
Chapter 4
Asymptotic Methods in Statistics of Random
Point Processes

Lothar Heinrich

Abstract First we put together basic definitions and fundamental facts and results
from the theory of (un)marked point processes defined on Euclidean spaces R

d .
We introduce the notion random marked point process together with the concept of
Palm distributions in a rigorous way followed by the definitions of factorial moment
and cumulant measures and characteristics related with them. In the second part
we define a variety of estimators of second-order characteristics and other so-called
summary statistics of stationary point processes based on observations on a “convex
averaging sequence” of windows fWn; n 2 Ng. Although all these (mostly edge-
corrected) estimators make sense for fixed bounded windows our main issue is to
study their behaviour whenWn grows unboundedly as n ! 1. The first problem of
large-domain statistics is to find conditions ensuring strong or at least mean-square
consistency as n ! 1 under ergodicity or other mild mixing conditions put on the
underlying point process. The third part contains weak convergence results obtained
by exhausting strong mixing conditions or even m-dependence of spatial random
fields generated by Poisson-based point processes. To illustrate the usefulness
of asymptotic methods we give two Kolmogorov–Smirnov-type tests based on
K-functions to check complete spatial randomness of a given point pattern in R

d .

4.1 Marked Point Processes: An Introduction

First we present a rigorous definition of the marked point process on Euclidean
spaces with marks in some Polish space and formulate an existence theorem for
marked point processes based on their finite-dimensional distributions. Further,
all essential notions and tools of point process theory such as factorial moment
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and cumulant measures with their densities and reduced versions as well as the
machinery of Palm distributions in the marked and unmarked case are considered
in detail.

4.1.1 Marked Point Processes: Definitions and Basic Facts

Point processes are mathematical models for irregular point patterns formed by
randomly scattered points in some locally compact Hausdorff space. Throughout
this chapter, this space will be the Euclidean space R

d of dimension d 2 N. In
many applications to each point Xi of the pattern a further random element Mi ,
called mark, can be assigned which carries additional information and may take
values in a rather general mark space M equipped with an appropriate �-algebra
M. For example, for d D 1, the Xi ’s could be arrival times of customers and the
Mi ’s their sojourn times in a queueing system and, for d D 2, one can interpret the
Xi ’s as locations of trees in a forest with the associated random vectors Mi of stem
diameter, stem height and distance to the nearest-neighbour tree. In this way we
are led to the notion of a (random) marked point process which can be adequately
modeled as random counting measure �M.�/ on Cartesian products B � L, which
gives the total number of points in a bounded subsetB of Rd whose marks belong to
a set of marksL � M. To be precise, we need some further notation. Let NM denote
the set of locally finite counting measures  .�/ on the measurable product space
.Rd � M; B.Rd / ˝ M/, i.e.  2 NM is a �-additive set function on B.Rd /˝ M
taking on non-negative integer values such that  .B � M/ < 1 for any bounded
Borel set B 2 B.Rd /. We then define NM to be the smallest �-algebra containing
all sets f 2 NM W  .B � L/ D ng for n 2 N [ f0g, any bounded B 2 B.Rd /
and L 2 M. Finally, let .˝;F ;P/ be a hypothetical probability space on which all
subsequent random elements will be defined.

Definition 4.1. A .F ;NM/-measurable mapping

�M j .˝;F ;P/ 7! .NM;NM/; ˝ 3 ! 7! �M.!; �/ 2 NM

is said to be a (random) marked point process (briefly: MPP) on R
d with mark space

.M;M/. In other words, a MPP �M.�/ (! will be mostly suppressed) is a random
locally finite counting measure on .Rd � M;B.Rd /˝ M/.

The probability measure PM.A/ D P.f! 2 ˝ W �M.!; �/ 2 Ag/ for A 2 NM

induced on .NM;NM/ is called the distribution of �M—briefly expressed by �M �
PM. Here and in what follows we put�.�/ D �M.��M/ to denote the corresponding
unmarked point process and write in general � � P to indicate point processes
without marks. One often uses the notation

�M D
X

i�1
ı.Xi ;Mi / or � D

X

i�1
ıXi ; (4.1)
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where ıx.A/ D 1 for x 2 A and ıx.A/ D 0 for x … A (Dirac measure).
Note that due to the local finiteness of �M there are at most countably many
atoms but each atom occurs with random (P-a.s. finite) multiplicity. The indexing
in (4.1) does not need to be unique and the Xi ’s occur in the sums according to
their multiplicity. In accordance with the general theory of random processes our
next result formulates an analogue to Kolmogorov’s extension theorem stating the
existence of a probability space .˝;F ;P/ in Definition 4.1 in case of Polish mark
spaces M given the family of finite-dimensional distributions P.�M.B1 � L1/ D
n1; : : : ; �M.Bk � Lk/ D nk/.

Theorem 4.1. Let M be a Polish space equipped with the corresponding Borel-
�-algebra B.M/ generated by a family M0 of subsets in M such that S D
˚ d�
iD1Œai ; bi / � L W �1 < ai � bi < 1 ; L 2 M0

�
is a semi-ring which generates

the ring of bounded Borel sets in R
d � M and each bounded Borel set X � R

d � M
can be covered by a finite sequence S1; : : : ; Sm 2 S.

For any finite sequence of pairwise disjoint B1 �L1; : : : ; Bk �Lk 2 S define the
distribution

pn1;:::;nk .B1 �L1; : : : ; Bk �Lk/ for n1; : : : ; nk D 0; 1; 2; : : :

of a k-dimensional random vector with non-negative integer-valued components.
Then there exists a unique probability measure PM on the measurable space

.NM;NM/ with finite-dimensional distributions

PM.f 2 NM W  .Bj � Lj / D nj ; j D 1; : : : ; kg/ D pn1;:::;nk .B1 � L1; : : : ; Bk � Lk/

for n1; : : : ; nk 2 N [ f0g and any k 2 N , if the following conditions for the
family of probabilities pn1;:::;nk .B1 � L1; : : : ; Bk �Lk/ are satisfied:

1. Symmetry:

pn1;:::;nk .B1 � L1; : : : ; Bk � Lk/ D pn�.1/;:::;n�.k/ .B�.1/ � L�.1/; : : : ; B�.k/ � L�.k//

for any permutation � W f1; : : : ; kg 7! f1; : : : ; kg ,
2. Consistency:

1X

nD0
pn1;:::;nk�1;n.B1 � L1; : : : ; Bk�1 � Lk�1; Bk � Lk/

D pn1;:::;nk�1
.B1 � L1; : : : ; Bk�1 �Lk�1/ ;

3. Additivity: If Bj � Lj [ � � � [ Bk � Lk 2 S , then
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X

njC���CnkDn
nj ;:::;nk�0

pn1;:::nj�1;nj ;:::;nk .B1 �L1; : : : ; Bj�1 �Lj�1; Bj �Lj ; : : : ; Bk � Lk/

D pn1;:::;nj�1;n.B1 �L1; : : : ; Bj�1 �Lj�1; .Bj �Lj [ � � � [ Bk � Lk//

for j D 1; : : : ; k.
4. Continuity: For any sequence of pairwise disjoint sets B.n/

j � L.n/j 2 S for j D
1; : : : ; kn with kn " 1 satisfying

Skn
jD1.B

.n/
j �L.n/j / # ; , it holds p0;:::;0.B

.n/
1 �

L
.n/
1 ; : : : ; B

.n/

kn
� L.n/kn / " 1 as n ! 1 .

If M D fmg consists of a single (or at most finitely many) element(s), then the
latter condition can be replaced by

lim
n!1 p0.

j�1�
iD1Œai ; bi / � Œxj � 1

n
; xj / � d�

iDjC1Œai ; bi / � fmg/ D 1

for all .x1; : : : ; xd /
> 2 R

d and � 1 < ai < bi < 1 ; i D 1; : : : ; d :

This allows a canonical choice of the probability space .˝;F ;P/ mapping �M :

˝ WD NM; F WD NM; P WD PM;  7! �M. ; �/ WD  .�/ (identical mapping) :

Remark 4.1. There exists a metric � in the set NM such that the metric space
.NM; �/ is separable and complete whose Borel-�-algebra B.NM/ coincides with
NM . This allows to introduce the notion of weak convergence of MPP’s in the usual
way, see [69].

To prove Theorem 4.1 one has only to reformulate the proof of a corresponding
result for (unmarked) PP’s on Polish spaces in [346]. Readers interested in more
background of and a rigouros introduction to the theory of marked and unmarked
PP’s are referred to the two-volume monograph [140]. Less technical approaches
combined with statistics of point processes are presented in [265, 489] and in the
survey papers [22, 488]. In the following we reduce the rigour and in particular
measurability questions will be not considered.

An advantage of the counting measure approach to point processes (in contrast
to modelling with discrete random closed sets) consists in catching random multi-
plicities of the point or atoms which is important in several fields of application.
For example, the description of batch arrivals in queueing systems or of end-points
of edges in planar random tessellations requires multiplicities of points. On the
other hand, for quite a few point processes in particular for the upmost occurring
in stochastic geometry it is natural to assume that at most one point occurs in any
x 2 R

d , more precisely

PM. f 2 NM W  .fxg � M/ � 1; 8 x 2 R
d g / D 1 :
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MPP’s �M � PM satisfying the later condition are called simple. In view of (4.1)
we get supp.�M/ D f.Xi ;Mi/ W i 2 Ng for the support set of a simple MPP
�M which motivates the somewhat loose writing �M D f.Xi ;Mi / W i 2 Ng . By
the P-a.s. local boundedness of the counting measure �M its support set has no
accumulation point in R

d and can therefore be considered as a discrete random
closed set. The characterization of distributions of random closed sets � by the
family of hitting probabilities P.� \K ¤ ;/ for any compact set K � R

d leads to
the following pendant to Theorem 4.1:

Theorem 4.2. Let �M � PM be a simple MPP on R
d with Polish mark space M.

Then the distribution PM is completely determined by the void probabilities

P.�M.X/ D 0/ D PM. f 2 NM W  .X/ D 0 g /

for all compact X � R
d � M .

For the sake of simplicity we shall consider only simple MPP’s after the introductory
Sect. 4.1.1.

The simplest numerical characteristic of a MPP �M � PM describes the mean
number of points in bounded sets B 2 B.Rd / having marks in an arbitrary set
L 2 B.M/. In this way we obtain the intensity measure �M (on B.Rd / ˝ B.M/)
defined by

�M.B �L/ D E
�X

i�1
1. .Xi ;Mi/ 2 B � L/

�
D
Z

NM

 .B � L/PM.d / (4.2)

provided that �.B/ WD �M.B � M/ < 1 for any bounded B 2 B.Rd / expressing
the local finiteness of �M. By Theorem 4.1 we are now in a position to define
the marked Poisson process �M � ˘�M with a given locally finite intensity
measure�M:

Definition 4.2. A marked Poisson process �M � ˘�M (more precisely its distribu-
tion) is completely determined by the following two conditions:

1. �M.B1 �L1/; : : : ; �M.Bk �Lk/ are mutually independent random variables for
pairwise disjoint Bj � Lj 2 B.Rd / � B.M/ with bounded Bj for j D 1; : : : ; k

and k 2 N.
2. �M.B � L/ is Poisson distributed with mean �M.B � L/ for any B � L 2

B.Rd / � B.M/ with bounded B .

