
Chapter 9
Argumentative Agents for Service-Oriented
Computing

M. Morge, J. McGinnis, S. Bromuri, P. Mancarella, K. Stathis, and F. Toni

Abstract. We propose an argumentation-based agent model that supports ser-
vice and partner selection in service-oriented computing settings. In this model,
argumentation is also used to help agents resolve conflicts between themselves,
whenever negotiation is required for the provision of complex services. The model
relies upon an argumentation framework that is used in a modular architecture where
Knowledge, Goals, Decisions and Priorities are manipulated by three specialized
modules dealing with decision making, communication and negotiation. We formu-
late a distributed e-procurement process to illustrate how our agents select services
and partners and can negotiate with one another.

Maxime Morge
Université Lille 1, France
e-mail: Maxime.Morge@univ-lille1.fr

Jarred McGinnis
Press Association, London UK
e-mail: Jarred.Mcginnis@pressassociation.com

Stefano Bromuri
University of Applied Science, Western Switzerland
e-mail: Stefano.Bromuri@hevs.ch

Paolo Mancarella
Università di Pisa, Italy
e-mail: Paolo.Mancarella@unipi.it

Kostas Stathis
Royal Holloway, University of London, UK
e-mail: Kostas.Stathis@cs.rhul.ac.uk

Francesca Toni
Imperial College London, UK
e-mail: ft@doc.ic.ac.uk

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 217–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

Maxime.Morge@univ-lille1.fr
Jarred.Mcginnis@pressassociation.com
Stefano.Bromuri@hevs.ch
Paolo.Mancarella@unipi.it
Kostas.Stathis@cs.rhul.ac.uk
ft@doc.ic.ac.uk

218 M. Morge et al.

1 Introduction

Service-oriented computing (SOC) is an emerging inter-disciplinary paradigm for
distributed computing, which is changing the way software applications are devel-
oped, deployed and utilised. The central theme of service-oriented computing are
services that provide autonomous, platform-independent, computational elements
that can be described, published, discovered, orchestrated and programmed using
standard protocols to build networks of collaborating applications distributed within
and across organizational boundaries.

The underlying principles and methodologies of SOC assume a service-oriented
architecture (SOA). A basic SOA is often understood as defining an interaction
between software agents as an exchange of messages between service requesters
(clients) and service providers [50]. Clients are software agents that request the ex-
ecution of a service. Providers are software agents that provide the service. Agents
can be simultaneously both service clients and providers. Providers are responsible
for publishing a description of the service(s) they provide. Clients must be able to
find the description(s) of the services they require and must be able to bind to them.
The basic SOA is not an architecture only about services, it is a relationship of three
kinds of participants: the service provider, the service discovery agency, and the
service requestor (client).

One of the main issues for SOC applications is how to compose services by as-
suming an open environment where the relationship of service providers, clients and
discovery agencies change over time as new agents enter and/or leave the applica-
tion dynamically. The issue here is how to establish a possible service composition
by negotiating terms and conditions of the participating services for a given dura-
tion and according to the requirements and the goals the clients and the providers
have to satisfy. The problem here is how to develop mechanisms that allow this ne-
gotiation to take place by reducing possible conflicts to support successful service
compositions.

To address the issues involved in negotiating complex and composite services,
we present an argumentation-based model of agency and its associated architecture
to support SOC applications. Argumentation is used to support the agent to reason
about services, engage in communicative interaction with other agents to negoti-
ate desired service properties, resolve conflicts and eventually make decisions of
which service or partner to select. Argumentation’s main strength is that it allows an
agent to plead for and against conclusions [52], providing a powerful deliberative
and dialectical model for interacting, decision-making agents to assess the validity
of received information and to be able to resolve conflicts and differences of opin-
ion. It is an essential ingredient of decision-making [29, 4, 7, 45, 48], inter-agent
communication [40], and negotiation [53, 30, 2].

The proposed agent model was developed within ArguGRID, an EU-funded
project1 that started in 2006 and ended in 2009. ArguGRID has also developed
a multi-agent systems platform, a peer-to-peer infrastructure and an environment
for users to interact with agents and the overall system, by authoring workflows of

1 http://www.argugrid.eu/

9 Argumentative Agents for Service-Oriented Computing 219

services, hosted upon a Grid platform. While presenting the agent model, we will
also emphasise the links between this and the other components of the ArguGRID
system.

As shown in Figure 1, argumentation agents in ArguGRID are deployed within a
Grid/Service-oriented platform to represent service clients and providers. The plat-
fom consists of four main interacting components.

Fig. 1 ArguGRID Platform

KDE is a commercial software tool developed by InforSense Ltd2. This system
provides facilities to build end user application as remote Web services or Grid
services [24]. For the needs of ArguGRID, the KDE system has been extended to
support semantic descriptions. In this way, requester goals representing user require-
ments can be matched with concrete services and can be executed within the Grid in-
frastructure. KDE was chosen as a supporting technology for the ArguGRID project
because InforSense was the main developer of KDE and ArguGRID had several
exploitation advantages from the perspective of a company working on workflow
management systems.

GRIA3 is the GRID middleware that ArguGRID has chosen to use to support its
scenarios. GRIA is a service-oriented infrastructure designed particularly to support
Business-to-Business collaborations (such as the ones required by the ArguGRID
scenarios) through service provision across organisational boundaries in a secure,
interoperable and flexible manner. In particur GRIA was chosen as it is one of the
main technologies to represent Web services on the Grid.

2 http://www.inforsense.com
3 http://www.gria.org

220 M. Morge et al.

PLATON4 (Peer-to-Peer Load Adjusting Tree Overlay Networks) is a Peer-to-
Peer platform supporting multi-attribute and range queries [36] which has been
developed in the ArguGRID project to support service discovery mechanisms for
load-balancing of peer resources. Load-balancing of peer resources is necessary in
order to guarantee logarithmic querying time using any distributed tree-based multi-
attribute Peer-to-Peer platform. The reason to include a P2P platform in the project
was to allow ArguGRID to scale up to possibly thousands of services. In particular
PLATON allows to perform multidimensional queries on our Web services, mean-
ing that we can represent Web services in terms of complex descriptions as we will
see later in Section 6.

GOLEM5 (Generalized OntoLogical Environments for Multi-agent systems) is
an agent environment middleware [10] which has been developed in the ArguGRID
project. In this chapter, we present how to use GOLEM to host MARGO agents.
The deployment of these agents will be described in Section 6. The GOLEM agent
platform was chosen as it allows a simple integration between agents and exter-
nal entities represented as objects in the GOLEM agent environment. In particular,
GOLEM has been helpful to represent Web services in terms of objects accessible
by the agents of ArguGRID.

As shown in Figure 1, the operation of the platform from the point of view of
service requestors can briefly be explained as follows:

1. a user develops an abstract workflow reflecting his/her requirements using the
KDE;

2. the abstract workflow is then communicated to the agent that reasons about ser-
vices and makes decisions, aiding the refinement process of the abstract work-
flow;

3. the reasoning capabilities of the agent are based on using the MARGO argu-
mentation engine for decision-making, which in turn uses the CaSAPI general-
purpose argumentation engine;

4. in order to discover an appropriate agent or a GRIA Grid service, agents are
given the capability to use the P2P platform, linking all available agents and
GRIA services in a virtual registry that can be queried;

5. an agent can negotiate with other agents to find a concrete workflow whose ex-
ecution will satisfy the application requirements, as stated in the abstract work-
flow;

6. agents can query the KDE system about SLA (Service Level Agreement) tem-
plates, needed for creating a concrete workflow that satifies user preferences.

7. the KDE, by accesing GRIA nodes, can retrieve information about SLA’s;
8. having carried out its mission, the agent representing the user (i.e. the initial

agent that received the abstract workflow from the KDE) will return to the KDE
the concrete workflow, constituted of a set of GRIA services to be executed in a
certain manner/sequence;

4 http://platonp2p.sourceforge.net
5 http://www.golem.cs.rhul.ac.uk

9 Argumentative Agents for Service-Oriented Computing 221

9. the KDE shows the suggested workflow to the user. If the user rejects the sug-
gestion, a new workflow would be created;

10. the KDE executes and monitors the resulting workflow. Details about execution
and the final results are presented to the user.

Given the ArguGRID context, the main focus and contribution of this work is an
argumentation-based agent mind applied to service selection and partner selection
in an e-procurement scenario as described in [58]. The e-procurement scenario illus-
trates how agents support the selection and provision of services for their integration
in an open and distributed environment. In this context, a human user requesting a
service is only required to specify an abstract description of his needs for these ser-
vices, possibly with some constraints and preferences about them. The selection of
these services, as well as the selection of partners, are tasks delegated to the au-
tonomous agents.

The mind of our agents is composed of three main modules: (i) the individual
decision making module, allowing to translate the goals, preferences, and constraints
provided by the user requesting a service to an internal and abstract representation
of the user’s needs (ii) the social decision making module, allowing to move, by
means of negotiation, from these abstract representations to concrete ones, in terms
of contracts; (iii) the social interaction module, managing the communication given
social rules of interaction.

Note that the services available in ArguGRID are encapsulated in Web services
and available to the agents deployed in the ArguGRID platform. In this chapter we
do not focus on how these services are implemented, but we rather focus on how
the agents can select these services, according to their characteristics, by means of
argumentation. Thus, we are not concerned with defining semantic Web reasoners
or ontologies to describe Web services. We have assumed a fixed ontology that is
common to the agents involved in the procurement process and in order to focus on
argumentation, communication protocols and the reasoning process.

The remainder of this chapter is organised as follows: Section 2 provides a de-
tailed discussion about the motivating e-procurement scenario; Section 3 discusses
the background formalisms and technologies on which we built the agent interaction
in our ArguGRID e-procurement scenario; Section 4 provides the architecture of our
cognitive model; Section 5 illustrates the agents’ deliberation and communication
capabilities with a case run of a e-procurement scenario; Section 6 describes im-
plementation issues related to the deployment of our multi-agent system; Section 7
discusses related work; finally, Section 8 concludes by summarising our proposal
and discussing our future plans.

2 Motivation: An E-Procurement Scenario

In order to illustrate our model and architecture, we consider an e-procurement sce-
nario, introduced in [58], where a buyer seeks to purchase combined services/prod-
ucts from A-type and B-type suppliers. The e-procurement scenario is particularly
suitable for our evaluation as it implies the use of distributed agents representing

222 M. Morge et al.

distributed services that require to reach an agreement by means of negotiation pro-
tocols between buyers and suppliers. The suppliers combine their competencies in
order to provide solutions for the buyer. Each agent is representing a user, i.e. a
service requester or a service provider. Then, each agent may be responsible for
many different Web services. This operation is typically achieved by means of a 6-
steps procurement process whereby: a requester looks for potential suppliers (step
1), gathers information in order to evaluate the potential suppliers (step 2), creates a
short-list according to this information (step 3). The requester asks the short-listed
suppliers to provide a quote for the services (step 4), chooses one of the suppliers
(step 5), and finally the requester and the winner negotiate the terms & conditions
of the contract, such as the price and the warranty (step 6). If this last step is un-
successful, the process goes back to the step 5. When no suitable service is found,
the requester agent asks its user to reconsider his needs by relaxing the constraints.
Figure 2 summarises these steps and indicates the types of dialogues required to
support them. These dialogues should conform to suitable protocols.

find potential providers get providers’ features create shortlist

choose winner get services’ quotes

information−seeking

information−seeking
negotiation

argumentation−based
n/a

n/a

unsuccessful negotiation

information−seeking

negotiate specific termsno
 s

ui
ta

bl
e

se
rv

ic
e

Fig. 2 Deliberative steps for e-procurement

The exchange of offers and acceptances may lead to contracts, i.e. legal relations
between providers and requesters that typically force commitments (e.g. obliga-
tions) from one agent to another about the provision of services. In this chapter,
we will assume that contracts are simple transactions between a provider and a re-
quester, characterised by features of the services provided, and will ignore complex
issues such as enforcement of commitments, sanctions, penalties, etc. Our definition
of contract is given in Section 4.3. The contracts create virtual organisations (VO,
for short) consisting of the buyer, the selected A-type agent and the selected B-type
agent.

