
Chapter 6
Asymptotic Methods for Random Tessellations

Pierre Calka

Abstract In this chapter, we are interested in two classical examples of random
tessellations which are the Poisson hyperplane tessellation and Poisson–Voronoi
tessellation. The first section introduces the main definitions, the application of an
ergodic theorem and the construction of the so-called typical cell as the natural
object for a statistical study of the tessellation. We investigate a few asymptotic
properties of the typical cell by estimating the distribution tails of some of its
geometric characteristics (inradius, volume, fundamental frequency). In the second
section, we focus on the particular situation where the inradius of the typical cell is
large. We start with precise distributional properties of the circumscribed radius that
we use afterwards to provide quantitative information about the closeness of the cell
to a ball. We conclude with limit theorems for the number of hyperfaces when the
inradius goes to infinity.

6.1 Random Tessellations: Distribution Estimates

This section is devoted to the introduction of the main notions related to random
tessellations and to some examples of distribution tail estimates. In the first
subsection, we define the two main examples of random tessellations, namely the
Poisson hyperplane tessellation and the Poisson–Voronoi tessellation. The next
subsection is restricted to the stationary tessellations for which it is possible to
construct a statistical object called typical cell Z via several techniques (ergodicity,
Palm measures, explicit realizations). Having isolated the cell Z, i.e. a random
polyhedron which represents a cell “picked at random” in the whole tessellation,
we can investigate its geometric characteristics. In the last subsection, we present
techniques for estimating their distribution tails.
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This section is not intended to provide the most general definitions and results.
Rather, it is aimed at emphasizing some basic examples. Quite often, we shall
consider the particular case of the plane. A more exhaustive study of random
tessellations can be found in the books [368, 386, 451, 489] as well as the surveys
[108, 252].

6.1.1 Definitions

Definition 6.1 (Convex tessellation). A convex tessellation is a locally finite
collection f�ngn2N of convex polyhedra of Rd such that [n2N�n D R

d and �n

and �m have disjoint interiors if n ¤ m. Each �n is called a cell of the tessellation.

The set T of convex tessellations is endowed with the �-algebra generated by the
sets

ff�ngn2N W Œ[n2N@�n� \ K D ;g
where K is any compact set of Rd .

Definition 6.2 (Random convex tessellation). A random convex tessellation is a
random variable with values in T.

Remark 6.1. We can equivalently identify a tessellation f�ngn2N with its skeleton
[n2N@�n which is a random closed set of Rd .

Definition 6.3 (Stationarity, isotropy). A random convex tessellation is stationary
(resp. isotropic) if its skeleton is a translation-invariant (resp. rotation-invariant)
random closed set.

We describe below the two classical constructions of random convex tessellations,
namely the hyperplane tessellation and the Voronoi tessellation. In the rest of
the section, we shall only consider these two particular examples even though
many more can be found in the literature (Laguerre tessellations [324], iterated
tessellations [340], Johnson–Mehl tessellations [367], crack STIT tessellations
[376], etc.).

Definition 6.4 (Hyperplane tessellation). Let � be a point process which does not
contain the origin almost surely. For every x 2 � , we define its polar hyperplane as
Hx D fy 2 R

d W hy � x; xi D 0g. The associated hyperplane tessellation is the set
of the closure of all connected components of Rd n [x2� Hx .

We focus on the particular case where � is a Poisson point process. The next
proposition provides criteria for stationarity and isotropy.

Proposition 6.1 (Stationarity of Poisson hyperplane tessellations). Let � D ˘�

be a Poisson point process of intensity measure �.
The associated hyperplane tessellation is stationary iff � can be written in

function of spherical coordinates .u; t/ 2 S
d�1 � RC as
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�.du; dt/ D � dt '.du/ (6.1)

where ' is a probability measure on S
d�1.

It is additionally isotropic iff ' is the uniform measure �d�1 on S
d�1.

A so-called Poisson hyperplane tessellation (Poisson line tessellation in dimension
two) is a hyperplane tessellation generated by a Poisson point process but it is quite
often implied in the literature that it is also stationary and isotropic. Up to rescaling,
we will assume in the rest of the chapter that its intensity � is equal to one (Fig. 6.1).

Exercise 6.1. Verify that a stationary and isotropic Poisson hyperplane tessel-
lation satisfies the following property with probability one: for 0 � k � d , each
k-dimensional face of a cell is the intersection of exactly .d � k/ hyperplanes Hx ,
x 2 ˘�, and is included in exactly 2d�k cells.

This tessellation has been introduced for studying trajectories in bubble chambers
by S.A. Goudsmit in [200] in 1945. It has been used in numerous applied works
since then. For instance, R.E. Miles describes it as a possible model for the fibrous
structure of sheets of paper [356, 357].

Definition 6.5 (Voronoi tessellation). Let � be a point process. For every x 2 � ,
we define the cell associated with x as

Z.xj�/ D fy 2 R
d W ky � xk � ky � x0k 8x0 2 �; x0 ¤ xg:

The associated Voronoi tessellation is the set fZ.xj�/gx2� .

Proposition 6.2 (Stationarity of Voronoi tessellations). The Voronoi tessellation
associated with a point process � is stationary iff � is stationary.

A so-called Poisson–Voronoi tessellation is a Voronoi tessellation generated by a
homogeneous Poisson point process. Up to rescaling, we will assume in the rest of
the chapter that its intensity is equal to one.

Exercise 6.2. Show that a Poisson–Voronoi tessellation is normal with probability
one, i.e. every k-dimensional face of a cell, 0 � k � d , is included in exactly
d � k C 1 cells.

This tessellation has been introduced in a deterministic context by R. Descartes
in 1644 as a description of the structure of the universe (see also the more recent
work [514]). It has been developed since then for many applications, for example in
telecommunications [21, 173], image analysis [162] and molecular biology [185].

We face the whole population of cells in a random tessellation. How to study
them? One can provide two possible answers:

1. Either you isolate one particular cell.
2. Or you try conversely to do a statistical study over all the cells by taking means.