Remark 4.2. Since �M.B � L/ � �.B/ there exists (by the Radon–Nikodym
theorem and disintegration arguments) a family fQx

M; x 2 R
d g of (regular)

conditional distributions on .M;B.M// such that�M.B�L/ D R
Rd
Qx

M.L/�.dx/ ,
which justifies the interpretation Qx

M.L/ D P.Mi 2 L j Xi D x /. It turns out
that �M � ˘�M can be obtained from an unmarked Poisson process � � ˘�

with intensity measure � by location-dependent, independent marking, that is, to
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each atom Xi of � located in x 2 R
d the mark Mi is assigned according to the

probability law Qx
M independent of the location of all other atoms of � and also

independent of all other marks even those assigned to further atoms located in x (if
�.fxg/ > 1/.
Remark 4.3. A marked Poisson process �M � ˘�M is simple iff the intensity
measure�.�/ is diffuse, i.e. �M.fxg � M/ D 0 for all x 2 R

d , see [346].

Remark 4.4. The conditions (1) and (2) in the above definition of �M � ˘�M can
be expressed equivalently by means of the characteristic function of the random
vector .�M.B1 � L1/; : : : ; �M.Bk � Lk// as follows: For any k 2 N, any pairwise
disjoint B1 �L1; : : : ; Bk � Lk 2 B.Rd / � B.M/ and all u1; : : : ; uk 2 R

d

E expf i
kX

jD1
uj �M.Bj � Lj / g D

kY

jD1
expf�M.Bj � Lj / . ei uj � 1 /g : (4.3)

Next, we give an elementary explicit construction of an unmarked Poisson pro-
cess� � ˘� with locally finite intensity measure�.�/ , see [102]. This construction
is also the basis for simulations of Poisson processes in bounded Borel sets.

Let fKm; m 2 Ng be a partition of Rd into bounded Borel sets. Consider an array
of independent random variables f�m;Xmj gm;j2N defined on .˝;F ;P/ such that �m
and Xmj take values in ZC and R

d respectively, namely,

1. �m is Poisson distributed with mean�.Km/ (briefly �m � Pois.�.Km//).

2. P.Xmj 2 C/ D
(
�.C \Km/=�.Km/; �.Km/ ¤ 0;

0; otherwise
for any C 2 B.Rd / .

Here Y � Pois.0/means that Y 	 0. Clearly, P.Xmj 2 C/ D P.Xmj 2 C\Km/

for m; j 2 N. Note that the random variables Xmj are uniformly distributed on Km

if �.Km/ is a multiple of �d .Km/ .
For any B 2 B.Rd / andm 2 N put

�m.B/ WD
�mX

jD1
1.Xmj 2 B/ and �.B/ WD

1X

mD1
�m.B/ : (4.4)

Obviously, �m.B/ is a random variable for each m 2 N and any B 2 B.Rd /
such that

P. 0 � �m.B/ � �m < 1 / D 1 for any B 2 B.Rd / ; m 2 N :

Moreover, it turns out that �.�/ is a locally finite random counting measure.

Theorem 4.3. Let � be a locally finite measure on .Rd ;B.Rd //. For any par-
tition of R

d into bounded Borel sets Km, m 2 N, the family of non-negative,
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integer-valued random variables f�.B/; B 2 B.Rd /g introduced in (4.4) defines
an unmarked Poisson process with intensity measure �.�/ .

Proof. For any m; k 2 N consider pairwise disjoint Borel sets B1; : : : ; Bk � Km.
Then �.Br/ D �m.Br / for r D 1; : : : ; k and it follows that

E expfi.u1 �m.B1/C : : :C uk �m.Bk//g

D
1X

nD0
E
�

exp
n
i

nX

jD1

�
u1 1.Xmj 2 B1/C : : :C uk 1.Xmj 2 Bk/

�o
1.�m D n/

�

D
1X

nD0
'n.u1; : : : ; uk/

�.Km/
n

nŠ
e��.Km/; (4.5)

where u1; : : : ; uk 2 R
1 and 'n.u1; : : : ; uk/ is the characteristic function of the

random vector Yn D .Yn1; : : : ; Ynk/ with components Ynr D Pn
jD1 1.Xmj 2 Br/

for r D 1; : : : ; k.
By setting Yn0 D Pn

jD1 1.Xmj 2 B0/ for B0 D Km n [n
rD1Br we get a multi-

nomially distributed random vector .Yn0; Yn1; : : : ; Ynk/ with success probabilities
pr D P.Xmj 2 Br/ D �.Br/=�.Km/, r D 0; 1; : : : ; k , i.e.,

P.Yn0 D l0; Yn1 D l1; : : : ; Ynk D lk/ D nŠ

l0Š l1Š : : : lkŠ
p
l0
0 p

l1
1 : : : p

lk
k

for l0; l1; : : : ; lk 
 0 and
Pk

rD0 lr D n. Hence, 	n.u0; u1; : : : ; uk/ D . p0 ei u0 C
p1 ei u1 C : : : C pk ei uk /n; u0; : : : ; uk 2 R

1 is the characteristic function of
.Yn0; Yn1; : : : ; Ynk/ and we obtain

'n.u1; : : : ; uk/ D 	n.0; u1; : : : ; uk/ D . p0 C p1 ei u1 C : : :C pk ei uk /n:

Using (4.5) and the latter relation together with p0 D 1 � p1 � : : : � pk we may
write

E expfi
kX

rD1
ur �m.Br /g D e��.Km/

1X

nD0

1

nŠ
Œ�.Km/.p0 C p1 ei u1 C : : :C pk ei uk / 
n

D expf�.Km/.p1.eiu1 � 1/C : : :C pk.e
iuk � 1//g

D
kY

rD1
expf�.Br /.eiur � 1/g :

This, however, is just (4.3) (rewritten for the unmarked case) for pairwise disjoint
Borel sets B1; : : : ; Bk � Km .
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Now, consider pairwise disjoint bounded B1; : : : ; Bk 2 B.Rd / for k 2 N so that

.�.B1/; : : : ; �.Bk// D
1X

mD1
.�m.B1 \Km/; : : : ; �m.Bk \Km// :

Obviously, .�m.B1\Km/; : : : ; �m.Bk\Km//m2N forms a sequence of independent
random vectors with independent components as we have proved above. Since
�.Br/ D P1

mD1 �m.Br \Km/ and the summands are nonnegative, it follows that

E�.Br / D
1X

mD1
E�m.Br \Km/ D

1X

mD1
�.Br \Km/ D �.Br/ < 1

implying P. �.Br/ < 1 / D 1 for r D 1; : : : ; k; and

� nX

mD1
�m.B1 \Km/; : : : ;

nX

mD1
�m.Bk \Km/

�
P�a:s:�!
n!1 .�.B1/; : : : ; �.Bk// :

Since, for each fixed n 2 N, the sums at the left-hand side of the latter relation are
mutually independent, it follows that the limits �.B1/; : : : ; �.Bk/ are independent
as well. Finally, in view of the fact that

nX

mD1
�m.Br \Km/ � Pois

� nX

mD1
�.Br \Km/

�

we conclude that �.Br/ � Pois.�.Br// for r D 1; : : : ; k, which completes the
proof of Theorem 4.3. ut

Next, we introduce the translation- and rotation operator Tx resp. RO j NM 7!
NM by

.Tx /.B �L/ WD  . .B C x/ �L/ resp. .RO /.B � L/ WD  .O B � L/

for  2 NM ; x 2 R
d and O 2 SOd D group of orthogonal d � d -matrices with

determinant equal to 1. Then the MPP �M � PM is said to be (strictly) stationary or
homogeneous if, for all x 2 R

d and bounded Borel sets B1; : : : ; Bk ,

Tx �M
dD �M ” .�M..Bj C x/ � Lj //kjD1

dD .�M.Bj � Lj //kjD1 ; k 2 N ;

and isotropic if, for all O 2 SOd and bounded Borel sets B1; : : : ; Bk ,

RO �M
dD �M ” .�M.OBj � Lj //kjD1

dD .�M.Bj � Lj //kjD1 ; k 2 N :

A MPP is said to be motion-invariant if it is both stationary and isotropic.
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The stationarity of �M � PM implies the shift-invariance of the locally finite
measure�M..�/ �L/ for any fixed L 2 B.M/ provided the intensity

� WD E�M.Œ0; 1

d � M/

of the unmarked point process � � P exists. This entails that the intensity measure
�M.B �L/ is a multiple of the Lebesgue-measure �d .B/ which can be rewritten as

�M.B � L/ D � �d .B/Q
o
M.L/ for B 2 B.Rd /; L 2 B.M/ ; (4.6)

where Qo
M is called the distribution of the typical mark or plainly the mark

distribution.

4.1.2 Higher-Order Moment Measures and Palm Distributions

From now on we suppose that the MPP �M D P
i�1 ı.Xi ;Mi / � PM is simple. Under

the additional assumption E..�M.B � M//k/ < 1 for some integer k 
 2 and
any bounded Borel set B � R

d we define the factorial moment measure ˛.k/M on
B..Rd � M/k/ by

˛
.k/

M .
k�

jD1.Bj � Lj // WD E
� X¤

i1;:::;ik�1

kY

jD1
1..Xij ;Mij / 2 Bj � Lj /

�

which is dominated by the kth-order factorial moment measure

˛.k/.
k�

jD1Bj / D ˛
.k/

M .
k�

jD1.Bj � M//

of the unmarked simple point process � D P
i�1 ıXi � P . Note that the sum

P¤
stretches over pairwise distinct indices indicated under the sum sign. If the sum is
taken over all k-tuples of indices we get the (ordinary) kth-order moment measure.

For any fixed L1; : : : ; Lk 2 B.M/ we obtain as Radon–Nikodym derivative
a family of distributions Q

x1;:::;xk
M .L1 � � � � � Lk/ (for ˛.k/-almost every

.x1; : : : ; xk/
> 2 .Rd /k) satisfying

˛
.k/

M .
k�

jD1.Bj � Lj // D
Z

B1

� � �
Z

Bk

Q
x1;:::;xk
M .

k�
jD1Lj / ˛

.k/.d.x1; : : : ; xk// ;

where the integrand is interpreted as (regular) conditional distribution

Q
x1;:::;xk
M .

k�
jD1Lj / D P.M1 2 L1; : : : ;Mk 2 Lk j X1 D x1; : : : ; Xk D xk/ :
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Definition 4.3. The stochastic kernel Qx1;:::;xk
M .A/ (which is defined to be B.Rdk/-

measurable in .x1; : : : ; xk/> 2 .Rd /k and a probability measure in A 2 B.Mk/) is
called kth-order or k-point Palm mark distribution of the MPP �M � PM.