Within the e-procurement scenario we consider a specific case where a buyer
looks for an e-ordering system (S) which is composed of a computer system (Sa)
and an Internet connection (Sb). The A-type agents providing Sa are Al and Alice.
While Alice is responsible for the concrete instances of services Sa(a1) and
Sa(a2), Al can provide Sa(a3) and Sa(a4). The B-type agents providing Sb are Bob

9 Argumentative Agents for Service-Oriented Computing 223

and Barbara. Bob is representing the concrete services Sb(c), Sb(d), Sb(e) and
Sb(f). On the other hand, Barbara is representing the services Sb(g) and Sb(h).
A-type agents are responsible to select B-type agents and provide the combined S
to the buyer (cf Figure 3). A possible VO in this case may consist of Bob, Al and
the buyer, with two contracts: the first is between the buyer and Al and concerns
the combined service S, the second is between Al and Bob and concerns service Sb.
These contracts may be negotiated as follows. At first, the buyer plays the role of re-
quester and all A-type agents play the role of potential suppliers in an e-procurement
process for service S. In turn, the A-type agents play the role of requesters and the
B-type agents play the role of potential suppliers in an e-procurement process for
service Sb.

Fig. 3 Use case scenario

In the remainder of this chapter, we will focus on the e-procurement process
involving Al as a requester, and Bob as a supplier. Al’s goal consists of finding and
agreeing to a service Sb provided by a B-type agent. According to its preferences
and constraints:

• the cost of the service must be low (e.g. within a budget of 10 euros per month),
and

• the quality of the service must be high (e.g. with warranty of a 24 hours assis-
tance).

224 M. Morge et al.

Taking into account its goal and preferences/constraints, Al needs to solve a
decision-making problem where the decisions amount to a service and a supplier for
that service. On the other hand, the goal of the supplier Bob consists of a decision-
making problem about providing a service. According to Bob’s preferences and
constraints:

• the cost of the service must be high (e.g. within a budget of 40 euros per month),
and

• the quality of the service must be low (e.g. with warranty of a 2 hours daily
assistance).

A negotiation is a multi-step interaction between Al and Bob by means of which
the agents aim at achieving the common goal to make a deal while resolving their
conflicting interests about the cost and the quality of the service. The main strength
of the argumentation-based approach we will use is to provide extra information
during the interaction. For this purpose, we will assume the agents share a set of
common ontologies to describe the services (in particular the intervals in which
the price and warranty can be contracted). Moreover, argumentation-based decision
making allows agents to identify and resolve the possible conflicts. The two deci-
sion making processes of the participants take place in a dynamic setting, whereby
information about other agents, the services they require/provide and the character-
istics of these services are obtained incrementally within the e-procurement process
outlined in Figure 2. As we will see later on, the outcome of this process is the con-
tract obliging Bob to provide a service Sb to Al, with low cost (e.g. 10 euros per
month) and low quality (e.g. a warranty of a 2 hours daily assistance).

Within our proposed agent model and architecture, the decision-making process
of each agent, as well as the e-procurement negotiation process are supported by
argumentation. In the concrete use case, Al, as a requester, uses argumentation to
collect information on the available services and on the suppliers. For instance, Al
can ask Alice its opinion about Bob and ask to justify it (by providing an argu-
ment for it). Al (respectively Bob), as a requester (respectively as a provider), uses
argumentation to decide which service it needs (respectively it can provide) taking
into account the conflicting preferences/constraints and possibly the inconsistency
of information it has gathered. Moreover, through argumentation, the participants
provide an interactive and intelligible explanation of their choices. For instance, Al
can argue that a service is a good deal when its cost is low. The previous argument
will incite Bob to suggest services with a low cost to reach quickly a good deal.
Thus, in our framework agents can use argumentation to influence each other.

3 Background on Argumentation and Protocol Language

In this section we discuss about the background formalisms that are necessary to
understand the interaction happening in our ArguGRID e-procurement scenario.

9 Argumentative Agents for Service-Oriented Computing 225

3.1 MARGO

MARGO6 (Multiattribute ARGumentation framework for Opinion explanation),
written in Prolog, is the engine developed in the ArguGRID project for service selec-
tion and partner selection. We briefly present here the computational argumentation
framework for decision-making which has been proposed in [45]. We do not de-
scribe the computational counterpart of MARGO (see [46] for more details) but the
reader can notice that our framework is computed by the dialectical proof proce-
dure of [19] extended in [23]. Concretely, MARGO is built upon the argumentation
engine CaSAPI7. So that, we can compute the decisions. Additionally, MARGO
models the intuition that high-ranked goals are preferred to low-ranked goals which
can be withdrawn. At first, we introduce here argumentation. Then, we define the
framework which captures decision making problems. Finally, we define the argu-
ments and their interaction.

3.1.1 Abstract Argumentation

The framework proposed in this chapter is based on Dung’s abstract approach to
defeasible argumentation [18] which considers arguments as atomic and abstract
entities interacting through a defeat relation over these8.

Definition 1 (AAF). An abstract argumentation framework AAF is a pair
〈A , defeats 〉 where A is a finite set of arguments and defeats ⊆ A ×A is
a binary relation over A . We say that an argument b defeats an argument a if
(b,a) ∈ defeats . Moreover, we say that a set of arguments S defeats an argument
a if (b,a) ∈ defeats for some b in S.

An argument can be viewed as a reason supporting a claim which can be disputed
by other reasons defeating it.

According to this framework, Dung introduces various extension-based seman-
tics in order to analyse whenever a set of arguments can be considered as collectively
justified.

Definition 2 (Semantics). Let 〈A , defeats 〉 be an AAF. For a set of arguments
S⊆A , we say that:

• S is conflict-free iff ∀a,b ∈ S a does not defeat b;
• S is admissible iff S is conflict-free and S defeats every argument a such that a

defeats some arguments in S;
• S is preferred iff S is maximally (wrt set inclusion) admissible;
• S is complete iff S is admissible and S contains all arguments a such that S

defeats all defeaters against a;
• S is grounded iff S is minimally complete.

6 http://margo.sourceforge.net
7 http://www.doc.ic.ac.uk/ ft/CaSAPI/
8 Actually, the defeat relation is called attack in [18].

226 M. Morge et al.

These declarative semantics capture various degrees of justification ranging from
very permissive conditions, called credulous, to restrictive requirements, called
sceptical. The semantics of an admissible (or preferred) set of arguments is credu-
lous. However, there might be several conflicting admissible sets. That is the reason
why various sceptical semantics have been proposed, notably the grounded seman-
tics. Since an ultimate choice between various justified sets of alternatives is not
always possible, we consider in this chapter only the credulous semantics.

3.1.2 Decision Framework

The problem of selecting services and partners can be seen as a multi-criteria deci-
sion problem with incomplete knowledge. In this chapter, we use influence diagrams
to create a model and a representation of this kind of problem.

We assume that users provide, via a Graphical User Interface (GUI), influence
diagrams. Influence diagrams are simple graphical representations of decision prob-
lems [13]. The elements of decision problems (decisions to make, uncertain events,
and the value of outcomes) are represented in influence diagrams as nodes of differ-
ent shapes. These nodes are linked to show the relationship between the elements.
The nodes are of the following types: decision nodes (represented as squares),
chance nodes (represented as ovals), and value nodes (represented as rectangles
with rounded corners). Nodes are connected in a graph connected by arrows, called
arcs. We call a node at the beginning of an arc a predecessor and one at the end of
an arc a successor. The nodes are connected by arcs where predecessors are inde-
pendent and affect successors. Influence diagrams which are properly constructed
have no cycles. In order to capture multi-criteria decision making, it is convenient to
include an additional type of node that aggregates results from predecessor nodes.
An abstract value node is a special kind of value node represented by a rectangle
with rounded corners and double borders. A concrete value is specified for every
possible combination of decisions and events that feed into this node. By contrast,
an abstract value is specified for every possible combination of values that feed into
this node. In many cases, decision is a matter of trade-offs between the attributes
of the outcomes. In such a case, it is possible to represent explicitly the multiple at-
tributes with a hierarchy of values where the top, abstract values aggregate the lower,
concrete values. In addition, the GUI allows the user to communicate user-specific
preferences over values and events.

Influence diagrams can be mapped into decision frameworks of the following
form:

Definition 3 (Decision framework). A decision framework is a tuple
D = 〈L ,A sm, I ,T ,�〉, where:

• L is the object language which captures the statements about the decision prob-
lem;

• A sm, is a set of sentences in L which are taken for granted, called assumptions;
• I is the incompatibility relation, i.e. a binary relation over atomic formulas

which is asymmetric;

9 Argumentative Agents for Service-Oriented Computing 227

• T is the theory which gathers the statements;
• � ⊆ T ×T is a transitive, irreflexive and asymmetric relation over T , called

the priority relation.

In the object language L , we distinguish six disjoint components:

• a set of abstract goals, i.e. some propositional symbols which represent the ab-
stract features that the decisions must exhibit implicitly;

• a set of concrete goals, i.e. some propositional symbols which represent the con-
crete features that the decisions must exhibit explicitly;

• a set of decisions, i.e. some predicate symbols which represent the actions which
must be performed or not;

• a set of alternatives, i.e. some constant symbols which represent the mutually
exclusive actions for each decision;

• a set of beliefs, i.e. some predicate symbols which represent epistemic state-
ments;

• a set of names of rules in T (each rule has a distinguished name).

The abstract (respectively concrete) goals represent the abstract (respectively con-
crete) value nodes, the decisions represent the decision nodes, and the beliefs rep-
resent the chance nodes in influence diagrams. Since we consider multi-criteria de-
cision problems, goals are structured hierarchically, where the top, abstract goals
aggregate the independent lower goals.

We explicitly distinguish assumable (respectively non-assumable) literals which
can (respectively cannot) be taken for granted, meaning that they can (respectively
cannot) be assumed to hold as long as there is no evidence to the contrary. Decisions
as well as some beliefs can be taken for granted. In this way, a decision framework
can capture incomplete knowledge.