An easy way to fix a cell consists in considering the one containing the origin.
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a b

Fig. 6.1 Realizations of the isotropic and stationary Poisson line tessellation (a) and the planar
stationary Poisson–Voronoi tessellation (b) in the unit square

Definition 6.6 (Zero-cell). If o 62 [n2N@�n a.s., then the zero-cell (denoted by Z0)
is the cell containing the origin. In the case of an isotropic and stationary Poisson
hyperplane tessellation, it is called the Crofton cell.

The second point above will be developed in the next section. It is intuitively clear
that it will be possible to show the convergence of means over all cells only if the
tessellation is translation-invariant.

6.1.2 Empirical Means and Typical Cell

This section is restricted to the stationary Poisson–Voronoi and Poisson hyperplane
tessellations. We aim at taking means of certain characteristics over all the cells of
the tessellation. But of course, we have to restrict the mean to a finite number of
these cells due to technical reasons. A natural idea is to consider those contained in
or intersecting a fixed window, for example the ball BR.o/, then take the limit when
the size of the window goes to infinity. Such an argument requires the use of an
ergodic theorem and the first part of the section will be devoted to prepare and show
an ergodic result specialized to our set-up. In the second part of the section, we use
it to define the notion of the typical cell and we investigate several equivalent ways
of defining it.

6.1.2.1 Ergodic Theorem for Tessellations

The first step is to realize the measurable space .˝; F/ as .N ;N/ where N is the set
of locally finite sets of Rd andN is the �-algebra generated by the functions #.�\A/,
where A is any bounded Borel set. We define the shift Ta W N �! N as the operation
over the points needed to translate the tessellation by a vector a 2 R

d . In other



6 Asymptotic Methods for Random Tessellations 187

words, for every locally finite set fxngn2N, the underlying tessellation generated by
Ta.fxngn2N/ is the translate by a of the initial tessellation generated by fxngn2N.

Proposition 6.3 (Explicit shifts). For a Voronoi tessellation, Ta is the function
which associates to every locally finite set fxngn2N 2 N the set fxn C agn2N.

For a hyperplane tessellation, Ta is the function which associates to every locally
finite set fxngn2N 2 N (which does not contain the origin) the set
fxn C hxn=kxnk; aixn=kxnkgn2N.

Proof. In the Voronoi case, the translation of the skeleton is equivalent with the
translation of the nuclei which generate the tessellation.

In the case of a hyperplane tessellation, the translation of a fixed hyperplane
preserves its orientation but modifies the distance from the origin. To prove the
proposition, it suffices to notice that a polar hyperplane Hx is sent by a translation
of vector a to Hy with y D x C hu; aiu where u D x

kxk . ut
Proposition 6.4 (Ergodicity of the shifts). In both cases, Ta preserves the mea-
sure P (i.e. the distribution of the Poisson point process) and is ergodic.

Sketch of proof. Saying that Ta preserves the measure is another way of expressing
the stationarity of the tessellation.

To show ergodicity, it is sufficient to prove that fTa W a 2R
d g is mixing

(cf. Definition 4.6), i.e. that for any bounded Borel sets A; B and k; l 2 N, we
have as jaj ! 1

P.#.� \A/ D kI #.Ta.�/\B/ D l/ ! P.#.� \A/ D k/P.#.� \B/ D l/: (6.2)

In the Voronoi case, for jaj large enough, the two events f#.˚ \ A/ D kg and
f#.Ta.˚/ \ B/ D lg are independent since A \ .B � a/ D ;. Consequently, the
two sides of (6.2) are equal.

In the hyperplane case, the same occurs as soon as B is included in a set

fx 2 R
d W jhx; aij � "kxkkakg

for some " > 0. Otherwise, we approximate B with a sequence of Borel subsets
which satisfy this condition. ut
In the next theorem, the main application of ergodicity for tessellations is derived.

Theorem 6.1 (Ergodic theorem for tessellations). Let NR be the number of cells
which are included in the ball BR.o/. Let h W Kd

conv ! R be a measurable, bounded
and translation-invariant function over the set Kd

conv of convex and compact sets
of Rd . Then almost surely,

lim
R!1

1

NR

X

��BR.o/

h.�/ D 1

E.�d .Z0/�1/
E
�

h.Z0/

�d .Z0/

�
: (6.3)
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Proof. The proof is done in three steps: use of Wiener’s continuous ergodic theorem,
then rewriting the mean of h over cells included in BR.o/ as the sum of an integral
and the rest, finally proving that the rest is negligible.

Step 1. The main ingredient is Wiener’s ergodic theorem applied to the ergodic
shifts fSx W x 2 R

d g. We have almost surely

lim
R!1

1

�d .BR.o//

Z

BR.o/

h.Z0.T�x!//

�d .Z0.T�x!//
dx D E

�
h.Z0/

�d .Z0/

�
:

This can be roughly interpreted by saying that the mean in space (in the left-hand
side) for a fixed sample ! is asymptotically close to the mean with respect to the
probability law P.

Step 2. We have for almost every ! 2 ˝ that

1

�d .BR.o//

Z

BR.o/

h.Z0.T�x!//

�d .Z0.T�x!//
dx D 1

�d .BR.o//

X

��BR.o/

h.�/ C Rest.R/

(6.4)
where

Rest.R/ D 1

�d .BR.o//

X

� W�\@BR.o/¤;

�d .� \ BR.o//

�d .�/
h.�/:

In particular, if we define N 0
R as the number of cells which intersect the boundary

of the ball BR.o/, then there is a positive constant K depending only on h such
that

jRest.R/j � K
N 0

R

�d .BR.o//
:

We observe that in order to get (6.3), it is enough to prove that the rest goes to 0.
Indeed, when h � 1, the equality (6.4) will provide that

NR

�d .BR.o//
D 1

�d .BR.o//

Z

BR.o/

1

�d .Z0.T�x!//
dx�Rest.R/ ! E.�d .Z0/�1/:

Step 3. We have to show that Rest.R/ goes to 0, that is what R. Cowan calls the
insignificance of edge effects [132, 133]. In the sequel, we use his argument to
show it and for sake of simplicity, we only consider the particular case of the
two-dimensional Voronoi tessellation. Nevertheless, the method can be extended
to any dimension by showing by induction that the number of k-faces hitting the
boundary of the ball is negligible for every 0 � k � d .

