

Intelligent Systems Reference Library 45

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
School of Electrical and Information
Engineering
University of South Australia
Adelaide
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8578

Maria Ganzha and Lakhmi C. Jain (Eds.)

Multiagent Systems
and Applications

Volume 1: Practice and Experience

123

Editors
Prof. Dr. Maria Ganzha
University of Gdańsk
Institute of Informatics
Gdańsk
Poland

Prof. Dr. Lakhmi C. Jain
School of Electrical and Information
Engineering
University of South Australia
South Australia
Australia

ISSN 1868-4394 e-ISSN 1868-4408
ISBN 978-3-642-33322-4 e-ISBN 978-3-642-33323-1
DOI 10.1007/978-3-642-33323-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012946744

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Dear Reader!
Before you start delving into this very interesting book, let me remind you few

historical facts. In 1994 P. Maes suggested that software agents should cure the in-
formation overload [4]. In her seminal work, she has introduced personal agents
capable of helping users with management of e-mails and news, and with meeting
scheduling. Next, between 1998 and 2005, the EU-funded AgentLink Coordinated
Action has been overseeing the development of agent technologies (reaching far
beyond the European Research Area). In the meantime, in 2001, N. Jennings has
forcefully argued that software agents will facilitate a revolution in software engi-
neering [2]. His reasoning focused on large complex systems of the future. More
recently, concepts related to software agent research, start to materialize in movies
like “Avatar” or “Surrogates,” as well as in virtual worlds (e.g. the “Second Life”)
and in games like the “World of Warcraft.” There, software entities representing
humans (“avatars”) interact in a mixture of real and virtual worlds.

In this context, one could ask: how close are we to the world filled with personal
avatars? (Un)fortunately, when we wake up, we do not talk to our Personal Avatar
Lars, who has been working overnight to provide us with everything that we always
wanted, but were afraid to ask (as only Lars truly understands our believes, desires
and intentions). Obviously, an even more general question arises: what is the current
status of agent systems?

A meta-reflection concerning any scientific discipline can be approached from
multiple angles. Here, let us use two main perspectives of the philosophy of science.
Rationalists, like K. Popper, would probably be quite happy, as for them the key as-
pect of science is creation of interesting theories. For instance, agent researchers
should spend time in their armchairs conceiving all possible agent platforms that
could be created. As a matter of fact, this goal has been realized with a great suc-
cess, as in 2005 already more than 80 different agent platforms existed. While this
approach seems to be preferred by agent researchers working in the academia (as
illustrated by the second chapter of this book), it has limited practical value. It tells
us nothing about creation of real-world personal agents, or having intelligent homes
run by a JADEX-based agent system. Therefore, let us turn to the empirical tradi-
tion. Here, F. Bacon would say, that to know software agents is to use them. This is

VI Foreword

also the perspective assumed by this book. In this way it not only becomes a con-
tinuation to the work of R. A. Belecheanu et.al. [1], and to the Agent Computing
Roadmap [3], but also follows one of more controversial overview papers concern-
ing agent systems [5]. In their work, H. Nwana and D. Ndumu stated that more
empirical work is needed in the area of agent system research. It is only through
development of (prototypes of) large-scale systems it will be possible to learn the
actual pros and cons of agent technologies [3].

In this context, the book at hand constitutes the 2011 snapshot of the state-of-
the-art of agent system development. Following the chapter analyzing the content
of key journals and conferences related to agent systems, the remaining 9 chapters
present (a) three agent platforms, and (b) applications of software agents. The later
part can be divided between “agents in simulations” and “other agent applications.”
The most important point about these chapters is that they are based on the actual
implementations of agent platforms and systems. This gives their authors an oppor-
tunity to reflect on the lessons learned. Furthermore, in the introductory chapter,
book editors collect most important issues to be resolved to take agent technologies
to the next level of applicability.

As every snapshot, this one also has its shortcomings. It would be possible to
point out to the developments that are missing. Nevertheless, this is a very good
book, worthy reading by both specialists in the field and those thinking about start-
ing agent systems research. Finally, as what concerns future of agent systems, I am
particularly glad that the need for reviving efforts of FIPA is brought forward. How-
ever, as D. Rosengarten said: “life is a matter of taste.” While this particular point
may be particularly close to my likings, I hope that all readers will find this book
very tasty, indeed.

Professor Marcin Paprzycki
Systems Research Institute

Polish Academy of Sciences
Poland

References

[1] Belecheanu, R.A., Munroe, S., Luck, M., Payne, T., Miller, T., McBurney, P., Pechoucek,
M.: Commercial Applications of Agents: Lessons, Experiences and Challenges. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan (2006)

[2] Jennings, N.R.: An agent-based approach for building complex software systems.
CACM 44(4), 35–41 (2001)

[3] Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink (2005) ISBN 085432
845 9

[4] Maes, P.: Agents that Reduce Work and Information Overload. CACM 37, 31–40 (1994)
[5] Nwana, H.S., Ndumu, D.T.: A perspective on software agent research. The Knowledge

Engineering Review 14(2), 125–142 (1999)

Preface

According to the Gartner’s famous Hype Cycle for Emerging Technologies
(http://en.wikipedia.org/wiki/Hype cycle) each new technology goes through five
phases, from the Technology Trigger, through the Peak of Inflated Expectations,
Trough of Disillusionment, Slope of Enlightenment, to the Plateau of Productivity.
This cycle should also be applicable to the software agents and the agent technolo-
gies. In this context, one of the ways of tracking the progress of agent technology
would be by the results delivered by the three phases of the EU-funded AgentLink
Coordinated Action, which lasted between 1998 and 2005 (www.agentlink.org). Its
fundamental deliverable was the Agent Technology Roadmap ([2]). In this publica-
tion, on pages 71-74, a number of predictions were made, concerning the advances
and the penetration of the agent technologies. However, the most important source
of inspiration for this book was the seminal paper published in 2006 ([1]). This pa-
per (also an outcome of the AgentLink action) contains a comprehensive summary
of the state-of-the-art of the use of agent technologies in real-world applications.
Five years later, in 2011, we have decided to assess the progress, which has been
made in the use of software agents in actual applications. To achieve this goal we
have invited contributions from the leading experts in the field. We have asked them
to describe their implemented applications, to reflect on the process, and to sum-
marize the lessons learned. We have also requested their perspective on the future
developments of the agent technology, including the most important challenges that
lie ahead.

Synopsis of Book Chapters

This book contains 10 chapters. The first of them (by Balke et al.) provides an inter-
esting context for the whole book. It investigates the status of agent applications in
most important agent-related scientific conferences and journals. The main finding
is that, in the academic work, the results concerning the actual implementations of
agent systems are not given the same recognition as theoretical / foundational work.
This is particularly interesting since, as can be found in the remaining nine chapters,

VIII Preface

development of both agent tools and applications requires a search for completely
novel solutions based on close collaboration between theory and practice. Therefore,
cross-feeding between them would be very valuable. In this context, it is worthy to
mention work of H. Nwana and D. Ndumu who, in 1999, strongly argued that more
practical work is needed to take the agent system development to the next level [3].
Unfortunately, as Chapter 2 shows, this call has not been heard.

Obviously, one of the crucial elements to be able to actually implement agent-
based applications is to use agent tools / environments / platforms. Furthermore,
observe that agent technology differs from others due to the fact that agent collabo-
ration is usually achieved via messages exchanges, while individual agents are inde-
pendent software elements that encapsulate autonomic behaviors. This is why it is so
important to have in place technologies that support such programming paradigm.
On this account, the next three chapters concern the three agent platforms.

Chapter 2, by Pokahr et al., is devoted to a platform allowing development of
agent systems based on the, well-known, Belief-Desire-Intention (BDI) approach.
BDI agents are characterized by mental-like states with three components: what
agent knows (beliefs), what agent can do/fulfill (desires), and what agent strives to
achieve (intentions). The beliefs of an agent are its model of the domain it operates
in, while desires provide ways of dealing with in incoming events (based on the
agents’ knowledge). It is worthwhile stressing that, in the BDI model, it is usually
assumed that agents’ knowledge about the domain (environment) is repeatedly up-
dated on the basis of the information originating from the environment, deciding on
which options are available, filtering these options to determine new intentions, and
acting on the basis of these intentions.

Jadex is a software platform created to implement the BDI agents. Interestingly,
besides cognitive agents, which are particularly suited for complex tasks, Jadex di-
rectly supports simple reactive micro agents (so-called active components). These
agents are similar to active objects, and are very efficient in terms of low resource
consumption. Furthermore, Jadex has been developed with the goal to connect agents
tighter to the existing, well-established approaches. Specifically, it is striving to al-
low inexperienced agent developers, who have experience in Java and XML pro-
gramming, to develop BDI-based agent systems.

The next chapter (Chapter 3, by Vidakovic et al.) describes an effort to fully
utilize Java capabilities to implement software agents. Specifically, the main mo-
tivation behind the development of the Extensible Java Enterprise Edition-based
Agent Framework (XJAF) was to demonstrate how existing, standardized Java EE
technologies, tools, and libraries, such as JNDI, JMS, and EJB, can be used to im-
plement a large subset of functionalities required in the multi-agent systems.

The direct benefits of this approach were, among others, a shorter development
time of software systems, the delegation of agent load-balancing to the enterprise
server, and a flatter learning curve for new developers of the system. Furthermore,
based on common tendencies in software development, recent versions of the XJAF
added some new functionalities, e.g. the SOA-based design and the Web Service
interfaces.

Preface IX

Particularly interesting is the fact that, before starting to develop their framework,
its authors analyzed the most important advantages and disadvantages of other plat-
forms. Based on this research, the XJAF developers try to eliminate the existing
“weak points.” For instance, in most cases, the MAS solutions do not provide any
runtime load-balancing techniques. These few that do, implement their own algo-
rithms from the scratch. In the case of the XJAF, developers can utilize the ca-
pabilities of the Java EE. Specifically, the XJAF wraps agents inside of the EJB
components and delegates their life-cycle management to the enterprise application
server. As a result, with a minimum amount of programming effort, runtime load-
balancing of agents and an improvement of the overall performance of the system
are achieved.

The last chapter dealing with agent frameworks is devoted to the newest prod-
uct from the developers of the most popular agent system of today (JADE). This
product is a JADE add-on: WADE (Workflows and Agents Development Environ-
ment; Chapter 4 by G. Caire). The use of WADE is illustrated through the large
agent-based application, which was developed and successfully deployed by the
Telecom Italia, in the field of fixed network monitoring and optimization (the Wants-
Assurance system). At the beginning of this chapter, readers can find a comprehen-
sive description of WADE, which is a domain independent software platform built
on top of the JADE agent platform. This chapter also introduces some important
facts about the xDSL application, utilized in the Wants-Assurance system. Its final
part is devoted to the details of the development and implementation of the Wants-
Assurance application. It is worthy noting that, thanks to its natively distributed
agent-based architecture, the Wants-Assurance system continuously (in real-time)
monitors about 3.000.000 of xDSL lines.

In this way, Chapter 4 becomes a bridge between the technology and the applica-
tion chapters, which constitute the remaining parts of the book. In the, above men-
tioned, overview paper [1] it was clearly illustrated that one of the key areas where
agent systems have been extensively used was simulation. Thus, the next three chap-
ters illustrate the current state-of-the-art concerning use of software agents in simu-
lations.

The first chapter of this part of the book was prepared by Braubach and Pokahr
and is devoted to the specific characteristics of the JADEX platform, which allow it
to support simulation. One of the key issues is: how JADEX helps to establish sim-
ulation transparency (here, transparency means independence from the simulation
specific aspects), which makes it easy to transform a simulation into an applica-
tion. In the chapter, the usefulness of simulation itself and of simulation techniques
applied as part of the application development process, are clearly illustrated. The
second addressed issue is that of the simulation time. Two possible ways to solve
this issue have been discussed and illustrated by the examples. The last fundamen-
tal issue addressed in this chapter is the virtual environment (external environment
used to run the simulations). Note that, during the application development, simula-
tion allows intensive testing of the whole application (or some of its specific parts)
before putting it into the production environment. Furthermore, the virtual environ-
ment allows one to benchmark different implementations in the same environment,

X Preface

or test implemented system behavior in the changing environments. In the chapter,
the specific framework for developing virtual environment extending JADEX, the
EnvSupport, is described in details.

The second simulation-related chapter concerns the use of agents in the simu-
lation of cyber attacks. Here, Rafał Leszczyna discusses system, which has been
created to study various possible attacks on the IT infrastructures of power plants.
Material presented in this chapter matches with and extends the discussion of the
virtual environment, introduced in the previous chapter. What is particularly inter-
esting is the fact that the performed simulations allowed to prevent actual attacks,
details of which can be found in the chapter.

The next chapter (Chapter 7) is devoted to the interrelated and already completed
projects named “Tactical Agent-Fly” and “Tactical AgentScout.” Furthermore, it
outlines the core objectives of an on-going follow-up project the “AgentFly-In-Air.”
All these projects deal with cooperation and coordination issues in the multi-robot
teams. These teams either carry tactical missions in urban warfare scenarios, or
provide information to human troops on the ground. In the chapter, discussion of
architectural and technological issues related to the development of the multi-agent
platform and the simulation subsystem used in these projects is given. The content
of the chapter describes, in chronological order, the co-evolution of the tools and
environments and of the subsequent projects undertaken by the authors.

The final part of the book contains three chapters devoted to implementing ap-
plications using software agents. In the first chapter (Chapter 8), a novel applica-
tion field for software agents is a rapidly advancing area of wireless sensor net-
work (WSN). Applications using a combination of both technologies can be found,
among others, in e-health, ambient assisted living, or smart environments. Chap-
ter by Fortino and Galzarano contains a discussion of fundamental issues related
to merging of software agents and wireless sensors. The analysis presented in this
chapter points to some important concerns. For instance, WSN technologies limit
agent mobility (it is practically impossible to use a single mobile agent to service
multiple sensors – each sensor has to have its own local agent). Furthermore, as of
today, development of agent-WSN systems is hindered by the lack of suitable tools
and methodologies, capable of dealing with resulting complex systems. In this con-
text, the Platform Based Design (PBD) methodology, proposed in the chapter, can
be seen as a step in the direction of solving this problem. In order to discuss the
PBD methodology, the TinyMAps platform is introduced and confronted with an
earlier MAPS platform. The TinyMaps is Java-based mobile agent system designed
for the WSNs with extremely limited hardware resources (e.g. the Sentilla JCreate).
A comparative analysis of MAPS and TinyMAPS is provided, showing analogies
and differences among the two platforms. It is facilitating the context for the issues
involved in designing agent-WSN systems. Finally, a comparison of MAPS with
AFME, and other Java-based mobile agent systems running on the SunSPOT de-
vices, and based on different architectures and programming models, is presented.

The next chapter of the book (Chapter 9, by Morge, et.al.) is devoted to agent
negotiations and, in this context, argumentation. The focus of the chapter is on how
to compose services by negotiating the terms and the conditions between potentially

Preface XI

participating services (e.g. to establish time of use and its duration, according to the
requirements and goals both of the clients and of the service providers). The goal of
the negotiations is to reduce possible conflicts and to support a successful service
composition. The agent model supporting the needed functionalities has been de-
veloped within the EU-funded ArguGRID project, as a multi-agent platform. In the
chapter one can find a description of this platform as well as more general discussion
of the negotiation process and the used argumentation mechanisms.

The final chapter, by Casalicchio and Tucci, is devoted to use of software agents
in re-engineering public administration workflows. The focus of the chapter is on
the experiences gathered by the authors in the design and implementation of an
agent-based modeling and simulation framework. This was used to support the re-
engineering of public administration workflows. The project, which started in late
2003, was to analyze and evaluate the performance of the IT infrastructure manage-
ment and the service provisioning process at the Italian Prime Minister Office for
Informatics and Telematics, headed by the second author. On the basis of the solu-
tion initially developed to solve the specific problem, a general framework to sup-
port public administration processes re-engineering was created. This framework,
named Wf-Simulator, has been successfully used in real workflow modeling and
simulation. The chapter describes the initial project, the Wf-Simulator framework,
and three real-world case studies: service provisioning in public administration, day
hospital surgery admission, and blood examination management.

Lessons Learned

Let us now briefly summarize the some of the most important lessons pointed to by
the authors of all chapters:

1. Lack of attention to agent-based applications among agent researchers is slowing
down advances in “multi-agent system science” as well as their acceptance in
real-world applications.

2. FIPA standards developed about 10 years ago for agent system design and im-
plementation have to be revisited, and their new release should take into account
advances in agent-based computing that took place in the meantime.

3. There is a need for development techniques that would allow for early testing
and validation of application design and implementation.

4. Importance of agents in simulations is increasing, as they are an ideal tool to
combine different software artifacts into a common system.

5. Agent technology provides important features such as reasoning, planning and
more in general “intelligence” that allow agent-based systems to deal with un-
foreseen situations. Moreover, it seems that the more complex the situation is,
the more successful could be use of agent technology.

6. Unfortunately, the knowledge engineering process can become complex when
dealing with multiple and possibly heterogeneous knowledge representations.
Utilization of semantics is still a weak point of agent-based applications.

XII Preface

7. Agents are becoming more-and-more “talkative.” The initial idea that agents
communicate via messaging is systematically extended by turning simple mes-
sage exchanges into elaborate negotiations with argumentation.

8. An important unsolved issue is the human-agent relations. For instance, while in
the academia software agents are to be more-and more autonomous in dealing
with real world-problems, today in real-world agent autonomy is not a realistic
option; e.g. nobody will allow agents to actually represent humans and make
autonomous decisions with potential serious consequences.

References

[1] Belecheanu, R.A., Munroe, S., Luck, M., Payne, T., Miller, T., McBurney, P., Pechoucek,
M.: Commercial Applications of Agents: Lessons, Experiences and Challenges. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan (2006)

[2] Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink (2005) ISBN 085432
845 9

[3] Nwana, H.S., Ndumu, D.T.: A perspective on software agent research. The Knowledge
Engineering Review 14(2), 125–142 (1999)

Resources

The following resources are recommended to explore the field of intelligent systems
further. This list is neither complete, nor exclusive. It can be seen as a starting point
to explore the field further.

Journals

• International Journal of Knowledge-Based and Intelligent Engineering Systems,
IOS Press, The Netherlands,
http://www.iospress.nl/loadtop/load.php?isbn=13272314

• Multiagents and Grid Systems: An International Journal, IOS Press, The Nether-
lands, http://www.iospress.nl/journal/multiagent-and-grid-systems/

• Autonomous Agents and Multi-Agent Systems Journal (JAAMAS), Springer
• see table 8, Chapter 1

Conferences

• International KES Conference on Agents and Multi-agent Systems –Technologies
and Applications (AMSTA KES)

• International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS)

Preface XIII

• International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS)

• German Conference Series on Multiagent System Technologies (MATES)
• Joint Agent-oriented Workshops in Synergy (JAWS)
• International Workshop on Agent-Oriented Software Engineering

Books

• Bellifemine, F., Caire, G. and Greenwood, D., Developing Multi-Agent Systems
with JADE, John Wiley & Sons, 2007

• Bigus, J.P. and Bigus, J., Constructing Intelligent Agents Using Java: Profes-
sional Developer’s Guide. Wiley, New York, 2nd edition, 2001.

• Cervenka, R.and Trencansky, I., The Agent Modeling Language – AML,
Birkhäuser, 2007

• Essaaidi, M., Ganzha, M. and Paprzycki (Eds), M., Software Agents, Agent Sys-
tems and Their Applications, IOS Press, 2011

• Jain, L.C., Chen. Z. and Ichalkaranje, N. (Eds), Intelligent Agents and Their
Applications, Springer-Verlag, Germany, 2002

• Jain, L.C. and Nguyen, N.T. (Eds), Knowledge Processing and Decision Making
in Agent-Based Systems, Springer-Verlag, Germany, 2009.

• Jarvis, J., Ronnquist, R, Jarvis, D. and Jain, L.C., Holonic Execution: A BDI
Approach, Springer-Verlag, 2008.

• Jarvis, D., Jarvis, J. Ronnquist, R, and Jain, L.C., Multiagent Systems and Appli-
cations, Volume 2: Development using the GORITE BDI Framework, Springer-
Verlag, 2013.

• Khosla, R., Ichalkaranje, N. and Jain, L.C. (Eds), Design of Intelligent Multi-
Agent Systems, Springer-Verlag, Germany, 2005

• Nguyen, N.T. and Jain, L.C. (Eds), Intelligent Agents in the Evolution of Web
and Applications, Springer-Verlag, Germany, 2009.

• Phillips-Wren, G. and Jain, L.C. (Eds), Intelligent Decision Support Systems in
Agent-Mediated Environments, IOS Press, The Netherlands, 2005.

• Resconi, G. and Jain, L.C., Intelligent Agents: Theory and Applications,
Springer-Verlag, Germany, 2004

• Russell, S.J. and Norvig, P., Artificial Intelligence: A Modern Approach, Prentice
Hall, Pearson Education, Inc., Upper Saddle River, NJ, USA, 2nd edition, 2003.

• Srinivasan, D. and Jain, L.C. (Editors), Advances in Multi-agent Systems and
Applications, Springer-Verlag, 2010

• Tweedale, J. and Jain, L.C., Embedded Automation in Human-Agent Environ-
ment, Springer-Verlag, 2011

• Uhrmacher, A.M. and Weyns, D. (Eds), Multi-Agent Systems: Simulation and
Applications, CRC Press, 2009

• Wooldridge, M., An Introduction to Multi Agent Systems, Wiley, 2009

XIV Preface

We would like to send out special thanks to Professor Michael Luck for the dis-
cussions, while we were working out details of the concept of the book. They turned
out to be extremely illuminating. Thank you Michael!

We are also grateful to Professor Marcin Paprzycki for his constant support and
ideas, and his very unique foreword.

This book would not have existed without the tremendous contribution by the
authors and the reviewers. We remain grateful.

Finally, thanks are also due to the Springer-Verlag for their excellent support
during the preparation of the manuscript.

Maria Ganzha
Institute of Informatics

University of Gdańsk
ul. Wita Stwosza 57

80-952 Gdańsk
Poland

and

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6
01-447 Warszawa

Poland

Lakhmi C. Jain
School of Electrical and Information Engineering

University of South Australia
Mawson Lakes Campus

South Australia SA 5095
Australia

Contents

1 Assessing Agent Applications — r&D vs. R&d 1
Tina Balke, Benjamin Hirsch, Marco Lützenberger
1 The Case . 1
2 Application Papers . 3
3 Agent-Centered Conferences . 4

3.1 AAMAS . 4
3.2 PAAMS . 7
3.3 ICAART . 7
3.4 MATES . 8
3.5 Summary of Conferences . 9

4 The Agent Technology Journal Landscape 9
4.1 The Autonomous Agents and Multi-Agent Systems

Journal . 9
4.2 The General Agent Technology Journal Landscape 11

5 The Stakeholders . 11
5.1 The Industry View: The Technology Adoption

Life-Cycle . 13
5.2 The Research View . 16
5.3 The Reviewers View . 16

6 Summary . 17
References . 19

2 The Jadex Project: Programming Model . 21
Alexander Pokahr, Lars Braubach, Kai Jander
1 Introduction . 21
2 Agent Programming: BDI Architecture . 22

2.1 Related Work . 23
2.2 Approach . 23
2.3 Application: MedPAge . 29
2.4 Summary . 33

XVI Contents

3 BDI in Workflows: GPMN . 34
3.1 Related Work . 35
3.2 Approach . 36
3.3 Application . 40
3.4 Summary . 41

4 Agents, Components and Services: Active Components 42
4.1 Related Work . 43
4.2 Approach . 44
4.3 Application: JadexCloud . 47
4.4 Summary . 48

5 Conclusion and Outlook . 49
References . 50

3 Extensible Java EE-Based Agent Framework – Past, Present,
Future . 55
Milan Vidaković, Mirjana Ivanović, Dejan Mitrović, Zoran Budimac
1 Introduction . 55
2 An Overview of Existing MAS Architectures 57

2.1 ABLE . 58
2.2 Aglets . 58
2.3 DimaX . 59
2.4 FUSION@ . 59
2.5 JADE . 60
2.6 Voyager . 60
2.7 Comparisons with XJAF . 61

3 The XJAF Architecture . 62
3.1 Agent Management . 63
3.2 Managing Tasks . 64
3.3 Agent Communication . 65
3.4 Connecting Distributed XJAF Instances 67
3.5 Security Features of XJAF . 68
3.6 Service Manager . 69

4 Practical Applications of XJAF . 70
4.1 Example: Factorial Agent . 70
4.2 Distributed Library Catalogues . 72
4.3 Metadata Harvesting . 74
4.4 The Benefits of Using XJAF . 76

5 Recent Improvements of the Architecture . 78
5.1 Fault-Tolerant Networks of XJAF Instances 78
5.2 Agent Tracking Improvements . 80
5.3 SOM: SOA-Based MAS . 82

6 Conclusion and Future Work . 83
References . 84

Contents XVII

4 Agent-Based XDSL Monitoring and Optimization 89
Giovanni Caire
1 WADE . 89

1.1 Distribution . 90
1.2 Workflows . 94

2 The xDSL Domain . 97
2.1 xDSL Connectivity . 98
2.2 Line Quality Management . 98

3 Agent Based xDSL Monitoring and Management 99
3.1 Event Based xDSL Monitoring . 100
3.2 Wants Assurance Internal Architecture 101
3.3 Dynamic Line Management . 103

4 Conclusions . 105
References . 105

5 The Jadex Project: Simulation . 107
Lars Braubach, Alexander Pokahr
1 Introduction . 107
2 Simulation Clocks . 108

2.1 Related Work . 109
2.2 Approach . 110
2.3 Applications . 113
2.4 Summary . 117

3 Virtual Environments . 118
3.1 Related Work . 119
3.2 Approach . 119
3.3 Agent-Based Simulation: City Bikes 122
3.4 Summary . 125

4 Conclusion and Outlook . 126
References . 127

6 Agents in Simulation of Cyberattacks to Evaluate Security
of Critical Infrastructures . 129
Rafał Leszczyna
1 Introduction . 129

1.1 Cybersecurity of Critical Infrastructures 129
1.2 Cybersecurity Evaluation . 130
1.3 Need for a Malware Simulator . 131

2 Developing MAlSim . 132
2.1 The Choice of Agent Paradigm . 132
2.2 MAlSim Design . 133
2.3 Design Changes during the Implementation 134

XVIII Contents

3 Completed Project . 135
3.1 Attack Scenario . 135
3.2 Malware Templates . 135
3.3 MAlSim Toolkit . 138
3.4 The Life Cycle of the Experiments with MAlSim 141

4 Application . 141
5 Lessons Learned . 142
6 Perspectives . 142
References . 144

7 Simulated Multi-robot Tactical Missions in Urban Warfare 147
Peter Novák, Antonı́n Komenda, Michal Čáp, Jiřı́ Vokřı́nek,
Michal Pěchouček
1 Multi-robotics in Urban Warfare . 147
2 The Project Cluster: Tactical AgentFly, Tactical AgentScout 149

2.1 Tactical AgentFly . 150
2.2 Tactical AgentScout . 152

3 Analysis and Design of the System . 154
3.1 Initial System Requirements . 155
3.2 Initial Technological Infrastructure: AgentFly 158
3.3 Initial System Architecture . 163

4 System Implementation and Experiences . 164
4.1 Simulation and Environment Modeling 165
4.2 Evaluation of Multi-agent Coordination Techniques 166
4.3 Scripting and Agent Control . 168
4.4 User Interface and Visualization . 168
4.5 Alite . 169
4.6 Architectural Changes of the Technological

Infrastructure Over Time . 172
5 Critical Analysis of the Experience and Lessons Learned 172

5.1 Multi-agent Platform . 173
5.2 Environment Simulation and Scenario Modeling 174
5.3 Experiments and Configuration . 175
5.4 Agent Behavior Control . 176
5.5 User Interface and Visualization . 177
5.6 Towards AgentFly-In-Air . 177

6 Future Perspectives and Final Remarks . 180
References . 181

8 On the Development of Mobile Agent Systems for Wireless
Sensor Networks: Issues and Solutions . 185
Giancarlo Fortino, Stefano Galzarano
1 Introduction . 186
2 Background and Related Work . 187

2.1 Network Routing . 187

Contents XIX

2.2 Data Dissemination and Fusion . 188
2.3 Energy-Aware Coordination . 188
2.4 System Architectures, Services and Applications 189
2.5 Programming Frameworks . 190

3 Requirements for MAS Development on WSNs 192
3.1 On the Use of Mobile Agents for WSN Applications . . . 192
3.2 Requirements and Issues . 194

4 MAPS and TinyMAPS . 197
4.1 MAPS: Mobile Agent Platform for Sun SPOT 197
4.2 TinyMAPS . 199

5 A Comparison among Java-Based MAS . 200
5.1 Java-Based MASs’ Characteristics Comparison 200
5.2 Performance Test Comparison between MAPS and

TinyMAPS . 202
5.3 Performance Test Comparison between MAPS and

AFME . 204
6 Lessons Learned and Open Challenges . 208
7 Conclusion . 211
References . 212

9 Argumentative Agents for Service-Oriented Computing 217
M. Morge, J. McGinnis, S. Bromuri, P. Mancarella, K. Stathis, F. Toni
1 Introduction . 218
2 Motivation: An E-Procurement Scenario . 221
3 Background on Argumentation and Protocol Language 224

3.1 MARGO . 225
3.2 Protocol Language . 231

4 Agent Architecture . 232
4.1 Individual Decision Making . 233
4.2 Social Decision Making . 236
4.3 Social Interaction . 238

5 Case Run . 243
6 Deployment and Implementation . 244
7 Related Work . 247
8 Conclusion and Future Work . 250
References . 251

10 Public Administration Workflows Re-engineering:
An Agent-Based M&S Approach . 257
Emiliano Casalicchio, Salvatore Tucci
1 Introduction . 257
2 Basic Concepts . 261

2.1 Workflow and WfMS . 261
2.2 WF-Net . 261
2.3 Agent-Based Modeling and Simulation 262

XX Contents

3 The Wf-Simulator . 263
3.1 The Architecture . 263
3.2 The Modeling Approach . 266

4 Practical Experiences . 268
4.1 The SABS Case Study . 268
4.2 The Day Hospital Surgery Admission Case Study 270
4.3 The Blood Examination Case Study 273

5 Perspectives and Concluding Remarks . 275
References . 276

Author Index . 279

Editors

Dr. Maria Ganzha is Assistant Pro-
fessor in the Institute of Informat-
ics, University of Gdańsk, Poland,
as well as the Systems Research
Institute Polish Academy of Sci-
ences. She completed her Masters’
and Doctorate degrees from the
Moscow State University in 1987
and 1994, respectively.

Currently her research interests
include software engineering, dis-
tributed computing, ontology, se-

mantic data processing, and agent-based systems in particular. Results of her re-
search have been published in about 120 peer-reviewed scientific journals, mono-
graphs, as well as conference proceedings.

She has been supervising Ph.D. and MsC students in agent-based system, on-
tology and web services. With her team, she has been developing a prototype of
an agent-based system managing resources in the Grid. Dr. Ganzha was the guest-
editor of special issues published by journals such as Science of Computer Program-
ming, Journal of Network and Computer Applications (Elsevier) and is on editorial
boards of such journals as Computing Now (IEEE), Informatica, The International
Journal of Computer Science & Applications, and the International Journal on In-
formation & Communication Technologies.

Professor Lakhmi C. Jain is a Director/Founder
of the Knowledge-Based Intelligent Engineering
Systems (KES) Centre, located in the University of
South Australia. He is a fellow of the Institution of
Engineers Australia.

His interests focus on the artificial intelli-
gence paradigms and their applications in com-
plex systems, art-science fusion, virtual systems, e-
education, e-healthcare, unmanned air vehicles and
intelligent agents.

Chapter 1
Assessing Agent Applications — r&D
vs. R&d

Tina Balke, Benjamin Hirsch, and Marco Lützenberger

Abstract. This chapter focusses on the relevancy of implementations of soft-
ware systems in which agent technology was actually used in agent-oriented
conferences and journals. It discusses the discrepancy between the stated
aims of agent research with regard to agent applications, and the reality as
found in many (general) agent conferences as well as journals. We demon-
strate this discrepancy by analysing how implementations of software systems
that employed agent technology are represented in publications, both in form
of conference as well as journal papers. We analyse some agent related con-
ferences and journals, and look at the distribution of application papers at
past conferences/journal issues. In order to lay foundations for a discussion
of the reasons for this inconsistency as well as conclusions that can be drawn
from it, we analyse relevant stakeholders for agent application papers. The
aim of this chapter is to provide a basis for discussing the state and status
of agent applications in research oriented conferences and journals.

1 The Case

It is generally agreed that agent technology is a topic mainly confined to
the realm of research. From key note speeches at major conferences to the

Tina Balke
Centre for Research in Social Simulation, University of Surrey
e-mail: t.balke@surrey.ac.uk

Benjamin Hirsch
ETISALAT BT Innovation Center, Khalifa University
e-mail: benjamin.hirsch@kustar.ac.ae

Marco Lützenberger
DAI-Labor, Technische Universität Berlin
Faculty of Electrical Engineering and Computer Science
e-mail: marco.luetzenberger@dai-labor.de

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 1–20.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

t.balke@surrey.ac.uk
benjamin.hirsch@kustar.ac.ae
marco.luetzenberger@dai-labor.de

2 T. Balke, B. Hirsch, and M. Lützenberger

AgentLink roadmap [19, Chapter 5], applying agent technology, as well as
developing tools and frameworks and applying agent oriented methodologies
to real world problems, is one of the key drivers of advancing agent technol-
ogy. Consequently, looking at the IFAAMAS1 charter [15] for example, the
following mission statements can be found:

Point 1. Promote high quality scientific research and technological prac-
tice worldwide in Autonomous Agents and Multiagent Systems, in accor-
dance with standards of excellence and best international scientific practice,
giving equal prominence to foundational, theoretical, experimental, and
applied research.

Point 5. Foster links between the AAMAS community and the interna-
tional business community, and national / international governments /
government organisations, where such links will further the goals listed
above.

Point 6. Act as an authoritative and responsible international voice for the
AAMAS2 community, informing public opinion and raising public aware-
ness of this research and technology.

As these mission statements indicate, the diffusion of agent technology —that
could for example be achieved through industry adoption— as well as the in-
crease of business and public awareness for agents, are major aims of the
community. In order to achieve these aims, the AgentLink Roadmap [19,
p. 50] points at “applications & implementation” as one driving force re-
quired, as they attract potentials adopters of agent technology by indicating
the benefits of the agent technology to them in a form that they can easily
understand. Thus, research and development, or as often abbreviated R&D,
should work hand in hand.

Yet, although the interplay of R&D sounds like a natural match, when it
comes to conferences, R&D seem to have different perceptions and views and
the balance between the two seems difficult, especially when understanding
the needs of each others domain. Experience shows that papers that either
focus on a particular application that uses agent technology, or deal with
issues that are close to implementation issues in the context of agents —for
example network problems, authorisation, or deployment— are frequently
not accepted.

The rest of the chapter is structured as follows. We first define what we
mean by application paper, followed by an analysis of various conferences and
journals with respect to the number of application papers. Before concluding,
we discuss the stakeholders involved with papers.

1 International Foundation for Autonomous Agents and Multiagent Systems.
2 International Conference on Autonomous Agents and Multiagent Systems.

1 Assessing Agent Applications — r&D vs. R&d 3

2 Application Papers

While many papers clearly fall into the category of “theoretical” work, the
question what constitutes an application paper is sometimes not easily an-
swered. In short, we consider a paper to be an application paper if it focuses
on aspects and issues regarding the implementation of agent applications. As
a special case, we also count papers which describe tools for the implemen-
tation of agent applications as application papers. In this chapter, we define
application papers to have one of the following characteristics:

– description of an application,
– tools designed to support applications and their actual use,
– implementation aspects of an application,
– real world issues and agent based solutions, and
– application of methodologies to real world problems

An application paper can also discuss an (agent-based) simulation, as long
as the paper focuses on engineering aspects or implementation issues which
evolved during the implementation or which have been solved. As opposed
to that, we do not consider prototypes or toy-implementations as suffi-
cient criterion to count as an application paper. Both, prototypes and
toy-implementations are frequently used for evaluation purposes and often
feature significant simplifications. This simplification is one of the reasons
why proposed concepts are not easily applicable in reality, either because im-
plementational aspects were not comprehensively discussed or because flaws
in the approach did not materialise due to the simplification of the problem.
At this point we want to stress that we do not question the quality of these
papers in any way. It is our opinion that perspectives, concepts and initial
implementations are indeed indispensible for industrial quality applications,
but do not guarantee for their general applicability. The discussion of imple-
mentation and engineering aspects may raise important questions regarding
the applicability of concepts and provide valuable feedback for theoretical im-
provements. By “application papers”, we refer to papers which match with
the above mentioned criteria. In the next section we now analyze how these
papers are represented in the agent community by analysing several agent-
oriented conferences as well as journals. Due to a lack of confidential sub-
mission information, we can only base this analysis on successfully published
papers that we could access. We start with the AAMAS conference as it is
highlighted as the main agent conferences by the IFAAMAS whose mission
statements we quoted at the beginning of this chapter.

4 T. Balke, B. Hirsch, and M. Lützenberger

3 Agent-Centered Conferences

3.1 AAMAS

Having a look at the past AAMAS conferences, despite the IFAAMAS mission
statements, the number of application & implementation papers is very low.

To emphasise the problem, we examined the main track proceedings [5,
10, 24, 28, 29, 30] of recent AAMAS conferences and analysed papers with a
focus on applications. We respectively identified between eight and 13 papers
in AAMAS editions from 2006 and 2011. Table 1 illustrates the result of our
survey. It shows that during the last five years the number of full papers
at AAMAS stayed more or less the same, while the number of application
oriented papers dropped from about 10% to little over 6%.

Table 1 Submissions, accepted, and application papers at AAMAS conferences

Application Papers

AAMAS Submissions Acceptances # Accepted Acceptance (%)

2006 550 127 13 10.2
2007 531 121 10 8.3
2008 721 141 10 7.1
2009 651 132 8 6.1
2010 685 163 10 6.1
2011 575 127 8 6.3

Figure 1 shows the trend line over the percentage which clearly is in de-
cline. The reasons for this decline are not clear, but it is our opinion that
applications are as relevant today as they were five years ago.

In an early version of this work [14], we presented the above numbers
on the 12th International Workshop on Agent-Oriented Software Engineer-
ing (AOSE). The audience recognised the lack of application papers and
agreed with us on the discrepancy between the IFAAMAS mission statement
and the reality of the AAMAS conference. Nevertheless, we were advised to
additionally examine the so called Industry Track, a special session of the
AAMAS main track, in which practitioners are given the chance to present
their scientific work. Following this suggestion, we extended our survey to
include the industry tracks of the previously examined AAMAS conferences.
Generally speaking, the works presented within the industry track feature a
high level of practical engineering aspects and match our conception of ap-
plication papers. The overall amount of papers which describe an application
ranges approximately from 70% to 85%.

In 2011, no Industry Track was held, but officially, the name Industry Track
was changed to Special Track on Innovative Applications. However, although

1 Assessing Agent Applications — r&D vs. R&d 5

Fig. 1 Amount of accepted full papers and application papers in AAMAS main-
track proceedings between 2006 and 2011

Table 2 Overall number of presented papers and number of application papers at
AAMAS Industry Tracks

Application Papers

AAMAS Industry Track Papers # Accepted Acceptance (%)

2006 14 11 78.6
2007 10 8 80.0
2008 19 16 84.2
2009 12 10 83.3
2010 10 7 70.0
2011 0 0 0.0

there was an explicit call for papers which describe innovative applications,
the session was not being held in 2011 [30].

The previous editions however feature an amount of application papers
beyond 70%, which indicates that this track counters the shortcoming of
engineering aspects and explicitly fosters works which describe practical ap-
plications.

Papers which we do not categorise as application papers still had a prac-
tical background, so we can state that the AAMAS industry track is exclu-
sively dedicated to the application of agent technology. Nevertheless, due to
the shortfall of the Special Track on Innovative Applications in 2011 we can
still identify a definite downward trend in the share of application papers.
This trend is visualised in Figure 2.

6 T. Balke, B. Hirsch, and M. Lützenberger

Fig. 2 Amount of accepted full papers and application papers in AAMAS Industry
Track proceedings between 2006 and 2011

Based on our analysis, one can argue that applications are adequately rep-
resented by means of industry tracks. However, comparing the extend of the
AAMAS maintrack to that of the industry track shows that the industry
track has only little impact on the overall AAMAS conference. Figure 3 il-
lustrates the industry track’s influence on the share of application papers of
the entire AAMAS conferences. Despite the outlier in 2008 the number of
application papers dropped from about 17% to little over 6%.

Fig. 3 Amount of accepted full papers and application papers in AAMAS main-
track and industry track proceedings between 2006 and 2011

1 Assessing Agent Applications — r&D vs. R&d 7

In addition to the little impact of the industry track on the main confer-
ence, we think that the industry tracks are often only visited by like-minded
researchers or industry players. Since the industry track is held in parallel to
the main track, it is also difficult for the broader community to attend this
session. Furthermore, the nominal size of the industry track relative to the
overall conference is very small. Table 3 shows the impact of the industry
track on the AAMAS conference by presenting respectively the numbers of
presented papers.

Table 3 Amount of industry track papers compared to the amount of AAMAS
main track papers

AAMAS Main track Industry Track Percentage (%)

2006 127 14 11.0
2007 121 10 8.2
2008 141 19 13.4
2009 132 12 9.1
2010 163 10 6.1
2011 127 0 0.0

3.2 PAAMS

On the other end of the spectrum, the conference on Practical Application of
Agents and Multi-Agent Systems [6, 7, 8] is explicitly aimed at providing a
platform for the dissemination of real-world applications of agents and multi-
agent systems. While we have noted before that in our opinion, application
oriented papers should be present at main agent conferences, it is also inter-
esting to look at the problem from the other side. Following our argument, we
would like to see theoretical work at the main application oriented conference
as well. Table 4 shows that the number of application papers is roughly 50%
over the last three installments of the conference. It must be noted here that
the other papers were usually relevant to agent applications, and very few
presented purely theoretical work.

3.3 ICAART

The International Conference on Agents and Artificial Intelligence [11, 12, 13]
has the stated purpose of bringing together researchers, engineers and prac-
titioners interested in the theory and practise of agents and artificial intelli-
gence. We selected this conference as it is fairly new, yet has already a created
considerable interest in the community (2010 they had 364 submissions). It
therefore presents a sample of a conference that is not yet set in the type

8 T. Balke, B. Hirsch, and M. Lützenberger

Table 4 Submission, accepted, and application papers at PAAMS conferences

Application Papers

PAAMS Submissions Acceptances # Accepted Acceptance (%)

2009 92 61 31 50
2010 66 34 17 50
2011 81 39 16 41

Table 5 Submission, accepted, and application papers at ICAART conferences

Application Papers

ICAART Submissions Acceptances # Accepted Acceptance (%)

2009 161 26 3 11.5
2010 364 31 6 19.3
2011 367 32 1 0.3

of topics it generally attracts. Table 5 shows a high fluctuation of applica-
tion papers between almost none and 20%. Considering that the conference
also covers general AI themes such as pattern recognition etc., this is clearly
within the stated goals of the conference.

3.4 MATES

The German Conference on Multi-Agent Systems [3, 9, 16] solicits theoreti-
cal as well as applied research papers. In particular, they focus on enabling
technologies for “truly open distributed systems” and request papers report-
ing on the successful application of agent technologies. Table 6 shows a fairly
stable ratio of about 30% of application papers over the last three years. This
is in line with the stated aims and goals of the conference.

Table 6 Submission, accepted, and application papers at MATES conferences

Application Papers

MATES Submissions Acceptances # Accepted Acceptance (%)

2009 44 29 11 37.9
2010 34 18 7 38.8
2011 50 18 6 33.3

1 Assessing Agent Applications — r&D vs. R&d 9

3.5 Summary of Conferences

In this section we have analysed a number of agent conferences with respect to
the number of application papers that are published in the proceedings. While
we do realise that there are a large number of conferences and workshops out
there, we focused on a cross cutting of conferences that are representing
different facets of the field of agents and multi-agent systems. Generally, all
of them point to the importance of applications and solicit papers describing
real world applications. In the case of PAAMS it is even the main driver of the
conference. Other than the main agent conference AAMAS, we found that
in general there is a reasonable amount of application papers represented in
the analysed conferences.

4 The Agent Technology Journal Landscape

As the agent community and their communication about research results
cannot be captured by conferences only, we now have a closer look at the agent
technology journal landscape. We do so by first analyse the papers published
in the Autonomous Agents and Multi-Agent Systems Journal (JAAMAS) in
detail, and afterward discuss to what extend r&D is represented in the scopes
and aims of the major agent technology journals.

4.1 The Autonomous Agents and Multi-Agent
Systems Journal

Looking at the Autonomous Agents and Multi-Agent Systems Journal (i.e.
the official journal of the IFAAMAS), the aims and scope of the journal
specifically asks for “significant original research results in the foundations,
theory, development, analysis, and applications of autonomous agents and
multi-agent systems”, however looking at the list of specific topics of inter-
est: applications are only mentioned once in the third last out of 20 point
(“Significant, novel applications of agent technology”). This is also reflected
in the papers published in the journal. Table 7 shows the past standard JAA-
MAS volumes (i.e. special issues are not considered in Table 7, but these will
be discussed separately later) and highlights the number (and percentage) of
R&D papers in comparison to the total number of research papers published.3

In the 23 volumes of the journal that were published since its first publi-
cation in 1998, we found 216 research articles. Of these 216 research articles,
15 articles (i.e. approximately 6.9%) feature R&D relevant topics. This is a
percentage similar to the percentage of R&D papers found in the AAMAS
conference (see Figure 1). Similar to the AAMAS, one worrying aspect of the

3 We refer to research papers only, as we have neglected editorials, book reviews,
etc. in our analysis, as these would distort the results of the analysis.

10 T. Balke, B. Hirsch, and M. Lützenberger

Table 7 Overall number of published application papers in the Autonomous
Agents and Multi-Agent Systems Journal

Application Papers

Issue # Research Papers # %

23 (2011) 9 2 22.2
22 (2011) 5 0 0.0
21 (2010) 4 0 0.0
20 (2010) 6 1 16.7
19 (2009) 10 1 10.0
18 (2009) 14 0 0.0
17 (2008) 7 0 0.0
16 (2008) 7 0 0.0
15 (2007) 8 0 0.0
14 (2007) 3 0 0.0
13 (2006) 13 1 7.7
12 (2006) 11 3 27.3
11 (2005) 15 0 0
10 (2005) 9 0 0
9 (2004) 4 0 0
8 (2004) 9 1 11.1
7 (2003) 12 0 0
6 (2003) 10 0 0
5 (2002) 13 1 7.7
4 (2001) 12 1 8.3
3 (2000) 10 1 10
2 (1999) 17 3 17.6
1 (1998) 8 0 0

SUM 216 15 6.9

figures thereby is that —despite a peak in volume 23— in the recent years
the percentage of application papers has decreased on average and the 6.9%
in Table 7 are partially due to the higher percentages of R&D papers in the
earlier years of the journal (i.e. the percentage would be lower if one would
analyse the past 5 years only, for example).

In the above analysis, we on purpose neglect the special issues of the
JAAMAS journal in order to not distort the figures of the analysis. Instead we
treat the special issues separately now. Since 1998, JAAMAS had 21 special
issues. The majority of these special issues has been published within the last
3.5 years. Of these special issues one specifically focuses on applications of
agents and MAS4 and a second one featuring “Challenges for Agent-Based

4 This special issue is the Special Issue on Foundations, Advanced Topics and
Industrial Perspectives of Multi-Agent Systems, volume 17(3), December 2008.

1 Assessing Agent Applications — r&D vs. R&d 11

Computing”5 includes several articles that discuss the problem of R&D in-
depth. As one interesting aspect, it has to be noted that in both of these
special issues – either in the editorial or the papers themselves (see [18, 21, 31]
for example) the significance of R&D is pointed out, but little progress can
be found so far.

4.2 The General Agent Technology Journal Landscape

Having had a look at the JAAMAS journal in detail, and establishing that
especially with respect to the aims and scopes of the journal, r&D seems
of secondary importance, we now focus on other agent journals. For this
purpose we have analysed the aims and scopes of twelve additional journals
focusing on agent technology issues. Besides the focus on agent-related topic,
the H-Index of the journals was taken as a decision criterion.6 These journals
were then analysed with respect to their aims and scope with respect to r&D
(i.e. not with respect to the actual published papers, but the journals focus
defined by the aims and scope). Table 8 shows the results of this analysis.

As Table 8 shows, different to the JAAMAS journal, R&D as well as r&D
are present in most of the the journals’ scopes and aims. In particular the
Applied Artificial Intelligence Journal had a significant focus on r&D and
other journals considers papers from this view-point (some of which only for
specific application domains). Most important, the majority of the journals
considering r&D work, according to their aims and scope demand general-
isation and a broad view of the work. This results on some problems for
r&D-related research, as it is often rather case-specific and therefore gen-
eral applicable theory is difficult to gain from the specific results. However,
keeping in mind that the general aim of research is not to find only specific
solutions, the requirement in the goals is very well understandable.

5 The Stakeholders

Having presented the discrepancy between the IFAAMAS mission statement
and the realisation of these statements with regard to the representation of
application papers especially in the AAMAS conference and the JAAMAS
journal,in this section we focus on the stakeholders of agent application &
implementation papers. The stakeholders are the addressees of a paper, i.e.
the interests groups that a paper is written for.

5 This special issue is volume 9 number 3, 2004.
6 The list of journals we derive the journals and h-indices from can be found on
http://www.scimagojr.com/journalrank.php?category=1702 for the journals
to analyse. Thus, from this list of journals focusing n agent-related topics, we
selected the 12 journals with the highest h-indices. Journals focusing on other
areas of Artificial Intelligence (e.g. robotics) were neglected.

http://www.scimagojr.com/journalrank.php?category=1702

12 T. Balke, B. Hirsch, and M. Lützenberger

Table 8 r&D in AI Journals (Selection)

Journal H-Index r&D-focus

Artificial Intelligence 78 not mentioned as separate topic, but aims
and scope highlight that application paper
can be submitted if they “describe a
principled solution, emphasise its novelty,
and present an in-depth evaluation of the
AI techniques being exploited”

IEEE Intelligent Systems 61 Emphasises the submission of “R&D
activities that can lead to use in real-world
applications”, more focused on robots then
agents

Journal of Artificial Intelli-
gence Research

55 “practical utility” of theories is desired, but
not always required; strong focus on R&d

AI Magazine 41 no specific aims & scope given,
application-related keywords can be found
in list of keywords

Engineering Applications of
Artificial Intelligence

39 r&D considered, but only for “real-time
automation” applications

International Journal of In-
telligent Systems

36 strong focus on R&d, consideration of
engineering topics

Autonomous Agents and
Multi-Agent Systems

35 see above

Applied Artificial Intelli-
gence

33 strong r&D focus

Artificial Life 32 special focus on “life and life-like
phenomena” (e.g. biologically inspired
concepts), r&D considered only with this
focus

The Knowledge Engineering
Review

32 no mentioning of r&D, focus in particular
on broad topics and general evaluations,
what results in little success chances for
specific r&D applications

Artificial Intelligence Re-
view

31 R&D highlighted in aims & scope

Journal of Intelligent Infor-
mation Systems

30 r&D considered but only with respect to
database technologies

Annals of Mathematics and
Artificial Intelligence

29 no r&D consideration

Looking at agent application & implementation papers submitted to a
conference/journal we can identify 3 groups of potential stakeholder. These
are:

– industry, i.e. firms that adopt a scientific idea expressed in a paper and
implement/apply it on large scale, or help to perform certain research in
the first place,

1 Assessing Agent Applications — r&D vs. R&d 13

– academia, consisting of both: the researchers trying to publish their work
as well as other researchers that may pick up on an idea expressed in the
paper and get to know the work of the author better, and

– reviewers that are supposed to judge the scientific quality of a paper, give
feedback to the authors and help the programme committee of a conference
to decide which papers to accept and which ones not.

Looking at these stakeholders, how can application & implementation papers
become more successful in terms of the IFAAMAS statements? The answer is
very straight forward and simple: they need to address the wants and needs of
these stakeholders. But what views of the stakeholders should be in a paper?
This question we look at in the next sections.

5.1 The Industry View: The Technology Adoption
Life-Cycle

To start with, the first interest group’s view that we analyse is the industry.
As stated earlier, with regard to scientific papers, the industry’s main focus
is to find new ideas and technologies that can be adopted and incorporated
in the business context with the goal of process optimisation and revenue
increases.

However, when does industry adopt new technologies and new ideas from
papers? One very popular business concept that tries to explain the processes
behind industry adoption of technological ideas is the technology adoption
life-cycle.

The technology adoption life-cycle is a sociological model that was devel-
oped by Joe M. Bohlen, George M. Beal and Everett M. Rogers [1, 2], building
on earlier research conducted there by Neal C. Gross and Bryce Ryan [26].
Their original work focused on the adoption (in form of a purchase pattern)
of hybrid seed corn by farmers in Iowa and was later generalised to fit the
adoption of new ideas and technologies in general [25]. The general life-cycle
describes the adoption or acceptance of a new product or innovation, ac-
cording to the characteristics of defined adopter groups. The model is very
believed in by marketers, as it is closely related to the idea that all prod-
ucts and services are subject to a life-cycle, and that can be portrait in the
innovation context.

Figure 4 shows the technology adoption life-cycle. The process of adoption
over time is typically illustrated as a classical normal distribution or “bell
curve”. This is because companies respond to new products in different ways.
Thus, diffusion of innovations theory, pioneered by Everett Rogers, posits
that companies have different levels of readiness for adopting new innovations
and that the characteristics of a product affect overall adoption. The model
indicates that the first adoption of a new technology begins with a small
group of “innovators” that according to Rogers occupy 2.5% of the total
group. These are followed by “early adopters” (13.5%). The adoption reaches

14 T. Balke, B. Hirsch, and M. Lützenberger

P
e
n

e
tr

a
ti

o
n

g
r
o

w
th

r
a
te

Technology

Adoption

Stage / Time

Innovators

(2,5 %)

Early

Adopters

(13,5 %)

Early Majority

(34 %)

Late Majority

(34 %)

Laggards

(16 %)

Bleeping

Edge

Leading Edge State of the Art Dated

new alternatives

take hold

Conservatives see

writing on the wall

Pragmatists see

value

Visionaries

spot winners

„Techies“

try it

Toy

Fig. 4 The Technology Adoption Life Cycle

its growth peak when the “early and late majority” group (34% each) start
adopting, and then starts to decline again when only “laggards” (16%) jump
on the respective technology bandwagon [25, 17].

Along the lines of these adopter groups in marketing business theory, six
technology life-cycle stages have been identified, that are sketched in Figure
4 as well. These stages are:

Toy. At the very beginning the technology is said to be in a toy stage,
meaning that it is only known to a very limited number of people, that
are highly interested in new technologies, have followed the new innova-
tion from the first day and have the disposable income to indulge their
interest. In this early stage the potential of the new technology cannot
necessarily be identified and economic risks associated with the adoption
of the technology are very high.

Bleeding edge. Technology changes from toy to bleeding edge stages,
once the high potential can be identified, but the technology has not been
able to demonstrate its value or any kind of consensus about the potential
impact of the technology has been agreed on. As a result, the success of
the technology is still insecure and adaption is risky (success–wise as well
as financially) — early adopters may win big, or may be stuck with a white
elephant. That is why normally early adopters tend to be technologically
sophisticated, well–informed as well as willing and able to take financial
risks.

Leading edge. The leading edge phase is reached once an increasing num-
ber of industrial companies learn about the technology and perceived its
value with regard to the companies (potentially diverse) needs. However,
the technology is still new enough that it may be difficult to find knowl-
edgeable personnel to implement or support it.

1 Assessing Agent Applications — r&D vs. R&d 15

State of the art. When everyone agrees that a particular technology is
the right solution and knowledgeable personnel for the technology is avail-
able, the technology has reached the state of the art stage. At the beginning
of this stage the growth rate of the technology penetration is highest and
slowly decreases with as the majority of companies have adopted by that
time and consequently the number of additional company that could adopt
the technology decreases.

Dated. In the dated stage, only laggards are left. The technology is gen-
erally perceived as still useful and is still sometimes implemented, but a
replacement leading edge technology is readily available.

Obsolete. In the obsolete phase, the technology has been superseded by
a new state-of-the-art technology. It is maintained but no longer imple-
mented.

Keeping this theory of the adoption life-cycle in mind, it is useful to consider
the position of agent technologies in the curve. Agent technology has not yet
entered the two majority stages but can be classified in between the first
two stages [23], i.e. in a stage where enthusiasts that share the vision of
agents will consider using them, but the majority of potential users has not
been reache. Thus, unlike object-oriented technologies for example, only a
relatively small number of deployed commercial and industrial applications
of agent technology are visible. One reason for this is the relative young
age of agent research compared to established technologies (object-oriented
concepts had been studied for more than 20 years before being taken up in
programming languages). Others argue that (maybe as a consequence) agent
technology is not yet visible to many industry players [20].

But what stimulates industry to become aware of a new technology? Ac-
cording to Moore [22], advancing from this stage to stages further ahead
is very difficult. He speaks of a “chasm” that technology providers need to
bridge. Methods to bridge this chasm Moore identifies are especially in the
domain of marketing: thus he points out that adopter need to learn about
a technology before they can adopt it. Furthermore he emphasizes the im-
portance of presenting the potential industry adopter the usefulness of the
technology by clearly indicating its competitive advantages in comparison to
other technologies and show its applicability to several domain7. r&D papers
are one way of achieving these two objectives, again emphasising the impor-
tance of these paper for the agent community. Other authors that have dealt
with indusry adoption are Bohlen et al. Thus, in their presentation of the
technology adoption life-cycle Bohlen et al. identify two major driving forces
for adoption, importance-wise ranking in the order presented here:

1. Usefulness and ease of use needs to be recognised by industry.
2. The perceived risk by companies plays a huge role. So the higher the

perceived risk, the lower the likelihood of adoption.

7 Further requirements for adoption are mentioned in [21].

16 T. Balke, B. Hirsch, and M. Lützenberger

“Usefullness and ease of use” calls for agent technology example applications
for industrial problems but at the same time an awareness for the major spec-
ifications of agents that differentiate agents from other technologies. When
it comes to perceived risk, the question is how to reduce this risk? The an-
swer given in literature here is the usage of proven methodologies, tools, and
complementary products and services. Whereas the latter of the two does
not necessarily point to application related publications and work, especially
with regard to usefulness they are of an extremely high importance, as in
particular example applications in which the respective usefulness of agents
has been shown, can motivate industry to invest in agents.

5.2 The Research View

When looking at researchers, i.e. academia, the first thing to note is that
academia and industry do not necessarily share congruent goals. Whereas
the industry view is revenue oriented, academia’s goals are somewhat dif-
ferent. Thus —to put it simple— the main focus of researchers often is to
solve problems that are relevant and/or scientifically interesting. Publishing
the work is a way to present the achieved results/findings and make them
visible to people interested in the field/domain, such as other researchers or
industry. Publications are important to start discussions and attract potential
future cooperation partners —both from industry and academia— as well as
increase scientific recognition and possibly acquire funds for future research.
The prerequisite for all the latter, however is the visibility of the research,
i.e. the publication in the first place. Due to this importance of publications
a high rivalry for them exists. One way of solving this rivalry is by evaluating
the quality of the research work with the help of impartial judges. These
“impartial judges” are being referred to as reviewers.

5.3 The Reviewers View

According to Smith [27], the task of a reviewer is to evaluate the written
work by other researcher that has been submitted for publication in a specific
journal or to a conference. On the one hand this involves determining if the
work presented is correct and of sufficient quality and on the other hand if
the problem studied and the results obtained are new and significant. Based
on his knowledge a reviewer is furthermore supposed to make suggestions (if
applicable) on how to improve the paper, i.e. give ideas which changes to the
paper (and possibly the research behind the paper) might improve the work.
Reviewers do this work for free, i.e. without any direct financial advantage,
and in their own time. The benefits they have from the task include the
contribution they make to the research community, and the fact that they
might get ideas for own research or pointers to new references for their work,
as well as the possibility to shape the future direction of research in the

1 Assessing Agent Applications — r&D vs. R&d 17

domain by either accepting or rejecting a paper and thus by deciding on
what is being published and presented and what is not.

In order to perform the review task, reviewers normally are given some
guidelines and/or review forms by the journal or conference they are re-
viewing for. These are supposed to help the reviewer to fulfill his task in a
structured manner and make reviews comparable. One particular problem
with regard to the r&D work is that due to its practical implementation, it
is hard to check for reviewers, especially given the limited time frame of a
review period. This, combined with the fact that research is supposed to be
general and not only valid for specific cases, results in problems when evalu-
ating r&D work. As pointed out earlier, one of the main industry drivers for
adopting a new technology is “usefulness and ease of use”. The problem at
hand is that this driver does not necessarily go along with the review process.
We identify this discrepancy as one reason for the issues raised in Section 1.

6 Summary

Despite this low representation of r&D in some journals such as the JAAMAS
and also the AAMAS conference, we argue that application papers (in form
of r&D) are indeed relevant to the agent community at large, and should be
presented for the following reasons:

– Engineering problems are often ignored in theoretical papers, but can of-
ten be show stoppers for actually using the theories. Thus, for industry
to consider adopting a new technology, it must not only learn about its
advantages, but in addition learn on how it could be applied to help and
support industrial problems.

– Applications present real issues and challenges that in turn (should) point
to possible directions for future theoretical research.

– Many national and transnational project calls explicitly ask for industry
involvement. Thus, in the general documents of the Community Research
and Development Information Service of the European Commission for
example, the “Rules for submission of proposals, and the related evalua-
tion, selection and award procedures” emphasises “an appropriate balance
between academic and industrial expertise and users” with regard to FP7
projects [4, p. 11].

– In order to learn about industry needs and thinking and get in touch with
industry partners, application papers can play a significant role.

It is our belief that application descriptions are an important part of the work
being done in the agent community, and that this work should therefore play a
larger role in the community at large than it does at the moment. While there
are a number of venues specifically for practical issues and implementations
of agent-based systems, it is to our mind important to bridge the R and the
D, and get the different communities to interact.

18 T. Balke, B. Hirsch, and M. Lützenberger

We do not assume to have all the answers, but in pointing out the trend
of a decreasing number of application oriented papers, especially at AAMAS,
we hope to start a discussion on the need for more practical papers. The
reasons and possible means to rectify this situation are more complex than
what we offer here, but nonetheless we hope that the issue will be taken up
by the community.

This book is a first step into this direction by presenting a large num-
ber what we refer to as application papers in Section 2: The main focus of
the papers is on tools designed to support applications and their actual use
as well as implementation aspects related to these tools. Some Chapter also
present prototypes that are being used in the real-world. In Chapter 2 Alexan-
der Pokahr, Lars Braubach and Kai Jander present the Jadex Project and
demonstrate its suitability for the traditional BDI concept. They show ex-
tension that facilitates the interactions between agents with services and also
provide a common black box view for agents that allows different agent types.
Milan Vidaković, Mirjana Ivanović, Dejan Mitrović and Zoran Budimac – in
Chapter 3 – present the Extensible Java EE-based Agent Framework they
developed. With their framework they demonstrate how existing, standard-
ized Java EE technologies, tools, and libraries, such as JNDI, JMS, and EJB,
can be used to implement a large subset of functionalities required from a
multi-agent system. Immediate direct benefits of this approach are a shorter
development time of the system itself, delegation of agent load-balancing to
the enterprise server, flatter learning curve for new developers of the system,
etc. The Wade Platform presented by Giovanni Caire in Chapter 4, not only
presents a tool for supporting applications but also shows how this tool has
been used for dealing with real world problems, namely in the field of Fixed
Network monitoring and optimization where it has been employed by Tele-
com Italia. Chapter 5 by Lars Braubach and Alexander Pokahr again deals
with the Jadex project. It focuses on the issues of time and virtual environ-
ments in agent simulation and discusses their implementation in the light of
establishing simulation transparency. In Chapter 6 Rafa�l Leszczyna presents
MAlSim – a simulator of malicious software based on software agents, which
can serve as a testbed for critical infrastructures security. Besides present-
ing and discussion his design decision, in his chapter the author explains the
choice of agent paradigm for the development of the toolkit and also gives
a brief description of the application of MAlSim to security evaluation of a
power plant. Instead of presenting tools Chapter 7 – written by Peter Novák,
Antońın Komenda, Michal Čáp, Jǐŕı Vokř́ınek and Michal Pěchouček – puts
its main focus on prototypes developed for addressing issues of urban war-
fare. Resulting from the prototype development, the main contribution is an
account of architectural and technological issues related to the development
of the multi-agent platform and simulation subsystems for the cluster of the
project evolving around the prototypes. In Chapter 8 Giancarlo Fortino and
Stefano Galzarano focus on the domain of Wireless Sensor Networks (WSN).
They promote the use of the mobile agent paradigm for the development

1 Assessing Agent Applications — r&D vs. R&d 19

of WSN applications and, specifically, describe issues and solutions for the
development of mobile agent systems on resource-constrained wireless sensor
platforms. M. Morge, J. McGinnis, S. Bromuri, P. Mancarella, K. Stathis and
F. Toni – in Chapter 9 – propose an argumentation-based agent model that
supports service and partner selection in service-oriented computing settings
and illustrate its functionalities with the help of an distributed e-procurement
process example. Finally, in Chapter 10, Emiliano Casalicchio and Salvatore
Tucci give account of experience matured by them in the design and imple-
mentation of an agent-based modeling and simulation framework to support
the re-engineering of Public Administration workflows. They present the Wf-
Simulation resulting from this work and show its properties with the help of
three real-world case studies.

References

1. Beal, G.M., Rogers, E.M., Bohlen, J.M.: Validity of the concept of stages in
the adoption process. Rural Sociology 22(2), 166–168 (1957)

2. Bohlen, J.M., Beal, G.M.: The diffusion process. Special Report 18. Iowa State
College (May 1957)

3. Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.): MATES 2009.
LNCS, vol. 5774. Springer, Heidelberg (2009)

4. CORDIS. Rules for submission of proposals, and the related evaluation, selec-
tion and award procedures (August 2008)

5. Decker, K.S., Sichman, J.S., Sierra, C., Castelfranci, C. (eds.): Proceedings of
the 8th International Conference on Autonomous Agents and Multiagent Sys-
tems, International Foundation for Autonomous Agents and Multiagent Sys-
tems, Budapest, Hungary (May 2009)

6. Demazeau, Y., Dignum, F., Corchado, J.M., Bajo, J., Corchuelo, R., Corchado,
E., Fernández-Riverola, F., Julián, V.J., Pawlewski, P., Campbell, A. (eds.):
Trends in PAAMS. AISC, vol. 71. Springer, Heidelberg (2010)

7. Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.): 7th International
Conference on Practical Applications of Agents and Multi-Agent Systems
(PAAMS 2009). AISC, vol. 55. Springer, Heidelberg (2009)

8. Demazeau, Y., Pechoucek, M., Corchado, J.M., Pérez, J.B. (eds.): Advances
on Practical Applications of Agents and Multiagent Systems. AISC, vol. 88.
Springer (2011)

9. Dix, J., Witteveen, C. (eds.): MATES 2010. LNCS, vol. 6251. Springer,
Heidelberg (2010)

10. Durfee, E., Yokoo, M., Huhns, M., Shehory, O. (eds.): Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
Honululu, HI, USA. Association for Computing Machinery (May 2007)

11. Filipe, J., Fred, A.L.N. (eds.): Proceedings of the 3rd International Conference
on Agents and Artificial Intelligence, Rome, Italy (January 2011)

12. Filipe, J., Fred, A., Sharp, B. (eds.): ICAART 2009. CCIS, vol. 67. Springer,
Heidelberg (2010)

13. Filipe, J., Fred, A., Sharp, B. (eds.): ICAART 2010. CCIS, vol. 129. Springer,
Heidelberg (2011)

20 T. Balke, B. Hirsch, and M. Lützenberger

14. Hirsch, B., Balke, T., Lützenberger, M.: Assessing agent applications – r&D vs.
R&d. In: Proceedings of the 12th International Workshop on Agent Oriented
Software Engineering, Taipei, Taiwan, pp. 93–104 (2011)

15. IFAAMAS. Charter for the international foundation for autonomous agents
and multiagent systems

16. Klügl, F., Ossowski, S. (eds.): MATES 2011. LNCS, vol. 6973. Springer, Hei-
delberg (2011)

17. Levitt, T.: Exploit the product life cycle. Harvard Business Review 43(6), 81–94
(1965)

18. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: Towards
next generation computing. Autonomous Agents and Multi-Agent Systems 9,
203–252 (2004)

19. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Com-
puting as Interaction – A Roadmap for Agent Based Computing. In: Agent
Link (2005)

20. Marik, V., McFarlane, D.: Industrial adoption of agent-based technologies.
In: IEEE Intelligent Systems, vol. 20(1), pp. 27–35. IEEE Educational Ac-
tivities Department (2005)

21. McKean, J., Shorter, H., Luck, M., McBurney, P., Willmott, S.: Technology
diffusion: analysing the diffusion of agent technologies. Autonomous Agents
and Multi-Agent Systems 17, 372–396 (2008)

22. Moore, G.A.: Crossing the Chasm: Marketing and Selling High-Tech Products
to Mainstream Customers. Harper Business Essentials, New York (1991)

23. Munroe, S., Miller, T., Belecheanu, R.A., Pěchouček, M., McBurney, P., Luck,
M.: Crossing the agent technology chasm: Lessons, experiences and challenges
in commercial applications of agents. Knowledge Engineering Review 21(4),
345–392 (2006)

24. Padgham, L., Parkes, D.C., Müller, J., Parsons, S. (eds.): Proceedings of the
7th International Conference on Autonomous Agents and Multiagent Systems,
International Foundation for Autonomous Agents and Multiagent Systems,
Estoril, Portugal (May 2008)

25. Rogers, E.M.: Diffusion of Innovations. Free Press (1962)
26. Ryan, B., Gross, N.C.: The diffusion of hybrid seed corn in two iowa commu-

nities. Rural Sociology 8, 15–24 (1943)
27. Smith, A.J.: The task of the referee. Computer 23(4), 65–71 (1990)
28. Stone, P., Weiß, G.: Proceedings of the 5th International Joint Conference on

Autonomous Agents and Multiagent Systems, Hakodate, Japan. Association
for Computing Machinery (May 2006)

29. van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.): Pro-
ceedings of the 9th International Conference on Autonomous Agents and Mul-
tiagent Systems, Toronto, Canada. International Foundation for Autonomous
Agents and Multiagent Systems (2010)

30. Yolum, P., Tumer, K., Stone, P., Sonenberg, L. (eds.): Proceedings of the
10thInternational Conference on Autonomous Agents and Multiagent Systems,
International Foundation for Autonomous Agents and Multiagent Systems,
Taipei, Taiwan (May 2011)

31. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-
oriented software engineering. In: Autonomous Agents and Multi-Agent Sys-
tems, vol. 9, pp. 253–283 (2004)

Chapter 2
The Jadex Project: Programming Model

Alexander Pokahr, Lars Braubach, and Kai Jander

Abstract. This chapter describes the priciples of the Jadex programming
model. The programming model can be considered on two levels. The intra-
agent level deals with programming concepts for single agents and the inter-
agent level deals with interactions between agents. Regarding the first, the
Jadex belief-desire-intention (BDI) model will be presented, which has been
developed for agents based on XML and Java encompassing the full BDI
reasoning cycle with goal deliberation and means-end reasoning. The success
of the BDI model in general also led to the development goal based workflow
descriptions, which are converted to traditional BDI agents and can thus be
executed in the same infrastructure. Regarding the latter, the Jadex active
components approach will be introduced. This programming model facilitates
the interactions between agents with services and also provides a common
back box view for agents that allows different agent types, being it BDI or
simple reactive architectures, being used in the same application.

1 Introduction

This chapter is one of two chapters describing practical applications built with
the Jadex agent framework. The applications are structured according to the
main features of Jadex that were required for building these applications.
In this chapter, the focus is on features regarding the programming model of
Jadex. Therefore, this chapter is subdivided into three thematic sections that
cover different programming model aspects and applications. Each section
starts with a short background about why a certain topic was considered
important for programming in Jadex, followed by a more general motivation
about the relevance of the concept itself. A related work section is presented

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
e-mail: {pokahr,braubach,jander}@informatik.uni-hamburg.de

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 21–53.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{pokahr,braubach,jander}@informatik.uni-hamburg.de

22 A. Pokahr, L. Braubach, and K. Jander

for each concept, trying to give an overview of the field with pointers to other
relevant works in the area. Afterwards the approach as implemented in Jadex
is covered in detail and further illustrated by example applications that have
been built. Each section closes with a short summary.

In particular, the following topics are described in this chapter. Section 2
discusses the behavior model of agents which, in Jadex, was initially realized
according to the belief-desire-intention (BDI) model that was extended for
Jadex in several substantial ways. With workflows, Section 3 addresses an
interesting application area for agents regarding the support of e.g. complex
and dynamic business processes. The last topic in Section 4 is called active
components and introduces a unification of agent concepts with concepts
from service- and component-based software engineering. Finally, Section 5
summarizes the chapter and identifies important challenges with respect to
the programming model that remain to be tackled for promoting industrial
take-up of agent technology.

2 Agent Programming: BDI Architecture

The ever increasing computational power causes an ever increasing complex-
ity of software systems. The tasks performed by computer systems become
more and more advanced including e.g. automating complex processes or
providing intelligent support for humans during their execution of activities.
Engineering science strives to develop new concepts, methods and tools for
dealing with the increasing complexity of systems. All systems are ultimately
built by humans for humans. Therefore, ideas from disciplines like philosophy
or psychology have been applied to engineering for better supporting the pro-
cess of comprehension of typical human system engineers and human system
users. One well known example is the so called Intentional Stance coined by
Daniel Dennett [23]. When applied to software systems, it allows considering
system components as intentional entities that have certain responsibilities
with respect to local and overall system goals and that act rationally and in-
dependently of each other towards achieving these goals. This approach fits
well to the way how humans conceive their own thinking processes (a.k.a.
folk psychology) and thus simplifies reasoning and discussing about system
designs.

Intentional approaches haven proven useful early on, for example with re-
spect to goal-driven requirements engineering [21]. When considering more
and more complex systems, where typically autonomous and/or adaptive be-
havior is required from the system’s components, it becomes apparent that
intentional notions such as goals and rational action are useful also for im-
proving system design and implementation. An intentional approach simpli-
fies tracing requirements to design and implementation artifacts, as each are
based on the same mental model of responsibilities, system goals and ratio-
nal action. As an additional advantage, systems start to “behave like humans

2 The Jadex Project: Programming Model 23

would do”, i.e. they behave understandably according to the mental models
of system designers and system users. This further simplifies, e.g. debugging
of the system and leads to an intuitive usage.

2.1 Related Work

The term agent architecture is used to describe the concepts and constructs
for specifying behavior. In this respect between internal and social agent ar-
chitectures is distinguished. The first refers to architectures that deal with
concepts for programming a single agent while the latter are concerned with
how group behavior and teamwork can be described and programmed. With
regard to different application contexts, simple or complex agent architec-
tures may be better suited. Figure 1 shows an overview of well-known agent
architectures. The figure highlights how the architectures are influenced by
theories from different disciplines, such as philosophy and psychology. E.g.
the agent architectures AOP [47], 3-APL [22], IRMA [5] and PRS [44] in-
corporate the Intentional Stance and are therefore related to philosophical
theories like the belief-desire-intention (BDI) model. Theories from the field
of psychology focus on lower-level cognitive processes such as learning and
have led to architectures like SOAR [30] that largely differ from those that
originate from philosophical theories. For social architectures that focus on
coordination in multi-agent systems, organization theory and sociology have
been sources of inspiration, e.g. the Joint Intentions theory [19] as incorpo-
rated in the Joint Responsibility model [27]. Finally, the Subsumption archi-
tecture [13] is a biologically inspired architecture for building simple reactive
insect-like agents.

