provides a database reader that connects to
PostgresSQL. The reader supports both importing data once from a DB table,
and continuously as updates from live queries arrive. Compared to the text-based
intelligence we have used in our examples so far, the database interface opens
up further potential by providing real-time access to external intelligence that
exceeds a volume that an IDS could handle itself internally.

To demonstrate this capability, we consider a setting where the IDS flags sus-
picious activity for its operators but also augments the alert with further context
about the attack source. Specifically, we want to integrate whois information into
the notification, such as the time when a domain was registered and its admin-
istrative contact information. The Bro-side for that comes in two parts: (i) we
hook into Bro’s processing to execute a database query via the Input Framework
when an alarm triggers; and (ii) when the database’s reply arrives, we augment
the alarm accordingly and then pass it on for further processing. Somewhat
simplified8 the query looks like this:

add_event(source="select * from whois where domain=’"+ domain +";",
name=<uid>, event=got_reply, reader=Input::POSTGRES);

Here, the uid is an automatically generated unique identifier that later allows
the got_reply handler to associate a reply with the corresponding query.

We test this approach using an internally maintained PostgresSQL database
that contains complete whois information for several million domains, and we
find it to work as expected. In practice, one could extend this scenario in a
number of ways. For example, rather than just augmenting alerts, the IDS can
use the database information to further assess the threat, such as by elevating
an alarm’s priority when it involves recently registered domains.

More generally, this scenario demonstrates how the Input Framework can
make intelligence available to the IDS on demand, without needing to move all
the information into the system itself. Database connections is the most powerful
of all our examples, and we expect that operators will start relying on them
extensively as they become familiar with the new capability.
8 We configure the database connection separately. In practice, one must ensure to

sanitize the domain to avoid SQL injection attacks.
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6 Performance Evaluation

To understand the performance of our implementation we perform a set of mea-
surements to determine (i) the intelligence volume it can handle under realistic
workloads; and (ii) the latency with which real-time input becomes available to
the IDS analysis.

6.1 Benchmark Reader

We create a dedicated benchmark reader for our measurements. Rather than
connecting to an actual intelligence source, that reader generates artificial data
with characteristics that we can freely configure. The reader first examines the
data types requested via the Input Framework API (see §4), and then generates
corresponding table updates and events. For example, when the API requests in-
telligence of string type, the benchmark reader returns a random byte sequence.
It recursively fills in fields of record types and can hence generate arbitrarily
complex data structures on the fly. One can configure the rate with which it
sends updates and also an optional increase of that rate over time.

6.2 Realistic Workloads

It is challenging to benchmark IDS systems with realistic workloads in a way
that is repeatable and has reproducible results. We cannot just run the system
on live traffic because continuous variations in packet volume and mix would not
allow for fair comparisons of different configurations executed sequentially. We
however also cannot run offline from traces as Bro would process the packets as
quickly possible (i.e., at 100% CPU usage), without the normal lags seen during
real-time operation that the Input Framework uses to interleave intelligence up-
dates with the packet processing. To overcome these problems, we leverage Bro’s
pseudo-realtime mode [22] which combines the best of both worlds. In that mode,
Bro reads its input from a trace, yet it mimics real-time behavior by introducing
artificial delays into the packet processing, corresponding to timestamp differ-
ences of consecutive packets. Doing so results in reproducible operation that is
comparable to using the Input Framework on live traffic.

For our evaluations we capture a 5-minute packet trace at the uplink of UC
Berkeley. The campus’ upstream connectivity consists of two 10 GE links, with
daytime average rates of 3-4Gb/s total. Such a volume is much more than a
single Bro instance can handle, and we thus record only a subset corresponding
to a more realistic setting. Specifically, we capture the traffic that a single Bro
instance analyzes in the Berkeley campus’ NIDS Cluster [27], which corresponds
to 1

28 of all flows. The resulting trace contains 100M unique IP addresses and
330K flows. 81% of the packets are TCP, and port 80 is the most common port
(31,7%). The average data rate is 222 MBit/s at about 40K packets/sec.

For our measurements we use a current development version of Bro with a
recommended, complex default configuration. When running without the Input
Framework, a Bro process exhibits a CPU load of 50-80% while processing the



trace on our evaluation system9, which is about the level realistic for live oper-
ation without incurring packet drops.

6.3 Sustainable Load

We measure the load of the main Bro thread when the benchmark reader gener-
ates certain fixed numbers of events per second. Besides system characteristics
such as CPU and memory resources, the sustainable data rate depends on the
complexity of the involved data types (i.e., the record definitions), and on the
reading mode in use (table updates or events).

For simple events, consisting just of a timestamp, we measure a limit of about
42,000 events/sec. Fig. 4 compares the CPU utilization for three different rates.
For each rate, the plot shows the probability density of CPU load samples mea-
sured in 1s intervals over the course of processing the 5-min input trace. For
comparison, we also show the load for a baseline run that does not activate the
Input Framework. We see that at 10,000 events/sec, the CPU load increases just
slightly (average 51% vs. 49%). At 36,000 events/sec it increases more noticably
(average 58%), and at 50,000 events/sec individual CPU samples exceed 1.0s,
i.e., more than the system can support.10
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We repeat similar measurements with more complex events as well as with
simple and complex tables. For the complex case, the record type contains 14
different data fields, of which 5 are list types (which is more than operations
are likely to use). The sustainable loads for complex events are about 4,000
entries per second. For simple tables, the Input Framework can handle about
9 The system has two quad-Core Xeon E4530 CPUs @2.66 GHz and 12 GB RAM.

10 With Bro’s pseudo-realtime mode, a CPU sample >1s means that the time required
for processing 1s of network traffic exceeded 1s of real-time, which in live operation
would have resulted in packet loss.
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20,000 entries per second and for complex tables about 2,000 entries per second.
The CPU loads at those rates are similar to those in Fig. 4 and we thus skip
corresponding plots. We also examine system load with very low data rates (10s
of updates/sec), which is more likely what one will see in typical deployments.
For these, we do not see any measurable load increase.

Overall, we conclude that even with complex intelligence data, our imple-
mentation can sustain more than 3,000 insertions/sec while processing a typical
packet load with a complex IDS analysis configuration. With less complex in-
put, it achieves rates matching that of the packet input(!). The observed CPU
increase is hardly surprising at such high rates. Operationally, however, the most
relevant result is a different one: having headroom to accommodate high update
frequencies is good, yet most deployments will never see such rates. For them,
the we find that the Input Framework does not increase CPU usage.

6.4 Latency

From an operations perspective, the time it takes to make intelligence updates
available to the IDS analysis is another important factor for operations. Con-
sequently, we also measure the Input Framework’s latency, i.e., the difference
between the time when it receives an update from a source until that becomes
available at the scripting layer. We configure the benchmark reader to generate
events that include the current timestamp, and a receiving Bro script then calcu-
late the difference. As in the load evaluation, we use Bro’s pseudo-realtime mode
running again on the same trace file. We performe a series of measurements, each
time increasing the rate at which the benchmark reader sent events. We stop the
series at the maximal attainable rate of 42,000 events/sec.

Fig. 5 visualizes the measured latencies for each rate in the form of a bar plot.
(Note the logarithmic scale on the y-axis.) The whiskers end at 1.5*IQR+Q3,
all other points are considered outliers and plotted as a dot. We see that the
latencies remain very small, averaging around 1.4ms. There are a few infrequent
cases that have latencies in excess of 100 msec (less than 0.4%)—however, even
in the worst case, the latency is under 900 ms. The minimum time difference
is 4 μsec and hence in the order of measurement inaccuracies. Interestingly, the
latencies do not change much at all as the rate increases, indicating that as long
as the Input Framework can operate at a rate, it will forward updates rapidly.
Overall, we conclude that the Input Framework does not add significant delays
after receiving intelligence from a source.

7 Conclusion and Outlook

The global security community is collecting a treasure trove of third-party intel-
ligence that can support operations staff in automating incident detection and
investigation, including many forms of blacklists recording known bad actors and
malicious content. Unfortunately, network intrusion detection systems still miss
out on fully leveraging this potential for making more reliable decisions as they
do not offer corresponding interfaces for flexibly integrating such knowledge.



In our work, we present a novel architecture that adds unconstrained in-
telligence access as a new capability to the IDS toolbox. We design an Input
Framework that adapts to a variety of sources, provides a simple yet flexible
user interface, and integrates smoothly with an IDS’ main task of analyzing
high-volume packet streams under soft real-time constraints. We implement an
initial version of the Input Framework on top of the open-source Bro IDS. We
also prototype a set of usage scenarios that exploit the power of the new capa-
bility, including integration with federated intelligence sharing initiatives, online
virus checks for downloaded files, and real-time interaction with a PostgresSQL
database for assessing the relevance of alarms on the fly. Furthermore, separate
benchmark measurements confirm that our implementation is well-suited to han-
dle frequent real-time intelligence updates while adding virtually no delay before
making it available to the IDS analysis.

This Input Framework implementation is already in operational deployment at
the Lawrence Berkeley National Laboratory where the Lab’s security team finds
it to significantly improve their detection capabilities. With the Input Frame-
work’s generic approach to integrating intelligence, we are looking forward to the
operations community developing further powerful applications as they become
familiar with the new capability.
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Abstract. Deep Packet Inspection (DPI) serves as a major tool for Network In-
trusion Detection Systems (NIDS) for matching datagram payloads to a set of
known patterns that indicate suspicious or malicious behavior. Regular expres-
sions offer rich context for describing these patterns. Unfortunately, large rule
sets containing thousands of patterns coupled with high link-speeds leave most
regular expression matching methods incapable of matching at real-time without
specialized hardware.

We present GPP-grep, an NFA-based regular expression processing engine de-
signed for maximum performance on General Purpose Processors. The primary
contribution of GPP-grep is the utilization of the data-level parallelism available
in modern CPUs to reduce the overhead incurred when tracking multiple states
in NFA. In essence, we build and store the NFA in an architecture-friendly man-
ner that exploits locality and then traverse the NFA maximizing the parallelism
available and minimizing cache-misses and long-latency memory lookups. GPP-
grep demonstrates 24–57× improvement in throughput over standard finite au-
tomata techniques on a set of up to 1200 regular-expressions culled from the
NIDS Snort, and is within 1.3× of FPGA hardware-based techniques. GPP-grep
achieves 2 Gbps throughput on a dual-socket commodity CPU system allowing
for line-speed evaluation on commodity hardware.

1 Introduction

Pattern matching is a primary component of Network Intrusion Detection Systems
(NIDS) that employ Deep Packet Inspection (DPI). DPI necessitates the comparison
of every datagram payload against a set of known patterns. Fixed string patterns offer
limited ability for expressing the complexities of modern network attacks, especially in
the face of evasive techniques employed by attackers [15]. Regular expressions provide
much richer context with which to design signatures enabling not only greater precision,
but also greater resilience to evasive techniques. However, efficiently matching regular
expressions can prove intractable, especially when faced with large sets of regular ex-
pressions combined with a high volume of traffic, and can result in near-incapacitation
of NIDS when deployed in high-speed environments [12].
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To promote efficient regular expression matching the set of regular expressions are
reduced to Non-deterministic Finite Automata (NFA) or Deterministic Finite Automata
(DFA). While NFA provide for very compact memory utilization, they suffer in through-
put as multiple active states must be maintained as all possible paths through the NFA
are traversed. DFA exhibit faster throughput, as only one active state is ever needed,
but the number of states in the automata can grow exponentially and require excessive
amounts of system memory. Current automata solutions such as eXtended Finite Au-
tomata (XFA) [24], Hybrid Automata [3], Delayed input DFA (D2FA) [16], and Ordered
Binary Decision Diagrams [30] improve the memory and time efficiency of regular
expression matching. Similarly, hardware techniques employing Field Programmable
Gate Arrays (FPGA) [19], Graphics Processor Units (GPU) [26,5], or Cell proces-
sors [21] utilize specialized hardware to improve matching. However, specialized hard-
ware can prove expensive and unmanageable while purely automata-based techniques
do not necessarily exploit the parallelism already embedded in current multi-core and
many-core processors.

In this paper, we present GPP-grep, a high-speed, NFA-based, regular expression
engine for General Purpose Processors (GPP). GPP-grep exploits thread-level and data-
level parallelism to achieve gigabit processing rates. Further, GPP-grep utilizes special-
ized NFA construction and storage to both reduce the total number of active states and
exploit locality during NFA traversals. The primary contribution of GPP-grep stems
from its ability to merge efficient NFA construction, storage, and traversal techniques
with a more complete use of GPP processing power to arrive at a performance of up to
57× faster than traditional NFA engines and within 1.3× of a hard-wired FPGA-based
NFA engine (on a 12-core CPU system). With 1,200 real NIDS regular expressions
GPP-grep achieves real-time processing rates of 2 Gbps on commodity hardware.

2 Related Work

Regular expressions provide signature creators a wide context within which to describe
dynamic patterns such as those occurring in polymorphic worms or customized at-
tacks [15]. Unfortunately, matching thousands of regular expressions against the pay-
loads of many thousands of packets-per-second can result in total failure of a NIDS
in multi-gigabit environments [12]. DFA provide a fast software implementation for
matching but suffer from state explosion when ambiguous characters, such as wild-
card characters, are used in expressions. Such wild-card characters result in an expo-
nential increase in the number of states required for the DFA which, in turn, requires
much more memory to store. Since NIDS may employ thousands of regular expressions,
nearly 1,600 distinct regular expressions for the default-enabled rules of the Sourcefire
Vulnerability Research Team (VRT) Snort rule-set for August 11, 2011 [27], and since
these regular expression are complex expressions with an average of six wild-card char-
acters, DFA can grow too large to reside in main memory. Conversely, NFA have very
compact representations in terms of memory, but require wider bandwidth to traverse
as all possible paths through the NFA must be explored simultaneously. Traditionally,
NFA are not considered a viable solution for NIDS, nor for regular expression match-
ing, as the single state transitions of DFA appear to offer the best chance at throughput.
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However, the growth in number of regular expressions employed by NIDS, as well as
the propensity for these regular expressions to use wild-card characters, has begun to
make DFA matching infeasible as the resultant DFA are simply too large. Compres-
sion [1], rule rewriting [31], and add-on data [20] can create smaller DFA, but can also
result in added overhead and processing of the DFA.

Much research has sought to improve the efficiency of automata. Smith et al. present
XFA [24] which augment Finite State Automata (FSA) with added variables to track
state during processing. The added state information serves to provide the FSA with
enough hints on processing data that it can both perform faster and in less space, on
average, than vanilla FSA. Becchi et al. present Hybrid Finite Automata [3,4] which
employ a small, head, DFA for the most common states (closer to the root). However,
for matching that extends deep into the automata, tail NFA are employed to succinctly
represent these deeper and less traveled regions. This hybrid finite automata demon-
strated smaller size than a comparable DFA, but with a much better cache hit ratio and
faster processing. Kumar et al. [16,17] introduced Delayed input Deterministic Finite
Automata (D2FA) and Content addressed Delayed input Deterministic Finite Automata
(CD2FA). D2FA essentially combines identical transitions from multiple states to re-
duce the total number of states and, ultimately, the size of the Finite Automata. CD2FA
use content labels rather than state identifiers that allow skipping default transitions
in certain cases. The end results were much smaller than normal DFA that achieved
roughly the same memory bandwidth. Yang et al. [30] adopted an approach more
closely aligned with GPP-grep in that they sought to improve the throughput of NFA.
They employed Ordered Binary Decision Diagrams to maintain the space-efficiency
of typical NFA representations while greatly improving the NFA traversal throughput.
Also similar to GPP-grep, Shenoy et al [23] attempt to make the storage of state in
Finite State Machines more efficient.

Another common tactic is to take advantage of specialized high-compute platforms
to speed up regular expression matching. Mitra et al. [19] compile PCRE op-codes to
Very High speed integrated circuit Description Language (VHDL) so that the matching
can be executed on a Field Programmable Gate Array (FPGA). This allows the expres-
sion matching to occur in parallel across multiple NFA. The end result is a significant
increase in throughput. Other approaches include Smith et al. who map DFA/XFA to
Graphics Processing Units (GPU) [26], iNFAnt which also maps NFA to GPUs and
provides efficient traversal algorithms [5], the use of the Cell processor as illustrated by
Scarpazza et al. [21], and Meiners et al. [18] who employ TCAM to compactly encode
multiple DFA and achieve high throughput.

GPP-grep differs from these approaches by creating and implementing an efficient
automaton in a manner that fully utilizes the parallelism available in modern multi-core
and many-core processors. This presents several advantages for GPP-grep. First, it mit-
igates the need for specialized high-compute platforms by maximizing the full potential
of general purpose processors. Thus, GPP-grep can achieve performance benchmarks
comparable to hardware implementations on a low-cost, ubiquitous piece of hardware.
Secondly, the architecture-friendly layout for automata used in GPP-grep can extend to
other approaches, such as those mentioned earlier, to arrive at improved performance.
Finally, GPP-grep itself could benefit from the other approaches mentioned earlier thus
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potentially allowing for complimentary improvement through the combination of dif-
ferent approaches. Ultimately, GPP-grep attempts to merge both finite automata consid-
erations with general purpose processor considerations to arrive at a regular expression
matching engine that demonstrates improvements far beyond what either tactic might
manage alone.