Here, in the two-dimensional case, let us fix " > 0 and consider R > ". Let us
denote by VR the number of vertices of the tessellation in BR.o/ and by LR the sum
of the edge lengths inside BR.o/. A direct use of Wiener’s theorem applied to the
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functionals V" and L" on the sets BR�".o/ and BRC".o/ shows that the quantities
VR=�d .BR.o// and LR=�d .BR.o// tend almost surely to constants.

We recall that a Voronoi tessellation is normal which means in particular that a
fixed edge (resp. vertex) is contained in exactly two (resp. three) cells.

If a cell intersects the boundary of BR.o/, then we are in one of the three
following cases:

1. No edge of the cell intersects BRC".o/ n BR.o/.
2. Some edges but no vertex of the cell intersect BRC".o/ n BR.o/.
3. At least one vertex of the cell is in BRC".o/ n BR.o/.

The first case is satisfied by at most one cell, the second case by at most 2
"
.LRC" �

LR/ cells and the last one by at most 3.SRC" � SR/. Consequently, we get when
R ! 1

N 0
R

V2.BR.o//
� 1

V2.BR.o//
C 2

LRC" � LR

V2.BR.o//
C 3

VRC" � VR

V2.BR.o//
�! 0;

which completes the proof. ut
Exercise 6.3. Show a similar result for a Johnson–Mehl tessellation (defined in
[367]).

Remark 6.2. The statement of Theorem 6.1 still holds if condition “h bounded” is
replaced with E.jh.Z0/jp/ < 1 for a fixed p > 1 (see for example [196, Lemma 4]).

Remark 6.3. When using this ergodic theorem for tessellations in practice, it is
needed to have also an associated central limit theorem. Such second-order results
have been proved for some particular functionals in the Voronoi case [20] and for the
Poisson line tessellation [389] in dimension two. Recently, a more general central
limit result for hyperplane tessellations has been derived from the use of U-statistics
in [239].

The limit in the convergence (6.3) suggests the next definition for the typical cell,
i.e. a cell which represents an “average individual” from the whole population.

Definition 6.7 (Typical cell 1). The typical cell Z is defined as a random variable
with values in Kd

conv and such that for every translation-invariant measurable and
bounded function h W Kd

conv ! R, we have

E.h.Z// D 1

E.�d .Z0/�1/
E
�

h.Z0/

�d .Z0/

�
:

Remark 6.4. Taking for h any indicator function of geometric events (for example
fthe cell is a triangleg, fthe area of the cell is greater than 2g, etc.), we can define via
the equality above the distribution of any geometric characteristic of the typical cell.

Remark 6.5. One should keep in mind that the typical cell Z is not distributed as
the zero-cell Z0. Indeed, the distribution of Z has a density proportional to ��1

2 with
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respect to the distribution of Z0. In particular, since it has to contain the origin, Z0

is larger than Z. This is a d -dimensional generalization of the famous bus paradox
in renewal theory which states that at your arrival at a bus stop, the time interval
between the last bus you missed and the first bus you’ll get is actually bigger than
the typical waiting time between two buses. Moreover, it has been proved in the case
of a Poisson hyperplane tessellation that Z and Z0 can be coupled in such a way
that Z � Z0 almost surely (see [352] and Proposition 6.6 below).

Looking at Definition 6.7, we observe that it requires to know either the distribution
of Z0 or the limit of the ergodic means in order to get the typical cell. The next
definition is an alternative way of seeing the typical cell without the use of any
convergence result. It is based on the theory of Palm measures [323, 348]. For sake
of simplicity, it is only written in the case of the Poisson–Voronoi tessellation but it
can be extended easily to any stationary Poisson hyperplane tessellation.

Definition 6.8 (Typical cell 2 (Poisson–Voronoi tessellation)). The typical cell Z

is defined as a random variable with values in Kd
conv such that for every bounded and

measurable function h W Kd
conv ! R and every Borel set B with 0 < �d .B/ < 1,

we have

E.h.Z// D 1

�d .B/
E

 
X

x2B\˘

h.Z.xj˘/ � x/

!
: (6.5)

This second definition is still an intermediary and rather unsatisfying one but via the
use of Slivnyak–Mecke formula for Poisson point processes (see Theorem 4.5), it
provides a way of realizing the typical cell Z.

Exercise 6.4. Verify that the relation (6.5) does not depend on B .

Proposition 6.5 (Typical cell 3 (Poisson–Voronoi tessellation)). The typical cell
Z is equal in distribution to the set Z.o/ D Z.oj˘ [ fog/, i.e. the Voronoi cell
associated with a nucleus at the origin when this nucleus is added to the original
Poisson point process.

Remark 6.6. The cell Z.o/ defined above is not a particular cell isolated from
the original tessellation. It is a cell extracted from a different Voronoi tessellation
but which has the right properties of a cell “picked at random” in the original
tessellation. For any x 2 ˘ , we define the bisecting hyperplane of Œo; x� as the
hyperplane containing the midpoint x=2 and orthogonal to x. Since Z.o/ is bounded
by portions of bisecting hyperplanes of segments Œo; x�, x 2 ˘ , we remark that
Z.o/ can be alternatively seen as the zero-cell of a (non-stationary) Poisson
hyperplane tessellation associated with the homogeneous Poisson point process up
to a multiplicative constant.

The Poisson–Voronoi tessellation is not the only tessellation such that the associated
typical cell can be realized in an elementary way. There exist indeed several
ways of realizing the typical cell of a stationary and isotropic Poisson hyperplane
tessellation. We present below one of the possible constructions of Z, which offers
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the advantage of satisfying Z � Z0 almost surely. It is based on a work [106]
which is an extension in any dimension of an original idea in dimension two due to
R.E. Miles [359] (Fig. 6.2).