Since we want to consider conflicts in this object language, we need some form of
negation. For this purpose, we consider strong negation, also called explicit or clas-
sical negation, and weak negation, also called negation as failure. A strong literal
is an atomic first-order formula, possible preceded by strong negation ¬. A weak
literal is a literal of the form ∼ L, where L is a strong literal of L . ¬L says “L is
definitely not the case”, while ∼ L says “There is no evidence that L is the case”.
In order to express the mutual exclusion between statements, such as the different
alternatives for a decision, we define the incompatibility relation (denoted by I)
as a binary relation over atomic formulas which is asymmetric. In other words, the
incompatibility relation captures the conflicts between decisions, beliefs and goals.
Whatever the atom L is, we have L I ¬L and ¬L I L, while we have L I ∼ L
but we do not have ∼ L I L. Obviously, D(a1) I D(a2) and D(a2) I D(a1), D
being a decision predicate, a1 and a2 being different9 alternatives for D. We say that
two sets of sentences Φ1 and Φ2 are incompatible (denoted Φ1 I Φ2) iff there is a
sentence φ1 in Φ1 and a sentence φ2 in Φ2 such that φ1 I φ2.

A theory gathers the statements about the decision problem.

9 Notice that in general a decision can be addressed by more than two alternatives.

228 M. Morge et al.

Definition 4 (Theory). A theory T is an extended logic program, i.e a finite set of
rules R: L0← L1, . . . ,Lj,∼ Lj+1, . . . ,∼ Ln with n ≥ 0, each Li (with i ≥ 0) being a
strong literal in L . The literal L0, called the head of the rule, is denoted head(R).
The finite set {L1, . . . ,∼ Ln}, called the body of the rule, is denoted body(R). The
body of a rule can be empty. In this case, the rule, called a fact, is an unconditional
statement. R, called the unique name of the rule, is an atomic formula of L . All
variables occurring in a rule are implicitly universally quantified over the whole
rule. A rule with variables is a scheme standing for all its ground instances.

For simplicity, we will assume that the names of rules are neither in the bodies
nor in the head of the rules thus avoiding self-reference problems. Since we obtain
our decision problems from influence diagrams, we assume that the elements in the
body of rules are independent, the decisions do not influence the beliefs, and the
decisions have no side effects.

Considering a decision problem, we distinguish:

• goal rules of the form R: G0←G1, . . . ,Gn with n > 0. Each Gi is a goal literal in
L . The head of the rule is an abstract goal (or its strong negation). According to
this rule, the abstract goal is promoted (or demoted) by the combination of goal
literals in the body;

• epistemic rules of the form
R: B0← B1, . . . ,Bn with n≥ 0. Each Bi is a belief literal of L . According to this
rule, B0 is true if the conditions B1, . . . ,Bn are satisfied;

• decision rules of the form
R: G ← D(a),B1, . . . ,Bn with n ≥ 0. The head of the rule is a concrete goal
(or its strong negation). The body includes a decision literal (D(a) ∈L) and a
set of belief literals possibly empty. According to this rule, the concrete goal is
promoted (or demoted) by the decision D(a), provided that conditions B1, . . . ,Bn

are satisfied.

Considering statements in the theory is not sufficient to make a decision. In order
to evaluate the previous statements, other relevant pieces of information should be
taken into account, such as the uncertainty of beliefs, the priority between goals,
or the expected utilities of the decisions. For this purpose, we consider the priority
relation� on the rules in T , which is transitive, irreflexive and asymmetric. R1�R2

can be read “R1 has priority over R2”. R1 � R2 can be read “R1 has no priority over
R2”, either because R1 and R2 are ex æquo, or because R1 and R2 are not comparable.

In this work, we consider that all rules are potentially defeasible and that the
priorities are domain-specific and extra-logical features, neither determined nor jus-
tified by consideration of logic. The priority over concurrent rules depends of the
nature of rules. Rules are concurrent if their heads are identical or incompatible. We
define three priority relations between concurrent rules:

• the priority over decision rules comes from the expected utility of decisions. The
priority of such rules corresponds to the expectation of the conditional decision
in reaching the goal literal. For instance, we need to choose a train or a flight
in order to go from Pisa to Roma. Even if a direct flight exists, train is cheaper.

9 Argumentative Agents for Service-Oriented Computing 229

The expected utilities of these decisions can be captured by the priority between
concurrent decision rules;

• the priority over goal rules comes from the priority overs goals. The prior-
ity of such rules corresponds to the relative importance of the combination of
(sub)goals in the body as far as reaching the goal literal in the head is concerned.
For instance, we prefer a cheap travel rather than an expensive one which is fast.
This preference can be captured by the priority between concurrent goal rules;

• the priority over epistemic rules comes from the uncertainty of knowledge. The
priority of such rules corresponds to the likelihood of the rules. For instance, an
Italian travel agency asserts that there is a direct flight between Pisa and Roma,
while an international travel agency asserts that this is not the case. If you trust
more the Italian agency, the fact that a direct flight exists is likely. The likelihood
of a belief can be captured by the priority between concurrent epistemic rules.

3.1.3 Structure of Arguments

In order to turn the decision framework presented in the previous section into a
concrete argumentation framework, we need first to define the notion of argument.
Since we want that our AF not only suggests some decisions but also provides an
intelligible explanation of them, we adopt a tree-like structure of arguments. We
adopt here the tree-like structure for arguments proposed in [62] and we extend it
with presumptions on the missing information.

Informally, an argument is a deduction for a conclusion from a set of suppositions
represented as a tree, with conclusion at the root and suppositions at the leaves.
Nodes in this tree are connected by the inference rules, with sentences matching
the head of an inference rule connected as parent nodes to sentences matching the
body of the inference rule as children nodes. The leaves are either suppositions or
the special extra-logical symbol θ , standing for an empty set of premises. Formally:

Definition 5 (Argument). An argument is composed of a conclusion, a top rule,
some premises, some suppositions, and some sentences. These elements are abbre-
viated by the corresponding prefixes. An argument a may be one of the following:

1. a hypothetical argument with:

conc(a) = L,
top(a) = θ ,
premise(a) = /0,
supp(a) = {L},
sent(a) = {L}.

where L is an assumable belief literal.
or

2. a built argument which may be

2.1) a trivial argument a built upon a fact f in T (i.e. body(f) = /0), defined
as follows:

230 M. Morge et al.

conc(a) = head(f),
top(a) = f ,
premise(a) = /0,
supp(a) = /0,
sent(a) = {head(f)}.

2.2) a tree argument a built upon the rule r and the set {a1, . . . ,an} of argu-
ments, where r is a rule in T with body(r) = {L1, . . . ,Lj,∼ Lj+1, . . . ,∼ Ln}
and there is a collection of arguments {a1, . . . ,an} such that, for each strong
literal Li ∈ body(r), conc(ai) = Li with i ≤ j and for each weak literal
∼ Li ∈ body(r), conc(ai) =∼ Li with i > j. a is defined as follows:

conc(a) = head(r),
top(a) = r,
premise(a) = body(r),
supp(a)=∪ai∈{a1,...,an}supp(ai),
sent(a)={head(r)}∪body(r)

∪ai∈{a1,...,an}sent(ai).

The set of arguments {a1, . . . ,an} is called the set of subarguments of a (de-
noted sbarg(a)).

The top rule of an argument is the rule whose head is the conclusion of the argument.
Notice that the subarguments of a tree argument concluding the weak literals in the
body of the top rule are hypothetical arguments. Indeed, the conclusion of a hypo-
thetical argument could be a strong or a weak literal while the conclusion of a built
argument is a strong literal. As in [62], we consider composite arguments, called tree
arguments, and atomic arguments, called trivial arguments. Contrary to other defini-
tions of arguments (set of assumptions, set of rules), our definition considers that the
different premises can be challenged and can be supported by subarguments. In this
way, arguments are intelligible explanations. Moreover, we consider hypothetical
arguments which are built upon missing information or a suggestion, i.e. a decision.
In this way, our framework allows to reason further by making suppositions related
to unknown beliefs and over possible decisions.

3.1.4 Interaction

The interactions between arguments may come from the incompatibility of their
sentences, from their nature (hypothetical or built) and from the priority over rules.
We examine in turn these different sources of interaction.

Since their sentences are conflicting, the structured arguments interact with one
another. For this purpose, we define the following attack relation.

Definition 6 (Attack relation). Let a and b be two arguments. a attacks b iff
sent(a) I sent(b).

According to this definition, if an argument attacks a subargument, the whole argu-
ment is attacked.

9 Argumentative Agents for Service-Oriented Computing 231

Since arguments are more or less hypothetical, we define the size of their
suppositions.

Definition 7 (Supposition size). Let a be an argument. The size of suppositions
for a, denoted suppsz(a), is the number of supposition of a: suppsz(a) =
|supp(a)|.
Namely, the size of suppositions for an argument is the number of decision literals
and assumable belief literals in the sentences of the argument.

Since arguments have different natures (hypothetical or built) and the top rules of
built arguments are more or less strong, we define the strength relation as follows.

Definition 8 (Strength relation). Let a1,a2 be two built arguments. a1 is stronger
than a2 (denoted a1�a2) iff

1. either (top(a1)�top(a2)), then a1 � a2;
2. or (top(a1)� top(a2))∧ (suppsz(a1)< suppsz(a2)) , then a1 � a2.

An argument is stronger than another argument if the top rule of the first argument
has a proper higher priority that the top rule of the second argument, or if it is not the
case but the number of suppositions made in the first argument is properly smaller
than the number of suppositions made in the second argument.

The two previous relations can be combined.

Definition 9 (Defeats). Let a and b be two arguments. a defeats b iff: i) a attacks b
and ; ii) ¬(b � a).

Our notion of argument and this defeat relation can be used within the Dung’s sem-
inal calculus of opposition.

The implementation of this argumentation framework, called MARGO10, is built
upon the implementation of [20] in the CaSAPI system [23].

3.2 Protocol Language

In the ArguGRID project, we use the Lightweight Coordination Calculus (LCC)
of [55] which is a declarative logic programming language in the style of Pro-
log, augmented with CCS (a process calculus for communicating systems). LCC
allows to drive all social interactions and allows to write once-execute everywhere
protocols.

Figure 4 defines the syntax of the LCC protocol language. A protocol consists of
a set of agent clauses, A{n}. An agent clause is the series of communicative actions
expected to be performed by an agent adopting the role defined by the agent defi-
nition. This agent definition consists of a role (role) and unique identifier (ag). The
roles act as a bounding box for a set of states and transitions. The agent definition
is expanded by a number of operations. Operations can be classified in three ways:
actions, control flow, and conditionals. Actions are the sending or receiving of mes-
sages, a no op, or the adoption of a role. Control flow operations temporally order

10 http://margo.sourceforge.net

232 M. Morge et al.

P ∈ Protocol ::=A{n}
A ∈ AgentClause ::=λ :: op.
λ ∈ AgentDefinition agent(role,ag)
op ∈ Operation no op

—λ
(Precedence) —(op)
(Send) —M ⇒ λ
(Receive) —M ⇐ λ
(Sequence) —op1 then op2
(Parallelization) —op1 par op2
(Choice) —op1 or op2
(Prerequiste) —(M ⇒ λ) ← ψ
(Consequence) —ψ ← (M ⇒ λ)

M ∈ message ::=〈m,P〉
Fig. 4 An Abstract Language of the Protocol Language

the individual actions. Actions can be sequentially ordered, performed simultane-
ously without regard to order, or given a choice point. The definition of the double
arrows denote messages M being sent and received. On the left hand side of the
double arrow is the message and on the right-hand side is the other agent involved
in the interaction.