If �M � PM is stationary then the factorial moment measures ˛.k/M as well as ˛.k/

are invariant under diagonal shifts, i.e.,

˛
.k/

M

� k�
jD1. .Bj C x/ � Lj /

� D ˛
.k/

M

� k�
jD1. Bj � Lj /

�
for all x 2 R

d ;

which in turn implies Qx1Cx;:::;xkCx
M .A/ D Q

x1;:::;xk
M .A/ for all x 2 R

d . By
disintegration with respect to the Lebesgue-measure �d (see [140, Vol. II] for
the more details) we can introduce so-called reduced kth-order factorial moment
measures ˛.k/M;red and ˛.k/red by

˛
.k/

M

� k�
jD1. Bj �Lj /

� D �

Z

B1

˛
.k/

M;red

�
L1 � k�

jD2 ..Bj � x/ �Lj /
�
dx ;

where � > 0 stands for the intensity of � � P which already occurred in (4.6).

Putting ˛.k/red
� k�
jD2 Bj

� D ˛
.k/

M;red

�
M � k�

jD2 ..Bj � x/� M/
�

we obtain an analogous

relation between ˛.k/ and ˛.k/red for the unmarked PP � � P . Rewriting this relation
as integrals over indicator functions we are led by algebraic induction to

Z

.Rd /k

f .x1; x2; : : : ; xk/˛
.k/
�
d.x1; x2; : : : ; xk/

�

D �

Z

Rd

Z

.Rd /k�1

f .x1; x2 C x1; : : : ; xk C x1/˛
.k/

red

�
d.x2; : : : ; xk/

�
dx1 :

for any non-negative B.Rdk/-measurable function f W .Rd /k 7! R
1. Setting

f .x1; x2; : : : ; xk/ D 1.x1 2 B/ 1..x2 � x1; : : : ; xk � x1/ 2 C/ for an arbitrary
bounded set C 2 B.Rd.k�1// and any B 2 B.Rd / with �d .B/ D 1, for example
B D Œ0; 1
d , we arrive at the formula

˛
.k/

red
. C /

D 1

�

Z

.Rd /k

1.x1 2 B/ 1..x2 � x1; : : : ; xk � x1/ 2 C/˛.k/�d.x1; x2; : : : ; xk/
�

(4.7)

which again confirms that ˛.k/red is a locally-finite measure on .Rd.k�1/;B.Rd.k�1///.
Below it will be shown that ˛.k/red coincides with the .k�1/st-order factorial moment
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measure with respect to the reduced Palm distribution. It should be mentioned that
both factorial moment measures ˛.k/ and ˛.k/red are symmetric in their components

and the reduction is possible in any component of ˛.k/ yielding ˛.k/red .�C/ D
˛
.k/

red .C / . Furthermore, the above reduction and therefore the definition of ˛.k/red
needs only the diagonal shift-invariance of ˛.k/ (and of the intensity measure �)
and not the shift-invariance of the finite-dimensional distributions of all orders and
even not of the kth order.

This fact gives rise to consider weaker notions of kth-order (moment) stationar-
ity, see Sect. 4.2.1 for k D 2 .

A rather technical, but useful tool in expressing and studying dependences
between distant parts of a stationary point pattern is based on so-called (factorial)
cumulant measures of both marked and unmarked PP’s. The origins of these
characteristics can be traced back up to the beginning of the systematic study of
random processes, random fields and particle configurations in statistical mechanics.
In probability theory cumulants of random variables or vectors are defined by
logarithmic derivatives of the corresponding moment-generating or characteristic
functions. Along this line cumulant measures of point processes are defined by
mixed higher-order partial derivatives of the logarithm of the probability generating
functional of the point process, see [140, Chap. 9]. This approach is the background
of the following

Definition 4.4. For any fixed L1; : : : ; Lk 2 B.M/ and bounded B1; : : : ; Bk 2
B.Rd / we define the kth-order factorial cumulant measure �.k/M of the MPP �M �
PM by

�
.k/

M

� k�
jD1.Bj �Lj /

� WD
kX

jD1
.�1/j�1.j � 1/Š

X

K1[���[Kj
Df1;:::;kg

jY

rD1
˛
.jKr j/
M

� �
s2Kr

.Bs � Ls/
�
;

where the sum
P

K1[���[KjDf1;:::;kg is taken over all partitions of the set f1; : : : ; kg
into j non-empty sets K1; : : : ; Kj and jKr j denotes the cardinality of Kr .

In general, �.k/M is a locally finite signed measure on B..Rd � M/k/ which in case

of a stationary MPP �M � PM can also be reduced in analogy to ˛.k/M which leads
to

�
.k/

M

� k�
jD1.Bj � Lj /

� D �

Z

B1

�
.k/

M;red

�
L1 � k�

jD2 ..Bj � x/ � Lj /
�
dx

By setting in the latter formulaL1 D : : : D Lk D M we obtain the corresponding
relationship between the kth-order factorial cumulant measure �.k/ and the reduced
kth-order factorial cumulant measure �.k/red of the unmarked point process � � P .
In the special case k D 2 we have
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�
.2/

M .B1 � L1 � B2 �L2/ D ˛
.2/

M .B1� L1� B2� L2/��M.B1� L1/�M.B2� L2/

�
.2/

M;red .L1 � B2 �L2/ D ˛
.2/

M;red .L1 � B2 � L2/� �Qo
M.L1/Q

o
M.L2/ �d .B2/ :

Finally, if in addition ˛.k/ is absolutely continuous with respect to the Lebesgue
measure �dk then the kth-order product density .k/ W R

d.k�1/ 7! Œ0;1
 and the
kth-order cumulant density c.k/ W Rd.k�1/ 7! Œ�1;1
 exist such that

˛
.k/

red .C / D
Z

C

.k/.x/ dx and �.k/red .C / D
Z

C

c.k/.x/ dx for C 2 B.Rd.k�1// :

The interpretation of .k/ as density of k-point subsets of stationary point
configurations is as follows:

P.�.dx1/ D 1; : : : ; �.dxk�1/ D 1 j�.fog/ D 1/ D .k/.x1; : : : ; xk�1/ dx1 � � � dxk�1 :

and in a similar way c.2/.x/ dx D P.�.dx/ D 1 j �.fog/ D 1/ � P.�.dx/ D 1/

for any x ¤ o.
Note that in statistical physics .k/.x1; : : : ; xk�1/ and c.k/.x1; : : : ; xk�1/ are

frequently used under the name kth-order correlation function resp. kth-order
truncated correlation function.

In some cases under slight additional assumptions the knowledge of the (fac-
torial) moment—or cumulant measures and their densities of any order determine
the distribution of point processes uniquely. So far this moment problem for point
processes is not completely solved. Another longstanding question which is still
unanswered to the best of the author’s knowledge is: Which properties of a locally-
finite measure on .Rdk;B.Rdk// are sufficient and necessary for being a kth-order
(factorial) moment measure of some unmarked point process � � P ?

In the simplest case of a Poisson process with given intensity measure we have
the following characterization:

Theorem 4.4. A MPP �M � PM with intensity measure �M is a marked Poisson
process, i.e. PM D ˘�M , iff

˛
.k/

M D �M � � � � ��M or equivalently �.k/M 	 0 for any k 
 2 :

For stationary unmarked PP’s with intensity � this means .k/.x/ D �k�1 or
equivalently c.k/.x/ 	 0 for all x 2 R

d.k�1/ and any k 
 2 .
If the marks are real-valued it is natural to consider the higher-order mixed

moments and mixed cumulants between marks conditional on their locations. For
a MPP with mark space M D R and k-point Palm mark distribution Qx1;:::;xk

M let
us define
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mp1;:::;pk .x1; : : : ; xk/ D
Z

Rk

m
p1
1 � � �mpk

k Q
x1;:::;xk
M .d.m1; : : : ; mk// for p1; : : : ; pk 2N :

For stationary MPP the function cmm.x/ D m1;1.o; x/ for x ¤ o has been
introduced by D. Stoyan in 1984 in order to describe spatial correlations of marks
by means of the mark correlation function kmm.r/ D cmm.x/=�

2 for kxk D r > 0 ,
where � D R

R1
mQo

M.dm/ denotes the mean value of the typical mark, see [265,
Chap. 5.3], for more details on the use and [438] for a thorough discussion of
this function. Kernel-type estimators of the function cmm.x/ and their asymptotic
properties including consistency and asymptotic normality have been studied in
[233] by imposing total variation conditions on higher-order reduced cumulant
measures �.k/M;red .

Finally, we give a short introduction to general Palm distributions of (marked)
point processes. We first consider a simple stationary unmarked point process
� � P with positive and finite intensity � D E�.Œ0; 1
d /. Let us define the
product measure �Š on .Rd � N ;B.Rd /˝ N/ by

�Š.B � A/ D 1

�

Z

N

X

x2s. /
1.x 2 B/ 1.Tx � ıo 2 A/ P.d /

for bounded B 2 B.Rd / and A 2 N , where the exclamation mark indicates that
the atom of Tx in the origin, i.e., the atom of  in x 2 R

d , is removed from each
counting measure  2 N ; s. / is shorthand for the support
supp. / D fx 2 R

d W  .fxg/ > 0g.
By the stationarity of � , that is P ı Tx D P for any x 2 R

d combined with
standard arguments from measure theory it is easily seen that

1. �Š. .B C x/ � A / D �Š. B � A / for any x 2 R
d .

2. Po Š.A/ WD �Š. Œ0; 1
d � A / for A 2 N is a probability measure on .N ;N/ .

which is concentrated on the subset N o D f 2 N W  .fog/ D 0g of counting
measures having no atom in the origin o and called the reduced Palm distribution of
� � P . As an immediate consequence of (1) and (2) we obtain the factorization

�Š.B � A/ D �d .B/ P
o Š.A/ for any fixed B � A 2 B.Rd / � N

which in turn implies, by algebraic induction, the Campbell–Mecke formula—also
known as refined Campbell theorem

Z

N

Z

Rd

f .x; Tx � ıo/  .dx/P.d / D �

Z

Rd

Z

N o

f .x;  /P o Š.d / dx (4.8)

for any non-negative B.Rd / ˝ N-measurable function f W R
d � N 7! R

1 . This
formula connects the stationary distribution P and the reduced Palm distribution
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Po Š in a one-to-one correspondence. Po Š.A/ can be interpreted (justified in a
rigorous sense by limit theorems, see [346]) as probability that � � ıo 2 A

conditional on the null event �.fog/ > 0 . Loosely speaking, Po Š describes the
stationary point pattern by an observer sitting in a “typical atom” shifted in the
origin.

To describe the distributional properties of stationary PP’s it is often more
effective to use Po Š rather than P , for example in case of recurrent, semi-Markov-
or infinitely divisible PP’s, see for example [346].

A crucial result in this direction is Slivnyak’s characterization of homogeneous
Poisson processes:

Theorem 4.5. A stationary (unmarked) PP � � P on R
d with intensity 0 < � <

1 is a Poisson process, i.e. P D ˘� iff P D Po Š .