The BDI model [4] is a good trade-off between complexity and expressive-
ness as it is based on a simple set of intuitive concepts with a natural meaning
(e.g. beliefs representing the knowledge of an agent about the world). The
first implemented system based on a BDI-like model was the procedural rea-
soning system PRS [24]. The mapping to BDI was later made explicit and
formalized in [44]. A number of successor systems have transported original
PRS ideas to newer runtime infrastructures, e.g. the Java-based JAM [25]
and the commercial JACK [17]. In addition, with AgentSpeak(L) a BDI-
style programming language has been proposed in [43], which is supported
by interpreters such as Jason [3].

2.2 Approach

The Jadex BDI architecture has been conceived and realized with concep-
tual as well as technical goals in mind. Conceptual aim was developing an
agent behavior model that intuitively resembles human decision making. This
model should act as a blueprint (pattern) for commonly found problems in
agent systems. The Jadex BDI agent architecture thus provides ready to use

24 A. Pokahr, L. Braubach, and K. Jander

Fig. 1 Agent architectures (from [12])

functionality and reduces the need for manually coding aspects of the agent
behavior.

On a technical level the idea is making agents more close to mainstream
programming. Therefore, the realization makes use of established technologies
like Java and XML. This facilitates the integration with existing technologies,
3rd-party libraries and legacy systems and further allows developing agent
applications using existing development environments.

2.2.1 Goal Representation and Processing

The Jadex BDI architecture comprises several aspects of agent behavior and
development support. In the following, the basic goal-based behavior model
will be described. Put simply, it allows defining agent behavior in terms of
goals to be achieved and plans to be executed towards achieving the intended
goals. The behavior model is based on the means-end reasoning process found
in earlier PRS systems. These realize a reactive planning approach as follows:
Given a goal or event, the agent will choose a plan from a library of procedural
plans and execute the plan in a step-by-step fashion. Each plan specification
incorporates one or more triggering events, i.e. goals for which the plan may
be applicable. If the plan succeeds (i.e. completes without error), the goal
is considered achieved. Otherwise the agent may choose another plan from
the plan library and start over. The PRS reasoning cycle is well-suited for
realizing adaptive behavior as plans are selected based on their applicability
to the current situation. An agent can react to changing environments by

2 The Jadex Project: Programming Model 25

Fig. 2 Goal lifecycle (from [11])

simply retrying with a different plan. Furthermore, the PRS approach facil-
itates an extensible system design, as new plans can be added to the plan
library without the need of touching other parts of the agent code.

Goal Lifecycle

In PRS, goals are only considered as ephemeral events. Jadex extends the
PRS model by introducing a lifecycle for goals that allows treating goals as
first class programming concepts [11]. The goal lifecycle is depicted in Fig-
ure 2 in an extended state-chart notation. The rounded rectangles represent
the possible lifecycle states of a goal and the arrows indicate the possible
transitions between the states. A goal can be created (state New) as a pro-
gramming construct to configure its contents before making it accessible to
an agent. Once the goal is adopted, the agent is aware of the goal such that
it may influence the agents behavior. To simplify dealing with many goals
at a time, three substates of the adopted state are introduced. Only active
goals are currently pursued following the PRS reasoning approach described
above. Goals may be suspended, when they cannot be pursued, e.g. due to
external conditions. Furthermore, goals can be options, when their processing
is delayed, e.g. in favor of other more important goals. To stop the agent from
working on a goal, a goal may be dropped, putting the goal in the finished
state.

The transitions between goal states can be performed manually by the
agent programmer (e.g. writing code in a plan to create or suspend some
goals). Additionally, the goal specification can be equipped with declarative
conditions to indicate situations, when state transitions should happen auto-
matically. These are shown in the figure as note boxes. The creation condition
leads to the creation of new goals, which are initialized with contents accord-
ing to the condition (e.g. the creation condition might state to create a new

26 A. Pokahr, L. Braubach, and K. Jander

goal for each new item observed by the agent) and directly adopted by the
agent. The context condition controls in which of the substates of the adopted
state a goal is in. When the context is valid, the goal becomes an option and
may be activated. Otherwise, the goal is automatically suspended. In some
situations it is useful to stop processing of a goal, even when it is not achieved
(e.g. when a goal has become obsolete). Such situations can be declaratively
specified using the drop condition.

Goal Kinds

The goal lifecycle as introduced above facilities the management of goals
as a first class programming construct. Yet, it does not further clarify the
semantics of the goal itself, i.e. how an agent should behave according to
its currently active goals. Therefore, the active state is further refined in
different goal kinds. In the literature, many kinds of goals can be found [11]
and a common classification considers goals as a specification of a world state
and an intention towards this world state (e.g. achieve, maintain, avoid, . . .).
Jadex supports four goal kinds, which cover a wide variety of usage patterns.

The perform goal is the simplest goal type and comes close to the original
PRS semantics. The goal tries to execute all applicable plans, succeeding if
at least one plan could be found. The achieve goal specifies a desired world
state as a so called target condition. The goal succeeds, when the target
condition is fulfilled, regardless if plans have been executed or not. Thus,
the success of a perform goal only depends on the availability of plans while
the success of an achieve goal is only related to the world state. Therefore,
the former is often called a procedural goal, while the latter represents a
declarative goal. Another common kind of declarative goal is the maintain
goal. Unlike the achieve goal, which describes a state to be achieved only
once, a maintain goal intends to keep a state after it has been achieved.
Therefore, every time the state is violated plans are executed for re-achieving
the state. A maintain goal is never considered succeeded and is thus only
dropped, when explicitly requested by the agent programmer or the optional
drop condition. The final goal kind is the query goal. It is similar to an
achieve goal with the difference that the target condition does not represent
a potentially external world state, but instead demands some information
from the agent’s beliefs. If the information is readily available, no plans need
to be executed. Otherwise, the executed plans are expected to lead to the
adoption of the required information as beliefs.

2.2.2 Goal Deliberation

The goal representation described in the previous section allows for dealing
with multiple goals at once. Following the goal lifecycle one can influence the
order in which goals are processed by moving goals between the option and
active state. The mechanism of selecting goals to actively pursue is called

2 The Jadex Project: Programming Model 27

goal deliberation strategy. While such a strategy can also be implemented
manually, Jadex provides a default deliberation strategy that allows an in-
tuitive specification and covers many recurrent application cases [41]. The
so called “easy deliberation” strategy is based on two concepts: a cardinality
to restrict the number of active goals of a given type and inhibition arcs to
define a partial order of importance between goals.

Both concepts allow a developer to take a local perspective when writing
goal specifications. The cardinality is concerned only with a single type of
goal. The inhibition arc expresses a local conflict or precedence between two
types of goals. It specifies that the first goal “inhibits” the second, meaning
that if both are options the first may become active. Inhibition arcs can be
specified on the type level or on the instance level. A type level inhibition arc
means that as long as one goal of the first type is active no goal of the second
type may be pursued. An instance level inhibition arc contains an expression
restricting to which specific goal instances the arc applies. This allows also
drawing arcs between two goals of the same type and establishing an order
for goal processing based on goal properties.

2.2.3 Capabilities

An important concept in software engineering is modularization as it allows
reducing system complexity by decomposition in software modules, which
can be to some extent treated (e.g. designed, implemented, tested, . . .) in
isolation. The BDI architecture as such does not support modularization with
regard to a single agent. Although plans can be developed independently of
each other they typically require access to global data structures like the
agent’s beliefs. The capability concept, initially proposed by Busetta et al. in
[16], allows grouping BDI elements (e.g. beliefs, goals and plans) pertaining
to a specific functionality into a separate module. The agent implementation
can then be composed of existing modules. The concept has been adopted
and extended for Jadex [10].

The extensions concern important software engineering aspects like pa-
rameterization, which allows external configuration of existing capabilities
for making them applicable to different usage contexts, and dynamic compo-
sition, i.e. the addition and removal of capabilities during the life time of an
agent. Another important extension is a generic import/export mechanism
that allows establishing relationships between elements from different capa-
bilities without violating module independence. Therefore one may specify
plans that are triggered in response to goals from other capabilities and also
establish inhibition arcs for goal deliberation across capabilities.

2.2.4 Goal-Oriented Interaction Protocols

The concepts that have been described until now have only considered the
(intelligent) behavior of a single agent. In multi-agent systems the interaction

28 A. Pokahr, L. Braubach, and K. Jander

achieve
cnp_execute_request

(in proposal, in proposal_info,
in initiator, out result)

cfp

refuse

propose

alt

achieve
cnp_initiate start

(in cfp, in receivers, inout cfp_info,
out result, out interaction_state)

alt reject-proposal

accept-proposal

failure

inform

alt

query
cnp_make_proposal

(in cfp, in initiator, out proposal,
out proposal_info)

cnp_initiate end

query
cnp_evaluate_proposals

(in cfp, in proposals,
inout cfp_info, out acceptables)

cnp_receiver_interaction end

perform
cnp_receiver_interaction start
(out interaction_description,

out interaction_state, out result)

Initiator
Protocol Layer

Participant
Protocol Layer

Initiator
Domain Layer

Participant
Domain Layer

FIPA-ContractNet-Protocol

Fig. 3 Goal-oriented contract-net protocol (from [6])

between agents, typically based on asynchronous message exchange, also plays
an important role. Therefore the question arises how the internal behavior can
be linked to the external communication. As a manual approach one can send
messages directly in plans. The disadvantage is that the complete code for a
potentially complex negotiation needs to be placed in a single plan leading to
poorly maintainable code. The concept of goal-oriented interaction protocols,
proposed in [6], allows capturing agent intentions pertaining to interactions.
The concept allows making use of deliberation and goal/plan decompositions
for interactions as well.

The general approach defines a process for analyzing an interaction proto-
col, which describes the allowed sequences of messages, and attaching goals
to each role in the interaction. Based on such an interaction specification,
the developer can simply define separate plans for the activities and deci-
sions required during an interaction. Besides the general approach, several
ready-to-use goal oriented interaction specifications are included in Jadex
that implement standardized interaction patterns like Dutch or English auc-
tion and contract-net negotiations.

Figure 2.2.3 shows the result of the protocol analysis for the contract-net
protocol. The left hand side represents the initiator role of the negotiation
while the right hand side illustrates the behavior of each of the potentially
many participants. The relationship between the domain layer (i.e. business
logic) and protocol layer (i.e. exchanged messages) is captured in a number
of goals, which may be posted or handled at each role. The domain layer of
the initiator role starts the interaction by creating the achieve cnp_initiate
goal. During the negotiation, the query cnp_evaluate_proposals goal is cre-
ated by the initiator’s protocol layer and needs to be handled in the domain

2 The Jadex Project: Programming Model 29

layer. When the negotiation ends, the result is made available as success
or failure of the cnp_initiate goal, such that the initiator domain layer can
proceed appropriately. At the participant side all goals are created automat-
ically in the protocol layer. The participant’s domain layer handles the query
cnp_make_proposal goal to generate an offer to be sent to the initiator. In
case a participant’s offer is accepted, the achieve cnp_execute_request goal
causes the execution of the requested task in the domain layer.

2.3 Application: MedPAge

The described features of the Jadex BDI architecture will be illustrated with
an example application called MedPAge, which is a real world multi-agent
application that additionally makes use of capabilities for modularization
and reusability as well as goals, goal-oriented interaction protocols for com-
plex negotiations. The aim of the MedPAge (“Medical Path Agents”) project
[38, 37, 52] was improving patient scheduling in hospitals. Approach of the
project was representing the different goals of the involved stakeholders by
intelligent agents. E.g. patient agents would try to minimize the waiting times
for their patients, whereas resource agents would try to maximize the utiliza-
tion of hospital resources such as radiology units. As these goals are usually in
conflict, the agents perform autonomous negotiations for producing schedules
that balance the individual goals.

The project was part of a larger initiative investigating the applicability
of agent technology to real world business applications. The DFG-funded1

priority research programme SPP 1083 was conducted from 2000-2006 and
involved projects from the areas of hospital logistics as well as manufacturing
logistics.2

The hospital setting considered for the MedPAge project was derived from
a real German hospital with hundreds of patients as well as several functional
units with different resources. The resulting agent-based application thus ex-
hibits much more complexity compared to the rather toy-like cleaner world ap-
plication. Therefore, besides using goal representation and goal deliberation
for defining the behavior of the individual agents, also capabilities and goal-
oriented interaction protocols have been employed in the implementation.

Architecture and Design

The main goal of the MedPAge system consists in generating an efficient
treatment scheduling plan. Thus the main goal of performing treatments can
be refined towards two subgoals for each side. With respect to the hospital
side, the main objective is to achieve a high resource utilization while the
1 Deutsche Forschungsgemeinschaft (German Research Council):
http://www.dfg.de

2 More details can still be found on the programme web site:
http://www.realagents.org/

http://www.dfg.de
http://www.realagents.org/

30 A. Pokahr, L. Braubach, and K. Jander

Fig. 4 MedPAge system overview diagram

patient side is interested in seeing patient needs being satisfied, e.g. having
short waiting times or giving priority to patients with severe diseases. Of
course, the pursuit of these system goals has to respect the fundamental
medical conditions in place.

The MedPAge system has been developed following the Prometheus method-
ology [36]. The core of the architecture is the system overview diagram, which
is depicted in Fig. 4. This design contains two agent types that represent pa-
tients and hospital resources respectively. This allows a natural modeling and
assignment of goals to the different coordination objects (wards and patients)
and also adequately reflects the decentralized structure of hospitals. The pa-
tient agent is responsible for announcing these requested treatments at a corre-
sponding functional unit (e.g. at the x-ray unit). Furthermore, it ensures that
patients visit treatment rooms and are afterwards brought back to their ward.
A resource agent accepts appointment requests from patient agents and is in
charge to create treatment schedule. The resource agent is notified whenever a
new treatment can begin. In this case it calls the patient from the ward and also
informs the resource about the planned treatment and patient. After treatment
end the patient is sent back to its ward.

In order to implement the MedPAge system the high-level system design
has been further concretized to the patient and resource agent design shown
in Fig. 5. These diagrams visualize the goals, plans, events, knowledge bases
as well as the incoming percepts and outgoing environmental actions of the
agents. The agent functionalities have been modeled as goals and plans, which
can express the proactive as well as reactive agent behavior. The patient agent
reacts on treatment percepts by creating a new make reservation goal for a
specific appointment. The goal is handled by the reserve appointment plan,
which uses a registry to find resource agents representing the functional unit
it needs for the planned treatment. The set of resource agents is subsequently
used to find a suitable appointment for the patient by performing negotia-
tions that aim at respecting patient (e.g. health state) as well as resource (e.g.

2 The Jadex Project: Programming Model 31

Fig. 5 a) patient agent b) resource agent

other appointments and utilization) needs. At resource side the new requi-
sition form has to be taken into account and is thus added to the agent’s
knowledge base. The knowledge base is monitored by a keep resource uti-
lized goal, which is used to assure a beneficial appointment ordering from the
resource’s point of view. Similar to the appointment reservation the patient
pick up mechanism has been modeled.

The functional unit signals the readiness for a new treatment to the re-
source agent, which activates the call patient plan that contacts the patient
agent with a pick up request. The receiving patient agent starts the visit
resource plan and decides if the visit is possible (e.g. the patient could not
be at the ward). The resource agent is informed about the decision. Further-
more, if the decision is positive, the ward is notified to send to patient to
the functional unit and the internal beliefs of the patient location is updated.
The treatment end is again announced to the resource agent. It reacts by
using the call patient plan to update its beliefs and forward the information
to the patient agent.

The design diagrams from Fig. 5 have been used to implement the ap-
plication with Jadex BDI agents. The high correspondence between the
Prometheus design concepts and the Jadex BDI concepts led to a straight
forward implementation process that directly mimics the design.

Capabilities

Capabilities allow decomposition and reusability of agent functionality. In
MedPAge, different scheduling mechanisms have been tested under realistic
conditions. To keep implementation efforts low it was critical to modularize
the agent designs and factor out common functionality. The primary com-
ponents of the application were the patient and resource agents, which were
accompanied by some support agents [39] of limited complexity. Common func-
tionality of the patient as well as resources agents that was independent of the

32 A. Pokahr, L. Braubach, and K. Jander

scheduling algorithm concerns the call patient module, introduced above. Re-
gardless of how the agents negotiate the time slots for treatments and exam-
inations, the actual calling of a patient from the ward to the corresponding
resource has to be performed as a separate step allowing manual intervention
of hospital personnel in case of, e.g., emergencies. Additionally, the implemen-
tation of the call patient module might differ with respect to the existing IT
systems already available in the hospital.

For each tested scheduling algorithm, two capabilities have been imple-
mented: one for the patient side and one for the resource side. Using the im-
port/export interfaces of the capability concept, these modules can be seam-
lessly integrated into the agents and coupled with the remaining functional-
ity, such as the call patient module. Each implemented scheduling approach
defines a different pattern of message exchange according to an interaction
protocol. The capabilities for the patient and resource agent complementarily
implement either the initiator or participant role of this protocol. Details of
the protocol implementations are given in the next section.

Goal-oriented Interaction Protocols

In MedPAge, scheduling mechanisms of varying complexity were imple-
mented. The MedPaCo (“Medical Path Coordination”) algorithm incorpo-
rates stochastic knowledge about the probability of future treatments based
on predefined clinical pathways as well as statistical data on previous pa-
tients with the same diagnosis. Based on this knowledge, a patient agent can
estimate the value of a time slot offered by some required hospital resource.
E.g. a slot would be assigned a higher value, when waiting for the next slot
would significantly increase the overall staying time of the patient at the
hospital. The resource agents collect estimations from multiple patients and
adapt their local schedule accordingly.

The MedPaCo protocol is shown in Figure 6. The protocol is split into
four phases. The first two phases involve communication the need for a time
slot from the patient to the resource (subscription phase) and announcing the
start of an auction for an upcoming time slot (announcement phase). The last
two phases correspond to the contract-net protocol as already introduced in
Section 2.2.4. In the bidding phase, the resource agent collects the bids from
the patient and selects the winning patient in the awarding phase. At any
time multiple negotiations between overlapping sets of patient and resource
agents may take place. Therefore a patient might simultaneously win two
negotiations at different resources. As a result, the awarding phase needs to
be cyclic, because a winning patient might have accepted another time slot for
the same treatment already (cancel(treatment)) or for a different treatment
(refuse(not-available)).

Based on the goal-oriented interaction protocols approach, the business
logic of the negotiation can be cleanly separated from the protocol specifica-
tion. Important domain interaction points of the protocol are the evaluation

2 The Jadex Project: Programming Model 33

Fig. 6 MedPaCo3 negotiation protocol

of the time slot by the patient agent after receiving the cfp(treatment) mes-
sage and the evaluation of the patient proposals by the resource agent to
reject or accept bids.

2.4 Summary

The Jadex BDI architecture simplifies agent programming as it allows for in-
tuitively decomposing agent behavior into responsibilities and abilities, which
can be treated separately. Responsibilities of an agent can be obtained from a
requirements analysis or an abstract system design and are described explic-
itly as goals (e.g. world states to be achieved or maintained). The abilities
are defined as plans, i.e. procedural recipes how some goals might be pur-
sued. The built-in goal deliberation strategy further allows intuitively con-
trolling the order of goal processing by taking a local perspective of conflicts
and precedence relations between goals. Capabilities are a modularization
concept that respects all aspects of the BDI architecture and deliberation
and can be used for decomposing an agent design into parts that can be
independently developed. The goal-oriented interaction protocols approach
connects the internal BDI concepts to message-based interaction multi-
agent systems and thus allows a seamless integration of both. Ready-to-use

34 A. Pokahr, L. Braubach, and K. Jander

predefined interaction protocols, such as the contract-net, further simplify
the development of common interaction patterns.

One design focus of the Jadex BDI architecture was providing a means
of agent programming that can be easily learned by programmers with a
traditional (e.g. object-oriented) background. On the other hand, the pro-
gramming model should fit well with a high-level intuitive understanding of
an intelligent agent. Experiences with the Jadex framework in numerous soft-
ware projects as well as teaching courses have shown that the BDI model can
be easily understood and represents a natural way of thinking. Following the
provided Jadex programming tutorials, students with only Java-knowledge
are usually capable of developing their own agents in a short time frame.

In the MedPAge project using agent technology helped with several diffi-
cult problems. First, it perfectly mimics the decentralized nature of hospitals
with wards and different functional units. The approach respects the existing
autonomy of these entities and uses the agent metaphor to represent them
explicitly. This allowed modeling the scheduling problem as decentralized
coordination approach, in which self-interested patient and resource agents
negotiate with each other to reach their goals. Using Jadex facilitated the
implementation of the MedPAge system in several ways. Most noteworthy, it
allowed a high level system design using Prometheus with a direct mapping to
a Jadex implementation, it enabled reuse of functionalities using agent mod-
ules and it helped hiding negotiation complexities using interaction goals.

3 BDI in Workflows: GPMN

While a number of challenges in business process management, especially
in the area of production workflows, have been addressed in various ways
[31], there remains a set of business processes with particular challenges.
For example, processes like car model development cover a considerable time
span, often multiple years, yet the processes themselves are dynamic. Specific
practices may change while the process is in progress and unforeseen events
outside the process may have an impact selecting the next set of actions in
the process. Furthermore, collaborative processes like product development
tend to be unstructured in terms of control flow. The control flow of such
a process depends on the actions and discussions of the process participants
and is difficult to predict in advance.

Faced with these challenges, it can be seen that a new approach is necessary
to address a changing process environment and dynamic business processes
if those processes are to be modeled as executable workflows. Since most
aspects of the processes are subject to change, the question becomes which
parts of the processes are actually stable and can be modeled in an executable
workflow. It became clear that the only stable aspects these processes were
strategic aspects like business goals. For example, during car development,
the business goal of developing a new car model remains the same, even if

2 The Jadex Project: Programming Model 35

the actual means of achieving the goal, the order in which they are achieved
or the process environment like new parts or schedules may change over the
years.

Thus, a goal-driven workflow modeling language would allow for the re-
quired flexibility and agility of the processes. Goals would have to be evalu-
ated during execution and appropriate actions should be selected to further
the currently active goals. Since the BDI agent model already offers a goal-
centric approach, it is a good candidate for the execution of such workflows.
The integration of workflow concepts in Jadex began with the DFG project
“Go4Flex” [9] in cooperation with Daimler AG based on previous research
conducted at Daimler Group Research regarding goal-oriented workflow con-
cepts [15].

3.1 Related Work

A diverse collection of workflow languages are available both in literature
and practice. Often, each language has a particular focus on either business
domain-oriented modeling of business processes or the automated execution
of processes as workflows. Examples for business domain-oriented approaches
include languages such as Yet Another Workflow Language (YAWL [50]),
Event-driven Process Chains (EPCs [45]) and BPMN. Execution-centered
approaches include ECA (Event Condition Action [29]), Petri nets and the
Business Process Execution Language (BPEL [34]).

This distinction is primarily one of degree and not of fundamental lim-
itations. For example, it is certainly possible, provided the semantics are
sufficiently defined, to directly execute BPMN using an interpreter and it is
also possible, albeit inconvenient, to directly implement a business process
in BPEL. In addition, conversion of, for example, BPMN models to BPEL
workflow has become a common practice [35].

The languages can be evaluated based on how they address the five per-
spectives of the holistic business process view proposed by List and Korherr
[32] based on earlier work of Curtis et al. [20]. The functional view focuses
on the actions of a process, i.e. the execution of tasks. This view introduces
modeling concepts such as atomic tasks and subprocesses. The behavior view
centers around the control flow by defining the sequence of the elements of
the functional view. This view is often represented using sequence edges and
branching elements like XOR- or AND-splits and joins. The necessary data for
tasks and data produced by tasks are represented in the informational view.
This can include both simple information as well as complex business data
structures, products and services. Organizational structures such as roles, ac-
tors and organizational units are represented in the organizational view. This
includes the representation of work distribution and responsibilities. Finally,
process meta issues and important process characteristics like strategic and

36 A. Pokahr, L. Braubach, and K. Jander

operational business goals and their performance metrics in the form of key
performance indicators are included in the context perspective.

The first four perspectives are relatively well-established and represented
in workflow and business process modeling language to a varying degree. The
most comprehensive approach in this regard is the ARIS house of business
engineering [45]. The context perspective is a more recent addition and, as a
result, tends to be less represented and connected to the other four perspec-
tives. Most modeling languages like YAWL, BPEL and BPMN are strongly
focused on the behavior and functional perspectives, featuring a limited sup-
port for the organizational and informational perspectives, often relying on
external models and means to provide more comprehensive support. The
context perspective generally receives little support or is completely ignored.

This situation is based both on practical consideration as well as difficulties
integrating the various perspectives in a comprehensive model. The ARIS
approach, which tends to be the most comprehensive, solves the problem of
multiple perspectives by introducing a myriad of models to represent them.
The disadvantage of this approach is the lack of integration and the risk of
diverging models during both the initial development of a workflow model
and later workflow reengineering.

The business goals of a process could potentially be used to integrate
both the context perspective and the behavior perspective. They not only
represent the reasons and motivation for the process but they would also
influence the execution of a workflow model in a workflow engine depending
on their specification. Before our approach, attempts have been made to
integrate the context perspective using the user requirements notation (URN)
in conjunction with use case maps (UCM) and the goal-oriented requirements
language (GRL) [42]. However, unlike the approach presented here, this does
not use goals as both functional and non-functional features and therefore
does not integrate the context and behavior perspective.

Our approach is based on earlier work on the goal-context method devel-
oped at Daimler AG [15], which has also been spun off as a commercial tool
[18]. However, this commercial tool uses are more straightforward processing
of the goals and does not include the BDI reasoning process central to our
approach.

3.2 Approach

Most business process modeling languages are centered on the ordering and
execution of tasks. For example, BPMN uses sequence edges and gates to
direct the control flow towards the appropriate task elements. In contrast,
the approach presented here attempts to focus on the business reasons for
the process instead of the individual actions that are required to satisfy the
process. This shifts the perspective away from the question of how to solve

2 The Jadex Project: Programming Model 37

Fig. 7 GPMN elements (from [26])

a problem and emphasizes why action is needed and what target state is
desired.

This is accomplished by introducing business goals as process modeling
element. In order to model a new workflow, the workflow engineers first de-
termine the central business goal that the process aims to accomplish. For
example, in case of a car development process, this central goal can be to
develop a new car model. This first goal tends to be very abstract and can-
not be easily reflected with concrete tasks and actions. Therefore, the next
step involves decomposing the goal into multiple subgoals, which, when ac-
complished, implicitly achieve the original goal. These subgoals then can be
further broken down into more subgoals until the goals are sufficiently con-
crete and simple enough to accomplish them using a relatively basic and
straightforward set of actions, which are then expressed as a simple BPMN
workflow fragment.

This section will elaborate on the goal modeling language used to specify
such goal-oriented processes and describe the technical infrastructure used to
support such processes in a productive environment.

3.2.1 Goal-Oriented Process Modeling Notation

Since current workflow languages like BPMN are task-centric, a new language
or at least language elements are needed to represent functional business goals
in a process. While it is technically simpler to represent goal hierarchies in
a purely textual fashion like BPEL represents traditional workflow models,
the goal hierarchy is supposed to represent an abstraction from the technical
details and center around business functionality, which also help non-technical
and more business-centric people to understand the workflow models. As a
result, a graphical representation for the language is desirable.

This language called the Goal-orientedProcess Modeling Notation (GPMN)
currently consists of four node elements and four edge elements shown in Fig. 7.
These elements have been developed and tested within a number of both syn-
thetic test workflows as well as real world workflows found at Daimler AG. The
most obvious element is the goal element, which can represent an overall (“top
level”) business goal of a process or a subgoal of another goal. The language
currently offers four kinds of goals that have been derived from the underly-
ing BDI reasoning when found useful in a process. The most common kind of
goal is the achieve goal which aims to reach a certain process state. On the
other hand, if the process simply requires to perform a certain action without

38 A. Pokahr, L. Braubach, and K. Jander

regard for the process state, the perform goal is used. The third kind of goal,
the query goal, is used to acquire information relevant to the process. Finally,
the most complex goal kind is the maintain goal which constantly monitors a
condition and if that condition is violated, aims to re-establish a state in which
the condition becomes true again.

In order to express available actions to accomplish a goal, one or more
plans can be attached to the goals using a plan edge. Each plan represents an
option for achieving the goal and multiple plans may be tried before a goal
is achieved. Currently there are two types of plans available. The most direct
way of associating tasks with a goal is to attach a BPMN plan. This type
of plan represents a workflow fragment implemented in BPMN, specifying
exactly which tasks are required to attempt to achieve the goal. However,
in order to decompose goals into subgoals, the second type called activation
plan, is needed. This type of plan is used to activate further subgoals which
together achieve the plan’s goal. The subgoals are defined by connecting
the activation plan with the subgoals using the activation edge. Since the
activation plan is very simple and is often unnecessary to understand the
process, it is possible to hide it. The plan edge, the activation plan and the
activation edges are then replaced by multiple virtual activation edges directly
connecting the main goal and its subgoals.

Sometimes goals are in conflict with each other or can possibly interfere
with each other if both are active at the same time. One way of resolving
this conflict is to consider one goal to be more important and temporarily
suppressing the other goal while it is active. This situation can be modeled
using suppression edges. A goal with a suppression edge pointing to a second
goal will suppress that second goal until it becomes inactive either through
success or failure.

Finally, a subprocess element enables the workflow engineer to modularize
the workflow. This is useful when the workflow is very large and the result-
ing model would consist of an overwhelmingly complex goal hierarchy. The
subprocess element lets the workflow engineer split off part of that hierarchy
and integrate it in a separate process model.

3.2.2 Process Context

The order of execution in the workflow is influenced by conditions based
on the process context. The context not only contains the complete state of
the workflow during execution but also reflects the environment of the work-
flow. This can include information such as customer information, delivery
estimates, machine states and information about unusual events which have
impact on the workflow.

Both goals and plans have a number of conditions whose state is influ-
enced by the context. For example, a drop condition will, if it becomes true,
cause the goal to be dropped and no longer considered while a creation con-
dition will pick up a new goal once the condition becomes true. A number of

2 The Jadex Project: Programming Model 39

conditions are specific to the goal kind. Achieve conditions specify the con-
text state when an achieve goal should be considered successful. Maintain
conditions on the other hand define the context state that a maintain goal
aims to maintain. The context conditions of plans are used by the workflow
to decide whether a particular plan is applicable under the current circum-
stances. For example, an achieve goal which tries to acquire transportation
for an employee between two locations may have two plans, one for booking
plane flights and one for train rides. However, if one of the locations lack an
airport, the plan for booking flights is inadequate for achieving the goal and
thus is excluded based on the context.

The process context emphasizes the context perspective and deemphasizes
the behavior view by making task selection and order implicit and context-
dependent instead of explicit using sequences and branches in traditional
workflow languages. This allows the workflow engineer to trivially include
escalation and exception handling in the workflow by adding an appropriate
set of maintain goals instead of including a large number of branches and
event triggers within the workflow.

3.2.3 Technical Implementation

A number of tools have been implemented to support GPMN workflows.
Modeling and reengineering GPMN workflows is done using two editors. The
GPMN editor is used to model the goal hierarchy and define the process
context. The second editor is used to model the workflow fragments used for
the BPMN plans. Both editors generate XML files which contain the model
of the workflow.

The next step after generating the workflow models using the editors in-
volves their execution using a workflow engine. A workflow engine creates an
instance of the workflow based on the workflow model, coordinates the exe-
cution of workflow steps and manages the workflow state and context. Since
GPMN workflows are inspired by BDI semantics, using a BDI agent platform
like Jadex as the basis for a workflow engine was considered to be a good
starting point. The models provided by the editors are first loaded and then
transformed into a BDI agent model by adding additional parts needed for
the agent such as the predefined activation plans.

In order to enable the BDI agent to execute the BPMN workflow fragments
used for the BPMN plans, a BPMN interpreter has been developed. This
editor uses a loaded BPMN model in conjunction with an internal BPMN
state to interpret the BPMN elements in the model. As BPMN tends to
contain some ambiguities and inconsistencies in its semantics, only a subset
of BPMN elements is currently supported. The BPMN interpreter itself can
also be used as an interpreter for standalone BPMN processes, enabling Jadex
to execute BPMN workflows as well.

In addition, a workflow management system (WfMS) has been developed
around Jadex as the workflow engine roughly based on the reference model of

40 A. Pokahr, L. Braubach, and K. Jander

Fig. 8 Partial production preparation process (from [26])

the Workflow Management Coalition (WfMC)[51]. This system provides addi-
tion components like user management, security and administrative features
like monitoring and model deployment. This workflow management system
can be accessed by client software for which an example implementation is
also available.

3.3 Application

Goal-oriented workflow modeling has been used in a number of applications at
Daimler AG. The example presented here is a partial model of a process used
for preparing the production of a new car model.3 During this process, the
production of the car as well as the parts of the car are tested in a production-
like environment in order to identify issues both with the car parts as well as
the production process. This allows the designers of the parts and workflow
engineers to address issues in their respective areas before the new car model
is put into factory production.

The process shown in Figure 8 starts with the main “Production Prepa-
ration” goal which has to be achieved in order to reach the business goal of
the process. From there, it decomposes into multiple subgoals which address
three different areas. The first area is the test assembly of the vehicle itself
which is a comparably regular and sequential part of the process following a
predefined order. This part of the process is consolidated under the “Examine
Assembly” goal.
3 The original workflow has been made abstract due to business secrecy reasons.

2 The Jadex Project: Programming Model 41

While the assembly is in progress, issues that are identified by examining
the assembly have to be documented to be addressed at a later point. This
is the second area of the process which is summarized by the “Document
Assembly Issues” goal. It involves the documentation of part changes that
may easy the assembly, parts that are faulty to the point of not allowing
proper assembly and defects in the steps of the assembly process, such as
missing assembly steps or improper order of assembly steps.

Both the “Examine Assembly” and the “Document Assembly Issues” goals
are part of the test assembly and as such are subgoals of the overarching
“Finish Assembly” goal which controls the overall performance of the test
assembly. Outside the test assembly, the issues that have been found need to
be addressed in the appropriate parts or production process workshops. This
is accomplished by the third area of the process which consists of the two
maintain goals “Address Parts Issues” and “Address Assembly Step Issues”.
The maintain condition of these goals aim to keep the list of outstanding
issues empty. If new issue are found during assembly, the maintain condition is
violated and the associated plan is executed which then schedules a workshop
to address this new issue.

Since these maintain goals stay active during the whole product prepara-
tion process, they are direct subgoals of the main “Production Preparation”
goal along with the actual test assembly subgoal “Finish Assembly”. This
means the main goal and thus the process is not considered to be successful
until the test assembly is over and all issues found during assembly have been
resolved.

Most activities in the described process involve human tasks. The aim of
the agent-based workflow management system is supporting human experts
(“knowledge workers”) in their activities by improving their coordination. The
goal-oriented process description allows the agent to determine dynamically,
which activities are enabled or required in response to certain events. The
agent thus knows to re-enable corresponding activities automatically (e.g.
scheduling a “Parts Redesign” when hen a faulty part issue was found). Us-
ing techniques such as work item lists, the knowledge workers can quickly
asses the state of the process and which activities are required by them. The
process state is automatically managed by the agent and updated to reflect
the current situation. E.g. if a faulty part issue was found, but a change of
the overall car design no longer requires the part, then the issue is automat-
ically removed, because resolving the part issue is no longer a subgoal of the
process.

3.4 Summary

The GPMN workflows presented demonstrate how BDI reasoning and agent-
centric approaches can be used to address challenges in the area of business
process management and workflow modeling. The language has been found

42 A. Pokahr, L. Braubach, and K. Jander

particularly useful for processes that are either subject to a highly dynamic
process context, are particularly long-running or have a low degree of struc-
turing like collaborative and development processes. The goal-based approach
lets the workflow engineer focus more on the process objectives than on the
order of tasks and puts the context perspective into focus instead of modeling
the workflow around the behavior perspective. The result of this additional
abstraction allows the workflows to be more accessible by non-technical par-
ticipants who are more focused on the business side of process management
since the concept of business goals are already well known and map well onto
GPMN processes.

Overall, GPMN processes offer some unique opportunities to business pro-
cess management. In addition, they already have a background of being tested
against real world challenges at Daimler AG that have so far been hard to
address using traditional means and known workflow modeling languages.

4 Agents, Components and Services: Active
Components

In practice only few agent-based systems have been developed and deployed in
an operative setting. In contrast, other programming models such as object,
component and service orientation have gained wide industrial acceptance.
One could argue that agent orientation is still a very new conceptual approach
and its market penetration will is still to come and will steadily increase
in future. An argument that debilitates this view is the fact that service
orientation is newer than agent orientation and industry interest has been
much higher already since the beginnings of the adoption. The reasons for
not using agent technology in practice are manifold but several obstacles can
be clearly identified.

One such obstacle of particular importance is the set of programming ab-
stractions for agent systems, which is very different from the other program-
ming paradigms. A developer has to deal with ontologies, asynchronous
message based communication, speech acts, internal and possibly social agent
architectures. So the learning effort required for developers is high and existing
knowledge e.g. from object orientation only partially helps to cope with these
new concepts. In order to alleviate the low conceptual integration of agents
the active component metaphor has been conceived. The objective consists in
combining the advantages of agents with those of services and components by
bringing together their main characteristics in a new conceptual entity. The
resulting active components still have all characteristics of agents but extend
and enhance the software technical construction means by fostering explicitly
reusability, modularity and service based interactions. This does not only lead
to a steeper learning curve as active components are more similar to already
known approaches, it also helps using active components, hence agents, in the
context of today’s predominant service oriented projects.

2 The Jadex Project: Programming Model 43

4.1 Related Work

There are many approaches aiming at a combination of different software
technical strands, whereby these can be distinguished by the dominating
paradigm that was used as starting point for the fusion. Furthermore, the
approaches can be classified according to the integration layer targeted, i.e.
is a conceptual or a rather technical solution sought.

Considering agents as primary conceptual background most approaches
remain oriented towards a technical integration of agents with services. Pro-
totypical examples are the WSIG [2] and WADE projects, which are exten-
sions of the widely used JADE agent platform [2]. WSIG is the web services
integration gateway and facilitates the interaction of web services and JADE
agents. On the other hand, WADE extends agents with workflows, so that
agent behavior can be modeled graphically as processes.

In the area of component models several approaches exist that target dis-
tribution and concurrency and for this reason partially adopt agent or actor
model ideas. An example is the Fractal framework [14], which has been ad-
vanced in the ProActive [1] project towards active objects. Similarly, in the
JCoBox project [46] a component model with active object ideas has been
devised. This model introduces coboxes as active entities that own passive
objects and use tasks inside of coboxes for behavior execution. The model
isolates objects of coboxes from other coboxes and thus adopts the typical
separated actor memory model. In addition, with AmbientTalk [49] a new pro-
gramming language for ambient intelligence has been proposed. The ambient
communication and memory model is similar to JCoBox but its focus is on
providing solutions for mobile ad-hoc networks. Furthermore, the component
model of AmbientTalk is rather restricted and does not provide composition
means so far. Both approaches, JCoBox and AmbientTalk, share some impor-
tant conceptual ideas with active components with the main differences that
they do not introduce internal component architectures for behavior defini-
tion and follow a language based instead of a framework based specification
path.

It can be seen that conceptual integration of agent, component and services
has been tackled partially by other existing approaches. Most close to active
components are two promising strands of research. Firstly, SCA[33] success-
fully integrates services with components and leverages the way SOA based
application can be built. Secondly, some component models like JCoBox and
AmbientTalk bring together concurrency and distribution with traditional
component concepts. Hence, they foster the usage of component models in
dynamic application scenarios. Active component combines these efforts and
further leverages the behavior specification means by introducing the internal
architecture concept from agents.

44 A. Pokahr, L. Braubach, and K. Jander

Fig. 9 Active component structure

4.2 Approach

Recently, major IT industry vendors such as IBM, Oracle and TIBCO have
proposed a new software engineering approach called service component ar-
chitecture (SCA) [33], which is meant to be a unification of component and
service oriented architecture (SOA) concepts. The general idea of SCA con-
sists in introducing a hierarchical component model for distributed systems.
The SCA approach fosters dealing with complexity and reuse. Complexity
is addressed by separating the programming model from concrete communi-
cation protocols so that these protocols are largely part of the application
configuration and not of the functional program part itself. In this way SCA
shields developers from protocol details and allows building applications that
communicate using a different set of protocols. Reuse is facilitated by SCA
by relying on components and services as basic building blocks of software.
Per definition components are considered as rather self-contained entities
that exactly define what they need and offer via required and provided ser-
vices. Hence, components make clear in which contexts they can be used and
which functionality can be expected from them. Active components aim at
combining the SCA model with agent characteristics in order to conceive
a programming model that is capable to deal with scenarios that exhibit a
highly dynamic and concurrently acting set of service providers. In the follow-
ing subsections the structure, behavior and composition of active components
are explained in detail.

4.2.1 Structure

Fig. 9 presents an overview of the synthesis of SCA and agents to active
components. On the left hand side schematic views of an agent and an SCA
component are depicted. In can be seen that an agent is characterized by
its capability of interacting via asynchronous message passing and internally
uses an internal agent architecture for encapsulating its behavior control. In
contrast, an SCA component interacts with other components by relying on
interconnected required and provided services. By including subcomponents
higher-level functionalities can be composed of available lower-level compo-
nent building blocks. Furthermore, an SCA component has clearly defined

2 The Jadex Project: Programming Model 45

Fig. 10 Active component behavior

configuration points called properties, which can be used to equip it with
specific startup argument values.

The merger of both approaches is shown at the right hand side of Fig.
9. Using a black-box perspective, an active component looks very similar
to a traditional SCA component except for the small extension that an ac-
tive component allows for message based interactions in the same way as
agents do. The most significant enhancement of the SCA component concept
results from the inclusion of the internal architecture concept as component
part. This allows active components to realize autonomous behavior that goes
beyond its passive service functionalities. In contrast, internal architectures
enable the development of reactive and also proactive component behavior
that can e.g. be used for expressing workflow logic.

4.2.2 Behavior

In Figure 10 the behavior model of active components is shown. It is con-
siderably different if compared with agents and SCA components because it
has to combine a service oriented with an agent oriented perspective on how
behavior can be realized. Especially, active components need to respect the
most important property of agents, their autonomy, in order to be usable
for constructing scenarios of components with possibly cooperative or defec-
tive intentions. With respect to active components, autonomy needs to be
reflected in the way service calls are processed. No active component should
be forced to execute a service call if it cannot or does not want to do it.
Hence, service calls have always to be decoupled from the caller to allow the
called component to reason about the service request. The only contract that
is ensured by service invocations is that the caller is eventually notified about
the call result, being it a value or an exception.

Technically, the decoupling is realized using futures [48], which represent
place holders for the result of asynchronous processing. For each arriving
service call a component immediately returns a future return value and also

46 A. Pokahr, L. Braubach, and K. Jander

Fig. 11 Predefined dynamic binding scopes

schedules an action representing the call in an action queue. Each component
is equipped with an interpreter operating on the queue and processing the
contained actions one by one. The action representing the call may optionally
lead to reasoning about the call and eventually to its execution or refusal.
After service processing has finished, the interpreter fills the future with the
real result or exception triggering the resumption of the caller’s processing.

In addition to incoming service calls a component also has to deal with
outgoing service calls. These calls are targeted on another active component
and a required service binding defines how this component is found. The
mechanisms for specifying and managing such bindings are part of the active
component composition as described next.

4.2.3 Composition

The composition model of active components allows for static as well as dy-
namic component interconnections. Static composition means that develop-
ers use a deployment specification in order to directly wire specific component
instances with each other. The advantage of this classical composition model,
that is adopted by SCA and other component models, consists in the possibil-
ity of creating self-contained components that use their own subcomponents
to bring about internally needed functionality on their own. Therefore, such
components can be made applicable in many usage contexts by minimizing
the number of required service interfaces on the component top-level. On the
other hand, static wiring is not an acceptable solution for many dynamic
real world application scenarios, in which service providers may appear and
vanish at runtime [28].

For this reason, the active components approach supports besides a static
wiring also dynamic binding based on search specifications (cf. [40]). Dynamic

2 The Jadex Project: Programming Model 47

binding specification use search scopes for locating appropriate services in
components depending on the proximity with respect to the searching com-
ponent. Some predefined scopes, that proved to be useful in practice, are de-
picted in Fig. 11. They range from local scope, which only considers services
of the searching component itself, over component and application scope,
which extend the area towards sub- and all application components respec-
tively towards platform and global scopes that include the whole platform
and even all accessible remote sites. Further it is planned to support also the
application dependent definition of user search scopes allowing developers to
reflect their specific domain needs.

4.3 Application: JadexCloud

To illustrate the active component development approach, the JadexCloud
infrastructure will be presented. JadexCloud represents a middleware for pri-
vate enterprise cloud scenarios and especially highlights the advantages of the
active component programming model for utility computing. JadexCloud [8]
is itself a middleware, currently in development, for running applications
based on the active component concept within private enterprise clouds. The
general idea consists in supporting cloud application not only in homogeneous
high-end data centers, but also in existing heterogeneous company comput-
ing networks, which typically consist of a mix of differently powerful and
utilized machines. In such a setting cloud applications have to be designed
in a very modular fashion, so that dynamic relocations of certain application
parts can be performed at runtime, whenever the infrastructure or applica-
tion needs change. JadexCloud makes use of active components in two ways.
First, the infrastructure is built itself based on active component concepts
and secondly, it supports the execution of cloud applications developed with
active components.

Key concept of the proposed JadexCloud architecture is a layer model that
helps separating responsibilities and managing complexity. It is composed of
the following three layers: daemon layer, platform layer and application layer.

The daemon layer is the foundation for creating a cloud of interconnected
nodes. This is done by small daemon platforms that need to run on each
host that should participate in the cloud. The daemon platform includes an
awareness service, which is capable of automatically detecting other plat-
forms. The awareness service relies of different discovery mechanisms that
can be used to discover new nodes. Currently, several mechanisms for de-
tecting nodes in a local network exist relying IP broadcast and multicast
schemes. Furthermore, to build up networks with hosts from different net-
works a relay discovery mechanism has been developed, which acts as a bridge
between platforms. It is planned to further extend the relay mechanism in
the direction of a redundant supernode structure known from several peer-to-
peer networks. In the network a single node can always construct an actual

48 A. Pokahr, L. Braubach, and K. Jander

view of available network resources. Furthermore, the daemon layer allows
for basic management functionalities for application handling. Concretely,
application components can be started and terminated. In order to enforce a
strict separation between applications those components are started on newly
started application platforms that are controlled by the daemon. Application
management further requires that software bundles of applications can be
accessed in specific versions, for normal startup as well as for rolling out
updates of existing applications. The daemon layer handles this by utilizing
software repositories that can be hierarchically organized, i.e. distinguishing
local, companywide and global repositories.

On top of the daemon layer the platform layer offers a global administra-
tion view for deployment and management of applications within the cloud.
The entry point for the platform layer is the so called JCC (Jadex Control
Center), which offers a canon of remotable tools for setting up an application
and monitoring its behavior. All nodes build up the cloud from their local
perspective so that an arbitrary node with JCC can be used for application
management. Based on local configuration options and user privileges, the
JCC provides access to a subset of the existing nodes called the cloud view.
The administrator can choose, which nodes to include in the deployment of
an application, by assigning application components to the platforms running
on the different nodes. To start the separate components, each platform will
obtain the required component implementations from the repository.

The application layer, sitting on top of the platform layer, deals with how a
distributed application can be built based on the active components paradigm
as well as providing tools for debugging and testing applications during devel-
opment. Besides the already presented general concepts of active components
providing cloud ready applications need to especially consider the specifica-
tion of non-functional aspects like resource needs of component instances.
These aspects will be part of a deployment description for an application,
which can be evaluated by the platform layer for creating a deployment plan,
i.e. an ideal initial component-resource mapping, and also for component re-
locations at runtime. One non functional key property that has to be ensured
at runtime is fault tolerance of software components. In case fault tolerance
is needed for specific components they will be replicated and checkpointing
will be employed to ensure that components can be restarted after a crash
has occurred. Furthermore, it is planned to wrap already existing cloud ser-
vices, for example for storage of data in the cloud, and make them in this
way accessible for active components in a natural way.

4.4 Summary

This section has briefly introduced the active component concept, which uni-
fies central component with agent ideas. The integration has been done by
extending the SCA component model with internal architectures. As a result

2 The Jadex Project: Programming Model 49

components may own not only service driven passive but also autonomous
self governed behavior. Looking at active components from the outside they
appear no different to traditional SCA components so that the advantages
of managing complexity and reuse by hierarchical composition and abstrac-
tion from technology dependent communication means remain established.
Details of active component structure, behavior and composition have been
introduced and further explained. A common objection that is put forward
against active components concerns the potential loss of autonomy that is
caused by using service, i.e. method based interactions. This argument is
not valid as a service provider is still free to reason about performing ser-
vice requests before they are actually executed. Services just introduce sound
software technical foundations for typed interactions. An in depth discussion
about method calls and agents is out of scope for this chapter but can be
found in [7].

In JadexCloud, agent and active component technology is helpful with
respect to several aspects. It defines a new programming model for cloud
applications that naturally supports a louse coupling of the components and
thus allows for dynamic reconfigurations of the applications according to the
system demands. Furthermore, the complexity of the JadexCloud architec-
ture became better manageable by explicit service interfaces introduced in
active components. In this way the interfaces between the layers and be-
tween service requesters and providers could be cleanly software technically
described.

5 Conclusion and Outlook

Agent technology offers intuitive concepts for describing distributed systems
but implementing them is hard, time consuming and very different to other
established technologies. In the following, some of the lessons learnt regarding
the programming model for agent systems are summarized:

• The concepts for programming agents depend on the internal agent archi-
tecture used. In literature many different agent architectures have been
proposed, often inspired from other disciplines like biology, psychology
or philosophy. At the modeling and implementation layer this leads to a
huge heterogeneity of approaches and requires considerable learning ef-
forts. From a developer perspective it is advantageous to use an agent
architecture that fits the concrete project requirements, especially the com-
plexity of the agent functionalities is an indicator the choice of the right
programming model. Due to this wanted flexibility agent platforms should
not prescribe a specific programming model but either allow developers to
choose a model among different options or provide a simple model that
can be used to build custom extensions on top of it. One architecture
of specific importance is the BDI model as it is a hybrid approach that
combines reactive with proactive features, i.e. it is able to timely react

50 A. Pokahr, L. Braubach, and K. Jander

of environmental events and is also capable cognitive behavior based on
the way human rational action is explained. In Jadex both aspects have
been taken into account. On the one hand, different agent architectures
are supported by the kernel concept and on the other hand a BDI kernel
exists that fits many common use cases.

• Besides the agent itself, the inter agent layer plays an important role for
realizing multi-agent system. It has been found that building interaction
based purely on speech act based asynchronous messages is error prone and
difficult as no compile time checks can be done and profound knowledge
regarding the FIPA message format, ontologies and interaction protocols is
required. Furthermore, agent systems are typically peer-to-peer and lack a
mechanism for hierarchical decomposition, which is essential for handling
complexity in large systems. Conceptually, holons fill this gap but existing
frameworks do not pick up these ideas. In Jadex these challenges have been
addressed by the active components metaphor, which allows service-based
asynchronous interactions and allows components to have subcomponents.

The main motivation of Jadex has also been to facilitate the practical us-
ability of agent technology. In this respect all developments described in this
chapter have strived to deliver conceptual solutions that are bound to gener-
ically usable software. Respecting the problems and challenges from above,
Jadex has been developed with the rationale in mind to connect agents tighter
to established approaches. Concretely, with a BDI approach on basis of es-
tablished programming languages like Java and XML programming of goal
directed intentional agents was made easily accessible also for inexperienced
agent developers. Furthermore, it has been shown how BDI agent concepts
can be adopted for goal driven workflow descriptions. As goal are consid-
ered more stable than activities these kinds of workflows help to cope with
frequently changing business processes. Finally, with active components a
unification of agent, services and components has been introduced. Active
components strongly contribute to the problem of lacking industry adoption
as they are based on the standardized and industry driven SCA model. As
part of ongoing work, active components are field tested in commercial ap-
plications, concretely tackling the area of business intelligence, as well as
scientific mass calculations.

References

1. Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hierarchical
Grid Components. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA
2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1226–1242. Springer, Heidelberg
(2003)

2. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems
with JADE. John Wiley & Sons (2007)

2 The Jadex Project: Programming Model 51

3. Bordini, R., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-
Oriented Programming. In: Bordini, R., Dastani, M., Dix, J., El Fallah
Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and
Applications, pp. 3–37. Springer (2005)

4. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press
(1987)

5. Bratman, M., Israel, D., Pollack, M.: Plans and Resource-Bounded Practical
Reasoning. Computational Intelligence 4(4), 349–355 (1988)

6. Braubach, L., Pokahr, A.: Goal-Oriented Interaction Protocols. In: Petta, P.,
Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI),
vol. 4687, pp. 85–97. Springer, Heidelberg (2007)

7. Braubach, L., Pokahr, A.: Method calls not considered harmful for agent in-
teractions. International Transactions on Systems Science and Applications
(ITSSA) 1/2(7), 51–69 (2011)

8. Braubach, L., Pokahr, A., Jander, K.: JadexCloud - An Infrastructure for En-
terprise Cloud Applications. In: Klügl, F., Ossowski, S. (eds.) MATES 2011.
LNCS, vol. 6973, pp. 3–15. Springer, Heidelberg (2011)

9. Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W., Burmeister, B.:
Go4Flex: Goal-Oriented Process Modelling. In: Essaaidi, M., Malgeri, M., Bad-
ica, C. (eds.) Intelligent Distributed Computing IV. SCI, vol. 315, pp. 77–87.
Springer, Heidelberg (2010)

10. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept
for Flexible BDI Agent Modularization. In: Bordini, R.H., Dastani, M.M., Dix,
J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862,
pp. 139–155. Springer, Heidelberg (2006)

11. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation
for BDI Agent Systems. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah
Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65.
Springer, Heidelberg (2005)

12. Braubach, L., Pokahr, A., Lamersdorf, W.: A universal criteria catalog for eval-
uation of heterogeneous agent development artifacts. In: Sixth International
Workshop From Agent Theory to Agent Implementation, AT2AI-6 (2008)

13. Brooks, R.: A Robust Layered Control System For A Mobile Robot. IEEE
Journal of Robotics and Automation 2(1), 24–30 (1986)

14. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

15. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: Bdi-agents for agile goal-
oriented business processes. In: AAMAS 2008, pp. 37–44. IFAAMAS (2008)

16. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI Agents
in Functional Clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757,
pp. 277–289. Springer, Heidelberg (2000)

17. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack Intelligent Agents -
Components for Intelligent Agents in Java. AgentLink News (2), 2–5 (1999)

18. Calisti, M., Greenwood, D.P.A.: Goal-Oriented Autonomic Process Modeling
and Execution for Next Generation Networks. In: van der Meer, S., Burgess,
M., Denazis, S. (eds.) MACE 2008. LNCS, vol. 5276, pp. 38–49. Springer, Hei-
delberg (2008)

19. Cohen, P.R., Levesque, H.J.: Teamwork. Technical Report Technote 504, SRI
International, Menlo Park, CA (March 1991)

52 A. Pokahr, L. Braubach, and K. Jander

20. Curtis, B., Kellner, M., Over, J.: Process modeling. Com. ACM 35(9), 75–90
(1992)

21. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements ac-
quisition. Science of Computer Programming 20(1–2), 3–50 (1993)

22. Dastani, M., van Riemsdijk, B., Meyer, J.J.: Programming Multi-Agent Sys-
tems in 3APL. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications, pp.
39–67. Springer (2005)

23. Dennett, D.: Intentional systems. Journal of Philosophy (68), 87–106 (1971)
24. Georgeff, M., Lansky, A.: A system for reasoning in dynamic domains: Fault

diagnosis on the space shuttle. Technical Report Technical Note 375, Artificial
Intelligence Center, SRI International, Menlo Park, California (1986)

25. Huber, M.: JAM: A BDI-Theoretic Mobile Agent Architecture. In: Etzioni, O.,
Müller, J., Bradshaw, J. (eds.) Proceedings of the 3rd Annual Conference on
Autonomous Agents (AGENTS 1999), pp. 236–243. ACM Press (1999)

26. Jander, K., Braubach, L., Pokahr, A., Lamersdorf, W.: Goal-oriented processes
with gpmn. International Journal on Artificial Intelligence Tools, IJAIT (2011)

27. Jennings, N., Mamdani, E.: Using Joint Responsibility to Coordinate Collab-
orative Problem Solving in Dynamic Environments. In: AAAI, pp. 269–275
(1992)

28. Ježek, P., Bureš, T., Hnětynka, P.: Supporting Real-Life Applications in Hier-
archical Component Systems. In: Lee, R., Ishii, N. (eds.) Software Engineer-
ing Research, Management and Applications 2009. SCI, vol. 253, pp. 107–118.
Springer, Heidelberg (2009)

29. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by
business rules. In: Business Process Management, Models, Techniques, and Em-
pirical Studies, pp. 16–29. Springer, London (2000)

30. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to Soar, an
architecture for human cognition. In: Sternberg, S., Scarborough, D. (eds.)
Invitation to Cognitive Science, vol. 4, pp. 212–249. MIT Press (1996)

31. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Pren-
tice Hall PTR (2000)

32. List, B., Korherr, B.: An evaluation of conceptual business process modelling
languages. In: SAC 2006, pp. 1532–1539. ACM (2006)

33. Marino, J., Rowley, M.: Understanding SCA (Service Component Architec-
ture), 1st edn. Addison-Wesley Professional (2009)

34. OASIS. Web Services Business Process Execution Language (WSPBEL) Spec-
ification, version 2.0 edition (2007)

35. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: From bpmn
process models to bpel web services. In: Proc. of ICWS 2006, pp. 285–292.
IEEE (2006)

36. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intel-
ligent agents. In: Gini, M., Ishida, T., Castelfranchi, C., Lewis Johnson, W.
(eds.) Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2002), pp. 37–38. ACM Press (July
2002)

37. Paulussen, T., Zöller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A.,
Lamersdorf, W.: Agent-based patient scheduling in hospitals. In: Lockemann,
P., Spaniol, O., Kirn, S., Herzog, O. (eds.) Multiagent Engineering - Theory
and Applications in Enterprises, pp. 255–275 (June 2006)

2 The Jadex Project: Programming Model 53

38. Paulussen, T.O., Jennings, N.R., Decker, K.S., Heinzl, A.: Distributed Patient
Scheduling in Hospitals. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
Morgan Kaufmann (2003)

39. Paulussen, T.O., Zöller, A., Heinzl, A., Pokahr, A., Braubach, L., Lamersdorf,
W.: Dynamic Patient Scheduling in Hospitals. In: Bichler, M., Holtmann, C.,
Kirn, S., Müller, J., Weinhardt, C. (eds.) Coordination and Agent Technology
in Value Network. GITO, Berlin (2004)

40. Pokahr, A., Braubach, L.: Active Components: A Software Paradigm for Dis-
tributed Systems. In: Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2011), IEEE Computer So-
ciety (2011)

41. Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for
BDI Agent Systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M.,
Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer,
Heidelberg (2005)

42. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M.,
Forster, A.: Business process management with the user requirements notation.
Electronic Commerce Research 9(4), 269–316 (2009)

43. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS,
vol. 1038, pp. 42–55. Springer, Heidelberg (1996)

44. Rao, A., Georgeff, M.: BDI Agents: from theory to practice. In: Lesser, V.
(ed.) Proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS 1995), pp. 312–319. MIT Press (1995)

45. Scheer, A.-W., Nüttgens, M.: Aris architecture and reference models for busi-
ness process management. In: Business Process Management, Models, Tech-
niques, and Empirical Studies. Springer (2000)

46. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 275–299. Springer, Heidelberg (2010)

47. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

48. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM
Queue 3(7), 54–62 (2005)

49. Van Cutsem, T., Mostinckx, S., Boix, E.G., Dedecker, J., De Meuter, W.: Ambi-
enttalk: Object-oriented event-driven programming in mobile ad hoc networks.
In: International Conference of the Chilean Computer Science Society, vol. 0,
pp. 3–12 (2007)

50. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

51. Workflow Management Coalition (WfMC). Workflow Reference Model (January
1995)

52. Zöller, A., Braubach, L., Pokahr, A., Paulussen, T., Rothlauf, F., Lamersdorf,
W., Heinzl, A.: Evaluation of a multi-agent system for hospital patient schedul-
ing. International Transactions on Systems Science and Applications (ITSSA) 1,
375–380 (2006)

Chapter 3
Extensible Java EE-Based Agent
Framework – Past, Present, Future

Milan Vidaković, Mirjana Ivanović, Dejan Mitrović∗, and Zoran Budimac

Abstract. EXtensible Java EE-based Agent Framework (XJAF) is a modular, FIPA-
compliant multi-agent system developed by the authors of this chapter. The main
motivation behind the development of XJAF was to demonstrate how existing, stan-
dardized Java EE technologies, tools, and libraries, such as JNDI, JMS, and EJB, can
be used to implement a large subset of functionalities required from a multi-agent
system. Immediate direct benefits of this approach are shorter development time of
the system itself, delegation of agent load-balancing to the enterprise server, flat-
ter learning curve for new developers of the system, etc. The first implementation
of XJAF has been published several years ago and has since been used in several
real-life applications. In the meantime, some disadvantages and weaknesses of the
system were noticed, and the work is underway to provide a new implementation
with an improved quality. The most recent focus of improvements has been on the
addition of fault-tolerant techniques, and the increase of interoperability through a
SOA-based design and web service interfaces.

1 Introduction

Agent technology represents one of the most consistent approaches to distributed
software development. Software agents can be defined as executable software enti-
ties with varying degrees of intelligence, that act autonomously while pursuing their
goals.

Milan Vidaković
Faculty of Technical Sciences, University of Novi Sad, Serbia

Mirjana Ivanović · Dejan Mitrović · Zoran Budimac
Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Serbia
e-mail: dejan@dmi.uns.ac.rs
∗ Corresponding author.

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 55–88.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

dejan@dmi.uns.ac.rs

56 M. Vidaković et al.

A multi-agent system (MAS) is a software system with an infrastructural support
for its agents. Its core functionalities include [7] the agent life-cycle management, a
messaging infrastructure, and a service subsystem that effectively supports agents,
giving them the possibility of accessing resource, executing complex algorithms,
etc. In addition, MASs in many cases offer security features (e.g. agent code and
data integrity, and encryption of messages), a connection mechanism that allows
cooperation of agents in physically distributed environments, and a support for agent
persistence and mobility.

By analyzing MAS solutions that existed back in 2003, however, it was concluded
that in the majority of cases many of the functional requirements were implemented
from scratch. Developers used their own implementations of the message exchange
infrastructure, directories of agents and services, and security features, instead of
re-using technical solutions to these problems already present in Java EE.

EXtensible Java EE-based Agent Framework (XJAF) [47, 48, 49] is a FIPA-
compliant [16] MAS developed by the authors of this chapter. Given the authors’
own practical experience in developing Java EE-based applications, as well the
strong interest in the agent technology (e.g. [40]), the initial motivation for the devel-
opment of XJAF was to evaluate whether MASs can benefit from re-using existing,
standardized Java EE tools and libraries. At the same time, there was a need for an
efficient virtual central catalog implementation for the library information system
BISIS [42]. Additionally, the DIGLIB system [10] for Networked Digital Library of
Theses and Dissertations [36] required a framework to harvest metadata from het-
erogeneous content providers. The two main design goals for XJAF have thus been
defined:

• To provide an efficient and standards-compliant MAS implementation. Java EE
has been chosen as the main implementation platform, given its success in the
development of scalable, secure, and reliable software solutions for large enter-
prises.

• To develop a framework with aforementioned problems in minds, but with a high
level of reusability. This has been achieved by defining a system of abstract ser-
vices that can be specialized to serve the needs of a particular application.

The choice of Java EE as the XJAF implementation platform has proven to be ben-
eficial. Direct advantages of this approach were shorter development time of the
system itself, and harnessing of advanced programming features such as runtime
load-balancing. More concretely, XJAF relies on the following Java EE technolo-
gies for its functioning:

• Java Naming and Directory Interface (JNDI) [28]: used for implementing direc-
tories of agents and services.

• Java Message Service (JMS) [21]: provides the communication (inter-agent mes-
saging) infrastructure.

• Enterprise JavaBeans (EJB) [11]: used as placeholders for agents and services
• Java Serialization: supports agent persistence and mobility.
• Java PKI API [25]: used for implementing some of the security features.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 57

• Java Architecture for XML Binding (JAXB) [26]: simplifies the use of XML-based
task descriptions.

JMS, for example, has been chosen instead of IIOP or RMI commonly used by
other MASs because it is allows for asynchronous communication, both internal
(e.g. among agents residing in the same XJAF) and distributed. IIOP and RMI are
designed primarily for distributed, synchronous communication. Therefore, instead
of, for example, developing a messaging infrastructure from scratch, existing JMS
technology was used. Additionally, because large parts of the system are based on
standardized, widely-known technologies, XJAF has a flatter learning curve for new
developers. Besides these advantages related to the development process itself, an
additional important runtime benefit was gained. In XJAF, agents and services are
initially created as Plain Old Java Objects (POJOs), but are immediately wrapped
inside EJB components. XJAF itself is managed by a modern enterprise application
server, which offers EJB pooling and runtime load-balancing. So, with the minimum
amount of effort, XJAF is able to effectively balance the number of running agents
with the available system resources. More details on these benefits are given in
Section 3.

The second aforementioned design goal of XJAF has also been achieved. By em-
ploying the concepts of agent technology, such as mobility, message exchange, and
services, the problem of searching for a specific library record in a large number
of distributed library catalogues was solved in less than 100K lines of code – sig-
nificantly lower that any other, non-agent based solution written from scratch (see
Section 4 for more details).

At the high-level of abstraction, XJAF was designed as a set of loosely-coupled
module called managers. Each module handles a distinct part of the overall agent
management process, such as message passing, task execution, data and code secu-
rity, etc. There are several advantages of the manager-based approach. New man-
agers can be added dynamically and are recognized solely by their interfaces, which
allows for custom implementations. Also, the list of manager is not hard-coded, but
rather loaded from a configuration file, which means that new functionalities can be
added without the need for changing the system itself.

The rest of the chapter is organized as follows. Section 2 provides a compari-
son of existing MAS architectures with the approaches taken in the development of
XJAF. Section 3 provides detailed information on the architecture of XJAF, both
the old and the new implementation. A simple example of using XJAF, as well as
some existing, more complex practical usages of the system are presented in Section
4. Recent changes and improvements made to the system are presented in Section
5. Finally, Section 6 outlines general conclusions and future work on the presented
topic.

2 An Overview of Existing MAS Architectures

Various authors have made different design and implementation choices during
the development of their MASs. A representative subset of these solutions, with

58 M. Vidaković et al.

interesting and efficient approaches to solving specific problems include ABLE,
Aglets, DimaX, FUSION@, JADE, and Voyager. These systems are analyzed in
greater details in the following subsections.

2.1 ABLE

Agent Building and Learning Environment (ABLE) [1, 5, 31] is a Java-based,
FIPA-compliant MAS and a framework for agent development based on machine
learning and reasoning. It uses the JavaBeans technology for building both agents
(AbleAgents) and general-purpose, reusable software components (AbleBeans). Be-
cause ABLE agents are, in essence, JavaBeans components, they can be constructed
from AbleBeans as well as from other agents. The environment includes a number
of standard beans for data manipulation, rule processing, and learning.

ABLE supports rule-based reasoning. Rules can be written as simple if-thens, or
by using more complex, Prolog-like predicate logic. For this purpose, ABLE offers a
specialized Able Rule Language (ARL) similar to Java, with advanced features such
as rule priorities, rule metadata, templates, and OMG OCL [37] collections. The
system includes a number of inference engines, based on backward and forward
rule chaining, fuzzy logic, neural networks, scripting, and more.

Agents in ABLE communicate using FIPA ACL messages. In case of physically
distributed environments, Java RMI is employed. Persistence of beans and agents is
achieved via the AbleSerializable interface, which is backed-up by Java serialization.

2.2 Aglets

Aglets [2, 29, 43] is a Java-based MAS with the support for agent mobility, syn-
chronous and asynchronous message exchange, and security mechanisms. It is a
multi-tier environment, consisting of the following tiers:

• AgletsRuntime: a host for agents, proxies, and contexts. A proxy is an agent
placeholder. It serves as a security wrapper, protecting the agent from outside
malicious attacks, and vice versa. A context is a link between an agent and its
environment.

• Agent Transport and Communication Interface (ATCI): supports agent mobility
and communication over a network, at the higher level of abstraction. It relies on
the ATP layer for functioning.

• Agent Transport Protocol (ATP): a low-level infrastructure for sending agents
and messages across a TCP/IP network. Supported operations include dispatch,
for sending an agent to a remote server, retract, which pulls the agent from the
remote server, fetch, for the exchange of information, and message for sending
messages over the network.

Aglets supports event-driven programming, through a set of pre-defined events and
appropriate listeners. Example events include CloneEvent, MobilityEvent, and Per-
sistencyEvent.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 59

The security model of Aglets is used to control the access to the file system,
network resources, and environment threads. Agents can be categorized as trusted
or untrusted, and the access rights for each category can be defined separately.

Although well designed and supporting advanced agent development features,
the Aglets MAS does not seem to be developed or maintained anymore.

2.3 DimaX

DimaX [12, 20] is a MAS built around the concept of fault-tolerance. It is constructed
by layering an older Java-based MAS named DIMA [19] on top of the DarX [30]
replication framework.

Main services of DimaX include agent directory, fault-detection, monitoring,
and adaptive agent replication. Fault-detection is based on the heartbeat technique
which involves agents pinging each other to indicate their availability. If an agent
does not send any pings within a dynamically determined timeframe, its replica is
used to restore it. A similar heartbeat-based approach is used to detect failure of a
distributed DimaX server.

The monitoring service tries to predict future failures of the system or individ-
ual agents. It utilizes specialized agents called host monitors and agent monitors.
Each DimaX server contains a single host monitor which collects information at the
system level, e.g. about the CPU. This allows agents to leave the troubling environ-
ment in a timely manner. Agent monitors, on the other hand, keep track of agents
in the system, measuring the amount of sent and received messages, the number of
executed tasks, etc. This data is used to create interdependency graphs in order to
identify agents that are more important than others, and adapt the number of replicas
accordingly.

2.4 FUSION@

FUSION@ [44, 45] is a modular SOA-based MAS with a layered organization. At
the lower level, services are used to implement functionalities of the framework.
They can be invoked locally or remotely, and can be organized as local or web
services. Task distribution is controlled by deliberate, BDI-style agents at the upper
layer. They employ load-balancing and quality assurance analysis in order to assign
the given task to the most appropriate service.

External clients interact with FUSION@ using SOAP, while inner inter-agent
communication uses FIPA ACL.

There is a set of pre-defined types of specialized agents responsible for perform-
ing certain assignments within the system. Examples include:

• CommAgent: handles all communication between external users and underlying
services.

• Security Agent: analyzes the structure and syntax of all incoming and outgoing
messages.

60 M. Vidaković et al.

• Directory Agent: manages the list of services available in the system.
• Supervisor Agent: monitors the status of all agents, by occasionally pinging them.

FUSION@ allows developers to changes the behavior of all pre-defined agents, as
well as to add new agents in accordance to the needs of their project.

2.5 JADE

Java Agent DEvelopment Framework (JADE) [4, 24] is probably the most widely-
used MAS implementation. The system is very well documented, and it’s supported
by a large community of developers. JADE is FIPA-compliant and relies on ad-
vanced Java features for its functioning, which include RMI, CORBA IDL, Serial-
ization, and Reflection API.

At runtime, JADE framework can be organized into multiple containers, which
can then be distributed over a local area network. A container serves as a fully-
featured agent environment. All containers are linked to a single Main container.

Internally, agents communicate using FIPA ACL messages. Supported commu-
nication patterns also include message exchange with other JADE environments, as
well as with MASs from other vendors. In the first case, messages are serialized
and transported using RMI. In the latter case, IIOP can be used, but the system also
supports the addition of new protocols.

Each JADE agent has its own thread of control. Multi-threaded agents can also be
developed, in which case JADE provides synchronization of the concurrent access
to the agent’s message queue. An agent task is defined as a direct sub-class of the
Behavior class, or one of its more specialized sub-classes. For example, CyclicBe-
havior defines tasks that are executed in a continuous loop.

JADE has a built-in support for agent mobility and includes various security
features, such as authentication, authorization, and encryption of exchanged mes-
sages. However, one of the most important feature of the framework is extensibil-
ity through third-party add-ons. Add-ons can be used to modify, fine-tune, or add
completely new functionalities to the system. An example add-on is Web Service
Integration Gateway (WSIG) [6] which automatically publishes agent’s services as
web services.

2.6 Voyager

Voyager [50] is primarily an application server, but it can also be effectively used
for agent development [17]. The Voyager package includes following components
(among others):

• Voyager Application Server: an EJB server, with the support for JSP.
• Voyager ORB: enables communication between the Voyager system and external

entities using SOAP, CORBA, RMI, and DCOM objects. In addition, it includes
a distributed naming service, a sub-system for object persistency, etc.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 61

• Voyager ORB Professional: a layer on top of Voyager ORB, it includes a GUI
management console, and JNDI, load-balancing, and CORBA naming services.

• Voyager Security: authentication and authorization system, which utilizes SSL,
Firewall Tunneling using the SOCKS protocol, as well as HTTP.

• Voyager Transactions: supports Object Transaction Service and JTA.

Voyager agents communicate by exchanging messages, using synchronous (i.e.
blocking), one-way, one-way multi-cast and future communication patterns. The
system relies on the JMS technology for message transport. Agent mobility is also
supported, through Java Serialization.

2.7 Comparisons with XJAF

The main difference between XJAF and MASs presented above is in the use of Java
EE as the implementation platform. Endorsed by a large portion of corporate enter-
prizes, Java EE includes technologies, libraries and tools that ease the development
of efficient, reliable, and scalable software. This makes it an excellent platform for
MAS development. For example, by wrapping agents inside EJB components, XJAF
delegates the agent life-cycle management to the underlying enterprize application
server. This approach increases the system’s performance, because modern appli-
cation servers employ EJB pooling and runtime load-balancing techniques. Out of
the MASs described earlier, only Voyager attempts to fully utilize the Java EE plat-
form. However, Voyager is an application server written from scratch, and repre-
sents a commercial product. XJAF, on the other hand, executes inside an existing,
open-source solution (i.e. GlassFish [18]). BlueJADE [9] is a project aimed at in-
corporating Java EE with JADE, but it only transforms the entire framework into a
manageable service.

In a recent improvement of the XJAF architecture, a special care has been ded-
icated to the creation and maintenance of fault-tolerant networks. In a distributed
environment, it allows the remaining interconnected XJAF instances to cooperate
correctly regardless of the number of broken nodes in the network. In addition, a
robust agent tracking technique has been introduced, allowing the system to locate
a mobile agent even if some nodes in its path break. None of the presented systems
have taken the fault-tolerant network management to this extent. On the other hand,
support for agent replication is at the core of DimaX, and it is also present in JADE.
FUSION@ employs monitoring of agents and services in order to detect failures.
Implementation of these techniques within XJAF is planned in the future.