Proposition 6.6 (Typical cell 3 (Poisson hyperplane tessellation)). The radius
Rm of the largest ball included in the typical cell Z is an exponential variable of
parameter the area of the unit sphere. Moreover, conditionally on Rm, the typical
cell Z is equal in distribution to the intersection of the two independent following
random sets:

(i) a random simplex with inscribed ball BRm .o/ such that the vector .u0; : : : ; ud /

of the d C 1 normal unit-vectors is independent of Rm and has a density
proportional to the volume of the simplex spanned by u0; : : : ; ud .

(ii) the zero-cell of an isotropic Poisson hyperplane tessellation outside BRm.o/

of intensity measure �.du; dt/ D 1.BRm.o/c/ dt d�d�1.u/ (in spherical
coordinates).

Exercise 6.5. When d D 2, let us denote by ˛; ˇ; 	 the angles between u0 and
u1, u1 and u2, u2 and u0 respectively. Write the explicit density in (i) in function of
˛, ˇ and 	 .

Exercise 6.6. We replace each hyperplane Hx from a Poisson hyperplane tessella-
tion by a "-thickened hyperplane H

."/
x D fy 2 R

d W d.y; Hx/ � "g where " > 0

is fixed. Show that the distribution of the typical cell remains unchanged, i.e. is the
same as for " D 0.

We conclude this subsection with a very basic example of calculation of a mean
value: it is well-known that in dimension two, the mean number of vertices of the
typical cell is 4 for an isotropic Poisson line tessellation and 6 for a Poisson–Voronoi
tessellation. We give below a small heuristic justification of this fact: for a Poisson
line tessellation, each vertex is in four cells exactly and there are as many cells as
vertices (each vertex is the highest point of exactly one cell) whereas in the Voronoi
case, each vertex is in three cells exactly and there are twice more vertices than cells
(each vertex is either the highest point or the lowest point of exactly one cell).

In the next subsection, we estimate the distribution tails of some geometric
characteristics of the typical cell.

6.1.3 Examples of Distribution Tail Estimates

Example 6.1 (Poisson hyperplane tessellation, Crofton cell, inradius). We consider
a stationary and isotropic Poisson hyperplane tessellation, i.e. with an intensity
measure equal to �.du; dt/ D dt d�d�1.u/ in spherical coordinates (note that the
constant � appearing in (6.1) is chosen equal to one).

Let us denote by Rm the radius of the largest ball included in the Crofton cell and
centered at the origin. Since it has to be centered at the origin, the ball BRm.o/ is not
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a b

Fig. 6.2 Realizations of the typical cells of the stationary and isotropic Poisson line tessellation
(a) and the homogeneous planar Poisson–Voronoi tessellation (b)

the real inball of the Crofton cell. Nevertheless, we shall omit that fact and call Rm

the inradius in the rest of the chapter.
For every r > 0, we have

P.Rm � r/ D P.˘ \ Br.o/ D ;/

D exp

�
�
Z r

0

Z

Sd�1

dt d�d�1.u/

�
D e�d
d r

where 
d is the Lebesgue measure of the d -dimensional unit-ball. We can remark
that it is the same distribution as the real inradius of the typical cell, i.e. the radius
of the largest ball included in the typical cell with unfixed center (see [106,356] and
Proposition 6.6 above).

This result can be extended by showing that for every deterministic convex set K

containing the origin, the probability P.K � Z0/ is equal to expf� d
2

d V1.K/g

where V1.K/ is the mean width of K . In dimension two, the probability reduces to
expf�P.K/g where P.K/ is the perimeter of K .

Example 6.2 (Poisson–Voronoi tessellation, typical cell, inradius). We consider a
homogeneous Poisson–Voronoi tessellation of intensity one in the rest of the section.

We realize its typical cell as Z.o/ D Z.oj˘ [ fog/ (see Proposition 6.5). We
consider the radius Rm of the largest ball included in Z.o/ and centered at the origin.
We call it inradius with the same abuse of language as in the previous example. The
radius Rm is larger than r iff for every x, kxk D r , x is in Z.o/, i.e. Br.x/ does not
intersect the Poisson point process ˘ . In other words, for every r > 0, we have

P.Rm � r/ D P

0

@˘ \
[

xWkxkDr

Br .x/ D ;
1

A

D P.˘ \ B2r .o/ D ;/ D e�2d 
d rd

: (6.6)
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In general, for a deterministic convex set K containing the origin, we define
the Voronoi flower F.K/ D S

x2K Bkxk.x/ (Fig. 6.3). We can show the following
equality:

P.K � Z.o// D expf��d .F.K//g:

Exercise 6.7. Verify that for any compact subset A of Rd , the Voronoi flowers of
A and of its convex hull coincide.

Example 6.3 (Poisson–Voronoi tessellation, typical cell, volume). The next propo-
sition comes from a work due to E.N. Gilbert [187].

Proposition 6.7 (E.N. Gilbert [187]). For every t > 0, we have

e�2d t � P.�d .Z/ � t/ � t � 1

et�1 � 1
:

Proof. Lower bound: It suffices to notice that �d .Z/ � �d .BRm.o// and apply
(6.6).

Upper bound: Using Markov’s inequality, we get for every ˛; t � 0

P.�d .Z/ � t/ � .e˛t � 1/�1.E.e˛�d .Z// � 1/: (6.7)

Let us consider now the quantity f .˛/ D E
�R

Z.o/ e˛
d kxkd
dx
�

. On one hand, we

can show by Fubini’s theorem that for every ˛ < 1,

f .˛/ D
Z

Rd

e˛
d kxkd

P.x 2 Z.o// dx D
Z

Rd

e.˛�1/
d kxkd

dx D 1

1 � ˛
: (6.8)

On the other hand, when comparing Z.o/ with the ball centered at the origin and of
same volume, we use an isoperimetric inequality to get a lower bound for the same
quantity:

f .˛/ � E

 Z

B
.�d .Z.o//=
d /1=d .o/

e˛
d kxkd

dx

!
D 1

˛
E.e˛�d .Z//: (6.9)

Combining (6.7), (6.8) with (6.9), we obtain that for every t > 0,

P.�d .Z/ � t/ � .e˛t � 1/�1 ˛

1 � ˛

and it remains to optimize the inequality in ˛ by taking ˛ D t�1
t

. ut
Exercise 6.8. Show the isoperimetric inequality used above.