As announced above we apply (4.8) to prove that, for any k 
 2 , the kth-
order reduced factorial moment measure ˛.k/red is nothing else but the .k� 1/st-order
factorial moment measure w.r.t the reduced Palm distribution, formally written:

Z

.Rd /k�1

f .x2; : : : ; xk/ ˛
.k/

red .d.x2; : : : ; xk// D
Z

N o

X¤

x2;:::;xk2s. /
f .x2; : : : ; xk/ P

o Š.d /

for any non-negative Borel-measurable function f on R
d.k�1/ . For notational ease

we check this only for k D 2. From (4.7) and the very definition of ˛.2/ we get for
bounded B;C 2 B.Rd / with �d .B/ D 1 that

˛
.2/

red .C / D 1

�

Z

N

X¤

x;y2s. /
1.x 2 B/ 1.y � x 2 C/P.d / (4.9)

D 1

�

Z

N

X

x2s. /
1.x 2 B/ .Tx � ıo/.C /P.d / D

Z

N o

 .C /P o Š.d / :

Quite similarly, we can define reduced Palm distributions Po Š
L for simple

stationary MPP’s with respect to any fixed mark set L 2 M with Qo
M.L/ > 0.

For this we have to replace � by �M.Œ0; 1

d � L/ D �Qo

M.L/ which leads to the
following extension of (4.8):

�Qo
M.L/

Z

Rd

Z

N o
L

f .x; /P o ŠL .d /dx D
Z

NM

Z

Rd�L
f .x; Tx � ı.o;m// .d.x;m//PM.d /

for any non-negative, measurable function f on R
d � N , where N o

L D f 2 NM W
 .fog �L/ D 0g .

To include mark setsL and, in particular single marksm, withQo
M-measure zero,

we make use of the Radon–Nikodym derivative of the so-called reduced Campbell
measure C Š

M defined by
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C ŠM.B � L � A/ D
Z

NM

Z

Rd�M

1..x;m/ 2 B � L/1. � ı.x;m/ 2 A/ .d.x;m//PM.d /

with respect to the intensity measure �M.B � L/ D � �d .B/Q
o
M.L/. The

corresponding Radon–Nikodym density Px Š
m .A/ is called the reduced Palm dis-

tribution of �M � PM with respect to .x;m/ and can be heuristically interpreted
as conditional probability that � � ı.x;m/ 2 A given a marked point at x with
mark m. This interpretation remains also valid for non-stationary MPP’s and can
even be generalized in an appropriate way to k-point reduced Palm distributions
Px1;:::;xk Š
m1;:::;mk

.A/ of A 2 NM with respect to .x1;m1/; : : : ; .xk;mk/ with pairwise
distinct x1; : : : ; xk .

In the stationary case we get Px1;x2:::;xk Š
m1;:::;mk

.A/ D P
x1�xj ;:::;o;:::;xk�xj Š
m1;:::;mj ;:::;mk .T�xj A/ for

each j D 1; : : : ; k (due to the intrinsic symmetry), which, for k D 1, yields the
Campbell–Mecke-type formula

E
�X

i�1
f .Xi ;Mi ; TXi � � ı.o;Mi //

�
D
Z

NM

Z

Rd�M

f .x;m; Tx � ı.o;m// .d.x;m//PM.d /

D �

Z

Rd

Z

M

Z

NM

f .x;m;  /P o Šm .d /Q
o
M.dm/dx (4.10)

for any non-negative measurable function f on R
d � M � NM . Furthermore, this

formula can be extended for k 
 2 to the following relationship involving the
k-point reduced Palm distribution, k-point Palm mark distribution and the k-order
reduced factorial moment measure introduced at the beginning of Sect. 4.1.2:

E
� X¤

i1;i2;:::;ik�1
fk.Xi1 ;Mi1 ;Xi2;Mi2 ; : : : ;Xik ;Mik ;TXi1 � � ı.o;Mi1 /

�
kX

jD2
ı.Xij ;Mij /

/
�

D �

Z

.Rd�M/k

Z

NM

fk.x1;m1; x2;m2; : : : ; xk;mk;  /P
o;x2;:::;xk Š
m1;m2;:::;mk

.d /

�˛.k/M;red .d.m1; x2;m2; : : : ; xk;mk// dx1

D �

Z

Rd

Z

Rd.k�1/

Z

Mk

Z

NM

fk.x1;m1; x2;m2; : : : ; xk;mk;  /P
o;x2;:::;xk Š
m1;m2;:::;mk

.d /

�Qo;x2;:::;xk
M .d.m1;m2; : : : ; mk// ˛

.k/

red .d.x2; : : : ; xk// dx1

for any non-negative measurable function fk on .Rd � M/k � NM .
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4.1.3 Different Types of Marking and Some Examples

In the following we distinguish three types of MPP’s �M � PM by the dependences
between marks at distinct points in R

d , by interactions between separated parts of
the point pattern and, last but not least, by cross correlations between the whole point
pattern and the whole mark field. In the most general case, only the family of k-point
Palm mark distributions seems to be appropriate to describe such complicated
structure of dependences.

1. Independently Marked (Stationary) Point Processes

Given an unmarked (not necessarily stationary) PP � D P
i�1 ıXi � P on R

d

and a stochastic kernel Q.x;L/ ; x 2 R
d ; L 2 B.M/ we assign to an atom Xi

located at x the markMi � Q.x; �/ independently of � �ıXi and of any other mark
Mj ; j ¤ i . The resulting MPP �M D P

i�1 ı.Xi ;Mi / is said to be derived from
� by location-dependent independent marking. We obtain for the intensity measure
and the k-point Palm mark distribution

�M.B � L/ D
Z

B

Q.x;L/�.dx/ resp. Qx1;:::;xk
M

� k�
iD1Li

� D
kY

iD1
Q.xi ; Li /; k 
 1;

where� denotes the intensity measure of � .
Note that the MPP�M �PM is stationary iff �� P is stationary and independent

of an i.i.d. sequence of marks fMi; i 
 1g with a common distribution Q.�/—the
(mark) distribution of the typical mark M0 .

2. Geostatistically or Weakly Independently Marked Point Processes

Let unmarked PP � D P
i�1 ıXi � P on R

d be stochastically independent of
a random field fM.x/; x 2 R

d g taking values in the measurable mark space
.M;B.M//. To each atom Xi we assign the mark Mi D M.Xi/ for i 
 1. In
this way the k-point Palm mark distribution coincide with the finite-dimensional
distributions of the mark field, that is,

Q
x1;:::;xk
M .L1 � � � � �Lk/ D P.M.x1/ 2 L1; : : : ;M.xk/ 2 Lk/ for all k 2 N :

Note that the MPP �M � PM is stationary iff both the point process � � P and
the random field are (strictly) stationary. In case of real-valued marks (stationary)
Gaussian random fields M.x/ with some covariance function, see Definition 9.10,
or shot-noise fields Mg.x/ D P

i�1 g.x � �i / with some response function



4 Asymptotic Methods in Statistics of Random Point Processes 131

g W R
d 7! R

1 and a (stationary Poisson) point process f�i ; i 
 1g chosen indepen-
dently of � (see Sect. 9.2.5 for more details) are suitable examples for mark fields.

3. General Dependently Marked Point Processes

In this case the locations Xi of the marked atoms and their associated marks Mi

may depend on each other and, in addition, there are intrinsic interactions within the
point field fXig as well as within the mark field fMig . This means that the k-point
Palm mark distribution Qx1;:::;xk

M must be considered as an conditional distribution,
in particular,Qo;x

M .L � M/ does not coincide with Qo
M.L/ .

Examples

1. Germ-Grain Processes: Germ-Grain Models

A stationary independently MPP �M D f.Xi ; �i / ; i 
 1g on R
d with mark space

M D Kd (= space of all non-empty compact sets in R
d equipped with the Hausdorff

metric) is called germ-grain process or particle process driven by the PP � D
fXi; i 
 1g of germs and the typical grain �0 � Q . The associated random set
� D S

i�1.�i C Xi/ is called germ-grain model. Note that in general � need not
to be closed (P-a.s.). The condition

X

i�1
P.�0 \ .K �Xi/ ¤ ;/ < 1 P � a:s: for all K 2 K (4.11)

is sufficient to ensure the P-a.s.-closedness of � , see [229]. The most important
and best studied germ-grain model is the Poisson-grain model (also called Boolean
model) driven by a Poisson process� � ˘� of germs fXi; i 
 1g , see for example
[366, 489] for more details.

2. Poisson-Cluster Processes

If the typical grain �0 D fY1; : : : ; YN0g is a P-a.s. finite random point set satisfy-
ing (4.11) then the discrete random closed set� D S

i�1fY .i/1 CXi; : : : ; Y
.i/
Ni

CXig
coincides with the support of a random locally finite counting measure �cl and is
called a cluster point process with the PP �c D fXi; i 
 1g of cluster centres
and the typical cluster fY1; : : : ; YN0g. Factorial moment and cumulant measures
of any order can be expressed in terms of the corresponding measures of � and
the finite PP

PN0
iD1 ıYi , see for example [227]. In case of a (stationary) Poisson

cluster centre process �c we get a (stationary) Poisson-cluster process �cl, see
Sect. 3.1.4 for more details. In particular, if � � ˘�c�d and the random number
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N0 with probability generating function g0.z/ is independent of the i.i.d. sequence
of random vectors Y1; Y2; : : : in R

d with common density function f we obtain
a so-called Neyman–Scott process �cl with intensity �cl D �c EN0 , second-order
product density .2/.x/ D c.2/.x/C�cl and its kth-order cumulant density for k 
 2

takes on the form

c.k/.x1; : : : ; xk�1/ D g
.k/
0 .1/

EN0

Z

Rd

f .y/ f .y C x1/ � � �f .y C xk�1/ dy : (4.12)

Compare Definition 3.11 for its special case.

3. Doubly Stochastic Poisson Processes

Now, let � be a (stationary) random measure on R
d , see for example [140]

for details. The new unmarked PP �� � P� defined by the finite-dimensional
distributions

P.��.B1/ D n1; : : : ; ��.Bk/ D nk/ D E
� kY

iD1

�ni .Bi /

ni Š
e��.Bi /

�

for any disjoint bounded B1; : : : ; Bk 2 B0.Rd / and any n1; : : : ; nk 2 N [ f0g,
is called doubly stochastic Poisson (or Cox) process with driving measure �.�/,
compare Definition 3.7. In the special case �.�/ D � �d ..�/ \ �/ , where � is a
(stationary) random closed set, for example a Boolean model, the (stationary) PP��
(called interrupted Poisson process) is considered as a Poisson process restricted on
the (hidden) realizations of� . The factorial moment and cumulant measures of ��
are expressible in terms of the corresponding measures of random driving measure
� , see for example [289].

4.2 Point Process Statistics in Large Domains

Statistics of stationary point processes is mostly based on a single observation
of some point pattern in a sufficiently large domain which is assumed to extend
unboundedly in all directions. We demonstrate this concept of asymptotic spatial
statistics for several second-order characteristics of point processes including
different types of K-functions, product densities and the pair correlation function.
Variants of Brillinger-type mixing are considered to obtain consistency and asymp-
totic normality of the estimators.