Integration of agents and web services has been supported by IEEE FIPA Agents
and Web Services Interoperability Working Group (AWSI-WG) [23]. Out of the pre-
sented systems, only FUSION@ uses web services as building blocks, while JADE
relies on an add-on to employ web services for interoperability purposes. The SOA-
based design has recently been applied to XJAF.

62 M. Vidaković et al.

Table 1 The summary of features offered by different MAS implementations

MAS Java EE FIPA Mobility Fault-tolerance WS integration

ABLE No Yes Yes No No

Aglets No No Yes No No

DimaX No Yes No Yes, agent
replication

No

FUSION@ No Yes No Yes, monitor-
ing of agents
and services

Yes

JADE No Yes Yes Yes, agent
replication

Yes, through an
add-on

Voyager Yes Yes Yes No No, but some stan-
dards are supported
(e.g. SOAP)

XJAF Yes Yes Yes Yes, fault-
tolerant net-
works

Yes

Table 1 summarizes the similarities and differences between XJAF and each of
the MASs described above. Categories used for comparison are:

• The usage of Java EE as the implementation platform
• FIPA-compliance
• Support for agent mobility
• Fault-tolerance techniques
• Web services integration

3 The XJAF Architecture

XJAF is designed as a pluggable software architecture. It is defined as a set of
loosely-coupled, dynamically loaded modules called managers. Each manager is
responsible for handling a distinct part of the overall agent-management process.
The design based on pluggable managers has several benefits. Managers are recog-
nized and used solely by their interfaces, which allows for custom implementations.
Also, the set of managers is not hard-coded, but rather loaded from a configuration
file at startup. This means that new managers (and thus, new functionalities) can be
added as needed, requiring no changes to the underlying implementation.

The set of managers available in the default implementation of XJAF is as fol-
lows:

• AgentManager: in charge of allocating and releasing agents (i.e. controls the
agent’s life-cycle).

• TaskManager: manages tasks that can be performed by registered agents.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 63

ConnectionManagerI

MessageManagerI

ConnectionManager

SecurityManagerI

ServiceManagerI

MessageManager

AgentManagerI

SecurityManager

ServiceManager

TaskManager

TaskManagerI

AgentManager

Facilitator

Fig. 1 Managers of XJAF and the Facilitator component

• MessageManager: provides the means for inter-agent communication.
• ConnectionManager: used for connecting physically distributed instances of

XJAF.
• SecurityManager: provides security mechanisms.
• ServiceManager: manages services that can be used by other entities of the sys-

tem.

All managers of XJAF are controlled by Facilitator, the central component of the
system, as shown in Fig. 1. Facilitator provides a working environment for the
agents, through an exposed API. Implementations of most of its methods are usually
trivial, and consist of transferring the call to an appropriate manager, and, in case of
blocking methods, waiting for the response and returning the result.

3.1 Agent Management

AgentManager includes functionalities that correspond to those specified in the
FIPA’s Agent Directory Service [14]. Therefore, its main tasks are to keep a di-
rectory of agents, and to activate and deactivate agents on demand.

As noted before, XJAF relies on existing Java EE technologies for advanced
programming features. AgentManager uses JNDI for implementing agent direc-
tory services of the FIPA specification. More important goals, when it comes to
agent management, include minimizing the overhead of allocating new agents, and

64 M. Vidaković et al.

employing some form of agent load-balancing at runtime. In order to achieve these
goals, AgentManager will additionally wrap each agent inside an EJB component,
and then pass it on to the enterprise application server. Modern application servers
utilize the EJB pooling technique, keeping a number of EJB instances in memory
at all time. Once a request for a new agent arrives, an instance is recycled from the
pool, rather than being re-allocated from scratch. The number of instances kept in
the pool is increased or decreased in response to the number of simultaneous re-
quests. These features enable XJAF to balance the number of running agent with
available system resources, with the minimal amount of programming effort.

XJAF has a built-in support for agent mobility. When an agent decides to migrate,
it makes an appropriate call to its Facilitator. The call converts the agent to a stream
of raw bytes using Java Serialization features. Raw bytes are transferred to the target
XJAF, where the agent is de-serialized, and then its onArrival() method is called.
This means that XJAF supports the so-called weak agent mobility.

In order to support agent mobility, AgentManager actually keeps two directories
of agents: one for agents available locally, and another for agents that have moved
to another XJAF. Each record in the local directory is a pair (ID, ref), where ID
identifies the agent, and ref holds a reference to it. Once an agent is created, its
newly assigned identifier and reference are stored in the local directory. This di-
rectory record is removed once the agent is destroyed. Other parts of the system
(including other agents) interact with an existing agent using its ID. So, for exam-
ple, if an agent A wishes to send a message to agent B, it will do so by setting the
B’s ID as the message recipient. This value will eventually be used to get a hold of
the actual reference to the agent B from the local directory and place the message in
its message queue.

For mobile agents, AgentManager utilizes another, remote directory. If an agent
leaves its current host and moves to another XJAF, the agent’s record is removed
from the local directory, and a new record is inserted into the remote directory. Each
record in the remote directory is a pair (ID, addr), where ID is a newly-assigned
identifier of the agent, while addr is the address of XJAF the agent has moved to.
If the agent continues to move, e.g. to a third XJAF, the second instance will again
keep the (ID, addr) record in its own remote directory.

When a message is sent to an agent, AgentManager will:

1. Look for the agent’s ID in the local directory. If it is found, the message is put in
the agent’s message queue using the available reference.

2. Look for the agent’s ID in the remote directory. If it is found, the message is
forwarded to the remote XJAF, using the available address. The remote instance
then follows the same procedure.

The agent migration process is depicted in more details in Fig. 2.

3.2 Managing Tasks

Capabilities of XJAF agents are described in form of tasks. Each agent publishes a
set of tasks it can perform into a centralized repository handled by TaskManager.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 65

localAM :
AgentManager

remoteAM :
AgentManager

remoteAgent
 : Agent

remoteXJAF
 : XJAF

localAgent
 : Agent

localXJAF
 : XJAF

release

newAgentID

create
getAgent

newAgentID

moveTo acceptAgent

releaseAgent

onArrival

Fig. 2 Agent migration process in XJAF

A client (e.g. another agent, external user, etc.) can ask for a task execution by
providing the task ID to TaskManager. The manager then finds the best agent for
the task, sends it an appropriate message, and later returns the result to the client.

For interoperability reasons, agent tasks are represented using the standardized,
platform-independent, and widely-used W3C XML Schema language [51].

Agents exchange task requests and execution results using the messaging sys-
tem. For external, non-agent clients, XJAF uses the concept of event listeners. A
listener is a POJO implementing a predefined AgentListener interface. For exam-
ple, the task execution result is returned to the external client as a parameter of an
actionPerformed event. The parameter is actually an instance of the AgentResult
class, with a set of getter methods for extracting the actual result value, error code
in case of a failure, etc.

3.3 Agent Communication

Three types of communication can be recognized in XJAF:

1. Agent ↔ XJAF. Each agent holds a reference to the Facilitator instance, and can
invoke its methods directly. The system, on the other hand, can interact with an
agent by sending it a message.

2. Agent ↔ Agent, where both agents are located in the same XJAF. This local
inter-agent communication is performed using messages, with the assistance of
MessageManager.

3. Agent ↔ Agent, where agents are distributed over a network. This remote inter-
agent communication also relies on the message exchange using MessageMan-
ager. Additionally, in this scenario ConnectionManager (described in Subsection
3.4) is employed for transferring the message to the remote agent.

Originally, XJAF used Knowledge Query and Manipulation Language (KQML) [13]
as the message format. When the first version of the system was developed, in 2003

66 M. Vidaković et al.

[47], KQML was the de facto standard for the agent communication language. Over
the time, however, FIPA ACL [15] has emerged as a new standard, and was adopted
by many MASs, as shown previously in Section 2. In order to increase the interop-
erability of XJAF agents, the work is underway to update the existing messaging
infrastructure of XJAF and replace KQML with FIPA ACL.

Following the idea of employing existing Java EE technologies in MAS develop-
ment, XJAF relies on Java Message Service (JMS) [22] for the message exchange.
JMS is a Java API used with loosely-coupled components in distributed applications,
for reliable and asynchronous communication. When a KQML message is sent (e.g.
from one agent to another), it is embedded into a JMS message. The JMS message
is then published to all subscribed XJAF instances. Only the instance hosting the
target agent, however, will receive the message. Upon receiving the message, the
hosting XJAF extracts its KQML content and passes it to the target agent, by in-
voking its onKQMLMessage method. Fig. 3 outlines components in a JMS-based
message exchange.

If case of security requirements, exchanged messages can be encrypted using the
functionality offered by SecurityManager, as described in Subsection 3.5.

For a developer, however, manual construction and usage of messages can be
labor-intensive tasks. To simplify the agent development process, XJAF offers the

TopicConnectionFactoryMessageManagerI

MessageManager TopicConnection

TopicPublisher

KQMLMessageTopicSession

Message

ContextFacilitator

Agent

Fig. 3 Components of a JMS-based message exchange

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 67

so-called programmatic mode. The idea is to use methods that correspond to KQML
performatives in order to reduce the process of constructing a message, sending it,
and waiting for the reply to a single method invocation. For example, if an agent A
wants another agent to perform some task, it needs to:

• Perform marshalling of the task description object.
• Construct a message manually and send it to the Facilitator component.
• Wait until the Facilitator component responds with the tell performative that

corresponds to the original request.
• Extract the recommended agent’s ID from the newly received message.

In the programmatic mode, the agent A can simply invoke the Facilitator’s recom-
mendOne method and receive the recommended agent’s ID as a return value.

It is important to note that no additional configuration of the system is needed to
switch between the programmatic mode and raw messaging. If the agent A passes
the received ID and task object in a call to the Facilitator’s execute method, it will
eventually invoke the execute method of the target agent. This is an example of a
programmatic mode approach. Alternatively, a raw achieve message could be sent
by using the Facilitator’s sendKQMLMessage method, ending up as an input pa-
rameter of the target agent’s onKQMLMessage method.

3.4 Connecting Distributed XJAF Instances

XJAF has a built-in support for agent mobility – while pursuing their goals, agents
can move freely between interconnected, distributed instances of the environment.
In the original implementation, ConnectionManager was the manager in charge of
establishing a network of running XJAF instances. The network formed a tree-like
organizational structure, with the primary XJAF representing the root of the tree.
Fig. 4 shows an example of such a structure, with Instance1 being the primary node.

New instances could easily be added to an existing network. If an instance was
supposed to be a member of a network, its configuration file would contain the

Instance5 :
XJAF

Instance1 :
XJAF

Instance2 :
XJAF

Instance3 :
XJAF

Instance4 :
XJAF

Fig. 4 Tree-like structure of distributed XJAF instances

68 M. Vidaković et al.

address of the parent XJAF. During the startup, the new instance would inspect this
file and then register itself with the specified parent accordingly.

Load-balancing is the main motivation behind the establishment of XJAF net-
works. That is, instead of running a large number of agents on a single machine,
it would be more efficient to use several (possibly low-end) computers, and then
distribute agents among them. For that matter, ConnectionManager offers a set of
methods for locating an agent in the network and/or forwarding a message to it. Ad-
ditionally, once an XJAF instance becomes a member of a network, it can rely on
ConnectionManager’s methods for communicating with other members.

Recently, the tree-like structure was replaced by a fully-connected graph, in an
effort to increase the fault-tolerance of XJAF networks, as described in Section 5.

3.5 Security Features of XJAF

In the area of MAS development, security features include the protection of agents
and the system itself from malicious attacks, code and data integrity, and the in-
tegrity and confidentiality of exchanged messages. However, the application of se-
curity mechanisms often imposes significant overhead to the code execution and is
not mandatory for all agent-based software solutions. Therefore, security features
of XJAF are available in a distinct manager named SecurityManager, to be applied
as needed.

The set of methods defined by SecurityManager is outlined in Table 2. All meth-
ods operate on raw bytes, and can be used to protect any part of the system, such as
a serialized agent or a message.

The choice of techniques and algorithms to be used for implementing Securi-
tyManager’s method is left to the system’s developer. The default implementation
uses Public Key Infrastructure (PKI). The proposed model for SecurityManager is
shown in Fig. 5.

Tasks of the individual components of the SecurityManager model are as follows.
AccessSecurityHandler manages agent’s access permissions to system resources.
Initially, these permissions are set through an external file, but can later be updated
using the same interface. Permission checking is performed automatically by JVM,
through the XJAFSecurityManager sub-class of java.lang.SecurityManager. Cryp-
toManager performs date encryption/decryption, as well as signing and verification.
Encryption and decryption are delegated to CryptoAlgorithm, while the job of digital

Table 2 Methods offered by SecurityManager

Method Description

encrypt(source) Encrypts the given array of bytes.
decrypt(source) Decrypts the given array of bytes.
sign(source) Performs digital signing of the given

byte array.
verify(source, signature) Validates the signed array of bytes.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 69

signature generation and validation is transferred to SignAlgorithm. PKI administra-
tion is performed by KeyHandler, which includes issuing, revoking, and changing
certificates, as well as generating key-pairs and secret keys. Key generation is gov-
erned by a class implementing the KeyGenerator interface. Finally, AccessHandler
is used in a network environment, preventing unauthorized connections from dis-
tributed instances of XJAF.

Many of the described functionalities rely of the technologies already included
in the Java platform, such as Java PKI API.

java.lang.SecurityManager

AccessSecurityHandler

XJAFSecurityManager

SecurityManagerI

CryptoAlgorithm

AccessHandlerCryptoHandler KeyHandler

KeyGeneratorSignAlgorithm

Fig. 5 The SecurityManager model

3.6 Service Manager

In XJAF, a service is a reusable software component that implements some specific
functionality. It can be used by agents and other entities of the system. The basic
idea is to extract some common tasks (e.g. input validation) into services and avoid
repeating the implementation for each agent. The manager in charge of handling
XJAF services is ServiceManager.

A service is a POJO implementing the Service interface. This interface contains
only one method, remove(), which is called automatically once the client is finished
working with this particular instance of the service. However, clients of a service
usually do not deal with an instance of the service class. Rather, they specify a task
that needs to be executed, as well as the identifier of the service that should execute
it.

Similarly to AgentManager described earlier, ServiceManager uses JNDI for ser-
vice directory implementation. In addition, after it initializes a service, ServiceMan-
ager will wrap it inside an EJB component, to be handled by the enterprise applica-
tion server. Because of this feature, a single service instance can be recycled from
a memory pool to serve many different agents. This reduces the number of memory
allocations/deallocations to a minimum. The pool of instances is automatically in-
creased or decreased by the enterprise server to match the actual demand. All these

70 M. Vidaković et al.

features help to balance the overall resource requirements of XJAF with the amount
of resource available in the system.

4 Practical Applications of XJAF

XJAF has been applied to two particular software systems in the field of distributed
digital library catalogues: the virtual central catalogue, and metadata harvesting
[47, 48]. Fundamental features of the agent technology employed in these applica-
tions include mobility and agents inter-relationship. In the virtual central catalogue,
agents migrate from one node to another in search of the content specified by the
query issued from the central node. In case of metadata harvesting, one central agent
delegates tasks to agents in subordinate nodes and collects results.

In both cases, the use of agent technology provided a simple and effective mech-
anism for a dynamic setup of the distributed catalogues network. The main contri-
bution of this approach is a solution that gives a simple and flexible mechanism for
automatic maintenance of dynamically changing networks, as well as an environ-
ment suitable for the implementation of additional services in distributed libraries.

4.1 Example: Factorial Agent

In order to demonstrate the usage of XJAF, a simple framework for calculating the
factorial of a specified number is developed. Although the presented example is
artificial and simple, it is adequate for demonstrating the fundamentals of writing
and employing XJAF agents, and for gaining a deeper understanding of the system’s
functioning. The framework consists of:

• The factorial task description
• FactorialAgent, an agent that performs the factorial calculation

FactorialAgent follows the next algorithm: if it can calculate the factorial directly
(i.e. n ∈ {0,1}), it will do so and return the result; otherwise (i.e. n ≥ 2), it will ask
for another agent to calculate (n− 1)! and then return the value of multiplying n
with that sub-result.

The factorial task description defines types of expected input and calculated re-
turn values. When working with tasks, clients, agents and managers of XJAF use
Java Architecture for XML Binding (JAXB) [39] for generating the appropriate wrap-
per classes, performing object marshalling and document unmarshalling, etc. In this
particular example, a FactorialTask class is generated from the defined factorial task
XML Schema document.

Core implementation of the FactorialAgent (i.e. its execute method) is shown in
Listing 1.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 71

Listing 1 Core implementation of FactorialAgent

p u b l i c A g e n t R e s u l t e x e c u t e (AgentTask t a s k , F a c i l i t a t o r f , O b j e c t a i d){
i f (t a s k i n s t a n c e o f F a c t o r i a l T a s k) {

/ / e x t r a c t i n p u t v a l u e from t h e t a s k
F a c t o r i a l T a s k f a c t T a s k = (F a c t o r i a l T a s k) t a s k ;
i n t v a l u e = f a c t T a s k . g e t I n p u t V a l u e () ;
/ / n ! , n >= 2
i f (v a l u e >= 2) {

t r y {
/ / recommend a n o t h e r a g e n t f o r t h i s t a s k
O b j e c t n e x t I d = f . recommendOne (t a s k) ;
/ / a sk i t t o c a l c u l a t e (n − 1) !
f a c t T a s k . s e t I n p u t V a l u e (v a l u e − 1) ;
A g e n t R e s u l t s u b R e s u l t =

f . e x e c u t e (n e x t I d , t a s k) ;
/ / r e t u r n t h e f i n a l r e s u l t
v a l u e ∗= s u b R e s u l t . g e t C o n t e n t () ;
return new A g e n t R e s u l t (v a l u e) ;

}
catch (Agen tNotFoundE xcep t ion ex) { return n u l l ; }
catch (Rem oteE xcep t ion ex) { return n u l l ; } }

return new A g e n t R e s u l t (1) ; } / / 1 ! , 0 !
return n u l l ; }

External clients interact with agents in XJAF through the FacilitatorProxy com-
ponent. This component is an abstraction over Facilitator, hiding all the ”low-level”
details, such as JNDI lookup and JMS message composition. To interact with an
agent, the client simply needs to create an instance of FacilitatorProxy and pass it
the task description and concrete parameter values. The process of task execution
though FacilitatorProxy is shown in Fig. 6.

 : FacilitatorProxy : Client : Facilitator : Agent

execute()

result

execute()
execute()

result
result

Fig. 6 The process of task execution in XJAF

Implementation of the factorial client is shown in Listing 2. The client’s construc-
tor receives the input value for n and generates an appropriate XML-formatted string,
incorporating the value. It then creates an instance of FacilitatorProxy and requests

72 M. Vidaković et al.

the task execution. The last parameter of the FacilitatorProxy’s execute method is an
instance of the class implementing the AgentListener interface. As described earlier,
this interface is used for asynchronous communication between XJAF and external
clients. Once the task execution is done (either successfully of unsuccessfully), the
listener’s actionPerformed method will be called.

Listing 2 Implementation of the factorial client

p u b l i c c l a s s F a c t o r i a l C l i e n t implements A g e n t L i s t e n e r {
p r i v a t e F a c i l i t a t o r P r o x y fp ;
p r i v a t e i n t n ;

p u b l i c F a c t o r i a l C l i e n t (i n t n) {
t h i s . n = n ;
/ / c o n s t r u c t t h e t a s k
S t r i n g t a s k =

”<?xml v e r s i o n =\”1 .0\” encod ing =\”UTF−8\”?>” +
”< f a c t o r i a l T a s k ” +

” xmlns =\” t a s k s / example / F a c t o r i a l T a s k \”>” +
”<i n p u t V a l u e>” + n + ”</ i n p u t V a l u e>” +

”</ f a c t o r i a l T a s k >” ;
/ / ask f o r t a s k e x e c u t i o n
fp = new F a c i l i t a t o r P r o x y () ;
fp . e x e c u t e (t a s k , t h i s) ; }

p u b l i c void a c t i o n P e r f o r m e d (AgentEvent e) {
/ / e x t r a c t t h e r e s u l t
A g e n t R e s u l t r e s u l t = e . g e t R e s u l t () ;
S t r i n g c o n t e n t = r e s u l t . g e t C o n t e n t () ;
i f (r e s u l t . s u c c e s s f u l ())

System . o u t . p r i n t f (”%d ! = %s ” , n , c o n t e n t) ;
e l s e

System . o u t . p r i n t l n (” E r r o r : ” + c o n t e n t) ;
fp . c l o s e () ; } / / f r e e r e s o u r c e s

p u b l i c void a c t i o n S t a r t e d (AgentEvent e) { }
p u b l i c void a c t i o n P e r f o r m i n g (AgentEvent e) { } }

4.2 Distributed Library Catalogues

Library information systems based on local record databases do not provide any-
thing more than local record database searches. These systems could instead be in-
corporated in a library network that would provide the shared cataloguing feature.

Shared cataloguing enables data exchange on a record level between many li-
braries. Its purpose is to help librarians in reusing a record from a distant library
database, instead of creating one manually. That is, shared cataloguing creates a
controlled environment which enables librarians to complete their own local record

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 73

databases using library records from other sources, which results in an increased
productivity. In order to offer this functionality, the environment must provide the
librarian with the possibility of searching distant record databases, downloading
selected distant records into the local database, and, optionally, modifying it in ac-
cordance to the specific needs of the local library.

Shared cataloging is implemented as a system that incorporates all local record
databases into one joint database. This can be achieved in one of the following
manners: joint record server, and virtual central catalogue. Joint record server rep-
resents a central record database that incorporates all library records from local
databases. It requires regular updates, usually on a daily basis, which means that
a powerful (i.e. an expensive) computer system is needed. The other downside is
that this concept is characterized by a single point of failure – if the central com-
puter or its network connection fail, so does the whole system.

Virtual central catalogue, on the other hand, maintains a network of local record
databases. All queries sent to the virtual central catalogue are forwarded to all mem-
bers of the network. Their sub-results are joined into a single result presented to the
user. This concept can be efficiently implemented using agent technology features,
namely distributed execution of the agent code, agent mobility, and inter-agent com-
munication.

4.2.1 Using XJAF in BISIS

An implementation of the virtual central catalogue based on XJAF was provided
[47] for the library information system BISIS [42]. The BISIS software system sup-
ports library operations and is designed and implemented using the object-oriented
approach, UML, and the Java programming language. The system supports the Uni-
code standard [8], which makes it an appropriate tool for the multi-language envi-
ronments.

Fig. 7 displays the virtual central catalogue consisting of n local BISIS library
servers. Each local library server is connected to a local XJAF instance (XJAF1,
XJAF2, . . ., XJAFn), which provides the working environment for library agents.

The virtual central catalogue is connected to the primary XJAF that hosts library
agents. Once a query is made, the central catalogue forwards it to all available li-
brary agents, which then migrate to local XJAF instances and perform local database
searches. An agent can access a local BISIS server using a library service imple-
mented for this purpose. The benefit of using a specialized service is that it hides
the library server details from the agent. By providing an abstraction layer, the ser-
vice enables the creation of a heterogeneous library server network, without the need
for changing the agent implementation.

After performing the local search, each agent sends its result back to the cen-
tral catalogue. The catalogue then merges all these sub-results into a single result
presented to the user. The entire process is outlined in Fig. 8.

74 M. Vidaković et al.

Central
catalogue

BISIS
Server

 2

BISIS
Server

 1

BISIS
Server

 n

XJAF
 n

XJAF
2

XJAF
1

XJAF

Fig. 7 Component diagram of a virtual central catalogue with n local library servers

 : AgentFramework : CentralCatalogue : LibraryService : LibraryAgent : BISISServer

[for each library agent]

loop

library agents

recommendAll

moveTo

executeQuery

incorporate result

executeQuery

result

executeQuery

result

result

Fig. 8 Agent-based search of distributed library catalogues

4.3 Metadata Harvesting

Open Archive Initiative (OAI) [46] is an initiative for the foundation of electronic
archives, with the goal of achieving enhanced accessibility to their contents. In the
context of OAI, the term archive resembles a repository of scholarly and scientific
papers. The framework for data interchange is defined by Protocol for Metadata
Harvesting (PMH). OAI-PMH metadata harvesting is used as a standard proto-

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 75

col within Networked Digital Library of Theses and Dissertations (NDLTD) [36].
NDLTD aims at building a digital library of Electronic Theses and Dissertations
(ETD) authored by students of member institutions.

A member of OAI can have both or either of the following roles:

• Data Provider: a system which supports OAI-PMH as the means of exposing
metadata

• Service Provider: a system which uses metadata harvested via OAI-PMH as a
basis for building value-added services

DIGLIB [10] is a NDLTD implementation for entering and querying electronic ver-
sions of theses and dissertations. XJAF agents have been integrated with the sys-
tem [48] in order to harvest metadata from OAI-PMH data providers. By relying
on the functionality of ConnectionManager, DIGLIB is able to automatically main-
tain the network of providers, i.e. without the need for manual addition or removal.
Agents harvest metadata using the network of XJAF instances and corresponding
data providers as shown in Fig. 9.

RemoteData
Provider 1

RemoteData
Provider 2

LocalData
Provider 3

LocalData
Provider 4

LocalData
Provider 1

LocalData
Provider 2

XJAF
2

XJAF
5

XJAF
3

XJAF
4

XJAF
1

Fig. 9 An example of an XJAF-based OAI-PMH network

There are two distinct classes of data providers: local and remote. A local data
provider is directly linked to an XJAF instance, and can be accessed by its agents as
a local resource. Remote data providers, on the other hand, cannot be directly linked
to any particular XJAF instance, for various technical, security, etc. reasons. Remote
data providers are manually organized into lists which are fed into harvesting agents.

As with BISIS, metadata harvesting agents use a specialized service, named
OAIPMHService, in order to communicate with data providers via OAI-PMH. In

76 M. Vidaković et al.

case of remote data providers, an additional specialized web service was devel-
oped to act as a communication layer between OAIPMHService and the provider.
Fig. 10 shows the sequence diagram of metadata harvesting using XJAF agents and
OAIPMHService.

remoteAgent :
DistributedOAIPMHAgent

remoteService :
OAIPMHService

localService :
OAIPMHService

localAgent :
OAIPMHAgent

remoteXJAF :
 XJAF

locaXJAF :
XJAF

 : Client

[for each XJAF]

loop

executeAction

sendMessage

result

result

executeAction

getAllFacilitators

recommendOne

sendMessage

result

RemoteOAIPMHAgent

list

execute

Fig. 10 Sequence diagram of the metadata harvesting

Two types of agents can be distinguished in the system: OAIPMHAgent and
DistributedOAIPMHAgent. OAIPMHAgent receives metadata harvesting tasks and
searches local data providers. It can also request a distributed search from Dis-
tributedOAIPMHAgents which are distributed across the network and can commu-
nicate with both local and remote data providers. In the remote case, a Distribute-
dOAIPMHAgent is given a list of providers to search.

OAIPMHAgent uses the messaging infrastructure for employing
DistributedOAIPMHAgents. Based on the task formulation contained in the mes-
sage, the receiving DistributedOAIPMHAgent performs metadata harvesting, gath-
ers the results, and then sends them back to the invoking agent in a message.
OAIPMHAgent gathers all the results and presents them to the client.

4.4 The Benefits of Using XJAF

Agent-based implementation of the virtual central catalogue solves the distributed
search problem in an efficient way because agent technology concepts offer the way
for finding and recruiting agents, true parallelism, code migration, and message ex-
change. The virtual central catalogue implementation based on XJAF and BISIS
offers the creation of a virtual network of libraries on a higher level of abstraction.
That is, the network topology is defined by XJAF instances that are connected to
library servers. Furthermore, this system is not related to any particular type of a

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 77

Table 3 Comparisons of source code sizes for various functionalities required by BISIS and
DIGLIB, with and without using XJAF

Functionality Without XJAF With XJAF Percentage

Communication and mobility 3908 90 2.30%

Regular library record search 28636 479 1.67%

Intelligent library record search 28603 446 1.56%

Quality of library records 28380 223 0.78%

Metadata harvesting 4328 441 9.50%

library server, and therefore provides the means for establishing and using hetero-
geneous networks of library servers.

When it comes to metadata harvesting, there are two main advantages of using
XJAF over the conventional solutions [38]:

1. Automated, dynamic formation of data providers networks
2. Because XJAF itself already provides the network interconnection feature, devel-

opers of agents and services can concentrate on data processing

Consequently, for both systems, the source code is considerably smaller. Rough es-
timates of source code sizes required to implement various functionalities for BISIS
and DIGLIB are outlined in Table 3. Description of each column is as follows:

1. Description of the functionality
2. Rough estimate of the source code size needed to implement the corresponding

functionality without using XJAF
3. Size of an XJAF agent that was implemented to achieve the same functionality
4. Ratio, column 3 over column 2, expressed in percentages

Values of the second column have been estimated by measuring sizes of XJAF com-
ponents that were needed to support the corresponding agent in the third column
(plus the size of the agent itself).

The overall conclusion is that the usage of XJAF shortens and simplifies the soft-
ware development time significantly. More concretely, the size of an agent that per-
forms intelligent library search is only 1.56% the size of a non agent-based, classical
software solution offering the same functionality. Because re-usability was one of
the main design goals for XJAF, the framework can easily be applied in other do-
mains as well.

Undoubtedly, the use of any framework (and not just an agent-based) can result
in shorter software development times. However, the use of agents brings additional
benefits. For example, BISIS is a closed system which cannot be accessed by exter-
nal entities, residing outside of the system itself. Mobile XJAF agents, on the other
hand, are able to migrate into and operate from within BISIS, assuming the roles of
(human) librarians, and so gaining the access to protected resources.

78 M. Vidaković et al.

5 Recent Improvements of the Architecture

Besides improving BISIS and DIGLIB, practical applications of XJAF had helped
pointing out the weaknesses of the system itself. The tree-like structure of inter-
connected instances, although simple to build, was inflexible and prone to errors.
For example, the failure of node XJAF2 in Fig. 9 would divide the system into two
sets of mutually unreachable nodes. Furthermore, the original mobile agent tracking
technique was not robust enough as the failure of any XJAF instance in the agent’s
migration path would render the agent lost. These issues have been solved by the
introduction of fault-tolerant techniques [32, 33].

Another problem was the lack of interoperability. Being implemented in Java
(EE), the system was available only to Java-based external clients – a severely lim-
iting factor. In order to increase the interoperability of XJAF, the service-oriented
philosophy was used [34]. The new implementation still utilizes many existing Java
EE tools and libraries, but the system itself has been redesigned as a set of web ser-
vices. This means that any external client with the support for web services is able
to interact with agents of XJAF. In addition, for each new agent the system now
automatically generates a web service interface, allowing the direct client ↔ agent
interaction. Java API for XML-Based Web Services (JAX-WS) [27] is used as the
fundamental Java EE API for introducing the SOA-based design to XJAF.

Therefore, despite of its successful usage, and along with further developments
in the domain of agent technology, the original design and implementation of XJAF
have recently been critically evaluated and improved. These improvements are dis-
cussed next.

5.1 Fault-Tolerant Networks of XJAF Instances

In order to increase the fault-tolerance of XJAF networks, the tree-like structure
of interconnected instances has been replaced by a fully-connected graph [32, 33].
Fully-connected graphs are convenient because, for a mobile agent the problem of
finding a path to the target XJAF becomes trivial. This approach introduces no sig-
nificant overhead, since each XJAF instance keeps a simple list of all other instances.
Finally, the increase in time needed to add a new instance to an existing network is
managed by exploiting the mobility feature of agents.

The new approach to creating and maintaining XJAF networks is includes a new
type of a specialized, mobile agent named ConnectionAgent. The initial job of Con-
nectionAgent is to register its newly created host XJAF with an existing network.
Afterwards, the agent performs tasks related to detecting a broken neighbor and
informing other ConnectionAgents of the problem.

An XJAF instance that needs to become a member of a network is pre-configured
with a list of network addresses it should try to connect to. During startup, Con-
nectionManager will consult this list, trying to establish a connection. Once a con-
nection is made, ConnectionManager initiates and dispatches ConnectionAgent, a
light-weight mobile agent that visits all existing nodes in the network and spreads
the information about newly created XJAF.

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 79

ConnectionAgent carries with itself a set of all XJAF instances it has detected
so far. An element of this set is a triplet {address,state, timestamp}, where ad-
dress is the instance’s network address, state is its running state, as perceived by the
agent (e.g. running, unresponsive, etc.), while timestamp marks the time at which
the perceived state was reached. In general, ConnectionAgent relies on timestamps
to distinguish between mutually exclusive messages. If, for example, it receives two
messages about a XJAF instance, one telling it that the instance is up and running,
and the other that the instance is unresponsive, it can detect the correct state by
choosing the message with the later timestamp. Any inconsistencies between clocks
are handled by always associating information about an XJAF instance with a times-
tamp generated by the instance itself, as described later.

Once ConnectionAgent visits an XJAF in the network, it performs a synchronize
operation with it. During the synchronization, the hosting XJAF will learn about the
ConnectionAgent’s home. At the same time, ConnectionAgent will learn about all
instances its current host is or was connected to. Any changes made to the agent’s
set are sent back home.

ConnectionAgent occasionally pings its home XJAF, because it might occur that
the instance breaks during the registration procedure. If this happens, Connection-
Agent will revert the registration: it will go to all previously visited instances in the
network and inform them that its home is down. Similarly, if the home does not re-
ceive any pings from it ConnectionAgent for a certain amount of time, it will assume
the agent is lost and will dispatch a new copy.

The mobility feature of ConnectionAgent has been used to reduce the overall time
needed to add a new node to a network, especially if it contains a large number of
nodes. After the synchronization procedure, the agent divides its set of yet unvisited
instances into two distinct subsets. It then spawns a clone of itself and assigns one
of these subsets to it, keeping the other subset for itself. Each agent then migrates
to the next unvisited host from its own subset, repeating the synchronization proce-
dure, and re-spawning new ConnectionAgents at each subsequently visited XJAF.
The registration procedure is finished for an agent once it has no more unvisited in-
stances. By performing the set division and agent re-spawning at each visited host,
the overall dependence of the registration time on the number of existing hosts be-
comes insignificant [33].

Once the registration procedure is finished, ConnectionAgents return to their
home XJAF. One of the instance is selected to establish a heartbeat connection with
its neighbors in order to perform failure detection. When ConnectionAgent detects
that one of its neighbors is down, it informs the remaining instances of the problem.
To prevent the situation in which many ConnectionAgents detect the same problem
and start informing each other about it, the following approach is used:

• Each ConnectionAgent sorts its list of all XJAF instances in the network accord-
ing to their respective timestamps. Let instance A be before instance B if it has
earlier timestamp than B. Similarly, let B be after A if it has later timestamp
than A.

• The agent establishes a heartbeat connection with agents directly before and di-
rectly after itself.

80 M. Vidaković et al.

• If an agent detects a failure of the instance after itself, it sends a notification to
the agent before itself, and establishes a new heartbeat connection with the agent
after the failed one.

• Similarly, if an agent detects a failure of the instance before itself, it sends a
notification to the agent after itself, and establishes a new heartbeat connection
with the agent before the failed one.

• Whenever an agent learns about a failure, it updates its own set and forwards this
information to the agent at the opposite side from the notification source.

• Whenever two agents establish a heartbeat connection, they synchronize their
respective lists of neighbors. Any changes are propagated similarly as above.

Timestamps are again used to distinguish between mutually exclusive messages. To
avoid any differences in clocks, it is crucial for a timestamp of an XJAF instance to
be always generated by the instance itself. An agent ai that receives a ping from a
heartbeat neighbor returns the timestamp of its home XJAF as a result. The sender
of the ping stores this value as the ai’s timestamp. In case of a failure of ai’s host, the
saved value (plus an ε) is used in notification messages forwarded to other agents.

By following this simple set of rules, ConnectionAgents can always establish a
consistent view of the network, i.e. even in very unstable environments.

5.2 Agent Tracking Improvements

The agent tracking process used in the original implementation of XJAF (as de-
scribed in subsection 3.1) was based on the forwarding pointers technique [35].
Similarly to the tree-like structure of distributed XJAF instances, the forwarding
pointers technique was easy to construct, but was also characterized by a single
point of failure: a breakdown of any node in the agent’s path would have rendered
the agent lost for all systems hierarchically above the breaking point. Therefore, an
algorithm has been devised [32, 33] to increase the fault-tolerance of the agent track-
ing approach. The solution is again proposed in form of a new type of a specialized,
light-weight agent, named RemnantAgent.

For each mobile agent Ma in a network, there is a single instance of RemnantA-
gent in each XJAF node in the Ma’s path. RemnantAgent keeps two sets of informa-
tion about its mobile agent:

1. An unordered set of all XJAF nodes in the Ma’s path (Sa).
2. An ordered set of all nodes the Ma has visited after leaving the RemnantAgent’s

host (S f).

RemnantAgent is a purely reactive agent. It responds to two distinct events:

1. Ma has moved to another XJAF (E f).
2. Ma has returned to this XJAF (Er).

Event E f is signaled to all RemnantAgents in the agent’s path, except for the target
one. In response, corresponding RemnantAgents update their respective sets Sa and
S f , with the new host being appended to the end of S f .

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 81

Event Er is signaled along with E f , but to RemnantAgent in the target XJAF only.
As a result, the target RemnantAgent will update its set Sa, while clearing the set S f .

Fig. 11 depicts a scenario in which there are four XJAF instances, A, B, C, and
D comprising a network [33]. Within each symbol representing an XJAF, current
values of Sa and S f are shown. There is a single mobile agent, initially moving from
A to B (Fig. 11(a)), then from B to C (Fig. 11(b)), and finally from C to D (Fig.
11(c)).

(a) (b)

(c)

Fig. 11 Fault-tolerant mobile agent tracking algorithm [33]

Suppose that, in the situation depicted by Fig. 11(c), A needs to deliver a message
to the agent. By inspecting its set S f , it learns that the agent is in D and delivers the
message directly there. However, let the link between A and D be broken. A now
tries to deliver the message through the second-to-last element of S f , which is C.
By inspecting its own set S f , C concludes that the agent is in D, and forwards the
message there. In total, there are four alternative paths for delivering the message:

1. A → D
2. A →C → D
3. A → B → D
4. A → B →C → D

For very unstable environments, a configurable parameter can be used to trigger in-
stantiation of additional RemnantAgents with each migration step. These Remnan-
tAgents are then distributed across different XJAFs, providing even more alternative
routes to the agent.

82 M. Vidaković et al.

5.3 SOM: SOA-Based MAS

A major disadvantage of the original XJAF architecture was that it had been locked
into a particular development platform (i.e. Java). The consequence of this approach,
however, was that only Java-based external clients could use the system and interact
with its agents. In order to increase the interoperability of XJAF, the system has been
redesigned. Although it still uses Java EE as the implementation platform, managers
of the system have been re-implemented as web services. The new system is named
SOA-based MAS (SOM) [34].

Because it represents a conceptual specification of web services, their function-
ality and interaction, SOM can be implemented using many modern programming
languages. The default implementation is provided in Java EE, following the same
idea behind XJAF – reuse of existing technologies for MAS development as much
as possible. Recently, successful examples of using other development platforms
(e.g. Python [41]) have emerged. This, however, poses an interoperability problem
– an agent written for a Java EE-based implementation of SOM cannot migrate to a
Python-based implementation, undermining the intended goal of SOM.

In order to overcome this issue, a new agent-oriented programming language,
named Agent LAnguage for SOM (ALAS) has been proposed [34]. Besides provid-
ing developers with programming constructs that hide the underlying complexity of
agent development, one of the main features of the new language is hot compilation.
This feature is used in software solutions based on mobile agents that need to migrate
across a network consisting of heterogeneous SOM implementations. When an agent
moves from one host in the network to another, it carries with itself its source code
written in ALAS, as well as its internal state. When the agent reaches the target host,
its ALAS-based source code is transformed on-the-fly into the source code of the tar-
get implementation platform. This output is forwarded to a native compiler, which
produces the executable code, allowing the agent to continue its task execution.

An example of FactorialAgent written in ALAS is shown in Listing 3. The agent
is defined inside a namespace and contains a single service named calculate. In
ALAS, a service is a functionality that the agent offers to other, internal or external,
users of the system. The given agent implementation follows the same algorithm for
calculating the factorial described in Subsection 4.1.

Listing 3 An example of FactorialAgent written in ALAS

namespace ” h t t p : / / www. example . o rg / a l a s / f a c t A g e n t ” ;

ws agent F a c t o r i a l A g e n t {
s e r v i c e i n t c a l c u l a t e (i n t n) {

i f (n >= 2) {
S t r i n g t a s k I d = ” h t t p : / / www. example . o rg / a l a s / ” +

” f a c t A g e n t / C a l c u l a t e T a s k ” ;
i n t s u b R e s u l t = f a c i l i t a t o r . e x e c u t e (t a s k I d ,

”<n>” + (n − 1) + ”</n>”) ;
re tu rn s u b R e s u l t ∗ n ; }

re tu rn 1 ; } }

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 83

Behavior of the ALAS compiler can be controlled by a set of so-called modifiers.
In the example shown in Listing 3, the ws agent modifier is used, which instructs the
compiler to generate an appropriate web service interface to the agent. This feature
increases the interoperability of SOM even further – external clients can interact
with agents directly, through the exposed web service interface, i.e. in a familiar
fashion, using the standardized SOAP communication protocol. All calls to the web
service methods are automatically transformed into messages and then routed to the
agent, even if it has migrated to another SOM instance.

6 Conclusion and Future Work

XJAF is a FIPA-compliant MAS, designed as a pluggable software architecture con-
sisting of dynamically-loaded, loosely-coupled managers. The basic set of managers
includes AgentManager, for controlling the agent life-cycle, TaskManager, for man-
aging tasks that can be performed by agents, MessageManager, which provides the
messaging infrastructure, ConnectionManager, used in networking environments
for connecting distributed XJAF instances, SecurityManager, which offers secu-
rity features, and ServiceManager, for managing XJAF services, reusable software
components.

As concluded in [3], some of the most important technical requirements imposed
on industrial applications of the agent technology are robustness, reliability, scal-
ability, and interoperability. According to our personal opinion, not enough effort
has been put into satisfying these requirements. For example, existing MAS solu-
tions, in most cases, do not provide any runtime load-balancing techniques; those
few that do, implement their own algorithms from scratch. Additionally, there is an
overall lack of interoperability between various, even FIPA-compliant MAS imple-
mentations, as well as between MAS implementations and legacy, non agent-based
code.

The main advantage of XJAF over many other existing MASs is the full employ-
ment of Java EE technologies, tools, and libraries. Java EE has been adopted by a
large portion of corporate enterprises, because it simplifies the development of ro-
bust, reliable, and scalable software. As such, it represents an excellent tool for MAS
development, covering almost all of the aforementioned technical requirements. Al-
though certain MAS architectures employ some of the features offered by Java EE,
none have taken the extensive approach used during the development of XJAF. For
example, XJAF wraps agents inside EJB components and delegates their life-cycle
management to the enterprise application server, gaining in such a way, and with
a minimum amount of programming effort, runtime load-balancing of agents, im-
proving the overall performance of the system.

The interoperability of XJAF has recently been increased significantly by follow-
ing the SOA philosophy. In the new system, named SOM, managers have been re-
designed as web services, while still relying on Java EE for implementation. The
SOA-based design enables any external client to use SOM and interact with its
agents. In addition, web service interfaces are now automatically generated for each

84 M. Vidaković et al.

new agent, providing the means for the direct communication with the underlying
agent, even if it moves to another host in a network.

However, the employment of web services is not enough for achieving the full
interoperability. The new agent-oriented programming language named ALAS and
its supporting tools provide an opportunity for agent mobility in, platform-wise,
heterogeneous networks. The execution code of an agent written in ALAS can be
regenerated at runtime, during the migration process, to match the implementation
platform of the new host.

Additionally, the original XJAF has recently been improved with the introduction
of fault-tolerant techniques. New algorithms for creating and maintaining a network
of distributed XJAF instances enable remaining instances to cooperate undisturbed
in unstable environments, e.g. with network nodes failing unexpectedly. In addition,
the introduced robust agent tracking technique can locate a mobile agent even if a
number of intermediary XJAF instances in its path break.

The future work on SOM will be in improving its interoperability and fault-
tolerance even further. As the first step, the KQML messaging system will be re-
placed by FIPA ACL, used by the majority of modern MAS architectures. Efficient
agent replication techniques will help in restoring the execution state of agents in
case of host failures.

The focus of further development will also be on ALAS, in enriching the language
with new programming constructs, improving its performance, and adding support
for the development of BDI-style agents.

Acknowledgements. The work is partially supported by Ministry of Education and Science
of the Republic of Serbia, through project no. OI174023: ”Intelligent techniques and their
integration into wide-spectrum decision support”.

References

1. ABLE homepage, http://www.alphaworks.ibm.com/tech/able
(retrieved on July 22, 2011)

2. Aglets homepage, http://aglets.sourceforge.net
(retrieved on July 22, 2011)

3. Belecheanu, R.A., Munroe, S., Luck, M., Payne, T., Miller, T., McBurney, P.,
Pěchouček, M.: Commercial applications of agents: lessons, experiences and challenges.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2006, pp. 1549–1555. ACM, New York (2006),
doi:http://doi.acm.org/10.1145/1160633.1160932,
http://doi.acm.org/10.1145/1160633.1160932

4. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley and Sons (2007)

5. Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills III, W.N., Diao, Y.: ABLE: a toolkit
for building multiagent autonomic systems. IBM Systems Journal 41(3), 350–371 (2002)

6. Board, J.: JADE web services integration gateway (WSIG) guide (2008),
http://jade.tilab.com/doc/tutorials/WSIG_Guide.pdf
(retrieved on July 22, 2011)

http://www.alphaworks.ibm.com/tech/able
http://aglets.sourceforge.net
http://doi.acm.org/10.1145/1160633.1160932
http://jade.tilab.com/doc/tutorials/WSIG_Guide.pdf

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 85

7. Bădică, C., Budimac, Z., Burkhard, H., Ivanović, M.: Software agents: languages, tools,
platforms. Computer Science and Information Systems, ComSIS 8(2), 255–296 (2011)

8. Consortium, T.U.: The Unicode Standard, http://www.unicode.org (retrieved on
July 22, 2011)

9. Cowan, D., Griss, M., Burg, B.: BlueJADE – a service for managing software agents.
Tech. rep. Hewlett-Packard Company (2002)

10. DIGLIB homepage,
http://www.diglib.uns.ac.rs/frontOffice/index.jsp
(retrieved on July 22, 2011)

11. EJB homepage, http://www.oracle.com/technetwork/java/javaee/
ejb/index.html (retrieved on March 5, 2012)

12. Faci, N., Guessoum, Z., Marin, O.: DimaX: a fault-tolerant multi-agent platform. In:
Proceedings of the 2006 International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems, pp. 13–20 (2006)

13. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the third international conference on Information
and knowledge management, CIKM 1994, pp. 456–463. ACM, New York (1994),
http://doi.acm.org/10.1145/191246.191322,
doi:http://doi.acm.org/10.1145/191246.191322

14. FIPA abstract architecture specification(2002),
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
(retrieved on July 22, 2011)

15. FIPA ACL message structure specification (2002),
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
(retrieved on July 22, 2011)

16. FIPA homepage, http://www.fipa.org/ (retrieved on July 22, 2011)
17. Ganguly, P., Ray, P., Low, G.: Software agent based approach towards tele-

electrocardiography. In: Proceedings of the 13th IEEE Symposium on Computer-Based
Medical Systems (CBMS 2000), pp. 275–280 (2000)

18. GlassFish open source application server homepage,
http://glassfish.java.net/ (retrieved on July 22, 2011)

19. Guessoum, Z., Briot, J.: From active object to autonomous agents. IEEE Concur-
rency 7(3), 68–78 (1999)

20. Guessoum, Z., Faci, N., Briot, J.P.: Adaptive replication of large-scale multi-agent sys-
tems: towards a fault-tolerant multi-agent platform. In: Proceedings of the Fourth In-
ternational Workshop on Software Engineering For Large-Scale Multi-Agent Systems,
pp. 1–6 (2005)

21. Haase, K.: Java message system tutorial,
http://docs.oracle.com/javaee/1.3/jms/tutorial/1 3 1-fcs/
doc/jms tutorialTOC.html

22. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service (JMS)
specification (2002),
http://www.oracle.com/technetwork/java/jms/index.html
(retrieved on July 22, 2011)

23. IEEE FIPA Agents and Web Services Interoperability Working Group (AWSI-WG)
homepage, http://www.fipa.org/subgroups/AWSI-WG.html
(retrieved on July 22, 2011)

24. JADE homepage, http://jade.tilab.com/ (retrieved on July 22, 2011)

http://www.unicode.org
http://www.diglib.uns.ac.rs/frontOffice/index.jsp
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://doi.acm.org/10.1145/191246.191322
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://www.fipa.org/
http://glassfish.java.net/
http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html
http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.fipa.org/subgroups/AWSI-WG.html
http://jade.tilab.com/

86 M. Vidaković et al.

25. Java PKI programmer’s guide, http://docs.oracle.com/javase/6/docs/
technotes/guides/security/certpath/CertPathProgGuide.html
(retrieved on March 5, 2012)

26. JAXB homepage, http://jaxb.java.net/ (retrieved on March 5, 2012)
27. JAX-WS homepage, http://jax-ws.java.net/ (retrieved on March 5, 2012)
28. JNDI homepage,

http://www.oracle.com/technetwork/java/jndi/index.html
(retrieved on July 22, 2011)

29. Karjoth, G., Lange, D.B., Oshima, M.: A security model for aglets. IEEE Internet Com-
puting 1(4) (1997)

30. Marin, O., Sens, P., Briot, J., Guessoum, Z.: Towards adaptive fault-tolerance for dis-
tributed multi-agents systems. In: Proceedings of the Fourth European Research Seminar
on Advances in Distributed Systems, pp. 195–201 (2001)

31. Meyer, M.: The features and facets of the Agent Building and Learning Environ-
ment, ABLE (2004), http://www.ibm.com/developerworks/autonomic/
library/ac-able1/ (retrieved on July 22, 2011)

32. Mitrović, D., Budimac., Z., Ivanović, M., Vidaković, M.: Improving fault-tolerance of
distributed multi-agent systems with mobile network-management agents. In: Proceed-
ings of the International Multiconference on Computer Science and Information Tech-
nology, vol. 5, pp. 217–222 (2010)

33. Mitrović, D., Budimac, Z., Ivanović, M., Vidaković, M.: Agent-based approaches to
managing fault-tolerant networks of distributed multi-agent systems. Multiagent and
Grid Systems 7(6), 203–218 (2011)

34. Mitrović, D., Ivanović, M., Vidaković, M.: Introducing ALAS: a novel agent-oriented
programming language. In: Simos, T.E. (ed.) Proceedings of Symposium on Computer
Languages, Implementations, and Tools (SCLIT 2011) held within International Confer-
ence on Numerical Analysis and Applied Mathematics ICNAAM 2011. AIP Conference
Proceedings, vol. 1389, pp. 861–864 (2011)

35. Moreau, L.: Distributed directory service and message router for mobile agents. Science
of Computer Programming 39(2–3), 249–272 (2001)

36. NDLTD homepage, http://www.ndltd.org (retrieved on July 22, 2011)
37. OMG OCL specification page, http://www.omg.org/technology/

documents/modeling spec catalog.htm#OCL (retrieved on July 22, 2011)
38. Open Archives Initiative Tools,

http://www.openarchives.org/pmh/tools/tools.php
(retrieved on July 22, 2011)

39. Ort, E., Mehta, B.: Java Architecture for XML Binding, JAXB (2003),
http://www.oracle.com/technetwork/articles/javase/
index-140168.html (retrieved on July 22, 2011)

40. Pes̈ović, D., Vidaković, M., Ivanović, M., Budimac, Z., Vidaković, J.: Usage of agents
in document management. Computer Science and Information Systems, ComSIS 8(1),
193–210 (2011)

41. SPADE homepage, http://code.google.com/p/spade2/
(retrieved on July 22, 2011)

42. Surla, D., Konjović, Z.: Distributed library information system BISIS. Group for Infor-
mation Technologies, Novi Sad (2004) ISBN: 96-7444-006-1

43. Tai, H., Kosaka, K.: The Aglets project. Communications of the ACM 42(3), 100–101
(1999)

http://docs.oracle.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html
http://jaxb.java.net/
http://jax-ws.java.net/
http://www.oracle.com/technetwork/java/jndi/index.html
http://www.ibm.com/developerworks/autonomic/library/ac-able1/
http://www.ibm.com/developerworks/autonomic/library/ac-able1/
http://www.ndltd.org
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.openarchives.org/pmh/tools/tools.php
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://code.google.com/p/spade2/

3 Extensible Java EE-Based Agent Framework – Past, Present, Future 87

44. Tapia, D.I., Bajo, J., Corchado, J.M.: Distributing Functionalities in a SOA-Based Multi-
agent Architecture. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th In-
ternational Conference on Practical Applications of Agents and Multi-Agent Systems
(PAAMS 2009). AISC, vol. 55, pp. 20–29. Springer, Heidelberg (2009)

45. Tapia, D.I., Rodrı́guez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-
agent architecture. In: Corchado, J.M., Rodrı́guez, S., Llinas, J., Molina, J. (eds.) Inter-
national Symposium on Distributed Computing and Artificial Intelligence (DCAI 2008).
AISC, vol. 50, pp. 99–107. Springer, Heidelberg (2009)

46. The Open Archives Initiative Protocol for Metadata Harvesting,
http://www.openarchives.org/OAI/openarchivesprotocol.html
(retrieved on July 22, 2011)

47. Vidaković, M.: Extensible java based agent framework. Ph.D. thesis, Faculty of Techni-
cal Sciences, University of Novi Sad, Serbia (2003)

48. Vidaković, M., Milosavljević, B., Konjović, Z., Sladić, G.: EXtensible Java EE-based
agent framework and its application on distributed library catalogues. Computer Science
and Information Systems, ComSIS 6(2), 1–16 (2009)

49. Vidaković, M., Sladić, G., Konjović, Z.: Security management in J2EE based intelli-
gent agent framework. In: Proceedings of the 7th IASTED International Conference on
Software Engineering and Applications (SEA 2003), pp. 128–133 (2003)

50. Voyager homepage,
http://www.recursionsw.com/Products/voyager.html
(retrieved on July 22, 2011)

51. (W3C), W.W.W.C.: XML Schema, http://www.w3.org/XML/Schema
(retrieved on July 22, 2011)

Authors’ Bios

PhD Milan Vidaković. Since 2009 holds the associate professor position at Fac-
ulty of Technical Sciences, Novi Sad, Serbia. He received his PhD degree (2003) in
Computer Science from the University of Novi Sad, Faculty of Technical Sciences.
Since 1998 he has been with the Faculty of Technical Sciences in Novi Sad. Mr.
Vidaković participated in several science projects. He published more than 60 sci-
entific and professional papers. His main research interests include web and internet
programming, distributed computing, software agents, and language international-
ization and localization.

PhD Mirjana Ivanović. Since 2002 holds the position of full professor at Faculty
of Sciences, University of Novi Sad, Serbia. She is the head of Chair of Computer
Science and a member of University Council for informatics. Author or co-author
is, of 13 textbooks and of more than 230 research papers on multi-agent systems,
e-learning and web-based learning, software engineering education, intelligent tech-
niques (CBR, data and web mining), most of which are published in international
journals and international conferences. She is/was a member of Program Commit-
tees of more than 80 international Conferences and is Editor-in-Chief of Computer
Science and Information Systems Journal.

MSc Dejan Mitrović. Since 2008 holds the position of teaching and research assis-
tant at Faculty of Sciences, University of Novi Sad, Serbia. He graduated in 2006
(informatics), and received master’s degree (computer science) in 2008, enrolling

http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.recursionsw.com/Products/voyager.html
http://www.w3.org/XML/Schema

88 M. Vidaković et al.

the PhD studies afterwards. His is an author or co-author of 6 research papers on
software agents and multi-agent systems. He is a member of several national and
bilateral research projects.

PhD Zoran Budimac. Since 2004 holds the position of full professor at Faculty
of Sciences, University of Novi Sad, Serbia. Currently, he is the head of Comput-
ing laboratory. His fields of research interests involve: Educational Technologies,
Agents and WFMS, Case-Based Reasoning, Programming Languages. He was the
principal investigator of more than 20 projects. He is an author of 13 textbooks and
more than 220 research papers, most of which are published in international journals
and international conferences. He is/was a member of Program Committees of more
than 60 international Conferences, and a member of Editorial Board of Computer
Science and Information Systems Journal.

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 89–106.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 4
Agent-Based XDSL Monitoring
and Optimization

Giovanni Caire*

Abstract. This chapter focuses on a large agent-based system developed and suc-
cessfully deployed by Telecom Italia in the field of Fixed Network monitoring and
optimization. Thanks to its natively distributed agent-based architecture, this sys-
tem, called Wants-Assurance, continuously monitors about 3.000.000 of xDSL
lines in real time. Wants-Assurance is developed on top of WADE (Workflows
and Agents Development Environment) a domain independent software platform
that allows creating distributed applications leveraging the agent paradigm in con-
junction with the workflow metaphor. The chapter is organized as follows: section
1 presents WADE describing its architecture and main features. Section 2 gives an
overview of the xDSL network domain highlighting the main phenomena that
affect its quality. Section 3 focuses on the Wants-Assurance system, describes its
internal architecture and shows how it exploits WADE features to face the chal-
lenges set by the application domain.

1 WADE

WADE (Workflows and Agents Development Environment) [1] is a domain inde-
pendent software platform built on top of JADE [2], a popular open source mid-
dleware conceived to facilitate the development of distributed applications based
on the agent-oriented paradigm.

As depicted in Figure 1, JADE provides a distributed runtime environment, the
agent and behaviour (a task performed by an agent) abstractions, peer to peer
communication between agents and basic agent lifecycle management and discov-
ery mechanisms. WADE adds to JADE the support for the execution of tasks
defined according to the workflow metaphor and a number of mechanisms and

Giovanni Caire
Telecom Italia S.p.A.
Via Reiss Romoli 274 – 10148 Turin
Italy
e-mail: giovanni.caire@telecomitalia.it

90 G. Caire

components that help managing the complexity of the distribution both in terms
of administration and fault management.

Thanks to the combination of distributed agents and workflows, WADE is par-
ticularly suited to develop applications that require a high degree of scalability
and/or imply the execution of possibly long and articulated tasks.

In principle WADE supports “notepad-programming” in the sense that there is
no hidden mechanism that developers can’t control. However, especially consider-
ing that one of the main advantages of the workflow approach is the possibility of
representing processes in a friendly graphical form, WADE comes with a devel-
opment environment called WOLF [3] that facilitates the creation of WADE-
based application. WOLF is an Eclipse [4] plug-in and, as a consequence, allows
WADE developers to exploit the full power of the Eclipse IDE plus additional
WADE-specific features.

JADE

WADE
Eclipse

WOLF

- Distributed runtime
- Agent and behaviour
- Communication
- Discovery

- Workflow development
- Administration and fault
management

Application
- Application specific
features

Fig. 1 The WADE platform

1.1 Distribution

WADE inherits from JADE a distributed runtime composed of several “Contain-
ers” that can run on different hosts and each one can contain a number of agents
[5]. Agents are actually the components that make up a JADE based application as
well as a WADE based application. Each type of agent corresponds to a class that
inherits from the jade.core.Agent class of the JADE library and many in-
stances of a type of agent can be active in the system.

Containers are the abstraction by means of which the agents that compose an
application can be distributed across several hosts. Of course the application can
be designed as if all its components (agents) were running locally. Agent distribu-
tion across containers and hosts can be defined at deployment time according to
scalability requirements.

4 Agent-Based XDSL Monitoring and Optimization 91

Even if this is not strictly mandatory, most of the time a container corresponds
to a JVM. The set of active containers is called a Platform. As depicted in Figure
2 a special container exists in the platform called “Main Container”. The Main
Container must be the first one to start and all other containers (typically called
peripheral containers) register to it at bootstrap time. Furthermore the Main Con-
tainer holds two special agents.

The AMS (Agent Management System) that represents the authority in the
platform, i.e. it is the only agent that can activate platform management actions
such as creating/killing other agents, killing containers and shutting down the plat-
form. Normal agents wishing to perform such actions must request them to the
AMS.

The DF (Directory Facilitator) that implements the yellow pages service by
means of which agents can advertise their services and find other agents offering
services they need.

AMS DF

A1

A2 A3 A4

Container 1 Container 2

Main container

Is registered
with

Platform

Is registered
with

Network

Fig. 2 JADE distributed architecture

1.1.1 The Communication Model

All agents in the system interact by means of an asynchronous message passing
mechanism. More in details each agent has a sort of mailbox (the agent message
queue) where the JADE runtime posts messages sent by other agents. Whenever a
message is posted in the message queue the receiving agent is notified. If and
when the agent actually picks up the message from the message queue to process
it is completely up to the programmer.

92 G. Caire

Distributed JADE runtime

A1 A2

Prepare the
message to A2

Get the message
from the message
queue and process it

Send the message Post the message in
A2’s message queue

Fig. 3 The JADE asynchronous message passing paradigm

Messages exchanged by JADE agents have a format specified by the ACL lan-

guage defined by the FIPA [6] international standard for agent interoperability.
This format comprises a number of fields and in particular:

• The sender of the message
• The list of receivers
• The communicative intention (also called “performative”) indicating what

the sender intends to achieve by sending the message. The performative can
be REQUEST, if the sender wants the receiver to perform an action,
INFORM, if the sender wants the receiver to be aware a fact, QUERY_IF, if
the sender wants to know whether or not a given condition holds, CFP (call
for proposal), PROPOSE, ACCEPT_PROPOSAL, REJECT_PROPOSAL, if
the sender and receiver are engaged in a negotiation, and more.

• The content i.e. the actual information included in the message (i.e. the ac-
tion to be performed in a REQUEST message, the fact that the sender wants
to disclose in an INFORM message …).

• The content language i.e. the syntax used to express the content (both the
sender and the receiver must be able to encode/parse expressions compliant
to this syntax for the communication to be effective).

• The ontology i.e. the vocabulary of the symbols used in the content and their
meaning (both the sender and the receiver must ascribe the same meaning to
symbols for the communication to be effective).

• Some fields used to control several concurrent conversations and to specify
timeouts for receiving a reply such as conversation-id, reply-with, in-reply-
to, reply-by.

1.1.2 Administration Features

Distribution is animportant characteristic, especially for applications that are ex-
pected to support heavy loads, since a distributed application can be deployed on
highly scalable hardware architectures such as blades. It is clear however that

4 Agent-Based XDSL Monitoring and Optimization 93

administering a distributed application is more complex than administering a mo-
nolithic application unless proper tools are made available. Furthermore the prob-
ability that a host crashes increases proportionally with the number of hosts the
application is distributed on and proper recovery mechanisms are necessary to en-
sure the application can survive. Clustering systems are often used for those pur-
poses, but they are typically quite expensive and difficult to configure.

WADE faces these problems by providing a number of mechanisms that help
the administrator in

• Installing the application
• Configuring it (tuning parameters).
• Activating/deactivating the application spreading components (i.e. con-

tainers and agents) across available hosts according to specific needs.
• Monitoring runtime events and critical conditions such as disk and mem-

ory consumption.
• Deploying new/modified system logics at runtime without system down.
• Automatically recovering from host, container and agent faults.

For instance it is possible to specify which agents to start, where (i.e. on which
containers and on which hosts) to deploy them and which parameters to pass to
them by means of a simple xml file as exemplified in the snippet below. At this
point it is possible to activate the application according to the defined configura-
tion file from the WADE Management Console.

<platform name="Develop"
description="WA Development configuration file">
 <hosts>
 <host name="localhost">
 <containers>
 <container name="Admin-Container">
 <agents>
 <agent name="nma" type="Network Manager Agent"/>
 <agent name="nh" type="Notification Handler Agent">
 <parameters>
 <parameter key="subnet" value="AWS1"/>
 <parameter key="port" value="21025"/>
 </parameters>
 </agent>
 </agents>
 </container>

 <container name="RP-Container>
 <agents>
 <agent name="rp01" type="Resource Proxy Agent"/>
 <agent name="rp02" type="Resource Proxy Agent"/>
 <agent name="rp03" type="Resource Proxy Agent"/>
 <agent name="rp04" type="Resource Proxy Agent"/>
 <agent name="rp05" type="Resource Proxy Agent"/>
 </agents>
 </container>
 </containers>
 </host>
 </hosts>
</platform>

94 G. Caire

The presented snippet is a simplified version of the configuration file used for the
development installation of the Wants Assurance application that will be presented
in section3. In particular this configuration includes a single host (the local host)
with two containers called Admin-Container and RP-Container respectively. The
former contains two agents: nma of type Network Manager Agent and nh of type
Notification Handler Agent. The latter contains five agents of type Resource
Proxy Agent called rp01, rp02, rp03, rp04 and rp05.

1.2 Workflows

A workflow is aformal definition of a process in terms of activities to be executed,
relations between them, criteria that specify the activation and termination and ad-
ditional information such as the participants, the software tools to be invoked, re-
quired inputs and expected outputs and internal data manipulated during the ex-
ecution [7].

The key aspect of the workflow metaphor is the fact that the execution steps as
well as their sequencing are made explicit. This makes it possible to give a
graphical representation of a process defined as a workflow. Such representation
is clearly extremely more intuitive with respect to a piece of software code and in
general is understandable by domain experts as well as by programmers. Domain
experts can therefore validate system logics directly and not only on documents
that most of the time are not perfectly up to date. In some cases they could even
contribute to the actual development of the system without the need for any pro-
gramming skill.

Another important characteristic is that, being the execution steps explicitly
identified, the workflow engine (i.e. a system able to automatically execute a
process defined as a workflow)can trace them. This makes it possible to create au-
tomatic mechanisms to facilitate system monitoring. Typically a workflow engine
embeds ready-made mechanisms to trace activities and to create reports on them.
Additionally, when processes have to be executed within the scope of a transac-
tion, semi-automatic rollback procedures can be activated in case of unexpected
fault.

Finally, since workflows are fully self-documented, workflow-based develop-
ment releases the development team of the burden of keeping documentation
aligned each time design choices must be revisited to face implementation details
or evolving requirements.

1.2.1 Approach

The WADE approach to support the workflow metaphor has two distinguishing
characteristics.First of all, unlike the majority of Business Process Management
(BPM) tools, it does not provide a single powerful workflow engine. On the con-
trary it provides an ad-hoc type of agent (called Workflow-Engine-Agent) that
embeds a micro-workflow engine. As a consequence, besides normal tasks (JADE
behaviours), each Workflow-Engine agent active in a WADE-based applicationis
able to execute workflows.

4 Agent-Based XDSL Monitoring and Optimization 95

The second important point to highlight is thatthe WADE workflow represen-
tation formalism is based on the Java language. That is, a workflow that can be
executed by WADE Workflow-Engine agents is expressed as a Java class with a
well defined structure. As such WADE workflows can be edited, refactored, de-
bugged and in general managed as all Java classes and can include all pieces of
code (methods, fields of whatever types, inner classes, references to external
classes and so on) needed to implement the process details. In addition, of course,
the execution flow they specify can be presented and modified in a friendly,
graphical way. More in details WOLF (the development environment for WADE
based applications) is an Eclipse plugin and allows developers to work with a
graphical view (suitable to manage the process flow) and a code view (the usual
Eclipse Java editor suitable to define execution details) that are kept in synch.

Therefore the WADE workflow engine embedded into Workflow-Engine
agents is not an interpreter of a workflow description language, but executes com-
piled Java code. This on the one hand makes it extremely performing, but on the
other hand requires the necessary workflow classes to be available when an agent
is requested to execute a workflow. For this reason WADE uses ad hoc Java class
loaders to allow deploying new/modified workflows that become immediately ex-
ecutable without the need to turn the system down.

An important consequence of the described approach is that WADE workflows,
being Java classes,can be extended. That is, it is possible to create new workflows
by extending existing ones and just defining the differences.

Finally it must be noticed that WADE does not impose that all system logics
are defined as workflows. Developers are free to exploit the workflow metaphor to
describe those tasks for which they think it is appropriate and use normal JADE
behaviours (or other purely Java patterns) elsewhere. In certain cases one could
even decide to create a WADE based application that does not use workflows at
all.

1.2.2 Workflow Class Structure

As mentioned a WADE workflow is implemented by a Java class that extends the
WorkflowBehaviourclass of the WADE library. More in details each
workflow class includes the defineActivities() and defineTransi-
tions()methods that specify the activities to be executed and the transitions that
connect them. Furthermore each activity corresponds to a method that is invoked
when the execution flow reaches that activity. Similarly each transition with an as-
sociated condition corresponds to aboolean method that is invoked whenever that
condition must be evaluated.

WADE supports several types of activity that differ for the actual operations
that are executed when the activity is visited. These include

Execution Activities
• Code activities. The operations to be executed in a code activity are specified

directly by the body of the activity method.

96 G. Caire

• Subflow activities. The operationsexecuted in a subflow activity consist in the
invocation of another workflow process. The activity method implements the
logics to launch the subflow and collect the results if any.

• WebService activities. The operations executed in a Web Service activity
consist in invoking a web service.

Synchronization Activities
• WaitEvent activities. When the execution flow reaches a WaitEvent activity,

the workflow suspends until a given event happens.
• WaitWebService activities. When the execution flow reaches a WaitWebSer-

vice activity the workflow suspends until a given operation of a previously
exposed Web Service is invoked.

• SubflowJoin. By default subflows are executed synchronously, i.e. the main
workflow blocks until the subflow completes and then goes on. Alternatively
it is possible to execute a subflow asynchronously, that is the main workflow
proceeds just after launching the subflow. When the execution flow reaches a
Subflow Join activity the workflow blocks until a previously launched asyn-
chronous subflow completes.

All information related to the appearance of the workflow are maintained in an ad-
hoc annotation of the workflow class called @WorkflowLayout.

Figure 4 provides a simple example of how a workflow class may look like.

...
@WorkflowLayout ...
public class SampleWorkflow extends WorkflowBehaviour {
 ...

 private void defineActivities() {
 ...
 }

 private void defineTransitions() {
 ...
 }

 protected void executeStep1(...) throws Exception {
 ...
 }

 protected void executeStep2(...) throws Exception {
 ...
 }

 protected void executeStep3(...) throws Exception {
 ...
 }

 protected void executeStep4(...) throws Exception {
 ...
 }
 ...

 protected boolean checkCondition() {
 ...
 }

 ...
}

Step1

Step2

Step3

Step4

Condition

Fig. 4 Workflow class structure

4 Agent-Based XDSL Monitoring and Optimization 97

2 The xDSL Domain

In this section the xDSL domain is briefly described highlighting the main phe-
nomena that affect the quality of xDSL services. ADSL (Asymmetric Digital Sub-
scriber Line) and all its variants [8] generically identified with the term xDSL, is a
modulation technique that allows transporting data services over traditional copper
telephone lines at rates that range from 600 Kbit/s up to 20 Mbit/s. The xDSL
segment is therefore the access part (i.e. the part that connects user homes with the
closest operator Exchange) of the broadband data network of a telecom operator
such as Telecom Italia.

As depicted in Figure 5, when reaching the Exchange, telephone lines are split
in two cables. The first one is connected to the traditional telephone network. The
second one is plugged in a port of a network element called DSLAM. A DSLAM
is basically a multiplexer that receives many flows from user lines and mixes them
into a single high speed flow that feeds to the broadband data network. A medium
size DSLAM typically has about 800 user ports i.e. 800 connectors where 800 tel-
ephone lines can be plugged. At the time of writing, Telecom Italia has about
25000 DSLAMs distributed across the Italian territory from 5 different vendors
for a total of about 8.000.000 xDSL lines. The focus in this section is on the new
generation of DSLAMs (called IP DSLAMs) whose deployment started in 2006.
These are about 6000 appliances and host about 3.000.000 lines. All xDSL lines
will progressively be migrated on the new IP DSLAM technology in the next few
years.

TELECOM OPERATOR EXCHANGE USER HOME

Phone

xDSL
modem

Traditional
Telephon Network

Broadband
Data

Network

Phone

xDSL
modem

DSLAM

copper telephon line

copper telephon line

XDSL SEGMENT

splitter

splitter

splitter

splitter

Fig. 5. The xDSL Domain

98 G. Caire

2.1 xDSL Connectivity

Each port of a DSLAM is equipped with an internal xDSL modem similar to that
included in the device at user home. In general an xDSL modem periodically tries
to negotiate with its remote peer a suitable transmission rate. Such rate depends on
several factors related to both commercial and technical aspects. Commercial as-
pects (i.e. the contract subscribed by the user) typically define a maximum and a
minimum transmission rate. Technical aspects (mainly the signal/noise ratio on
the line) determine the actual transmission rate within the range defined by the
commercial contract. If the noise is too high to set-up the connection at a rate that
is at least the minimum one specified by the commercial contract, the negotiation
phase fails. In such case the two modems sleep for a while (typically 20 seconds)
and then try negotiating again. When the negotiation phase succeeds the xDSL
connectivity becomes UP and the two modems start transmitting at the negotiated
rate.

If the user turns off his modem, the DSLAM detects that because no signal is
received anymore. In that case the modem in the DSLAM port stops negotiating
until the user turn his modem on again.

Finally, by means of a proper management system, a technician can turn the
modem in the DSLAM port down. Using the telecom jargon the line is said to be
locked. This is typically done when a user withdraws from his contract to be sure
that the line will not be used anymore.

Considering the above description xDSL connectivity can be classified into 4
main states:

• WORKING: The two modems are successfully transmitting at a given rate
• NOT_WORKING: The two modems are both on, but,though continuously

trying, cannot set-up the xDSL connectivity due to bad line conditions.
• OFF: The modem at user home is off
• LOCK: The DSLAM port has been turned off by a technician.

2.2 Line Quality Management

When the xDSL connectivity is up and the two modems at user home and in the
DSLAM port are successfully transmitting data at a given rate, two main problems
may affect the line quality.

• Transmission errors. If the noise on the line increases (this may be due to
many factors such as interference with other lines) some bits can be erro-
neously decoded at the receiving side. These situations are detected by
means of CRC checks and the effect is that the packets including wrongly
received bits are discarded.

• Connectivity leaks. As long as the noise increases more packets are dis-
carded. When the number of discarded packets exceeds a given threshold
the xDSL connectivity is cut down and the two modems start negotiating a
new (lower) rate.

4 Agent-Based XDSL Monitoring and Optimization 99

Transmission errors typically have impacts only on realtime services such as IPTV
or VoIP. Connectivity leaks on the other hand may severely affect also non-
realtime data services such as Internet navigation. In some cases, if the leak is suf-
ficiently long, it is even possible that the computer, set top box and other devices
at user home may receive different IP addresses after a connectivity leak.

Many parameters can be adjusted to minimize transmission errors and connec-
tivity leaks according to the line characteristics (line length, cable conditions,
noise, services subscribed by the user). Furthermore, considering that line charac-
teristics change over time (e.g. because cable conditions degrades or because an-
other user owning a line close to the first one subscribes to a service that causes
interference) such parameters should be periodically re-tuned to keep the quality
as high as possible. This practice is known as Dynamic Line Management and,
considering that a large telecom operator such as Telecom Italia has millions of
xDSL lines, proper automatic mechanisms must be put in place to support it.

3 Agent Based xDSL Monitoring and Management

In this section we focus on Wants Assurance, a large agent-based system recently
deployed by Telecom Italia to monitor and dynamically manage all xDSL lines
connected to IP DSLAMs. As mentioned at the time of writing the number of
these lines is about 3.000.000, but, considering the migration process towards IP
DSLAM technology, it will progressively increase up to 8.000.000 and more.