Constraints can fortify or clarify the semantics of the protocols. Those occurring
on the left of the← are post-conditions and those occurring on the right are precon-
ditions. The symbol ψ represents a first order proposition. For example, an agent
receiving a protocol with the constraint to believe a proposition s upon being in-
formed of s can infer that the agent sending the protocol has a particular semantic
interpretation of the act of informing other agents of propositions. The operation
(M ⇒ λ)← ψ is understood to mean that message M is being sent to the agent
defined as λ on the condition that ψ is satisfiable. The operation ψ ← (M ⇒ λ)
means that once M is received from agent, ψ holds.

4 Agent Architecture

In this section, we outline the mind/body architecture of our agents, focusing on the
mind component.

Our agent architecture, pictured in Figure 5, is adapted from the mind/body archi-
tecture of [9], extended in GOLEM [10]. The body senses what is external to it by
using the Communication Module (CM), which can access the external world, i.e.
the events generated by the Graphical User Interface (GUI) and messages coming
from other agents as well as the registry used for the partner discovery. Messages re-
ceived are then stored in the Incoming Message Queue (IMQ) until they are treated.
Similarly, the messages that the agent wants to send are stored in the Outgoing
Message Queue (OMQ). The mind and the body can function as co-routines, thus

9 Argumentative Agents for Service-Oriented Computing 233

Body

Mind

DCS PL

Individual
Decision
Making
Module
(IDMM)

Social
Decision
Making
Module

(SDMM)

Social
Interaction

Model
(SIM)

IKB SKB

IMQ OMQ

Graphic User
Interface (GUI)

Other agents and
the registry

Communication
Module (CM)

Modules reads data

Modules writes data

Modules read/writes data

Interaction between modules

Interaction with externalities

X Module (XM)

Module

Data Structure

Data

Fig. 5 The modular architecture of agents

allowing the reasoning processes of the mind to be performed concurrently with the
body sending and receiving messages.

Our cognitive agents’ mind is divided into three modules:the Individual Decision
Making Module (IDMM), the Social Decision M aking Module (SDMM) and the
the Social Interaction Module (SIM).

4.1 Individual Decision Making

The Individual Decision Making Module (IDMM), supports the reasoning about
the provided and requested services. The IDMM is supported by the concrete data
structures in the Individual Knowledge Base (IKB). Decisions are made according
to the user’s requirements or competencies about the services, the alternative types
of services, and the users’ preferences and constraints.

Users can provide their requirements to the agents through a GUI to draw influ-
ence diagrams, where they can display the structure of the decision problem about
the services provided or to be obtained. In addition, the GUI allows the user to
communicate user-specific details, in particular preferences and constraints. For in-
stance, Figure 6 gives the influence diagram related to the evaluation of services by
an A-type agent, e.g. Al. The top, main goal (provision) is split into indepen-
dent abstract sub-goals concerning the cost (cost) and the quality of service (qos).

234 M. Morge et al.

provision

�cost qos

�costa costb qosa � qosb

Sa(x) Sb(y)

price(x,px) price(y,py) warranty(x,wx) warranty(y,wy)

h
i
g
h�

l
o
w

l
o
w�

h
i
g
h

l
o
w�

h
i
g
h

h
i
g
h�

l
o
w

Fig. 6 Influence diagram to structure the decision

These sub-goals are reduced to further concrete sub-goals. For instance, the quality
of service depends on the quality of the service Sa (qosa) and on the quality of the
service Sb (qosb). While abstract goals just reflect the user’s needs, concrete goals
provide criteria to evaluate different alternatives.

The main goal, the provision of a composite service S, needs to be addressed by
some decisions, e.g. on which concrete Sa and Sb service to adopt (by appropriately
instantiating variables x and y 11 in Figure 6). Note that Al is a candidate provider
of service Sa in our use case, but may be able to provide several instances of this
service, namely x may be instantiated in many different ways. Instead, Al is not a
candidate provider of service Sb, and needs to choose one. These decisions depend
on the agent knowledge, namely information about the concrete services provided
by Al itself and B-type providers (e.g. price, warranty).

The user provides also his preferences and constraints. For example, the user
may specify that cost is more important to the user than qos as far as reaching
provision is concerned. Priorities are attached to goals, decisions and knowl-
edge in an influence diagram to represent the preferences over goals, the expected
utilities of decisions, and the uncertainty of the knowledge.

The structure of the decision problem related to the evaluation of services and
the associated priorities are stored within the agent’s knowledge bases (in par-
ticular the IKB) and reasoned upon by the IDMM. In ArguGRID, the IDMM is

11 Throughout the chapter we adopt the following convention: variables are in italics and
constants are in typescript font.

9 Argumentative Agents for Service-Oriented Computing 235

realised using our argumentation framework for decision making. For instance, the
knowledge bases corresponding to the influence diagram of Figure 7 are repre-
sented in Table 1. The goal rules are depicted at top, while the decision rules are
depicted at the bottom. In this example, there is no epistemic rule. That is the reason
why the incorporation of supposition on missing information is essential to perform
the individual reasoning of requester agents. A rule above another one has priority
over it. To simplify the graphical representation of the rules, they are stratified in
non-overlapping subsets, i.e. different levels. The ex æquo rules are grouped in the
same level. Non-comparable rules are arbitrarily assigned to a level. The goal rules
express that achieving cost and qos is ideally required to reach provision,
but this can be relaxed: achieving the goal cost is enough to reach provision
(r012�r01). Contrary to the other rules in Table 1, r01 is not in the IKB which
reflects the own user requirements represented by Al but r01 is the output of the
previous interaction between Al and the buyer stored in the DCS. r01 reflects the
preference of the customer represented by the buyer agent.

r012 : provision← cost,qos
r01 : provision← cost
r134 : cost← costa,costb
r256 : qos← qosa,qosb

r32(x) : costa← Sa(x),price(x,high)
r41(y) : costb← Sb(y),price(y,low)
r51(x) : qosa← Sa(x),warranty(x,low)
r62(y) : qosb← Sb(y),warranty(y,high)
r31(x) : costa← Sa(x),price(x,low)
r42(y) : costb← Sb(y),price(y,high)
r52(x) : qosa← Sa(x),warranty(x,high)
r61(y) : qosb← Sb(y),warranty(y,low)

Table 1 The goal rules (at top) and the decision rules (at bottom) representing the users
requirements

These concrete data structures (rules and priorities) provide the backbone of ar-
guments. For instance, Al can build an admissible argument concluding that the
goal related to the cost of the service Sb is reached by choosing Sb(x) if we suppose
that the price of service Sb(x) is low.

The IDMM interacts with the other components of the architecture as follows.
It interacts with the GUI, through the CM, which uses the GOLEM environment
as a mediator to interact with other entities in the system and the user. The IDMM
is informed and responds when a service is (or must be) instantiated. The IDMM
interacts with the SDMM by asking or by providing the instantiation of the abstract

236 M. Morge et al.

or partially instantiated service, and by being informed when the provision of a
concrete service is (or must be) accomplished. In this way, the IDMM module shifts
from the goals and the preferences provided by the user to an abstract representation
of atomic services (or composite services, as appropriate). For instance, Al can
build an admissible argument concluding that the goal related to the provision of
the service S is reached if we suppose that the price of the service Sb(y) is low. This
is then turned into a concrete representation (choice of y fulfilling the constraint) by
the SDMM.

4.2 Social Decision Making

The Social Decision Making Module (SDMM) reasons about the concrete instances
of services that can be provided/requested. Decisions are made according to user’s
requirements or competencies, the knowledge about the potential partners and
the alternative concrete services, and preferences over them. For this purpose the
SDMM is supported by the concrete data structures in the Social Knowledge Base
(SKB) and in the Dialogical Commitment Store (DCS).

The dialogical commitment store is an internal data structure which contains
propositional and action suggestions involving the agent, namely with the agent be-
ing either the debtor or the creditor. This data structure is shared by the SIM and the
SDMM. Concretely, the dialogical commitment store may contain the concrete rep-
resentation of atomic or composite services and the representation of the partners
exchanged during the dialogues, while the SKB contains the concrete representa-
tion of atomic or composite services provided by the agent. Moreover, the SKB
contains preferences about the services and the partners. The selection (respectively
the suggestion) of concrete services is made according to the user’s requirements
(respectively competencies) about the alternative concrete services, the information
about the partners, and preferences over them.

Figure 7 represents the negotiation problem of Sb from an A-type agent’s view-
point, e.g Al. The evaluation of the contract (good deal) depends on the pro-
vision of the service (provision) as considered by the IDMM and depends
also on the supplier (supplier). The evaluation of the partners depends on their
representation (representation) and on their performance (performance).
The supplier’s performance is influenced by knowledge about customer testimoni-
als (testimonials(x,v)) depending on the number of previous collaborations
with these suppliers (previous(x,n)) and the average satisfaction in these col-
laborations (satisfaction(x,v)). For simplicity, preferences are not depicted in
Figure 7. In the project ArguGRID, the SDMM, like the IDMM, is built upon our ar-
gumentation framework for decision making. Statements and priorities are recorded
within the agent’s SKB, the agent’s DCS, and reasoned upon by the SDMM. Al-
ternatively, the user can directly fulfil the SKB and the DCS. The statements corre-
sponding to the influence diagram of Figure 7 are represented in Table 2. The goal
rules, the epistemic rules and the decision rules are depicted in the table 2. For in-
stance, the agent whose influence diagram is given in Figure 6 deems the suppliers

9 Argumentative Agents for Service-Oriented Computing 237

good deal

supplier provision

performance representation

proposal(x,y)

price(y,py)

warranty(y,wy)installation(x, ix)

turnover(x, tx)previous(x,n)

testimonials(x,v)

satisfaction(x,v)

Fig. 7 Influence diagram to structure the negotiation

with an annual turnover greater than two million euros (turnover) and at least 50
installations (installation). For this purpose, the rules r31(x,y) and r32(x,y)
are included in the SKB.

The dialogical commitment store of Al, which includes the public statements of
agents which Al is aware of, include the suggestions involving Al: either Al is
the creditor of the suggestion, for instance commit(Bob, [good deal,Sb(e), /0])
is added to the dialogical commitment store when Bob suggests it (see the next
section); or Al is the debtor of the suggestion, for instance
commit(Al, [good deal,Sb(e), /0]) is added to the dialogical commitment store
when Al accepts them (see the next section).

The SDMM interacts with the IDMM by exchanging that abstract service which
is (or must be) instantiated and by communicating when a concrete service is (or
must be) set up. The SDMM interacts with the SIM (see the next section), by no-
tifying it that the agent needs to play a certain role using a particular protocol, by
being informed by the SIM when some offers, some proposals, and some arguments
must be evaluated or built and by informing the SIM when the offers, the proposals,
the arguments have been evaluated or built.