3 Modern Architectures

Exposing instruction-level parallelism is critical to utilize the multiple functional units
within each processor core. This requires unrolling/software pipelining as well as proper
instruction scheduling to expose independent instructions for simultaneous execution.
In order to utilize all integrated cores, the application must expose thread-level par-
allelism. For regular expression matching, parallelization can be done across multiple
input packets, with each processor executing matches on different packets. Modern pro-
cessors also have wide vector Single Instruction, Multiple Data (SIMD) units that can
execute instructions on many data items in parallel. For regular expression matching
using NFA we utilize SIMD parallelism to perform the next state transitions of multiple
active states in parallel. These techniques are further described in Section 5.3.

Instructions with high latency can lead to low utilization of functional units since
they block the execution of dependent instructions. This is typically due to long latency
memory accesses which can be reduced if the working set of the application (the data
size for which the number of cache hits is 90%) fits in the last-level cache of the proces-
sor architecture. For regular expression matching the core traversal algorithm involves
accesses to distinct memory locations which will ordinarily not be present in cache. In
Section 5.2, we rearrange the nodes of the automaton to minimize the impact of cache
misses. In addition to cache misses, misses to an auxiliary structure called the Transla-
tion Lookaside Buffer (TLB), which is used to perform the conversion from virtual to
physical memory addresses prior to each memory access, can also result in significant
performance degradation. This is also reduced using our hierarchical blocking scheme
described in Section 5.2.

Finally, misses in cache also result in increased use of memory bandwidth. While the
compute resources in modern architectures have increased rapidly, memory bandwidth
is on a slower curve. To minimize bandwidth utilization, we attempt to ensure that
every piece of data brought into cache in the form of cache lines is fully utilized before
being evicted. This is ensured by the cache line blocking technique that we describe in
Section 5.2.

4 Efficient NFA Construction

The first step in matching regular expressions is to build a finite automaton from a set
of given regular expressions. Once construction of the finite automaton is complete,
strings of symbols are applied to the automaton as an input until a final (accept) state is
reached (a match) or the input is exhausted (no match).

An NFA may require as many state transitions per symbol as the total number of
states in the NFA plus the possible addition of an epsilon transition. An epsilon transi-
tion allows the advancement to a new state without consuming an input symbol. This
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creates a time complexity for each symbol of O(m) where m defines the total number
of states in the NFA. For single-byte symbols, this translates to as many as 256 tran-
sitions per state (excluding epsilon transitions). The benefit, however, is that the NFA
is very efficient in terms of space as only a single state exists for each possible state
from the generating alphabet. On the other hand, a DFA requires only one state tran-
sition per symbol, but needs a much larger amount of memory to adequately map all
possible traversals through the finite automaton. This burden on memory only grows
as the number of complex regular expression components, such as Kleene stars, that
directly lead to state explosion continue to increase both in frequency (number of rules
containing complex components) and density (number of components per expression)
with an average of six such components per regular expression in the Snort VRT [27]
rule set.

4.1 Challenges in NFA Construction

In order to design efficient NFA previous approaches emphasized the generic reduction
of states and transitions. However, reducing the number of “active” states is more im-
portant than simply reducing total states since the CPU has to deal with all the active
states for each symbol in the input string. When converting regular expressions into an
NFA, Thompson’s algorithm [28] is often adopted. In Thompson’s algorithm, ε is used
to represent an empty string and is termed the epsilon transition. Unfortunately, NFA
generated by Thompson’s algorithm have two major drawbacks: first, there are many
redundant states and transitions in the NFA, and second, there are many redundant ep-
silon transitions in the NFA that can significantly increase the number of active states
for a traversal. In order to reduce active states in NFA we can merge some states. Mini-
mizing NFA is a hard problem [13] thus it is necessary to develop heuristic methods to
control minimization in order to make the problem tractable.

4.2 Reducing the Number of Active States

An NFA is defined by a quintuple A = (S,Σ,δ,s0,F), where S is a finite set of states, Σ
is the alphabet, δ is the transition function, s0 is the initial state and F is the set of final
states.

Given an NFA, we reduce the number of active states by combining “mergeable”
states into one. Formally, given an NFA A = (S,Σ,δ,s0,F), let p and q be two different
states in S. Then, by combining p and q, we obtain another NFA, A′ = (S′,Σ,δ′,s0,F ′),
that satisfies the following conditions:

S′ = S−{q} , (1)

δ′(s,ω) =
{
δ(p,ω)∪δ(q,ω) if s = p
δ(s,ω) otherwise,

(2)

and

F ′ =
{
(F −{q})∪{p} if q ∈ F
F otherwise.

(3)
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Fig. 1. Various NFA types for the RE ((ab|ε)a|(a|ε)b); (a) MM (b) SM (c) SS

Let L(A) be the language accepted by A. Then states p and q are mergeable if and only if
L(A) = L(A′). In fact, there exists a weaker condition for two states to be mergeable [7].

Definition 1. The left language of a state s in an automaton A is
←−
L A(s) = {ω ∈ Σ∗ |

s ∈ δ(s0,ω)}.

Definition 2. The right language of a state s in an automaton A is
−→
L A(s) = {ω ∈ Σ∗ |

δ(s,ω)∩F �=∅}.

Note the generalized usage of δ. It represents a set of NFA states reachable by the
string ω and any number of ε transitions preceding ω, following ω, and between any
successive symbols in ω. Additionally, [7] prove the following proposition.

Proposition 1. Two states, p and q, in an automaton A are mergeable if and only if←−
L A(p) =

←−
L A(q) or

−→
L A(p) =

−→
L A(q).

Unfortunately, testing the condition in Proposition 1 is NP-hard, requiring global knowl-
edge [6]. However, because we build an NFA from a regular expression, which is a
linear representation of the NFA, we do not need to deal with an arbitrary NFA. Based
on this observation, we propose a sufficient mergeability condition, and design a novel
heuristic algorithm to identify most mergeable states during a single-pass conversion
from a regular expression to an NFA.

Proposition 2. Two states, p and q, in an automaton A = (S,Σ,δ,s0,F) are merge-
able if δ(p,ε) = {q} and either (i)

⋃
c∈Σ δ(p,c) = ∅ or (ii) {(s,c) | c ∈ Σ∪{ε} ∧ q ∈

δ(s,c)} = {(p,ε)}.

Proof. Suppose p and q satisfy the condition in the proposition. We prove (i) and (ii)
separately.

(i) Because the epsilon transition is the only outgoing transition of p, we have δ(p,ω)=⋃
t∈δ(p,ε) δ(t,ω). Since δ(p,ε) = {q}, the equation becomes δ(p,ω) = δ(q,ω). There-

fore,
−→
L A(p) =

−→
L A(q).

(ii) Because the epsilon transition from p to q is the only incoming transition of
q, for any ω such that q ∈ δ(s0,ω), we get p ∈ δ(s0,ω) by removing the last epsilon
transition. Similarly, for any ω such that p ∈ δ(s0,ω), we get q ∈ δ(s0,ω) by adding
another epsilon transition at the end. Therefore,

←−
L A(p) =

←−
L A(q).

Thus, by Proposition 1, p and q are mergeable. �
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Fig. 2. NFA produced by the Thompson Algorithm for the RE ((ab|ε)a|(a|ε)b)

Note that to test conditions in Proposition 2, we only need the local knowledge of out-
going transitions for p and incoming transitions for q. To demonstrate the effectiveness
of our state merging, we illustrate Thompson’s NFA for (ab|)a|(a|)b in Figure 2, and
the result of state merging in Figure 1(a), which has significantly fewer active states
than Thompson’s NFA.

4.3 Building an Efficient NFA

After merging states, we will get an NFA with each state having multiple transitions,
even for the same symbol, and multiple epsilon transitions (a multi-multi NFA, or MM).
Such an NFA requires a dynamic data structure, such as a linked list, to maintain all
outgoing transitions for each input symbol. A simpler way is to force each state to
have at most one transition per symbol and at most one epsilon transition (a single-
single NFA, or SS), and implement it as an array. Essentially, we wish to reduce an
MM to an SS. Then the whole transition table of a state can be stored as a single entity
with 257 elements (256 input symbols and one epsilon transition). To achieve at most
one transition per symbol, we have to introduce new epsilon transitions to distribute
multiple transitions for the same symbol over multiple states. In order to have room to
add such new epsilon transitions, we first remove epsilon transitions from MM using
Algorithm 1. For each epsilon transition from p to q followed by another transition from
q to r, Algorithm 1 adds a shortcut from p to r, and eventually removes the epsilon
transition.

After removing epsilon transitions, we serialize all outgoing transitions for the same
symbol using new epsilon transitions. The pseudocode is shown in Algorithm 2. Note
that every state on the chain of epsilon transitions created by this algorithm has exactly
one incoming epsilon transition and one outgoing transition. In this way, we can guar-
antee that each state has at most one transition per input symbol and at most one epsilon
transition. Given an MM NFA as shown in Figure 1(a), its SS counterpart is shown in
Figure 1(c). We can use a similar algorithm to build an SM (a single-multi NFA), as
shown in Figure 1(b). The only difference is to connect a new state n in Algorithm 2 to
s directly using an epsilon transition instead of inserting it into the epsilon chain.

Overall, the algorithm to optimize an NFA created from a given set of regular ex-
pressions requires three steps: first, to create a compact NFA by merging states; second,
to remove all epsilons from the NFA; and third, to force a single-transition per input
symbol by creating an epsilon chain. This simplifies the memory representation of an
NFA and its traversal algorithm, as we explain in Section 5.
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Algorithm 1. Remove-Epsilons(State s)

if s has been marked then
return

end if
mark s visited
for all e such that e is an epsilon transition out of s do

d ← destination of e
if d has not yet been marked AND d �= s then

add transitions in d AND NOT in s to the transitions of s
if d is accepting then

set s to accept
end if

end if
remove e

end for
for all t such that t is a transition out of s do

d ← destination of t
Remove-Epsilons(d)

end for

5 Efficient Layout and Traversal

In this section, we describe our architecture-friendly NFA layout and the efficient traver-
sal algorithm. These optimizations are aimed at reducing the traversal cost and the re-
sultant working set (the most frequently accessed data), thereby resulting in increased
NFA processing throughput.

5.1 Motivation

NFA are typically stored using an adjacency list representation, with each state storing
its outgoing symbol and ε-transitions. The NFA traversal algorithm maintains a list of
active states, labeled AS, initialized to the Start state(s). For each input symbol α,
the traversal consists of the following two steps:

Step 1: Computing the list of neighboring states (NS) for the symbol α for all states
in AS.

Step 2: Computing the ε-closure1 of all the states in NS, and assigning the resultant
states to AS.

In the case where AS consists of the End state(s), a match is found, and the NFA
execution may continue until AS contains no End state(s) (to find the longest sub-string
match). On the other hand, in the case where all the input symbols are processed without
ever reaching End state(s), the input stream does not match any regular expression in
the set of regular expressions.

1 By definition, ε-closure of any state A consists of the state A and all the states reachable using
ε-transitions from ε-neighbors of A.
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Algorithm 2. Force-Single-Transition-Per-Symbol (State s)

if s has been marked then
return

end if
mark s visited
for all c such that c ∈ Σ do

if there are multiple transitions for c then
for all t such that t is a transition s

c−→ d except the first do
remove t
insert a new state n at the head of epsilon chain
add a transition n

c−→ d
end for

end if
end for
for all t such that t is a transition out of s do

d ← destination of transition
Force-Single-Transition-Per-Symbol(d)

end for

The runtime of the traversal algorithm is dependent on the following 3 factors: (1)
For each active state in AS, the time taken to lookup the neighboring states in Step 1. (2)
The time taken to lookup the ε-neighbors (and the subsequent ε-closure) for each state
in NS in Step 2. (3) Maintaining a unique list of states in AS and NS to avoid redundant
computation.

Typical implementations use either linear or log-time complexity algorithms [2] to
lookup neighbors and maintain unique lists. One primary reason has been the focus
on reducing the total memory footprint and using compact representation at the ex-
pense of increased traversal cost. In contrast, our layout aims to exploit the existence of
hardware caches and reduce the actual working set to make it fit in the cache, thereby
minimizing the access cost and thus reducing the instructions required for the traver-
sal. This layout makes our traversal algorithm compute-bound (rather than latency or
bandwidth-bound), and also provides an opportunity to exploit the Single Instruction,
Multiple Data (SIMD) execution units to further improve run-times.

5.2 Architecture-Friendly Layout

For the remainder of this section, let S denote the set of symbols, and |S | the cardinality
of S (e.g. 256 for 8-bit input symbols—the most common case). Furthermore, let M
denote the set of states (also referred to as nodes). We define the depth of any node as
the shortest distance (in terms of number of edges) traversed from the Start state to
that node. By definition, the Start state has a depth of zero.

On modern architectures, the data transfers (from main memory to caches, and within
caches) are performed at the granularity of cache lines (typically 64 bytes or longer). In
order to reduce memory accesses during traversal, it is important to reduce the number
of accessed cache-lines, which implies storing temporally coherent data in proximity.
Note that the NFA traversal involves neighborhood queries for all the active states for a
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Fig. 3. (a) Layout for single-neighbor case. (b) Layout for multiple-neighbor case. (c) 2-Level
hierarchical blocking of NFA nodes.

specific input symbol under consideration. Hence we need to store the transitions from
various states for any given symbol close to each other. We therefore cluster all the tran-
sitions into (|S |+1) groups (|S | for symbols and one for ε transitions). We now describe
our layout for these transitions for any particular symbol. For ease of explanation, the
remainder of the section uses the term symbol to include both input symbols and the ε
transition.

We adopt different layout schemes dependent on whether we wish to construct a
Single-neighbor (S) NFA where all the states have ≤ 1 neighbor or a Multiple-neighbor
(M) NFA where states may have many neighbors. These NFA represent different design
choices and are constructed as explained in Section 4.3. Consider the S case, and the
symbol α. It is indeed possible for some states to have no transition for α. However, in
the Single-neighbor NFA we must provide exactly one neighbor for every state in our
layout in order to provide for a predictable data structure as illustrated in Figure 3(a).
Thus, our layout employs a Dummy state for all non-existent transitions. While this
increases the total number of states for the NFA by one, it offers an efficient method for
determining no transitions.

Now consider the Multiple-neighbor (M) case. Different states may have varying
number of neighbors, and hence we need to store a count for the number of neighbors.
Furthermore, in order to reduce the number of accessed cache-lines, we need to store
the count close to the state IDs. We therefore store the count followed subsequently by
the neighboring IDs. This representation requires storing a pointer to the address of the
memory location storing count (Figure 3(b)).

Our NFA layout described so far stores the states in increasing order, starting from
state ID 0. However, the traversal pattern follows a specific order—for any given state,
it accesses its neighboring (outgoing) state IDs. To improve cache locality, we need to
store all the neighbors of a node close to each other. Doing so for all depths results in
a breadth-first storage. However, this increases the storage distance between any node
and its neighbors at larger depths. For input streams matching the given NFA, the depth
of active states increases as we traverse through the inputs, thereby resulting in memory
accesses that are separated by increasing distances. As described in Section 3, memory
is laid out as pages and, for memory accesses offset by more than the page size, each
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access would result in a TLB miss which would increase memory access latency. In the
worst case, we may incur a TLB miss for each symbol of the input stream. We propose
a hierarchical blocking scheme that reorders the state IDs and reduces both the number
of cache and TLB misses simultaneously.

Hierarchical 2-Level Blocking. The aim of hierarchical blocking is to partition the
nodes into groups that fit entirely in a memory page (typical size of 4KB). Furthermore,
we need to rearrange nodes within every page so that a node and its neighbors are stored
close to each other—thereby fully exploiting a cache-line. We refer to this as our hier-
archical blocking scheme. Assuming a 32-bit representation for each state, we can fit
16 states in a cache-line and 1K nodes in a 4KB memory page. We perform a global re-
ordering of the nodes, and apply the same permutation to the states for all the symbols.

We start with the root node (Start state), and perform a depth-first traversal of
the graph and assign depth values to all the nodes. Furthermore, we maintain a list of
nodes that have not been assigned to any cluster—initialized to all the states in the NFA.
We begin clustering by including the Start state and all its neighbors (irrespective of
the symbol). We make progress by picking one of the unassigned nodes at the lowest
depth and including it and its unassigned neighbors in the cluster. We continue the
process until the threshold for the number of nodes in a page is reached. We then start
clustering for the next page by either continuing with the neighbors of the node just
being considered or starting with a new unassigned node. The process is terminated
when all the NFA states have been assigned to any of the clusters.

We now describe our scheme for performing cache-line blocking within each cluster.
We maintain a list of nodes that have not been assigned an index within the cluster. We
start with the node at the lowest depth, and consider its neighboring states in the cluster.
In the case where the number of unassigned neighbors is greater than 16 (the maximum
number of neighbors within a cache-line), we assign the neighbors contiguously. We
continue with the remaining neighbors, and assign them in a similar fashion. If the
number of unassigned neighbors is less than 16, we fill up the cache-line partially and
then continue with the process by selecting the unassigned node at the lowest depth.
The process is carried out until all the nodes have been assigned an index (Figure 3(c)).