Wants Assurance is fully based on WADE and exploits both its distributed
agent oriented nature (inherited from JADE) to achieve scalability and the support
for workflows to implement dynamic line management processes that, as will be
described later, can be quite long and articulated. The very name Wants derives
from Workflows and AgeNTS. The term Assurance on the other hand indicates
the process that the system supports. All operations and procedures in the network
management domain in facts, are typically classified into three main processes [9]:

Fullfilment– Focusing on setting up services subscribed by customers. This in-
cludes inserting new appliances in the network, configuring network nodes to set
up end to end connectivity, delivering and installing equipment at customer prem-
ises and so on.
Assurance – Focusing on ensuring that a previously set up service keeps on work-
ing correctly. This includes fault management, troubleshooting, performance
monitoring and so on
Accounting – Focusing on tracking service usage to support billing.

When Wants Assurance was initially conceived in 2008 another mission critical
WADE based system had just been successfully deployed. That system, called
simply Wants, was (and continues to be) responsible for all configurations on
network elements that are necessary to activate broadband data services. Consider-
ing the success of Wants in terms of performances, scalability and robustness, it
was decided to apply the same combination of agents and workflows to the assur-
ance process too. This is where the name Wants Assurance comes from.

100 G. Caire

3.1 Event Based xDSL Monitoring

Traditional monitoring systems such as [10] adopt a polling based approach. That
is they periodically interrogate the DSLAMs to read the current working condi-
tions (status of the connectivity, current bitrate, detected noise level, transmission
errors in the last few hours etc) of all lines one by one. Considering that there are
millions of lines, this approach is not particularly efficient. If the polling period is
too long it is very easy to miss errors, connectivity leaks and other quality related
problems. If it is too short the risk is to burden the DSLAMs with unnecessary
management load and the network with unnecessary traffic. In facts in the great
majority of the cases the DSLAM will reply that the line is working correctly or is
even off.

Unlike traditional monitoring systems, Wants Assurance adopts an event-driven
approach. As depicted in Figure 6 it reacts to notifications issued by the DSLAMs
and only in that cases, if needed, interrogates the network elements to retrieve fur-
ther information by means of which it can detect how exactly the line conditions
have changed. If no notification referring to a given line is received Wants Assur-
ance assumes the conditions on that line remained the same. As a consequence
Wants Assurance is able to continuously monitor in real time all xDSL lines and
store significant quality problems in a database as long as they occur. This ap-
proach brings two main benefits:

a) When a Telecom Italia technician works on a trouble ticket he is aware of
the conditions of the xDSL line both at present and in the past. This is ex-
tremely important to properly identify and manage intermittent problems
that are very frequent in the xDSL domain.

b) Problems on xDSL lines can be detected even in absence of trouble tickets
and therefore it is possible to proactively address them before customers
complain.

 xDSL
modem

DSLAM

Notification

WANTS ASSURANCE

Additional
information

retrieval
operations

Line quality
history DB

Fig. 6 Wants Assurance monitoring approach

4 Agent-Based XDSL Monitoring and Optimization 101

3.1.1 xDSL Connectivity Detection Algorithm

In compliance with the ADSL standard, all DSLAMs issue notifications whenever
the operational state of a port changes. When a notification indicating that the state
of a port became UP is received, there is no doubt that the xDSL connectivity on
the line plugged in that port is WORKING (according to the classification pre-
sented in 2.1). Wants Assurance therefore reacts to such notifications simply read-
ing from the DSLAM the bitrate negotiated by the modems in the DSLAM port
and at user home. As previously mentioned that bitrate will remain the same until
the connectivity is dropped. On the contrary, when a notification indicating that
the state of a port became DOWN is received, it is not possible to discriminate
whether the xDSL connectivity is OFF, LOCK or NOT_WORKING. In fact the
port operational states becomes DOWN both when the user turns off the modem,
when a technician locks the line and when actual problems prevent the modems
from setting-up the connectivity. Distinguishing between these conditions is of
course very important since, while OFF and LOCK are normal situations,
NOT_WORKING indicates that there are problems that must be solved. As a con-
sequence Wants Assurance reacts to port-state-DOWN notifications by retrieving
additional information from the DSLAM to complete the diagnosis.

3.2 Wants Assurance Internal Architecture

Considering that there are about 3 millions of lines potentially growing up to 8
millions and more, and taking into account that whenever a user turns on or off his
modem a port-state (UP or DOWN) notification is issued, it’s easy to understand
that Wants Assurance must be able to deal with a very large amount of notifica-
tions. In particular up to now Wants Assurance manages more than 15 millions of
notifications per day that means about 200 notifications per second and in the next
few years it is expected to receive up to 500 notifications per second.

Scalability is therefore one of the most important issues that Wants Assurance
has to face and this is the main reason why a natively distributed agent-based ar-
chitecture was adopted. As depicted in Figure 75 main types of agent make up the
Wants Assurance system.

Basically all types of DSLAM from all vendors (as the majority of network
elements) support the SNMP management protocol [11]. This protocol defines
three main primitives.

• GET – The operation by means of which a management system such as
Wants Assurance can retrieve information from the network element.

• SET – The operation by means of whicha management system can specify
configuration options to the network element and trigger activities.

• TRAP – The primitive used by network elements to notify events to manage-
ment systems.

GET and SET follow a request-response paradigm. TRAPs on the other hand are
one shot SNMP packets and do not have any acknowledgment form.

102 G. Caire

Fig. 7 Wants Assurance internal architecture

Notification Handler Agents (NH) – These are the agents responsible for re-
ceiving all notifications (SNMP TRAPs) from the DSLAMs. In order to facilitate
network elements pre-configurations,the 5000 IP DSLAMs are logically divided
into 5 subsets called sub-networks. All DSLAMs belonging to a given sub-
network are configured to send SNMP TRAPs to a given IP address where a Noti-
fication Handler agent is ready to receive them.

Resource Proxy Agents (RP) – These are the agents in charge of actually
processing notifications and diagnosing xDSL connectivity status variations and
transmission errors. At present Wants Assurance is configured with a pool of 200
Resource Proxy agents. At system startup each Notification Handler assigns the
DSLAMs belonging to its sub-network to available Resource Proxy agents distri-
buting them according to a round robin policy. After the initial assignment phase a
Notification Handler agent will forward all notifications received from a given de-
vice to the Resource Proxy agent that device was assigned to. This ensures that
notifications referring to the same line are processed in the right sequence even if
they are very close in time. Furthermore the fact that the assignment relation be-
tween a DSLAM and a Resource Proxy agent is not preconfigured, but is dynami-
cally built at system startup, allows adding new devices or increase the RP pool
size at will without taking care of properly modifying the system configurations.

NH1

DSLAM Subnetwork 1

WANTS ASSURANCE CORE PLATFORM

DB

SNMP TRAP

Subnetwork 2

NH2

RP01 RP02 RP03 RP04 RP05 RP06

SNMP TRAP

JADE ACL
Messages

SNMP
GET

Console

NM DAM

Web Service exposure module

DLM1 DLM2 DLM3

4 Agent-Based XDSL Monitoring and Optimization 103

Device Assignment Manager Agent (DAM) – This is the agent that keeps track
of device-RP assignments. Whenever a component in the system has to act on a
DSLAM it must first retrieve from the Device Assignment Manager agent the Re-
source Proxy agent that owns the target DSLAM and then pass through it.

Network Manager Agent (NM) – This is the agent responsible for implement-
ing all administration actions such as adding a new device in the system.

Dynamic Line Management Agent (DLM) – These are the agents in charge of
the Dynamic Line Management processes that will be described in more details in
section 3.3.

The system architecture is completed by an Oracle Database used to keep invento-
ry information of all DSLAMs monitored by the system and to store all xDSL
connectivity status variations and transmission errors, a Web based Graphical Us-
er Interface and a Web Service exposure module that allows all Wants Assurance
monitoring features to be accessed by authorized external systems.

3.3 Dynamic Line Management

As mentioned in section 2.2, the term Dynamic Line Management indicates the
practice of modifying configuration parameters that determine how the modems in
the DSLAM port and at user home set-up the xDSL connectivity to continuously
optimize the transmission quality. More in details the Dynamic Line Management
process involves the following main steps.

• Trigger: detect quality problems on a line
• Measure: if necessary retrieve additional information about the working con-

dition of the line
• Diagnosis: on the basis of the quality problems and of the retrieved additional

information identify new configuration parameters that can improve the
situation.

• Action: apply the new configuration on the network element.
• Control: compare the quality before and after the action and determine

whether or not the effect was beneficial.

Clearly a system like Wants Assurance that continuously monitors the quality of
all xDSL lines is a strong enabler for the Dynamic Line Management process as it
natively implement both the Trigger and the control steps. As a consequence at the
beginning of 2011 it was decided to enhance Wants Assurance with Dynamic Line
Management features.

Considering that Dynamic Line Management processes require several steps,
can take quite a long time (for instance the Measure step often implies activating a
campaign that takes an entire day; similarly the Control step lasts at least 3 days to
be sure that the new configuration did not introduce bad side effects) and need to
be tracked (for instance to produce reports about general quality improvement of
the network), the obvious choice was to implement them exploiting the WADE
workflow support. A pool of 20 DLM agents was therefore added to the system.
Unlike other Wants Assurance agents, DLM agents extend the WorkflowEngi-
neAgent class of the WADE library and are therefore able to execute workflows.

104 G. Caire

Figure 8is a snapshot taken from Wolf (the workflow graphical editor of
WADE) and represents the main DLM workflow process that is activated when
Wants Assurance detects that the quality of a line decreases below a given thre-
shold for at least two days. The first two steps implement process initialization op-
erations and preliminary checks. In particular the customer identifier (typically the
telephone number) and the subscribed commercial service are retrieved from the
inventory and, in case another DLM process is already active on the same line the
current one is immediately aborted to avoid conflicts and duplications. In step 3
the current line configurations are read from the DSLAM and in step 4 proper in-
dicators about the current quality of the line are computed and stored. These indi-
cators will be used both in the successive diagnosis step and, at the end of the
process, to evaluate the overall quality variation. Step 5 (EstimateLine) is the core
of the process and implements the diagnosis phase. More in details it estimates, by
means of sophisticated algorithms whose details are out of the scope of this chap-
ter, the configurations that can optimize the quality of the line (maximize bitrate
and minimize transmission errors and connectivity leaks). If an optimal line confi-
guration is determined, the following step interacts with the Activation System to
apply that configuration in the network element. The final step monitors the quali-
ty of the line in the successive days, compares it with the quality indicators stored
in step 4 and produces a report of the actual quality variation. It should be noticed
that this step (as well as the EstimateLine one) is implemented itself as a
workflow.

Fig. 8 Main DLM workflow process

4 Agent-Based XDSL Monitoring and Optimization 105

4 Conclusions

The Wants Assurance system described in this section is actually the third success
case of agent-technology exploitation in Telecom Italia. Other two mission critical
systems built on top of WADE are in facts already in use since some years [12].
The first one called “Network Neutral Element Manager” implements a mediation layer be-
tween network elements and OSS systems. The second one, known as “Wizard”, provides
step-by-step guidance to technicians performing maintenance operations in the fields. In all
cases WADE has been used as development framework due to its characteristics
in terms of

• scalability – agent oriented systems are by their nature distributed and, as
such, provide high degree of scalability

• flexibility – the workflow metaphor allows deploying new or modified
business logics on the fly

• maintainability – though distributed, WADE-based systems are quite
easy to configure, administer, monitor and troubleshoot in case of unex-
pected problems.

It should be noticed that agent technology provides additional important features
such as reasoning, planning and more in general “intelligence” that allow an
agent-based system to deal well enough with unforeseen situations. Such features
were not used in the three systems developed and deployed by Telecom Italia
though.

Up to now this is actually the main lesson learned. Typical characteristics of
agent technology start showing their benefits in extremely complex situations
where traditional techniques can hardly be applied. However, at least in the Net-
work Management domain, the Industry still focuses on systems that can be fully
controlled, whose behavior can be predicted with no uncertainty. Systems that are
guaranteed to work properly h24 and to scale well as long as the load increases.

Though been completely agent-oriented, WADE has been designed to take
these issues into account first. Therefore it helps decreasing the development ef-
fort also in fully known and deterministic contexts and even in prototyping
activities.

In the next few years, with the introduction of new broadband technologies
such as LTE (Long Term Evolution), the network complexity is expected to sensi-
bly grow. If this trend may lead to situations where agent intelligence can actually
make the difference, it will be possible to make Telecom Italia WADE-based
evolve to fully exploit the real agent oriented nature of WADE.

References

[1] WADE – Workflow and Agents Development Environment,
http://jade.tilab.com/wade

[2] JADE – Java Agents Development framework, http://jade.tilab.com

106 G. Caire

[3] Caire, G., Porta, M., Quarantotto, E., Sacchi, G.: Wolf – an Eclipse Plug-in for
WADE,
http://jade.tilab.com/wade/papers/Wolf_ACEC_2008.pdf

[4] Eclipse, http://www.eclipse.org
[5] Bellifemine, F., Caire, G., Greenwood, D.: “Developing Multi Agent Systems with

JADE” – Wiley Series,
http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0470057475.html

[6] FIPA – Foundation for Intelligent Physical Agents, http://www.fipa.org
[7] van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods and Systems,

http://www.hoepli.it/libro/workflow-management/
9780262720465.asp

[8] ADSL2 and ADSL2plus – The new ADSL standards, http://www.broadband-
forum.org/marketing/download/mktgdocs/ADSL2_wp.pdf

[9] TMF eTOM – Enhanced Telecom Operations Map,
http://www.tmforum.org/BusinessProcessFramework/1647/
home.html

[10] Motive Network Analyzer Copper – Alcatel Lucent http://www.alcatel-lu-
cent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0
Y_QjzKLd4w3dnTRL8h2VAQADYR9IA!!?LMSG_CABINET=Solution_Pro
duct_Catalog&LMSG_CONTENT_FILE=Products/Product_Detail_00
0387.xml&s_cid=smm_tmc0229_bl

[11] SNMP – Simple Network Management Protocol,
http://www.pulsewan.com/data101/pdfs/snmp.pdf

[12] Banzi, M., Caire, G., Gotta, D.: WADE: A software platform to develop mission criti-
cal applications exploiting Agents and Workflows. In: AAMAS 2008 Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems: Industrial Track (2008)

Chapter 5
The Jadex Project: Simulation

Lars Braubach and Alexander Pokahr

Abstract. Simulation is on the one hand an important application area
for multi-agent systems, but on the other hand also a useful tool for build-
ing agent applications. This chapter investigates constructs and techniques
that foster both usages of simulation in the context of agent technology. The
vision for integrating simulation support consists in establishing simulation
transparency, i.e. it should be ensured that applications can be built to a
large extent without simulation specific parts. First, approaches for dealing
with time in simulated and non-simulated agent execution are discussed. Af-
terwards the role of virtual environments in agent applications is tackled.
Both technical topics are illustrated using concrete applications that further
represent the different usages of simulation.

1 Introduction

The combination of agents and simulation forms a mutual benefit. Multi-
agent-based simulation (MABS) is an approach, that uses the concept of an
agent for supporting social simulation. Agents are well suited for e.g. rep-
resenting realistic human behavior in simulation models, such as pedestrian
traffic in a to be constructed train station. Therefore, agents are an accepted
technology in the area of simulation. Viewed from the opposite direction, sim-
ulation is also a useful technology for supporting the construction of agent
applications. In many agent applications, the interaction between the agents
is considered to be an important part of the computational algorithm, e.g. in
negotiations or decentralized coordination. Building such agent applications
often requires fine tuning of parameters and making sure that the applica-
tion produces suitable results, which can both be achieved by simulating the
application behavior for testing and evaluation purposes.

Lars Braubach · Alexander Pokahr
Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
e-mail: {pokahr,braubach}@informatik.uni-hamburg.de

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 107–128.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{pokahr,braubach}@informatik.uni-hamburg.de

108 L. Braubach and A. Pokahr

This is one of two chapters describing practical applications built with the
Jadex agent framework. This chapter describes techniques and constructs of
Jadex, that particularly focus on supporting simulation while establishing
simulation transparency to a large extent. Simulation transparency means
that the functional code of an application must not contain any simulation
specific aspects. In this way an easy transistion between simulations and ap-
plications can be achieved, e.g. code from an upstream simulation can be
directly used to implement an application. It has to be noted that the envi-
ronment and its connection to the application cannot be made transparent
as in many cases a virtual one needs to be replaced by a real one.

Each section starts with a short historical background about why a cer-
tain topic was considered important for Jadex, followed by a more general
motivation about the relevance of the concept itself. A related work section
is presented for each concept, trying to give an overview of the field with
pointers to other relevant works in the area. Afterwards the approach as im-
plemented in Jadex is covered in detail and further illustrated by example
applications that have been built. Each section closes with a short summary.

In this chapter, the following topics are tackled. The simulation of agent
systems for supporting analysis and testing of applications is examined in
Section 2. A useful supplement for simulation, but also a relevant topic in
itself is the concept of virtual environments as described in Section 3. Finally,
in Section 4 a conclusion and critical reflection on the described topics is
given.

2 Simulation Clocks

One important aspect of simulation is how time passes during simulation
runs. E.g. event-driven simulation allows executing scenarios “as fast as pos-
sible”, because computation only happens for the relevant time points. Using
timed execution, simulation helps comprehending system activities and in-
terrelationships from a global perspective and in a timely condensed fashion.
Analysis of system behavior can be done in different ways. On the one hand
hypotheses about the system behavior can be tested using simulation experi-
ments and on the other hand conclusions can be drawn from experimentation
under different setups e.g. comparing alternative strategies. Finally, verifica-
tion of system behavior is related to hypotheses testing but more concerned
with ensuring that the simulation model complies in its behavior to some
system design specification.

Yet, the connection between simulation and application construction is of-
ten not well established. In many cases simulation is considered on its own
as technique for experimentation. If a simulation is part of a real world ap-
plication development project, in many cases simulation is used to analyze
and verify the expected real world system behavior. Hence, the simulation

5 The Jadex Project: Simulation 109

model determines the design and implementation of the real world applica-
tion, which is typically built from scratch, after simulation model validation
has been taken place. This kind of throw away system construction is prob-
lematic not only for resource wastage reasons and the increased effort due
to double development but also with respect to the preservation of validated
system properties. These cannot be easily guaranteed for the newly built
application if some of the model assumptions are implicit, e.g. hidden as
implementation detail.

2.1 Related Work

Corresponding to the two viewpoints, agents for simulation vs. simulation
for agents, solutions can be broadly categorized according to agent-based
simulation toolkits and agent platforms with support for simulations.

The first group includes approaches systems like Repast [2], NetLogo1

and SeSAm [6]. Most of these kinds of systems use a simple time-driven
simulation clock advancement mechanism, which assumes the time passes
in fixed steps. All agents are notified when a new round begins, typically
in a sequential one by one manner, by invoking a behavior method. The
processing of an agent is finished in a round when its behavior method is done.
As communication between agents is handled in an indirect way by using
the environment there are no negotiation based interrelationships between
agents that need to be considered for end of processing determination. The
whole round ends when all agents have finished their executions. In addition,
most simulation frameworks assume a very simple agent architecture so that
simulation scenarios with many simple agents are supported best. The time-
driven clock mode has the advantage of being easy to understand and but
disadvantage of being inefficient when activities of agents are not equally
distributed over time.

Typical representatives in the area of agent platforms with simulation sup-
port are Cybele2, Brahms3 and PlaSMA [12]. PlaSMA is an extension for the
JADE agent platform allowing it to be used as simulation runtime environ-
ment. In order to control the JADE agents PlaSMA uses a conservative time
scheduling that resembles the time service protocol introduced in Section
2.2.1. The protocol is hidden from the user by using a simulation agent base
class, which automatically notifies the clock when the agent’s processing is
done. On the other hand, OpenCybele as well as Brahms employ infrastruc-
ture support based on clocks similar to the approach described in Section
2.2.2.
1 http://ccl.northwestern.edu/netlogo/
2 http://www.i-a-i.com/cybelepro/
3 http://www.agentisolutions.com/

http://ccl.northwestern.edu/netlogo/
http://www.i-a-i.com/cybelepro/
http://www.agentisolutions.com/

110 L. Braubach and A. Pokahr

2.2 Approach

An important aspect of the solution consists in understanding that time ad-
vancement control is the key concept of simulation environments. The time
advancement mechanism determines the temporal way the application is exe-
cuted, e.g. in real time or in an event driven mode. The general idea is to use
a clock abstraction for encapsulating the logic of time advancement separated
from the rest of the infrastructure. The only simulation related activity in
application code, which is valid for real-time applications as well, consists in
issuing wait actions that interrupt processing until the specified time point
has been reached. This allows executing the same application in different
modes just by switching the underlying clock type. In general there are two
different ways for realizing such a clock as a generic reusable component. It
can either be intimate part of underlying runtime infrastructure or it can
be added at the application layer. The first option has the advantage that
the programming model for applications needs not to be touched at all as
the clock interaction can be integrated in the API (application programming
interface). On the other hand, it is challenging because it has to be anchored
at the heart of the runtime platform. In contrast, the second option is non-
invasive with respect to the infrastructure but requires the programmer to
explicitly handle a time protocol for clock interaction in addition to the exist-
ing platform API. In the following a closer look will be taken at both solution
paths, starting with the time service as incarnation of an application layer
solution.

2.2.1 Time Service

The time service concept [1] assumes that a global coordinator is responsible
for time management. Time clients have to contact the coordinator in case
they have finished their activities or want to wait for a specific point in
time. Adapting the notion of synchronous process-oriented simulation, the
participants send to the coordinator a Passivate message to indicate that
they have no scheduled activities, or a Hold(t) message with the time of the
next activity that needs to be scheduled. The coordinator acts in a round
based fashion by waiting for messages of each notified participant. It uses
the messages to update its global list of announced time points. A round is
finished when all participants have sent their decision. The coordinator then
iteratively removes the next entry from this list, advances the clock, and
informs the corresponding participants that the time point is reached. Then
the coordinator will wait until all processes have answered again.

Fig. 1 shows an UML interaction protocol of the time service protocol.
The four different interaction cases are denoted by the characters a to d. The
initialization phase (a) is used by participants to register at the coordinator
using a Register message and will receive an agree message, if they are not
already registered. When a participant terminates it requests a Deregister

5 The Jadex Project: Simulation 111

Fig. 1 Time Service Protocol (from [1])

(d), receiving a refuse if the participant was not registered. The other two
interactions (b and c) may happen repeatedly during simulation runs.

The initial time (Now) is sent to all participants after the simulation has
been started (b). New participants that register while the simulation is run-
ning will immediately receive the Now message with the current simulation
time. While the simulation is running a participant will continuously receive
so called wake-up calls whenever its registered point in time is reached. After
receiving the wakeup the participant is supposed to execute its current activ-
ity and sends back a message afterwards. Either it announces the time point
(t) for its next activity by submitting a Hold(t) request, or it currently has
no activities to be scheduled and therefore submits a Passivate request. If the
participant does not answer in a pre-defined timeout period the simulation
continues with the next event excluding the non-answering candidate.

The participant that has been woken up may interact freely with all avail-
able other participants. Thus, waiting participants can react to messages
received from other participants. In addition, a waiting participant may re-
ceive new information leading him to reconsider its activation time point (c).
It can decide to activate itself at the current point in time by sending a Block
request to the time service. The service removes the original time entry and
acknowledges this by sending an agree message. It has to wait until all active
participants declare that they are finished by sending a Passivate or Hold(t)
request.

112 L. Braubach and A. Pokahr

Fig. 2 Infrastructure components

2.2.2 Infrastructure Clock Support

Infrastructure clock support allows completely hiding the timing mechanism
that is needed to control application execution. For this purpose the clock
has to be coupled with the execution machinery of the infrastructure. The
general setup of such an infrastructure is depicted in Fig. 2. It consists of
three interacting services, namely the execution, simulation and clock service.
These services control the execution of the application by activating agents
at specific time points. Concretely, the clock service manages an ordered
list of time points which have been announced by the agents calling wait
or idle (if they do not wait). Whenever the simulation clock is instructed
by the simulation service to advance the time, it removes the next time
point from the list and calls wakeup on the corresponding agents. The agents
are subsequently executed by the execution service as long as they wish to
perform tasks at the current point in time. The execution service monitors
overall agent execution activities until no agent wants to be executed any
more. If this is the case, it notifies the simulation service about the reached
quiescence. The simulation service acts as connecting link between execution
and clock service. It allows controlling exactly when the clock is advanced
and normally instructs the clock to advance the time whenever it receives
notifications of the execution services. In some situations it can also defer the
clock notification e.g. if the system is running in stepped mode and requires
a human user to trigger the next clock step.

In addition to simulations, Figure 2 also shows how normal applications
are executed. In this case the simulation service does not exist and there is
no connection between the execution and clock service. This works because
normal clocks are active by themselves, i.e. in contrast to simulations time
advances automatically and the clock does not need an external trigger. From

5 The Jadex Project: Simulation 113

the agent’s perspective the execution works in the same way as before by
announcing wait and idle commands so that they can be built agnostic with
respect to the execution mode.

Infrastructure clock support currently is limited to simulations running
on the same platform. In order to support also distributed simulations on
infrastructure level, the clocks of the participating platforms would have to
adhere to a protocol that ensures that a virtual global simulation time is
used. Following a conservative approach, one could employ a master slave
approach, in which the participating clocks first use an election algorithm
to decide about the master role, and afterwards use the master to annouce
timing events in a similar way as in the time service protocol from the last
section. Such a solution is transparent for the agents on the platform as they
need not to be aware of how the clock service derives its current time.

2.3 Applications

In the following two example applications will be presented, for which simu-
lation is a necessary prerequisite. The first, called MedPAge, deals with ap-
pointment scheduling in hospitals and the second, named SodekoVS, tackles
software engineering with self organization.

2.3.1 MedPAge

Within the “MedPAge” hospital logistics project (cf. the other Jadex chap-
ter in this book), an important requirement was the ability to benchmark
different kinds of hospital appointment scheduling algorithms against each
other. This was needed to better understand the quantitative advantages
and problems of the new decentralized, agent-based approaches with respect
to the established mechanism within hospitals. In order to efficiently exe-
cute the MedPAge application many time with varying parameters and un-
derlying scheduling mechanisms simulation techniques are required. Using
event-driven simulation instead of real-time execute allows conducting the
experiments as fast as possible, i.e. computing resources are the only deter-
mining factor for experiment execution time.

The second crucial requirement within MedPAge was the ability to use the
system to perform benchmarks and to run it as application prototype within
a real hospital environment. Typically, this would require a huge effort as
simulation and execution platforms rely on a different set of concepts and it is
not easily possibly to adapt code written for one type of platform to the other.
Furthermore, in most cases agent simulation toolkits focus on large number
of simple agents and do not support negotiation protocols and intentional
agent concepts. Hence, from those MedPAge project requirements a runtime
infrastructure should naturally include general simulation support and allow
programming of simulations and applications with a consistent programming
model for both.

114 L. Braubach and A. Pokahr

The infrastructure clock support described above has been integrated into
the Jadex platform in order to simplify the development of simulation appli-
cations and especially enable the creation of simulations whose code can be
kept for subsequent application development. This capability proved useful
in the context of the MedPAge project. In an earlier project phase the simu-
lation capabilities of Jadex could be exploited to isolate the most promising
appointment scheduling algorithm among several approaches in the hospital
domain. In a later project phase the application was extended in the direc-
tion of an assistance system that concrete helps with deciding which patient
should be called next to a functional unit for treatment. For this purpose
the appointment scheduling mechanism was kept as is and an additional
user interface was added to the system. Using the system clock instead of
a simulation clock the application could directly be tested within its target
environment [14].

The time service approach from Section 2.2.1 was an integral part for
simulation control in the so called Agent.Enterprise [3] and Agent.Hospital
[5] initiatives. They were part of the German priority research programme
SPP 1083 and served as integration approaches for the numerous subpro-
jects within the SPP, including MedPAge. The general idea was to create
a complex enterprise or hospital application scenario, in which the projects
work cooperatively together to fulfill higher level objectives. Concretely, the
Agent.Enterprise scenario is an inter-enterprise multi-level supply-chain sce-
nario, including process planning and SCM scheduling as well as tracking
and tracing of supply chains. Agent.Hospital builds on a model with numer-
ous different healthcare actors and consists of detailed partial models of the
healthcare domain. It enables the examination of modeling methods, con-
figuration problems as well as agent-based negotiation strategies and coor-
dination algorithms. The Agent.Enterprise and Agent.Hospital applications
have been realized as so called multi-multi-agent systems, i.e. a multi-agent
system that is composed of further multi-agent subsystems that bring about
specific functionalities. The role of the time service was to timely coordinate
the simulation within the overall multi-multi-agent system by managing the
execution order of the different subsystems.

2.3.2 SodekoVS

“SodekoVS” [10] is a DFG-funded4 project that aims at making self-
organization techniques usable as part of the normal software engineering
process. In many application areas non-functional requirements like fault
tolerance and adaptability play an important role. Examples include urban
transport systems consisting of many small vehicles, low cost satellites that
are able to perform a mission together as well as monitoring and automatic
reconfiguration of server farms in case of changing customer demands. From
4 Deutsche Forschungsgemeinschaft (German Research Council):
http://www.dfg.de

http://www.dfg.de

5 The Jadex Project: Simulation 115

Fig. 3 SodekoVS development process (from [10])

these examples it becomes apparent that it is a key requirement that single
entities may fail at any point in time, e.g. a hardware error occurs in a server,
and these error must not disturb the overall system functionality. Further-
more, the examples highlight that a completely decentralized infrastructure
is assumed in which a multitude of autonomous entities act and interact to
bring about the system objectives. No superordinated entity exists, which on
the one hand avoid a single point of failure but on the other hand demands
novel software concepts to realized coordination as a function of peers.

Methodology

The SodekoVS project aims at providing a development process as well as a
middleware for constructing applications with self organization features. The
SodekoVS middleware is based on the Jadex agent framework and especially
depends on the integrated simulation support. In Fig. 3 the proposed develop-
ment process is shown. It can be seen that it shares the typical development
phases with traditional processes and adds additional self organization tasks
in each phase. At the heart of the approach distributed control loops are
used to describe the expected macroscopic behavior in terms of role interac-
tions. The control loops describe coordination behavior in terms of system
state variables and causal relationships between them denoting the rates of
change. Starting from the requirements phase the intended system behavior
is elicitated. In the following analysis phase it has to be decided which coordi-
nation metaphor fits best the application needs, examples include pheromone
approaches inspired by ant colonies and waggle dances of bee societies (cf.
[11]). Afterwards a catalogue of ready-to-use self organization mechanisms,
in the spirit of software engineering patterns, can be inspected in the design
phase to find a suitable coordination mechanism. The patterns represent im-
plemented coordination strategies for common use cases and can be directly
integrated into an application. A developer has to configure the mechanism
according to the system variables to be used and their update rates. In the
implementation phase the binding between these variables and the agent
states has to be defined. In this respect it has to be concretized in which
situations agents play specific roles according to the macroscopic model and

116 L. Braubach and A. Pokahr

Fig. 4 SodekoVS middleware (from [10])

how transitions between such roles occur, i.e. it has to be defined how single
agent behavior causes coordination actions. After the system has been imple-
mented its behavior especially with regard to the coordination behavior has
to be tested and validated. For this purpose the system is run in simulation
mode in various different scenarios. Often self-organization mechanisms re-
quire parameter adjustment to function as expected. Using simulation these
tasks become manageable and executable in a comparably short amount of
time (compared to real-time application configuration). In case validation is
completed successfully, the system can be deployed in the target environment
and operates in real time.

Middleware

The architecture blueprint of the SodekoVS middleware is depicted in Fig. 4.
The figure shows a layer model with three layers. At the bottom the execution
infrastructure layer is located. In this layer the agent platforms are placed,
which are responsible for providing fundamental services to the upper layers,
e.g. agent execution and management on possible different network nodes.
The topmost application layer realizes the application functionality by a set
of agents. Between these layers, SodekoVS adds a coordination layer, which
has the task to rather transparently realize the modeled self organization. For
this purpose the concepts of coordination endpoints and coordination media
are introduced. Each coordination endpoint registers itself with a coordina-
tion medium and is this way a network of endpoints is created. A coordination
endpoint is part of an agent that independent of its original behavior and is

5 The Jadex Project: Simulation 117

used for two purposes. On the one hand, the endpoint observes the agent’s
state and forwards relevant changes to its associated coordination medium.
On the other hand, the endpoint receives information updates from the co-
ordination medium and influences the agent behavior if those updates are
relevant to the entity. The coordination medium itself realizes the dynamics
of information processing and distribution by relying on specific decentral-
ized coordination mechanisms. The explicit distinction between endpoints
and media reflects the conceptual separation of local entity adaptations and
coordination based information exchanges.

The SodekoVS middleware has itself been used for the development of
several self-organized simulations and applications. Most notably, the ap-
proach was employed in the logistics domain to optimize parcel routing via
heavy goods vehicles (HGV) between redistribution centers. In this scenario
a market-based negotiation strategy was applied that allowed parcels to bid
for transportation by an HGV with a virtual currency. The HGVs transport
parcels between redistribution centers and try to optimize their own profit
by serving different routes and negotiating prices with goods. More details
about the approach can be found in [7].

2.4 Summary

In this section the usefulness of simulation itself and simulation techniques as
part of application development have been discussed. It has been highlighted
that time advancement is of crucial importance for simulation infrastructures
and that it is possible to factor out time management and provide solutions
that operate independently of the programming model. This leads to a con-
sistent agent programming for simulations and applications using the same
concepts. From the programming perspective one is unaware of the time mode
the application is run with and can use a clock type that fits to the scenario
needs.

Two conceptually different approaches have been introduced for externally
and internally controlling time advancement. The first introduces an infras-
tructure service called time service, which represents a global clock that is
used by the agents to coordinate their execution according to the simula-
tion time. Concretely, the service manages a list of time points announced
by the agents. In case a time point is due the corresponding agent is awak-
ened and starts processing, which may involve communication with arbitrary
other agents that may also start processing. After the activated agent has
finishing processing it needs to notify the time service so that the clock can
advance and the next agent is activated. All agents may decide to change
their registered time point at any time if new information becomes available.

The second approach is based is tightly integrated with the runtime infras-
tructure and uses the interplay of three services for bringing about simulation
in a completely transparent way. The clock service manages again the list of

118 L. Braubach and A. Pokahr

registered time points. In this case the execution service, which monitors the
agent activities, triggers the advance of the clock (indirectly via the simula-
tion service) whenever the agents have finished their processing. In contrast
to the time service solution also the interaction with the clock is completely
hidden. This is achieved by making the agent to clock interaction part of the
normal platform level application programming interface.

It has further been shown that both approaches can be used within differ-
ent context beneficially. The time service allows creating simulations within
heterogeneous and possibly distributed environments, in which no direct con-
trol about the execution infrastructure can be exerted. On the other hand,
simulation clocks allow constructing simulations and applications only within
one platform but with much less effort because the agent programmer does
not have to care about simulations and can build its application as if it were
a normal application.

3 Virtual Environments

Virtual environments have a number of typical and less common use cases.
Obviously, virtual worlds form an integral part of many computer games,
and similar technologies can as well be found in training applications. Also
for the teaching of agent concepts, virtual worlds are often employed, as the
idealized settings simplify the understanding of the complex concepts. But
even for the development of more conventional (e.g. business) applications,
virtual environments can be a helpful tool. During implementation it can be
helpful to execute parts of the later system in a controlled environment. In
this case, the virtual environment would represent external systems or sub-
systems. Explicitly modeling this environment allows observing the behavior
of implemented components in certain situations. This approach can be re-
garded as similar to mocking techniques as found in software testing, where
e.g. special mock objects are built for replacing parts of a real software envi-
ronment during testing. Especially for agent systems, that exhibit pro-active,
autonomous and adaptive behavior, setups based on virtual environments are
helpful for testing and debugging the complete application during the imple-
mentation phase. A virtual representation of the external environment is also
paramount when using simulation as described in Section 2. During applica-
tion development, simulation can fulfill a number of different purposes. On
the one hand, it allows intensive testing of an application prior to putting in
into productive use. On the other hand, one can benchmark different imple-
mentations in the same environment or test implemented system behavior in
changing environments. Finally, one may consider the virtual environment as
part of a deployed application in the sense of augmented reality. For example,
a virtual environment could be used for representing digital pheromones as
part of an ant-like path-finding algorithm for a transport logistics application.

5 The Jadex Project: Simulation 119

3.1 Related Work

In line with the use cases for virtual environments mentioned in the previous
section, at least two different strands of research related to agents and vir-
tual environments can be identified. The first concerns specialized simulation
toolkits that often include simple agent frameworks for easy definition of the
behavior of simulated entities. Typical examples are NetLogo5 and Repast
Simphony6. These toolkits are well-suited for agent-based simulation, e.g.
for teaching or analysis purposes. In this respect, simulation toolkits usually
offer rich facilities for statistical evaluation. Also visualization, e.g. as 2D vir-
tual worlds are a typical strength of these systems. Some simulation toolkits,
such as SeSAm [6], even offer graphical tools for specifying simulation be-
havior making them usable even by non-programmers. On the other hand,
simulation models developed in these systems are not meant to be part of
deployed applications. Thus unlike middleware platforms like JADE, simula-
tion toolkits do not provide a communication infrastructure or interfaces to
external systems.

Another strand of research investigates the explicit modeling of environ-
ments for agent-based applications. E.g. Weyns et al. argue in [13] that an
explicit representation of an environment in agent applications can be useful
as a part of the application itself, e.g. for a coordination layer. The idea is
that a clean separation between agent and environment implementation sim-
plifies the development and leads to better maintainable code. On specific
model for such an explicit environment is the A&A model, which considers
an application to be composed of agents and artifacts [9].

3.2 Approach

The approach chosen for supporting the development of virtual environments
in Jadex was separating the different aspects and allowing a declarative spec-
ification of each of them [4]. The resulting model is depicted in Figure 5. The
space describes the environment itself and is further subdivided into the do-
main, i.e. parts of the environment that are independent from agents, and
the interaction, which establishes a connection between the domain and the
agents that are meant to inhabit the environment. The domain representa-
tion of the environment state is used by two further aspects of EnvSupport.
The observer provides a visual representation of the environment, e.g. as a
2D map, and the evaluation component extracts environment data for statis-
tical analysis. All these aspects are described as part of an application XML
file and are interpreted by the Jadex platform at runtime. In the following
sections, each aspect will be explained in more detail.
5 http://ccl.northwestern.edu/netlogo/
6 http://repast.sourceforge.net/

http://ccl.northwestern.edu/netlogo/
http://repast.sourceforge.net/

120 L. Braubach and A. Pokahr

Fig. 5 EnvSupport structure (from [4])

3.2.1 Domain

The underlying assumption regarding the domain is that the state of an
environment can be described as a set of objects, so called space objects. For
each application, the developer can freely define the available object types in
the environment, where each type defines a set of properties for describing
the object, such as position, size, etc. For static environments it is sufficient
to describe the types and instances of all objects. Dynamic environments
may change without any actions being performed by agents. Therefore the
developer can specify such changes in the environment in two ways. Tasks are
attached to an object and may continuously change the state of this object
(e.g. movement of a car, growth of a plant) until the task is stopped or the
object is destroyed. Processes are applied to the environment as a whole and
may induce changes on all objects as well as destroy some existing objects or
create new ones. A typical use case is the creation of new objects according
to some predefined stochastic distribution (e.g. arrival of cars at a junction,
when the environment should only represent the junction itself).

3.2.2 Interaction

The interaction describes the information flow between the agents and the en-
vironment as represented by the state objects. For making each agent situated
in the environment, an agent usually has an avatar, i.e. a space object that
is owned by the agent. In this constellation, the agent represents the brain
and the avatar space object represents the body of the situated entity. The
interaction is divided into percepts, which are environmental states or changes
observed by the agent’s avatar and forwarded to the agent, and actions, that

5 The Jadex Project: Simulation 121

allow an agent to manipulate the environment state. Percept generators can
be defined that describe how and when percepts are produced, e.g. by as-
signing a vision range to an avatar object and generating a percept whenever
objects enter or leave the vision range according to the avatars current posi-
tion in the environment. To simplify dealing with percepts, percept processors
further describe how a percept enters the internal reasoning process of the
agent. E.g. a ready-to-use BDI percept processor allows mapping percepts
directly to some belief or belief set of an agent and therefore achieves a seam-
less integration of EnvSupport with the BDI architecture. For simple micro
agents typically custom percept processors are defined by the application
developer for triggering appropriate reactive behavior of the agent. Actions
are requested by the agent and performed by the space executor. The space
executor takes care of proper synchronization of agent actions, object tasks
and environment processes. Depending on the scenario, the developer may
choose a round-based or a continuous time space execution. The first model
allows each agent to perform only one action per time step and is especially
useful in conjunction with simulation clocks. The second model resembles are
natural evolvement of time and only settles conflicts, e.g. if two agents try
to pick up the same item at the same time, the executor will make sure that
only one of these actions succeeds and the other one produces a failure.

3.2.3 Observer

The purpose of visualization is usually gaining a better understanding of
the behavior of the application, either to use the application (e.g. a game
or training simulation) or to analyze and debug the application. It largely
depends on the structure and properties of the space objects how an envi-
ronment can be visualized. Typically, space objects are assigned a position
in a two-dimensional area. Therefore, common visualizations for 2D maps
are readily available in EnvSupport (e.g. continuous areas or discrete grids).
In a so called perspective, the developer can assign a visual representation
called drawable to each type of space object. A drawable may consist of an
arbitrary number of drawing primitives (geometric shapes, external images,
text), which can be further configured using properties of the space object
(e.g. using different images according to the age of a plant). Pre- and post-
layers can be added to a perspective to show the image of a map behind other
drawables or to paint a grid on top of the visualization. Multiple perspec-
tives can be defined for each application and each perspective can be used to
create a visual representation of all objects or a selected subset according to
data views defined in the domain. Current developments are directed towards
extending the observer for incorporating also 3D visualizations based on the
JMonkey engine.7

7 http://jmonkeyengine.org/

http://jmonkeyengine.org/

122 L. Braubach and A. Pokahr

3.2.4 Evaluation

The observer allows producing an intuitive and highly accessible way of un-
derstanding and analyzing application behavior. For the numerical analysis
of simulations an evaluation component is provided. It allows keeping track of
any space related information during application execution. Just like the ob-
server, the evaluation component takes as input all space objects or a subset
as defined in a data view and continuously extracts property values according
to the specification of data providers. A data provider is a query producing a
database table structure, i.e. for each time point of the application execution,
the data provider takes the state of the environment and produces a row of
data values extracting the relevant information from the space objects. The
data is then used in data consumers that allow, e.g. writing it to a file for
later off-line analysis or plotting it into a chart for real-time observation.

3.3 Agent-Based Simulation: City Bikes

Nowadays, bicycle sharing systems are deployed in many cities, allowing quick
and easy 24/7 access to bikes for tourists, commuters, or any other person
interested in using a bike for a short period of time. In these systems, the
bikes can be checked out and returned at various stations in a more or less
dense network of stations. E.g. on her journey to work a commuter can check
out a bike near her home location and return it near her work place. An open
problem in these systems is the distribution of bikes to the different stations.
If too many bikes are at a station, no more bikes can be returned there, but
if too few bikes are present, the station might run out of bikes. This problem
is typically addressed using dispatchers, which transport bicycles between
stations by van to establish a balanced distribution of bikes.

In the context of the StadtRAD Hamburg8 system in Germany, an agent-
based simulation model was built [8]. The model served the purpose to test
and evaluate different scenarios to determine factors that influence the effec-
tiveness and efficiency of the bicycle sharing system. Two concrete aspects
were further investigated in the performed simulation studies. First, it was
analyzed how the addition of new stations at certain places would affect the
overall bicycle use. Second, several different strategies for dispatching were
evaluated. Therefore, the goal of the model was to obtain realistic behavior
for the bicycle usage that wasn’t based on historical data, but would rather
respond to the changes that were made to the environment for the different
simulation studies.

3.3.1 Environment Model

As a virtual environment, the network of StadtRAD stations in Hamburg
was modelled using EnvSupport. Besides the StadtRAD stations, also the
8 http://stadtrad.hamburg.de

http://stadtrad.hamburg.de

5 The Jadex Project: Simulation 123

Fig. 6 Screenshot of the simulated StadtRAD environment

public transportation network was modelled, because it was considered that
for long distances a combination of subway/urban train and bicycle would
be preferred. The simulation model makes use of EnvSupport by defining the
domain and interaction aspects in an XML description as follows.

The StadtRAD bicycle stations as well as train stations are represented as
domain objects with a fixed location on the map. For the bicycle stations, the
number of currently available bikes and the number of total slots9 have been
modelled as properties of the station object. Additionally, traffic participants
are domain objects with a dynamic location, i.e. their location changes ac-
cording to their travels. Each participant is assigned a random mobility value
that influences how fast she can travel on foot or with a bike. Furthermore,
train schedules have been modelled as domain processes, i.e. the processes
encode the logic of moving traffic participants that board/unboard trains at
certain locations. When executed, the simulated environment can be visu-
alized as shown in Figure 6. For the visualization, drawable representations
such as icon images are assigned to each of the modelled domain objects,
such as train and bicycle stations as well as traffic participants.

The behavior of the traffic participants should be controlled by agents.
Therefore an avatar mapping is defined that specifies the agent type corre-
sponding to the traffic participant object. As a result, for each traffic par-
ticipant in the simulation, a corresponding agent instance is automatically
created. The agent may use declared actions to interact with the environment.
Actions are modelled as Java classes and referred to from the XML environ-
ment description. The following actions have been defined in the StadtRAD
9 At the time the model was built, StadtRAD did only support returning bikes at

a station, when there was a free slot. This was changed recently, such that now
bikes can also be returned when there are no free slots.

124 L. Braubach and A. Pokahr

Fig. 7 Goal/plan tree of the traffic participant agent

model. First, the traffic participant may check out or return a bike, if her
location matches the position of the station. Similarly, the participant can
board/unboard trains at train stations. Finally, unless boarded on a train, a
traffic participant can travel by herself to any chosen location, whereby the
traveling speed depends on the participant’s mobility value and if it currently
has checked out a bike.

3.3.2 Agent Behavior

The aim of the simulation model is to achieve realistic bicycle usage behav-
ior for being able to analyze the effect of changes to the StadtRAD system.
Therefore, the traffic participants are represented as goal-directed agents that
autonomously decide about if and how they would use a bike. The agents are
created with a set of recurring goals to visit certain locations for leisure or
commuting purposes. Following the BDI model, the agents perform a reactive
goal/plan decomposition of their traveling activities (cf. Figure 7). The BDI
reasoning starts from the top-level goal: visit location. For each target loca-
tion, the agent decides to choose a previously used route (plan: use known
route) or to try out a new route (plan try new route). For this purpose,
the agent has knowledge about its recently travelled routes (belief: previous
routes). Each route is a sequence of segments, i.e. intermediate locations and
corresponding transportation means. As an example an agent might decide
to switch to using a bike, instead of following a previous route that included a
lot of changes between trains and waiting times. Afterwards the agent would
remember the time taken for this new route and depending on its personal
preferences, would possibly choose the new route again for future travels.

3.3.3 Simulation Studies

The behavior of the agents depends on their personal preferences, i.e. max-
imum distances that they would prefer walking, using a bike or taking the

5 The Jadex Project: Simulation 125

train. Before running the simulation studies, the simulation model was cal-
ibrated to more closely match the real user behavior observed in the field.
Therefore historical data of the StadtRAD system was compared to results of
simulation runs and the parameter distributions for the agents were adapted
until the behavior appeared sufficiently realistic. Afterwards the simulation
studies were performed by altering the environment and observing how the
bicycle usage changes.

The calibration as well as the studies themselves rely on the evaluation fea-
tures of EnvSupport. By specifying data providers in the environment XML
description, various results of the simulation (e.g. mean distance travelled, av-
erage number of bicycle checkouts per day) are automatically gathered during
execution. Additionally specified data collectors consume the data and pro-
vide it to the developer, e.g. as graphical chart views, or export it to files for
offline analysis.

The first study was a simple scenario analysis that investigated the effect of
introducing an additional station in the StadtRAD network. The simulation
allowed estimating the increase of bicycle usages that could be expected by
introducing a new station at an important junction point with many train
lines (“Schlump”). Most importantly, it could be verified, that the new station
would not lead to significantly less bicycle use at other stations in the vicinity.

The second study was much more complex as it involved to comparison of
different dispatching strategies. For this study an additional dispatcher agent
was introduced, that performed a certain dispatching strategy by moving
bicycles from overloaded stations to stations with few bicycles. Three strate-
gies were analyzed that differed in the decision when to start moving bikes
between stations. In the first strategy, the dispatcher would become active,
when a station runs out of bikes. It would take a certain amount of bikes from
the fullest station and transport it to the empty one. The second strategy is
an adaptation of the first that introduced a threshold, i.e. already starting to
transport bikes if their number drops below a certain value. The last strategy
uses historic data of bicycle use and would transport bikes based on previ-
ously observed shortages (e.g. from the last day), regardless of the current
situation. Simulation results showed that the threshold strategy performed
best with respect to achieving the highest value of bicycle usage.

3.4 Summary

The EnvSupport extension allows defining the structure and behavior (do-
main) of an application environment in terms of objects as well as tasks and
processes. Using avatars and actions, the interaction between the environ-
ment and the application agents can be clearly defined. This allows testing
applications in virtual settings before real deployment. The visualization is
further helpful for understanding application behavior either for teaching
purposes or for debugging during application development. Furthermore, the

126 L. Braubach and A. Pokahr

visualization may also be part of the application, e.g. for games or training
applications. The evaluation module allows flexible measuring of application
performance by observing interesting application values and producing var-
ious outputs, such as dynamically updated graphical charts or data files for
off-line analysis. In this respect, the evaluation module can e.g. be used for
benchmarking alternative implementations of application components.

EnvSupport is currently implemented for local simulations only, even
though the principles behind it are general enough to be applied for dis-
tributed simulations as well. This requires allowing remote interactions of
agents with the environment space. One simple solution to this problem is
to create a service interface for the environment and let the agent hosting
the environment expose a provided service that the participating agents use
to interact with it. Furthermore, to allow also remote observers the world
and visualization data of the environment need to made accessible per re-
mote service as well. It has to be noted that such a simple solution may
have performance problems due to the high amount of data that needs to be
transferred between clients and environment. To avoid this, more advanced
but also complex schemes have to be taken into consideration, e.g. by letting
the clients perform partial calculation and rendering tasks on their own and
synchronize with the environment only at specific rendezvous points.

4 Conclusion and Outlook

Simulation is a very interesting technique in combination with multi-agent
systems. First, simulation studies may benefit from a multi-agent perspective
as in scenarios with autonomous entities these can be adequately and indi-
vidually modelled. Second, agent applications may profit from an upstream
simulation analysis of specific application aspects before a real deployment is
targeted. In the following the lessons learnt regarding simulation support for
agent systems is summarized:

• A necessary key technique for supporting simulations is time control. It
should be possible to choose the simulation mode that fits best to the
simulation task to be performed, i.e. use real-time driven, time-driven or
event-driven time advancement. For example if high efficient simulations
are necessary due to long periods of time to be simulated or due to extraor-
dinary complexity of the secario a fast-as-possible simulation execution is
advantageous.

• An important part of simulations is the simulation environment, which
is many cases requires much attention and effort to be built. For this
reason, specific support for developing simulation environments should be
available. Simulation environments are useful for several reasons. First,
they allow describing the boundary of the system and thus its external
interface. Second, the environment can help understanding if a system

5 The Jadex Project: Simulation 127

works properly. Especially, visualizing the environment facilitates a better
understanding of the system dynamics.

The guiding principle for simulation support consists in establishing simu-
lation transparency, i.e. the application code should not be polluted with
simulation specific aspects. This serves two purposes. On the one hand it
enables code reuse, as the implementation of a simulation model that can
later serve as basis for the implementation of the target system (with excep-
tion of the environment). Furthermore, if the simulation is used to test the
system implementation, exact reuse of the code assures that no implementa-
tion details of a reimplementation, that would normally have to be created,
cause malfunctions. On the other hand, no simulation specific programming
language or environment needs to be learnt. Following this principle led to
a non-invasive approach towards time as well as environment mechanism re-
alization. Time control has been built in on infrastructure layer in order to
hide timing aspects from the agents. The clock abstraction allows for keeping
the agent code unaware of timing aspects. Different clocks are supplied which
bring about the different simulation modes so that it can be determined at
runtime if the application should be executed time-driven, event-driven or
real time. Also environment support has been designed to be an optional
part of applications. Therefore, the platform supports a general extension
mechanism that allows for creating custom functionalities of an agent. The
EnvSupport has been designed to follow this extension mechanism and offers
its own description model. In general EnvSupport cleanly separates the do-
main model from its visualization in order to be able to create different views
for one application.

References

1. Braubach, L., Pokahr, A., Lamersdorf, W., Krempels, K.-H., Woelk, P.-O.: A
generic time management service for distributed multi-agent systems. Applied
Artificial Intelligence 20(2-4), 229–249 (2006)

2. Collier, N.: RePast: An Extensible Framework for Agent Simulation. Working
Paper, Social Science Research Computing, University of Chicago (2001)

3. Frey, D., Stockheim, T., Woelk, P.-O., Zimmermann, R.: Integrated Multi-
agent-based Supply Chain Management. In: Proceedings of the 12th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE 2003), pp. 24–29. IEEE Computer Society (2003)

4. Jander, K., Braubach, L., Pokahr, A.: Envsupport: A framework for developing
virtual environments. In: Seventh International Workshop From Agent Theory
to Agent Implementation (AT2AI-7), Austrian Society for Cybernetic Studies
(2010)

5. Kirn, S., Heine, C., Herrler, R., Krempels, K.-H.: Agent Hospital - agent-based
open framework for clinical applications. In: Kotsis, G., Reddy, S. (eds.) Pro-
ceedings of the 12th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2003), pp. 36–41. CS
Press (2003)

128 L. Braubach and A. Pokahr

6. Klügl, F., Puppe, F.: The Multi-Agent Simulation Environment SeSAm. In:
Kleine Büning, H. (ed.) Proceedings of SiWiS 1998: Simulation in Wis-
sensbasierten Systemen, Technical Report tr-ri-98-194, Universität Paderborn
(1998)

7. Pokahr, A., Braubach, L., Sudeikat, J., Renz, W., Lamersdorf, W.: Simulation
and implementation of logistics systems based on agent technology. In: Blecker,
T., Kersten, W., Gertz, C. (eds.) Hamburg International Conference on Logis-
tics (HICL 2008): Logistics Networks and Nodes, pp. 291–308. Erich Schmidt
Verlag (2008)

8. Reichelt, D.: Agentenbasierte Simulation von Fahrradverleihsystemen. Bach-
elorarbeit, Distributed Systems and Information Systems Group, Computer
Science Department, University of Hamburg (December 2011) (in German)

9. Ricci, A., Viroli, M., Omicini, A.: The A&A Programming Model and Technol-
ogy for Developing Agent Environments in MAS. In: Dastani, M.M., El Fallah
Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI),
vol. 4908, pp. 89–106. Springer, Heidelberg (2008)

10. Sudeikat, J., Braubach, L., Pokahr, A., Renz, W., Lamersdorf, W.: Systemat-
ically engineering self–organizing systems: The sodekovs approach. In: Pro-
ceedings des Workshops über Selbstorganisierende, Adaptive, Kontextsensi-
tive Verteilte Systeme (KIVS 2009), p. 12. Electronic Communications of the
EASST (March 2009)

11. Sudeikat, J., Renz, W.: Building complex adaptive systems: On engineering
self-organizing multi-agent systems. In: Hunter, G. (ed.) Strategic Information
Systems: Concepts, Methodologies, Tools, and Applications, pp. 767–787. IGI
Publishing (February 2010)

12. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: To-
wards ontology-based multiagent simulations: The plasma approach. In: Pro-
ceedings of the 24th European Conference on Modelling and Simulation (ECMS
2010), pp. 50–56 (2010)

13. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30
(2007)

14. Zöller, A., Braubach, L., Pokahr, A., Paulussen, T., Rothlauf, F., Lamersdorf,
W., Heinzl, A.: Evaluation of a multi-agent system for hospital patient schedul-
ing. International Transactions on Systems Science and Applications (ITSSA) 1,
375–380 (2006)

Chapter 6
Agents in Simulation of Cyberattacks
to Evaluate Security of Critical Infrastructures

Rafał Leszczyna

Abstract. In the last years critical infrastructures have become highly dependent
on the information technologies and exposed to cyberattacks. Because the effects
of the attacks can be detrimental, it is crucial to comprehensively asses the security
of the infrastructures’ information systems. This chapter describes MAlSim – the
simulator of malicious software based on software agents, developed for the needs
of a testbed for critical infrastructures security. The authors explain the choice of
agent paradigm for the development of the toolkit, present main design decisions,
overview changes to the project introduced during the implementation, and provide
the details of the completed project followed by a brief description of the application
of MAlSim to security evaluation of a power plant. The chapter concludes with
the discussion of the perspectives for the future of agent technology based on the
experiences which came during the course of the project.

1 Introduction

1.1 Cybersecurity of Critical Infrastructures

Critical Infrastructure means those assets, systems which are essential for the main-
tenance of vital societal functions, health, safety, security, economic or social well-
being of people, and the disruption or destruction of which would have a significant
impact on citizens as a result of the failure to maintain those functions [5].

In the last decades the role of the Information and Communication Technologies
(ICT) in the critical infrastructures, as in other enterprises and organisations, has
significantly increased, very often gaining the leading position. The ICT support of
contemporary infrastructures regards practically all business processes at any level

Rafał Leszczyna
Gdańsk University of Technology, Faculty of Management and Economics,
Narutowicza 11/12, Gdańsk, Poland
e-mail: rafal.leszczyna@pg.gda.pl

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 129–146.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

rafal.leszczyna@pg.gda.pl

130 R. Leszczyna

of the organisational structure. Moreover in the critical infrastructures such as power
plants, transportation systems, oil refineries, chemical factories or manufacturing fa-
cilities – where strategic processes are orientated towards production – the critical
role in the operation of these facilities play dedicated systems called Industrial Con-
trol Systems (a.k.a. Process Control Systems) – ICS (PCS).

This intensification of the use of ICT in the modern critical infrastructures re-
sulted in numerous invaluable advantages, such as reduction of costs and enhanced
functionality but in return it led to increased exposure to computer network-based
attacks.

In the last years critical infrastructures experienced a notable number of ICT
incidents, including the large-scale cyberattacks targeting Estonia, Lithuania and
Georgia in 2007 and 2008. Additionally, the manifestation of Stuxnet (July, 2010)
raised a lot of concerns and discussions due to the specific nature of the attack1.

As the potential effects of cyberattacks to critical infrastructures may be very
detrimental, it is crucial to comprehensively evaluate the ICT security of the infras-
tructures.

1.2 Cybersecurity Evaluation

There are various approaches to ICT security evaluation, spanning from model-
based evaluation techniques, through expert analyses to penetration testing and em-
ulation [44, 20, 39, 34, 33].

In the model-based approach, a model of the analysed system is developed and
the security analyses are conducted in regard to this model [39]. This approach aims
at achieving complete and well-structured results, a ‘promise’ that if the verifica-
tion provides a positive result, then it means that the system is really secure. Un-
fortunately the completeness of the analysis is dependent on the complexity of the
model. In order to obtain full guaranties, one would have to develop a model which
reflects all the states of the analysed system, which is obviously either infeasible
or too costly. In fact, it has been happening very often in the past that the models
were lacking the representation of important (– as it resulted only after) parts of
the reality. This finished in incidents not detected during the analysis phase. There
are multiple techniques utilised in this type of evaluation: combinatorial methods,
model-checking, state-based stochastic or simulation and others [34].

Expert analyses are based on the thorough analysis of the documentation, both
– provided by the operators and gathered individually in the interviewing process.
Their completeness and results depend on the thoroughness of performing them
analysts and achieving good result is very resource consuming by means of time
or personnel. The experts usually support themselves by security evaluation criteria
[44] or the lists of required security components [17, 32].

1 The analyses of Stuxnet revealed that this is a dedicated attack targeting a specific indus-
trial control system likely in Iran.

6 Agents in Simulation of Cyberattacks to Evaluate Security 131

Penetration testing, being the attempting to compromise the network of a com-
pany for the purpose of assessing its data security [47] should provide the most
accurate results in the shortest time, but the most serious drawback is that the re-
sults of such testing may go in an unpredicted direction. In the most ironic scenario
the experiment which aimed at improving security of the critical infrastructure may
result in its serious breach. For this reason it is advised not to perform penetration
testing directly on site as the events may spun out of control. Instead, it is recom-
mended to perform simulations in an isolated environment, or the penetration test
in the reconstructed system (a copy of the original, situated in a secure perimeter).
These kinds of configurations are called testbeds [20], while the process of imi-
tating the original system based on the their hardware and software is often called
emulation.

Simulation testing, where the analysed system and the attacks are simulated [33],
while still fast and effective, does not suffer from the above mentioned disadvantage
of posing the potential threat to the evaluated system, but similarly as in the model-
based approach (in fact this is a ‘specie’ of the model-based approach [34]) it is
dependent on the quality of the model. Moreover, the model must be implemented
in the form of a simulation environment.

1.3 Need for a Malware Simulator

In our work in the laboratory for the security of Critical Networked Infrastructures
(CNI) we have been focusing on the simulation and emulation direction. We have
developed a CNI security testbed based on one hundred twenty hosts, the required
network equipment (which includes sixteen network switches), as well as some ICS
devices [24, 12]. In the testbed we simulate attacks against ICT systems of critical
infrastructures in order to detect any vulnerabilities in the systems and consequently
to evaluate the security of the systems.

Among the computer attacks, malware attacks belong to the most frequent. In
2010 Symantec registered over 3 milliards malware attacks (including the outstand-
ing Stuxnet) [42]. Malware is a malicious software that runs on a computer and
makes the system behaving in a way wanted by an attacker [40].

When we wanted to simulate these attacks in our laboratory, we encountered the
problem of lack of malware simulation. According to our research, such simulators,
enabling simulations of malware in an arbitrary, real, physical network of computers
didn’t exist.

We were looking for a simulator which would run ‘on the top’ of the analysed
system and interact directly with it. Ideally it should not require any support of an in-
termediate layer of software such as middleware. We expected that it could simulate
various types of malware (worms, viruses, malicious mobile code etc.). It should
imitate the behaviour of the malware and all its interactions with the system with

132 R. Leszczyna

very high fidelity. Yet it should prevent any unwanted effects of these interactions.
The simulator should support simulations of attacks on various types of hardware
platforms and operating systems, as the critical infrastructures’ systems and ICS are
very diverse.

At the moment the only available virus simulators were either educational/demon-
strative [14], such as Joe Hirst’s Virus Simulation Suite [15] or Virlab [9], or
dedicated for testing of anti-virus software – Rosenthal Virus Simulator [37]. Apart
from being not particularly suitable for our purposes, already at the time the solu-
tions were outdated.

As far as the simulation of worms was concerned, the prevalent work was done on
developing mathematical models of worm propagation [38, 43, 7, 50], which base on
epidemiological equations that describe spread of real-world diseases. The empirical
approaches focused on single-node worm spread simulators [27, 26, 45, 31], which
are dedicated to run on one machine. Only few distributed worm simulations were
implemented [36, 46, 11]. Still, all these tools aimed at simulation of the whole
attack context i.e. the malware as well as the system, and the network where the
attack takes place.

Also Trojan Simulator [30] had limited applicability as it was dedicated for the
evaluating effectiveness of anti-Trojan software.

It became evident that if we wanted to simulate the malware attacks in our
testbed, we needed to develop our proprietary tool.

2 Developing MAlSim

2.1 The Choice of Agent Paradigm

We chose the mobile agents paradigm for the development of the simulator because:

• It supports software mobility (thus should facilitate simulation of malware, the
software which is inherently – mobile).

• The Agent Platform has all the characteristics of an isolated environment2 facili-
tating safe execution of the programs and preventing unwanted effects to impact
the system.

• The Agent Platform with the Agent Management System provide the embedded
functions which could be used for facilitating the control over the experiments.

• Most of the agent environments are written in Java, thus per se they offer porta-
bility of the software, which was important to us because various system tech-
nologies are used in critical infrastructures.

2 In the information security terminology, this kind of environment, which introduces isola-
tion of the executed software from an operating system and other applications is called a
sandbox.

6 Agents in Simulation of Cyberattacks to Evaluate Security 133

Moreover not without an influence was the fact that we had a positive experience
with developing agent-based software. Agent systems had allowed us for quickly
developing and deploying middle-complexity applications in the past.

2.2 MAlSim Design

During the design phase of MAlSim, first of all we had to choose the agent platform
to be used as the middleware and the agent programming environment. For the rea-
sons which follow, the obvious choice for us was JADE. First of all, it is a distributed
agent platform written in Java, so it satisfies our requirement for the portability of
the environment, and provides the necessary means for facilitating the deployment
of applications on various hosts running diverse operating systems. As a result MAl-
Sim can be easily deployed over the hosts participating in the experiments. Second,
JADE enables mobility of agents, thus another requirement (see the previous sec-
tion) for our simulation software was met, namely that it should support mobility of
software – since most of malware is able to move across various platforms.

Another factor playing role in this choice was that we already had experience in
the development in JADE and we were very familiar with it. If we chose another en-
vironment we would have to learn it first. Moreover the advantage of JADE was that
there was a relatively big and active community of the developers. Anyone look-
ing for an advice regarding programming JADE applications could count on a very
timely response from other developers but also from the authors of the Framework.

Regarding the deployment of MAlSim, we planned to take advantage of the stan-
dard means of the application deployment of JADE, it means JADE containers. Sim-
ilarly, in relation to the control over the experiments, at the initial stages of the
project we wanted to utilize JADE functionalities, with the JADE Graphical User
Interface in the first place.

When starting the MAlSim project, we already had previous experiences with
agent systems, including the above mentioned experience with the development in
JADE. This experience, among the others, provided us with the good recognition
of the current status of agent systems, the level of maturity of agent development
environments, or the boundaries of the the development possibilities. As we already
said – this was also not our first application developed for JADE and we were aware
of the advantages and the limitations of this framework. Thus the design of MAlSim
already took into account these characteristics. For example the fact that all agent
applications require the presence of the underlying layer of middleware, forced us to
accept that the simulator would run only in this layer and that all direct interactions
with the system would be limited. In the context of malware simulations, this posed
a significant limitation, but on the other hand, from the point of view of security –
this additional layer would create a form of a sandbox – an isolation layer, which
renders that any unexpected detrimental effects remain only in this layer and won’t
affect the system. In the end, when we evaluated all the pros and cons, the pros were
in prevalence.

134 R. Leszczyna

2.3 Design Changes during the Implementation

However ultimately during the implementation phase of the project we had to verify
our last assumption. It means the one regarding the ‘obligation’ of running MAlSim
only at the level of middleware.

We had to change our approach because the first experiments with MAlSim oper-
ating only at the level of JADE were too unrealistic. The middleware layer prevented
all direct interactions of the simulated malware with the system. Because these inter-
actions are indispensable for the proper reconstruction of attack scripts, we couldn’t
reproduce them completely. As the result, the effectiveness of the security evaluation
decreased.

As we wrote in the previous section, this characteristic of JADE was known to
us before, but only the life experience showed how significant impact it had on the
security evaluations. In fact, the evaluations with such reduced efficiency had very
limited applicability.

In consequence, because these direct interactions between the simulator and the
system are indispensable for realistically reconstructing the attacks to thoroughly
evaluate the security of the system, we had to introduce additional, external software
modules to our simulation toolkit on the level of the operating system layer (see
Figure 1). At this stage of the project we took advantage of the system commands
and applications. For instance, to disable a network adapter (when simulating its
damage), on Windows we applied a Visual Basic Script, on Linux a shell script. In
the future, these external modules will be a dedicated code, written specifically for
the demands of the simulation.

OS 1 OS 2 OS n

Hardware
Layer

Operating
System
Layer

Agent
Platform

Layer

PC 1 PC 2 PC n

Container 1 Container 2 Container n

MAlSim agent

MAlSim binary

Fig. 1 For the interactions with an operating system MAlSim requires external modules

6 Agents in Simulation of Cyberattacks to Evaluate Security 135

3 Completed Project

MAlSim consists of software package called MAlSim Toolkit and malware templates
chosen in reference to an applicable attack scenario.

3.1 Attack Scenario

An attack scenario is a description of a series of actions and events occurring during
an attack. It is written for all the parties involved in the attack (the attacker, the
victims, the third parties).

An exemplary attack scenario based on a variant of the W32/Mydoom worm (see
Section 3.2) is as follows:

An employee working in the administrative section of a power plant receives an e-mail
informing about a failure of a delivery of ‘his’ message. For further details he is di-
rected to an attached file. Following this indication, the employee opens the attachment
and in this way allows the variation of W32/Mydoom worm to infect his computer. In
similar way the worm infects also other computers in the administrative section of the
power plant.

Later on another administrative employee wants to verify some data regarding the
energy production process using the monitoring system running on the server in the
process control area of the power plant. Thus, unaware of the fact that his PC is infected
by the malware, opens the VPN connection to a host in process control network. In this
moment the worm has an open passage to the critical part of the power plant network.
It moves through it and starts infecting the computers in the process control network.

On the fixed date, the worm will launch a Distributed Denial of Service (DDoS)3 attack
against the process control server from all the infected computers.

3.2 Malware Templates

A malware template is, as the name indicates, a model of a simulated malware. It
specifies the components necessary to simulate particular malicious software and its
behaviour.

A fragment of a malware template for W32/Mydoom worm is presented in List-
ing 1. This virus represents the group of malicious software which create backdoors
and perform Distributed Denial of Service Attacks (see the footnote). The template
was created based on the descriptions from [8, 41, 29]. The relevant class diagram
and sequence diagram are presented in Figures 2 and 3.

3 A Distributed Denial of Service attack is a distributed version of the Denial of Service At-
tack (DoS), which is based on the excessive consumption of the resources of the attacked
server via sending a large amount of service requests to the server which will result in its
inability to provide the service. Since protection methods against the DoS had been devel-
oped, attackers introduced a distributed version of DoS in which the requests of service
are sent from separate hosts. This is much more difficult to protect, as it is difficult to
distinguish malicious service requests from legitimate ones.

136 R. Leszczyna

Listing 1 Pseudocode of the malware template for simulation of the
worm W32/Mydoom.

Initial event: Sending e-mail with a malicious attachment.

Trigger: Opening the attachment.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)
2. IF system.date > (stopSpreadingDate) THEN END // propagating only till the

date indicated within the constant stopSpreadingDate
3. NEW eMailAddresses[] // creating new array in which addresses collected

from Windows Address Book and local files will be stored
4. CREATE FILE("java.exe", windowsFolder)
5. CREATE FILE("services.exe", windowsFolder)
6. "HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run" →"JavaVM"

= windowsFolder+"\java.exe"
7. "HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run"

→"Services" = windowsFolder+"\services.exe"
8. "HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run" →"JavaVM"

= windowsFolder+"\java.exe"
9. "HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run"

→"Services" = windowsFolder+"\services.exe"
10. REG CREATE("HKEY CURRENT USER\Software\Microsoft\Daemon")
11. REG CREATE("HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Daemon")
12. c=0
13. WHILE (windowsAddressBook.GET NEXT(contact) NOT EQUALS NULL)

address[c++] = contact
// collecting email addresses from the Windows Address Book

14. fileExtensions = NEW ({".pl*", ".ph*", ".tx*", ".ht*", ".asp", ".sht",
".adb", ".dbx", ".wab"})

15. GetAddressesFromFiles(fileExtensions)
// collecting email addresses from files with particular extensions

16. eMailMessage.to = eMailAddresses
17. messageSenders = NEW ({"Postmaster", "Mail Administrator", "Automatic Email

Delivery Software", "Post Office", "The Post Office", "Bounced mail",
"Returned mail", "MAILER-DAEMON", "Mail Delivery Subsystem"})

18. eMailMessage.from = messageSenders[RANDOM(messageSenders.length)]
19. messageSubjects = NEW ({"New Graphic Site", "hello", "hi", "error",

"status", "test", "report", "delivery failed", "Message could not be
delivered", "Mail System Error - Returned Mail", "Delivery reports about
your e-mail", "Returned mail: see transcript for details", "Returned mail:
Data format error delivered"})

20. eMailMessage.subject = messageSubjects[RANDOM(messageSubjects.length)]
21. eMailMessage.body = "Your message was not delivered due to the following

reason(s): Your message was not delivered because the destination server
was unreachable within the allowed queue period. The amount of time a
message is queued before it is returned depends on local configuration
parameters. Most likely there is a network problem that prevented delivery,
but it is also possible that the computer is turned off, or does not have a
mail system running right now."

22. attachmentNamePrefixes = NEW ({"ATTACHMENT", "DOCUMENT", "FILE",
"INSTRUCTION", "LETTER", "MAIL", "MESSAGE", "README", "TEXT",
"TRANSCRIPT"})

23. attachmentNameSuffixes = NEW ({".bat", ".cmd", ".com", ".exe", ".pif",
".scr", ".zip"})

24. attachmentName = attachmentNamePrefixes[RANDOM(attachmentNamePrefixes.
length)] + attachmentNameSuffixes[RANDOM(attachmentNameSuffixes.length)]

25. eMailMessage.attachments[0] = NEW FILE(this, attachmentName)
26. SEND(newEMailMessage)

Action 2: Setting backdoor access to the computer.

1. OPEN TCP PORT(3127)

6 Agents in Simulation of Cyberattacks to Evaluate Security 137

2. OPEN TCP PORT(3198) // opening TCP ports in order to allow the attacker to
remotely access the infected computer

3. CONNECT(attackersSite)
// the constant attackersSite contains the address of the attacker’s network
location

4. DOWNLOAD(attackersProgram)
// the constant attackersProgram indicates the name of the program located
on the attacker’s location

5. EXECUTE(attackersProgram)
// executing the downloaded program

6. INFORM(MAlSim)

Action 3: Performing Distributed Denial of Service (DDOS) Attack.

1. INFORM(MAlSim)
2. IF system.date NOT EQUALS (launchDDOSDate) THEN END // launching the attack

on the date indicated in the constant launchDDOSDate
3. CREATE HTTP GET REQUEST(httpGetRequest)
4. FOR {c=0; c≤64; c++} SEND(httpGetRequest)
5. WAIT(1000) // wait 1 second (1000 milliseconds)
6. GO TO 2

+Inform()
+Propagate()
+Simulate Malbehaviour()
+Create()
+Connect()

MAlSim Agent

User

+Run()
+Propagate()
+Create()

MAlSim Binary
Malware Holder

+Open()
+Create()
+Send()
+OpenAttachment()

eMailJavaScript Component

Holds

Interacts withInteracts with

Communicates

+Execute()
+ExecuteCommand()
+ModifyRegister()

Operating System

Interacts with

Fig. 2 Class diagram for the W32/Mydoom malware template

We have developed malware templates for viruses and worms: Melissa, Yaman-
ner, W32/Mydoom and W32/Blaster. During the development, various information
sources were used. The most popular included [8, 41, 29]. The particular choice of
malware was dictated by their ‘popularity’ (they infected thousands of computers)
as well as interesting techniques of propagation and the payload, which was later
also used by other malware.

138 R. Leszczyna

eMail 2OS on PC 1user eMail MAlSim binary 1 MAlSim agent 1

Run()

ExecuteCommand()

ExecuteCommand()

ModifyRegister()

ModifyRegister()

Inform()

ExecuteCommand()

ExecuteCommand()

Create()

Send()

Inform()

OpenAttachment()

Fig. 3 Sequence diagram illustrating the Action 1: Propagating to other computers of the
malware template for W32/Mydoom

As it can be seen on the example of the W32 Blaster template, each template
defines:

• Initial event of the malware life cycle – a ‘birth’ of malware.
• Trigger – the initial conditions necessary to be satisfied in order to allow the

malware to start operate.
• Malicious actions – of the simulated malware.