The philosophy of large-domain spatial statistics is as follows: Let there be
given a single realization of a random point pattern or a more general random
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set in a sufficiently large sampling window Wn � R
d , which is thought to

expand in all directions as n ! 1 . Further, we assume that there is an adequate
model describing the spatial random structure whose distribution is at least shift-
invariant (stationary) and sometimes additionally even isotropic. Then only using
the information drawn from the available observation in Wn we define empirical
counterparts (estimators) of those parameters and non-parametric characteristics
which reflect essential properties of our model. To study the asymptotic behaviour
of the estimators such as weak or strong consistency and the existence of limit
distributions (after suitable centering and scaling) we let Wn increase unboundedly
which requires additional weak dependence conditions. Throughout we assume that
fWn; n 2 Ng is a convex averaging sequence, that is,

1. Wn is bounded, compact, convex andWn � WnC1 for n 2 N.

2. r.Wn/ WD supfr > 0 W Br.x/ � Wn for some x 2 Wng " 1 .

The second property means that Wn expands unboundedly in all directions and
is equivalent to �d�1.@Wn/=�d.Wn/ �!

n!1 0 as immediate consequence of the

geometric inequality

1

r.Wn/
� �d�1.@Wn/

�d .Wn/
� d

r.Wn/
; (4.13)

see [237].

Exercise 4.1. Show that

�d .Wn n .Wn � Br.o/// D
rZ

0

�d�1.@.Wn � Bs.o/// ds � r �d�1.@Wn/

for 0 � r � r.Wn/ from which, together with �d .Wn � Br.Wn/.o// D 0, the l.h.s.
of (4.13) immediately follows. The r.h.s. of (4.13) results from an inequality by
J.M. Wills, see [519].

From the mathematical view point it is sometimes more convenient to consider
rectangles Wn D �d

iD1Œ0; a
.n/
i 
 with a.n/i " 1 for i D 1; : : : ; d or blown up sets

Wn D nW , where W � R
d is a fixed convex body containing the origin o as inner

point.

4.2.1 Empirical K -Functions and Other Summary Statistics
of Stationary PP’s

Second-order statistical analysis of spatial point patterns is perhaps the most
important branch in point process statistics comparable with the spectral density
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estimation in time series analysis. We assume that the simple unmarked PP � DP
i�1 ıXi has finite second moments, i.e. E�2.B/ < 1 for all boundedB 2 B.Rd /,

and is strictly or at least weakly stationary.
Weak (or second-order) stationarity of an unmarked PP � � P requires only the

shift-invariance of the first- and second-order moment measures, i.e. �.B1 C x/ D
�.B1/ and ˛.2/..B1 C x/ � .B2 C x// D ˛.2/.B1 � B2/ for any bounded B1;B2 2
B.Rd // and all x 2 R

d . Obviously, strictly stationary point processes having
finite second moments are weakly stationary. Further note that the reduced second
factorial moment measure ˛.2/red .�/ is well-defined also under weak stationarity but
it can not be expressed as first-order moment measure w.r.t. Po Š as in (4.9), see
[140] for more details. In what follows we assume strict stationarity. By applying
the Palm and reduction machinery sketched in Sect. 4.1.2 we can describe the
first and second moment properties by the intensity � D E�.Œ0; 1
d / and the
reduced second factorial moment measure ˛.2/red .�/ defined by (4.7) for k D 2

resp. (4.9) as first moment measure with respect to the Palm distribution PoŠ in
case of strict stationarity. If � is additionally strictly or at least weakly isotropic, i.e.
RO˛

.2/

red D ˛
.2/

red forO 2 SOd , then it suffices to know the function ˛.2/red .Br.o// for
r 
 0 . In [424] B. Ripley introduced the K-function

K.r/ WD 1

�
˛
.2/

red

�
Br.o/

� D 1

�2
E
�X

i�1
1.Xi 2 Œ0; 1
d / �.Br.Xi/ n fXig/

�
(4.14)

for r 
 0 as basic summary characteristic for the second-order analysis of motion-
invariant PP’s, see also [22] or [265, Chap. 4.3] for more details and historical
background. From (4.9) we see that �K.r/ coincides with conditional expectation
E.�

�
Br.fog/ n fog� j �.fog/ D 1 / giving the mean number of points within

the Euclidean distance r from the typical point (which is not counted). If � is a
homogeneous Poisson process with intensity � , then, by Slivnyak’s theorem (see
Theorem 4.5 in Sect. 4.1.2), ˛.2/red .�/ D E�.�/ D � �d .�/ and hence we get

K.r/ D !d r
d with !d WD �d .B1.o// D �d=2

�
�
d
2

C 1
� : (4.15)

For better visualization of the Poisson property by a linear function the so-

called L-function L.r/ WD �
K.r/=!d

�1=d
is sometimes preferred instead of the

K-function. Both the K- and L-function represent the same information, but they
cannot completely characterize the distribution of a (motion-invariant) PP. In other
words, there are different point processes having the same K-function. Further
note that an explicit description of the family of K-functions does not exist so
far. Nevertheless, the K-function and its empirical variants, see below, are used
to check point process hypotheses when the K-function of the null hypothesis is
known (or generated by simulation on a finite interval Œ0; r0
 ), see Sect. 3.3.3 and
Figs. 3.47–3.48.
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In particular, the simple parabola-shape of the K-function (4.15) facilitates to
check the property of complete spatial randomness (briefly CSR) of a given point
pattern. Lemma 3.12 shows the connection between CSR and the Poisson property
shows the following

It contains the interpretation of the Poisson point process in statistical mechanics
as particle configuration, for example molecules in “ideal gases”, modelled as grand
canonical ensemble, where neither attraction nor repulsion forces between particles
occur. Lemma 3.12 also reveals an easy way to simulate homogeneous Poisson
processes in bounded domains, see Algorithm 3.6 in Sect. 3.2.2.

Since the K-function is also used to analyze (second-order) stationary, non-
isotropic PP’s we introduce two generalized versions of Ripley’sK-function (4.14).
First, the Euclidean d -ball Br.o/ in (4.14) is replaced by r B , where B � R

d is
a compact, convex, centrally symmetric set containing o as inner point. Such set
B is called structuring element in image analysis and coincides with the unit ball
fx 2 R

d W NB.x/ � 1g generated by a unique norm NB.�/ on R
d . Let KB.r/

denote the analogue to (4.14) which equals �d .B/ rd if � � ˘��d . In case of a
Neyman–Scott process we obtain from (4.12) that

KB.r/ D �d .B/ r
d C EN0.N0 � 1/

�c .EN0/2

Z

r B

fs.x/ dx with fs.x/ D
Z

Rd

f .y/ f .y C x/ dy :

A second generalization of (4.14) is the multiparameter K-function, see [231],
defined by

K.r1; : : : ; rd / WD 1

�
˛
.2/

red

� d�
kD1Œ�rk; rk


�
for r1; : : : ; rd 
 0 ;

which contains the same information as the centrally symmetric measure ˛.2/red .�/ .
For stationary Poisson processes we get

K.r1; : : : ; rd / D �d
� d�
kD1Œ�rk; rk


� D 2d r1 � : : : � rd for r1; : : : ; rd 
 0 :

We next define three slightly different non-parametric estimators of the function
�2 KB.r/ (briefly called empirical K-functions):

�
1�2KB

�
n;1
.r/ WD 1

�d .Wn/

X

i�1
1.Xi 2 Wn/ .� � ıXi /.r B CXi/ ;

�
1�2KB

�
n;2
.r/ WD 1

�d .Wn/

X¤

i;j�1
1.Xi 2 Wn/ 1.Xj 2 Wn/ 1.NB.Xj � Xi/ 2 Œ0; r
/ ;

�
1�2KB

�
n;3
.r/ WD

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/ 1.NB.Xj � Xi/ 2 Œ0; r
/
�d ..Wn �Xi/\ .Wn �Xj // :
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Each of these empirical processes is non-decreasing, right-continuous, and
piecewise constant with jumps of magnitude 1=�d.Wn/ (for i D 1; 2) at random
positions NB.Xj � Xi/ arranged in order of size for i ¤ j . Quite analogously, by
substituting the indicators of the events fNB.Xj � Xi/ 2 Œ0; r
g by the indicators
of fXj � Xi 2 �d

kD1Œ�rk; rk
g we obtain the multivariate empirical processes
�
b�2K

�
n;i
.r1; : : : ; rd / for i D 1; 2; 3 as empirical counterparts of �2 K.r1; : : : ; rd /.

By (4.8) resp. (4.9),
�
1�2KB

�
n;1
.r/ is easily seen to be an unbiased estimator for

�2 KB.r/ but it ignores the edge effect problem, that is, we need information from
the dilated sampling window Wn ˚ r0 B to calculate this estimator for 0 � r � r0 .
If this information is not available then one has to reduce the original window to
the eroded setWn � r0 B which is known as minus sampling. The second estimator
needs only the positions of points within Wn , however, its bias disappears only
asymptotically, i.e.

E
�
1�2KB

�
n;2
.r/ D �

Z

r B

�d .Wn \ .Wn � x//
�d .Wn/

˛
.2/

red .dx/ �!
n!1 �2 KB.r/ : (4.16)

Finally,
�
1�2KB

�
n;3
.r/ is a so-called edge-corrected or Horvitz–Thompson-type

estimator which also needs only the points located withinWn. The pairs .Xi ; Xj / 2
Wn �Wn are weighted according to the length and direction of the difference vector

Xj � Xi providing the unbiasedness of the estimator E
�
1�2KB

�
n;3
.r/.

Exercise 4.2. Show (4.16) by applying the inequality (4.13) and prove

E
�
1�2KB

�
n;3
.r/ D �2 KB.r/

by means of (4.8) resp. (4.9).

For further details and more sophisticated edge corrections we refer to [265,385,
489] and references therein.

Before regarding consistency properties of the empirical K-functions we have a
short look at the estimation of the simplest summary characteristic—the intensity
�—and its powers �k given by

b�n WD �.Wn/

�d .Wn/
and .b�k/n WD

k�1Y

jD0

�.Wn/� j

�d .Wn/
(4.17)

for any fixed integer k 
 2 . A simple application of the Campbell formula (4.6)
(or (4.8)) and the definition of the kth-order factorial moment measure yields

Eb�n D � and E.b�k/n D ˛.k/.Wn � � � � �Wn/

�kd .Wn/
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which shows the unbiasedness ofb�n for any stationary PP, whereas .b�k/n for k 
 2

is unbiased only for the Poisson process � � ˘��d .