For any distribution of the symbols in the input stream, our hierarchical blocking
scheme aims to reduce the average number of cache- and TLB-misses. In practice, the
NFA traversal spends most of its time in the first few levels of the NFA, which are
clustered together by our algorithm. Hence we have very few cache- and TLB-misses
as shown in Section 6. Using our blocking scheme, we obtain a large performance
improvement (of around 2.7×) for large NFA. Note that we reorder the nodes for each
of the MM, SM and SS types of NFA as a pre-process step.

5.3 Traversal Algorithm

We first explain our technique to maintain unique lists in O(1) time for our NFA layout,
followed by the complete traversal algorithm for different NFA types. We maintain a
time stamp (referred to as τ, and initialized to zero) for the simulation that gets updated
for each step of the NFA traversal. Furthermore, we maintain an array (referred to as
TimeStamp), that stores one time stamp value per state—representing the time stamp
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for the most recent access. This requires an additional two accesses per state (to check
and potentially update its time stamp), but helps maintain unique states without the
significant overhead due to sorting or linear searches. For each input symbol, τ gets in-
cremented by one for the symbol-transitions and again incremented for the ε transitions.
Depending on the granularity of the time stamp, we need to reset the TimeStamp array
for all the states once the timer τ truncates to zero. Assuming a 32-bit timer, this reset
process needs to be performed after traversing through 2 MB of input packets, rendering
the amortized cost to be negligible.

We first describe the traversal algorithm for the Single-neighbor (S) case. Let α be
the input symbol, and τ represent the current time step. Before starting the execution,
TimeStamp[Dummy] ← τ. Consider the Step 1 of the traversal (Section 5.1). The
traversal consists of:

(a) Loading the next active state (Si) in AS, followed by
(b) Looking up its α neighbor (say Sα

i),
(c) Looking up the corresponding time stamp value (τ′) of the neighbor
(TimeStamp[Sα

i]).
(d) Comparing τ′ and τ, and
(e) In case τ′ �= τ, TimeStamp[Sα

i] ← τ and append Sα
i to NS (since τ′ = τ implies

that Sα
i ∈ NS).

The same process is carried out for Step 2 (for S case).
In the case of Multiple-neighbors (M), we replace the above steps by the following

computations. We first (i) compute the address of the memory location containing the
counter of the number of neighbors, and (ii) lookup the counter value. The rest of the
process involves iterating over all the neighbors, and performing steps (a)–(e).

The M case clearly involves the added overhead of address computation and access-
ing the counter value prior to starting the efficient process of neighbor lookup and ap-
pending entries the list of unique active states. Further, it carries the additional overhead
of loop computation and checking for termination. For a small number of neighbors this
overhead contributes substantially to execution time, but gets amortized for large num-
bers of neighbors.

Improving ILP (Instruction-Level Parallelism). During the NFA traversal, a node
may access cache-lines that are not resident in the cache. This scenario arises as we
traverse deeper into the NFA graph. Such accesses may incur long latencies and stall the
execution pipeline. In order to reduce the impact of such latencies on the execution time,
we issue software prefetches in advance, before actually accessing such cache-lines.
This reduces (and in most cases eliminates) the memory latency stalls. We modify our
traversal algorithm as follows. During the execution of Step 1, we look at the subsequent
input symbol (say β). As we identify and add states to the NS, we also issue software
prefetches for all the memory locations storing the neighbors of these states (for symbol
β and ε neighbors). This process is carried out during the execution of Step 2. Note that
we can issue prefetches for all memory accesses, except for the ones that arise from the
ε-transitions of the ε-neighbors of states in NS.

In addition to software prefetches, we also perform loop unrolling while iterating
over the active states. Since steps (a), (b), and (c) above are completely independent for
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the various active states, these instructions increase the amount of parallel instructions
available for the processor scheduler to improve the IPC (Instructions Per Cycle), and
hence reduce the effective amount of execution cycles.

Exploiting Thread- and Data-Level Parallelism. We exploit the available multiple
cores on current CPUs by dividing the input packets among the cores. This requires
keeping a separate copy of the TimeStamp, AS and NS arrays. Since the cores perform
independent traversals, we obtain near-linear scaling with number of cores.

In order to further reduce the executed instructions, we take advantage of the SIMD
execution units available on modern computing units. We exploit SIMD by operating
on multiple active states simultaneously. Modern CPUs have a SIMD width of 128-bits,
and hence we operate on four active states simultaneously. Although there exist schemes
that exploit SIMD by performing traversal on multiple input streams simultaneously,
they do not achieve any speedup on CPUs [8].

For the Single-neighbor S case, performing step (a) in SIMD involves doing an
aligned vector load from the memory into a vector register, while step (b) involves
gathering the α neighbors for four different states (hence four memory addresses) into
a register. Similarly step (c) is another gather operation from the TimeStamp array,
while step(d) is a vector compare (equality between two registers). Finally step (e)
needs to be performed only for the SIMD lanes that correspond to states which failed
the equality test. Two operations are performed for the same—a masked scatter oper-
ation to update the TimeStamp array, and a packed vector store [22] to the NS array.
Similarly for the M case, steps (i) and (ii) translate to vector gather instructions that
gather the addresses of the memory locations storing the counter value, followed by an-
other gather to obtain the count values themselves. The remaining operations can utilize
SIMD in a similar fashion to S.

The speedup due to SIMD is governed by the following 3 factors: (i) efficient hard-
ware support for load, compare, gather, scatter and packed-store vector instructions, (ii)
the number of active states that are available for SIMDfication, and (iii) the results of
comparison in step (d) that compute the number of elements that need to be scattered
and pack-stored.

The current generation of CPUs do not have efficient support for gather, scatter and
packed-store instructions. We therefore emulated them using scalar instructions. Hard-
ware support for these instructions would have a greater impact on reduction in run-
time. We provide performance numbers for SIMD speedup in Figure 4(a) in Section 6.1.
Finally, we note that a kernel implementation reduces the overhead of context switches
and user-space copies and serves to further improve performance. As such, we have
implemented GPP-grep in the Linux 2.6 kernel.

5.4 Analytical Model

To predict performance we create an analytical model by computing the total number
of ops2 executed during the traversal (for an active state and the input symbol). The
corresponding number of cycles depends on memory access patterns. Our layout is also

2 1 op implies 1 operation or 1 executed instruction.
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optimized for efficient memory access and achieves close to maximal IPC (detailed
results in Section 6.2). Thus with appropriate NFA layout optimizations, our analytical
model may also project the number of executed cycles.

First consider the Single-neighbor (S) case. For each active state the total cost of
the Steps one and two, as outline in Section 5.1, is the sum of the sub-steps (a)–(e)
and is termed coststep1/2. However, step (e) is only executed with certain probability,
dependent on the input stream and NFA characteristics. Let ρ denote the corresponding
probability. Furthermore, we also issue software prefetch instructions to improve the
IPC. This adds to the instruction overhead too. Let the cost of prefetches be denoted
by costpref. Let the number of symbol neighbors be Nsymbol and the ε-closure consist
of Nε elements. Therefore coststep1/2 = costpref + cost(a) + cost(b) + cost(c) + cost(d) +
ρcost(e), and hence costS = (Nsymbol + Nε) coststep1/2. For the Multiple-neighbor (M)
case, we also need to include the overhead of steps (i) and (ii) (Section 5.3). Hence
costM = (Nsymbol + Nε) coststep1/2 + coststep(i) + coststep(ii).

For any given architecture, the costs for each of the above terms is known, and can
be plugged in to get an estimate of the number of executed ops. We provide data and
the projected results by our model in Figure 4(b) in Section 6. We believe the model
serves as a metric to compare the performances of different architectures for the NFA
traversal with different NFA representations.

6 Experimental Evaluation

We now evaluate the performance of GPP-grep on the Intel Xeon DP Westmere-EP
X5680 CPU. Our CPU platform has 2 sockets with a total of 12 cores running at
3.33 GHz. Our system has 12 GB RAM and runs SUSE Enterprise Edition Linux 11.
The peak CPU compute power per socket is 150 Gops (300 Gops on 2 sockets) and
achievable memory bandwidth of 44 GBps on 2 sockets.

We collected regular expressions from the Snort rule-sets as provided by the VRT [27].
We choose random subsets consisting of 200, 400, 600, 800, 1000, and 1200 regular
expressions from the backdoor, exploit, spyware, web-activex, and web-client rule-sets
as the basis for the NFA and our analysis. We employ a packet trace from the 1999
DARPA Intrusion Detection Evaluation Data Sets distributed by the MIT Lincoln Lab-
oratory [9], and simulate a million packets as input data.

We first describe the impact of various algorithmic and architectural optimizations
that we performed in GPP-grep. We then discuss the key static and runtime character-
istics of NFA traversal and show that they correlate well to the performance model.
Finally, we compare the performance of our regular expression matching against other
state-of-the-art systems.

6.1 Impact of Optimizations

Figure 4(a) shows the speedup obtained over the baseline PCRE (v8) performance due
to the various optimizations with the baseline PCRE performance normalized to 1. We
parallelized PCRE for a fair comparison. The speedups obtained from each optimiza-
tion are multiplicative on top of previous optimizations. The lowermost bar gives the
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(a) Speedup over PCRE with various opti-
mizations.

(b) Comparison of real instructions executed
per input symbol to performance model pre-
dictions across MM, SM, and SS NFA.

Fig. 4. Speedup and fit to Analytical Model

impact of our efficient NFA construction that helps reduce the number of active states
and efficient layout that enables a constant time neighbor lookup/addition to the ac-
tive state list as described in Section 5.2. This provides a large benefit of 9–17× over
PCRE. The effect of this optimization is primarily to reduce the number of instructions
executed. In the absence of architectural optimizations, some of the impact of such in-
struction reduction weakens for large NFA due to increasing cache and TLB misses and
consequently lower IPC. Thus we see a smaller benefit for large regular expression sets.
This motivates the need for our architectural optimizations.

The next bar is the impact of picking NFA with multiple transitions per symbol and
multiple epsilon transitions (MM) versus a single transition per symbol and epsilon
transition (SS). This impact is consistently 1.5–1.8× on top of the previous optimiza-
tions. As before, the impact is primarily instruction reduction due to efficient address
computation possible in the SS code (Section 5.3).

The next benefits come from an improvement in IPC. The impact of hierarchical NFA
blocking increases with NFA size (larger number of regular expressions) up to a max-
imum of an additional multiplicative impact of 2.7×. As described in Section 5.2, this
is due to a decrease in the number of cache and TLB misses. The next IPC optimization
is the impact of ILP optimizations such as unrolling and software prefetching described
in Section 5.3. This has an impact of 1.1–1.4×, and has more impact for larger NFA
(similar to hierarchical blocking). This also includes the effect of SMT (Simultaneous
Multi-Threading), which helps hide memory latency when software prefetching tech-
niques do not succeed. This occurs, for instance, when fetching nodes that are in the
ε-closure of an active state but not in the neighbor list of the state—we do not prefetch
these nodes and rely on SMT.

Finally, we also obtain up to a 1.3× speedup due to the impact of using SIMD in-
structions. Since we use SIMD to process multiple active states at once, the impact of
SIMD increases when we have a relatively large number of active states. This happens
for larger NFA that correspond to more regular expressions. Hence our SIMD speedup
increases with increasing numbers of regular expressions.
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Table 1. Runtime characteristics of NFA traversal

NFA # REs # # Avg. Active Max Active Avg.
Type states transitions States States Depth

MM 200 15,883 1,922,997 4.2 24 3.5
400 43,535 6,729,191 5.4 42 6.1
600 62,188 9,462,802 7.0 46 8.9
800 83,965 13,118,674 13.1 81 11.0

1000 106,815 16,915,665 19.2 82 12.9
1200 137,927 22,833,917 23.6 94 14.3

SM 200 16,291 1,923,405 4.3 24 3.7
400 44,336 6,729,992 5.4 42 7.1
600 63,377 9,463,991 6.9 46 10.2
800 85,503 13,120,212 13.0 81 13.5

1000 108,762 16,917,612 18.9 83 15.0
1200 140,322 22,836,312 23.7 96 18.1

SS 200 16,252 1,957,905 4.3 24 3.7
400 44,288 6,804,066 5.2 43 8.1
600 63,313 9,580,679 6.8 47 15.1
800 85,424 1,327,3108 13.1 82 17.6

1000 108,731 17,124,534 19.0 84 20.5
1200 140,491 23,088,684 23.6 98 23.2

6.2 Performance Analysis

Table 1 shows the salient static and runtime characteristics of the MM, SM, and SS
NFA. Col. 5 shows average number of active states during traversal. The average num-
ber of active states is a good indicator of the number of instructions required to perform
the traversal. Col. 7 shows the average depth of NFA states traversed, which gives us
an indication of the true working set of traversal. This has implications on the number
of cache misses during traversal. Table 1 also illustrates that the number of active states
increases with the number of regular expressions. Since the number of active states di-
rectly impacts the number of instructions (and hence final performance), we expect to
see a drop in performance for larger sets of regular expressions. Further, all three NFA
types—MM, SM, and SS—have similar numbers of active states. However, the number
of instructions executed for SS is the least because we can use the fact that there is only
one neighbor per symbol and only one ε transition to simplify the address calculations
during traversal.
Comparison with Performance Model. To compute the number of ops for various
operations listed in Section 5.4, we analyzed the static assembly file and hand-counted
the number of instructions. These numbers were then plugged in together with the av-
erage number of symbol neighbors and nodes in the ε-closure to compute the projected
number of instructions. Our projected number matches closely to actual results, only
slightly less (5–10%) than the real performance, and is illustrated in Figure 4(b). This is
due to the register spills and fills that are not accounted for by our model. Furthermore,
our optimized layout results in a per-core IPC of around 1.8 on 12 cores, and hence the
resultant run-times are also within 8–12% of the projected run-times (obtained using
the maximum per-core IPC of 2).
Working Set Analysis. We measured the working set (data size for which the number
of cache hits is ≥ 90%), for our MM, SM, and SS NFA types with our input regular ex-
pression sets. The working set increases with increasing number of regular expressions
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Fig. 5. Working Set and Throughput Evaluation

and is highest for the SS type. Even for the SS type NFA for 1200 regular expressions
(our largest input), the working set entirely fits in the L3 cache (12 MB per socket).
However, the working set usually does not fit in the L2 caches of the individual cores.
Finally, we do see an improvement in IPC using the software prefetches described in
Section 5.3. The results of those improvements are illustrated in Figure 5(a).

6.3 Comparison with State of the Art Systems

Figure 5(b) demonstrates the throughput of GPP-grep using the best performing SS
NFA. Also, Figure 5(b) shows the speedup of GPP-grep over PCRE and Bro (v.1.5.1)
systems. After our optimizations, we obtain a final throughput between 2 and 9.3 Gbps,
with a performance of 2 Gbps for 1200 regular expressions. The absolute performance
of GPP-grep drops with increases in the number of regular expressions. This results
from increases in the number of active states as the number of regular expressions grows
and is shown in Table 1.

We parallelized both PCRE and Bro. PCRE uses NFA with small working sets; these
scale perfectly with the number of cores. GPP-grep is 24–57× faster than parallel PCRE,
depending on the number of regular expressions. The speedup improves with larger sets
of regular expressions. This is because PCRE provide best performance when handling
regular expressions one at a time; hence the runtime is proportional to the number of
regular expressions. However, the number of active states in GPP-grep only increases
by about 1.5× from 200 to 600 regular expressions though there is a sudden increase in
the number of active states from 600 onwards resulting in a stabilization of the speedup
over PCRE. GPP-grep is also 5–24× faster than Bro. Since the Bro system demonstrated
poor results when run one regular expression at a time, we grouped all the regular ex-
pressions together. The Bro system adopts a DFA based approach for matching. For
greater than 600 regular expressions, the DFA sizes generated by Bro were greater than
our system memory of 12 GB. Hence we do not report the resultant performance num-
bers. Our experiments indicate that the Bro system rapidly becomes bandwidth bound
for 400 regular expressions and beyond, since the working set of the DFA does not fit
in the L3 cache. Bandwidth bound applications are unable to take advantage of the full
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computational capabilities of multi-core platforms; we only obtained a parallel scala-
bility of about 3.6× on 12 cores for the 600 regular expression DFA. On the other hand,
the working set of the NFA produced by GPP-grep fits in the L3 cache, even for large
numbers of regular expressions—hence we are compute-bound and scale near-linearly
with the 12 cores of a Xeon X5680. The difference in parallel runtime scaling results
in an increase in speedup over Bro as the number of regular expressions increases.

We compare our performance with the FPGA based solution proposed by Mitra et
al. [19]. We first note that our single-threaded PCRE performance for 200 regular ex-
pressions is similar to their PCRE performance (also for 200 Snort regular expressions)
on a single 3.0 GHz Xeon; this indicates that the regular expressions used have similar
complexity in terms of active states, making our performance comparisons fair. They
report a speedup of 335× over single-threaded PCRE for 200 regular expressions when
using FPGAs, while we are about 258× faster than single threaded PCRE on a single
CPU (24× faster than PCRE running on 12 cores). Thus our CPU performance is about
1.3× off their FPGA performance using commodity processors. Further, our CPU im-
plementation can scale to a much larger number of regular expressions, while FPGA are
more resource limited in terms of on-board memory and do not scale as well to larger
sets of regular expressions.