These definitions drive the development of the code of MAlSim agent classes and
agent behaviour classes included in the MAlSim Toolkit.

For more details on the development of malware templates see [23, 24].

3.3 MAlSim Toolkit

The software (agent) part of the result of the project is a software package called
MAlSim Toolkit. MAlSim Toolkit was developed in Java and dedicated for JADE
[1].

6 Agents in Simulation of Cyberattacks to Evaluate Security 139

MAlSim Toolkit consists of:

• Several (Java) classes of MAlSim agent (extensions of JADE Agent class).
• Various behavioural patterns implemented as agent behaviours (extensions of

JADE Behaviour class).
• Diverse migration/replication patterns implemented as agent behaviours (exten-

sions of JADE Behaviour class).
• Auxiliary classes for the setup and control of the experiments.

The MAlSim agent class is the basic agent code which implements the standard
agent functionalities related to its management on the agent platform, its commu-
nication skills and the characteristics related to the nature of simulated malicious
software. This code will be propagated across the attacked machines.

The behavioural patterns define agent behaviours aiming at imitating malicious
activities of malware but without their harmful impact. The patterns include op-
erations such as disabling network adapter, enabling a local firewall to operate in
all-block mode or starting a task which extensively consumes processor time etc.
They facilitate showing detrimental effects of malware activities but in contrary to
their prototypes they are fully controlled. Listing 2 presents the code for imitating
the corruption of a network adapter in the behaviour class of a MAlSim agent used
in a zero-day virus simulation.

Migration and replication patterns describe the ways in which MAlSim agent
migrates across the attacked hosts. The patterns implement malware propagation
models as well as user-configured propagation schemas.

The Toolkit includes also auxiliary classes which facilitate setting up and con-
trolling the experiments. An exemplary code of a StartUp class used for the setup
of a zero-day virus simulation is presented in Listing 3.

Further details can be found in [23].

Listing 2 Java code of disableNetworkAdapter method used by
MAlSim agents in a zero-day virus simulation.

private void disableNetworkAdapter() {
String os name = System.getProperty("os.name");

if (os name.toLowerCase().lastIndexOf("linux") != -1)

try { // linux

String line;

String cmd = "ifdown eth0";

Process p = java.lang.Runtime.getRuntime().exec(�

cmd);

BufferedReader input = new BufferedReader(

new InputStreamReader(p.getInputStream()));

while ((line = input.readLine()) != null) {
System.out.println(line);

}
input.close();

140 R. Leszczyna

} catch (Exception err) {
err.printStackTrace();

}
else // windows

try {
String line;

String command = "cmd /c start DisabilitaLAN.�

vbs";

System.out.println(command);

Process p = java.lang.Runtime.getRuntime().exec(�

command);

BufferedReader input = new BufferedReader(

new InputStreamReader(p.getInputStream()));

while ((line = input.readLine()) != null) {
System.out.println(line);

}
input.close();

} catch (Exception err) {
err.printStackTrace();

}
}

Listing 3 Java code of StartUp class used for the setup of a zero-day
virus simulation.

public class StartUp {
public static void main(String[] args) {
String[] defaultArgs = {"-gui", "-detect-main", "false"};
Boot.main(defaultArgs);

try {
Runtime rt = Runtime.instance();

Profile p;

AgentContainer ac = null;

rt.setCloseVM(true);

String[] containerNames = {"power-plant-pc-l-100",�
"power-plant-pc-l-103",�

"power-plant-pc-l-104",

"power-plant-ss-s-030","power-plant-ss-s-031","power-�

plant-ss-s-032","power-plant-ss-s-035"};
Object agentArgs[] = {};
p = new ProfileImpl();

p.setParameter(Profile.CONTAINER NAME,

6 Agents in Simulation of Cyberattacks to Evaluate Security 141

"power-plant-ts-�

l-100");

ac = rt.createAgentContainer(p);

AgentController mSA = ac.createNewAgent("MalSim",

"MalwareSimAgent3", agentArgs);

for (int l=0; l<containerNames.length; l++) {
p = new ProfileImpl();

p.setParameter(Profile.CONTAINER NAME, �

containerNames[l]);

ac = rt.createAgentContainer(p);

}
mSA.start();

}
catch (Exception e) {

e.printStackTrace();

}
}

}

3.4 The Life Cycle of the Experiments with MAlSim

During an experiment, the above described elements go through the following life
cycle:

1. Choosing an appropriate attack scenario.
2. Selecting a malware template relevant to the scenario (or the development of a

new one).
3. Creating a live instance of malware template via MAlSim Toolkit.
4. Performing the experiment and registering its outcomes (all – the intermediate

and final).

At the current stage of the project the first three activities are performed manually.
The control over the experiments is facilitated by the graphical interface of JADE.

4 Application

MAlSim was applied to the experiments aiming at evaluation of the information
security of an existent, fully operative combined cycle electric power plant.

In order to avoid any undesired effects of the simulations, all the evaluations were
performed in our Critical Networked Infrastructures security testbed [24, 12] where
we reconstructed the hosts and the networks of the power plant with a very high
fidelity. All the crucial hardware components were copied, and only the stations

142 R. Leszczyna

having minor role in the attacks were virtualised. The same software was installed,
and the same configurations applied4.

In this testbed MAlSim was deployed via JADE containers. On each host one
container was installed. The control over experiments was effectuated from the
JADE main-container, which was located in the dedicated area of the testbed
(so called Threat and Attack Simulator). From there, the simulated attacks were
launched, controlled and monitored.

The simulation led to particular conclusions regarding the security of the eval-
uated power plant’s information system. Apart of the observations regarding the
resistance of the system components to cyberattacks, a very important outcome of
the experiments was the awareness raising effect obtained by the occasion: after
the evaluation we invited the personnel of the power plant to the demonstration of
our simulations. The staff could see in person the course of the cyberattack and the
damages it caused. And for some of them it was the first occasion to realise the
severity of the potential effects of cyberattacks, the importance of complying with
the security policy and putting in place the security measures.

For further details see [23].

5 Lessons Learned

When we are looking back at the project now from the perspective of it being fin-
ished, we would not change too much the way it was conducted. As we wrote in
Section 2.2, the design of MAlSim took into account the characteristics of agent
systems and agent programming environments, their strengths and limitations.

The only design decision which we had to revise during the implementation phase
was the one regarding MAlSim’s operation limited to the middleware layer (see
Section 2.3). If we had known before what we learned during the course of the
project, we would have incorporated operating system modules in MAlSim from
the beginning.

Without them, the introductory experiments with MAlSim executed only under
JADE were too unrealistic. The operation limited solely to the middleware layer
prevented all direct interactions of the simulated malware with the system, which are
indispensable for the proper reconstruction of attack scripts. This led to the decrease
in the efficiency of the security evaluations, causing their limited applicability.

6 Perspectives

Our experiences with the development of MAlSim led us to the conclusion that
future agent environments should be more integrated with operating systems. Agent
must either run directly in the layer of an operating system or if being executed
indirectly on middleware – then the intermediate layer must be tightly embedded
into the operating system.

4 For more details of the environment and the evaluation approach see [24, 12, 22, 21].

6 Agents in Simulation of Cyberattacks to Evaluate Security 143

The security challenge inherent to this integration of agent paradigm [10, 18, 28,
25] would have to be addressed via implementing the security measures proposed
by the researchers5. It has been agreed that the problem of protecting agent plat-
forms has been addressed sufficiently, it means effective solutions were designed
[18, 35, 4]. Also for the protection of agents various techniques have been proposed
(for example: [6, 3, 13, 49, 19, 16]), but this area still requires further develop-
ments. A promising direction is demarcated by the application of Trusted Comput-
ing Modules [48]. In addition to that it must be noted that the protection of agents
from malicious platforms is not a new problem to be introduced by the integra-
tion of agent platforms with operating systems. Agent systems have been suffer-
ing from this issue from the beginning, and it was agreed to be one of the main
obstacles preventing the popularisation of agents [10, 18, 28]. Though, to the con-
trary, the integration of agent platforms with operating system would bring proper
attention to the issue, which would significantly increase the chances for it to be
resolved.

Depending on security settings controlled by users and administrators, the agent
environments should enable flexible control of agents’ access to the resources of the
platform. In our case, this would allow us for developing an application based ex-
clusively on agents, without the need for creating and executing external programs.

Another reflection is that in general programming environments (Integrated De-
velopment Environments – IDEs) used for the development of agents could be more
‘agent-friendly’ or ‘agent-enabled’, as for now, the developers of agent applica-
tions can use only general purpose programming environments (such as Eclipse,
JBuilder).

Features which provide particular support for the agent paradigm and facilitate
the development and deployment of agent applications should be introduced to the
programming environments. This could be done via extensions to the existent, gen-
eral purpose environments (our preferred way), or through developing new environ-
ments – agents-dedicated. Interesting discussion on this subject can be found in [2].
As it can be seen, the subject is not new.

Finally, our general observation is that agent platforms still leave space for im-
provements regarding the stability of code execution, error-freeness, the number
and level of offered supportive functions, maturity of graphical interface and so on.
Improving these aspects should result in higher attention to agent systems and the
increased number of successful applications. This would consequently lead to more
effort and resources invested into improvement of agent environments, resulting in
the advance of their quality, which would impact the number of applications... In
our opinion this is a recurring cycle which waits for being properly triggered.

5 An overview of the security solutions for agents can be found in [25].

144 R. Leszczyna

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

2. Bryson, J., Decker, K., Deloach, S.A., Huhns, M., Wooldridge, M.: Panel Summary:
Agent Development Tools. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000.
LNCS (LNAI), vol. 1986, pp. 331–338. Springer, Heidelberg (2001)

3. Ceccato, M., Tonella, P., Preda, M.D., Majumdar, A.: Remote software protection by
orthogonal client replacement. In: Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC 2009, pp. 448–455. ACM, New York (2009)

4. Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., Tsudik, G.: Itinerant
agents for mobile computing. IEEE Personal Communications 2(5), 34–49 (1995),
citeseer.ist.psu.edu/article/chess95itinerant.html

5. Commission, E.: COM(2008) 676 final, proposal for a council decision on a Critical
Infrastructure Warning Information Network (CIWIN). Internet (2008)

6. Desnitsky, V., Kotenko, I.: Security and Scalability of Remote Entrusting Protection.
In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 298–306.
Springer, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1885194.1885223

7. Ellis, D.: Worm anatomy and model. In: WORM 2003: Proceedings of the 2003 ACM
Workshop on Rapid Malcode, pp. 42–50. ACM, New York (2003)

8. F-Secure: F-Secure virus description database. Website (2008),
http://www.f-secure.com/v-descs/ (last access: January 18, 2008)

9. Faistenhammer, T., Klöck, M., Klotz, K., Krüger, T., Reinisch, P., Wagner, J.: Virlab 2.1.
Internet (1993), http://kklotz.de/html/virlab.html
(last access: October 29, 2007)

10. Farmer, W.M., Guttman, J.D., Swarup, V.: Security for mobile agents: Issues and require-
ments (1996),
http://gunther.smeal.psu.edu/farmer96security.html

11. Filiol, É.: Franc, E., Gubbioli, A., Moquet, B., Roblot, G.: Combinatorial optimisation of
worm propagation on an unknown network. International Journal in Computer Science
2(2), 124 – 131 (2007), http://vx.netlux.org (last access: March 7, 2008)

12. Fovino, I.N., Masera, M., Leszczyna, R.: Security Assessment of a Turbo-Gas
Power Plant. In: Critical Infrastructure Protection, pp. 31–40. Springer (2009),
http://www.springerlink.com/content/k0137022kw265n08

13. Godoy, G., Tiwari, A.: Invariant Checking for Programs with Procedure Calls. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 326–342. Springer, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-03237-0_22

14. Gordon, S.: Are good virus simulators still a bad idea? Network Security 1996(9), 7–13
(1996)

15. Hirst, J.: Virus simulation suite. Internet (1990)
16. Hohl, F.: Time Limited Blackbox Security: Protecting Mobile Agents From Malicious

Hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113.
Springer, Heidelberg (1998), citeseer.ist.psu.edu/hohl98time.html (last
access: May 10, 2006)

17. ISO/IEC: ISO/IEC 27001: 2005(E): Information technology – Security techniques – In-
formation security management systems – Requirements. U.S. Government Printing Of-
fice (2005)

18. Jansen, W., Karygiannis, T.: NIST special publication 800-19 - mobile agent security
(2000), http://citeseer.ist.psu.edu/jansen00nist.html

citeseer.ist.psu.edu/article/chess95itinerant.html
http://portal.acm.org/citation.cfm?id=1885194.1885223
http://www.f-secure.com/v-descs/
http://kklotz.de/html/virlab.html
http://gunther.smeal.psu.edu/farmer96security.html
http://vx.netlux.org
http://www.springerlink.com/content/k0137022kw265n08
http://dx.doi.org/10.1007/978-3-642-03237-0_22
citeseer.ist.psu.edu/hohl98time.html
http://citeseer.ist.psu.edu/jansen00nist.html

6 Agents in Simulation of Cyberattacks to Evaluate Security 145

19. Karjoth, G., Asokan, N., Gülcü, C.: Protecting the Computation Results of Free-Roaming
Agents. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 195–207.
Springer, Heidelberg (1998)

20. Leeuwen, B.V., Urias, V., Eldridge, J., Villamarin, C., Olsberg, R.: Cyber security anal-
ysis testbed: Combining real, emulation, and simulation. In: Proceedings of the 2010
IEEE International Carnahan Conference on Security Technology (ICCST), pp. 121–126
(2010)

21. Leszczyna, R., Fovino, I.N., Masera, M.: MAlSim – mobile agent malware simulator. In:
Proceedings of the First International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems (SIMUTools 2008), ICST, France (2008)

22. Leszczyna, R., Fovino, I.N., Masera, M.: Security evaluation of IT systems underlying
critical networked infrastructures. In: Proceedings of the First International IEEE Con-
ference on Information Technology (IT 2008), IEEE, Gdansk University of Technology,
Gdańsk, Poland (2008)

23. Leszczyna, R., Fovino, I.N., Masera, M.: Simulating malware with MAlSim. Journal in
Computer Virology (2008),
http://www.springerlink.com/content/k0843hgq60333556
(last access: September 24, 2012)

24. Leszczyna, R., Fovino, I.N., Masera, M.: An approach to security assessment of critical
infrastructures’ information systems. IET Information Security 5, 135–144 (2011)

25. Leszczyna, R., Kotenko, I.: Security and Anonymity in Agent Systems. In: Essaaidi, M.,
Ganzha, M., Paprzycki, M. (eds.) Software Agents, Agent Systems and Their Applica-
tions, Sub-Series D: Information and Communication Security, vol. 32, pp. 260–285.
IOS Press, Amsterdam (2012)

26. Liljenstam, M., Nicol, D.M., Berk, V.H., Gray, R.S.: Simulating realistic network worm
traffic for worm warning system design and testing. In: WORM 2003: Proceedings of
the 2003 ACM Workshop on Rapid Malcode, pp. 24–33 (2003)

27. Liljenstam, M., Yuan, Y., Premore, B., Nicol, D.: A mixed abstraction level simulation
model of large-scale internet worm infestations. In: Proceedings of the 10th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS 2002), p. 109. IEEE Computer Society, Washington,
DC (2002)

28. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Com-
puting (A Roadmap for Agent Based Computing). AgentLink (2003)

29. McAfee: McAfee virus information. Website (2008),
http://uk.mcafee.com/virusInfo/ (last access: January 18, 2008)

30. Mischel Internet Security: Trojan simulator. Internet (2003),
http://www.misec.net/trojansimulator/ (last access: October 29, 2007)

31. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet quarantine: Requirements
for containing self-propagating code. In: NFOCOM 2003, Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1901–1910
(2003)

32. National Institute of Standards and Technology (NIST): DRAFT Recommended Secu-
rity Controls for Federal Information Systems and Organizations. National Institute of
Standards and Technology (NIST) Special Publication 800-53 Rev. 3. U.S. Government
Printing Office (2009)

33. Nicol, D.M.: Modeling and simulation in security evaluation. IEEE Security and Pri-
vacy 3, 71–74 (2005), doi:10.1109/MSP.2005.129

http://www.springerlink.com/content/k0843hgq60333556
http://uk.mcafee.com/virusInfo/
http://www.misec.net/trojansimulator/

146 R. Leszczyna

34. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: From depend-
ability to security. IEEE Trans. Dependable Secur. Comput. 1, 48–65 (2004), doi:
http://dx.doi.org/10.1109/TDSC.2004.11

35. Ordille, J.J.: When agents roam, who can you trust? In: First Conference on Emerging
Technologies and Applications in Communications (etaCOM), Portland, OR, March 24
(1996), citeseer.ist.psu.edu/ordille96when.html
(last access: March 24, 2006)

36. Perumalla, K.S., Sundaragopalan, S.: High-fidelity modeling of computer network
worms. acsac 00, 126–135 (2004)

37. Rosenthal Engineering: Rosenthal virus simulator. Internet (1997)
38. Sharif, M.I., Riley, G.F., Lee, W.: Comparative study between analytical models and

packet-level worm simulations. In: PADS 2005: Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, pp. 88–98. IEEE Computer Society,
Washington, DC (2005)

39. Singh, S., Lyons, J., Nicol, D.M.: Fast model-based penetration testing. In: Proceed-
ings of the 36th conference on Winter simulation, WSC 2004, pp. 309–317 (2004),
http://portal.acm.org/citation.cfm?id=1161734.1161797

40. Skoudis, E., Zeltser, L.: Malware: Fighting Malicious Code. Prentice Hall Professional
Technical Reference, Upper Saddle River (2003)

41. Symantec: Symantec security response. Website (2008),
http://www.symantec.com/security_response/
(last access: January 18, 2008)

42. Symantec: Symantec internet security threat report trends for 2010. Tech. rep., Symantec
Corporation (2011)

43. Symantec Research Labs: Symantec worm simulator. Internet (2005)
44. Takebe, T.: Trend in security evaluation and accreditation. In: Proceedings of the SICE

Annual Conference, vol. 2008, pp. 1482–1486 (2008)
45. Wagner, A., Dübendorfer, T., Plattner, B., Hiestand, R.: Experiences with worm propa-

gation simulations. In: WORM 2003: Proceedings of the 2003 ACM Workshop on Rapid
Malcode, pp. 34–41. ACM, New York (2003)

46. Wei, S., Mirkovic, J., Swany, M.: Distributed worm simulation with a realistic internet
model. In: PADS 2005: Proceedings of the 19th Workshop on Principles of Advanced
and Distributed Simulation, pp. 71–79. IEEE Computer Society, Washington, DC (2005)

47. Whitaker, A., Newman, D.: Penetration Testing and Cisco Network Defense. Cisco Press
(2005)

48. Wilhelm, U.G., Staamann, S., Buttyán, L.: Protecting the Itinerary of Mobile Agents.
In: Demeyer, S., Dannenberg, R.B. (eds.) ECOOP 1998 Workshops. LNCS, vol. 1543,
pp. 301–301. Springer, Heidelberg (1998)

49. Yee, B.S.: A sanctuary for mobile agents. In: Proceedings of the DARPA Workshop on
Foundations for Secure Mobile Code, Monterey, USA (1997),
citeseer.ist.psu.edu/article/yee97sanctuary.html
(last access: May 08, 2006)

50. Zou, C.C., Gong, W., Towsley, D.: Worm propagation modeling and analysis under dy-
namic quarantine defense. In: WORM 2003: Proceedings of the 2003 ACM Workshop
on Rapid Malcode, pp. 51–60. ACM, New York (2003)

http://dx.doi.org/10.1109/TDSC.2004.11
citeseer.ist.psu.edu/ordille96when.html
http://portal.acm.org/citation.cfm?id=1161734.1161797
http://www.symantec.com/security_response/
citeseer.ist.psu.edu/article/yee97sanctuary.html

Chapter 7
Simulated Multi-robot Tactical Missions
in Urban Warfare

Peter Novák, Antonı́n Komenda, Michal Čáp, Jiřı́ Vokřı́nek, and Michal Pěchouček

1 Multi-robotics in Urban Warfare

Since late 90’s of the last century, rapid advances in technology, mechanical engi-
neering, miniaturization, telecommunications and informatics enabled development
and routine deployment of sophisticated robots in many real world domains. Besides
many applications in assembly industry, e.g., in car, or electronics assembly lines,
defense organizations, together with space exploration and mining industries belong
to the most demanding and optimistic users of robotic technology [25]. Especially
in the military domain we nowadays witness a routine deployment of robotic as-
sets in the field. Some of the popular examples of such robots include unmanned
aerial vehicles/systems (UAV/UAS), be it conventional fixed-wing aircrafts (CTOL
- a conventional take-off and landing vehicle), various rotorcrafts, such as single, or
multi-rotor helicopters (VTOL - a vertical take-off and landing vehicle), autonomous
underwater vehicles (AUV), unmanned cars (UGV - a unmanned ground vehicle),
or unattended ground sensors (UGS), such as various acoustic, seismic and chemi-
cal sensors, or cameras. Various size and equipment classes of such robots are used
in tactical, law enforcement or rescue operations for tasks, such as security surveil-
lance of urban areas, firefighting, or providing situational awareness, mapping and
exploration of areas stricken by natural disasters, or tasks in dangerous work en-
vironments, such as stabilization of damaged nuclear reactors after an earthquake.
The robots are usually performing either manipulation tasks, or provide situational
awareness to human task forces by information collection, such as continuous video
streaming, acquiring static imagery or analysis of chemical, or nuclear hazards [17].

Even though we recently witnessed rapid advances in control of robots in scenar-
ios such as e.g., autonomous cars [26], or service robotics [36, 6], the state of the

Agent Technology Center, Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2,
CZ-16627 Prague 6 - Dejvice, Czech Republic
e-mail: {peter.novak,antonin.komenda,michal.cap}@agents.fel.cvut.cz,

{jiri.vokrinek,michal.pechoucek}@agents.fel.cvut.cz

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 147–183.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

{peter.novak,antonin.komenda,michal.cap}@agents.fel.cvut.cz,
{jiri.vokrinek,michal.pechoucek}@agents.fel.cvut.cz

148 P. Novák et al.

art in high-level control of robotic assets still relies mainly on teleoperation. Some
of the high-profile examples of such deployed systems used by military and law
enforcement are the surveillance drones providing imagery and video streams from
operation theaters [32], or robots dealing with relief operations in damaged nuclear
power plants [15].

While teleoperation is a very effective method of robot control in many scenarios,
it does not scale well with the increasing number of deployed assets. One of the
most important problems arising in situations where a larger number of cooperating
robots is needed to successfully accomplish a joint mission are the limits of the
employed resources. A single operator is capable to directly control only a relatively
small number of robots. Thus with increasing number of deployed assets, direct
control of robots by humans becomes too costly in terms of human resources. In
result, scaling the number of robots requires larger numbers of human controllers,
what finally raises also financial and logistical costs of such operations.

One of the natural solutions to the problem of high-level control of multi-robot
teams is a significant increase of the level of autonomy of the individual robots,
as well as the multi-robot team itself. I.e., instead of resting on a human operator,
the tedious lower-level decision making and control (e.g., movement in a terrain, or
camera pointing, simple task planning, etc.) should be shifted on board to the robot
itself and the human operator should only take care of tasking the multi-robot team
and oversee the mission execution. The working hypothesis underlying the solution
is that

a single operator is capable to task and oversee even a relatively large multi-agent
teams comprising of highly autonomous robots which require human intervention only
rarely, especially when facing crucial choices in execution of the joint team mission.

Agent Technology Center (ATG) at the Department of Computer Science and Engi-
neering of the Czech Technical University in Prague is one of the leading research
groups in innovative industrial and research applications of multi-agent systems. Be-
sides other research topics, one of the major realms of its activities is research and
proof-of-concept prototyping in the field of mid and large scale simulations of multi-
robot systems. In this area, ATG focuses primarily on teams of autonomous aircrafts
and ground vehicles. In this chapter we present a cluster of completed projects Tac-
tical AgentFly and Tactical AgentScout, as well as outline the core objectives of
an on-going follow-up project AgentFly-In-Air. All these projects aimed at investi-
gation of cooperation and coordination issues in multi-robot teams either carrying
out tactical missions in urban warfare scenarios, or providing information collec-
tion support to human troops on the ground in such environments. The particular
objectives and foci of interest of the projects were organically evolving over time
spanning the years 2008–2011. However, the specifications of the individual work-
packages and their respective delivered demonstrators provide a set of high-level
design requirements on an underlying technological infrastructure.

The main contribution of this chapter is an account of architectural and tech-
nological issues related to development of the multi-agent platform and simulation
subsystems for the project cluster. The underlying storyline revolves around the ar-

7 Simulated Multi-robot Tactical Missions in Urban Warfare 149

chitectural shifts during the project development caused by gradual extensions of
the technology, as well as incorporation of often conflicting application require-
ments over time. In essence, these can be characterized as a move from a general-
purpose MAS platform imposing a specific MAS philosophy towards a more
liberal component-based architecture in terms of a toolkit for rapid construction
of application-specific fragmentary MAS platforms and applications.

In this respect, firstly, Section 2 provides an overview of the research objectives
of the twin projects. Subsequently Section 3 discusses the initial analysis of the
approach to design of the underlying multi-agent technological infrastructure. Sec-
tion 4 gives a more detailed account of the completed projects, the approaches we
took to tackle them, as well as the evolution of the underlying technological infras-
tructure and the involved toolkits. Critical analysis of the technological infrastruc-
ture evolution provided in Section 5 highlights the main lessons we learned in the
course of the work on the twin projects. Finally, Section 6 concludes the chapter
by an outlook to the open issues and challenges for the broader MAS community
involved in development and testing of various decentralized algorithms ultimately
targeted for multi-robot systems embedded in real hardware.

Sections 3, 4 and 5, the three core sections of the presented chapter are all
structured in a similar manner and subsequently discuss the main aspects of the im-
plemented system. Namely the issues of simulation and environment modeling, fol-
lowed by tackling the problems involved in experimental evaluation of the research
algorithms under investigation, together with configuration of simulation scenarios.
Subsequently, we discuss topics in mechanisms for agent deliberation and behavior
implementation and conclude by treatment of the issues in simulation visualiza-
tion and user interfaces. The recurrent structure provides scaffolding for the main
storyline of the chapter, the evolution of various aspects of the technological plat-
form underlying the Tactical AgentFly and Tactical AgentScout project cluster
over time.

2 The Project Cluster: Tactical AgentFly, Tactical
AgentScout

In the course of the years 2008–2011, Agent Technology Center was (and still is)
involved in a continuous interaction with CERDEC, ONR and AFOSR, the research
and development departments of U.S. Army, Navy and Air Force. Over time, these
interactions resulted in formulation of several research problems stemming from the
real needs of military units carrying out tactical missions on the ground and their
usage of advanced robotic and sensory technologies, such as various aerial drones,
especially the class of man-portable small unmanned fixed-wing aircrafts, various
rotorcrafts and unmanned ground vehicles. In particular, some of the most promi-
nent problem topics included area exploration, surveillance, tracking of mobile tar-
gets, patrolling and teamwork coordination in structured heterogeneous multi-agent
teams. The work towards investigating these research issues produced a number
of technological challenges, which had to be solved and implemented using an

150 P. Novák et al.

Fig. 1 Visual impression of Tactical AgentFly simulated environment

underlying technological infrastructure providing the basis for development of pro-
totypes demonstrating the proposed research approaches.

From technological perspective, the common character of the here described
projects is that the deliverables take the form of executable demonstrators showcas-
ing behaviors of algorithms for coordination of teams of robotic aircrafts, ground ve-
hicles and human troops in synthetic simulated scenarios of tactical urban warfare.
Besides the capability to empirically and reproducibly evaluate the performance of
the developed algorithms, the simulations must come with rich visualization com-
ponents. One one hand, rich visualizations plausibly demonstrate that the behavior
of the robots complies with their realistic limitations, such as sizes, weights, speeds,
physical motion dynamics, and physical properties of the environment. On the other,
they also help to facilitate dissemination of the results beyond the particular spon-
soring partner organization to non-expert audiences. In a consequence, the form
of the projects’ deliverables frames the more detailed technological requirements
stemming from the research objectives of the projects. In this section we provide
an overview of the research issues of the individual phases of the projects Tactical
AgentFly and Tactical AgentScout.

2.1 Tactical AgentFly

The objective of the TACTICAL AGENTFLY project was to develop basic agent-
based techniques for controlling a group of autonomous UAVs performing infor-
mation collection in support of tactical missions. The emphasis was on accurate
modeling of selected key aspects occurring in real-world information collection
tasks, in particular physical constraints on UAV trajectories, limited sensor range
and sensor occlusions occurring in spatially-complex environments. The ultimate

7 Simulated Multi-robot Tactical Missions in Urban Warfare 151

goal was to provide a high-level interface through which the operator can control
a fleet of UAVs and assign high-level tasks to the multi-robot team. The task allo-
cation to individual UAVs itself, as well as planning of their optimum trajectories
was performed automatically by the multi-agent team. The specific objectives of the
project were the following:

Formal framework: we had to design a framework for formal specification of the
information collection problem, serving as a common reference point for the rest
of the project. In particular, we were asked to investigate the concept of an in-
formation collection task, including task constraints and task objective functions,
which formed a basis for evaluation of the developed algorithms.

Persistent area surveillance: we investigated mechanisms for control of operation
of teams of UAVs providing and maintaining an up-to-date operational picture
of a designated target area. A key feature of the developed surveillance algo-
rithms is their respect for UAV’s motion constraints and the ability to provide
full area coverage even in environments affected by sensor occlusions, such as
narrow streets between tall buildings. The results of this research track have been
published in [30].

Target tracking: we were exploring the mechanisms to control the operation of
a UAV providing continuous tracking of one or multiple mobile ground targets,
respecting the UAV’s motion constraints.

Information collection testbed: an important objective was to develop an extensi-
ble software platform for implementing, simulating and evaluating various UAV
control mechanisms explored in the project. It had to contain a detailed model
of the urban environment, a model of the UAV’s on-board camera and a behav-
ioral simulation of several types of ground entities. A simulation of a multi-stage
search-and-capture mission was to be prospectively implemented as well in order
to enable evaluation of information collection mechanisms on a real-world-like
scenario. The testbed had to provide intuitive real-world-like 3D visual output
allowing the presentation of the project results outside the strictly technical com-
munity.

Command and control (C2) user interface: we had to develop an integrated C2
system for mixed-task information collection. Such a system was to provide an
additional level of automation on top of the autonomous surveillance and track-
ing control mechanisms. It should have consisted of two parts. Firstly, a C2 panel
through which the operator can specify information collection tasks and inspect
their results, and secondly, an allocation algorithm which optimally allocates a
mix of concurrent information collection tasks between a group of UAVs.

After the project’s first phase was completed, we were awarded a follow-up project,
during which we moved from the basic coordination algorithms for teams of fixed-
wing UAVs towards more advanced techniques applied in heterogeneous teams. The
main research objectives were the following:

Modeling Vertical Take-off and Landing (VTOL) Assets: we had to extend the
existing platform and enable integration of various types of VTOL UAV assets
(helicopters, quadrotors, etc.). The second major research objective of the project

152 P. Novák et al.

was to propose and develop suitable algorithms for trajectory planning of VTOL
assets and integrate them with the VTOL model. The resulting algorithms have
been presented in [10, 11].

M×N tracking: we focused on investigation of algorithms for tracking larger num-
bers of mobile targets by relatively small teams of aerial assets. One of the aims
was to investigate the methods of maximizing persistence of tracking of the ob-
jects and identifying how many assets are needed in different types of tracking
scenarios. Concretely, this research led to investigation of techniques for intelli-
gent target tracking task hand-over between multiple UAVs. The results of this
research track are discussed in [35].

Coordination for mixed information collection activities: in this workpackage, we
aimed at studying mutual interactions between simultaneously performed hetero-
geneous information collection tasks. For this we had to i) extend the range of
considered information collection task types with additional classes, in partic-
ular exploration and search, and ii) study the theoretical interactions between
mixed/heterogeneous information collection tasks performed simultaneously. In
particular, the idea was to investigate the problems arising from automated tech-
niques facilitating transparent switching between different information collection
tasks, such as switch from surveillance to target tracking and back.

Mission-centric/oriented information collection: the final objective of the second
phase of the Tactical AgentFly project was to further extend the integrated co-
ordination for mixed information collection. That is, the task was to propose
techniques for a team of UAVs performing information collection tasks, however
taking into account the plans of special operation units carrying out their own
mission on the ground in the town, so that the information needs of the mission
are optimally covered. The activity aimed at research and possibly prototyping
efforts towards considering temporal development and dependencies between the
individual information collection tasks as the mission progresses.

2.2 Tactical AgentScout

TACTICAL AGENTSCOUT project started as a branch of TACTICAL AGENTFLY

project that aimed at integration of aerial information collection with various types
of ground robotic assets. The foci of the project were on multi-agent planning and
task-allocation problems. The proposed solutions were to be demonstrated in a sim-
ulated tactical scenario taking place in a complex urban environment defined by an a
priori known street map. Furthermore, the environment included various 3D terrain
features, as well as buildings. Finally, the the environment should have contained a
number of road blocks on the street map, which however were not a priori known
to the multi-robot team. The goal was to find a safe and effective path for a convoy
to traverse the urban environment. The task of the team of autonomous UGVs was to
cooperatively support the convoy by continuous exploration of the area and search
for the road blocks on the way of the convoy. The information about the discovered

7 Simulated Multi-robot Tactical Missions in Urban Warfare 153

Fig. 2 Visual impression of Tactical AgentScout simulated environment

obstacles is then communicated to the convoy and can be used to update its plan. In
particular, the project included the following research topics:

Integration of various ground units: the main planned contribution of the Tacti-
cal AgentScout project was to enable integration of various autonomous ground
robots into the existing platform. In particular, the challenge was to plausibly
model the physical dynamics of the assets within thef simulation.

Distributed dynamic vehicle routing problem (DVRP) solver: the cooperative ex-
ploration problem was identified as a variant of the DVRP of the supporting
UGVs. Although there are centralized state-of-the-art techniques for solving the
DVRP, our goal was to propose a novel multi-agent solver for this class of prob-
lems [33].

Planning under uncertainty: the flight trajectory planning algorithms for UAVs as
used in Tactical AgentFly assumed reliable execution of the generated plans. In
the domain of ground vehicles, we deemed such an assumption too strong. The
goal was to develop a path planner for UGVs that is able to efficiently control the
vehicle also in dynamic, uncertain environments. To evaluate such a planner, we
aimed to simulate the UGVs using physically realistic models that let us generate
some of the problematic real-world phenomena such as tire spin, vehicle mass
momentum, limited engine power etc. [34].

In a follow-up project we moved towards more advanced techniques studying var-
ious aspects of adversarial and cooperative behaviors in dynamic environments.
Specifically, the project addressed the following research challenges:

Patrolling of mobile targets: a complementary task to tracking a number of mo-
bile adversary targets is the protection of mobile ground units against attacks
from enemy units. The motivating scenario is an urban environment with a num-
ber of convoys passing through an area which should be protected by a small

154 P. Novák et al.

mixed team of aircrafts, e.g., helicopters and small fixed wing aircrafts. In such a
scenario, it is vital for the patrol to execute a non-predictable patrolling strategy.
The opposite would allow the adversary to optimize with respect to the patrol’s
strategy and attack the convoy in the worst timepoint, e.g., when the patrol just
left the convoy it protects. The solution was the use of randomized strategies
which, however, still maintain certain average frequency of visits of each pro-
tected convoy. The research objective was to develop algorithms for computation
of optimal strategies for protection of mobile targets in adversarial environments.
The resulting method has been published in [7].

Smart targets modelling: the mobile target tracking techniques as proposed in the
Tactical AgentFly project paid no attention to intelligence of the tracked targets.
As an extension, in this project we considered smart targets, i.e., such which ac-
tively monitor their environment and optimize their behavior to act with respect
to the information they acquire. Smart targets, when being tracked, are aware
of that fact and actively try to avoid the tracking unit. Complementary, we con-
sider trackers (be it UAVs, VTOLs, UGVs, or personnel) to be aware of the fact
that the tracked targets are aware of their activities and try to act in best re-
sponse to the whole setup. The objective here was to propose and solve a formal
game-theoretical model of pursuit-evasion scenario with heterogeneous teams of
agents [24].

Multi-agent re-planning and plan repair: classical-style planning is not robust with
respect to unexpected events occurring in dynamic environments. The standard
solution, in such cases, is to simply re-plan the agent’s behavior from scratch.
While decentralized extensions of classical planning can be used to compute ac-
tivities of the individual team members, full-scale re-planning can become too
costly due to the costs of communication in multi-agent teams executing a de-
centralized planning algorithm. Thus, the objective was to formalize multi-agent
plan repair problem and devise and evaluate algorithms for solving it. An initial
version of the plan repairing algorithm has been presented in [22, 23].

Coordination and teamwork: reactive planning is an alternative approach to deal-
ing with dynamics of environments. The state-of-the-art techniques of reactive
planning, however, do not support implementation of team-level behaviors. The
objective here was to extend an existing agent programming framework so that it
can accommodate techniques for team-level coordination specification in terms
of reactive plans executed jointly by the team members. In particular, we aimed
at implementation of the distributed commitment machines approach [37] in a
chosen agent-oriented programming language.

3 Analysis and Design of the System

The general description of the individual research issues discussed in the previ-
ous section and their respective software demonstrators provides a comprehensive
overview of the various, often conflicting, requirements on the technological infras-
tructure for the Tactical AgentFly and Tactical AgentScout project cluster. The

7 Simulated Multi-robot Tactical Missions in Urban Warfare 155

overall goal of the technological side of the whole endeavor, the main topic of this
chapter, could be formulated as follows:

Develop a set of software tools enabling rapid prototyping of a broad range of simu-
lated missions involving teams of autonomous robotic assets, as well as various situ-
ation scenarios in tactical urban warfare the robots are involved in. Furthermore, the
toolkit must allow for batch evaluation of performance of the algorithms governing
the behavior of the multi-agent teams in a range of configurations of the simulated
scenarios.

In the core, the objective was to facilitate modeling and execution of various types
of robotic systems which i) feature heterogeneous physical capabilities, ii) employ
heterogeneous control algorithms governing their autonomy, and finally iii) are em-
bodied in simulated, but realistic physical environments. As already discussed in
the introductory section, the underlying hypothesis of the research work in the twin
projects was that a significant increase of autonomy of the individual robots and
the multi-robot team itself will lead to reduction of human resources involved in
the operation and monitoring of such teams. The stress on the autonomy of the in-
volved agents, such as various unmanned aerial or ground vehicles, directly induces
the remaining requirements usually ascribed to intelligent agents[38]. In particular
these include reactivity, proactivity and in our context especially social capabilities.
In result, the character of the problem directly correlates with the usual assump-
tions underlying the multi-agent paradigm. Hence the choice of the conceptual and
analytical framework for multi-agent systems, as well as the initial tools and plat-
forms for development of multi-agent systems became natural and straightforward.
Additionally, our hypothesis was that the inherent decoupling of entities accord-
ing to the multi-agent systems paradigm should open a way towards future port-
ing and deployment of the developed agent (simulated robot) control algorithms to
real hardware. We also hypothesized that the decoupling, i.e., the inherent modu-
larity of multi-agent systems will facilitate rapid prototyping of a broad range of
simulated scenarios involving heterogeneous multi-robot teams. It also should have
options opened for rich modeling of environments these robots operate in. Finally,
the previous industrial development and deployment of multi-agent systems, as also
discussed in [3], provided ample argument in favor of future scalability of the de-
veloped multi-robot simulations to relatively large numbers of involved agents.

The remainder of this section provides a discussion of the initial analysis and
design consideration tackling the technological problem stated above. Subsequently,
we provide an overview of the technologies and platforms we initially chose for
implementation of the first phases of the project cluster. In Section 4 below we
discuss our experience with these technologies and how the evolution of the projects
over time led to reconsideration of our initial choices.

3.1 Initial System Requirements

During the initial system analysis step of the first phase of the Tactical Agent-
Fly project, we identified a list of architectural and functional requirements on a

156 P. Novák et al.

technological infrastructure underlying the project implementation. These can be
divided into four groups subsequently discussed below. The structuring along the
four aspects of the technological infrastructure also provides a scaffolding for dis-
cussion of the system evolution in time and its critical analysis in the subsequent
parts of the chapter.

3.1.1 Multi-agent Platform

Given the argument in favor of application of multi-agent paradigm in the projects
and the stress on future potential for porting and deployment of the developed algo-
rithms to real hardware assets, there arises a need for a multi-agent platform. I.e.,
a software supporting modeling of the individual agents, execution and life-cycle
management of the multi-agent system as a whole and services of a communica-
tion middleware, such as a white pages register and a discovery service. Due to
the focus on relatively small and mid-scale simulation scenarios involving dozens,
possibly low hundreds of agents and environment entities, the requirements on net-
work and CPU distribution and agent mobility were not an important issues in our
projects. Finally, since organizational structuring and coordination of MAS teams
was the main research focus on the application level in the projects cluster, we felt
that binding to a particular MAS organization philosophy would be rather a burden
possibly interacting with the coordination techniques under investigation. Thus, an
a priori organizational model imposed by the MAS platform was undesirable.

3.1.2 Environment Simulator and Scenario Modeling

A simulated multi-robot system must be embodied in a physical environment which
faithfully models a set of relevant aspects of the real physical reality in the simula-
tion. Thus, the technological platform should facilitate rapid development and con-
figuration of instances of simulated environments. First and foremost, such scenar-
ios comprise the physical structure and topology of the environment. In particular,
our focus on tactical military operations in urban terrain dictated ability to model
landscapes with realistic terrain, traffic infrastructure of small and medium urban
areas including buildings, roads and bridges. Finally, due to the focus on robots
physically interacting with the environment, such as unmanned ground vehicles,
we needed to realistically model their physical interaction with the environment in-
cluding phenomena of gravity, object masses and rigid body interactions. Due to
the need to demonstrate functionality and robustness of the developed coordination
mechanisms in various settings, the platform should provide means for straightfor-
ward configuration of the physical features of simulated environments in different
simulation instances.

The platform should also support clear cut interfaces between agents and the
environment. That is, the software interfaces for implementation of robots’ sensors
and actuators must be well defined so that i) the agents use unified style of such
interfaces across the whole application, and ii) in the case of future need, these
could be easily bridged to physical hardware sensors and actuators.

7 Simulated Multi-robot Tactical Missions in Urban Warfare 157

3.1.3 Experiments and Configuration

The main objective of the described projects is to investigate various types of coor-
dination mechanisms among agents belonging to teams of cooperative individuals.
Thus, besides proposing and developing such algorithms, the main task on the ap-
plication level is to perform empirical evaluation of their performance and measure
it against benchmark cases and alternative state-of-the-art methods. Running such
experiments en masse requires that the platform is capable of providing means for
batch execution of experimental setups in different configurations and enables to
collect the resulting data sets in a straightforward manner. Furthermore, to facilitate
reproducibility of the experiments, the experiments should be run in a deterministic
manner with pre-configured random generators if needed. Finally, since there might
be hundreds of such experiment scenario instances, the platform must be able to ex-
ecute them in parallel, as well as in faster than real-time speed. I.e., it must support
both modes of scenario execution: physical-time-speed mode, where one objective
second correlates with one second in the simulation; and it should be able to run at
the top use of the available resources, such as the CPU speed, operating memory
limit, etc.

3.1.4 Agent Behavior Control

On one hand, often in the project cluster experiment setups the individual behavior
of the simulated robots was rather rich beyond the particular coordination mecha-
nism under investigation. For instance, while an autonomous ground vehicle must
coordinate its plans for traversal of a given town street network with its peers, at the
same time it is responsible for local execution of those plans. Besides steering the
physical body of the robot and monitoring the progress of the plan execution, this
task also involves relatively complex behaviors for dealing with the issues which
were abstracted away by the planner. For instance, the plan would prescribe driving
through a sharp curve in a narrow street, but due to the physical limits of the vehicle
the car could end up stuck in the corner and must maneuver out of the place e.g., by
iteratively driving backwards and forwards.

On the other hand, the environment contains also actors, which are not in the
focal point of the multi-agent coordination mechanisms. These include agents rep-
resenting the ground troops carrying out a tactical operation (the blue force), which
the robots are supposed to support. Furthermore, there can be also various kinds of
adversarial units (the red force), or civilians. Depending on the particular scenario,
their behaviors range from relatively simple, such as random movement within a
perimeter, to relatively complex ones implementing the mission played by the blue
force. From the point of view of the multi-robot team in consideration, such agents
model, as well as generate the environment dynamics relevant to the target coordi-
nation mechanism under investigation.

Finally, while some simulations would require rather abstract discrete time step-
wise simulation of agent’s actions, in other scenarios more realistic fully asyn-
chronous time model is needed. Due to uncertainties with respect to the particular

158 P. Novák et al.

style of the simulations required for evaluation of the broad range of the considered
centralized and decentralized coordination algorithms, the simulator shouldn’t be
strongly bound to a single simulation model.

3.1.5 User Interface and Visualization

To maximize applicability of the algorithms on real hardware robots in the future,
one of the requirements of the projects Tactical AgentFly and Tactical AgentScout
was that the developed coordination mechanisms must be demonstrated in scenarios
featuring believable adversaries, and close-to-real-world physical environments. In
result, the underlying technological infrastructure had to support rich visualization
interfaces providing both 2D and 3D graphical views on the state of the simulation
capable to display the physical dynamics of the simulated entities in real-time. Fi-
nally, the platform had to support creation of graphical user interfaces for implemen-
tation of real-time simulation and robot-team control interfaces (C2 user interfaces)
when needed.

3.2 Initial Technological Infrastructure: AgentFly

In 2008, at the time of starting the first phase of Tactical AgentFly project, time-
wise the first project of the cluster, the Agent Technology Center had already an
in-house developed technological infrastructure to start from. In the context of
AgentFly project, described below, we developed an advanced technological plat-
form for air traffic management and flight control of unmanned fixed-wing aircrafts.
The initial design of the technology used for the Tactical AgentFly and Tactical
AgentScout projects heavily relied on re-use and extension of proprietary, in-house
developed technologies from the AgentFly project. In the following, we provide a
brief overview of the individual software packages planned to be re-used, adapted,
or integrated with the newly developed technological platform.

3.2.1 Application Domain Fundamentals: AgentFly Overview

The AgentFly system developed in ATG between 2005–20111 is a technological
platform facilitating development of mid and large scale simulations of autonomous
aircrafts. As of 2008, the system was primarily aimed at investigation of issues in
flight trajectory planning of various classes of fixed wing CTOL UAVs and their
collision avoidance. I.e., a typical AgentFly scenario instance was configured with
a landscape, a number of pre-configured no-flight zones and a number of aircrafts.
Each aircraft was initialized with an initial position, space constraints on its flight
trajectory envelope, speed vector (or landed on a ground runway) and a set of way-
points it should visit in particular times and fly over in particular speeds and heading
vectors. The aircrafts were able to compute optimal flight trajectories spanning the

1 As of writing this report, the project is still being actively developed, extended, and
optimized.

7 Simulated Multi-robot Tactical Missions in Urban Warfare 159

Fig. 3 Snapshot of an AgentFly scenario simulations

waypoints, and at the same time respecting the constraints set up by the environ-
ment, together with the time, velocity and heading constraints. At the core of the
system lies a decentralized algorithm running on board of the simulated aircrafts
which was able to firstly detect conflicts between the trajectories of the planes and
subsequently compute solutions to the conflicts in the whole multi-aircraft system.
Figure 3 depicts a snapshot of an example scenario running in the AgentFly system.

Initially, the projects of the Tactical AgentFly and Tactical AgentScout cluster
were supposed to re-use the existing algorithms for trajectory planning and collision
avoidance and extend them so that they could be integrated with algorithms for area
surveillance and target tracking.

3.2.2 Multi-agent Platform: Aglobe

The architecture of the AgentFly system relies on a state-of-the-art multi-agent
platform Aglobe [31] and its simulation extension AglobeX Simulation (see Fig-
ure 4). Aglobe is an award-winning multi-agent platform, similar to JADE [4] or
Cougaar [13], aiming at testing of experimental scenarios featuring agents’ posi-
tion and communication inaccessibility. The focus of the platform is on modeling
and development of decentralized multi-agent systems. It provides facilities such as
communication infrastructure, data store, directory services, weak migration func-
tion, deployment service, etc. Aglobe features an extremely efficient message trans-
port layer and agent life-cycle management and thus offers a very high level of
scalability. From the perspective of a single agent, the platform provides two types of
interfaces. Firstly, the MAS platform provides core functionalities including intra-
agent tasking, message communication, communication visibility, agent life-cycle,
and migration. Secondly, it includes and handles a number of services including di-
rectory/yellow pages, communication monitoring, and other. Due to its underlying
architecture, the service interface is highly modular, as the individual services can
be optionally turned on/off.

In Aglobe, agents reside in containers, which can be seen as logical groups of
agents acting as a single entity from the perspective of the communication visibility

160 P. Novák et al.

Fig. 4 AglobeX Simulation extension of the Aglobe platform depicted as it was instantiated
in the AgentFly project as of beginning of the Tactical AgentFly project

subsystem. The containers run on platforms, where each platform is run within a
single Java Virtual Machine (JVM), possibly on a single network node. Each agent
is running asynchronously in its own computational thread and it is driven by an in-
ternal event queue. The events are strictly personalized for each single agent and are
used both for self-tasking, as well as for processing external messages. The agents
run and communicate in a fully asynchronous manner with respect to each other.
The communication subsystem, the message transport layer, is optimized in vari-
ous respects. All messages are pooled for more efficient creation and destruction of
the underlying objects. User of the platform can configure whether the message pay-
loads are sent by serialization or as references (available only within the same JVM).
The message delivery mechanism selects an efficient message transport method tak-
ing into consideration the platform decentralization, communication capabilities of
the underlying network stack and the target platforms the agents reside on.

On the message transport layer, Aglobe employs a publish/subscribe mechanism
based on global topic messages. These are used for system communication, as well
as widely employed by AglobeX Simulation simulator and other technology sub-
systems.

7 Simulated Multi-robot Tactical Missions in Urban Warfare 161

3.2.3 Environment Simulator and Scenario Modeling: AglobeX Simulation

AglobeX Simulation (see Figure 4) is a simulator extending the Aglobe multi-agent
platform. It aims at modeling and execution of real-world-like 3D simulations in-
cluding both static, as well as mobile units such as towns and ports on the one hand,
as well as aerial and ground vehicles on the other.

The simulator is implemented as a number of interacting Aglobe agents. The re-
sponsibilities of the agents are initialization, finalization and execution of the simu-
lation. In the course of a simulation the agents compute the next time-step evolution
of the vehicle positions, simulate inputs to their sensors, detect collisions, prepare
required information about the vehicles for the communication visibility subsystem,
etc. At the time of using the platform in our projects, the core functionality of the
AglobeX Simulation component was due to legacy reasons centralized and with
respect to other subsystems functioned in a client-server mode. In its current incar-
nation, the simulator leverages the multi-agent paradigm as well and thus enables
the distribution of the entire simulator over a set of network nodes. The simulator’s
clients are agents or groups of agents residing in a single MAS container control-
ling the simulated entities, which represent their embodiments within the simulated
environment. The agents communicate with the simulation server using the topic
messages. In one direction, the agents control their embodiments in the physical
simulation and in the other direction, they are perceive the state or changes in the
environment through their sensors.

The simulator consist of the following agents:

Scenario manager agent: manages, pre-processes, and serves the configuration
data to the simulation (see also Section 3.2.4), manages the simulation scenar-
ios, their initialization, finalization, and monitors their execution.

Time manager agent: provides synchronized time ticks for all the components in-
volved in the simulation.

Simulation manager agent: manages client agents and client containers, creates
and removes simulated entities, forwards the initial configuration to the entities
(all this based on the configurations from Scenario manager agent).

Entity simulator agent: computes the step-wise evolution of the entity states (po-
sitions, orientations, etc.). Each entity is described by its behavior transforming
the current state to a new state according to the commands received from the re-
lated client agent (agent container). The behaviors together describe mechanics
of the environment.

Distance agent: computes and stores distances among all entities in the environ-
ment.

Visibility collision agent: processes data from the Distance agent and i) provides
them to communication visibility subsystem of Aglobe, and ii) uses them as a
basis for entity collision detection.

Sensor agent: represents all monitoring and detection systems of the simulated
entities (radars, cameras, etc.) and provides views to the simulation for the simu-
lation agents based on time ticks from the Time manager agent.

162 P. Novák et al.

All the server-side agents communicate using the topic messages. The agents use the
topic messaging to orchestrate and synchronize themselves as a single, centralized
or distributed, simulation process.

3.2.4 Configuration, Experiments, User Interface and Visualization

As already discussed above, in AglobeX Simulation, various types and courses
of simulation are conceptualized into scenarios. Each scenario describes the ini-
tial state of the simulation instance, as well as the initial states of the controlling
client agents. Each scenario also contains an initialization process for the related
simulation. The scenarios are Java programs supported by mechanisms for XML-
based configuration processing. A single scenario, together with its configuration
initializes and executes a single simulation instance. Besides that, scenarios can also
contain components gathering, processing, and storing results from experiments. A
scenario can also describe a suite of experiments together with their automated con-
figurations. The experimental results are collected from the simulated processes via
topic messages or directly by monitoring the evolution of simulation.

As a full-featured MAS platform, Aglobe further provides various user interfaces
(UIs). The core one is the platform management UI. It contains a list of services and
agents running on the platform and allows a user to run a new service, stop a service
or examine services and agents running within the platform. To facilitate commu-
nication monitoring and debugging, there is also a communication sniffer tool. It
enables tracking of inter-agent conversations and inspect the content of intercepted
messages. Optionally, agent implementations can come with their own application
specific UIs. An example is an informational UI provided by the Pilot agent of the
AgentFly system.

AglobeX Simulation comes with its simulation-specific user interface. The Sce-
nario manager agent provides dialogs for scenario selection and reset. The Time
manager agent allows users to start, or stop simulation time, as well as set the sim-
ulation speed. Similarly, there are lists of the simulated entities, their respective
agents, logging consoles, and others.

The last subsystem of the initial technological infrastructure is the Visio
visualizer for the simulated world populated by agents. Visio is built on Java3D
library [18] and JOGL library [21]. It enables 3D and 2D visualization of the simu-
lated worlds, including the physical environment, simulated entities and additional
information used during implementation, debugging phase and demonstrations. The
visualized elements are organized in a hierarchical layout (used for the canvas draw-
ing process) and a layered layout (used for turning on/off groups of visual elements).
The visualization layers communicate with the rest of the system, i.e., client and
simulation agents, by standard Aglobe topic messages.

3.2.5 Agent Behavior Control: POSH

A significant requirement coming out of the initial analysis of the technolog-
ical infrastructure underlying implementation of the Tactical AgentFly/Tactical

7 Simulated Multi-robot Tactical Missions in Urban Warfare 163

Fig. 5 Initial architecture of the technological infrastructure for the first phase of the Tac-
tical AgentFly project based on AgentFly project (feature framing represent architectural
composition, arrows represent coupling)

AgentScout cluster was a need for a framework and an associated toolkit facilitating
scripting of agent behaviors. The scenarios modeled in the AgentFly project did not
require such complex behavior implementations. Early on, it became clear that for
the projects Tactical AgentFly and Tactical AgentScout we need to bring in a new
technology facilitating behavior scripting and integrate it with the rest of the system.
Our initial idea was to leverage the state of the art frameworks for development of
intelligent autonomous agents [5]. We chose to consider the POSH (Parallel-rooted,
Ordered Slip-stack Hierarchical) reactive planning engine [9, 8]. POSH can be seen
as a programming language allowing to execute programs encoding reactive action
selection based on both the current state of the environment the agent perceives,
together with its internal state, which can feature relatively complex data structures
(beliefs). POSH follows the paradigm of behavior oriented design where behavior
modules of a POSH agent provide the primitives for formulation of the plans. These
are subsequently executed in run-time and represent the agent’s deliberation about
the particular action to be taken in the next step.

3.3 Initial System Architecture

Figure 5 depicts the initial architecture of the underlying technological platform for
the project cluster. It is based on the technologies from the AgentFly project. The
platform stack runs within an instance of Java Virtual Machine (JVM) and the whole
system was written in Java. Majority of the subsystems are implemented as agents
running in the Aglobe MAS platform container. The Visio visualizer subsystem is
partially independent from Aglobe, since it incorporates a standalone part of the
visualization engine.

All technological components of the system are configured with a simulation sce-
nario descriptions and their respective XML configurations, initialization programs
and experiment descriptions. These parts are depicted as Init & Config & Experiment

164 P. Novák et al.

subsystem. As already noted in the previous subsections, the AglobeX Simulation
subsystem (abbreviated as XSimulation) runs as an orchestra of Aglobe agents as
well. The simulation subsystem consist of the Simulator component managing the
time and simulation state. The Environment component manages simulated entities,
sensors, and communication visibility.

The AgentFly system as whole is represented by agents acting as aircraft pilots. A
pilot agent implements a particular agent controls mechanism (abbreviated as AgC-
trl). The component implements two main technologies. Firstly, it is a flight path
planner and secondly, a decentralized collision avoidance mechanism, coined also
deconfliction. These two components form the intelligent decentralized behavior of
the individual aircrafts.

Finally, the visualization subsystem facilitates 3D and 2D visualizations, both
based on Visio engine.

4 System Implementation and Experiences

The works on the projects Tactical AgentFly and Tactical AgentScout took part
from early 2008 until mid 2011. Both projects were divided into two phases, each
taking 12 months duration. Generally speaking, the initial phases of the projects
were dedicated mostly to development and feasibility studies of the basic technolog-
ical framework needed for realizing the main objectives. The successive iterations
then focused primarily on the core objectives, namely research, development and
empirical evaluation of various advanced multi-agent coordination algorithms.

In Subsection 3.1 we identified and summarized the main requirements on a tech-
nological infrastructure of the Tactical AgentFly and Tactical AgentScout project
cluster. The remainder of this section discusses the details of their implementation
as they were gradually incorporated into the code base. I.e., starting from the tech-
nologies underlying the AgentFly project, we discuss how the system architecture
evolved by incorporating the individual requirements. During the process, we had
to implement completely new modules and libraries and some of the modifications
of the core elements of the infrastructure at the time resulted in significant shifts
of its underlying philosophy. In result, some of the modifications were not back-
wards compatible with the original multi-agent platform anymore and led to signif-
icant architectural challenges. Alite is an agent simulation toolkit comprising all the
general-purpose modules and libraries developed in the course of the works on the
here described twin projects. Its gradual implementation could be seen as a conse-
quence of tackling these challenges and, together with the gradual system evolution
from a rigid single-philosophy embracing MAS platform to a pragmatic toolkit fa-
cilitating both a MAS platform composition, as well as rapid prototyping of the
application specific functionalities. Recently, Alite grew out of providing only tech-
nological infrastructure for the Tactical AgentFly and Tactical AgentScout project
cluster and it is already being used and extended in the context of various other
projects ATG is involved in. While the initial design of the twin projects heavily
relied on the Aglobe MAS platform and its AglobeX Simulation extension, the final

7 Simulated Multi-robot Tactical Missions in Urban Warfare 165

phase of the Tactical AgentScout project was completely written using Alite toolkit
and the libraries it provides. The remainder of this section tells the story of the grad-
ual shift of the underlying architectural philosophy on the background of series of
extensions and requirements incorporation into a single system.

The treatment of the individual requirements follows the structure already in-
troduced in the previous sections. I.e., starting with simulation and environment
modeling issues, we continue by discussion of execution and configuration of ex-
periments, through requirements and evolution of the agent behavior control mech-
anisms finally to discuss the implementation of user interfaces and visualization
components of the system. Wherever possible, we respect the timeline of the work
on the individual requirements.

4.1 Simulation and Environment Modeling

Due to the focus of the here described project cluster on tactical missions in urban
areas, one of the first tasks the project team faced was extension of the AglobeX
Simulation module with the ability to handle complex urban environments and
landscapes. In particular, we extended it to handle 3D models describing buildings
and the underlying street map providing the high-level environment abstraction the
agents lived in.

With 3D buildings representing a town, agents moving along streets between
these buildings and aircrafts flying over and screening the area by use of cameras,
the environment modeling also needed to handle occlusions. To tackle this problem,
we implemented an environment-specific simulation agent providing an occlusion
sensor for the aircraft agents running in the system. As we discuss later, due to the
inherent complexity of the AgentFly’s AglobeX Simulation architecture, this design
decision later turned out to be rather ineffective and after replacing the core simula-
tion component by Alite specific module, the occlusions handling was implemented
in a form of pure individual-agent level sensor.

The task of the aircrafts in the Tactical AgentFly project was to perform surveil-
lance and tracking of urban areas with simulated human agents performing either
relatively simple adversarial behavior (red force), or representing civilians in the
town. The embodiments of the ground entities were added into the environment as
a new type of simulated entities and integrated into the common collections of sim-
ulated entities. They featured their own mobility models and behavior mechanics
controlled by reactive planning engine(s) discussed later in this section.

The Tactical AgentScout project brought a new set of requirements, which led
to significant changes of the simulator. The incorporation of simulated unmanned
ground vehicles (UGVs), resulted in a need to significantly adapt the model of the
general physical dynamics of agents representing physically simulated entities. This
adaptation resulted in an incorporation of a 3D physics simulation middle-ware into
the system. Execution of trajectory plans by autonomous ground vehicles in physical
conditions can result in frequent plan invalidation. Some terrain features, such as
slopes, potholes, stones on the ground, or some corners are not traversable by the

166 P. Novák et al.

vehicle in its current speeds. In result, the autonomous cars have to move around the
town by executing, continuous monitoring and adaptation of the trajectory plans. As
a part of the solution, we integrated an open source high-fidelity physics simulation
engine JBullet [19].

To enable high-level control of the UGVs, which abstracts away the physical
reality of the environment, we implemented discrete time movement of simulated
ground vehicles on a street graph. In result, the high-level control algorithms steer
the cars between waypoints on the street map (e.g., junctions). This development,
together with the above described move from proprietary physical environment rep-
resentation to a state-of-the-art technology for simulated physics led to abandon-
ment of the AglobeX Simulation component from the system. This radical step was
reinforced by the fact that AglobeX Simulation supports only simulated continuous
space entity motion, however for many of our experiments only rough discrete mo-
tion on graph-based representations sufficed. In result, the move to pure Alite-based
simulator led to significant decrease of implementation, as well as debugging com-
plexity of the individual experimental scenarios and allowed us to implement also
simplified simulation model based on events instead of discrete time ticks (see also
below).

To implement aircrafts performing close-up tracking of mobile targets, such as
pedestrians and cars resulted in a need to incorporate reactively controlled aircrafts
of various types into the system, be it conventional fixed-wing planes (CTOLs),
or helicopters (VTOLs). Such UAVs are able to change their flight trajectory in a
reaction to changes of movement patterns performed by the ground target. In the
case of fixed-wing aircrafts, which cannot stop in mid-air, this problem results in a
need to perform relatively complex flight patterns, such as various loops over the
target. Together with a need to implement a fine-grained physical dynamic feedback
control of helicopters respecting a realistic model of their physical movements, this
led to a requirement to adapt the simulator to a much finer grained time resolutions.

Fixed-wing aircrafts feature a much simpler model of their physical dynamics
and therefore can afford for longer delays between individual steering points. Due
to relying on features such as this, the underlyingAgentFly infrastructure turned out
to be too rigid for our purposes. An implementation of the required fine time gran-
ularity control of physical entities would lead to a significant abuse of the platform
and would have result in significant re-implementation of the mechanics integrat-
ing high-level planners and the low level physical control of the plane. In result, as
already indicated above, we gradually departed from the AglobeX Simulation com-
ponent and implemented the fine-grained simulator event loop in Alite from scratch.
The final implementation proved to be flexible and easily integrable with the other
parts of the resulting system.

4.2 Evaluation of Multi-agent Coordination Techniques

The main objective of the twin projects was to develop and most importantly exper-
imentally evaluate various decentralized algorithms for coordination of multi-agent

7 Simulated Multi-robot Tactical Missions in Urban Warfare 167

teams. This objective resulted in two basic requirements. Firstly, the simulator had
to be highly configurable in order to allow for high flexibility in terms of both, sim-
ulation experiment structure (number of agents, their various types, different initial
conditions, etc.) and the executed scenario storyboard, i.e., the particular mission
to be executed. Secondly, the experiments comprise of large numbers of executed
simulation instances and their runs had to be reliably reproducible.

The Aglobe MAS platform, together with the AglobeX Simulation extension for
AgentFly feature an XML-based configuration facility. This however turned out to
be too rigid for the purposes of the Tactical AgentFly and Tactical AgentScout
projects. The XML-based configuration files are interpreted by the simulator and the
MAS platform so that the correct numbers of agents with correct initial conditions
are instantiated in the system at the beginning of a run. However, such files allow
for configuration of features foreseen during the system development and thus are
inflexible with respect to the extremely broad range of scenarios implemented in
the here described projects. As a part of departure from the Aglobe and AglobeX
Simulation technology, we implemented a flexible configuration facility based on
employment of dynamic programming language interpreters of Groovy [16] and
Clojure [12]. Interpretation of full-fledged programs in run-time allows to configure
any aspect of simulations in a concise and flexible way. In our context, the additional
overhead of configuration script recompilation turned out to be relatively small and
the corresponding minor slow-down of experiment runs was acceptable, as well.

An important aspect of simulation development is reproducibility of simulations.
Large-scale simulations involve various aspects of non-determinism which can lead
to non-reproducible simulation runs. Such factors include parallel and random pro-
cesses, as well as limitations of the underlying hardware, such as CPU scheduling,
or memory swapping on the limit of resource utilization, etc. To ensure reproducibil-
ity of experimental runs, we carefully considered and implemented the concept of
in vitro simulation. That is, a simulation which controls all the aspects of the mod-
eled system, or carefully accounts for those, which were abstracted away from. In
particular, this means that the simulator has to have an ability to suspend and later
resume the simulation process. Furthermore, it should have an ability to speed it up,
or slow it down in response to e.g., resource utilization of the underlying hardware,
so that race conditions and different results of process scheduling do not affect the
simulation outcome. Finally, the random processes involved in the simulation must
be also under the simulator’s control so that the same sequences of random events
are generated in two independent runs of the same simulation.

The vanilla MAS platform Aglobe is based on the assumption of full autonomy
of agents which all run asynchronously in a truly decentralized fashion. This fea-
ture, while desirable in extremely large-scale simulations of air-traffic, turned out
to be difficult to live with due to problems with the inherent non-determinism of
the platform asynchronicity and the reliance of the simulation extension on discrete
time ticking dynamics. In result, the need to run huge numbers of reproducible ex-
periment runs turned out to hinge on the speed of simulation run execution and
ability to make the runs deterministic on demand. To tackle this issue, we departed
from the exclusive model of centralized discrete time ticks and implemented event-

168 P. Novák et al.

based simulation mechanism [2]. This allowed the system to disrespect real-time
constraints of the wall clock ticking mechanism and run the simulation as fast as
possible given the available computational hardware resources (memory and CPU).
However, at the same time the resulting Alite simulator still featured the ability
to run at real-time simulation speed for demonstration purposes. In the Tactical
AgentFly and Tactical AgentScout projects, the newly implemented event-driven
Alite simulator enabled complete synchronization of the simulated processes and
thus facilitated high level of control over the simulated environment.

4.3 Scripting and Agent Control

As already mentioned above, realistic evaluation of various coordination mecha-
nisms requires modeling of realistic behavior of the various actors comprising the
environment the simulated multi-robot team acts in. As already discussed in Sec-
tion 3, our initial idea was to employ a state-of-the-art agent programming frame-
work POSH. Early on, however, this choice turned out to be difficult due to the
fact that the programming system is a research prototype and was not ripe enough
for straightforward integration into the project code base. Besides that, our initial
feasibility study showed that the use of the framework by inexperienced users, pro-
grammers involved in our projects, was rather problematic also due to difficult a
priori conceptual framework underlying the system.

The initial solution to our problem was implementation of Lightweight Reactive
Planner (LRP) [29], a proprietary and relatively simple hierarchical reactive-control
engine. While the component served us well in the first iterations of the project, later
it also turned out to be inflexible due to its extreme simplicity. In result, we moved to
Belief-Desire-Intention (BDI) agents implemented in an agent-programming frame-
work Jazzyk [27]. Jazzyk features a high-level of modularity with respect to inte-
gration with 3rd party and legacy systems and allows their straightforward integra-
tion into the system in the form of agents’ knowledge bases. This allowed us to
use heterogeneous knowledge reasoning engines, such as Prolog, or object-oriented
databases within a single agent system and at the same time maintain a high level of
control over agent’s behaviors, which were implemented as Jazzyk situated reactive
plans.

4.4 User Interface and Visualization

The last, but at the same time one of the most important technological parts of the
whole mosaic of subsystems are user interfaces and visualizers. Visualization com-
ponents facilitate various debug, as well as demonstration views on what is going
on within the simulation. Graphical 3D demonstrators constituted important deliver-
ables of the Tactical AgentFly and Tactical AgentScout projects. To facilitate vivid
and believable presentation of the research results we were using a composition of
various 2D and 3D visual representations.

7 Simulated Multi-robot Tactical Missions in Urban Warfare 169

The requirements on simulation visualization can be divided into two groups:
i) global overview, and ii) informative details. At the same time, both types of vi-
sualizations had to be provided in 2D and 3D as appropriate with respect to the
particular purpose. The approach to tackle this issue in the AgentFly project was
based on Java 2D graphics and a protocol communicating with external 3D engine
(namely CrystalSpace [14]). With regard to backward incompatibility of changes in
newer versions of the 3D engine, this model was dropped. Later, still in the context
of the project AgentFly, we implemented an in-house full-featured 3D and 2D visu-
alization engine build on Java3D library [18] and later with several features based
on Java native connections to OpenGL [21]. The engine uses concept of layers op-
tionally showing various information from the running simulation. These layers are
connected with data sources in the simulation by the Aglobe asynchronous messag-
ing interface.

In the early phases of Tactical AgentFly and Tactical AgentScout projects, we
re-used the working visualization engine from AgentFly. The engine was during the
time extended only by additional 3D models and visualization layers for various
trajectory and plan types (e.g, for UGVs and VTOLs).

However, with the already discussed departure from use of the AglobeX Simu-
lation simulator, we were given an opportunity to improve upon the visualization
technology and replaced the obsolescing visualization engine with Java Monkey
Engine [20], a state-of-the-art Java 3D engine.

Additionally, we have created a simple 2D visualization engine primarily for de-
bugging purposes of the new simulations and environments. The 2D engine was
designed considering the common principles of Alite: flexibility, openness and mod-
ularity and became a universal tool for 2D visualizations of global overview of sim-
ulated environments. Unlike in the AgentFly project, we carefully crafted the system
architecture so as to respect the principle of non-interference of visualization with
the run of the simulation itself. This is mainly to preserve reproducibility of the en
masse run experiments, which do not make use of the visualization code at all. The
simplicity of the visualization engine also facilitated development of lightweight
APIs, so that programmers could make use of it in a straightforward and flexible
manner.

4.5 Alite

Alite [’eIlaIt] [1] is a software toolkit aimed at simplifying implementation con-
struction (not only) of multi-agent simulations and multi-agent systems, such as
those implemented in the context of the Tactical AgentFly andTactical AgentScout
projects in general. The objectives of the toolkit are to provide highly modular,
flexible, and open set of functionalities defined by clear and simple APIs towards
easy rapid prototyping and fast implementation. The toolkit does not serve as a pre-
designed framework or platform for a complex purpose, it rather associates number
of highly refined functional elements, which can be variably combined and extended
into a wide spectrum of possible systems.

170 P. Novák et al.

The guiding principles underlying the Alite design are i) modularity, so that the
system does not commit a developer to a particular definition of concepts such as
agent, environment, etc., and ii) compositionality, so that the various components of
the toolkit can be put together in a rapid and flexible manner. In result, Alite can
be seen as an association of highly refined functional elements providing clear and
simple APIs, so that relatively complex multi-agent simulation scenarios can be put
together rapidly.

Alite agents have access to simple interfaces to the environment (sensors and
actuators), while their internal lifecycle is not bound by any a priori philosophy. Ad-
ditionally, they can make use of various types of communication middleware inter-
faces allowing to model various types of intra-agent communication (synchronous,
asynchronous, peer-to-peer, broadcasting, multi-casting, etc.). Alite comes with li-
braries including various types of planners (reactive, deliberative) and multi-agent
solvers (e.g., task allocators, solvers for problems, such as the distributed vehicle
routing problem, etc.).

By its compositional nature, Alite provides means for both rapid prototyping, as
well as high-level of elaboration tolerance of the implemented systems. E.g., once
a simulation scenario, or a functional multi-agent system is put together from var-
ious components, application-level customizations and proprietary domain-specific
mechanisms, it is very easy to replace one stock planner, or multi-agent solver by
another one, as far as they share the underlying assumptions for their use.

Alite addresses the problem of MAS platform resilience in the face of a need to
incorporate various a priori unknown future requirements by variability in compo-
sition of functional elements. The number of possible combinations include wide
spectrum of system types, in contrast to a pre-designed frameworks as [31, 4, 13].
As multi-agent application’s requirements evolve, the requirements on the agent
platform itself are changing. Alite does not provide “a single platform for all”, but
rather offers an efficient way to build a platform that more precisely fits the partic-
ular needs of the MAS application under development. The application can utilize
one or more functional elements. As of writing this chapter, Alite provides:

common-event-queue: a general implementation of a temporal event queue and
temporal events (can be used for event-based simulations, agent message queues,
etc.).

common-entities: a general description of any entity in the system. An entity is
defined only by its name (represent agents, simulated embodiements, etc.).

common-capability-register: a general implementation of a simple register of pos-
sible capabilities provided by entities (usable for directory services, register of
simulation components, etc.).

communication: a component of communication interfaces and basic message
transports (includes direct and asynchronous message transport, protocol abstrac-
tion, abstraction of communication modes, etc.)

initialization: a component defining basic interfaces for initialization scripts and
configuration (includes a config-reader based on Groovy)

environment: a component of interfaces defining basic elements for simulated
worlds (includes state storages, and bases for sensors and actuator interfaces).

7 Simulated Multi-robot Tactical Missions in Urban Warfare 171

Fig. 6 Changes of the technological infrastructure over time. Initially, the Tactical Agent-
Fly project (a) was fully implemented using the Aglobe platform with AglobeX Simulation
(abbrev. XSimulation). The initial infrastructure underlying the first phase of the Tactical
AgentScout project (b) already partially abandoned some parts of the initial architecture. In
the third iteration, namely the second phase of the Tactical AgentFly project, the original
Aglobe and XSimulation are employed solely for visualization and configuration purposes.
Finally, the second edition of the Tactical AgentScout project was fully implemented using
the Alite toolkit. Feature framing represents architectural composition, solid arrows repre-
sent coupling, and dashed arrows initialization. Alite does not contain any platform code,
thereby it only associates the composition of various utilized technological features (dash-
dotted block).

simulation: a component mediating event-based simulation (it is based on the
common-event-queue and enriches it by temporal control).

visualization: a set of components containing various visualizers and wrappers
to 3rd party visualizing applications (includes 2D visualization, 3D visualization
based on JME, wrapper to Google Earth, and others).

172 P. Novák et al.

4.6 Architectural Changes of the Technological Infrastructure
Over Time

In the previous sections, we have discussed changes in particular parts of the infras-
tructure underlying the project cluster. Figure 6 depicts the overall system architec-
ture as it chronologically evolved in the four iterations of the project cluster (two
phases of the two projects).