In this way, the SDMM reasons and takes decision about the proposals and ar-
guments which are exchanged during the dialogues. For instance, Al can built an
admissible argument concluding that the goal related to the cost of the service Sb is
reached since the price of the service Sb(c) is low. This argument is useful for Al
to justify its choice, Sb(c), in front of Bob.

238 M. Morge et al.

Table 2 The goal theory (at top), the epistemic theory (at middle) and the decision theory (at
bottom) corresponding to the social statements

r012 : good deal← supplier,provision
r01 : good deal← supplier
r134 : supplier← performance,representation
r256 : provision← costb,qosb
r25 : provision← costb
r26 : provision← qosb
r02 : good deal← provision

f1 : testimonials(Bob,high)←
f2 : turnover(Bob,5)←
f3 : installation(Bob,100)←
f4 : price(d,high)←
f5 : warranty(d,low)←
f6 : price(c,low)←
f7 : warranty(c,high)←
f8 : price(e,low)←
f9 : warranty(e,low)←
f10 : price(f,high)←
f11 : warranty(f,high)←

r21(x,y) : performance← proposal(x,y),testimonials(x,high)
r31(x,y) : representation← proposal(x,y),turnover(x, tx), tx > 2M euros
r32(x,y) : representation← proposal(x,y),installation(x, ix), ix > 50
r51(x) : costb← proposal(x,y),price(y,low)
r61(x) : qosb← proposal(x,y),warranty(y,high)

4.3 Social Interaction

The Social Interaction Module (SIM) drives the communications and interactions
by the adherence to protocols. These protocol are concrete data structures and are
stored in the Protocol Library (PL).

Decisions required to conduct the interaction are provided by the SDMM. In
practice, the SDMM, once it has reasoned about the services requirements and from
whom these services can be requested or to whom these services can be proposed,
uses a boot strap mechanism that initiates the required protocol, the role the agent
will play in that protocol, and the other participants. From this, the protocol engine
in the SIM determines the appropriate message to be sent given those parameters.
In cases where there is no ambiguity with respect to the message to be sent, the SIM
will automatically send the message to the outgoing message queue from which the
agent body will handle the transportation of the message to the recipients’ incoming
message queues. Where there is a decision to be made either between the choice of
two locutions (e.g. whether to accept or reject an offer) to be sent or the instantiation
of the content of the locution (e.g. the definition of a proposal), the SIM uses a

9 Argumentative Agents for Service-Oriented Computing 239

evaluate
contract

challenge
evaluate

send question

send assert

receive assert

receive assert

receive assert

receive whyreceive accept

send assert

send accept

send why

receive withdraw

send withdraw

Fig. 8 Negotiation protocol for the requester

precondition mechanism to prompt the SDMM for a solution. Concretely, MARGO
interfaces with LCC through the condition mechanism of utterances for a move.
Upon the satisfaction of the precondition, the SIM sends the locution to the outgoing
message queue. If it is necessary to update the dialogical commitment store of the
agent, this can be done with the post condition mechanism which operates in a
similar manner.

The agents utter messages to exchange goals, decisions, and knowledge. The
syntax of messages is in conformance with a common communication language.
We assume that each message:

• has an identifier, Mk;
• is uttered by a speaker (Sk);
• is addressed to a hearer (Hk);
• eventually responds to a message with identifier Rk

• is characterised by a speech act Ak composed of a locution and a content.

In our scenarios, the locution is one of the following: question, assert,
accept, why, withdraw (see Table 3 below for examples). The content is a
triple consisting of: a goal Gk, a decision Dk, and knowledge Kk. We will use θ to
denote that no goal is given and /0 to denote that no knowledge is provided.

In our scenario our agents use two protocols for two types of dialogue:
information-seeking and negotiation (see Table 2). Figure 8 depicted our negotiation
protocol from the requester viewpoint with the help of a deterministic finite-state
automaton. The SDMM interfaces with the SIM’s protocol through the condition
mechanism to further elucidate the semantics of the protocol being used. For exam-
ple, at one point in the dialogue the requester is able to send accept, assert and
why. The choice of which locution to send is dependant on the SDMM being able
to satisfy its precondition.

In the ArguGRID project, the SIM uses LCC to drive all social interactions. Fig-
ure 9 represents the set of clauses for the agents in our argumentation-based negoti-
ation protocol. The role being used are:

240 M. Morge et al.

• the requestor of the service (requestor(g0,c,K)), g0 being the main goal
to reach, c being the contract, and K being the knowledge. c and K must be
instantiated;

• the provider of the service (provider(g0,c,K)), g0 being the main goal to
reach, c being the contract, and K being the knowledge. c and K must be instan-
tiated;

• the evaluator of the proposal (evaluator(g0,g1,c1,K1)), g0 (respectively
g1) being the main (respectively current) goal which is discussed, c1 being the
contract, and K1 being the knowledge. c1 and K1 are related to the proposal;

• the sender of the proposal (proponent(g0,g1,c1,K1)), g0 (respectively g1)
being the main (respectively current) goal which is discussed, c1 being the con-
tract, and K1 being the knowledge. c1 and K1 are related to the proposal.

According to the first clause a(requestor(g0,c,K),ag1), ag1 sends a
question to the provider which submits a proposal. The clause for the provider role
is the complement of the requestor’s one. The second clause
a(evaluator(g0,g1,c1,K1),ag1) handles the next stage of the
argumentation-based negotiation protocol, i.e. the acceptance, the counter-proposal,
or the challenge of the proposal. A proposal is accepted, and so recorded in the
dialogical commitment store12, if it is supported by an admissible argument of the
SDMM. Indeed, the condition evaluate contract(g0,c1,K1) is satisfied if there is
an admissible argument of the SDMM such that the knowledge K1 and the contract
c1 are in the sentences of the argument and g0 is the conclusion of the argument. If
it is not the case and another proposal, which was not yet suggested, is supported by
an admissible argument of the SDMM, then the counter-proposal is asserted, and
so recorded in the dialogical commitment store. Otherwise the motivation of the
previous proposal is challenged. The clause for the proponent role is the comple-
ment of the evaluator’s one. An argument which is challenged must be supported
by a subargument. Indeed, the condition evaluate challenge(g1,g2,c1,K1,K2) is
satisfied if: i) there is an admissible argument of the SDMM such that the goal g2,
the knowledge K1, and the contract c1 are in the sentences of the argument and g1

is the conclusion of the argument; ii) there is an admissible argument of the SDMM
such that the knowledge K2 and the contract c1 are in the sentences of the argument
concluding g2.

The top of the table 3 shows the speech acts exchanged between Al and Bob
playing an information-seeking dialogue. This dialogue occurs at the step 4 of the
e-procurement process involving Al and Bob (cf Figure 2). Following the protocol
for this type of dialogue, the first move is for Al to pose a question to Bob, M0. This
locution seeks the price range for the available services Sb. Bob informs Al with
several locutions providing the various services available and their price ranges (M1,
. . . , M4). A similar information-seeking dialogue is played between Bob and Al to
inform the latter about the warranty ranges of the available services Sb. According

12 Actually, the acceptance of a proposal creates an extra-dialogical commitments, i.e. one
agent is obligated to provide a service and another is obligated to pay for it. Whether we
ignore the task of enforcement, we still make enforcement possible.

9 Argumentative Agents for Service-Oriented Computing 241

a(requestor(g0,c,K),ag1)::=
question(g0,c,K) ⇒ a(provider(g0,c,K),ag2) then
commit(ag2, [g0,c1,K1]) ← (assert(g0,c1,K1) ⇐ a(provider(g0,c,K),ag2)) then
a(evaluator(g0,g0,c1,K1),ag2).

a(evaluator(g0,g1,c1,K1),ag1)::=
(accept(g0,c1,K1) ⇒ a(proponent(g0,g1,c1,K1),ag2)) ←
(evaluate contract(g0,c1,K1)) and commit(ag1, [g0,c1,K1])
or
(assert(g0,c2,K2) ⇒ a(proponent(g0 ,g1,c1,K1),ag2)) ←
(evaluate contract(g0,c2,K1) and not(commit(ag1, [g0,c2,K2]))) and
commit(ag1, [g0,c2,K2]) then
a(proponent(g0,g1,c2,K2),ag1))
or
(why(g1,c1,K1) ⇒ a(proponent(g0 ,g1,c1,K1),ag2) then
commit(ag2, [g2,c1,K2]) ← (assert(g2,c1,K2) ⇐ a(proponent(g0,g1,c1,K1),ag2))
and a(evaluator(g0,g2,c1,K2),ag1)) or
withdraw(g1,c1,K1) ⇐ a(proponent(g0,g1,c1,K1),ag2)).

a(provider(g0,c,K),ag2)::=
question(g0,c,K) ⇐ a(requestor(g0,c,K),ag1) then
(assert(g0,c1,K1) ⇒ a(requestor(g0,c,K),ag1)) ←
(evaluate contract(g0,c1,K1)) and
commit(ag2, [g0,c1,K1]) then
a(proponent(g0,g0,c1,K1),ag2).

a(proponent(g0,g1,c1,K1),ag2)::=
commit(ag1, [g0,c1,K1]) ← (accept(g0,c1,K1) ⇐ a(evaluator(g0,g1,c1,K1),ag1))
or
commit(ag1, [g0,c2,K2]) ← (assert(g0,c2,K2) ⇐ a(evaluator(g0,g1,c1,K1),ag1))
then
a(evaluator(g0,g1,c2,K2),ag2)
or
(why(g1,c1,K1) ⇐ a(evaluator(g0,g1,c1,K1),ag1) then
(assert(g2,c1,K2) ⇒ a(evaluator(g0,g1,c1,K1),ag1) ←
(evaluate challenge(g1,g2,c1,K1,K2)) and
commit(ag2, [g2,c1,K2]) then
a(proponent(g0,g2,c1,K2),ag2)) or
withdraw(g1,c1,K1) ⇒ a(evaluator(g0,g1,c1,K1),ag1)).

Fig. 9 Representation of the argumentation-based negotiation protocol

242 M. Morge et al.

Table 3 Information seeking dialogue (top and middle) and negotiation dialogue (bottom)

Mk Sk Hk Ak Rk

M0 Al Bob question(θ ,Sb(x), [priceb(x,px)]) θ
M1 Bob Al assert(θ ,Sb(c), [priceb(c,pc),low≤ pc≤ medium]) M0
M2 Bob Al assert(θ ,Sb(e), [priceb(e,pe),low≤ pe≤ medium]) M0
M3 Bob Al assert(θ ,Sb(d), [priceb(d,pd),medium≤ pd ≤ high]) M0
M4 Bob Al assert(θ ,Sb(f), [priceb(f,pf),medium≤ pf ≤ high]) M0

Mk Sk Hk Ak Rk

M0 Al Alice question(performance,proposal(Bob,y), [testimonials(Bob,z)]) θ
M1 Alice Al assert(performance,proposal(Bob,y), [testimonials(Bob,high)]) M0
M2 Al Alice why(θ ,proposal(Bob,y), [testimonials(Bob,high)]) M1
M3 Alice Al assert(θ ,proposal(Bob,y), [previous(Bob,10),satisfaction(Bob,high)]) M2

Mk Sk Hk Ak Rk

M0 Al Bob question(good deal,〈cid,Bob,Al,Sb(x), [price(x,px),warranty(x,wx)]〉, /0) θ
M1 Bob Al assert(good deal,〈c1,Bob,Al,Sb(d), [price(d,high),warranty(d,low)]〉, /0) M0
M2 Al Bob assert(good deal,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M1
M3 Bob Al why(good deal,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M2
M4 Al Bob assert(costAl,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M3
M5 Bob Al assert(good deal,〈c3,Bob,Al,Sb(e), [price(e,low),warranty(e,low)]〉, /0) M1
M6 Al Bob accept(good deal,〈c3,Bob,Al,Sb(e), [price(e,low),warranty(e,low)]〉, /0) M5

to this knowledge the A-type agent Al is able to consider which of these services
could satisfy its goals.