7 Discussion

Our fast regular expression matching algorithm is useful in contexts other than NIDS.
In particular, XML queries expressed in XPath [29] often have to be matched against
incoming documents in publish/subscribe systems [10] where efficient regular expres-
sion matching would prove a boon. Containment queries on trees and graphs wherein
the task is to match a tree (or graph) against another tree (or graph), as illustrated by
GraphDB [14], pose another potential arena for GPP-grep. Improving NFA traversal
can be applied to the general graph traversals used in many contexts including graph
searches and graph matching similar to the A* graph search which, in several forms,
found use in graph database shortest path searches [14], as well as matches of sub-
graphs in protein databases, image databases, and software repositories [11].

The performance of our SIMD algorithm for graph traversal would further improve
with hardware support for gathers/scatters and packed-store operations. The upcoming
Intel MIC (Many Integrated Core) architecture will add such support and should im-
prove SIMD utilization [22]. Coupling this with a kernel implementation is conducive
to System-on-Chip (SoC) implementations where packet I/O is combined with match-
ing on a single chip and which makes this approach applicable to current and future
trends in regular expression processing. Finally, we note that our algorithm will bene-
fit from any technique that helps further minimize the number of active states during
traversal such as: XFA [25] and HFA [2]. Our techniques are complementary and should
result in cumulative improvement.

8 Conclusion

We present GPP-grep, a fast regular expression processing engine on commodity gen-
eral purpose processors. GPP-grep exploits thread-level and data-level parallelism, and
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employs an architecture-friendly layout and graph traversal scheme to improve effi-
ciency. On a dual-socket commodity CPU system, GPP-grep attains a maximum through-
put of 9.3 Gbps, and is up to 57× faster than traditional PCRE engines. In the future we
hope to expand this engine to present a single tool for handling NIDS DPI processing of
all criteria for any rule, fixed string or regular expression, in one pass. Ultimately, GPP-
grep offers an economical solution, both financially and in terms of system resources,
for high-speed regular expression matching.
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Abstract. In recent years we have witnessed several complex and high-
impact attacks specifically targeting “binary” protocols (RPC, Samba
and, more recently, RDP). These attacks could not be detected by current
– signature-based – detection solutions, while – at least in theory – they
could be detected by state-of-the-art anomaly-based systems. This raises
once again the still unanswered question of how effective anomaly-based
systems are in practice. To contribute to answering this question, in this
paper we investigate the effectiveness of a widely studied category of
network intrusion detection systems: anomaly-based algorithms using n-
gram analysis for payload inspection. Specifically, we present a thorough
analysis and evaluation of several detection algorithms using variants
of n-gram analysis on real-life environments. Our tests show that the
analyzed systems, in presence of data with high variability, cannot deliver
high detection and low false positive rates at the same time.

1 Introduction

While most of the current commercial network intrusion detection systems (NIDS)
are signature-based, i.e., they recognize an attack when it matches a previously
defined signature, there is a large body of literature on anomaly-based detec-
tion. An anomaly-based NIDS raises an alert when the observed input does not
match the behavior that was previously observed; the underlying assumption
being that attack payloads “look different” than normal network traffic. In prin-
ciple, anomaly-based NIDS have one great advantage over signature-based ones:
they can detect threats for which there exists no signature yet, including zero-day
and targeted attacks. Targeted attacks are so complex and evasive that by defi-
nition cannot be detected by signature-based systems (false negative problem).
One famous example of targeted attack is Stuxnet [14], a malware designed to hit
specific embedded systems used in Iranian installations for uranium enrichment,
discovered in the late 2010. The subsequent analysis revealed that the malware
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exploits two previously unknown vulnerabilities in network services. Thus, while
the final target was a component typical of industrial control systems, (some
of) the vulnerabilities aimed at infecting local computers. Hence, those vulner-
abilities could have been used to attack “regular” business and home systems.
Other attacks specifically designed to target Industrial Control Systems (ICS -
which includes of nuclear power plants, oil and gas extraction and distribution
facilities) have been disclosed recently [3].

Given that signature-based systems are ineffective against targeted and zero-
day attacks and that most likely there exists no signature yet for the great
majority of the attacks that one can buy on the black market, an effective
anomaly-based NIDS would be the silver bullet thousands of enterprises and
governments are looking for.

Problem & Contribution. Although the field of anomaly detection is well estab-
lished in research, to date there are only few actual deployments of anomaly-
based NIDS worldwide. A common reason used for explaining this is that such
systems show poor performance with respect to false positive rate in real-life en-
vironments. More generally, Sommer and Paxson [29] argue that many machine
learning approaches (which are typically used in anomaly-based IDS) are not
effective enough for real-life deployments.

With this paper we want to shed a new light on the detection capabilities of
anomaly-based NIDS for payload inspection. We do so by focusing on systems
employing a form of n-gram-analysis as anomaly detection engine. To perform
the analysis, we apply selected algorithms to environments that widely utilize
binary protocols. Specifically,

– We perform thorough benchmarks using real-life data from binary-based
protocols, which have been lately targeted by high-impact cyber attacks,

– We include in the analysis a protocol that is specific for Industrial Control
Systems (also known as “SCADA”),

– We analyze and discuss the reasons why certain attack instances are (not)
detected by the chosen approaches,

– We discuss the feasibility of deploying such approaches in real-life environ-
ments, in particular w.r.t. the false positive rate, an issue that is seldom
discussed by authors in their work.

Our experiments show that n-gram analysis cannot be indiscriminately applied
to the whole network stream data, and that data with high variability are difficult
to model and analyze, confirming the conclusion of some earlier work on the
matter (see Section 6 for a more detailed discussion).

2 Preliminaries

In this section we introduce the concepts and the terminology that will be used
in the remaining of the paper.
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2.1 Anomaly-Based Network Intrusion Detection Systems

A detection system can use different sources to extract data features, namely
network traffic or system/application activities. In this embodiment we focus
on network-based approaches. These approaches monitor the network traffic in
a transparent way, without affecting the host performance and are thus often
preferred over host-based approaches. There are two types of anomaly-based
NIDS: (1) systems that analyse network flows and (2) systems that analyse the
actual payload. A flow-based approach takes into consideration features such
as the number of sent/received bytes, the duration of the connection and the
layer-4 protocol used. A payload-based approach considers features of individual
packet or communication payloads. Despite being complementary, the payload-
based approaches offer higher chances of detecting a broader set of threats and,
unlikely flow-based, these approaches can capture “semantic attacks”. Semantic
attacks exploit “a specific feature or implementation bug of some protocol or
application installed at the victim” [25]. In addition, most of the top security
risks (such as in the “OWASP Top 10” [33]) require the injection of some data
to exploit the vulnerability. Thus, we focus on payload-based approaches.

2.2 Binary Protocols

In contrast to text-based network protocols (such as HTTP, POP and SMTP),
binary protocols are designed to be processed by a computer rather than a
human. Such protocols are largely used in network services, such as distributed
file systems, databases, etc. In practical terms, the network payload of a binary
protocol is more compact if compared to text protocols, often unreadable by
a human and may resemble to attack payloads (since malware packets often
consists of binary fragments too). Due to these reasons the challenge of detecting
attacks in binary-based data is typically greater than in text-based data.

2.3 N-Gram Analysis

N-gram analysis is a common technique for capturing features of data content.
This technique is used in various areas, such as monitoring system calls [16], text
analysis [10], packet payload analysis [35]. In the context of network payload
analysis, the current approaches use the concept of n-grams in different ways. In
particular, we distinguish two aspects:

1. The way an n-gram builds feature space - The extracted n-grams can be
used for building different feature spaces [12]: (a) count embedding (count
the number of different n-grams to describe the payload), (b) frequency
embedding (use relative frequency of byte values of an n-gram to describe the
payload, e.g. [1,6,36]) and (c) binary embedding (use the presence/absence
of specific n-grams to describe the payload, e.g., [35]).

2. The accuracy of payload representation - N-grams can represent the payload
in the following ways: (a) as an exact payload description (n-grams represent
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continuous sequences of bytes, e.g. in [6,35,36]) and (b) as an approximated
payload description (n-grams represent a compression or a reduction of the
exact payload, e.g., [17,28]).

Also, various systems employ different architectures and combinations of ap-
proaches to analyze n-grams (e.g., Markov models in [1], Self-Organizing Maps
in [6], hashing in [17]).

For performing our benchmarks we choose algorithms that are conceptually
different in the way the n-gram analysis is performed. Unfortunately, our choice
is also limited to the availability of implementations and the level of details in
algorithm descriptions.

2.4 Description of Analysed Systems

In the remaining of the section we introduce four algorithms that we select
for testing: PAYL, POSEIDON, Anagram and McPAD. These algorithms are
1) general-purpose enough to be used with multiple application-level protocols,
2) proposed by often cited papers in the IDS community or 3) claiming to im-
prove over the previous ones. Each algorithm requires as an input only the in-
coming network traffic, and does not perform any correlation between different
packets.

PAYL. Wang and Stolfo in [36] present their 1-gram-based payload anomaly
detector (PAYL). The system detects anomalies by combining 1-gram analysis
algorithm with a classification method based on clustering of packet payload
data length. The system employs a set of models : a model stores incrementally
the resulting values of the 1-gram analysis for packet payloads of length l, thus
each payload length has a different model. Each model stores two data series:
mean byte frequency (i.e., relative byte frequencies span across several payloads
of length l) and byte frequency standard deviation for each byte value (i.e., how
relative byte frequencies change across payloads). During the detection phase,
the same values are computed for incoming packets and then compared to model
values: a significant difference from the model parameters produces an alert.

When PAYL fails to detect an attack. Fogla et al. [15] show that PAYL’s detec-
tion can be evaded by mimicry attacks. PAYL is vulnerable to mimicry attacks
since it models only 1-gram byte distributions. By carefully crafting an attack
payload, an attacker is able to deceive the algorithm with additional bytes, which
are useless to carry on the attack, but match the statistics of normal models.

POSEIDON. Bolzoni et al. present POSEIDON [6], a system built upon a
modified PAYL architecture. PAYL uses data length field for choosing the right
model. By contrast, POSEIDON employs a neural network to classify packets
(and thus choose the most similar model) during the preprocessing phase. The
authors use Self-Organizing Maps (SOMs) [19] to implement the unsupervised
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clustering. First, the full packet payload is analyzed by the SOM, which returns
the value of the most similar neuron. That neuron model is then used for the
calculation of byte frequency and standard deviation values, as in PAYL.

When POSEIDON fails to detect an attack. Differently from PAYL, POSEIDON
is more resilient to mimicry attacks due to the combination of SOM and PAYL.
The SOM analyzes the input by taking into consideration byte value at i-th
position within the whole payload. Thus, extra bytes inserted by the attacker
would be taken into consideration as well, resulting in a different classification
than normal traffic. However, the granularity of the classification done by the
SOM is coarse. Thus, if the attack portion of the sample payload is small enough,
then the sample could be assigned to one of the clusters containing models
of regular traffic, and may go unnoticed because of a similar byte frequency
distribution.

Anagram. Wang et al. [35] present Anagram. The basic idea behind Anagram
is that the usage of higher-order n-grams (i.e., n-grams where n > 1) helps to
perform a more precise analysis. However, the memory needed to store average
and standard deviation values for each n-gram grows exponentially (256n, where
n is the n-gram order). For instance, 640GB of memory would be needed to store
5-grams statistics. To solve this issue, the authors propose to use a binary-based
n-gram analysis and store the occurred n-grams efficiently in a Bloom filters [5].
The binary-based approach implies a simple recording of the presence of distinct
n-grams during training. Since less information is stored in the memory, it be-
comes possible to effectively use higher-order n-grams for the analysis. Authors
show that this approach is more precise than the frequency-based analysis (e.g.,
used in PAYL) in the context of network data analysis. This is because higher-
order n-grams are more sparse than low-order n-grams, and gathering accurate
byte-frequency statistics becomes more difficult as the n-gram order increases.

When in detection mode, the current input is ranked using the number of
previously unseen n-grams.

When Anagram fails to detect an attack. There are two main reasons why Ana-
gram may fail to detect attack attempt. Firstly, the Bloom filter could saturate
during training. This is because the user may underestimate the number of
unique n-grams and allocates a small Bloom filter, during testing any n-gram
would be considered as normal. Secondly, Anagram will likely miss the detection
if the attack leverages a sequence of n-grams that have been observed during
testing.

McPAD. Perdisci et al. present “Multiple-classifier Payload-based Anomaly
Detector” (McPAD) [28] with a specific goal of an accurate detection of shell-
code attacks. The authors use a modified version of the 2-gram analysis, com-
bined with a group of one-class Support Vector Machine (SVM) classifiers [34].
The 2-gram analysis is performed by calculating the frequency of bytes that are
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ν positions apart from each other. By contrast, a typical 2-gram analysis mea-
sures the frequency of 2 consecutive bytes. By varying the parameter ν, McPAD
constructs several representation of the payload in different feature spaces. For
example, for ν=0..m, McPAD builds m different representations of the packet
payload. When in testing mode, a packet is flagged as anomalous if a combination
(e.g., majority) of SVM outputs acknowledge the payload as anomalous.

When McPAD fails to detect an attack. By design, McPAD tries to give a wide
representation of the payload (i.e. add more context by constructing byte pairs
that are several positions apart). This may represent a difficulty in two cases.
First, this is an approximate representation and that may imply a poorly de-
scribed payload in case of slight differences between the training sample and an
attack [1]. This may lead to a high false positive rate and a low detection rate.
Secondly, McPAD uses different classifiers that have to come into an “agree-
ment” to decide if a particular packet is anomalous or not. A problem may arise
when, due to an approximate payload representation, several classifiers are mis-
led by the byte pair representation and result in outvoting “correct” classifiers.
In such case, the system might miss the detection.

3 Approach

We believe that one of the main reasons for poor performance of anomaly-based
NIDS lies in the intrinsic limitation of commonly applied algorithm for con-
tent analysis: n-gram analysis. Since performing a comprehensive test to verify
the ability of an IDS of identifying (all) attacks and to spot its weaknesses is
unfeasible [22], we proceed to experimentally address our claim. We present a
comparative analysis and evaluate the effectiveness of anomaly-based algorithms
that analyse network payloads by using some form of n-gram analysis.

To verify the effectiveness of different algorithms we execute a number of
steps: 1) collect network and attack data, 2) obtain a working implementation
of each algorithm, 3) run the algorithms and analyse the results.

Obtaining the data. We acknowledge that optimal conditions for evaluating the
performance of an IDS consist of running tests on unprocessed data from real
networks [2]. Thus we first collect real-life data from different network environ-
ments, which are currently being operated. The past research is typically focused
on benchmarking the algorithms with the HTTP protocol, although the authors
do not explicitly restrict the scope of their algorithms to this protocol. We fo-
cus on the analysis of binary protocols. In particular, we analyse an example of
a binary protocol found in a typical LAN (such as a Windows-based network
service) and an example of a binary protocol typically found in an ICS.

Windows is the most used OS in the world, and every instance runs by de-
fault certain network services that are often used within LANs. For instance,
the SMB/CIFS protocols [20] are used to exchange files between two comput-
ers, while other services (e.g. RPC) run on the top of it to provide additional
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functionalities. Although Windows systems are usually secured against abuses
of such service from the Internet, corporate users take advantage of this feature
quite often. An attacker that would develop an exploit for a zero-day vulnerabil-
ity leveraging this protocol could potentially affect a large number of systems. In
the last decade several malware [8,14] exploited SMB/CIFS to operate botnets
and carry on other malicious activities.

As described in the introduction, ICS have lately become a valuable target
for cyber attackers. Considering the sensitive character of such environments,
the detection of cyber attacks plays a crucial role, sometimes even in homeland
security. Lately, we have witnessed an increasing number of vulnerabilities dis-
covered in software used in critical facilities, mainly due to the poor software
development cycles that several vendors adopted, and the “security by obscurity”
paradigm used to “protect” legacy devices.

We collect attacks in two different datasets. Our focus is on data injection
attacks that have a high impact (see [27]).

Obtaining the implementations. Secondly, to carry out the benchmarks, we need
working prototypes of all the algorithms we want to test. We could obtain an
implementation of POSEIDON and McPAD from the authors. For the other two
algorithms, we write our own implementation1 based on the description found
in the papers. To be sure that our implementation is correct, we need to verify
that our results resemble the ones shown in the benchmarks of the respective
original papers.

Analysing the results. The last step of our evaluation is the analysis of results
with a focus on the identification of reasons for (un)successful detection.

3.1 Evaluation Criteria

The effectiveness of an IDS is mainly determined by the detection and false pos-
itive rates. The detection rate indicates the number of attack instances correctly
identified by the IDS (true positives), w.r.t. the total number of attack instances.
The false positive rate indicates the amount of samples that the IDS flags as at-
tacks when they are actually not. False positives are a major limiting factor in
this domain because, differently from other classification problems, their cost is
high [4].

Detection rate. To provide a detailed overview of the detection capabilities of
each algorithm, we consider both the number of correctly detected packets in
the attack set and the number of detected attack instances. In fact, not all
attacks show malicious payload within one single packet. Although an algorithm
that exhibits a high per-packet detection rate has a higher chance of detecting
attack instance, we do not argue that a low per-packet detection rate implies
an equivalently low per-instance detection. In summary, we consider an alarm

1 We intend to disclose the implementations in near future.
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as a true positive if the algorithm is able to trigger at least one alert packet per
attack instance.