Remark 6.7. It has been proved since then (see Theorem 7.10 and [259]) that the
lower bound provides the right logarithmic equivalent, i.e.
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Fig. 6.3 Example of the Voronoi flower of a convex polygon

lim
t!1

1

t
log P.�d .Z/ � t/ D �2d :

In other words, distribution tails of the volumes of both the typical cell Z and
its inball have an analogous asymptotic behaviour. This is due to D.G. Kendall’s
conjecture (see the foreword of the book [489]) which was historically written for
the two-dimensional Crofton cell. Indeed, it roughly states that cells with a large
volume must be approximately spherical. After a first proof by I.N. Kovalenko
[312], this conjecture has been rigorously reformulated and extended in many
directions by D. Hug, M. Reitzner and R. Schneider (see Theorems 7.9 and 7.11
as well as [255, 256]).

Example 6.4 (Poisson–Voronoi tessellation, typical cell, fundamental frequency in
dimension two). This last more exotic example is motivated by the famous question
due to Kac [279] back in 1966: “Can one hear the shape of a drum?”. In other words,
let us consider the Laplacian equation on Z.o/ with a Dirichlet condition on the
boundary, that is (

�f .x/ D ��f .x/; if x 2 Z.o/,

f .x/ D 0; if x 2 @Z.o/.

It has been proved that the eigenvalues satisfy

0 < �1 � �2 � � � � � �n � � � � < 1:

Is it possible to recover the shape of Z.o/ by knowing only its spectrum? In
particular, �1 is called the fundamental frequency of Z.o/. It is a decreasing function
of the convex set considered. When the volume of the domain is fixed, Faber–
Krahn’s inequality [40] says that it is minimal iff the domain is a ball. In such a
case, we have �1 D j 2

0 =r2 where r is the radius of the ball and j0 is the first positive
zero of the Bessel function J0 [80].

The next theorem which comes from a collaboration with A. Goldman [198]
provides an estimate for the distribution function of �1 in the two-dimensional case.
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Theorem 6.2 (Fundamental frequency of the typical Poisson–Voronoi cell). Let
�1 denote the fundamental frequency of the inball of Z.o/. Then when d D 2, we
have

lim
t!0

t � log P.�1 � t/ D lim
t!0

t � log P.�1 � t/ D �4j 2
0 :

Remark 6.8. The larger Z.o/ is, the smaller is �1. When evaluating the probability
of the event f�1 � tg for small t , the contribution comes from the largest cells
Z.o/. Consequently, the fact that the distribution functions for small �1 and small �1

have roughly the same behaviour is a new contribution for justifying D.G. Kendall’s
conjecture.

Remark 6.9. An analogous result holds for the Crofton cell of a Poisson line
tessellation in the plane [196].

Sketch of proof.

Step 1. By a Tauberian argument (see [172], Vol. 2, Chap. 13, pages 442–448), we
only have to investigate the behaviour of the Laplace transform E.e�t�1 / when t

goes to infinity.
Step 2. We get a lower bound by using the monotonicity of the fundamental

frequency (�1 � �1) and the explicit distribution of �1 D j 2
0 =R2

m.
Step 3. In order to get an upper bound, we observe that almost surely

e�t�1 � '.t/ D
X

n�1

e�t�n

where ' is called the spectral function of Z.o/. It is known that the spectral
function of a domain is connected to the probability that a two-dimensional
Brownian bridge stays in that domain (see for example [279]). More precisely,
we denote by W the trajectory of a standard two-dimensional Brownian bridge
between 0 and 1 (i.e. a planar Brownian motion starting at 0 and conditioned on
being at 0 at time 1) and independent from the point process. We have

'.t/ D 1

4t

Z

Z.o/

PW .x C p
2tW � Z.o// dx

where PW denotes the probability with respect to the Brownian bridge W . We
then take the expectation of the equality above with respect to the point process
and we get the Laplace transform of the area of the Voronoi flower of the convex
hull of W . We conclude by using results related to the geometry of the two-
dimensional Brownian bridge [197]. ut

Exercise 6.9. In the case of the Crofton cell, express '.t/ in function of the Laplace
transform of the mean width of W .
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6.2 Asymptotic Results for Zero-Cells with Large Inradius

In this section, we shall focus on the example of the Poisson–Voronoi typical cell,
but the reader should keep in mind that the results discussed below can be extended
to the Crofton cell and more generally to zero-cells of certain isotropic hyperplane
tessellations (see [108, Sect. 3]). This section is devoted to the asymptotic behaviour
of the typical cell, under the condition that it has large inradius. Though it may
seem at first sight a very artificial and restrictive choice, we shall see that it falls
in the more general context of D.G. Kendall’s conjecture and that this particular
conditioning allows us to obtain very precise estimations for the geometry of the
cell.

In the first subsection, we are interested in the distribution tail of a particular
geometric characteristic that we did not consider before, the so-called circumscribed
radius. We deduce from the general techniques involved an asymptotic result for
the joint distribution of the two radii. In the second subsection, we make the
convergence of the cell to the spherical shape more precise by showing limit
theorems for some of its characteristics when the inradius goes to infinity. In this
section, two fundamental models from stochastic geometry will be introduced as
tools for understanding the geometry of the typical cell: random coverings of the
circle/sphere and random polytopes generated as convex hulls of Poisson point
processes in the ball.