The middle of Table 3 depicts the speech acts exchanged between Al and Alice
playing an information-seeking dialogue. This dialogue corresponds to step 2 of the
e-procurement process (cf Table 2). The first move is for Al to pose a question to
Alice, M0. This locution seeks the testimony of Alice aboutBob. This testimony
is high (cf M1) and argued by the number of previous experiences and their values.

The bottom of Table 3 depicts the speech acts exchanged between Al and Bob
playing a negotiation dialogue. This dialogue corresponds to the step 6 of the e-
procurement process (cf Figure 2). They attempt to come to an agreement on the
contract for the provision of a service Sb to reach the common goal good deal. A
contract is a tuple 〈cid,debtor,creditor,service,terms〉 where cid
is the contract identifier, debtor is the agent providing the service, creditor
is the agent requesting the service. A contract is concerned by the provision of a
service provided that the list of terms & conditions (denoted terms) are satisfied.
With the message M1, Bob informs Al that it finds out that the terms & conditions
of the contract for the provision of the service Sb(d) are justified with respect to the
common goal (good deal). However, Al does not find Sb(d) justified and he pro-
poses Sb(c). Since none of these proposals have been jointly accepted, they should
not be considered in the following of the negotiation. Bob attempts to determine the
reasons for Al’s choice (cf M3) which is the cost (rather than the quality of service).
Given Al’s response in M4, Bob includes the goal provided by Al. Therefore, it
finds between the other solutions (Sb(e) and Sb(f)) the one preferred by Al (Sb(e))
and suggest it (M5). Finally, Al communicates his agreement with the help of an
accept (M6) which closes the dialogue.

9 Argumentative Agents for Service-Oriented Computing 243

5 Case Run

We consider here a case run which illustrates the agent deliberation and communi-
cation in the scenario of section 2. This case run involves Al, an A-type agent, and
Bob, a B-type agent, negotiating the provision of a service Sb.

The terms & conditions considered for the evaluation of the contract about Sb

during the negotiation (cf bottom of Table 3) are represented at the two axis of the
two dimension plot in Figure 10. The acceptability space of the two participants is
represented by shaded areas and depends on the price (y-axis) and the warranty (x-
axis). Four points reflect the combinations of values: Sb(c) where warranty is high
and price is low, Sb(d) where warranty is low and price is high, Sb(e) where both
warranty and price are low and Sb(f) where both are high. After the message M2

(cf left of Figure 3), Bob only finds Sb(d) justified and Al only finds Sb(c) justi-
fied. After the message M3 (cf center of Figure 10), the acceptability spaces of the
two agents have shifted since neither Sb(c) nor Sb(d) have been jointly accepted.
Both of the agents make concession since the MARGO mechanism allow to relax
the preferences. After the message M6 (cf right of Figure 10), both agents has iden-
tified Sb(e) as a common solution. We can notice that the influence of Al on Bob
avoid to explore the alternative Sb(f) which is not justified from Al’s viewpoint.
The influence of Al on Bob is supported by the extra information carry out by the
argument.

We have illustrated here the main strength of argumentation-based negotiation
which is, as pointed out by [53], that it allows agents to influence each other. More-
over, our agents make concessions when necessary as suggested by [2].

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

�

�

price

warranty
Al

Bob

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

×

×

price

warranty
Al

Bob

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

×

×�

price

warranty
Al

Bob

Fig. 10 Acceptability space of participants after the messages M2 (left), M3 (center) and M6
(right)

Figure 11 represents the UML sequence diagram associated with the A-agent Al.
For brevity, we only describe the internal mechanisms for the negotiations (step 6)
of the e-procurement processes involving Al and Bob. The first transition shown is
from the GUI to the IDMM. This is how the user delegates the task of contracting
the provision of a service to the agent. Using the techniques described in section 4.1,
the user’s competency is computed and sent to the SDMM. The SDMM bootstraps
the SIM’s protocol execution by invoking the protocol, agents it would like to com-
municate with and the role it will play within the protocol (i.e. the requester). The
SIM then drives the interaction by sending the appropriate locution to the CM which

244 M. Morge et al.

is relayed to the addressed B-type agent. During this exchange, decision must be
made, the SIM delegates control to the SDMM to determine the correct course of
action. This is shown in the figure 11 as ”evaluate”. Once the evaluation of the con-
tract or challenge is performed by the SDMM, it provides the response which the
SIM which encapsulates with the correct locution according to the interaction pro-
tocol. Finally, through the IDMM and the GUI, the user is notified of the provision
of the service. The provider of the service, according to the semantics of the pro-
tocol, knows the contract and the provision of the service is accepted by the agent
communicating locution, accept.

CM SIM SDMM IDMM GUI

delegate
instantiate

play
role=requester

id=Al
service=Sb
partner=Bob
protocol=Neg

question

assert
evaluate the contract

assert

why
evaluate the challenge

assert

assert
evaluate the contract

accept
service executed

notification

Fig. 11 Sequence diagram of Al

6 Deployment and Implementation

Agents in ArguGRID are deployed in GOLEM, a prototype agent platform which
can support complex applications of cognitive agents interacting within a distributed
environment [10]. GOLEM agents are represented by mean of an agent mind, pro-
grammed in Prolog, connected to a Java agent body. The agent body incorporates
sensors, to perceive the events happening in the agent environment, and effectors,
to produce events in the agent environment. The connection between the Java body
and the agent mind is done by using a Prolog-Java bridge, such as InterProlog. In
particular in this Chapter we made use of a SWI Prolog agent mind, loading both the
MARGO and LCC Prolog libraries, connected to a GOLEM agent body by means
of InterProlog. In this section, we also describe how GOLEM has been extended to
take into account the specific context of the services.

GOLEM has been integrated with the P2P platform PLATON [36] allowing
agents to discover service provider agents. These agents may be deployed in dif-
ferent GOLEM containers distributed over a network (cf Figure 12). In order to
support agent/service discovery, each container includes two types of registries.

KDE semantic registry: a database which holds semantic descriptions of available
services. Such a registry is in charge to perform semantic matchmaking between
service queries and concrete available services.

9 Argumentative Agents for Service-Oriented Computing 245

GOLEM registry: a database working as a cache on top of the PLATON P2P plat-
form. Its function is holding information about agents discovered in the GOLEM
distributed environment.

Fig. 12 System Deployment

The KDE semantic registry works as a catalogue for the provider agents, holding
information about the services provided by the organisation (i.e. user) represented
by the agent. In order to support the matching of service descriptions and concrete
services, the automated search, the services inside the KDE semantic registry have
to carry sufficient information that describes them. Within the agent framework, we
abstract away from the particular formalism utilised in KDE to describe the Web
services, performing a translation to Prolog terms at the interface between KDE and
the GOLEM agent environment. As specified in [10, 11] GOLEM agents can reason
about C-logic structures [12]. C-logic is a convenient specification language that has
a direct translation to first-order logic and Prolog (see [10, 11] for more details about

246 M. Morge et al.

the use of C-logic in GOLEM) and that is used in GOLEM to deal with complex
structures represented as logical objects. In the context of ArguGRID, the following
C-logic structure:

web service:w1[
service type⇒ connection,
domain⇒ eprocurement,
organisation⇒ argugrid,
precondition⇒ creditcard:CCard,
postcondition⇒ connection:Con[price⇒ P, warranty⇒ W]
constraints⇒ {W= 24h, P < 10e}]

represents an instance w1 of class web service that expresses the requirements
for a Web service of type connection. Such a Web service has to be in the epro-
curement domain, provided by the argugrid organisation, taking in input objects of
class creditcard and providing as output an object of class connection, with a price
P and a warranty W that have associated a set of constraints for which the price
has to be less than 10 euros per month and a warranty of 24 hours of assistance.

Agents deployed inside a GOLEM container have access to a P2P connector in-
terface. This interface wraps PLATON inside GOLEM and allows agents to perform
queries to discover other agents and services. The result of such a query is stored
inside GOLEM registries for future use. Service provider agents are discovered ac-
cording to their affordances [10], properties that describe the role and competencies
of the agent. In our current deployment of ArguGRID we use three properties to
describe agents:

• service types, the types of services an agent can represent
(e.g. {internet connection, computer system});

• organisation, the organisation in which the agent belongs to
(e.g. argugrid);

• domain, the domain of knowledge the agent is competent about
(e.g. e-procurement).

The above three fields are specified inside the query proposed by the requester,
under the parameters of the web service instances, as previously presented. At the
lower level these properties are used by PLATON to create a K-D tree index of the
agents; this index ensures that the steps to access a point (an agent) is logarithmic to
the number of peers (GOLEM containers) deployed in the distributed network. The
details of the algorithm used to describe this process are beyond the scope of this
work. The interested reader is referred to [35] for more details.

At the higher level an agent can connect to other agents belonging to different
containers by performing physical actions on a connector object (see [10]). Con-
ceptually, the effects of such an action is similar to that of a human manipulating a
physical object in a real environment. However, here the effects of the action on the
connector make present agents of other containers using PLATON to perform the
discovery. When a requester looks for potential suppliers (cf step 1 of the procure-
ment process described in Figure 2 of Section 2), the requester queries the registry

9 Argumentative Agents for Service-Oriented Computing 247

Table 4 Interaction with the Connector Interface

Mk Sk Hk Ak Rk

M0 Al Registry query(supplier,proposal(x,y), [Sb(y)]) θ
M1 Registry Al answer(supplier,proposal(Barbara,y), [Sb(y)]) M0
M2 Registry Al answer(supplier,proposal(Bob,y), [Sb(y)]) M0

and the corresponding connector is involved. Table 4 shows the physical actions ex-
changed between Al and the registry. The first move is for Al to pose a query to
the registry, M0. This physical action seeks the suppliers for the available services
Sb. The registry reacts to Al’s query with several physical actions with inside the
description of the various suppliers (M1 and M2) in terms of their affordances. Ac-
cording to the new knowledge, the dialogical commitment store of Al is updated
and this latter is able to perform the next step of the procurement process which
consists of collecting information on the available suppliers in order to short-list
them. Figure 12 exemplifies what stated above. The A-type agent Al queries the
connector to find the B-type agents. As a result of these interactions Al is notified
of the new agents discovered, Bob and Barbara. Once these agents are discov-
ered, Al queries them in such a way that they can check their private KDE semantic
registry with an interaction similar to the one presented above with the connector.
After the KDE semantic registry provides the services that can match the requester
requirements, the agents start the negotiation.