False positive rate. The usual approach to document the performance of an IDS
is to relate the false positive rate with the detection rate. This is done by drawing
so called Receiver Operating Characteristic (ROC) curves. The benchmarks from
the original papers of the proposed algorithms express the false positive rate as
a percentage. However, such number has little meaning to the final users. A
better way to express the false positive rate is in terms of the number of false
positives per time unit. We establish two different thresholds: 10 false positives
per day and 1 false positive per minute. The former value is proposed in [21] as
a reasonable number for a user to maintain trust in the system. The latter is, in
our opinion, the highest rate at which a human can verify alerts generated by
an IDS. It is worth noting that anomaly-based IDSes, unlikely signature-based
ones, do not provide information regarding the attack classification. Thus, the
user might require additional time to investigate whether the alert is a true or a
false positive. For each data set we compute these two thresholds based on the
number of actual packets included in the verification sub data set after having
split the original data set.

Since we do not make the data sets attack-free before hand, and thus some
“noise” could have been collected as well, we need a way to verify that the alerts
generated while processing the verification sub data set are actual false positives.
To do that, we use a signature-based IDS (the popular open-source Snort), which
is automatically fed with the network stream for which an alert was triggered
during verification.

Commonly, in IDS evaluation papers the authors stop their analysis by re-
porting on the true and false positive rates. We believe that inspecting which
attacks are detected, which are not detected and why, would provide useful infor-
mation to fully understand when an algorithm could perform better than others
(and for which threats). This kind of analysis can provide insights for future im-
provements. Finally we aim at evaluating the effectiveness of combining diverse
algorithms to boost the detection rate.

4 Description of Network Data

In this section we describe in detail the background data set and attack data sets
that will be used for benchmarking the detection algorithms. The chosen data
sets comprise network traffic taken from two environments. We use the publicly
available vulnerabilities and high impact exploits to run the tests.

4.1 Web Data Set

The following data sets are a collection of network traces of web traffic (in
particular, the HTTP protocol).
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DSDARPA. The DARPA 1999 data set [21] is a standard data set used as ref-
erence by a number of researchers. Despite being anachronistic (and criticized
in several works [23]), three of the algorithms we test have used this data set to
compare their performance to previous works. Thus, we use the DARPA data set
to verify that our own implementations of PAYL and Anagram offer comparable
detection and false alert rates with the tests reported in the research papers of
the detection algorithms.

ASHTTP . This attack set is presented by Ingham and Inoue in [18], and has
been used also by the authors of McPAD for their benchmarks. It comprises 66
diverse attacks, including 11 shellcodes, which were collected from public attack
archives. The attacks are instances of buffer overows, input validation errors
(other than buffer overflows), signed interpretation of unsigned values and URL
decoding errors.

4.2 LAN Data Set

DSSMB This data set includes network traces from a large University network.
Samples have been collected through a week of observations. The average data
rate of incoming and outgoing packets is ∼40Mbps.

In particular, we focus on the SMB/CIFS protocol, and even more on SMB/
CIFS messages which encapsulate RPC messages (see Section 5.2). The average
packet rate for this traffic is ∼22/sec. Based on this we calculate the false pos-
itive rate threshold for obtaining 10 alerts per day as 0.0005% and the one for
obtaining 1 alert per minute as 0.073%.

ASSMB . This attack data set is made of seven attack instances which exploit
four different vulnerabilities in the Microsoft SMB/CIFS protocol: ms04-011,
ms06-040, ms08-067 and ms10-061 [7].

ms04-011 is a vulnerability of certain Active Directory service functions in
LSASRV.DLL of the Local Security Authority Subsystem Service (LSASS) of
several Microsoft Windows versions. We select this vulnerability because it is
used by the worm Sasser [26]. We collect two different attack instances for
this vulnerability. One trace is downloaded from a public repository of network
traces [13] where the attack payload is split in three fragments and contains a
shellcode of 3320 bytes. The shellcode is made of a number of NOP instruc-
tions (byte value 0x90), followed by valid x86 instructions and a sequence of the
ASCII character ‘1’. The second instance is generated through the Metasploit
framework [24]. The attack payload is split into three fragments and contains a
shellcode of 8204 bytes to remotely launch a command shell in the victim host.

m06-040 is a vulnerability of the Microsoft Server RPC service. In particular,
the vulnerability allows a stack overflow during the canonicalization of a net-
work resource path. The specified path can be crafted to execute arbitrary code
after the exploitation. We collect the attack instance from a public repository of
network traces [13].
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ms08-067 is a vulnerability of the Microsoft Server RPC service which exploits
a similar weakness as the one described in m06-040, with the same effects. We
select this vulnerability because it is used by Conficker [8] and Stuxnet, two
high-impact pieces of malware. We collect two different attack instances for
this vulnerability. One instance was downloaded from a public repository [13],
while the other one was generated by us using the metasploit framework. In the
first instance the payload contains a shellcode of 684 bytes, while in the second
instance the shellcode is 305 bytes long only.

ms10-061 is a vulnerability of the PrintSpooler RPC service. When printer
sharing is enabled, the PrintSpooler service does not properly validate spooler
access permissions. Remote attackers can create files in a system directory, and
consequently execute arbitrary code, by sending a crafted print request over RPC.
We select this vulnerability because it was used by Stuxnet to successfully propa-
gate in both regular backoffice LANs as well as in industrial control system envi-
ronments. We collect two different attack instances for this vulnerability, both of
them are generated through the metasploit framework. In one instance the attack
payload is a binary file (the meterpreter executable), which accounts for 69832
bytes spanned over 18 fragments, while in the other instance the payload consists
of a DLL file, which accounts for 1735 bytes spanned over three fragments.

4.3 ICS Data Set

DSModbus To test the anomaly detection algorithms on ICS networks we collect
a data set of traces from the industrial control network of a real-world plant over
30 days of observation. The average throughput on this network is ∼800Kbps.

This data set includes network traces of one of the most common protocols
used in such environments, Modbus/TCP [32]. Modbus was developed more than
30 years ago initially as a protocol used in serial channels, while the TCP/IP
variant was introduced approximately 15 years ago to allow the serial protocol
to be used in TCP/IP networks. Modbus/TCP features basic instructions and
functions. Its structure is relatively simple, and operators of critical infrastruc-
tures usually repeat a limited set of operations, thus reducing the variability of
the transmitted data. In fact, the maximum size of a Modbus/TCP message is
256 bytes. Thus, a Modbus/TCP message is always contained in one single TCP
segment. Observations onDSModbus reveal that the average size of Modbus/TCP
messages is 12.02 bytes (in DSSMB it is 535.5 bytes). In the observed DSModbus,
the number of duplicated TCP segment payloads is high (96.08%), in contrast to
the other data set (e.g., DSSMB has 31.37%). In other words, more than 9 TCP
segments out of 10 carry a Modbus/TCP message that is a perfect duplicate
of some other message already observed. The average packet rate for Modbus
incoming traffic is ∼96/sec. Based on this observation, we calculate the false
positive rate threshold for generating 10 alerts per day as 0.00012% and the
threshold for generating 1 alert per minute as 0.017%.

ASModbus. The attack data set is made of 163 attack instances, which exploit
diverse vulnerabilities of the Modbus/TCP implementations. There are fewer
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publicly known attacks against Modbus/TCP devices than SMB/CIFS attacks.
Network traces for a good deal of these attacks can be downloaded from the web-
site of an ICS security firm [11]. The exploited vulnerabilities can be categorised
in two large families: unauthorised use and protocol errors.

Unauthorized use consist of two attack types: (a) “weird” clients talking to
the Modbus server and (b) messages used only for diagnostics and special main-
tenance, which are thus seldom seen in the network traffic. By issuing these
special messages, the attacker is often able to achieve a complete take over of
the device.

Protocol errors are mainly fuzzing attempts against a device. For instance,
these attacks are carried out by sending data not compliant with the protocol
specifications (e.g. a too short protocol data unit). The outcome of such attacks
can range from the unavailability of the device up to the control of the execution
flow (see Cui and Stolfo [9] for a more detailed discussion).

5 Benchmarks

In this section we show the results of our benchmarks and compare the perfor-
mances of the algorithms for each data set.

Setting up and tuning the algorithms. For each dataset we split the background
traffic into two sets, one for training and one for verification. The splitting is
performed randomly, by sampling the network streams. Each split sub data set
accounts for nearly 50% of the original data. The training sub data set is used
to build the detection profiles for each algorithm, while the verification one is
used to evaluate the number of false positives raised by the algorithm. Finally,
we run the algorithms on the attack data set.

For performing the benchmarks we need to set up several starting parameters
for each algorithm.

PAYL. As introduced in the original paper, the size of the PAYL model can
be reduced by merging profiles when their number becomes too large. For each
data set we perform several runs using different values of the merging parameter.
Finally, for the DSDARPA data set we set the parameter value to 0.12. For the
remaining data sets we do not merge profiles, as the total number of profiles
remains low (up to 150, compared to 480 in DSDARPA). As the “smoothing
factor”, we use the same value (0.001) suggested by Ingham and Inoue in [18].
We apply the algorithm to individual TCP segment payloads.

Anagram. For each data set we run tests with different n-gram sizes (n size
of 3, 5, 7, 9 and 12). Since we obtain the best results with the 3-grams, we set
this as the standard n-gram size. As in the original paper, we set the size of the
Bloom filter to 2MB. We do not use the “bad content model” proposed by the
authors because it would be ineffective as they build it with virus samples, and
our attack data sets do not include viruses.

POSEIDON. For all tests we use a SOM with fixed number of neurones
(96). Also, we set the number of instances for training the SOM at 10000.
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McPAD. For all tests we use the best performing parameters as proposed
in [28]. Those are: number of clusters k = 160, desired false positive rate for each
SVM classifier set to 1% and maximum probability as combination rule for the
output of the SVM classifiers.

For each algorithm we vary the value of the threshold to observe how the false
positive and detection rates change.

5.1 Implementation Verification

To verify the correctness of our implementations we run initial tests using
DSDARPA data set (since that was the only common data set used in 3 orig-
inal algorithm benchmarks). Instead of using DARPA attack dataset, we use
the ASHTTP for testing. There are two main reasons for this: (1) the original
attack instances of the DARPA data set do not reflect at all modern attacks,
and (2) not all the algorithms have been benchmarked against the attack set of
DARPA (Anagram is the exception). Thus, it would be impossible to faithfully
reproduce the previous experiments. In Table 1 we summarize the results of this
first round of benchmarks: for each algorithm we report the highest detection
rate we achieve, and the corresponding false positive rate.

Table 1. Test results on DSDARPA and testing with ASHTTP

FPR DR
(packet-based) (packet-based)

PAYL 0.00% 90.73%

POSEIDON 0.004% 92.00%

Anagram 0.00% 100.00%

McPAD 0.33% 87.80%

All the algorithms show high detection and low false positive rates. When
compared to the original papers, these results match our expectations, thus we
can be reasonably sure that our re-implementations are not (too) dissimilar from
the original ones in terms of completeness and accuracy.

5.2 Tests with LAN Data Set

We first perform the test onDSSMB by using all the SMB/CIFS packets directed
to the TCP ports 139 or 445. However, none of the algorithm can perform well
enough under these conditions. For example, the Bloom filter used by Anagram
saturates with 3-grams during the training phase. Consequently, no attack in-
stance is further detected, even with the lowest threshold. Increasing either the
size of n-grams or the size of the Bloom filter cannot solve the issue of undetected
attacks. In the former case, the Bloom filter saturates even with fewer training
packets. In the latter case, even with a filter size of 20MB (10 times bigger than
the size suggested by the authors) which does not cause full saturation, no attack
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is detected with false positives rates lower than 4%. Other algorithms exhibit
similar detection problems, with at least one attack instance detected only with
false positive rates higher than 1%.

This result alone would imply a complete failure for this protocol. We believe
the reason why the algorithms poorly perform on SMB/CIFS is because of the
high variability of the analyzed payload. In fact, SMB/CIFS is mainly used to
transfer files between Windows computers. Such files are contained in the request
messages processed by the algorithms and can be of any type, from simple text
files to compressed binary archives or even encrypted data.

We acknowledge that all attack instances publicly available exploit vulnerabil-
ities of the Windows RPC service by leveraging SMB/CIFS, which can encapsu-
late RPC messages. Thus, we re-run the test on a filtered data set. In particular,
we extract only SMB/CIFS messages that carry RPC data (∼1% of the origi-
nal SMB/CIFS traffic). By doing this, we are implicitly providing a semantical
hint to the algorithms. We expect this to improve both the detection and false
positive rates.

The results of this round of tests are summarized on Table 2. Anagram
achieves a 0.00% false positive rate while still being able to detect 3 attack
instances. Anagram also achieves the lowest false positive rate among the tested
algorithms when detecting all of the attack instances, a rate lower than the ad-
justed false positive of 1 alert per minute. McPAD generates the highest false
positive rate, and it is impossible to lower that no matter which combination of
parameters we choose. We believe that the main reason for this lies in the fact
that McPAD implements the approximate payload representation, that, in such
variable conditions, provides poor payload description.

There is no need to evaluate how a combined approach, i.e., using all the algo-
rithms simultaneously, would perform since Anagram is already outperforming
the other algorithms.

Finally, we process all false positives with SNORT to verify that none of them
is actually a true positive.

Analysis of detected and undetected attacks. By considering which attack in-
stance is detected the most, we observe that all the algorithms can detect an
attack instance exploiting the ms04-011 vulnerability. In particular, of the three
segments composing the attack payload, only one is always identified as anoma-
lous. Here we report a fragment of it:

0230 59 35 1c 59 ec 60 c8 cb cf ca 66 4b c3 c0 32 7b Y5.Y.‘....fK..2{

0240 77 aa 59 5a 71 76 67 66 66 de fc ed c9 eb f6 fa w.YZqvgff.......

0250 d8 fd fd eb fc ea ea 99 da eb fc f8 ed fc c9 eb ................

0260 f6 fa fc ea ea d8 99 dc e1 f0 ed cd f1 eb fc f8 ................

0270 fd 99 d5 f6 f8 fd d5 f0 fb eb f8 eb e0 d8 99 ee ................

0280 ea ab c6 aa ab 99 ce ca d8 ca f6 fa f2 fc ed d8 ................

0290 99 fb f0 f7 fd 99 f5 f0 ea ed fc f7 99 f8 fa fa ................

02a0 fc e9 ed 99 fa f5 f6 ea fc ea f6 fa f2 fc ed 99 ................

02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................

...

05a0 90 90 90 90 90 90 90 90 ........
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Table 2. Test results on DSSMB and testing with ASSMB

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.004% 1.43% 2/7
0.007% 3.35% 3/7
0.01% 6.65% 4/7
0.05% 23.92% 5/7
4.41% 66.51% 6/7
11.05% 85.02% 7/7

POSEIDON

0.007% 6.22% 2/7
0.007% 10.04% 3/7
1.27% 37.32% 4/7
2.28% 50.23% 6/7
3.32% 58.37% 6/7
5.39% 66.98% 7/7

Anagram

0.00% 0.95% 2/7
0.00% 22.48% 3/7
0.02% 37.32% 7/7
2.34% 55.50% 7/7
8.39% 63.64% 7/7

McPAD

19.02% 60.38% 7/7
20.62% 60.86% 7/7
22.31% 61.35% 7/7
27.61% 65.21% 7/7
97.39% 90.00% 7/7

We verify that this particular segment is flagged as anomalous by all the algo-
rithms because of the long sequence of the byte value 0x90, which corresponds to
the NOP instruction of the shellcode. Although there are individual bytes with
value 0x90 in the training set, we verify that there is never a sequence of three
bytes with this value. This explains why Anagram can identify as anomalous
a vast majority of the 3-grams in the aforementioned payload. Also PAYL and
POSEIDON will identify an anomalous byte frequency distribution, in which the
byte value 0x90 peaks above all the others. Similarly, the fact that the payload
consists of continuous 0x90 bytes implies that McPAD classifiers will be able to
recognize the peak in the frequency of these 2-grams.

We also observe that both PAYL and POSEIDON fail to detect one attack
instance exploiting the ms06-040 vulnerability, when the false positive rate is
below 2%. A fragment of the payload of such attack instance is reported below:

0170 52 df 47 2c 0c 86 de fe fe b9 f6 68 ae 23 4f a5 R.G,.......h.#O.

0180 81 53 79 43 fc fc 31 58 af ad 6e 30 29 f7 50 8a .SyC..1X..n0).P.