The initial architecture for first Tactical AgentFly project come out of AgentFly
with all technological features based on Aglobe (see Section 3.3).

In the next project, the agent control (AgentCtrl in the Figure) mechanisms were
replaced by simplified implementation in Alite. The implementation was tested in
newly added 2D visualizer, environment and simulation. All these components were
initialized by Alite initialization mechanism (abbrev. Init) using optionally config-
urable parts and experiment description. The two systems were integrated by injec-
tion of positions from the new environment into the original environment and using
time synchronization messages between the two simulators. The original system
henceforth acted as a simulator for AgentFly airplanes and 3D visualizer, while the
Alite simulator handled the ground mission simulation.

In the third project iteration all parts of the original system excluding the 2D
and 3D visualizers were already abandoned. Simulations, environments and agent
control, together with tested algorithms were run in the new system. Scripting mech-
anisms were also introduces to simplify implementation of particular agent control
algorithms and mission scripting. They enabled more general dynamic configura-
tion and initialization. The integration of the two systems was based on propagation
of the environment information (mainly positions of the simulated entities) into the
original 2D/3D visualization through the visualization engine (Visio).

In the last project iteration, a new 3D visualizer based on Java Monkey Engine
was implemented and allowed full shift fromAglobe-based system to more precisely
fitting architecture covered by Alite toolkit.

5 Critical Analysis of the Experience and Lessons Learned

To conclude the report of the previous sections on the implemented agent-based
technological infrastructure underlying the Tactical AgentFly and Tactical
AgentScout project cluster, let us identify and summarize the main lessons we
learned in the process.

The here described project in fact comprises four more or less technologically
separate sub-projects: the two thematically related projects Tactical AgentFly and
Tactical AgentScout, both implemented in two phases of one year duration each.
It can be said that to a large extent almost any software project can be implemented
with almost any toolkit, development framework and programming language and
following any kind of software engineering methodology. At the same time, how-
ever, some tools and methodologies fit some application domains better and lead to
more efficient and more natural or straightforward design and implementation pro-

7 Simulated Multi-robot Tactical Missions in Urban Warfare 173

cess. Due to its structure and 4-year duration, we were given a unique opportunity
to learn from past experiences, iteratively re-implement parts of the system and ex-
periment with various configurations of its components and thus improve upon the
previous experiences. In result, we did not only identify the most important char-
acteristics an ideal technological platform for research of coordination mechanisms
in multi-robot missions should feature, but we were also allowed to develop, imple-
ment, evaluate and even re-design various components of the technology as well.

From the technological perspective, our work can be seen as a four year long ex-
periment with development of MAS platform, in particular including various sim-
ulators for mid and large-scale multi-robot systems comprised of heterogeneous
robotic assets, such as CTOLs, VTOLs, UGVs and even simulated humans, dif-
ferent 2D and 3D visualizers, user interfaces and approaches to configuration and
en masse experiment execution. We have learned that the two most important fea-
tures around which the design decisions regarding the technological infrastructure
revolve are the ability to support rapid prototyping and technologies enabling effi-
cient and fast empirical evaluation of the implemented research algorithms. Gen-
erally, the discussion of architectural changes the platform underwent in the course
of the project clearly shows that in time, we moved from an architecture embracing
an instance of “one size fits all” philosophy towards open modular design consist-
ing of a number of heterogeneous building blocks, which can be composed into an
application-specific design. In the following subsections, we discuss the individual
aspects of the system and how the identified requirements on rapid prototyping and
efficient empirical evaluation influenced their design.

5.1 Multi-agent Platform

A software platform for implementation and run-time control of the individual
agents running within the system is the most important component of the overall
technological infrastructure. The project objectives dictated a need to compose vari-
ous realistic simulation scenarios featuring different types of agents acting in various
time paces, etc., so that we are able to test various research algorithms for multi-
agent coordination. The sheer range of the scenario variety and at the same time the
push towards rapid prototyping and fast research-implementation-evaluation turn-
over often resulted in clashes with the internal structure and the underlying philoso-
phy of the currently employed multi-agent platform.

The lesson learned on this front is that often learned also in mainstream industrial
software engineering. Namely, that in development of multi-purpose technologies,
such as the one discussed here, it is often the case that an a priori application design
philosophy, while being beneficial in the early stages of the project, tends to stand in
the way of the development process in later stages. The stream of new requirements,
not foreseen at the time of platform design, may sometimes diverge and even con-
tradict some of the underlying principles of the design philosophy of the platform.
An example of such was the inherent assumption of the Aglobe MAS platform with
its AglobeX Simulation extension that the MAS application components should be

174 P. Novák et al.

modeled exclusively as agents, which communicate asynchronously. While this op-
tics is well applicable in many applications, this design philosophy has vast conse-
quences on the complexity of the application design, easiness of system debugging
and reproducibility of experiment runs. Often implementing the simulator itself is
more efficient using plain object-oriented programming principles with simple di-
rect call method invocation, rather than modeling even the system components as
agents possibly running on different network nodes. Instead of working around this
feature and thus abusing the underlying philosophy, in this case we rather decided
to depart from this principle altogether and thus sped up the scenario development
process.

In essence, the core lesson described above is that different MAS applications re-
quire different philosophies and technological features and the developers should be
rather supported in compositional application development. In particular, this means
that our resulting MAS technological platform based on the Alite toolkit keeps the
MAS design open and comprising a number of complementary building blocks with
clear interfaces keeps the door open to swift future redesigns of the application. Such
crucial building blocks include various approaches and implementations of features,
such as message passing asynchronicity, platform distribution among a number of
network nodes, code mobility, agent lifecycle management, etc. Including a particu-
lar choice of these features in a single monolithic technological platform and its later
extensions often tend to lead to software bloat and design decisions which constrain
developers not because of some crucial issue, but due to respecting various interde-
pendencies among the implemented features themselves. The lesson learned in the
Tactical AgentFly and Tactical AgentScout cluster is that this situation should be
avoided as much as possible. The shift the here described technological infrastruc-
ture underwent can be best described as

a move from a relatively rigid general-purpose MAS platform towards a toolkit facili-
tating rapid application-specific MAS platform construction.

5.2 Environment Simulation and Scenario Modeling

As already discussed in the previous subsection the range of simulation scenarios
and modeled missions in our projects was rather large. Different scenarios aimed
at evaluation of different multi-agent coordination algorithms often required very
different environment features. While at times the environment could be modeled as
a coarse grained graph structure with only interpolation of physical movements on
the ground in the simulation, often we also needed high-fidelity environmental fea-
tures including detailed physical landscape and building models. One of the lessons
learned in the projects of the Tactical AgentFly and Tactical AgentScout cluster is
that the stress on modularity and composability is crucial also with respect to an en-
vironment model, as well with respect to the particular model of time the simulator
employs.

One of the most important parts of the simulation process is time handling. The
underlying philosophy of the AglobeX Simulation simulator is a simulation model

7 Simulated Multi-robot Tactical Missions in Urban Warfare 175

based on synchronous, constant-delay time ticks, which are asynchronously dis-
tributed to the simulated agents and other parts of the simulation. There are two
common problems with such understanding of time counting in a simulation and
both share their roots in the efficiency of the dependent simulation process. One is
the temporal homogeneity and the other is causal homogeneity. While for many ap-
plications, the fine grained time model is directly employable, in our simulations it
turned out to be rather inefficient. In particular, when a simulation contains agents
working at various speeds, resp. being idle with different periods of time, the slow-
est time delay between two simulation ticks must correlate with the fastest agent
in the system. This however leads to inefficiencies when an agent which normally
exploits the fine grained time ticks becomes idle for a longer period of time. Essen-
tially, nothing happens in the simulation, nevertheless the simulator is still forced
to process all the homogeneous minuscule time ticks in between. Furthermore, syn-
chronous time ticking simulations are inefficient for applications comprising large
numbers of otherwise causally independent processes (e.g., flight of a UAV and ac-
tivities of a ground soldier). In discrete time ticking simulations, such processes can
become unnecessarily synchronized.

In the course of the projects development, we moved from synchronous time
ticking to event-driven simulations. Yet, we were careful enough to maintain the
ability of the simulator to switch to discrete time ticking whenever necessary. This
allowed us to significantly speed up simulation time of scenarios which can be,
without loss of generality, implemented in event-driven simulations. In result, we
were able to shorten the research-implementation-evaluation cycle and ultimately
also speed up the project completion. Additionally, in our experience, employment
of event-driven simulations also simplifies the code required for implementation of
agent deliberation and its interaction with the environment.

Finally, the requirement of reproducibility of simulation runs led us to attempts
to realization of the concept of in vitro simulations. Since we were aware of this
problem right from the beginning of the project it did not manifest itself in a sig-
nificant manner in the course of our work. In simulations of multi-robot systems,
the realization of in vitro simulators can become of an issue with growing demands
on scalability of the system. While having all the aspects of the simulation under
control of the simulator in a deterministic and synchronized manner is possible and
manageable, the trade-off with growing scale of the system is its worse run-time per-
formance, as well as possibly worse elaboration tolerance issues of the implemented
system. The simulator can simply become too large component of the system featur-
ing too many characteristics with underlying assumptions which significantly con-
strain simple and straightforward implementation of other parts of the system, e.g.,
agent behavior control.

5.3 Experiments and Configuration

One of the important lessons learned in our experience during the work on the twin
projects is that in systems, where the variation of future scenarios of its applica-
tion cannot be easily foreseen, high level of configurability has to be implemented.

176 P. Novák et al.

Rather than relying on pre-defined configuration schemes, such as XML files. Our
decision to move to integration of full-fledged dynamic language interpreters turned
out to be a good one. The cost of run-time configuration compilation at the begin-
ning of the simulation run is negligible with respect to the overall simulation exe-
cution time. Furthermore, the gained benefit of practically limitless configurability
of the simulation supports the rapid development principle and contributes to high
level of modularity of the resulting simulations. These can be essentially constructed
and initialized in the configuration scripts. In result, the tasks of implementation of
simulation components and scenario configuration become clearly separated, what
allowed high flexibility in the development process.

The second important lesson to be learned from the work on the Tactical Agent-
Fly and Tactical AgentScout project cluster is the stress on speeding up the
research-implementation-evaluation turn-around. While the increased software plat-
form modularity contributes to speeding up the first components of the cycle, at-
tempts to speed up the runs of experimental setups improves upon the latter parts. It
is also important to realize that not only does faster experiments execution shorten
the time needed for evaluation of the algorithms under investigation, it speeds up
debugging and implementation part of the cycle as well.

In our particular project, the implementation of an event-driven simulation frame-
work led to higher control over execution time of the simulation runs and speeding
up the experiments evaluation. This experience however should be considered care-
fully in the context of our projects. For instance scenarios which would require
extremely fine grained synchronous time would probably not benefit from imple-
mentation of event-driven simulation loop and also respecting of the requirements
on implementation of in vitro simulations might become burdensome.

5.4 Agent Behavior Control

In terms of the agent behavior control, again there are two issues to consider. On
one hand it is the expressive power of the employed reasoning framework and on
the other hand it is the modularity and integrability of its implementation. Further-
more, while some scenarios require quite a heavy-weight deliberation mechanism,
in other ones, plain reactive control is sufficient. The lesson learned on this front
leads to realization that, if flexibility with respect to future applications is an issue,
perhaps rather than employing a relatively heavy-weight agent deliberation frame-
work (e.g., imposing BDI-style agent architecture), it might be more beneficial to
use a simpler, but more general toolkit. I.e., it might be more flexible to invest an
effort in learning and gaining experience with simple, but extensible deliberation
models, such as e.g., finite state machines, rather than commit all future agent de-
liberation implementations to a particular intelligent agent architecture.

In our case, the choice of the Jazzyk language interpreter turned out to be a suit-
able choice for the more advanced simulation scenarios. The language is extremely
simple, but at the same time it allows for compositional programming of agent be-
haviors. Additionally, it directly supports integration with the underlying simulator,
as well as various knowledge representation technologies.

7 Simulated Multi-robot Tactical Missions in Urban Warfare 177

Fig. 7 Mixed-reality in the project AgentFly-In-Air, together with details of a Procerus Uni-
corn UAV test aircraft

5.5 User Interface and Visualization

While user interfaces and visualization do not often stand in the focal point of proto-
typing in research projects, at this point, we would promote this issue and encourage
rich visualization of simulations, especially in robotics research. Not only do real-
istic 3D scene visualizers provide attractive demonstrations, they also constitute a
plausible basis for evaluation of the algorithms by non-experts. In our case, presen-
tation of live 3D demonstrators and video sequences captured from various simula-
tion runs proved to be beneficial in communication with both, the project sponsor,
as well as 3rd parties.

The state of the art in open-source 3D scene modeling and animation technolo-
gies is at a stage, where straightforward use of the tools by non-expert programmers
is easy. Having said that, it is of course important to design the interfaces to the
3D world visualization in a manner, which again stresses rapid prototyping of the
resulting scenarios. In our case, integration of various types of 2D and 3D visualiza-
tion engines in the Alite toolkit turned out to be relatively straightforward and cheap
in terms of the involved implementation effort.

5.6 Towards AgentFly-In-Air

After completing the projects Tactical AgentFly and Tactical AgentScout, we col-
lected a significant body of research results, experience and advanced in-house tech-
nological platforms for development of mid- and large- scale simulations of multi-
robot systems. A natural step along the above described research track was to move

178 P. Novák et al.

Fig. 8 Procerus Unicorn UAV test aircraft with accessories

closer towards deployment of the developed algorithms to real hardware robots.
The project AgentFly-In-Air (see Figure 7) aims exactly in this direction. The 18
months long project was started in mid 2011 and as of writing this chapter it is in
active development to be completed by the end of 2012.

The foreseen demonstration scenario will involve a number of real, as well as
simulated aircrafts performing a continuous surveillance of a pre-defined area and
tracking of a number of mobile targets on the ground. Ideally, these will be embod-
ied by real human subjects carrying GPS devices connected to a central simulation,
resp. evaluation engine. By this experiment, firstly, we will demonstrate applica-
bility and portability of the multi-agent coordination algorithms developed in the
context of the above described projects to real hardware, and secondly, provide a
proof-of-concept for the idea of mixed-reality multi-agent simulation. I.e., such, that
besides a number of simulated agents, it will partly run in reality and will include
real world robotic assets.

The imperative to port and deploy a selected subset of the algorithms developed
in the context of its precursor projects in real hardware brought new requirements
on the design of the overall system and raised new challenges as well. On the front
of the application level functionality, the main issues are rooted in decentraliza-
tion of the coordination algorithms and scalability of the algorithms to the on-board
hardware and its resource limitations w.r.t. CPU power, battery usage, communi-
cation bandwidth, etc. Complementary to that, availability of only limited number
of hardware robots, in our case two Procerus Unicorn aircrafts (see Figure 8), re-
quires technology enabling development and execution of mixed simulations. That
is experiments, in which parts of the overall system are simulated, but significant
parts are implemented in real hardware. In result, as a part of the project, we de-
velop a technology allowing to model multi-agent systems in which all agents are
equal w.r.t. their run-time characteristics and interfaces to the physical environment

7 Simulated Multi-robot Tactical Missions in Urban Warfare 179

Fig. 9 Planned architecture for the project AgentFly-In-Air. The ground station runs a simu-
lation based on Alite toolkit. Communication with the real airplanes is mediated by Aglobe.
The aircraft logic is a composition of new future Alite modules. As planners, the modules
of predecessor projects will be used and as a terminal planner the pilot agent of AgentFly
system with path planning and collision avoidance will be integrated.

regardless of whether the agents themselves and the environment are simulated, or
part of the real world. In result, the system should provide high level of modular-
ity and facilitate gradual steps from fully simulated multi-robotic system through
mixed simulation ultimately to pure hardware deployment.

The opportunity to employ the technological infrastructure developed in the con-
text of Tactical AgentFly and Tactical AgentScout in a new setting embedded
partly in real hardware, allows us to once again reconsider and critically analyze
the use of the above discussed software components. One of the important issues
arising from the need to both model, as well as to incorporate true robotic assets in
the evaluation scenarios is the already discussed asynchronicity of a message de-
livery. While in the purely simulated scenarios, for the sake of respecting the in
vitro simulation principles, we abandoned the real-world asynchronous inter-agent
communication model. In the project AgentFly-In-Air, we have to come back to it.
In result, we consider to once again employ the Aglobe MAS platform as the un-
derlying technology, but instead of using it to manage also agents’ lifecycles, we
will treat and use it purely as a decentralized communication middleware (see Fig-
ure 9). After all, a fine-grained management of agent lifecycle in terms of control of
threads and processes running the logic of the individual agents becomes pointless

180 P. Novák et al.

in hardware multi-robot systems. We are of course aware, that by this step we will
loose the ability to execute evaluation in fully controlled environments akin to in
vitro simulations, except with hardware robots.

In terms of environment modeling, we will face tasks to integrate real world
sceneries into the simulator. It means that to facilitate execution of the foreseen
project demonstrator, we will have to be able to model a particular test ground within
the simulation, including its landscape, terrain features, traffic network, buildings,
etc. Implementation of new components facilitating various aspects of the mixed
simulations, such as the landscape modeling, within the Alite toolkit will pose new
implementation challenges in the project.

6 Future Perspectives and Final Remarks

With the growing complexity of multi-agent applications and environments, in
which they are deployed, there is a need for development techniques that would
allow for early testing and validation of application design and implementation.
This is particularly true in cases, where the developed multi-agent application is
to be closely integrated with an existing, real-world system of multi-agent nature.
Our work, in the context of the here described project cluster including Tactical
AgentFly, Tactical AgentScout and AgentFly-In-Air projects, aims exactly at this
objective.

Our experience in the course of the years 2008–2011 boils down to realization
that due to the extremely wide range of scenarios for early testing and validation
of algorithms, the scenario development and simulation technological infrastructure
should remain extremely modular and feature a compositional architecture.

In the light of this lesson, we feel that rather than in development of special-
purpose MAS platforms, the open challenges for the community lie in investigation
of programming-framework-independent methodological guidelines for engineer-
ing of such multi-agent based software artifacts. Of course we understand that no
unified MAS development methodology would fit the requirements of various ap-
plication domains, however collecting and learning from experience with building
such systems is still a realm, in which not enough report are produced. Similarly to
the MAS platform lesson highlighted in the critical analysis of the projects imple-
mentation, perhaps rather than aiming at a unified MAS development methodology
(platform), our goal should rather be a set of rudimentary building blocks out of
which such application-specific methodologies can be easily constructed on pur-
pose.

To conclude the chapter, we would like to draw the attention to the notion of
mixed-reality simulation and the methodological guidelines to be followed in devel-
opment of such systems. Development and deployment of such complex multi-agent
systems is a challenging task. Large numbers of spatially distributed active entities
characterized by complex patterns of mutual interaction and feedback links give rise
to dynamic, non-linear emergent behaviors, which are very difficult to understand,
capture and, most importantly, control. We argue that because of the complexity of

7 Simulated Multi-robot Tactical Missions in Urban Warfare 181

the above-described types of applications, it is no longer possible to develop such
systems in a linear, top-down fashion, starting from a set of requirements and pro-
ceeding to a fully developed solution. Instead, more evolutionary, iterative method-
ologies are needed to successfully approach the problem of development of complex
multi-agent systems.

In [28], we make first steps towards tackling this open challenge and give a pre-
liminary outline of the simulation-aided design of multi-agent systems (SADMAS)
approach. SADMAS is a development methodology relying in its core on the ex-
ploitation of a series of gradually refined and accurate simulations for testing and
evaluation of intermediary development versions of the engineered application. In
particular, we propose and argue in favor of using a series of mixed-mode simula-
tions, in which the implemented application is evaluated against a partly simulated
environment. Over time, the extent of the simulation will be decreasing until the
application fully interacts with the target system itself. We argue that this approach
could help accelerate the development of complex multi-agent applications, while at
the same time keeps risks and costs associated with destruction or loss of the tested
assets low. We believe that more research in this area is needed in order to better
understand the core problems and issues stemming from deployment and evaluation
of embodied multi-agent systems in real world scenarios, be it in industrial settings,
or in military scenarios, such as those described earlier in this chapter.

Acknowledgements. The Agent Technology Center and the authors acknowledge the sup-
port of the here reported work reported by numerous projects awarded to ATG in the course of
the years 2008–2011. The project Tactical AgentFly was supported by the grant W911NF-
08-1-052 of U.S. Army CERDEC. The project Tactical AgentScout was supported under
the grants BAA 8020902.A/W15P7T-05-R-P209 and W911NF-10-1-0112 by U.S. Army
CERDEC. Additionally, the work was also partly supported by the grant MSM6840770038
of the Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Alite project website, http://agents.cz/projects#alite
2. Banks, J., Carson, J., Nelson, B.L., Nicol, D.: Discrete-Event System Simulation, 4th

edn. Prentice Hall (December 2004)
3. Belecheanu, R.A., Munroe, S., Luck, M., Payne, T., Miller, T., McBurney, P., Pěchouček,

M.: Commercial applications of agents: lessons, experiences and challenges. In: Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2006. ACM, New York (2006)

4. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE a white paper
5. Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.: Multi-Agent Program-

ming: Languages, Platforms and Applications. Multiagent Systems, Artificial Societies,
and Simulated Organizations, vol. 15. Springer (2005)

6. Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano,
P.R., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schaffer, A., Hirzinger, G.:
Rollin’ justin - mobile platform with variable base. In: IEEE International Conference
on Robotics and Automation, ICRA 2009, pp. 1597–1598 (May 2009)

http://agents.cz/projects#alite

182 P. Novák et al.

7. Bošanský, B., Lisý, V., Jakob, M., Pěchouček, M.: Computing time-dependent policies
for patrolling games with mobile targets. In: Proceedings of AAMAS 2011(May 2011)

8. Brom, C., Gemrot, J., Bı́da, M., Burkert, O., Partington, S.J., Bryson, J.J.: Posh tools for
game agent development by students and non-programmers, pp. 126–133. University of
Wolverhampton (2006)

9. Bryson, J.J.: The Behavior-Oriented Design of Modular Agent Intelligence. In: Kowal-
czyk, R., Müller, J.P., Tianfield, H., Unland, R. (eds.) NODe-WS 2002. LNCS (LNAI),
vol. 2592, pp. 61–76. Springer, Heidelberg (2003)

10. Chrpa, L., Komenda, A.: Smoothed hex-grid trajectory planning using helicopter dynam-
ics. In: Proceedings of International Conference on Agents and Artificial Intelligence
(ICAART), vol. 1, pp. 629–632. SciTePress (2011)

11. Chrpa, L., Novák, P.: Dynamic Trajectory Replanning for Unmanned Aircrafts Support-
ing Tactical Missions in Urban Environments. In: Mařı́k, V., Vrba, P., Leitão, P. (eds.)
HoloMAS 2011. LNCS, vol. 6867, pp. 256–265. Springer, Heidelberg (2011)

12. Clojure project website, http://clojure.org/
13. Cougaar project website, http://www.cougaar.org/
14. CrystalSpace project website, http://www.crystalspace3d.org/
15. Fukushima robot operator writes tell-all blog (news article),

http://spectrum.ieee.org/automaton/robotics/industrial-robots/

fukushima-robot-operator-diaries
16. Groovy project website, http://groovy.codehaus.org/
17. High-tech goes into action in disaster zone (news article),

http://www.msnbc.msn.com/id/9240563/ns/technology and

science-science/t/high-tech-goes-action-disaster-zone/
18. Java3D project website,

http://www.oracle.com/technetwork/

java/javase/tech/index-jsp-138252.html/
19. JBullet project website, http://jbullet.advel.cz/
20. jMonkeyEngine project website, http://jmonkeyengine.com/
21. JOGL project website, http://jogl.dev.java.net/
22. Komenda, A., Novák, P.: Multi-agent plan repairing. In: Decision Making in Partially

Observable, Uncertain Worlds: Exploring Insights from Multiple Communities, Proceed-
ings of IJCAI 2011 Workshop, pp. 1–6. AAAI Press (2011)

23. Komenda, A., Novák, P., Pěchouček, M.: Decentralized multi-agent plan repair in dy-
namic environments. In: Proceedings of AAMAS 2012 (2012)

24. Lisý, V., Bošanský, B., Pěchouček, M.: Anytime algorithms for multi-agent visibility-
based pursuit-evasion games. In: Proceedings of AAMAS 2012 (2012)

25. Mining sector embraces sci-fi future (news article),
http://finance.ninemsn.com.au/newsbusiness/aap/8259880/

mining-sector-embraces-sci-fi-future
26. Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D., Strohband, S.: Winning the darpa

grand challenge with an ai robot. Artificial Intelligence 21, 982 (2006)
27. Novák, P.: Jazzyk: A Programming Language for Hybrid Agents with Heterogeneous

Knowledge Representations, pp. 72–87. Springer, Heidelberg (2009)
28. Pěchouček, M., Jakob, M., Novák, P.: Towards Simulation-Aided Design of Multi-Agent

Systems. In: Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS, vol. 6599,
pp. 3–21. Springer, Heidelberg (2012)

29. Pěchouček, M., Jakob, M., Semsch, E., Pavlı́ček, D., Eliáš, V.: Intelligent software agent
control of combined UAV operations for tactical missions - final report. Technical report,
Agent Technology Center, Department of Cybernetics, FEE Czech Technical University
in Prague (2009)

http://clojure.org/
http://www.cougaar.org/
http://www.crystalspace3d.org/
http://spectrum.ieee.org/automaton/robotics/industrial-robots/fukushima-robot-operator-diaries
http://spectrum.ieee.org/automaton/robotics/industrial-robots/fukushima-robot-operator-diaries
http://groovy.codehaus.org/
http://www.msnbc.msn.com/id/9240563/ns/technology_and_science-science/t/high-tech-goes-action-disaster-zone/
http://www.msnbc.msn.com/id/9240563/ns/science-science/t/high-tech-goes-action-disaster-zone/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html/
http://jbullet.advel.cz/
http://jmonkeyengine.com/
http://jogl.dev.java.net/
http://finance.ninemsn.com.au/newsbusiness/aap/8259880/mining-sector-embraces-sci-fi-future
http://finance.ninemsn.com.au/newsbusiness/aap/8259880/mining-sector-embraces-sci-fi-future

7 Simulated Multi-robot Tactical Missions in Urban Warfare 183

30. Semsch, E., Jakob, M., Pavlı́ček, D., Pěchouček, M., Šišlák, D.: Autonomous uav surveil-
lance in complex urban environments. In: McGann, C., Smith, D.E., Likhachev, M.,
Marthi, B. (eds.) Proceedings of ICAPS 2009 Workshop on Bridging the Gap Between
Task and Motion Planning, Greece, pp. 63–70 (September 2009)

31. Šišlák, D., Rollo, M., Pěchouček, M.: A-Globe: Agent Platform with Inaccessibility and
Mobility Support. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA
2004. LNCS (LNAI), vol. 3191, pp. 199–214. Springer, Heidelberg (2004)

32. US military’s UAV missions increasing (news article),
http://www.armedforces-int.com/news/

us-militarys-uav-missions-increasing.html

33. Vokřı́nek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing problems.
In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) AAMAS
2010: Proceedings of the Ninth International Conference on Autonomous Agents and
Multi-Agent Systems, Toronto, Canada, pp. 773–780. IFAAMAS: Internatioal Founda-
tion for Autonomous Agents and Multiagent Systems (May 2010)

34. Vokřı́nek, J., Komenda, A., Pěchouček, M.: Cooperative agent navigation in partially
unknown urban environments. In: PCAR 2010: The Third International Symposium on
Practical Cognitive Agents and Robots. Proceedings of the AAMAS 2010 Workshops,
Toronto, Canada, pp. 46–53. IFAAMAS: International Foundation for Autonomous
Agents and Multiagent Systems (May 2010)

35. Vokřı́nek, J., Novák, P., Komenda, A.: Ground Tactical Mission Support by Multi-agent
Control of UAV Operations. In: Mařı́k, V., Vrba, P., Leitão, P. (eds.) HoloMAS 2011.
LNCS, vol. 6867, pp. 225–234. Springer, Heidelberg (2011)

36. Willow Garage website, http://www.willowgarage.com/
37. Winikoff, M.: Implementing commitment-based interactions. In: Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems, AA-
MAS 2007, pp.128:1–128:8. ACM, New York (2007)

38. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge En-
gineering Review 10, 115–152 (1995)

http://www.armedforces-int.com/news/us-militarys-uav-missions-increasing.html
http://www.armedforces-int.com/news/us-militarys-uav-missions-increasing.html
http://www.willowgarage.com/

Chapter 8
On the Development of Mobile Agent Systems
for Wireless Sensor Networks:
Issues and Solutions

Giancarlo Fortino and Stefano Galzarano

Abstract. Due to the growing exploitation of wireless sensor networks (WSNs) for
enhancing all major conventional application domains and enabling brand new ap-
plication domains, the development of applications based on WSNs has recently
gained a significant focus. Thus, design methods, middleware and frameworks have
been defined and made available to support high-level programming of WSN ap-
plications. However, even though many proposals do exist, more research efforts
should still be devoted to the definition of WSN-oriented methodologies and tools
fully supporting the development lifecycle of WSN applications. In this chapter, we
promote the use of the mobile agent paradigm for the development of WSN applica-
tions and, specifically, describe issues and solutions for the development of mobile
agent systems on resource-constrained wireless sensor platforms. In particular we
discuss about the design of MAPS (Mobile Agent Platform for Sun SPOTs) and
TinyMAPS, our Java-based mobile agent systems for WSNs, which enable agent-
oriented development of WSN applications. In particular, while MAPS can run on
the capable SunSPOT sensor devices, TinyMAPS is a version of MAPS tailored for
more constrained Java-based sensor platforms such as Sentilla JCreate. An analy-
sis of MAPS and TinyMAPS is provided showing analogies and differences among
the two platforms. Finally a comparison of MAPS with AFME, another Java-based
mobile agent system running on SunSPOT and based on a different architecture and
programming model, is presented.

Giancarlo Fortino · Stefano Galzarano
DEIS - University of Calabria,
Rende (CS), Italy
e-mail: g.fortino@unical.it,

sgalzarano@deis.unical.it

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 185–215.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

g.fortino@unical.it
sgalzarano@deis.unical.it

186 G. Fortino and S. Galzarano

1 Introduction

Advances in micro-electro-mechanical systems (MEMS) technology, wireless com-
munications, and digital electronics have enabled the development of low-cost, low-
power, multifunctional sensor nodes that are small in size and can communicate over
short distances in an ad-hoc manner. Such nodes are, in general, characterized by
constrained computing and communication capabilities. A given number of such
cooperating sensor nodes can be organized and deployed as a wireless sensor net-
work (WSN) [11]. The development of applications for WSNs requires not only the
same middleware/programming support required by conventional distributed appli-
cations but also the fulfillment of additional requirements specific to WSNs [5]. In
particular, middleware support for conventional distributed applications includes:

• shielding application developers from low-level platform-specific details;
• reusable pattern-oriented frameworks, rather than (re)building software mono-

lithically for each application;
• higher-level network-oriented programming abstractions that better match dis-

tributed application requirements;
• a wide array of non-functional services, such as logging, deployment manage-

ment and security that have been proven necessary to operate effectively in a
networked environment.

Moreover, specific WSN features that have to be fully supported are:

• resource-constrained nature of WSNs in terms of processing and memory capa-
bilities, and battery life;

• WSN nodes are usually dynamic and mobile in nature instead of being static and
fixed as in traditional distributed systems;

• differently from traditional distributed systems, WSN nodes usually incorporate
both application-level functions and the management of low-level aspects related
to mobility, routing and security.

Several middleware architectures based on different models (database, macropro-
gramming, event-based, virtual machine, etc) have been to date proposed to support
the development, deployment, execution, and maintenance of sensor-based appli-
cations [34]. Nevertheless, considering the commonalities that bind the intrinsic
properties of WSNs with those of agents [38], agent-based middleware could be
more effective in the context of WSNs than middleware based on other models. It is
therefore reasonable to wonder whether agent technology can effectively support
the construction of WSN applications. The paradigm of agent-oriented software
engineering (AOSE) is argued to be well suited for developing complex software
systems in distributed and dynamic environments [28, 23]. In particular, agent
technology already offers several approaches for the design and implementation
of agent-based sensor applications: (i) the development of a multi-agent applica-
tion atop non agent-oriented middleware for WSNs [34]; (ii) the development of
agent-based middleware that supports agent-based programming [33]; and (iii) the

8 On the Development of Mobile Agent Systems 187

extension of an existing multi-agent platform with middleware capabilities for
WSNs (if possible) [38].

In this chapter, we first provide an overview of mobile agent-based computing in
WSNs from several perspectives: network routing, data dissemination and fusion,
in-network coordination, programming frameworks, high-level system architectures
and applications (see Section 2). In Section 3, we discuss the major challenges for
the development of mobile agent systems on resource-constrained sensor platforms
and list the main requirements that should be addressed in their development. On
the basis of such requirements, the design of the MAPS (Mobile Agent Platform for
Sun SPOT) [9] and TinyMAPS [8] frameworks are described in Section 4. A com-
parison among the current Java-based MASs is discussed in Section 5. Moreover,
quantitative performance evaluations between MAPS and TinyMAPS and between
MAPS and AFME (Agent Factory Micro Edition) are also provided. In Section 6,
both lessons learned and open challenges are delineated. Finally, concluding re-
marks and future trends in the field are presented.

2 Background and Related Work

Since the mobile agent-based paradigm has fully demonstrated its effectiveness in
conventional distributed systems as well as in highly dynamic distributed environ-
ments, there are good motivation to prove that they can also effectively deal with the
programming and management issues that WSNs have posed. As a confirmation, in
the last years agent technology has been successfully used in WSNs at different lev-
els (application, middleware, network) [33]. In particular, the main agent-oriented
research efforts have been to date devoted to the following WSN research themes:
network routing, data dissemination and fusion, in-network coordination, program-
ming frameworks, high-level system architectures and applications. In the following
subsections an overview of some of the main outcomes related to such themes will
be presented.

2.1 Network Routing

Several agent-oriented techniques have been defined to support efficient routing in
WSNs. Most of them are based on mobile agents that are able to roam across the
sensor nodes, performing routing tasks.

An interesting routing technique based on mobile agents is rumor routing [13]
that allows for routing queries to nodes that have observed a particular event (i.e.
a localized phenomenon detected by some sensor node/s). The rumor routing al-
gorithm aims at lower energy consumption than algorithms that flood the whole
network with query or event messages. The main idea is that mobile agents a priori
create paths leading to event nodes as the events occur; later queries are sent on
random walks until they find one of the created paths, and then route along the path
to event nodes.

188 G. Fortino and S. Galzarano

In [21] authors propose a solution where mobile agents are created whenever a
source node decides to send a data packet to the sink. Agents are then responsible
for carrying the data through the network. After reaching the destination, the agent
delivers the data to the application and then dies. After arriving at a node, the agent
checks a forwarding table available at the node with the possible next hops, includ-
ing such nodes respective costs and energy levels. Based on that information, agents
take a decision. Since energy levels are depleted as agents use a given path, future
agents might take more expensive paths that happen to have more energy available,
achieving some degree of load balancing. Moreover, agents could negotiate and ag-
gregate their data when they ”meet” in the network, possibly becoming one single
agent after such aggregation.

2.2 Data Dissemination and Fusion

Several data fusion and dissemination schemes based on mobile agents have been
to date proposed. In [29], authors review and evaluate the most representative mo-
bile agent-based middleware proposals for autonomic data fusion tasks in WSNs,
highlighting their relevant strengths and shortcomings. They classify such research
proposals in five main categories: single mobile agent-based, multiple mobile agent-
based, autonomic data fusion in clustered WSN architectures, hardware based and
combined multiple mobile agent/stationary agents-based autonomic data fusion. In
[15] mobile agents are used to disseminate data. According to client/server archi-
tectures, data at multiple sources is transferred to a destination whereas, according
to the mobile agent paradigm, a task-specific mobile agent traverses the relevant
sources to gather data and disseminate them according to specific policies. Many
inherent advantages (e.g. scalability, extensibility, energy awareness, reliability) of
the mobile agent architecture make it suitable for WSNs than the client/server ar-
chitecture. Mobile agents can be exploited at three levels (node level, task level,
and combined task level) to reduce the information redundancy and communication
overhead.

2.3 Energy-Aware Coordination

Within application domains involving low-power, wireless devices physically dis-
tributed over an environment to acquire and integrate information, one of the main
challenges to face with is to coordinate the activities of such devices in order to
achieve good system-wide performance. Moreover, several constraints have to be
considered: specific constraints on each device (e.g. limited power, communication
and computational resources), the limitation for each of them to be able to communi-
cate with only its local neighborhood and the need for a decentralized approach such
that there is no central point of failure and no communication bottleneck. The prob-
lem of performing decentralized coordination of low-power devices is addressed
in [19] by considering the generic problem of maximizing social welfare within
a group of interacting agents. Each agent interacts locally with a number of other

8 On the Development of Mobile Agent Systems 189

agents such that the utility of an individual agent is dependent on its own state
and the states of these other agents. In particular, a novel representation of the prob-
lem, through a cyclic bipartite factor graph composed of variable and function nodes
(representing the agents’ states and utilities respectively), is proposed. Such descrip-
tive model allows using an extension of the sum-product algorithm (specifically the
max-sum algorithm), which is adopted, along with a local decentralized message
passing, to generate approximate solutions to the global optimization problem. It is
shown that this approach has a communication cost (in terms of total messages size
and, consequently, in energy consumption) that scales very well with the number
of agents in the system because the complexity of the calculation that each agent
performs depends only on the number of neighbors that it has and not on the total
size of the network.

2.4 System Architectures, Services and Applications

Mobile agents have been also exploited to design WSN system architectures and de-
velop services and applications based on WSNs. In [14, 22] authors propose mobile
agents for WSN applications and, specifically, decompose the agent design func-
tionality into four components: architecture, itinerary planning, middleware system
design, and agent cooperation. This decomposition covers low-level to high-level
design issues and facilitates the creation of a component-based and efficient mo-
bile agent system for a wide range of applications. With reference to applications,
a measurable bandwidth saving can be obtained either when large amounts of data
are locally processed by mobile agents, or when the deployment of a programmable
approach enabling task autonomy is required. To this purpose, an efficient design
for the core components is required to support the scheme being followed by the
agent-based application when dealing with a particular type of problem. Similarly,
the WSN application has a direct influence on the type of communications mecha-
nism employed by the mobile agent system to perform its task efficiently. However,
their applicability mainly is warranted not only by the overall energy savings they
introduce, but also by the extra flexibility they offer when coping with frequent
and/or unexpected aspects of the event being sensed that other types of approaches
are unable to address efficiently.

In [16] the MAWSN (Mobile Agent-based WSN) architecture for data process-
ing/aggregating/concatenating in a planar sensor architecture is proposed. MAWSN
can exhibit better performance than client/server communications in terms of energy
consumption and packet delivery ratio. However, MAWSN has a longer end-to-end
latency than client/server communications in certain conditions.

Mobile agents have also been applied for location tracking services based on
WSNs. The goal is to monitor the roaming path of a moving object through wire-
less sensor nodes disseminated on an environment. While similar to the problem of
location update in personal communication service networks, it is more challenging
as there are no central control mechanism and backbone network and the communi-
cation bandwidth is very limited. In [37], a mobile agent-based protocol for location

190 G. Fortino and S. Galzarano

tracking is proposed. Once a new object is detected, a mobile agent is initiated to
track the roaming path of the object. The agent follows the object by moving to the
sensor closest to the object. Moreover, the mobile agent may invite some nearby sen-
sor agent to cooperatively locate the object and inhibit other irrelevant sensor agents
from tracking the object. As a result, the communication and sensing overheads can
be greatly reduced.

Finally, in [32] an energy-efficient, fault-tolerant approach for collaborative sig-
nal and information processing (CSIP) among multiple sensor nodes using a mobile
agent-based computing model, is proposed. The performance of such a model is
compared with the classic client/server-based model with respect to the execution
time and energy consumption perspectives through both simulation and analytical
study. Results indicate that in the context of sensor networks where the number of
sensor nodes is very large, the communication bandwidth is considerably low, and
the energy resource is contingent, the mobile-agent-based computing model is more
suitable for conducting collaborative processing.

2.5 Programming Frameworks

Generally speaking, MASs support mobile agents by basically providing an agent
server, an API for mobile agent programming and, sometimes, by supporting pro-
gramming and administration tools. In particular, the agent server is able to execute
agents by providing them with basic services such as migration, communication
and resource access. In the last decade, a significant number of MASs for IP-based
distributed computing systems have been developed. The majority of them are Java
based (e.g. Aglets, Voyager, Ajanta, JADE etc.) and few others rely on other lan-
guages (DAgents, ARA etc.). In the context of WSNs it is challenging to develop
MASs for supporting mobile agent-based programming [10], due to the currently
available resource-constrained sensor nodes, and very few real systems have been
to date proposed and concretely implemented. In the following, we first describe
the most significant available research prototypes based on TinyOS [4] operating
system, and then, we introduce the Java-based agent programming frameworks.

Agilla [20] is an agent-based middleware developed on TinyOS and supporting
multiple agents on each node. Agilla provides two fundamental resources on each
node: a tuplespace and a neighbor list. The tuplespace represents a shared memory
space where structured data (tuples) can be stored and retrieved, allowing agents to
exchange information through spatial and temporal decoupling. A tuplespace can be
also accessed remotely. The neighbor list contains the address of all one-hop nodes
needed when an agent has to migrate. Agents can migrate carrying their code and
state, but they cannot carry their tuples locally stored on a tuplespace. Packets used
for node communication (e.g. for agent migration/cloning, remote tuple accessing)
are very small to minimize messages losses, whereas retransmission techniques are
also adopted.

In [35] the authors propose an extension of Agilla to support direct communi-
cation based on messages. In particular, to establish direct communications, agents

8 On the Development of Mobile Agent Systems 191

are mediated by a middle component (named landmark) that interacts with agents
through zone-based registration and discovery protocols.

ActorNet [25] is an agent-based platform based on the Actor model. To overcome
the difficulties in allowing code migration and interoperability due to the strict cou-
pling between applications and sensor node architectures, actorNet exposes services
like virtual memory, context switching, and multi-tasking. Thanks to these features,
it effectively supports agent programming by providing a uniform computing envi-
ronment for all agents, regardless of hardware or operating system differences. The
actorNet language used for high-level agent programming has syntax and semantics
similar to those of Scheme with proper instruction extension.

In [36] another mobile agent framework is proposed. The framework is imple-
mented on Crossbow MICA2DOT motes. In particular, it provides agent migration
and agent interaction based both on local shared memory and network messages.

The above described MASs for WSNs [20, 35, 25, 36] are all implemented
for TinyOS-based sensor platforms and use ad hoc languages for agent program-
ming (e.g. Agilla uses a micro-programming language, whereas actorNet employs
a functional-oriented language). Although some supported operations (e.g. migra-
tion) are very efficient, programming complex tasks is not so straightforward and,
moreover, developers need to learn another very specific language. The Java lan-
guage, through which Sun SPOT [3] and Sentilla JCreate [2] sensors can be pro-
grammed, due to its object-oriented features, could provide more flexibility and
extendibility for an effective implementation of agent-based platforms. Currently,
the only four available Java-based mobile agent platforms for WSNs are MAPS
[9, 1], TinyMAPS [8], AFME [30], and MASPOT [27]. MAPS and TinyMAPS will
be briefly described in Section 4.

The AFME framework, a lightweight version of the agent factory framework pur-
posely designed for wireless pervasive systems and implemented in J2ME, has been
recently ported onto Sun SPOT and used for exemplifying agent communication and
migration in WSNs. AFME is strongly based on the Belief-Desire-Intention (BDI)
paradigm, in which agents follow a sense-deliberate-act cycle. In AFME, agents are
defined through a mixed declarative/imperative programming model. The declar-
ative Agent Factory Agent Programming Language (AFAPL), based on a logical
formalism of beliefs and commitments, is used to encode an agent’s behavior by
specifying rules that define the conditions under which commitments are adopted.
The imperative Java code is instead used to encode perceptors and actuators. How-
ever, AFME was not specifically designed for WSNs and, particularly, for Java Sun
SPOT.

MASPOT is a mobile agent system natively designed for Sun SPOTs that, dif-
ferently from the other Java-based MAS, is able to provide agent’s code migration,
since it does not rely on the Isolate-based mechanism. In particular, both weak and
strong migration are supported. The type of migration is defined for each agent at
creation time and cannot change during the agents life cycle. The MASPOT inter-
agent communication is based on the tuple spaces model, similar to the one adopted
by Agilla. Communication between the base station and the mobile agents requires
support for agent mobility. Such a communication is basically established by means

192 G. Fortino and S. Galzarano

of a chain of references from the base station to the node where an agent currently
is. When an agent moves to a new node, it leaves behind a marker indicating the next
node to which it has migrated. Furthermore, a specific procedure exists to eliminate
circular chains of references that will no longer be used.

3 Requirements for MAS Development on WSNs

Although several research efforts, as discussed in Section 2, have demonstrated that
mobile agents are a suitable computing paradigm for supporting the development
of distributed applications, services, and protocols on WSNs, the development of
flexible and efficient MASs remains a challenging and very complex task due to
the currently available resource-constrained sensor nodes. In the following, we first
discuss the use of agents in the context of WSN on the basis of the Lange and
Oshima research work [26], which delineates seven good reasons for using agents
in traditional networks. We then provide an outline on the requirements for MAS
development over WSNs.

3.1 On the Use of Mobile Agents for WSN Applications

In their seminal paper [26], Lange and Oshima advertised at least seven good rea-
sons for using mobile agents in generic distributed systems. In the following we
describe them with reference to the WSN context.

1. Network load reduction. Mobile agents are able to access remote resources, as
well as communicate with any remote entity, by directly moving to their phys-
ical locations and interacting with them locally to save bandwidth resources. A
mobile agent incorporating data processing capabilities can migrate to a sensor
node, perform the needed operations on the sensed data and transmit the results
to a sink node. This is more desirable, rather than a periodic transmission of raw
sensed data from the sensor node to the sink node and the computation of data
processing on the latter.

2. Network latency overcoming. An agent provided with proper control logic may
move to a sensor/actuator node to locally perform the required control tasks.
This overcomes the network latency that will not affect the real-time control
operations also in case of lack of network connectivity with the base station.

3. Protocol encapsulation. If a specific routing protocol supporting multi-hop paths
should be deployed in a given zone of a WSN, a set of cooperating mobile agents
encapsulating this protocol can be dynamically created and distributed into the
proper sensor nodes without any regard for standardization matter. Also in case
of protocol upgrading, a new set of mobile agents can easily replace the old one
at run-time.

4. Asynchronous and autonomous execution. These distinctive properties of mo-
bile agents are very important in dynamic environments like WSNs where
connections may not be stable and network topology may change rapidly.

8 On the Development of Mobile Agent Systems 193

A mobile agent, upon a request, can autonomously travel across the network to
gather needed information ”node by node” or to carry out the programmed tasks
and, finally, can asynchronously report the results to the requester.

5. Dynamic adaptation. Mobile agents can perceive their execution environment
and react autonomously to changes. This behavioral dynamic adaptation is well
suited for operating on long-running systems like WSNs where environment con-
ditions are very likely to change over time.

6. Orientation to heterogeneity. Mobile agents can act as wrappers among systems
based on different hardware and software. This ability can well fit the need for
integrating heterogeneous WSNs supporting different sensor platforms or con-
necting WSNs to other networks (like IP-based networks). An agent may be able
to translate requests coming from a system into specific suitable requests to sub-
mit to another different system.

7. Robustness and fault-tolerance. The ability of mobile agents to dynamically react
to unfavorable situations and events (e.g. low battery level) can lead to a better
robust and fault tolerant distributed systems; e.g. the reaction to the low battery
level event can trigger a migration of all executing agents to an equivalent sensor
node to continue their activity.

An interesting taxonomy about WSNs and their relationships with multi-agent sys-
tems can be found in [38]. In particular, the major motivation of using agents over
such networks is that many WSNs properties are shared with and can be actually
supported by agents and multi-agent systems: physical distribution, resource bound-
edness, information uncertainty, large scale, decentralized control and adaptiveness.
Moreover, as sensors in a WSN must typically coordinate their actions to achieve
system-wide goals, coordination among dynamic entities (or agents) is one of the
main features of multi-agent systems. In the following, the aforementioned common
properties are discussed:

• Physical distribution implies that sensors are situated in an environment from
which they can receive stimuli and act accordingly, also through control actions
aiming at changing their environment. Situatedness is a main property of an agent
and several well-known agent architectures were defined to support such impor-
tant property.

• Boundedness of resources (computing power, communication and energy) is a
typical property both of sensor nodes as single units and of the WSN as a whole.
Agents and related infrastructures can support such limitation through intelligent
resource-aware, single and cooperative behaviors.

• Information uncertainty is typical in large-scale WSNs in which both the status of
the network and the data gathered to observe the monitored/controlled phenom-
ena could be incomplete. In this case, intelligent (mobile) agents could recover
inconsistent states and data through cooperation and mobility.

• Large scale is a property of WSNs either sparsely deployed on a wide area or
densely deployed on a restricted area. Agents in multi-agent systems usually
cooperate in a decentralized way through highly scalable interaction protocols
and/or time- and space-decoupled coordination infrastructures.

194 G. Fortino and S. Galzarano

• In large-scale WSNs, centralized control is not feasible as nodes can have inter-
mittent connections and also can suddenly disappear due to energy lack. Thus,
decentralized control should be exploited. The multi-agent approach is usually
based on control decentralization transferred either to multiple agents dynam-
ically elected among the available set of agents or to the whole ensemble of
agents coordinating as peers.

• Adaptiveness is the main shared property between sensors and agents. An agent
is by definition adaptive in the environment in which is situated. Thus, modeling
the sensor activity as an agent or a multi-agent system and, consequently, the
whole WSN as a multi-agent system, could facilitate the implementation of the
adaptiveness properties.

3.2 Requirements and Issues

Although the agent paradigm has great potential to help the development of WSN
applications, as demonstrated by all the previously discussed motivations, it is quite
clear that the development of MASs for WSNs requires not only the same efforts
required by conventional distributed systems but also the fulfillment of additional
requirements specific to WSNs [5].

A direct exploitation of generic software agents into sensors is not so trivial, since
research in traditional multiagent systems domain does not take into consideration
the presence of severe resource constraints that typically arise on sensor nodes. In
fact, the management of poor computational and energy resources, leading to many
technical limits in designing a practical WSN mobile-agent middleware system, rep-
resent the most critical challenge in such a network. Moreover, research often does
not opportunely consider that communication might be slow and intermittent and
that nodes might be unreliable and failure prone.

Since software agents generally exhibit intelligent behaviors for autonomously
coordinate their actions to achieve specific system-wide goals, the complexity of a
middleware infrastructure for managing and supporting such agents’ properties must
be carefully considered with respect to the available resources. This is an extremely
important issue because a fundamental requirement is to achieve a good execution
performance on each single node for guaranteeing global efficiency and scalability.

Based on our experiences and on the results in literature, we truly believe that
for facing with the resource-constrained problem, an agent-based system has to be
defined following some design requirements:

• The MAS architecture server must be as lightweight as possible, which implies
the avoidance of heavy concurrency models and, therefore, the exploitation of
cooperative concurrency control mechanism to run agents.

• A plug-in-like components organization is recommended, in order to dynami-
cally and selectively activate services that are needed while deactivating the use-
less ones for improving the overall system performance.

• The agent structure must be also lightweight so that agents can be efficiently
executed and migrated. This not necessarily implies that agents cannot show

8 On the Development of Mobile Agent Systems 195

complex and intelligent behaviors, but simply that the mechanisms for defining
and encoding their behavioral models have to be simple so that the architecture
devoted to agent control and execution is not so resource-hungry.

• Mobile agents must be natively characterized on the basis of the functional layer
to which they belong: application, middleware and network layer. They must be
also able to locally interact to enable cross-layering.

Despite the actual effectiveness of the aforementioned guidelines, the efforts re-
quired for developing efficient MASs may fairly vary on the basis of the features
that each single sensor platform provides to the developers. In Fig. 1, a list of the
most widely used sensor platforms is shown along with their main characteristics:
as it can be seen, each of the sensor type has much less resources than a standard
desktop environment.

When possible, the limited resources problem can be overcome by executing
heavy software agents, encapsulating computational-intensive functions, into exter-
nal devices, e.g. components with higher processing capabilities residing outside the
WSN. This makes it necessary to properly design and implement MASs by provid-
ing the necessary capabilities for allowing a closer interaction between WSNs and
traditional networks and distributed systems. If it is not possible to rely on compo-
nents with much more computational resources, MAS developers have to consider
that the execution of advanced agent-based applications is limited by the use of
low-overhead techniques and algorithms which necessary have to sacrifice optimal-
ity and accuracy, so that agents have to behave as best as possible given the available
node resources.

Platform features heterogeneity also brings to an incomparable computing capa-
bilities leading to difficulties in designing a common MAS architecture that could
be suitable and efficient for execution on different sensor types. In particular, the
need to address such a challenge will occur very soon since WSNs are expected to
be deployed into a growing ubiquitous environment, so it is not unlikely to suppose
that interaction among different typologies of networks will be a common situa-
tion. Although MAS research for WSN has traditionally considered homogeneous
sensor node architectures, this assumption is too restrictive if we think about next
generation WSN applications.

Another important issue in developing MAS concerns their architecture design
approach and related agent definition primitives, so to opportunely satisfy WSN ap-
plication developers requirements. Most of the research efforts conducted so far are
based on a bottom-up approach. On the basis of the sensor nodes hardware, research
focuses on how to provide proper software abstractions to assist application agent
designers in defining common or advanced tasks, without requiring to deal with low-
level details for hardware and networking management. Making the control part of
the agents more expressive is the way for achieving a simplification of the agent
design while keeping a rapid WSN application re-programming. This approach can
also guarantee a reduction of the agent code size (and consequently a general better
migration performance), because most of the macro-functionalities are already im-
plemented into the MAS middleware and are directly accessible to agents on each
WSN node running the middleware. A problem of such a solution is that often the

196 G. Fortino and S. Galzarano

Fig. 1 List of sensor platforms and their characteristics

available high-level abstractions may not be suitable for many applications that ne-
cessitate of a more fine-grained control of the node resources, which is generally
needed for defining much more efficient tasks. However, although a fine-grained
task control is ideal for reaching a more program execution flexibility, it can lead
to a potentially bigger, and consequently error-prone, agent code. The alternative,
i.e. the top-down approach, is basically based on a first deep understanding of what
the primary application requirements are, which become the main driver for the de-
sign of the agent-based middleware. In this case, the provided agent programming
constructs may not be so straightforward to use, and even may be very application-
specific oriented so that a more general use is not possible.

8 On the Development of Mobile Agent Systems 197

4 MAPS and TinyMAPS

On the basis of the previously discussed basic requirements for developing flex-
ible and efficient agent systems, in the following we briefly present MAPS and
TinyMAPS, implemented for supporting rapid prototyping of WSN applications
on sensor platforms enabling Java programming. While MAPS is specifically con-
ceived for higher processing-capable sensor devices, Sun SPOTs, TinyMAPS is a
version of MAPS tailored for more constrained platforms such as Sentilla JCreate.

4.1 MAPS: Mobile Agent Platform for Sun SPOT

MAPS [9, 1] is an innovative Java-based framework purposely developed on Sun
SPOT technology for enabling agent-oriented programming of WSN applications.
It has been defined according to the following requirements:

• Component-based lightweight agent server architecture to avoid heavy concur-
rency and agents cooperation models.

• Lightweight agent architecture to efficiently execute and migrate agents.
• Minimal core services involving agent migration, agent naming, agent communi-

cation, timing and sensor node resources access (sensors, actuators, flash mem-
ory, switches and battery).

• Plug-in-based architecture extensions through which any other service can be de-
fined in terms of one or more dynamically installable components implemented
as single or cooperating (mobile) agent/s.

• Java language for programming mobile agents.

The MAPS architecture (see Fig. 2) is based on components that interact through
events and offer a set of services to mobile agents including message transmission,
agent creation, agent cloning, agent migration, timer handling, and easy access to
the sensor node resources.

In particular, the main components are:

• Mobile Agent (MA), which is the basic high-level component defined by user for
constituting agent-based applications.

• Mobile Agent Execution Engine (MAEE), which manages the execution of MAs
by means of an event-based scheduler enabling lightweight concurrency. MAEE
also interacts with the other service-provider components to fulfill service re-
quests (message transmission, sensor reading, timer setting, etc) issued by MAs.

• Mobile Agent Migration Manager (MAMM), which supports agents migration
through the Isolate hibernation/dehibernation feature provided by the Sun SPOT
environment [3]. The MAs hibernation and serialization involve data and execu-
tion state whereas the code should already reside at the destination node (this is a
current limitation of the Sun SPOTs which do not support dynamic class loading
and code migration).

198 G. Fortino and S. Galzarano

Fig. 2 MAPS architecture

• Mobile Agent Communication Channel (MACC), which enables inter-agent com-
munications based on asynchronous messages (unicast or broadcast) supported
by the radiogram protocol.

• Mobile Agent Naming (MAN), which provides agent naming based on proxies
for supporting MAMM and MACC in their operations. MAN also manages the
(dynamic) list of the neighbor sensor nodes that is updated through a beaconing
mechanism based on broadcast messages.

• Timer Manager (TM), which manages the timer service for timing MA opera-
tions.

• Resource Manager (RM), which enables access to the resources of the Sun SPOT
node: sensors (3-axial accelerometer, temperature, light), switches, leds, battery,
and flash memory.

In Fig. 3 the Mobile Agent model is depicted. In particular, the dynamic behavior
of MA is modeled as a multi-plane state machine (MPSM). The GV component
represents the global variables, namely, the data inside an MA whereas the GF is a
set of global supporting functions. Each plane may represent the behavior of the MA
in a specific role, so enabling role-based programming, and is composed of local
variables (LV), local functions (LF), and an ECA-based automaton (ECAA). This
automaton is composed of states and mutually exclusive transitions among states.
Transitions are labeled by Event-Condition-Action (E[C]/A) rules, where E is the
event name, [C] is a boolean expression based on global and local variables, and A
is an atomic action. MAs interact through events that are asynchronously delivered
by the MAEE and dispatched, through the Event Dispatcher component, to one
or more planes according to the events the planes are able to handle. It is worth
noting that the MPSM-based agent behavior programming allows exploiting the
benefits deriving from three main paradigms for WSN programming: event-driven
programming, state-based programming and mobile agent-based programming.

8 On the Development of Mobile Agent Systems 199

Fig. 3 MAPS agent model

4.2 TinyMAPS

The architecture and the agent programming model of TinyMAPS [8] have been
directly derived from MAPS, with proper adaptation to be actually implemented
atop the Java-based Sentilla technology [2].

Its architecture is depicted in Fig. 4 and, similarly to MAPS, is based on com-
ponents interacting through events but offering a more limited set of core-services
(agent creation, migration, communication and sensor resource access) to mobile
agents. Agent cloning and timer handling are not provided. In particular, the main
components are:

• Mobile Agent (Agent), which is the basic component defined by user. It is de-
signed as a simple class that encloses within the behavior (is possible to define
only single-plane agents).

• Mobile Agent Execution Engine (MAEE), which manages the execution of MAs
by means of a thread that schedules local or remote events according to a FIFO
policy. The MAEE also encapsulates others functions:

– it uses serialization for sending remote events through the inner component
Mobile Agent Event Sender (MAES);

– it implements a system of naming (Mobile Agent Naming component, MAN)
which keeps the WSN nodes along with the active agents running on them;

– it interacts with the MAER through the Mobile Agent Migration Manager
(MAMM) for providing a mechanism of migration for mobile agents.

• Mobile Agent Event Receiver (MAER), which is developed as an independent
thread that waits for receiving events from remote MAs. After event reception, it
delegates the delivering of event to the MAEE.

• Resource Manager (RM), which allows accessing to the resources of the Sentilla
node, i.e. a 3-axial accelerometer and LEDs.

200 G. Fortino and S. Galzarano

Fig. 4 TinyMAPS architecture

The TinyMAPS mobile agents are defined by following the same multi-plane
state machine (MPSM) model previously discussed and depicted in Fig. 3.

5 A Comparison among Java-Based MAS

In the following section we first describe the main characteristics of the Java-based
MAS for WSNs and then comparative results of MAPS with both TinyMAPS and
AFME are provided.

5.1 Java-Based MASs’ Characteristics Comparison

In Table 1, MAPS, TinyMAPS, AFME, and MASPOT are compared with respect to
seven characteristics: agent behavior model, intentional agent support, agent behav-
ior definition language, migration type, migration mechanism, agent communication
model, and dynamic agent creation.

Both TinyMAPS and MAPS offer similar services for developing WSN agent-
based applications. They use finite state machines (FSMs) to model the agent be-
havior and directly the Java language to program guards and actions, so no trans-
lator and/or interpreter need to be developed and no new language has to be learnt.
Moreover, differently from TinyMAPS, MAPS is more powerful and fully exploits
the release 5.0 “red” of the Sun SPOT library to provide advanced functionality
of communication, migration, sensing/actuation, timing, and flash memory storage.
Although AFME is based on the same basic programming language, its agent model
is different from a finite state machine, since it employs a more complex BDI-like
model, which offers support to intentional agents. In particular, it is centered on per-
ceptors, actuators, modules, and services which are developed in Java but have to
be strictly correlated to declarative rules provided for modeling the agent behavior.
Both approaches are effective for developing agent-based applications even though
MAPS is more straightforward as it relies on a programming style based on state

8 On the Development of Mobile Agent Systems 201

Table 1 Main features offered by the current Java-based MASs for WSNs

MAPS [9] TinyMAPS [8] AFME [30] MASPOT [27]

Agent Behavior
Model

Finite State
Machine

Finite State
Machine

Belief/Desire/
Intension

No specific
model

Intentional Agent
Support

No No Yes No

Agent Behavior
Definition Language

Java Java Java/AFAPL Java

Migration Type
Strong
(but no code)

Weak Weak
Weak or
Strong

Migration Mecha-
nism

Sun SPOT
Isolate

Agent descriptor
transmission

Agent descriptor
transmission

Sun SPOT
Isolate +
Suite transfer

Agent Communica-
tion
Model

Message
passing

Message
passing

Message
passing

Tuple spaces

Runtime Agent
Creation

Yes Yes No Yes

machines widely known by programmers of embedded systems. Differently from
the previous systems, MASPOT does not provide any specific model to facilitate
developers, which have to design and implement the agents’ behavior without the
support of a well defined high-level formalism.

For what concerning the migration support, MAPS offers a “limited” strong mi-
gration, since the execution state of the agent is transferred during migration along
with the agent data state, but no code migration is supported. In particular, the imple-
mentation of mobile agents is based on the Isolate components defined by the Sun
SPOT library. Each Isolate represents “process-like” unit of computation isolated
from other instances of Isolate and their migration mechanism is directly offered
by the SPOT Squawk JVM through their hibernation and serialization. TinyMAPS,
instead, supports migration by simply sending an event that contains agent status in-
formation and data, which are encapsulated inside the event. Thus, the agent needs
to restart its execution on the remote node. In any case, both MAPS and TinyMAPS
suffer from the current limitation of the Sun SPOT and the Sentilla JCreate that, as
CLDC-compliant devices do not allow dynamic class loading, so preventing from
the possibility to support code migration (i.e. any class required by the agent must
be already present at the destination node). Similarly to TinyMAPS, AMFE uses
a proprietary agent descriptor to capture and transmit agent data and state. At the
contrary, MASPOT supports both strong and weak migration and the type of migra-
tion is defined for each agent at creation time and cannot change during the agents

202 G. Fortino and S. Galzarano

life cycle. In particular, along with the migration mechanism based on Isolates, the
transmission of Suites (containing a collection of packaged classes and libraries) is
employed for migrating the agent code from a central code library situated on the
user station (the coordinator computer of the WSN) to a specific Sun SPOT node.

The agent communication model adopted by MAPS, TinyMAPS, and AFME for
exchanging information among agents is based on message passing (unicast and
broadcast) which is the communication paradigm mostly used in agent-oriented
frameworks. The MASPOT inter-agent communication is instead based on the tuple
spaces model, similar to the one adopted by Agilla.

The ability to create an agent at runtime could be an important feature for ap-
plication in which the number of necessary agents cannot be determined ”a priori”
and simply fixed at compile-time. MAPS, TinyMAP, and MASPOT allow for such
capability, so providing more flexibility for the creation of dynamic distributed ap-
plications, whereas AFME needs agents to be created only in a static way.

5.2 Performance Test Comparison between MAPS and
TinyMAPS

To evaluate and compare the performance of MAPS and TinyMAPS, two bench-
marks have been defined according to [17] for the following mechanisms:

• Agent communication. The agent communication time is computed for two
agents running onto different nodes and communicating in a client/server fash-
ion (request/reply). Two different request/reply schemes are used: (i) data Back
and Forward (B&F), in which both request and reply contain the same amount
of data; (ii) data B, in which only the reply contains data.

• Agent migration. The agent migration time is calculated for agent ping-pong
among two single-hop-distant sensor nodes. Migration times are computed by
varying the data cargo of the ping-pong agent.

In Fig. 5 the finite state machines of the agents involved in the two different bench-
marks are shown. They are related to both MAPS and TinyMAPS system, since they
rely on the same agent modeling formalism.

In the Sender agent plane, after the agent creation the AGN START event is auto-
matically signaled bringing the agent to the IDLE state and executing the A0 action
for some initialization code. From the IDLE state, the transition to the WAIT MSG
state is immediately triggered whenever the guard [msgCount < MSG NUMBER]
holds and, consequently, the A1 action is executed, consisting in sending a message
to the Receiver agent. The Sender then waits until the reply message is received. If
so, the MSG event is triggered, the action A2 is executed (the messages exchange
time is evaluated and stored), and the plane returns to the IDLE state. If the num-
ber of messages exchange reaches MSG NUMBER, before the termination of the
Sender agent, the operations included in A3 are performed (i.e. the communication
time average is calculated and a last message is sent to the Receiver for its termina-
tion). The Receiver agent’s behavior is very simple. It waits for a message coming

8 On the Development of Mobile Agent Systems 203

IDLE WAIT MSG

AGN_START / A0

[msgCount==MSG_NUMBER] / A3

SENDER AGENT

WAIT MSG

AGN_START
MSG
[reply==true] / A1

MSG[reply==false]

RECEIVER AGENT IDLE WAIT
MIGRATION

AGN_START / A0
[migrCount < MIGR_NUMBER] / A1

MGR_EXECUTED / A2

MSG / A2

[msgCount < MSG_NUMBER] / A1

ON REMOTE
NODE

MGR_EXECUTED / A3

[migrCount == MIGR_NUMBER] / A4

PING-PONG AGENT

a) communication benchmark agents b) migration benchmark agent

Fig. 5 Planes of the agents employed in the benchmarks

from the Sender and on the basis of the value of its reply parameter, it will send a
message reply (A1) or terminate itself.

For the agent migration benchmark, a single Ping-Pong agent is employed. Upon
agent creation and starting, a request for migration is executed (action A1) and the
plane transits to the WAIT MIGRATION state, waiting for migration completion,
which is signaled with the MGR EXECUTED event. After having moved to the
remote node, the agent immediately requests for a new migration for coming back
to the origin node (action A2). Once the agent is came back to the origin node, the
elapsed time is stored and a new round-trip migration starst, unless MIGR NUMBER
migrations have been completed. Under such a condition, before terminating, the
agent computes the migration time average (action A4).

The implementation of the agent planes depicted in Fig. 5 is rather fast, since
the basic structure of a generic finite state machine (FSM) is very simple and the
main effort for developers is just to insert the code corresponding to the actions
of the FSMs, by also making use of the MAPS/TinyMAPS API for accessing to the
basic agent management supporting services. An excerpt of the Sender agent’s plane
implementation is shown in the following. In particular, the eventHandler method
is where the FSM and related actions are encode. For more specific technical details
on the design and implementation of MAPS/TinyMAPS agents, readers can refer to
[7, 6].

.....
public SenderPlane(Agent agent){

super(agent); this.currentState = CREATED;
}
.....
public void eventHandler(Event event){

try {
switch(this.currentState){

case CREATED:
if (event.getName() == Event.AGN_START){ //action A0

while(agents.size() == 0){
Thread.sleep(200);
agents= this.agent.getRemoteAgentsID();

}

204 G. Fortino and S. Galzarano

remoteAgentID= (String)(agents.elementAt(0));
this.msgCount= 0;
this.currentState = IDLE;

}
break;
case IDLE:

if(this.msgCount < MSG_NUMBER){ //action A1
Event msg = new Event(this.agent.getId(), remoteAgentID,

Event.MSG, Event.NOW);
msg.setParam("msgPayload", msgPayload);
msg.setParam("reply", true);
this.startTime= System.currentTimeMillis();
this.agent.send(this.agent.getId(), remoteAgentID,

msg, false);
this.currentState = WAIT_MSG;

}else{ //action A3
compute&printMean(this.commTime);
Event msg = new Event(this.agent.getId(), remoteAgentID,

Event.MSG, Event.NOW);
msg.setParam("reply", false);
this.agent.send(this.agent.getId(), remoteAgentID,

msg, false);
this.agent.terminateAgent();

}
break;
case WAIT_MSG:

if (event.getName() == Event.MSG) { //action A2
this.commTime[this.msgCount]=

System.currentTimeMillis()-this.startTime;
this.msgCount++;
this.currentState = IDLE;

}
}

}
catch(Exception e){LedsManager.error(); e.printStackTrace();}

}
....

In Fig. 6, the comparison results of the agent communication time, with different
message payload, are shown, with MAPS performing better than TinyMAPS. More-
over, as message data payload increases, communication time for MAPS is not af-
fected. The tests have been executed by taking into consideration that the Sentilla
JCreate platform imposes a maximum message payload size of 78 bytes.

For what concerning the migration benchmark, Fig. 7 shows the obtained results.
In particular, the migration times are high due to both the slowness of the JVM op-
erations supporting the migration process and the communication time between two
nodes. For agents with low data payload TinyMAPS performs better than MAPS;
however, when agent data payload is greater than 58 bytes, MAPS migration mech-
anism starts performing better. Since TinyMAPS relies on messages for transmitting
the agent description, the limitation of 78 bytes still holds. At the contrary, MAPS
does not have any agent data payload limitations.

5.3 Performance Test Comparison between MAPS and AFME

The same benchmarks discussed in Section 5.2 have been performed for AFME
[30], and the obtained communication/migration performance results are compared
with MAPS.

8 On the Development of Mobile Agent Systems 205

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 30 40 50 60 70 80

T
im

e
(m

s)

Data Payload (bytes)

TinyMAPS - Data B
TinyMAPS - Data BF

MAPS - Data B
MAPS - Data BF

Fig. 6 MAPS vs. TinyMAPS: Agent communication time comparison

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 35 40 45 50 55 60 65 70 75 80

T
im

e
(m

s)

Agent Data Payload (bytes)

TinyMAPS
MAPS

Fig. 7 MAPS vs. TinyMAPS: Agent migration time comparison

Differently from MAPS and TinyMAPS, AFME agents’ behavior is defined
through AFAPL declarative rules. In the following, the rules of the two agents de-
fined for testing the agent communication time are reported and described.

Sender Agent rules:
1. numMsgSent(?msgCount), #?msgCount<MSG_NUMBER > storeStartTime,

inform(agentID(receiverAgent),
addresses("radiogram://"+receiverNodeAddr));

2. message(inform, sender(receiverAgent, address(?addr))) >
compute&storeCommTime, increaseMsgCount;

3. numMsgSent(?msgCount), #?msgCount==MSG_NUMBER > compute&printTimeAverage;

206 G. Fortino and S. Galzarano

Receiver Agent rule:
1. message(inform, sender(senderAgent, address(?addr))) >

inform(agentID(senderAgent), addresses("radiogram://"+senserNodeAddr));

The first rule of the Sender agent checks if less than MSG NUMBER messages have
been sent. When the numMsgSent belief is adopted, it returns the number of mes-
sages sent into the ?nSamples variable, whose value is tested for confirming that a
new message has to be sent. If so, the starting time is also acquired (it is in charge
of the storeStartTime actuator). The second rule computes and stores the elapsed
time for the communication upon the reception of the reply message coming from
the receiverAgent (see the message belief), whereas the messages count is incre-
mented (compute&storeCommTime and increaseMsgCount are the two actuators in
charge of performing such operations). Finally, the third rule fires when the number
of messages sent so far is equal to MSG NUMBER, so that the final communication
time average can be computed and displayed (i.e. the compute&printTimeAverage
actuators is executed).

The Receiver agent has one rule, which simply consists in sending a message
reply whenever a message coming from the Sender agent is received.

For what concerning the migration benchmark performed, the needed rules for th
correct execution of the Ping-Pong agent are the following:

Startup rule:

1. always(ieeeAddr("\"+ com.sun.spot.peripheral.Spot.getInstance()
.getRadioPolicyManager().getIEEEAddress() + \":45")),

always(destAddr("0014.4F01.0000.07DB:46")),
always(init);

Ping-Pong Agent rules:

1. init, destAddr(?destaddr), ieeeAddr(?addr) >
par(
migrate(?destaddr,null), retractBelief(always(destAddr(?destaddr))),
retractBelief(always(ieeeAddr(?addr))), retractBelief(always(init)),

adoptBelief(always(couple(?time,?addr))),
adoptBelief(always(migrated)),

adoptBelief(always(ieeeAddr(?destaddr))),
adoptBelief(always(destAddr(?addr))),

time(?time)
);

2. migrated, destAddr(?destaddr), ieeeAddr(?addr) >
par(
migrate(?destaddr,null), retractBelief(always(destAddr(?destaddr))),

retractBelief(always(ieeeAddr(?addr))),
retractBelief(always(migrated)), adoptBelief(always(terminated)),

adoptBelief(always(ieeeAddr(?destaddr))),
adoptBelief(always(destAddr(?addr)))

);

3. terminated, couple(?time, ?addr) > par(printTime(?time, ?addr),
retractBelief(always(terminated)));

The rules defined above are much more complicated with respect to the ones previ-
ously defined for the agent communication benchmark, and also much more diffi-
cult to read and understand if compared to the simple and clear finite state machine

8 On the Development of Mobile Agent Systems 207

formalism adopted by MAPS/TinyMAPS and depicted in Fig. 5. In particular, two
set of rules are needed for a correct execution of the Ping-Pong agent: the rules as-
sociated to the agent and representing its running behavior, and a startup rule which
is necessary for creating a set of beliefs (destAddr, time, and ieeeAddr along with
related values) after the agent creation, but before the agent start, and representing
a kind of knowledge initialization. In particular, the ieeeAddr belief represents the
node address on which the agent is currently running, whereas the destAddr belief
represents the destination node to which the agent has to migrate.

Upon the agent start, since the aforementioned starting beliefs hold, the first rule
fires and the migrate actuator is performed for requesting to the AFME middleware
the migration of the agent to the destination node, whose address has been previ-
ously stored in the ?destaddr variable by the startup rule. At the same time (the par
keyword indicate the parallel execution of commitments/actuators), the ieeeAddr
and destAddr need to be retracted and readopted by swapping their related values.
Moreover, the time of starting migration is stored and the migrated belief is gener-
ated so that the agent, on resume, knows that the migration is completed. The second
rule is rather similar to the previous one and is in charge of performing the returning
migration to the origin node. Once the agent terminates its ping-pong trip, the third
rule fires (i.e. the couple and the terminated beliefs hold) and the elapsed time is
finally computed and displayed.

Along with the AFAPL rules, AFME requires also the implementation of proper
Java classes, each of which is related to a specific belief and actuator and represents
the actual code that is executed on the Sun SPOT nodes. For more specific technical
details on the design and implementation of AFME agents, readers can refer to
[7, 6].