7 Related Work

Combining service-oriented computing and architectures with software agents is an
active area of research for intelligent systems [15, 51]. More specifically, current
visions of Web-services and the role of agents [14] predict important implications
in the engineering of complex distributed systems [27] in general and Grid [22]
and ubiquitous [28] computing in particular. A large part of this effort focuses on
the service selection problem, where a computational logic approach is playing an
important role, for example see McIlraith and colleagues [43, 42], Baldoni et al [5],
and Lomuscio et al [34]. In contrast with these efforts, we advocate the automatic
discovery of services by agents and how the selection of these services can be made
concrete within the context of an argumentation architecture that agents can utilise
given abstract specifications of users’ goals. The advantage of using argumentation
is that agents can provide supporting arguments to select a service, thus being in a
position to provide reasons for why a particular service has to be selected instead of
another.

The importance of service selection has been studied by Sreenath and Singh
in [56]. They explain how services differ from products in terms of how they are
being discovered, delivered and evaluated. Sreenath and Singh also provide a gen-
eral framework for service selection that combines conventional approaches such as

248 M. Morge et al.

reputation systems, collaborative filtering, and P2P systems with novel techniques
from lattice theory.

Maximilien and Singh in [38, 39] argue that current techniques provide no sup-
port to actually make rational selections of services, which are key to accomplishing
autonomic behaviour in service-oriented computing. They develop a multi-agent
system framework based on an ontology for QoS and a new model of trust. The
ontology provides a basis for providers to advertise the offered services, for con-
sumers to express their preferences, and for ratings to be gathered and shared. Our
work is complementary to the effort of Singh and colleagues in that we provide the
logic-based reasoning and social capabilities of an agent to prioritise preferences
and select the services that best match the goals of a consumer user. In this context,
we also implement these ideas and we can deploy multiple agents that interact and
communicate with one another using a platform that can discover these agents over
a complex network.

Baldoni and colleagues [6] address the problem of automatic selection and com-
position of Web services, discussing the advantages that derive from the inclusion,
in a Web service declarative description, of the high-level communication proto-
col, that is used by the service for interacting with its partners, allowing a rational
inspection of it. The approach they propose is set in the context of semantic Web
by capitalising on existing research in multi-agent systems. Similarly to our work,
Web services are viewed as (represented by) software agents, communicating by
predefined shareable interaction protocols. A logic programming framework based
on modal logic is proposed, where the protocol-based interactions of Web services
are formalised and the use of reasoning about actions and change techniques for
performing the tasks of selection and composition of Web services in a way that is
personalised to a user’s request. Like our work, by applying reasoning techniques
on a declarative specification of the service interactions allows to gain flexibility in
fulfilling the user preference in the context of a Web service matchmaking process.
However, this work focuses on discovery and service selection but not on service
composition, that we plan to consider in future works.

Bentahar et al. [8] use argumentation implemented via software agents to reason
about Web services and improve their performance through the notion of commu-
nities. A community of Web services is a set of services with similar functionality
that grouped together to facilitate discovery. Each community is organised in terms
of a master Web service (a bit like a broker of composite Web-services) that argues
with a set of slave Web services (a bit like basic Web services that can partici-
pate in composite ones). To persuade a Web service to be part of a composite Web
service in a community, master and slave Web services use persuasion and negotia-
tion techniques associated with their argumentation abilities. Web services interact
flexibly via dialogue games and are implemented as JACK agents [26]. We differ
from this approach in that we use a calculus, LCC, to flexibly handle the interac-
tions. We focus on the use of argumentation to build the decision capabilities of an
agent that Bentahar et al abstract away from. We do not need communities to in-
dex Web service for discovery but we use GOLEM containers combined with a P2P

9 Argumentative Agents for Service-Oriented Computing 249

framework to enable service discovery. Finally, community for us is a social aspect
of the system that emerges via communication, as in [37].

Other MAS research takes a strictly societal or communicative view of agency.
It models and formalizes the communication and interaction between agents. The
paper [41] describes a formal model for the formation of virtual organisations. The
formal model, although accommodates the various technologies described in this
chapter, it does not rely upon them. This work is in contrast to other approaches. For
example, the authors discuss in [47] as part of the CONTRACT project a contract-
based approach to enforcing normative behaviour within multi-agent systems. Nu-
merous works that describe agent systems as electronic institutions [17].

The model and architecture of argumentative agents we have presented, con-
trary to the abstract negotiation framework of [2], have been implemented and
tested with real-world use cases. Our proposal is not the first attempt in this di-
rection. For instance, Kakas and Moraitis [30] provide a framework for effective
argumentation-based negotiation. With respect to the latter, we have introduced
multi-criteria techniques for the decision making related to the evaluation of pro-
posals by the agents. The framework presented here can be seen to some extent
as a specialisation of [2], tailored to service selection. For this purpose, we have
proposed: i) an argumentation-based mechanism for multi-criteria decision-making
integrating assumptions; ii) an general architecture instantiated with argumentation
and logic techniques; iii) the deployment of our architecture with a MAS platform.

We have used here the argumentation-based mechanism for multi-criteria
decision-making integrating assumptions proposed in [45]. Contrary to [1, 3, 4], our
framework incorporates abduction on missing information, as suggested by [29].
This property is required by the IDMM to build arguments upon suppositions. We
can deploy our framework for a number of argumentation semantics by relying on
[20], whereas [29] is committed to one such semantics. [48] propose a critical sur-
vey of some computational models of argumentation over actions. For instance,
[3, 4] have considered several principles according to the different types of argu-
ments which are considered are aggregated. However, contrary to our approach,
the potential interaction between arguments is not considered. We have considered
the example borrowed from [58] and we have adopted, like [7], an abductive ap-
proach to practical reasoning/decision-making which is directly modelled within in
our framework.

We have proposed a general architecture which distinguishes the internal reason-
ing, the social reasoning, and the communication. This architecture has been instan-
tiated with argumentation and logic techniques. The KGP model [31, 33] adopts
Knowledge, Goals and Plans as the main components of an agent state. There is
no gap between the logical specification of KGP agents and their implementations.
Indeed, this model uses computational logic frameworks extending logic program-
ming for specification and realisation purposes. However, this model deals only par-
tially with priorities as required by service selection applications, namely only with
preferences between goals [32], but not with uncertainty of knowledge and expected

250 M. Morge et al.

utilities of alternative services. MARGO13, i.e. the implementation of our argumen-
tation framework, provided here a revised representation of knowledge, goals and
decisions without planning abilities as required by our application. MARGO uses
the implementation of [20] in the CaSAPI system [23]. We use LCC for representing
and enacting protocols to allow the social norms used by the agents to be verifiable,
communicable, inspectable and potentially modifiable. The merits of using a first
class protocol are described in [44]. An extension of KGP for service composition
has been discussed in [60].

As in [54], we have presented the deployment of an architecture with a MAS
platform. The Web-service environment in GOLEM14 builds upon previous work
on deploying MAS with PROSOCS [9]. However, GOLEM extends PROSOCS in
many ways. Apart from rationalising the PROSOCS mind/body architecture [57],
our implementation uses an argumentative mind component rather than the KGP
implementation discussed in [9]. It also generalises the interaction of agents with
objects and uses containers as locations [49] of resources, including services. In
this sense, GOLEM is part of a growing research and development effort to model
situated multi-agent systems [63] without abstracting away the notion of the agent
environment as some popular platforms do (e.g. JADE [21] or RETSINA [59]).

8 Conclusion and Future Work

In this chapter, we have described an agent model and architecture using argumen-
tation to automate the selection of services and partners. The modular design of the
deliberative and communicative processes bring the well known engineering ben-
efits of modularity as well as create a unique model of agents. The three internal
modules are dedicated respectively to decision making (for the IDMM), negotia-
tion (for the SDMM), and communication (for the SIM), and are all realised using
argumentation-based frameworks. If the IDMM can be considered as the base ap-
petite of the agent reasoning about how to achieve its individualistic goals and the
SDMM can be considered as the social reasoner, conscious of goal solving through
collaboration, then the SIM can be considered as its social conscience and filters
those impulses by following the social norms of the agent society. For our purposes,
the social norms are the rules of dialogues encoded as interaction protocols. In or-
der to test this approach, the architecture is instantiated in the ArguGRID project, by
means of the argumentative decision making tool MARGO (for the first two mod-
ules) and by the LCC tool for enforcing protocol conformance (for the last module).

We use GOLEM [10] for the deployment of our agents. GOLEM is a multi-
agent platform which can support complex application through the deployment of
cognitive agents situated in a distributed environment over a network. In particular,
GOLEM allows a declarative description of resources in the agent environment, so
that such a description is understandable by cognitive agents programmed follow-
ing the patterns of logic programming. In this way, agents can discover each other

13 http://margo.sourceforge.net
14 http://golem.cs.rhul.ac.uk

9 Argumentative Agents for Service-Oriented Computing 251

in a distributed network, as well as reasoning about complex structures representing
the requirement of the users in terms of Web services. One possible future work
direction, is to include reasoning about semantic descriptions of Web services using
OWL [16] in our ArguGRID agents, following an approach like the one described
in [25]. The main advantages of having agents reasoning about semantic descrip-
tions, would be that we can decouple the description of the Web services from their
implementation and that our cognitive model could be reused in different platforms
than ArguGRID.

As mentioned previously, contracts create virtual organisations consisting of
debtors and creditors. In this chapter, we have focused on the agent model and archi-
tecture and we have ignored virtual organisations. A formal model for virtual organ-
isations using agent negotiation to determine its configuration is described in [41].
The decision making abilities of our agents is useful during the operation of virtual
organisations for exception handling, which is labelled as reformation. The addi-
tional tasks of monitoring and reportage during the operation and dissolution of the
virtual organisations produce data about its performance and form the basis for its
evaluation. The execution task during the operation phase is the coordination of the
delivery of services.

We have learned a number of lessons while developing the ArguGRID prototype
system. Firstly, the knowledge engineering process can become complex when deal-
ing with multiple and possibly heterogeneous knowledge representation technolo-
gies. In ArguGRID we decided to avoid formalisms based on Description Logic,
for instance, as the reasoning that we could perform using this type of technology
was limited to subsumption mechanisms; MARGO style argumentation combined
with the underlying Prolog engine allowed for a computationally more expressive
and flexible approach. Secondly, another problem that we discovered is that P2P
engines have several limitations due to the impossibility to handle semantic descrip-
tions of the entities, but only flat multidimensional points. Thirdly, if distribution is
an important issue and/or access to the communication protocols is predicated on
an agent’s role then a system like LCC is more appropriate for dealing with agent
communication. Alternatively, if agents are permitted to access the whole protocol
then a shared memory approach [61] is equally suitable, can limit the amount of
messages exchanged and can mediate the protocol of communication. Finally, the
definition of a mediation infrastructure, such as the one provided by GOLEM, al-
lows for a better integration of the components involved in the system, as it allows
for a better description and representation of the resources.

Acknowledgements. This work was supported by the Sixth Framework IST programme of
the EC, under the 035200 ArguGRID project.