0190 4a e1 78 43 30 6a 55 75 58 72 6e 4f 42 48 4c 42 J.xC0jUuXrnOBHLB

01a0 36 34 33 4a 51 38 69 42 52 37 39 46 59 49 79 71 643JQ8iBR79FYIyq

01b0 7a 62 38 48 4e 47 68 48 7a 52 59 6e 38 76 55 78 zb8HNGhHzRYn8vUx

01c0 41 4d 57 61 57 66 68 30 48 4c 30 61 76 73 61 6b AMWaWfh0HL0avsak

01d0 7a 56 65 4d 32 42 76 64 64 43 64 41 45 75 75 53 zVeM2BvddCdAEuuS

01e0 4f 7a 41 4f 70 6b 30 37 4c 45 70 66 73 44 73 49 OzAOpk07LEpfsDsI

01f0 66 57 39 65 31 59 45 6e 43 38 52 62 76 57 65 50 fW9e1YEnC8RbvWeP

0200 59 63 54 77 7a 63 32 4f 50 4f 52 6b 71 4c 33 4b YcTwzc2OPORkqL3K

0210 65 7a 69 62 72 57 4e 6d 58 33 4b 56 70 50 6c 45 ezibrWNmX3KVpPlE
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This fragment contains a large majority of printable characters, thus one would
expect that, since RPC over SMB/CIFS messages are mostly binary, a detection
algorithm based on byte frequency distribution would be able to detect such pay-
load. However, RPC over SMB/CIFS is also used to feed remote print spoolers
with files to print. For example, in the filtered data set used for training we can
identify the following fragment which is part of a PDF file sent to the spooler:

0200 09 2f 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 ./@opStackLevel

0210 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 @opStackLevel 1

0220 61 64 64 20 64 65 66 0d 0a 09 09 63 6f 75 6e 74 add def....count

0230 64 69 63 74 73 74 61 63 6b 20 31 20 73 75 62 0d dictstack 1 sub.

0240 0a 09 09 40 64 69 63 74 53 74 61 63 6b 43 6f 75 ...@dictStackCou

0250 6e 74 42 79 4c 65 76 65 6c 20 65 78 63 68 20 40 ntByLevel exch @

0260 64 69 63 74 53 74 61 63 6b 4c 65 76 65 6c 20 65 dictStackLevel e

0270 78 63 68 20 70 75 74 0d 0a 09 09 2f 40 64 69 63 xch put..../@dic

0280 74 53 74 61 63 6b 4c 65 76 65 6c 20 40 64 69 63 tStackLevel @dic

0290 74 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 61 64 tStackLevel 1 ad

Similar to the previous fragment, this fragment also contains a vast majority
of printable characters. Due to the high variability of data, the threshold for
detecting such fragment had to be set in such a way that many normal samples
were classified as anomalous.

5.3 Tests with ICS Data Set

The results of this round of tests are summarized on Table 3. Anagram shows
outstanding results in this test, and this does not come unexpected. The messages
in this data set are rather short and the number of duplicates is also high (more
than 95%). This is a perfect combination for Anagram and its binary-based
approach. Anagram detects most of attack instances with a false positive rate
that is lower than the adjusted false positive rate of 10 alerts per day. When
detecting all of the attack instances, the false positive rate is still one order of
magnitude lower than the adjusted false positive rate of 1 alert per minute.

McPAD also performs well with respect to the false positive. This is expected
because the analysed Modbus traffic is expressed in messages of fixed length
structure and with a limited range of values in used bytes. This results in McPAD
accurately modeling relationships in the message structure.

PAYL seems to have a better packet-rate detection rate than POSEIDON.
However, POSEIDON always performs better with respect to the instance-based
detection rate as well as lower false positive. When the two algorithms are tuned
to detect all of the attack instances, they both generate an overwhelming number
of false positives, triggering on almost every packet.

With respect to the false positives generated during the verification phase, no
raised alert turned out to be a true positive when processed with Snort. This
is largely expected due to 1) the small number of available signatures for the
Modbus protocol, and 2) the fact that the industrial control network from which
we collected traffic from is highly isolated from other networks, with only a fixed
number of hosts communicating. Thus, the chance of “noise” is substantially
low.

Similarly to the previous test, there is no reason to test how a combination
of algorithms would perform, because Anagram outperforms all the other algo-
rithms in terms of detection and false positive rates.
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Table 3. Test results on DSModbus and testing with ASModbus

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.00% 62.57% 101/163
0.00% 92.63% 150/163
9.25% 95.70% 155/163
95.00% 100.00% 163/163

POSEIDON

0.04% 3.07% 4/163
0.07% 77.30% 125/163
0.37% 95.09% 154/163
7.65% 97.54% 158/163
97.81% 100.00% 163/163

Anagram

0.00% 3.68% 5/163
0.00005% 10.42% 16/163
0.00007% 18.40% 29/163
0.00007% 96.93% 157/163
0.002% 100.00% 163/163

McPAD

0.041 6.31% 10/163
0.044 96.93% 157/163
0.045 96.93% 157/163
0.046 96.93% 157/163

Analysis of detected and undetected attacks. To understand why Anagram works
so well with Modbus traffic consider the following two Modbus messages. The
first one is a valid read request (identified by the 8th byte with value 0x03 which
corresponds to the request “function code”):

35 ae 00 00 00 06 00 03 0c 7f 00 64

The following fragment is an attack instance attempting to corrupt the PLC
memory by invoking a vulnerable diagnostic function (byte value 0x08) with
invalid data (bytes 0x00 0x04 0x00 0x00 ):

00 00 00 00 00 06 0a 08 00 04 00 00

We first observe that the anomalous value in this payload are the byte value of the
function code, and the subsequent four bytes (never observed in the training set
on that same positions). There are 6 3-grams over 10 (60%) which are not present
in the valid request. The number of distinct 3-grams observed during training is
not much bigger than the one observable in the aforementioned request, due to
the large number of duplicated payloads. Thus, with such a small packet size,
even a few bytes with unusual value can make a big difference.

On the other hand, from the results in Table 3 we see that for all the algorithms
there is always a significant increase in the amount of false positives raised when
the threshold is adjusted to detect all attack instances. We observe that the
attack instances that do not get detected before the threshold is adjusted are
similar to the one in the following example:

00 00 00 00 00 02 0a 11
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This 8 bytes long message is the smallest possible Modbus message allowed by
the protocol specification. We acknowledge that this request is not unusual only
because of its size, but also because the function code value 0x02 (corresponding
to the request “report slave ID”) was never observed during training. We have
verified that the only 3-gram in this payload not observed during the training
is the last one 0x02 0x0a 0x11. Thus, in spite of the small size of this payload,
the threshold has to be lowered in order to detect it. Detecting such anomalous
packet (with only one anomalous n-gram) in a bigger message would be much
more difficult.

6 Related Work

To the best of our knowledge, Ingham and Inoue describe the most recent frame-
work for testing the performance of IDS algorithms [18]. The authors focus on
HTTP traffic. The framework is based on the general principle that testing dif-
ferent IDS algorithms on the same network environment and with the same net-
work and attack data allows a better comparison of the algorithms’ performance,
which would be impossible by re-using the results of the unrelated, individual
tests run by the algorithm developers. They collect background web traffic from
four different websites and create a publicly available set of network traces.
The traces contain instances of web attacks generated by running exploitation
tools downloaded from popular vulnerability repositories (e.g., BugTraq, Secu-
rityFocus and the Open Source Vulnerability Database). There are other IDS
evaluation frameworks, as reported in [18], but are all quite dated.

In [31] Song et al. show that polymorphic behaviour in shellcodes is too greatly
spread to be modeled effectively. The authors note that it is difficult to model
data with high variability, especially in case the adversary is able to inject some
“normal” looking n-grams into the attack payload to make it look legitimate.
Our experiments with SMB traffic confirm that, not only this observation is
true for polymorphic shellcode traffic, but even for regular attacks that do not
leverage any evasion techniques.

7 Conclusion

In this paper we present a thorough analysis of several n-gram-based algorithms
for network-based anomaly detection. We investigate the performance of state-
of-the-art detection algorithms when analyzing network traffic from two binary
protocols. We believe our analysis allows us to draw interesting observations and
conclusions.

First, despite the fact that the attack instances on the SMB/CIFS proto-
cols are correctly detected, all studied algorithms incur in a high penalty in
terms of false positives they raise. Concretely, it would be expensive to deploy
them independently in a real environment. On the other hand, if we restrict
the field to the Modbus protocol alone, Anagram detects almost every attack
instance with a rate of false positives lower than the 10 alerts per day threshold.
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We believe that with such performance the algorithm could be deployed in a real
environment.

Second, all studied algorithms trigger on the exploitation payload. We can
observe this by selecting two different attack instances that exploit the same
vulnerability, but using two different attack payloads. In several cases, while one
instance is detected even with a low threshold, to detect both attacks one needs
to increase the threshold significantly. The previously missed attack instance
usually contains a small-size attack payload, and thus “blends” more easily with
the normal payload data, thereby avoiding detection.

Third, there is no absolute best algorithm among the ones we studied. Ana-
gram performs slightly better than the rest when analyzing the filtered SMB/CIFS
and the Modbus protocols, but it is also the one performing worst when the filter
is not applied. Technically, this is due to the fact that the unfiltered SMB/CIFS
traffic contains several n-grams that are also present in the attack payloads. This
supports the intuition that variability of the network traffic has a great impact
on the performance of these systems. Indeed, every studied algorithm is affected
by this, allowing us to conclude that, rather than the single implementation, it
is the underlying principle of capturing regularity in the unstructured packet
payload that does not hold true. Our results show that n-gram analysis quickly
becomes incapable of capturing relevant content features when analysing mod-
erately variable traffic. This problem could be partly alleviated by deploying
the detection system in combination with some other sensor that will verify the
correctness of alerts [35]. We believe that a more promising approach is the one
focusing on identifying chunks of payload (that represent some kind of semantic
units) and applying the n-gram analysis on those. For example, several authors
propose to exploit the syntactical knowledge of the HTTP protocol to improve
the overall performance of anomaly-based systems, e.g. in [30]. We foresee that
a similar approach could be applied to binary protocols as well. Another issue
that remains still open is how to “measure” traffic variability without having to
run several empirical experiments.
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In this paper, we discuss how online social networks can be used by conventional
(physical) criminals as a toolbox to (1) find incentives for a crime (who to rob
and why?), (2) plan the crime’s execution (how and when to rob them?), and
(3) make an escape plan (how to avoid getting caught?).

Text Updates and Photo Uploads. Textual updates similar to the ones
shown in Table 1 can provide criminals with incentives. 154000 users on Facebook
have publicly expressed the possession of a diamond while 2190 expressed losing
their keys at a certain place. Any overlap between the two sets, within the
geographical reach of the criminal, could give then an easy access to a valuable
item. Table 1 contains limited publicly shared results. A criminal may widen
their search by embedding support for their local languages and using a larger
set of phrases. Similarly, uploading a photo of valuable items on social networks
can also incentivize crime. Moreover, sleeping and drinking patterns identified
from uploads, can help criminals in planning their crime execution hours.

Crime Promotion Using YouTube. YouTube can be used by criminals
for planning their crime and to gain the necessary skills to execute it, e.g. a
criminal may learn how to pick locks from one of the 23300 videos teaching it
on YouTube (statistics given in Table 2).

LinkedIn Helps Find Professionals. LinkedIn can be used by criminal
groups to locate people with specific skills, e.g. LinkedIn’s “CodeBreakers” group
can help with finding cryptologists. Similarly they may use LinkedIn’s “search
like a pro” feature to short list candidates for specific tasks. Coworker informa-
tion by LinkedIn could be used to coerce users to do a task.

Table 1. Theft incentivizing phrases on Facebook and Twitter (May 16, 2012)

Phrase Shared publicly Shard publicly
on Facebook on Twitter

“I bought” OR “I got” “a diamond” 154,000 12,900
“I got a diamond necklace” 24 18

“I bought” OR “I got”“Rolex” 23,000 2,140
“I lost my keys in” 2,190 1,850

Facebook Applications as Information Goldmines. Facebook applica-
tions are mostly owned and regulated by third parties. All top ten Facebook
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applications using statistics from appdata.com, record a user’s: user name, pro-
file picture, gender, list of friends, email address, userID and other information
publicly shared. Most of these applications also access the user’s home address
and contact numbers. All this information, if leaked to criminals, can be used
by them for targeted crimes, e.g. a user’s name, profile picture and gender can
provide criminals with an estimate of the level of resistance they may face, if
they attempt to break into a house and find the person being there.

Social Network Events May Define Optimal Times for Theft. Face-
book and Meetup events can be used to invite users to events. For public events
anyone can confirm, decline, comment on event page, or check who else has been
invited. Criminals can also check the event pages to see if their potential vic-
tims are attending and plan their crime accordingly. On Facebook any user’s
attendance option for a public event page is publicly visible.

Impact of Family and Friends on Crime. Having friends and family work-
ing for law enforcement agencies can act as a deterrent or an attractor for crimi-
nals. Petty thieves will prefer to target someone with limited access to means of
tracing the criminal. Large criminal organizations may want to take revenge to
set an example. Mexican drug cartels have killed several U.S. federal agents as an
act of revenge. Moreover, Information about family members could help criminals
kidnap them for ransom or to coerce their main target to fulfill a task.

Friends as Your Weak Link. Social network friends can provide criminals
with access to victims photos, postings, etc., helping them with their attack.

Facebook Real Name Policy can Help Theft. With an estimate of the
age of the victim and the full name, a criminal can use websites like people-
tracer.co.uk or 123people.com to find information including full address, prop-
erty value, phone number and neighbors details. All these bits and pieces of
information can make a previously impossible crime fairly easy.

Organize Crime and Target Competitors Using Social Networks.
Criminals like any other group of users of social networks can plan and organize
their events through social networks, e.g. Twitter was used in London riots to
organize riots and loots. With billions of photos and videos being shared, some
can be used by criminals for passing steganographic messages about their next
project, avoiding eavesdropping. Criminals can run social network analysis to
find their competitors and leak their information to the law enforcement agencies.

Future Work. We will observe some users who upload crime incentivizing
information to identify if their risk of being robbed increases. Also, as a de-
fense tool we will write a tool which will warn users when they upload crime
incentivizing information.

Table 2. YouTube videos that may help theft (May 16, 2012)

Phrase Total Videos Maximum views (single video)

pick lock 23300 7788708
RFID cloning 237 48199
hack CCTV 733 51910
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Abstract. Botnet robustness and efficiency are two contradictory features from 
a general point of view. To achieve them simultaneously, we design a command 
and control (C&C) channel division scheme and then propose a Botnet Triple-
channel Model (BTM). BTM divides a C&C channel into three independent 
sub-channels, denoting as Command Download Channel, Registration Channel 
and Data Upload Channel, respectively. Botnets based on BTM will promise to 
be as robust as P2P botnets and as efficient as centralized botnets. 

Keywords: botnet, Triple-Channel, BTM, C&C. 

1 Background and Problem Analysis 

Most of current botnets could not achieve robustness and efficiency at the same time. 
For example, Rustock, Mariposa, Coreflood, and Waledac/Kelihos have paid much 
attention to efficiency, while being shut down due to C&C protocol vulnerabilities. 
On the other hand, Conficker, which constructs an extremely robust C&C channel, is 
ineffective in the aspect of monitoring the botnet and retrieving the collected data.  

The internal cause of the contradictory between robustness and efficiency probably 
lies in the fact that current botnets always rely on only one C&C protocol to 
accomplish all tasks, however, it is impossible for any existing C&C protocol to 
satisfy all requirements solely. Fox example, the robust P2P/URL Flux [1] protocols 
have no upstream channels; the recoverable Domain-flux protocol is limited by 
performance and vulnerable to sinkhole attack. In a word, each C&C protocol has its 
particular advantages as well as corresponding limitations. BTM aims at solving the 
problem to some degree. 

2 The Proposed Botnet Triple-Channel Model 

BTM (shown in Fig.1) includes three independent C&C sub-channels. Each sub-
channel, determined by its characteristic, is responsible for particular task. 

Command Download Channel (CDC). CDC is only responsible for commands 
distribution. CDC must be extremely robust, recoverable and high-performance to 
defend against worldwide coordinated countermeasures; while the uploading 
capability is not indispensable. Therefore, URL Flux/P2P style protocols are suitable; 
although they are unidirectional (data can and can only transfer from servers to bots). 
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Fig. 1. Botnet Triple-Channel Model 

Registration Channel (RC). RC is only responsible for fundamental information 
(i.e., the automatically generated BotID and individualized symmetric key, IP and OS 
etc.) collection. The information will be used for monitoring botnet size, encrypting 
data, etc. RC must be bidirectional, encrypted and recoverable to enable uploading 
activities and defend against monitoring, sinkhole and host-level forensics; while the 
robustness and high-performance features are not indispensable. Therefore, Domain-
flux style protocol is suitable, although it is vulnerable to DDoS and sinkhole attack. 

Data Upload Channel (DUC). DUC is only responsible for collecting and storing 
the uploaded information. DUC requires high-performance and mass storage space to 
enable massive data uploading in parallel by large-scale botnets. Furthermore, it must 
ensure the uploaded information can and can only be located and decrypted by 
botmasters who own bots’ BotIDs and individualized symmetric keys. However, DUC 
is not necessary to be recoverable. Thus, those free cloud-based file hosting services [2] 
could be exploited. To go a step further, we can combine cloud and URL Shortening 
Services supporting custom alias (i.e., tinyurl.com) together to enable botmaster to 
locate the uploaded file automatically, since bots could make the file downloading 
URLs computable and predictable by constructing custom shorten URLs which end 
with BotID and current date (i.e., http://tinyurl.com/BotID_20120605_001). 

In future works, we will prove the completeness and independence of the triple 
sub-channels and invests more research on how to fight against BTM-based botnets. 
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Abstract. Existing network security analysis methods such as using tools like 
attack graphs or attack trees to compute risk probabilities did not consider the 
concrete running environment of the target network, which may make the ob-
tained results deviate from the true situation. In this paper, we propose a net-
work security analysis method taking into account the usage information of the 
target network. We design usage sensors in each host to get the usage informa-
tion in the network. Combining with attack graph generation tool which gets all 
the vulnerabilities in the network in the graph form, we evaluation the network 
using the usage information and the vulnerabilities information, and get more 
accurate evaluation results. 