Exercise 4.3. For a stationary Poisson process � � ˘��d show that

˛.k/.B1 � � � � � Bk/ D �k �d .B1/ � � � �d .Bk/

for any (not necessarily disjoint) bounded sets B1; : : : ; Bk 2 B.Rd /.
The decomposition ˛.2/.Wn �Wn/ D �.2/.Wn �Wn/C�2 �2d .Wn/ and reduction

reveal the asymptotic unbiasedness of .b�2/n

E.b�2/n D �2 C �

�2d .Wn/

Z

Wn

�
.2/

red .Wn � x/ dx �!
n!1 �2

provided that the total variation k �.2/red kTV is finite. This motivates the assumption

of bounded total variation of the reduced factorial cumulant measure �
.k/

red .�/
for some k 
 2 to express short-range correlation of the point process. To be
precise, we rewrite the locally finite (in general not finite) signed measure �.k/red .�/
on
�
R
d.k�1/;B.Rd.k�1//

�
as difference of the positive and negative part �.k/C

red .�/
resp. �.k/�

red .�/ (Jordan decomposition) and define the corresponding total variation

measure
ˇ̌
�
.k/

red

ˇ̌
.�/ as a sum of the positive and negative part:

�
.k/

red .�/ D �
.k/C
red .�/� �

.k/�
red .�/ and

ˇ̌
�
.k/

red

ˇ̌
.�/ WD �

.k/C
red .�/C �

.k/�
red .�/ :

Note that the locally finite measures �.k/Cred .�/ and �
.k/�
red .�/ are concentrated

on two disjoint Borel sets HC resp. H� with HC [ H� D R
d.k�1/ (Hahn

decomposition) which leads to the total variation of �.k/red .�/ :

k �.k/red kTV WD ˇ̌
�
.k/

red

ˇ̌
.Rd.k�1// D �

.k/C
red .HC/C �

.k/�
red .H�/ D

Z

Rd.k�1/

j c.k/.x/ j d x ;

where c.k/ W R
d.k�1/ 7! Œ�1;1
 is the kth-order cumulant density, if it exists.

Definition 4.5. A stationary PP � � P on R
d satisfying E�k.Œ0; 1
d / < 1 for

some integer k 
 2 is said to be Bk-mixing if k �.j /red kTV < 1 for j D 2; : : : ; k.
A B1-mixing stationary PP is called Brillinger-mixing or briefly B-mixing.

Example 4.1. From (4.12) it is easily seen that a Neyman–Scott process is
Bk-mixing iff ENk

0 < 1 without restrictions on f . This remains true for any
Poisson-cluster process. Moreover, a general cluster process is Bk-mixing if the PP
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�c of cluster centres is Bk-mixing and the typical cluster size N0 has a finite kth
moment, see [227] for details and further examples like Cox processes.

Proposition 4.1. For any Bk-mixing stationary PP we have E.b�k/n �!
n!1 �k for

k 
 2 .

We next state the mean-square consistency of the above-defined empirical
K-functions under mild conditions. Furthermore, it can be shown that a possible
weak Gaussian limit (after centering with mean and scaling with

p
�d .Wn/) is for

each of the estimators of �2 KB.r/ the same.

Theorem 4.6. Let � � P be a B4-mixing stationary PP with intensity �. Then

E
��
1�2KB

�
n;i
.r/ � �2 KB.r/

�2 �!
n!1 0 for i D 1; 2; 3

�d .Wn/ var
� �

1�2KB

�
n;1
.r/ � �

1�2KB

�
n;i
.r/

�
�!
n!1 0 for i D 2; 3 :

In other words, the boundary effects are asymptotically neglectable which can be
considered as a general rule of thumb in large domain statistics.

Finally, we mention that also higher-order reduced moment measures can be
estimated in quite the same way, see for example [274, 289]. Further second-
order summary characteristics and their empirical counterparts (called summary
statistics) such as the second-order product density .2/.x/, the pair correlation
function g.r/ and the asymptotic variance �2 WD limn!1 �d .Wn/E.b�n � �/2 ,
see (4.17), are briefly discussed in Sect. 4.2.3. Summary statistics are used in all
branches of statistics to summarize data sets—in our case data from point patterns
or from realizations of random sets—to describe the underlying models by a small
number of parametric and non-parametric estimates. Further summary character-
istics frequently used in point process statistics are the empty space function (or
contact distribution function) F , the nearest-neighbour distance functionG and the
J -function defined for a stationary PP � D P

i�1 ıXi � P by

F.r/ D P.�.Br.o// > 0/ D P.f 2 N W  .Br .o// > 0g/ ;

G.r/ D Po Š.f 2 N o W  .Br .o// > 0g/ and J.r/ D .1 �G.r//=.1 � F.r// :

F is the distribution function of the distance dist.x; �/ from a fixed point x 2 R
d

to the nearest atom of� , whereasG is the distribution function of the corresponding
distance from a typical atom of � to the nearest other atom of � . Unbiased non-
parametric estimators of F.r/ and �G.r/ are

bF n.r/ D �d .
S
i�1 Br.Xi/ \Wn/

�d .Wn/
; .b�G/n.r/ D

X

Xi2Wn

1.dist.Xi ; � � ıXi /2 Œ0; r
/
�d .Wn/

:
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The empirical J -function bJ n.r/ is defined as ratiob�n bF n.r/=.b�G /n.r/ . To avoid
boundary effects we replace Wn by Wn � Br.o/ for 0 � r � diam.Wn/=2 , if the
point pattern is observable only insideWn . In case of � � ˘��d Slivnyak’s theorem
yields F.r/ D G.r/ D 1 � expf��!d rd g so that J.r/ 	 1. This fact can be used
for testing CSR just by regarding the plot of the empirical version bJ n.r/ in some
interval Œ0; r0
 .

4.2.2 The Role of Ergodicity and Mixing in Point
Process Statistics

The assumption of (strict) stationarity of a point process or random closed set
under consideration is frequently accompanied by the requirement of ergodicity.
It is beyond the scope of this survey to capture the full depth of this notion. We
only say that ergodicity is always connected with a group of measure preserving
transformations acting on the probability space. In our situation we take quite
naturally the group of translations fTx W x 2 R

d g as defined in Sect. 4.1.1 on the
space of (marked) locally-finite counting measures or the corresponding shifts on
the space of closed sets in R

d . To be precise, we define besides ergodicity also the
somewhat stronger condition of mixing for stationary (unmarked) PP’s:

Definition 4.6. A (strictly) stationary PP � � P is said to be ergodic resp.
mixing if

1

�d .Wn/

Z

Wn

P.TxY1 \ Y2/ dx �!
n!1

P.Y1/ P.Y2/ resp. P.Tx Y1 \ Y2/ �!
kxk!1

P.Y1/ P.Y2/

for any Y1; Y2 2 N.

Loosely speaking, mixing means that two events becomes nearly independent when
they occur over parts of R

d being separated by a great distance and ergodicity
weakens this distributional property in the sense of Cesaro limits. In physics
and engineering one says that an ergodic stochastic process allows to detect its
distribution after very long time of observation which carries over to spatial ergodic
processes when the observation window expands unboundedly in all directions.
This interpretation is rigorously formulated by ergodic theorems which state the
P-a.s. convergence of spatial means to expectations with respect to the underlying
distribution. The following ergodic theorem by X.X. Nguyen and H. Zessin [382] is
of particular importance in the theory as well as in statistics of stationary PP’s.

Theorem 4.7. Let � � P be a stationary ergodic PP on R
d with intensity � , and

let g W N 7! Œ0;1
 be .N;B.Rd //-measurable such that
R
N o g. /P

o Š.d / <

1 . Then
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1

�d .Wn/

Z

Wn

g.Tx � ıo/  .dx/ �!
n!1�

Z

N o

g. /P o Š.d /

for P -almost every  2 N .

This result can be applied to prove strong consistency for many estimators,
in particular, for various empirical Palm characteristics. In the special cases (a)
g. / 	 1 and (b) g. / D  .r B/ we obtain strong consistency of the intensity

estimator (4.17) and
�
1�2KB

�
n;1
.r/ for any r 
 0 , which implies even uniformly

strong consistency:

b�n
P�a:s:�!
n!1 � and sup

0�r�R
ˇ̌ �
1�2KB

�
n;1
.r/ � �2 KB.r/

ˇ̌ P�a:s:�!
n!1 0 :

We mention just one asymptotic relationship which requires mixing instead of
ergodicity, namely the generalized version of Blackwell’s renewal theorem. If the
stationary second-order PP � � P is mixing, then, for any bounded B 2 B.Rd /
satisfying �d .@B/ D 0 , it holds

˛
.2/

red .B C x/ �!
kxk!1

� �d.B/;

see [140]. Note that a renewal process is just mixing if the length of the typical
renewal interval has a non-arithmetic distribution and thus, the latter result (applied
to an bounded interval B D Œa; b
) contains the mentioned classical result from
renewal theory. For related results concerning the weak convergence of the shifted
Palm distribution Po Š.Tx.�// to the stationary distribution P.�/ as kxk ! 1 we
refer the reader to [140, 346].

4.2.3 Kernel-Type Estimators for Product Densities and the
Asymptotic Variance of Stationary Point Processes

The Lebesgue density .2/.x/ of ˛.2/red .�/—introduced in Sect. 4.1.2 as second-order
product density—and, if � � P is motion-invariant, the pair correlation function
g.r/ defined by

g.r/ D .2/.x/

�
for kxk D r > 0 or equivalently g.r/ D 1

d !d rd�1
dK.r/

dr

are very popular second-order characteristics besides the cumulative K-function.
Note that g.r/ is understood as derivative (existing for �1-almost every r 
 0)
of an absolutely continuous K-function (4.14). Since the numerical differentiation
of the empirical versions of K.r/ as well as of the multiparameter K-function
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K.r1; : : : ; rd / leads to density estimators of minor quality, the most statisticians
prefer the established method of kernel estimation in analogy to probability density
functions. The corresponding edge-corrected kernel estimators for � .2/.x/ and
�2 g.r/ are

2. � .2/ /n.x/ D 1

bdn

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/
�d ..Wn �Xi / \ .Wn �Xj // kd

�Xj �Xi � x

bn

�

resp.

1. �2 g /n.r/ D 1

d !d r
d�1 bn

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/
�d ..Wn �Xi /\ .Wn �Xj //

k1

�kXj �Xik � r
bn

�
;

where the kernel function kd j R
d 7! R is integrable (and mostly symmetric,

bounded with bounded support) such that
R
Rd
kd .x/ dx D 1 and the sequence of

bandwidths is chosen such that bn # 0 and bdn �d .Wn/ �!
n!1 1. These conditions

imply the pointwise asymptotic unbiasedness of the kernel estimators, namely

E 2. � .2/ /n.x/ �!
n!1� .2/.x/ and E1. �2 g /n.r/ �!

n!1�2 g.r/

at any continuity point x ¤ o of .2/ resp. at any continuity point r > 0 of g , see
e.g. [232–234, 275]. Under some further additional conditions one can show that

bdn �d .Wn/ var 2. � .2/ /n.x/ �!
n!1�.2/.x/

Z

Rd

k2d .x/ dx

and also central limit theorems (briefly CLT’s) and optimal bandwidths can be
derived, see for example [232] for an application to testing point process models.
Furthermore, various asymptotic results for higher-order kernel-type product den-
sity estimators (among them rates of convergence, P-a.s. convergence) have been
obtained under stronger mixing assumptions, see [234, 275].