6.2.1 Circumscribed Radius

We consider a homogeneous Poisson–Voronoi tessellation of intensity one and we
realize its typical cell as Z.o/ according to Proposition 6.5. With the same misuse of
language as for the inradius, we define the circumscribed radius RM of the typical
cell Z.o/ as the radius of the smallest ball containing Z.o/ and centered at the
origin. We first propose a basic way of estimating its distribution and we proceed
with a more precise calculation through a technique based on coverings of the sphere
which provides satisfying results essentially in dimension two.

6.2.1.1 Estimation of the Distribution Tail

For the sake of simplicity, the following argument is written only in dimension two
and comes from an intermediary result of a work due to S. Foss and S. Zuyev [176].
We observe that RM is larger than r > 0 iff there exists x, kxk D r , which is
in Z.o/, i.e. such that Bkxk.x/ does not intersect the Poisson point process ˘ .
Compared to the event fRm � rg, the only difference is that “there exists x” is
replacing “for every x” (see Example 2 of Sect. 6.1.3).
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In order to evaluate this probability, the idea is to discretize the boundary of the
circle and consider a deterministic sequence of balls Bkzkk.zk/, 0 � k � .n � 1/,
n 2 N n f0g with zk D r.cos.2k=n/; sin.2k=n//. We call the intersection of
two consecutive such disks a petal. If RM � r , then one of these n petals has to be
empty. We can calculate the area of a petal and conclude that for every r > 0, we
have

P.RM � r/ � n expf�r2. � sin.2=n/ � .2=n//g: (6.10)

In particular, when we look at the chord length in one fixed direction, i.e. the length
lu of the largest segment emanating from the origin in the direction u and contained
in Z.o/, we have directly for every r > 0,

P.lu � r/ D expf�r2g;

which seems to provide the same logarithmic equivalent as the estimation (6.10)
when n goes to infinity. This statement will be reinforced in the next section.

6.2.1.2 Calculation and New Estimation

This section and the next one present ideas and results contained in [107, 108]. The
distribution of RM can be calculated explicitly: let us recall that Z.o/ can be seen
as the intersection of half-spaces delimited by random bisecting hyperplanes and
containing the origin. We then have RM � r (r > 0) iff the half-spaces do not cover
the sphere @Br .o/. Of course, only the hyperplanes which are at a distance less than
r are necessary and their number is finite and Poisson distributed. The trace of a
half-space on the sphere is a spherical cap with a (normalized) angular diameter
˛ which is obviously less than 1=2 and which has an explicit distribution. Indeed,
˛ can be written in function of the distance L from the origin to the hyperplane
via the formula ˛ D arccos.L=r/= . Moreover, the obtained spherical caps are
independent. For any probability measure � on Œ0; 1=2� and n 2N, we denote by
P.�; n/ the probability to cover the unit-sphere with n i.i.d. isotropic spherical
caps such that their normalized angular diameters are � distributed. Following this
reasoning, the next proposition connects the distribution tail of RM with some
covering probabilities P.�; n/ (Fig. 6.4).

Proposition 6.8 (Rewriting of the distribution tail of RM ). For every r > 0, we
have

P.RM � r/ D e�2d 
d rd
1X

nD0

.2d 
d rd /n

nŠ
.1 � P.�; n// (6.11)

where � is a probability measure on Œ0; 1=2� with the density

f�.�/ D d sin.�/ cosd�1.�/; � 2 Œ0; 1=2�:
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Fig. 6.4 Covering of the circle of radius r when RM � r

Exercise 6.10. Verify the calculation of � and do the same when the Poisson–
Voronoi typical cell is replaced by the Crofton cell of a Poisson hyperplane
tessellation.

The main question is now to evaluate the covering probability P.�; n/. In the two-
dimensional case, it is known explicitly [475] so the preceding proposition provides
in fact the exact calculation of the distribution tail of RM . Unfortunately, the formula
for P.�; n/ when � is a continuous measure is not easy to handle but in the particular
case where � is simply a Dirac measure at a 2 Œ0; 1� (i.e. all circular arcs have a
fixed length equal to a), then it has been proved by W.L. Stevens [485] with very
elementary arguments that for every n 2 N

�, we have

P.ıa; n/ D
nX

kD0

.�1/k

 
n

k

!
.1 � ka/n�1C (6.12)

where xC D max.x; 0/ for every x 2R. In particular, it implies the following
relation for every a 2 Œ0; 1�

lim
n!1

1 � P.ıa; n/

n.1 � a/n�1
D 1:

Exercise 6.11. Calculate P..1 � p/ı0 C pıa; n/ for a; p 2 Œ0; 1�; n 2 N
�

In higher dimensions, no closed formula is currently available for P.�; n/. The case
where � D ıa with a > 1=2 has been solved recently [103], otherwise bounds do
exist in the particular case of a deterministic radius of the spherical caps [188,222].

In dimension two, we can use Proposition 6.8 in order to derive an estimation of
the distribution tail which is better than (6.10).
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Theorem 6.3 (Distribution tail estimate of RM in dimension two). For a
sufficiently large r , we have

2r2e�r2 � P.RM � r/ � 4r2e�r2

: (6.13)

Sketch of proof. When using (6.11), we have to estimate P.�; n/, with � chosen
as in Proposition 6.8, but possibly without considering a too complicated explicit
formula. In particular, since the asymptotic equivalent (6.12) for P.ıa; n/ seems to
be quite simple, we aim at replacing the covering probability P.�; n/ with a covering
probability P.ıa; n/ where a is equal to 1=4, i.e. the mean of �.

The problem is reduced to the investigation under which conditions we can
compare two different covering probabilities P.�1; n/ and P.�2; n/ where �1; �2

are two probability measures on Œ0; 1�. We recall that �1 and �2 are said to be
ordered according to the convex order, i.e. �1 	conv �2, if hf; �1i � hf; �2i
for every convex function f W Œ0; 1� ! R [374] (where hf; �1i D R

fd�1).
In particular, Jensen’s inequality says that ıa 	conv � and we can easily prove
that � 	conv

1
2
.ı0 C ı2a/. The next proposition shows how the convex ordering of

distributions implies the ordering of the underlying covering probabilities.