1 Introduction 

Network security analysis is the vital step in risk management. Many Models, such as 
attack graphs, attack tree and Petri Net, have been proposed. However, existing me-
thods [1], [2] based on these models only consider the vulnerabilities in the network, 
while the running environment information also matters. For example, let’s consider 
two running circumstances in the network shown in Fig. 1. 

 

Fig. 1. An example network 

(1) The Web Sever in the network offers the major service and has been heavily 
used, while the FTP Server and Mail Server are rarely used; (2) The FTP Server in the 
network offers the major service and has been heavily used, while the Web Server and 
Mail Server are rarely used.  The vulnerabilities are the same in both of the two cir-
cumstances. We can easily judge that the Web Server in the Circumstance 1 is more 
risky than the Web Server in the Circumstance 2 and the FTP Server in the Circums-
tance 2 is more risky than the FTP Server in the Circumstance 1. 
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Thus, to make the evaluation result more accurate, we have to consider the running 
environment of the network. 

2 The Analysis Method 

First, we use scan tool such as Nessus to get all the vulnerabilities in the network. 
And then, we use the off-the-shell attack graph generation tool such as the MulVAL 
attack graph toolkit [3] to generate the attack graph. To get the usage information in 
the network, we design usage sensors and place them into the hosts in the network. 
The usage sensors will count the traffic to the host in the setting time intervals.  

There are two kinds of nodes in the attack graph: the condition node and the exploit 
node. We calculate the risk probabilities of them using different computing methods. Let 
the variable Total be the sum of traffic amount counting in all hosts in the network.  

(1) For each of the condition nodes c that has no income edge in the attack graph, P c  FT . Where P[c] represents the risk probability of c, and F[c] is the counting 

traffic amount of c. 

(2) For each of the exploit nodes e in the attack graph, P e FT 1 D e∏ P c . Where P[e] represents the risk probability of e, F[e] is the counting 
traffic amount of e, D[e] is the difficulty factor of the exploit node computed by the 
Common Vulnerability Scoring System (CVSS for short, provided by the National 
Vulnerability Database), and pre[e] is the pre-condition node set of e.  

(3) For each of condition nodes c that has income edges in the attack graph, P c FT 1 ∏ 1 P e . Where P[c] represents the risk probability of 

c, F[c] is the counting traffic amount of c, and pre[c] is the pre-condition node set of c. 
We calculate the risk probabilities of the nodes in the attack graph in topological 

order. And to avoid zero multiplication, we replace each zero result with a small posi-
tive value in the computing process. 

3 Preliminary Results and Future Works 

We have implemented our method to evaluation a small network. And experiment 
results show that our method get more accurate result due to considering the running 
environment of the target network. In the future work, we will develop more efficient 
method for real time security evaluation. 
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Abstract. The detection of covert channels in an information flow model is a 
practical problem in determining whether the security guarantees of the 
operation system have been achieved. Asbestos system is a typical information 
confidentiality protection system. This poster introduces a formal approach to 
automatically detect covert channels in Asbestos systems. The approach 
innovatively generalizes a CSP (Communicating Sequential Process) based 
formal description of Asbestos system and utilizes Ray’s noninterference 
Equivalence in the detection of covert channels. The covert channels are 
automatically detected by employing a CSP based model checking tool FDR2. 

Keywords: Covert Channel, CSP, Noninterference. 

1 Introduction 

The Information Flow Control models (IFCs) usually refer to such class of computer 
security models, which require access of all subjects and objects under their control 
on a system wide basis. Recently developed Asbestos system [1] extends information 
confidentiality models (classical IFCs), resulting in its real application in practice. 

However, as Asbestos system becomes more flexible, it gets more susceptible to 
covert channel attacks than classical IFCs. Few works discuss automatic detection of 
covert channels in Asbestos system. This poster contributes the field a formal model 
in CSP notions and realizes automatic covert channel detection in Asbestos system. 

2 Formal Detection Model 

The formal detection model is defined as follows: 

, ,Detection Scheme =< >CR GIFS ASSERT  
Where  

CR represents the Control Rules of Asbestos system.  
GIFS represents the Generalized Information Flow System, More precisely, 

, , , , ,GIFS S O CONSTRAIN IPC IO STATE=< > , where S is the set of subjects, O 
is the set of objects, CONSTRAIN is the control engine which controls the 
information flow in the system according to CR, IPC is the set of events among 
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subjects. For each ipc in IPC, { },ipc send recv∈ . IO is the set of events among 

subjects and objects. For each io in IO, 
{ , , , , , , , , , }io create created delete deleted read isread write written execute executed∈

. STATE is the internal channels that CONSTRAIN can use to acquire or modify 
the labels of subjects and objects in Asbestos system.  
ASSERT is an assertion of “the Asbestos system has no covert channels”.  

We use CSP notions to represent the Detection Scheme DS as follows: 

, , ,

( || ) \ ( )
io ipc born exit

DS OBJECTS CONSTRAIN aCONSTRAIN aOBJECT=    
where { , , , , , }aCONSTRAIN state random lock unlock pid cr=  

, ,
{ . | , , { , , , }}

i j L
aOBJECT io command i P j Q command created deleted isread written= ∈ ∈ ∈  

That is, the Detection Scheme is the synchronization of the OBJECTS (representing 
all activities of subjects and objects) and the CONSTRAIN (representing information 
flow controls), with internal activities ( )aCONSTRAIN aOBJECT  hidden. 

The ASSERT in the detection schema is based on Ryan’s noninterference 
Equivalence [2] in CSP. Ryan’s noninterference Equivalence states that the set of 
failures of a system with all HIGH events shielded is equivalent to the set of failures 
of this system preventing all HIGH events. That is: ( || ) \ \

failures
aHIGH

DS STOP aHIGH DS aHIGH≡  
where aHIGH represents all high level events or all security sensitive events. That 
( || )

aHIGH

DS STOP  represents putting STOP in parallel with DS synchronized over all HIGH 
events (HIGH events can be regarded as high level events or high sensitive events), 
which means shielding all high level events. \DS aHIGH means preventing all high 
level events. If Asbestos system satisfies Ryan’s noninterference Equivalence, then 
Asbestos system is noninterference, and we can assert that Asbestos system has no 
covert channels. Otherwise, if Ryan’s noninterference Equivalence can not be 
verified, we will assert that Asbestos system has convert channels. We utilize a CSP 
model checker FDR2 in automatic detection. 

3 Detection 

The detection of covert channels in Asbestos system is an automatically formal 
verification process. The CR in an Asbestos system can be represented as follows: 

, ,
. ?( , , )

s r s r s r
CR cr requery flow sender sender receive receive if sender receive= → ≤   

then . !( ,max( , )) . !( , )
s s s

cr res true sender receive CR else cr res false receive CR→ →  
FDR2 spent 42 seconds to complete a verification example. It gives out a counter 

example, which shows Asbestos has covert channels. 
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Abstract. Regular Expression (RegEx) matching has been widely used
in many network security systems. Despite much effort on this impor-
tant problem, it remains a fundamentally difficult problem. DFA-based
solutions are efficient in time but inefficient in memory, while NFA-based
solutions are memory-efficient but time-inefficient. This poster provides
a new solution named EFA (Excl-deterministic Finite Automata) to ad-
dress the problem by excluding cancerogenic states from active state
sets. The cancerogenic states are identified based on conflict relations.
We make an evaluation of EFA with real RegExes and traffic traces.
Experimental results show that EFA can dramatically reduce DFA state
size at the cost of limited matching performance.

1 Introduction and Our Work

How to perform RegEx matching at line rate is a crucial issue in a variety
of network security applications, such as network intrusion detection systems
(NIDS). Comparing with NFA, DFA is the preferred representation of RegExes
in gigabit backbones because of its high matching efficiency. DFA, which is full-
deterministic from NFA, may experience state explosion during the process of
transformation that creates a DFA state for each possible Active S tate Set of
NFA (ASSet). We find that some states in a NFA are the key reason that leads
to state explosion, we call them cancerogenic states.

Y.H.E. Yang et al. [1] define a string set for each NFA state, and then they
define four relationships between states based on the corresponding string sets.
They further prove that a NFA without conflict relations between its any two
states will not generate an explosive DFA. However, their method to calculate
the relations by comparing string sets is inefficient and inaccurate.

This poster first introduces an accurate method named ROBAS to calculate
relations between states based on ASSets but not string sets. We prove that the
relation between states x and y can be exactly calculated by the following three

� Supported by the National High-Tech Research and Development Plan of China
under Grant No. 2011AA010705 and the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant No.XDA06030200.
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Table 1. Comparison among NFA, DFA and EFA on state size and construction time

RegEx NFA DFA EFA (k = 3) EFA (k = 15)
set states times(s) states times(s) states times(s) states times(s)

snort24 749 0.08 13886 178.50 2394 26.28 592 16
bro217 2645 0.18 6533 260.63 3300 34.39 2659 35.33

Table 2. Comparison among NFA, DFA and EFA on the size of ASSet during matching

RegEx NFA DFA EFA (k = 3) EFA (k = 15)
set max average max average max average max average

snort24 10 1.144 1 1 1 1 1 1
bro217 39 9.33 1 1 2 1.004 3 1.056

conditions: x ∩ y, x ∩ y and x ∩ y. The condition x ∩ y implies x and y are both
active in some ASSets. States x and y are conflict if the three conditions are all
true. Based on the insight, we can get that the first condition for any two states
in the same ASSet is true, and the second condition for the case that one state
in an ASSet and the other state not in the ASSet is true. Thus, for a given NFA,
we can get its all relations exactly after scanning its ASSets in one time.

For a given NFA, transforming it into a DFA can obtain all ASSets. The DFA
transition matrix is needless, thus abandoning it can largely reduce memory con-
sumption. Even so, the modified transformation is still slow. To accelerate the
process, this poster proposes an algorithm named ASS-SUBSET. As an ASSet (a
DFA state) has many common transitions, it is wasteful to obtain all ASSets on
256 characters. In ASS-SUBSET, each ASSet only transfers on these necessary
characters got by combining the selected characters of NFA states in the ASSet.

We regards these NFA states that have many conflict relations as cancerogenic
states. Specifically, we introduce a threshold k, and exclude the k states that have
the most conflict relations from ASSets. Then we can transform NFA to EFA
similarly as the transformation from NFA to DFA.

2 Evaluation

We make use of real RegExes from Snort system and Bro system, and real traffic
traces captured from backbones to evaluate our work. As shown in Table 1 and
Table 2, our experimental results show that EFA can reduce states by several to
dozens of times while at the cost of one percent loss in matching speed comparing
with DFA. Moreover, the time used to construct EFA from RegExes is much less
than that used to construct DFA. This implies that EFA is more suitable to
perform large-scale RegEx matching in high-speed networks.
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Web attacks are a major security concern as novel attacks can be easily created
by exploiting different vulnerabilities, using different attack payloads, and/or
encodings (obfuscation). Intrusion detection systems (IDS) aim to correctly de-
tect attacks. There are two main approaches to intrusion detection: misuse and
anomaly detection. Despite the difference in approach, they both fail to offer
adequate resilience to novel attacks due to the difficulty in generalizing beyond
known attack or normal behavior [1].

Distress Detection. The aim of distress detection (DD) is to address this prob-
lem and to provide resilience to novel attacks by generalizing beyond known at-
tacks while controlling the false positives (FP) rate. In order to achieve this DD
combines attack generalization based on attacker objectives, dynamic analysis
techniques for the definition of suspicious behavior signatures, and feature-based
correlation of suspicious HTTP requests and system events.

Attacker objectives are the intended end results of attacks. Whilst attackers
can produce a large number of attacks to achieve their objective, there are certain
system events that are necessary for each particular objective [2]. By focusing
on the objectives, DD can generalize beyond specific instances of known attacks
to ones that have the same objective.

Within a specific objective, HTTP requests are suspicious if they can poten-
tially launch an attack with this objective, while attack symptoms are those
system events that are produced when the attack succeeds. Both suspect HTTP
requests and attack symptoms are identified by signatures that are resistant to
obfuscation and aim to maximize detection effectiveness. In contrast to misuse
detection, they do not have to be exclusive to attacks.

The responsibility of associating attack symptoms with suspect HTTP re-
quests in a manner that suppresses false alerts is placed on a separate alert
correlation process. Our premise is that attacks must be launched by suspicious
HTTP requests and their successful execution must generate symptoms with
similar features. We do not relate alerts raised against specific attack techniques
but rather ones that indicate generic suspicious behavior.

Example Distress Detector. In order to demonstrate how DD can be applied we
developed an example detector. The detector focuses on web server tampering
threats, like spawning a reverse shell, bootstrapping the installation of a bot, or
planting a web-based backdoor. These threats can be grouped into the broader
‘malicious remote control’ attacker objective. The signatures for the detector
are based on the heuristic that in order to achieve malicious remote control, an
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attacker requires the establishment of a remote connection to the target server.
Only after a connection is established can the attacker proceed, e.g. to execute
shell commands to search for sensitive information, or use the victim as an attack
bot.

A malicious remote connection can be established either through a new con-
nection over an unused server port, or a new connection to an already listened to
web server port. Establishing a connection to an already listened to web server
port actually allows clients to connect to the web server and use its services.
However, an attacker could leverage it to first maliciously extend the code-base
of the web application and to subsequently activate the code through its URL. In
this context, all events indicating the establishment of a connection or a listen-
ing port by web application server processes or their child processes, and those
indicating the addition of web application code, are considered attack symptoms.

Any HTTP request that contains executable content, intended either for dy-
namic in-memory injection into request processing code or for static injection
into the application’s code on-disk, is regarded as suspicious. Either type of in-
jection is necessary to establish a network connection or extend the application
code-base. The first alert correlation condition associates suspects alerts raised
against executable content intended for dynamic injection with network connec-
tion symptom alerts by matching the IP address-port in the system call traces
generated by the executable content, with those of the subsequent network con-
nection event. The second correlation condition associates suspect alerts raised
for executable content intended for static injection with the code-base extension
symptom alert by matching the corresponding blocks of code.

Results and Conclusions. We implemented the detector for a LAMP deploy-
ment and we evaluated its resilience to novel attacks by assessing its ability
to effectively detect attacks targeting a vulnerable phpBB3 installation. Four-
teen attacks were used employing different vulnerability exploits (heap-overflow,
command and code injection, and unrestricted file upload), different payloads
(reverse-shell, botzilla PHP-based IRC bot download and execute, and c99 back-
door installation), and different obfuscation techniques (XOR, base-64 and PHP
obfuscation) within the detection scope of the detector. Attacks were mixed
with traffic based on our departmental phpBB server. Despite large numbers of
suspect requests and symptoms, the detector was able to detect all fourteen at-
tacks with no FP. Building on these promising results we are now developing
additional detectors to further explore the potential of distress detection.
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1 Extended Abstract

Through an Anomaly Detection System, unknown attacks could be detected
using a model of normal network behavior to distinguish between usual and un-
usual activities. Collecting representative data of normal activity and properly
train the system are the deciding factors in a Supervised Intrusion Detection
System. This work aims to propose a supervised anomaly detection system to
detect unknown intrusions using the packet payload in the network, implement-
ing its detection algorithm as a “dynamic pre-processor” of Snort. Critical in-
frastructures are exposed to a several threats which demand computer network
protection. An Intrusion Detection System (IDS) provides adequate protection
of process control networks. IDSs are usually classified into misuse/signature
detection and anomaly detection. Signature-based IDS typically exhibit high
detection accuracy because it identifies attacks based on known attack charac-
teristics. Anomaly detection is the alternative approach to detect novel attacks
tagging suspicious events. Learning a model of normal traffic and report devia-
tions from the normal behavior is the main strength of anomaly based detection
system. The major weakness is that it is susceptible to false positive alarms.

Supervised technique consists of two different phases: training and detection.
Training phase is the critical one because the system needs to collect representa-
tive data from network connections to build an appropriate model which enable
to set up thresholds for intrusion alerts. As such, we focus this work on training
phase which use comparison of connection payloads based on n-grams to facil-
itate bytes sequences analysis and tries to store different n-grams occurrences
and simplify searching and comparing sequences.

Considering that Snort is a signature-based IDS and unknown attacks are be-
yond their reach, we propose a supervised anomaly detection system that works
as a Snort dynamic preprocessor in order to have a highly effective detection
within known and unknown attacks. In general, the proposed system takes into
account byte payload sequences represented by fixed-length n-grams and the
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correlations among n-gram arranged in a trie data structure. The aim is that
these components enable a system with high performance at training phase and
facilitate more and novel attack detection. Several proposals that make depth
analysis of the payload to detect malicious code are explicated. In this work,
n-grams are used to change bytes from connection payload to sequences of fixed
length n, in order to reduce storage and analysis range. We believe that the sys-
tem could store larger n-gram values to build the correct nor-mal network model
if a trie data structure is used. This approach will increase the detection of un-
known attacks. The classical scheme for storing and comparing n-gram models
utilizes several data structures such as hash table, sorted arrays and suffix trees.
However a better alternative for storing and comparing n-grams is a trie data
structure. A trie is an N-ary tree, whose nodes are N-place vectors with compo-
nents corresponding to digits or characters. Tries are considered as an optimal
data structure over n-grams with higher n values applied over NIDS [1].