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

T
im

e
(m

s)

Data Payload (bytes)

AFME - Data B
AFME - Data BF

MAPS - Data B
MAPS - Data BF

Fig. 8 MAPS vs. AFME: Agent communication time comparison

208 G. Fortino and S. Galzarano

The results obtained by the two performed benchmarks are described in the
following.

Comparison results for the communication time are shown in Fig. 8. For mes-
sages with light data payload, AFME performs better than MAPS; however, when
the message data payload overtakes 700 bytes, MAPS starts performing better in the
case data BF.

Comparison results for the migration times are shown in Fig. 9. AFME retains
a higher performance migration mechanism, as it is not based on the heavy isolate
hibernation/serialization mechanisms of the Squawk VM.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

T
im

e
(m

s)

Agent Data Payload (bytes)

AFME
MAPS

Fig. 9 MAPS vs. AFME: Agent migration time comparison

6 Lessons Learned and Open Challenges

The agent technology has been widely proven (see Section 2) to be an effective
paradigm for the development of WSN applications either by providing specific
solutions, like software infrastructure layers (i.e. network routing or data dissemi-
nation and fusion techniques), or by providing high-level agent-oriented design and
programming models able to support developers in building their own distributed
applications.

In both cases, we experienced that the best way to fully exploit agents into WSNs
is by providing a proper MAS incorporating all the functionalities needed for the ex-
ecution of agents by managing agent lifecycle, migration, communication, sensing
capabilities and sensor resource access. In particular, including all these function-
alities into the MAPS and TinyMAPS architectures while maintaining an efficient
execution at runtime over a resource constrained environment has been a very com-
plex task. Although the scarce available resources, MAPS and TinyMAPS are able
to provide a set of core-services on which developers can define their own agents

8 On the Development of Mobile Agent Systems 209

through a flexible programming abstraction based on a finite state machine formal-
ism. Moreover, the design requirements discussed in Section 3.2 have been success-
fully met: lightweight concurrency control mechanism, modular components orga-
nization, and lightweight agent structure so that agents can be efficiently executed.

For testing their actual capabilities, both MAPS and TinyMAPS have been em-
ployed to develop a real-time human activity monitoring application [9, 8] having
strict requirements in terms of sensing timing and processing. The performance re-
sults demonstrate that an agent architecture, when properly designed and imple-
mented, can be a comprehensive solution for effectively and efficiently developing
real and exigent applications over WSNs.

Unfortunately, several issues are difficult to overcome due to insurmountable
technological limitations. As already discussed in Section 5, the SPOT Squawk JVM
provides a poorly performing migration mechanism, and does not provide dynamic
class loading and code migration. Also, the Sentilla JCreate, based on a different
hardware and software architecture, suffers from a much more constrained resources
limitations. Moreover, due to incompatible agent migration processes (Isolate-based
for Sun SPOT and customized transmission of agent status and data for JCreate), a
mobile agent application running over a heterogeneous WSN cannot be defined,
unless a kind of software bridge is created with a consequent worsening of agent
execution and migration performance. Finally, since a bottom-up approach has been
adopted for MAPS and TinyMAPS design and implementation, the provided pro-
gramming abstractions, defined over the low-level sensor node architecture, guar-
antee a simple agent definition, but at the cost of a less fine-grained control of the
node resources, which is generally needed in many applications for defining much
more efficient tasks.

On the basis of the previously highlighted matters, it is clear that many open
challenges still remain and further research efforts have to be undertaken.

First of all, much more in-depth research needs to be done for finding a better
compromise between easiness in agents definition and efficiency at run-time, be-
cause MAS design trade-offs should attempt to satisfy the rapid application devel-
opment requirement while guaranteeing as much flexibility as possible, depending
on the sensor nodes capabilities.

Moreover, despite the efforts made so far in MAS development have been fo-
cused on the definition of adequate abstractions for high-level agent modelling, not
enough work has been conducted to identify and address others requirements for
an effective development of agent-based WSN applications. In particular, the com-
plexity in developing them derives also from the lack of coherent tool chains for ap-
plication development. In fact, in addition to agent programming, WSN application
development involves a series of labor-intensive tasks such as the compilation and
verification of program code, configuration of a simulator or of sensor nodes, and
deployment/injection of compiled code to nodes. Thus, we believe that a complete
agent-oriented methodology addressing the aforementioned issues should be fully
integrated with a specifically implemented MAS. Indeed, as such a methodology
aims at effectively developing real applications, it should rely on a specific MAS for
being supported during the final applications development phases, i.e. implemen-

210 G. Fortino and S. Galzarano

tation, deployment and execution. Although several agent-oriented methodologies
have been conceived so far, they have not been actually fully integrated into a real
deployable agent system. Moreover, being WSNs a specific type of distributed em-
bedded system, we believe that the following techniques and methods developed
in the research area of embedded computing could be fruitfully exploited for bet-
ter defining and implement an effective and complete MAS: platform-based design,
simulation-driven prototyping, and model-driven development based on domain-
specific languages. We therefore think that an effective methodology for agent-based
WSN application development, and consequently the development of its related
MAS, should integrate method fragments from agent-oriented methodologies with
the following WSN-oriented techniques/methods:

• Platform-Based Design [24] is a methodology originally developed for the de-
sign of embedded systems. According to the PBD, a design is obtained as a se-
quence of refinement steps that guide the designer from the initial specification
all the way down to a physical implementation. To support this process, a set
of intermediate abstraction layers and platforms are to be identified. These plat-
forms therefore represent the target system at different levels of abstraction. Each
platform is composed on a set of instances. An iterative refinement (mapping)
process translates a platform instance to another one of a lower level, until the
final implementation is reached. Each refinement step is a design choice taken as
the solution of a constrained optimization problem. The cost function is typically
the energy consumption (to optimize the system lifetime). The constraints are
usually the error rate, latency, and the budget. The PBD methodology has been
applied for the system-level design of WSNs [12] to address, through a formal
and systematic approach, issues such as reliability and support for heterogeneity
that are still one of the main limiting factors to the commercial spread of the WSN
technology. In particular, the approach is based on three layers of abstraction and
their relative platforms: a service platform at the application layer, a protocol
platform to describe the protocol stacks, and an implementation platform for the
hardware nodes. In this case, the first refinement step maps the high-level service
platform instance to an implementation platform instance, leading to a topology.
It is the output of this step that identifies the type, the number, and the location of
the physical sensor nodes needed by the application. The communication prob-
lem is addressed only later, with a further mapping process that choose the right
communication protocol stack (MAC and/or routing) that meets the application
requirements and satisfies the energy constraints of the selected physical network
infrastructure.

• WSN simulation techniques and framework. In the context of WSN, simulation is
the most effective technique for supporting the prototyping of applications since
mathematical analysis and experimental deployments are not always allowed.
This approach is a delicate matter due to the complexity of the WSNs and new
aspects inherent in WSN must be included in simulators (e.g., a physical environ-
ment and an energy model), leading to different degrees of accuracy against per-
formance [18]. Among simulators specifically designed for WSNs, COOJA [31]
allows to simulate WSNs choosing if increasing the accuracy or the performance

8 On the Development of Mobile Agent Systems 211

giving the possibility to simulate different nodes at different levels. The COOJA
simulator is a flexible Java-based sensor network simulator with specific algo-
rithms to simulate entities like the WSN radio channel and battery consumption
and capable to emulate microcontrollers. COOJA is the only simulator that has
the ability to mix simulations of sensor devices at multiple abstraction levels: (i)
Application level, the simulated nodes run the application logic re-implemented
in Java (simulating at this level increases performances); (ii) OS level, the nodes
use the same code as real nodes, but compiled for COOJA; (iii) Hardware level,
the nodes run the same compiled code that can be used in real nodes (simulat-
ing at this level increases accuracy). The nodes at different abstraction levels can
communicate with each other using the radio channel. COOJA can effectively
support the prototyping of WSN applications giving the possibility to simulate
high-level code (Java, at the application level) to test the algorithms and then the
code can be re-implemented for WSN nodes like TelosB and simulated again at
low-level (hardware level).

• MDD and Domain-Specific Languages for WSNs. The Model-Driven Develop-
ment is based on the idea of separating the specification of the operation of a sys-
tem from the details of the way that system uses the capabilities of its platform.
The three primary goals of MDD are portability, interoperability and reusability
through architectural separation of concerns. MDD provides a set of guidelines
for structuring specifications expressed as models. It defines system functionality
using an appropriate domain-specific language (DSL). The MDD approach can
be very useful in the WSN domain [39] giving the possibility to overcome the
limitation in the programming of heterogeneous WSN due to different platforms
and OSs.

In particular, the PBD methodology may be particularly suitable for helping in better
defining the MAS architecture on the basis of the constraints of a specific target
sensor platform. Moreover, as demonstrated in the software engineering research
area, the development of a CASE tool specifically and seamlessly supporting all
phases of the methodology from requirement analysis to system deployment and
maintenance would promote usability and effectiveness of the methodology.

Finally, as the complexity of the applications grows, the need for proper man-
agement and control procedures and techniques is becoming a fundamental require-
ment. Although a significant number of MAS has been developed, support to self-*
properties has not still properly taken under consideration. Such autonomic prop-
erties are necessary for allowing MAS-based applications to autonomously achieve
system-wide goals despite environment changes and failures.

7 Conclusion

Programming WSN applications is a complex task that requires suitable program-
ming paradigms and frameworks to cope with the WSN-specific characteristics.
Several kinds of micro- and macro-programming techniques have to date been pro-
posed. Among them, mobile agent-based programming, which has been formerly

212 G. Fortino and S. Galzarano

introduced for conventional distributed systems, can be more effectively exploited
in the context of WSNs.

In this chapter, we have first introduced the agent-based systems for the WSN
context by providing the motivations and the benefits of using agents over such
networks. Then, we have focused on the major challenges for the development of
mobile agent systems on sensor platforms, and specifically we discussed how the
main problems arise when MAS developers have to face with resource-constrained
devices and with sensor architectures heterogeneity. In particular, we have presented
how we have directly tackled such issues by developing two mobile agent systems,
MAPS and TinyMAPS. Although our efforts for designing them around the main
requirements needed for a flexible and efficient agent system, it has been shown how
some limits cannot be mitigated, especially if they are directly related to the platform
characteristics. As an example, the Sun SPOT migration mechanism is an inherently
low performance operation, as shown by the quantitative performance evaluation
conducted, and also does not allow for agent code migration. Moreover, the diffi-
culties in providing a multi-platform MAS have been exhibited by discussing the
needed to properly modify the MAPS architecture for adapting the system to the
Sentilla sensor platform.

Although many research works have demonstrated that mobile agents are a suit-
able technology for supporting WSN applications development, more efforts should
still be devoted to the definition of high performance MAS, WSN-oriented method-
ologies and tools fully supporting the development lifecycle of WSN agent-based
applications. In particular, we believe that a full-fledged agent-oriented methodol-
ogy not only should incorporate useful methods and models derived from available
agent-oriented methodologies but also it should include methods and techniques
derived from embedded computing such as platform-based design, simulation-
driven testing and model-driven development based on domain-specific languages.
On-going research activity is therefore focused on such a methodology to support
agent-oriented WSN application development based on MAPS/TinyMAPS as im-
plementation platforms in the system implementation phase.

References

1. Mobile Agent Platform for Sun SPOT (MAPS), documentation and software (2011),
http://maps.deis.unical.it

2. Sentilla developer community (2011),
http://www.sentilla.com/developer.html

3. Sun Small Programmable Object Technology (Sun SPOT), documentation and software
(2011), http://www.sunspotworld.com

4. TinyOS web site, documentation and software (2011), http://www.tinyos.net
5. Afzal, S.R., Huygens, C., Joosen, W.: Extending middleware frameworks for wireless

sensor networks. In: Afzal, S.R. (ed.) Ultra Modern Telecommunications & Workshops,
ICUMT 2009, pp. 1–7. IEEE (2009),
https://lirias.kuleuven.be/handle/123456789/261940

http://maps.deis.unical.it
http://www.sentilla.com/developer.html
http://www.sunspotworld.com
http://www.tinyos.net
https://lirias.kuleuven.be/handle/123456789/261940

8 On the Development of Mobile Agent Systems 213

6. Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An agent-based
signal processing in-node environment for real-time human activity monitoring based on
wireless body sensor networks. Eng. Appl. of AI 24(7), 1147–1161 (2011)

7. Aiello, F., Fortino, G., Galzarano, S., Gravina, R., Guerrieri, A.: An analysis of java-
based mobile agent platforms for wireless sensor networks. Multiagent and Grid Sys-
tems 7(6), 243–267 (2011)

8. Aiello, F., Fortino, G., Galzarano, S., Vittorioso, A.: TinyMAPS: A Lightweight
Java-Based Mobile Agent System for Wireless Sensor Networks. In: Brazier, F.M.T.,
Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Com-
puting V. Studies in Computational Intelligence, vol. 382, pp. 161–170. Springer, Hei-
delberg (2011)

9. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A java-based agent platform for pro-
gramming wireless sensor networks. The Computer Journal 54(3), 439–454 (2011)

10. Aiello, F., Fortino, G., Guerrieri, A.: Using mobile agents as enabling technology for
wireless sensor networks. In: International Conference on Sensor Technologies and Ap-
plications, vol. 0, pp. 549–554 (2008),
doi: http://doi.ieeecomputersociety.org/10.1109/
SENSORCOMM.2008.101

11. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. Comput. Netw. 38, 393–422 (2002), doi:10.1016/S1389-1286(01)00302-4

12. Bonivento, A., Carloni, L.P., Sangiovanni-Vincentelli, A.: Platform based design for
wireless sensor networks. Mob. Netw. Appl. 11, 469–485 (2006),
doi: http://dx.doi.org/10.1007/s11036-006-7194-1

13. Braginsky, D., Estrin, D.: Rumor routing algorthim for sensor networks. In: Proceedings
of the 1st ACM International Workshop on Wireless Sensor Networks and Applications,
WSNA 2002, ACM, New York (2002), doi: 10.1145/570738.570742

14. Chen, M., Gonzalez, S., Leung, V.C.M.: Applications and design issues for mobile agents
in wireless sensor networks. IEEE Wireless Communications 14(6), 20–26 (2007),
doi:10.1109/MWC.2007.4407223

15. Chen, M., Kwon, T., Choi, Y.: Data dissemination based on mobile agent in wireless
sensor networks. In: Proceedings of the IEEE Conference on Local Computer Networks
30th Anniversary, LCN 2005, pp. 527–529. IEEE Computer Society, Washington, DC
(2005), doi: http://dx.doi.org/10.1109/LCN.2005.44

16. Chen, M., Kwon, T., Yuan, Y., Leung, V.: Mobile agent based wireless sensor networks.
Journal of Computers 1(1), 14–21 (2006)

17. Dikaiakos, M.D., Kyriakou, M., Samaras, G.: Performance Evaluation of Mobile-Agent
Middleware: A Hierarchical Approach. In: Picco, G.P. (ed.) MA 2001. LNCS, vol. 2240,
p. 244. Springer, Heidelberg (2001)

18. Egea-Lopez, E., Vales-Alonso, J., Martinez-Sala, A., Pavon-Mario, P., Garcia-Haro, J.:
Simulation scalability issues in wireless sensor networks. IEEE Communications Maga-
zine 44(7), 64–73 (2006)

19. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In: Proceedings of the 7th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
2008, vol. 2. International Foundation for Autonomous Agents and Multiagent Systems,
Richland (2008)

20. Fok, C.L., Roman, G.C., Lu, C.: Agilla: A mobile agent middleware for self-adaptive
wireless sensor networks. ACM Trans. Auton. Adapt. Syst. 4(3), 1–26 (2009),
doi: http://doi.acm.org/10.1145/1552297.1552299

http://doi.ieeecomputersociety.org/10.1109/SENSORCOMM.2008.101
http://doi.ieeecomputersociety.org/10.1109/SENSORCOMM.2008.101
http://dx.doi.org/10.1007/s11036-006-7194-1
http://dx.doi.org/10.1109/LCN.2005.44
http://doi.acm.org/10.1145/1552297.1552299

214 G. Fortino and S. Galzarano

21. Gan, L., Liu, J., Jin, X.: Agent-based, energy efficient routing in sensor networks. In: Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2004, vol. 1, pp. 472–479. IEEE Computer Society, Washington,
DC (2004), doi:10.1109/AAMAS.2004.53

22. González-Valenzuela, S., Chen, M., Leung, V.C.: Programmable middleware for wire-
less sensor networks applications using mobile agents. Mob. Netw. Appl. 15, 853–865
(2010), doi: http://dx.doi.org/10.1007/s11036-010-0237-7

23. Jennings, N., Wooldridge, M.: Agent-oriented software engineering. In: Handbook of
Agent Technology (2001)

24. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-level de-
sign: orthogonalization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 19(12), 1523–1543 (2000),
doi:10.1109/43.898830

25. Kwon, Y., Sundresh, S., Mechitov, K., Agha, G.: Actornet: an actor platform for wire-
less sensor networks. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1297–1300. ACM, New
York (2006), doi: http://doi.acm.org/10.1145/1160633.1160871

26. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM 42,
88–89 (1999), doi: http://doi.acm.org/10.1145/295685.298136

27. Lopes, R., Assis, F., Montez, C.: MASPOT: A Mobile Agent System for Sun SPOT. In:
Proceedings of the 2011 Tenth International Symposium on Autonomous Decentralized
Systems, ISADS 2011, pp. 25–31. IEEE Computer Society, Washington, DC (2011),
doi:10.1109/ISADS.2011.10

28. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: Towards next gen-
eration computing. Autonomous Agents and Multi-Agent Systems 9, 203–252 (2004),
doi:10.1023/B:AGNT.0000038027.29035.7c

29. Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G.: Mobile agent mid-
dleware for autonomic data fusion in wireless sensor networks, pp. 57–81 (2009),
doi:10.1007/978-0-387-89828-5 3

30. Muldoon, C., O’Hare, G., O’Grady, M., Tynan, R.: Agent migration and communication
in WSNs. In: 2008 Ninth International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, pp. 425–430. IEEE (2008)

31. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor network
simulation with cooja. In: Proceedings 2006 31st IEEE Conference on Local Computer
Networks, pp. 641–648. IEEE (2006)

32. Qi, H., Xu, Y., Wang, X.: Mobile-agent-based collaborative signal and information
processing in sensor networks. Proceedings of the IEEE 91(8), 1172–1183 (2003),
doi:10.1109/JPROC.2003.814927

33. Rogers, A., Corkill, D.D., Jennings, N.R.: Agent technologies for sensor networks. IEEE
Intelligent Systems 24, 13–17 (2009),
doi: http://doi.ieeecomputersociety.org/10.1109/MIS.2009.22

34. Römer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor networks.
SIGMOBILE Mob. Comput. Commun. Rev. 6, 59–61 (2002),
http://doi.acm.org/10.1145/643550.643556,
doi: http://doi.acm.org/10.1145/643550.643556

35. Suenaga, S., Honiden, S.: Enabling direct communication between mobile agents in
wireless sensor networks. In: 1st Int’l Workshop on Agent Technology for Sensor Net-
works (ATSN 2007), Jointly Held with 6th Int’l Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii (May 14, 2007)

http://dx.doi.org/10.1007/s11036-010-0237-7
http://doi.acm.org/10.1145/1160633.1160871
http://doi.acm.org/10.1145/295685.298136
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.22
http://doi.acm.org/10.1145/643550.643556
http://doi.acm.org/10.1145/643550.643556

8 On the Development of Mobile Agent Systems 215

36. Szumel, L., LeBrun, J., Owens, J.D.: Towards a mobile agent framework for sensor net-
works. In: Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors,
pp. 79–87. IEEE Computer Society, Washington, DC (2005)

37. Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location Tracking in a Wireless Sensor
Network by Mobile Agents and Its Data Fusion Strategies. In: Zhao, F., Guibas, L.J.
(eds.) IPSN 2003. LNCS, vol. 2634, pp. 625–641. Springer, Heidelberg (2003)

38. Vinyals, M., Rodrı́guez-Aguilar, J.A., Cerquides, J.: A survey on sensor networks from
a multi-agent perspective. The Computer Journal 54(3), 455–470 (2010)

39. Wada, H., Boonma, P., Suzuki, J., Oba, K.: Modeling and executing adaptive sensor
network applications with the matilda uml virtual machine. In: Proceedings of the 11th
IASTED International Conference on Software Engineering and Applications, pp. 216–
225. ACTA Press, Anaheim (2007),
http://dl.acm.org/citation.cfm?id=1647636.1647674

http://dl.acm.org/citation.cfm?id=1647636.1647674

Chapter 9
Argumentative Agents for Service-Oriented
Computing

M. Morge, J. McGinnis, S. Bromuri, P. Mancarella, K. Stathis, and F. Toni

Abstract. We propose an argumentation-based agent model that supports ser-
vice and partner selection in service-oriented computing settings. In this model,
argumentation is also used to help agents resolve conflicts between themselves,
whenever negotiation is required for the provision of complex services. The model
relies upon an argumentation framework that is used in a modular architecture where
Knowledge, Goals, Decisions and Priorities are manipulated by three specialized
modules dealing with decision making, communication and negotiation. We formu-
late a distributed e-procurement process to illustrate how our agents select services
and partners and can negotiate with one another.

Maxime Morge
Université Lille 1, France
e-mail: Maxime.Morge@univ-lille1.fr

Jarred McGinnis
Press Association, London UK
e-mail: Jarred.Mcginnis@pressassociation.com

Stefano Bromuri
University of Applied Science, Western Switzerland
e-mail: Stefano.Bromuri@hevs.ch

Paolo Mancarella
Università di Pisa, Italy
e-mail: Paolo.Mancarella@unipi.it

Kostas Stathis
Royal Holloway, University of London, UK
e-mail: Kostas.Stathis@cs.rhul.ac.uk

Francesca Toni
Imperial College London, UK
e-mail: ft@doc.ic.ac.uk

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 217–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

Maxime.Morge@univ-lille1.fr
Jarred.Mcginnis@pressassociation.com
Stefano.Bromuri@hevs.ch
Paolo.Mancarella@unipi.it
Kostas.Stathis@cs.rhul.ac.uk
ft@doc.ic.ac.uk

218 M. Morge et al.

1 Introduction

Service-oriented computing (SOC) is an emerging inter-disciplinary paradigm for
distributed computing, which is changing the way software applications are devel-
oped, deployed and utilised. The central theme of service-oriented computing are
services that provide autonomous, platform-independent, computational elements
that can be described, published, discovered, orchestrated and programmed using
standard protocols to build networks of collaborating applications distributed within
and across organizational boundaries.

The underlying principles and methodologies of SOC assume a service-oriented
architecture (SOA). A basic SOA is often understood as defining an interaction
between software agents as an exchange of messages between service requesters
(clients) and service providers [50]. Clients are software agents that request the ex-
ecution of a service. Providers are software agents that provide the service. Agents
can be simultaneously both service clients and providers. Providers are responsible
for publishing a description of the service(s) they provide. Clients must be able to
find the description(s) of the services they require and must be able to bind to them.
The basic SOA is not an architecture only about services, it is a relationship of three
kinds of participants: the service provider, the service discovery agency, and the
service requestor (client).

One of the main issues for SOC applications is how to compose services by as-
suming an open environment where the relationship of service providers, clients and
discovery agencies change over time as new agents enter and/or leave the applica-
tion dynamically. The issue here is how to establish a possible service composition
by negotiating terms and conditions of the participating services for a given dura-
tion and according to the requirements and the goals the clients and the providers
have to satisfy. The problem here is how to develop mechanisms that allow this ne-
gotiation to take place by reducing possible conflicts to support successful service
compositions.

To address the issues involved in negotiating complex and composite services,
we present an argumentation-based model of agency and its associated architecture
to support SOC applications. Argumentation is used to support the agent to reason
about services, engage in communicative interaction with other agents to negoti-
ate desired service properties, resolve conflicts and eventually make decisions of
which service or partner to select. Argumentation’s main strength is that it allows an
agent to plead for and against conclusions [52], providing a powerful deliberative
and dialectical model for interacting, decision-making agents to assess the validity
of received information and to be able to resolve conflicts and differences of opin-
ion. It is an essential ingredient of decision-making [29, 4, 7, 45, 48], inter-agent
communication [40], and negotiation [53, 30, 2].

The proposed agent model was developed within ArguGRID, an EU-funded
project1 that started in 2006 and ended in 2009. ArguGRID has also developed
a multi-agent systems platform, a peer-to-peer infrastructure and an environment
for users to interact with agents and the overall system, by authoring workflows of

1 http://www.argugrid.eu/

9 Argumentative Agents for Service-Oriented Computing 219

services, hosted upon a Grid platform. While presenting the agent model, we will
also emphasise the links between this and the other components of the ArguGRID
system.

As shown in Figure 1, argumentation agents in ArguGRID are deployed within a
Grid/Service-oriented platform to represent service clients and providers. The plat-
fom consists of four main interacting components.

Fig. 1 ArguGRID Platform

KDE is a commercial software tool developed by InforSense Ltd2. This system
provides facilities to build end user application as remote Web services or Grid
services [24]. For the needs of ArguGRID, the KDE system has been extended to
support semantic descriptions. In this way, requester goals representing user require-
ments can be matched with concrete services and can be executed within the Grid in-
frastructure. KDE was chosen as a supporting technology for the ArguGRID project
because InforSense was the main developer of KDE and ArguGRID had several
exploitation advantages from the perspective of a company working on workflow
management systems.

GRIA3 is the GRID middleware that ArguGRID has chosen to use to support its
scenarios. GRIA is a service-oriented infrastructure designed particularly to support
Business-to-Business collaborations (such as the ones required by the ArguGRID
scenarios) through service provision across organisational boundaries in a secure,
interoperable and flexible manner. In particur GRIA was chosen as it is one of the
main technologies to represent Web services on the Grid.

2 http://www.inforsense.com
3 http://www.gria.org

220 M. Morge et al.

PLATON4 (Peer-to-Peer Load Adjusting Tree Overlay Networks) is a Peer-to-
Peer platform supporting multi-attribute and range queries [36] which has been
developed in the ArguGRID project to support service discovery mechanisms for
load-balancing of peer resources. Load-balancing of peer resources is necessary in
order to guarantee logarithmic querying time using any distributed tree-based multi-
attribute Peer-to-Peer platform. The reason to include a P2P platform in the project
was to allow ArguGRID to scale up to possibly thousands of services. In particular
PLATON allows to perform multidimensional queries on our Web services, mean-
ing that we can represent Web services in terms of complex descriptions as we will
see later in Section 6.

GOLEM5 (Generalized OntoLogical Environments for Multi-agent systems) is
an agent environment middleware [10] which has been developed in the ArguGRID
project. In this chapter, we present how to use GOLEM to host MARGO agents.
The deployment of these agents will be described in Section 6. The GOLEM agent
platform was chosen as it allows a simple integration between agents and exter-
nal entities represented as objects in the GOLEM agent environment. In particular,
GOLEM has been helpful to represent Web services in terms of objects accessible
by the agents of ArguGRID.

As shown in Figure 1, the operation of the platform from the point of view of
service requestors can briefly be explained as follows:

1. a user develops an abstract workflow reflecting his/her requirements using the
KDE;

2. the abstract workflow is then communicated to the agent that reasons about ser-
vices and makes decisions, aiding the refinement process of the abstract work-
flow;

3. the reasoning capabilities of the agent are based on using the MARGO argu-
mentation engine for decision-making, which in turn uses the CaSAPI general-
purpose argumentation engine;

4. in order to discover an appropriate agent or a GRIA Grid service, agents are
given the capability to use the P2P platform, linking all available agents and
GRIA services in a virtual registry that can be queried;

5. an agent can negotiate with other agents to find a concrete workflow whose ex-
ecution will satisfy the application requirements, as stated in the abstract work-
flow;

6. agents can query the KDE system about SLA (Service Level Agreement) tem-
plates, needed for creating a concrete workflow that satifies user preferences.

7. the KDE, by accesing GRIA nodes, can retrieve information about SLA’s;
8. having carried out its mission, the agent representing the user (i.e. the initial

agent that received the abstract workflow from the KDE) will return to the KDE
the concrete workflow, constituted of a set of GRIA services to be executed in a
certain manner/sequence;

4 http://platonp2p.sourceforge.net
5 http://www.golem.cs.rhul.ac.uk

9 Argumentative Agents for Service-Oriented Computing 221

9. the KDE shows the suggested workflow to the user. If the user rejects the sug-
gestion, a new workflow would be created;

10. the KDE executes and monitors the resulting workflow. Details about execution
and the final results are presented to the user.

Given the ArguGRID context, the main focus and contribution of this work is an
argumentation-based agent mind applied to service selection and partner selection
in an e-procurement scenario as described in [58]. The e-procurement scenario illus-
trates how agents support the selection and provision of services for their integration
in an open and distributed environment. In this context, a human user requesting a
service is only required to specify an abstract description of his needs for these ser-
vices, possibly with some constraints and preferences about them. The selection of
these services, as well as the selection of partners, are tasks delegated to the au-
tonomous agents.

The mind of our agents is composed of three main modules: (i) the individual
decision making module, allowing to translate the goals, preferences, and constraints
provided by the user requesting a service to an internal and abstract representation
of the user’s needs (ii) the social decision making module, allowing to move, by
means of negotiation, from these abstract representations to concrete ones, in terms
of contracts; (iii) the social interaction module, managing the communication given
social rules of interaction.

Note that the services available in ArguGRID are encapsulated in Web services
and available to the agents deployed in the ArguGRID platform. In this chapter we
do not focus on how these services are implemented, but we rather focus on how
the agents can select these services, according to their characteristics, by means of
argumentation. Thus, we are not concerned with defining semantic Web reasoners
or ontologies to describe Web services. We have assumed a fixed ontology that is
common to the agents involved in the procurement process and in order to focus on
argumentation, communication protocols and the reasoning process.

The remainder of this chapter is organised as follows: Section 2 provides a de-
tailed discussion about the motivating e-procurement scenario; Section 3 discusses
the background formalisms and technologies on which we built the agent interaction
in our ArguGRID e-procurement scenario; Section 4 provides the architecture of our
cognitive model; Section 5 illustrates the agents’ deliberation and communication
capabilities with a case run of a e-procurement scenario; Section 6 describes im-
plementation issues related to the deployment of our multi-agent system; Section 7
discusses related work; finally, Section 8 concludes by summarising our proposal
and discussing our future plans.

2 Motivation: An E-Procurement Scenario

In order to illustrate our model and architecture, we consider an e-procurement sce-
nario, introduced in [58], where a buyer seeks to purchase combined services/prod-
ucts from A-type and B-type suppliers. The e-procurement scenario is particularly
suitable for our evaluation as it implies the use of distributed agents representing

222 M. Morge et al.

distributed services that require to reach an agreement by means of negotiation pro-
tocols between buyers and suppliers. The suppliers combine their competencies in
order to provide solutions for the buyer. Each agent is representing a user, i.e. a
service requester or a service provider. Then, each agent may be responsible for
many different Web services. This operation is typically achieved by means of a 6-
steps procurement process whereby: a requester looks for potential suppliers (step
1), gathers information in order to evaluate the potential suppliers (step 2), creates a
short-list according to this information (step 3). The requester asks the short-listed
suppliers to provide a quote for the services (step 4), chooses one of the suppliers
(step 5), and finally the requester and the winner negotiate the terms & conditions
of the contract, such as the price and the warranty (step 6). If this last step is un-
successful, the process goes back to the step 5. When no suitable service is found,
the requester agent asks its user to reconsider his needs by relaxing the constraints.
Figure 2 summarises these steps and indicates the types of dialogues required to
support them. These dialogues should conform to suitable protocols.

find potential providers get providers’ features create shortlist

choose winner get services’ quotes

information−seeking

information−seeking
negotiation

argumentation−based
n/a

n/a

unsuccessful negotiation

information−seeking

negotiate specific termsno
 s

ui
ta

bl
e

se
rv

ic
e

Fig. 2 Deliberative steps for e-procurement

The exchange of offers and acceptances may lead to contracts, i.e. legal relations
between providers and requesters that typically force commitments (e.g. obliga-
tions) from one agent to another about the provision of services. In this chapter,
we will assume that contracts are simple transactions between a provider and a re-
quester, characterised by features of the services provided, and will ignore complex
issues such as enforcement of commitments, sanctions, penalties, etc. Our definition
of contract is given in Section 4.3. The contracts create virtual organisations (VO,
for short) consisting of the buyer, the selected A-type agent and the selected B-type
agent.

Within the e-procurement scenario we consider a specific case where a buyer
looks for an e-ordering system (S) which is composed of a computer system (Sa)
and an Internet connection (Sb). The A-type agents providing Sa are Al and Alice.
While Alice is responsible for the concrete instances of services Sa(a1) and
Sa(a2), Al can provide Sa(a3) and Sa(a4). The B-type agents providing Sb are Bob

9 Argumentative Agents for Service-Oriented Computing 223

and Barbara. Bob is representing the concrete services Sb(c), Sb(d), Sb(e) and
Sb(f). On the other hand, Barbara is representing the services Sb(g) and Sb(h).
A-type agents are responsible to select B-type agents and provide the combined S
to the buyer (cf Figure 3). A possible VO in this case may consist of Bob, Al and
the buyer, with two contracts: the first is between the buyer and Al and concerns
the combined service S, the second is between Al and Bob and concerns service Sb.
These contracts may be negotiated as follows. At first, the buyer plays the role of re-
quester and all A-type agents play the role of potential suppliers in an e-procurement
process for service S. In turn, the A-type agents play the role of requesters and the
B-type agents play the role of potential suppliers in an e-procurement process for
service Sb.

Fig. 3 Use case scenario

In the remainder of this chapter, we will focus on the e-procurement process
involving Al as a requester, and Bob as a supplier. Al’s goal consists of finding and
agreeing to a service Sb provided by a B-type agent. According to its preferences
and constraints:

• the cost of the service must be low (e.g. within a budget of 10 euros per month),
and

• the quality of the service must be high (e.g. with warranty of a 24 hours assis-
tance).

224 M. Morge et al.

Taking into account its goal and preferences/constraints, Al needs to solve a
decision-making problem where the decisions amount to a service and a supplier for
that service. On the other hand, the goal of the supplier Bob consists of a decision-
making problem about providing a service. According to Bob’s preferences and
constraints:

• the cost of the service must be high (e.g. within a budget of 40 euros per month),
and

• the quality of the service must be low (e.g. with warranty of a 2 hours daily
assistance).

A negotiation is a multi-step interaction between Al and Bob by means of which
the agents aim at achieving the common goal to make a deal while resolving their
conflicting interests about the cost and the quality of the service. The main strength
of the argumentation-based approach we will use is to provide extra information
during the interaction. For this purpose, we will assume the agents share a set of
common ontologies to describe the services (in particular the intervals in which
the price and warranty can be contracted). Moreover, argumentation-based decision
making allows agents to identify and resolve the possible conflicts. The two deci-
sion making processes of the participants take place in a dynamic setting, whereby
information about other agents, the services they require/provide and the character-
istics of these services are obtained incrementally within the e-procurement process
outlined in Figure 2. As we will see later on, the outcome of this process is the con-
tract obliging Bob to provide a service Sb to Al, with low cost (e.g. 10 euros per
month) and low quality (e.g. a warranty of a 2 hours daily assistance).

Within our proposed agent model and architecture, the decision-making process
of each agent, as well as the e-procurement negotiation process are supported by
argumentation. In the concrete use case, Al, as a requester, uses argumentation to
collect information on the available services and on the suppliers. For instance, Al
can ask Alice its opinion about Bob and ask to justify it (by providing an argu-
ment for it). Al (respectively Bob), as a requester (respectively as a provider), uses
argumentation to decide which service it needs (respectively it can provide) taking
into account the conflicting preferences/constraints and possibly the inconsistency
of information it has gathered. Moreover, through argumentation, the participants
provide an interactive and intelligible explanation of their choices. For instance, Al
can argue that a service is a good deal when its cost is low. The previous argument
will incite Bob to suggest services with a low cost to reach quickly a good deal.
Thus, in our framework agents can use argumentation to influence each other.

3 Background on Argumentation and Protocol Language

In this section we discuss about the background formalisms that are necessary to
understand the interaction happening in our ArguGRID e-procurement scenario.

9 Argumentative Agents for Service-Oriented Computing 225

3.1 MARGO

MARGO6 (Multiattribute ARGumentation framework for Opinion explanation),
written in Prolog, is the engine developed in the ArguGRID project for service selec-
tion and partner selection. We briefly present here the computational argumentation
framework for decision-making which has been proposed in [45]. We do not de-
scribe the computational counterpart of MARGO (see [46] for more details) but the
reader can notice that our framework is computed by the dialectical proof proce-
dure of [19] extended in [23]. Concretely, MARGO is built upon the argumentation
engine CaSAPI7. So that, we can compute the decisions. Additionally, MARGO
models the intuition that high-ranked goals are preferred to low-ranked goals which
can be withdrawn. At first, we introduce here argumentation. Then, we define the
framework which captures decision making problems. Finally, we define the argu-
ments and their interaction.

3.1.1 Abstract Argumentation

The framework proposed in this chapter is based on Dung’s abstract approach to
defeasible argumentation [18] which considers arguments as atomic and abstract
entities interacting through a defeat relation over these8.

Definition 1 (AAF). An abstract argumentation framework AAF is a pair
〈A , defeats 〉 where A is a finite set of arguments and defeats ⊆ A ×A is
a binary relation over A . We say that an argument b defeats an argument a if
(b,a) ∈ defeats . Moreover, we say that a set of arguments S defeats an argument
a if (b,a) ∈ defeats for some b in S.

An argument can be viewed as a reason supporting a claim which can be disputed
by other reasons defeating it.

According to this framework, Dung introduces various extension-based seman-
tics in order to analyse whenever a set of arguments can be considered as collectively
justified.

Definition 2 (Semantics). Let 〈A , defeats 〉 be an AAF. For a set of arguments
S⊆ A , we say that:

• S is conflict-free iff ∀a,b ∈ S a does not defeat b;
• S is admissible iff S is conflict-free and S defeats every argument a such that a

defeats some arguments in S;
• S is preferred iff S is maximally (wrt set inclusion) admissible;
• S is complete iff S is admissible and S contains all arguments a such that S

defeats all defeaters against a;
• S is grounded iff S is minimally complete.

6 http://margo.sourceforge.net
7 http://www.doc.ic.ac.uk/ ft/CaSAPI/
8 Actually, the defeat relation is called attack in [18].

226 M. Morge et al.

These declarative semantics capture various degrees of justification ranging from
very permissive conditions, called credulous, to restrictive requirements, called
sceptical. The semantics of an admissible (or preferred) set of arguments is credu-
lous. However, there might be several conflicting admissible sets. That is the reason
why various sceptical semantics have been proposed, notably the grounded seman-
tics. Since an ultimate choice between various justified sets of alternatives is not
always possible, we consider in this chapter only the credulous semantics.

3.1.2 Decision Framework

The problem of selecting services and partners can be seen as a multi-criteria deci-
sion problem with incomplete knowledge. In this chapter, we use influence diagrams
to create a model and a representation of this kind of problem.

We assume that users provide, via a Graphical User Interface (GUI), influence
diagrams. Influence diagrams are simple graphical representations of decision prob-
lems [13]. The elements of decision problems (decisions to make, uncertain events,
and the value of outcomes) are represented in influence diagrams as nodes of differ-
ent shapes. These nodes are linked to show the relationship between the elements.
The nodes are of the following types: decision nodes (represented as squares),
chance nodes (represented as ovals), and value nodes (represented as rectangles
with rounded corners). Nodes are connected in a graph connected by arrows, called
arcs. We call a node at the beginning of an arc a predecessor and one at the end of
an arc a successor. The nodes are connected by arcs where predecessors are inde-
pendent and affect successors. Influence diagrams which are properly constructed
have no cycles. In order to capture multi-criteria decision making, it is convenient to
include an additional type of node that aggregates results from predecessor nodes.
An abstract value node is a special kind of value node represented by a rectangle
with rounded corners and double borders. A concrete value is specified for every
possible combination of decisions and events that feed into this node. By contrast,
an abstract value is specified for every possible combination of values that feed into
this node. In many cases, decision is a matter of trade-offs between the attributes
of the outcomes. In such a case, it is possible to represent explicitly the multiple at-
tributes with a hierarchy of values where the top, abstract values aggregate the lower,
concrete values. In addition, the GUI allows the user to communicate user-specific
preferences over values and events.

Influence diagrams can be mapped into decision frameworks of the following
form:

Definition 3 (Decision framework). A decision framework is a tuple
D = 〈L ,A sm, I ,T ,�〉, where:

• L is the object language which captures the statements about the decision prob-
lem;

• A sm, is a set of sentences in L which are taken for granted, called assumptions;
• I is the incompatibility relation, i.e. a binary relation over atomic formulas

which is asymmetric;

9 Argumentative Agents for Service-Oriented Computing 227

• T is the theory which gathers the statements;
• � ⊆ T ×T is a transitive, irreflexive and asymmetric relation over T , called

the priority relation.

In the object language L , we distinguish six disjoint components:

• a set of abstract goals, i.e. some propositional symbols which represent the ab-
stract features that the decisions must exhibit implicitly;

• a set of concrete goals, i.e. some propositional symbols which represent the con-
crete features that the decisions must exhibit explicitly;

• a set of decisions, i.e. some predicate symbols which represent the actions which
must be performed or not;

• a set of alternatives, i.e. some constant symbols which represent the mutually
exclusive actions for each decision;

• a set of beliefs, i.e. some predicate symbols which represent epistemic state-
ments;

• a set of names of rules in T (each rule has a distinguished name).

The abstract (respectively concrete) goals represent the abstract (respectively con-
crete) value nodes, the decisions represent the decision nodes, and the beliefs rep-
resent the chance nodes in influence diagrams. Since we consider multi-criteria de-
cision problems, goals are structured hierarchically, where the top, abstract goals
aggregate the independent lower goals.

We explicitly distinguish assumable (respectively non-assumable) literals which
can (respectively cannot) be taken for granted, meaning that they can (respectively
cannot) be assumed to hold as long as there is no evidence to the contrary. Decisions
as well as some beliefs can be taken for granted. In this way, a decision framework
can capture incomplete knowledge.

Since we want to consider conflicts in this object language, we need some form of
negation. For this purpose, we consider strong negation, also called explicit or clas-
sical negation, and weak negation, also called negation as failure. A strong literal
is an atomic first-order formula, possible preceded by strong negation ¬. A weak
literal is a literal of the form ∼ L, where L is a strong literal of L . ¬L says “L is
definitely not the case”, while ∼ L says “There is no evidence that L is the case”.
In order to express the mutual exclusion between statements, such as the different
alternatives for a decision, we define the incompatibility relation (denoted by I)
as a binary relation over atomic formulas which is asymmetric. In other words, the
incompatibility relation captures the conflicts between decisions, beliefs and goals.
Whatever the atom L is, we have L I ¬L and ¬L I L, while we have L I ∼ L
but we do not have ∼ L I L. Obviously, D(a1) I D(a2) and D(a2) I D(a1), D
being a decision predicate, a1 and a2 being different9 alternatives for D. We say that
two sets of sentences Φ1 and Φ2 are incompatible (denoted Φ1 I Φ2) iff there is a
sentence φ1 in Φ1 and a sentence φ2 in Φ2 such that φ1 I φ2.

A theory gathers the statements about the decision problem.

9 Notice that in general a decision can be addressed by more than two alternatives.

228 M. Morge et al.

Definition 4 (Theory). A theory T is an extended logic program, i.e a finite set of
rules R: L0 ← L1, . . . ,Lj,∼ Lj+1, . . . ,∼ Ln with n ≥ 0, each Li (with i ≥ 0) being a
strong literal in L . The literal L0, called the head of the rule, is denoted head(R).
The finite set {L1, . . . ,∼ Ln}, called the body of the rule, is denoted body(R). The
body of a rule can be empty. In this case, the rule, called a fact, is an unconditional
statement. R, called the unique name of the rule, is an atomic formula of L . All
variables occurring in a rule are implicitly universally quantified over the whole
rule. A rule with variables is a scheme standing for all its ground instances.

For simplicity, we will assume that the names of rules are neither in the bodies
nor in the head of the rules thus avoiding self-reference problems. Since we obtain
our decision problems from influence diagrams, we assume that the elements in the
body of rules are independent, the decisions do not influence the beliefs, and the
decisions have no side effects.

Considering a decision problem, we distinguish:

• goal rules of the form R: G0 ← G1, . . . ,Gn with n > 0. Each Gi is a goal literal in
L . The head of the rule is an abstract goal (or its strong negation). According to
this rule, the abstract goal is promoted (or demoted) by the combination of goal
literals in the body;

• epistemic rules of the form
R: B0 ← B1, . . . ,Bn with n ≥ 0. Each Bi is a belief literal of L . According to this
rule, B0 is true if the conditions B1, . . . ,Bn are satisfied;

• decision rules of the form
R: G ← D(a),B1, . . . ,Bn with n ≥ 0. The head of the rule is a concrete goal
(or its strong negation). The body includes a decision literal (D(a) ∈ L) and a
set of belief literals possibly empty. According to this rule, the concrete goal is
promoted (or demoted) by the decision D(a), provided that conditions B1, . . . ,Bn

are satisfied.

Considering statements in the theory is not sufficient to make a decision. In order
to evaluate the previous statements, other relevant pieces of information should be
taken into account, such as the uncertainty of beliefs, the priority between goals,
or the expected utilities of the decisions. For this purpose, we consider the priority
relation � on the rules in T , which is transitive, irreflexive and asymmetric. R1�R2

can be read “R1 has priority over R2”. R1 � R2 can be read “R1 has no priority over
R2”, either because R1 and R2 are ex æquo, or because R1 and R2 are not comparable.

In this work, we consider that all rules are potentially defeasible and that the
priorities are domain-specific and extra-logical features, neither determined nor jus-
tified by consideration of logic. The priority over concurrent rules depends of the
nature of rules. Rules are concurrent if their heads are identical or incompatible. We
define three priority relations between concurrent rules:

• the priority over decision rules comes from the expected utility of decisions. The
priority of such rules corresponds to the expectation of the conditional decision
in reaching the goal literal. For instance, we need to choose a train or a flight
in order to go from Pisa to Roma. Even if a direct flight exists, train is cheaper.

9 Argumentative Agents for Service-Oriented Computing 229

The expected utilities of these decisions can be captured by the priority between
concurrent decision rules;

• the priority over goal rules comes from the priority overs goals. The prior-
ity of such rules corresponds to the relative importance of the combination of
(sub)goals in the body as far as reaching the goal literal in the head is concerned.
For instance, we prefer a cheap travel rather than an expensive one which is fast.
This preference can be captured by the priority between concurrent goal rules;

• the priority over epistemic rules comes from the uncertainty of knowledge. The
priority of such rules corresponds to the likelihood of the rules. For instance, an
Italian travel agency asserts that there is a direct flight between Pisa and Roma,
while an international travel agency asserts that this is not the case. If you trust
more the Italian agency, the fact that a direct flight exists is likely. The likelihood
of a belief can be captured by the priority between concurrent epistemic rules.

3.1.3 Structure of Arguments

In order to turn the decision framework presented in the previous section into a
concrete argumentation framework, we need first to define the notion of argument.
Since we want that our AF not only suggests some decisions but also provides an
intelligible explanation of them, we adopt a tree-like structure of arguments. We
adopt here the tree-like structure for arguments proposed in [62] and we extend it
with presumptions on the missing information.

Informally, an argument is a deduction for a conclusion from a set of suppositions
represented as a tree, with conclusion at the root and suppositions at the leaves.
Nodes in this tree are connected by the inference rules, with sentences matching
the head of an inference rule connected as parent nodes to sentences matching the
body of the inference rule as children nodes. The leaves are either suppositions or
the special extra-logical symbol θ , standing for an empty set of premises. Formally:

Definition 5 (Argument). An argument is composed of a conclusion, a top rule,
some premises, some suppositions, and some sentences. These elements are abbre-
viated by the corresponding prefixes. An argument a may be one of the following:

1. a hypothetical argument with:

conc(a) = L,
top(a) = θ ,
premise(a) = /0,
supp(a) = {L},
sent(a) = {L}.

where L is an assumable belief literal.
or

2. a built argument which may be

2.1) a trivial argument a built upon a fact f in T (i.e. body(f) = /0), defined
as follows:

230 M. Morge et al.

conc(a) = head(f),
top(a) = f ,
premise(a) = /0,
supp(a) = /0,
sent(a) = {head(f)}.

2.2) a tree argument a built upon the rule r and the set {a1, . . . ,an} of argu-
ments, where r is a rule in T with body(r) = {L1, . . . ,Lj,∼ Lj+1, . . . ,∼ Ln}
and there is a collection of arguments {a1, . . . ,an} such that, for each strong
literal Li ∈ body(r), conc(ai) = Li with i ≤ j and for each weak literal
∼ Li ∈ body(r), conc(ai) =∼ Li with i > j. a is defined as follows:

conc(a) = head(r),
top(a) = r,
premise(a) = body(r),
supp(a)=∪ai∈{a1,...,an}supp(ai),
sent(a)={head(r)}∪body(r)

∪ai∈{a1,...,an}sent(ai).

The set of arguments {a1, . . . ,an} is called the set of subarguments of a (de-
noted sbarg(a)).

The top rule of an argument is the rule whose head is the conclusion of the argument.
Notice that the subarguments of a tree argument concluding the weak literals in the
body of the top rule are hypothetical arguments. Indeed, the conclusion of a hypo-
thetical argument could be a strong or a weak literal while the conclusion of a built
argument is a strong literal. As in [62], we consider composite arguments, called tree
arguments, and atomic arguments, called trivial arguments. Contrary to other defini-
tions of arguments (set of assumptions, set of rules), our definition considers that the
different premises can be challenged and can be supported by subarguments. In this
way, arguments are intelligible explanations. Moreover, we consider hypothetical
arguments which are built upon missing information or a suggestion, i.e. a decision.
In this way, our framework allows to reason further by making suppositions related
to unknown beliefs and over possible decisions.

3.1.4 Interaction

The interactions between arguments may come from the incompatibility of their
sentences, from their nature (hypothetical or built) and from the priority over rules.
We examine in turn these different sources of interaction.

Since their sentences are conflicting, the structured arguments interact with one
another. For this purpose, we define the following attack relation.

Definition 6 (Attack relation). Let a and b be two arguments. a attacks b iff
sent(a) I sent(b).

According to this definition, if an argument attacks a subargument, the whole argu-
ment is attacked.

9 Argumentative Agents for Service-Oriented Computing 231

Since arguments are more or less hypothetical, we define the size of their
suppositions.

Definition 7 (Supposition size). Let a be an argument. The size of suppositions
for a, denoted suppsz(a), is the number of supposition of a: suppsz(a) =
|supp(a)|.
Namely, the size of suppositions for an argument is the number of decision literals
and assumable belief literals in the sentences of the argument.

Since arguments have different natures (hypothetical or built) and the top rules of
built arguments are more or less strong, we define the strength relation as follows.

Definition 8 (Strength relation). Let a1,a2 be two built arguments. a1 is stronger
than a2 (denoted a1�a2) iff

1. either (top(a1)�top(a2)), then a1 � a2;
2. or (top(a1) � top(a2))∧ (suppsz(a1) < suppsz(a2)) , then a1 � a2.

An argument is stronger than another argument if the top rule of the first argument
has a proper higher priority that the top rule of the second argument, or if it is not the
case but the number of suppositions made in the first argument is properly smaller
than the number of suppositions made in the second argument.

The two previous relations can be combined.

Definition 9 (Defeats). Let a and b be two arguments. a defeats b iff: i) a attacks b
and ; ii) ¬(b � a).

Our notion of argument and this defeat relation can be used within the Dung’s sem-
inal calculus of opposition.

The implementation of this argumentation framework, called MARGO10, is built
upon the implementation of [20] in the CaSAPI system [23].

3.2 Protocol Language

In the ArguGRID project, we use the Lightweight Coordination Calculus (LCC)
of [55] which is a declarative logic programming language in the style of Pro-
log, augmented with CCS (a process calculus for communicating systems). LCC
allows to drive all social interactions and allows to write once-execute everywhere
protocols.

Figure 4 defines the syntax of the LCC protocol language. A protocol consists of
a set of agent clauses, A{n}. An agent clause is the series of communicative actions
expected to be performed by an agent adopting the role defined by the agent defi-
nition. This agent definition consists of a role (role) and unique identifier (ag). The
roles act as a bounding box for a set of states and transitions. The agent definition
is expanded by a number of operations. Operations can be classified in three ways:
actions, control flow, and conditionals. Actions are the sending or receiving of mes-
sages, a no op, or the adoption of a role. Control flow operations temporally order

10 http://margo.sourceforge.net

232 M. Morge et al.

P ∈ Protocol ::=A{n}
A ∈ AgentClause ::=λ :: op.
λ ∈ AgentDefinition agent(role,ag)
op ∈ Operation no op

—λ
(Precedence) —(op)
(Send) —M ⇒ λ
(Receive) —M ⇐ λ
(Sequence) —op1 then op2
(Parallelization) —op1 par op2
(Choice) —op1 or op2
(Prerequiste) —(M ⇒ λ) ← ψ
(Consequence) —ψ ← (M ⇒ λ)

M ∈ message ::=〈m,P〉
Fig. 4 An Abstract Language of the Protocol Language

the individual actions. Actions can be sequentially ordered, performed simultane-
ously without regard to order, or given a choice point. The definition of the double
arrows denote messages M being sent and received. On the left hand side of the
double arrow is the message and on the right-hand side is the other agent involved
in the interaction.

Constraints can fortify or clarify the semantics of the protocols. Those occurring
on the left of the ← are post-conditions and those occurring on the right are precon-
ditions. The symbol ψ represents a first order proposition. For example, an agent
receiving a protocol with the constraint to believe a proposition s upon being in-
formed of s can infer that the agent sending the protocol has a particular semantic
interpretation of the act of informing other agents of propositions. The operation
(M ⇒ λ) ← ψ is understood to mean that message M is being sent to the agent
defined as λ on the condition that ψ is satisfiable. The operation ψ ← (M ⇒ λ)
means that once M is received from agent, ψ holds.

4 Agent Architecture

In this section, we outline the mind/body architecture of our agents, focusing on the
mind component.

Our agent architecture, pictured in Figure 5, is adapted from the mind/body archi-
tecture of [9], extended in GOLEM [10]. The body senses what is external to it by
using the Communication Module (CM), which can access the external world, i.e.
the events generated by the Graphical User Interface (GUI) and messages coming
from other agents as well as the registry used for the partner discovery. Messages re-
ceived are then stored in the Incoming Message Queue (IMQ) until they are treated.
Similarly, the messages that the agent wants to send are stored in the Outgoing
Message Queue (OMQ). The mind and the body can function as co-routines, thus

9 Argumentative Agents for Service-Oriented Computing 233

Body

Mind

DCS PL

Individual
Decision
Making
Module
(IDMM)

Social
Decision
Making
Module

(SDMM)

Social
Interaction

Model
(SIM)

IKB SKB

IMQ OMQ

Graphic User
Interface (GUI)

Other agents and
the registry

Communication
Module (CM)

Modules reads data

Modules writes data

Modules read/writes data

Interaction between modules

Interaction with externalities

X Module (XM)

Module

Data Structure

Data

Fig. 5 The modular architecture of agents

allowing the reasoning processes of the mind to be performed concurrently with the
body sending and receiving messages.

Our cognitive agents’ mind is divided into three modules:the Individual Decision
Making Module (IDMM), the Social Decision M aking Module (SDMM) and the
the Social Interaction Module (SIM).

4.1 Individual Decision Making

The Individual Decision Making Module (IDMM), supports the reasoning about
the provided and requested services. The IDMM is supported by the concrete data
structures in the Individual Knowledge Base (IKB). Decisions are made according
to the user’s requirements or competencies about the services, the alternative types
of services, and the users’ preferences and constraints.

Users can provide their requirements to the agents through a GUI to draw influ-
ence diagrams, where they can display the structure of the decision problem about
the services provided or to be obtained. In addition, the GUI allows the user to
communicate user-specific details, in particular preferences and constraints. For in-
stance, Figure 6 gives the influence diagram related to the evaluation of services by
an A-type agent, e.g. Al. The top, main goal (provision) is split into indepen-
dent abstract sub-goals concerning the cost (cost) and the quality of service (qos).

234 M. Morge et al.

provision

�cost qos

�costa costb qosa � qosb

Sa(x) Sb(y)

price(x,px) price(y,py) warranty(x,wx) warranty(y,wy)

h
i
g
h�

l
o
w

l
o
w�

h
i
g
h

l
o
w�

h
i
g
h

h
i
g
h�

l
o
w

Fig. 6 Influence diagram to structure the decision

These sub-goals are reduced to further concrete sub-goals. For instance, the quality
of service depends on the quality of the service Sa (qosa) and on the quality of the
service Sb (qosb). While abstract goals just reflect the user’s needs, concrete goals
provide criteria to evaluate different alternatives.

The main goal, the provision of a composite service S, needs to be addressed by
some decisions, e.g. on which concrete Sa and Sb service to adopt (by appropriately
instantiating variables x and y 11 in Figure 6). Note that Al is a candidate provider
of service Sa in our use case, but may be able to provide several instances of this
service, namely x may be instantiated in many different ways. Instead, Al is not a
candidate provider of service Sb, and needs to choose one. These decisions depend
on the agent knowledge, namely information about the concrete services provided
by Al itself and B-type providers (e.g. price, warranty).

The user provides also his preferences and constraints. For example, the user
may specify that cost is more important to the user than qos as far as reaching
provision is concerned. Priorities are attached to goals, decisions and knowl-
edge in an influence diagram to represent the preferences over goals, the expected
utilities of decisions, and the uncertainty of the knowledge.

The structure of the decision problem related to the evaluation of services and
the associated priorities are stored within the agent’s knowledge bases (in par-
ticular the IKB) and reasoned upon by the IDMM. In ArguGRID, the IDMM is

11 Throughout the chapter we adopt the following convention: variables are in italics and
constants are in typescript font.

9 Argumentative Agents for Service-Oriented Computing 235

realised using our argumentation framework for decision making. For instance, the
knowledge bases corresponding to the influence diagram of Figure 7 are repre-
sented in Table 1. The goal rules are depicted at top, while the decision rules are
depicted at the bottom. In this example, there is no epistemic rule. That is the reason
why the incorporation of supposition on missing information is essential to perform
the individual reasoning of requester agents. A rule above another one has priority
over it. To simplify the graphical representation of the rules, they are stratified in
non-overlapping subsets, i.e. different levels. The ex æquo rules are grouped in the
same level. Non-comparable rules are arbitrarily assigned to a level. The goal rules
express that achieving cost and qos is ideally required to reach provision,
but this can be relaxed: achieving the goal cost is enough to reach provision
(r012�r01). Contrary to the other rules in Table 1, r01 is not in the IKB which
reflects the own user requirements represented by Al but r01 is the output of the
previous interaction between Al and the buyer stored in the DCS. r01 reflects the
preference of the customer represented by the buyer agent.

r012 : provision← cost,qos
r01 : provision← cost
r134 : cost← costa,costb
r256 : qos← qosa,qosb

r32(x) : costa ← Sa(x),price(x,high)
r41(y) : costb ← Sb(y),price(y,low)
r51(x) : qosa ← Sa(x),warranty(x,low)
r62(y) : qosb ← Sb(y),warranty(y,high)
r31(x) : costa ← Sa(x),price(x,low)
r42(y) : costb ← Sb(y),price(y,high)
r52(x) : qosa ← Sa(x),warranty(x,high)
r61(y) : qosb ← Sb(y),warranty(y,low)

Table 1 The goal rules (at top) and the decision rules (at bottom) representing the users
requirements

These concrete data structures (rules and priorities) provide the backbone of ar-
guments. For instance, Al can build an admissible argument concluding that the
goal related to the cost of the service Sb is reached by choosing Sb(x) if we suppose
that the price of service Sb(x) is low.

The IDMM interacts with the other components of the architecture as follows.
It interacts with the GUI, through the CM, which uses the GOLEM environment
as a mediator to interact with other entities in the system and the user. The IDMM
is informed and responds when a service is (or must be) instantiated. The IDMM
interacts with the SDMM by asking or by providing the instantiation of the abstract

236 M. Morge et al.

or partially instantiated service, and by being informed when the provision of a
concrete service is (or must be) accomplished. In this way, the IDMM module shifts
from the goals and the preferences provided by the user to an abstract representation
of atomic services (or composite services, as appropriate). For instance, Al can
build an admissible argument concluding that the goal related to the provision of
the service S is reached if we suppose that the price of the service Sb(y) is low. This
is then turned into a concrete representation (choice of y fulfilling the constraint) by
the SDMM.

4.2 Social Decision Making

The Social Decision Making Module (SDMM) reasons about the concrete instances
of services that can be provided/requested. Decisions are made according to user’s
requirements or competencies, the knowledge about the potential partners and
the alternative concrete services, and preferences over them. For this purpose the
SDMM is supported by the concrete data structures in the Social Knowledge Base
(SKB) and in the Dialogical Commitment Store (DCS).

The dialogical commitment store is an internal data structure which contains
propositional and action suggestions involving the agent, namely with the agent be-
ing either the debtor or the creditor. This data structure is shared by the SIM and the
SDMM. Concretely, the dialogical commitment store may contain the concrete rep-
resentation of atomic or composite services and the representation of the partners
exchanged during the dialogues, while the SKB contains the concrete representa-
tion of atomic or composite services provided by the agent. Moreover, the SKB
contains preferences about the services and the partners. The selection (respectively
the suggestion) of concrete services is made according to the user’s requirements
(respectively competencies) about the alternative concrete services, the information
about the partners, and preferences over them.

Figure 7 represents the negotiation problem of Sb from an A-type agent’s view-
point, e.g Al. The evaluation of the contract (good deal) depends on the pro-
vision of the service (provision) as considered by the IDMM and depends
also on the supplier (supplier). The evaluation of the partners depends on their
representation (representation) and on their performance (performance).
The supplier’s performance is influenced by knowledge about customer testimoni-
als (testimonials(x,v)) depending on the number of previous collaborations
with these suppliers (previous(x,n)) and the average satisfaction in these col-
laborations (satisfaction(x,v)). For simplicity, preferences are not depicted in
Figure 7. In the project ArguGRID, the SDMM, like the IDMM, is built upon our ar-
gumentation framework for decision making. Statements and priorities are recorded
within the agent’s SKB, the agent’s DCS, and reasoned upon by the SDMM. Al-
ternatively, the user can directly fulfil the SKB and the DCS. The statements corre-
sponding to the influence diagram of Figure 7 are represented in Table 2. The goal
rules, the epistemic rules and the decision rules are depicted in the table 2. For in-
stance, the agent whose influence diagram is given in Figure 6 deems the suppliers

9 Argumentative Agents for Service-Oriented Computing 237

good deal

supplier provision

performance representation

proposal(x,y)

price(y,py)

warranty(y,wy)installation(x, ix)

turnover(x, tx)previous(x,n)

testimonials(x,v)

satisfaction(x,v)

Fig. 7 Influence diagram to structure the negotiation

with an annual turnover greater than two million euros (turnover) and at least 50
installations (installation). For this purpose, the rules r31(x,y) and r32(x,y)
are included in the SKB.

The dialogical commitment store of Al, which includes the public statements of
agents which Al is aware of, include the suggestions involving Al: either Al is
the creditor of the suggestion, for instance commit(Bob, [good deal,Sb(e), /0])
is added to the dialogical commitment store when Bob suggests it (see the next
section); or Al is the debtor of the suggestion, for instance
commit(Al, [good deal,Sb(e), /0]) is added to the dialogical commitment store
when Al accepts them (see the next section).

The SDMM interacts with the IDMM by exchanging that abstract service which
is (or must be) instantiated and by communicating when a concrete service is (or
must be) set up. The SDMM interacts with the SIM (see the next section), by no-
tifying it that the agent needs to play a certain role using a particular protocol, by
being informed by the SIM when some offers, some proposals, and some arguments
must be evaluated or built and by informing the SIM when the offers, the proposals,
the arguments have been evaluated or built.

In this way, the SDMM reasons and takes decision about the proposals and ar-
guments which are exchanged during the dialogues. For instance, Al can built an
admissible argument concluding that the goal related to the cost of the service Sb is
reached since the price of the service Sb(c) is low. This argument is useful for Al
to justify its choice, Sb(c), in front of Bob.

238 M. Morge et al.

Table 2 The goal theory (at top), the epistemic theory (at middle) and the decision theory (at
bottom) corresponding to the social statements

r012 : good deal← supplier,provision
r01 : good deal← supplier
r134 : supplier← performance,representation
r256 : provision← costb,qosb
r25 : provision← costb
r26 : provision← qosb
r02 : good deal← provision

f1 : testimonials(Bob,high) ←
f2 : turnover(Bob,5) ←
f3 : installation(Bob,100) ←
f4 : price(d,high) ←
f5 : warranty(d,low) ←
f6 : price(c,low) ←
f7 : warranty(c,high) ←
f8 : price(e,low) ←
f9 : warranty(e,low) ←
f10 : price(f,high) ←
f11 : warranty(f,high) ←

r21(x,y) : performance← proposal(x,y),testimonials(x,high)
r31(x,y) : representation← proposal(x,y),turnover(x, tx), tx > 2M euros
r32(x,y) : representation← proposal(x,y),installation(x, ix), ix > 50
r51(x) : costb ← proposal(x,y),price(y,low)
r61(x) : qosb ← proposal(x,y),warranty(y,high)

4.3 Social Interaction

The Social Interaction Module (SIM) drives the communications and interactions
by the adherence to protocols. These protocol are concrete data structures and are
stored in the Protocol Library (PL).

Decisions required to conduct the interaction are provided by the SDMM. In
practice, the SDMM, once it has reasoned about the services requirements and from
whom these services can be requested or to whom these services can be proposed,
uses a boot strap mechanism that initiates the required protocol, the role the agent
will play in that protocol, and the other participants. From this, the protocol engine
in the SIM determines the appropriate message to be sent given those parameters.
In cases where there is no ambiguity with respect to the message to be sent, the SIM
will automatically send the message to the outgoing message queue from which the
agent body will handle the transportation of the message to the recipients’ incoming
message queues. Where there is a decision to be made either between the choice of
two locutions (e.g. whether to accept or reject an offer) to be sent or the instantiation
of the content of the locution (e.g. the definition of a proposal), the SIM uses a

9 Argumentative Agents for Service-Oriented Computing 239

evaluate
contract

challenge
evaluate

send question

send assert

receive assert

receive assert

receive assert

receive whyreceive accept

send assert

send accept

send why

receive withdraw

send withdraw

Fig. 8 Negotiation protocol for the requester

precondition mechanism to prompt the SDMM for a solution. Concretely, MARGO
interfaces with LCC through the condition mechanism of utterances for a move.
Upon the satisfaction of the precondition, the SIM sends the locution to the outgoing
message queue. If it is necessary to update the dialogical commitment store of the
agent, this can be done with the post condition mechanism which operates in a
similar manner.

The agents utter messages to exchange goals, decisions, and knowledge. The
syntax of messages is in conformance with a common communication language.
We assume that each message:

• has an identifier, Mk;
• is uttered by a speaker (Sk);
• is addressed to a hearer (Hk);
• eventually responds to a message with identifier Rk

• is characterised by a speech act Ak composed of a locution and a content.

In our scenarios, the locution is one of the following: question, assert,
accept, why, withdraw (see Table 3 below for examples). The content is a
triple consisting of: a goal Gk, a decision Dk, and knowledge Kk. We will use θ to
denote that no goal is given and /0 to denote that no knowledge is provided.

In our scenario our agents use two protocols for two types of dialogue:
information-seeking and negotiation (see Table 2). Figure 8 depicted our negotiation
protocol from the requester viewpoint with the help of a deterministic finite-state
automaton. The SDMM interfaces with the SIM’s protocol through the condition
mechanism to further elucidate the semantics of the protocol being used. For exam-
ple, at one point in the dialogue the requester is able to send accept, assert and
why. The choice of which locution to send is dependant on the SDMM being able
to satisfy its precondition.

In the ArguGRID project, the SIM uses LCC to drive all social interactions. Fig-
ure 9 represents the set of clauses for the agents in our argumentation-based negoti-
ation protocol. The role being used are:

240 M. Morge et al.

• the requestor of the service (requestor(g0,c,K)), g0 being the main goal
to reach, c being the contract, and K being the knowledge. c and K must be
instantiated;

• the provider of the service (provider(g0,c,K)), g0 being the main goal to
reach, c being the contract, and K being the knowledge. c and K must be instan-
tiated;

• the evaluator of the proposal (evaluator(g0,g1,c1,K1)), g0 (respectively
g1) being the main (respectively current) goal which is discussed, c1 being the
contract, and K1 being the knowledge. c1 and K1 are related to the proposal;

• the sender of the proposal (proponent(g0,g1,c1,K1)), g0 (respectively g1)
being the main (respectively current) goal which is discussed, c1 being the con-
tract, and K1 being the knowledge. c1 and K1 are related to the proposal.

According to the first clause a(requestor(g0,c,K),ag1), ag1 sends a
question to the provider which submits a proposal. The clause for the provider role
is the complement of the requestor’s one. The second clause
a(evaluator(g0,g1,c1,K1),ag1) handles the next stage of the
argumentation-based negotiation protocol, i.e. the acceptance, the counter-proposal,
or the challenge of the proposal. A proposal is accepted, and so recorded in the
dialogical commitment store12, if it is supported by an admissible argument of the
SDMM. Indeed, the condition evaluate contract(g0,c1,K1) is satisfied if there is
an admissible argument of the SDMM such that the knowledge K1 and the contract
c1 are in the sentences of the argument and g0 is the conclusion of the argument. If
it is not the case and another proposal, which was not yet suggested, is supported by
an admissible argument of the SDMM, then the counter-proposal is asserted, and
so recorded in the dialogical commitment store. Otherwise the motivation of the
previous proposal is challenged. The clause for the proponent role is the comple-
ment of the evaluator’s one. An argument which is challenged must be supported
by a subargument. Indeed, the condition evaluate challenge(g1,g2,c1,K1,K2) is
satisfied if: i) there is an admissible argument of the SDMM such that the goal g2,
the knowledge K1, and the contract c1 are in the sentences of the argument and g1

is the conclusion of the argument; ii) there is an admissible argument of the SDMM
such that the knowledge K2 and the contract c1 are in the sentences of the argument
concluding g2.

The top of the table 3 shows the speech acts exchanged between Al and Bob
playing an information-seeking dialogue. This dialogue occurs at the step 4 of the
e-procurement process involving Al and Bob (cf Figure 2). Following the protocol
for this type of dialogue, the first move is for Al to pose a question to Bob, M0. This
locution seeks the price range for the available services Sb. Bob informs Al with
several locutions providing the various services available and their price ranges (M1,
. . . , M4). A similar information-seeking dialogue is played between Bob and Al to
inform the latter about the warranty ranges of the available services Sb. According

12 Actually, the acceptance of a proposal creates an extra-dialogical commitments, i.e. one
agent is obligated to provide a service and another is obligated to pay for it. Whether we
ignore the task of enforcement, we still make enforcement possible.

9 Argumentative Agents for Service-Oriented Computing 241

a(requestor(g0,c,K),ag1)::=
question(g0,c,K) ⇒ a(provider(g0,c,K),ag2) then
commit(ag2, [g0,c1,K1]) ← (assert(g0,c1,K1) ⇐ a(provider(g0,c,K),ag2)) then
a(evaluator(g0,g0,c1,K1),ag2).

a(evaluator(g0,g1,c1,K1),ag1)::=
(accept(g0,c1,K1) ⇒ a(proponent(g0,g1,c1,K1),ag2)) ←
(evaluate contract(g0,c1,K1)) and commit(ag1, [g0,c1,K1])
or
(assert(g0,c2,K2) ⇒ a(proponent(g0 ,g1,c1,K1),ag2)) ←
(evaluate contract(g0,c2,K1) and not(commit(ag1, [g0,c2,K2]))) and
commit(ag1, [g0,c2,K2]) then
a(proponent(g0,g1,c2,K2),ag1))
or
(why(g1,c1,K1) ⇒ a(proponent(g0 ,g1,c1,K1),ag2) then
commit(ag2, [g2,c1,K2]) ← (assert(g2,c1,K2) ⇐ a(proponent(g0,g1,c1,K1),ag2))
and a(evaluator(g0,g2,c1,K2),ag1)) or
withdraw(g1,c1,K1) ⇐ a(proponent(g0,g1,c1,K1),ag2)).

a(provider(g0,c,K),ag2)::=
question(g0,c,K) ⇐ a(requestor(g0,c,K),ag1) then
(assert(g0,c1,K1) ⇒ a(requestor(g0,c,K),ag1)) ←
(evaluate contract(g0,c1,K1)) and
commit(ag2, [g0,c1,K1]) then
a(proponent(g0,g0,c1,K1),ag2).

a(proponent(g0,g1,c1,K1),ag2)::=
commit(ag1, [g0,c1,K1]) ← (accept(g0,c1,K1) ⇐ a(evaluator(g0,g1,c1,K1),ag1))
or
commit(ag1, [g0,c2,K2]) ← (assert(g0,c2,K2) ⇐ a(evaluator(g0,g1,c1,K1),ag1))
then
a(evaluator(g0,g1,c2,K2),ag2)
or
(why(g1,c1,K1) ⇐ a(evaluator(g0,g1,c1,K1),ag1) then
(assert(g2,c1,K2) ⇒ a(evaluator(g0,g1,c1,K1),ag1) ←
(evaluate challenge(g1,g2,c1,K1,K2)) and
commit(ag2, [g2,c1,K2]) then
a(proponent(g0,g2,c1,K2),ag2)) or
withdraw(g1,c1,K1) ⇒ a(evaluator(g0,g1,c1,K1),ag1)).

Fig. 9 Representation of the argumentation-based negotiation protocol

242 M. Morge et al.

Table 3 Information seeking dialogue (top and middle) and negotiation dialogue (bottom)

Mk Sk Hk Ak Rk

M0 Al Bob question(θ ,Sb(x), [priceb(x,px)]) θ
M1 Bob Al assert(θ ,Sb(c), [priceb(c,pc),low≤ pc ≤ medium]) M0
M2 Bob Al assert(θ ,Sb(e), [priceb(e,pe),low≤ pe ≤ medium]) M0
M3 Bob Al assert(θ ,Sb(d), [priceb(d,pd),medium≤ pd ≤ high]) M0
M4 Bob Al assert(θ ,Sb(f), [priceb(f,pf),medium≤ pf ≤ high]) M0

Mk Sk Hk Ak Rk

M0 Al Alice question(performance,proposal(Bob,y), [testimonials(Bob,z)]) θ
M1 Alice Al assert(performance,proposal(Bob,y), [testimonials(Bob,high)]) M0
M2 Al Alice why(θ ,proposal(Bob,y), [testimonials(Bob,high)]) M1
M3 Alice Al assert(θ ,proposal(Bob,y), [previous(Bob,10),satisfaction(Bob,high)]) M2

Mk Sk Hk Ak Rk

M0 Al Bob question(good deal,〈cid,Bob,Al,Sb(x), [price(x,px),warranty(x,wx)]〉, /0) θ
M1 Bob Al assert(good deal,〈c1,Bob,Al,Sb(d), [price(d,high),warranty(d,low)]〉, /0) M0
M2 Al Bob assert(good deal,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M1
M3 Bob Al why(good deal,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M2
M4 Al Bob assert(costAl,〈c2,Bob,Al,Sb(c), [price(c,low),warranty(c,high)]〉, /0) M3
M5 Bob Al assert(good deal,〈c3,Bob,Al,Sb(e), [price(e,low),warranty(e,low)]〉, /0) M1
M6 Al Bob accept(good deal,〈c3,Bob,Al,Sb(e), [price(e,low),warranty(e,low)]〉, /0) M5

to this knowledge the A-type agent Al is able to consider which of these services
could satisfy its goals.