Proposition 6.9 (Ordering of covering probabilities). If �1 	conv �2, then for
every n 2 N, P.�1; n/ � P.�2; n/.

Exercise 6.12. Find a heuristic proof of Proposition 6.9.

Thanks to this proposition and the remark above, we can write

P.ı1=4; n/ � P.�; n/ � P..ı0 C ı1=2/=2; n/;

then insert the two bounds in the equality (6.11) and evaluate them with Stevens’
formula (6.12). ut
Remark 6.10. Numerical estimates of P.RM � r/ with the formula (6.11) indicate
that P.RM � r/ should be asymptotically equivalent to the upper bound of (6.13).

6.2.1.3 Distribution Conditionally on the Inradius

Why should we be interested in the behaviour of the typical cell when conditioned
on the value of its inradius?

First, it is one of the rare examples of conditioning of the typical cell which can
be made completely explicit. Indeed, conditionally on fRm � rg, any point x of the
Poisson point process is at distance larger than 2r from o so the typical cell Z.o/

is equal in distribution to the zero-cell associated with the bisecting hyperplanes of
the segments Œo; x� where x is any point of a homogeneous Poisson point process in
B2r.o/c .
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Conditionally on fRm D rg, the distribution of Z.o/ is obtained as previously,
but with an extra-bisecting hyperplane generated by a deterministic point x0 at
distance 2r .

The second reason for investigating this particular conditioning is that a large
inradius implies a large typical cell. In other words, having Rm large is a particular
case of the general setting of D.G. Kendall’s conjecture (see Remark 6.7). But we
can be more precise about how the typical cell is converging to the spherical shape.
Indeed, the boundary of the polyhedron is included in an annulus between the two
radii Rm and RM and so the order of decreasing of the difference RM � Rm will
provide a satisfying way of measuring the closeness of Z.o/ to a sphere. The next
theorem provides a result in this direction.

Theorem 6.4 (Asymptotic joint distribution of .Rm; RM /). There exists a con-
stant c > 0 such that for every d�1

dC1
< ı < 1, we have

P.RM � r C rı j Rm D r/ D O.expf�crˇg/; r ! 1; (6.14)

where ˇ D 1
2

Œ.d � 1/ C ı.d C 1/�.

Sketch of proof in dimension two. The joint distribution of the couple .Rm; RM /

can be obtained explicitly via the same method as in Proposition 6.8. Indeed, the
quantity P.RM � r Cs j Rm D r/ can be rewritten as the probability of not covering
the unit-sphere with random i.i.d. and uniform spherical caps. The only difference
lies in the common distribution of the angular diameters of the caps which will now
depend upon r since bisecting hyperplanes have to be at least at distance r from the
origin. In dimension two, the covering probability can be estimated with an upper-
bound due to L. Shepp [470], which implies the estimation (6.14).

Unfortunately, the method does not hold in higher dimensions because of the
lack of information about random coverings of the sphere. Nevertheless, a different
approach will be explained in the next section in order to extend (6.14) to d � 3.

ut
Exercise 6.13. For d D 2, estimate the minimal number of sides of the Poisson–
Voronoi typical cell conditioned on fRm D rg.

Remark 6.11. This roughly means that the boundary of the cell is included in an
annulus centered at the origin and of thickness of order R

�.d�1/=.dC1/
m . The next

problem would be to describe the shape of the polyhedron inside this annulus. For
instance, in dimension two, a regular polygon which would be exactly “inscribed” in
an annulus of thickness R

�1=3
m would have about R

2=3
m sides. Is it the same growth

rate as the number of sides of the typical cell? The next section will be devoted to
this problem. In particular, we shall see that indeed, this quantity behaves roughly
as if the typical cell would be a deterministic regular polygon.
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6.2.2 Limit Theorems for the Number of Hyperfaces

This section is based on arguments and results which come from a collaboration
with T. Schreiber and are developed in [108–110]. When the inradius goes to
infinity, the shape of the typical Poisson–Voronoi cell becomes spherical. In
particular its boundary is contained in an annulus with a thickness going to zero
and thus we aim at being more specific about the evolution of the geometry of the
cell when Rm is large. For the sake of simplicity, we focus essentially on a particular
quantity, which is the number of hyperfaces, but our methods can be generalized to
investigate other characteristics, as emphasized in the final remarks.

6.2.2.1 Connection with Random Convex Hulls in the Ball

We start with the following observation: in the literature, there are more limit
theorems available for random polytopes constructed as convex hulls of a Poisson
point process than for typical cells of stationary tessellations (cf. Sects. 7.1
and 8.4.2). Models of random convex hulls have been probably considered as
more natural objects to be constructed and studied. Our aim is first to connect our
model of typical Poisson–Voronoi cell with a classical model of a random convex
hull in the ball and then work on this possible link between the two in order to
extend what is known about random polytopes and solve our current problem.

Conditionally on fRm � rg, the rescaled typical cell 1
r
Z.o/ is equal in distribution

to the zero-cell of a hyperplane tessellation generated by a Poisson point process
of intensity measure .2r/d 1.x 2 B1.o/c/ �d .dx/ [109]. In other words, via this
scaling we fix the inradius of the polyhedron whereas the intensity of the underlying
hyperplane process outside of the inball is now the quantity which goes to infinity.

The key idea is then to apply a geometric transformation to 1
r
Z.o/ in order to get

a random convex hull inside the unit-ball B1.o/. Let us indeed consider the inversion
I defined by

I.x/ D x

kxk2
; x 2 R

d n fog:

In the following lines, we investigate the action of I on points, hyperplanes
and the cell itself. The Poisson point process of intensity measure .2r/d 1.x …
B1.o// �d .dx/ is sent by I to a new Poisson point process Yr of intensity measure
.2r/d 1.x 2 B1.o// 1

kxk2d �d .dx/. The hyperplanes are sent to spheres containing the
origin and included in the unit ball, i.e. spheres @Bkxk=2.x=2/ where x belongs to
the new Poisson point process Yr in B1.o/. The boundary of the rescaled typical
cell 1

r
Z.o/ is sent to the boundary of a certain Voronoi flower, i.e. the union of balls

Bkxk=2.x=2/ where x belongs to Yr . In particular, the number of hyperfaces of the
typical cell Z.o/ remains unchanged after rescaling and can also be seen through
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the action of the inversion I as the number of portions of spheres on the boundary
of the Voronoi flower in B1.o/, that is the number of extreme points of the convex
hull of the process Yr . Indeed, it can be verified that the ball Bkxk=2.x=2/ intersects
the boundary of the Voronoi flower of Yr iff there exists a support hyperplane of the
convex hull of Yr which contains x.