Finally, we regard a kernel-type estimator of the limit

�2 D lim
n!1 �d .Wn/ var

�b�n
�

which exists for all B2-mixing stationary PP’s. The following estimator has been
studied in [238]:

.b�2/n WDb�n C
X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/w. .Xj �Xi /=cn /

�d ..Wn �Xi / \ .Wn �Xj //
� cdn .

b�2/n
Z

Rd

w.x/ dx;
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where cn WD bn .�d .Wn//
1=d and w W R

d 7! R
1 is a non-negative, symmetric,

bounded function with bounded support satisfying limx!o w.x/ D w.o/ D 1 .

Theorem 4.8. For a B4-mixing stationary PP the estimator .b�2/n is asymptotically
unbiased and mean-square consistent if bn �!

n!1 0 , cn=r.Wn/ �!
n!1 0 , cn �!

n!1 1 ,

and bn cn �!
n!1 0 . If the PP is even B-mixing, then

p
�d .Wn/

�b�n � �
�
=� is

asymptotically N.0; 1/-distributed, where � can be replaced by the square root of

.b�2/n .

In this way one can construct an asymptotic confidence interval which covers the
intensity � with given probability 1 � ˛ .

4.3 Mixing and m-Dependence in Random Point Processes

Large domain statistics requires weak dependence assumptions of the observed
spatial process to derive properties of the estimators and to construct asymptotic
tests for checking statistical hypotheses. We formulate and apply a spatial ergodic
theorem. The notion of m-dependence plays an important role to prove limits
theorems for Poisson-driven models demonstrated in particular for the Boolean
model and statistics taken from Poisson procesess. We consider also some examples
which exhibit appropriate spatial versions of the ˛- and ˇ-mixing condition.

4.3.1 Poisson-Based Spatial Processes and m-Dependence

Definition 4.7. A family of random variables f�.t/; t 2 Z
d g defined on .˝;F ;P/

is calledm-dependent (d -dimensional) random field for somem 2 N if for any finite
U; V � Z

d the random vectors .�.u//u2U and .�.v//v2V are independent whenever
max
1�i�d j ui � vi j > m for all u D .u1; : : : ; ud /> 2 U and v D .v1; : : : ; vd /> 2 V ,

see also Sect. 10.1.2.

For d D 1 we use the term “sequence” instead of “field” and in what follows
we shall fix the dimension d 
 1 . In particular, in the theory of limit theorems
for sums of random fields the particular case of m-dependent random variables
indexed by a subset of Z

d plays an important role because most of the classical
limit theorems known for sums of independent random variables remain valid with
obvious modifications for m-dependent sequences and fields. This includes also a
number of refined results such as Berry–Esseen bounds and asymptotic expansions
of the remainder term in the CLT, see [226], or Donsker’s invariance principle and
functional CLT’s for empirical m-dependent processes with càdlàg-trajectories, see
for example [69].
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In stochastic geometry and point process statistics, m-dependent random fields
appear in connection with models which are defined by independently marked
Poisson processes. We discuss here two examples which exhibit the main idea.
This approach has been successfully applied to derive CLT’s for functionals of
Poisson-cluster processes and Poisson-grain models, see for example [227, 236].
For notational ease, let Wn D �d

iD1Œ0; a
.n/
i / be a rectangle with large enough edges

a
.n/
1 ; : : : ; a

.n/

d .

Example 4.2. Let � D S
i�1. �i C Xi / be a Boolean model generated by the

stationary Poisson process � � ˘��d and a bounded typical grain satisfying �0 �
Œ�r; r
d P-a.s. for some fixed r > 0 . We are interested in the asymptotic behaviour
of the random d -volume Sn D �d .� \ Wn/ which is closely connected with the
empirical volume fractionbpn D Sn=�d.Wn/.

Example 4.3. We consider the random sum

Sn.r/ D
X

i�1
1.Xi 2 Wn/

�
� � ıXi

�
.r B CXi/

which coincides up to the scaling factor 1=�d.Wn/ with the empirical K-function�
1�2KB

�
n;1
.r/. We are able to derive the Gaussian limit distribution using the CLT

for m-dependent field provided that � � ˘��d . For simplicity assume that B �
Œ�1; 1
d .

In both cases take the smallest number ri 
 r such that the ratio v.n/i D
a
.n/
i =2ri is an integer for i D 1; : : : ; d and decompose Wn into blocks Et with
t D .t1; : : : ; td /

> as follows:

Wn D
[

t2Vn
Et ; Et D d�

iD1
�
2ri ti ; 2ri .ti C 1/

�
; Vn D d�

iD1 f1; : : : ; v.n/i g :

Then we may write Sn D P
t2Vn

�.t/ and Sn.r/ D P
t2Vn

�r .t/ with the random

variables

�.t/ D �d .� \ Et/ and �r .t/ D
X

i�1
1.Xi 2 Et/

�
� � ıXi

�
.r B CXi/; t 2 Vn ;

forming a stationary 1-dependent random field due to the independence properties
of the stationary Poisson process � and the fact that grains f�i ; i 
 1g are i.i.d.
and independent of � . By the same arguments we get an i.i.d. sequence of random
marked counting measures

�t D
X

i�1
1.Xi 2 Et/ ı.Xi ;�i / for t 2 Zd
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and, in addition, the �.t/’s admit a representation �.t/ D f .�y ; jt � yj � 1/ in

terms of a measurable function f W .N 0
M/

3d 7! R
1 , where N 0

M denotes the space of
locally-finite marked counting measures on �d

iD1Œ0; 2ri /� K. In this way f�.t/; t 2
Vng becomes a two-dependent random field with block representation, see [199,
226] for details. This representation of the field by functions of finite blocks of
independent random elements allows to check simple conditions that imply explicit
bounds of the remainder terms of asymptotic expansions in the CLT for Sn and
Sn.r/ as well.

The CLT for (stationary) m-dependent random fields, see for example [69] or
references in [226], combined with jVnj D �d .Wn/=.2 r/

d and p D E�d .� \
Œ0; 1/d / yields

p
�d .Wn/

�
bpn � p

� H)
n!1N.0; �2p/ with �2p D .1 � p/2

Z

Rd

�
e�E�d .�0\.�0�x// � 1� dx:

If the compact typical grain �0 is not strictly bounded, then we first replace �0
by the truncated grain �0 \ Œ�r; r
d and apply the above CLT to the corresponding
truncated Boolean model �.r/. In a second step we show that the ratio

var
�
�d ..� n�.r// \Wn

�
=�d.Wn/

becomes arbitrarily small uniformly in n 2 N as r grows large provided that
E�2d .�0/ < 1 . Finally, Slutsky’s theorem completes the proof of the CLT in the
general case.

In Example 4.3 we immediately obtain the normal convergence

p
�d .Wn/

� �
1�2KB

�
n;1
.r/ � �2 KB.r/

� H)
n!1N.0; �2B.r// (4.18)

with �2B.r/ D 2 � �d.B/ r
d
�
1C2 � �d.B/ rd

�
, see also [274] for related CLT’s for

B-mixing stationary PP’s. Using the block representation of the random variables
�r .t/, t 2 Vn , and the some results in [226], see also references therein, we obtain
the optimal Berry–Esseen bound

sup
x2R1

ˇ̌
ˇP
�p

�d .Wn/
� �
1�2KB

�
n;1
.r/ � �2 KB.r/

� � x
� � ˚

� x

�B.r/

� ˇ̌
ˇ � c.�;B; r/p

�d .Wn/
;

where ˚.x/ WD P.N.0; 1/ � x/ ; x 2 R
1 , denotes the standard normal distribution

function.
Moreover, for the random sum

bSn.r/ D �d .Wn/
�
1�2KB

�
n;2
.r/ D

X

i�1
1.Xi 2 Wn/

�
� � ıXi

��
.r B CXi/ \Wn

�
;
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which equals twice the number of pairs of points having NB -distance less than
or equal to r , a local CLT with asymptotic expansion can be proved by methods
developed in [199, 226]:

�
1C jxn.k; r/j3

�p
�d .Wn/

ˇ̌
ˇ
1

2

q
var bSn.r/P.bSn.r/ D 2 k/� 'n

�
xn.k; r/

� ˇ̌
ˇ �!
n!1 0

for any k D 0; 1; 2; : : : , where xn.k; r/ D �
2 k � EbSn.r/

�
=
�

var bSn.r/
�1=2

and

'n. x / D 1p
2 �

e�x2=2
 
1C . x3 � 3 x / E

�bSn.r/� EbSn.r/
�3

6
p
2 �

�
var bSn.r/

�3=2

!
:

4.3.2 Strong Mixing and Absolute Regularity
for Spatial Processes

The quantitative assessment of (weak) dependence between parts of spatial pro-
cesses (e.g. random fields, point processes, random closed sets) over disjoint subsets
of R

d is based on mixing coefficients. These quantities provide uniform bounds
of the dependence between �-algebras generated by the spatial process over these
disjoint set which include rates of decay when the distance between these subsets
increases. These mixing coefficients permit to derive covariance estimates of the
random variables measurable with respect to these �-algebras. This in turn is
essential in proving asymptotic normality for sums of these random fields defined
over .˝;F ;P/ . Here we shall briefly discuss two of the most relevant mixing
coefficients, see also Sect. 10.1.2.

Definition 4.8. For any two sub-�-algebras A; B � F the ˛-mixing (or strong)
coefficient ˛.A; B/ and the ˇ-mixing (or absolute regularity) coefficient ˇ.A; B/
are defined by

˛.A;B/ WD sup
A2A;B2B

j P.A\ B/� P.A/P.B/ j ;

ˇ.A;B/ WD E sup
B2B

j P.B j A/ � P.B/ j D sup
C2A˝B

j PA˝B.C /� .PA � PB/.C / j ;

where A ˝ B is the product �-algebra generated by A and B and PA � PB denotes
the product measure of the corresponding marginal distributions.

The inequality 2 ˛.A;B/ � ˇ.A;B/ is immediately seen from the above definition,
see [83] for an all-embracing discussion of mixing coefficients. As already men-
tioned the covariance cov.�; �/ can be bounded by means of these mixing coefficient
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with respect to the �-algebras A D �.�/ and B D �.�/ generated by the random
variables � and �, respectively. Such covariance bounds are known for long time and
can be found in many papers and textbooks on limit theorems for sums of weakly
dependent random variables. If �; � are real-valued and p ; q 2 Œ1;1
 such that
p�1 C q�1 � 1 , then the inequality

j covf�; �g j � C .Ej�jp /1=p .Ej�jq /1=q � 2 ˛.�.�/; �.�// �1�1=p�1=q

holds which has been first proved by Yu.A. Davydov [146] with some positive
constant C .
 10/ . Recently, by improving the approximation technique used in
[146], the author and M. Nolde could prove that C D 2 is possible, see also [423]
for a different approach. A corresponding estimate with ˇ.�.�/; �.�// rather than
˛.�.�/; �.�// on the right-hand side goes back to K. Yoshihara [522], see also [236]
for this and further references.