References

1. Amgoud, L.: A general argumentation framework for inference and decision making.
In: Fahiem Bacchus, T.J. (ed.) Proc. of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 26–33. AUAI Press, Edinburgh (2005)

252 M. Morge et al.

2. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proc. 6th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), Honolulu, Hawaii, pp. 963–970
(2007)

3. Amgoud, L., Prade, H.: Comparing decisions in an argumentation-based setting. In: Proc.
of the 11th International Workshop on Non-Monotonic Reasoning (NMR), Session on
Argumentation, Dialogue, and Decision Making, Lake District, UK, pp. 426–432 (2006)

4. Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by argumenta-
tion. In: Proc. of the 21st National Conference on Artificial Intelligence (AAAI), Boston,
pp. 16–20 (2006)

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols
for web service composition. Electr. Notes Theor. Comput. Sci. 105, 21–36 (2004)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols
for customizing web service selection and composition. J. Log. Algebr. Program. 70(1),
53–73 (2007)

7. Bench-Capon, T., Prakken, H.: Justifying actions by accruing arguments. In: Proc. of the
1st International Conference on Computational Models of Argument, pp. 247–258. IOS
Press (2006)

8. Bentahar, J., Maamar, Z., Benslimane, D., Thiran, P.: An argumentation framework for
communities of web services. IEEE Intelligent Systems 22(6), 75–83 (2007)

9. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Stathis, K.: Crafting the
mind of PROSOCS agents. Applied Artificial Intelligence 20(2-4), 105–131 (2006)

10. Bromuri, S., Stathis, K.: Situating cognitive agents in GOLEM. In: Weyns, D., Brueck-
ner, S., Demazeau, Y. (eds.) Proc. of the Engineering Environment-Mediated Multiagent
Systems Conference (EEMMAS), pp. 76–93. Katholieke Universiteit Leuven, Leuven
(2007)

11. Bromuri, S., Stathis, K.: Distributed Agent Environments in the Ambient Event Calculus.
In: DEBS 2009: Proceedings of the Third International Conference on Distributed Event-
Based Systems. ACM, New York (2009)

12. Chen, W., Warren, D.S.: C-logic of Complex Objects. In: PODS 1989: Proceedings of
the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 369–378. ACM Press, New York (1989)

13. Clemen, R.T.: Making Hard Decisions. Duxbury Press (1996)
14. Cohen, M., Stathis, K.: Strategic change stemming from e-commerce: Implications of

multi-agent systems in the supply chain. Strategic Change 10, 139–149 (2001)
15. Curcin, V., Ghanem, M., Guo, Y., Stathis, K., Toni, F.: Building next generation Service-

Oriented Architectures using Argumentation Agents. In: 3rd International Conference
on Grid Services Engineering and Management (GSEM 2006), Germany (2006)

16. Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL web ontology language ref-
erence. Tech. rep., W3C (2004),
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

17. Sierra, C., Dignum, F. (eds.): AgentLink 2000. LNCS (LNAI), vol. 1991. Springer, Hei-
delberg (2001)

18. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

19. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)

20. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial
Intelligence, Special Issue on Argumentation 171(10-15), 642–674 (2007)

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

9 Argumentative Agents for Service-Oriented Computing 253

21. Bellifemine, F.L., Giovanni Caire, Greenwood, D.: Developing Multi-Agent Systems
with JADE. Wiley (2007)

22. Foster, I.T., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. In: 3rd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2004), pp. 8–15. IEEE Computer Society, New York (2004)

23. Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation.
In: Simari, G., Torroni, P. (eds.) Proc. of the Workshop on Argumentation for Non-
monotonic Reasoning (ArgNMR), pp. 80–95 (2007)

24. Ghanem, M., Azam, N., Boniface, M., Ferris, J.: Grid-enabled workflows for industrial
product design. In: Proc. of the 2nd IEEE International Conference on e-Science and
Grid Computing (e-Science 2006). IEEE Computer Society (2006)

25. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logic. In: Proc. of the Twelfth International World Wide
Web Conference (WWW), pp. 48–57. ACM (2003)

26. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: Jack - summary of an agent infras-
tructure. In: 5th International Conference on Autonomous Agents (2001)

27. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles.
IEEE Internet Computing 9(1), 75–81 (2005)

28. Huhns, M.N., Singh, M.P., Burstein, M.H., Decker, K.S., Durfee, E.H., Finin, T.W.,
Gasser, L., Goradia, H.J., Jennings, N.R., Lakkaraju, K., Nakashima, H., Parunak,
H.V.D., Rosenschein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K.P.,
Tambe, M., Wagner, T., Gutierrez, R.L.Z.: Research directions for service-oriented mul-
tiagent systems. IEEE Internet Computing 9(6), 65–70 (2005)

29. Kakas, A., Moraitis, P.: Argumentative-based decision-making for autonomous agents.
In: Proc. of the 2nd International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 883–890. ACM Press (2003)

30. Kakas, A., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Proc. 5th Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Hakodate, Japan, pp. 384–391 (2006)

31. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency.
In: Proc. of ECAI, pp. 33–37 (2004)

32. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Declarative Agent Control. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 96–110. Springer,
Heidelberg (2005)

33. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational logic founda-
tions of kgp agents. J. Artif. Intell. Res. (JAIR) 33, 285–348 (2008)

34. Lomuscio, A., Qu, H., Sergot, M.J., Solanki, M.: Verifying Temporal and Epistemic
Properties of Web Service Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 456–461. Springer, Heidelberg (2007)

35. Lymberopoulos, L., Bromuri, S., Stathis, K., Kafetzoglou, S., Grammatikou, M.: To-
wards a p2p discovery framework for an argumentative agent technology assisted grid.
In: Proc. of the CoreGRID Workshop on Grid Programming Model, Grid and P2P sys-
tems Arhcitectures, Grid Systems, Tools, and Environments, Crete, Greece (2007)

36. Lymberopoulos, L., Papavassiliou, S., Maglaris, V.: A novel load balancing mechanism
for P2P networking. In: Proc. of ACM Sponsored Conference GridNets, Lyon, France
(2007)

37. Mamdani, E., Pitt, J., Stathis, K.: Connected Communities from the standpoint of Multi-
agent Systems. New Generation Computing 17(4) (1999)

38. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services
selection. IEEE Internet Computing 8(5), 84–93 (2004)

254 M. Morge et al.

39. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In:
Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P. (eds.) Service-Oriented Comput-
ing - ICSOC 2004, pp. 212–221. ACM, New York (2004)

40. McBurmey, P., Parsons, S.: Games that agents play: A formal framework for dialogues
between autonomous agents. Journal of Logic, Language and Information 11(3), 315–
334 (2002), Special Issue on Logic and Games

41. McGinnis, J., Stathis, K., Toni, F.: A formal model of agent-oriented virtual organisations
and their formation. Multiagent and Grid Systems 7(6), 291–310 (2011)

42. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services.
In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.A. (eds.) Proceedings of
the Eighth International Conference on Principles and Knowledge Representation and
Reasoning (KR 2002), pp. 482–496. Morgan Kaufmann, France (2002)

43. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

44. Miller, T., McBurney, P.: Using Constraints and Process Algebra for Specification of
First-Class Agent Interaction Protocols. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 245–264. Springer, Hei-
delberg (2007)

45. Morge, M.: The Hedgehog and the Fox. In: Rahwan, I., Parsons, S., Reed, C. (eds.)
ArgMAS 2007. LNCS (LNAI), vol. 4946, pp. 114–131. Springer, Heidelberg (2008)

46. Morge, M.: Arguing over goals for negotiation: Adopting an assumption-based argu-
mentation decision support system. In: Jao, C. (ed.) Efficient Decision Support Systems
- Practice and Challenges From Current to Future, ch. 12, pp. 211–240. InTech (2011)

47. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards
a formalisation of electronic contracting environments. In: COIN@AAMAS&AAAI, pp.
156–171 (2008)

48. Ouerdane, W., Maudet, N., Tsoukias, A.: Arguing over Actions That Involve Multiple
Criteria: A Critical Review. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI),
vol. 4724, pp. 308–319. Springer, Heidelberg (2007)

49. Overeinder, B.J., Brazier, F.M.T., Marin, O.: Fault tolerance in scalable agent support
systems: Integrating darx in the agentscape framework. In: Proc. of the 3rd IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid), pp. 688–696. IEEE
Computer Society, Japan (2003)

50. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and directions.
In: 4th International Conference on Web Information Systems Engineering (WISE 2003),
pp. 3–12. IEEE Computer Society, Italy (2003)

51. Payne, T.R.: Web services from an agent perspective. IEEE Intelligent Systems 23(2),
12–14 (2008)

52. Rahwan, I.: Argumentation in multi-agent systems. Guest Editorial: Autonomous Agents
and Multiagent Systems 11(2), 115–125 (2005)

53. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review 18(4), 343–375
(2003)

54. Ricci, A., Buda, C., Zaghini, N., Natali, A., Viroli, M., Omicini, A.: simpa-ws: An agent-
oriented computing technology for ws-based soa applications. In: Paoli, F.D., Stefano,
A.D., Omicini, A., Santoro, C. (eds.) Proceedings of the 7th WOA 2006 Workshop, From
Objects to Agents (Dagli Oggetti Agli Agenti), CEUR Workshop Proceedings, CEUR-
WS.org, Italy (2006)

9 Argumentative Agents for Service-Oriented Computing 255

55. Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: De-
moen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Hei-
delberg (2004)

56. Sreenath, R.M., Singh, M.P.: Agent-based service selection. Journal of Web Seman-
tics 1(3), 261–279 (2004)

57. Stathis, K., Kakas, A.C., Lu, W., Demetriou, N., Endriss, U., Bracciali, A.: PROSOCS: a
platform for programming software agents in computational logic. In: Müller, J., Petta, P.
(eds.) Proceedings of the Fourth International Symposium From Agent Theory to Agent
Implementation (AT2AI 2004 – EMCSR 2004 Session M), Vienna, Austria, pp. 523–528
(2004)

58. Stournaras, T. (ed.): eBusiness application scenarios. Deliverable document D1.2 AR-
GUGRID (2007)

59. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.: The retsina mas infrastructure.
Autonomous Agents and Multi-Agent Systems 7(1-2), 29–48 (2003)

60. Toni, F.: Argumentative kgp agents for service composition. In: Proc. AITA 2008, Ar-
chitectures for Intelligent Theory-Based Agents, AAAI Spring Symposium. Stanford
University, USA (2008)

61. Urovi, V., Stathis, K.: Playing with agent coordination patterns in MAGE. In: Coordina-
tion, Organization, Institutions and Norms in Agent Systems (COIN@AAMAS 2009),
Budapest, Hungary (2009)

62. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–279
(1997)

63. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-agent
systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

	Argumentative Agents for Service-Oriented Computing
	Introduction
	Motivation: An E-Procurement Scenario
	Background on Argumentation and Protocol Language
	MARGO
	Protocol language

	Agent Architecture
	Individual Decision Making
	Social Decision Making
	Social Interaction

	Case Run
	Deployment and Implementation
	Related Work
	Conclusion and Future Work
	References