6.2.2.2 Results

Let Nr be a random variable distributed as the number of hyperfaces of the typical
cell Z.o/ conditioned on fRm D rg.

We are now ready to derive limit theorems for the behaviour of Nr when r goes
to infinity:

Theorem 6.5 (Limit theorems for the number of hyperfaces). There exists a
constant a > 0 (known explicitly) depending only on d such that

ar� d.d�1/
dC1 Nr ! 1 in L1 and a.s. as r ! 1:

Moreover, the number Nr satisfies a central limit theorem when r ! 1 as well as
a moderate-deviation result: for every " > 0,

lim inf
r!1

1

log.r/
log

�
� log

�
P
� ˇ̌
ˇ̌ Nr

ENr

� 1

ˇ̌
ˇ̌ � "

���
� d � 1

3d C 5
:

Sketch of proof. The first two steps are devoted to proving the results for the
number eN r of hyperfaces of Z.o/ conditioned on fRm � rg. In the last step, we
explain how to adapt the arguments for the number Nr .

Step 1. We use the action of the inversion I to rewrite Nr as the number of
vertices of the convex hull of the Poisson point process Yr of intensity measure
.2r/d 1.x 2 B1.o// 1

kxk2d �d .dx/ in the unit ball. Limit theorems for the number
of extreme points of a homogeneous set of points in the ball are classically known
in the literature: indeed, a first law of large numbers has been established in [421]
and generalized in [418]. A central limit theorem has been proved in [419] and
extended by a precise variance estimate in [459]. Finally, a moderate deviations-
type result has been provided in [110,502] (see also Sects. 7.1 and 8.4.2 for more
details).

Step 2. The only problem here is that we are not in the classical setting of all
these previous works since the process Yr is not homogeneous. Nevertheless,
it can be overcome by emphasizing two points: first, when kxk is close to
one, the intensity measure of Yr is close to .2r/d �d .dx/ and secondly, with
high probability, only the points near the boundary of the unit sphere will be
useful to construct the convex hull. Indeed, for any Poisson point process of
intensity measure �f .kxk/ �d .dx/ with f W .0; 1/ ! RC a function such that
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limt!1 f .t/ D 1, it can be stated that the associated convex hull K� satisfies the
following: there exist constants c; c0 > 0 such that for every ˛ 2 .0; 2

dC1
/, we

have

P.B1�c��˛ .o/ 6
 K�/ D O.expf�c0�1�˛.dC1/=2g/: (6.15)

The asymptotic result (6.15) roughly means that all extreme points are near
S

d�1 and included in an annulus of thickness ��2=.dC1/. It can be shown in
the following way: we consider a deterministic covering of an annulus B1.o/ n
B1���˛ .o/ with a polynomial number of full spherical caps. When the Poisson
point process intersects each of these caps, its convex hull contains B1�c��˛ .o/

where c > 0 is a constant. Moreover, an estimation of the probability that at
least one of the caps fails to meet the point process provides the right-hand side
of (6.15).
To conclude, the estimation (6.15) allows us to apply the classical limit theory of
random convex hulls in the ball even if the point process Yr is not homogeneous.

Step 3. We recall that the difference between the constructions of Z.o/ con-
ditioned either on fRm � rg or on fRm D rg is only an extra deterministic
hyperplane at distance r from the origin. After the use of a rescaling and of
the inversion I , we obtain that eN r (obtained with conditioning on fRm � rg) is
the number of extreme points of Yr whereas Nr (obtained with conditioning on
fRm D rg) is the number of extreme points of Yr[fx0g where x0 is a deterministic
point on S

d�1. A supplementary extreme point on S
d�1 can “erase” some of the

extreme points of Yr but it can be verified that it will not subtract more than
the number of extreme points contained in a d -dimensional polyhedron. Now
the growth of extreme points of random convex hulls in a polytope has been
shown to be logarithmic so we can consider that the effect of the extra point x0 is
negligible (see in particular [48,49,375] about limit theorems for random convex
hulls in a fixed polytope). Consequently, results proved for eN r in Steps 1–2 hold
for Nr as well. ut

Remark 6.12. Up to now, the bounds on the conditional distribution of the cir-
cumscribed radius (6.14) was only proved in dimension two through techniques
involving covering probabilities of the circle. Now applying the action of the
inversion I once again, we deduce from (6.15) the generalization of the asymptotic
result (6.14) to higher dimensions.

Remark 6.13. The same type of limit theorems occurs for the Lebesgue measure
of the region between the typical cell and its inball. Indeed, after application of I ,
this volume is equal to the �-measure of the complementary of the Voronoi flower
of the Poisson point process in the unit ball, where � is the image of the Lebesgue
measure under I . Limit theorems for this quantity have been obtained in [455,456].

In a recent paper [111], this work is extended in several directions, including
variance estimates and a functional central limit result for the volume of the typical
cell. Moreover [111] contains an extreme value-type convergence for RM which
adds to (6.14) by providing a three-terms expansion of .RM � r/ conditionally
on fRm � rg, when r goes to infinity. More precisely, it is proved that there
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exist explicit constants c1; c2; c3 > 0 (depending only on the dimension) such that
conditionally on fRm � rg, the quantity

2
3dC1

2 
d�1

d C 1
r

d�1
2 .RM � r/

dC1
2 � c1 log.r/ � c2 log.log.r// � c3

converges in distribution to the Gumbel law when r ! 1.
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