Let us consider a Voronoi-tessellation V.�/ D S
i�1 @Ci.�/ generated by a

simple stationary PP � D P
i�1 ıXi , where @Ci .�/ denotes the boundary of the

cell Ci.�/ formed by all point in R
d which are closest to the atomXi , i.e. Ci.�/ D

fx 2 R
d W kx�Xik < kx�Xjk; j ¤ ig , and let denote by A� .F / resp. AV.�/.F /

the �-algebra generated by the PP � restricted to F � R
d resp. the �-algebra

generated by the random closed set V.�/ \ F . With the notation Fa D Œ�a; a
d
and� D b=4 the estimate

ˇ
�AV.�/.Fa/;AV.�/.F

c
aCb/

� � ˇ
�A� .FaC�/;A� .F

c
aC3�/

�CR.a; b/ (4.19)

has been obtained in [230], whereR.a; b/ is a finite sum of certain void probabilities
of the PP � decaying to zero at some rate (depending on a) as b ! 1 . A similar
estimate of ˇ

�A�.Fa/;A�.F
c
aCb/

�
could be derived in [236] for stationary grain-

germ models � D S
i�1.�i C Xi/ in terms of a suitable ˇ-mixing coefficient of

the generating stationary PP � � P with intensity � and the distribution function
D.x/ D P.diam.�0/ � x/ of the diameter of the typical grain �0 :

ˇ
�A�.Fa/;A�.F

c
aCb/

� � ˇ
�A� .FaC�/;A� .F

c
aC3�/

�

C �d 2dC1 h� 1C a

�

�d�1 C
�
3C a

�

�d�1i 1Z

�

xd dD.x/

(4.20)

Note that ˇ
�A� .FaC�/;A� .F

c
aC3�/

� D 0 in (4.19) and (4.20) if � � ˘��d , i.e. for
the Poisson–Voronoi tessellation and for Boolean models. Furthermore, there exist
precise estimates of this ˇ-mixing coefficient for Poisson-cluster and Cox processes
and some classes of dependently thinned Poisson processes. We only mention that
both of the previous estimates can be reformulated with slight modifications in terms
of ˛-mixing coefficients.
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In [236] a CLT for geometric functionals of ˇ-mixing random closed sets has
been proved. The conditions of this CLT can be expressed more explicitly for germ-
grain models due to (4.20). CLT’s for stationary random fields put assumptions
on mixing rates derived from mixing coefficients between specific �-algebras, see
[267] in the case of PP’s. An application of ˛-mixing to study empirical functionals
of geostatistically marked point processes can be found in [392]. Besides the
frequently used CLT of E. Bolthausen [74] the following CLT (first proved and
applied in [230]) presents a meaningful alternative to verify asymptotic normality
of estimators in stochastic-geometric models.

Let � D f�.t/; t 2 Vng be a stationary random field with index set Vn D ft 2
Z
d W .Œ0; 1/d C t/ � Wng, where fWn ; n 2 Ng is a convex averaging sequence in

R
d implying jVnj=�d .Wn/ �!

n!1 1 . Further, A� .F / denotes the �-algebra generated

by the random variables f�.t/; t 2 F \ Z
d g and Sn D P

t2Vn �.t/ .

Theorem 4.9. Assume that there are two functions ˇ�
� and ˇ��

� on N such that

ˇ
�A�.Fp/;A� .F

c
pCq/

� �

8
<̂

:̂

ˇ�
� .q/ for p D 1; q 2 N

pd�1 ˇ��
� .q/ for p 2 N; q D 1; : : : ; p :

If, for some ı > 0 ,

Ej �.o/ j2Cı < 1;

1X

rD1
rd�1 �ˇ�

� .r/
�ı=.2Cı/

< 1 and r2d�1 ˇ��
� .r/�!

r!10 ;

then the asymptotic variance �2 D lim
n!1 var Sn=�d .Wn/ D P

t2Zd cov.�.o/; �.t//

exists and the normal convergence .�d .Wn//
�1=2 �Sn � jVnj E�.o/

� H)
n!1N.0; �2/

holds.

Note that the assertion of Theorem 4.9 remains valid if the slightly weaker
˛-mixing coefficient is used, see [235] and references therein.

On the other hand, there are situations which require the stronger ˇ-mixing
coefficient. For example,� � P can be shown to be Bk-mixing for any fixed k 
 2

if E�.Œ0; 1
d /kCı < 1 and

Z 1

1

r.k�1/d�1 �ˇ�.r/
�ı=.kCı/

dr < 1

for some ı > 0 , where the ˇ-mixing coefficient ˇ� W Œ1;1/ ! Œ0; 1
 is defined as a

non-increasing function such that ˇ�.r/ 
 �
minf1; r

a
g�d�1

ˇ
�A� .Fa/;A� .F

c
aCr /

�

for all a; r 
 1 . This implies that � � P is Brillinger-mixing if ˇ�.r/ � e�g.r/
with g W Œ1;1/ ! Œ0;1
 satisfying g.r/= log.r/ �!

r!1 1 .
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4.3.3 Testing CSR Based on Empirical K-Functions

Let
�
1�2KB

�
n
.r/ be any of the empirical K-functions

�
1�2KB

�
n;i
.r/ , i D 1; 2; 3;

introduced and discussed in the above Sect. 4.2.1. Below we formulate two func-
tional CLT’s for the corresponding centered and scaled empirical process on the
interval Œ0; R
 when � D fXi; i 
 1g is a stationary Poisson process. We
distinguish between the cases of known intensity � and estimated intensityb�n which
leads to two distinct zero mean Gauss–Markov limit processes (in the sense of
weak convergence in the Skorokhod-space DŒ0; R
, see [69]). For both limits the
distribution function of the maximal deviation over Œ0; R
 can be calculated. This
fact can be used to establish a Kolmogorov–Smirnov-type test for checking the null
hypothesis of CSR via testing the suitably scaled maximal deviation of the empirical

K-functions from �2 �d .B/ r
d resp. .b�2/n �d .B/ rd , see (4.17). For the details of

the proofs (in the particular case B D B1.o/ ) and some extensions (among them, a
Cramér-von Mises-type test for K-functions) the reader is referred to [228].

Theorem 4.10. Let the stationary Poisson process � � ˘��d with intensity � > 0

be observed in window Wn D �d
iD1Œ0; a

.n/
i 
 with unboundedly increasing edges.

Then

	n.r/ WD
p
�d .Wn/=�

� �
1�2KB

�
n
.r/� �2 �d .B/ r

d
�

H)
n!1 	.r/

dD W
�
L.r/

�

1� L.r/

(4.21)

�n.r/ WD
q
�d .Wn/=b�n

� �
1�2KB

�
n
.r/ � .b�2/n �d .B/ rd

�
H)
n!1 �.r/

dD W.2�d .B/ r
d /

for 0 � r � R , where H)
n!1 stands for weak convergence in the Skorokhod-space

DŒ0; R
 . Both weak limits 	.r/ and �.r/ for r 2 Œ0; R
 are Gaussian diffusion
processes with zero means and covariance functions

E	.s/	.t/ D 2 � �d.B/ s
d
�
1C 2 � �d.B/ t

d
�

and E�.s/�.t/ D 2 �d.B/ s
d

for 0 � s � t � R . In (4.21) ;
dD means stochastic equivalence, W D

fW.t/; t 
 0g denotes the one-dimensional standard Wiener process and L.r/ D
2 � �d.B/ r

d=. 1C 2 � �d.B/ r
d /.

Corollary 4.1. The continuous mapping theorem, see [69], applied to (4.21)
implies that

max
0�r�R j	n.r/j H)

n!1 max
0�t�L

jW.t/j
1 � t

� FL and
max
0�r�R j�n.r/j
p
2 �d .B/R

d
H)
n!1 max

0�t�1 jW.t/j � G ;
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where L D L.R/ .< 1 / and

1 � FL.x/ D 2
�
1 � ˚

�
x.1 �L/=pL�

�

C2
1X

nD1
.�1/nC1e2nx2

�
˚
�
x.2nC 1 �L/=pL� �˚�x.2n � 1 �L/=pL�

�

and 1 �G.x/ D 4
�
1 � ˚.x/

�C 4
1P
nD1
.�1/n� 1 � ˚. .2nC 1/x /

�
.

Remark 4.5. The relevant quantiles of FL and G are known. Obviously, testing
the CSR-property via checking the goodness-of-fit of the K-function seems to be
easier when � is unknown. The convergence of the finite-dimensional distributions
of f	n.�/; n 2 Ng follows from the CLT for m-dependent fields and the tightness
in DŒ0; R
 is seen by an exact bound of the mixed fourth-order moment of two
consecutive increments. The convergence of the finite-dimensional distributions of
f�n.�/; n 2 Ng follows by applying a variant of Stein’s method to an asymptotically
degenerate U -statistic, see [228, 231]

In [231] an analogous test of CSR based on the multivariate K-function
K.r1; ::; rd / D 2d r1 � : : : � rd and its empirical counterpart in case of a Poisson
process has been developed. We only sketch the main result in the case of unknown
intensity �. In [231] the case of known � is also treated in detail.

Let the assumptions of Theorem 4.10 be satisfied. Setting

�
b�2 K

�
n
.r/ WD 1

�d .Wn/

X

j�1
1.Xj 2 Wn/

�
� � ıXj

��
.
d�
iD1Œ�ri ; ri 
CXj /\Wn

�

for r D .r1; : : : ; rd /
T 2 Œ0;1/d , and

�n.r/ WD
s
�d .Wn/

b�n

� �
b�2 K

�
n
.r/� .b�2/n 2d

dY

iD1
ri

�

we obtain a sequence f�n.r/; r 2 Œ0; R
d g of empirical processes belonging to
the Skorokhod-space D.Œ0; R
d / of d -parameter càdlàg-processes that converges

weakly to a Gaussian random field f�.r/; r 2 Œ0; R
d g dD fp2dC1 Wd .r/; r 2
Œ0; R
d g , where fWd.r/; r 2 Œ0;1/d g denotes the d -dimensional standard
Wiener sheet with mean value function EWd.r/ D 0 and covariance function
EWd.s/Wd .t/ D Qd

iD1. si ^ ti / for s D .s1; : : : ; sd /
> , t D .t1; : : : ; td /

> . Hence,
by the continuous mapping theorem it follows that

max
r2Œ0;R
d

j �n.r/ j H)
n!1 max

r2Œ0;R
d
j �.r/ j dD

p
2dC1 Rd max

r2Œ0;1
d
jWd.r/ j :
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The ˛-quantiles of the distribution function

G2.x/ D P.jW2.r1; r2/j � x ; 8 .r1; r2/ 2 Œ0; 1
2/

can be determined only approximately via large-scale simulations of the planar
Wiener sheet. In this way we found m0:95 D 2:1165, m0:99 D 2:7105, and
m0:995 D 2:9313 , where G2.m˛/ D ˛ .
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