A payload could be embedded using a trie of n-grams ; new n-grams are
represent-ed and the others must be taken into account in the leaves that store
the number of sequence concurrencies. One-way branching with no common pre-
fix are removed to take advantage of redundancy in the stored sequences. A trie
data structure is not only used efficiently in computation of similarity measures,
but also in searching and comparing sequences. The main advantages in the way
of storing and retrieving in-formation are: shorter access time, elimination of
n-gram redundancies and inherent symbolic addressing [2]. Supervised system
involves model selection from normal and abnormal datasets. Normal datasets
are used to found patterns in the network and then these patterns are applied
to dataset with attacks to establish rules for detection phase. Particularly, tries
data structures are needed to compare current package n-grams with a previous
one to find out a successful network model.

The idea is to perform some tests to determine if the speed in the basic training
phase improves and if it is possible to store larger size of n-grams. Testing is per-
formed taking into account a NIDS based on payload which use Bloom Filter
as a data structure. The Bloom Filter represents different n-grams using arrays,
each position denote a sequence of bits with the amount of occurrences, while
tries represents each n-gram as a string of characters. A trie-node denotes a char
in a sequence.
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the Project TSI-020100-2011-165 and by AECID (Spain) through the Project
A1/037528/11.
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Abstract. A call for formalizing digital forensic investigations has been  
proposed by academics and practitioners alike [1, 2]. Many currently proposed 
methods of malware analysis for forensic investigation purposes, however, are 
derived based on the investigators’ practical experience. This paper presents a 
formal approach for reconstructing the activities of a malicious executable 
found in a victim’s system during a post-mortem analysis. The behavior of a 
suspect executable is modeled as a finite state automaton where each state 
represents behavior that results in an observable modification to the victim’s 
system. The derived model of the malicious code allows for accurate reasoning 
and deduction of the occurrence of malicious activities even when anti-forensic 
methods are employed to disrupt the investigation process. 

Keywords: Formal Models, Event Reconstruction, Model Checking and Auto-
mated Static Malware Analysis. 

Introduction: This work introduces a formal model for automated malware investiga-
tion based on the modeling of malicious executables. In the proposed approach, mali-
cious code is analyzed using automated static analysis methods [3-5]. The malicious 
code’s control flow graph is then formally modeled as a finite state automaton (FSA). 
The formalized model of the malicious code behavior is processed by an extension of 
the event reconstruction algorithms proposed in [2, 6], which computes the set of all 
possible explanations for the state of the victim’s system in the context of the mali-
cious code where the observed state of the victim’s system and malware trace creation 
states intersect. The result is a reduced state-space where malicious actions agree with 
the observed state of the system. Furthermore, the modeled FSA allows for the infe-
rence of the occurrence of actions that do not leave an observable trace. 

Modeling Investigated Malicious Code: Malicious executable IE is formally defined 
as a sequence of instructions , … . . The behavior of IE is represented in a finite 
state automata M = (Q, ∑, δ, q), where Q is a finite set of all possible instructions in 
IE and δ represents transition function that determines the next instruction Im for every 
possible combination of event and instruction state Iq, such that, δ: ∑  Q→Q. A 
transition is the process of instruction execution. An execution path p= , …  is 
a run of finite computations consisting of a sequence of instructions that lead executa-
ble IE to the final state q.  



 Towards Automated Forensic Event Reconstruction of Malicious Code 389 

 

Malicious Events Reconstruction: is the process of determining all possible execu-
tion paths that are consistent with observable evidence. In this approach, we extend 
and improve a formal model for automated reasoning of evidential statements and 
reconstruction of digital events proposed in [2]. The extended formal model is based 
on back-tracing execution paths that hold the observation Ox. The proposed back-
tracing technique over all possible execution paths is based on the finite  
computation   , , where,  is an event and  Q is a state. Any 
two instructions and are related via the transition function for a given instruc-
tion  , . The notation of back-tracing an execution path is formalized 
in Equation 1, where  traces back all finite computations representing the execu-
tion paths in the malicious executable IE. 

  1     , , ,    2          3  

Formalizing Malicious Code Observations: Evidence is described as an observable 
property, O, of a victim’s system that denotes the execution of a malicious payload. 
The formalization of an observation is defined in Equation 2, where P is a set of all 
instructions in IE that have the observed property pr. min and opt are positive integers 
specifying the duration of the observation and  is the set of characteristics of the 
observed property pr. An execution path p is said to contribute to O if a set of se-
quence of instructions in p possesses the observed property pr.  

Observation Consistency Checking: Anti-forensic techniques are formally encoded in a 
CTL specification model [7] μ. Using the proposed model checking algorithm, the model 
of a suspect executable IE is checked against the encoded techniques μ in the context of 
malicious code execution to identify tampered observations. The model checking algo-
rithm takes a formula μ and executable model IE and verifies all states s   where μ 
holds. The notation of the model checking algorithm is formalized in Equation 3, where 
A is a quantifier over all paths p that contribute to the observation o, and G/F are a path 
specific quantifiers that check if μ holds over all states s and possess o. 
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Introduction. Decompilation is used for translation of executable files into a
high-level language (HLL) representation. It is an important mechanism for in-
formation forensics and malware analysis. Retargetable decompilation represents
a very difficult task because it must handle all the specific features of the target
platform. Nevertheless, a retargetable decompiler can be used for any particular
target platform and the resulting code is represented in a uniform way.

One of the essential features of each decompiler is a detection of functions.
They need to be properly recovered and emitted in the output HLL representa-
tion. The quality of this process directly impacts the final decompilation results.

Retargetable function detection and recovery is quite hard because machine
code differs dramatically based on the used language, its compiler, and the target
platform. In the past, several methods of function detection and recovery have
been proposed with varying results [1,2,3]. Some of them are hard-coded for
a particular processor architecture (e.g. Intel x86) or not implemented at all.
Furthermore, only a few methods aim at the detection of function arguments.

In this poster, we present a new, platform-independent method of function
detection and recovery. This method was successfully adopted within an existing
retargetable decompiler [4]. It is very briefly described in the following text.

Function Detection in the Retargetable Decompiler. At the beginning
of the decompilation process, we try to locate the address of the main function.
This is done by an entry point analysis. The following step is realized by a
control-flow analysis and its aim is a detection of basic blocks. The detection
is realized over the internal intermediate code. At this point, we need to find
all branch instructions and their targets. We process all instructions and store
addresses of every instruction which jumps, modifies the program counter, or
changes the control flow by other ways. In some cases it can be more difficult,
e.g. for architectures which use indirect jumps. We solve this problem by static-
code interpretation (i.e. tracking register or memory values).

� This work was supported by the project TA ČR TA01010667 System for Sup-
port of Platform Independent Malware Analysis in Executable Files, BUT FIT
grant FIT-S-11-2, and by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).
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The function analysis itself consists of several parts. The first part is function
detection that is done by detectors utilizing the top-down approach [1], bottom-
up approach [2], or debug information. Next comes a generation of a call graph.
After that, we use a data-flow analysis to detect arguments, return values, and
return addresses. The top-down detector tries to split a function containing the
whole program into smaller ones by the given instructions. It works in itera-
tions. Each iteration consists of finding targets of jumps and operation split.
The bottom-up detector joins blocks together to create functions. In our modifi-
cation, we have already created basic blocks and we can join them to functions.
This detector is also used to improve the top-down approach, after every iter-
ation in the top-down detector, it is called to make the bottom-up analysis on
every detected function. Several other detectors are utilized to achieve the most
accurate results (e.g. detectors of malware obfuscation of call conventions).

Experimental Results. The implemented method for recovering functions was
tested on the MIPS and ARM architectures. We used our own tests that were
compiled by different compilers at all available optimization levels. In total, 97
test cases were evaluated. The final results are shown in Table 1.

Table 1. Evaluation of overall results

Functions [%] Arguments [%] Return Values [%]
Correctly detected 89 87,4 81,4
Wrongly detected 3,8 9,2 14,0

Undetected 7,2 3,4 4,6

The retargetable function detection achieves quite precise results. However,
the number of false positives in the recovery of arguments and return values has
to be reduced in future research. Their visualization is presented in Figure 1.
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Fig. 1. Results of decompilation—detection of functions, arguments, and return values

Future Research. We propose two major areas for future research—(1) detec-
tion of inlined functions and (2) function reconstruction after obfuscation which
is necessary for accurate decompilation of malware.
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1 Extended Abstract

When optimizing our NIDS APAP [1] we started focusing our efforts on ensuring
that it would work on real-time network traffic. This effort, was penalized by
the excessive cost of storage of various data structures needed to meet its goals
satisfactorily.

APAP is based on Anagram [2] and initially worked with small size N-gram.
This allowed us to detect more attacks at the expense of a higher rate of false
positives. But when we wanted to test the results obtained with larger N-gram
sizes, we found that the cost of storage of the Bloom filter structures that we
generated to analyze the payload of the traffic was too large.

A Bloom filter [3] is a probabilistic data structure used to determine if a
data belongs to a dataset. In our NIDS the Bloom filter is intended to store
information of the appearance of N-grams in the package. When representing
the Bloom filter, we considered it in theory as an array of bits on which a value
of 0 indicates the non-appearance of that N-gram on normal network traffic and
a value of 1 indicates its presence.

In practice, we used the Bloom filter as an array of bits on which a value of 0
indicates the non-appearance of that N-gram on normal network traffic and an
n indicates its number of appearances. By using bits to represent n-grams less
memory is required to store information of legitimate traffic.

Each N-gram found during training will have a different position in the Bloom
filter, establishing a direct correspondence between each N-gram and the struc-
ture.

To get an idea of the cost to implement this type of structure, we will assume
the hypothetical implementation of the Bloom filter as an array of integers in
C. In the Table 1 we can see their progression.

To reduce this cost, we designed a simple data compression algorithm that
can reconstruct the original structure from the file without penalizing the per-
formance of the computer.
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Table 1. Chart:Increased storage space

N-gram Size (bytes)

1-GRAM 1024 bytes

2-GRAM 262144 bytes

3-GRAM 64 Mbytes

4-GRAM 16 Gbytes

The idea is based on the high number of occurrences of most elements in
heterogeneous networks. To reduce the amount of used memory to store this
data, we could generate a file where the data did not have a regular structure
such as 32-bit integer, but instead to use only the amount of bits required for
each number, and saving that amount in a new file which would be read in
parallel when we loading the structure.

As a first step we optimize the quantities by calculating the distance between
adjacent positions of the array of appearances. This is accomplished by holding
the first position of the array intact, and subtracting from every position value
the previous position value, beginning from the end, to fill the resulting structure.
In addition, an auxiliary array with the same size will indicate the number of
bytes required to read these values of the resulting file.

To load the structure is only necessary to read the number of bits required to
read each original number, read that amount in the file and calculate the new
positions as the sum of the content of the previous position plus the content of
the new read value. We are currently working on the implementation of that
structure.
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References
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Ciudad Universitaria, 28040 Madrid, Spain

{jmaestre,hvillanua}@estumail.ucm.es, {j.mejia,javiergv}@fdi.ucm.es

1 Extended Abstract

The current demand of high network speed has led NIDS to process increasing
amounts of information in less time. Consequently, most part of manufacturers
have opted for hardware design implementation, which in most cases increased
the price of these products. The aim of this paper focus the optimization of
the performance of our NIDS APAP, based on different concurrency techniques.
This upgrade increases amount of traffic per unit of time that is being processed
by the system without relying on a hardware implementation. It is important
to clarify that despite these measures can make our NIDS perform in real time
on fast networks, it cannot achieve the same performance as a hardware imple-
mentation. As the first step it is interesting to briefly highlight some of the most
important features of our initial prototype of IDS, APAP [1], with the purpose
of getting into context. This system was developed as a hybrid NIDS combin-
ing signature and anomaly based detection. The system simultaneously executes
Snort along with its preprocessors and an anomaly based detector whose de-
sign is based on Anagram [2]. We chose to work on CPU level parallelism using
OpenMP libraries. These libraries provide an API that allows us to add concur-
rency to the application by means of shared memory parallelism. It is based on
the creation of parallel execution threads that share variables from their parent
process. OpenMP consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior. The first thing to take
into consideration is the degree of parallelization of the algorithm. Because the
optimization could be in jeopardy if the threads context changes do not take
place. Therefore, we created four testing suites corresponding to four different
parallelization criteria. The first suite is a total parallelization of the algorithm,
the other three are relaxations of the first by means of no parallelization of: fixed
loop iterations, variable loop iterations and loops iterating to a concrete variable
of the code, respectively. Notice that each suite includes the relaxations made
on the previous ones. Figure 1 illustrates the time it took to run the algorithm
depending on the number of threads for each level respect of the execution on
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a single thread. This analysis was done using a Core 2 DUO CPU processor,
meaning a powerful performance may be achieved using more powerful proces-
sors. The trace used for the tests was ceded by the Computer Center of the
Universidad Complutense de Madrid.

Fig. 1. Run Time of the Algorithm

We can clearly see how a 57% speed-up has been reached on the fourth suite
using two threads. Motivated by the results, we have seen that the use of software
NIDS on small to medium size networks can be feasible if concurrent techniques
are correctly applied on its implementation, giving an economic and versatile
approach as opposite to hardware NIDS. We are currently working on optimizing
our NIDS by means of GPU level parallelism. Most part of the original code is
already reconstructed using OpenCL libraries, which will execute the analysis
on the Anagram segments from the package payload. We hope to obtain results
soon enough.
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1. Garćıa-Villalba, L.J., Mej́ıa-Castro, J.D., Sandoval-Orozco, A.L., Mart́ınez-Puentes,
J.: Malware Detection System by Payload Analysis of Network Traffic. In: Proceed-
ings of the 15th International Symposium on Research in Attacks, Intrusions and
Defenses (September 2012)

2. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 226–248. Springer, Heidelberg (2006)



Malware Detection System by Payload Analysis

of Network Traffic (Poster Abstract)

Luis Javier Garćıa Villalba,
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1 Extended Abstract

NIDS based on Payload Analysis detect the malicious code by analyzing the
payload of packets flowing through the network. Typically consist of a training
phase and another one of detection. The training phase is done with clean traffic
so that it represents statistically the usual traffic of the system. Thus, a pattern
of such traffic is established. On the other hand, during the detection, traffic
analysis is modeled and compared these patterns to determine if it can be classi-
fied as dangerous. Then, various proposals that make analysis of the payload to
detect malicious code are explicated. In general, all are variants of PAYL [1], one
of the first proposals that used this technique successfully. PAYL system classi-
fies traffic based on three characteristics: the port, packet size and flow direction
(input or output). Using these three parameters, payloads are classified creating
a series of patterns to define what would be normal behavior within each class.
Poseidon [2] was developed to correct the errors that arise in building models in
PAYL when clustering about the size of packets is applied. The combination of
multiple classifiers of a class, also based on PAYL, was developed to eliminate
the original system’s vulnerability in the face of mimicry attacks. PCNAD [3]
appears to correct the defect PAYL that could not process large packets on fast
networks with enough speed. Anagram is another evolution of PAYL, developed
by the same authors to correct the deficiencies that had the original system.
As in the PAYL, the system is based on n-grams to process the packets and
create patterns of behavior. However, it employed Bloom Filters to divide the
packets in n-grams of sizes larger than one without the cost in space and system
performance will be injured.

Our proposal, Advanced Payload Analyzer Preprocessor (APAP), is an intru-
sion detection system by analysis of Payload from network traffic to look for
some kind of Malware. The APAP system implements its detection algorithm
as “dynamic pre-processor” of Snort. By working together of Snort and APAP
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someone can affirm that a highly effective system to known attacks (by pass-
ing Snort rules) and equally effective against new and unknown attacks (which
was the main objective of the designed system) is obtained. To summarize the
APAP working would suffice to say that, like most such systems, it consists of
two phases: an initial training phase and a second phase of detection. During
the training phase a statistical model of legitimate network traffic through the
techniques Bloom Filters and n-grams is created. Then the results obtained by
analyzing a dataset of attacks with this model is compared and thus a set of
rules that will be able to determine whether a payload analyzed corresponds to
some kind of Malware or otherwise be classified as legitimate traffic is obtained.
During the detection phase the traffic for analyzing is passed by the Bloom Fil-
ter which it is created in the training phase and the obtained results with the
rules that occurred during the training phase are compared. Due to the system
relies on the creation of a normal traffic pattern of the network to defend, it is
necessary to release a series of previous training steps before analysis, to detect
the Malware that can circulate through the network. Thus it is noteworthy that
for such training have to be available two datasets: a set of datasets consist-
ing of traffic as clean as possible to be representative of the network. Thus, the
system with the traffic “should” have regularly is training, and another set of
datasets consisting of attacks to get the rules which will determine later whether
a particular package corresponds to some kind of Malware or otherwise can be
considered legitimate. Training phase creates a statistical model of network legit-
imate traffic using n-gram and BloomFilter techniques. This phase is divided into
four stages: i) Initialization: the system is reset by creating the structures that
need. ii) Basic-Training: the model of network legitimate traffic is created. iii)
Reference-Training: it provides support to the heuristic used for the next stage.
iv) Determine-K-Training: it creates the rules that determine which values will
be launched alerts.
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