The middle of Table 3 depicts the speech acts exchanged between Al and Alice
playing an information-seeking dialogue. This dialogue corresponds to step 2 of the
e-procurement process (cf Table 2). The first move is for Al to pose a question to
Alice, M0. This locution seeks the testimony of Alice aboutBob. This testimony
is high (cf M1) and argued by the number of previous experiences and their values.

The bottom of Table 3 depicts the speech acts exchanged between Al and Bob
playing a negotiation dialogue. This dialogue corresponds to the step 6 of the e-
procurement process (cf Figure 2). They attempt to come to an agreement on the
contract for the provision of a service Sb to reach the common goal good deal. A
contract is a tuple 〈cid,debtor,creditor,service,terms〉 where cid
is the contract identifier, debtor is the agent providing the service, creditor
is the agent requesting the service. A contract is concerned by the provision of a
service provided that the list of terms & conditions (denoted terms) are satisfied.
With the message M1, Bob informs Al that it finds out that the terms & conditions
of the contract for the provision of the service Sb(d) are justified with respect to the
common goal (good deal). However, Al does not find Sb(d) justified and he pro-
poses Sb(c). Since none of these proposals have been jointly accepted, they should
not be considered in the following of the negotiation. Bob attempts to determine the
reasons for Al’s choice (cf M3) which is the cost (rather than the quality of service).
Given Al’s response in M4, Bob includes the goal provided by Al. Therefore, it
finds between the other solutions (Sb(e) and Sb(f)) the one preferred by Al (Sb(e))
and suggest it (M5). Finally, Al communicates his agreement with the help of an
accept (M6) which closes the dialogue.

9 Argumentative Agents for Service-Oriented Computing 243

5 Case Run

We consider here a case run which illustrates the agent deliberation and communi-
cation in the scenario of section 2. This case run involves Al, an A-type agent, and
Bob, a B-type agent, negotiating the provision of a service Sb.

The terms & conditions considered for the evaluation of the contract about Sb

during the negotiation (cf bottom of Table 3) are represented at the two axis of the
two dimension plot in Figure 10. The acceptability space of the two participants is
represented by shaded areas and depends on the price (y-axis) and the warranty (x-
axis). Four points reflect the combinations of values: Sb(c) where warranty is high
and price is low, Sb(d) where warranty is low and price is high, Sb(e) where both
warranty and price are low and Sb(f) where both are high. After the message M2

(cf left of Figure 3), Bob only finds Sb(d) justified and Al only finds Sb(c) justi-
fied. After the message M3 (cf center of Figure 10), the acceptability spaces of the
two agents have shifted since neither Sb(c) nor Sb(d) have been jointly accepted.
Both of the agents make concession since the MARGO mechanism allow to relax
the preferences. After the message M6 (cf right of Figure 10), both agents has iden-
tified Sb(e) as a common solution. We can notice that the influence of Al on Bob
avoid to explore the alternative Sb(f) which is not justified from Al’s viewpoint.
The influence of Al on Bob is supported by the extra information carry out by the
argument.

We have illustrated here the main strength of argumentation-based negotiation
which is, as pointed out by [53], that it allows agents to influence each other. More-
over, our agents make concessions when necessary as suggested by [2].

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

�

�

price

warranty
Al

Bob

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

×

×

price

warranty
Al

Bob

Sb(f)

Sb(e)

Sb(d)

Sb(c)

��

��

��

��

×

×�

price

warranty
Al

Bob

Fig. 10 Acceptability space of participants after the messages M2 (left), M3 (center) and M6
(right)

Figure 11 represents the UML sequence diagram associated with the A-agent Al.
For brevity, we only describe the internal mechanisms for the negotiations (step 6)
of the e-procurement processes involving Al and Bob. The first transition shown is
from the GUI to the IDMM. This is how the user delegates the task of contracting
the provision of a service to the agent. Using the techniques described in section 4.1,
the user’s competency is computed and sent to the SDMM. The SDMM bootstraps
the SIM’s protocol execution by invoking the protocol, agents it would like to com-
municate with and the role it will play within the protocol (i.e. the requester). The
SIM then drives the interaction by sending the appropriate locution to the CM which

244 M. Morge et al.

is relayed to the addressed B-type agent. During this exchange, decision must be
made, the SIM delegates control to the SDMM to determine the correct course of
action. This is shown in the figure 11 as ”evaluate”. Once the evaluation of the con-
tract or challenge is performed by the SDMM, it provides the response which the
SIM which encapsulates with the correct locution according to the interaction pro-
tocol. Finally, through the IDMM and the GUI, the user is notified of the provision
of the service. The provider of the service, according to the semantics of the pro-
tocol, knows the contract and the provision of the service is accepted by the agent
communicating locution, accept.

CM SIM SDMM IDMM GUI

delegate
instantiate

play
role=requester

id=Al
service=Sb
partner=Bob
protocol=Neg

question

assert
evaluate the contract

assert

why
evaluate the challenge

assert

assert
evaluate the contract

accept
service executed

notification

Fig. 11 Sequence diagram of Al

6 Deployment and Implementation

Agents in ArguGRID are deployed in GOLEM, a prototype agent platform which
can support complex applications of cognitive agents interacting within a distributed
environment [10]. GOLEM agents are represented by mean of an agent mind, pro-
grammed in Prolog, connected to a Java agent body. The agent body incorporates
sensors, to perceive the events happening in the agent environment, and effectors,
to produce events in the agent environment. The connection between the Java body
and the agent mind is done by using a Prolog-Java bridge, such as InterProlog. In
particular in this Chapter we made use of a SWI Prolog agent mind, loading both the
MARGO and LCC Prolog libraries, connected to a GOLEM agent body by means
of InterProlog. In this section, we also describe how GOLEM has been extended to
take into account the specific context of the services.

GOLEM has been integrated with the P2P platform PLATON [36] allowing
agents to discover service provider agents. These agents may be deployed in dif-
ferent GOLEM containers distributed over a network (cf Figure 12). In order to
support agent/service discovery, each container includes two types of registries.

KDE semantic registry: a database which holds semantic descriptions of available
services. Such a registry is in charge to perform semantic matchmaking between
service queries and concrete available services.

9 Argumentative Agents for Service-Oriented Computing 245

GOLEM registry: a database working as a cache on top of the PLATON P2P plat-
form. Its function is holding information about agents discovered in the GOLEM
distributed environment.

Fig. 12 System Deployment

The KDE semantic registry works as a catalogue for the provider agents, holding
information about the services provided by the organisation (i.e. user) represented
by the agent. In order to support the matching of service descriptions and concrete
services, the automated search, the services inside the KDE semantic registry have
to carry sufficient information that describes them. Within the agent framework, we
abstract away from the particular formalism utilised in KDE to describe the Web
services, performing a translation to Prolog terms at the interface between KDE and
the GOLEM agent environment. As specified in [10, 11] GOLEM agents can reason
about C-logic structures [12]. C-logic is a convenient specification language that has
a direct translation to first-order logic and Prolog (see [10, 11] for more details about

246 M. Morge et al.

the use of C-logic in GOLEM) and that is used in GOLEM to deal with complex
structures represented as logical objects. In the context of ArguGRID, the following
C-logic structure:

web service:w1[
service type ⇒ connection,
domain ⇒ eprocurement,
organisation ⇒ argugrid,
precondition ⇒ creditcard:CCard,
postcondition ⇒ connection:Con[price ⇒ P, warranty ⇒ W]
constraints ⇒ {W= 24h, P < 10e}]

represents an instance w1 of class web service that expresses the requirements
for a Web service of type connection. Such a Web service has to be in the epro-
curement domain, provided by the argugrid organisation, taking in input objects of
class creditcard and providing as output an object of class connection, with a price
P and a warranty W that have associated a set of constraints for which the price
has to be less than 10 euros per month and a warranty of 24 hours of assistance.

Agents deployed inside a GOLEM container have access to a P2P connector in-
terface. This interface wraps PLATON inside GOLEM and allows agents to perform
queries to discover other agents and services. The result of such a query is stored
inside GOLEM registries for future use. Service provider agents are discovered ac-
cording to their affordances [10], properties that describe the role and competencies
of the agent. In our current deployment of ArguGRID we use three properties to
describe agents:

• service types, the types of services an agent can represent
(e.g. {internet connection, computer system});

• organisation, the organisation in which the agent belongs to
(e.g. argugrid);

• domain, the domain of knowledge the agent is competent about
(e.g. e-procurement).

The above three fields are specified inside the query proposed by the requester,
under the parameters of the web service instances, as previously presented. At the
lower level these properties are used by PLATON to create a K-D tree index of the
agents; this index ensures that the steps to access a point (an agent) is logarithmic to
the number of peers (GOLEM containers) deployed in the distributed network. The
details of the algorithm used to describe this process are beyond the scope of this
work. The interested reader is referred to [35] for more details.

At the higher level an agent can connect to other agents belonging to different
containers by performing physical actions on a connector object (see [10]). Con-
ceptually, the effects of such an action is similar to that of a human manipulating a
physical object in a real environment. However, here the effects of the action on the
connector make present agents of other containers using PLATON to perform the
discovery. When a requester looks for potential suppliers (cf step 1 of the procure-
ment process described in Figure 2 of Section 2), the requester queries the registry

9 Argumentative Agents for Service-Oriented Computing 247

Table 4 Interaction with the Connector Interface

Mk Sk Hk Ak Rk

M0 Al Registry query(supplier,proposal(x,y), [Sb(y)]) θ
M1 Registry Al answer(supplier,proposal(Barbara,y), [Sb(y)]) M0
M2 Registry Al answer(supplier,proposal(Bob,y), [Sb(y)]) M0

and the corresponding connector is involved. Table 4 shows the physical actions ex-
changed between Al and the registry. The first move is for Al to pose a query to
the registry, M0. This physical action seeks the suppliers for the available services
Sb. The registry reacts to Al’s query with several physical actions with inside the
description of the various suppliers (M1 and M2) in terms of their affordances. Ac-
cording to the new knowledge, the dialogical commitment store of Al is updated
and this latter is able to perform the next step of the procurement process which
consists of collecting information on the available suppliers in order to short-list
them. Figure 12 exemplifies what stated above. The A-type agent Al queries the
connector to find the B-type agents. As a result of these interactions Al is notified
of the new agents discovered, Bob and Barbara. Once these agents are discov-
ered, Al queries them in such a way that they can check their private KDE semantic
registry with an interaction similar to the one presented above with the connector.
After the KDE semantic registry provides the services that can match the requester
requirements, the agents start the negotiation.

7 Related Work

Combining service-oriented computing and architectures with software agents is an
active area of research for intelligent systems [15, 51]. More specifically, current
visions of Web-services and the role of agents [14] predict important implications
in the engineering of complex distributed systems [27] in general and Grid [22]
and ubiquitous [28] computing in particular. A large part of this effort focuses on
the service selection problem, where a computational logic approach is playing an
important role, for example see McIlraith and colleagues [43, 42], Baldoni et al [5],
and Lomuscio et al [34]. In contrast with these efforts, we advocate the automatic
discovery of services by agents and how the selection of these services can be made
concrete within the context of an argumentation architecture that agents can utilise
given abstract specifications of users’ goals. The advantage of using argumentation
is that agents can provide supporting arguments to select a service, thus being in a
position to provide reasons for why a particular service has to be selected instead of
another.

The importance of service selection has been studied by Sreenath and Singh
in [56]. They explain how services differ from products in terms of how they are
being discovered, delivered and evaluated. Sreenath and Singh also provide a gen-
eral framework for service selection that combines conventional approaches such as

248 M. Morge et al.

reputation systems, collaborative filtering, and P2P systems with novel techniques
from lattice theory.

Maximilien and Singh in [38, 39] argue that current techniques provide no sup-
port to actually make rational selections of services, which are key to accomplishing
autonomic behaviour in service-oriented computing. They develop a multi-agent
system framework based on an ontology for QoS and a new model of trust. The
ontology provides a basis for providers to advertise the offered services, for con-
sumers to express their preferences, and for ratings to be gathered and shared. Our
work is complementary to the effort of Singh and colleagues in that we provide the
logic-based reasoning and social capabilities of an agent to prioritise preferences
and select the services that best match the goals of a consumer user. In this context,
we also implement these ideas and we can deploy multiple agents that interact and
communicate with one another using a platform that can discover these agents over
a complex network.

Baldoni and colleagues [6] address the problem of automatic selection and com-
position of Web services, discussing the advantages that derive from the inclusion,
in a Web service declarative description, of the high-level communication proto-
col, that is used by the service for interacting with its partners, allowing a rational
inspection of it. The approach they propose is set in the context of semantic Web
by capitalising on existing research in multi-agent systems. Similarly to our work,
Web services are viewed as (represented by) software agents, communicating by
predefined shareable interaction protocols. A logic programming framework based
on modal logic is proposed, where the protocol-based interactions of Web services
are formalised and the use of reasoning about actions and change techniques for
performing the tasks of selection and composition of Web services in a way that is
personalised to a user’s request. Like our work, by applying reasoning techniques
on a declarative specification of the service interactions allows to gain flexibility in
fulfilling the user preference in the context of a Web service matchmaking process.
However, this work focuses on discovery and service selection but not on service
composition, that we plan to consider in future works.

Bentahar et al. [8] use argumentation implemented via software agents to reason
about Web services and improve their performance through the notion of commu-
nities. A community of Web services is a set of services with similar functionality
that grouped together to facilitate discovery. Each community is organised in terms
of a master Web service (a bit like a broker of composite Web-services) that argues
with a set of slave Web services (a bit like basic Web services that can partici-
pate in composite ones). To persuade a Web service to be part of a composite Web
service in a community, master and slave Web services use persuasion and negotia-
tion techniques associated with their argumentation abilities. Web services interact
flexibly via dialogue games and are implemented as JACK agents [26]. We differ
from this approach in that we use a calculus, LCC, to flexibly handle the interac-
tions. We focus on the use of argumentation to build the decision capabilities of an
agent that Bentahar et al abstract away from. We do not need communities to in-
dex Web service for discovery but we use GOLEM containers combined with a P2P

9 Argumentative Agents for Service-Oriented Computing 249

framework to enable service discovery. Finally, community for us is a social aspect
of the system that emerges via communication, as in [37].

Other MAS research takes a strictly societal or communicative view of agency.
It models and formalizes the communication and interaction between agents. The
paper [41] describes a formal model for the formation of virtual organisations. The
formal model, although accommodates the various technologies described in this
chapter, it does not rely upon them. This work is in contrast to other approaches. For
example, the authors discuss in [47] as part of the CONTRACT project a contract-
based approach to enforcing normative behaviour within multi-agent systems. Nu-
merous works that describe agent systems as electronic institutions [17].

The model and architecture of argumentative agents we have presented, con-
trary to the abstract negotiation framework of [2], have been implemented and
tested with real-world use cases. Our proposal is not the first attempt in this di-
rection. For instance, Kakas and Moraitis [30] provide a framework for effective
argumentation-based negotiation. With respect to the latter, we have introduced
multi-criteria techniques for the decision making related to the evaluation of pro-
posals by the agents. The framework presented here can be seen to some extent
as a specialisation of [2], tailored to service selection. For this purpose, we have
proposed: i) an argumentation-based mechanism for multi-criteria decision-making
integrating assumptions; ii) an general architecture instantiated with argumentation
and logic techniques; iii) the deployment of our architecture with a MAS platform.

We have used here the argumentation-based mechanism for multi-criteria
decision-making integrating assumptions proposed in [45]. Contrary to [1, 3, 4], our
framework incorporates abduction on missing information, as suggested by [29].
This property is required by the IDMM to build arguments upon suppositions. We
can deploy our framework for a number of argumentation semantics by relying on
[20], whereas [29] is committed to one such semantics. [48] propose a critical sur-
vey of some computational models of argumentation over actions. For instance,
[3, 4] have considered several principles according to the different types of argu-
ments which are considered are aggregated. However, contrary to our approach,
the potential interaction between arguments is not considered. We have considered
the example borrowed from [58] and we have adopted, like [7], an abductive ap-
proach to practical reasoning/decision-making which is directly modelled within in
our framework.

We have proposed a general architecture which distinguishes the internal reason-
ing, the social reasoning, and the communication. This architecture has been instan-
tiated with argumentation and logic techniques. The KGP model [31, 33] adopts
Knowledge, Goals and Plans as the main components of an agent state. There is
no gap between the logical specification of KGP agents and their implementations.
Indeed, this model uses computational logic frameworks extending logic program-
ming for specification and realisation purposes. However, this model deals only par-
tially with priorities as required by service selection applications, namely only with
preferences between goals [32], but not with uncertainty of knowledge and expected

250 M. Morge et al.

utilities of alternative services. MARGO13, i.e. the implementation of our argumen-
tation framework, provided here a revised representation of knowledge, goals and
decisions without planning abilities as required by our application. MARGO uses
the implementation of [20] in the CaSAPI system [23]. We use LCC for representing
and enacting protocols to allow the social norms used by the agents to be verifiable,
communicable, inspectable and potentially modifiable. The merits of using a first
class protocol are described in [44]. An extension of KGP for service composition
has been discussed in [60].

As in [54], we have presented the deployment of an architecture with a MAS
platform. The Web-service environment in GOLEM14 builds upon previous work
on deploying MAS with PROSOCS [9]. However, GOLEM extends PROSOCS in
many ways. Apart from rationalising the PROSOCS mind/body architecture [57],
our implementation uses an argumentative mind component rather than the KGP
implementation discussed in [9]. It also generalises the interaction of agents with
objects and uses containers as locations [49] of resources, including services. In
this sense, GOLEM is part of a growing research and development effort to model
situated multi-agent systems [63] without abstracting away the notion of the agent
environment as some popular platforms do (e.g. JADE [21] or RETSINA [59]).

8 Conclusion and Future Work

In this chapter, we have described an agent model and architecture using argumen-
tation to automate the selection of services and partners. The modular design of the
deliberative and communicative processes bring the well known engineering ben-
efits of modularity as well as create a unique model of agents. The three internal
modules are dedicated respectively to decision making (for the IDMM), negotia-
tion (for the SDMM), and communication (for the SIM), and are all realised using
argumentation-based frameworks. If the IDMM can be considered as the base ap-
petite of the agent reasoning about how to achieve its individualistic goals and the
SDMM can be considered as the social reasoner, conscious of goal solving through
collaboration, then the SIM can be considered as its social conscience and filters
those impulses by following the social norms of the agent society. For our purposes,
the social norms are the rules of dialogues encoded as interaction protocols. In or-
der to test this approach, the architecture is instantiated in the ArguGRID project, by
means of the argumentative decision making tool MARGO (for the first two mod-
ules) and by the LCC tool for enforcing protocol conformance (for the last module).

We use GOLEM [10] for the deployment of our agents. GOLEM is a multi-
agent platform which can support complex application through the deployment of
cognitive agents situated in a distributed environment over a network. In particular,
GOLEM allows a declarative description of resources in the agent environment, so
that such a description is understandable by cognitive agents programmed follow-
ing the patterns of logic programming. In this way, agents can discover each other

13 http://margo.sourceforge.net
14 http://golem.cs.rhul.ac.uk

9 Argumentative Agents for Service-Oriented Computing 251

in a distributed network, as well as reasoning about complex structures representing
the requirement of the users in terms of Web services. One possible future work
direction, is to include reasoning about semantic descriptions of Web services using
OWL [16] in our ArguGRID agents, following an approach like the one described
in [25]. The main advantages of having agents reasoning about semantic descrip-
tions, would be that we can decouple the description of the Web services from their
implementation and that our cognitive model could be reused in different platforms
than ArguGRID.

As mentioned previously, contracts create virtual organisations consisting of
debtors and creditors. In this chapter, we have focused on the agent model and archi-
tecture and we have ignored virtual organisations. A formal model for virtual organ-
isations using agent negotiation to determine its configuration is described in [41].
The decision making abilities of our agents is useful during the operation of virtual
organisations for exception handling, which is labelled as reformation. The addi-
tional tasks of monitoring and reportage during the operation and dissolution of the
virtual organisations produce data about its performance and form the basis for its
evaluation. The execution task during the operation phase is the coordination of the
delivery of services.

We have learned a number of lessons while developing the ArguGRID prototype
system. Firstly, the knowledge engineering process can become complex when deal-
ing with multiple and possibly heterogeneous knowledge representation technolo-
gies. In ArguGRID we decided to avoid formalisms based on Description Logic,
for instance, as the reasoning that we could perform using this type of technology
was limited to subsumption mechanisms; MARGO style argumentation combined
with the underlying Prolog engine allowed for a computationally more expressive
and flexible approach. Secondly, another problem that we discovered is that P2P
engines have several limitations due to the impossibility to handle semantic descrip-
tions of the entities, but only flat multidimensional points. Thirdly, if distribution is
an important issue and/or access to the communication protocols is predicated on
an agent’s role then a system like LCC is more appropriate for dealing with agent
communication. Alternatively, if agents are permitted to access the whole protocol
then a shared memory approach [61] is equally suitable, can limit the amount of
messages exchanged and can mediate the protocol of communication. Finally, the
definition of a mediation infrastructure, such as the one provided by GOLEM, al-
lows for a better integration of the components involved in the system, as it allows
for a better description and representation of the resources.

Acknowledgements. This work was supported by the Sixth Framework IST programme of
the EC, under the 035200 ArguGRID project.

References

1. Amgoud, L.: A general argumentation framework for inference and decision making.
In: Fahiem Bacchus, T.J. (ed.) Proc. of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 26–33. AUAI Press, Edinburgh (2005)

252 M. Morge et al.

2. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proc. 6th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), Honolulu, Hawaii, pp. 963–970
(2007)

3. Amgoud, L., Prade, H.: Comparing decisions in an argumentation-based setting. In: Proc.
of the 11th International Workshop on Non-Monotonic Reasoning (NMR), Session on
Argumentation, Dialogue, and Decision Making, Lake District, UK, pp. 426–432 (2006)

4. Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by argumenta-
tion. In: Proc. of the 21st National Conference on Artificial Intelligence (AAAI), Boston,
pp. 16–20 (2006)

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols
for web service composition. Electr. Notes Theor. Comput. Sci. 105, 21–36 (2004)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols
for customizing web service selection and composition. J. Log. Algebr. Program. 70(1),
53–73 (2007)

7. Bench-Capon, T., Prakken, H.: Justifying actions by accruing arguments. In: Proc. of the
1st International Conference on Computational Models of Argument, pp. 247–258. IOS
Press (2006)

8. Bentahar, J., Maamar, Z., Benslimane, D., Thiran, P.: An argumentation framework for
communities of web services. IEEE Intelligent Systems 22(6), 75–83 (2007)

9. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Stathis, K.: Crafting the
mind of PROSOCS agents. Applied Artificial Intelligence 20(2-4), 105–131 (2006)

10. Bromuri, S., Stathis, K.: Situating cognitive agents in GOLEM. In: Weyns, D., Brueck-
ner, S., Demazeau, Y. (eds.) Proc. of the Engineering Environment-Mediated Multiagent
Systems Conference (EEMMAS), pp. 76–93. Katholieke Universiteit Leuven, Leuven
(2007)

11. Bromuri, S., Stathis, K.: Distributed Agent Environments in the Ambient Event Calculus.
In: DEBS 2009: Proceedings of the Third International Conference on Distributed Event-
Based Systems. ACM, New York (2009)

12. Chen, W., Warren, D.S.: C-logic of Complex Objects. In: PODS 1989: Proceedings of
the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 369–378. ACM Press, New York (1989)

13. Clemen, R.T.: Making Hard Decisions. Duxbury Press (1996)
14. Cohen, M., Stathis, K.: Strategic change stemming from e-commerce: Implications of

multi-agent systems in the supply chain. Strategic Change 10, 139–149 (2001)
15. Curcin, V., Ghanem, M., Guo, Y., Stathis, K., Toni, F.: Building next generation Service-

Oriented Architectures using Argumentation Agents. In: 3rd International Conference
on Grid Services Engineering and Management (GSEM 2006), Germany (2006)

16. Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL web ontology language ref-
erence. Tech. rep., W3C (2004),
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

17. Sierra, C., Dignum, F. (eds.): AgentLink 2000. LNCS (LNAI), vol. 1991. Springer, Hei-
delberg (2001)

18. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

19. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)

20. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial
Intelligence, Special Issue on Argumentation 171(10-15), 642–674 (2007)

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

9 Argumentative Agents for Service-Oriented Computing 253

21. Bellifemine, F.L., Giovanni Caire, Greenwood, D.: Developing Multi-Agent Systems
with JADE. Wiley (2007)

22. Foster, I.T., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. In: 3rd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2004), pp. 8–15. IEEE Computer Society, New York (2004)

23. Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation.
In: Simari, G., Torroni, P. (eds.) Proc. of the Workshop on Argumentation for Non-
monotonic Reasoning (ArgNMR), pp. 80–95 (2007)

24. Ghanem, M., Azam, N., Boniface, M., Ferris, J.: Grid-enabled workflows for industrial
product design. In: Proc. of the 2nd IEEE International Conference on e-Science and
Grid Computing (e-Science 2006). IEEE Computer Society (2006)

25. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logic. In: Proc. of the Twelfth International World Wide
Web Conference (WWW), pp. 48–57. ACM (2003)

26. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: Jack - summary of an agent infras-
tructure. In: 5th International Conference on Autonomous Agents (2001)

27. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles.
IEEE Internet Computing 9(1), 75–81 (2005)

28. Huhns, M.N., Singh, M.P., Burstein, M.H., Decker, K.S., Durfee, E.H., Finin, T.W.,
Gasser, L., Goradia, H.J., Jennings, N.R., Lakkaraju, K., Nakashima, H., Parunak,
H.V.D., Rosenschein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K.P.,
Tambe, M., Wagner, T., Gutierrez, R.L.Z.: Research directions for service-oriented mul-
tiagent systems. IEEE Internet Computing 9(6), 65–70 (2005)

29. Kakas, A., Moraitis, P.: Argumentative-based decision-making for autonomous agents.
In: Proc. of the 2nd International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 883–890. ACM Press (2003)

30. Kakas, A., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Proc. 5th Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Hakodate, Japan, pp. 384–391 (2006)

31. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency.
In: Proc. of ECAI, pp. 33–37 (2004)

32. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Declarative Agent Control. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 96–110. Springer,
Heidelberg (2005)

33. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational logic founda-
tions of kgp agents. J. Artif. Intell. Res. (JAIR) 33, 285–348 (2008)

34. Lomuscio, A., Qu, H., Sergot, M.J., Solanki, M.: Verifying Temporal and Epistemic
Properties of Web Service Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 456–461. Springer, Heidelberg (2007)

35. Lymberopoulos, L., Bromuri, S., Stathis, K., Kafetzoglou, S., Grammatikou, M.: To-
wards a p2p discovery framework for an argumentative agent technology assisted grid.
In: Proc. of the CoreGRID Workshop on Grid Programming Model, Grid and P2P sys-
tems Arhcitectures, Grid Systems, Tools, and Environments, Crete, Greece (2007)

36. Lymberopoulos, L., Papavassiliou, S., Maglaris, V.: A novel load balancing mechanism
for P2P networking. In: Proc. of ACM Sponsored Conference GridNets, Lyon, France
(2007)

37. Mamdani, E., Pitt, J., Stathis, K.: Connected Communities from the standpoint of Multi-
agent Systems. New Generation Computing 17(4) (1999)

38. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services
selection. IEEE Internet Computing 8(5), 84–93 (2004)

254 M. Morge et al.

39. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In:
Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P. (eds.) Service-Oriented Comput-
ing - ICSOC 2004, pp. 212–221. ACM, New York (2004)

40. McBurmey, P., Parsons, S.: Games that agents play: A formal framework for dialogues
between autonomous agents. Journal of Logic, Language and Information 11(3), 315–
334 (2002), Special Issue on Logic and Games

41. McGinnis, J., Stathis, K., Toni, F.: A formal model of agent-oriented virtual organisations
and their formation. Multiagent and Grid Systems 7(6), 291–310 (2011)

42. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services.
In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.A. (eds.) Proceedings of
the Eighth International Conference on Principles and Knowledge Representation and
Reasoning (KR 2002), pp. 482–496. Morgan Kaufmann, France (2002)

43. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

44. Miller, T., McBurney, P.: Using Constraints and Process Algebra for Specification of
First-Class Agent Interaction Protocols. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 245–264. Springer, Hei-
delberg (2007)

45. Morge, M.: The Hedgehog and the Fox. In: Rahwan, I., Parsons, S., Reed, C. (eds.)
ArgMAS 2007. LNCS (LNAI), vol. 4946, pp. 114–131. Springer, Heidelberg (2008)

46. Morge, M.: Arguing over goals for negotiation: Adopting an assumption-based argu-
mentation decision support system. In: Jao, C. (ed.) Efficient Decision Support Systems
- Practice and Challenges From Current to Future, ch. 12, pp. 211–240. InTech (2011)

47. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards
a formalisation of electronic contracting environments. In: COIN@AAMAS&AAAI, pp.
156–171 (2008)

48. Ouerdane, W., Maudet, N., Tsoukias, A.: Arguing over Actions That Involve Multiple
Criteria: A Critical Review. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI),
vol. 4724, pp. 308–319. Springer, Heidelberg (2007)

49. Overeinder, B.J., Brazier, F.M.T., Marin, O.: Fault tolerance in scalable agent support
systems: Integrating darx in the agentscape framework. In: Proc. of the 3rd IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid), pp. 688–696. IEEE
Computer Society, Japan (2003)

50. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and directions.
In: 4th International Conference on Web Information Systems Engineering (WISE 2003),
pp. 3–12. IEEE Computer Society, Italy (2003)

51. Payne, T.R.: Web services from an agent perspective. IEEE Intelligent Systems 23(2),
12–14 (2008)

52. Rahwan, I.: Argumentation in multi-agent systems. Guest Editorial: Autonomous Agents
and Multiagent Systems 11(2), 115–125 (2005)

53. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review 18(4), 343–375
(2003)

54. Ricci, A., Buda, C., Zaghini, N., Natali, A., Viroli, M., Omicini, A.: simpa-ws: An agent-
oriented computing technology for ws-based soa applications. In: Paoli, F.D., Stefano,
A.D., Omicini, A., Santoro, C. (eds.) Proceedings of the 7th WOA 2006 Workshop, From
Objects to Agents (Dagli Oggetti Agli Agenti), CEUR Workshop Proceedings, CEUR-
WS.org, Italy (2006)

9 Argumentative Agents for Service-Oriented Computing 255

55. Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: De-
moen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Hei-
delberg (2004)

56. Sreenath, R.M., Singh, M.P.: Agent-based service selection. Journal of Web Seman-
tics 1(3), 261–279 (2004)

57. Stathis, K., Kakas, A.C., Lu, W., Demetriou, N., Endriss, U., Bracciali, A.: PROSOCS: a
platform for programming software agents in computational logic. In: Müller, J., Petta, P.
(eds.) Proceedings of the Fourth International Symposium From Agent Theory to Agent
Implementation (AT2AI 2004 – EMCSR 2004 Session M), Vienna, Austria, pp. 523–528
(2004)

58. Stournaras, T. (ed.): eBusiness application scenarios. Deliverable document D1.2 AR-
GUGRID (2007)

59. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.: The retsina mas infrastructure.
Autonomous Agents and Multi-Agent Systems 7(1-2), 29–48 (2003)

60. Toni, F.: Argumentative kgp agents for service composition. In: Proc. AITA 2008, Ar-
chitectures for Intelligent Theory-Based Agents, AAAI Spring Symposium. Stanford
University, USA (2008)

61. Urovi, V., Stathis, K.: Playing with agent coordination patterns in MAGE. In: Coordina-
tion, Organization, Institutions and Norms in Agent Systems (COIN@AAMAS 2009),
Budapest, Hungary (2009)

62. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–279
(1997)

63. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-agent
systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

Chapter 10
Public Administration Workflows
Re-engineering: An Agent-Based M&S
Approach

Emiliano Casalicchio and Salvatore Tucci

Abstract. Workflows in Public Administration (PA) can be mainly classified as
inter-organization processes and cannot be modeled using standard methods such as
Petri-nets or WF-Nets, but need new modeling paradigms to describe: i) the struc-
ture of the organization; ii) the factors that influence the execution of the workflow
and iii) the actors (humans and IT systems) that interact with the workflow, gener-
ating the workload. This chapter describes the experience matured by the authors in
the design and implementation of an agent-based modeling and simulation frame-
work to support the re-engineering of Public Administration workflows. The project,
started in late 2003, faced the challenge of analyze, evaluate the performance and
finally re-engineer a Public Administration process of the Presidency of Counseil
of Ministers: the IT infrastructure management and the service provisioning pro-
cess. The project was developed at the Italian Prime Minister Office for Informatics
and Telematics headed by the second Author. From the solution initially developed
to solve this specific problem we built a general framework to support Public Ad-
ministration processes re-engineering. This framework, named Wf-Simulator, has
been successfully used in real workflow modeling and simulation. The chapter de-
scribes the initial project, the Wf-Simulator framework and three real case studies:
service provisioning in PA, day hospital surgery admission and blood examination
management.

1 Introduction

The Business Process Re-engineering (BPR) theory [17, 11], originally formulated
thirty years ago, is today one of the main approach to achieve correct process man-
agement, to increase business outcome and to increase process quality of service. At

Emiliano Casalicchio · Salvatore Tucci
Department of Civil Engineering and Computer Science Engineering,
University of Rome Tor Vergata, Via del Politecnico 1 00133 Roma Italy
e-mail: emiliano.casalicchio@uniroma2.it, tucci@TorVergata.it

M. Ganzha & L. C. Jain (Eds.): Multiagent Systems & Applications, ISRL 45, pp. 257–278.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

emiliano.casalicchio@uniroma2.it,
tucci@TorVergata.it

258 E. Casalicchio and S. Tucci

the beginning of 1990, Davenport and Short [33, 13] defined business process (BP)
and of BPR. Their vision emphasize the concept that tasks composing a process are
performed by users (humans or IT systems) and that the process involves different
organizations. From the Davenport’s process vision emerges that a process can be
seen as a complex systems composed of different entities interacting and perform-
ing tasks to achieve a goal. In some case the interaction can be cooperative in nature
or in some other cases entities can have a selfish behavior competing in the use of
resources to realize their own objective.

The interaction among entities is based on information exchange, where the ac-
tivities (that could be managerial or operational) consists in objects manipulation
(data and/or goods). The set of tasks composing a BP are organized in a Workflow
(Wf) managed by a Workflow Management System (WfMS). Therefore, the design
and re-engineering of BP deals with the analysis of the underlining workflow.

As every complex system, BP demands for performance optimization and cost
reduction. A key stimulus for re-engineering has been the continuous development
and deployment of sophisticated information systems and networks, as well as the
affirmation of new business models, enabling paperless environment, and the evo-
lution of the society. In late 2003 we were faced with the challenge of analyze,
evaluate the performance and finally re-engineer a Public Administration process
of the Italian Presidency of Council of Ministers 1: the IT infrastructure manage-
ment and service provisioning processes (SABS – Sistema Acquisto Beni e Servizi)
used by all the administrative structures. This practical application stimulates the
definition of a more general research project, hereafter referred as the Wf-Simulator
project, committed to study, design and develop a framework for Pubic Adminis-
tration business process re-engineering. This Chapter reports our experience in re-
engineering Public Administration BPs and will discuss the main issues faced in the
Wf-Simulator Project.

The SABS process, as many Public Administration processes, can be classified as
an Inter-Organization workflow. Differently from other type of workflow (Produc-
tion, collaborative, administrative), Inter-organization workflow describes not only
humans resources, triggers, alarms and messages but also roles and groups of hu-
mans resources, authorization levels, granular access control list and task execution
time.

Modeling and simulation is a valid technique to approach BPR, in particular in
the validation of Wf properties and in the execution of what-if analysis. Workflow
can be modeled with formalisms such as Petri Net [15, 19, 32], YAWL [5], Temporal
logic [8, 12, 16], Cuncurrent Transaction Logic [10, 14, 27]. As stated by [6] Petri
Net are a valid tool to model workflows because: their formal semantic, the fact
that they are state-based instead event-based and the wide range of analysis tech-
niques available. The formal semantic allow an unambiguous specification. Being
state-based rather then event based means that state are modeled explicitly (event-
based framework only model the transition between states explicitly). Finally, there

1 http://www.governo.it

http://www.governo.it

10 Public Administration Workflows Re-engineering 259

exists many analysis techniques for verifying qualitative and quantitative properties
of modeled workflow.

Petri-Nets can be evaluated through simulation and, in our opinion, are an ef-
fective approach to reason about BPR. However, to model inter-organization work-
flows, differently from other type of workflows (e.g. production, collaborative, ad-
ministrative Wf), must be considered many other factors:

• who/what enables a transition
• who/what (humans, the environment, technologies) influences the execution and

service time of a transition
• the hierarchical organization of the different actors interacting with the workflow,

and
• the authorization levels required to perform a specific action or a set of actions.

In order to comply with these modeling requirements is needed a tool that integrates:

• classical Wf modeling approach (e.g. a Petri-Net)
• a model of the structure of the organization
• a model of the factors influencing the execution of the workflow
• a model of the actors (humans and systems) that interact generate the workload

of the workflow.

Among all the modeling and simulation solutions we identify Agent-based Model-
ing and Simulation (ABMS) as the candidate tool to unravel the public administra-
tion business process re-engineering problem.

This paper describes the Wf-Simulator framework that integrates an ABMS en-
gine (the Recursive Porus Agent Simulation Toolkit – RePast [28]) and a workflow
management system (Bossa2). The Bossa WfMS uses the Petri Net formalism to
describe the workflow, in the specific: the Wf topology, the actions that must be
performed on the resources manipulated by the process, the set of states, the transi-
tion from a state to the next one, the alarms, and all the other characteristics of the
workflow. On the other side ABMS is used to model the actors (system and humans)
taking part in the process and interacting with the workflow.

For each system or human being, modeled by an agent, were considered: the set
of resource it can process; the set of actions allowed on the set of resource it can
access; the set of rules that define the behavior and the interaction capabilities. For
resources we define the processing time of each action allowed and the change of
state due to the processing/use of a resource. Each agent is an independent entity
interacting with the workflow.

Figure 1 shows the conceptual architecture of the WfSimulator. The inputs of the
framework are a description (models and parameters) of: the workflow, the organi-
zation, the workload, and the systems/actors involved. The agent-based simulation
engine drives the process evolution and the WfMS emulates the execution of the
workflow, like in a real environment. The methodology proposed is independent
from the modeling and simulation technologies used in the implementation.

The Wf-Simulator we realized has been successfully applied in two fields:

2 http://www.bigbross.com/bossa

http://www.bigbross.com/bossa

260 E. Casalicchio and S. Tucci

Fig. 1 The conceptual architecture of the Wfsimulator framework

• Real workflow re-engineering. Some of the real case we deal width and we re-
ported in this chapter are: the SABS, the health care system for blood analysis
management, the day-hospital surgery management.

• Education. The Wfsimulator is used in the course of e-Government3 as an exam-
ple of inter-organizatin workflow modeling and simulation and it allows students
to practice with what-if analysis and re-engineering of real workflow.

This paper describes our experience in the use of agent-based simulation technolo-
gies to solve the problem of Business Process Re-engineering. The chapter is or-
ganized as in the following. Base concepts of workflow, WfMS and Agent-based
modelig and simulation are given in Section 2. Section 3 describes the Wf-Simulator
giving an idea of the architecture of the framework. Moreover, here we discuss also
how the two technologies, ABMS and WfMS, were integrated and the lessons we
learned. Section 3.2 describes the modeling methodology, independent from the
case study. Section 4 describes three example of workflows modeled and analyzed
using the the Wf-simulator. Finally, section 5 gives perspectives and concluding re-
marks.

3 University of Rome Tor Vergata, Faculty of Engineering, Curriculum in Management
Engineering.

10 Public Administration Workflows Re-engineering 261

2 Basic Concepts

In order to better understand the proposed framework, this section briefly described
the concepts of Workflow, Workflow Management System, WF-net and Agent
Based Modeling and Simulation. The description that follow does not pretend to
be neither exhaustive nor formal.

2.1 Workflow and WfMS

The Workflow Management Coalition (WfMC) defines workflow the automation of
a business process, in a whole or part, where documents, information or tasks are
processed by participants and transferred from one participant to another according
to procedural rules [37, 36]. A Workflow Management System defines, creates and
manages the execution of workflows through the use of software, running on one or
more workflow engines.

As previously mentioned, there are different type of workflows and then of
WfMS. Production workflows typically manage an high number of similar activ-
ities with the goal to maximize the throughput. Production WfMSs minimize the
humans intervention, have the capability to manage complex processes and can be
integrated with legacy systems. Collaborative workflows are based on the work-
group concept and for that reason are often called Groupware. Such WfMSs typi-
cally provide a working environment that facilitates collaboration of peoples with
common interests or common goals. The main goal is to optimize the collaboration
rather than maximize the throughput. Administrative workflows, are characterized
by the simplicity of the process definition phase. The processes are typically defined
using predefined forms. In such systems flexibility is more important then produc-
tivity. Inter-organizational workflows, of main interest for this work, introduce the
concept of roles and access control list. An inter-organizational workflow not only
describes humans resources, triggers, alarms and messages but also roles and groups
of humans resources, authorization levels, granular access control list and task exe-
cution time.

2.2 WF-Net

Workflow nets (WF-nets) [7] are an extension of Petri networks [31], and have been
recently introduced to model business processes that are automated by workflow
management systems [2][3]. WF-nets inherit all the properties from Petri-nets and
add new features enabling a natural description of workflows.

A WF-net has two special places, a unique source place i and a unique sink place
o. The source is such that there are no transitions that share i as output place and
the sink is such that there are no transitions that share o as input place. The only
exception are strongly connected Petri nets characterized by a transition having o as
input place and i as output place.

262 E. Casalicchio and S. Tucci

Another important feature of WF-nets is the concept of trigger. A trigger is an
external condition which leads to the execution of an enabled task. The execution
of a task instance for a specific case starts the moment the task instance is triggered.
A task instance can only be triggered if the corresponding case is in a state which
enables the execution of the task. We consider four types of tasks: Automatic, User,
Message and Time.

An automatic task is triggered the moment it is enabled. This task does not re-
quire the intervention of a human being and it is automatically executed by the
system when a specific condition is satisfied. Examples of automatic tasks are: to
electronically sign or archive a document when it enters in the system; Automat-
ically check the availability in the department back account when a service/goods
request is entered in the system.

A user task is triggered by a human participant, i.e., a user selects an enabled task
instance to be executed. For example: put a product in a box and send it by ordinary
mail to the recipient; check the analysis results and validate the report; remove or
insert the blood sample in a clinical machinery, etc.

A Message task is triggered by a specific external event, that is a message arriving
in the system. Examples of messages are telephone-calls, fax messages, e-mails or
any other example of electronic messages/data exchanged. For example: when arrive
a fax/e-mail asking for assistance the process to allocate the resource to assist the
customer is activated.

Finally, Time tasks instances are triggered by a clock, i.e., the task is executed at
a predefined time. For example a periodical backup of the system database.

The routing capabilities of a Petri net are improved with four operators: AND-
split, AND-join, XOR-split and XOR-join. Such constructs allow to model sequen-
tial task execution, concurrent task execution, alternate execution of tasks and itera-
tive execution of tasks.

Graphical representation of triggers and routing constructs can be found in many
papers, e.g. [4].

Finally, the most important feature of a WF-net is the soundness property: a
workflow that verify the soundness property is a valid and correct workflow. If the
soundness properties is verified, no more token are in the network when the process
terminates (this means that there are no pending transitions).

Examples of how to model workflows using WF-nets are given in [21] and [1].

2.3 Agent-Based Modeling and Simulation

Agent-based modeling and simulation (ABMS) is one of the most suitable ap-
proaches to model and simulate complex systems and processes, for example: crit-
ical infrastructures [?, ?], electricity market and market dynamics in general [29,
38, 35], organization in industry and enterprises [20], emergency management [24],
missions control and management [18, 26]. Moreover, ABMS is the more appropri-
ate modeling and simulation approach, to reproduce human interaction [9] and to
integrate a workflow model based on WF networks[25, 22].

10 Public Administration Workflows Re-engineering 263

In this kind of approach, the whole model of a target system or process is obtained
considering a population of interacting agents. The key characteristic of an agent is
that it exists as an individual entity with location, capabilities, and memory. From
the interaction among these agents ”emerge” behaviors that are not predictable by
the knowledge of a single agent.

Agent-based modeling is obtained by interconnecting agents that is, independent
systems that autonomously elaborate information and resources in order to define
their outputs, that become inputs for other agents.

The entity location defines where an agent is located in a physical space (e.g.,
geographic region) or in an abstract space (e.g., the Internet). This characteristic
is not essential to model Inter-organizative workflow but it could help when the
environment conditions influence the workflow execution, for example the cost of
resources and employees.

What the entity can perform is defined by its capabilities. An agent can modify
its internal data representation (perception capability), it can modify its environ-
ment (behavior capability), it can adapt itself to environment’s changes (intelligent
reaction capability), it can share knowledge, information, and common strategies
with other entity (cooperation capability), it can execute actions without external
intervention (autonomy capability). All this capabilities allow to model humans and
systems interacting with the workflow, that is the active entities that manipulate
data and goods contributing to the completion workflow case. The capabilities of
an agent influences the time to perform an action or task, and could influence the
overall throughput of the workflow.

Finally, the experience history (for example, overuse or aging) and data defining
the entity state represents the agent’s memory. Memory can be used to learn about
the past and improve the capability (e.g. the capacity to perform a task/action).

We remark that agents can be defined to be autonomous, problem-solving com-
putational entities which are capable of effective operations in dynamic and open
environments. Agents are often deployed in environments in which they interact,
and maybe cooperate, with other agents (including both people and software) that
have possibly conflicting aims.

3 The Wf-Simulator

In this section we describe the architecture of the Wf-Simulator and we describe the
main steps of the Wf modeling process.

3.1 The Architecture

Figure 2 shows the detailed architecture of the inter-organizational workflow simu-
lation framework. The core components are the agent-based simulation framework
and the WfMS. As mentioned in the introduction, as agent-based simulation engine
we used RePast and as Workflow Management System we used Bossa. The input

264 E. Casalicchio and S. Tucci

����������

	
�������

�������

���� ���� ����

���������	�	

���

����

���
	�����

�����

Read�

Write�

Write�

Wf model�

Agents�
 model�

������������
 ����
����
�� ���

!����

"�#��������
���$�%��
�&����%��
#���������
�

Fig. 2 The detailed framework architecture

model of the framework is a graphical tool, WoPeD (Workflow Petri Net Designer)4,
that produces a Petri Net Markup Language (PNML) description of the Wf model.
The output is directly managed by the agent-based simulation framework. More-
over, statistics can be stored in files for post processing.

The WfMS Bossa is used to emulate the execution of the workflow. Bossa uses
the Wf-Net formalism to describe and execute the workflow. One of the problem
we encountered during the project development phase was that Bossa uses its own
language to describe the workflow. Therefore, the first Wf-Simulator release did not
allow a graphical description of the workflow but it required to provide directly a
textual description processed by Bossa. In the second release of the framework we
enhanced Bossa with a plugin to interpret a PNML Wf description. This allowed
us to integrate into the framework a graphical Wf designer such as WoPeD. Bossa
emulates the execution of the workflow and store the workflow state on the file
system.

The Bossa workflow engine offers classes that describe a basic structure of work-
flow, and that allow to implement and to execute workflows. In the Wf-Simulator
we extend the Bossa’s resource concept: resources became dynamic agent classes,
aware of the environment, with memory capability and with interaction capability,
rather then being static data structures.

4 http://woped.org

http://woped.org

10 Public Administration Workflows Re-engineering 265

RePast, the agent-based simulation framework, allows to model, by means of
agents, the actors that interact with the workflow performing actions and manipulat-
ing passive resources. Repast is a discrete event simulator that offers: the possibility
to specify agents behavior and characteristics; a completely adaptable scheduler that
supports both sequential and parallel discrete event operations, and that is respon-
sible for the execution of agents behavior and simulation management task (e.g.
updating displays, recording data). The software agents are used to model humans,
organized in appropriated hierarchies, and the systems (e.g. software systems) used
to manipulate the resources and to produce services. Each agent is associated with
the a set of transactions it is in charge to manage. Moreover, the agent behavior
can impact directly the execution of transaction associated to user type tasks and
indirectly the execution of transactions associated to automatic tasks and message
tasks.

The simulation is orchestrated by the RePast simulation engine, through a spe-
cific class we designed (the Wf-Simulator class).

The RePast simulation library is extended to invoke the workflow engine library.
In the specific Bossa, to manage persistent transactions in the workflow evolution
stores all the results on the file system. RePast needs runtime data to simulate the
system behavior and to display results at runtime. The workflow engine library is
accessed by RePast during the simulation (inside the inizialize, step, run
and pause RePast methods). Every tick the RePast scheduler get the workflow
status and schedules the agents actions. Also external events generated by the re-
sources or by the environment are caught and processed. Summarizing the steps are
the following:

1. RePast reads the state of the workflow stored on the file system by Bossa
2. RePast assigns new activities to agents (humans and/or systems) and schedules

task execution. The task that must be executed and the resources that must be
used are therefore determined by the workflow engine

3. Each agent simulates the execution of the assigned task and when completed, the
associated transition is triggered back to Bossa.

4. Bossa fires the transitions enabled by the completion of tasks executed in step 3.
Therefore, Bossa determines the new state of the workflow and write it on the
filesystem. Now the process goes back to step one

The integration of an agent-based simulation engine and of workflow engine results
in a system capable:

• to execute an inter-organizational workflow
• to simulate the behavior of resources involved in the workflow (human beings,

computer systems, etc)
• to simulate the environment that influence and that is influenced by the workflow
• to display statistics and the workflow state at realtime.

Finally, RePast is also in charge to manage the output. The agents model can be
instrumented with sensors collecting performance indexes such as: number of com-
pleted task and pending task (for a single task or for a class of tasks); execution and

266 E. Casalicchio and S. Tucci

queue time for a task (or a class of tasks); number of occurrence for a specific event
(e.g. the arrival of a message); number of task assigned to a specific agent or class
of agents; number of tasks completed by a specific agent or class of agents; task
completion time for a specific user or class of users or a single user. The time series
for the collected indexes can be displayed online using the GUI library of Repast.
On the contrary, aggregated values (e.g. average, variance, X-percentile) obtained
post processing the collected time series must be elaborate off line and plotted using
specific tools.

For example, figure 3 shows the GUI of the Wf-Simulator framework and the
online plot of some performance indexes. The set of performance indexes is cus-
tomizable depending on the case study. In the Wf-Simulator GUI there are: a control
panel to manage the simulation allowing the load, start, stop and pause operations;
a panel to input the parameters (loaded from a file by default); configurable statistic
graphs updated at real time and there is a text output displaying the workflow status.

The agents model design process we used were based on UML. A consistent
number of proposals deal with using UML to model agents and multi-agent software
systems [30] [23] [34].

3.2 The Modeling Approach

In the Wf-Simulator, workflow modeling consist of two main steps: description of
the workflow and workflow model parameterization.

The first step of the business process modeling is related to: describe the work-
flow model using the WF networks formalism; definition of the model for human
resources, active resources and passive resource using the agent-based modeling ap-
proach. Defined the workflow model, through the verification of properties such as
the soundness and the validity (see [7]) it is possible to highlight macro problems
such as deadlocks or useless states and transactions. Concerning the resources, hu-
mans being and active resources are modeled by agents while passive resources are
modelled by passive data structures. For the modeling of human resources can be
chosen different formalism and levels of detail. A human resource model depend
on the specific case should be modeled, for example: normal behavior defined by
process rules and inter-organizational workflow structure; adaptation capability un-
der stress conditions; adaptation capabilities in absence of a predefined set of rules.
Neural networks and fuzzy logic are example of human behavior modeling formal-
ism. Active resources, e.g. computer system, computer networks, mechanical and
electronic devices, are modeled as queue networks (e.g. a simple queue or a com-
plex network). However, these modeling aspects are out of the scope of this paper.

The collection of simulation model parameters is part of the second step and it
is related to: the workflow model, the human resource model, the active and pas-
sive resource models. There are no written rules that establish the parameters to be
gathered. Indeed, them depends on the target problem and on the level of detail of
the model. Input parameters can be obtained measuring the existing system or from
historical data.

10 Public Administration Workflows Re-engineering 267

F
ig

.3
S

cr
ee

ns
ho

to
f

th
e

W
f-

S
im

ul
at

or
G

U
I

fo
r

th
e

S
A

B
S

im
pl

em
en

ta
ti

on

268 E. Casalicchio and S. Tucci

Concerning the workflow model, the needed parameters are:

• The number of different human resources and users
• The list of group of users and their description
• The list of users, and for each user the roles and the authorizations as well as the

mapping to the set of groups
• The list of transaction and relative parameters. This list allows to create the WF

and Petri network, determining the places and transitions For each place we need
to know the fan-in and fan-out. For each transition we need to know: the fan-in
and fan-out, the service time, the type of firing (automatic or triggered by the
time, by the messages, by the resources)

• The tasks arrival rate (for the workflow)
• The number of task assigned to a user in a time unit
• The maximum number of concurrent tasks that a user can handle

4 Practical Experiences

As mentioned in the introduction, the proposed framework has been used to study
different processes with the purpose to evaluate their performances and to conduct
what-if analysis preparatory for the process re-engineering.

In the following we present three case studies we dealt with: the SABS process;
the Day Hospital Surgery Admission process; the Blood Examination process.

4.1 The SABS Case Study

The workflow that model the SABS is shown in figure 4. The system parameters
were characterized analyzing the SABS access logs and the SABS database. In the
workflow there are seven different categories of human resources, and eight possible
operations to manipulate goods and services. The human resource categories are:
Generic user, Call Center operator, Dean, Administrator, Officer, User (Servant),
Officer (Servant). Each group of users is authorized to execute only a subset of
operations (see table 4.1). Users, depending on the category, can submit a request,
can assign a request, can split a request in sub-requests, can complete a request,
can generate sub-requests for a partially satisfied request, can negotiate a request
change, can negotiate the closure of a request and can remove a request.

The analysis of the workflow properties allowed to discover structural problems,
that are: the workflow did not satisfy the soundness and validity properties (see [7]);
there was a dead-step; and there was a meaningless transaction (i.e. a transaction
that never fire). The action taken was to re-design the workflow.

Figures 5 (part A) and 6 (part B) shown a portion of the re-engineered workflow.
In this case the what-if analysis had different goals, for example: performance op-

timization (e.g. improve the number of requests successfully served); identification
of potential bottleneck in the flow; costs reduction. Due to confidentiality reasons
results can not be reported here.

10 Public Administration Workflows Re-engineering 269

F
ig

.4
S

A
B

S
:T

he
W

F
-n

et
m

od
el

270 E. Casalicchio and S. Tucci

Table 1 The SABS capability list

Activitiy Description Resources/Roles authorized
Create All
Assign Call Center, Dean, Officer, Officer (Servant)
Complete User (Servant), Officer (Servant)
Split Call Center, Dean, Officer, Officer (Servant)
Notify Call Center
Close User (Servant), Officer (Servant)
Modify Call Center
Remove Call Center

Fig. 5 The WF network model (part A) of the SABS workflow. After the accept place,
there is the transaction Re-assign in part B. After the place refused(6), there is the transaction
close(5) in part B.

Fig. 6 The WF network model (part B) of the SABS workflow

4.2 The Day Hospital Surgery Admission Case Study

This case study is related to the complex process activated by a patient requesting
for a Day Hospital surgery (DH process in the following). The DH process start

10 Public Administration Workflows Re-engineering 271

with a reservation request issued by the patient to the regional center for health care
reservations (Centro Unico Prenotazioni), CUP hereafter. The CUP proposes one or
more options for the first appointment and the patient has the possibility to refuse,
because, for example, the appointment is too far. We assume that the CUP does not
influence the performance of the system because it is a external infrastructure out of
our control. If the patient accept the appointment she is examined (on the date) by
the surgeon that decide if the surgery is needed or if it is more appropriate to provide
an alternative treatment.

If the surgery is really needed the assigned doctor open a case history and assign
the appropriate clinic tests that will be performed in the laboratory associated with
the Day Hospital ward. Concluded the clinic tests the Laboratory send back the
results to the surgeon that has all the elements to decide if the patient can be operated
or if is needed some pre-surgery therapy to improve the health level of the patient
and therefore the success of the surgery itself. Terminated the treatment period,
clinic tests are repeated. When the exams results show an health level of the patient
that is appropriate to execute the surgery, the surgeon will book and execute the
surgery.

The high level view of this process, hereafter DH process, is described by the
workflow shown in figures 7 and 8. Transactions l, e and c fire in places P, G and
D (part A) respectively that are the source of tokens for transactions m, f and q (part
B) respectively.

Each macro activity correspond to a single task or to a complex process described
by a workflow and analyzed separately (see table 2 for some examples).

Fig. 7 The Day Hospital surgery workflow (part A)

272 E. Casalicchio and S. Tucci

Fig. 8 The Day Hospital surgery workflow (part B)

The goal of the analysis is the optimal planning of resources to maximize the
number of patients served by the DH process.

To design the workflow model and to characterize model parameters has been
queried different databases such as: the regional CUP database, the Enterprise Re-
source Planning (ERP) database and the Laboratory database. The CUP database
give us information about the number of patients that request a visit. From the ERP
database we extracted the organization structure of the ward and the number of
human resources, e.g. doctors and nurses. From the Laboratory database has been
extracted the organization structure of the laboratory.

The main model parameters are shown in table 3. The resources and relative
roles identified are: Surgeon, Nurser, Laboratory, CUP Operator. The laboratory is
a complex structure composed of different resources and roles but at this level of
abstraction it is consider an atomic resource. In the next use case will be presented
a use case that modeled the laboratory workflow.

We decide to consider this to cases to show the hierarchical nature of the model-
ing approach we propose. Indeed processes can be exploded and refined with dedi-
cated Wf-net as in the case of the laboratory.

One of the main metrics we used to measure the performance of a workflow and
in this specific case of the DH process is the Number of Successfully Closed Cases
(NSCC) computed over a specific time period T . In the DH process T = 30 days
and the NSCC measures the number of patients that activate the DH process and
that are successfully servers, that is they got a surgery or an alternative treatment or
a pre-surgery therapy.

The what if analysis we conducted is oriented to identify the more appropriate set
of resources that maximize the number of closed cases. The initial set of resources
was 17 Surgeon, 17 Nursers, 1 Laboratory and 5 CUP Operators. With this combi-
nation were assigned 292 cases, 28 cases were successfully closed and 22 rejected.

10 Public Administration Workflows Re-engineering 273

Table 2 Main activities composing the DH case study

Activity Description Transition id
CUP reservation a
Check on CUP b
reservation acceptance
Pre-Surgery visit c
Therapy prescription d
Pre-Surgery tests e
Exams verification f
Surgery reservation g

Table 3 Activities parameters and capability list for the DH case study

Activity Description Service time Resource involved Trigger type
CUP reservation 10min. CUP operator User
Check on CUP 0min – Automatic
reservation acceptance
Pre-Surgery visit 20min Surgeon User
Therapy prescription 15min Surgeon User
Pre-Surgery tests 30min Laboratory User
Exams verification 10min Surgeon User
Surgery reservation 0min – Automatic

Exploring different combinations of the number of Surgeon, Nursers and Laborato-
ries, we found that the NSCC can be improved of 20% increasing of the 11% the
number of surgeon and nursers. Indeed the best result were obtained with 19 Sur-
geon, 19 Nursers, 1 Laboratory and 5 CUP Operators. In this case, over the 291
assigned cases in 30 days, 31 were successfully closed and 20 rejected.

4.3 The Blood Examination Case Study

In this section we consider the execution of clinic tests process in the Internal Labo-
ratory of a specific structure/ward (hereafter LIS process). A typical example of test
is blood examination. The LIS process, that is a macro activity of the DH process
above considered, is a complex process characterized by specific cases depending
on the clinic exams under consideration. In this section we analyze the blood exam-
ination request case.

The LIS workflow starts with the collection of a blood sample in a test tube la-
belled with a bar code. The test tube is accepted after an optical scan of the bar
code label. The blood sample is therefore analyzed by means of a clinic instrument
that automatically generate the answer. The blood test answer is validated by a doc-
tor. The resource involved in a Laboratory are clinic tools, doctors, clinic technicians

274 E. Casalicchio and S. Tucci

F
ig

.9
T

he
bl

oo
d

ex
am

in
at

io
n

ca
se

of
th

e
L

IS
w

or
kfl

ow

10 Public Administration Workflows Re-engineering 275

Table 4 Main activities of the blood examination case in the LIS case study

Activity Description Transition id
Reception of the blood sample a
Identification of the patient b
Registration of patient data c
Pre-analytic validation d
Analysis of the blood sample e
Technical validation f
Clinical validation g

Table 5 Activities parameters and capability list for the blood examination case in the LIS
case study

Activity Description Service time Resource involved Trigger type
Reception of the blood sample 2min. All User
Identification of the patient 0min Technicians User
Registration of patient data 5min Technicians User
Pre-analytic validation 5min Technicians User
Analysis of the blood sample 221min Tools User
Technical validation 3min Tools User
Clinical validation 9min Tools, Doctors, Biologists User

and biologists. Some of the main activities and the related parameters are reported
in tables 4 and 5.

Also in this case the what-if analysis we conducted is oriented to find the alloca-
tion of resources that maximizes the NSCC metric. With the initial setup (1 clinic
instrument, 7 doctors, 6 biologists and 8 technicians) the NSCC is equal to 124 over
308 requests of analysis in 30 days. The number of rejected cases is 15. Adding two
more biologists is possible to achieve an NSCC of 145 over 324 assigned cases in
30 days with only 21 rejected cases.

5 Perspectives and Concluding Remarks

The lessons we learned from this experience is the following. First, the majority
of case we dealt with, business processes are not designed having in mind perfor-
mances and other non functional properties. A framework such as the Wf-Simulator
is a valid support to the performance by design.

Second, the Wf-Simulator allows to discover that, in many cases, performance
improvement can be achieved only dimensioning the proper number of resources,
without re-engineering the whole process.

Third, ABMS allows to describe any type of resources and behavior. The main
drawback is that the agent model must be customized for each use case. Indeed, also
if the Wf-Simulator enable a graphical definition of the workflow and an automatic

276 E. Casalicchio and S. Tucci

translation into the WfMS description language, for each resource must be coded an
agent with related rules of behavior. Right now there are no solution to completely
automate this process. The use of aspect oriented programming and model driven
development can be used in the direction to generalize and to automate agents design
and development.

Finally, the methodology we defined is independent from the implementation
we provided. Indeed the Wf-Simulator can be implemented using different ABMS
frameworks and WfMS. We tried different combinations of Agent-based simulator
and WfMS mainly for education purposes. A reasoned comparison has not yet be
done.

Acknowledgements. The authors would thanks Ing. Silvia Agatello, that was the main con-
tributor to the first Wf-Simulator release, and all the master and PhD students that contributed
to the improvement of the Wf-Simulator framework.

References

[1] Rapid application development toolkit radicore.org (2006),
http://www.tonymarston.net/php-mysql/workflow.html

[2] van der Aalst, W.: Putting petri nets to work in industry. Computers in Industry 25(1),
45–54 (1994)

[3] van der Aalst, W.: A class of petri net for modeling and analyzing business processes.
Computing Science Reports 95/26, Eindhoven University of Technology, Eindhoven
(1995)

[4] van der Aalst, W.: The application of petri nets to workflow management. The Journal
of Circuits, Systems and Computers 8(1), 21–66 (1998)

[5] van der Aalst, W., Hofstede, A.H.M.T.: Yawl: Yet another workflow language. Informa-
tion Systems 30, 245–275 (2003)

[6] van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow man-
agement system. In: Navathe, S., Wakayama, T. (eds.) Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC 1996),
pp. 179–201 (1996)

[7] Aalst, W.V.D., Hee, K.V.: Workflow Management: Models, Methods, and Systems. MIT
Press (2004)

[8] Attie, P.C., Singh, M.P.: Specifying and enforcing intertask dependencies. In: Proceed-
ings of the 19th VLDB Conference, pp. 134–145 (1993)

[9] Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences of the United States of
America 99 (suppl. 3) (2002)

[10] Bonner, A.J.: Workflow, transactions and datalog. In: Proceedings of the Eighteenth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 1999, pp. 294–305. ACM, New York (1999)

[11] Champy, M.H.J.: Reengineering the corporation: A manifesto for business revolution.
Harper Business, New York (1993)

[12] Chomicki, J., Toman, D.: Temporal logic in information systems. In: Logics for
Databases and Information Systems, pp. 31–70. Kluwer Academic Publishers, Norwell
(1998)

http://www.tonymarston.net/php-mysql/workflow.html

10 Public Administration Workflows Re-engineering 277

[13] Davenport, T.: Process innovation: Re-engineering work through information technol-
ogy. Harvard Business School Press, Boston (1993)

[14] Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based mod-
eling and analysis of workflows. In: Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1998, pp.
25–33. ACM, New York (1998)

[15] Ellis, C.A., Nutt, G.J.: Office information systems and computer science. ACM Comput.
Surv. 12, 27–60 (1980)

[16] Eshuis, R., Wieringa, R.: Verification support for workflow design with uml activity
graphs. In: Proceedings of the 24th International Conference on Software Engineering,
ICSE 2002, pp. 166–176. ACM, New York (2002)

[17] Hammer, M.: Re-engineering work: Don’t automate, obliterate. Harvard Business Re-
view, 104–111 (July-August 1990)

[18] Hoogendoorn, M., Jonker, C.M., Schut, M.C., Treur, J.: Modeling adaptive multi-agent
organizations for naval missions. In: Proceedings of the 5th WSEAS International Con-
ference on Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED
2006, pp. 470–478. World Scientific and Engineering Academy and Society (WSEAS),
USA (2006)

[19] Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture
and Implementation. Int. Thomson Press (1996)

[20] Jacques Ferber, O.G., Michel, F.: From Agents to Organizations: an Organizational
View of Multi-Agent Systems. Springer (2004)

[21] Salimifard, M.W.K.: Petri net-based modelling of workflow systems: An overview. Eu-
ropean Journal of Operational Research 134(3), 664–676 (2001)

[22] K. Sarshar Th. Theling, P.L., Jerrentrup, M.: Integrating process and organization mod-
els of collaborations through object petri nets. Contribution to XML4BPM (2006)

[23] Kavi, K., Kung, D.C., Bhambhani, H.: Extending UML for Modeling and Design of
Multi-Agent Systems. In: Proc. of Int’l Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (may 2003)

[24] Laskowski, M., Mukhi, S.: Agent-Based Simulation of Emergency Departments with
Patient Diversion. In: Weerasinghe, D. (ed.) eHealth 2008. LNICST, vol. 1, pp. 25–37.
Springer, Heidelberg (2009)

[25] Liebermann, B., Merz, W.L.M.: Using mobile agents to support inter-organisational
workflow management. Applied Artificial Intelligence 11(6), 551–572 (1997)

[26] Sierhuis, M., Clancey, W.J.: Agent-based mission modeling and simulation. In: Agent-
Directed Simulation Workshop, 2006 Spring Simulation Multiconference, SpringSim
(2006)

[27] Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic-Based Approaches
to Workflow Modeling and Verification. In: Chomicki, J., van der Meyden, R., Saake,
G. (eds.) Logics for Emerging Applications of Databases, ch. 5, pp. 167–202. Springer,
Berlin (2004)

[28] North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit. ACM Trans. Model. Comput. Simul. 16(1), 1–25
(2006)

[29] North, M.J., Macal, C.M.: Managing Business Complexity: discovery strategic solution
with agent-based modeling and simulation. Oxford University Press (2007)

[30] Odell, J., Parunak, H., Bauer, B.: Extending UML for Agents. In: Proc. of Agent-
Oriented Information Systems Workshop, pp. 3–17 (2000)

[31] Petri, C.: Kommunikation mit automaten. phd thesis. Ph.D. thesis, Institut fur instru-
mentelle Mathematik, Bonn (1962)

278 E. Casalicchio and S. Tucci

[32] Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: An
overview. European Journal of Operational Research 134(3), 664–676 (2001)

[33] Short, T.D.J.: The new industrial engineering: Information technology and business pro-
cess redesign. Sloan Management Review 31(4), 11–27 (1990)

[34] da Silva, V.T., Choren, R., Lucena, C.J.P.: A UML Based Approach for Modeling and
Implementing Multi-Agent Systems. In: Proc. of 3rd Int’l Conf. on Autonomous Agents
and Multiagent Systems, pp. 914–921 (2004)

[35] Takahashi, H., Takahashi, S., Tsuda, K., Terano, T.: Analysis passive investment strate-
gies and asset price fluctuation in financial market through agent. In: Terano, T., Kita,
H., Kaneda, T., Arai, K., Deguchi, H., Chen, S.H., Cioffi-Revilla, C., Gilbert, N., Kita,
H., Terano, T. (eds.) Agent-Based Simulation: From Modeling Methodologies to Real-
World Applications, Agent-Based Social Systems, vol. 1, pp. 144–157. Springer, Tokyo
(2005)

[36] Workflow, M.: Coalition: Workflow management coalition terminology and glos-
sary. The Workflow Management Coalition Specification (1999), Document Number
WFMC-TC-1011 Issue 3.0

[37] Workflow, M.: Coalition: Wfmc (2006), http://www.wfmc.org
[38] Yamamoto, H., Ishida, K., Ohta, T.: Evolution of Cooperative Behavior in C2C market:

Effect of Reputation Management System, vol. 1, pp. 48–57. Springer, Tokyo (2005)

http://www.wfmc.org

Author Index

Balke, Tina 1
Braubach, Lars 21, 107
Bromuri, S. 217
Budimac, Zoran 55

Caire, Giovanni 89
Čáp, Michal 147
Casalicchio, Emiliano 257

Fortino, Giancarlo 185

Galzarano, Stefano 185

Hirsch, Benjamin 1

Ivanović, Mirjana 55

Jander, Kai 21

Komenda, Antonı́n 147

Leszczyna, Rafał 129
Lützenberger, Marco 1

Mancarella, P. 217
McGinnis, J. 217
Mitrović, Dejan 55
Morge, M. 217

Novák, Peter 147

Pěchouček, Michal 147
Pokahr, Alexander 21, 107

Stathis, K. 217

Toni, F. 217
Tucci, Salvatore 257

Vidaković, Milan 55
Vokřinek, Jiřı́ 147

	Title Page
	Foreword
	Preface
	Contents
	Editors
	Assessing Agent Applications — r&D vs. R&d
	The Case
	Application Papers
	Agent-Centered Conferences
	AAMAS
	PAAMS
	ICAART
	MATES
	Summary of Conferences

	The Agent Technology Journal Landscape
	The Autonomous Agents and Multi-Agent Systems Journal
	The General Agent Technology Journal Landscape

	The Stakeholders
	The Industry View: The Technology Adoption Life-Cycle
	The Research View
	The Reviewers View

	Summary
	References

	The Jadex Project: Programming Model
	Introduction
	Agent Programming: BDI Architecture
	Related Work
	Approach
	Application: MedPAge
	Summary

	BDI in Workflows: GPMN
	Related Work
	Approach
	Application
	Summary

	Agents, Components and Services: Active Components
	Related Work
	Approach
	Application: JadexCloud
	Summary

	Conclusion and Outlook
	References

	Extensible Java EE-Based Agent Framework – Past, Present, Future
	Introduction
	An Overview of Existing MAS Architectures
	ABLE
	Aglets
	DimaX
	FUSION@
	JADE
	Voyager
	Comparisons with XJAF

	The $XJAF$ Architecture
	Agent Management
	Managing Tasks
	Agent Communication
	Connecting Distributed XJAF Instances
	Security Features of XJAF
	Service Manager

	Practical Applications of XJAF
	Example: Factorial Agent
	Distributed Library Catalogues
	Metadata Harvesting
	The Benefits of Using XJAF

	Recent Improvements of the Architecture
	Fault-Tolerant Networks of XJAF Instances
	Agent Tracking Improvements
	SOM: SOA-Based MAS

	Conclusion and Future Work
	References

	Agent-Based XDSL Monitoring and Optimization
	WADE
	Distribution
	Workflows

	The xDSL Domain
	xDSL Connectivity
	Line Quality Management

	Agent Based xDSL Monitoring and Management
	Event Based xDSL Monitoring
	Wants Assurance Internal Architecture
	Dynamic Line Management

	Conclusions
	References

	The Jadex Project: Simulation
	Introduction
	Simulation Clocks
	Related Work
	Approach
	Applications
	Summary

	Virtual Environments
	Related Work
	Approach
	Agent-Based Simulation: City Bikes
	Summary

	Conclusion and Outlook
	References

	Agents in Simulation of Cyberattacks to Evaluate Security of Critical Infrastructures
	Introduction
	Cybersecurity of Critical Infrastructures
	Cybersecurity Evaluation
	Need for a Malware Simulator

	Developing MAlSim
	The Choice of Agent Paradigm
	MAlSim Design
	Design Changes during the Implementation

	Completed Project
	Attack Scenario
	Malware Templates
	MAlSim Toolkit
	The Life Cycle of the Experiments with MAlSim

	Application
	Lessons Learned
	Perspectives
	References

	Simulated Multi-robot Tactical Missions in Urban Warfare
	Multi-robotics in UrbanWarfare
	The Project Cluster: Tactical AgentFly, Tactical AgentScout
	Tactical AgentFly
	Tactical AgentScout

	Analysis and Design of the System
	Initial System Requirements
	Initial Technological Infrastructure: AgentFly
	Initial System Architecture

	System Implementation and Experiences
	Simulation and Environment Modeling
	Evaluation of Multi-agent Coordination Techniques
	Scripting and Agent Control
	User Interface and Visualization
	Alite
	Architectural Changes of the Technological Infrastructure Over Time

	Critical Analysis of the Experience and Lessons Learned
	Multi-agent Platform
	Environment Simulation and Scenario Modeling
	Experiments and Configuration
	Agent Behavior Control
	User Interface and Visualization
	Towards AgentFly-In-Air

	Future Perspectives and Final Remarks
	References

	On the Development of Mobile Agent Systems for Wireless Sensor Networks: Issues and Solutions
	Introduction
	Background and RelatedWork
	Network Routing
	Data Dissemination and Fusion
	Energy-Aware Coordination
	System Architectures, Services and Applications
	Programming Frameworks

	Requirements for MAS Development onWSNs
	On the Use of Mobile Agents for WSN Applications
	Requirements and Issues

	MAPS and TinyMAPS
	MAPS: Mobile Agent Platform for Sun SPOT
	TinyMAPS

	A Comparison among Java-Based MAS
	Java-Based MASs’ Characteristics Comparison
	Performance Test Comparison between MAPS and TinyMAPS
	Performance Test Comparison between MAPS and AFME

	Lessons Learned and Open Challenges
	Conclusion
	References

	Argumentative Agents for Service-Oriented Computing
	Introduction
	Motivation: An E-Procurement Scenario
	Background on Argumentation and Protocol Language
	MARGO
	Protocol Language

	Agent Architecture
	Individual Decision Making
	Social Decision Making
	Social Interaction

	Case Run
	Deployment and Implementation
	Related Work
	Conclusion and Future Work
	References

	Public Administration Workflows Re-engineering: An Agent-Based M&S Approach
	Introduction
	Basic Concepts
	Workflow and WfMS
	WF-Net
	Agent-Based Modeling and Simulation

	The Wf-Simulator
	The Architecture
	The Modeling Approach

	Practical Experiences
	The SABS Case Study
	The Day Hospital Surgery Admission Case Study
	The Blood Examination Case Study

	Perspectives and Concluding Remarks
	References

	Author Index

